
Developer Guide

Amazon Elastic Container Service

Copyright © 2024 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon Elastic Container Service Developer Guide

Amazon Elastic Container Service: Developer Guide

Copyright © 2024 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon's trademarks and trade dress may not be used in connection with any product or service
that is not Amazon's, in any manner that is likely to cause confusion among customers, or in any
manner that disparages or discredits Amazon. All other trademarks not owned by Amazon are
the property of their respective owners, who may or may not be affiliated with, connected to, or
sponsored by Amazon.

Amazon Elastic Container Service Developer Guide

Table of Contents

What is Amazon ECS? .. 1
Amazon ECS terminology and components ... 1

Amazon ECS capacity ... 2
Amazon ECS controller .. 3
Amazon ECS provisioning .. 3

Application lifecycle ... 3
Related information ... 5

Getting started .. 7
Set up .. 7

Sign up for an AWS account .. 7
Create an administrative user .. 8
Create a virtual private cloud ... 9
Create a security group ... 10
Create the credentials to connect to your EC2 instance ... 13
Install the AWS CLI ... 14

Creating a container image .. 14
Prerequisites ... 15
Create a Docker image .. 16
Push your image to Amazon Elastic Container Registry ... 19
Clean up .. 20
Next steps ... 20

Using the console with Linux containers on AWS Fargate .. 21
Prerequisites ... 21
Step 1: Create the cluster ... 22
Step 2: Create a task definition ... 23
Step 3: Create the service ... 24
Step 4: View your service .. 24
Step 5: Clean up ... 25

Getting started with Windows on Amazon EC2 .. 25
Prerequisites ... 25
Step 1: Create a cluster ... 26
Step 2: Register a task definition .. 28
Step 3: Create a Service .. 29
Step 4: View your Service ... 30

iii

Amazon Elastic Container Service Developer Guide

Step 5: Clean Up ... 30
Developer tools overview ... 32

AWS Management Console .. 32
AWS Command Line Interface .. 33
AWS CloudFormation .. 33
AWS Copilot CLI ... 34
AWS CDK .. 34
AWS App2Container .. 35
Amazon ECS CLI ... 35
Docker Desktop integration with Amazon ECS .. 35
AWS SDKs .. 36
Summary .. 36
Using the AWS Copilot CLI .. 37

Installing the AWS Copilot CLI ... 38
Getting started with AWS Copilot .. 46

Prerequisites ... 46
Deploy your application using one command .. 47
Deploy your application step by step ... 47

Using the AWS CDK ... 53
Step 1: Set up your AWS CDK project .. 54
Step 2: Use the AWS CDK to define a containerized web server on Fargate 56
Step 3: Test the web server ... 61
Step 4: Clean up ... 62
Next steps ... 62

Creating Amazon ECS resources with AWS CloudFormation .. 63
Amazon ECS and AWS CloudFormation templates ... 63
Example templates ... 63
Using the AWS CLI to create resources from templates ... 70
Learn more about AWS CloudFormation ... 71

Using the Amazon ECS CLI .. 71
Installing the Amazon ECS CLI .. 72
Configuring the Amazon ECS CLI .. 81

AWS Fargate ... 84
Fargate walkthroughs .. 84
Capacity providers .. 85
Task definitions ... 85

iv

Amazon Elastic Container Service Developer Guide

Platform versions ... 85
Service load balancing .. 86
Usage metrics .. 86
Fargate Linux platform versions ... 86

Considerations ... 87
1.4.0 ... 88
1.3.0 ... 90
Migrating to Linux platform version 1.4.0 .. 91
Platform version deprecation ... 91

Fargate Windows platform versions .. 93
Platform version considerations .. 94
1.0.0 ... 94

Windows containers on Fargate considerations .. 95
AWS Fargate task maintenance FAQs .. 96

What is Fargate task maintenance and retirement? .. 96
What is in the task retirement notice? ... 97
Can I change the task retirement wait time? ... 99
Can I get task retirement notifications through other AWS services? 100
Can I change a task retirement after it is scheduled? .. 100
Can I control the timing of a task replacement? ... 100
How does Amazon ECS handle tasks that are part of a service? .. 101
Can Amazon ECS automatically handle standalone tasks? .. 101

AWS Fargate Regions .. 101
Linux containers on AWS Fargate ... 101
Windows containers on AWS Fargate .. 103

Architecting your solution for Amazon ECS .. 106
Amazon ECS capacity .. 106
Networking .. 106
Accessing features ... 107
Logging .. 108
Launch types ... 108

Fargate launch type ... 109
EC2 launch type .. 111
External launch type .. 112

Using shared subnets, Local Zones, and Wavelength Zones ... 112
Shared subnets .. 113

v

Amazon Elastic Container Service Developer Guide

Local Zones .. 114
Wavelength Zones .. 115

Amazon Elastic Container Service on AWS Outposts ... 115
Prerequisites .. 115
Limitations .. 116
Network Connectivity Considerations .. 116
Creating an Amazon ECS Cluster on an AWS Outposts .. 116

Accessing Amazon ECS features through account settings ... 120
Amazon Resource Names (ARNs) and IDs ... 124
ARN and resource ID format timeline .. 126
AWS Fargate Federal Information Processing Standard (FIPS-140) compliance 126
Tagging authorization ... 127
Tagging authorization timeline ... 128
AWS Fargate task retirement wait time .. 129
Runtime Monitoring (Amazon GuardDuty integration) .. 130
Viewing account settings using the console ... 130
Modifying account settings .. 131
Reverting to the default Amazon ECS account settings ... 132
Account setting management using the AWS CLI ... 132

Task definitions ... 135
Task definition states .. 136

Amazon ECS resources that can block a deletion .. 137
Architecting your application .. 137

Best practices for container images ... 139
Task networking for tasks on Amazon EC2 instances ... 141
Task networking for tasks on Fargate .. 153
Fargate task ephemeral storage .. 156
Using data volumes in tasks .. 158
Managing container swap space ... 206
Fargate considerations ... 207
EC2 Windows considerations ... 216

Creating a task definition using the console ... 217
JSON validation .. 217
AWS CloudFormation stacks .. 217

Updating a task definition using the console .. 243
JSON validation .. 244

vi

Amazon Elastic Container Service Developer Guide

Deregistering a task definition revision using the console ... 245
AWS CloudFormation stacks .. 217

Deleting a task definition revision using the console .. 247
Amazon ECS resources that can block a deletion .. 137

Task definition use cases .. 248
Working with GPUs on Amazon ECS .. 249
Using video transcoding on Amazon ECS ... 257
Using AWS Neuron on Amazon Linux 2 on Amazon ECS ... 271
Using deep learning DL1 instances on Amazon ECS ... 278
Working with 64-bit ARM workloads on Amazon ECS ... 280
Using the awslogs log driver ... 283
Using custom log routing ... 290
Private registry authentication for tasks ... 313
Use task definition parameters to pass environment variables to a container 316
Use a file to pass environment variables to a container .. 317
Passing sensitive data to a container ... 320

Example task definitions .. 340
Webserver ... 340
splunk log driver .. 342
fluentd log driver .. 343
gelf log driver ... 344
Workloads on external instances .. 344
Amazon ECR image and task definition IAM role .. 346
Entrypoint with command .. 346
Container dependency ... 347
Windows sample task definitions ... 349

Clusters and capacity .. 351
Capacity provider concepts .. 351
Capacity providers ... 353

Capacity provider types .. 353
Capacity provider considerations .. 354
AWS Fargate capacity providers .. 355
Amazon EC2 Auto Scaling group capacity providers .. 358

Cluster auto scaling ... 360
Considerations ... 362
Cluster auto scaling overview .. 363

vii

Amazon Elastic Container Service Developer Guide

Managed termination protection .. 365
Update on the way Amazon ECS creates resources for cluster auto scaling 371
Turn on cluster auto scaling .. 372
Turn off cluster auto scaling .. 373

Cluster management ... 374
Creating a cluster for the Fargate and External launch type using the console 376
Creating a cluster for the Amazon EC2 launch type using the console 378
Updating a cluster using the console .. 383
Deleting a cluster using the console .. 385
Creating a capacity provider for a cluster using the console .. 385
Updating a capacity provider for a cluster using the console ... 386
Deleting a capacity provider for a cluster using the console .. 387

Capacity creation ... 388
Spot Instances ... 389
Linux instances .. 393
Windows instances ... 425
External instances ... 469

Capacity management .. 490
Container agent versions .. 491
Linux container instance management .. 502
Windows container instance management ... 574
Amazon ECS managed instance draining .. 591

Scheduling your containers .. 603
Service scheduler ... 603
Standalone tasks .. 604
Scheduled tasks .. 605
Custom schedulers ... 605
Task lifecycle ... 605

Lifecycle states .. 606
Task placement ... 608

EC2 launch type .. 608
Fargate launch type ... 609
Task groups .. 609
Task placement strategies .. 610
Task placement constraints .. 614
Cluster query language ... 621

viii

Amazon Elastic Container Service Developer Guide

Standalone tasks .. 625
Creating a standalone task ... 626
Stopping a standalone task ... 635

Scheduled tasks .. 636
EventBridge Scheduler scheduled tasks .. 637
Scheduled tasks using EventBridge rules .. 643

Services .. 648
Service scheduler concepts ... 648
Additional service concepts .. 652
Creating a service ... 653
Updating a service ... 684
Updating a blue/green deployment configuration ... 699
Deleting a service ... 700
Deployment types .. 701
Service load balancing .. 722
Service auto scaling ... 739
Interconnecting services .. 745
Task scale-in protection .. 787
Amazon ECS service throttle logic .. 795

Amazon ECS resource tagging ... 797
How resources are tagged ... 797
Tagging resources on creation .. 800
Restrictions .. 801
Amazon ECS-managed tags .. 801
Tagging your resources for billing ... 802
Working with tags using the console .. 803

Adding tags on an individual resource during launch .. 803
Managing individual resource tags ... 804

Adding tags to an Amazon EC2 container instance ... 805
Tagging an external container instance ... 807

Working with tags using the CLI or API .. 807
Usage Reports .. 809

Task-level cost and usage ... 810
Monitoring ... 812

Best practices for monitoring Amazon ECS ... 813
Monitoring tools for Amazon ECS .. 813

ix

Amazon Elastic Container Service Developer Guide

Automated Tools .. 814
Manual Tools ... 815

Monitor Amazon ECS using CloudWatch .. 816
Considerations ... 817
Available metrics and dimensions for Amazon ECS .. 817
AWS Fargate usage metrics .. 835
Viewing Amazon ECS metrics .. 836

Automate responses to Amazon ECS errors using EventBridge ... 838
Amazon ECS events ... 839
Handling events .. 857

Monitor Amazon ECS containers using Container Insights ... 861
Considerations ... 861
Configuring CloudWatch Container Insights for Amazon ECS .. 862
Required permissions for CloudWatch Container Insights to view Amazon ECS lifecycle
events .. 863

Monitor Amazon ECS container instance health ... 864
Related topics .. 865

Identify Amazon ECS optimization opportunities using application trace data 865
Required IAM permissions for AWS Distro for OpenTelemetry integration with AWS X-
Ray ... 866
Specifying the AWS Distro for OpenTelemetry sidecar for AWS X-Ray integration in your
task definition ... 868

Correlate Amazon ECS application performance using application metrics 869
Exporting application metrics to Amazon CloudWatch .. 869
Exporting application metrics to Amazon Managed Service for Prometheus 874

Log Amazon ECS API calls using AWS CloudTrail ... 878
Amazon ECS information in CloudTrail ... 878
Understanding Amazon ECS log file entries ... 879

Identify unauthorized behavior using Runtime Monitoring .. 881
How Runtime Monitoring works with Amazon ECS .. 881
Considerations ... 882
Resource utilization .. 883
GuardDuty agent management ... 883
Manual Runtime Monitoring management ... 886
Troubleshooting FAQs .. 890

Monitor Amazon ECS containers with ECS Exec .. 894

x

Amazon Elastic Container Service Developer Guide

Considerations for using ECS Exec ... 894
Prerequisites for using ECS Exec ... 896
Architecture .. 897
Using ECS Exec .. 897
Logging and Auditing using ECS Exec ... 900
Using IAM policies to limit access to ECS Exec .. 904

Compute Optimizer recommendations ... 907
Task size recommendations for Fargate .. 907

Security .. 908
Identity and Access Management .. 908

Audience ... 909
Authenticating with identities ... 910
Managing access using policies ... 913
How Amazon Elastic Container Service works with IAM .. 916
Identity-based policy examples ... 926
AWS managed policies for Amazon ECS ... 938
Using service-linked roles ... 969
Permissions required for the Amazon ECS console ... 973
Task execution IAM role .. 979
Task IAM role ... 987
Infrastructure IAM role .. 997
Additional configuration for Windows task role .. 1004
Container instance IAM role ... 1006
ECS Anywhere IAM role .. 1012
CodeDeploy IAM Role .. 1014
EventBridge IAM Role .. 1021
IAM permissions required for service auto scaling .. 1025
Tag resources during creation ... 1027
Troubleshooting .. 1031

Logging and Monitoring .. 1033
Compliance validation .. 1035
AWS Fargate FIPS-140 compliance .. 1036

Considerations ... 1036
Use FIPS on Fargate .. 1036
Use CloudTrail for auditing .. 1037

Infrastructure Security .. 1038

xi

Amazon Elastic Container Service Developer Guide

Interface VPC endpoints (AWS PrivateLink) ... 1039
Best Practices ... 1043

AWS Identity and Access Management ... 1044
Using IAM roles with Amazon ECS tasks ... 1047
Network security .. 1053
Secrets management ... 1059
Using temporary security credentials with API operations ... 1061
Compliance and security .. 1061
Logging and monitoring ... 1063
AWS Fargate security .. 1065
EC2 container instance security .. 1067
Task and container security ... 1068
Runtime security ... 1074
AMI best practices .. 1075
AWS Partners .. 1075

Retrieve Amazon ECS metadata ... 1077
Container metadata file ... 1078

Container metadata file locations .. 1078
Turning on container metadata .. 1079
Container metadata file format .. 1080

Task metadata available for tasks on EC2 ... 1083
Task metadata endpoint version 4 ... 1084
Task metadata endpoint version 3 ... 1110
Task metadata endpoint version 2 ... 1118

Task metadata available for tasks on Fargate ... 1125
Fargate task metadata endpoint v4 ... 1125
Fargate task metadata endpoint v3 ... 1141

Container introspection .. 1147
Working with other services ... 1151

Using Amazon ECR with Amazon ECS .. 1151
Using Amazon ECR Images with Amazon ECS ... 1151

AWS Deep Learning Containers on Amazon ECS .. 1152
Deep Learning Containers with Elastic Inference on Amazon ECS ... 1152

Using AWS User Notifications with Amazon ECS .. 1153
Example .. 1153

Tutorials ... 1155

xii

Amazon Elastic Container Service Developer Guide

Using Windows containers on AWS Fargate .. 1155
Prerequisites .. 1156
Step 1: Create a cluster .. 1156
Step 2: Register a Windows task definition .. 1157
Step 3: Create a service with your task definition .. 1158
Step 4: View your service ... 1159
Step 5: Clean Up .. 1159

Creating a cluster with a Fargate Linux task using the AWS CLI ... 1160
Prerequisites .. 1161
Step 1: Create a Cluster .. 1161
Step 2: Register a Linux Task Definition ... 1162
Step 3: List Task Definitions .. 1164
Step 4: Create a Service ... 1164
Step 5: List Services .. 1165
Step 6: Describe the Running Service .. 1165
Step 7: Test ... 1168
Step 8: Clean Up .. 1171

Creating a cluster with a Fargate Windows task using the AWS CLI ... 1172
Prerequisites .. 1172
Step 1: Create a Cluster .. 1173
Step 2: Register a Windows Task Definition ... 1174
Step 3: List task definitions ... 1175
Step 4: Create a service .. 1175
Step 5: List services ... 1176
Step 6: Describe the Running Service .. 1176
Step 7: Clean Up .. 1179

Creating a cluster with an EC2 task using the AWS CLI .. 1179
Prerequisites .. 1180
Step 1: Create a Cluster .. 1180
Step 2: Launch an Instance with the Amazon ECS AMI ... 1181
Step 3: List Container Instances ... 1181
Step 4: Describe your Container Instance ... 1181
Step 5: Register a Task Definition .. 1184
Step 6: List Task Definitions .. 1186
Step 7: Run a Task ... 1186
Step 8: List Tasks ... 1187

xiii

Amazon Elastic Container Service Developer Guide

Step 9: Describe the Running Task .. 1188
Using cluster auto scaling with the AWS Management Console and the Amazon ECS
console ... 1189

Prerequisites .. 1189
Step 1: Create an Amazon ECS cluster .. 1190
Step 2: Register a task definition ... 1191
Step 3: Run a task ... 1191
Step 4: Verify .. 1192
Step 5: Clean up ... 1193

Specifying Sensitive Data Using Secrets Manager Secrets .. 1194
Prerequisites .. 1194
Step 1: Create an Secrets Manager Secret ... 1194
Step 2: Update Your Task Execution IAM Role ... 1195
Step 3: Create an Amazon ECS Task Definition ... 1196
Step 4: Create an Amazon ECS Cluster ... 1197
Step 5: Run an Amazon ECS Task .. 1197
Step 6: Verify .. 1197
Step 7: Clean Up .. 1199

Creating a service using Service Discovery .. 1199
Prerequisites .. 1200
Step 1: Create the Service Discovery resources in AWS Cloud Map 1200
Step 2: Create the Amazon ECS resources .. 1202
Step 3: Verify Service Discovery in AWS Cloud Map ... 1204
Step 4: Clean up ... 1206

Creating a service using a blue/green deployment ... 1208
Prerequisites .. 1209
Step 1: Create an Application Load Balancer ... 1209
Step 2: Create an Amazon ECS cluster .. 1211
Step 3: Register a task definition ... 1211
Step 4: Create an Amazon ECS service .. 1212
Step 5: Create the AWS CodeDeploy resources ... 1213
Step 6: Create and monitor a CodeDeploy deployment .. 1216
Step 7: Clean up ... 1222

Listening for Amazon ECS CloudWatch Events ... 1224
Prerequisite: Set up a test cluster .. 1224
Step 1: Create the Lambda function ... 1224

xiv

Amazon Elastic Container Service Developer Guide

Step 2: Register an event rule ... 1225
Step 3: Create a task definition .. 1226
Step 4: Test your rule .. 1227

Sending Amazon Simple Notification Service alerts for task stopped events 1227
Prerequisite: Set up a test cluster .. 1227
Prerequisite: Configure permissions for Amazon SNS .. 1228
Step 1: Create and subscribe to an Amazon SNS topic .. 1228
Step 2: Register an event rule ... 1229
Step 3: Test your rule .. 1230

Concatenate multiline or stack-trace log messages ... 1231
Required IAM permissions .. 1231
Determine when to use the multiline log setting ... 1233
Parse and concatenate options ... 1234

Tutorial: Using Amazon EFS .. 1253
Step 1: Create an Amazon ECS cluster .. 1254
Step 2: Create a security group for Amazon EC2 instances and the Amazon EFS file
system ... 1255
Step 3: Create an Amazon EFS file system ... 1256
Step 4: Add content to the Amazon EFS file system .. 1257
Step 5: Create a task definition .. 1259
Step 6: Run a task and view the results ... 1260

Tutorial: Using FSx for Windows File Server .. 1262
Prerequisites for the tutorial ... 1263
Step 1: Create IAM access roles .. 1263
Step 2: Create Windows Active Directory (AD) .. 1264
Step 3: Verify and update your security group .. 1265
Step 4: Create an FSx for Windows File Server file system ... 1266
Step 5: Create an Amazon ECS cluster .. 1268
Step 6: Create an Amazon ECS optimized Amazon EC2 instance .. 1268
Step 7: Register a Windows task definition .. 1269
Step 8: Run a task and view the results ... 1272
Step 9: Clean up ... 1273

Deploying Fluent Bit on Amazon ECS for Windows containers ... 1274
Prerequisites .. 1276
Step 1: Create the IAM access roles ... 1277
Step 2: Create an Amazon ECS Windows container instance .. 1278

xv

Amazon Elastic Container Service Developer Guide

Step 3: Configure Fluent Bit .. 1279
Step 4: Register a Windows Fluent Bit task definition which routes the logs to
CloudWatch ... 1281
Step 5: Run the ecs-windows-fluent-bit task definition as an Amazon ECS service
using the daemon scheduling strategy ... 1283
Step 6: Register a Windows task definition which generates the logs 1284
Step 7: Run the windows-app-task task definition .. 1285
Step 8: Verify the logs on CloudWatch ... 1286
Step 9: Clean up ... 1287

Using gMSAs for Windows Containers on Amazon EC2 .. 1288
Considerations ... 1289
Prerequisites .. 1290
Setup ... 1290

Using Windows Containers with Domainless gMSA using the AWS CLI 1296
Prerequisites .. 1297
Step 1: Create and configure the gMSA account on Active Directory Domain Services (AD
DS) ... 1298
Step 2: Upload Credentials to Secrets Manager .. 1300
Step 3: Modify your CredSpec JSON to include domainless gMSA information 1301
Step 4: Upload CredSpec to Amazon S3 ... 1302
Step 5: (Optional) Create an Amazon ECS cluster ... 1303
Step 6: Create an IAM role for container instances .. 1303
Step 7: Create a custom task execution role .. 1304
Step 8: Create a task role for Amazon ECS Exec ... 1305
Step 9: Register a task definition ... 1307
Step 10: Register a Windows container instance .. 1308
Step 11: Verify the container instance .. 1309
Step 12: Run a Windows task ... 1310
Step 13: Verify the container has gMSA credentials .. 1310
Step 14: Clean up .. 1311
Debugging .. 1313

Using gMSA for Linux Containers on Amazon EC2 .. 1313
Considerations ... 1314
Prerequisites .. 1315
Setup ... 1316
CredSpec file ... 1323

xvi

Amazon Elastic Container Service Developer Guide

Using gMSA for Linux containers on Fargate .. 1324
Considerations ... 1324
Prerequisites .. 1325
Setup ... 1325
CredSpec file ... 1328

Using EC2 Image Builder to build customized Amazon ECS-optimized AMIs 1330
Using the image ARN with infrastructure as code (IaC) ... 1331
Using the image ARN with AWS CloudFormation ... 1334
Using the image ARN with Terraform ... 1335

Troubleshooting ... 1336
Troubleshooting issues with ECS Exec .. 1336

Verify using the Amazon ECS Exec Checker ... 1337
Error when calling execute-command ... 1337

Troubleshooting Amazon ECS Anywhere issues .. 1337
External instance registration issues .. 1337
External instance network issues .. 1338
Issues running tasks .. 1339

Checking stopped tasks for errors ... 1339
Additional resources .. 1341

Stopped tasks error codes ... 1341
CannotPullContainer task errors .. 1344
Service event messages ... 1349

Service event messages .. 1350
Invalid CPU or memory value specified .. 1359
CannotCreateContainerError: API error (500): devmapper 1361
Troubleshooting service load balancers .. 1363
Troubleshooting Amazon EBS volume attachment .. 1365

Checking for volume attachment failure reasons ... 1365
Amazon EBS volume attachment failure scenarios ... 1365

Troubleshooting service auto scaling .. 1370
Using Docker debug output .. 1370
Amazon ECS log file locations .. 1372

Amazon ECS Container Agent log .. 1372
Amazon ECS ecs-init Log .. 1375
IAM Roles for Tasks Credential Audit Log ... 1376

Amazon ECS logs collector .. 1377

xvii

Amazon Elastic Container Service Developer Guide

Agent introspection diagnostics ... 1379
Docker diagnostics .. 1381

List Docker containers ... 1381
View Docker Logs ... 1382
Inspect Docker Containers .. 1383

AWS Fargate throttling quotas ... 1384
Throttling the RunTask API .. 1385
Adjusting rate quotas .. 1386

API failure reasons .. 1386
Parameter references and resource templates .. 1396

Task definition parameters .. 1396
Family .. 1396
Launch types ... 1397
Task role ... 1397
Task execution role .. 1397
Network mode .. 1398
Runtime platform ... 1400
Task size ... 1401
Container definitions ... 1405
Elastic Inference accelerator name ... 1452
Task placement constraints .. 1452
Proxy configuration ... 1453
Volumes .. 1455
Tags ... 1462
Other task definition parameters ... 1463

Task definition template .. 1466
Service definition parameters ... 1477

Launch type ... 1477
Capacity provider strategy ... 1478
Task definition .. 1479
Platform operating system .. 1480
Platform version ... 1480
Cluster ... 1481
Service name ... 1481
Scheduling strategy ... 1481
Desired count .. 1482

xviii

Amazon Elastic Container Service Developer Guide

Deployment configuration ... 1483
Deployment controller .. 1485
Task placement ... 1486
Tags ... 1487
Network configuration .. 1489
Client token ... 1497
Volume configurations .. 1498
Service definition template .. 1503

Service quotas ... 1511
Amazon ECS service quotas .. 1511
AWS Fargate service quotas .. 1515
Managing your Amazon ECS and AWS Fargate service quotas in the AWS Management
Console .. 1516

Amazon ECS API reference ... 1519
Document history .. 1520
AWS Glossary ... 1557

xix

Amazon Elastic Container Service Developer Guide

What is Amazon Elastic Container Service?

Amazon Elastic Container Service (Amazon ECS) is a fully managed container orchestration service
that helps you easily deploy, manage, and scale containerized applications. As a fully managed
service, Amazon ECS comes with AWS configuration and operational best practices built-in. It's
integrated with both AWS and third-party tools, such as Amazon Elastic Container Registry and
Docker. This integration makes it easier for teams to focus on building the applications, not the
environment. You can run and scale your container workloads across AWS Regions in the cloud, and
on-premises, without the complexity of managing a control plane.

Amazon ECS terminology and components

There are three layers in Amazon ECS:

• Capacity - The infrastructure where your containers run

• Controller - Deploy and manage your applications that run on the containers

• Provisioning - The tools that you can use to interface with the scheduler to deploy and manage
your applications and containers

The following diagram shows the Amazon ECS layers.

Amazon ECS terminology and components 1

Amazon Elastic Container Service Developer Guide

Amazon ECS capacity

Amazon ECS capacity is the infrastructure where your containers run. The following is an overview
of the capacity options:

• Amazon EC2 instances in the AWS cloud

You choose the instance type, the number of instances, and manage the capacity.

• Serverless (AWS Fargate (Fargate)) in the AWS cloud

Fargate is a serverless, pay-as-you-go compute engine. With Fargate you don't need to manage
servers, handle capacity planning, or isolate container workloads for security.

• On-premises virtual machines (VM) or servers

Amazon ECS Anywhere provides support for registering an external instance such as an on-
premises server or virtual machine (VM), to your Amazon ECS cluster.

Amazon ECS capacity 2

Amazon Elastic Container Service Developer Guide

The capacity can be located in any of the following AWS resources:

• Availability Zones

• Local Zones

• Wavelength Zones

• AWS Regions

• AWS Outposts

Amazon ECS controller

The Amazon ECS scheduler is the software that manages your applications.

Amazon ECS provisioning

There are multiple options for provisioning Amazon ECS:

• AWS Management Console — Provides a web interface that you can use to access your Amazon
ECS resources.

• AWS Command Line Interface (AWS CLI) — Provides commands for a broad set of AWS services,
including Amazon ECS. It's supported on Windows, Mac, and Linux. For more information, see
AWS Command Line Interface.

• AWS SDKs — Provides language-specific APIs and takes care of many of the connection details.
These include calculating signatures, handling request retries, and error handling. For more
information, see AWS SDKs.

• Copilot — Provides an open-source tool for developers to build, release, and operate production
ready containerized applications on Amazon ECS. For more information, see Copilot on the
GitHub website.

• AWS CDK — Provides an open-source software development framework that you can
use to model and provision your cloud application resources using familiar programming
languages. The AWS CDK provisions your resources in a safe, repeatable manner through AWS
CloudFormation.

Application lifecycle

The following diagram shows the application lifecycle and how it works with the Amazon ECS
components.

Amazon ECS controller 3

https://aws.amazon.com/cli/
https://aws.amazon.com/tools/#SDKs
https://github.com/aws/copilot-cli

Amazon Elastic Container Service Developer Guide

You must architect your applications so that they can run on containers. A container is a
standardized unit of software development that holds everything that your software application
requires to run. This includes relevant code, runtime, system tools, and system libraries. Containers
are created from a read-only template that's called an image. Images are typically built from a
Dockerfile. A Dockerfile is a plaintext file that specifies all of the components that are included in
the container. After they're built, these images are stored in a registry such as Amazon ECR where
they can be downloaded from.

After you create and store your image, you create an Amazon ECS task definition. A task definition
is a blueprint for your application. It is a text file in JSON format that describes the parameters and
one or more containers that form your application. For example, you can use it to specify the image
and parameters for the operating system, which containers to use, which ports to open for your
application, and what data volumes to use with the containers in the task. The specific parameters
available for your task definition depend on the needs of your specific application.

Application lifecycle 4

Amazon Elastic Container Service Developer Guide

After you define your task definition, you deploy it as either a service or a task on your cluster.
A cluster is a logical grouping of tasks or services that runs on the capacity infrastructure that is
registered to a cluster.

A task is the instantiation of a task definition within a cluster. You can run a standalone task, or you
can run a task as part of a service. You can use an Amazon ECS service to run and maintain your
desired number of tasks simultaneously in an Amazon ECS cluster. How it works is that, if any of
your tasks fail or stop for any reason, the Amazon ECS service scheduler launches another instance
based on your task definition. It does this to replace it and thereby maintain your desired number
of tasks in the service.

The container agent runs on each container instance within an Amazon ECS cluster. The agent
sends information about the current running tasks and resource utilization of your containers to
Amazon ECS. It starts and stops tasks whenever it receives a request from Amazon ECS.

After you deploy the task or service, you can use any of the following tools to monitor your
deployment and application:

• CloudWatch

• Runtime Monitoring

Related information

The following related resources can help you as you work with this service.

• AWS Fargate – Overview of Fargate features.

• Windows on AWS – Overview of Windows on AWS workloads and services.

• Linux from AWS – Portfolio of modern Linux-based operating systems from AWS.

Tutorials for developers

• AWS Compute Blogs – Information about new features, deep dives into features, code samples
and best practices.

AWS re:Post

AWS re:Post – AWS managed question and answer (Q & A) service offering crowd-sourced, expert-
reviewed answers to your technical questions.

Related information 5

https://aws.amazon.com/fargate
https://aws.amazon.com/windows
https://aws.amazon.com/linux/
https://aws.amazon.com/blogs/compute/welcome/
https://repost.aws/

Amazon Elastic Container Service Developer Guide

Pricing

• Amazon ECS pricing – Pricing information for Amazon ECS.

• AWS Fargate pricing – Pricing information for Fargate.

General AWS resources

The following general resources can help you as you work with AWS.

• Classes & Workshops – Links to role-based and specialty courses, in addition to self-paced labs to
help sharpen your AWS skills and gain practical experience.

• AWS Developer Center – Explore tutorials, download tools, and learn about AWS developer
events.

• AWS Developer Tools – Links to developer tools, SDKs, IDE toolkits, and command line tools for
developing and managing AWS applications.

• Getting Started Resource Center – Learn how to set up your AWS account, join the AWS
community, and launch your first application.

• Hands-On Tutorials – Follow step-by-step tutorials to launch your first application on AWS.

• AWS Whitepapers – Links to a comprehensive list of technical AWS whitepapers, covering topics
such as architecture, security, and economics and authored by AWS Solutions Architects or other
technical experts.

• AWS Support Center – The hub for creating and managing your AWS Support cases. Also
includes links to other helpful resources, such as forums, technical FAQs, service health status,
and AWS Trusted Advisor.

• AWS Support – The primary webpage for information about AWS Support, a one-on-one, fast-
response support channel to help you build and run applications in the cloud.

• Contact Us – A central contact point for inquiries concerning AWS billing, account, events, abuse,
and other issues.

• AWS Site Terms – Detailed information about our copyright and trademark; your account, license,
and site access; and other topics.

Related information 6

https://aws.amazon.com/ecs/pricing
https://aws.amazon.com/fargate/pricing
https://aws.amazon.com/training/course-descriptions/
https://aws.amazon.com/developer/?ref=docs_id=res1
https://aws.amazon.com/developer/tools/?ref=docs_id=res1
https://aws.amazon.com/getting-started/?ref=docs_id=res1
https://aws.amazon.com/getting-started/hands-on/?ref=docs_id=res1
https://aws.amazon.com/whitepapers/
https://console.aws.amazon.com/support/home#/
https://aws.amazon.com/premiumsupport/
https://aws.amazon.com/contact-us/
https://aws.amazon.com/terms/

Amazon Elastic Container Service Developer Guide

Getting started with Amazon ECS

The following guides provide an introduction to the tools available to access Amazon ECS and
introductory step by step procedures to run containers. Docker basics takes you through the basic
steps to create a Docker container image and upload it to an Amazon ECR private repository. The
getting started guides walk you through using the AWS Copilot command line interface and the
AWS Management Console to complete the common tasks to run your containers on Amazon ECS
and AWS Fargate.

Contents

• Set up to use Amazon ECS

• Creating a container image for use on Amazon ECS

• Getting started with Linux containers on AWS Fargate

• Getting started with Windows on Amazon EC2

Set up to use Amazon ECS

If you've already signed up for Amazon Web Services (AWS) and have been using Amazon Elastic
Compute Cloud (Amazon EC2), you are close to being able to use Amazon ECS. The set-up process
for the two services is similar. The following guide prepares you for launching your first Amazon
ECS cluster.

Complete the following tasks to get set up for Amazon ECS.

Sign up for an AWS account

If you do not have an AWS account, complete the following steps to create one.

To sign up for an AWS account

1. Open https://portal.aws.amazon.com/billing/signup.

2. Follow the online instructions.

Part of the sign-up procedure involves receiving a phone call and entering a verification code
on the phone keypad.

Set up 7

https://portal.aws.amazon.com/billing/signup

Amazon Elastic Container Service Developer Guide

When you sign up for an AWS account, an AWS account root user is created. The root user
has access to all AWS services and resources in the account. As a security best practice, assign
administrative access to an administrative user, and use only the root user to perform tasks
that require root user access.

AWS sends you a confirmation email after the sign-up process is complete. At any time, you can
view your current account activity and manage your account by going to https://aws.amazon.com/
and choosing My Account.

Create an administrative user

After you sign up for an AWS account, secure your AWS account root user, enable AWS IAM Identity
Center, and create an administrative user so that you don't use the root user for everyday tasks.

Secure your AWS account root user

1. Sign in to the AWS Management Console as the account owner by choosing Root user and
entering your AWS account email address. On the next page, enter your password.

For help signing in by using root user, see Signing in as the root user in the AWS Sign-In User
Guide.

2. Turn on multi-factor authentication (MFA) for your root user.

For instructions, see Enable a virtual MFA device for your AWS account root user (console) in
the IAM User Guide.

Create an administrative user

1. Enable IAM Identity Center.

For instructions, see Enabling AWS IAM Identity Center in the AWS IAM Identity Center User
Guide.

2. In IAM Identity Center, grant administrative access to an administrative user.

For a tutorial about using the IAM Identity Center directory as your identity source, see
Configure user access with the default IAM Identity Center directory in the AWS IAM Identity
Center User Guide.

Create an administrative user 8

https://docs.aws.amazon.com/singlesignon/latest/userguide/getting-started.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/getting-started.html
https://docs.aws.amazon.com/accounts/latest/reference/root-user-tasks.html
https://docs.aws.amazon.com/accounts/latest/reference/root-user-tasks.html
https://aws.amazon.com/
https://console.aws.amazon.com/
https://docs.aws.amazon.com/signin/latest/userguide/console-sign-in-tutorials.html#introduction-to-root-user-sign-in-tutorial
https://docs.aws.amazon.com/IAM/latest/UserGuide/enable-virt-mfa-for-root.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/get-set-up-for-idc.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/quick-start-default-idc.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/quick-start-default-idc.html

Amazon Elastic Container Service Developer Guide

Sign in as the administrative user

• To sign in with your IAM Identity Center user, use the sign-in URL that was sent to your email
address when you created the IAM Identity Center user.

For help signing in using an IAM Identity Center user, see Signing in to the AWS access portal in
the AWS Sign-In User Guide.

Create a virtual private cloud

You can use Amazon Virtual Private Cloud (Amazon VPC) to launch AWS resources into a virtual
network that you've defined. We strongly suggest that you launch your container instances in a
VPC.

If you have a default VPC, you can skip this section and move to the next task, Create a security
group. To determine whether you have a default VPC, see Supported Platforms in the Amazon EC2
Console in the Amazon EC2 User Guide for Linux Instances. Otherwise, you can create a nondefault
VPC in your account using the steps below.

Important

If your account supports Amazon EC2 Classic in a region, then you do not have a default
VPC in that region.

For information about how to create a VPC, see Create a VPC only in the Amazon VPC User Guide,
and use the following table to determine what options to select.

Option Value

Resources to create VPC only

Name Optionally provide a name for
your VPC.

IPv4 CIDR block IPv4 CIDR manual input

Create a virtual private cloud 9

https://docs.aws.amazon.com/signin/latest/userguide/iam-id-center-sign-in-tutorial.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-supported-platforms.html#console-updates
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-supported-platforms.html#console-updates
https://docs.aws.amazon.com/vpc/latest/userguide/working-with-vpcs.html

Amazon Elastic Container Service Developer Guide

Option Value

The CIDR block size must
have a size between /16
and /28.

IPv6 CIDR block No IPv6 CIDR block

Tenancy Default

For more information about Amazon VPC, see What is Amazon VPC? in the Amazon VPC User Guide.

Create a security group

Security groups act as a firewall for associated container instances, controlling both inbound
and outbound traffic at the container instance level. You can add rules to a security group that
enable you to connect to your container instance from your IP address using SSH. You can also add
rules that allow inbound and outbound HTTP and HTTPS access from anywhere. Add any rules to
open ports that are required by your tasks. Container instances require external network access to
communicate with the Amazon ECS service endpoint.

If you plan to launch container instances in multiple Regions, you need to create a security group
in each Region. For more information, see Regions and Availability Zones in the Amazon EC2 User
Guide for Linux Instances.

Tip

You need the public IP address of your local computer, which you can get using a service.
For example, we provide the following service: http://checkip.amazonaws.com/ or https://
checkip.amazonaws.com/. To locate another service that provides your IP address, use the
search phrase "what is my IP address." If you are connecting through an internet service
provider (ISP) or from behind a firewall without a static IP address, you must find out the
range of IP addresses used by client computers.

For information about how to create a security group, see Create a security group in the Amazon
EC2 User Guide for Linux Instances and use the following table to determine what options to select.

Create a security group 10

https://docs.aws.amazon.com/vpc/latest/userguide/
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-regions-availability-zones.html
http://checkip.amazonaws.com/
https://checkip.amazonaws.com/
https://checkip.amazonaws.com/
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/working-with-security-groups.html#creating-security-group

Amazon Elastic Container Service Developer Guide

Option Value

Region The same Region in which you
created your key pair.

Name A name that is easy for you to
remember, such as ecs-insta
nces-default-cluster.

VPC The default VPC (marked with
"(default)" .

Note

If your account
supports Amazon EC2
Classic, select the VPC
that you created in
the previous task.

For information about the outbound rules to add for your use cases, see Security group rules for
different use cases in the Amazon EC2 User Guide for Linux Instances.

Amazon ECS container instances do not require any inbound ports to be open. However, you might
want to add an SSH rule so you can log into the container instance and examine the tasks with
Docker commands. You can also add rules for HTTP and HTTPS if you want your container instance
to host a task that runs a web server. Container instances do require external network access to
communicate with the Amazon ECS service endpoint. Complete the following steps to add these
optional security group rules.

Add the following three inbound rules to your security group.For information about how to create
a security group, see Add rules to your security group in the Amazon EC2 User Guide for Linux
Instances.

Option Value

HTTP rule Type: HTTP

Create a security group 11

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/security-group-rules-reference.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/security-group-rules-reference.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/working-with-security-groups.html#adding-security-group-rule

Amazon Elastic Container Service Developer Guide

Option Value

Source: Anywhere
(0.0.0.0/0)

This option automatically
adds the 0.0.0.0/0 IPv4 CIDR
block as the source. This is
acceptable for a short time
in a test environment, but
it's unsafe in production
environments. In production,
authorize only a specific IP
address or range of addresses
to access your instance.

HTTPS rule Type: HTTPS

Source: Anywhere
(0.0.0.0/0)

This is acceptable for a short
time in a test environment,
but it's unsafe in productio
n environments. In productio
n, authorize only a specific IP
address or range of addresses
to access your instance.

Create a security group 12

Amazon Elastic Container Service Developer Guide

Option Value

SSH rule Type: SSH

Source: Custom, specify the
public IP address of your
computer or network in
CIDR notation. To specify an
individual IP address in CIDR
notation, add the routing
prefix /32. For example, if
your IP address is 203.0.113
.25 , specify 203.0.113
.25/32 . If your company
allocates addresses from
a range, specify the entire
range, such as 203.0.113
.0/24 .

Important

For security reasons,
we don't recommend
that you allow
SSH access from
all IP addresses
(0.0.0.0/0) to
your instance, except
for testing purposes
and only for a short
 time.

Create the credentials to connect to your EC2 instance

For Amazon ECS, a key pair is only needed if you intend on using the EC2 launch type.

Create the credentials to connect to your EC2 instance 13

Amazon Elastic Container Service Developer Guide

AWS uses public-key cryptography to secure the login information for your instance. A Linux
instance, such as an Amazon ECS container instance, has no password to use for SSH access. You
use a key pair to log in to your instance securely. You specify the name of the key pair when you
launch your container instance, then provide the private key when you log in using SSH.

If you haven't created a key pair already, you can create one using the Amazon EC2 console. If you
plan to launch instances in multiple regions, you'll need to create a key pair in each region. For
more information about regions, see Regions and Availability Zones in the Amazon EC2 User Guide
for Linux Instances.

To create a key pair

• Use the Amazon EC2 console to create a key pair. For more information about creating a key
pair, see Create a key pair in the Amazon EC2 User Guide for Linux Instances.

For information about how to connect to your instance, see Connect to your Linux instance in the
Amazon EC2 User Guide for Linux Instances.

Install the AWS CLI

The AWS Management Console can be used to manage all operations manually with Amazon ECS.
However, you can install the AWS CLI on your local desktop or a developer box so that you can
build scripts that can automate common management tasks in Amazon ECS.

To use the AWS CLI with Amazon ECS, install the latest AWS CLI version. For information about
installing the AWS CLI or upgrading it to the latest version, see Installing the AWS Command Line
Interface in the AWS Command Line Interface User Guide.

Creating a container image for use on Amazon ECS

Amazon ECS uses Docker images in task definitions to launch containers. Docker is a technology
that provides the tools for you to build, run, test, and deploy distributed applications in containers.
Docker provides a walkthrough on deploying containers on Amazon ECS. For more information, see
Docker Compose CLI - Amazon ECS.

The purpose of the steps outlined here is to walk you through creating your first Docker image
and pushing that image to Amazon ECR, which is a container registry, for use in your Amazon ECS
task definitions. This walkthrough assumes that you possess a basic understanding of what Docker

Install the AWS CLI 14

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-regions-availability-zones.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/create-key-pairs.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/connect-to-linux-instance.html
https://docs.aws.amazon.com/cli/latest/userguide/installing.html
https://docs.aws.amazon.com/cli/latest/userguide/installing.html
https://github.com/docker/compose-cli/tree/main/docs#amazon-elastic-container-service

Amazon Elastic Container Service Developer Guide

is and how it works. For more information about Docker, see What is Docker? and the Docker
overview.

Prerequisites

Before you begin, ensure the following prerequisites are met.

• Ensure you have completed the Amazon ECR setup steps. For more information, see Setting up
for Amazon ECR in the Amazon Elastic Container Registry User Guide.

• Your user has the required IAM permissions to access and use the Amazon ECR service. For more
information, see Amazon ECR managed policies.

• You have Docker installed. For Docker installation steps for Amazon Linux 2, see Installing Docker
on AL2023. For all other operating systems, see the Docker documentation at Docker Desktop
overview.

• You have the AWS CLI installed and configured. For more information, see Installing the AWS
Command Line Interface in the AWS Command Line Interface User Guide.

If you don't have or need a local development environment and you prefer to use an Amazon EC2
instance to use Docker, we provide the following steps to launch an Amazon EC2 instance using
Amazon Linux 2 and install Docker Engine and the Docker CLI.

Installing Docker on AL2023

Docker is available on many different operating systems, including most modern Linux
distributions, like Ubuntu, and even macOS and Windows. For more information about how to
install Docker on your particular operating system, go to the Docker installation guide.

You do not need a local development system to use Docker. If you are using Amazon EC2 already,
you can launch an Amazon Linux 2023 instance and install Docker to get started.

If you already have Docker installed, skip to Create a Docker image.

To install Docker on an Amazon EC2 instance using an Amazon Linux 2023 AMI

1. Launch an instance with the latest Amazon Linux 2023 AMI. For more information, see
Launching an instance in the Amazon EC2 User Guide for Linux Instances.

2. Connect to your instance. For more information, see Connect to Your Linux Instance in the
Amazon EC2 User Guide for Linux Instances.

3. Update the installed packages and package cache on your instance.

Prerequisites 15

http://aws.amazon.com/docker/
https://docs.docker.com/engine/docker-overview/
https://docs.docker.com/engine/docker-overview/
https://docs.aws.amazon.com/AmazonECR/latest/userguide/get-set-up-for-amazon-ecr.html
https://docs.aws.amazon.com/AmazonECR/latest/userguide/get-set-up-for-amazon-ecr.html
https://docs.aws.amazon.com/AmazonECR/latest/userguide/security-iam-awsmanpol.html
https://docs.docker.com/desktop/
https://docs.docker.com/desktop/
https://docs.aws.amazon.com/cli/latest/userguide/installing.html
https://docs.aws.amazon.com/cli/latest/userguide/installing.html
https://docs.docker.com/engine/installation/#installation
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/launching-instance.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/AccessingInstances.html

Amazon Elastic Container Service Developer Guide

sudo yum update -y

4. Install the most recent Docker Community Edition package.

sudo yum install docker

5. Start the Docker service.

sudo service docker start

6. Add the ec2-user to the docker group so you can execute Docker commands without using
sudo.

sudo usermod -a -G docker ec2-user

7. Log out and log back in again to pick up the new docker group permissions. You can
accomplish this by closing your current SSH terminal window and reconnecting to your
instance in a new one. Your new SSH session will have the appropriate docker group
permissions.

8. Verify that the ec2-user can run Docker commands without sudo.

docker info

Note

In some cases, you may need to reboot your instance to provide permissions for the
ec2-user to access the Docker daemon. Try rebooting your instance if you see the
following error:

Cannot connect to the Docker daemon. Is the docker daemon running on this
 host?

Create a Docker image

Amazon ECS task definitions use Docker images to launch containers on the container instances in
your clusters. In this section, you create a Docker image of a simple web application, and test it on

Create a Docker image 16

Amazon Elastic Container Service Developer Guide

your local system or Amazon EC2 instance, and then push the image to the Amazon ECR container
registry so you can use it in an Amazon ECS task definition.

To create a Docker image of a simple web application

1. Create a file called Dockerfile. A Dockerfile is a manifest that describes the base image
to use for your Docker image and what you want installed and running on it. For more
information about Dockerfiles, go to the Dockerfile Reference.

touch Dockerfile

2. Edit the Dockerfile you just created and add the following content.

FROM public.ecr.aws/amazonlinux/amazonlinux:latest

Install dependencies
RUN yum update -y && \
 yum install -y httpd

Install apache and write hello world message
RUN echo 'Hello World!' > /var/www/html/index.html

Configure apache
RUN echo 'mkdir -p /var/run/httpd' >> /root/run_apache.sh && \
 echo 'mkdir -p /var/lock/httpd' >> /root/run_apache.sh && \
 echo '/usr/sbin/httpd -D FOREGROUND' >> /root/run_apache.sh && \
 chmod 755 /root/run_apache.sh

EXPOSE 80

CMD /root/run_apache.sh

This Dockerfile uses the public Amazon Linux 2 image hosted on Amazon ECR Public. The
RUN instructions update the package caches, installs some software packages for the web
server, and then write the "Hello World!" content to the web servers document root. The
EXPOSE instruction means that port 80 on the container is the one that is listening, and the
CMD instruction starts the web server.

3. Build the Docker image from your Dockerfile.

Create a Docker image 17

https://docs.docker.com/engine/reference/builder/

Amazon Elastic Container Service Developer Guide

Note

Some versions of Docker may require the full path to your Dockerfile in the following
command, instead of the relative path shown below.

docker build -t hello-world .

4. List your container image.

docker images --filter reference=hello-world

Output:

REPOSITORY TAG IMAGE ID CREATED
 SIZE
hello-world latest e9ffedc8c286 4 minutes ago
 194MB

5. Run the newly built image. The -p 80:80 option maps the exposed port 80 on the container
to port 80 on the host system. For more information about docker run, go to the Docker run
reference.

docker run -t -i -p 80:80 hello-world

Note

Output from the Apache web server is displayed in the terminal window. You can
ignore the "Could not reliably determine the fully qualified domain
name" message.

6. Open a browser and point to the server that is running Docker and hosting your container.

• If you are using an EC2 instance, this is the Public DNS value for the server, which is the
same address you use to connect to the instance with SSH. Make sure that the security group
for your instance allows inbound traffic on port 80.

• If you are running Docker locally, point your browser to http://localhost/.

Create a Docker image 18

https://docs.docker.com/engine/reference/run/
https://docs.docker.com/engine/reference/run/
http://localhost/

Amazon Elastic Container Service Developer Guide

• If you are using docker-machine on a Windows or Mac computer, find the IP address of the
VirtualBox VM that is hosting Docker with the docker-machine ip command, substituting
machine-name with the name of the docker machine you are using.

docker-machine ip machine-name

You should see a web page with your "Hello World!" statement.

7. Stop the Docker container by typing Ctrl + c.

Push your image to Amazon Elastic Container Registry

Amazon ECR is a managed AWS Docker registry service. You can use the Docker CLI to push, pull,
and manage images in your Amazon ECR repositories. For Amazon ECR product details, featured
customer case studies, and FAQs, see the Amazon Elastic Container Registry product detail pages.

To tag your image and push it to Amazon ECR

1. Create an Amazon ECR repository to store your hello-world image. Note the
repositoryUri in the output.

Substitute region, with your AWS Region, for example, us-east-1.

aws ecr create-repository --repository-name hello-repository --region region

Output:

{
 "repository": {
 "registryId": "aws_account_id",
 "repositoryName": "hello-repository",
 "repositoryArn": "arn:aws:ecr:region:aws_account_id:repository/hello-
repository",
 "createdAt": 1505337806.0,
 "repositoryUri": "aws_account_id.dkr.ecr.region.amazonaws.com/hello-
repository"
 }
}

Push your image to Amazon Elastic Container Registry 19

http://aws.amazon.com/ecr

Amazon Elastic Container Service Developer Guide

2. Tag the hello-world image with the repositoryUri value from the previous step.

docker tag hello-world aws_account_id.dkr.ecr.region.amazonaws.com/hello-repository

3. Run the aws ecr get-login-password command. Specify the registry URI you want to
authenticate to. For more information, see Registry Authentication in the Amazon Elastic
Container Registry User Guide.

aws ecr get-login-password --region region | docker login --username AWS --
password-stdin aws_account_id.dkr.ecr.region.amazonaws.com

Output:

Login Succeeded

Important

If you receive an error, install or upgrade to the latest version of the AWS CLI. For more
information, see Installing the AWS Command Line Interface in the AWS Command Line
Interface User Guide.

4. Push the image to Amazon ECR with the repositoryUri value from the earlier step.

docker push aws_account_id.dkr.ecr.region.amazonaws.com/hello-repository

Clean up

To continue on with creating an Amazon ECS task definition and launching a task with your
container image, skip to the Next steps. When you are done experimenting with your Amazon ECR
image, you can delete the repository so you are not charged for image storage.

aws ecr delete-repository --repository-name hello-repository --region region --force

Next steps

Your task definitions require a task execution role. For more information, see Amazon ECS task
execution IAM role.

Clean up 20

https://docs.aws.amazon.com/AmazonECR/latest/userguide/Registries.html#registry_auth
https://docs.aws.amazon.com/cli/latest/userguide/installing.html

Amazon Elastic Container Service Developer Guide

After you have created and pushed your container image to Amazon ECR, you should consider the
following next steps.

• the section called “Using the console with Linux containers on AWS Fargate”

• the section called “Using Windows containers on AWS Fargate”

• Creating a cluster with a Fargate Linux task using the AWS CLI

Getting started with Linux containers on AWS Fargate

Amazon Elastic Container Service (Amazon ECS) is a highly scalable, fast, container management
service that makes it easy to run, stop, and manage your containers. You can host your containers
on a serverless infrastructure that is managed by Amazon ECS by launching your services or tasks
on AWS Fargate. For more information on Fargate, see Amazon ECS on AWS Fargate.

Get started with Amazon ECS on AWS Fargate by using the Fargate launch type for your tasks in
the Regions where Amazon ECS supports AWS Fargate.

Complete the following steps to get started with Amazon ECS on AWS Fargate.

Prerequisites

Before you begin, complete the steps in Set up to use Amazon ECS and that your AWS user has the
permissions specified in the AdministratorAccess IAM policy example.

The console attempts to automatically create the task execution IAM role, which is required for
Fargate tasks. To ensure that the console is able to create this IAM role, one of the following must
be true:

• Your user has administrator access. For more information, see Set up to use Amazon ECS.

• Your user has the IAM permissions to create a service role. For more information, see Creating a
Role to Delegate Permissions to an AWS Service.

• A user with administrator access has manually created the task execution role so that it is
available on the account to be used. For more information, see Amazon ECS task execution IAM
role.

Using the console with Linux containers on AWS Fargate 21

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html

Amazon Elastic Container Service Developer Guide

Important

The security group you select when creating a service with your task definition must have
port 80 open for inbound traffic. Add the following inbound rule to your security group. For
information about how to create a security group, see Add rules to your security group in
the Amazon EC2 User Guide for Linux Instances.

• Type: HTTP

• Protocol: TCP

• Port range: 80

• Source: Anywhere (0.0.0.0/0)

Step 1: Create the cluster

Create a cluster that uses the default VPC.

Before you begin, assign the appropriate IAM permission. For more information, see the section
called “Cluster examples”.

1. Open the console at https://console.aws.amazon.com/ecs/v2.

2. From the navigation bar, select the Region to use.

3. In the navigation pane, choose Clusters.

4. On the Clusters page, choose Create cluster.

5. Under Cluster configuration, for Cluster name, enter a unique name.

The name can contain up to 255 letters (uppercase and lowercase), numbers, and hyphens.

6. (Optional) To turn on Container Insights, expand Monitoring, and then turn on Use Container
Insights.

7. (Optional) To help identify your cluster, expand Tags, and then configure your tags.

[Add a tag] Choose Add tag and do the following:

• For Key, enter the key name.

• For Value, enter the key value.

Step 1: Create the cluster 22

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/working-with-security-groups.html#adding-security-group-rule
https://console.aws.amazon.com/ecs/v2

Amazon Elastic Container Service Developer Guide

[Remove a tag] Choose Remove to the right of the tag’s Key and Value.

8. Choose Create.

Step 2: Create a task definition

A task definition is like a blueprint for your application. Each time you launch a task in Amazon ECS,
you specify a task definition. The service then knows which Docker image to use for containers,
how many containers to use in the task, and the resource allocation for each container.

1. In the navigation pane, choose Task Definitions.

2. Choose Create new Task Definition, Create new revision with JSON.

3. Copy and paste the following example task definition into the box and then choose Save.

{
 "family": "sample-fargate",
 "networkMode": "awsvpc",
 "containerDefinitions": [
 {
 "name": "fargate-app",
 "image": "public.ecr.aws/docker/library/httpd:latest",
 "portMappings": [
 {
 "containerPort": 80,
 "hostPort": 80,
 "protocol": "tcp"
 }
],
 "essential": true,
 "entryPoint": [
 "sh",
 "-c"
],
 "command": [
 "/bin/sh -c \"echo '<html> <head> <title>Amazon ECS Sample
 App</title> <style>body {margin-top: 40px; background-color: #333;} </style> </
head><body> <div style=color:white;text-align:center> <h1>Amazon ECS Sample App</
h1> <h2>Congratulations!</h2> <p>Your application is now running on a container in
 Amazon ECS.</p> </div></body></html>' > /usr/local/apache2/htdocs/index.html &&
 httpd-foreground\""

Step 2: Create a task definition 23

Amazon Elastic Container Service Developer Guide

]
 }
],
 "requiresCompatibilities": [
 "FARGATE"
],
 "cpu": "256",
 "memory": "512"
}

4. Choose Create.

Step 3: Create the service

Create a service using the task definition.

1. In the navigation pane, choose Clusters, and then select the cluster you created in Step 1:
Create the cluster.

2. From the Services tab, choose Create.

3. Under Deployment configuration, specify how your application is deployed.

a. For Task definition, choose the task definition you created in Step 2: Create a task
definition.

b. For Service name, enter a name for your service.

c. For Desired tasks, enter 1.

4. Under Networking, you can create a new security group or choose an existing security group
for your task. Ensure that the security group you use has the inbound rule listed under
Prerequisites.

5. Choose Create.

Step 4: View your service

1. Open the console at https://console.aws.amazon.com/ecs/v2.

2. In the navigation pane, choose Clusters.

3. Choose the cluster where you ran the service.

4. In the Services tab, under Service name, choose the service you created in Step 3: Create the
service.

Step 3: Create the service 24

https://console.aws.amazon.com/ecs/v2

Amazon Elastic Container Service Developer Guide

5. Choose the Tasks tab, and then choose the task in your service.

6. On the task page, in the Configuration section, under Public IP, choose Open address.

Step 5: Clean up

When you are finished using an Amazon ECS cluster, you should clean up the resources associated
with it to avoid incurring charges for resources that you are not using.

Some Amazon ECS resources, such as tasks, services, clusters, and container instances, are cleaned
up using the Amazon ECS console. Other resources, such as Amazon EC2 instances, Elastic Load
Balancing load balancers, and Auto Scaling groups, must be cleaned up manually in the Amazon
EC2 console or by deleting the AWS CloudFormation stack that created them.

1. In the navigation pane, choose Clusters.

2. On the Clusters page, select the cluster you created for this tutorial.

3. Choose the Services tab.

4. Select the service, and then choose Delete.

5. At the confirmation prompt, enter delete and then choose Delete.

Wait until the service is deleted.

6. Choose Delete Cluster. At the confirmation prompt, enter delete cluster-name, and then
choose Delete. Deleting the cluster cleans up the associated resources that were created with
the cluster, including Auto Scaling groups, VPCs, or load balancers.

Getting started with Windows on Amazon EC2

Get started with Amazon ECS using the EC2 launch type by registering a task definition, creating a
cluster, and creating a service in the console.

Complete the following steps to get started with Amazon ECS using the EC2 launch type.

Prerequisites

Before you begin, complete the steps in Set up to use Amazon ECS and that your AWS user has the
permissions specified in the AdministratorAccess IAM policy example.

Step 5: Clean up 25

Amazon Elastic Container Service Developer Guide

The console attempts to automatically create the task execution IAM role, which is required for
Fargate tasks. To ensure that the console is able to create this IAM role, one of the following must
be true:

• Your user has administrator access. For more information, see Set up to use Amazon ECS.

• Your user has the IAM permissions to create a service role. For more information, see Creating a
Role to Delegate Permissions to an AWS Service.

• A user with administrator access has manually created the task execution role so that it is
available on the account to be used. For more information, see Amazon ECS task execution IAM
role.

Important

The security group you select when creating a service with your task definition must have
port 80 open for inbound traffic. Add the following inbound rule to your security group. For
information about how to create a security group, see Add rules to your security group in
the Amazon EC2 User Guide for Linux Instances.

• Type: HTTP

• Protocol: TCP

• Port range: 80

• Source: Anywhere (0.0.0.0/0)

Step 1: Create a cluster

An Amazon ECS cluster is a logical grouping of tasks, services, and container instances.

The following steps walk you through creating a cluster with one Amazon EC2 instance registered
to it which will enable us to run a task on it. If a specific field is not mentioned, leave the default
console values.

To create a new cluster (Amazon ECS console)

Before you begin, assign the appropriate IAM permission. For more information, see the section
called “Cluster examples”.

1. Open the console at https://console.aws.amazon.com/ecs/v2.

Step 1: Create a cluster 26

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/working-with-security-groups.html#adding-security-group-rule
https://console.aws.amazon.com/ecs/v2

Amazon Elastic Container Service Developer Guide

2. From the navigation bar, select the Region to use.

3. In the navigation pane, choose Clusters.

4. On the Clusters page, choose Create cluster.

5. Under Cluster configuration, for Cluster name, enter a unique name.

The name can contain up to 255 letters (uppercase and lowercase), numbers, and hyphens.

6. (Optional) To change the VPC and subnets where your tasks and services launch, under
Networking, perform any of the following operations:

• To remove a subnet, under Subnets, choose X for each subnet that you want to remove.

• To change to a VPC other than the default VPC, under VPC, choose an existing VPC, and
then under Subnets, select each subnet.

7. To add Amazon EC2 instances to your cluster, expand Infrastructure, and then select Amazon
EC2 instances. Next, configure the Auto Scaling group which acts as the capacity provider:

a. To using an existing Auto Scaling group, from Auto Scaling group (ASG), select the group.

b. To create a Auto Scaling group, from Auto Scaling group (ASG), select Create new group,
and then provide the following details about the group:

• For Operating system/Architecture, choose the Amazon ECS-optimized AMI for the
Auto Scaling group instances.

• For EC2 instance type, choose the instance type for your workloads. For more
information about the different instance types, see Amazon EC2 Instances.

Managed scaling works best if your Auto Scaling group uses the same or similar instance
types.

• For SSH key pair, choose the pair that proves your identity when you connect to the
instance.

• For Capacity, enter the minimum number and the maximum number of instances to
launch in the Auto Scaling group. Amazon EC2 instances incur costs while they exist in
your AWS resources. For more information, see Amazon EC2 Pricing.

8. (Optional) To turn on Container Insights, expand Monitoring, and then turn on Use Container
Insights.

9. (Optional) To manage the cluster tags, expand Tags, and then perform one of the following
operations:

Step 1: Create a cluster 27

https://aws.amazon.com/ec2/instance-types/
https://aws.amazon.com/ec2/pricing/

Amazon Elastic Container Service Developer Guide

[Add a tag] Choose Add tag and do the following:

• For Key, enter the key name.

• For Value, enter the key value.

[Remove a tag] Choose Remove to the right of the tag’s Key and Value.

10. Choose Create.

Step 2: Register a task definition

To register the sample task definition with the AWS Management Console

1. In the navigation pane, choose Task Definitions.

2. Choose Create new task definition, Create new task definition with JSON.

3. Copy and paste the following example task definition into the box, and then choose Save.

{
 "containerDefinitions": [
 {
 "command": ["New-Item -Path C:\\inetpub\\wwwroot\\index.html
 -Type file -Value '<html> <head> <title>Amazon ECS Sample App</title>
 <style>body {margin-top: 40px; background-color: #333;} </style> </head><body>
 <div style=color:white;text-align:center> <h1>Amazon ECS Sample App</h1>
 <h2>Congratulations!</h2> <p>Your application is now running on a container in
 Amazon ECS.</p>'; C:\\ServiceMonitor.exe w3svc"],
 "entryPoint": [
 "powershell",
 "-Command"
],
 "essential": true,
 "cpu": 2048,
 "memory": 4096,
 "image": "mcr.microsoft.com/windows/servercore/iis:windowsservercore-
ltsc2019",
 "name": "sample_windows_app",
 "portMappings": [
 {
 "hostPort": 443,
 "containerPort": 80,

Step 2: Register a task definition 28

Amazon Elastic Container Service Developer Guide

 "protocol": "tcp"
 }
]
 }
],
 "memory": "4096",
 "cpu": "2048",
 "family": "windows-simple-iis-2019-core",
 "executionRoleArn": "arn:aws:iam::012345678910:role/ecsTaskExecutionRole",
 "runtimePlatform": {"operatingSystemFamily": "WINDOWS_SERVER_2019_CORE"},
 "requiresCompatibilities": ["EC2"]
}

4. Verify your information and choose Create.

Step 3: Create a Service

An Amazon ECS service helps you to run and maintain a specified number of instances of a task
definition simultaneously in an Amazon ECS cluster. If any of your tasks should fail or stop for any
reason, the Amazon ECS service scheduler launches another instance of your task definition to
replace it in order to maintain the desired number of tasks in the service. For more information on
services, see Amazon ECS services.

To create a service

1. In the navigation pane, choose Clusters.

2. Select the cluster you created in Step 1: Create a cluster.

3. On the Services tab, choose Create.

4. In the Environment section, do the following:

a. For Compute options, choose Launch type.

b. For Launch type, select EC2

5. In the Deployment configuration section, do the following:

a. For Family, choose the task definition you created in Step 2: Register a task definition.

b. For Service name, enter a name for your service.

c. For Desired tasks, enter 1.

6. Review the options and choose Create.

Step 3: Create a Service 29

Amazon Elastic Container Service Developer Guide

7. Choose View service to review your service.

Step 4: View your Service

The service is a web-based application so you can view its containers with a web browser.

1. Open the console at https://console.aws.amazon.com/ecs/v2.

2. In the navigation pane, choose Clusters.

3. Choose the cluster where you ran the service.

4. In the Services tab, under Service name, choose the service you created in Step 3: Create a
Service.

5. Choose the Tasks tab, and then choose the task in your service.

6. On the task page, in the Configuration section, under Public IP, choose Open address. The
screen shot below is the expected output.

Step 5: Clean Up

When you are finished using an Amazon ECS cluster, you should clean up the resources associated
with it to avoid incurring charges for resources that you are not using.

Some Amazon ECS resources, such as tasks, services, clusters, and container instances, are cleaned
up using the Amazon ECS console. Other resources, such as Amazon EC2 instances, Elastic Load
Balancing load balancers, and Auto Scaling groups, must be cleaned up manually in the Amazon
EC2 console or by deleting the AWS CloudFormation stack that created them.

1. In the navigation pane, choose Clusters.

Step 4: View your Service 30

https://console.aws.amazon.com/ecs/v2

Amazon Elastic Container Service Developer Guide

2. On the Clusters page, select the cluster cluster you created for this tutorial.

3. Choose the Services tab.

4. Select the service, and then choose Delete.

5. At the confirmation prompt, enter delete and then choose Delete.

Wait until the service is deleted.

6. Choose Delete Cluster. At the confirmation prompt, enter delete cluster-name, and then
choose Delete. Deleting the cluster cleans up the associated resources that were created with
the cluster, including Auto Scaling groups, VPCs, or load balancers.

Step 5: Clean Up 31

Amazon Elastic Container Service Developer Guide

Amazon ECS developer tools overview

Whether you are part of a large enterprise or a startup, Amazon ECS offers a variety of tools that
can help you to get your containers up and running quickly, regardless of your level of expertise.
You can work with Amazon ECS in the following ways.

• Learn about, develop, manage and visualize your container applications and services using the
AWS Management Console.

• Perform specific actions to Amazon ECS resources with automated deployments through
programming or scripts using the AWS Command Line Interface, AWS SDKs or the ECS API.

• Define and manage all AWS resources in your environment with automated deployment using
AWS CloudFormation.

• Use the complete AWS Copilot CLI end-to-end developer workflow to create, release, and
operate container applications that comply with AWS best practices for infrastructure.

• Using your preferred programming language, define infrastructure or architecture as code with
the AWS CDK.

• Containerize applications that are hosted on premises or on Amazon EC2 instances or both by
using the AWS App2Container integrated portability and tooling ecosystem for containers.

• Deploy an application to Amazon ECS or test local containers with containers running in Amazon
ECS using the Docker Compose file format with the Amazon ECS CLI.

• Launch containers from Docker Desktop integration with Amazon ECS using Amazon ECS in
Docker Desktop.

AWS Management Console

The AWS Management Console is a browser-based interface for managing Amazon ECS resources.
The console provides a visual overview of the service, making it easy to explore Amazon ECS
features and functions without needing to use additional tools. Many related tutorials and
walkthroughs are available that can guide you through use of the console.

For a tutorial that guides you through the console, see Getting started with Amazon ECS.

When starting out, many customers prefer using the console because it provides instant visual
feedback on whether the actions they take succeed. AWS customers that are familiar with the AWS

AWS Management Console 32

Amazon Elastic Container Service Developer Guide

Management Console, can easily manage related resources such as load balancers and Amazon EC2
instances.

Start with the AWS Management Console.

AWS Command Line Interface

The AWS Command Line Interface (AWS CLI) is a unified tool that you can use to manage your AWS
services. With this one tool alone, you can both control multiple AWS services and automate these
services through scripts. The Amazon ECS commands in the AWS CLI are a reflection of the Amazon
ECS API.

AWS provides two sets of command line tools: the AWS Command Line Interface (AWS CLI) and the
AWS Tools for Windows PowerShell. For more information, see the AWS Command Line Interface
User Guide and the AWS Tools for Windows PowerShell User Guide.

The AWS CLI is suitable for customers who prefer and are used to scripting and interfacing with
a command line tool and know exactly which actions they want to perform on their Amazon ECS
resources. The AWS CLI is also helpful to customers who want to familiarize themselves with the
Amazon ECS APIs. Customers can use the AWS CLI to perform a number of operations on Amazon
ECS resources, including Create, Read, Update, and Delete operations, directly from the command
line interface.

Use the AWS CLI if you are or want to become familiar with the Amazon ECS APIs and
corresponding CLI commands and want to write automated scripts and perform specific actions on
Amazon ECS resources.

AWS CloudFormation

AWS CloudFormation and Terraform for Amazon ECS both provide powerful ways for you to
define your infrastructure as code. You can easily track which version of your template or AWS
CloudFormation stack is running at any time and rollback to a previous version if needed. You
can perform infrastructure and application deployments in the same automated fashion. This
flexibility and automation is what makes AWS CloudFormation and Terraform two popular formats
for deploying workloads to Amazon ECS from continuous delivery pipelines.

For more information about AWS CloudFormation, see Creating Amazon ECS resources with AWS
CloudFormation.

AWS Command Line Interface 33

https://docs.aws.amazon.com/cli/latest/userguide/
https://docs.aws.amazon.com/powershell/latest/userguide/
https://docs.aws.amazon.com/cli/latest/userguide/
https://docs.aws.amazon.com/cli/latest/userguide/
https://docs.aws.amazon.com/powershell/latest/userguide/
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/Welcome.html
https://registry.terraform.io/providers/hashicorp/aws/latest/docs/resources/ecs_service

Amazon Elastic Container Service Developer Guide

Use AWS CloudFormation or Terraform if you want to automate infrastructure deployments and
applications on Amazon ECS and explicitly define and manage all of the AWS resources in your
environment.

AWS Copilot CLI

The AWS Copilot CLI (command line interface) is a comprehensive tool that allows customers
to deploy and operate applications packaged in containers and environments on Amazon ECS
directly from their source code. When using AWS Copilot you can perform these operations
without understanding AWS and Amazon ECS elements such as Application Load Balancers, public
subnets, tasks, services, and clusters. AWS Copilot creates AWS resources on your behalf from
opinionated service patterns, such as a load balanced web service or backend service, providing
an immediate production environment for containerized applications. You can deploy through
an AWS CodePipeline pipeline across multiple environments, accounts, or Regions, all of which
can be managed within the CLI. By using AWS Copilot you can also perform operator tasks, such
as viewing logs and the health of your service. AWS Copilot is an all-in-one tool that helps you
more easily manage your cloud resources so that you can focus on developing and managing your
applications.

For more information, see Using the AWS Copilot command line interface.

Use the AWS Copilot complete end-to-end developer workflow to create, release, and operate
container applications that comply with AWS best practices for infrastructure.

AWS CDK

The AWS Cloud Development Kit (AWS CDK) is an open source software development framework
that you can use to model and provision your cloud application resources using familiar
programming languages. AWS CDK provisions your resources in a safe, repeatable manner through
AWS CloudFormation. Using the CDK, customers can generate their environment with fewer
lines of code using the same language they used to build their application. Amazon ECS provides
a module in the CDK that is named ecs-patterns, which creates common architectures. An
available pattern is ApplicationLoadBalancedFargateService(). This pattern creates a
cluster, task definition, and additional resources to run a load balanced Amazon ECS service on
AWS Fargate.

For more information, see Getting started with Amazon ECS using the AWS CDK.

AWS Copilot CLI 34

Amazon Elastic Container Service Developer Guide

Use the AWS CDK if you want to define infrastructure or architecture as code in your preferred
programming language. For example, you can use the same language that you use to write your
applications.

AWS App2Container

Sometimes enterprise customers might already have applications that are hosted on premises
or on EC2 instances or both. They are interested in the portability and tooling ecosystem of
containers specifically on Amazon ECS, and need to containerize first. AWS App2Container
allows you to do just that. App2Container (A2C) is a command line tool for modernizing .NET
and Java applications into containerized applications. A2C analyzes and builds an inventory
of all applications running in virtual machines, on premises or in the cloud. After you select
the application you want to containerize, A2C packages the application artifact and identified
dependencies into container images. It then configures the network ports and generates the
Amazon ECS task. Last, it creates a CloudFormation template that you can deploy or modify if
needed.

For more information, see Getting started with AWS App2Container.

Use App2Container if you have applications that are hosted on premises or on Amazon EC2
instances or both.

Amazon ECS CLI

The Amazon ECS CLI allows you to run your applications on Amazon ECS and AWS Fargate using
the Docker Compose file format. You can quickly provision resources, push and pull images using
Amazon ECR, and monitor running applications on Amazon ECS or AWS Fargate. You can also test
containers running locally along with containers in the cloud within the CLI.

For more information, see Using the Amazon ECS command line interface.

Use the ECS CLI if you have a Compose application and want to deploy it to Amazon ECS, or test
local containers with containers running in Amazon ECS in the cloud.

Docker Desktop integration with Amazon ECS

AWS and Docker have collaborated to make a simplified developer experience that you can use to
deploy and manage containers on Amazon ECS directly using Docker tools. You can now build and

AWS App2Container 35

https://docs.aws.amazon.com/app2container/latest/UserGuide/start-intro.html
https://docs.aws.amazon.com/ecr

Amazon Elastic Container Service Developer Guide

test your containers locally using Docker Desktop and Docker Compose, and then deploy them to
Amazon ECS on Fargate. To get started with the Amazon ECS and Docker integration, download
Docker Desktop and optionally sign up for a Docker ID. For more information, see Docker Desktop
and Docker ID signup.

Beginners to containers often start learning about containers by using Docker tools such as the
Docker CLI and Docker Compose. This makes using the Docker Compose CLI plugin for Amazon
ECS a natural next step in running containers on AWS after testing locally. Docker provides a
walkthrough on deploying containers on Amazon ECS. For more information, see Docker Compose
CLI - Amazon ECS.

You can take advantage of additional Amazon ECS features, such as service discovery, load
balancing and other AWS resources for use with their applications with Docker Desktop.

You can also download the Docker Compose CLI plugin for Amazon ECS directly from GitHub. For
more information, see Docker Compose CLI plugin for Amazon ECS on GitHub.

AWS SDKs

You can also use AWS SDKs to manage Amazon ECS resources and operations from a variety of
programming languages. The SDKs provide modules to help take care of tasks, including tasks in
the following list.

• Cryptographically signing your service requests

• Retrying requests

• Handling error responses

For more information about the available SDKs, see Tools for Amazon Web Services.

Summary

With the many options to choose from, you can choose the options that are best suited to you.
Consider the following options.

• If you are visually oriented, you can visually create and operate containers using the AWS
Management Console.

• If you prefer CLIs, consider using AWS Copilot or the AWS CLI. Alternatively, if you prefer the
Docker ecosystem, you can take advantage of the functionality of ECS from within the Docker CLI

AWS SDKs 36

https://www.docker.com/products/docker-desktop
https://hub.docker.com/signup/awsedge?utm_source=awsedge
https://github.com/docker/compose-cli/tree/main/docs#amazon-elastic-container-service
https://github.com/docker/compose-cli/tree/main/docs#amazon-elastic-container-service
https://github.com/docker/compose-cli
https://aws.amazon.com/tools/

Amazon Elastic Container Service Developer Guide

to deploy to AWS. After these resources are deployed, you can continue managing them through
the CLI or visually through the Console.

• If you are a developer, you can use the AWS CDK to define your infrastructure in the same
language as your application. You can use the CDK and AWS Copilot to export to CloudFormation
templates where you can change granular settings, add other AWS resources, and automate
deployments through scripting or a CI/CD pipeline such as AWS CodePipeline.

The AWS CLI, SDKs, or ECS API are useful tools for automating actions on ECS resources, making
them ideal for deployment. To deploy applications using AWS CloudFormation you can use a
variety of programming languages or a simple text file to model and provision all the resources
needed for your applications. You can then deploy your application across multiple Regions and
accounts in an automated and secure manner. For example, you can define your ECS cluster,
services, task definitions, or capacity providers, as code in a file and deploy through the AWS CLI
CloudFormation commands.

To perform operations tasks, you can view and manage resources programmatically using the AWS
CLI, SDK, or ECS API. Commands like describe-tasks or list-services display the latest
metadata or a list of all resources. Similar to deployments, customers can write an automation that
includes commands such as update-service to provide corrective action upon the detection of
a resource that has stopped unexpectedly. You can also operate your services using AWS Copilot.
Commands like copilot svc logs or copilot app show provide details about each of your
microservices, or about your application as a whole.

Customers can use any of the available tooling mentioned in this document and use them in
variety of combinations. ECS tooling offers various paths to graduate from certain tools to use
others that fit your changing needs. For example, you can opt for more granular control over
resources or more automation as needed. ECS also offers a large range of tools for a wide range of
needs and levels of expertise.

Using the AWS Copilot command line interface

The AWS Copilot command line interface (CLI) commands simplify building, releasing, and
operating production-ready containerized applications on Amazon ECS from a local development
environment. The AWS Copilot CLI aligns with developer workflows that support modern
application best practices: from using infrastructure as code to creating a CI/CD pipeline
provisioned on behalf of a user. Use the AWS Copilot CLI as part of your everyday development and
testing cycle as an alternative to the AWS Management Console.

Using the AWS Copilot CLI 37

Amazon Elastic Container Service Developer Guide

AWS Copilot currently supports Linux, macOS, and Windows systems. For more information about
the latest version of the AWS Copilot CLI, see Releases.

Note

The source code for the AWS Copilot CLI is available on GitHub. The latest CLI
documentation is available on the AWS Copilot website. We recommend that you submit
issues and pull requests for changes that you would like to have included. However,
Amazon Web Services doesn't currently support running modified copies of AWS Copilot
code. Report issues with AWS Copilot by connecting with us on Gitter or GitHub where you
can open issues, provide feedback, and report bugs.

Installing the AWS Copilot CLI

The AWS Copilot CLI can be installed on Linux or macOS systems either by using Homebrew or by
manually downloading the binary. Use the following steps with your preferred installation method.

Installing the AWS Copilot CLI using Homebrew

The following command is used to install the AWS Copilot CLI on your macOS or Linux system
using Homebrew. Before installation, you should have Homebrew installed. For more information,
see Homebrew.

brew install aws/tap/copilot-cli

Manually installing the AWS Copilot CLI

As an alternative to Homebrew, you can manually install the AWS Copilot CLI on your macOS or
Linux system. Use the following command for your operating system to download the binary, apply
execute permissions to it, and then verify it works by listing the help menu.

macOS

For macOS:

sudo curl -Lo /usr/local/bin/copilot https://github.com/aws/copilot-cli/releases/
latest/download/copilot-darwin \
 && sudo chmod +x /usr/local/bin/copilot \
 && copilot --help

Installing the AWS Copilot CLI 38

https://github.com/aws/copilot-cli/releases
https://github.com/aws/copilot-cli
https://aws.github.io/copilot-cli/
https://gitter.im/aws/copilot-cli
https://github.com/aws/copilot-cli
https://brew.sh/

Amazon Elastic Container Service Developer Guide

For macOS ARM systems:

sudo curl -Lo /usr/local/bin/copilot https://github.com/aws/copilot-cli/releases/
latest/download/copilot-darwin-arm64 \
 && sudo chmod +x /usr/local/bin/copilot \
 && copilot --help

Linux

For Linux x86 (64-bit) systems:

sudo curl -Lo /usr/local/bin/copilot https://github.com/aws/copilot-cli/releases/
latest/download/copilot-linux \
 && sudo chmod +x /usr/local/bin/copilot \
 && copilot --help

For Linux ARM systems:

sudo curl -Lo /usr/local/bin/copilot https://github.com/aws/copilot-cli/releases/
latest/download/copilot-linux-arm64 \
 && sudo chmod +x /usr/local/bin/copilot \
 && copilot --help

Windows

Using Powershell, run the following command:

New-Item -Path 'C:\copilot' -ItemType directory; `
 Invoke-WebRequest -OutFile 'C:\copilot\copilot.exe' https://github.com/aws/
copilot-cli/releases/latest/download/copilot-windows.exe

(Optional) Verify the manually installed AWS Copilot CLI using PGP signatures

The AWS Copilot CLI executables are cryptographically signed using PGP signatures. The PGP
signatures can be used to verify the validity of the AWS Copilot CLI executable. Use the following
steps to verify the signatures using the GnuPG tool.

1. Download and install GnuPG. For more information, see the GnuPG website.

Installing the AWS Copilot CLI 39

https://www.gnupg.org

Amazon Elastic Container Service Developer Guide

macOS

We recommend using Homebrew. Install Homebrew using the instructions from their
website. For more information, see Homebrew. After Homebrew is installed, use the
following command from your macOS terminal.

brew install gnupg

Linux

Install gpg using the package manager on your flavor of Linux.

Windows

Download the Windows simple installer from the GnuPG website and install as an
Administrator. After you install GnuPG, close and reopen the Administrator PowerShell.

For more information, see GnuPG Download.

2. Verify the GnuPG path is added to your environment path.

macOS

echo $PATH

If you do not see the GnuPG path in the output, run the following command to add it to
the path.

PATH=$PATH:<path to GnuPG executable files>

Linux

echo $PATH

If you do not see the GnuPG path in the output, run the following command to add it to
the path.

export PATH=$PATH:<path to GnuPG executable files>

Installing the AWS Copilot CLI 40

https://brew.sh/
https://www.gnupg.org/download/index.html

Amazon Elastic Container Service Developer Guide

Windows

Write-Output $Env:PATH

If you do not see the GnuPG path in the output, run the following command to add it to
the path.

$Env:PATH += ";<path to GnuPG executable files>"

3. Create a local plain text file.

macOS

On the terminal, enter:

touch <public_key_filename.txt>

Open the file with TextEdit.

Linux

Create a text file in a text editor such as gedit. Save as public_key_filename.txt

Windows

Create a text file in a text editor such as Notepad. Save as public_key_filename.txt

4. Add the following contents of the Amazon ECS PGP public key and save the file.

-----BEGIN PGP PUBLIC KEY BLOCK-----
Version: GnuPG v2

mQINBFq1SasBEADliGcT1NVJ1ydfN8DqebYYe9ne3dt6jqKFmKowLmm6LLGJe7HU
jGtqhCWRDkN+qPpHqdArRgDZAtn2pXY5fEipHgar4CP8QgRnRMO2fl74lmavr4Vg
7K/KH8VHlq2uRw32/B94XLEgRbGTMdWFdKuxoPCttBQaMj3LGn6Pe+6xVWRkChQu
BoQAhjBQ+bEm0kNy0LjNgjNlnL3UMAG56t8E3LANIgGgEnpNsB1UwfWluPoGZoTx
N+6pHBJrKIL/1v/ETU4FXpYw2zvhWNahxeNRnoYj3uycHkeliCrw4kj0+skizBgO
2K7oVX8Oc3j5+ZilhL/qDLXmUCb2az5cMM1mOoF8EKX5HaNuq1KfwJxqXE6NNIcO
lFTrT7QwD5fMNld3FanLgv/ZnIrsSaqJOL6zRSq8O4LN1OWBVbndExk2Kr+5kFxn
5lBPgfPgRj5hQ+KTHMa9Y8Z7yUc64BJiN6F9Nl7FJuSsfqbdkvRLsQRbcBG9qxX3
rJAEhieJzVMEUNl+EgeCkxj5xuSkNU7zw2c3hQZqEcrADLV+hvFJktOz9Gm6xzbq
lTnWWCz4xrIWtuEBA2qE+MlDheVd78a3gIsEaSTfQq0osYXaQbvlnSWOoc1y/5Zb

Installing the AWS Copilot CLI 41

Amazon Elastic Container Service Developer Guide

zizHTJIhLtUyls9WisP2s0emeHZicVMfW61EgPrJAiupgc7kyZvFt4YwfwARAQAB
tCRBbWF6b24gRUNTIDxlY3Mtc2VjdXJpdHlAYW1hem9uLmNvbT6JAhwEEAECAAYF
AlrjL0YACgkQHivRXs0TaQrg1g/+JppwPqHnlVPmv7lessB8I5UqZeD6p6uVpHd7
Bs3pcPp8BV7BdRbs3sPLt5bV1+rkqOlw+0gZ4Q/ue/YbWtOAt4qY0OcEo0HgcnaX
lsB827QIfZIVtGWMhuh94xzm/SJkvngml6KB3YJNnWP61A9qJ37/VbVVLzvcmazA
McWB4HUMNrhd0JgBCo0gIpqCbpJEvUc02Bjn23eEJsS9kC7OUAHyQkVnx4d9UzXF
4OoISF6hmQKIBoLnRrAlj5Qvs3GhvHQ0ThYq0Grk/KMJJX2CSqt7tWJ8gk1n3H3Y
SReRXJRnv7DsDDBwFgT6r5Q2HW1TBUvaoZy5hF6maD09nHcNnvBjqADzeT8Tr/Qu
bBCLzkNSYqqkpgtwv7seoD2P4n1giRvDAOEfMZpVkUr+C252IaH1HZFEz+TvBVQM
Y8OWWxmIJW+J6evjo3N1eO19UHv71jvoF8zljbI4bsL2c+QTJmOv7nRqzDQgCWyp
Id/v2dUVVTk1j9omuLBBwNJzQCB+72LcIzJhYmaP1HC4LcKQG+/f41exuItenatK
lEJQhYtyVXcBlh6Yn/wzNg2NWOwb3vqY/F7m6u9ixAwgtIMgPCDE4aJ86zrrXYFz
N2HqkTSQh77Z8KPKmyGopsmN/reMuilPdINb249nA0dzoN+nj+tTFOYCIaLaFyjs
Z0r1QAOJAjkEEwECACMFAlq1SasCGwMHCwkIBwMCAQYVCAIJCgsEFgIDAQIeAQIX
gAAKCRC86dmkLVF4T9iFEACEnkm1dNXsWUx34R3c0vamHrPxvfkyI1FlEUen8D1h
uX9xy6jCEROHWEp0rjGK4QDPgM93sWJ+s1UAKg214QRVzft0y9/DdR+twApA0fzy
uavIthGd6+03jAAo6udYDE+cZC3P7XBbDiYEWk4XAF9I1JjB8hTZUgvXBL046JhG
eM17+crgUyQeetkiOQemLbsbXQ40Bd9V7zf7XJraFd8VrwNUwNb+9KFtgAsc9rk+
YIT/PEf+YOPysgcxI4sTWghtyCulVnuGoskgDv4v73PALU0ieUrvvQVqWMRvhVx1
0X90J7cC1KOyhlEQQ1aFTgmQjmXexVTwIBm8LvysFK6YXM41KjOrlz3+6xBIm/qe
bFyLUnf4WoiuOplAaJhK9pRY+XEnGNxdtN4D26Kd0F+PLkm3Tr3Hy3b1Ok34FlGr
KVHUq1TZD7cvMnnNKEELTUcKX+1mV3an16nmAg/my1JSUt6BNK2rJpY1s/kkSGSE
XQ4zuF2IGCpvBFhYAlt5Un5zwqkwwQR3/n2kwAoDzonJcehDw/C/cGos5D0aIU7I
K2X2aTD3+pA7Mx3IMe2hqmYqRt9X42yF1PIEVRneBRJ3HDezAgJrNh0GQWRQkhIx
gz6/cTR+ekr5TptVszS9few2GpI5bCgBKBisZIssT89aw7mAKWut0Gcm4qM9/yK6
1bkCDQRatUmrARAAxNPvVwreJ2yAiFcUpdRlVhsuOgnxvs1QgsIw3H7+Pacr9Hpe
8uftYZqdC82KeSKhpHq7c8gMTMucIINtH25x9BCc73E33EjCL9Lqov1TL7+QkgHe
T+JIhZwdD8Mx2K+LVVVu/aWkNrfMuNwyDUciSI4D5QHa8T+F8fgN4OTpwYjirzel
5yoICMr9hVcbzDNv/ozKCxjx+XKgnFc3wrnDfJfntfDAT7ecwbUTL+viQKJ646s+
psiqXRYtVvYInEhLVrJ0aV6zHFoigE/Bils6/g7ru1Q6CEHqEw++APs5CcE8VzJu
WAGSVHZgun5Y9N4quR/M9Vm+IPMhTxrAg7rOvyRN9cAXfeSMf77I+XTifigNna8x
t/MOdjXr1fjF4pThEi5u6WsuRdFwjY2azEv3vevodTi4HoJReH6dFRa6y8c+UDgl
2iHiOKIpQqLbHEfQmHcDd2fix+AaJKMnPGNku9qCFEMbgSRJpXz6BfwnY1QuKE+I
R6jA0frUNt2jhiGG/F8RceXzohaaC/Cx7LUCUFWc0n7z32C9/Dtj7I1PMOacdZzz
bjJzRKO/ZDv+UN/c9dwAkllzAyPMwGBkUaY68EBstnIliW34aWm6IiHhxioVPKSp
VJfyiXPO0EXqujtHLAeChfjcns3I12YshT1dv2PafG53fp33ZdzeUgsBo+EAEQEA
AYkCHwQYAQIACQUCWrVJqwIbDAAKCRC86dmkLVF4T+ZdD/9x/8APzgNJF3o3STrF
jvnV1ycyhWYGAeBJiu7wjsNWwzMFOv15tLjB7AqeVxZn+WKDD/mIOQ45OZvnYZuy
X7DR0JszaH9wrYTxZLVruAu+t6UL0y/XQ4L1GZ9QR6+r+7t1Mvbfy7BlHbvX/gYt
Rwe/uwdibI0CagEzyX+2D3kTOlHO5XThbXaNf8AN8zha91Jt2Q2UR2X5T6JcwtMz
FBvZnl3LSmZyE0EQehS2iUurU4uWOpGppuqVnbi0jbCvCHKgDGrqZ0smKNAQng54
F365W3g8AfY48s8XQwzmcliowYX9bT8PZiEi0J4QmQh0aXkpqZyFefuWeOL2R94S
XKzr+gRh3BAULoqF+qK+IUMxTip9KTPNvYDpiC66yBiT6gFDji5Ca9pGpJXrC3xe
TXiKQ8DBWDhBPVPrruLIaenTtZEOsPc4I85yt5U9RoPTStcOr34s3w5yEaJagt6S

Installing the AWS Copilot CLI 42

Amazon Elastic Container Service Developer Guide

Gc5r9ysjkfH6+6rbi1ujxMgROSqtqr+RyB+V9A5/OgtNZc8llK6u4UoOCde8jUUW
vqWKvjJB/Kz3u4zaeNu2ZyyHaOqOuH+TETcW+jsY9IhbEzqN5yQYGi4pVmDkY5vu
lXbJnbqPKpRXgM9BecV9AMbPgbDq/5LnHJJXg+G8YQOgp4lR/hC1TEFdIp5wM8AK
CWsENyt2o1rjgMXiZOMF8A5oBLkCDQRatUuSARAAr77kj7j2QR2SZeOSlFBvV7oS
mFeSNnz9xZssqrsm6bTwSHM6YLDwc7Sdf2esDdyzONETwqrVCg+FxgL8hmo9hS4c
rR6tmrP0mOmptr+xLLsKcaP7ogIXsyZnrEAEsvW8PnfayoiPCdc3cMCR/lTnHFGA
7EuR/XLBmi7Qg9tByVYQ5Yj5wB9V4B2yeCt3XtzPqeLKvaxl7PNelaHGJQY/xo+m
V0bndxf9IY+4oFJ4blD32WqvyxESo7vW6WBh7oqv3Zbm0yQrr8a6mDBpqLkvWwNI
3kpJR974tg5o5LfDu1BeeyHWPSGm4U/G4JB+JIG1ADy+RmoWEt4BqTCZ/knnoGvw
D5sTCxbKdmuOmhGyTssoG+3OOcGYHV7pWYPhazKHMPm201xKCjH1RfzRULzGKjD+
yMLT1I3AXFmLmZJXikAOlvE3/wgMqCXscbycbLjLD/bXIuFWo3rzoezeXjgi/DJx
jKBAyBTYO5nMcth1O9oaFd9d0HbsOUDkIMnsgGBE766Piro6MHo0T0rXl07Tp4pI
rwuSOsc6XzCzdImj0Wc6axS/HeUKRXWdXJwno5awTwXKRJMXGfhCvSvbcbc2Wx+L
IKvmB7EB4K3fmjFFE67yolmiw2qRcUBfygtH3eL5XZU28MiCpue8Y8GKJoBAUyvf
KeM1rO8Jm3iRAc5a/D0AEQEAAYkEPgQYAQIACQUCWrVLkgIbAgIpCRC86dmkLVF4
T8FdIAQZAQIABgUCWrVLkgAKCRDePL1hra+LjtHYD/9MucxdFe6bXO1dQR4tKhhQ
P0LRqy6zlBY9ILCLowNdGZdqorogUiUymgn3VhEhVtxTOoHcN7qOuM01PNsRnOeS
EYjf8Xrb1clzkD6xULwmOclTb9bBxnBc/4PFvHAbZW3QzusaZniNgkuxt6BTfloS
Of4inq71kjmGK+TlzQ6mUMQUg228NUQC+a84EPqYyAeY1sgvgB7hJBhYL0QAxhcW
6m20Rd8iEc6HyzJ3yCOCsKip/nRWAbf0OvfHfRBp0+m0ZwnJM8cPRFjOqqzFpKH9
HpDmTrC4wKP1+TL52LyEqNh4yZitXmZNV7giSRIkk0eDSko+bFy6VbMzKUMkUJK3
D3eHFAMkujmbfJmSMTJOPGn5SB1HyjCZNx6bhIIbQyEUB9gKCmUFaqXKwKpF6rj0
iQXAJxLR/shZ5Rk96VxzOphUl7T90m/PnUEEPwq8KsBhnMRgxa0RFidDP+n9fgtv
HLmrOqX9zBCVXh0mdWYLrWvmzQFWzG7AoE55fkf8nAEPsalrCdtaNUBHRXA0OQxG
AHMOdJQQvBsmqMvuAdjkDWpFu5y0My5ddU+hiUzUyQLjL5Hhd5LOUDdewlZgIw1j
xrEAUzDKetnemM8GkHxDgg8koev5frmShJuce7vSjKpCNg3EIJSgqMOPFjJuLWtZ
vjHeDNbJy6uNL65ckJy6WhGjEADS2WAW1D6Tfekkc21SsIXk/LqEpLMR/0g5OUif
wcEN1rS9IJXBwIy8MelN9qr5KcKQLmfdfBNEyyceBhyVl0MDyHOKC+7PofMtkGBq
13QieRHv5GJ8LB3fclqHV8pwTTo3Bc8z2g0TjmUYAN/ixETdReDoKavWJYSE9yoM
aaJu279ioVTrwpECse0XkiRyKToTjwOb73CGkBZZpJyqux/rmCV/fp4ALdSW8zbz
FJVORaivhoWwzjpfQKhwcU9lABXi2UvVm14v0AfeI7oiJPSU1zM4fEny4oiIBXlR
zhFNih1UjIu82X16mTm3BwbIga/s1fnQRGzyhqUIMii+mWra23EwjChaxpvjjcUH
5ilLc5Zq781aCYRygYQw+hu5nFkOH1R+Z50Ubxjd/aqUfnGIAX7kPMD3Lof4KldD
Q8ppQriUvxVo+4nPV6rpTy/PyqCLWDjkguHpJsEFsMkwajrAz0QNSAU5CJ0G2Zu4
yxvYlumHCEl7nbFrm0vIiA75Sa8KnywTDsyZsu3XcOcf3g+g1xWTpjJqy2bYXlqz
9uDOWtArWHOis6bq8l9RE6xr1RBVXS6uqgQIZFBGyq66b0dIq4D2JdsUvgEMaHbc
e7tBfeB1CMBdA64e9Rq7bFR7Tvt8gasCZYlNr3lydh+dFHIEkH53HzQe6l88HEic
+0jVnLkCDQRa55wJARAAyLya2Lx6gyoWoJN1a6740q3o8e9d4KggQOfGMTCflmeq
ivuzgN+3DZHN+9ty2KxXMtn0mhHBerZdbNJyjMNT1gAgrhPNB4HtXBXum2wS57WK
DNmade914L7FWTPAWBG2Wn448OEHTqsClICXXWy9IICgclAEyIq0Yq5mAdTEgRJS
Z8t4GpwtDL9gNQyFXaWQmDmkAsCygQMvhAlmu9xOIzQG5CxSnZFk7zcuL60k14Z3
Cmt49k4T/7ZU8goWi8tt+rU78/IL3J/fF9+1civ1OwuUidgfPCSvOUW1JojsdCQA
L+RZJcoXq7lfOFj/eNjeOSstCTDPfTCL+kThE6E5neDtbQHBYkEX1BRiTedsV4+M
ucgiTrdQFWKf89G72xdv8ut9AYYQ2BbEYU+JAYhUH8rYYui2dHKJIgjNvJscuUWb

Installing the AWS Copilot CLI 43

Amazon Elastic Container Service Developer Guide

+QEqJIRleJRhrO+/CHgMs4fZAkWF1VFhKBkcKmEjLn1f7EJJUUW84ZhKXjO/AUPX
1CHsNjziRceuJCJYox1cwsoq6jTE50GiNzcIxTn9xUc0UMKFeggNAFys1K+TDTm3
Bzo8H5ucjCUEmUm9lhkGwqTZgOlRX5eqPX+JBoSaObqhgqCa5IPinKRa6MgoFPHK
6sYKqroYwBGgZm6Js5chpNchvJMs/3WXNOEVg0J3z3vP0DMhxqWm+r+n9zlW8qsA
EQEAAYkEPgQYAQgACQUCWuecCQIbAgIpCRC86dmkLVF4T8FdIAQZAQgABgUCWuec
CQAKCRBQ3szEcQ5hr+ykD/4tOLRHFHXuKUcxgGaubUcVtsFrwBKma1cYjqaPms8u
6Sk0wfGRI32G/GhOrp0Ts/MOkbObq6VLTh8N5Yc/53MEl8zQFw9Y5AmRoW4PZXER
ujs5s7p4oR7xHMihMjCCBn1bvrR+34YPfgzTcgLiOEFHYT8UTxwnGmXOvNkMM7md
xD3CV5q6VAte8WKBo/220II3fcQlc9r/oWX4kXXkb0v9hoGwKbDJ1tzqTPrp/xFt
yohqnvImpnlz+Q9zXmbrWYL9/g8VCmW/NN2gju2G3Lu/TlFUWIT4v/5OPK6TdeNb
VKJO4+S8bTayqSG9CML1S57KSgCo5HUhQWeSNHI+fpe5oX6FALPT9JLDce8OZz1i
cZZ0MELP37mOOQun0AlmHm/hVzf0f311PtbzcqWaE51tJvgUR/nZFo6Ta3O5Ezhs
3VlEJNQ1Ijf/6DH87SxvAoRIARCuZd0qxBcDK0avpFzUtbJd24lRA3WJpkEiMqKv
RDVZkE4b6TW61f0o+LaVfK6E8oLpixegS4fiqC16mFrOdyRk+RJJfIUyz0WTDVmt
g0U1CO1ezokMSqkJ7724pyjr2xf/r9/sC6aOJwB/lKgZkJfC6NqL7TlxVA31dUga
LEOvEJTTE4gl+tYtfsCDvALCtqL0jduSkUo+RXcBItmXhA+tShW0pbS2Rtx/ixua
KohVD/0R4QxiSwQmICNtm9mw9ydIl1yjYXX5a9x4wMJracNY/LBybJPFnZnT4dYR
z4XjqysDwvvYZByaWoIe3QxjX84V6MlI2IdAT/xImu8gbaCI8tmyfpIrLnPKiR9D
VFYfGBXuAX7+HgPPSFtrHQONCALxxzlbNpS+zxt9r0MiLgcLyspWxSdmoYGZ6nQP
RO5Nm/ZVS+u2imPCRzNUZEMa+dlE6kHx0rS0dPiuJ4O7NtPeYDKkoQtNagspsDvh
cK7CSqAiKMq06UBTxqlTSRkm62eOCtcs3p3OeHu5GRZF1uzTET0ZxYkaPgdrQknx
ozjP5mC7X+45lcCfmcVt94TFNL5HwEUVJpmOgmzILCI8yoDTWzloo+i+fPFsXX4f
kynhE83mSEcr5VHFYrTY3mQXGmNJ3bCLuc/jq7ysGq69xiKmTlUeXFm+aojcRO5i
zyShIRJZ0GZfuzDYFDbMV9amA/YQGygLw//zP5ju5SW26dNxlf3MdFQE5JJ86rn9
MgZ4gcpazHEVUsbZsgkLizRp9imUiH8ymLqAXnfRGlU/LpNSefnvDFTtEIRcpOHc
bhayG0bk51Bd4mioOXnIsKy4j63nJXA27x5EVVHQ1sYRN8Ny4Fdr2tMAmj2O+X+J
qX2yy/UX5nSPU492e2CdZ1UhoU0SRFY3bxKHKB7SDbVeav+K5g==
=Gi5D
-----END PGP PUBLIC KEY BLOCK-----

The details of the Amazon ECS PGP public key for reference:

Key ID: BCE9D9A42D51784F
Type: RSA
Size: 4096/4096
Expires: Never
User ID: Amazon ECS
Key fingerprint: F34C 3DDA E729 26B0 79BE AEC6 BCE9 D9A4 2D51 784F

You may close the text editor.

5. Import the file with the Amazon ECS PGP public key with the following command in the
terminal.

Installing the AWS Copilot CLI 44

Amazon Elastic Container Service Developer Guide

gpg --import <public_key_filename.txt>

6. Download the AWS Copilot CLI signatures. The signatures are ASCII detached PGP signatures
stored in files with the extension .asc. The signatures file has the same name as its
corresponding executable, with .asc appended.

macOS

For macOS systems, run the following command.

sudo curl -Lo copilot.asc https://github.com/aws/copilot-cli/releases/latest/
download/copilot-darwin.asc

Linux

For Linux x86 (64-bit) systems, run the following command.

sudo curl -Lo copilot.asc https://github.com/aws/copilot-cli/releases/latest/
download/copilot-linux.asc

For Linux ARM systems, run the following command.

sudo curl -Lo copilot.asc https://github.com/aws/copilot-cli/releases/latest/
download/copilot-linux-arm64.asc

Windows

Using Powershell, run the following command.

Invoke-WebRequest -OutFile 'C:\copilot\copilot.asc' https://github.com/aws/
copilot-cli/releases/latest/download/copilot-windows.exe.asc

7. Verify the signature with the following command.

• For macOS and Linux systems:

gpg --verify copilot.asc /usr/local/bin/copilot

• For Windows systems:

Installing the AWS Copilot CLI 45

Amazon Elastic Container Service Developer Guide

gpg --verify 'C:\copilot\copilot.asc' 'C:\copilot\copilot.exe'

Expected output:

gpg: Signature made Tue Apr 3 13:29:30 2018 PDT
gpg: using RSA key DE3CBD61ADAF8B8E
gpg: Good signature from "Amazon ECS <ecs-security@amazon.com>" [unknown]
gpg: WARNING: This key is not certified with a trusted signature!
gpg: There is no indication that the signature belongs to the owner.
Primary key fingerprint: F34C 3DDA E729 26B0 79BE AEC6 BCE9 D9A4 2D51 784F
 Subkey fingerprint: EB3D F841 E2C9 212A 2BD4 2232 DE3C BD61 ADAF 8B8E

Important

The warning in the output is expected and is not problematic. It occurs because there is
not a chain of trust between your personal PGP key (if you have one) and the Amazon
ECS PGP key. For more information, see Web of trust.

8. For Windows installations, run the following command on Powershell to add AWS Copilot
directory to the path.

 $Env:PATH += ";<path to Copilot executable files>"

Next steps

After installation, learn how to deploy an Amazon ECS application using AWS Copilot. For more
information, see Getting started with Amazon ECS using AWS Copilot.

Getting started with Amazon ECS using AWS Copilot

Get started with Amazon ECS using AWS Copilot by deploying an Amazon ECS application.

Prerequisites

Before you begin, make sure that you meet the following prerequisites:

• Set up an AWS account. For more information see Set up to use Amazon ECS.

Getting started with AWS Copilot 46

https://en.wikipedia.org/wiki/Web_of_trust

Amazon Elastic Container Service Developer Guide

• Install the AWS Copilot CLI. Releases currently support Linux and macOS systems. For more
information, see Installing the AWS Copilot CLI.

• Install and configure the AWS CLI. For more information, see AWS Command Line Interface.

• Run aws configure to set up a default profile that the AWS Copilot CLI will use to manage
your application and services.

• Install and run Docker. For more information, see Get started with Docker.

Deploy your application using one command

Make sure that you have the AWS command line tool installed and have already run aws
configure before you start.

Deploy the application using the following command.

git clone https://github.com/aws-samples/amazon-ecs-cli-sample-app.git demo-app && \
cd demo-app && \
copilot init --app demo \
 --name api \
 --type 'Load Balanced Web Service' \
 --dockerfile './Dockerfile' \
 --port 80 \
 --deploy

Deploy your application step by step

Step 1: Configure your credentials

Run aws configure to set up a default profile that the AWS Copilot CLI uses to manage your
application and services.

aws configure

Step 2: Clone the demo app

Clone a simple Flask application and Dockerfile.

git clone https://github.com/aws-samples/amazon-ecs-cli-sample-app.git demo-app

Deploy your application using one command 47

https://docs.aws.amazon.com/cli/latest/userguide/install-cliv2.html
https://www.docker.com/get-started

Amazon Elastic Container Service Developer Guide

Step 3: Set up your application

1. From within the demo-app directory, run the init command.

For Windows users, run the init command from the folder that contains the downloaded
copilot.exe file.

copilot init

AWS Copilot walks you through the setup of your first application and service with a series
of terminal prompts, starting with next step. If you have already used AWS Copilot to deploy
applications, you're prompted to choose one from a list of application names.

2. Name your application.

What would you like to name your application? [? for help]

Enter demo.

Step 4: Set up an ECS Service in your "demo" Application

1. You're prompted to choose a service type. You're building a simple Flask application that
serves a small API.

Which service type best represents your service's architecture? [Use arrows to
 move, type to filter, ? for more help]
 > Load Balanced Web Service
 Backend Service
 Scheduled Job

Choose Load Balanced Web Service .

2. Provide a name for your service.

What do you want to name this Load Balanced Web Service? [? for help]

Enter api for your service name.

3. Select a Dockerfile.

Deploy your application step by step 48

Amazon Elastic Container Service Developer Guide

Which Dockerfile would you like to use for api? [Use arrows to move, type to
 filter, ? for more help]
 > ./Dockerfile
 Use an existing image instead

Choose Dockerfile.

For Windows users, enter the path to the Dockerfile in the demo-app folder (*`...\demo-app
\Dockerfile`*\.).

4. Define port.

Which port do you want customer traffic sent to? [? for help] (80)

Enter 80 or accept default.

5. You will see a log showing the application resources being created.

Creating the infrastructure to manage services under application demo.

6. After the application resources are created, deploy a test environment.

Would you like to deploy a test environment? [? for help] (y/N)

Enter y.

Proposing infrastructure changes for the test environment.

7. You will see a log displaying the status of your application deployment.

Note: It's best to run this command in the root of your Git repository.
Welcome to the Copilot CLI! We're going to walk you through some questions
to help you get set up with an application on ECS. An application is a collection
 of
containerized services that operate together.

Use existing application: No
Application name: demo
Workload type: Load Balanced Web Service
Service name: api
Dockerfile: ./Dockerfile

Deploy your application step by step 49

Amazon Elastic Container Service Developer Guide

no EXPOSE statements in Dockerfile ./Dockerfile
Port: 80
Ok great, we'll set up a Load Balanced Web Service named api in application demo
 listening on port 80.

Created the infrastructure to manage services under application demo.

Wrote the manifest for service api at copilot/api/manifest.yml
Your manifest contains configurations like your container size and port (:80).

Created ECR repositories for service api.

All right, you're all set for local development.
Deploy: Yes

Created the infrastructure for the test environment.
- Virtual private cloud on 2 availability zones to hold your services
 [Complete]
- Virtual private cloud on 2 availability zones to hold your services
 [Complete]
 - Internet gateway to connect the network to the internet
 [Complete]
 - Public subnets for internet facing services
 [Complete]
 - Private subnets for services that can't be reached from the internet
 [Complete]
 - Routing tables for services to talk with each other
 [Complete]
- ECS Cluster to hold your services
 [Complete]
Linked account aws_account_id and region region to application demo.

Created environment test in region region under application demo.

Environment test is already on the latest version v1.0.0, skip upgrade.
[+] Building 0.8s (7/7) FINISHED
 => [internal] load .dockerignore
 0.1s
 => => transferring context: 2B
 0.0s
 => [internal] load build definition from Dockerfile
 0.0s
 => => transferring dockerfile: 37B
 0.0s

Deploy your application step by step 50

Amazon Elastic Container Service Developer Guide

 => [internal] load metadata for docker.io/library/nginx:latest
 0.7s
 => [internal] load build context
 0.0s
 => => transferring context: 32B
 0.0s
 => [1/2] FROM docker.io/library/
nginx@sha256:aeade65e99e5d5e7ce162833636f692354c227ff438556e5f3ed0335b7cc2f1b
 0.0s
 => CACHED [2/2] COPY index.html /usr/share/nginx/html
 0.0s
 => exporting to image
 0.0s
 => => exporting layers
 0.0s
 => => writing image
 sha256:3ee02fd4c0f67d7bd808ed7fc73263880649834cbb05d5ca62380f539f4884c4
 0.0s
 => => naming to aws_account_id.dkr.ecr.region.amazonaws.com/demo/api:cee7709
 0.0s
WARNING! Your password will be stored unencrypted in /home/user/.docker/
config.json.
Configure a credential helper to remove this warning. See
https://docs.docker.com/engine/reference/commandline/login/#credentials-store

Login Succeeded
The push refers to repository
 [aws_account_id.dkr.ecr.region.amazonaws.com/demo/api]
592a5c0c47f1: Pushed
6c7de695ede3: Pushed
2f4accd375d9: Pushed
ffc9b21953f4: Pushed
cee7709: digest: sha_digest

Deployed api, you can access it at http://demo-
Publi-1OQ8VMS2VC2WG-561733989.region.elb.amazonaws.com.

Step 5: Verify your application is running

View the status of your application by using the following commands.

List all of your AWS Copilot applications.

Deploy your application step by step 51

Amazon Elastic Container Service Developer Guide

copilot app ls

Show information about the environments and services in your application.

copilot app show

Show information about your environments.

copilot env ls

Show information about the service, including endpoints, capacity and related resources.

copilot svc show

List of all the services in an application.

copilot svc ls

Show logs of a deployed service.

copilot svc logs

Show service status.

copilot svc status

List available commands and options.

copilot --help

copilot init --help

Step 6. Learn to create a CI/CD Pipeline

Instructions can be found in the ECS Workshop detailing how to fully automate a CI/CD pipeline
and git workflow using AWS Copilot.

Deploy your application step by step 52

https://ecsworkshop.com/microservices/frontend/#create-a-ci-cd-pipeline

Amazon Elastic Container Service Developer Guide

Step 7: Clean up

Run the following command to delete and clean up all resources.

copilot app delete

Getting started with Amazon ECS using the AWS CDK

The AWS Cloud Development Kit (AWS CDK) is an Infrastructure-as-Code (IAC) framework that you
can use to define AWS cloud infrastructure by using a programming language of your choosing.
To define your own cloud infrastructure, you first write an app (in one of the CDK's supported
languages) that contains one or more stacks. Then, you synthesize it to an AWS CloudFormation
template and deploy your resources to your AWS account. Follow the steps in this topic to deploy
a containerized web server with Amazon Elastic Container Service (Amazon ECS) and the AWS CDK
on Fargate.

The AWS Construct Library, included with the CDK, provides modules that you can use to model
the resources that AWS services provide. For popular services, the library provides curated
constructs with smart defaults and best practices. One of these modules, specifically aws-ecs-
patterns, provides high-level abstractions that you can use to define your containerized service
and all the necessary supporting resources in a few lines of code.

This topic uses the ApplicationLoadBalancedFargateService construct. This construct
deploys an Amazon ECS service on Fargate behind an application load balancer. The aws-ecs-
patterns module also includes constructs that use a network load balancer and run on Amazon
EC2.

Before starting this task, set up your AWS CDK development environment, and install the AWS CDK
by running the following command. For instructions on how to set up your AWS CDK development
environment, see Getting Started With the AWS CDK - Prerequisites.

npm install -g aws-cdk

Note

These instructions assume you are using AWS CDK v2.

Using the AWS CDK 53

https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.aws_ecs_patterns-readme.html
https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.aws_ecs_patterns-readme.html
https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.aws_ecs_patterns.ApplicationLoadBalancedFargateService.html
https://docs.aws.amazon.com/cdk/v2/guide/getting_started.html#getting_started_prerequisites

Amazon Elastic Container Service Developer Guide

Topics

• Step 1: Set up your AWS CDK project

• Step 2: Use the AWS CDK to define a containerized web server on Fargate

• Step 3: Test the web server

• Step 4: Clean up

• Next steps

Step 1: Set up your AWS CDK project

Create a directory for your new AWS CDK app and initialize the project.

TypeScript

mkdir hello-ecs
cd hello-ecs
cdk init --language typescript

JavaScript

mkdir hello-ecs
cd hello-ecs
cdk init --language javascript

Python

mkdir hello-ecs
cd hello-ecs
cdk init --language python

After the project is started, activate the project's virtual environment and install the AWS CDK's
baseline dependencies.

source .venv/bin/activate
python -m pip install -r requirements.txt

Java

mkdir hello-ecs

Step 1: Set up your AWS CDK project 54

Amazon Elastic Container Service Developer Guide

cd hello-ecs
cdk init --language java

Import this Maven project to your Java IDE. For example, in Eclipse, use File > Import > Maven >
Existing Maven Projects.

C#

mkdir hello-ecs
cd hello-ecs
cdk init --language csharp

Note

The AWS CDK application template uses the name of the project directory to generate
names for source files and classes. In this example, the directory is named hello-ecs. If
you use a different project directory name, your app won't match these instructions.

AWS CDK v2 includes stable constructs for all AWS services in a single package that's called aws-
cdk-lib. This package is installed as a dependency when you initialize the project. When working
with certain programming languages, the package is installed when you build the project for the
first time. This topic covers how to use an Amazon ECS Patterns construct, which provides high-
level abstractions for working with Amazon ECS. This module relies on Amazon ECS constructs and
other constructs to provision the resources that your Amazon ECS application needs.

The names that you use to import these libraries into your CDK application might differ slightly
depending on which programming language you use. For reference, the following are the names
that are used in each supported CDK programming language.

TypeScript

aws-cdk-lib/aws-ecs
aws-cdk-lib/aws-ecs-patterns

JavaScript

aws-cdk-lib/aws-ecs
aws-cdk-lib/aws-ecs-patterns

Step 1: Set up your AWS CDK project 55

Amazon Elastic Container Service Developer Guide

Python

aws_cdk.aws_ecs
aws_cdk.aws_ecs_patterns

Java

software.amazon.awscdk.services.ecs
software.amazon.awscdk.services.ecs.patterns

C#

Amazon.CDK.AWS.ECS
Amazon.CDK.AWS.ECS.Patterns

Step 2: Use the AWS CDK to define a containerized web server on
Fargate

Use the container image amazon-ecs-sample from DockerHub. This image contains a PHP web
app that runs on Amazon Linux 2.

In the AWS CDK project that you created, edit the file that contains the stack definition to resemble
one of the following examples.

Note

A stack is a unit of deployment. All resources must be in a stack, and all the resources
that are in a stack are deployed at the same time. If a resource fails to deploy, any other
resources that were already deployed are rolled back. An AWS CDK app can contain
multiple stacks, and resources in one stack can refer to resources in another stack.

TypeScript

Update lib/hello-ecs-stack.ts so that it resembles the following.

import * as cdk from 'aws-cdk-lib';
import { Construct } from 'constructs';

Step 2: Use the AWS CDK to define a containerized web server on Fargate 56

https://hub.docker.com/r/amazon/amazon-ecs-sample

Amazon Elastic Container Service Developer Guide

import * as ecs from 'aws-cdk-lib/aws-ecs';
import * as ecsp from 'aws-cdk-lib/aws-ecs-patterns';

export class HelloEcsStack extends cdk.Stack {
 constructor(scope: Construct, id: string, props?: cdk.StackProps) {
 super(scope, id, props);

 new ecsp.ApplicationLoadBalancedFargateService(this, 'MyWebServer', {
 taskImageOptions: {
 image: ecs.ContainerImage.fromRegistry('amazon/amazon-ecs-sample'),
 },
 publicLoadBalancer: true
 });
 }
}

JavaScript

Update lib/hello-ecs-stack.js so that it resembles the following.

const cdk = require('aws-cdk-lib');
const { Construct } = require('constructs');
const ecs = require('aws-cdk-lib/aws-ecs');
const ecsp = require('aws-cdk-lib/aws-ecs-patterns');

class HelloEcsStack extends cdk.Stack {
 constructor(scope = Construct, id = string, props = cdk.StackProps) {
 super(scope, id, props);

 new ecsp.ApplicationLoadBalancedFargateService(this, 'MyWebServer', {
 taskImageOptions: {
 image: ecs.ContainerImage.fromRegistry('amazon/amazon-ecs-sample'),
 },
 publicLoadBalancer: true
 });
 }
}

module.exports = { HelloEcsStack }

Python

Update hello-ecs/hello_ecs_stack.py so that it resembles the following.

Step 2: Use the AWS CDK to define a containerized web server on Fargate 57

Amazon Elastic Container Service Developer Guide

import aws_cdk as cdk
from constructs import Construct

import aws_cdk.aws_ecs as ecs
import aws_cdk.aws_ecs_patterns as ecsp

class HelloEcsStack(cdk.Stack):

 def __init__(self, scope: Construct, construct_id: str, **kwargs) -> None:
 super().__init__(scope, construct_id, **kwargs)

 ecsp.ApplicationLoadBalancedFargateService(self, "MyWebServer",
 task_image_options=ecsp.ApplicationLoadBalancedTaskImageOptions(
 image=ecs.ContainerImage.from_registry("amazon/amazon-ecs-sample")),
 public_load_balancer=True
)

Java

Update src/main/java/com.myorg/HelloEcsStack.java so that it resembles the
following.

package com.myorg;

import software.constructs.Construct;
import software.amazon.awscdk.Stack;
import software.amazon.awscdk.StackProps;

import software.amazon.awscdk.services.ecs.ContainerImage;
import
 software.amazon.awscdk.services.ecs.patterns.ApplicationLoadBalancedFargateService;
import
 software.amazon.awscdk.services.ecs.patterns.ApplicationLoadBalancedTaskImageOptions;

public class HelloEcsStack extends Stack {
 public HelloEcsStack(final Construct scope, final String id) {
 this(scope, id, null);
 }

 public HelloEcsStack(final Construct scope, final String id, final StackProps
 props) {
 super(scope, id, props);

Step 2: Use the AWS CDK to define a containerized web server on Fargate 58

Amazon Elastic Container Service Developer Guide

 ApplicationLoadBalancedFargateService.Builder.create(this, "MyWebServer")
 .taskImageOptions(ApplicationLoadBalancedTaskImageOptions.builder()
 .image(ContainerImage.fromRegistry("amazon/amazon-ecs-sample"))
 .build())
 .publicLoadBalancer(true)
 .build();
 }
}

C#

Update src/HelloEcs/HelloEcsStack.cs so that it resembles the following.

using Amazon.CDK;
using Constructs;
using Amazon.CDK.AWS.ECS;
using Amazon.CDK.AWS.ECS.Patterns;
namespace HelloEcs
{
 public class HelloEcsStack : Stack
 {
 internal HelloEcsStack(Construct scope, string id, IStackProps props =
 null) : base(scope, id, props)
 {
 new ApplicationLoadBalancedFargateService(this, "MyWebServer",
 new ApplicationLoadBalancedFargateServiceProps
 {
 TaskImageOptions = new ApplicationLoadBalancedTaskImageOptions
 {
 Image = ContainerImage.FromRegistry("amazon/amazon-ecs-
sample")
 },
 PublicLoadBalancer = true
 });
 }
 }
}

The preceding short snippet includes the following:

• The service's logical name: MyWebServer.

• The container image that was obtained from DockerHub: amazon/amazon-ecs-sample.

Step 2: Use the AWS CDK to define a containerized web server on Fargate 59

Amazon Elastic Container Service Developer Guide

• Other relevant information, such as the fact that the load balancer has a public address and is
accessible from the Internet.

The AWS CDK will create all the resources that are required to deploy the web server including the
following resources. These resources were omitted in this example.

• Amazon ECS cluster

• Amazon VPC and Amazon EC2 instances

• Auto Scaling group

• Application Load Balancer

• IAM roles and policies

Some automatically provisioned resources are shared by all Amazon ECS services defined in the
stack.

Save the source file, then run the cdk synth command in your application's main directory.
The AWS CDK runs the app and synthesizes an AWS CloudFormation template from it, and then
displays the template. The template is an approximately 600-line YAML file. The beginning of the
file is shown here. Your template might differ from this example.

Resources:
 MyWebServerLB3B5FD3AB:
 Type: AWS::ElasticLoadBalancingV2::LoadBalancer
 Properties:
 LoadBalancerAttributes:
 - Key: deletion_protection.enabled
 Value: "false"
 Scheme: internet-facing
 SecurityGroups:
 - Fn::GetAtt:
 - MyWebServerLBSecurityGroup01B285AA
 - GroupId
 Subnets:
 - Ref: EcsDefaultClusterMnL3mNNYNVpcPublicSubnet1Subnet3C273B99
 - Ref: EcsDefaultClusterMnL3mNNYNVpcPublicSubnet2Subnet95FF715A
 Type: application
 DependsOn:
 - EcsDefaultClusterMnL3mNNYNVpcPublicSubnet1DefaultRouteFF4E2178

Step 2: Use the AWS CDK to define a containerized web server on Fargate 60

Amazon Elastic Container Service Developer Guide

 - EcsDefaultClusterMnL3mNNYNVpcPublicSubnet2DefaultRouteB1375520
 Metadata:
 aws:cdk:path: HelloEcsStack/MyWebServer/LB/Resource
 MyWebServerLBSecurityGroup01B285AA:
 Type: AWS::EC2::SecurityGroup
 Properties:
 GroupDescription: Automatically created Security Group for ELB
 HelloEcsStackMyWebServerLB06757F57
 SecurityGroupIngress:
 - CidrIp: 0.0.0.0/0
 Description: Allow from anyone on port 80
 FromPort: 80
 IpProtocol: tcp
 ToPort: 80
 VpcId:
 Ref: EcsDefaultClusterMnL3mNNYNVpc7788A521
 Metadata:
 aws:cdk:path: HelloEcsStack/MyWebServer/LB/SecurityGroup/Resource
and so on for another few hundred lines

To deploy the service in your AWS account, run the cdk deploy command in your application's
main directory. You're asked to approve the IAM policies that the AWS CDK generated.

The deployment takes several minutes during which the AWS CDK creates several resources. The
last few lines of the output from the deployment include the load balancer's public hostname and
your new web server's URL. They are as follows.

Outputs:
HelloEcsStack.MyWebServerLoadBalancerDNSXXXXXXX = Hello-MyWeb-ZZZZZZZZZZZZZ-
ZZZZZZZZZZ.us-west-2.elb.amazonaws.com
HelloEcsStack.MyWebServerServiceURLYYYYYYYY = http://Hello-MyWeb-ZZZZZZZZZZZZZ-
ZZZZZZZZZZ.us-west-2.elb.amazonaws.com

Step 3: Test the web server

Copy the URL from the deployment output and paste it into your web browser. The following
welcome message from the web server is displayed.

Step 3: Test the web server 61

Amazon Elastic Container Service Developer Guide

Step 4: Clean up

After you're finished with the web server, end the service using the CDK by running the cdk
destroy command in your application's main directory. Doing this prevents you from incurring any
unintended charges in the future.

Next steps

To learn more about how to develop AWS infrastructure using the AWS CDK, see the AWS CDK
Developer Guide.

For information about writing AWS CDK apps in your language of choice, see the following:

TypeScript

Working with the AWS CDK in TypeScript

JavaScript

Working with the AWS CDK in JavaScript

Python

Working with the AWS CDK in Python

Java

Working with the AWS CDK in Java

C#

Working with the AWS CDK in C#

Step 4: Clean up 62

https://docs.aws.amazon.com/cdk/v2/guide/
https://docs.aws.amazon.com/cdk/v2/guide/
https://docs.aws.amazon.com/cdk/v2/guide/work-with-cdk-typescript.html
https://docs.aws.amazon.com/cdk/v2/guide/work-with-cdk-javascript.html
https://docs.aws.amazon.com/cdk/v2/guide/work-with-cdk-python.html
https://docs.aws.amazon.com/cdk/v2/guide/work-with-cdk-java.html
https://docs.aws.amazon.com/cdk/v2/guide/work-with-cdk-csharp.html

Amazon Elastic Container Service Developer Guide

For more information about the AWS Construct Library modules used in this topic, see the
following AWS CDK API Reference overviews.

• aws-ecs

• aws-ecs-patterns

Creating Amazon ECS resources with AWS CloudFormation

Amazon ECS is integrated with AWS CloudFormation, a service that you can use to model and
set up AWS resources with templates that you define. This way, you can spend less time creating
and managing your resources and infrastructure. Using AWS CloudFormation, you can create a
template that describes all the AWS resources that you want, such as specific Amazon ECS clusters.
Then, AWS CloudFormation takes care of provisioning and configuring those resources for you.

When you use AWS CloudFormation, you can reuse your template to set up your Amazon ECS
resources in a consistent and repeatable manner. You describe your resources one time, and then
provision the same resources again across multiple AWS accounts and AWS Regions.

Amazon ECS and AWS CloudFormation templates

To provision and configure resources for Amazon ECS and related services, make sure that you're
familiar with AWS CloudFormation templates. AWS CloudFormation templates are text files in
the JSON or YAML format that describe the resources that you want to provision in your AWS
CloudFormation stacks. If you're unfamiliar with either the JSON or YAML format, or both, you can
use AWS CloudFormation Designer to get started using AWS CloudFormation templates. For more
information, see What is AWS CloudFormation Designer? in the AWS CloudFormation User Guide.

Amazon ECS supports creating clusters, task definitions, services, and task sets in AWS
CloudFormation. The following examples demonstrate how to create resources with these
templates using the AWS CLI. You can also create these resources using the AWS CloudFormation
console. For more information about how to create resources using the AWS CloudFormation
console, see the AWS CloudFormation User Guide.

Example templates

Creating Amazon ECS resources using separate stacks

The following examples show how to create Amazon ECS resources by using separate stacks for
each resource.

Creating Amazon ECS resources with AWS CloudFormation 63

https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.aws_ecs-readme.html
https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.aws_ecs_patterns-readme.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/template-guide.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/working-with-templates-cfn-designer.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/GettingStarted.Walkthrough.html

Amazon Elastic Container Service Developer Guide

Amazon ECS task definitions

You can use the following template to create a Fargate Linux task.

JSON

 {
 "AWSTemplateFormatVersion": "2010-09-09",
 "Resources": {
 "ECSTaskDefinition": {
 "Type": "AWS::ECS::TaskDefinition",
 "Properties": {
 "ContainerDefinitions": [
 {
 "Command": [
 "/bin/sh -c \"echo '<html> <head> <title>Amazon ECS Sample
 App</title> <style>body {margin-top: 40px; background-color: #333;} </style> </
head><body> <div style=color:white;text-align:center> <h1>Amazon ECS Sample App</h1>
 <h2>Congratulations!</h2> <p>Your application is now running on a container in Amazon
 ECS.</p> </div></body></html>' > /usr/local/apache2/htdocs/index.html && httpd-
foreground\""
],
 "EntryPoint": [
 "sh",
 "-c"
],
 "Essential": true,
 "Image": "httpd:2.4",
 "LogConfiguration": {
 "LogDriver": "awslogs",
 "Options": {
 "awslogs-group": "/ecs/fargate-task-definition",
 "awslogs-region": "us-east-1",
 "awslogs-stream-prefix": "ecs"
 }
 },
 "Name": "sample-fargate-app",
 "PortMappings": [
 {
 "ContainerPort": 80,
 "HostPort": 80,
 "Protocol": "tcp"
 }
]

Example templates 64

Amazon Elastic Container Service Developer Guide

 }
],
 "Cpu": 256,
 "ExecutionRoleArn": "arn:aws:iam::aws_account_id:role/
ecsTaskExecutionRole",
 "Family": "task-definition-cfn",
 "Memory": 512,
 "NetworkMode": "awsvpc",
 "RequiresCompatibilities": [
 "FARGATE"
],
 "RuntimePlatform": {
 "OperatingSystemFamily": "LINUX"
 }
 }

 }
 }
 }

YAML

AWSTemplateFormatVersion: 2010-09-09
Resources:
 ECSTaskDefinition:
 Type: 'AWS::ECS::TaskDefinition'
 Properties:
 ContainerDefinitions:
 - Command:
 - >-
 /bin/sh -c "echo '<html> <head> <title>Amazon ECS Sample
 App</title> <style>body {margin-top: 40px; background-color:
 #333;} </style> </head><body> <div
 style=color:white;text-align:center> <h1>Amazon ECS Sample
 App</h1> <h2>Congratulations!</h2> <p>Your application is now
 running on a container in Amazon ECS.</p> </div></body></html>' >
 /usr/local/apache2/htdocs/index.html && httpd-foreground"
 EntryPoint:
 - sh
 - '-c'
 Essential: true
 Image: 'httpd:2.4'
 LogConfiguration:

Example templates 65

Amazon Elastic Container Service Developer Guide

 LogDriver: awslogs
 Options:
 awslogs-group: /ecs/fargate-task-definition
 awslogs-region: us-east-1
 awslogs-stream-prefix: ecs
 Name: sample-fargate-app
 PortMappings:
 - ContainerPort: 80
 HostPort: 80
 Protocol: tcp
 Cpu: 256
 ExecutionRoleArn: 'arn:aws:iam::aws_account_id:role/ecsTaskExecutionRole'
 Family: task-definition-cfn
 Memory: 512
 NetworkMode: awsvpc
 RequiresCompatibilities:
 - FARGATE
 RuntimePlatform:
 OperatingSystemFamily: LINUX

Amazon ECS clusters

You can use the following template to create an empty cluster.

JSON

{
 "AWSTemplateFormatVersion": "2010-09-09",
 "Resources": {
 "ECSCluster": {
 "Type": "AWS::ECS::Cluster",
 "Properties": {
 "ClusterName": "MyEmptyCluster"
 }
 }
 }
}

YAML

AWSTemplateFormatVersion: 2010-09-09
Resources:
 ECSCluster:

Example templates 66

Amazon Elastic Container Service Developer Guide

 Type: 'AWS::ECS::Cluster'
 Properties:
 ClusterName: MyEmptyCluster

Creating multiple Amazon ECS resources in one stack

You can use the following example template to create multiple Amazon ECS resources in one
stack. The template creates an Amazon ECS cluster that's named CFNCluster. The cluster
contains a Linux Fargate task definition that sets up a web server. The template also creates a
service that's named cfn-service that launches and maintains the task defined by the task
definition. Before you use this template, make sure that the subnet and security group IDs in the
service's NetworkConfiguration all belong to the same VPC and that the security group has the
necessary rules. For more information about security group rules, see Security group rules in the
Amazon VPC user guide.

JSON

{
 "AWSTemplateFormatVersion": "2010-09-09",
 "Resources": {
 "ECSCluster": {
 "Type": "AWS::ECS::Cluster",
 "Properties": {
 "ClusterName": "CFNCluster"
 }
 },
 "ECSTaskDefinition": {
 "Type": "AWS::ECS::TaskDefinition",
 "Properties": {
 "ContainerDefinitions": [
 {
 "Command": [
 "/bin/sh -c \"echo '<html> <head> <title>Amazon ECS Sample
 App</title> <style>body {margin-top: 40px; background-color: #333;} </style> </
head><body> <div style=color:white;text-align:center> <h1>Amazon ECS Sample App</h1>
 <h2>Congratulations!</h2> <p>Your application is now running on a container in Amazon
 ECS.</p> </div></body></html>' > /usr/local/apache2/htdocs/index.html && httpd-
foreground\""
],
 "EntryPoint": [
 "sh",
 "-c"

Example templates 67

https://docs.aws.amazon.com/vpc/latest/userguide/security-group-rules.html

Amazon Elastic Container Service Developer Guide

],
 "Essential": true,
 "Image": "httpd:2.4",
 "LogConfiguration": {
 "LogDriver": "awslogs",
 "Options": {
 "awslogs-group": "/ecs/fargate-task-definition",
 "awslogs-region": "us-east-1",
 "awslogs-stream-prefix": "ecs"
 }
 },
 "Name": "sample-fargate-app",
 "PortMappings": [
 {
 "ContainerPort": 80,
 "HostPort": 80,
 "Protocol": "tcp"
 }
]
 }
],
 "Cpu": 256,
 "ExecutionRoleArn": "arn:aws:iam::aws_account_id::role/
ecsTaskExecutionRole",
 "Family": "task-definition-cfn",
 "Memory": 512,
 "NetworkMode": "awsvpc",
 "RequiresCompatibilities": [
 "FARGATE"
],
 "RuntimePlatform": {
 "OperatingSystemFamily": "LINUX"
 }
 }
 },
 "ECSService": {
 "Type": "AWS::ECS::Service",
 "Properties": {
 "ServiceName": "cfn-service",
 "Cluster": {
 "Ref": "ECSCluster"
 },
 "DesiredCount": 1,
 "LaunchType": "FARGATE",

Example templates 68

Amazon Elastic Container Service Developer Guide

 "NetworkConfiguration": {
 "AwsvpcConfiguration": {
 "AssignPublicIp": "ENABLED",
 "SecurityGroups": [
 "sg-abcdef01234567890"
],
 "Subnets": [
 "subnet-abcdef01234567890"
]
 }
 },
 "TaskDefinition": {
 "Ref": "ECSTaskDefinition"
 }
 }
 }
 }
}

YAML

AWSTemplateFormatVersion: 2010-09-09
Resources:
 ECSCluster:
 Type: 'AWS::ECS::Cluster'
 Properties:
 ClusterName: CFNCluster
 ECSTaskDefinition:
 Type: 'AWS::ECS::TaskDefinition'
 Properties:
 ContainerDefinitions:
 - Command:
 - >-
 /bin/sh -c "echo '<html> <head> <title>Amazon ECS Sample
 App</title> <style>body {margin-top: 40px; background-color:
 #333;} </style> </head><body> <div
 style=color:white;text-align:center> <h1>Amazon ECS Sample
 App</h1> <h2>Congratulations!</h2> <p>Your application is now
 running on a container in Amazon ECS.</p> </div></body></html>' >
 /usr/local/apache2/htdocs/index.html && httpd-foreground"
 EntryPoint:
 - sh
 - '-c'

Example templates 69

Amazon Elastic Container Service Developer Guide

 Essential: true
 Image: 'httpd:2.4'
 LogConfiguration:
 LogDriver: awslogs
 Options:
 awslogs-group: /ecs/fargate-task-definition
 awslogs-region: us-east-1
 awslogs-stream-prefix: ecs
 Name: sample-fargate-app
 PortMappings:
 - ContainerPort: 80
 HostPort: 80
 Protocol: tcp
 Cpu: 256
 ExecutionRoleArn: 'arn:aws:iam::aws_account_id:role/ecsTaskExecutionRole'
 Family: task-definition-cfn
 Memory: 512
 NetworkMode: awsvpc
 RequiresCompatibilities:
 - FARGATE
 RuntimePlatform:
 OperatingSystemFamily: LINUX
 ECSService:
 Type: 'AWS::ECS::Service'
 Properties:
 ServiceName: cfn-service
 Cluster: !Ref ECSCluster
 DesiredCount: 1
 LaunchType: FARGATE
 NetworkConfiguration:
 AwsvpcConfiguration:
 AssignPublicIp: ENABLED
 SecurityGroups:
 - sg-abcdef01234567890
 Subnets:
 - subnet-abcdef01234567890
 TaskDefinition: !Ref ECSTaskDefinition

Using the AWS CLI to create resources from templates

The following command creates a stack that's named ecs-stack using a template body file that's
named ecs-template-body.json. Ensure that the template body file is in the JSON or YAML

Using the AWS CLI to create resources from templates 70

Amazon Elastic Container Service Developer Guide

format. The location of the file is specified in the --template-body parameter. In this case, the
template body file is located in the current directory.

aws cloudformation create-stack \
 --stack-name ecs-stack \
 --template-body file://ecs-template-body.json

To ensure that resources are created correctly, check the Amazon ECS console or alternatively use
the following commands:

• The following command lists all task definitions.

aws ecs list-task-definitions

• The following command lists all clusters.

aws ecs list-clusters

• The following command lists all services defined in the cluster CFNCluster. Replace
CFNCluster with the name of the cluster that you want to create the service in.

aws ecs list-services \
 --cluster CFNCluster

Learn more about AWS CloudFormation

To learn more about AWS CloudFormation, see the following resources:

• AWS CloudFormation

• AWS CloudFormation User Guide

• AWS CloudFormation Command Line Interface User Guide

Using the Amazon ECS command line interface

Amazon ECS has released AWS Copilot, a command line interface (CLI) tool that simplifies
building, releasing, and operating production-ready containerized applications on Amazon

Learn more about AWS CloudFormation 71

https://aws.amazon.com/cloudformation/
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/Welcome.html
https://docs.aws.amazon.com/cloudformation-cli/latest/userguide/what-is-cloudformation-cli.html

Amazon Elastic Container Service Developer Guide

ECS from a local development environment. For more information, see Using the AWS Copilot
command line interface.

The Amazon Elastic Container Service (Amazon ECS) command line interface (CLI) provides high-
level commands to simplify creating, updating, and monitoring clusters and tasks from a local
development environment. The Amazon ECS CLI supports Docker Compose files, a popular open-
source specification for defining and running multi-container applications. Use the ECS CLI as
part of your everyday development and testing cycle as an alternative to the AWS Management
Console.

The latest version of the Amazon ECS CLI only supports the major versions of Docker Compose
file syntax versions 1, 2, and 3. The version specified in the compose file must be the string "1",
"1.0", "2", "2.0", "3", or "3.0". Docker Compose minor versions are not supported.

The source code for the Amazon ECS CLI is available on GitHub. This tool is no longer being actively
developed.

Installing the Amazon ECS CLI

Amazon ECS has released AWS Copilot, a command line interface (CLI) tool that simplifies
building, releasing, and operating production-ready containerized applications on Amazon
ECS from a local development environment. For more information, see Using the AWS Copilot
command line interface.

The following steps demonstrate how to install the Amazon ECS CLI on your macOS, Linux, or
Windows system.

To install the Amazon ECS CLI

1. Download the Amazon ECS CLI binary.

macOS

sudo curl -Lo /usr/local/bin/ecs-cli https://amazon-ecs-cli.s3.amazonaws.com/
ecs-cli-darwin-amd64-latest

Installing the Amazon ECS CLI 72

https://docs.docker.com/compose/compose-file/#versioning
https://docs.docker.com/compose/compose-file/#versioning
https://github.com/aws/amazon-ecs-cli

Amazon Elastic Container Service Developer Guide

Linux

sudo curl -Lo /usr/local/bin/ecs-cli https://amazon-ecs-cli.s3.amazonaws.com/
ecs-cli-linux-amd64-latest

Windows

Open Windows PowerShell and enter the following commands.

Note

If you encounter permission issues, ensure that you have administrator access on
Windows and you are running PowerShell as an administrator.

New-Item -Path 'C:\Program Files\Amazon\ECSCLI' -ItemType Directory
Invoke-WebRequest -OutFile 'C:\Program Files\Amazon\ECSCLI\ecs-cli.exe' https://
amazon-ecs-cli.s3.amazonaws.com/ecs-cli-windows-amd64-latest.exe

2. Verify the Amazon ECS CLI using PGP signatures. The Amazon ECS CLI executables are
cryptographically signed using PGP signatures. The PGP signatures can be used to verify the
validity of the Amazon ECS CLI executable. Use the following steps to verify the signatures
using the GnuPG tool.

a. Download and install GnuPG. For more information, see the GnuPG website.

macOS

We recommend using Homebrew. Install Homebrew using the instructions from their
website. For more information, see Homebrew. After Homebrew is installed, use the
following command from your macOS terminal.

brew install gnupg

Linux

Install gpg using the package manager on your flavor of Linux.

Installing the Amazon ECS CLI 73

https://www.gnupg.org
https://brew.sh/

Amazon Elastic Container Service Developer Guide

Windows

Download the Windows simple installer from the GnuPG website and install as an
Administrator. After you install GnuPG, close and reopen the Administrator PowerShell.

For more information, see GnuPG Download.

b. Verify the GnuPG path is added to your environment path.

macOS

echo $PATH

If you do not see the GnuPG path in the output, run the following command to add it
to the path.

PATH=$PATH:<path to GnuPG executable files>

Linux

echo $PATH

If you do not see the GnuPG path in the output, run the following command to add it
to the path.

export PATH=$PATH:<path to GnuPG executable files>

Windows

Write-Output $Env:PATH

If you do not see the GnuPG path in the output, run the following command to add it
to the path.

$Env:PATH += ";<path to GnuPG executable files>"

c. Create a local plain text file.

Installing the Amazon ECS CLI 74

https://www.gnupg.org/download/index.html

Amazon Elastic Container Service Developer Guide

macOS

On the terminal, enter:

touch <public_key_filename.txt>

Open the file with TextEdit.

Linux

Create a text file in a text editor such as gedit. Save as public_key_filename.txt

Windows

Create a text file in a text editor such as Notepad. Save as
public_key_filename.txt

d. Add the following contents of the Amazon ECS PGP public key and save the file.

-----BEGIN PGP PUBLIC KEY BLOCK-----
Version: GnuPG v2

mQINBFq1SasBEADliGcT1NVJ1ydfN8DqebYYe9ne3dt6jqKFmKowLmm6LLGJe7HU
jGtqhCWRDkN+qPpHqdArRgDZAtn2pXY5fEipHgar4CP8QgRnRMO2fl74lmavr4Vg
7K/KH8VHlq2uRw32/B94XLEgRbGTMdWFdKuxoPCttBQaMj3LGn6Pe+6xVWRkChQu
BoQAhjBQ+bEm0kNy0LjNgjNlnL3UMAG56t8E3LANIgGgEnpNsB1UwfWluPoGZoTx
N+6pHBJrKIL/1v/ETU4FXpYw2zvhWNahxeNRnoYj3uycHkeliCrw4kj0+skizBgO
2K7oVX8Oc3j5+ZilhL/qDLXmUCb2az5cMM1mOoF8EKX5HaNuq1KfwJxqXE6NNIcO
lFTrT7QwD5fMNld3FanLgv/ZnIrsSaqJOL6zRSq8O4LN1OWBVbndExk2Kr+5kFxn
5lBPgfPgRj5hQ+KTHMa9Y8Z7yUc64BJiN6F9Nl7FJuSsfqbdkvRLsQRbcBG9qxX3
rJAEhieJzVMEUNl+EgeCkxj5xuSkNU7zw2c3hQZqEcrADLV+hvFJktOz9Gm6xzbq
lTnWWCz4xrIWtuEBA2qE+MlDheVd78a3gIsEaSTfQq0osYXaQbvlnSWOoc1y/5Zb
zizHTJIhLtUyls9WisP2s0emeHZicVMfW61EgPrJAiupgc7kyZvFt4YwfwARAQAB
tCRBbWF6b24gRUNTIDxlY3Mtc2VjdXJpdHlAYW1hem9uLmNvbT6JAhwEEAECAAYF
AlrjL0YACgkQHivRXs0TaQrg1g/+JppwPqHnlVPmv7lessB8I5UqZeD6p6uVpHd7
Bs3pcPp8BV7BdRbs3sPLt5bV1+rkqOlw+0gZ4Q/ue/YbWtOAt4qY0OcEo0HgcnaX
lsB827QIfZIVtGWMhuh94xzm/SJkvngml6KB3YJNnWP61A9qJ37/VbVVLzvcmazA
McWB4HUMNrhd0JgBCo0gIpqCbpJEvUc02Bjn23eEJsS9kC7OUAHyQkVnx4d9UzXF
4OoISF6hmQKIBoLnRrAlj5Qvs3GhvHQ0ThYq0Grk/KMJJX2CSqt7tWJ8gk1n3H3Y
SReRXJRnv7DsDDBwFgT6r5Q2HW1TBUvaoZy5hF6maD09nHcNnvBjqADzeT8Tr/Qu
bBCLzkNSYqqkpgtwv7seoD2P4n1giRvDAOEfMZpVkUr+C252IaH1HZFEz+TvBVQM
Y8OWWxmIJW+J6evjo3N1eO19UHv71jvoF8zljbI4bsL2c+QTJmOv7nRqzDQgCWyp
Id/v2dUVVTk1j9omuLBBwNJzQCB+72LcIzJhYmaP1HC4LcKQG+/f41exuItenatK

Installing the Amazon ECS CLI 75

Amazon Elastic Container Service Developer Guide

lEJQhYtyVXcBlh6Yn/wzNg2NWOwb3vqY/F7m6u9ixAwgtIMgPCDE4aJ86zrrXYFz
N2HqkTSQh77Z8KPKmyGopsmN/reMuilPdINb249nA0dzoN+nj+tTFOYCIaLaFyjs
Z0r1QAOJAjkEEwECACMFAlq1SasCGwMHCwkIBwMCAQYVCAIJCgsEFgIDAQIeAQIX
gAAKCRC86dmkLVF4T9iFEACEnkm1dNXsWUx34R3c0vamHrPxvfkyI1FlEUen8D1h
uX9xy6jCEROHWEp0rjGK4QDPgM93sWJ+s1UAKg214QRVzft0y9/DdR+twApA0fzy
uavIthGd6+03jAAo6udYDE+cZC3P7XBbDiYEWk4XAF9I1JjB8hTZUgvXBL046JhG
eM17+crgUyQeetkiOQemLbsbXQ40Bd9V7zf7XJraFd8VrwNUwNb+9KFtgAsc9rk+
YIT/PEf+YOPysgcxI4sTWghtyCulVnuGoskgDv4v73PALU0ieUrvvQVqWMRvhVx1
0X90J7cC1KOyhlEQQ1aFTgmQjmXexVTwIBm8LvysFK6YXM41KjOrlz3+6xBIm/qe
bFyLUnf4WoiuOplAaJhK9pRY+XEnGNxdtN4D26Kd0F+PLkm3Tr3Hy3b1Ok34FlGr
KVHUq1TZD7cvMnnNKEELTUcKX+1mV3an16nmAg/my1JSUt6BNK2rJpY1s/kkSGSE
XQ4zuF2IGCpvBFhYAlt5Un5zwqkwwQR3/n2kwAoDzonJcehDw/C/cGos5D0aIU7I
K2X2aTD3+pA7Mx3IMe2hqmYqRt9X42yF1PIEVRneBRJ3HDezAgJrNh0GQWRQkhIx
gz6/cTR+ekr5TptVszS9few2GpI5bCgBKBisZIssT89aw7mAKWut0Gcm4qM9/yK6
1bkCDQRatUmrARAAxNPvVwreJ2yAiFcUpdRlVhsuOgnxvs1QgsIw3H7+Pacr9Hpe
8uftYZqdC82KeSKhpHq7c8gMTMucIINtH25x9BCc73E33EjCL9Lqov1TL7+QkgHe
T+JIhZwdD8Mx2K+LVVVu/aWkNrfMuNwyDUciSI4D5QHa8T+F8fgN4OTpwYjirzel
5yoICMr9hVcbzDNv/ozKCxjx+XKgnFc3wrnDfJfntfDAT7ecwbUTL+viQKJ646s+
psiqXRYtVvYInEhLVrJ0aV6zHFoigE/Bils6/g7ru1Q6CEHqEw++APs5CcE8VzJu
WAGSVHZgun5Y9N4quR/M9Vm+IPMhTxrAg7rOvyRN9cAXfeSMf77I+XTifigNna8x
t/MOdjXr1fjF4pThEi5u6WsuRdFwjY2azEv3vevodTi4HoJReH6dFRa6y8c+UDgl
2iHiOKIpQqLbHEfQmHcDd2fix+AaJKMnPGNku9qCFEMbgSRJpXz6BfwnY1QuKE+I
R6jA0frUNt2jhiGG/F8RceXzohaaC/Cx7LUCUFWc0n7z32C9/Dtj7I1PMOacdZzz
bjJzRKO/ZDv+UN/c9dwAkllzAyPMwGBkUaY68EBstnIliW34aWm6IiHhxioVPKSp
VJfyiXPO0EXqujtHLAeChfjcns3I12YshT1dv2PafG53fp33ZdzeUgsBo+EAEQEA
AYkCHwQYAQIACQUCWrVJqwIbDAAKCRC86dmkLVF4T+ZdD/9x/8APzgNJF3o3STrF
jvnV1ycyhWYGAeBJiu7wjsNWwzMFOv15tLjB7AqeVxZn+WKDD/mIOQ45OZvnYZuy
X7DR0JszaH9wrYTxZLVruAu+t6UL0y/XQ4L1GZ9QR6+r+7t1Mvbfy7BlHbvX/gYt
Rwe/uwdibI0CagEzyX+2D3kTOlHO5XThbXaNf8AN8zha91Jt2Q2UR2X5T6JcwtMz
FBvZnl3LSmZyE0EQehS2iUurU4uWOpGppuqVnbi0jbCvCHKgDGrqZ0smKNAQng54
F365W3g8AfY48s8XQwzmcliowYX9bT8PZiEi0J4QmQh0aXkpqZyFefuWeOL2R94S
XKzr+gRh3BAULoqF+qK+IUMxTip9KTPNvYDpiC66yBiT6gFDji5Ca9pGpJXrC3xe
TXiKQ8DBWDhBPVPrruLIaenTtZEOsPc4I85yt5U9RoPTStcOr34s3w5yEaJagt6S
Gc5r9ysjkfH6+6rbi1ujxMgROSqtqr+RyB+V9A5/OgtNZc8llK6u4UoOCde8jUUW
vqWKvjJB/Kz3u4zaeNu2ZyyHaOqOuH+TETcW+jsY9IhbEzqN5yQYGi4pVmDkY5vu
lXbJnbqPKpRXgM9BecV9AMbPgbDq/5LnHJJXg+G8YQOgp4lR/hC1TEFdIp5wM8AK
CWsENyt2o1rjgMXiZOMF8A5oBLkCDQRatUuSARAAr77kj7j2QR2SZeOSlFBvV7oS
mFeSNnz9xZssqrsm6bTwSHM6YLDwc7Sdf2esDdyzONETwqrVCg+FxgL8hmo9hS4c
rR6tmrP0mOmptr+xLLsKcaP7ogIXsyZnrEAEsvW8PnfayoiPCdc3cMCR/lTnHFGA
7EuR/XLBmi7Qg9tByVYQ5Yj5wB9V4B2yeCt3XtzPqeLKvaxl7PNelaHGJQY/xo+m
V0bndxf9IY+4oFJ4blD32WqvyxESo7vW6WBh7oqv3Zbm0yQrr8a6mDBpqLkvWwNI
3kpJR974tg5o5LfDu1BeeyHWPSGm4U/G4JB+JIG1ADy+RmoWEt4BqTCZ/knnoGvw
D5sTCxbKdmuOmhGyTssoG+3OOcGYHV7pWYPhazKHMPm201xKCjH1RfzRULzGKjD+
yMLT1I3AXFmLmZJXikAOlvE3/wgMqCXscbycbLjLD/bXIuFWo3rzoezeXjgi/DJx

Installing the Amazon ECS CLI 76

Amazon Elastic Container Service Developer Guide

jKBAyBTYO5nMcth1O9oaFd9d0HbsOUDkIMnsgGBE766Piro6MHo0T0rXl07Tp4pI
rwuSOsc6XzCzdImj0Wc6axS/HeUKRXWdXJwno5awTwXKRJMXGfhCvSvbcbc2Wx+L
IKvmB7EB4K3fmjFFE67yolmiw2qRcUBfygtH3eL5XZU28MiCpue8Y8GKJoBAUyvf
KeM1rO8Jm3iRAc5a/D0AEQEAAYkEPgQYAQIACQUCWrVLkgIbAgIpCRC86dmkLVF4
T8FdIAQZAQIABgUCWrVLkgAKCRDePL1hra+LjtHYD/9MucxdFe6bXO1dQR4tKhhQ
P0LRqy6zlBY9ILCLowNdGZdqorogUiUymgn3VhEhVtxTOoHcN7qOuM01PNsRnOeS
EYjf8Xrb1clzkD6xULwmOclTb9bBxnBc/4PFvHAbZW3QzusaZniNgkuxt6BTfloS
Of4inq71kjmGK+TlzQ6mUMQUg228NUQC+a84EPqYyAeY1sgvgB7hJBhYL0QAxhcW
6m20Rd8iEc6HyzJ3yCOCsKip/nRWAbf0OvfHfRBp0+m0ZwnJM8cPRFjOqqzFpKH9
HpDmTrC4wKP1+TL52LyEqNh4yZitXmZNV7giSRIkk0eDSko+bFy6VbMzKUMkUJK3
D3eHFAMkujmbfJmSMTJOPGn5SB1HyjCZNx6bhIIbQyEUB9gKCmUFaqXKwKpF6rj0
iQXAJxLR/shZ5Rk96VxzOphUl7T90m/PnUEEPwq8KsBhnMRgxa0RFidDP+n9fgtv
HLmrOqX9zBCVXh0mdWYLrWvmzQFWzG7AoE55fkf8nAEPsalrCdtaNUBHRXA0OQxG
AHMOdJQQvBsmqMvuAdjkDWpFu5y0My5ddU+hiUzUyQLjL5Hhd5LOUDdewlZgIw1j
xrEAUzDKetnemM8GkHxDgg8koev5frmShJuce7vSjKpCNg3EIJSgqMOPFjJuLWtZ
vjHeDNbJy6uNL65ckJy6WhGjEADS2WAW1D6Tfekkc21SsIXk/LqEpLMR/0g5OUif
wcEN1rS9IJXBwIy8MelN9qr5KcKQLmfdfBNEyyceBhyVl0MDyHOKC+7PofMtkGBq
13QieRHv5GJ8LB3fclqHV8pwTTo3Bc8z2g0TjmUYAN/ixETdReDoKavWJYSE9yoM
aaJu279ioVTrwpECse0XkiRyKToTjwOb73CGkBZZpJyqux/rmCV/fp4ALdSW8zbz
FJVORaivhoWwzjpfQKhwcU9lABXi2UvVm14v0AfeI7oiJPSU1zM4fEny4oiIBXlR
zhFNih1UjIu82X16mTm3BwbIga/s1fnQRGzyhqUIMii+mWra23EwjChaxpvjjcUH
5ilLc5Zq781aCYRygYQw+hu5nFkOH1R+Z50Ubxjd/aqUfnGIAX7kPMD3Lof4KldD
Q8ppQriUvxVo+4nPV6rpTy/PyqCLWDjkguHpJsEFsMkwajrAz0QNSAU5CJ0G2Zu4
yxvYlumHCEl7nbFrm0vIiA75Sa8KnywTDsyZsu3XcOcf3g+g1xWTpjJqy2bYXlqz
9uDOWtArWHOis6bq8l9RE6xr1RBVXS6uqgQIZFBGyq66b0dIq4D2JdsUvgEMaHbc
e7tBfeB1CMBdA64e9Rq7bFR7Tvt8gasCZYlNr3lydh+dFHIEkH53HzQe6l88HEic
+0jVnLkCDQRa55wJARAAyLya2Lx6gyoWoJN1a6740q3o8e9d4KggQOfGMTCflmeq
ivuzgN+3DZHN+9ty2KxXMtn0mhHBerZdbNJyjMNT1gAgrhPNB4HtXBXum2wS57WK
DNmade914L7FWTPAWBG2Wn448OEHTqsClICXXWy9IICgclAEyIq0Yq5mAdTEgRJS
Z8t4GpwtDL9gNQyFXaWQmDmkAsCygQMvhAlmu9xOIzQG5CxSnZFk7zcuL60k14Z3
Cmt49k4T/7ZU8goWi8tt+rU78/IL3J/fF9+1civ1OwuUidgfPCSvOUW1JojsdCQA
L+RZJcoXq7lfOFj/eNjeOSstCTDPfTCL+kThE6E5neDtbQHBYkEX1BRiTedsV4+M
ucgiTrdQFWKf89G72xdv8ut9AYYQ2BbEYU+JAYhUH8rYYui2dHKJIgjNvJscuUWb
+QEqJIRleJRhrO+/CHgMs4fZAkWF1VFhKBkcKmEjLn1f7EJJUUW84ZhKXjO/AUPX
1CHsNjziRceuJCJYox1cwsoq6jTE50GiNzcIxTn9xUc0UMKFeggNAFys1K+TDTm3
Bzo8H5ucjCUEmUm9lhkGwqTZgOlRX5eqPX+JBoSaObqhgqCa5IPinKRa6MgoFPHK
6sYKqroYwBGgZm6Js5chpNchvJMs/3WXNOEVg0J3z3vP0DMhxqWm+r+n9zlW8qsA
EQEAAYkEPgQYAQgACQUCWuecCQIbAgIpCRC86dmkLVF4T8FdIAQZAQgABgUCWuec
CQAKCRBQ3szEcQ5hr+ykD/4tOLRHFHXuKUcxgGaubUcVtsFrwBKma1cYjqaPms8u
6Sk0wfGRI32G/GhOrp0Ts/MOkbObq6VLTh8N5Yc/53MEl8zQFw9Y5AmRoW4PZXER
ujs5s7p4oR7xHMihMjCCBn1bvrR+34YPfgzTcgLiOEFHYT8UTxwnGmXOvNkMM7md
xD3CV5q6VAte8WKBo/220II3fcQlc9r/oWX4kXXkb0v9hoGwKbDJ1tzqTPrp/xFt
yohqnvImpnlz+Q9zXmbrWYL9/g8VCmW/NN2gju2G3Lu/TlFUWIT4v/5OPK6TdeNb
VKJO4+S8bTayqSG9CML1S57KSgCo5HUhQWeSNHI+fpe5oX6FALPT9JLDce8OZz1i

Installing the Amazon ECS CLI 77

Amazon Elastic Container Service Developer Guide

cZZ0MELP37mOOQun0AlmHm/hVzf0f311PtbzcqWaE51tJvgUR/nZFo6Ta3O5Ezhs
3VlEJNQ1Ijf/6DH87SxvAoRIARCuZd0qxBcDK0avpFzUtbJd24lRA3WJpkEiMqKv
RDVZkE4b6TW61f0o+LaVfK6E8oLpixegS4fiqC16mFrOdyRk+RJJfIUyz0WTDVmt
g0U1CO1ezokMSqkJ7724pyjr2xf/r9/sC6aOJwB/lKgZkJfC6NqL7TlxVA31dUga
LEOvEJTTE4gl+tYtfsCDvALCtqL0jduSkUo+RXcBItmXhA+tShW0pbS2Rtx/ixua
KohVD/0R4QxiSwQmICNtm9mw9ydIl1yjYXX5a9x4wMJracNY/LBybJPFnZnT4dYR
z4XjqysDwvvYZByaWoIe3QxjX84V6MlI2IdAT/xImu8gbaCI8tmyfpIrLnPKiR9D
VFYfGBXuAX7+HgPPSFtrHQONCALxxzlbNpS+zxt9r0MiLgcLyspWxSdmoYGZ6nQP
RO5Nm/ZVS+u2imPCRzNUZEMa+dlE6kHx0rS0dPiuJ4O7NtPeYDKkoQtNagspsDvh
cK7CSqAiKMq06UBTxqlTSRkm62eOCtcs3p3OeHu5GRZF1uzTET0ZxYkaPgdrQknx
ozjP5mC7X+45lcCfmcVt94TFNL5HwEUVJpmOgmzILCI8yoDTWzloo+i+fPFsXX4f
kynhE83mSEcr5VHFYrTY3mQXGmNJ3bCLuc/jq7ysGq69xiKmTlUeXFm+aojcRO5i
zyShIRJZ0GZfuzDYFDbMV9amA/YQGygLw//zP5ju5SW26dNxlf3MdFQE5JJ86rn9
MgZ4gcpazHEVUsbZsgkLizRp9imUiH8ymLqAXnfRGlU/LpNSefnvDFTtEIRcpOHc
bhayG0bk51Bd4mioOXnIsKy4j63nJXA27x5EVVHQ1sYRN8Ny4Fdr2tMAmj2O+X+J
qX2yy/UX5nSPU492e2CdZ1UhoU0SRFY3bxKHKB7SDbVeav+K5g==
=Gi5D
-----END PGP PUBLIC KEY BLOCK-----

The details of the Amazon ECS PGP public key for reference:

Key ID: BCE9D9A42D51784F
Type: RSA
Size: 4096/4096
Expires: Never
User ID: Amazon ECS
Key fingerprint: F34C 3DDA E729 26B0 79BE AEC6 BCE9 D9A4 2D51 784F

You may close the text editor.

e. Import the file with the Amazon ECS PGP public key with the following command in the
terminal.

gpg --import <public_key_filename.txt>

f. Download the Amazon ECS CLI signatures. The signatures are ASCII detached PGP
signatures stored in files with the extension .asc. The signatures file has the same name
as its corresponding executable, with .asc appended.

Installing the Amazon ECS CLI 78

Amazon Elastic Container Service Developer Guide

macOS

curl -Lo ecs-cli.asc https://amazon-ecs-cli.s3.amazonaws.com/ecs-cli-darwin-
amd64-latest.asc

Linux

curl -Lo ecs-cli.asc https://amazon-ecs-cli.s3.amazonaws.com/ecs-cli-linux-
amd64-latest.asc

Windows

Invoke-WebRequest -OutFile ecs-cli.asc https://amazon-ecs-
cli.s3.amazonaws.com/ecs-cli-windows-amd64-latest.exe.asc

g. Verify the signature.

macOS and Linux

gpg --verify ecs-cli.asc /usr/local/bin/ecs-cli

Windows

gpg --verify ecs-cli.asc 'C:\Program Files\Amazon\ECSCLI\ecs-cli.exe'

Expected output:

gpg: Signature made Tue Apr 3 13:29:30 2018 PDT
gpg: using RSA key DE3CBD61ADAF8B8E
gpg: Good signature from "Amazon ECS <ecs-security@amazon.com>" [unknown]
gpg: WARNING: This key is not certified with a trusted signature!
gpg: There is no indication that the signature belongs to the owner.
Primary key fingerprint: F34C 3DDA E729 26B0 79BE AEC6 BCE9 D9A4 2D51 784F
 Subkey fingerprint: EB3D F841 E2C9 212A 2BD4 2232 DE3C BD61 ADAF 8B8E

Installing the Amazon ECS CLI 79

Amazon Elastic Container Service Developer Guide

Important

The warning in the output is expected and is not problematic. It occurs because
there is not a chain of trust between your personal PGP key (if you have one) and
the Amazon ECS PGP key. For more information, see Web of trust.

3. Apply execute permissions to the binary.

macOS and Linux

sudo chmod +x /usr/local/bin/ecs-cli

Windows

Edit the environment variables and add C:\Program Files\Amazon\ECSCLI to the
PATH variable field, separated from existing entries by using a semicolon. For example:

setx path "%path%;C:\Program Files\Amazon\ECSCLI"

Restart PowerShell so the changes go into effect.

Note

After the PATH variable is set, the Amazon ECS CLI can be used from either
Windows PowerShell or the command prompt.

4. Verify that the CLI is working properly.

ecs-cli --version

Proceed to Configuring the Amazon ECS CLI.

Important

You must configure the Amazon ECS CLI with your AWS credentials, an AWS Region,
and an Amazon ECS cluster name before you can use it. For more information, see
Configuring the Amazon ECS CLI.

Installing the Amazon ECS CLI 80

https://en.wikipedia.org/wiki/Web_of_trust

Amazon Elastic Container Service Developer Guide

Configuring the Amazon ECS CLI

Amazon ECS has released AWS Copilot, a command line interface (CLI) tool that simplifies
building, releasing, and operating production-ready containerized applications on Amazon
ECS from a local development environment. For more information, see Using the AWS Copilot
command line interface.

The Amazon ECS CLI requires some basic configuration information before you can use it, such as
your AWS credentials, the AWS Region in which to create your cluster, and the name of the Amazon
ECS cluster to use. Configuration information is stored in the ~/.ecs directory on macOS and
Linux systems and in C:\Users\<username>\AppData\local\ecs on Windows systems.

To configure the Amazon ECS CLI

1. Set up a CLI profile with the following command, substituting profile_name with your
desired profile name, $AWS_ACCESS_KEY_ID and $AWS_SECRET_ACCESS_KEY environment
variables with your AWS credentials.

ecs-cli configure profile --profile-name profile_name --access-
key $AWS_ACCESS_KEY_ID --secret-key $AWS_SECRET_ACCESS_KEY

2. Complete the configuration with the following command, substituting launch_type with the
task launch type you want to use by default, region_name with your desired AWS Region,
cluster_name with the name of an existing Amazon ECS cluster or a new cluster to use, and
configuration_name for the name you'd like to give this configuration.

ecs-cli configure --cluster cluster_name --default-launch-type launch_type --
region region_name --config-name configuration_name

Using profiles

The Amazon ECS CLI supports the configuring of multiple sets of AWS credentials as named profiles
using the ecs-cli configure profile command. A default profile can be set by using the ecs-cli
configure profile default command. These profiles can then be referenced when you run Amazon
ECS CLI commands that require credentials using the --ecs-profile flag otherwise the default
profile is used.

Configuring the Amazon ECS CLI 81

Amazon Elastic Container Service Developer Guide

Using cluster configurations

A cluster configuration is a set of fields that describes an Amazon ECS cluster including the name
of the cluster and the region. A default cluster configuration can be set by using the ecs-cli
configure default command. The Amazon ECS CLI supports the configuring of multiple named
cluster configurations using the --config-name option.

Understanding the order of precedence

There are multiple methods for passing both the credentials and the region in an Amazon ECS CLI
command. The following is the order of precedence for each of these.

The order of precedence for credentials is:

1. Amazon ECS CLI profile flags:

a. Amazon ECS profile (--ecs-profile)

b. AWS profile (--aws-profile)

2. Environment variables:

a. ECS_PROFILE

b. AWS_PROFILE

c. AWS_ACCESS_KEY_ID, AWS_SECRET_ACCESS_KEY, and AWS_SESSION_TOKEN

3. ECS config‐attempts to fetch credentials from the default ECS profile.

4. Default AWS profile — Attempts to use credentials (aws_access_key_id,
aws_secret_access_key) or assume_role (role_arn, source_profile) from the AWS
profile name.

a. AWS_DEFAULT_PROFILE environment variable (defaults to default).

5. EC2 instance role

The order of precedence for Region is:

1. Amazon ECS CLI flags:

a. Region flag (--region)

b. Cluster config flag (--cluster-config)

2. ECS config‐attempts to fetch the Region from the default ECS profile.

3. Environment variables—Attempts to fetch the region from the following environment variables:

Configuring the Amazon ECS CLI 82

Amazon Elastic Container Service Developer Guide

a. AWS_REGION

b. AWS_DEFAULT_REGION

4. AWS profile ‐ attempts to use the region from the AWS profile name:

a. AWS_PROFILE environment variable

b. AWS_DEFAULT_PROFILE environment variable (defaults to default)

Configuring the Amazon ECS CLI 83

Amazon Elastic Container Service Developer Guide

Amazon ECS on AWS Fargate

AWS Fargate is a technology that you can use with Amazon ECS to run containers without having
to manage servers or clusters of Amazon EC2 instances. With AWS Fargate, you no longer have to
provision, configure, or scale clusters of virtual machines to run containers. This removes the need
to choose server types, decide when to scale your clusters, or optimize cluster packing.

When you run your tasks and services with the Fargate launch type, you package your application
in containers, specify the CPU and memory requirements, define networking and IAM policies, and
launch the application. Each Fargate task has its own isolation boundary and does not share the
underlying kernel, CPU resources, memory resources, or elastic network interface with another
task. You configure your task definitions for Fargate by setting the requiresCompatibilities
task definition parameter to FARGATE. For more information, see Launch types.

Fargate offers platform versions for Amazon Linux 2 and Microsoft Windows 2019 Server Full
and Core editions. Unless otherwise specified, the information on this page applies to all Fargate
platforms.

This topic describes the different components of Fargate tasks and services, and calls out special
considerations for using Fargate with Amazon ECS.

For information about the Regions that support Linux containers on Fargate, see the section called
“Linux containers on AWS Fargate”.

For information about the Regions that support Windows containers on Fargate, see the section
called “Windows containers on AWS Fargate”.

Fargate walkthroughs

For information about how to get started using the console, see:

• Getting started with Linux containers on AWS Fargate

• Using Windows containers on AWS Fargate

For information about how to get started using the AWS CLI, see:

• Creating a cluster with a Fargate Linux task using the AWS CLI

Fargate walkthroughs 84

https://aws.amazon.com/what-are-containers

Amazon Elastic Container Service Developer Guide

• Creating a cluster with a Fargate Windows task using the AWS CLI

Capacity providers

The following capacity providers are available:

• Fargate

• Fargate Spot - Run interruption tolerant Amazon ECS tasks at a discounted rate compared to
the AWS Fargate price. Fargate Spot runs tasks on spare compute capacity. When AWS needs the
capacity back, your tasks will be interrupted with a two-minute warning. For more information,
see AWS Fargate capacity providers.

You can only use Fargate Spot for Linux tasks that use the X86 architecture.

Task definitions

Tasks that use the Fargate launch type don't support all of the Amazon ECS task definition
parameters that are available. Some parameters aren't supported at all, and others behave
differently for Fargate tasks. For more information, see Task CPU and memory.

Platform versions

AWS Fargate platform versions are used to refer to a specific runtime environment for Fargate
task infrastructure. It is a combination of the kernel and container runtime versions. You select
a platform version when you run a task or when you create a service to maintain a number of
identical tasks.

New revisions of platform versions are released as the runtime environment evolves, for example,
if there are kernel or operating system updates, new features, bug fixes, or security updates. A
Fargate platform version is updated by making a new platform version revision. Each task runs on
one platform version revision during its lifecycle. If you want to use the latest platform version
revision, then you must start a new task. A new task that runs on Fargate always runs on the
latest revision of a platform version, ensuring that tasks are always started on secure and patched
infrastructure.

If a security issue is found that affects an existing platform version, AWS creates a new patched
revision of the platform version and retires tasks running on the vulnerable revision. In some cases,

Capacity providers 85

Amazon Elastic Container Service Developer Guide

you may be notified that your tasks on Fargate have been scheduled for retirement. For more
information, see AWS Fargate task maintenance FAQs.

For more information see Fargate Linux platform versions and Fargate Windows platform versions.

Service load balancing

Your Amazon ECS service on AWS Fargate can optionally be configured to use Elastic Load
Balancing to distribute traffic evenly across the tasks in your service.

Amazon ECS services on AWS Fargate support the Application Load Balancer and Network Load
Balancer load balancer types. Application Load Balancers are used to route HTTP/HTTPS (or layer
7) traffic. Network Load Balancers are used to route TCP or UDP (or layer 4) traffic. For more
information, see Load balancer types.

When you create a target group for these services, you must choose ip as the target type, not
instance. This is because tasks that use the awsvpc network mode are associated with an elastic
network interface, not an Amazon EC2 instance. For more information, see Service load balancing.

Using a Network Load Balancer to route UDP traffic to your Amazon ECS on AWS Fargate tasks is
only supported when using platform version 1.4 or later.

Usage metrics

You can use CloudWatch usage metrics to provide visibility into your accounts usage of resources.
Use these metrics to visualize your current service usage on CloudWatch graphs and dashboards.

AWS Fargate usage metrics correspond to AWS service quotas. You can configure alarms that alert
you when your usage approaches a service quota. For more information about AWS Fargate service
quotas, see AWS Fargate service quotas.

For more information about AWS Fargate usage metrics, see AWS Fargate usage metrics in the
Amazon Elastic Container Service User Guide for AWS Fargate.

Fargate Linux platform versions

AWS Fargate platform versions are used to refer to a specific runtime environment for Fargate
task infrastructure. It is a combination of the kernel and container runtime versions. You select

Service load balancing 86

https://docs.aws.amazon.com/AmazonECS/latest/userguide/monitoring-fargate-usage.html

Amazon Elastic Container Service Developer Guide

a platform version when you run a task or when you create a service to maintain a number of
identical tasks.

New revisions of platform versions are released as the runtime environment evolves, for example,
if there are kernel or operating system updates, new features, bug fixes, or security updates. A
Fargate platform version is updated by making a new platform version revision. Each task runs on
one platform version revision during its lifecycle. If you want to use the latest platform version
revision, then you must start a new task. A new task that runs on Fargate always runs on the
latest revision of a platform version, ensuring that tasks are always started on secure and patched
infrastructure.

If a security issue is found that affects an existing platform version, AWS creates a new patched
revision of the platform version and retires tasks running on the vulnerable revision. In some cases,
you may be notified that your tasks on Fargate have been scheduled for retirement. For more
information, see AWS Fargate task maintenance FAQs.

Considerations

Consider the following when specifying a platform version:

• When specifying a platform version, you can use either a specific version number, for example
1.4.0, or LATEST.

When the LATEST platform version is selected, 1.4.0 platform version is used.

• If you want to update the platform version for a service, create a deployment. For example,
assume that you have a service that runs tasks on the Linux platform version 1.3.0. To change
the service to run tasks on the Linux platform version 1.4.0, you can update your service and
specify a new platform version. Your tasks are redeployed with the latest platform version and
the latest platform version revision. For more information about deployments, see Amazon ECS
Deployment types.

• If your service is scaled up without updating the platform version, those tasks receive the
platform version that was specified on the service's current deployment. For example, assume
that you have a service that runs tasks on the Linux platform version 1.3.0. If you increase the
desired count of the service, the service scheduler starts the new tasks using the latest platform
version revision of platform version 1.3.0.

• New tasks always run on the latest revision of a platform version, ensuring that tasks are always
started on secured and patched infrastructure.

Considerations 87

Amazon Elastic Container Service Developer Guide

• The platform version numbers for Linux containers and Windows containers on Fargate are
independent. For example, the behavior, features, and software used in platform version 1.0.0
for Windows containers on Fargate aren't comparable to those of platform version 1.0.0 for
Linux containers on Fargate.

The following are the available Linux platform versions. For information about platform version
deprecation, see AWS Fargate Linux platform version deprecation.

1.4.0

The following is the changelog for platform version 1.4.0.

• Beginning on November 5, 2020, any new Amazon ECS task launched on Fargate using platform
version 1.4.0 will be able to use the following features:

• When using Secrets Manager to store sensitive data, you can inject a specific JSON key or
a specific version of a secret as an environment variable or in a log configuration. For more
information, see Passing sensitive data to a container.

• Specify environment variables in bulk using the environmentFiles container definition
parameter. For more information, see Use task definition parameters to pass environment
variables to a container.

• Tasks run in a VPC and subnet enabled for IPv6 will be assigned both a private IPv4 address
and an IPv6 address. For more information, see Fargate task networking in the Amazon Elastic
Container Service User Guide for AWS Fargate.

• The task metadata endpoint version 4 provides additional metadata about your task and
container including the task launch type, the Amazon Resource Name (ARN) of the container,
and the log driver and log driver options used. When querying the /stats endpoint you
also receive network rate stats for your containers. For more information, see Task metadata
endpoint version 4.

• Beginning on July 30, 2020, any new Amazon ECS task launched on Fargate using platform
version 1.4.0 will be able to route UDP traffic using a Network Load Balancer to their Amazon
ECS on Fargate tasks. For more information, see Service load balancing.

• Beginning on May 28, 2020, any new Amazon ECS task launched on Fargate using platform
version 1.4.0 will have its ephemeral storage encrypted with an AES-256 encryption algorithm
using an AWS owned encryption key. For more information, see Fargate task ephemeral storage
and Using data volumes in tasks.

1.4.0 88

https://docs.aws.amazon.com/AmazonECS/latest/userguide/fargate-task-networking.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/task-metadata-endpoint-v4-fargate.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/task-metadata-endpoint-v4-fargate.html

Amazon Elastic Container Service Developer Guide

• Added support for using Amazon EFS file system volumes for persistent task storage. For more
information, see Amazon EFS volumes.

• The ephemeral task storage has been increased to a minimum of 20 GB for each task. For more
information, see Fargate task ephemeral storage.

• The network traffic behavior to and from tasks has been updated. Starting with platform version
1.4.0, all Fargate tasks receive a single elastic network interface (referred to as the task ENI) and
all network traffic flows through that ENI within your VPC and will be visible to you through your
VPC flow logs. For more information about networking for the Amazon EC2 launch type, see
Fargate Task Networking. For more information about networking for the Fargate launch type,
see Task networking for tasks on Fargate.

• Task ENIs add support for jumbo frames. Network interfaces are configured with a maximum
transmission unit (MTU), which is the size of the largest payload that fits within a single frame.
The larger the MTU, the more application payload can fit within a single frame, which reduces
per-frame overhead and increases efficiency. Supporting jumbo frames will reduce overhead
when the network path between your task and the destination supports jumbo frames, such as
all traffic that remains within your VPC.

• CloudWatch Container Insights will include network performance metrics for Fargate tasks. For
more information, see Monitor Amazon ECS containers using Container Insights.

• Added support for the task metadata endpoint version 4 which provides additional information
for your Fargate tasks, including network stats for the task and which Availability Zone the task
is running in. For more information, see >Task metadata endpoint version 4 and Task metadata
endpoint version 4 for tasks on Fargate.

• Added support for the SYS_PTRACE Linux parameter in container definitions. For more
information, see Linux parameters.

• The Fargate container agent replaces the use of the Amazon ECS container agent for all Fargate
tasks. Usually, this change does not have an effect on how your tasks run.

• The container runtime is now using Containerd instead of Docker. Most likely, this change does
not have an effect on how your tasks run. You will notice that some error messages that originate
with the container runtime changes from mentioning Docker to more general errors. For more
information, see Stopped tasks error codes in the Amazon Elastic Container Service User Guide for
AWS Fargate.

• Based on Amazon Linux 2.

1.4.0 89

https://docs.aws.amazon.com/AmazonECS/latest/userguide/fargate-task-networking.html
https://docs.aws.amazon.com/AmazonECS/latest/userguide/stopped-task-error-codes.html

Amazon Elastic Container Service Developer Guide

1.3.0

The following is the changelog for platform version 1.3.0.

• Beginning on Sept 30, 2019, any new Fargate task that is launched supports the awsfirelens
log driver. Configure the FireLens for Amazon ECS to use task definition parameters to route logs
to an AWS service or AWS Partner Network (APN) destination for log storage and analytics. For
more information, see Using custom log routing.

• Added task recycling for Fargate tasks, which is the process of refreshing tasks that are a part of
an Amazon ECS service. For more information, Task maintenance in the Amazon Elastic Container
Service User Guide for AWS Fargate.

• Beginning on March 27, 2019, any new Fargate task that is launched can use additional task
definition parameters that you use to define a proxy configuration, dependencies for container
startup and shutdown as well as a per-container start and stop timeout value. For more
information, see Proxy configuration, Container dependency, and Container timeouts.

• Beginning on April 2, 2019, any new Fargate task that is launched supports injecting sensitive
data into your containers by storing your sensitive data in either AWS Secrets Manager secrets or
AWS Systems Manager Parameter Store parameters and then referencing them in your container
definition. For more information, see Passing sensitive data to a container.

• Beginning on May 1, 2019, any new Fargate task that is launched supports referencing sensitive
data in the log configuration of a container using the secretOptions container definition
parameter. For more information, see Passing sensitive data to a container.

• Beginning on May 1, 2019, any new Fargate task that is launched supports the splunk log driver
in addition to the awslogs log driver. For more information, see Storage and logging.

• Beginning on July 9, 2019, any new Fargate tasks that is launched supports CloudWatch
Container Insights. For more information, see Monitor Amazon ECS containers using Container
Insights.

• Beginning on December 3, 2019, the Fargate Spot capacity provider is supported. For more
information, see AWS Fargate capacity providers.

• Based on Amazon Linux 2.

1.3.0 90

https://docs.aws.amazon.com/AmazonECS/latest/userguide/task-maintenance.html

Amazon Elastic Container Service Developer Guide

Migrating to Linux platform version 1.4.0

Consider the following when migrating your Amazon ECS on Fargate tasks from platform version
1.0.0, 1.1.0, 1.2.0, or 1.3.0 to platform version 1.4.0. It is considered best practice to
confirm your task works properly on platform version 1.4.0 prior to migrating your tasks.

• The network traffic behavior to and from tasks has been updated. Starting with platform version
1.4.0, all Amazon ECS on Fargate tasks receive a single elastic network interface (referred to as
the task ENI) and all network traffic flows through that ENI within your VPC and will be visible to
you through your VPC flow logs. For more information see Task networking for tasks on Fargate.

• If you are using interface VPC endpoints, consider the following.

• When using container images hosted with Amazon ECR, both the
com.amazonaws.region.ecr.dkr and com.amazonaws.region.ecr.api Amazon ECR VPC
endpoints as well as the Amazon S3 gateway endpoint are required. For more information,
see Amazon ECR interface VPC endpoints (AWS PrivateLink) in the Amazon Elastic Container
Registry User Guide.

• When using a task definition that references Secrets Manager secrets to retrieve sensitive data
for your containers, you must create the interface VPC endpoints for Secrets Manager. For
more information, see Using Secrets Manager with VPC Endpoints in the AWS Secrets Manager
User Guide.

• When using a task definition that references Systems Manager Parameter Store parameters
to retrieve sensitive data for your containers, you must create the interface VPC endpoints for
Systems Manager. For more information, see Using Systems Manager with VPC endpoints in
the AWS Systems Manager User Guide.

• Ensure that the security group in the Elastic Network Interface (ENI) associated with your task
has the security group rules created to allow traffic between the task and the VPC endpoints
you are using.

AWS Fargate Linux platform version deprecation

This page lists Linux platform versions that AWS Fargate has deprecated or have been scheduled
for deprecation. These platform versions remain available until the published deprecation date.

A force update date is provided for each platform version scheduled for deprecation. On the force
update date, any service using the LATEST platform version that is pointed to a platform version
that is scheduled for deprecation will be updated using the force new deployment option. When

Migrating to Linux platform version 1.4.0 91

https://docs.aws.amazon.com/AmazonECR/latest/userguide/vpc-endpoints.html
https://docs.aws.amazon.com/secretsmanager/latest/userguide/vpc-endpoint-overview.html
https://docs.aws.amazon.com/systems-manager/latest/userguide/setup-create-vpc.html

Amazon Elastic Container Service Developer Guide

the service is updated using the force new deployment option, all tasks running on a platform
version scheduled for deprecation are stopped and new tasks are launched using the platform
version that the LATEST tag points to at that time. Standalone tasks or services with an explicit
platform version set are not affected by the force update date.

We recommend updating your services standalone tasks to use the most recent platform version.
For more information on migrating to the most recent platform version, see Migrating to Linux
platform version 1.4.0.

Once a platform version reaches the deprecation date, the platform version will no longer
be available for new tasks or services. Any standalone tasks or services which explicitly use a
deprecated platform version will continue using that platform version until the tasks are stopped.
After the deprecation date, a deprecated platform version will no longer receive any security
updates or bug fixes.

Platform version Force update date Deprecation date

1.0.0 October 26, 2020 December 14, 2020

1.1.0 October 26, 2020 December 14, 2020

1.2.0 October 26, 2020 December 14, 2020

For information about current platform versions, see Fargate Linux platform versions.

Changelog for deprecated AWS Fargate Linux versions

1.2.0

The following is the changelog for platform version 1.2.0.

Note

Platform version 1.2.0 is no longer available. For information about platform version
deprecation, see AWS Fargate Linux platform version deprecation.

• Added support for private registry authentication using AWS Secrets Manager. For more
information, see Private registry authentication for tasks.

Platform version deprecation 92

Amazon Elastic Container Service Developer Guide

1.1.0

The following is the changelog for platform version 1.1.0.

Note

Platform version 1.1.0 is no longer available. For information about platform version
deprecation, see AWS Fargate Linux platform version deprecation.

• Added support for the Amazon ECS task metadata endpoint. For more information, see Task
metadata available for tasks on Fargate.

• Added support for Docker health checks in container definitions. For more information, see
Health check.

• Added support for Amazon ECS service discovery. For more information, see Service discovery.

1.0.0

The following is the changelog for platform version 1.0.0.

Note

Platform version 1.0.0 is no longer available. For information about platform version
deprecation, see AWS Fargate Linux platform version deprecation.

• Based on Amazon Linux 2017.09.

• Initial release.

Fargate Windows platform versions

AWS Fargate platform versions are used to refer to a specific runtime environment for Fargate
task infrastructure. It is a combination of the kernel and container runtime versions. You select
a platform version when you run a task or when you create a service to maintain a number of
identical tasks.

New revisions of platform versions are released as the runtime environment evolves, for example,
if there are kernel or operating system updates, new features, bug fixes, or security updates. A

Fargate Windows platform versions 93

Amazon Elastic Container Service Developer Guide

Fargate platform version is updated by making a new platform version revision. Each task runs on
one platform version revision during its lifecycle. If you want to use the latest platform version
revision, then you must start a new task. A new task that runs on Fargate always runs on the
latest revision of a platform version, ensuring that tasks are always started on secure and patched
infrastructure.

If a security issue is found that affects an existing platform version, AWS creates a new patched
revision of the platform version and retires tasks running on the vulnerable revision. In some cases,
you may be notified that your tasks on Fargate have been scheduled for retirement. For more
information, see AWS Fargate task maintenance FAQs.

Platform version considerations

Consider the following when specifying a platform version:

• When specifying a platform version, you can use either a specific version number, for example
1.0.0, or LATEST.

When the LATEST platform version is selected the 1.0.0 platform is used.

• New tasks always run on the latest revision of a platform version, ensuring that tasks are always
started on secured and patched infrastructure.

• Microsoft Windows Server container images must be created from a specific version of Windows
Server. You must select the same version of Windows Server in the platformFamily when you
run a task or create a service that matches the Windows Server container image. Additionally,
you can provide a matching operatingSystemFamily in the task definition to prevent tasks
from being run on the wrong Windows version. For more information, see Matching container
host version with container image versions on the Microsoft Learn website.

• The platform version numbers for Linux containers and Windows containers on Fargate are
independent. For example, the behavior, features, and software used in platform version 1.0.0
for Windows containers on Fargate aren't comparable to those of platform version 1.0.0 for
Linux containers on Fargate.

The following are the available platform versions for Windows containers.

1.0.0

The following is the changelog for platform version 1.0.0.

Platform version considerations 94

https://learn.microsoft.com/en-us/virtualization/windowscontainers/deploy-containers/version-compatibility#matching-container-host-version-with-container-image-versions
https://learn.microsoft.com/en-us/virtualization/windowscontainers/deploy-containers/version-compatibility#matching-container-host-version-with-container-image-versions

Amazon Elastic Container Service Developer Guide

• Initial release for support on the following Microsoft Windows Server operating systems:

• Windows Server 2019 Full

• Windows Server 2019 Core

• Windows Server 2022 Full

• Windows Server 2022 Core

Windows containers on Fargate considerations

The following are the differences and considerations to know when you run Windows containers on
AWS Fargate.

If you need to run tasks on Linux and Windows containers, then you need to create separate task
definitions for each operating system.

AWS handles the operating system license management, so you do not need any additional
Microsoft Windows Server licenses.

Windows containers on AWS Fargate supports the following operating systems:

• Windows Server 2019 Full

• Windows Server 2019 Core

• Windows Server 2022 Full

• Windows Server 2022 Core

Windows containers on AWS Fargate supports the awslogs driver. For more information, see the
section called “Using the awslogs log driver”.

The following features are not supported on Windows containers on Fargate:

• Group managed service accounts (gMSA)

• Amazon FSx

• ENI trunking

• App Mesh service and proxy integration for tasks

• Firelens log router integration for tasks

• EFS volumes

Windows containers on Fargate considerations 95

Amazon Elastic Container Service Developer Guide

• The following task definition parameters:

• maxSwap

• swappiness

• The Fargate Spot capacity provider

• Image volumes

The Dockerfile volume option is ignored. Instead, use bind mounts in your task definition. For
more information, see Bind mounts.

AWS Fargate task maintenance FAQs

What is Fargate task maintenance and retirement?

AWS is responsible for maintaining the underlying infrastructure for AWS Fargate. AWS determines
when a platform version revision needs to be replaced with a new revision. This is known as task
retirement. AWS sends a task retirement notification when a platform version revision is retired. We
routinely update our supported platform versions to introduce a new revision containing updates
to the Fargate runtime software and underlying dependencies such as the operating system and
container runtime. Once a newer revision is made available, we retire the older revision in order to
ensure all customer workloads run on the most up to date revision of the Fargate platform version.
When a revision is retired, all tasks running on that revision are stopped.

Amazon ECS tasks can be categorized as either service tasks or standalone tasks. Service tasks are
deployed as part of a service and controlled by the Amazon ECS schedule. For more information,
see Amazon ECS services. Standalone tasks are tasks started by the Amazon ECS RunTask API,
either directly or by an external scheduler such as scheduled tasks (which are started by Amazon
EventBridge), AWS Batch, or AWS Step Functions.

For service tasks, you do not need to take any action unless you want to replace these tasks before
AWS does. When the Amazon ECS scheduler stops the tasks, it uses the minimum healthy percent
and launches a new task in an attempt to maintain the desired count for the service. By default, the
minimum healthy percent of a service is 100 percent, so a new task is started first before a task is
stopped. Service tasks are routinely replaced in the same way when you scale the service, deploy
configuration changes, or deploy task definition revisions. To prepare for the task retirement
process, we recommend that you test your application behavior by simulating this scenario. You
can do this by stopping an individual task in your service to test for resiliency.

AWS Fargate task maintenance FAQs 96

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/deployment-type-ecs.html

Amazon Elastic Container Service Developer Guide

For standalone task retirement, AWS stops the task on or after the task retirement date. we don’t
launch a replacement task when a task is stopped. If you need these tasks to continue to run, you
need to stop the running tasks and launch a replacement task before the time indicated in the
notification. Therefore, we recommend that customers monitor the state of standalone tasks and if
required, implement logic to replace the stopped tasks.

When a task is stopped in any of the scenarios, you can run describe-tasks. The
stoppedReason in the response is ECS is performing maintenance on the underlying
infrastructure hosting the task.

What is in the task retirement notice?

The task retirement notifications are sent through AWS Health Dashboard as well as through an
email to the registered email address and includes the following information:

• The task retirement date - The task is stopped on or after this date.

• For standalone tasks, the IDs of the tasks.

• For service tasks, the ID of the cluster where the service runs and the IDs of the service.

• The next steps you need to take.

Typically, we send one notification each for service and standalone tasks in each AWS Region.
However, in certain cases you might receive more than one event for each task type, for example
when there are too many tasks to be retired that will surpass limits in our notification mechanisms.

You can identify tasks scheduled for retirement in the following ways:

• The AWS Health Dashboard

AWS Health notifications can be sent through Amazon EventBridge to archival storage such as
Amazon Simple Storage Service, take automated actions such as run an AWS Lambda function,
or other notification systems such as Amazon Simple Notification Service. For more information,
see Monitoring AWS Health events with Amazon EventBridge. For sample configuration to send
notifications to Amazon Chime, Slack, or Microsoft Teams, see the AWS Health Aware repository
on GitHub.

The following is a sample EventBridge event.

{
 "version": "0",

What is in the task retirement notice? 97

https://docs.aws.amazon.com/health/latest/ug/cloudwatch-events-health.html
https://github.com/aws-samples/aws-health-aware

Amazon Elastic Container Service Developer Guide

 "id": "3c268027-f43c-0171-7425-1d799EXAMPLE",
 "detail-type": "AWS Health Event",
 "source": "aws.health",
 "account": "123456789012",
 "time": "2023-08-16T23:18:51Z",
 "region": "us-east-1",
 "resources": [
 "cluster/service",
 "cluster/service"
],
 "detail": {
 "eventArn": "arn:aws:health:us-east-1::event/ECS/
AWS_ECS_TASK_PATCHING_RETIREMENT/AWS_ECS_TASK_PATCHING_RETIREMENT_test1",
 "service": "ECS",
 "eventScopeCode": "ACCOUNT_SPECIFIC",
 "communicationId":
 "7988399e2e6fb0b905ddc88e0e2de1fd17e4c9fa60349577446d95a18EXAMPLE",
 "lastUpdatedTime": "Wed, 16 Aug 2023 23:18:52 GMT",
 "eventRegion": "us-east-1",
 "eventTypeCode": "AWS_ECS_TASK_PATCHING_RETIREMENT",
 "eventTypeCategory": "scheduledChange",
 "startTime": "Wed, 16 Aug 2023 23:18:51 GMT",
 "endTime": "Fri, 18 Aug 2023 23:18:51 GMT",
 "eventDescription": [
 {
 "language": "en_US",
 "latestDescription": "\\nA software update has been deployed to
 Fargate which includes CVE patches or other critical patches. No action is required
 on your part. All new tasks launched automatically uses the latest software
 version. For existing tasks, your tasks need to be restarted in order for these
 updates to apply. Your tasks running as part of the following ECS Services will
 be automatically updated beginning Wed, 16 Aug 2023 23:18:51 GMT.\\n\\nAfter Wed,
 16 Aug 2023 23:18:51 GMT, the ECS scheduler will gradually replace these tasks,
 respecting the deployment settings for your service. Typically, services should
 see little to no interruption during the update and no action is required. When AWS
 stops tasks, AWS uses the minimum healthy percent (1) and launches a new task in
 an attempt to maintain the desired count for the service. By default, the minimum
 healthy percent of a service is 100 percent, so a new task is started first before
 a task is stopped. Service tasks are routinely replaced in the same way when
 you scale the service or deploy configuration changes or deploy task definition
 revisions. If you would like to control the timing of this restart you can update
 the service before Wed, 16 Aug 2023 23:18:51 GMT, by running the update-service
 command from the ECS command-line interface specifying force-new-deployment for
 services using Rolling update deployment type. For example:\\n\\n$ aws ecs update-

What is in the task retirement notice? 98

Amazon Elastic Container Service Developer Guide

service -service service_name \\\n--cluster cluster_name -force-new-deployment\
\n\\nFor services using Blue/Green deployment type with AWS CodeDeploy:\\nPlease
 refer to create-deployment document (2) and create new deployment using same task
 definition revision.\\n\\nFor further details on ECS deployment types, please
 refer to ECS Deployment Developer Guide (1).\\nFor further details on Fargate's
 update process, please refer to the AWS Fargate User Guide (3).\\nIf you have
 any questions or concerns, please contact AWS Support (4).\\n\\n(1) https://
docs.aws.amazon.com/AmazonECS/latest/developerguide/deployment-types.html\\n(2)
 https://docs.aws.amazon.com/cli/latest/reference/deploy/create-deployment.html\\n(3)
 https://docs.aws.amazon.com/AmazonECS/latest/userguide/task-maintenance.html\\n(4)
 https://aws.amazon.com/support\\n\\nA list of your affected resources(s) can be
 found in the 'Affected resources' tab in the 'Cluster/ Service' format in the AWS
 Health Dashboard. \\n\\n"
 }
],
 "affectedEntities": [
 {
 "entityValue": "cluster/service"
 },
 {
 "entityValue": "cluster/service"
 }
]
 }
}

• Email

An email is sent to the registered email for the AWS account ID.

Can I change the task retirement wait time?

You can configure the time that Fargate starts the task retirement. For workloads that require
immediate application of the updates, choose the immediate setting (0). When you need more
control, for example, when a task can only be stopped during a certain window, configure the 7 day
(7), or 14 day (14) option.

We recommend that you choose a shorter waiting period in order to pick up newer platform
versions revisions sooner.

Can I change the task retirement wait time? 99

Amazon Elastic Container Service Developer Guide

Configure the wait period by running put-account-setting-default or put-account-
setting as the root user. Use the fargateTaskRetirementWaitPeriod option for the name
and the value option set to one of the following values:

• 0 - AWS sends the notification, and immediately starts to retire the affected tasks.

• 7 - AWS sends the notification, and waits 7 calendar days before starting to retire the affected
tasks.

• 14 - AWS sends the notification, and waits 14 calendar days before starting to retire the affected
tasks.

The default is 7 days.

For more information, see, put-account-setting-default and put-account-setting in the Amazon
Elastic Container Service API Reference.

For more information, see AWS Fargate task retirement wait time.

Can I get task retirement notifications through other AWS services?

AWS sends a task retirement notification to the AWS Health Dashboard and to the primary email
contact on the AWS account. The AWS Health Dashboard provides a number of integrations into
other AWS services, including EventBridge. You can use EventBridge to automate the visibility of
the notices (For example. forwarding the message to a ChatOps tool). For more information, see
Solution overview: Capturing task retirement notifications.

Can I change a task retirement after it is scheduled?

No. The schedule is based off the task retirement wait time which has a default of 7 days. If you
need more time, you can choose to configure the wait period to 14 days. For more information,
see Can I change the task retirement wait time?. The change in this configuration applies to
retirements that will be scheduled in the future. Currently scheduled retirements are not impacted.
If you have any further concerns, contact AWS Support.

Can I control the timing of a task replacement?

For services that use rolling deployment, you update the service using update-service with the
force-deployment option before the retirement start time.

The following update-service example uses the force-deployment option.

Can I get task retirement notifications through other AWS services? 100

https://docs.aws.amazon.com/cli/latest/reference/ecs/put-account-setting-default.html
https://docs.aws.amazon.com/cli/latest/reference/ecs/put-account-setting.html
https://aws.amazon.com/blogs/containers/improving-operational-visibility-with-aws-fargate-task-retirement-notifications/

Amazon Elastic Container Service Developer Guide

aws ecs update-service —service service_name \
 --cluster cluster_name \
 --force-new-deployment

For services that use the blue/green deployment, you need to create a new deployment in AWS
CodeDeploy. For information about how to create the deployment, see create-deployment in the
AWS Command Line Interface Reference.

How does Amazon ECS handle tasks that are part of a service?

Amazon ECS gradually replaces affected tasks in your service when the Fargate retirement period
starts. When Amazon ECS stops a task, it uses the service's minimum healthy percent and launches
a new task to maintain the desired task count for the service. A new task is started before a
task is stopped because the default minimum health percent is 100. Service tasks are routinely
replaced in the same way when you scale the service, deploy configuration changes, or deploy task
definition revisions. For more information about the minimum healthy percent, see Deployment
configuration.

Can Amazon ECS automatically handle standalone tasks?

No. AWS can't create a replacement task for standalone tasks which are started by RunTask,
scheduled tasks (for example through EventBridge Scheduler), AWS Batch, or AWS Step Functions.
Amazon ECS manages only tasks that are part of a service.

Supported Regions for Amazon ECS on AWS Fargate

You can use the following tables to verify the Region support for Linux containers on AWS Fargate
and Windows containers on AWS Fargate.

Linux containers on AWS Fargate

Amazon ECS Linux containers on AWS Fargate are supported in the following AWS Regions. The
supported Availability Zone IDs are noted when applicable.

Region Name Region

US East (Ohio) us-east-2

US East (N. Virginia) us-east-1

How does Amazon ECS handle tasks that are part of a service? 101

https://docs.aws.amazon.com/cli/latest/reference/deploy/create-deployment.html

Amazon Elastic Container Service Developer Guide

Region Name Region

US West (N. California) us-west-1 (usw1-az1 & usw1-az3 only)

US West (Oregon) us-west-2

Africa (Cape Town) af-south-1

Asia Pacific (Hong Kong) ap-east-1

Asia Pacific (Mumbai) ap-south-1

Asia Pacific (Tokyo) ap-northeast-1 (apne1-az1 , apne1-az2 ,
& apne1-az4 only)

Asia Pacific (Seoul) ap-northeast-2

Asia Pacific (Osaka) ap-northeast-3

Asia Pacific (Hyderabad) ap-south-2

Asia Pacific (Singapore) ap-southeast-1

Asia Pacific (Sydney) ap-southeast-2

Asia Pacific (Jakarta) ap-southeast-3

Asia Pacific (Melbourne) ap-southeast-4

Canada (Central) ca-central-1

Canada West (Calgary) ca-west-1

China (Beijing) cn-north-1 (cnn1-az1 & cnn1-az2 only)

China (Ningxia) cn-northwest-1

Europe (Frankfurt) eu-central-1

Europe (Zurich) eu-central-2

Europe (Ireland) eu-west-1

Linux containers on AWS Fargate 102

Amazon Elastic Container Service Developer Guide

Region Name Region

Europe (London) eu-west-2

Europe (Paris) eu-west-3

Europe (Milan) eu-south-1

Europe (Spain) eu-south-2

Europe (Stockholm) eu-north-1

South America (São Paulo) sa-east-1

Israel (Tel Aviv) il-central-1

Middle East (Bahrain) me-south-1

Middle East (UAE) me-central-1

AWS GovCloud (US-East) us-gov-east-1

AWS GovCloud (US-West) us-gov-west-1

Windows containers on AWS Fargate

Amazon ECS Windows containers on AWS Fargate are supported in the following AWS Regions. The
supported Availability Zone IDs are noted when applicable.

Region Name Region

US East (Ohio) us-east-2

US East (N. Virginia) us-east-1 (use1-az1, use1-az2, use1-az4,
use1-az5, & use1-az6only)

US West (N. California) us-west-1 (usw1-az1 & usw1-az3 only)

US West (Oregon) us-west-2

Windows containers on AWS Fargate 103

Amazon Elastic Container Service Developer Guide

Region Name Region

Africa (Cape Town) af-south-1

Asia Pacific (Hong Kong) ap-east-1

Asia Pacific (Mumbai) ap-south-1

Asia Pacific (Hyderabad) ap-south-2

Asia Pacific (Osaka) ap-northeast-3

Asia Pacific (Seoul) ap-northeast-2

Asia Pacific (Singapore) ap-southeast-1

Asia Pacific (Sydney) ap-southeast-2

Asia Pacific (Melbourne) ap-southeast-4

Asia Pacific (Tokyo) ap-northeast-1 (apne1-az1 , apne1-az2 ,
& apne1-az4 only)

Canada (Central) ca-central-1 (cac1-az1 & cac1-az2 only)

Canada West (Calgary) ca-west-1

China (Beijing) cn-north-1 (cnn1-az1 & cnn1-az2 only)

China (Ningxia) cn-northwest-1

Europe (Frankfurt) eu-central-1

Europe (Zurich) eu-central-2

Europe (Ireland) eu-west-1

Europe (London) eu-west-2

Europe (Paris) eu-west-3

Europe (Milan) eu-south-1

Windows containers on AWS Fargate 104

Amazon Elastic Container Service Developer Guide

Region Name Region

Europe (Spain) eu-south-2

Europe (Stockholm) eu-north-1

South America (São Paulo) sa-east-1

Israel (Tel Aviv) il-central-1

Middle East (UAE) me-central-1

Middle East (Bahrain) me-south-1

Windows containers on AWS Fargate 105

Amazon Elastic Container Service Developer Guide

Architecting your solution for Amazon ECS

Before you use Amazon ECS, you need to make decisions about capacity, networking, account
settings, and logging so that you can correctly configure your Amazon ECS resources.

Amazon ECS capacity

The capacity is the infrastructure where your containers run. The following are the options:

• Amazon EC2 instances

• Serverless (AWS Fargate (Fargate))

• On-premises virtual machines (VM) or servers

You specify the infrastructure when you create a cluster. You also specify the infrastructure type
when you register a task definition. The task definition refers to the infrastructure as the "launch
type". You also use the launch type when you run a standalone task or deploy a service. For
information about the launch type options, see Amazon ECS launch types.

Networking

AWS resources are created in subnets. When you use EC2 instances, Amazon ECS launches the
instances in the subnet that you specify when you create a cluster. Your tasks run in the instance
subnet. For Fargate or on-premises virtual machines, you specify the subnet when you run a task or
create a service.

Depending on your application, the subnet can be a private or public subnet and the subnet can be
in any of the following AWS resources:

• Availability Zones

• Local Zones

• Wavelength Zones

• AWS Regions

• AWS Outposts

Amazon ECS capacity 106

Amazon Elastic Container Service Developer Guide

For more information, see Amazon ECS applications in shared subnets, Local Zones, and
Wavelength Zones or Amazon Elastic Container Service on AWS Outposts.

You can have your application connect to the internet by using one of the following methods:

• A public subnet with an internet gateway

Use public subnets when you have public applications that require large amounts of bandwidth
or minimal latency. Applicable scenarios include video streaming and gaming services.

• A private subnet with a NAT gateway

Use private subnets when you want to protect your containers from direct external access.
Applicable scenarios include payment processing systems or containers storing user data and
passwords.

For more information about these options, see Connecting to the internet in the Amazon ECS Best
Practices Guide.

Accessing features

You can use your Amazon ECS account setting to access the following features:

• Container Insights

CloudWatch Container Insights collects, aggregates, and summarizes metrics and logs from your
containerized applications and microservices. The metrics include utilization for resources such as
CPU, memory, disk, and network.

• awsvpc trunking

For certain EC2 instances types, you can have additional network interfaces (ENIs) available on
newly launched container instances.

• Tagging authorization

Users must have permissions for actions that create a resource, such as ecsCreateCluster. If
tags are specified in the resource-creating action, AWS performs additional authorization on the
ecs:TagResource action to verify if users or roles have permissions to create tags.

• Fargate FIPS-140 compliance

Accessing features 107

https://docs.aws.amazon.com/AmazonECS/latest/bestpracticesguide/networking-outbound.html

Amazon Elastic Container Service Developer Guide

Fargate supports the Federal Information Processing Standard (FIPS-140) which specifies the
security requirements for cryptographic modules that protect sensitive information. It is the
current United States and Canadian government standard, and is applicable to systems that are
required to be compliant with Federal Information Security Management Act (FISMA) or Federal
Risk and Authorization Management Program (FedRAMP).

• Fargate task retirement time changes

You can configure the wait period before Fargate tasks are retired for patching.

• Dual-stack VPC

Allow tasks to communicate over IPv4, IPv6, or both.

• Amazon Resource Name (ARN) format

Certain features, such as tagging authorization, require a new Amazon Resource Name (ARN)
format.

For more information, see Accessing Amazon ECS features through account settings.

Logging

Logging and monitoring are important aspects of maintaining the reliability, availability, and
performance of Amazon ECS workloads. The following options are available:

• Amazon CloudWatch logs - route logs to Amazon CloudWatch

• FireLens for Amazon ECS - route logs to an AWS service or AWS Partner Network destination
for log storage and analysis. The AWS Partner Network is a global community of partners that
leverages programs, expertise, and resources to build, market, and sell customer offerings.

Amazon ECS launch types

The task definition launch type defines what capacity the task can run on, for example AWS
Fargate.

After you choose the launch type, Amazon ECS verifies that the task definition parameters you
configure work with the launch type.

Logging 108

Amazon Elastic Container Service Developer Guide

Fargate launch type

You can use the Fargate launch type to run your containerized applications without the need of
provisioning and managing the underlying infrastructure. AWS Fargate is the serverless way to host
your Amazon ECS workloads.

The Fargate launch type is suitable for the following workloads:

• Large workloads that require low operational overhead

• Small workloads that have occasional burst

• Tiny workloads

• Batch workloads

For information about the Regions that support Fargate, see the section called “AWS Fargate
Regions”.

The following diagram shows the general architecture.

Fargate launch type 109

Amazon Elastic Container Service Developer Guide

For more information about Amazon ECS on Fargate, see Amazon ECS on AWS Fargate.

Fargate launch type 110

Amazon Elastic Container Service Developer Guide

EC2 launch type

The EC2 launch type is suitable for large workloads that must be price optimized.

When considering how to model task definitions and services using the EC2 launch type, we
recommend that you consider what processes must run together and how you might go about
scaling each component.

As an example, suppose that an application consists of the following components:

• A frontend service that displays information on a webpage

• A backend service that provides APIs for the frontend service

• A data store

For this example, create task definitions that group the containers that are used for a common
purpose together. Separate the different components into multiple and separate task definitions.
The following example cluster has three container instances that are running three front-end
service containers, two backend service containers, and one data store service container.

You can group related containers in a task definition, such as linked containers that must be run
together. For example, add a log streaming container to your front-end service and include it in the
same task definition.

After you have your task definitions, you can create services from them to maintain the availability
of your desired tasks. For more information, see Creating a service using the console. In your
services, you can associate containers with Elastic Load Balancing load balancers. For more
information, see Service load balancing. When your application requirements change, you can
update your services to scale the number of desired tasks up or down. Or, you can update your
services to deploy newer versions of the containers in your tasks. For more information, see
Updating a service using the console.

EC2 launch type 111

Amazon Elastic Container Service Developer Guide

External launch type

The External launch type is used to run your containerized applications on your on-premise server
or virtual machine (VM) that you register to your Amazon ECS cluster and manage remotely. For
more information, see External instances (Amazon ECS Anywhere).

Amazon ECS applications in shared subnets, Local Zones, and
Wavelength Zones

Amazon ECS supports workloads that use Local Zones, Wavelength Zones, and AWS Outposts for
when low latency or local data processing is a requirement.

• You can use Local Zones as an extension of an AWS Region to place resources in multiple
locations closer to your end users.

• You can use Wavelength Zones to build applications that deliver ultra-low latencies to 5G devices
and end users. Wavelength deploys standard AWS compute and storage services to the edge of
telecommunication carriers' 5G networks.

External launch type 112

Amazon Elastic Container Service Developer Guide

• AWS Outposts brings native AWS services, infrastructure, and operating models to virtually any
data center, co-location space, or on-premises facility.

Important

Amazon ECS on AWS Fargate workloads aren't supported in Local Zones, Wavelength
Zones, or on AWS Outposts at this time.

For information about the differences between Local Zones, Wavelength Zones, and AWS
Outposts , see How should I think about when to use AWS Wavelength, AWS Local Zones, or AWS
Outposts for applications requiring low latency or local data processing in the AWS Wavelength
FAQs.

Shared subnets

You can use VPC sharing to share subnets with other AWS accounts within the same AWS
Organizations.

You can use shared VPCs for the EC2 launch type with the following considerations:

• The owner of the VPC subnet must share a subnet with a participant account before that account
can use it for Amazon ECS resources.

• You can't use the VPC default security group for your container instances because it belongs to
the owner. Additionally, participants can't launch instances using security groups that are owned
by other participants or the owner.

• In a shared subnet, the participant and the owner separately controls the security groups within
each respective account. The subnet owner can see security groups that are created by the
participants but cannot perform any actions on them. If the subnet owner wants to remove
or modify these security groups, the participant that created the security group must take the
action.

• The shared VPC owner cannot view, update or delete a cluster that a participant creates in the
shared subnet. This is in addition to the VPC resources that each account has different access to.
For more information, see Responsibilities and permissions for owners and participants in the
Amazon VPC User Guide.

You can use shared VPCs for the Fargate launch type with the following considerations::

Shared subnets 113

https://aws.amazon.com/wavelength/faqs/
https://aws.amazon.com/wavelength/faqs/
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-sharing.html#vpc-share-limitations

Amazon Elastic Container Service Developer Guide

• The owner of the VPC subnet must share a subnet with a participant account before that account
can use it for Amazon ECS resources.

• You can't create a service or run a task using the default security group for the VPC because it
belongs to the owner. Additionally, participants can't create a service or run a task using security
groups that are owned by other participants or the owner.

• In a shared subnet, the participant and the owner separately controls the security groups within
each respective account. The subnet owner can see security groups that are created by the
participants but cannot perform any actions on them. If the subnet owner wants to remove
or modify these security groups, the participant that created the security group must take the
action.

• The shared VPC owner cannot view, update or delete a cluster that a participant creates in the
shared subnet. This is in addition to the VPC resources that each account has different access to.
For more information, see Responsibilities and permissions for owners and participants in the
Amazon VPC User Guide.

For more information about VPC subnet sharing, see Share your VPC with other accounts in the
Amazon VPC User Guide.

Local Zones

A Local Zone is an extension of an AWS Region in close geographic proximity to your users. Local
Zones have their own connections to the internet and support AWS Direct Connect. Resources
that are created in a Local Zone can serve local users with low-latency communications. For more
information, see AWS Local Zones.

A Local Zone is represented by a Region code followed by an identifier that indicates the location
(for example, us-west-2-lax-1a).

To use a Local Zone, you must opt in to the zone. After you opt in, you must create an Amazon VPC
and subnet in the Local Zone.

You can launch Amazon EC2 instances, Amazon FSx file servers, and Application Load Balancers to
use for your Amazon ECS clusters and tasks.

For more information, see Local Zones in the Amazon EC2 User Guide for Linux Instances.

Local Zones 114

https://docs.aws.amazon.com/vpc/latest/userguide/vpc-sharing.html#vpc-share-limitations
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-sharing.html#vpc-share-limitations
https://aws.amazon.com/about-aws/global-infrastructure/localzones/
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-regions-availability-zones.html#concepts-local-zones

Amazon Elastic Container Service Developer Guide

Wavelength Zones

You can use AWS Wavelength to build applications that deliver ultra-low latency to mobile devices
and end users. Wavelength deploys standard AWS compute and storage services to the edge of
telecommunication carriers' 5G networks. You can extend an Amazon Virtual Private Cloud to one
or more Wavelength Zones. Then, you can use AWS resources such as Amazon EC2 instances to run
applications that require ultra-low latency and a connection to AWS services in the Region.

A Wavelength Zone is an isolated Zone in the carrier location where the Wavelength infrastructure
is deployed. Wavelength Zones are tied to an AWS Region. A Wavelength Zone is a logical
extension of a Region, and is managed by the control plane in the Region.

A Wavelength Zone is represented by a Region code followed by an identifier that indicates the
Wavelength Zone (for example, us-east-1-wl1-bos-wlz-1).

To use a Wavelength Zone, you must opt in to the Zone. After you opt in, you must create an
Amazon VPC and subnet in the Wavelength Zone. Then, you can launch your Amazon EC2 instances
in the Zone to use for your Amazon ECS clusters and tasks.

For more information, see Get started with AWS Wavelength in the AWS Wavelength Developer
Guide.

Wavelength Zones aren't available in all AWS Regions. For information about the Regions that
support Wavelength Zones, see Available Wavelength Zones in the AWS Wavelength Developer
Guide.

Amazon Elastic Container Service on AWS Outposts

AWS Outposts allows native AWS services, infrastructure, and operating models in on-premises
facilities. In AWS Outposts environments, you can use the same AWS APIs, tools, and infrastructure
that you use in the AWS Cloud. Amazon ECS on AWS Outposts is ideal for low-latency workloads
that need to be run in close proximity to on-premises data and applications. For more information
about AWS Outposts, see the AWS Outposts User Guide.

Prerequisites

The following are the prerequisites for using Amazon ECS on AWS Outposts:

• You must have installed and configured an AWS Outposts in your on-premises data center.

Wavelength Zones 115

https://docs.aws.amazon.com/wavelength/latest/developerguide/get-started-wavelength.html
https://docs.aws.amazon.com/wavelength/latest/developerguide/available-wavelength-zones.html
https://docs.aws.amazon.com/outposts/latest/userguide/

Amazon Elastic Container Service Developer Guide

• You must have a reliable network connection between your AWS Outposts and its AWS Region.

• You must have sufficient capacity of instance types available in your AWS Outposts.

• All Amazon ECS container instances must have Amazon ECS container agent 1.33.0 or later.

Limitations

The following are the limitations of using Amazon ECS on AWS Outposts:

• Amazon Elastic Container Registry, AWS Identity and Access Management, and Network Load
Balancer run in the AWS Region, not on AWS Outposts. This will increase latencies between these
services and the containers.

• AWS Fargate is not available on AWS Outposts.

Network Connectivity Considerations

The following are network connectivity considerations for AWS Outposts:

• If network connectivity between your AWS Outposts and its AWS Region is lost, your clusters will
continue to run. However, you cannot create new clusters or take new actions on existing clusters
until connectivity is restored. In case of instance failures, the instance will not be automatically
replaced. The CloudWatch Logs agent will be unable to update logs and event data.

• We recommend that you provide reliable, highly available, and low latency connectivity between
your AWS Outposts and its AWS Region.

Creating an Amazon ECS Cluster on an AWS Outposts

Creating an Amazon ECS cluster on an AWS Outposts is similar to creating an Amazon ECS cluster
in the AWS Cloud. When you create an Amazon ECS cluster on an AWS Outposts, you must specify
a subnet associated with your AWS Outposts.

An AWS Outposts is an extension of an AWS Region, and you can extend an Amazon VPC in an
account to span multiple Availability Zones and any associated AWS Outposts. When you configure
your AWS Outposts, you associate a subnet with it to extend your Regional VPC environment to
your on-premises facility. Instances on an AWS Outposts appear as part of your Regional VPC,
similar to an Availability Zone with associated subnets.

Limitations 116

Amazon Elastic Container Service Developer Guide

AWS CLI

To create an Amazon ECS cluster on an AWS Outposts with the AWS CLI, specify a security group
and a subnet to associate with your AWS Outposts.

To create a subnet associated with your AWS Outposts.

aws ec2 create-subnet \
 --cidr-block 10.0.3.0/24 \
 --vpc-id vpc-xxxxxxxx \
 --outpost-arn arn:aws:outposts:us-west-2:123456789012:outpost/op-xxxxxxxxxxxxxxxx \
 --availability-zone-id usw2-az1

The following example creates an Amazon ECS cluster on an AWS Outposts.

1. Create a role and policy with rights on AWS Outposts.

The role-policy.json file is the policy document that contains the effect and actions for
resources. For information about the file format, see PutRolePolicy in the IAM API Reference

Creating an Amazon ECS Cluster on an AWS Outposts 117

https://docs.aws.amazon.com/IAM/latest/APIReference/API_PutRolePolicy.html

Amazon Elastic Container Service Developer Guide

aws iam create-role –-role-name ecsRole \
 --assume-role-policy-document file://ecs-policy.json
aws iam put-role-policy --role-name ecsRole --policy-name ecsRolePolicy \
 --policy-document file://role-policy.json

2. Create an IAM instance profile with rights on AWS Outposts.

aws iam create-instance-profile --instance-profile-name outpost
aws iam add-role-to-instance-profile --instance-profile-name outpost \
 --role-name ecsRole

3. Create a VPC.

aws ec2 create-vpc --cidr-block 10.0.0.0/16

4. Create a security group for the container instances, specifying the proper CIDR range for the
AWS Outposts. (This step is different for AWS Outposts.)

aws ec2 create-security-group --group-name MyOutpostSG
aws ec2 authorize-security-group-ingress --group-name MyOutpostSG --protocol tcp \
 --port 22 --cidr 10.0.3.0/24
aws ec2 authorize-security-group-ingress --group-name MyOutpostSG --protocol tcp \
 --port 80 --cidr 10.0.3.0/24

5. Create the Cluster.

6. Define the Amazon ECS container agent environment variables to launch the instance into the
cluster created in the previous step and define any tags you want to add to help identify the
cluster (for example, Outpost to indicate that the cluster is for an Outpost).

#! /bin/bash
cat << ‘EOF’ >> /etc/ecs/ecs.config
ECS_CLUSTER=MyCluster
ECS_IMAGE_PULL_BEHAVIOR=prefer-cached
ECS_CONTAINER_INSTANCE_TAGS={“environment”: ”Outpost”}
EOF

Note

In order to avoid delays caused by pulling container images from Amazon ECR in the
Region, use image caches. To do this, each time a task is run, configure the Amazon

Creating an Amazon ECS Cluster on an AWS Outposts 118

Amazon Elastic Container Service Developer Guide

ECS agent to default to using the cached image on the instance itself by setting
ECS_IMAGE_PULL_BEHAVIOR to prefer-cached.

7. Create the container instance, specifying the VPC and subnet for the AWS Outposts where this
instance should run and an instance type that is available on the AWS Outposts. (This step is
different for AWS Outposts.)

The userdata.txt file contains the user data the instance can use to perform common
automated configuration tasks and even run scripts after the instance starts. For information
about the file for API calls, see Run commands on your Linux instance at launch in the Amazon
EC2 User Guide for Linux Instances.

aws ec2 run-instances --count 1 --image-id ami-xxxxxxxx --instance-type c5.large \
 --key-name aws-outpost-key –-subnet-id subnet-xxxxxxxxxxxxxxxxx \
 --iam-instance-profile Name outpost --security-group-id sg-xxxxxx \
 --associate-public-ip-address --user-data file://userdata.txt

Note

This command is also used when adding additional instances to the cluster. Any
containers deployed in the cluster will be placed on that specific AWS Outposts.

8. Register your task definition. Use the following command and substitute ecs-task.json
with the name of your task definition.

aws ecs register-task-definition --cli-input-json file://ecs-task.json

9. Run the task or create the service.

Run the task

aws ecs run-task --cluster mycluster --count 1 --task-definition outpost-app:1

Create the service

aws ecs create-service –-cluster mycluster --service-name outpost-service \
 --task-definition outpost-app:1 --desired-count 1

Creating an Amazon ECS Cluster on an AWS Outposts 119

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/user-data.html

Amazon Elastic Container Service Developer Guide

Accessing Amazon ECS features through account settings

You can go into Amazon ECS account settings to opt in or out of specific features. For each AWS
Region, you can opt in to, or opt out of, each account setting at the account-level or for a specific
user or role.

You might want to opt in or out of specific features if any of the following is relevant to you:

• A user or role can opt in or opt out specific account settings for their individual account.

• A user or role can set the default opt-in or opt-out setting for all users on the account.

• The root user can opt in to, or opt out of, any specific role or user on the account. If the account
setting for the root user is changed, it sets the default for all the users and roles that no
individual account setting was selected for.

Note

Federated users assume the account setting of the root user and can't have explicit account
settings set for them separately.

The following account settings are available. You must separately opt-in and opt-out to each
account setting.

Amazon Resource Names (ARNs) and IDs

Resource names: serviceLongArnFormat, taskLongArnFormat, and
containerInstanceLongArnFormat

Amazon ECS is introducing a new format for Amazon Resource Names (ARNs) and resource IDs
for Amazon ECS services, tasks, and container instances. The opt-in status for each resource
type determines the Amazon Resource Name (ARN) format the resource uses. You must opt
in to the new ARN format to use features such as resource tagging for that resource type. For
more information, see Amazon Resource Names (ARNs) and IDs.

The default is enabled.

Only resources launched after opting in receive the new ARN and resource ID format. All
existing resources aren't affected. For Amazon ECS services and tasks to transition to the new

Accessing Amazon ECS features through account settings 120

Amazon Elastic Container Service Developer Guide

ARN and resource ID formats, you must recreate the service or task. To transition a container
instance to the new ARN and resource ID format, the container instance must be drained and a
new container instance must be launched and registered to the cluster.

Note

Tasks launched by an Amazon ECS service can only receive the new ARN and resource
ID format if the service was created on or after November 16, 2018, and the user who
created the service has opted in to the new format for tasks.

AWSVPC trunking

Resource name: awsvpcTrunking

Amazon ECS supports launching container instances with increased elastic network interface
(ENI) density using supported Amazon EC2 instance types. When you use these instance types
and opt in to the awsvpcTrunking account setting, additional ENIs are available on newly
launched container instances. You can use this configuration to place more tasks using the
awsvpc network mode on each container instance. Using this feature, a c5.large instance
with awsvpcTrunking enabled has an increased ENI quota of ten. The container instance has
a primary network interface, and Amazon ECS creates and attaches a "trunk" network interface
to the container instance. The primary network interface and the trunk network interface don't
count against the ENI quota. Therefore, you can use this configuration to launch ten tasks
on the container instance instead of the current two tasks. For more information, see Elastic
network interface trunking.

The default is disabled.

Only resources launched after opting in receive the the increased ENI limits. All the existing
resources aren't affected. To transition a container instance to the increased ENI quotas, the
container instance must be drained and a new container instance registered to the cluster.

CloudWatch Container Insights

Resource name: containerInsights

CloudWatch Container Insights collects, aggregates, and summarizes metrics and logs
from your containerized applications and microservices. The metrics include utilization for

Accessing Amazon ECS features through account settings 121

Amazon Elastic Container Service Developer Guide

resources such as CPU, memory, disk, and network. Container Insights also provides diagnostic
information, such as container restart failures, to help you isolate issues and resolve them
quickly. You can also set CloudWatch alarms on metrics that Container Insights collects. For
more information, see Monitor Amazon ECS containers using Container Insights.

When you opt in to the containerInsights account setting, all new clusters have Container
Insights enabled by default. You can disable this setting for specific clusters when you create
them. You can also change this setting by using the UpdateClusterSettings API.

For clusters that contain tasks or services using the EC2 launch type, your container instances
must run version 1.29.0 or later of the Amazon ECS agent to use Container Insights. For more
information, see Linux container instance management.

The default is disabled.

Dual-stack VPC IPv6

Resource name: dualStackIPv6

Amazon ECS supports providing tasks with an IPv6 address in addition to the primary private
IPv4 address.

For tasks to receive an IPv6 address, the task must use the awsvpc network mode, must be
launched in a VPC configured for dual-stack mode, and the dualStackIPv6 account setting
must be enabled. For more information about other requirements, see Using a VPC in dual-
stack mode for the EC2 launch type and Using a VPC in dual-stack mode for the Fargate launch
type.

Important

The dualStackIPv6 account setting can only be changed using either the Amazon ECS
API or the AWS CLI. For more information, see Modifying account settings.

If you had a running task using the awsvpc network mode in an IPv6 enabled subnet between
the dates of October 1, 2020 and November 2, 2020, the default dualStackIPv6 account
setting in the Region that the task was running in is disabled. If that condition isn't met, the
default dualStackIPv6 setting in the Region is enabled.

The default is disabled.

Accessing Amazon ECS features through account settings 122

Amazon Elastic Container Service Developer Guide

Fargate FIPS-140 compliance

Resource name: fargateFIPSMode

Fargate supports the Federal Information Processing Standard (FIPS-140) which specifies the
security requirements for cryptographic modules that protect sensitive information. It is the
current United States and Canadian government standard, and is applicable to systems that are
required to be compliant with Federal Information Security Management Act (FISMA) or Federal
Risk and Authorization Management Program (FedRAMP).

The default is disabled.

You must turn on FIPS-140 compliance. For more information, see the section called “AWS
Fargate FIPS-140 compliance”.

Important

The fargateFIPSMode account setting can only be changed using either the Amazon
ECS API or the AWS CLI. For more information, see Modifying account settings.

Tag Resource Authorization

Resource name: tagResourceAuthorization

Some Amazon ECS API actions allow you to specify tags when you create the resource.

Amazon ECS is introducing tagging authorization for resource creation. Users must have
permissions for actions that create a resource, such as ecsCreateCluster. If tags are
specified in the resource-creating action, AWS performs additional authorization on the
ecs:TagResource action to verify if users or roles have permissions to create tags.
Therefore, you must grant explicit permissions to use the ecs:TagResource action. For more
information, see the section called “Tag resources during creation”.

Fargate task retirement waiting period

Resource name: fargateTaskRetirementWaitPeriod

AWS is responsible for patching and maintaining the underlying infrastructure for AWS Fargate.
When AWS determines that a security or infrastructure update is needed for an Amazon ECS

Accessing Amazon ECS features through account settings 123

Amazon Elastic Container Service Developer Guide

task hosted on Fargate, the tasks need to be stopped and new tasks launched to replace them.
You can configure the wait period before tasks are retired for patching. You have the option to
retire the task immediately, to wait 7 calendar days, or to wait 14 calendar days.

This setting is at the account-level.

Runtime Monitoring activation

Resource name: guardDutyActivate

The guardDutyActivate parameter is read-only in Amazon ECS and indicates whether
Runtime Monitoring is enabled or disabled by your security administrator in your Amazon ECS
account. GuardDuty controls this account setting on your behalf. For more information, see
Protecting Amazon ECS workloads with Runtime Monitoring.

Topics

• Amazon Resource Names (ARNs) and IDs

• ARN and resource ID format timeline

• AWS Fargate Federal Information Processing Standard (FIPS-140) compliance

• Tagging authorization

• Tagging authorization timeline

• AWS Fargate task retirement wait time

• Runtime Monitoring (Amazon GuardDuty integration)

• Viewing account settings using the console

• Modifying account settings

• Reverting to the default Amazon ECS account settings

• Account setting management using the AWS CLI

Amazon Resource Names (ARNs) and IDs

When Amazon ECS resources are created, each resource is assigned a unique Amazon Resource
Name (ARN) and resource identifier (ID). If you use a command line tool or the Amazon ECS API to
work with Amazon ECS, resource ARNs or IDs are required for certain commands. For example, if
you use the stop-task AWS CLI command to stop a task, you must specify the task ARN or ID in the
command.

Amazon Resource Names (ARNs) and IDs 124

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/ecs-guard-duty-integration.html
https://docs.aws.amazon.com/cli/latest/reference/ecs/stop-task.html

Amazon Elastic Container Service Developer Guide

You can opt in to and opt out of the new Amazon Resource Name (ARN) and resource ID format on
a per-Region basis. Currently, any new account created is opted in by default.

You can opt in or opt out of the new Amazon Resource Name (ARN) and resource ID format at any
time. After you opt in, any new resources that you create use the new format.

Note

A resource ID doesn't change after it's created. Therefore, opting in or out of the new
format doesn't affect your existing resource IDs.

The following sections describe how ARN and resource ID formats are changing. For more
information about the transition to the new formats, see Amazon Elastic Container Service FAQ.

Amazon Resource Name (ARN) format

Some resources have a user-friendly name, such as a service named production. In other cases,
you must specify a resource using the Amazon Resource Name (ARN) format. The new ARN format
for Amazon ECS tasks, services, and container instances includes the cluster name. For information
about opting in to the new ARN format, see Modifying account settings.

The following table shows both the current format and the new format for each resource type.

Resource type ARN

Container
instance

Current: arn:aws:ecs: region:aws_account_id :container-
instance/ container-instance-id

New: arn:aws:ecs: region:aws_account_id :container-instanc
e/ cluster-name /container-instance-id

Amazon ECS
service

Current: arn:aws:ecs: region:aws_account_id :service/
service-name

New: arn:aws:ecs: region:aws_account_id :service/ cluster-n
ame /service-name

Amazon ECS
task

Current: arn:aws:ecs: region:aws_account_id :task/task-id

Amazon Resource Names (ARNs) and IDs 125

https://aws.amazon.com/ecs/faqs/

Amazon Elastic Container Service Developer Guide

Resource type ARN

New: arn:aws:ecs: region:aws_account_id :task/cluster-n
ame /task-id

Resource ID length

A resource ID takes the form of a unique combination of letters and numbers. New resource ID
formats include shorter IDs for Amazon ECS tasks and container instances. The current resource
ID format is 36 characters long. The new IDs are in a 32-character format that doesn't include any
hyphens. For information about opting in to the new resource ID format, see Modifying account
settings.

ARN and resource ID format timeline

The timeline for the opt-in and opt-out periods for the new Amazon Resource Name (ARN) and
resource ID format for Amazon ECS resources ended on April 1, 2021. By default, all accounts are
opted in to the new format. All new resources created receive the new format, and you can no
longer opt out.

AWS Fargate Federal Information Processing Standard (FIPS-140)
compliance

You must turn on Federal Information Processing Standard (FIPS-140) compliance on Fargate. For
more information, see the section called “AWS Fargate FIPS-140 compliance”.

Run put-account-setting-default with the fargateFIPSMode option set to enabled. For
more information, see, put-account-setting-default in the Amazon Elastic Container Service API
Reference.

• You can use the following command to turn on FIPS-140 compliance.

aws ecs put-account-setting-default --name fargateFIPSMode --value enabled

Example output

{
 "setting": {

ARN and resource ID format timeline 126

https://docs.aws.amazon.com/cli/latest/reference/ecs/put-account-setting-default.html

Amazon Elastic Container Service Developer Guide

 "name": "fargateFIPSMode",
 "value": "enabled",
 "principalArn": "arn:aws:iam::123456789012:root",
 "type": user
 }
}

You can run list-account-settings to view the current FIPS-140 compliance status. Use the
effective-settings option to view the account level settings.

aws ecs list-account-settings --effective-settings

Tagging authorization

Amazon ECS is introducing tagging authorization for resource creation. Users must have tagging
permissions for actions that create the resource, such as ecsCreateCluster. When you create a
resource and specify tags for that resource, AWS performs additional authorization to verify that
there are permissions to create tags. Therefore, you must grant explicit permissions to use the
ecs:TagResource action. For more information, see the section called “Tag resources during
creation”.

In order to opt in to tagging authorization, run put-account-setting-default with the
tagResourceAuthorization option set to enable. For more information, see, put-account-
setting-default in the Amazon Elastic Container Service API Reference. You can run list-account-
settings to view the current tagging authorization status.

• You can use the following command to enable tagging authorization.

aws ecs put-account-setting-default --name tagResourceAuthorization --value on --
region region

Example output

{
 "setting": {
 "name": "tagResourceAuthorization",
 "value": "on",
 "principalArn": "arn:aws:iam::123456789012:root",
 "type": user

Tagging authorization 127

https://docs.aws.amazon.com/cli/latest/reference/ecs/put-account-setting-default.html
https://docs.aws.amazon.com/cli/latest/reference/ecs/put-account-setting-default.html

Amazon Elastic Container Service Developer Guide

 }
}

After you enable tagging authorization, you must configure the appropriate permissions to allow
users to tag resources on creation. For more information, see the section called “Tag resources
during creation”.

You can run list-account-settings to view the current tagging authorization status. Use the
effective-settings option to view the account level settings.

aws ecs list-account-settings --effective-settings

Tagging authorization timeline

You can confirm whether tagging authorization is active by running list-account-settings
to view the tagResourceAuthorization value. When the value is on, it means that the tagging
authorization is in use. For more information, see, list-account-settings in the Amazon Elastic
Container Service API Reference.

The following are the important dates related to tagging authorization.

• April 18, 2023 – Tagging authorization is introduced. All new and existing accounts must opt in
to use the feature. You can opt in to start using tagging authorization. By opting in, you must
grant the appropriate permissions.

• February 9, 2024 - March 6, 2024 – All new accounts and non-impacted existing
accounts have tagging authorization on be default. You can enable or disable the
tagResourceAuthorization account setting to verify your IAM policy.

AWS has notified impacted accounts.

To disable the feature, run put-account-setting-default with the
tagResourceAuthorization option set to off.

• March 7, 2024 – If you have enabled tagging authorization, you can no longer disable the
account setting.

We recommend that you complete your IAM policy testing before this date.

• March 29, 2024 – All accounts use tagging authorization. The account-level setting will no longer
be available in the Amazon ECS console or AWS CLI

Tagging authorization timeline 128

https://docs.aws.amazon.com/cli/latest/reference/ecs/list-account-settings.html

Amazon Elastic Container Service Developer Guide

AWS Fargate task retirement wait time

AWS sends out notifications when you have Fargate tasks running on a platform version revision
marked for retirement. For more information, see AWS Fargate task maintenance FAQs.

You can configure the time that Fargate starts the task retirement. For workloads that require
immediate application of the updates, choose the immediate setting (0). When you need more
control, for example, when a task can only be stopped during a certain window, configure the 7 day
(7), or 14 day (14) option.

We recommend that you choose a shorter waiting period in order to pick up newer platform
versions revisions sooner.

Configure the wait period by running put-account-setting-default or put-account-
setting as the root user. Use the fargateTaskRetirementWaitPeriod option for the name
and the value option set to one of the following values:

• 0 - AWS sends the notification, and immediately starts to retire the affected tasks.

• 7 - AWS sends the notification, and waits 7 calendar days before starting to retire the affected
tasks.

• 14 - AWS sends the notification, and waits 14 calendar days before starting to retire the affected
tasks.

The default is 7 days.

For more information, see, put-account-setting-default and put-account-setting in the Amazon
Elastic Container Service API Reference.

You can run the following command to set the wait period to 14 days.

aws ecs put-account-setting-default --name fargateTaskRetirementWaitPeriod --value 14

Example output

{
 "setting": {
 "name": "fargateTaskRetirementWaitPeriod",
 "value": "14",

AWS Fargate task retirement wait time 129

https://docs.aws.amazon.com/cli/latest/reference/ecs/put-account-setting-default.html
https://docs.aws.amazon.com/cli/latest/reference/ecs/put-account-setting.html

Amazon Elastic Container Service Developer Guide

 "principalArn": "arn:aws:iam::123456789012:root",
 "type: user"
 }
}

You can run list-account-settings to view the current Fargate task retirement wait time. Use
the effective-settings option.

aws ecs list-account-settings --effective-settings

Runtime Monitoring (Amazon GuardDuty integration)

Runtime Monitoring is an intelligent threat detection service that protects workloads running on
Fargate and EC2 container instances by continuously monitoring AWS log and networking activity
to identify malicious or unauthorized behavior.

The guardDutyActivate parameter is read-only in Amazon ECS and indicates whether Runtime
Monitoring is enabled or disabled by your security administrator in your Amazon ECS account.
GuardDuty controls this account setting on your behalf. For more information, see Protecting
Amazon ECS workloads with Runtime Monitoring.

You can run list-account-settings to view the current GuardDuty integration setting.

aws ecs list-account-settings

Example output

{
 "setting": {
 "name": "guardDutyActivate",
 "value": "on",
 "principalArn": "arn:aws:iam::123456789012:doej",
 "type": aws-managed"
 }
}

Viewing account settings using the console

You can use the AWS Management Console to view your account settings.

Runtime Monitoring (Amazon GuardDuty integration) 130

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/ecs-guard-duty-integration.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/ecs-guard-duty-integration.html

Amazon Elastic Container Service Developer Guide

Important

The dualStackIPv6, fargateFIPSMode and the
fargateTaskRetirementWaitPeriod account settings can only be viewed or changed
using the AWS CLI.

1. Open the console at https://console.aws.amazon.com/ecs/v2.

2. In the navigation bar at the top, select the Region for which to view your account settings.

3. In the navigation page, choose Account Settings.

Modifying account settings

You can use the AWS Management Console to modify your account settings.

The guardDutyActivate parameter is read-only in Amazon ECS and indicates whether Runtime
Monitoring is enabled or disabled by your security administrator in your Amazon ECS account.
GuardDuty controls this account setting on your behalf. For more information, see Protecting
Amazon ECS workloads with Runtime Monitoring.

Important

The dualStackIPv6, fargateFIPSMode and the
fargateTaskRetirementWaitPeriod account settings can only be viewed or changed
using the AWS CLI.

1. Open the console at https://console.aws.amazon.com/ecs/v2.

2. In the navigation bar at the top, select the Region for which to view your account settings.

3. In the navigation page, choose Account Settings.

4. Choose Update.

5. To increase or decrease the number of tasks that you can run in the awsvpc network mode for
each EC2 instance, under AWSVPC Trunking, select AWSVPC Trunking.

6. To use or stop using CloudWatch Container Insights by default for clusters, under CloudWatch
Container Insights, select or clear CloudWatch Container Insights.

Modifying account settings 131

https://console.aws.amazon.com/ecs/v2
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/ecs-guard-duty-integration.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/ecs-guard-duty-integration.html
https://console.aws.amazon.com/ecs/v2

Amazon Elastic Container Service Developer Guide

7. To enable or disable tagging authorization, under Resource Tagging Authorization, select or
clear Resource Tagging Authorization.

8. Choose Save changes.

9. On the confirmation screen, choose Confirm to save the selection.

Reverting to the default Amazon ECS account settings

You can use the AWS Management Console to revert your Amazon ECS account settings to the
default.

The Revert to account default option is only available when your account settings are no longer
the default settings.

1. Open the console at https://console.aws.amazon.com/ecs/v2.

2. In the navigation bar at the top, select the Region for which to view your account settings.

3. In the navigation page, choose Account Settings.

4. Choose Update.

5. Choose Revert to account default.

6. On the confirmation screen, choose Confirm to save the selection.

Account setting management using the AWS CLI

You can manage your account settings using the Amazon ECS API, AWS CLI or SDKs. The
dualStackIPv6, fargateFIPSMode and the fargateTaskRetirementWaitPeriod account
settings can only be viewed or changed using those tools.

For information about the available API actions for task definitions see Account setting actions in
the Amazon Elastic Container Service API Reference.

Use one of the following commands to modify the default account setting for all users or roles
on your account. These changes apply to the entire AWS account unless a user or role explicitly
overrides these settings for themselves.

• put-account-setting-default (AWS CLI)

aws ecs put-account-setting-default --name serviceLongArnFormat --value enabled --
region us-east-2

Reverting to the default Amazon ECS account settings 132

https://console.aws.amazon.com/ecs/v2
https://docs.aws.amazon.com/AmazonECS/latest/APIReference/OperationList-query-account.html
https://docs.aws.amazon.com/cli/latest/reference/ecs/put-account-setting-default.html

Amazon Elastic Container Service Developer Guide

You can also use this command to modify other account settings. To do this, replace the name
parameter with the corresponding account setting.

• Write-ECSAccountSetting (AWS Tools for Windows PowerShell)

Write-ECSAccountSettingDefault -Name serviceLongArnFormat -Value enabled -Region us-
east-1 -Force

To modify the account settings for your user account (AWS CLI)

Use one of the following commands to modify the account settings for your user. If you’re using
these commands as the root user, changes apply to the entire AWS account unless a; user or role
explicitly overrides these settings for themselves.

• put-account-setting (AWS CLI)

aws ecs put-account-setting --name serviceLongArnFormat --value enabled --region us-
east-1

You can also use this command to modify other account settings. To do this, replace the name
parameter with the corresponding account setting.

• Write-ECSAccountSetting (AWS Tools for Windows PowerShell)

Write-ECSAccountSetting -Name serviceLongArnFormat -Value enabled -Force

To modify the account settings for a specific user or role (AWS CLI)

Use one of the following commands and specify the ARN of a user, role, or root user in the request
to modify the account settings for a specific user or role.

• put-account-setting (AWS CLI)

aws ecs put-account-setting --name serviceLongArnFormat --value enabled --principal-
arn arn:aws:iam::aws_account_id:user/principalName --region us-east-1

You can also use this command to modify other account settings. To do this, replace the name
parameter with the corresponding account setting.

Account setting management using the AWS CLI 133

https://docs.aws.amazon.com/powershell/latest/reference/items/Write-ECSAccountSetting.html
https://docs.aws.amazon.com/cli/latest/reference/ecs/put-account-setting.html
https://docs.aws.amazon.com/powershell/latest/reference/items/Write-ECSAccountSetting.html
https://docs.aws.amazon.com/cli/latest/reference/ecs/put-account-setting.html

Amazon Elastic Container Service Developer Guide

• Write-ECSAccountSetting (AWS Tools for Windows PowerShell)

Write-ECSAccountSetting -Name serviceLongArnFormat -Value enabled -PrincipalArn
 arn:aws:iam::aws_account_id:user/principalName -Region us-east-1 -Force

Account setting management using the AWS CLI 134

https://docs.aws.amazon.com/powershell/latest/reference/items/Write-ECSAccountSetting.html

Amazon Elastic Container Service Developer Guide

Amazon ECS task definitions

A task definition is a blueprint for your application. It is a text file in JSON format that describes the
parameters and one or more containers that form your application.

The following are some of the parameters that you can specify in a task definition:

• The launch type to use, which determines the infrastructure that your tasks are hosted on

• The Docker image to use with each container in your task

• How much CPU and memory to use with each task or each container within a task

• The memory and CPU requirements

• The operating system of the container that the task runs on

• The Docker networking mode to use for the containers in your task

• The logging configuration to use for your tasks

• Whether the task continues to run if the container finishes or fails

• The command that the container runs when it's started

• Any data volumes that are used with the containers in the task

• The IAM role that your tasks use

For a complete list of task definition parameters, see Task definition parameters.

After you create a task definition, you can run the task definition as a task or a service.

• A task is the instantiation of a task definition within a cluster. After you create a task definition
for your application within Amazon ECS, you can specify the number of tasks to run on your
cluster.

• An Amazon ECS service runs and maintains your desired number of tasks simultaneously in an
Amazon ECS cluster. How it works is that, if any of your tasks fail or stop for any reason, the
Amazon ECS service scheduler launches another instance based on your task definition. It does
this to replace it and thereby maintain your desired number of tasks in the service.

Topics

• Task definition states

• Architecting your application

135

Amazon Elastic Container Service Developer Guide

• Creating a task definition using the console

• Updating a task definition using the console

• Deregistering a task definition revision using the console

• Deleting a task definition revision using the console

• Task definition use cases

• Example task definitions

Task definition states

A task definition changes states when you create, deregister, or delete it. You can view the task
definition state in the console, or by using DescribeTaskDefinition.

The following are the possible states for a task definition:

ACTIVE

A task definition is ACTIVE after it is registered with Amazon ECS. You can use task definitions
in the ACTIVE state to run tasks, or create services.

INACTIVE

A task definition transitions from the ACTIVE state to the INACTIVE state when you
deregister a task definition. You can retrieve an INACTIVE task definition by calling
DescribeTaskDefinition. You cannot run new tasks or create new services with a task
definition in the INACTIVE state. There is no impact on existing services or tasks.

DELETE_IN_PROGRESS

A task definition transitions from the INACTIVE state to the DELETE_IN_PROGRESS
state after you submitted the task definition for deletion. After the task definition is in the
DELETE_IN_PROGRESS state, Amazon ECS periodically verifies that the target task definition
is not being referenced by any active tasks or deployments, and then deletes the task definition
permanently. You cannot run new tasks or create new services with a task definition in the
DELETE_IN_PROGRESS state. A task definition can be submitted for deletion at any moment
without impacting existing tasks and services.

Task definitions that are in the DELETE_IN_PROGRESS state can be viewed in the console and
you can retrieve the task definition by calling DescribeTaskDefinition.

Task definition states 136

Amazon Elastic Container Service Developer Guide

When you delete all INACTIVE task definition revisions, the task definition name is not
displayed in the console and not returned in the API. If a task definition revision is in the
DELETE_IN_PROGRESS state, the task definition name is displayed in the console and returned
in the API. The task definition name is retained by Amazon ECS and the revision is incremented
the next time you create a task definition with that name.

If you use AWS Config to manage your task definitions, AWS Config charges you for all task
definition registrations. You are only charged for deregistering the latest ACTIVE task definition.
There is no charge for deleting a task definition. For more information about pricing, see AWS
Config Pricing.

Amazon ECS resources that can block a deletion

A task definition deletion request will not complete when there are any Amazon ECS resources that
depend on the task definition revision. The following resources might prevent a task definition
from being deleted:

• Amazon ECS tasks - The task definition is required in order for the task to remain healthy.

• Amazon ECS deployments and task sets - The task definition is required when a scaling event is
initiated for an Amazon ECS deployment or task set.

If your task definition remains in the DELETE_IN_PROGRESS state, you can use the console, or the
AWS CLI to identify, and then stop the resources which block the task definition deletion.

Task definition deletion after the blocked resource is removed

The following rules apply after you remove the resources that block the task definition deletion:

• Amazon ECS tasks - The task definition deletion can take up to 1 hour to complete after the task
is stopped.

• Amazon ECS deployments and task sets - The task definition deletion can take up to 24 hours to
complete after the deployment or task set is deleted.

Architecting your application

You architect your application by creating a task definition for your application. The task definition
contains the parameters that define information about the application, including:

Amazon ECS resources that can block a deletion 137

https://aws.amazon.com/config/pricing/
https://aws.amazon.com/config/pricing/

Amazon Elastic Container Service Developer Guide

• The launch type to use, which determines the infrastructure that your tasks are hosted on.

When you use the EC2 launch type, you also choose the instance type. For some instance types,
such as GPU, you need to set additional parameters. For more information, see Task definition
use cases.

• The container image, which holds your application code and all the dependencies that your
application code requires to run.

• The networking mode to use for the containers in your task

The networking mode determinies how your task communicates over the network.

For tasks that run on EC2 instance, there are multiple options, but we recommend that you use
the awsvpc network mode. The awsvpc network mode simplifies container networking, because
you have more control over how your applications communicate with each other and other
services within your VPCs.

For tasks that run on Fargate, you can only use the awsvpc network mode.

• The logging configuration to use for your tasks.

• Any data volumes that are used with the containers in the task.

For a complete list of task definition parameters, see Task definition parameters.

Use the following guidelines when you create your task definitions:

• Use each task definition family for only one business purpose.

If you group multiple types of application container together in the same task definition, you
can’t independently scale those containers. For example, it's unlikely that both a website and an
API require scaling out at the same rate. As traffic increases, there will be a different number of
web containers required than API containers. If these two containers are being deployed in the
same task definition, every task runs the same number of web containers and API containers.

• Match each application version with a task definition revision within a task definition family.

Within a task definition family, consider each task definition revision as a point in time snapshot
of the settings for a particular container image. This is similar to how the container is a snapshot
of all the things that are needed to run a particular version of your application code.

Architecting your application 138

Amazon Elastic Container Service Developer Guide

Make sure that there's a one-to-one mapping between a version of application code, a container
image tag, and a task definition revision. A typical release process involves a git commit that gets
turned into a container image that's tagged with the git commit SHA. Then, that container image
tag gets its own Amazon ECS task definition revision. Last, the Amazon ECS service is updated to
tell it to deploy the new task definition revision.

• Use different IAM roles for each task definition family.

Define each task definition with its own IAM role. This recommendation should be done in
tandem with our recommendation for providing each business component its own task definition
family. By implementing both of these best practices, you can limit how much access each service
has to resources in your AWS account. For example, you can give your authentication service
access to connect to your passwords database. At the same time, you can also ensure that only
your order service has access to the credit card payment information.

Best practices for container images

A container image is a set of instructions on how to build the container. A container image
holds your application code and all the dependencies that your application code requires to run.
Application dependencies include the source code packages that your application code relies on,
a language runtime for interpreted languages, and binary packages that your dynamically linked
code relies on.

Use the following guidelines when you design and build your container images:

• Make your container images complete by storing all application dependencies as static files
inside the container image.

If you change something in the container image, build a new container image with the changes.

• Run a single application process within a container.

The container lifetime is as long as the application process runs. Amazon ECS replaces crashed
processes and determines where to launch the replacement process. A complete image makes
the overall deployment more resilient.

• Make you application handle SIGTERM.

When Amazon ECS stops a task, it first sends a SIGTERM signal to the task to notify the
application that it needs to finish and shut down. Amazon ECS then sends a SIGKILL message.

Best practices for container images 139

Amazon Elastic Container Service Developer Guide

When applications ignore the SIGTERM, the Amazon ECS service must wait to send the SIGKILL
signal to terminate the process.

You need to identify how long it takes your application to complete its work, and ensure that
your applications handles the SIGTERM signal. The application's signal handling needs to
stop the application from taking new work and complete the work that is in-progress, or save
unfinished work to storage outside of the task when the work takes too long to complete.

• Configure containerized applications to write logs to stdout and stderr.

Decoupling log handling from your application code gives you flexibility to adjust log handling
at the infrastructure level. One example of this is to change your logging system. Instead of
modifying your services, and building and deploying a new container image, you can adjust the
settings.

• Use tags to version your container images.

Container images are stored in a container registry. Each image in a registry is identified by
a tag. There's a tag called latest. This tag functions as a pointer to the latest version of the
application container image, similar to the HEAD in a git repository. We recommend that you use
the latest tag only for testing purposes. As a best practice, tag container images with a unique
tag for each build. We recommend that you tag your images using the git SHA for the git commit
that was used to build the image.

You don’t need to build a container image for every commit. However, we recommend that you
build a new container image each time you release a particular code commit to the production
environment. We also recommend that you tag the image with a tag that corresponds to the git
commit of the code that's inside the image. If you tagged the image with the git commit, you can
more quickly find which version of the code the image is running.

We also recommend that you turn on immutable image tags in Amazon Elastic Container
Registry. With this setting, you can't change the container image that a tag points at. Instead
Amazon ECR enforces that a new image must be uploaded to a new tag. For more information,
see Image tag mutability in the Amazon ECR User Guide.

When you architect your application to run on AWS Fargate, you must decide between deploying
multiple containers into the same task definition and deploying containers separately in multiple
task definitions. If the following conditions are required, we recommend deploying multiple
containers into the same task definition:

Best practices for container images 140

https://docs.aws.amazon.com/AmazonECR/latest/userguide/image-tag-mutability.html

Amazon Elastic Container Service Developer Guide

• Your containers share a common lifecycle (that is, they're launched and terminated together).

• Your containers must run on the same underlying host (that is, one container references the
other on a localhost port).

• You containers share resources.

• Your containers share data volumes.

If these conditions aren't required, we recommend deploying containers separately in multiple task
definitions. This allows you to scale, provision, and deprovision the containers separately.

Task networking for tasks on Amazon EC2 instances

The networking behavior of Amazon ECS tasks that are hosted on Amazon EC2 instances is
dependent on the network mode that's defined in the task definition. We recommend that you use
the awsvpc network mode unless you have a specific need to use a different network mode.

The following are the available network modes.

Network
mode

Linux
containers
on EC2

Windows
containers
on EC2

Description

awsvpc Yes Yes The task is allocated its own elastic network
interface (ENI) and a primary private IPv4
address. This gives the task the same
networking properties as Amazon EC2
instances.

bridge Yes No The task uses Docker's built-in virtual network
on Linux, which runs inside each Amazon
EC2 instance that hosts the task. The built-
in virtual network on Linux uses the bridge
Docker network driver. This is the default
network mode on Linux if a network mode
isn't specified in the task definition.

host Yes No The task uses the host's network which
bypasses Docker's built-in virtual network by

Task networking for tasks on Amazon EC2 instances 141

Amazon Elastic Container Service Developer Guide

Network
mode

Linux
containers
on EC2

Windows
containers
on EC2

Description

mapping container ports directly to the ENI of
the Amazon EC2 instance that hosts the task.
Dynamic port mappings can’t be used in this
network mode. A container in a task definitio
n that uses this mode must specify a specific
hostPort number. A port number on a host
can’t be used by multiple tasks. As a result,
you can’t run multiple tasks of the same task
definition on a single Amazon EC2 instance.

none Yes No The task has no external network connectivity.

default No Yes The task uses Docker's built-in virtual network
on Windows, which runs inside each Amazon
EC2 instance that hosts the task. The built-
in virtual network on Windows uses the nat
Docker network driver. This is the default
network mode on Windows if a network
mode isn't specified in the task definition.

For more information about Docker networking on Linux, see Networking overview in the Docker
Documentation.

For more information about Docker networking on Windows, see Windows container networking in
the Microsoft Containers on Windows Documentation.

Topics

• awsvpc network mode

• Host mode

• Bridge mode

Task networking for tasks on Amazon EC2 instances 142

https://docs.docker.com/network/
https://learn.microsoft.com/en-us/virtualization/windowscontainers/container-networking/architecture

Amazon Elastic Container Service Developer Guide

awsvpc network mode

The task networking features that are provided by the awsvpc network mode give Amazon ECS
tasks the same networking properties as Amazon EC2 instances. Using the awsvpc network
mode simplifies container networking, because you have more control over how your applications
communicate with each other and other services within your VPCs. The awsvpc network mode also
provides greater security for your containers by allowing you to use security groups and network
monitoring tools at a more granular level within your tasks. You can also use other Amazon EC2
networking features such as VPC Flow Logs to monitor traffic to and from your tasks. Additionally,
containers that belong to the same task can communicate over the localhost interface.

The task elastic network interface (ENI) is a fully managed feature of Amazon ECS. Amazon
ECS creates the ENI and attaches it to the host Amazon EC2 instance with the specified security
group. The task sends and receives network traffic over the ENI in the same way that Amazon EC2
instances do with their primary network interfaces. Each task ENI is assigned a private IPv4 address
by default. If your VPC is enabled for dual-stack mode and you use a subnet with an IPv6 CIDR
block, the task ENI will also receive an IPv6 address. Each task can only have one ENI.

These ENIs are visible in the Amazon EC2 console for your account. Your account can't detach or
modify the ENIs. This is to prevent accidental deletion of an ENI that is associated with a running
task. You can view the ENI attachment information for tasks in the Amazon ECS console or with the
DescribeTasks API operation. When the task stops or if the service is scaled down, the task ENI is
detached and deleted.

When you need increased ENI density, use the awsvpcTrunking account setting. Amazon ECS
also creates and attaches a "trunk" network interface for your container instance. The trunk
network is fully managed by Amazon ECS. The trunk ENI is deleted when you either terminate or
deregister your container instance from the Amazon ECS cluster. For more information about the
awsvpcTrunking account setting, see Prerequisites.

You specify awsvpc in the networkMode parameter of the task definition. For more information,
see Network mode.

Then, when you run a task or create a service, use the networkConfiguration parameter that
includes one or more subnets to place your tasks inand one or more security groups to attach to an
ENI. For more information, see Network configuration. The tasks are placed on compatible Amazon
EC2 instances in the same Availability Zones as those subnets, and the specified security groups are
associated with the ENI that's provisioned for the task.

Task networking for tasks on Amazon EC2 instances 143

https://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_DescribeTasks.html

Amazon Elastic Container Service Developer Guide

Linux considerations

Consider the following when using the Linux operating system.

• Tasks and services that use the awsvpc network mode require the Amazon ECS service-linked
role to provide Amazon ECS with the permissions to make calls to other AWS services on your
behalf. This role is created for you automatically when you create a cluster or if you create or
update a service, in the AWS Management Console. For more information, see Using service-
linked roles for Amazon ECS. You can also create the service-linked role with the following AWS
CLI command:

aws iam create-service-linked-role --aws-service-name ecs.amazonaws.com

• Your Amazon EC2 Linux instance requires version 1.15.0 or later of the container agent to run
tasks that use the awsvpc network mode. If you're using an Amazon ECS-optimized AMI, your
instance needs at least version 1.15.0-4 of the ecs-init package as well.

• Amazon ECS populates the hostname of the task with an Amazon-provided (internal) DNS
hostname when both the enableDnsHostnames and enableDnsSupport options are enabled
on your VPC. If these options aren't enabled, the DNS hostname of the task is set to a random
hostname. For more information about the DNS settings for a VPC, see Using DNS with Your VPC
in the Amazon VPC User Guide.

• Each Amazon ECS task that uses the awsvpc network mode receives its own elastic network
interface (ENI), which is attached to the Amazon EC2 instance that hosts it. There's a default
quota for the number of network interfaces that can be attached to an Amazon EC2 Linux
instance. The primary network interface counts as one toward that quota. For example, by
default, a c5.large instance might have only up to three ENIs that can be attached to it. The
primary network interface for the instance counts as one. You can attach an additional two ENIs
to the instance. Because each task that uses the awsvpc network mode requires an ENI, you can
typically only run two such tasks on this instance type. For more information about the default
ENI limits for each instance type, see IP addresses per network interface per instance type in the
Amazon EC2 User Guide for Linux Instances.

• Amazon ECS supports the launch of Amazon EC2 Linux instances that use supported instance
types with increased ENI density. When you opt in to the awsvpcTrunking account setting
and register Amazon EC2 Linux instances that use these instance types to your cluster, these
instances have higher ENI quota. Using these instances with this higher quota means that you
can place more tasks on each Amazon EC2 Linux instance. To use the increased ENI density
with the trunking feature, your Amazon EC2 instance must use version 1.28.1 or later of the

Task networking for tasks on Amazon EC2 instances 144

https://docs.aws.amazon.com/cli/latest/reference/iam/create-service-linked-role.html
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-dns.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-eni.html#AvailableIpPerENI

Amazon Elastic Container Service Developer Guide

container agent. If you're using an Amazon ECS-optimized AMI, your instance also requires at
least version 1.28.1-2 of the ecs-init package. For more information about opting in to the
awsvpcTrunking account setting, see Accessing Amazon ECS features through account settings.
For more information about ENI trunking, see Elastic network interface trunking.

• When hosting tasks that use the awsvpc network mode on Amazon EC2 Linux instances, your
task ENIs aren't given public IP addresses. To access the internet, tasks must be launched in a
private subnet that's configured to use a NAT gateway. For more information, see NAT gateways
in the Amazon VPC User Guide. Inbound network access must be from within a VPC that uses
the private IP address or routed through a load balancer from within the VPC. Tasks that are
launched within public subnets do not have access to the internet.

• Amazon ECS recognizes only the ENIs that it attaches to your Amazon EC2 Linux instances. If
you manually attached ENIs to your instances, Amazon ECS might attempt to add a task to an
instance that doesn't have enough network adapters. This can result in the task timing out and
moving to a deprovisioning status and then a stopped status. We recommend that you don't
attach ENIs to your instances manually.

• Amazon EC2 Linux instances must be registered with the ecs.capability.task-eni
capability to be considered for placement of tasks with the awsvpc network mode. Instances
running version 1.15.0-4 or later of ecs-init are registered with this attribute automatically.

• The ENIs that are created and attached to your Amazon EC2 Linux instances cannot be detached
manually or modified by your account. This is to prevent the accidental deletion of an ENI that is
associated with a running task. To release the ENIs for a task, stop the task.

• There is a limit of 16 subnets and 5 security groups that are able to be specified in the
awsVpcConfiguration when running a task or creating a service that uses the awsvpc
network mode. For more information, see AwsVpcConfiguration in the Amazon Elastic Container
Service API Reference.

• When a task is started with the awsvpc network mode, the Amazon ECS container agent creates
an additional pause container for each task before starting the containers in the task definition.
It then configures the network namespace of the pause container by running the amazon-ecs-
cni-plugins CNI plugins. The agent then starts the rest of the containers in the task so that they
share the network stack of the pause container. This means that all containers in a task are
addressable by the IP addresses of the ENI, and they can communicate with each other over the
localhost interface.

• Services with tasks that use the awsvpc network mode only support Application Load Balancer
and Network Load Balancer. When you create any target groups for these services, you must
choose ip as the target type. Do not use instance. This is because tasks that use the awsvpc

Task networking for tasks on Amazon EC2 instances 145

https://docs.aws.amazon.com/vpc/latest/userguide/vpc-nat-gateway.html
https://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_AwsVpcConfiguration.html
https://github.com/aws/amazon-ecs-cni-plugins
https://github.com/aws/amazon-ecs-cni-plugins

Amazon Elastic Container Service Developer Guide

network mode are associated with an ENI, not with an Amazon EC2 Linux instance. For more
information, see Service load balancing.

• If your VPC is updated to change the DHCP options set it uses, you can't apply these changes
to existing tasks. Start new tasks with these changes applied to them, verify that they are
working correctly, and then stop the existing tasks in order to safely change these network
configurations.

Windows considerations

The following are considerations when you use the Windows operating system:

• Container instances using the Amazon ECS optimized Windows Server 2016 AMI can't host tasks
that use the awsvpc network mode. If you have a cluster that contains Amazon ECS optimized
Windows Server 2016 AMIs and Windows AMIs that support awsvpc network mode, tasks that
use awsvpc network mode aren't launched on the Windows 2016 Server instances. Rather,
they're launched on instances that support awsvpc network mode.

• Your Amazon EC2 Windows instance requires version 1.57.1 or later of the container agent to
use CloudWatch metrics for Windows containers that use the awsvpc network mode.

• Tasks and services that use the awsvpc network mode require the Amazon ECS service-linked
role to provide Amazon ECS with the permissions to make calls to other AWS services on your
behalf. This role is created for you automatically when you create a cluster, or if you create or
update a service, in the AWS Management Console. For more information, see Using service-
linked roles for Amazon ECS. You can also create the service-linked role with the following AWS
CLI command.

aws iam create-service-linked-role --aws-service-name ecs.amazonaws.com

• Your Amazon EC2 Windows instance requires version 1.54.0 or later of the container agent
to run tasks that use the awsvpc network mode. When you bootstrap the instance, you must
configure the options that are required for awsvpc network mode. For more information, see the
section called “Bootstrap Container Instances”.

• Amazon ECS populates the hostname of the task with an Amazon provided (internal) DNS
hostname when both the enableDnsHostnames and enableDnsSupport options are
enabled on your VPC. If these options aren't enabled, the DNS hostname of the task is a random
hostname. For more information about the DNS settings for a VPC, see Using DNS with Your VPC
in the Amazon VPC User Guide.

Task networking for tasks on Amazon EC2 instances 146

https://docs.aws.amazon.com/cli/latest/reference/iam/create-service-linked-role.html
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-dns.html

Amazon Elastic Container Service Developer Guide

• Each Amazon ECS task that uses the awsvpc network mode receives its own elastic network
interface (ENI), which is attached to the Amazon EC2 Windows instance that hosts it. There is
a default quota for the number of network interfaces that can be attached to an Amazon EC2
Windows instance. The primary network interface counts as one toward this quota. For example,
by default a c5.large instance might have only up to three ENIs attached to it. The primary
network interface for the instance counts as one of those. You can attach an additional two ENIs
to the instance. Because each task using the awsvpc network mode requires an ENI, you can
typically only run two such tasks on this instance type. For more information about the default
ENI limits for each instance type, see IP addresses per network interface per instance type in the
Amazon EC2 User Guide for Windows Instances.

• When hosting tasks that use the awsvpc network mode on Amazon EC2 Windows instances,
your task ENIs aren't given public IP addresses. To access the internet, launch tasks in a private
subnet that's configured to use a NAT gateway. For more information, see NAT gateways in the
Amazon VPC User Guide. Inbound network access must be from within the VPC that is using
the private IP address or routed through a load balancer from within the VPC. Tasks that are
launched within public subnets don't have access to the internet.

• Amazon ECS recognizes only the ENIs that it has attached to your Amazon EC2 Windows
instance. If you manually attached ENIs to your instances, Amazon ECS might attempt to add a
task to an instance that doesn't have enough network adapters. This can result in the task timing
out and moving to a deprovisioning status and then a stopped status. We recommend that you
don't attach ENIs to your instances manually.

• Amazon EC2 Windows instances must be registered with the ecs.capability.task-eni
capability to be considered for placement of tasks with the awsvpc network mode.

• You can't manually modify or detach ENIs that are created and attached to your Amazon EC2
Windows instances. This is to prevent you from accidentally deleting an ENI that's associated
with a running task. To release the ENIs for a task, stop the task.

• You can only specify up to 16 subnets and 5 security groups in awsVpcConfiguration when
you run a task or create a service that uses the awsvpc network mode. For more information, see
AwsVpcConfiguration in the Amazon Elastic Container Service API Reference.

• When a task is started with the awsvpc network mode, the Amazon ECS container agent creates
an additional pause container for each task before starting the containers in the task definition.
It then configures the network namespace of the pause container by running the amazon-ecs-
cni-plugins CNI plugins. The agent then starts the rest of the containers in the task so that they
share the network stack of the pause container. This means that all containers in a task are

Task networking for tasks on Amazon EC2 instances 147

https://docs.aws.amazon.com/AWSEC2/latest/WindowsGuide/using-eni.html#AvailableIpPerENI
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-nat-gateway.html
https://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_AwsVpcConfiguration.html
https://github.com/aws/amazon-ecs-cni-plugins
https://github.com/aws/amazon-ecs-cni-plugins

Amazon Elastic Container Service Developer Guide

addressable by the IP addresses of the ENI, and they can communicate with each other over the
localhost interface.

• Services with tasks that use the awsvpc network mode only support Application Load Balancer
and Network Load Balancer. When you create any target groups for these services, you must
choose ip as the target type, not instance. This is because tasks that use the awsvpc
network mode are associated with an ENI, not with an Amazon EC2 Windows instance. For more
information, see Service load balancing.

• If your VPC is updated to change the DHCP options set it uses, you can't apply these changes
to existing tasks. Start new tasks with these changes applied to them, verify that they are
working correctly, and then stop the existing tasks in order to safely change these network
configurations.

• The following are not supported when you use awsvpc network mode in an EC2 Windows
configuration:

• Dual-stack configuration

• IPv6

• ENI trunking

Using a VPC in dual-stack mode

When using a VPC in dual-stack mode, your tasks can communicate over IPv4, or IPv6, or both.
IPv4 and IPv6 addresses are independent of each other. Therefore you must configure routing and
security in your VPC separately for IPv4 and IPv6. For more information about how to configure
your VPC for dual-stack mode, see Migrating to IPv6 in the Amazon VPC User Guide.

If you configured your VPC with an internet gateway or an outbound-only internet gateway, you
can use your VPC in dual-stack mode. By doing this, tasks that are assigned an IPv6 address can
access the internet through an internet gateway or an egress-only internet gateway. NAT gateways
are optional. For more information, see Internet gateways and Egress-only internet gateways in the
Amazon VPC User Guide.

Amazon ECS tasks are assigned an IPv6 address if the following conditions are met:

• The Amazon EC2 Linux instance that hosts the task is using version 1.45.0 or later of the
container agent. For information about how to check the agent version your instance is using,
and updating it if needed, see Updating the Amazon ECS container agent.

Task networking for tasks on Amazon EC2 instances 148

https://docs.aws.amazon.com/vpc/latest/userguide/vpc-migrate-ipv6.html
https://docs.aws.amazon.com/vpc/latest/userguide/VPC_Internet_Gateway.html
https://docs.aws.amazon.com/vpc/latest/userguide/egress-only-internet-gateway.html

Amazon Elastic Container Service Developer Guide

• The dualStackIPv6 account setting is enabled. For more information, see Accessing Amazon
ECS features through account settings.

• Your task is using the awsvpc network mode.

• Your VPC and subnet are configured for IPv6. The configuration includes the network interfaces
that are created in the specified subnet. For more information about how to configure your VPC
for dual-stack mode, see Migrating to IPv6 and Modify the IPv6 addressing attribute for your
subnet in the Amazon VPC User Guide.

Host mode

The host network mode is only supported for Amazon ECS tasks hosted on Amazon EC2 instances.
It's not supported when using Amazon ECS on Fargate.

The host network mode is the most basic network mode that's supported in Amazon ECS. Using
host mode, the networking of the container is tied directly to the underlying host that's running
the container.

Task networking for tasks on Amazon EC2 instances 149

https://docs.aws.amazon.com/vpc/latest/userguide/vpc-migrate-ipv6.html
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-ip-addressing.html#subnet-ipv6
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-ip-addressing.html#subnet-ipv6

Amazon Elastic Container Service Developer Guide

Assume that you're running a Node.js container with an Express application that listens on port
3000 similar to the one illustrated in the preceding diagram. When the host network mode
is used, the container receives traffic on port 3000 using the IP address of the underlying host
Amazon EC2 instance. We do not recommend using this mode.

There are significant drawbacks to using this network mode. You can’t run more than a single
instantiation of a task on each host. This is because only the first task can bind to its required port
on the Amazon EC2 instance. There's also no way to remap a container port when it's using host
network mode. For example, if an application needs to listen on a particular port number, you can't
remap the port number directly. Instead, you must manage any port conflicts through changing
the application configuration.

There are also security implications when using the host network mode. This mode allows
containers to impersonate the host, and it allows containers to connect to private loopback
network services on the host.

Bridge mode

The bridge network mode is only supported for Amazon ECS tasks hosted on Amazon EC2
instances.

With bridge mode, you're using a virtual network bridge to create a layer between the host and
the networking of the container. This way, you can create port mappings that remap a host port to
a container port. The mappings can be either static or dynamic.

Task networking for tasks on Amazon EC2 instances 150

Amazon Elastic Container Service Developer Guide

With a static port mapping, you can explicitly define which host port you want to map to a
container port. Using the example above, port 80 on the host is being mapped to port 3000 on
the container. To communicate to the containerized application, you send traffic to port 80 to the
Amazon EC2 instance's IP address. From the containerized application’s perspective it sees that
inbound traffic on port 3000.

If you only want to change the traffic port, then static port mappings is suitable. However, this
still has the same disadvantage as using the host network mode. You can't run more than a single
instantiation of a task on each host. This is because a static port mapping only allows a single
container to be mapped to port 80.

To solve this problem, consider using the bridge network mode with a dynamic port mapping as
shown in the following diagram.

Task networking for tasks on Amazon EC2 instances 151

Amazon Elastic Container Service Developer Guide

By not specifying a host port in the port mapping, you can have Docker choose a random, unused
port from the ephemeral port range and assign it as the public host port for the container. For
example, the Node.js application listening on port 3000 on the container might be assigned a
random high number port such as 47760 on the Amazon EC2 host. Doing this means that you can
run multiple copies of that container on the host. Moreover, each container can be assigned its own
port on the host. Each copy of the container receives traffic on port 3000. However, clients that
send traffic to these containers use the randomly assigned host ports.

Amazon ECS helps you to keep track of the randomly assigned ports for each task. It does this by
automatically updating load balancer target groups and AWS Cloud Map service discovery to have
the list of task IP addresses and ports. This makes it easier to use services operating using bridge
mode with dynamic ports.

However, one disadvantage of using the bridge network mode is that it's difficult to lock down
service to service communications. Because services might be assigned to any random, unused
port, it's necessary to open broad port ranges between hosts. However, it's not easy to create
specific rules so that a particular service can only communicate to one other specific service. The
services have no specific ports to use for security group networking rules.

Task networking for tasks on Amazon EC2 instances 152

Amazon Elastic Container Service Developer Guide

Task networking for tasks on Fargate

By default, every Amazon ECS task on Fargate is provided an elastic network interface (ENI) with
a primary private IP address. When using a public subnet, you can optionally assign a public IP
address to the task's ENI. If your VPC is configured for dual-stack mode and you use a subnet with
an IPv6 CIDR block, your task's ENI also receives an IPv6 address. A task can only have one ENI
that's associated with it at a time. Containers that belong to the same task can also communicate
over the localhost interface. For more information about VPCs and subnets, see VPCs and
subnets in the Amazon VPC User Guide.

For a task on Fargate to pull a container image, the task must have a route to the internet. The
following describes how you can verify that your task has a route to the internet.

• When using a public subnet, you can assign a public IP address to the task ENI.

• When using a private subnet, the subnet can have a NAT gateway attached.

• When using container images that are hosted in Amazon ECR, you can configure Amazon ECR to
use an interface VPC endpoint and the image pull occurs over the task's private IPv4 address. For
more information, see Amazon ECR interface VPC endpoints (AWS PrivateLink) in the Amazon
Elastic Container Registry User Guide.

Because each task gets its own ENI, you can use networking features such as VPC Flow Logs, which
you can use to monitor traffic to and from your tasks. For more information, see VPC Flow Logs in
the Amazon VPC User Guide.

You can also take advantage of AWS PrivateLink. You can configure a VPC interface endpoint
so that you can access Amazon ECS APIs through private IP addresses. AWS PrivateLink restricts
all network traffic between your VPC and Amazon ECS to the Amazon network. You don't need
an internet gateway, a NAT device, or a virtual private gateway. For more information, see AWS
PrivateLink in the Amazon ECS Best Practices Guide.

For examples of how to use the NetworkConfiguration resource with AWS CloudFormation, see
the section called “Creating Amazon ECS resources using separate stacks”.

The ENIs that are created are fully managed by AWS Fargate. Moreover, there's an associated IAM
policy that's used to grant permissions for Fargate. For tasks using Fargate platform version 1.4.0
or later, the task receives a single ENI (referred to as the task ENI) and all network traffic flows
through that ENI within your VPC. This traffic is recorded in your VPC flow logs. For tasks that use

Task networking for tasks on Fargate 153

https://docs.aws.amazon.com/vpc/latest/userguide/VPC_Subnets.html
https://docs.aws.amazon.com/vpc/latest/userguide/VPC_Subnets.html
https://docs.aws.amazon.com/AmazonECR/latest/userguide/vpc-endpoints.html
https://docs.aws.amazon.com/vpc/latest/userguide/flow-logs.html
https://docs.aws.amazon.com/AmazonECS/latest/bestpracticesguide/networking-connecting-vpc.html
https://docs.aws.amazon.com/AmazonECS/latest/bestpracticesguide/networking-connecting-vpc.html

Amazon Elastic Container Service Developer Guide

Fargate platform version 1.3.0 and earlier, in addition to the task ENI, the task also receives a
separate Fargate owned ENI, which is used for some network traffic that isn't visible in the VPC
flow logs. The following table describes the network traffic behavior and the required IAM policy
for each platform version.

Action Traffic flow with
Linux platform
version 1.3.0
and earlier

Traffic flow with
Linux platform
version 1.4.0

Traffic flow
with Windows
platform
version 1.0.0

IAM permission

Retrieving
Amazon ECR
login credentials

Fargate owned
ENI

Task ENI Task ENI Task execution
IAM role

Image pull Task ENI Task ENI Task ENI Task execution
IAM role

Sending logs
through a log
driver

Task ENI Task ENI Task ENI Task execution
IAM role

Sending logs
through FireLens
for Amazon ECS

Task ENI Task ENI Task ENI Task IAM role

Retrieving
secrets from
Secrets Manager
or Systems
Manager

Fargate owned
ENI

Task ENI Task ENI Task execution
IAM role

Amazon EFS file
system traffic

Not available Task ENI Task ENI Task IAM role

Application
traffic

Task ENI Task ENI Task ENI Task IAM role

Task networking for tasks on Fargate 154

Amazon Elastic Container Service Developer Guide

Fargate task networking considerations

Consider the following when using task networking.

• The Amazon ECS service-linked role is required to provide Amazon ECS with the permissions
to make calls to other AWS services on your behalf. This role is created for you when you
create a cluster or if you create or update a service in the AWS Management Console. For more
information, see Using service-linked roles for Amazon ECS. You can also create the service-
linked role using the following AWS CLI command.

aws iam create-service-linked-role --aws-service-name ecs.amazonaws.com

• Amazon ECS populates the hostname of the task with an Amazon provided DNS hostname when
both the enableDnsHostnames and enableDnsSupport options are enabled on your VPC. If
these options aren't enabled, the DNS hostname of the task is set to a random hostname. For
more information about the DNS settings for a VPC, see Using DNS with Your VPC in the Amazon
VPC User Guide.

• You can only specify up to 16 subnets and 5 security groups for awsVpcConfiguration.
For more information, see AwsVpcConfiguration in the Amazon Elastic Container Service API
Reference.

• You can't manually detach or modify the ENIs that are created and attached by Fargate. This is
to prevent the accidental deletion of an ENI that's associated with a running task. To release the
ENIs for a task, stop the task.

• If a VPC subnet is updated to change the DHCP options set it uses, you can't also apply these
changes to existing tasks that use the VPC. Start new tasks, which will receive the new setting
to smoothly migrate while testing the new change and then stop the old ones, if no rollback is
required.

• Tasks that are launched in subnets with IPv6 CIDR blocks only receive an IPv6 address when
using Fargate platform version 1.4.0 or later for Linux or 1.0.0 for Windows.

• For tasks that use platform version 1.4.0 or later for Linux or 1.0.0 for Windows, the task ENIs
support jumbo frames. Network interfaces are configured with a maximum transmission unit
(MTU), which is the size of the largest payload that fits within a single frame. The larger the MTU,
the more application payload can fit within a single frame, which reduces per-frame overhead
and increases efficiency. Supporting jumbo frames reduces overhead when the network path
between your task and the destination supports jumbo frames.

Task networking for tasks on Fargate 155

https://docs.aws.amazon.com/cli/latest/reference/iam/create-service-linked-role.html
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-dns.html
https://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_AwsVpcConfiguration.html

Amazon Elastic Container Service Developer Guide

• Services with tasks that use the Fargate launch type only support Application Load Balancer
and Network Load Balancer. Classic Load Balancer isn't supported. When you create any target
groups, you must choose ip as the target type, not instance. For more information, see Service
load balancing.

Using a VPC in dual-stack mode

When using a VPC in dual-stack mode, your tasks can communicate over IPv4 or IPv6, or both. IPv4
and IPv6 addresses are independent of each other and you must configure routing and security in
your VPC separately for IPv4 and IPv6. For more information about configuring your VPC for dual-
stack mode, see Migrating to IPv6 in the Amazon VPC User Guide.

If the following conditions are met, Amazon ECS tasks on Fargate are assigned an IPv6 address:

• Your Amazon ECS dualStackIPv6 account setting is turned on (enabled) for the IAM principal
launching your tasks in the Region you're launching your tasks in. This setting can only be
modified using the API or AWS CLI. You have the option to turn this setting on for a specific IAM
principal on your account or for your entire account by setting your account default setting. For
more information, see Accessing Amazon ECS features through account settings.

• Your VPC and subnet are enabled for IPv6. For more information about how to configure your
VPC for dual-stack mode, see Migrating to IPv6 in the Amazon VPC User Guide.

• Your subnet is enabled for auto-assigning IPv6 addresses. For more information about how to
configure your subnet, see Modify the IPv6 addressing attribute for your subnet in the Amazon
VPC User Guide.

• The task or service uses Fargate platform version 1.4.0 or later for Linux.

If you configure your VPC with an internet gateway or an outbound-only internet gateway, Amazon
ECS tasks on Fargate that are assigned an IPv6 address can access the internet. NAT gateways
aren't needed. For more information, see Internet gateways and Egress-only internet gateways in
the Amazon VPC User Guide.

Fargate task ephemeral storage

When provisioned, each Amazon ECS task hosted on Linux containers on AWS Fargate receives the
following ephemeral storage for bind mounts. This can be mounted and shared among containers
that use the volumes, mountPoints, and volumesFrom parameters in the task definition. This
isn't supported for Windows containers on AWS Fargate.

Fargate task ephemeral storage 156

https://docs.aws.amazon.com/vpc/latest/userguide/vpc-migrate-ipv6.html
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-migrate-ipv6.html
https://docs.aws.amazon.com/vpc/latest/userguide/modify-subnets.html
https://docs.aws.amazon.com/vpc/latest/userguide/VPC_Internet_Gateway.html
https://docs.aws.amazon.com/vpc/latest/userguide/egress-only-internet-gateway.html

Amazon Elastic Container Service Developer Guide

Fargate Linux container platform versions

Version 1.4.0 or later

By default, Amazon ECS tasks that are hosted on Fargate using platform version 1.4.0 or later
receive a minimum of 20 GiB of ephemeral storage. The total amount of ephemeral storage can
be increased, up to a maximum of 200 GiB. You can do this by specifying the ephemeralStorage
parameter in your task definition.

The pulled, compressed, and the uncompressed container image for the task is stored on the
ephemeral storage. To determine the total amount of ephemeral storage your task has to use,
you must subtract the amount of storage your container image uses from the total amount of
ephemeral storage your task is allocated.

For tasks that use platform version 1.4.0 or later that are launched on May 28, 2020 or later, the
ephemeral storage is encrypted with an AES-256 encryption algorithm. This algorithm uses an
AWS owned encryption key.

For tasks that use platform version 1.4.0 or later that are launched on November 18, 2022
or later, the ephemeral storage usage is reported through the task metadata endpoint. Your
applications in your tasks can query the task metadata endpoint version 4 to get their ephemeral
storage reserved size and the amount used.

Additionally, the ephemeral storage reserved size and the amount used are sent to Amazon
CloudWatch Container Insights if you turn on Container Insights.

Note

Fargate reserves space on disk. It is only used by Fargate. You aren't billed for it. It isn't
shown in these metrics. However, you can see this additional storage in other tools such as
df.

Version 1.3.0 or earlier

For Amazon ECS on Fargate tasks that use platform version 1.3.0 or earlier, each task receives the
following ephemeral storage.

• 10 GB of Docker layer storage

Fargate task ephemeral storage 157

Amazon Elastic Container Service Developer Guide

Note

This amount includes both compressed and uncompressed container image artifacts.

• An additional 4 GB for volume mounts. This can be mounted and shared among containers that
use the volumes, mountPoints, and volumesFrom parameters in the task definition.

Fargate Windows container platform versions

Version 1.0.0 or later

By default, Amazon ECS tasks that are hosted on Fargate using platform version 1.0.0 or later
receive a minimum of 20 GiB of ephemeral storage. The total amount of ephemeral storage can
be increased, up to a maximum of 200 GiB. You can do this by specifying the ephemeralStorage
parameter in your task definition.

The pulled, compressed, and the uncompressed container image for the task is stored on the
ephemeral storage. To determine the total amount of ephemeral storage that your task has to use,
you must subtract the amount of storage that your container image uses from the total amount of
ephemeral storage your task is allocated.

For more information, see Bind mounts.

Using data volumes in tasks

Amazon ECS supports the following data volume options for containers:

• Amazon EBS volumes – These volumes provide cost-effective, durable, high-performance block
storage for data-intensive containerized workloads. You can configure at most 1 EBS volume for
attachment to a standalone ECS task when you run the task. Or, you can configure 1 EBS volume
per task for attachment to each task launched via an ECS service when you create or update
the service. Amazon EBS volumes are supported for Linux tasks that are hosted on Fargate or
Amazon EC2 instances. For more information, see Amazon EBS volumes.

• Fargate ephemeral task storage – By default, Amazon ECS tasks that are hosted on Fargate
using platform version 1.4.0 or later receive a minimum of 20 GiB of ephemeral storage. The
total amount of ephemeral storage can be increased, up to a maximum of 200 GiB. You can do
this by specifying the ephemeralStorage parameter in your task definition.

Using data volumes in tasks 158

Amazon Elastic Container Service Developer Guide

• Amazon Elastic File System (Amazon EFS) volumes – These volumes provide simple, scalable,
and persistent file storage for use with your Amazon ECS tasks. With Amazon EFS, storage
capacity is elastic. It grows and shrinks automatically as you add and remove files. Your
applications can have the storage that they need when they need it. Amazon EFS volumes are
supported for tasks that are hosted on Fargate or Amazon EC2 instances. For more information,
see Amazon EFS volumes.

• Amazon FSx for Windows File Server volumes – These volumes provide fully managed Windows
file servers. These file servers are backed by a Windows file system. When using FSx for Windows
File Server together with Amazon ECS, you can provision your Windows tasks with persistent,
distributed, shared, and static file storage. For more information, see FSx for Windows File Server
volumes.

Windows containers on Fargate do not support this option.

• Docker volumes – These volumes are Docker-managed volumes that are created under /
var/lib/docker/volumes on the host Amazon EC2 instance. Docker volume drivers (also
referred to as plugins) are used to integrate the volumes with external storage systems,
such as Amazon EBS. The built-in local volume driver or a third-party volume driver can
be used. Docker volumes are supported only when running tasks on Amazon EC2 instances.
Windows containers support only the use of the local driver. To use Docker volumes, specify
a dockerVolumeConfiguration in your task definition. For more information, see Docker
volumes.

• Bind mounts – These volumes consist of a file or directory on the host, such as an Amazon
EC2 instance or AWS Fargate, that is mounted into a container. Bind mount host volumes are
supported for tasks that are hosted on Fargate or Amazon EC2 instances. Bind mount host
volumes use ephemeral storage on Fargate. The amount of ephemeral storage differs on the
various Fargate platform versions. You can request up to 200 gibibytes (GiB) of ephemeral
storage on Fargate Linux platform version 1.4.0 or later. For more information, see Bind mounts.

Amazon EBS volumes

Amazon Elastic Block Store (Amazon EBS) volumes provide highly available, cost-effective, durable,
high-performance block storage for data-intensive workloads. Amazon EBS volumes can be used
with Amazon ECS tasks for high throughput and transaction-intensive applications. You can
configure at most 1 EBS volume for attachment to a standalone ECS task when you run the task.
Or, you can configure 1 EBS volume per task for attachment to each task launched via an ECS
service when you create or update the service.

Using data volumes in tasks 159

Amazon Elastic Container Service Developer Guide

Amazon EBS volumes that are attached to Amazon ECS tasks are managed by ECS on your behalf,
and can be encrypted with AWS Key Management Service (AWS KMS) keys to protect your data.
You can either configure new, empty volumes for attachment, or you can use snapshots to load
data from existing volumes.

To monitor your volume's performance, you can also use Amazon EBS Amazon CloudWatch
metrics. For more information about metrics, see Amazon CloudWatch metrics for Amazon EBS in
the Amazon EC2 User Guide.

For more information about Amazon EBS volumes, see Amazon EBS volumes in the Amazon EC2
User Guide.

AWS Regions and Availability Zones for Amazon EBS volumes

Amazon EBS volumes can be attached to Amazon ECS tasks in the following AWS Regions:

Region name Region code

US East (N. Virginia) us-east-1

US East (Ohio) us-east-2

US West (N. California) us-west-1

US West (Oregon) us-west-2

Africa (Cape Town) af-south-1

Asia Pacific (Hong Kong) ap-east-1

Asia Pacific (Hyderabad) ap-south-2

Asia Pacific (Jakarta) ap-southeast-3

Asia Pacific (Mumbai) ap-south-1

Asia Pacific (Osaka) ap-northeast-3

Asia Pacific (Seoul) ap-northeast-2

Asia Pacific (Singapore) ap-southeast-1

Using data volumes in tasks 160

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using_cloudwatch_ebs.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ebs-volumes.html

Amazon Elastic Container Service Developer Guide

Region name Region code

Asia Pacific (Sydney) ap-southeast-2

Asia Pacific (Tokyo) ap-northeast-1

Canada (Central) ca-central-1

Europe (Frankfurt) eu-central-1

Europe (Ireland) eu-west-1

Europe (London) eu-west-2

Europe (Milan) eu-south-1

Europe (Paris) eu-west-3

Europe (Spain) eu-south-2

Europe (Stockholm) eu-north-1

Europe (Zurich) eu-central-2

Middle East (Bahrain) me-south-1

Middle East (UAE) me-central-1

South America (São Paulo) sa-east-1

Important

You cannot configure Amazon EBS volumes for attachment to Fargate Amazon ECS tasks in
the euc1-az2 and use1-az3 Availability Zones.

Amazon EBS volume considerations

Consider the following when using Amazon EBS volumes:

Using data volumes in tasks 161

Amazon Elastic Container Service Developer Guide

• Amazon EBS volumes are supported only for Linux tasks hosted on Fargate, and EC2 launch
type tasks hosted on Nitro-based Linux instances with Amazon ECS-optimized Amazon Machine
Images (AMIs).

• For tasks that are hosted on Fargate, Amazon EBS volumes are supported on platform version
1.4.0 or later (Linux). For more information, see Fargate Linux platform versions.

• For tasks that are hosted on Amazon EC2 Linux instances, Amazon EBS volumes are supported
on ECS-optimized AMI 20231219 or later. For more information, see Retrieving Amazon ECS-
Optimized AMI metadata.

• The magnetic (standard) Amazon EBS volume type is not supported for tasks hosted on
Fargate. For more information about Amazon EBS volume types, see Amazon EBS volumes in the
Amazon EC2 User Guide.

• An Amazon ECS infrastructure IAM role is required when creating a service or a standalone
task that is configuring a volume at deployment. You can attach the AWS managed
AmazonECSInfrastructureRolePolicyForVolumes IAM policy to the role, or you can use
the managed policy as a guide to create and attach your own policy with permissions that meet
your specific needs. For more information, see Amazon ECS infrastructure IAM role.

• You can attach at most one Amazon EBS volume to each Amazon ECS task, and it must be a new
volume. You cannot attach an existing Amazon EBS volume to a task. However, you can configure
a new Amazon EBS volume at deployment using the snapshot of an existing volume.

• You can configure Amazon EBS volumes at deployment only for services that use the rolling
update deployment type and the Replica scheduling strategy.

• Amazon ECS automatically adds the reserved tags AmazonECSCreated and
AmazonECSManaged. If you remove these tags from the volume, Amazon ECS won't be able to
manage the volume on your behalf. For more information about tagging Amazon EBS volumes,
see Tagging Amazon EBS volumes. For more information about tagging Amazon ECS resources,
see Tagging your Amazon ECS resources.

• Provisioning volumes from a snapshot of an Amazon EBS volume that contains partitions is not
supported.

• Volumes that are attached to tasks that are managed by a service are not preserved and are
always deleted upon task termination.

• You can't attach an Amazon EBS volume to an EC2 launch type task that's launched on a
container instance based on the Xen system. For more information about instance types, see
Instance types in the Amazon EC2 User Guide.

Using data volumes in tasks 162

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/retrieve-ecs-optimized_AMI.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/retrieve-ecs-optimized_AMI.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ebs-volume-types.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/specify-ebs-config.html#ebs-volume-tagging
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/ecs-using-tags.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instance-types.html

Amazon Elastic Container Service Developer Guide

• You can't configure Amazon EBS volumes for attachment to Amazon ECS tasks that are running
on AWS Outposts.

Data encryption for Amazon EBS volumes

You can use AWS Key Management Service (AWS KMS) to make and manage cryptographic keys
that protect your data. Amazon EBS volumes are encrypted at rest by using AWS KMS keys. The
following types of data are encrypted:

• Data stored at rest on the volume

• Disk I/O

• Snapshots created from the volume

• New volumes created from snapshots

You can configure Amazon EBS encryption by default so that all new volumes created and attached
to a task are encrypted by using the KMS key that you configure for your account. For more
information about Amazon EBS encryption and encryption by default, see Amazon EBS encryption
in the Amazon EC2 User Guide.

Amazon EBS volumes that are attached to tasks can be encrypted by using either a default AWS
managed key with the alias alias/aws/ebs, or a symmetric customer managed key. Default AWS
managed keys are unique to each AWS account per AWS Region and are created automatically. To
create a symmetric customer managed key, follow the steps in Creating symmetric encryption KMS
keys in the AWS KMS Developer Guide.

Customer managed KMS key policy

To use your customer managed key to encrypt the EBS volume that's configured for attachment
to your task, you must configure your KMS key policy to ensure that the IAM role that you use for
volume configuration has the necessary permissions to use the key. The key policy must include
the kms:CreateGrant and kms:GenerateDataKey* permissions. The kms:ReEncryptTo and
kms:ReEncryptFrom permissions are necessary for encrypting volumes that are created using
snapshots. If you want to configure and encrypt only new, empty volumes for attachment, you can
exclude the kms:ReEncryptTo and kms:ReEncryptFrom permissions.

The following JSON snippet shows example key policy statements that must be attached to your
KMS key policy to allow access for ECS to use the key for encrypting the EBS volume. To use the

Using data volumes in tasks 163

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EBSEncryption.html
https://docs.aws.amazon.com/kms/latest/developerguide/create-keys.html#create-symmetric-cmk
https://docs.aws.amazon.com/kms/latest/developerguide/create-keys.html#create-symmetric-cmk

Amazon Elastic Container Service Developer Guide

example policy statements, replace the user input placeholders with your own information.
As always, only configure the permissions that you need.

{
 "Sid": "ReadOnlyPermissions"
 "Effect": "Allow",
 "Principal": { "AWS": "arn:aws:iam::111122223333:role/ecsInfrastructureRole" },
 "Action": "kms:DescribeKey",
 "Resource":"*"
 },
 {
 "Sid": "DataKeyGenerationForAmazonEBS"
 "Effect": "Allow",
 "Principal": { "AWS": "arn:aws:iam::111122223333:role/ecsInfrastructureRole" },
 "Action": [
 "kms:GenerateDataKey*",
 "kms:ReEncryptTo",
 "kms:ReEncryptFrom"
],
 "Resource":"*",
 "Condition": {
 "StringEquals": {
 "kms:CallerAccount": "aws_account_id",
 "kms:ViaService": "ec2.region.amazonaws.com"
 },
 "ForAnyValue:StringEquals": {
 "kms:EncryptionContextKeys": "aws:ebs:id"
 }
 }
 },
 {
 "Sid": "GrantCreationForAmazonEBS"
 "Effect": "Allow",
 "Principal": { "AWS": "arn:aws:iam::111122223333:role/ecsInfrastructureRole" },
 "Action": "kms:CreateGrant",
 "Resource":"*",
 "Condition": {
 "StringEquals": {
 "kms:CallerAccount": "aws_account_id",
 "kms:ViaService": "ec2.region.amazonaws.com"
 },
 "ForAnyValue:StringEquals": {
 "kms:EncryptionContextKeys": "aws:ebs:id"

Using data volumes in tasks 164

Amazon Elastic Container Service Developer Guide

 },
 "Bool": {
 "kms:GrantIsForAWSResource": true
 }
 }
 }

For more information about key policies and permissions, see Key policies in AWS KMS and AWS
KMS permissions in the AWS KMS Developer Guide. For troubleshooting issues related to key
permissions, see Troubleshooting Amazon EBS volume attachment issues.

Configuring Amazon EBS volumes at deployment

To configure an Amazon EBS volume for attachment to your task, you must specify the mount
point configuration in your task definition, name the volume, and set configuredAtLaunch to
true. The following task definition JSON snippet shows the syntax for the mountPoints and
volumes objects in the task definition. For more information about task definition parameters, see
Task definition parameters. To use this example, replace the user input placeholders with
your own information.

{
 "family": "mytaskdef",
 "containerDefinitions": [
 {
 "name": "container-using-ebs",
 "image": "amazonlinux:2",
 "entryPoint": [
 "sh",
 "-c"
],
 "command": [
 "ls -la /mount/ebs"
],
 "mountPoints": [
 {
 "sourceVolume": "myEbsVolume",
 "containerPath": "/mount/ebs",
 "readOnly": true
 }
]
 }
],

Using data volumes in tasks 165

https://docs.aws.amazon.com/kms/latest/developerguide/key-policies.html
https://docs.aws.amazon.com/kms/latest/developerguide/kms-api-permissions-reference.html
https://docs.aws.amazon.com/kms/latest/developerguide/kms-api-permissions-reference.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/troubleshoot-ebs-volumes.html

Amazon Elastic Container Service Developer Guide

 "volumes": [
 {
 "name": "myEBSVolume",
 "configuredAtLaunch": true
 }
]
}

To register the task definition by using the AWS Command Line Interface (AWS CLI), save the
template as a JSON file, and then use the following command. To use this example command,
replace the user input placeholders with your own information.

aws ecs register-task-definition \
 --cli-input-json file://path_to_json_file/task-definition.json

To create and register a task definition using the AWS Management Console, see Creating a task
definition using the console.

After you register the task definition, you can configure the volume at deployment using the AWS
Management Console, Amazon ECS APIs, or by passing an input JSON file with the following AWS
CLI commands:

• run-task to run a standalone ECS task.

• start-task to run a standalone ECS task in a specific container instance. This command is not
applicable for Fargate launch type tasks.

• create-service to create a new ECS service.

• update-service to update an existing service.

Configuring a volume at deployment allows you to create task definitions that aren't constrained
to a volume type or specific EBS volume settings. You can then reuse your task definitions across
different execution environments. For example, you can provide more throughput for your
production workloads then your pre-prod environments.

The following JSON snippet shows all the parameters of an Amazon EBS volume that can be
configured at deployment. To use these parameters for volume configuration, replace the user
input placeholders with your own information. For more information about these parameters,
see Volume configurations.

"volumeConfigurations": [

Using data volumes in tasks 166

https://docs.aws.amazon.com/cli/latest/reference/ecs/run-task.html
https://docs.aws.amazon.com/cli/latest/reference/ecs/start-task.html
https://docs.aws.amazon.com/cli/latest/reference/ecs/create-service.html
https://docs.aws.amazon.com/cli/latest/reference/ecs/update-service.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/service_definition_parameters.html#sd-volumeConfigurations

Amazon Elastic Container Service Developer Guide

 {
 "name": "ebs-volume",
 "managedEBSVolume": {
 "encrypted": true,
 "kmsKeyId": "arn:aws:kms:us-
east-1:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab",
 "volumeType": "gp3",
 "sizeInGiB": 10,
 "snapshotId": "snap-12345",
 "iops": 3000,
 "throughput": 125,
 "tagSpecifications": [
 {
 "resourceType": "volume",
 "tags": [
 {
 "key": "key1",
 "value": "value1"
 }
],
 "propagateTags": "NONE"
 }
],
 "roleArn": "arn:aws::iam:1111222333:role/ecsInfrastructureRole",
 "terminationPolicy": {
 "deleteOnTermination": true//can't be configured for service-
managed tasks, always true
 },
 "filesystemType": "ext4"
 }
 }
]

Note

For a container in your task to write to the mounted Amazon EBS volume, you must run the
container as a root user.

For information about how to diagnose and fix issues that you might encounter when you
configure an EBS volume for attachment to a task, see Troubleshooting Amazon EBS volume
attachment issues. For information about the Amazon ECS infrastructure AWS Identity and Access

Using data volumes in tasks 167

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/troubleshoot-ebs-volumes.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/troubleshoot-ebs-volumes.html

Amazon Elastic Container Service Developer Guide

Management (IAM) role necessary for EBS volume attachment, see Amazon ECS infrastructure IAM
role.

Configuring a volume for a standalone task

The following snippet shows the syntax for configuring Amazon EBS volumes for attachment to a
standalone task. The following JSON snippet shows the syntax for configuring the volumeType,
sizeInGiB, encrypted, and kmsKeyId settings. Save the following snippet as a JSON file. To use
this example, replace the user input placeholders with your own information.

{
 "cluster": "mycluster",
 "taskDefinition": "mytaskdef",
 "volumeConfigurations": [
 {
 "name": "datadir",
 "managedEBSVolume": {
 "volumeType": "gp3",
 "sizeInGiB": 100,
 "roleArn":"arn:aws::iam:1111222333:role/ecsInfrastructureRole",
 "encrypted": true,
 "kmsKeyId":
 "arn:aws:kms:region:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"
 }
 }
]
}

The following command can be used to run a standalone task using a JSON input file. The
configuration specified in the JSON file is used to create and attach an EBS volume to the
standalone task. To use this example, replace the user input placeholders with your own
information.

aws ecs run-task \
 --cli-input-json file://path_to_json_file/task.json

To configure a volume for attachment to a standalone task using the AWS Management Console,
see Creating a standalone task.

Using data volumes in tasks 168

Amazon Elastic Container Service Developer Guide

Configuring a volume at service creation

The following snippet shows the syntax for configuring Amazon EBS volumes for attachment to
tasks managed by a service. The volumes are sourced from the snapshot by using the snapshotId.
Save the following snippet as a JSON file. To use this example, replace the user input
placeholders with your own information.

{
 "cluster": "mycluster",
 "taskDefinition": "mytaskdef",
 "serviceName": "mysvc",
 "desiredCount": 2,
 "volumeConfigurations": [
 {
 "name": "myEbsVolume",
 "managedEBSVolume": {
 "roleArn":"arn:aws::iam:1111222333:role/ecsInfrastructureRole",
 "snapshotId": "snap-12345"
 }
 }
]
}

You can use the following command to create a service by using a JSON input file. The
configuration specified in the JSON file is used to create and attach an EBS volume to each task
managed by the service. To use this example command, replace the user input placeholders
with your own information.

aws ecs create-service \
 --cluster mycluster \
 --service-name mysvc \
 --cli-input-json file://path_to_json_file/create-service.json

To configure a volume for attachment to service-managed tasks during service creation using the
AWS Management Console, see Creating a service using the console.

Configuring a volume at service update

The following JSON snippet shows the syntax for updating a service that previously did not have
Amazon EBS volumes configured for attachment to tasks. You must provide the ARN of a task
definition with configuredAtLaunch set to true. The following JSON snippet shows the syntax

Using data volumes in tasks 169

Amazon Elastic Container Service Developer Guide

for configuring the volumeType, sizeInGiB, throughput, and iops, and filesystemType
settings of Amazon EBS volumes configured for attachment to tasks managed by a service. One
volume is attached to each task in the service. To use this example, replace the user input
placeholders with your own information.

{
 "cluster": "mycluster",
 "taskDefinition": "mytaskdef",
 "serviceName": "mysvc",
 "desiredCount": 2,
 "volumeConfigurations": [
 {
 "name": "myEbsVolume",
 "managedEBSVolume": {
 "roleArn":"arn:aws::iam:1111222333:role/ecsInfrastructureRole",
 "volumeType": "gp3",
 "sizeInGiB": 100,
 "iops": 3000,
 "throughput": 125,
 "filesystemType": "ext4"
 }
 }
]
}

The following JSON snippet shows the syntax for updating a service to no longer utilize Amazon
EBS volumes. You must provide the ARN of a task definition with configuredAtLaunch set
to false, or a task definition without the configuredAtLaunch parameter. You must also
provide an empty volumeConfigurations object. To use this example, replace the user input
placeholders with your own information.

{
 "cluster": "mycluster",
 "taskDefinition": "mytaskdef",
 "serviceName": "mysvc",
 "desiredCount": 2,
 "volumeConfigurations": []
}

You can use the following command to update a service by using a JSON input file. To use this
example command, replace the user input placeholders with your own information.

Using data volumes in tasks 170

Amazon Elastic Container Service Developer Guide

aws ecs update-service \
 --cli-input-json file://path_to_json_file/update-service.json

To configure a volume for attachment to service-managed tasks during service update using the
AWS Management Console, see Updating a service using the console .

Amazon EBS volume termination policy

When an Amazon ECS task terminates, Amazon ECS uses the deleteOnTermination value to
determine whether the Amazon EBS volume that's associated with the terminated task should
be deleted. By default, EBS volumes that are attached to tasks are deleted when the task is
terminated. For standalone tasks, you can change this setting to instead preserve the volume upon
task termination.

Note

Volumes that are attached to tasks that are managed by a service are not preserved and are
always deleted upon task termination.

Tagging Amazon EBS volumes

You can tag Amazon EBS volumes by using the tagSpecifications object. Using the object,
you can provide your own tags and set propagation of tags from the task definition or the service,
depending on whether the volume is attached to a standalone task or a task in a service. Amazon
ECS automatically attaches the AmazonECSCreated and AmazonECSManaged reserved tags to an
Amazon EBS volume. An additional 48 user-defined, ECS-managed, and propagated tags can be
added to a volume for a total of 50 tags maximum per volume.

If you want to add Amazon ECS-managed tags to your volume, you must set
enableECSManagedTags to true in your UpdateService, CreateService,RunTask
or StartTaskcall. If you turn on Amazon ECS-managed tags, Amazon ECS will tag the
volume automatically with cluster and service information(aws:ecs:clusterName and
aws:ecs:serviceName). For more information about tagging Amazon ECS resources, see Tagging
your Amazon ECS resources.

The following JSON snippet shows the syntax for tagging each Amazon EBS volume that
is attached to each task in a service with a user-defined tag and ECS-managed tags. To use

Using data volumes in tasks 171

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/ecs-using-tags.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/ecs-using-tags.html

Amazon Elastic Container Service Developer Guide

this example for creating a service, replace the user input placeholders with your own
information.

{
 "cluster": "mycluster",
 "taskDefinition": "mytaskdef",
 "serviceName": "mysvc",
 "desiredCount": 2,
 "enableECSManagedTags": true,
 "volumeConfigurations": [
 {
 "name": "datadir",
 "managedEBSVolume": {
 "volumeType": "gp3",
 "sizeInGiB": 100,
 "tagSpecifications": [
 {
 "resourceType": "volume",
 "tags": [
 {
 "key": "key1",
 "value": "value1"
 }
],
 "propagateTags": "NONE"
 }
]
 "roleArn":"arn:aws::iam:1111222333:role/ecsInfrastructureRole",
 "encrypted": true,
 "kmsKeyId":
 "arn:aws:kms:region:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"
 }
 }
]
}

Note

You mut specify a volume resource type to tag Amazon EBS volumes.

Using data volumes in tasks 172

Amazon Elastic Container Service Developer Guide

Amazon EBS volume performance for Fargate on-demand tasks

The baseline Amazon EBS volume IOPS and throughput available for a Fargate on-demand task
depends on the total CPU units you request for the task. If you request 0.25, 0.5, or 1 virtual
CPU unit (vCPU) for your Fargate task, we recommend that you configure a General Purpose SSD
volume (gp2 or gp3) or a Hard Disk Drive (HDD) volume (st1 or sc1). If you request more than 1
vCPU for your Fargate task, the following baseline performance limits apply to an Amazon EBS
volume attached to the task. You may temporarily get higher EBS performance than the following
limits. However, we recommend that you plan your workload based on these limits.

CPU units requested
(in vCPUs)

Baseline Amazon
EBS IOPS(16 KiB I/
O)

Baseline Amazon
EBS Throughput (in
MiBps, 128 KiB I/O)

Baseline bandwidth
(in Mbps)

2 3,000 75 360

4 5,000 120 1,150

8 10,000 250 2,300

16 15,000 500 4,500

Note

When you configure an Amazon EBS volume for attachment to a Fargate task, the Amazon
EBS performance limit for the Fargate task is shared between the task's ephemeral storage
and the attached volume.

Amazon EFS volumes

Amazon Elastic File System (Amazon EFS) provides simple, scalable file storage for use with your
Amazon ECS tasks. With Amazon EFS, storage capacity is elastic. It grows and shrinks automatically
as you add and remove files. Your applications can have the storage they need and when they need
it.

You can use Amazon EFS file systems with Amazon ECS to export file system data across your
fleet of container instances. That way, your tasks have access to the same persistent storage, no

Using data volumes in tasks 173

Amazon Elastic Container Service Developer Guide

matter the instance on which they land. Your task definitions must reference volume mounts on
the container instance to use the file system. The following sections describe how to get started
using Amazon EFS with Amazon ECS.

For a tutorial, see Using Amazon EFS file systems with Amazon ECS using the console.

Amazon EFS volume considerations

Consider the following when using Amazon EFS volumes:

• For tasks that use the EC2 launch type, Amazon EFS file system support was added as a public
preview with Amazon ECS-optimized AMI version 20191212 with container agent version
1.35.0. However, Amazon EFS file system support entered general availability with Amazon
ECS-optimized AMI version 20200319 with container agent version 1.38.0, which contained the
Amazon EFS access point and IAM authorization features. We recommend that you use Amazon
ECS-optimized AMI version 20200319 or later to use these features. For more information, see
Amazon ECS-optimized AMI.

Note

If you create your own AMI, you must use container agent 1.38.0 or later, ecs-init
version 1.38.0-1 or later, and run the following commands on your Amazon EC2 instance
to enable the Amazon ECS volume plugin. The commands are dependent on whether
you're using Amazon Linux 2 or Amazon Linux as your base image.
Amazon Linux 2

yum install amazon-efs-utils
systemctl enable --now amazon-ecs-volume-plugin

Amazon Linux

yum install amazon-efs-utils
sudo shutdown -r now

• For tasks that are hosted on Fargate, Amazon EFS file systems are supported on platform version
1.4.0 or later (Linux). For more information, see Fargate Linux platform versions.

• When using Amazon EFS volumes for tasks that are hosted on Fargate, Fargate creates a
supervisor container that's responsible for managing the Amazon EFS volume. The supervisor
container uses a small amount of the task's memory. The supervisor container is visible when

Using data volumes in tasks 174

Amazon Elastic Container Service Developer Guide

querying the task metadata version 4 endpoint. Additionally, it is visible in CloudWatch Container
Insights as the container name aws-fargate-supervisor. For more information when using
the Amazon EC2 launch type, see Task metadata endpoint version 4. For more information when
using the Fargate launch type, see Task metadata endpoint version 4 for tasks on Fargate.

• Using Amazon EFS volumes or specifying an EFSVolumeConfiguration isn't supported on
external instances.

• We recommend that you set the ECS_ENGINE_TASK_CLEANUP_WAIT_DURATION parameter in
the agent configuration file to a value that is less than the default (about 1 hour). This change
helps prevent EFS mount credential expiration and allows for cleanup of mounts that are not in
use. For more information, see Amazon ECS container agent configuration.

Using Amazon EFS access points

Amazon EFS access points are application-specific entry points into an EFS file system for
managing application access to shared datasets. For more information about Amazon EFS access
points and how to control access to them, see Working with Amazon EFS Access Points in the
Amazon Elastic File System User Guide.

Access points can enforce a user identity, including the user's POSIX groups, for all file system
requests that are made through the access point. Access points can also enforce a different root
directory for the file system. This is so that clients can only access data in the specified directory or
its subdirectories.

Note

When creating an EFS access point, specify a path on the file system to serve as the root
directory. When referencing the EFS file system with an access point ID in your Amazon ECS
task definition, the root directory must either be omitted or set to /, which enforces the
path set on the EFS access point.

You can use an Amazon ECS task IAM role to enforce that specific applications use a specific access
point. By combining IAM policies with access points, you can provide secure access to specific
datasets for your applications. For more information about how to use task IAM roles, see Task IAM
role.

Using data volumes in tasks 175

https://docs.aws.amazon.com/efs/latest/ug/efs-access-points.html

Amazon Elastic Container Service Developer Guide

Specifying an Amazon EFS file system in your task definition

To use Amazon EFS file system volumes for your containers, you must specify the volume and
mount point configurations in your task definition. The following task definition JSON snippet
shows the syntax for the volumes and mountPoints objects for a container.

{
 "containerDefinitions": [
 {
 "name": "container-using-efs",
 "image": "amazonlinux:2",
 "entryPoint": [
 "sh",
 "-c"
],
 "command": [
 "ls -la /mount/efs"
],
 "mountPoints": [
 {
 "sourceVolume": "myEfsVolume",
 "containerPath": "/mount/efs",
 "readOnly": true
 }
]
 }
],
 "volumes": [
 {
 "name": "myEfsVolume",
 "efsVolumeConfiguration": {
 "fileSystemId": "fs-1234",
 "rootDirectory": "/path/to/my/data",
 "transitEncryption": "ENABLED",
 "transitEncryptionPort": integer,
 "authorizationConfig": {
 "accessPointId": "fsap-1234",
 "iam": "ENABLED"
 }
 }
 }
]
}

Using data volumes in tasks 176

Amazon Elastic Container Service Developer Guide

efsVolumeConfiguration

Type: Object

Required: No

This parameter is specified when using Amazon EFS volumes.

fileSystemId

Type: String

Required: Yes

The Amazon EFS file system ID to use.

rootDirectory

Type: String

Required: No

The directory within the Amazon EFS file system to mount as the root directory inside the
host. If this parameter is omitted, the root of the Amazon EFS volume is used. Specifying /
has the same effect as omitting this parameter.

Important

If an EFS access point is specified in the authorizationConfig, the root directory
parameter must either be omitted or set to /, which enforces the path set on the EFS
access point.

transitEncryption

Type: String

Valid values: ENABLED | DISABLED

Required: No

Specifies whether to enable encryption for Amazon EFS data in transit between the Amazon
ECS host and the Amazon EFS server. If Amazon EFS IAM authorization is used, transit

Using data volumes in tasks 177

Amazon Elastic Container Service Developer Guide

encryption must be enabled. If this parameter is omitted, the default value of DISABLED is
used. For more information, see Encrypting Data in Transit in the Amazon Elastic File System
User Guide.

transitEncryptionPort

Type: Integer

Required: No

The port to use when sending encrypted data between the Amazon ECS host and the
Amazon EFS server. If you don't specify a transit encryption port, it uses the port selection
strategy that the Amazon EFS mount helper uses. For more information, see EFS Mount
Helper in the Amazon Elastic File System User Guide.

authorizationConfig

Type: Object

Required: No

The authorization configuration details for the Amazon EFS file system.

accessPointId

Type: String

Required: No

The access point ID to use. If an access point is specified, the root directory value in the
efsVolumeConfiguration must either be omitted or set to /, which enforces the path
set on the EFS access point. If an access point is used, transit encryption must be enabled
in the EFSVolumeConfiguration. For more information, see Working with Amazon
EFS Access Points in the Amazon Elastic File System User Guide.

iam

Type: String

Valid values: ENABLED | DISABLED

Required: No

Using data volumes in tasks 178

https://docs.aws.amazon.com/efs/latest/ug/encryption-in-transit.html
https://docs.aws.amazon.com/efs/latest/ug/efs-mount-helper.html
https://docs.aws.amazon.com/efs/latest/ug/efs-mount-helper.html
https://docs.aws.amazon.com/efs/latest/ug/efs-access-points.html
https://docs.aws.amazon.com/efs/latest/ug/efs-access-points.html

Amazon Elastic Container Service Developer Guide

Specifies whether to use the Amazon ECS task IAM role defined in a task definition when
mounting the Amazon EFS file system. If enabled, transit encryption must be enabled
in the EFSVolumeConfiguration. If this parameter is omitted, the default value of
DISABLED is used. For more information, see IAM Roles for Tasks.

FSx for Windows File Server volumes

FSx for Windows File Server provides fully managed Windows file servers, that are backed by a
Windows file system. When using FSx for Windows File Server together with ECS, you can provision
your Windows tasks with persistent, distributed, shared, static file storage. For more information,
see What Is FSx for Windows File Server?.

Note

EC2 instances that use the Amazon ECS-Optimized Windows Server 2016 Full AMI do not
support FSx for Windows File Server ECS task volumes.
You cannot use FSx for Windows File Server volumes in a Windows containers on Fargate
configuration.

You can use FSx for Windows File Server to deploy Windows workloads that require access to
shared external storage, highly-available Regional storage, or high-throughput storage. You can
mount one or more FSx for Windows File Server file system volumes to an Amazon ECS container
that runs on an Amazon ECS Windows instance. You can share FSx for Windows File Server file
system volumes between multiple Amazon ECS containers within a single Amazon ECS task.

To enable the use of FSx for Windows File Server with ECS, include the FSx for Windows File Server
file system ID and the related information in a task definition. This is in the following example task
definition JSON snippet. Before you create and run a task definition, you need the following.

• An ECS Windows EC2 instance that's joined to a valid domain. It can be hosted by an AWS
Directory Service for Microsoft Active Directory, on-premises Active Directory or self-hosted
Active Directory on Amazon EC2.

• An AWS Secrets Manager secret or Systems Manager parameter that contains the credentials
that are used to join the Active Directory domain and attach the FSx for Windows File Server file
system. The credential values are the name and password credentials that you entered when
creating the Active Directory.

Using data volumes in tasks 179

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/task-iam-roles.html
https://docs.aws.amazon.com/fsx/latest/WindowsGuide/what-is.html
https://docs.aws.amazon.com/directoryservice/latest/admin-guide/directory_microsoft_ad.html
https://docs.aws.amazon.com/directoryservice/latest/admin-guide/directory_microsoft_ad.html

Amazon Elastic Container Service Developer Guide

The following sections describe how to get started using FSx for Windows File Server with Amazon
ECS.

For a related tutorial, see Using FSx for Windows File Server file systems with Amazon ECS.

FSx for Windows File Server volume considerations

Consider the following when using FSx for Windows File Server volumes:

• FSx for Windows File Server with Amazon ECS only supports Windows Amazon EC2 instances.
Linux Amazon EC2 instances aren't supported.

• FSx for Windows File Server with Amazon ECS doesn't support AWS Fargate.

• FSx for Windows File Server with Amazon ECS with awsvpc network mode requires version
1.54.0 or later of the container agent.

• The maximum number of drive letters that can be used for an Amazon ECS task is 23. Each task
with an FSx for Windows File Server volume gets a drive letter assigned to it.

• By default, task resource cleanup time is three hours after the task ended. Even if
no tasks use it, a file mapping that's created by a task persists for three hours. The
default cleanup time can be configured by using the Amazon ECS environment variable
ECS_ENGINE_TASK_CLEANUP_WAIT_DURATION. For more information, see Amazon ECS
container agent configuration.

• Tasks typically only run in the same VPC as the FSx for Windows File Server file system. However,
it's possible to have cross-VPC support if there's an established network connectivity between
the Amazon ECS cluster VPC and the FSx for Windows File Server file-system through VPC
peering.

• You control access to an FSx for Windows File Server file system at the network level by
configuring the VPC security groups. Only tasks that are hosted on EC2 instances joined to the
Active Directory domain with correctly configured Active Directory security groups can access
the FSx for Windows File Server file-share. If the security groups are misconfigured, ECS fails to
launch the task with the following error message: unable to mount file system fs-id.”

• FSx for Windows File Server is integrated with AWS Identity and Access Management (IAM)
to control the actions that your IAM users and groups can take on specific FSx for Windows
File Server resources. With client authorization, customers can define IAM roles that allow or
deny access to specific FSx for Windows File Server file systems, optionally require read-only
access, and optionally allow or disallow root access to the file system from the client. For more
information, see Security in the Amazon FSx Windows User Guide.

Using data volumes in tasks 180

https://docs.aws.amazon.com/fsx/latest/WindowsGuide/security.html

Amazon Elastic Container Service Developer Guide

Specifying an FSx for Windows File Server file system in your task definition

To use FSx for Windows File Server file system volumes for your containers, specify the volume
and mount point configurations in your task definition. The following task definition JSON snippet
shows the syntax for the volumes and mountPoints objects for a container.

{
 "containerDefinitions": [
 {
 "entryPoint": [
 "powershell",
 "-Command"
],
 "portMappings": [],
 "command": ["New-Item -Path C:\\fsx-windows-dir\\index.html -ItemType file
 -Value '<html> <head> <title>Amazon ECS Sample App</title> <style>body {margin-top:
 40px; background-color: #333;} </style> </head><body> <div style=color:white;text-
align:center> <h1>Amazon ECS Sample App</h1> <h2>It Works!</h2> <p>You are using Amazon
 FSx for Windows File Server file system for persistent container storage.</p>' -
Force"],
 "cpu": 512,
 "memory": 256,
 "image": "mcr.microsoft.com/windows/servercore/iis:windowsservercore-
ltsc2019",
 "essential": false,
 "name": "container1",
 "mountPoints": [
 {
 "sourceVolume": "fsx-windows-dir",
 "containerPath": "C:\\fsx-windows-dir",
 "readOnly": false
 }
]
 },
 {
 "entryPoint": [
 "powershell",
 "-Command"
],
 "portMappings": [
 {
 "hostPort": 443,
 "protocol": "tcp",

Using data volumes in tasks 181

Amazon Elastic Container Service Developer Guide

 "containerPort": 80
 }
],
 "command": ["Remove-Item -Recurse C:\\inetpub\\wwwroot* -Force; Start-
Sleep -Seconds 120; Move-Item -Path C:\\fsx-windows-dir\\index.html -Destination C:\
\inetpub\\wwwroot\\index.html -Force; C:\\ServiceMonitor.exe w3svc"],
 "mountPoints": [
 {
 "sourceVolume": "fsx-windows-dir",
 "containerPath": "C:\\fsx-windows-dir",
 "readOnly": false
 }
],
 "cpu": 512,
 "memory": 256,
 "image": "mcr.microsoft.com/windows/servercore/iis:windowsservercore-
ltsc2019",
 "essential": true,
 "name": "container2"
 }
],
 "family": "fsx-windows",
 "executionRoleArn": "arn:aws:iam::111122223333:role/ecsTaskExecutionRole",
 "volumes": [
 {
 "name": "fsx-windows-dir",
 "fsxWindowsFileServerVolumeConfiguration": {
 "fileSystemId": "fs-0eeb5730b2EXAMPLE",
 "authorizationConfig": {
 "domain": "example.com",
 "credentialsParameter": "arn:arn-1234"
 },
 "rootDirectory": "share"
 }
 }
]
}

FSxWindowsFileServerVolumeConfiguration

Type: Object

Required: No

Using data volumes in tasks 182

Amazon Elastic Container Service Developer Guide

This parameter is specified when you're using FSx for Windows File Server file system for task
storage.

fileSystemId

Type: String

Required: Yes

The FSx for Windows File Server file system ID to use.

rootDirectory

Type: String

Required: Yes

The directory within the FSx for Windows File Server file system to mount as the root
directory inside the host.

authorizationConfig

credentialsParameter

Type: String

Required: Yes

The authorization credential options:

• Amazon Resource Name (ARN) of an Secrets Manager secret.

• Amazon Resource Name (ARN) of an Systems Manager parameter.

domain

Type: String

Required: Yes

A fully qualified domain name that's hosted by an AWS Directory Service for Microsoft
Active Directory (AWS Managed Microsoft AD) directory or a self-hosted EC2 Active
Directory.

Credential storage methods

There are two different methods of storing credentials for use with the credentials parameter.

Using data volumes in tasks 183

https://docs.aws.amazon.com/fsx/latest/WindowsGuide/what-is.html
https://docs.aws.amazon.com/secretsmanager
https://docs.aws.amazon.com/systems-manager/latest/userguide/integration-ps-secretsmanager.html
https://docs.aws.amazon.com/directoryservice/latest/admin-guide/directory_microsoft_ad.html
https://docs.aws.amazon.com/directoryservice/latest/admin-guide/directory_microsoft_ad.html

Amazon Elastic Container Service Developer Guide

• AWS Secrets Manager secret

This credential can be created in the AWS Secrets Manager console by using the Other
type of secret category. You add a row for each key/value pair, username/admin and
password/password.

• Systems Manager parameter

This credential can be created in the Systems Manager parameter console by entering text in the
form that's in the following example code snippet.

{
 "username": "admin",
 "password": "password"
}

The credentialsParameter in the task definition
FSxWindowsFileServerVolumeConfiguration parameter holds either the secret ARN or the
Systems Manager parameter ARN. For more information, see What is AWS Secrets Manager in the
Secrets Manager User Guide and Systems Manager Parameter Store from the Systems Manager User
Guide.

Docker volumes

When using Docker volumes, the built-in local driver or a third-party volume driver can be used.
Docker volumes are managed by Docker and a directory is created in /var/lib/docker/volumes
on the container instance that contains the volume data.

To use Docker volumes, specify a dockerVolumeConfiguration in your task definition. For more
information, see Using Volumes.

Some common use cases for Docker volumes are the following:

• To provide persistent data volumes for use with containers

• To share a defined data volume at different locations on different containers on the same
container instance

• To define an empty, nonpersistent data volume and mount it on multiple containers within the
same task

• To provide a data volume to your task that's managed by a third-party driver

Using data volumes in tasks 184

https://docs.aws.amazon.com/secretsmanager/latest/userguide/intro.html
https://docs.aws.amazon.com/systems-manager/latest/userguide/systems-manager-parameter-store.html
https://docs.docker.com/storage/volumes/

Amazon Elastic Container Service Developer Guide

Docker volume considerations

Consider the following when using Docker volumes:

• Docker volumes are only supported when using the EC2 launch type or external instances.

• Windows containers only support the use of the local driver.

• If a third-party driver is used, make sure it's installed and active on the container instance before
the container agent is started. If the third-party driver isn't active before the agent is started, you
can restart the container agent using one of the following commands:

• For the Amazon ECS-optimized Amazon Linux 2 AMI:

sudo systemctl restart ecs

• For the Amazon ECS-optimized Amazon Linux AMI:

sudo stop ecs && sudo start ecs

Specifying a Docker volume in your task definition

Before your containers can use data volumes, you must specify the volume and mount point
configurations in your task definition. This section describes the volume configuration for a
container. For tasks that use a Docker volume, specify a dockerVolumeConfiguration. For tasks
that use a bind mount host volume, specify a host and optional sourcePath.

The following task definition JSON shows the syntax for the volumes and mountPoints objects
for a container.

{
 "containerDefinitions": [
 {
 "mountPoints": [
 {
 "sourceVolume": "string",
 "containerPath": "/path/to/mount_volume",
 "readOnly": boolean
 }
]
 }
],
 "volumes": [

Using data volumes in tasks 185

Amazon Elastic Container Service Developer Guide

 {
 "name": "string",
 "dockerVolumeConfiguration": {
 "scope": "string",
 "autoprovision": boolean,
 "driver": "string",
 "driverOpts": {
 "key": "value"
 },
 "labels": {
 "key": "value"
 }
 }
 }
]
}

name

Type: String

Required: No

The name of the volume. Up to 255 letters (uppercase and lowercase), numbers, hyphens (-),
and underscores (_) are allowed. This name is referenced in the sourceVolume parameter of
the container definition mountPoints object.

dockerVolumeConfiguration

Type: DockerVolumeConfiguration Object

Required: No

This parameter is specified when using Docker volumes. Docker volumes are supported only
when running tasks on EC2 instances. Windows containers support only the use of the local
driver. To use bind mounts, specify a host instead.

scope

Type: String

Valid Values: task | shared

Required: No

Using data volumes in tasks 186

https://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_DockerVolumeConfiguration.html

Amazon Elastic Container Service Developer Guide

The scope for the Docker volume, which determines its lifecycle. Docker volumes that are
scoped to a task are automatically provisioned when the task starts and destroyed when
the task stops. Docker volumes that are scoped as shared persist after the task stops.

autoprovision

Type: Boolean

Default value: false

Required: No

If this value is true, the Docker volume is created if it doesn't already exist. This field is
used only if the scope is shared. If the scope is task, then this parameter must either be
omitted or set to false.

driver

Type: String

Required: No

The Docker volume driver to use. The driver value must match the driver name provided by
Docker because this name is used for task placement. If the driver was installed by using
the Docker plugin CLI, use docker plugin ls to retrieve the driver name from your
container instance. If the driver was installed by using another method, use Docker plugin
discovery to retrieve the driver name. For more information, see Docker plugin discovery.
This parameter maps to Driver in the Create a volume section of the Docker Remote API
and the --driver option to docker volume create.

driverOpts

Type: String

Required: No

A map of Docker driver-specific options to pass through. This parameter maps to
DriverOpts in the Create a volume section of the Docker Remote API and the --opt
option to docker volume create.

labels

Type: String

Using data volumes in tasks 187

https://docs.docker.com/engine/extend/plugin_api/#plugin-discovery
https://docs.docker.com/engine/api/v1.38/#operation/VolumeCreate
https://docs.docker.com/engine/api/v1.38/
https://docs.docker.com/engine/reference/commandline/volume_create/
https://docs.docker.com/engine/api/v1.38/#operation/VolumeCreate
https://docs.docker.com/engine/api/v1.38/
https://docs.docker.com/engine/reference/commandline/volume_create/

Amazon Elastic Container Service Developer Guide

Required: No

Custom metadata to add to your Docker volume. This parameter maps to Labels in the
Create a volume section of the Docker Remote API and the --label option to docker
volume create.

mountPoints

Type: Object array

Required: No

The mount points for the data volumes in your container. This parameter maps to Volumes in
the Create a container section of the Docker Remote API and the --volume option to docker
run.

Windows containers can mount whole directories on the same drive as $env:ProgramData.
Windows containers cannot mount directories on a different drive, and mount points cannot be
used across drives.

sourceVolume

Type: String

Required: Yes, when mountPoints are used

The name of the volume to mount.

containerPath

Type: String

Required: Yes, when mountPoints are used

The path in the container where the volume will be mounted.

readOnly

Type: Boolean

Required: No

If this value is true, the container has read-only access to the volume. If this value is false,
then the container can write to the volume. The default value is false.

Using data volumes in tasks 188

https://docs.docker.com/engine/api/v1.38/#operation/VolumeCreate
https://docs.docker.com/engine/api/v1.38/
https://docs.docker.com/engine/reference/commandline/volume_create/
https://docs.docker.com/engine/reference/commandline/volume_create/
https://docs.docker.com/engine/api/v1.38/#operation/ContainerCreate
https://docs.docker.com/engine/api/v1.38/
https://docs.docker.com/engine/reference/commandline/run/
https://docs.docker.com/engine/reference/commandline/run/

Amazon Elastic Container Service Developer Guide

Docker volume examples

The following are examples that show the use of Docker volumes.

To provide nonpersistent storage for a container using a Docker volume

In this example, a container uses an empty data volume that is disposed of after the task is
finished. One example use case is that you might have a container that needs to access some
scratch file storage location during a task. This task can be achieved using a Docker volume.

1. In the task definition volumes section, define a data volume with name and
DockerVolumeConfiguration values. In this example, we specify the scope as task so the
volume is deleted after the task stops and use the built-in local driver.

"volumes": [
 {
 "name": "scratch",
 "dockerVolumeConfiguration" : {
 "scope": "task",
 "driver": "local",
 "labels": {
 "scratch": "space"
 }
 }
 }
]

2. In the containerDefinitions section, define a container with mountPoints values that
reference the name of the defined volume and the containerPath value to mount the
volume at on the container.

"containerDefinitions": [
 {
 "name": "container-1",
 "mountPoints": [
 {
 "sourceVolume": "scratch",
 "containerPath": "/var/scratch"
 }
]
 }
]

Using data volumes in tasks 189

Amazon Elastic Container Service Developer Guide

To provide persistent storage for a container using a Docker volume

In this example, you want a shared volume for multiple containers to use and you want it to persist
after any single task that use it stopped. The built-in local driver is being used. This is so the
volume is still tied to the lifecycle of the container instance.

1. In the task definition volumes section, define a data volume with name and
DockerVolumeConfiguration values. In this example, specify a shared scope so the
volume persists, set autoprovision to true. This is so that the volume is created for use. Then,
also use the built-in local driver.

"volumes": [
 {
 "name": "database",
 "dockerVolumeConfiguration" : {
 "scope": "shared",
 "autoprovision": true,
 "driver": "local",
 "labels": {
 "database": "database_name"
 }
 }
 }
]

2. In the containerDefinitions section, define a container with mountPoints values that
reference the name of the defined volume and the containerPath value to mount the
volume at on the container.

"containerDefinitions": [
 {
 "name": "container-1",
 "mountPoints": [
 {
 "sourceVolume": "database",
 "containerPath": "/var/database"
 }
]
 },
 {
 "name": "container-2",
 "mountPoints": [

Using data volumes in tasks 190

Amazon Elastic Container Service Developer Guide

 {
 "sourceVolume": "database",
 "containerPath": "/var/database"
 }
]
 }
]

To provide NFS persistent storage for a container using a Docker volume

In this example, a container uses an NFS data volume that is automatically mounted when the
task starts and unmounted when the task stops. This uses the Docker built-in local driver. One
example use case is that you might have a local NFS storage and need to access it from an ECS
Anywhere task. This can be achieved using a Docker volume with NFS driver option.

1. In the task definition volumes section, define a data volume with name and
DockerVolumeConfiguration values. In this example, specify a task scope so the volume
is unmounted after the task stops. Use the local driver and configure the driverOpts
with the type, device, and o options accordingly. Replace NFS_SERVER with the NFS server
endpoint.

"volumes": [
 {
 "name": "NFS",
 "dockerVolumeConfiguration" : {
 "scope": "task",
 "driver": "local",
 "driverOpts": {
 "type": "nfs",
 "device": "$NFS_SERVER:/mnt/nfs",
 "o": "addr=$NFS_SERVER"
 }
 }
 }
]

2. In the containerDefinitions section, define a container with mountPoints values that
reference the name of the defined volume and the containerPath value to mount the
volume on the container.

Using data volumes in tasks 191

Amazon Elastic Container Service Developer Guide

"containerDefinitions": [
 {
 "name": "container-1",
 "mountPoints": [
 {
 "sourceVolume": "NFS",
 "containerPath": "/var/nfsmount"
 }
]
 }
]

Bind mounts

With bind mounts, a file or directory on a host, such as an Amazon EC2 instance, is mounted into a
container. Bind mounts are supported for tasks that are hosted on both Fargate and Amazon EC2
instances. Bind mounts are tied to the lifecycle of the container that uses them. After all of the
containers that use a bind mount are stopped, such as when a task is stopped, the data is removed.
For tasks that are hosted on Amazon EC2 instances, the data can be tied to the lifecycle of the host
Amazon EC2 instance by specifying a host and optional sourcePath value in your task definition.
For more information, see Using bind mounts in the Docker documentation.

The following are common use cases for bind mounts.

• To provide an empty data volume to mount in one or more containers.

• To mount a host data volume in one or more containers.

• To share a data volume from a source container with other containers in the same task.

• To expose a path and its contents from a Dockerfile to one or more containers.

Considerations when using bind mounts

When using bind mounts, consider the following.

• For tasks that are hosted on AWS Fargate using platform version 1.4.0 or later (Linux) or
1.0.0 or later (Windows), by default they receive a minimum of 20 GiB of ephemeral storage
for bind mounts. For Linux tasks, the total amount of ephemeral storage can be increased to a
maximum of 200 GiB by specifying the ephemeralStorage parameter in your task definition.

Using data volumes in tasks 192

https://docs.docker.com/storage/bind-mounts/

Amazon Elastic Container Service Developer Guide

By default, Amazon ECS Windows tasks that are hosted on Fargate using platform version 1.0.0
or later receive a minimum of 20 GiB of ephemeral storage. You can increase the total amount
of ephemeral storage, up to a maximum of 200 GiB by specifying the ephemeralStorage
parameter in your task definition.

• To expose files from a Dockerfile to a data volume when a task is run, the Amazon ECS data
plane looks for a VOLUME directive. If the absolute path that's specified in the VOLUME directive
is the same as the containerPath that's specified in the task definition, the data in the VOLUME
directive path is copied to the data volume. In the following Dockerfile example, a file that's
named examplefile in the /var/log/exported directory is written to the host and then
mounted inside the container.

FROM public.ecr.aws/amazonlinux/amazonlinux:latest
RUN mkdir -p /var/log/exported
RUN touch /var/log/exported/examplefile
VOLUME ["/var/log/exported"]

By default, the volume permissions are set to 0755 and the owner as root. You can customize
these permissions in the Dockerfile. The following example defines the owner of the directory as
node.

FROM public.ecr.aws/amazonlinux/amazonlinux:latest
RUN yum install -y shadow-utils && yum clean all
RUN useradd node
RUN mkdir -p /var/log/exported && chown node:node /var/log/exported
RUN touch /var/log/exported/examplefile
USER node
VOLUME ["/var/log/exported"]

• For tasks that are hosted on Amazon EC2 instances, when a host and sourcePath value aren't
specified, the Docker daemon manages the bind mount for you. When no containers reference
this bind mount, the Amazon ECS container agent task cleanup service eventually deletes it.
By default, this happens three hours after the container exits. However, you can configure this
duration with the ECS_ENGINE_TASK_CLEANUP_WAIT_DURATION agent variable. For more
information, see Amazon ECS container agent configuration. If you need this data to persist
beyond the lifecycle of the container, specify a sourcePath value for the bind mount.

Using data volumes in tasks 193

Amazon Elastic Container Service Developer Guide

Specifying a bind mount in your task definition

For Amazon ECS tasks that are hosted on either Fargate or Amazon EC2 instances, the
following task definition JSON snippet shows the syntax for the volumes, mountPoints, and
ephemeralStorage objects for a task definition.

{
 "family": "",
 ...
 "containerDefinitions" : [
 {
 "mountPoints" : [
 {
 "containerPath" : "/path/to/mount_volume",
 "sourceVolume" : "string"
 }
],
 "name" : "string"
 }
],
 ...
 "volumes" : [
 {
 "name" : "string"
 }
],
 "ephemeralStorage": {
 "sizeInGiB": integer
 }
}

For Amazon ECS tasks that are hosted on Amazon EC2 instances, you can use the optional host
parameter and a sourcePath when specifying the task volume details. When it's specified, it ties
the bind mount to the lifecycle of the task rather than the container.

"volumes" : [
 {
 "host" : {
 "sourcePath" : "string"
 },
 "name" : "string"
 }

Using data volumes in tasks 194

Amazon Elastic Container Service Developer Guide

]

The following describes each task definition parameter in more detail.

name

Type: String

Required: No

The name of the volume. Up to 255 letters (uppercase and lowercase), numbers, hyphens (-),
and underscores (_) are allowed. This name is referenced in the sourceVolume parameter of
the container definition mountPoints object.

host

Required: No

The host parameter is used to tie the lifecycle of the bind mount to the host Amazon EC2
instance, rather than the task, and where it is stored. If the host parameter is empty, then the
Docker daemon assigns a host path for your data volume, but the data is not guaranteed to
persist after the containers associated with it stop running.

Windows containers can mount whole directories on the same drive as $env:ProgramData.

Note

The sourcePath parameter is supported only when using tasks that are hosted on
Amazon EC2 instances.

sourcePath

Type: String

Required: No

When the host parameter is used, specify a sourcePath to declare the path on the host
Amazon EC2 instance that is presented to the container. If this parameter is empty, then the
Docker daemon assigns a host path for you. If the host parameter contains a sourcePath
file location, then the data volume persists at the specified location on the host Amazon EC2
instance until you delete it manually. If the sourcePath value does not exist on the host

Using data volumes in tasks 195

Amazon Elastic Container Service Developer Guide

Amazon EC2 instance, the Docker daemon creates it. If the location does exist, the contents
of the source path folder are exported.

mountPoints

Type: Object array

Required: No

The mount points for the data volumes in your container. This parameter maps to Volumes in
the Create a container section of the Docker Remote API and the --volume option to docker
run.

Windows containers can mount whole directories on the same drive as $env:ProgramData.
Windows containers cannot mount directories on a different drive, and mount points cannot be
used across drives.

sourceVolume

Type: String

Required: Yes, when mountPoints are used

The name of the volume to mount.

containerPath

Type: String

Required: Yes, when mountPoints are used

The path in the container where the volume will be mounted.

readOnly

Type: Boolean

Required: No

If this value is true, the container has read-only access to the volume. If this value is false,
then the container can write to the volume. The default value is false.

ephemeralStorage

Type: Object

Required: No

Using data volumes in tasks 196

https://docs.docker.com/engine/api/v1.38/#operation/ContainerCreate
https://docs.docker.com/engine/api/v1.38/
https://docs.docker.com/engine/reference/commandline/run/
https://docs.docker.com/engine/reference/commandline/run/

Amazon Elastic Container Service Developer Guide

The amount of ephemeral storage to allocate for the task. This parameter is used to expand the
total amount of ephemeral storage available, beyond the default amount, for tasks hosted on
AWS Fargate using platform version 1.4.0 or later (Linux) or 1.0.0 or later (Windows).

You can use the Copilot CLI, CloudFormation, the AWS SDK or the CLI to specify ephemeral
storage for a bind mount.

Bind mount examples

The following examples cover the most common use cases for using a bind mount for your
containers.

To allocate an increased amount of ephemeral storage space for a Fargate task

For Amazon ECS tasks that are hosted on Fargate using platform version 1.4.0 or later (Linux)
or 1.0.0 (Windows), you can allocate more than the default amount of ephemeral storage for
the containers in your task to use. This example can be incorporated into the other examples to
allocate more ephemeral storage for your Fargate tasks.

• In the task definition, define an ephemeralStorage object. The sizeInGiB must be an
integer between the values of 21 and 200 and is expressed in GiB.

"ephemeralStorage": {
 "sizeInGiB": integer
}

To provide an empty data volume for one or more containers

In some cases, you want to provide the containers in a task some scratch space. For example, you
might have two database containers that need to access the same scratch file storage location
during a task. This can be achieved using a bind mount.

1. In the task definition volumes section, define a bind mount with the name
database_scratch.

 "volumes": [
 {
 "name": "database_scratch"
 }

Using data volumes in tasks 197

Amazon Elastic Container Service Developer Guide

]

2. In the containerDefinitions section, create the database container definitions. This is so
that they mount the volume.

"containerDefinitions": [
 {
 "name": "database1",
 "image": "my-repo/database",
 "cpu": 100,
 "memory": 100,
 "essential": true,
 "mountPoints": [
 {
 "sourceVolume": "database_scratch",
 "containerPath": "/var/scratch"
 }
]
 },
 {
 "name": "database2",
 "image": "my-repo/database",
 "cpu": 100,
 "memory": 100,
 "essential": true,
 "mountPoints": [
 {
 "sourceVolume": "database_scratch",
 "containerPath": "/var/scratch"
 }
]
 }
]

To expose a path and its contents in a Dockerfile to a container

In this example, you have a Dockerfile that writes data that you want to mount inside a container.
This example works for tasks that are hosted on Fargate or Amazon EC2 instances.

1. Create a Dockerfile. The following example uses the public Amazon Linux 2 container image
and creates a file that's named examplefile in the /var/log/exported directory that we
want to mount inside the container. The VOLUME directive should specify an absolute path.

Using data volumes in tasks 198

Amazon Elastic Container Service Developer Guide

FROM public.ecr.aws/amazonlinux/amazonlinux:latest
RUN mkdir -p /var/log/exported
RUN touch /var/log/exported/examplefile
VOLUME ["/var/log/exported"]

By default, the volume permissions are set to 0755 and the owner as root. These permissions
can be changed in the Dockerfile. In the following example, the owner of the /var/log/
exported directory is set to node.

FROM public.ecr.aws/amazonlinux/amazonlinux:latest
RUN yum install -y shadow-utils && yum clean all
RUN useradd node
RUN mkdir -p /var/log/exported && chown node:node /var/log/exported
USER node
RUN touch /var/log/exported/examplefile
VOLUME ["/var/log/exported"]

2. In the task definition volumes section, define a volume with the name application_logs.

 "volumes": [
 {
 "name": "application_logs"
 }
]

3. In the containerDefinitions section, create the application container definitions. This is
so they mount the storage. The containerPath value must match the absolute path that's
specified in the VOLUME directive from the Dockerfile.

 "containerDefinitions": [
 {
 "name": "application1",
 "image": "my-repo/application",
 "cpu": 100,
 "memory": 100,
 "essential": true,
 "mountPoints": [
 {
 "sourceVolume": "application_logs",
 "containerPath": "/var/log/exported"
 }

Using data volumes in tasks 199

Amazon Elastic Container Service Developer Guide

]
 },
 {
 "name": "application2",
 "image": "my-repo/application",
 "cpu": 100,
 "memory": 100,
 "essential": true,
 "mountPoints": [
 {
 "sourceVolume": "application_logs",
 "containerPath": "/var/log/exported"
 }
]
 }
]

To provide an empty data volume for a container that's tied to the lifecycle of the host Amazon
EC2 instance

For tasks that are hosted on Amazon EC2 instances, you can use bind mounts and have the data
tied to the lifecycle of the host Amazon EC2 instance. You can do this by using the host parameter
and specifying a sourcePath value. Any files that exist at the sourcePath are presented to the
containers at the containerPath value. Any files that are written to the containerPath value
are written to the sourcePath value on the host Amazon EC2 instance.

Important

Amazon ECS doesn't sync your storage across Amazon EC2 instances. Tasks that use
persistent storage can be placed on any Amazon EC2 instance in your cluster that has
available capacity. If your tasks require persistent storage after stopping and restarting,
always specify the same Amazon EC2 instance at task launch time with the AWS CLI start-
task command. You can also use Amazon EFS volumes for persistent storage. For more
information, see Amazon EFS volumes.

1. In the task definition volumes section, define a bind mount with name and sourcePath
values. In the following example, the host Amazon EC2 instance contains data at /ecs/
webdata that you want to mount inside the container.

Using data volumes in tasks 200

https://docs.aws.amazon.com/cli/latest/reference/ecs/start-task.html
https://docs.aws.amazon.com/cli/latest/reference/ecs/start-task.html

Amazon Elastic Container Service Developer Guide

 "volumes": [
 {
 "name": "webdata",
 "host": {
 "sourcePath": "/ecs/webdata"
 }
 }
]

2. In the containerDefinitions section, define a container with a mountPoints value that
references the name of the bind mount and the containerPath value to mount the bind
mount at on the container.

 "containerDefinitions": [
 {
 "name": "web",
 "image": "nginx",
 "cpu": 99,
 "memory": 100,
 "portMappings": [
 {
 "containerPort": 80,
 "hostPort": 80
 }
],
 "essential": true,
 "mountPoints": [
 {
 "sourceVolume": "webdata",
 "containerPath": "/usr/share/nginx/html"
 }
]
 }
]

To mount a defined volume on multiple containers at different locations

You can define a data volume in a task definition and mount that volume at different locations
on different containers. For example, your host container has a website data folder at /data/

Using data volumes in tasks 201

Amazon Elastic Container Service Developer Guide

webroot. You might want to mount that data volume as read-only on two different web servers
that have different document roots.

1. In the task definition volumes section, define a data volume with the name webroot and the
source path /data/webroot.

 "volumes": [
 {
 "name": "webroot",
 "host": {
 "sourcePath": "/data/webroot"
 }
 }
]

2. In the containerDefinitions section, define a container for each web server with
mountPoints values that associate the webroot volume with the containerPath value
pointing to the document root for that container.

 "containerDefinitions": [
 {
 "name": "web-server-1",
 "image": "my-repo/ubuntu-apache",
 "cpu": 100,
 "memory": 100,
 "portMappings": [
 {
 "containerPort": 80,
 "hostPort": 80
 }
],
 "essential": true,
 "mountPoints": [
 {
 "sourceVolume": "webroot",
 "containerPath": "/var/www/html",
 "readOnly": true
 }
]
 },
 {
 "name": "web-server-2",

Using data volumes in tasks 202

Amazon Elastic Container Service Developer Guide

 "image": "my-repo/sles11-apache",
 "cpu": 100,
 "memory": 100,
 "portMappings": [
 {
 "containerPort": 8080,
 "hostPort": 8080
 }
],
 "essential": true,
 "mountPoints": [
 {
 "sourceVolume": "webroot",
 "containerPath": "/srv/www/htdocs",
 "readOnly": true
 }
]
 }
]

To mount volumes from another container using volumesFrom

For tasks hosted on Amazon EC2 instances, you can define one or more volumes on a container,
and then use the volumesFrom parameter in a different container definition within the same task
to mount all of the volumes from the sourceContainer at their originally defined mount points.
The volumesFrom parameter applies to volumes defined in the task definition, and those that are
built into the image with a Dockerfile.

1. (Optional) To share a volume that is built into an image, use the VOLUME instruction in the
Dockerfile. The following example Dockerfile uses an httpd image, and then adds a volume
and mounts it at dockerfile_volume in the Apache document root. It is the folder used by
the httpd web server.

FROM httpd
VOLUME ["/usr/local/apache2/htdocs/dockerfile_volume"]

You can build an image with this Dockerfile and push it to a repository, such as Docker Hub,
and use it in your task definition. The example my-repo/httpd_dockerfile_volume image
that's used in the following steps was built with the preceding Dockerfile.

Using data volumes in tasks 203

Amazon Elastic Container Service Developer Guide

2. Create a task definition that defines your other volumes and mount points for the containers.
In this example volumes section, you create an empty volume called empty, which the Docker
daemon manages. There's also a host volume defined that's called host_etc. It exports the /
etc folder on the host container instance.

{
 "family": "test-volumes-from",
 "volumes": [
 {
 "name": "empty",
 "host": {}
 },
 {
 "name": "host_etc",
 "host": {
 "sourcePath": "/etc"
 }
 }
],

In the container definitions section, create a container that mounts the volumes defined
earlier. In this example, the web container mounts the empty and host_etc volumes. This is
the container that uses the image built with a volume in the Dockerfile.

"containerDefinitions": [
 {
 "name": "web",
 "image": "my-repo/httpd_dockerfile_volume",
 "cpu": 100,
 "memory": 500,
 "portMappings": [
 {
 "containerPort": 80,
 "hostPort": 80
 }
],
 "mountPoints": [
 {
 "sourceVolume": "empty",
 "containerPath": "/usr/local/apache2/htdocs/empty_volume"
 },
 {

Using data volumes in tasks 204

Amazon Elastic Container Service Developer Guide

 "sourceVolume": "host_etc",
 "containerPath": "/usr/local/apache2/htdocs/host_etc"
 }
],
 "essential": true
 },

Create another container that uses volumesFrom to mount all of the volumes that are
associated with the web container. All of the volumes on the web container are likewise
mounted on the busybox container. This includes the volume that's specified in the Dockerfile
that was used to build the my-repo/httpd_dockerfile_volume image.

 {
 "name": "busybox",
 "image": "busybox",
 "volumesFrom": [
 {
 "sourceContainer": "web"
 }
],
 "cpu": 100,
 "memory": 500,
 "entryPoint": [
 "sh",
 "-c"
],
 "command": [
 "echo $(date) > /usr/local/apache2/htdocs/empty_volume/date && echo $(date)
 > /usr/local/apache2/htdocs/host_etc/date && echo $(date) > /usr/local/apache2/
htdocs/dockerfile_volume/date"
],
 "essential": false
 }
]
}

When this task is run, the two containers mount the volumes, and the command in the
busybox container writes the date and time to a file. This file is called date in each of the
volume folders. The folders are then visible at the website displayed by the web container.

Using data volumes in tasks 205

Amazon Elastic Container Service Developer Guide

Note

Because the busybox container runs a quick command and then exits, it must be set as
"essential": false in the container definition. Otherwise, it stops the entire task
when it exits.

Managing container swap space

With Amazon ECS, you can control the usage of swap memory space on your Linux-based Amazon
EC2 instances at the container level. Using a per-container swap configuration, each container
within a task definition can have swap enabled or disabled. For those that have it enabled, the
maximum amount of swap space that's used can be limited. For example, latency-critical containers
can have swap disabled. In contrast, containers with high transient memory demands can have
swap turned on to reduce the chances of out-of-memory errors when the container is under load.

The swap configuration for a container is managed by the following container definition
parameters.

maxSwap

The total amount of swap memory (in MiB) a container can use. This parameter is translated to
the --memory-swap option to docker run where the value is the sum of the container memory
plus the maxSwap value.

If a maxSwap value of 0 is specified, the container doesn't use swap. Accepted values are 0
or any positive integer. If the maxSwap parameter is omitted, the container uses the swap
configuration for the container instance that it's running on. A maxSwap value must be set for
the swappiness parameter to be used.

swappiness

You can use this to tune a container's memory swappiness behavior. A swappiness value of
0 causes swapping to not occur unless required. A swappiness value of 100 causes pages
to be swapped aggressively. Accepted values are whole numbers between 0 and 100. If the
swappiness parameter isn't specified, a default value of 60 is used. If a value isn't specified
for maxSwap, this parameter is ignored. This parameter maps to the --memory-swappiness
option to docker run.

Managing container swap space 206

https://docs.docker.com/engine/reference/run/
https://docs.docker.com/engine/reference/run/

Amazon Elastic Container Service Developer Guide

In the following example, the JSON syntax is provided.

"containerDefinitions": [{
 ...
 "linuxParameters": {
 "maxSwap": integer,
 "swappiness": integer
 },
 ...
}]

Container swap considerations

Consider the following when you use a per-container swap configuration.

• Swap space must be enabled and allocated on the Amazon EC2 instance hosting your tasks for
the containers to use. By default, the Amazon ECS optimized AMIs do not have swap enabled.
You must enable swap on the instance to use this feature. For more information, see Instance
Store Swap Volumes in the Amazon EC2 User Guide for Linux Instances or How do I allocate
memory to work as swap space in an Amazon EC2 instance by using a swap file?.

• The swap space container definition parameters are only supported for task definitions that
specify the EC2 launch type. These parameters are not supported for task definitions intended
only for Amazon ECS on Fargate use.

• This feature is only supported for Linux containers. Windows containers are not supported
currently.

• If the maxSwap and swappiness container definition parameters are omitted from a task
definition, each container has a default swappiness value of 60. Moreover, the total swap usage
is limited to two times the memory reservation of the container.

• If you're using tasks on Amazon Linux 2023 the swappiness parameter isn't supported.

Fargate considerations

In order to use Fargate, you must configure your task definion to use the Fargate launch type.
There are additional considerations when using Fargate.

Topics

• Task definition parameters

Fargate considerations 207

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instance-store-swap-volumes.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instance-store-swap-volumes.html
https://aws.amazon.com/premiumsupport/knowledge-center/ec2-memory-swap-file/
https://aws.amazon.com/premiumsupport/knowledge-center/ec2-memory-swap-file/

Amazon Elastic Container Service Developer Guide

• Operating Systems and architectures

• Task CPU and memory

• Task networking

• Task resource limits

• Logging

• Task storage

• Lazy loading container images using Seekable OCI (SOCI)

Task definition parameters

Tasks that use the Fargate launch type don't support all of the Amazon ECS task definition
parameters that are available. Some parameters aren't supported at all, and others behave
differently for Fargate tasks.

The following task definition parameters are not valid in Fargate tasks:

• disableNetworking

• dnsSearchDomains

• dnsServers

• dockerSecurityOptions

• extraHosts

• gpu

• ipcMode

• links

• placementConstraints

• privileged

• maxSwap

• swappiness

The following task definition parameters are valid in Fargate tasks, but have limitations that should
be noted:

• linuxParameters – When specifying Linux-specific options that are applied to the container,
for capabilities the only capability you can add is CAP_SYS_PTRACE. The devices,

Fargate considerations 208

Amazon Elastic Container Service Developer Guide

sharedMemorySize, and tmpfs parameters are not supported. For more information, see Linux
parameters.

• volumes – Fargate tasks only support bind mount host volumes, so the
dockerVolumeConfiguration parameter is not supported. For more information, see
Volumes.

• cpu - For Windows containers on AWS Fargate, the value cannot be less than 1 vCPU.

To ensure that your task definition validates for use with Fargate, you can specify the following
when you register the task definition:

• In the AWS Management Console, for the Requires Compatibilities field, specify FARGATE.

• In the AWS CLI, specify the --requires-compatibilities option.

• In the Amazon ECS API, specify the requiresCompatibilities flag.

Operating Systems and architectures

When you configure a task and container definition for AWS Fargate, you must specify the
Operating System that the container runs. The following Operating Systems are supported for
AWS Fargate:

• Amazon Linux 2

Note

Linux containers use only the kernel and kernel configuration from the host Operating
System. For example, the kernel configuration includes the sysctl system controls.
A Linux container image can be made from a base image that contains the files and
programs from any Linux distribution. If the CPU architecture matches, you can run
containers from any Linux container image on any Operating System.

• Windows Server 2019 Full

• Windows Server 2019 Core

• Windows Server 2022 Full

• Windows Server 2022 Core

Fargate considerations 209

Amazon Elastic Container Service Developer Guide

When you run Windows containers on AWS Fargate, you must have the X86_64 CPU architecture.

When you run Linux containers on AWS Fargate, you can use the X86_64 CPU architecture, or the
ARM64 architecture for your ARM-based applications. For more information, see the section called
“Working with 64-bit ARM workloads on Amazon ECS”.

Task CPU and memory

Amazon ECS task definitions for AWS Fargate require that you specify CPU and memory at the task
level. Although you can also specify CPU and memory at the container level for Fargate tasks, this
is optional. Most use cases are satisfied by only specifying these resources at the task level. The
table below shows the valid combinations of task-level CPU and memory. You can specify memory
values in the JSON file in MiB or GB. You can specify CPU values in the JSON file as an integer in
CPU units or virtual CPUs (vCPUs).

CPU value Memory value Operating systems
supported for AWS Fargate

256 (.25 vCPU) 512 MiB, 1 GB, 2 GB Linux

512 (.5 vCPU) 1 GB, 2 GB, 3 GB, 4 GB Linux

1024 (1 vCPU) 2 GB, 3 GB, 4 GB, 5 GB, 6 GB,
7 GB, 8 GB

Linux, Windows

2048 (2 vCPU) Between 4 GB and 16 GB in 1
GB increments

Linux, Windows

4096 (4 vCPU) Between 8 GB and 30 GB in 1
GB increments

Linux, Windows

8192 (8 vCPU)

Note

This option requires
Linux platform 1.4.0
or later.

Between 16 GB and 60 GB in
4 GB increments

Linux

Fargate considerations 210

Amazon Elastic Container Service Developer Guide

CPU value Memory value Operating systems
supported for AWS Fargate

16384 (16vCPU)

Note

This option requires
Linux platform 1.4.0
or later.

Between 32 GB and 120 GB in
8 GB increments

Linux

Task networking

Amazon ECS tasks for AWS Fargate require the awsvpc network mode, which provides each task
with an elastic network interface. When you run a task or create a service with this network mode,
you must specify one or more subnets to attach the network interface and one or more security
groups to apply to the network interface.

If you are using public subnets, decide whether to provide a public IP address for the network
interface. For a Fargate task in a public subnet to pull container images, a public IP address needs
to be assigned to the task's elastic network interface, with a route to the internet or a NAT gateway
that can route requests to the internet. For a Fargate task in a private subnet to pull container
images, you need a NAT gateway in the subnet to route requests to the internet. When you
host your container images in Amazon ECR, you can configure Amazon ECR to use an interface
VPC endpoint. In this case, the task's private IPv4 address is used for the image pull. For more
information about Amazon ECR interface endpoints, see Amazon ECR interface VPC endpoints
(AWS PrivateLink) in the Amazon Elastic Container Registry User Guide.

The following is an example of the networkConfiguration section for a Fargate service:

"networkConfiguration": {
 "awsvpcConfiguration": {
 "assignPublicIp": "ENABLED",
 "securityGroups": ["sg-12345678"],
 "subnets": ["subnet-12345678"]
 }
}

Fargate considerations 211

https://docs.aws.amazon.com/AmazonECR/latest/userguide/vpc-endpoints.html
https://docs.aws.amazon.com/AmazonECR/latest/userguide/vpc-endpoints.html

Amazon Elastic Container Service Developer Guide

Task resource limits

Amazon ECS task definitions for Linux containers on AWS Fargate support the ulimits parameter
to define the resource limits to set for a container.

Amazon ECS task definitions for Windows on AWS Fargate do not support the ulimits parameter
to define the resource limits to set for a container.

Amazon ECS tasks hosted on Fargate use the default resource limit values set by the operating
system with the exception of the nofile resource limit parameter. The nofile resource limit sets
a restriction on the number of open files that a container can use. On Fargate, the default nofile
soft limit is 1024 and hard limit is 65535. You can set the values of both limits up to 1048576.

The following is an example task definition snippet that shows how to define a custom nofile
limit that has been doubled:

"ulimits": [
 {
 "name": "nofile",
 "softLimit": 2048,
 "hardLimit": 8192
 }
]

For more information on the other resource limits that can be adjusted, see Resource limits.

Logging

Event logging

Amazon ECS logs the actions that it takes to EventBridge. You can use Amazon ECS events for
EventBridge to receive near real-time notifications regarding the current state of your Amazon ECS
clusters, services, and tasks. Additionally, you can automate actions to respond to these events. For
more information, see Automate responses to Amazon ECS errors using EventBridge.

Task lifecycle logging

Tasks that run on Fargate publish timestamps to track the task through the states of the task
lifecycle. You can see the timestamps in the task details in the AWS Management Console and
by describing the task in the AWS CLI and SDKs. For example, you can use the timestamps to

Fargate considerations 212

Amazon Elastic Container Service Developer Guide

evaluate how much time the task spent downloading the container images and decide if you
should optimize the container image size, or use Seekable OCI indexes. For more information about
container image practices, see Best practices for container images.

Application logging

Amazon ECS task definitions for AWS Fargate support the awslogs, splunk, and awsfirelens
log drivers for the log configuration.

The awslogs log driver configures your Fargate tasks to send log information to Amazon
CloudWatch Logs. The following shows a snippet of a task definition where the awslogs log driver
is configured:

"logConfiguration": {
 "logDriver": "awslogs",
 "options": {
 "awslogs-group" : "/ecs/fargate-task-definition",
 "awslogs-region": "us-east-1",
 "awslogs-stream-prefix": "ecs"
 }
}

For more information about using the awslogs log driver in a task definition to send your
container logs to CloudWatch Logs, see Using the awslogs log driver.

For more information about the awsfirelens log driver in a task definition, see Using custom log
routing.

For more information about using the splunk log driver in a task definition, see splunk log driver.

Task storage

For Amazon ECS tasks hosted on Fargate, the following storage types are supported:

• Amazon EBS volumes provide cost-effective, durable, high-performance block storage for data-
intensive containerized workloads. For more information, see Amazon EBS volumes.

• Amazon EFS volumes for persistent storage. For more information, see Amazon EFS volumes.

• Bind mounts for ephemeral storage. For more information, see Bind mounts.

Fargate considerations 213

Amazon Elastic Container Service Developer Guide

Lazy loading container images using Seekable OCI (SOCI)

Amazon ECS tasks on Fargate that use Linux platform version 1.4.0 can use Seekable OCI (SOCI)
to help start tasks faster. With SOCI, containers only spend a few seconds on the image pull before
they can start, providing time for environment setup and application instantiation while the image
is downloaded in the background. This is called lazy loading. When Fargate starts an Amazon ECS
task, Fargate automatically detects if a SOCI index exists for an image in the task and starts the
container without waiting for the entire image to be downloaded.

For containers that run without SOCI indexes, container images are downloaded completely before
the container is started. This behavior is the same on all other platform versions of Fargate and on
the Amazon ECS-optimized AMI on Amazon EC2 instances.

Seekable OCI indexes

Seekable OCI (SOCI) is an open source technology developed by AWS that can launch containers
faster by lazily loading the container image. SOCI works by creating an index (SOCI Index) of the
files within an existing container image. This index helps to launch containers faster, providing
the capability to extract an individual file from a container image before downloading the entire
image. The SOCI index must be stored as an artifact in the same repository as the image within
the container registry. You should only use SOCI indices from trusted sources, as the index is the
authoritative source for the contents of the image. For more information, see Introducing Seekable
OCI for lazy loading container images.

Considerations

If you want Fargate to use a SOCI index to lazily load container images in a task, consider the
following:

• Only tasks that run on Linux platform version 1.4.0 can use SOCI indexes. Tasks that run
Windows containers on Fargate aren't supported.

• Tasks that run on X86_64 or ARM64 CPU architecture are supported. Linux tasks with the ARM64
architecture do not support the Fargate Spot capacity provider.

• Container images in the task definition must have SOCI indexes in the same container registry as
the image.

• Container images in the task definition must be stored in a compatible image registry. The
following lists the compatible registries:

• Amazon ECR private registries.

Fargate considerations 214

https://aws.amazon.com/about-aws/whats-new/2022/09/introducing-seekable-oci-lazy-loading-container-images/
https://aws.amazon.com/about-aws/whats-new/2022/09/introducing-seekable-oci-lazy-loading-container-images/

Amazon Elastic Container Service Developer Guide

• Only container images that use gzip compression or are not compressed are supported.
Container images that use zstd compression aren't supported.

• We recommend that you try lazy loading with container images greater than 250 MiB
compressed in size. You are less likely to see a reduction in the time to load smaller images.

• Because lazy loading can change how long your tasks take to start, you might need to change
various timeouts like the health check grace period for Elastic Load Balancing.

• If you want to prevent a container image from being lazy loaded, delete the SOCI index from the
container registry. If a container image in the task doesn't meet one of the considerations, that
container image is downloaded by the default method.

Creating a Seekable OCI index

For a container image to be lazy loaded it needs a SOCI index (a metadata file) created and stored
in the container image repository along side the container image. To create and push a SOCI
index you can use the open source soci-snapshotter CLI tool on GitHub. Or, you can deploy the
CloudFormation AWS SOCI Index Builder. This is a serverless solution that automatically creates
and pushes a SOCI index when a container image is pushed to Amazon ECR. For more information
about the solution and the installation steps, see CloudFormation AWS SOCI Index Builder on
GitHub. The CloudFormation AWS SOCI Index Builder is a way to automate getting started with
SOCI, while the open source soci tool has more flexibility around index generation and the ability
to integrate index generation in your continuous integration and continuous delivery (CI/CD)
pipelines.

Note

For the SOCI index to be created for an image, the image must exist in the containerd
image store on the computer running soci-snapshotter. If the image is in the Docker
image store, the image can't be found.

Verifying that a task used lazy loading

To verify that a task was lazily loaded using SOCI, check the task metadata endpoint from
inside the task. When you query the task metadata endpoint version 4, there is a Snapshotter
field in the default path for the container that you are querying from. Additionally, there are
Snapshotter fields for each container in the /task path. The default value for this field is

Fargate considerations 215

https://github.com/awslabs/soci-snapshotter
https://aws-ia.github.io/cfn-ecr-aws-soci-index-builder

Amazon Elastic Container Service Developer Guide

overlayfs, and this field is set to soci if SOCI is used. For more information, see Task metadata
endpoint version 4 in the Amazon Elastic Container Service User Guide for AWS Fargate.

EC2 Windows considerations

Tasks that run on EC2 Windows instances don't support all of the Amazon ECS task definition
parameters that are available. Some parameters aren't supported at all, and others behave
differently.

The following task definition parameters aren't supported for Amazon EC2 Windows task
definitions:

• containerDefinitions

• disableNetworking

• dnsServers

• dnsSearchDomains

• extraHosts

• links

• linuxParameters

• privileged

• readonlyRootFilesystem

• user

• ulimits

• volumes

• dockerVolumeConfiguration

• cpu

We recommend specifying container-level CPU for Windows containers.

• memory

We recommend specifying container-level memory for Windows containers.

• proxyConfiguration

• ipcMode

• pidMode

• taskRoleArn

EC2 Windows considerations 216

https://docs.aws.amazon.com/AmazonECS/latest/userguide/task-metadata-endpoint-v4-fargate.html
https://docs.aws.amazon.com/AmazonECS/latest/userguide/task-metadata-endpoint-v4-fargate.html

Amazon Elastic Container Service Developer Guide

The IAM roles for tasks on EC2 Windows instances features requires additional configuration,
but much of this configuration is similar to configuring IAM roles for tasks on Linux container
instances. For more information see the section called “Additional configuration for Windows
task role”.

Creating a task definition using the console

To make creating task definitions as easy as possible, the Amazon ECS console has default
selections for many choice.

You can create a task definition by using the console, or by editing a JSON file.

JSON validation

The Amazon ECS console JSON editor validates the following in the JSON file:

• The file is a valid JSON file.

• The file doesn't contain any extraneous keys.

• The file contains the familyName parameter.

• There is at least one entry under containerDefinitions.

AWS CloudFormation stacks

The following behavior applies to task definitions that were created in the new Amazon ECS
console before January 12, 2023.

When you create a task definition, the Amazon ECS console automatically creates a
CloudFormation stack that has a name that begins with ECS-Console-V2-TaskDefinition-.
If you used the AWS CLI or an AWS SDK to deregister the task definition, then you must
manually delete the task definition stack. For more information, see Deleting a stack in the AWS
CloudFormation User Guide.

Task definitions created after January 12, 2023, do not have a CloudFormation stack automatically
created for them.

Amazon ECS console

1. Open the console at https://console.aws.amazon.com/ecs/v2.

Creating a task definition using the console 217

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/cfn-console-delete-stack.html
https://console.aws.amazon.com/ecs/v2

Amazon Elastic Container Service Developer Guide

2. In the navigation pane, choose Task definitions.

3. On the Create new task definition menu, choose Create new task definition.

4. For Task definition family, specify a unique name for the task definition.

5. For Launch type, choose the application environment. The console default is AWS Fargate
(which is serverless). Amazon ECS uses this value to perform validation to ensure that the
task definition parameters are valid for the infrastructure type.

6. For Operating system/Architecture, choose the operating system and CPU architecture for
the task.

To run your task on a 64-bit ARM architecture, choose Linux/ARM64. For more information,
see the section called “Runtime platform”.

To run your AWS Fargate tasks on Windows containers, choose a supported Windows
operating system. For more information, see the section called “Operating Systems and
architectures”.

7. For Task size, choose the CPU and memory values to reserve for the task. The CPU value is
specified as vCPUs and memory is specified as GB.

For tasks hosted on Fargate, the following table shows the valid CPU and memory
combinations.

CPU value Memory value Operating systems
supported for AWS
Fargate

256 (.25 vCPU) 512 MiB, 1 GB, 2 GB Linux

512 (.5 vCPU) 1 GB, 2 GB, 3 GB, 4 GB Linux

1024 (1 vCPU) 2 GB, 3 GB, 4 GB, 5 GB, 6
GB, 7 GB, 8 GB

Linux, Windows

2048 (2 vCPU) Between 4 GB and 16 GB in
1 GB increments

Linux, Windows

4096 (4 vCPU) Between 8 GB and 30 GB in
1 GB increments

Linux, Windows

AWS CloudFormation stacks 218

Amazon Elastic Container Service Developer Guide

CPU value Memory value Operating systems
supported for AWS
Fargate

8192 (8 vCPU)

Note

This option requires
Linux platform
1.4.0 or later.

Between 16 GB and 60 GB
in 4 GB increments

Linux

16384 (16vCPU)

Note

This option requires
Linux platform
1.4.0 or later.

Between 32 GB and 120 GB
in 8 GB increments

Linux

For tasks hosted on Amazon EC2, supported task CPU values are between 128 CPU units
(0.125 vCPUs) and 10240 CPU units (10 vCPUs). To specify the memory value in GB, enter
GB after the value. For example, to set the Memory value to 3GB, enter 3GB.

Note

Task-level CPU and memory parameters are ignored for Windows containers.

8. For Network mode, choose the network mode to use. The default is awsvpc mode. For
more information, see Amazon ECS task networking.

If you choose bridge, under Port mappings, for Host port, enter the port number on the
container instance to reserve for your container.

9. (Optional) Expand the Task roles section to configure the AWS Identity and Access
Management (IAM) roles for the task:

AWS CloudFormation stacks 219

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/task-networking.html

Amazon Elastic Container Service Developer Guide

a. For Task role, choose the IAM role to assign to the task. A task IAM role provides
permissions for the containers in a task to call AWS API operations.

b. For Task execution role, choose the role.

For information about when to use a task execution role, see the section called “Task
execution IAM role”. If you don't need the role, choose None.

10. For each container to define in your task definition, complete the following steps.

a. For Name, enter a name for the container.

b. For Image URI, enter the image to use to start a container. Images in the Amazon
ECR Public Gallery registry can be specified by using the Amazon ECR Public registry
name only. For example, if public.ecr.aws/ecs/amazon-ecs-agent:latest
is specified, the Amazon Linux container hosted on the Amazon ECR Public Gallery
is used. For all other repositories, specify the repository by using either the
repository-url/image:tag or repository-url/image@digest formats.

c. If your image is in a private registry outside of Amazon ECR, under Private registry,
turn on Private registry authentication. Then, in Secrets Manager ARN or name,
enter the Amazon Resource Name (ARN) of the secret.

d. For Essential container, if your task definition has two or more containers defined, you
can specify whether the container should be considered essential. When a container
is marked as Essential, if that container stops, then the task is stopped. Each task
definition must contain at least one essential container.

e. A port mapping allows the container to access ports on the host to send or receive
traffic. Under Port mappings, do one of the following:

• When you use the awsvpc network mode, for Container port and Protocol, choose
the port mapping to use for the container.

• When you use the bridge network mode, for Container port and Protocol, choose
the port mapping to use for the container.

Choose Add more port mappings to specify additional container port mappings.

f. To give the container read-only access to its root file system, for Read only root file
system, select Read only.

g. (Optional) To define the container-level CPU, GPU, and memory limits that are
different from task-level values, under Resource allocation limits, do the following:

AWS CloudFormation stacks 220

Amazon Elastic Container Service Developer Guide

• For CPU, enter the number of CPU units that the Amazon ECS container agent
reserves for the container.

• For GPU, enter the number of GPU units for the container instance.

An Amazon EC2 instance with GPU support has 1 GPU unit for every GPU. For more
information, see the section called “Working with GPUs on Amazon ECS”.

• For Memory hard limit, enter the amount of memory, in GB, to present to the
container. If the container attempts to exceed the hard limit, the container stops.

• The Docker 20.10.0 or later daemon reserves a minimum of 6 mebibytes (MiB) of
memory for a container, so don't specify fewer than 6 MiB of memory for your
containers.

The Docker 19.03.13-ce or earlier daemon reserves a minimum of 4 MiB of memory
for a container, so don't specify fewer than 4 MiB of memory for your containers.

• For Memory soft limit, enter the soft limit (in GB) of memory to reserve for the
container.

When system memory is under contention, Docker attempts to keep the container
memory to this soft limit. If you don't specify task-level memory, you must specify
a non-zero integer for one or both of Memory hard limit and Memory soft limit. If
you specify both, Memory hard limit must be greater than Memory soft limit.

This feature is not supported on Windows containers.

h. (Optional) Expand the Environment variables section to specify environment variables
to inject into the container. You can specify environment variables either individually
by using key-value pairs or in bulk by specifying an environment variable file that's
hosted in an Amazon S3 bucket. For information about how to format an environment
variable file, see Use task definition parameters to pass environment variables to a
container.

i. (Optional) Select the Use log collection option to specify a log configuration. For
each available log driver, there are log driver options to specify. The default option
sends container logs to Amazon CloudWatch Logs. The other log driver options are
configured by using AWS FireLens. For more information, see Using custom log routing.

The following describes each container log destination in more detail.

AWS CloudFormation stacks 221

Amazon Elastic Container Service Developer Guide

• Amazon CloudWatch – Configure the task to send container logs to CloudWatch
Logs. The default log driver options are provided, which create a CloudWatch log
group on your behalf. To specify a different log group name, change the driver
option values.

• Export logs to Splunk – Configure the task to send container logs to the Splunk
driver that sends the logs to a remote service. You must enter the URL to your
Splunk web service. The Splunk token is specified as a secret option because it can
be treated as sensitive data.

• Export logs to Amazon Data Firehose – Configure the task to send container logs to
Firehose. The default log driver options are provided, which sends log to an Firehose
delivery stream. To specify a different delivery stream name, change the driver
option values.

• Export logs to Amazon Kinesis Data Streams – Configure the task to send container
logs to Kinesis Data Streams. The default log driver options are provided, which send
logs to a Kinesis Data Streams stream. To specify a different stream name, change
the driver option values.

• Export logs to Amazon OpenSearch Service – Configure the task to send container
logs to an OpenSearch Service domain. The log driver options must be provided. For
more information, see Forwarding logs to an Amazon OpenSearch Service domain.

• Export logs to Amazon S3 – Configure the task to send container logs to an Amazon
S3 bucket. The default log driver options are provided, but you must specify a valid
Amazon S3 bucket name.

j. (Optional) Configure additional container parameters.

AWS CloudFormation stacks 222

Amazon Elastic Container Service Developer Guide

To configure this option Do this

Healthcheck

These are the commands
that determine if a
container is healthy.

Expand HealthCheck,
and then configure the
following items:

•
For Command, enter a
 comma-separated list
of commands. You can
start the commands
with CMD to run the
 command arguments
directly, or CMD-SHELL

 to run the command
with the container's
default shell. If neither
is specified, CMD is
used.

•
For Interval, enter the
 number of seconds
between each health
check. The valid values
are between 5 and 30.

•
For Timeout, enter
the period of time
(in seconds) to wait
for a health check
to succeed before it's
considered a failure.
 The valid values are
between 2 and 60.

•

AWS CloudFormation stacks 223

Amazon Elastic Container Service Developer Guide

To configure this option Do this

For Start period, enter
 the period of time (in
seconds) to wait for a
 container to bootstrap
before the health
check commands run.
The valid values are
between 0 and 300.

•
For Retries, enter the
number of times to
retry the health check
commands when there
is a failure. The valid
values are between 1
and 10.

AWS CloudFormation stacks 224

Amazon Elastic Container Service Developer Guide

To configure this option Do this

Container timeouts

These options determine
when to start and stop a
container.

Expand Container timeo
uts, and then configure
the following:

•
To configure the time
to wait before giving up
on resolving dependenc
ies for a container, for
Start timeout, enter
the number of seconds.

•
To configure the time
to wait before the
container is stopped if
it doesn't exit normally
on its own, for Stop
 timeout, enter the
number of seconds.

AWS CloudFormation stacks 225

Amazon Elastic Container Service Developer Guide

To configure this option Do this

Container network
settings

These options determine
whether to use networkin
g within a container.

Expand Container
network settings, and
then configure the fo
llowing:

•
To disable container
networking, select
 Turn off networking.

•
To configure DNS
server IP addresses
that are presented to
the container, in DNS
 servers, enter the IP
address of each server
on a separate line.

•
To configure DNS
domains to search
 non-fully-qualifi
ed host names that
are presented to the
container, in DNS
search domains, enter
each domain on a sepa
rate line.

The pattern is ̂ [a-
zA-Z0-9-.]{0,2
53}[a-zA-Z0-9]$.

•
To configure the
container host name,
in Host name, enter

AWS CloudFormation stacks 226

Amazon Elastic Container Service Developer Guide

To configure this option Do this

the container goat
name.

•
To add hostnames and
IP address mappings
 that are appended
to the /etc/hosts
 file on the container
, choose Add extra
 host, and then for
 Hostname and IP add
ress, enter the host
name and IP address.

AWS CloudFormation stacks 227

Amazon Elastic Container Service Developer Guide

To configure this option Do this

Docker configuration

These override the values
in the Dockerfile.

Expand Docker configura
tion, and then configure
the following items:

•
For Command,
enter an executable
command for a
container.

This parameter
maps to Cmd in the
Create a container
 section of the Docker
Remote API and the
 COMMAND option to
docker run . This
parameter overrides
the CMD instruction in a
Dockerfile.

•
For Entry point, enter
the Docker ENTRYPOIN
T that is passed to the
container.

This parameter maps
to Entrypoint in
the Create a container
 section of the Do
cker Remote API
and the --entrypo
int option to
docker run . This
parameter overrides

AWS CloudFormation stacks 228

https://docs.docker.com/engine/api/v1.38/#operation/ContainerCreate
https://docs.docker.com/engine/api/v1.38/#operation/ContainerCreate
https://docs.docker.com/engine/reference/builder/#workdir
https://docs.docker.com/engine/api/v1.38/#operation/ContainerCreate
https://docs.docker.com/engine/api/v1.38/#operation/ContainerCreate

Amazon Elastic Container Service Developer Guide

To configure this option Do this

the ENTRYPOIN
T instruction in a
Dockerfile.

•
For Working directory
, enter the directory
that the container will
run any entry point and
command instructions
 provided.

This parameter maps
to WorkingDir in
the Create a container
 section of the Docker
Remote API and the
 --workdir option to
docker run . This
parameter overrides
the WORKDIR instructi
on in a Dockerfile.

AWS CloudFormation stacks 229

https://docs.docker.com/engine/reference/builder/#workdir
https://docs.docker.com/engine/api/v1.38/#operation/ContainerCreate
https://docs.docker.com/engine/api/v1.38/#operation/ContainerCreate
https://docs.docker.com/engine/reference/builder/#workdir

Amazon Elastic Container Service Developer Guide

To configure this option Do this

Ulimits

These values overwrite
the default resource
quota setting for the
operating system.

This parameter maps to
 Ulimits in the Create a
container section of the
 Docker Remote API and
the --ulimit option to
docker run.

Expand Resource limits
 (ulimits), and then c
hoose Add ulimit. For
 Limit name, choose the
limit. Then, for Soft
limit and Hard limit,
enter the values.

To add additional ulimits,
 choose Add ulimit.

Docker labels

This option adds
metadata to your
container.

This parameter maps to
Labels in the Create a
container section of the
 Docker Remote API and
the --label option to
docker run.

Expand Docker labels,
choose Add key value
pair, and then enter the
 Key and Value.

To add additional Docker
 labels, choose Add key
value pair.

AWS CloudFormation stacks 230

https://docs.docker.com/engine/api/v1.38/#operation/ContainerCreate
https://docs.docker.com/engine/api/v1.38/#operation/ContainerCreate
https://docs.docker.com/engine/api/v1.38/
https://docs.docker.com/engine/reference/commandline/run/
https://docs.docker.com/engine/api/v1.38/#operation/ContainerCreate
https://docs.docker.com/engine/api/v1.38/#operation/ContainerCreate
https://docs.docker.com/engine/api/v1.38/
https://docs.docker.com/engine/reference/commandline/run/

Amazon Elastic Container Service Developer Guide

To configure this option Do this

Container startup order

This option defines
dependencies for co
ntainer startup and
shutdown. A container
can contain multiple
dependencies.

Expand Startup
dependency ordering,
and then configure the fo
llowing:

a.
Choose Add container
 dependency.

b.
For Container, choose
 the container.

c.
For Condition, choose
 the startup dependenc
y condition.

To add an additional
dependency, choose Add
container dependency.

k. (Optional) Choose Add more containers to add additional containers to the task
definition.

11. (Optional) The Storage section is used to expand the amount of ephemeral storage for
tasks hosted on Fargate. You can also use this section to add a data volume configuration
for the task.

• To expand the available ephemeral storage beyond the default value of 20 gibibytes
(GiB) for your Fargate tasks, for Amount, enter a value up to 200 GiB.

12. (Optional) To add a data volume configuration for the task definition, choose Add volume,
and then follow these steps.

a. For Volume name, enter a name for the data volume. The data volume name is used
when creating a container mount point.

b. For Volume configuration, select whether you want to configure your volume when
creating the task definition or during deployment.

AWS CloudFormation stacks 231

Amazon Elastic Container Service Developer Guide

Note

Volumes that can be configured when creating a task definition include
Bind mount, Docker, Amazon EFS, and Amazon FSx for Windows File Server.
Volumes that can be configured at deployment when running a task, or when
creating or updating a service include Amazon EBS.

c. For Volume type, select a volume type compatible with the configuration type that
you selected, and then configure the volume type.

AWS CloudFormation stacks 232

Amazon Elastic Container Service Developer Guide

Volume type Steps

Bind mount a.
Choose Add mount
point, and then
configure the following:

•
For Container, choose
 the container for the
mount point.

•
For Source volume,
 choose the data
volume to mount to
the container.

•
For Container path,
 enter the path on the
container to mount
the volume.

•
For Read only, select
 whether the container
has read-only access
to the volume.

b.
To add additional mount
points, Add mount
point.

AWS CloudFormation stacks 233

Amazon Elastic Container Service Developer Guide

Volume type Steps

EFS
a.

For File system ID, choo
se the Amazon EFS file
system ID.

b.
(Optional) For Root
 directory, enter the
directory within the
Amazon EFS file system
to mount as the root d
irectory inside the host.
If this parameter is omi
tted, the root of the
Amazon EFS volume is
 used.

If you plan to use an EFS
access point, leave this
field blank.

c.
(Optional) For Access
 point, choose the access
point ID to use.

d.
(Optional) To encrypt
the data between the
 Amazon EFS file system
and the Amazon ECS
host or to use the ta
sk execution role when
mounting the volume,
 choose Advanced
 configurations, and
then configure the fo
llowing:

AWS CloudFormation stacks 234

Amazon Elastic Container Service Developer Guide

Volume type Steps

•
To encrypt the data
between the Amazon
EFS file system and
the Amazon ECS
host, select Transit
encryption, and then
 for Port, enter the
port to use when
sending encrypted
data between the
Amazon ECS host
and the Amazon
EFS server. If you
don't specify a tran
sit encryption port,
it uses the port s
election strategy
that the Amazon EFS
mount helper uses.
For more information,
see EFS Mount Helper
in the Amazon Elastic
File System User Guide.

•
To use the Amazon
ECS task IAM role
defined in a task
definition when
mounting the Am
azon EFS file system,
select IAM au
thorization.

e.

AWS CloudFormation stacks 235

https://docs.aws.amazon.com/efs/latest/ug/efs-mount-helper.html

Amazon Elastic Container Service Developer Guide

Volume type Steps

Choose Add mount
point, and then
configure the following:

•
For Container, choose
 the container for the
mount point.

•
For Source volume,
 choose the data
volume to mount to
the container.

•
For Container path,
 enter the path on the
container to mount
the volume.

•
For Read only, select
 whether the container
has read-only access
to the volume.

f.
To add additional mount
points, Add mount
point.

AWS CloudFormation stacks 236

Amazon Elastic Container Service Developer Guide

Volume type Steps

Docker a.
For Driver, enter
the Docker volume
 configuration. Windows
containers support only
the use of the local
driver. To use bind
mounts, specify a host.

b.
For Scope, choose the
 volume lifecycle.

•
To have the lifecycle
last when the task
 starts and stops,
choose Task.

•
To have the volume
persist after the task s
tops, choose Shared.

c.
Choose Add mount
point, and then
configure the following:

•
For Container, choose
 the container for the
mount point.

•
For Source volume,
 choose the data
volume to mount to
the container.

•

AWS CloudFormation stacks 237

Amazon Elastic Container Service Developer Guide

Volume type Steps

For Container path,
 enter the path on the
container to mount
the volume.

•
For Read only, select
 whether the container
has read-only access
to the volume.

d.
To add additional mount
points, Add mount
point.

AWS CloudFormation stacks 238

Amazon Elastic Container Service Developer Guide

Volume type Steps

FSx for Windows File
Server a.

For File system ID, choo
se the FSx for Windows
File Server file system
ID.

b.
For Root directory,
enter the directory,
enter the directory withi
n the FSx for Windows
File Server file system
to mount as the root
directory inside the host.

c.
For Credential para
meter, choose how the
credentials are stored.

•
To use AWS Secrets
Manager, enter the
Amazon Resource
Name (ARN) of a
Secrets Manager
secret.

•
To use AWS Systems
Manager, enter the
Amazon Resource
Name (ARN) of a
Systems Manager
parameter.

d.
For Domain, enter the
fully qualified domain
name that's hosted

AWS CloudFormation stacks 239

Amazon Elastic Container Service Developer Guide

Volume type Steps

by an AWS Directory
Service for Microsoft
Active Directory (AWS
Managed Microsoft AD)
 directory or a self-host
ed EC2 Active Directory.

e.
Choose Add mount
point, and then
configure the following:

•
For Container, choose
 the container for the
mount point.

•
For Source volume,
 choose the data
volume to mount to
the container.

•
For Container path,
 enter the path on the
container to mount
the volume.

•
For Read only, select
 whether the container
has read-only access
to the volume.

f.
To add additional mount
points, Add mount
point.

AWS CloudFormation stacks 240

Amazon Elastic Container Service Developer Guide

Volume type Steps

Amazon EBS volume a.
Choose Add mount
point, and then
configure the following:

•
For Container, choose
 the container for the
mount point.

•
For Source volume,
 choose the data
volume to mount to
the container.

•
For Container path,
 enter the path on the
container to mount
the volume.

•
For Read only, select
 whether the container
has read-only access
to the volume.

b.
To add additional mount
points, Add mount
point.

13. To add a volume from another container, choose Add volume from, and then configure the
following:

• For Container, choose the container.

• For Source, choose the container which has the volume you want to mount.

• For Read only, select whether the container has read-only access to the volume.

AWS CloudFormation stacks 241

Amazon Elastic Container Service Developer Guide

14. (Optional) To configure your application trace and metric collection settings by using
the AWS Distro for OpenTelemetry integration, expand Monitoring, and then select Use
metric collection to collect and send metrics for your tasks to either Amazon CloudWatch
or Amazon Managed Service for Prometheus. When this option is selected, Amazon ECS
creates an AWS Distro for OpenTelemetry container sidecar that is preconfigured to send
the application metrics. For more information, see Correlate Amazon ECS application
performance using application metrics.

a. When Amazon CloudWatch is selected, your custom application metrics are routed
to CloudWatch as custom metrics. For more information, see Exporting application
metrics to Amazon CloudWatch.

Important

When exporting application metrics to Amazon CloudWatch, your task
definition requires a task IAM role with the required permissions. For more
information, see Required IAM permissions for AWS Distro for OpenTelemetry
integration with Amazon CloudWatch.

b. When you select Amazon Managed Service for Prometheus (Prometheus libraries
instrumentation), your task-level CPU, memory, network, and storage metrics
and your custom application metrics are routed to Amazon Managed Service for
Prometheus. For Workspace remote write endpoint, enter the remote write endpoint
URL for your Prometheus workspace. For Scraping target, enter the host and port
the AWS Distro for OpenTelemetry collector can use to scrape for metrics data. For
more information, see Exporting application metrics to Amazon Managed Service for
Prometheus.

Important

When exporting application metrics to Amazon Managed Service for
Prometheus, your task definition requires a task IAM role with the required
permissions. For more information, see Required IAM permissions for AWS
Distro for OpenTelemetry integration with Amazon Managed Service for
Prometheus.

c. When you select Amazon Managed Service for Prometheus (OpenTelemetry
instrumentation), your task-level CPU, memory, network, and storage metrics

AWS CloudFormation stacks 242

Amazon Elastic Container Service Developer Guide

and your custom application metrics are routed to Amazon Managed Service for
Prometheus. For Workspace remote write endpoint, enter the remote write endpoint
URL for your Prometheus workspace. For more information, see Exporting application
metrics to Amazon Managed Service for Prometheus.

Important

When exporting application metrics to Amazon Managed Service for
Prometheus, your task definition requires a task IAM role with the required
permissions. For more information, see Required IAM permissions for AWS
Distro for OpenTelemetry integration with Amazon Managed Service for
Prometheus.

15. (Optional) Expand the Tags section to add tags, as key-value pairs, to the task definition.

• [Add a tag] Choose Add tag, and then do the following:

• For Key, enter the key name.

• For Value, enter the key value.

• [Remove a tag] Next to the tag, choose Remove tag.

16. Choose Create to register the task definition.

Amazon ECS console JSON editor

1. Open the console at https://console.aws.amazon.com/ecs/v2.

2. In the navigation pane, choose Task definitions.

3. On the Create new task definition menu, choose Create new task definition with JSON.

4. In the JSON editor box, edit your JSON file,

The JSON must pass the validation checks specified in the section called “JSON validation”.

5. Choose Create.

Updating a task definition using the console

A task definition revision is a copy of the current task definition with the new parameter values
replacing the existing ones. All parameters that you do not modify are in the new revision.

Updating a task definition using the console 243

https://console.aws.amazon.com/ecs/v2

Amazon Elastic Container Service Developer Guide

To update a task definition, create a task definition revision. If the task definition is used in a
service, you must update that service to use the updated task definition.

When you create a revision, you can modify the following container properties and environment
properties.

• Container image URI

• Port mappings

• Environment variables

• Task size

• Container size

• Task role

• Task execution role

• Volumes and container mount points

• Private registry

JSON validation

The Amazon ECS console JSON editor validates the following in the JSON file:

• The file is a valid JSON file

• The file does not contain any extraneous keys

• The file contains the familyName parameter

• There is at least one entry under containerDefinitions

Amazon ECS console

1. Open the console at https://console.aws.amazon.com/ecs/v2.

2. From the navigation bar, choose the Region that contains your task definition.

3. In the navigation pane, choose Task definitions.

4. Choose the task definition.

5. Select the task definition revision, and then choose Create new revision, Create new
revision.

JSON validation 244

https://console.aws.amazon.com/ecs/v2

Amazon Elastic Container Service Developer Guide

6. On the Create new task definition revision page, make changes. For example, to change
the existing container definitions (such as the container image, memory limits, or port
mappings), select the container, and then make the changes.

7. Verify the information, and then choose Update.

8. If your task definition is used in a service, update your service with the updated task
definition. For more information, see Updating a service using the console.

Amazon ECS console JSON editor

1. Open the console at https://console.aws.amazon.com/ecs/v2.

2. In the navigation pane, choose Task definitions.

3. Choose Create new revision, Create new revision with JSON.

4. In the JSON editor box, edit your JSON file,

The JSON must pass the validation checks specified in the section called “JSON validation”.

5. Choose Create.

Deregistering a task definition revision using the console

When you no longer need a specific task definition revision in Amazon ECS, you can deregister the
task definition revision so that it no longer displays in your ListTaskDefinition API calls or in
the console when you want to run a task or update a service.

When you deregister a task definition revision, it is immediately marked as INACTIVE. Existing
tasks and services that reference an INACTIVE task definition revision continue to run without
disruption. Existing services that reference an INACTIVE task definition revision can still scale up or
down by modifying the service's desired count.

You can't use an INACTIVE task definition revision to run new tasks or create new services. You
also can't update an existing service to reference an INACTIVE task definition revision (even
though there may be up to a 10-minute window following deregistration where these restrictions
have not yet taken effect).

Deregistering a task definition revision using the console 245

https://console.aws.amazon.com/ecs/v2

Amazon Elastic Container Service Developer Guide

Note

When you deregister all revisions in a task family, the task definition family is moved to
the INACTIVE list. Adding a new revision of an INACTIVE task definition moves the task
definition family back to the ACTIVE list.
At this time, INACTIVE task definition revisions remain discoverable in your account
indefinitely. However, this behavior is subject to change in the future. Therefore, you
should not rely on INACTIVE task definition revisions persisting beyond the lifecycle of any
associated tasks and services.

AWS CloudFormation stacks

The following behavior applies to task definitions that were created in the new Amazon ECS
console before January 12, 2023.

When you create a task definition, the Amazon ECS console automatically creates a
CloudFormation stack that has a name that begins with ECS-Console-V2-TaskDefinition-.
If you used the AWS CLI or an AWS SDK to deregister the task definition, then you must
manually delete the task definition stack. For more information, see Deleting a stack in the AWS
CloudFormation User Guide.

Task definitions created after January 12, 2023, do not have a CloudFormation stack automatically
created for them.

To deregister a new task definition (Amazon ECS console)

1. Open the console at https://console.aws.amazon.com/ecs/v2.

2. From the navigation bar, choose the region that contains your task definition.

3. In the navigation pane, choose Task definitions.

4. On the Task definitions page, choose the task definition family that contains one or more
revisions that you want to deregister.

5. On the task definition Name page, select the revisions to delete, and then choose Actions,
Deregister.

6. Verify the information in the Deregister window, and then choose Deregister to finish.

AWS CloudFormation stacks 246

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/cfn-console-delete-stack.html
https://console.aws.amazon.com/ecs/v2

Amazon Elastic Container Service Developer Guide

Deleting a task definition revision using the console

When no longer need a specific task definition revision in Amazon ECS, you can delete the task
definition revision.

When you delete a task definition revision, it immediately transitions from the INACTIVE to
DELETE_IN_PROGRESS. Existing tasks and services that reference a DELETE_IN_PROGRESS task
definition revision continue to run without disruption.

You can't use a DELETE_IN_PROGRESS task definition revision to run new tasks or create new
services. You also can't update an existing service to reference a DELETE_IN_PROGRESS task
definition revision.

When you delete all INACTIVE task definition revisions, the task definition name is not
displayed in the console and not returned in the API. If a task definition revision is in the
DELETE_IN_PROGRESS state, the task definition name is displayed in the console and returned in
the API. The task definition name is retained by Amazon ECS and the revision is incremented the
next time you create a task definition with that name.

Amazon ECS resources that can block a deletion

A task definition deletion request will not complete when there are any Amazon ECS resources that
depend on the task definition revision. The following resources might prevent a task definition
from being deleted:

• Amazon ECS tasks - The task definition is required in order for the task to remain healthy.

• Amazon ECS deployments and task sets - The task definition is required when a scaling event is
initiated for an Amazon ECS deployment or task set.

If your task definition remains in the DELETE_IN_PROGRESS state, you can use the console, or the
AWS CLI to identify, and then stop the resources which block the task definition deletion.

Task definition deletion after the blocked resource is removed

The following rules apply after you remove the resources that block the task definition deletion:

• Amazon ECS tasks - The task definition deletion can take up to 1 hour to complete after the task
is stopped.

Deleting a task definition revision using the console 247

Amazon Elastic Container Service Developer Guide

• Amazon ECS deployments and task sets - The task definition deletion can take up to 24 hours to
complete after the deployment or task set is deleted.

To delete task definitions (Amazon ECS console)

You must deregister a task definition revision before you delete it. For more information, see the
section called “Deregistering a task definition revision using the console”.

1. Open the console at https://console.aws.amazon.com/ecs/v2.

2. From the navigation bar, choose the region that contains your task definition.

3. In the navigation pane, choose Task definitions.

4. On the Task definitions page, choose the task definition family that contains one or more
revisions that you want to delete.

5. On the task definition Name page, select the revisions to delete, and then choose Actions,
Delete.

6. Verify the information in the Delete confirmation box, and then choose Delete to finish.

Task definition use cases

Learn more about how to write task definitions for various AWS services and features.

Depending on your workload, there are certain task definition parameters that need to be set.
Also for the EC2 launch type, you have to choose specific instances that are enginnered for the
workload.

Topics

• Working with GPUs on Amazon ECS

• Using video transcoding on Amazon ECS

• Using AWS Neuron on Amazon Linux 2 on Amazon ECS

• Using deep learning DL1 instances on Amazon ECS

• Working with 64-bit ARM workloads on Amazon ECS

• Using the awslogs log driver

• Using custom log routing

• Private registry authentication for tasks

• Use task definition parameters to pass environment variables to a container

Task definition use cases 248

https://console.aws.amazon.com/ecs/v2

Amazon Elastic Container Service Developer Guide

• Use a file to pass environment variables to a container

• Passing sensitive data to a container

Working with GPUs on Amazon ECS

Amazon ECS supports workloads that use GPUs, when you create clusters with container instances
that support GPUs. Amazon EC2 GPU-based container instances that use the p2, p3, p5, g3, g4,
and g5 instance types provide access to NVIDIA GPUs. For more information, see Linux Accelerated
Computing Instances in the Amazon EC2 User Guide for Linux Instances.

Amazon ECS provides a GPU-optimized AMI that comes with pre-configured NVIDIA kernel drivers
and a Docker GPU runtime. For more information, see Amazon ECS-optimized AMI.

You can designate a number of GPUs in your task definition for task placement consideration at a
container level. Amazon ECS schedules to available container instances that support GPUs and pin
physical GPUs to proper containers for optimal performance.

The following Amazon EC2 GPU-based instance types are supported. For more information, see
Amazon EC2 P2 Instances, Amazon EC2 P3 Instances, Amazon EC2 P4d Instances, Amazon EC2 P5
Instances, Amazon EC2 G3 Instances, Amazon EC2 G4 Instances, and Amazon EC2 G5 Instances.

Instance type GPUs GPU memory
(GiB)

vCPUs Memory (GiB)

p3.2xlarge 1 16 8 61

p3.8xlarge 4 64 32 244

p3.16xlarge 8 128 64 488

p3dn.24xlarge 8 256 96 768

p4d.24xlarge 8 320 96 1152

p5.48xlarge 8 640 192 2048

g3s.xlarge 1 8 4 30.5

g3.4xlarge 1 8 16 122

Working with GPUs on Amazon ECS 249

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/accelerated-computing-instances.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/accelerated-computing-instances.html
https://aws.amazon.com/ec2/instance-types/p2/
https://aws.amazon.com/ec2/instance-types/p3/
https://aws.amazon.com/ec2/instance-types/p4/
https://aws.amazon.com/ec2/instance-types/p5/
https://aws.amazon.com/ec2/instance-types/p5/
https://aws.amazon.com/ec2/instance-types/g3/
https://aws.amazon.com/ec2/instance-types/g4/
https://aws.amazon.com/ec2/instance-types/g5/

Amazon Elastic Container Service Developer Guide

Instance type GPUs GPU memory
(GiB)

vCPUs Memory (GiB)

g3.8xlarge 2 16 32 244

g3.16xlarge 4 32 64 488

g4dn.xlarge 1 16 4 16

g4dn.2xlarge 1 16 8 32

g4dn.4xlarge 1 16 16 64

g4dn.8xlarge 1 16 32 128

g4dn.12xlarge 4 64 48 192

g4dn.16xlarge 1 16 64 256

g5.xlarge 1 24 4 16

g5.2xlarge 1 24 8 32

g5.4xlarge 1 24 16 64

g5.8xlarge 1 24 32 128

g5.16xlarge 1 24 64 256

g5.12xlarge 4 96 48 192

g5.24xlarge 4 96 96 384

g5.48xlarge 8 192 192 768

You can retrieve the Amazon Machine Image (AMI) ID for Amazon ECS-optimized AMIs by querying
the AWS Systems Manager Parameter Store API. Using this parameter, you don't need to manually
look up Amazon ECS-optimized AMI IDs. For more information about the Systems Manager
Parameter Store API, see GetParameter. The user that you use must have the ssm:GetParameter
IAM permission to retrieve the Amazon ECS-optimized AMI metadata.

Working with GPUs on Amazon ECS 250

https://docs.aws.amazon.com/systems-manager/latest/APIReference/API_GetParameter.html

Amazon Elastic Container Service Developer Guide

aws ssm get-parameters --names /aws/service/ecs/optimized-ami/amazon-linux-2/gpu/
recommended --region us-east-1

Considerations

Note

The support for g2 instance family type has been deprecated. The g2 instance family types
are only supported on versions earlier than 20230906 of the Amazon ECS GPU-optimized
AMI.
The p2 instance family type is only supported on versions earlier than 20230912 of the
Amazon ECS GPU-optimized AMI. If you need to continue to use p2 instances, see What to
do if you need a P2 instance.
In-place updates of the NVIDIA/CUDA drivers on both these instance family types will cause
potential GPU workload failures.

We recommend that you consider the following before you begin working with GPUs on Amazon
ECS.

• Your clusters can contain a mix of GPU and non-GPU container instances.

• You can run GPU workloads on external instances. When registering an external instance with
your cluster, ensure the --enable-gpu flag is included on the installation script. For more
information, see Registering an external instance to a cluster.

• You must set ECS_ENABLE_GPU_SUPPORT to true in your agent configuration file. For more
information, see the section called “Container agent configuration”.

• When running a task or creating a service, you can use instance type attributes when you
configure task placement constraints to determine the container instances the task is to be
launched on. By doing this, you can more effectively use your resources. For more information,
see Amazon ECS task placement.

The following example launches a task on a g4dn.xlarge container instance in your default
cluster.

aws ecs run-task --cluster default --task-definition ecs-gpu-task-def \
 --placement-constraints type=memberOf,expression="attribute:ecs.instance-type ==
 g4dn.xlarge" --region us-east-2

Working with GPUs on Amazon ECS 251

Amazon Elastic Container Service Developer Guide

• For each container that has a GPU resource requirement that's specified in the container
definition, Amazon ECS sets the container runtime to be the NVIDIA container runtime.

• The NVIDIA container runtime requires some environment variables to be set in the container
to function properly. For a list of these environment variables, see Specialized Configurations
with Docker. Amazon ECS sets the NVIDIA_VISIBLE_DEVICES environment variable value to
be a list of the GPU device IDs that Amazon ECS assigns to the container. For the other required
environment variables, Amazon ECS doesn't set them. So, make sure that your container image
sets them or they're set in the container definition.

• The p5 instance type family is supported on version 20230929 and later of the Amazon ECS
GPU-optimized AMI.

• The g4 instance type family is supported on version 20230913 and later of the Amazon ECS
GPU-optimized AMI. For more information, see Amazon ECS-optimized AMI. It's not supported in
the Create Cluster workflow in the Amazon ECS console. To use these instance types, you must
either use the Amazon EC2 console, AWS CLI, or API and manually register the instances to your
cluster.

• The p4d.24xlarge instance type only works with CUDA 11 or later.

• The Amazon ECS GPU-optimized AMI has IPv6 enabled, which causes issues when using yum. This
can be resolved by configuring yum to use IPv4 with the following command.

echo "ip_resolve=4" >> /etc/yum.conf

• When you build a container image that doesn't use the NVIDIA/CUDA base images, you must set
the NVIDIA_DRIVER_CAPABILITIES container runtime variable to one of the following values:

• utility,compute

• all

For information about how to set the variable, see Controlling the NVIDIA Container Runtime on
the NVIDIA website.

• GPUs are not supported on Windows containers.

Launch a GPU container instance

To use a GPU instance on Amazon ECS, you need to create a launch template, a user data file, and
launch the instance.

You can then run a task that uses a task definition configured for GPU.

Working with GPUs on Amazon ECS 252

https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/latest/docker-specialized.html?highlight=environment%20variable
https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/latest/docker-specialized.html?highlight=environment%20variable
https://sarus.readthedocs.io/en/stable/user/custom-cuda-images.html#controlling-the-nvidia-container-runtime

Amazon Elastic Container Service Developer Guide

Use a launch template

You can create a launch template.

• Create a launch template that uses the Amazon ECS-optimized GPU AMI ID For the AMI. For
information about how to create a launch template, see Create a new launch template using
parameters you define in the Amazon EC2 User Guide for Linux Instances.

Use the AMI ID from the previous step for the Amazon Machine image. For information
about how to specify the AMI ID with the Systems Manager parameter, see Specify a Systems
Manager parameter in a launch template in the Amazon EC2 User Guide for Linux Instances.

Add the following to the User data in the launch template. Replace cluster-name with the
name of your cluster.

#!/bin/bash
echo ECS_CLUSTER=cluster-name >> /etc/ecs/ecs.config;
echo ECS_ENABLE_GPU_SUPPORT=true >> /etc/ecs/ecs.config

Use the AWS CLI

You can use the AWS CLI to launch the container instance.

1. Create a file that's called userdata.toml. This file is used for the instance user data. Replace
cluster-name with the name of your cluster.

#!/bin/bash
echo ECS_CLUSTER=cluster-name >> /etc/ecs/ecs.config;
echo ECS_ENABLE_GPU_SUPPORT=true >> /etc/ecs/ecs.config

2. Run the following command to get the GPU AMI ID. You use this in the following step.

aws ssm get-parameters --names /aws/service/ecs/optimized-ami/amazon-linux-2/gpu/
recommended --region us-east-1

3. Run the following command to launch the GPU instance. Remember to replace the following
parameters:

• Replace subnet with the ID of the private or public subnet that your instance will launch in.

• Replace gpu_ami with the AMI ID from the previous step.

Working with GPUs on Amazon ECS 253

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/create-launch-template.html#create-launch-template-define-parameters
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/create-launch-template.html#create-launch-template-define-parameters
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/create-launch-template.html#use-an-ssm-parameter-instead-of-an-ami-id
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/create-launch-template.html#use-an-ssm-parameter-instead-of-an-ami-id

Amazon Elastic Container Service Developer Guide

• Replace t3.large with the instance type that you want to use.

• Replace region with the Region code.

aws ec2 run-instances --key-name ecs-gpu-example \
 --subnet-id subnet \
 --image-id gpu_ami \
 --instance-type t3.large \
 --region region \
 --tag-specifications 'ResourceType=instance,Tags=[{Key=GPU,Value=example}]' \
 --user-data file://userdata.toml \
 --iam-instance-profile Name=ecsInstanceRole

4. Run the following command to verify that the container instance is registered to the cluster.
When you run this command, remember to replace the following parameters:

• Replace cluster with your cluster name.

• Replace region with your Region code.

aws ecs list-container-instances --cluster cluster-name --region region

Specifying GPUs in your task definition

To use the GPUs on a container instance and the Docker GPU runtime, make sure that you
designate the number of GPUs your container requires in the task definition. As containers that
support GPUs are placed, the Amazon ECS container agent pins the desired number of physical
GPUs to the appropriate container. The number of GPUs reserved for all containers in a task cannot
exceed the number of available GPUs on the container instance the task is launched on. For more
information, see Creating a task definition using the console.

Important

If your GPU requirements aren't specified in the task definition, the task uses the default
Docker runtime.

The following shows the JSON format for the GPU requirements in a task definition:

Working with GPUs on Amazon ECS 254

Amazon Elastic Container Service Developer Guide

{
 "containerDefinitions": [
 {
 ...
 "resourceRequirements" : [
 {
 "type" : "GPU",
 "value" : "2"
 }
],
 },
...
}

The following example demonstrates the syntax for a Docker container that specifies a GPU
requirement. This container uses two GPUs, runs the nvidia-smi utility, and then exits.

{
 "containerDefinitions": [
 {
 "memory": 80,
 "essential": true,
 "name": "gpu",
 "image": "nvidia/cuda:11.0.3-base",
 "resourceRequirements": [
 {
 "type":"GPU",
 "value": "2"
 }
],
 "command": [
 "sh",
 "-c",
 "nvidia-smi"
],
 "cpu": 100
 }
],
 "family": "example-ecs-gpu"
}

Working with GPUs on Amazon ECS 255

Amazon Elastic Container Service Developer Guide

What to do if you need a P2 instance

If you need to use P2 instance, you can use one of the following options to continue using the
instances.

You must modify the instance user data for both options. For more information see Work with
instance user data in the Amazon EC2 User Guide for Linux Instances.

Use the last supported GPU-optimized AMI

You can use the 20230906 version of the GPU-optimized AMI, and add the following to the
instance user data.

Replace cluster-name with the name of your cluster.

#!/bin/bash
echo "exclude=*nvidia* *cuda*" >> /etc/yum.conf
echo "ECS_CLUSTER=cluster-name" >> /etc/ecs/ecs.config

Use the latest GPU-optimized AMI, and update the user data

You can add the following to the instance user data. This uninstalls the Nvidia 535/Cuda12.2
drivers, and then installs the Nvidia 470/Cuda11.4 drivers and fixes the version.

#!/bin/bash
yum remove -y cuda-toolkit* nvidia-driver-latest-dkms*
tmpfile=$(mktemp)
cat >$tmpfile <<EOF
[amzn2-nvidia]
name=Amazon Linux 2 Nvidia repository
mirrorlist=\$awsproto://\$amazonlinux.\$awsregion.\$awsdomain/\$releasever/amzn2-
nvidia/latest/\$basearch/mirror.list
priority=20
gpgcheck=1
gpgkey=https://developer.download.nvidia.com/compute/cuda/repos/rhel7/
x86_64/7fa2af80.pub
enabled=1
exclude=libglvnd-*
EOF

mv $tmpfile /etc/yum.repos.d/amzn2-nvidia-tmp.repo

Working with GPUs on Amazon ECS 256

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instancedata-add-user-data.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instancedata-add-user-data.html

Amazon Elastic Container Service Developer Guide

yum install -y system-release-nvidia cuda-toolkit-11-4 nvidia-driver-latest-
dkms-470.182.03
yum install -y libnvidia-container-1.4.0 libnvidia-container-tools-1.4.0 nvidia-
container-runtime-hook-1.4.0 docker-runtime-nvidia-1

echo "exclude=*nvidia* *cuda*" >> /etc/yum.conf
nvidia-smi

Create your own P2 compatible GPU-optimized AMI

You can create your own custom Amazon ECS GPU-optimized AMI that is compatible with P2
instances, and then launch P2 instances using the AMI.

1. Run the following command to clone the amazon-ecs-ami repo.

git clone https://github.com/aws/amazon-ecs-ami

2. Set the required Amazon ECS agent and source Amazon Linux AMI versions in
release.auto.pkrvars.hcl or overrides.auto.pkrvars.hcl.

3. Run the following command to build a private P2 compatible EC2 AMI.

Replace region with the Region with the instance Region .

REGION=region make al2keplergpu

4. Use the AMI with the following instance user data to connect to the Amazon ECS cluster.

Replace cluster-name with the name of your cluster.

#!/bin/bash
echo "ECS_CLUSTER=cluster-name" >> /etc/ecs/ecs.config

Using video transcoding on Amazon ECS

To use video transcoding workloads on Amazon ECS, register Amazon EC2 VT1 instances. After you
registered these instances, you can run live and pre-rendered video transcoding workloads as tasks
on Amazon ECS. Amazon EC2 VT1 instances use Xilinx U30 media transcoding cards to accelerate
live and pre-rendered video transcoding workloads.

Using video transcoding on Amazon ECS 257

https://aws.amazon.com/ec2/instance-types/vt1/

Amazon Elastic Container Service Developer Guide

Note

For instructions on how to run video transcoding workloads in containers other than
Amazon ECS, see the Xilinx documentation.

Considerations

Before you begin deploying VT1 on Amazon ECS, consider the following:

• Your clusters can contain a mix of VT1 and non-VT1 instances.

• You need a Linux application that uses Xilinx U30 media transcoding cards with accelerated AVC
(H.264) and HEVC (H.265) codecs.

Important

Applications that use other codecs might not have improved performance on VT1
instances.

• Only one transcoding task can run on a U30 card. Each card has two devices that are associated
with it. You can run as many transcoding tasks as there are cards for each of your VT1 instance.

• When creating a service or running a standalone task, you can use instance type attributes when
configuring task placement constraints. This ensures that the task is launched on the container
instance that you specify. Doing so helps ensure that you use your resources effectively and that
your tasks for video transcoding workloads are on your VT1 instances. For more information, see
Amazon ECS task placement.

In the following example, a task is run on a vt1.3xlarge instance on your default cluster.

aws ecs run-task \
 --cluster default \
 --task-definition vt1-3xlarge-xffmpeg-processor \
 --placement-constraints type=memberOf,expression="attribute:ecs.instance-type ==
 vt1.3xlarge"

• You configure a container to use the specific U30 card available on the host container instance.
You can do this by using the linuxParameters parameter and specifying the device details. For
more information, see Task definition requirements.

Using video transcoding on Amazon ECS 258

https://xilinx.github.io/video-sdk/v1.5/container_setup.html#working-with-docker-vt1

Amazon Elastic Container Service Developer Guide

Using a VT1 AMI

You have two options for running an AMI on Amazon EC2 for Amazon ECS container instances. The
first option is to use the Xilinx official AMI on the AWS Marketplace. The second option is to build
your own AMI from the sample repository.

• Xilinx offers AMIs on the AWS Marketplace.

• Amazon ECS provides a sample repository that you can use to build an AMI for video transcoding
workloads. This AMI comes with Xilinx U30 drivers. You can find the repository that contains
Packer scripts on GitHub. For more information about Packer, see the Packer documentation.

Task definition requirements

To run video transcoding containers on Amazon ECS, your task definition must contain a video
transcoding application that uses the accelerated H.264/AVC and H.265/HEVC codecs. You can
build a container image by following the steps on the Xilinx GitHub.

The task definition must be specific to the instance type. The instance types are 3xlarge, 6xlarge,
and 24xlarge. You must configure a container to use specific Xilinx U30 devices that are available
on the host container instance. You can do so using the linuxParameters parameter. The
following table details the cards and device SoCs that are specific to each instance type.

Instance
Type

vCPUs RAM (GiB) U30
accelerator
cards

Addressable
XCU30 SoC
devices

Device Paths

vt1.3xlarge 12 24 1 2 /dev/dri/
renderD12
8 ,/dev/
dri/
renderD12
9

vt1.6xlarge 24 48 2 4 /dev/dri/
renderD12
8 ,/dev/
dri/
renderD12

Using video transcoding on Amazon ECS 259

https://aws.amazon.com/marketplace/pp/prodview-phvk6d4mq3hh6
https://github.com/aws-samples/aws-vt-baseami-pipeline
https://www.packer.io/docs
https://xilinx.github.io/video-sdk/v1.5/container_setup.html#creating-a-docker-image-for-vt1-usage

Amazon Elastic Container Service Developer Guide

Instance
Type

vCPUs RAM (GiB) U30
accelerator
cards

Addressable
XCU30 SoC
devices

Device Paths

9 ,/dev/
dri/
renderD13
0 ,/dev/
dri/
renderD13
1

Using video transcoding on Amazon ECS 260

Amazon Elastic Container Service Developer Guide

Instance
Type

vCPUs RAM (GiB) U30
accelerator
cards

Addressable
XCU30 SoC
devices

Device Paths

vt1.24xlarge 96 182 8 16 /dev/dri/
renderD12
8 ,/dev/
dri/
renderD12
9 ,/dev/
dri/
renderD13
0 ,/dev/
dri/
renderD13
1 ,/dev/
dri/
renderD13
2 ,/dev/
dri/
renderD13
3 ,/dev/
dri/
renderD13
4 ,/dev/
dri/
renderD13
5 ,/dev/
dri/
renderD13
6 ,/dev/
dri/
renderD13
7 ,/dev/
dri/
renderD13

Using video transcoding on Amazon ECS 261

Amazon Elastic Container Service Developer Guide

Instance
Type

vCPUs RAM (GiB) U30
accelerator
cards

Addressable
XCU30 SoC
devices

Device Paths

8 ,/dev/
dri/
renderD13
9 ,/dev/
dri/
renderD14
0 ,/dev/
dri/
renderD14
1 ,/dev/
dri/
renderD14
2 ,/dev/
dri/
renderD14
3

Important

If the task definition lists devices that the EC2 instance doesn't have, the task fails to
run. When the task fails, the following error message appears in the stoppedReason:
CannotStartContainerError: Error response from daemon: error
gathering device information while adding custom device "/dev/dri/
renderD130": no such file or directory.

In the following example, the syntax that's used for a task definition of a Linux container on
Amazon EC2 is provided. This task definition is for container images that are built following the
procedure that's provided in the Xilinx documentation. If you use this example, replace image with
your own image, and copy your video files into the instance in the /home/ec2-user directory.

Using video transcoding on Amazon ECS 262

https://xilinx.github.io/video-sdk/v1.5/container_setup.html#creating-a-docker-image-for-vt1-usage

Amazon Elastic Container Service Developer Guide

vt1.3xlarge

1. Create a text file that's named vt1-3xlarge-ffmpeg-linux.json with the following
content.

{
 "family": "vt1-3xlarge-xffmpeg-processor",
 "requiresCompatibilities": ["EC2"],
 "placementConstraints": [
 {
 "type": "memberOf",
 "expression": "attribute:ecs.os-type == linux"
 },
 {
 "type": "memberOf",
 "expression": "attribute:ecs.instance-type == vt1.3xlarge"
 }
],
 "containerDefinitions": [
 {
 "entryPoint": [
 "/bin/bash",
 "-c"
],
 "command": ["/video/ecs_ffmpeg_wrapper.sh"],
 "linuxParameters": {
 "devices": [
 {
 "containerPath": "/dev/dri/renderD128",
 "hostPath": "/dev/dri/renderD128",
 "permissions": [
 "read",
 "write"
]
 },
 {
 "containerPath": "/dev/dri/renderD129",
 "hostPath": "/dev/dri/renderD129",
 "permissions": [
 "read",
 "write"
]
 }

Using video transcoding on Amazon ECS 263

Amazon Elastic Container Service Developer Guide

]
 },
 "mountPoints": [
 {
 "containerPath": "/video",
 "sourceVolume": "video_file"
 }
],
 "cpu": 0,
 "memory": 12000,
 "image": "0123456789012.dkr.ecr.us-west-2.amazonaws.com/aws/xilinx-
xffmpeg",
 "essential": true,
 "name": "xilinix-xffmpeg"
 }
],
 "volumes": [
 {
 "name": "video_file",
 "host": {"sourcePath": "/home/ec2-user"}
 }
]
}

2. Register the task definition.

aws ecs register-task-definition --family vt1-3xlarge-xffmpeg-processor --cli-
input-json file://vt1-3xlarge-xffmpeg-linux.json --region us-east-1

vt1.6xlarge

1. Create a text file that's named vt1-6xlarge-ffmpeg-linux.json with the following
content.

{
 "family": "vt1-6xlarge-xffmpeg-processor",
 "requiresCompatibilities": ["EC2"],
 "placementConstraints": [
 {
 "type": "memberOf",
 "expression": "attribute:ecs.os-type == linux"
 },

Using video transcoding on Amazon ECS 264

Amazon Elastic Container Service Developer Guide

 {
 "type": "memberOf",
 "expression": "attribute:ecs.instance-type == vt1.6xlarge"
 }
],
 "containerDefinitions": [
 {
 "entryPoint": [
 "/bin/bash",
 "-c"
],
 "command": ["/video/ecs_ffmpeg_wrapper.sh"],
 "linuxParameters": {
 "devices": [
 {
 "containerPath": "/dev/dri/renderD128",
 "hostPath": "/dev/dri/renderD128",
 "permissions": [
 "read",
 "write"
]
 },
 {
 "containerPath": "/dev/dri/renderD129",
 "hostPath": "/dev/dri/renderD129",
 "permissions": [
 "read",
 "write"
]
 },
 {
 "containerPath": "/dev/dri/renderD130",
 "hostPath": "/dev/dri/renderD130",
 "permissions": [
 "read",
 "write"
]
 },
 {
 "containerPath": "/dev/dri/renderD131",
 "hostPath": "/dev/dri/renderD131",
 "permissions": [
 "read",
 "write"

Using video transcoding on Amazon ECS 265

Amazon Elastic Container Service Developer Guide

]
 }
]
 },
 "mountPoints": [
 {
 "containerPath": "/video",
 "sourceVolume": "video_file"
 }
],
 "cpu": 0,
 "memory": 12000,
 "image": "0123456789012.dkr.ecr.us-west-2.amazonaws.com/aws/xilinx-
xffmpeg",
 "essential": true,
 "name": "xilinix-xffmpeg"
 }
],
 "volumes": [
 {
 "name": "video_file",
 "host": {"sourcePath": "/home/ec2-user"}
 }
]
}

2. Register the task definition.

aws ecs register-task-definition --family vt1-6xlarge-xffmpeg-processor --cli-
input-json file://vt1-6xlarge-xffmpeg-linux.json --region us-east-1

vt1.24xlarge

1. Create a text file that's named vt1-24xlarge-ffmpeg-linux.json with the following
content.

{
 "family": "vt1-24xlarge-xffmpeg-processor",
 "requiresCompatibilities": ["EC2"],
 "placementConstraints": [
 {
 "type": "memberOf",

Using video transcoding on Amazon ECS 266

Amazon Elastic Container Service Developer Guide

 "expression": "attribute:ecs.os-type == linux"
 },
 {
 "type": "memberOf",
 "expression": "attribute:ecs.instance-type == vt1.24xlarge"
 }
],
 "containerDefinitions": [
 {
 "entryPoint": [
 "/bin/bash",
 "-c"
],
 "command": ["/video/ecs_ffmpeg_wrapper.sh"],
 "linuxParameters": {
 "devices": [
 {
 "containerPath": "/dev/dri/renderD128",
 "hostPath": "/dev/dri/renderD128",
 "permissions": [
 "read",
 "write"
]
 },
 {
 "containerPath": "/dev/dri/renderD129",
 "hostPath": "/dev/dri/renderD129",
 "permissions": [
 "read",
 "write"
]
 },
 {
 "containerPath": "/dev/dri/renderD130",
 "hostPath": "/dev/dri/renderD130",
 "permissions": [
 "read",
 "write"
]
 },
 {
 "containerPath": "/dev/dri/renderD131",
 "hostPath": "/dev/dri/renderD131",
 "permissions": [

Using video transcoding on Amazon ECS 267

Amazon Elastic Container Service Developer Guide

 "read",
 "write"
]
 },
 {
 "containerPath": "/dev/dri/renderD132",
 "hostPath": "/dev/dri/renderD132",
 "permissions": [
 "read",
 "write"
]
 },
 {
 "containerPath": "/dev/dri/renderD133",
 "hostPath": "/dev/dri/renderD133",
 "permissions": [
 "read",
 "write"
]
 },
 {
 "containerPath": "/dev/dri/renderD134",
 "hostPath": "/dev/dri/renderD134",
 "permissions": [
 "read",
 "write"
]
 },
 {
 "containerPath": "/dev/dri/renderD135",
 "hostPath": "/dev/dri/renderD135",
 "permissions": [
 "read",
 "write"
]
 },
 {
 "containerPath": "/dev/dri/renderD136",
 "hostPath": "/dev/dri/renderD136",
 "permissions": [
 "read",
 "write"
]
 },

Using video transcoding on Amazon ECS 268

Amazon Elastic Container Service Developer Guide

 {
 "containerPath": "/dev/dri/renderD137",
 "hostPath": "/dev/dri/renderD137",
 "permissions": [
 "read",
 "write"
]
 },
 {
 "containerPath": "/dev/dri/renderD138",
 "hostPath": "/dev/dri/renderD138",
 "permissions": [
 "read",
 "write"
]
 },
 {
 "containerPath": "/dev/dri/renderD139",
 "hostPath": "/dev/dri/renderD139",
 "permissions": [
 "read",
 "write"
]
 },
 {
 "containerPath": "/dev/dri/renderD140",
 "hostPath": "/dev/dri/renderD140",
 "permissions": [
 "read",
 "write"
]
 },
 {
 "containerPath": "/dev/dri/renderD141",
 "hostPath": "/dev/dri/renderD141",
 "permissions": [
 "read",
 "write"
]
 },
 {
 "containerPath": "/dev/dri/renderD142",
 "hostPath": "/dev/dri/renderD142",
 "permissions": [

Using video transcoding on Amazon ECS 269

Amazon Elastic Container Service Developer Guide

 "read",
 "write"
]
 },
 {
 "containerPath": "/dev/dri/renderD143",
 "hostPath": "/dev/dri/renderD143",
 "permissions": [
 "read",
 "write"
]
 }
]
 },
 "mountPoints": [
 {
 "containerPath": "/video",
 "sourceVolume": "video_file"
 }
],
 "cpu": 0,
 "memory": 12000,
 "image": "0123456789012.dkr.ecr.us-west-2.amazonaws.com/aws/xilinx-
xffmpeg",
 "essential": true,
 "name": "xilinix-xffmpeg"
 }
],
 "volumes": [
 {
 "name": "video_file",
 "host": {"sourcePath": "/home/ec2-user"}
 }
]
}

2. Register the task definition.

aws ecs register-task-definition --family vt1-24xlarge-xffmpeg-processor --cli-
input-json file://vt1-24xlarge-xffmpeg-linux.json --region us-east-1

Using video transcoding on Amazon ECS 270

Amazon Elastic Container Service Developer Guide

Using AWS Neuron on Amazon Linux 2 on Amazon ECS

You can register Amazon EC2 Trn1, Amazon EC2 Inf1, and Amazon EC2 Inf2 instances to your
clusters for machine learning workloads.

Amazon EC2 Trn1 instances are powered by AWS Trainium chips. These instances provide
high performance and low cost training for machine learning in the cloud. You can train a
machine learning inference model using a machine learning framework with AWS Neuron on
a Trn1 instance. Then, you can run the model on a Inf1 instance, or an Inf2 instance to use the
acceleration of the AWS Inferentia chips.

The Amazon EC2 Inf1 instances and Inf2 instances are powered by AWS Inferentia chips They
provide high performance and lowest cost inference in the cloud.

Machine learning models are deployed to containers using AWS Neuron, which is a specialized
Software Developer Kit (SDK). The SDK consists of a compiler, runtime, and profiling tools that
optimize the machine learning performance of AWS machine learning chips. AWS Neuron supports
popular machine learning frameworks such as TensorFlow, PyTorch, and Apache MXNet.

Considerations

Before you begin deploying Neuron on Amazon ECS, consider the following:

• Your clusters can contain a mix of Trn1, Inf1, Inf2 and other instances.

• You need a Linux application in a container that uses a machine learning framework that
supports AWS Neuron.

Important

Applications that use other frameworks might not have improved performance on Trn1,
Inf1, and Inf2 instances.

• Only one inference or inference-training task can run on each AWS Trainium or AWS Inferentia
chip. For Inf1, each chip has 4 NeuronCores. For Trn1 and Inf2 each chip has 2 NeuronCores. You
can run as many tasks as there are chips for each of your Trn1, Inf1, and Inf2 instances.

• When creating a service or running a standalone task, you can use instance type attributes
when you configure task placement constraints. This ensures that the task is launched on the
container instance that you specify. Doing so can help you optimize overall resource utilization

Using AWS Neuron on Amazon Linux 2 on Amazon ECS 271

https://aws.amazon.com/ec2/instance-types/trn1/
https://aws.amazon.com/ec2/instance-types/inf1/
https://aws.amazon.com/ec2/instance-types/inf2/
https://aws.amazon.com/machine-learning/trainium/
https://aws.amazon.com/machine-learning/inferentia/
https://aws.amazon.com/machine-learning/neuron/
https://aws.amazon.com/machine-learning/trainium/
https://aws.amazon.com/machine-learning/inferentia/

Amazon Elastic Container Service Developer Guide

and ensure that tasks for inference workloads are on your Trn1, Inf1, and Inf2 instances. For
more information, see Amazon ECS task placement.

In the following example, a task is run on an Inf1.xlarge instance on your default cluster.

aws ecs run-task \
 --cluster default \
 --task-definition ecs-inference-task-def \
 --placement-constraints type=memberOf,expression="attribute:ecs.instance-type ==
 Inf1.xlarge"

• Neuron resource requirements can't be defined in a task definition. Instead, you configure a
container to use specific AWS Trainium or AWS Inferentia chips available on the host container
instance. Do this by using the linuxParameters parameter and specifying the device details.
For more information, see Task definition requirements.

Using the Amazon ECS optimized Amazon Linux 2 (Neuron) AMI

Amazon ECS provides an Amazon ECS optimized AMI that's based on Amazon Linux 2 for AWS
Trainium and AWS Inferentia workloads. It comes with the AWS Neuron drivers and runtime for
Docker. This AMI makes running machine learning inference workloads easier on Amazon ECS.

We recommend using the Amazon ECS optimized Amazon Linux 2 (Neuron) AMI when launching
your Amazon EC2 Trn1, Inf1, and Inf2 instances.

You can retrieve the current Amazon ECS optimized Amazon Linux 2 (Neuron) AMI using the AWS
CLI with the following command.

aws ssm get-parameters --names /aws/service/ecs/optimized-ami/amazon-linux-2/inf/
recommended

The Amazon ECS optimized Amazon Linux 2 (Neuron) AMI is supported in the following Regions:

• US East (N. Virginia)

• US East (Ohio)

• US West (N. California)

• US West (Oregon)

• Asia Pacific (Mumbai)

Using AWS Neuron on Amazon Linux 2 on Amazon ECS 272

Amazon Elastic Container Service Developer Guide

• Asia Pacific (Osaka)

• Asia Pacific (Seoul)

• Asia Pacific (Tokyo)

• Asia Pacific (Singapore)

• Asia Pacific (Sydney)

• Canada (Central)

• Europe (Frankfurt)

• Europe (Ireland)

• Europe (London)

• Europe (Paris)

• Europe (Stockholm)

• South America (São Paulo)

Task definition requirements

To deploy Neuron on Amazon ECS, your task definition must contain the container definition
for a pre-built container serving the inference model for TensorFlow. It's provided by AWS Deep
Learning Containers. This container contains the AWS Neuron runtime and the TensorFlow Serving
application. At startup, this container fetches your model from Amazon S3, launches Neuron
TensorFlow Serving with the saved model, and waits for prediction requests. In the following
example, the container image has TensorFlow 1.15 and Ubuntu 18.04. A complete list of pre-built
Deep Learning Containers optimized for Neuron is maintained on GitHub. For more information,
see Using AWS Neuron TensorFlow Serving.

763104351884.dkr.ecr.us-east-1.amazonaws.com/tensorflow-inference-neuron:1.15.4-neuron-
py37-ubuntu18.04

Alternatively, you can build your own Neuron sidecar container image. For more information, see
Tutorial: Neuron TensorFlow Serving in the AWS Deep Learning AMI Developer Guide.

The task definition must be specific to a single instance type. You must configure a container to use
specific AWS Trainium or AWS Inferentia devices that are available on the host container instance.
You can do so using the linuxParameters parameter. The following table details the chips that
are specific to each instance type.

Using AWS Neuron on Amazon Linux 2 on Amazon ECS 273

https://docs.aws.amazon.com/dlami/latest/devguide/tutorial-inferentia-tf-neuron-serving.html
https://github.com/aws-neuron/aws-neuron-sdk/blob/master/frameworks/tensorflow/tensorflow-neuron/tutorials/tutorials-tensorflow-utilizing-neuron-capabilities.rst

Amazon Elastic Container Service Developer Guide

Instance Type vCPUs RAM (GiB) AWS ML
accelerator
chips

Device Paths

trn1.2xlarge 8 32 1 /dev/neur
on0

trn1.32xlarge 128 512 16 /dev/neur
on0 , /dev/
neuron1 , /
dev/neuron2 ,
/dev/neur
on3 , /dev/
neuron4 , /
dev/neuron5 ,
/dev/neur
on6 , /dev/
neuron7 , /
dev/neuron8 ,
/dev/neur
on9 , /dev/
neuron10 ,
/dev/neur
on11 , /dev/
neuron12 ,
/dev/neur
on13 , /dev/
neuron14 ,
/dev/neur
on15

inf1.xlarge 4 8 1 /dev/neur
on0

inf1.2xlarge 8 16 1 /dev/neur
on0

Using AWS Neuron on Amazon Linux 2 on Amazon ECS 274

Amazon Elastic Container Service Developer Guide

Instance Type vCPUs RAM (GiB) AWS ML
accelerator
chips

Device Paths

inf1.6xlarge 24 48 4 /dev/neur
on0 , /dev/
neuron1 , /
dev/neuron2 ,
/dev/neur
on3

inf1.24xlarge 96 192 16 /dev/neur
on0 , /dev/
neuron1 , /
dev/neuron2 ,
/dev/neur
on3 , /dev/
neuron4 , /
dev/neuron5 ,
/dev/neur
on6 , /dev/
neuron7 , /
dev/neuron8 ,
/dev/neur
on9 , /dev/
neuron10 ,
/dev/neur
on11 , /dev/
neuron12 ,
/dev/neur
on13 , /dev/
neuron14 ,
/dev/neur
on15

Using AWS Neuron on Amazon Linux 2 on Amazon ECS 275

Amazon Elastic Container Service Developer Guide

Instance Type vCPUs RAM (GiB) AWS ML
accelerator
chips

Device Paths

inf2.xlarge 8 16 1 /dev/neur
on0

inf2.8xlarge 32 64 1 /dev/neur
on0

inf2.24xlarge 96 384 6 /dev/neur
on0 , /dev/
neuron1 , /
dev/neuron2 ,
/dev/neur
on3 , /dev/
neuron4 , /
dev/neuron5 ,

inf2.48xlarge 192 768 12 /dev/neur
on0 , /dev/
neuron1 , /
dev/neuron2 ,
/dev/neur
on3 , /dev/
neuron4 , /
dev/neuron5 ,
/dev/neur
on6 , /dev/
neuron7 , /
dev/neuron8 ,
/dev/neur
on9 , /dev/
neuron10 ,
/dev/neur
on11

Using AWS Neuron on Amazon Linux 2 on Amazon ECS 276

Amazon Elastic Container Service Developer Guide

The following is an example Linux task definition for inf1.xlarge, displaying the syntax to use.

{
 "family": "ecs-neuron",
 "requiresCompatibilities": ["EC2"],
 "placementConstraints": [
 {
 "type": "memberOf",
 "expression": "attribute:ecs.os-type == linux"
 },
 {
 "type": "memberOf",
 "expression": "attribute:ecs.instance-type == inf1.xlarge"
 }
],
 "executionRoleArn": "${YOUR_EXECUTION_ROLE}",
 "containerDefinitions": [
 {
 "entryPoint": [
 "/usr/local/bin/entrypoint.sh",
 "--port=8500",
 "--rest_api_port=9000",
 "--model_name=resnet50_neuron",
 "--model_base_path=s3://your-bucket-of-models/resnet50_neuron/"
],
 "portMappings": [
 {
 "hostPort": 8500,
 "protocol": "tcp",
 "containerPort": 8500
 },
 {
 "hostPort": 8501,
 "protocol": "tcp",
 "containerPort": 8501
 },
 {
 "hostPort": 0,
 "protocol": "tcp",
 "containerPort": 80
 }
],
 "linuxParameters": {
 "devices": [

Using AWS Neuron on Amazon Linux 2 on Amazon ECS 277

Amazon Elastic Container Service Developer Guide

 {
 "containerPath": "/dev/neuron0",
 "hostPath": "/dev/neuron0",
 "permissions": [
 "read",
 "write"
]
 }
],
 "capabilities": {
 "add": [
 "IPC_LOCK"
]
 }
 },
 "cpu": 0,
 "memoryReservation": 1000,
 "image": "763104351884.dkr.ecr.us-east-1.amazonaws.com/tensorflow-
inference-neuron:1.15.4-neuron-py37-ubuntu18.04",
 "essential": true,
 "name": "resnet50"
 }
]
}

Using deep learning DL1 instances on Amazon ECS

To use deep learning workloads on Amazon ECS, register Amazon EC2 DL1 instances to your
clusters. Amazon EC2 DL1 instances are powered by Gaudi accelerators from Habana Labs (an Intel
company). Use the Habana SynapseAI SDK to connect to the Habana Gaudi accelerators. The SDK
supports the popular machine learning frameworks, TensorFlow and PyTorch.

Considerations

Before you begin deploying DL1 on Amazon ECS, consider the following:

• Your clusters can contain a mix of DL1 and non-DL1 instances.

• When creating a service or running a standalone task, you can use instance type attributes
specifically when you configure task placement constraints to ensure that your task is launched
on the container instance that you specify. Doing so ensures that your resources are used
effectively and that your tasks for deep learning workloads are on your DL1 instances. For more
information, see Amazon ECS task placement.

Using deep learning DL1 instances on Amazon ECS 278

https://aws.amazon.com/ec2/instance-types/dl1/

Amazon Elastic Container Service Developer Guide

The following example runs a task on a dl1.24xlarge instance on your default cluster.

aws ecs run-task \
 --cluster default \
 --task-definition ecs-dl1-task-def \
 --placement-constraints type=memberOf,expression="attribute:ecs.instance-type ==
 dl1.24xlarge"

Using a DL1 AMI

You have three options for running an AMI on Amazon EC2 DL1 instances for Amazon ECS:

• AWS Marketplace AMIs that are provided by Habana here.

• Habana Deep Learning AMIs that are provided by Amazon Web Services. Because it's not
included, you need to install the Amazon ECS container agent separately.

• Use Packer to build a custom AMI that's provided by the GitHub repo. For more information, see
the Packer documentation.

Task definition requirements

To run Habana Gaudi accelerated deep learning containers on Amazon ECS, your task definition
must contain the container definition for a pre-built container that serves the deep learning
model for TensorFlow or PyTorch using Habana SynapseAI that's provided by AWS Deep Learning
Containers.

The following container image has TensorFlow 2.7.0 and Ubuntu 20.04. A complete list of pre-built
Deep Learning Containers that's optimized for the Habana Gaudi accelerators is maintained on
GitHub. For more information, see Habana Training Containers.

763104351884.dkr.ecr.us-east-1.amazonaws.com/tensorflow-training-habana:2.7.0-hpu-py38-
synapseai1.2.0-ubuntu20.04

The following is an example task definition for Linux containers on Amazon EC2, displaying the
syntax to use. This example uses an image containing the Habana Labs System Management
Interface Tool (HL-SMI) found here: vault.habana.ai/gaudi-docker/1.1.0/ubuntu20.04/
habanalabs/tensorflow-installer-tf-cpu-2.6.0:1.1.0-614

Using deep learning DL1 instances on Amazon ECS 279

https://aws.amazon.com/marketplace/pp/prodview-h24gzbgqu75zq
https://github.com/aws-samples/aws-habana-baseami-pipeline
https://www.packer.io/docs
https://github.com/aws/deep-learning-containers/blob/master/available_images.md#habana-training-containers

Amazon Elastic Container Service Developer Guide

{
 "family": "dl-test",
 "requiresCompatibilities": ["EC2"],
 "placementConstraints": [
 {
 "type": "memberOf",
 "expression": "attribute:ecs.os-type == linux"
 },
 {
 "type": "memberOf",
 "expression": "attribute:ecs.instance-type == dl1.24xlarge"
 }
],
 "networkMode": "host",
 "cpu": "10240",
 "memory": "1024",
 "containerDefinitions": [
 {
 "entryPoint": [
 "sh",
 "-c"
],
 "command": ["hl-smi"],
 "cpu": 8192,
 "environment": [
 {
 "name": "HABANA_VISIBLE_DEVICES",
 "value": "all"
 }
],
 "image": "vault.habana.ai/gaudi-docker/1.1.0/ubuntu20.04/habanalabs/
tensorflow-installer-tf-cpu-2.6.0:1.1.0-614",
 "essential": true,
 "name": "tensorflow-installer-tf-hpu"
 }
]
}

Working with 64-bit ARM workloads on Amazon ECS

Amazon ECS supports using 64-bit ARM applications. You can run your applications on the
platform that's powered by AWS Graviton2 processors. It's suitable for a wide variety of workloads.

Working with 64-bit ARM workloads on Amazon ECS 280

https://aws.amazon.com/ec2/graviton/

Amazon Elastic Container Service Developer Guide

This includes workloads such as application servers, micro-services, high-performance computing,
CPU-based machine learning inference, video encoding, electronic design automation, gaming,
open-source databases, and in-memory caches.

Considerations

Before you begin deploying task definitions that use the 64-bit ARM architecture, consider the
following:

• The applications can use the Fargate or EC2 launch types.

• Linux tasks with the ARM64 architecture don't support the Fargate Spot capacity provider.

• The applications can only use the Linux operating system.

• For the Fargate type, the applications must use Fargate platform version 1.4.0 or later .

• The applications can use Fluent Bit or CloudWatch for monitoring.

• For the Fargate launch type, the following AWS Regions do not support 64-bit ARM workloads:

• US East (N. Virginia), the use1-az3 Availability Zone

• For the Amazon EC2 launch type, see the following to verify that the Region that you're in
supports the instance type you want to use:

• Amazon EC2 M6g Instances

• Amazon EC2 T4g Instances

• Amazon EC2 C6g Instances

• Amazon EC2 R6gd Instances

• Amazon EC2 X2gd Instances

You can also use the Amazon EC2 describe-instance-type-offerings command with a
filter to view the instance offering for your Region.

aws ec2 describe-instance-type-offerings --filters Name=instance-
type,Values=instance-type --region region

The following example checks for the M6 instance type availability in the US East (N. Virginia)
(us-east-1) Region.

aws ec2 describe-instance-type-offerings --filters "Name=instance-type,Values=m6*" --
region us-east-1

Working with 64-bit ARM workloads on Amazon ECS 281

https://aws.amazon.com/ec2/instance-types/m6
https://aws.amazon.com/ec2/instance-types/t4/
https://aws.amazon.com/ec2/instance-types/c6g/
https://aws.amazon.com/ec2/instance-types/r6/
https://aws.amazon.com/ec2/instance-types/x2/

Amazon Elastic Container Service Developer Guide

For more information, see describe-instance-type-offerings in the Amazon EC2 Command Line
Reference.

Specifying the ARM architecture in your task definition

To use the ARM architecture, specify ARM64 for the cpuArchitecture task definition parameter.

In the following example, the ARM architecture is specified in a task definition. It's in JSON format.

{
 "runtimePlatform": {
 "operatingSystemFamily": "LINUX",
 "cpuArchitecture": "ARM64"
 },
...
}

In the following example, a task definition for the ARM architecture displays "hello world."

{
 "family": "arm64-testapp",
 "networkMode": "awsvpc",
 "containerDefinitions": [
 {
 "name": "arm-container",
 "image": "arm64v8/busybox",
 "cpu": 100,
 "memory": 100,
 "essential": true,
 "command": ["echo hello world"],
 "entryPoint": ["sh", "-c"]
 }
],
 "requiresCompatibilities": ["FARGATE"],
 "cpu": "256",
 "memory": "512",
 "runtimePlatform": {
 "operatingSystemFamily": "LINUX",
 "cpuArchitecture": "ARM64"
 },
 "executionRoleArn": "arn:aws:iam::123456789012:role/ecsTaskExecutionRole"

Working with 64-bit ARM workloads on Amazon ECS 282

https://docs.aws.amazon.com/cli/latest/reference/ec2/describe-instance-type-offerings.html

Amazon Elastic Container Service Developer Guide

}

Interfaces for configuring ARM

You can configure the ARM CPU architecture for Amazon ECS task definitions using one of the
following interfaces:

• Amazon ECS console

• AWS Command Line Interface (AWS CLI)

• AWS SDKs

• AWS Copilot

Using the awslogs log driver

You can configure the containers in your tasks to send log information to CloudWatch Logs. If
you're using the Fargate launch type for your tasks, you can view the logs from your containers.
If you're using the EC2 launch type, you can view different logs from your containers in one
convenient location, and it prevents your container logs from taking up disk space on your
container instances. This topic goes over how you can get started using the awslogs log driver in
your task definitions.

Note

The type of information that is logged by the containers in your task depends mostly on
their ENTRYPOINT command. By default, the logs that are captured show the command
output that you typically might see in an interactive terminal if you ran the container
locally, which are the STDOUT and STDERR I/O streams. The awslogs log driver simply
passes these logs from Docker to CloudWatch Logs. For more information about how
Docker logs are processed, including alternative ways to capture different file data or
streams, see View logs for a container or service in the Docker documentation.

To send system logs from your Amazon ECS container instances to CloudWatch Logs, see
Monitoring Log Files and CloudWatch Logs quotas in the Amazon CloudWatch Logs User Guide.

Using the awslogs log driver 283

https://docs.docker.com/config/containers/logging/
https://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/WhatIsCloudWatchLogs.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/cloudwatch_limits_cwl.html

Amazon Elastic Container Service Developer Guide

Turning on the awslogs log driver for your containers

If you're using the Fargate launch type for your tasks, you need to add the required
logConfiguration parameters to your task definition to turn on the awslogs log driver. For
more information, see Specifying a log configuration in your task definition.

If you're using the EC2 launch type for your tasks and want to turn on the awslogs log driver,
your Amazon ECS container instances require at least version 1.9.0 of the container agent. For
information about how to check your agent version and updating to the latest version, see
Updating the Amazon ECS container agent.

Note

If you aren't using the Amazon ECS optimized AMI (with at least version 1.9.0-1 of the ecs-
init package) for your container instances, you also need to specify that the awslogs
logging driver is available on the container instance when you start the agent by using the
following environment variable in your docker run statement or environment variable file.
For more information, see Installing the Amazon ECS container agent.

ECS_AVAILABLE_LOGGING_DRIVERS=["json-file","awslogs"]

Your Amazon ECS container instances also require logs:CreateLogStream and
logs:PutLogEvents permission on the IAM role that you can launch your container
instances with. If you created your Amazon ECS container instance role before awslogs
log driver support was enabled in Amazon ECS, you might need to add this permission. The
ecsTaskExecutionRole is used when it's assigned to the task and likely contains the correct
permissions. For information about the task execution role, see Amazon ECS task execution IAM
role. If your container instances use the managed IAM policy for container instances, your container
instances likely have the correct permissions. For information about the managed IAM policy for
container instances, see Amazon ECS container instance IAM role.

Creating a log group

The awslogs log driver can send log streams to an existing log group in CloudWatch Logs or
create a new log group on your behalf. The AWS Management Console provides an auto-configure
option, which creates a log group on your behalf using the task definition family name with ecs
as the prefix. Alternatively, you can manually specify your log configuration options and specify

Using the awslogs log driver 284

Amazon Elastic Container Service Developer Guide

the awslogs-create-group option with a value of true, which creates the log groups on your
behalf.

Note

To use the awslogs-create-group option to have your log group created,
your task execution IAM role policy or EC2 instance role policy must include the
logs:CreateLogGroup permission.

The following code shows how to set the awslogs-create-group option.

{
 "containerDefinitions": [
 {
 "logConfiguration": {
 "logDriver": "awslogs",
 "options": {
 "awslogs-group": "firelens-container",
 "awslogs-region": "us-west-2",
 "awslogs-create-group": "true",
 "awslogs-stream-prefix": "firelens"
 }
 }
]
}

Using the auto-configuration feature to create a log group

When you register a task definition,in the Amazon ECS console, you can allow Amazon ECS to auto-
configure your CloudWatch logs. Doing this causes a log group to be created on your behalf using
the task definition family name with ecs as the prefix. For more information, see the section called
“Creating a task definition using the console”.

Available awslogs log driver options

The awslogs log driver supports the following options in Amazon ECS task definitions. For more
information, see CloudWatch Logs logging driver.

Using the awslogs log driver 285

https://docs.docker.com/config/containers/logging/awslogs/

Amazon Elastic Container Service Developer Guide

awslogs-create-group

Required: No

Specify whether you want the log group to be created automatically. If this option isn't
specified, it defaults to false.

Note

Your IAM policy must include the logs:CreateLogGroup permission before you
attempt to use awslogs-create-group.

awslogs-region

Required: Yes

Specify the AWS Region that the awslogs log driver is to send your Docker logs to. You
can choose to send all of your logs from clusters in different Regions to a single region in
CloudWatch Logs. This is so that they're all visible in one location. Otherwise, you can separate
them by Region for more granularity. Make sure that the specified log group exists in the
Region that you specify with this option.

awslogs-group

Required: Yes

Make sure to specify a log group that the awslogs log driver sends its log streams to. For more
information, see Creating a log group.

awslogs-stream-prefix

Required: Yes, when using the Fargate launch type. Optional for the EC2 launch type, required
for the Fargate launch type.

Use the awslogs-stream-prefix option to associate a log stream with the specified prefix,
the container name, and the ID of the Amazon ECS task that the container belongs to. If you
specify a prefix with this option, then the log stream takes the following format.

prefix-name/container-name/ecs-task-id

Using the awslogs log driver 286

Amazon Elastic Container Service Developer Guide

If you don't specify a prefix with this option, then the log stream is named after the container
ID that's assigned by the Docker daemon on the container instance. Because it's difficult to
trace logs back to the container that sent them with just the Docker container ID (which is only
available on the container instance), we recommend that you specify a prefix with this option.

For Amazon ECS services, you can use the service name as the prefix. Doing so, you can trace log
streams to the service that the container belongs to, the name of the container that sent them,
and the ID of the task that the container belongs to.

You must specify a stream-prefix for your logs to have your logs appear in the Log pane when
using the Amazon ECS console.

awslogs-datetime-format

Required: No

This option defines a multiline start pattern in Python strftime format. A log message
consists of a line that matches the pattern and any following lines that don’t match the pattern.
The matched line is the delimiter between log messages.

One example of a use case for using this format is for parsing output such as a stack dump,
which might otherwise be logged in multiple entries. The correct pattern allows it to be
captured in a single entry.

For more information, see awslogs-datetime-format.

You cannot configure both the awslogs-datetime-format and awslogs-multiline-
pattern options.

Note

Multiline logging performs regular expression parsing and matching of all log messages.
This might have a negative impact on logging performance.

awslogs-multiline-pattern

Required: No

This option defines a multiline start pattern that uses a regular expression. A log message
consists of a line that matches the pattern and any following lines that don’t match the pattern.
The matched line is the delimiter between log messages.

Using the awslogs log driver 287

https://docs.docker.com/config/containers/logging/awslogs/#awslogs-datetime-format

Amazon Elastic Container Service Developer Guide

For more information, see awslogs-multiline-pattern.

This option is ignored if awslogs-datetime-format is also configured.

You cannot configure both the awslogs-datetime-format and awslogs-multiline-
pattern options.

Note

Multiline logging performs regular expression parsing and matching of all log messages.
This might have a negative impact on logging performance.

mode

Required: No

Valid values: non-blocking | blocking

Default value: blocking

This option defines the delivery mode of log messages from the container to CloudWatch
Logs. The delivery mode you choose affects application availability when the flow of logs from
container to CloudWatch is interrupted.

If you use the default blocking mode and the flow of logs to CloudWatch is interrupted, calls
from container code to write to the stdout and stderr streams will block. The logging thread
of the application will block as a result. This may cause the application to become unresponsive
and lead to container healthcheck failure.

If you use the non-blocking mode, the container's logs are instead stored in an in-memory
intermediate buffer configured with the max-buffer-size option. This prevents the
application from becoming unresponsive when logs cannot be sent to CloudWatch. We
recommend using this mode if you want to ensure service availability and are okay with some
log loss.

max-buffer-size

Required: No

Default value: 1m

Using the awslogs log driver 288

https://docs.docker.com/config/containers/logging/awslogs/#awslogs-multiline-pattern
https://aws.amazon.com/blogs/containers/preventing-log-loss-with-non-blocking-mode-in-the-awslogs-container-log-driver/

Amazon Elastic Container Service Developer Guide

When non-blocking mode is used, the max-buffer-size log option controls the size of the
buffer that's used for intermediate message storage. Make sure to specify an adequate buffer
size based on your application. When the buffer fills up, further logs cannot be stored. Logs that
cannot be stored are lost.

Specifying a log configuration in your task definition

Before your containers can send logs to CloudWatch, you must specify the awslogs log driver for
containers in your task definition. This section describes the log configuration for a container to use
the awslogs log driver. For more information, see Creating a task definition using the console.

The task definition JSON that follows has a logConfiguration object specified for each
container. One is for the WordPress container that sends logs to a log group called awslogs-
wordpress. The other is for a MySQL container that sends logs to a log group that's called
awslogs-mysql. Both containers use the awslogs-example log stream prefix.

{
 "containerDefinitions": [
 {
 "name": "wordpress",
 "links": [
 "mysql"
],
 "image": "wordpress",
 "essential": true,
 "portMappings": [
 {
 "containerPort": 80,
 "hostPort": 80
 }
],
 "logConfiguration": {
 "logDriver": "awslogs",
 "options": {
 "awslogs-create-group": "true",
 "awslogs-group": "awslogs-wordpress",
 "awslogs-region": "us-west-2",
 "awslogs-stream-prefix": "awslogs-example"
 }
 },
 "memory": 500,

Using the awslogs log driver 289

Amazon Elastic Container Service Developer Guide

 "cpu": 10
 },
 {
 "environment": [
 {
 "name": "MYSQL_ROOT_PASSWORD",
 "value": "password"
 }
],
 "name": "mysql",
 "image": "mysql",
 "cpu": 10,
 "memory": 500,
 "essential": true,
 "logConfiguration": {
 "logDriver": "awslogs",
 "options": {
 "awslogs-create-group": "true",
 "awslogs-group": "awslogs-mysql",
 "awslogs-region": "us-west-2",
 "awslogs-stream-prefix": "awslogs-example",
 "mode": "non-blocking",
 "max-buffer-size": "25m"
 }
 }
 }
],
 "family": "awslogs-example"
}

After you have registered a task definition with the awslogs log driver in a container definition log
configuration, you can run a task or create a service with that task definition to start sending logs
to CloudWatch Logs. For more information, see Creating a standalone task and Creating a service
using the console.

Using custom log routing

You can use FireLens for Amazon ECS to use task definition parameters to route logs to an AWS
service or AWS Partner Network (APN) destination for log storage and analytics. The AWS Partner
Network is a global community of partners that leverages programs, expertise, and resources to
build, market, and sell customer offerings. For more information see AWS Partner. FireLens works

Using custom log routing 290

https://aws.amazon.com/partners/work-with-partners/

Amazon Elastic Container Service Developer Guide

with Fluentd and Fluent Bit. We provide the AWS for Fluent Bit image or you can use your own
Fluentd or Fluent Bit image.

Considerations

Consider the following when using FireLens for Amazon ECS:

• We recommend that you add my_service_ to the log container name so that you can easily
distinguish container names in the console.

• Amazon ECS adds a start container order dependency between the application containers and
the FireLens container by default. When you specify a container order between the application
containers and the FireLens container, then the default start container order is overridden.

• FireLens for Amazon ECS is supported for tasks that are hosted on both AWS Fargate on Linux
and Amazon EC2 on Linux. Windows containers don't support FireLens.

For information about how to configure centralized logging for Windows containers, see
Centralized logging for Windows containers on Amazon ECS using Fluent Bit.

• FireLens for Amazon ECS is supported in AWS CloudFormation templates. For more information,
see AWS::ECS::TaskDefinition FirelensConfiguration in the AWS CloudFormation User Guide

• FireLens listens on port 24224, so to ensure that the FireLens log router isn't reachable outside
of the task, you must not allow inbound traffic on port 24224 in the security group your task
uses. For tasks that use the awsvpc network mode, this is the security group associated with the
task. For tasks using the host network mode, this is the security group that's associated with
the Amazon EC2 instance hosting the task. For tasks that use the bridge network mode, don't
create any port mappings that use port 24224.

• For tasks that use the bridge network mode, the container with the FireLens configuration
must start before any application containers that rely on it start. To control the start order of
your containers, use dependency conditions in your task definition. For more information, see
Container dependency.

Note

If you use dependency condition parameters in container definitions with a FireLens
configuration, ensure that each container has a START or HEALTHY condition
requirement.

Using custom log routing 291

https://www.fluentd.org/
https://fluentbit.io/
https://aws.amazon.com/blogs/containers/centralized-logging-for-windows-containers-on-amazon-ecs-using-fluent-bit/
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-ecs-taskdefinition-firelensconfiguration.html

Amazon Elastic Container Service Developer Guide

• By default, FireLens adds the cluster and task definition name and the Amazon Resource Name
(ARN) of the cluster as metadata keys to your stdout/stderr container logs. The following is an
example of the metadata format.

"ecs_cluster": "cluster-name",
"ecs_task_arn": "arn:aws:ecs:region:111122223333:task/cluster-
name/f2ad7dba413f45ddb4EXAMPLE",
"ecs_task_definition": "task-def-name:revision",

If you do not want the metadata in your logs, set enable-ecs-log-metadata to false in the
firelensConfiguration section of the task definition.

"firelensConfiguration":{
 "type":"fluentbit",
 "options":{
 "enable-ecs-log-metadata":"false",
 "config-file-type":"file",
 "config-file-value":"/extra.conf"
}

Required IAM permissions

To use this feature, you must create an IAM role for your tasks that provides the permissions
necessary to use any AWS services that the tasks require. For example, if a container is routing logs
to Firehose, the task requires permission to call the firehose:PutRecordBatch API. For more
information, see Adding and Removing IAM Identity Permissions in the IAM User Guide.

The following example IAM policy adds the required permissions for routing logs to Firehose.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "firehose:PutRecordBatch"
],
 "Resource": [
 "*"
]

Using custom log routing 292

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_manage-attach-detach.html

Amazon Elastic Container Service Developer Guide

 }
]
}

The following example IAM policy adds the required permissions for routing logs to Amazon
CloudWatch Logs.

{
 "Version": "2012-10-17",
 "Statement": [{
 "Effect": "Allow",
 "Action": [
 "logs:CreateLogStream",
 "logs:CreateLogGroup",
 "logs:PutLogEvents"
],
 "Resource": "*"
 }]
}

Your task may also require the Amazon ECS task execution role under the following conditions. For
more information, see Amazon ECS task execution IAM role.

• If your task is hosted on Fargate and you are pulling container images from Amazon ECR or
referencing sensitive data from AWS Secrets Manager in your log configuration, then you must
include the task execution IAM role.

• If you are specifying a custom configuration file that's hosted in Amazon S3, your task execution
IAM role must include the s3:GetObject permission for the configuration file and the
s3:GetBucketLocation permission on the Amazon S3 bucket that the file is in. For more
information, see Specifying Permissions in a Policy in the Amazon Simple Storage Service User
Guide.

The following example IAM policy adds the required permissions for retrieving a file from
Amazon S3. Specify the name of your Amazon S3 bucket and configuration file name.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",

Using custom log routing 293

https://docs.aws.amazon.com/AmazonS3/latest/dev/using-with-s3-actions.html

Amazon Elastic Container Service Developer Guide

 "Action": [
 "s3:GetObject"
],
 "Resource": [
 "arn:aws:s3:::examplebucket/folder_name/config_file_name"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "s3:GetBucketLocation"
],
 "Resource": [
 "arn:aws:s3:::examplebucket"
]
 }
]
}

Fluentd buffer limit

When you create a task definition, you can specify the number of events that are buffered
in memory by specifying the value (in bytes) in the log-driver-buffer-limit. For more
information, see Fluentd logging driver in the Docker documentation.

Use this option when there's high throughput, because Docker might run out of buffer memory
and discard buffer messages so it can add new messages. The lost logs might make it difficult to
troubleshoot. Setting the buffer limit might help to prevent this issue.

The following shows the syntax for specifying the log-driver-buffer-limit. Replace
my_service_ with the name of your service.:

{
 "containerDefinitions": [
 {
 "essential": true,
 "image": "906394416424.dkr.ecr.us-west-2.amazonaws.com/aws-for-fluent-
bit:stable",
 "name": "my_service_log_router",
 "firelensConfiguration": {
 "type": "fluentbit"
 },

Using custom log routing 294

https://docs.docker.com/config/containers/logging/fluentd/

Amazon Elastic Container Service Developer Guide

 "logConfiguration": {
 "logDriver": "awslogs",
 "options": {
 "awslogs-group": "firelens-container",
 "awslogs-region": "us-west-2",
 "awslogs-create-group": "true",
 "awslogs-stream-prefix": "firelens"
 }
 },
 "memoryReservation": 50
 },
 {
 "essential": true,
 "image": "httpd",
 "name": "app",
 "logConfiguration": {
 "logDriver": "awsfirelens",
 "options": {
 "Name": "firehose",
 "region": "us-west-2",
 "delivery_stream": "my-stream",
 "log-driver-buffer-limit": "2097152"
 }
 },
 "dependsOn": [
 {
 "containerName": "log_router",
 "condition": "START"
 }
],
 "memoryReservation": 100
 }
]
}

Consider the following when using FireLens for Amazon ECS with the buffer limit option:

• This option is supported on the Amazon EC2 launch type and the Fargate launch type with
platform version 1.4.0 or later.

• The option is only valid when logDriver is set to awsfirelens.

• The default buffer limit is 1 MiB.

• The valid values are 0 and 536870912 (512 MiB).

Using custom log routing 295

Amazon Elastic Container Service Developer Guide

• The total amount of memory allocated at the task level must be greater than the amount of
memory that's allocated for all the containers in addition to the memory buffer limit. The total
amount of buffer memory specified must be less than 536870912 (512MiB) when you don't
specify the container memory and memoryReservation values. More specifically, you can have
an app container with the awsfirelens log driver and the log-driver-buffer-limit
option set to 300 MiB. However, you won’t be allowed to run tasks if you have more than two
containers with the log-driver-buffer-limit set to 300 MiB (300 MiB * 2 > 512 MiB).

Using Fluent logger libraries or Log4j over TCP

When the awsfirelens log driver is specified in a task definition, the Amazon ECS container
agent injects the following environment variables into the container:

FLUENT_HOST

The IP address that's assigned to the FireLens container.

FLUENT_PORT

The port that the Fluent Forward protocol is listening on.

You can use the FLUENT_HOST and FLUENT_PORT environment variables to log directly to the
log router from code instead of going through stdout. For more information, see fluent-logger-
golang on GitHub.

• the section called “AWS for Fluent Bit image”

• the section called “Specifying a FireLens configuration in a task definition”

• the section called “Filtering Fluentd and Fluent Bit logs ”

• the section called “Example logging option task definitions”

AWS for Fluent Bit image

AWS provides a Fluent Bit image with plugins for both CloudWatch Logs and Firehose. We
recommend using Fluent Bit as your log router because it has a lower resource utilization rate than
Fluentd. For more information, see CloudWatch Logs for Fluent Bit and Amazon Kinesis Firehose
for Fluent Bit.

Using custom log routing 296

https://github.com/fluent/fluent-logger-golang
https://github.com/fluent/fluent-logger-golang
https://github.com/aws/amazon-cloudwatch-logs-for-fluent-bit
https://github.com/aws/amazon-kinesis-firehose-for-fluent-bit
https://github.com/aws/amazon-kinesis-firehose-for-fluent-bit

Amazon Elastic Container Service Developer Guide

The AWS for Fluent Bit image is available on Amazon ECR on both the Amazon ECR Public Gallery
and in an Amazon ECR repository in most AWS Regions for high availability.

Amazon ECR Public Gallery

The AWS for Fluent Bit image is available on the Amazon ECR Public Gallery. This is the
recommended location to download the AWS for Fluent Bit image because it's a public repository
and available to be used from all AWS Regions. For more information, see aws-for-fluent-bit on the
Amazon ECR Public Gallery.

Linux

The AWS for Fluent Bit image in the Amazon ECR Public Gallery supports Amazon Linux operating
system with the ARM 64, or x86-64 architecture.

You can pull the AWS for Fluent Bit image from the Amazon ECR Public Gallery by specifying the
repository URL with the desired image tag. The available image tags can be found on the Image
tags tab on the Amazon ECR Public Gallery.

The following shows the syntax to use for the Docker CLI.

docker pull public.ecr.aws/aws-observability/aws-for-fluent-bit:tag

For example, you can pull the latest stable AWS for Fluent Bit image using this Docker CLI
command.

docker pull public.ecr.aws/aws-observability/aws-for-fluent-bit:stable

Note

Unauthenticated pulls are allowed, but have a lower rate limit than authenticated pulls. To
authenticate using your AWS account before pulling, use the following command.

aws ecr-public get-login-password --region us-east-1 | docker login --username
 AWS --password-stdin public.ecr.aws

Using custom log routing 297

https://gallery.ecr.aws/aws-observability/aws-for-fluent-bit

Amazon Elastic Container Service Developer Guide

Windows

The AWS for Fluent Bit image in the Amazon ECR Public Gallery supports the AMD64 architecture
with the following operating systems:

• Windows Server 2022 Full

• Windows Server 2022 Core

• Windows Server 2019 Full

• Windows Server 2019 Core

Windows containers that are on AWS Fargate don't support FireLens.

You can pull the AWS for Fluent Bit image from the Amazon ECR Public Gallery by specifying the
repository URL with the desired image tag. The available image tags can be found on the Image
tags tab on the Amazon ECR Public Gallery.

The following shows the syntax to use for the Docker CLI.

docker pull public.ecr.aws/aws-observability/aws-for-fluent-bit:tag

For example, you can pull the newest stable AWS for Fluent Bit image using this Docker CLI
command.

docker pull public.ecr.aws/aws-observability/aws-for-fluent-bit:windowsservercore-
stable

Note

Unauthenticated pulls are allowed, but have a lower rate limit than authenticated pulls. To
authenticate using your AWS account before pulling, use the following command.

aws ecr-public get-login-password --region us-east-1 | docker login --username
 AWS --password-stdin public.ecr.aws

Using custom log routing 298

Amazon Elastic Container Service Developer Guide

Amazon ECR

The AWS for Fluent Bit image is available on Amazon ECR for high availability. These images are
available in most AWS Regions, including AWS GovCloud (US).

Linux

The latest stable AWS for Fluent Bit image URI can be retrieved using the following command.

aws ssm get-parameters \
 --names /aws/service/aws-for-fluent-bit/stable \
 --region us-east-1

All versions of the AWS for Fluent Bit image can be listed using the following command to query
the Systems Manager Parameter Store parameter.

aws ssm get-parameters-by-path \
 --path /aws/service/aws-for-fluent-bit \
 --region us-east-1

The newest stable AWS for Fluent Bit image can be referenced in an AWS CloudFormation template
by referencing the Systems Manager parameter store name. The following is an example:

Parameters:
 FireLensImage:
 Description: Fluent Bit image for the FireLens Container
 Type: AWS::SSM::Parameter::Value<String>
 Default: /aws/service/aws-for-fluent-bit/stable

Windows

The latest stable AWS for Fluent Bit image URI can be retrieved using the following command.

aws ssm get-parameters \
 --names /aws/service/aws-for-fluent-bit/windowsservercore:stable \
 --region us-east-1

All versions of the AWS for Fluent Bit image can be listed using the following command to query
the Systems Manager Parameter Store parameter.

Using custom log routing 299

Amazon Elastic Container Service Developer Guide

aws ssm get-parameters-by-path \
 --path /aws/service/aws-for-fluent-bit/windowsservercore \
 --region us-east-1

The latest stable AWS for Fluent Bit image can be referenced in an AWS CloudFormation template
by referencing the Systems Manager parameter store name. The following is an example:

Parameters:
 FireLensImage:
 Description: Fluent Bit image for the FireLens Container
 Type: AWS::SSM::Parameter::Value<String>
 Default: /aws/service/aws-for-fluent-bit/windowsservercore:stable

Specifying a FireLens configuration in a task definition

To use custom log routing with FireLens, you must specify the following in your task definition:

• A log router container that contains a FireLens configuration. We recommend that the container
be marked as essential.

• One or more application containers that contain a log configuration specifying the
awsfirelens log driver.

• A task IAM role Amazon Resource Name (ARN) that contains the permissions needed for the task
to route the logs. For more information about permissions for an IAM task role, see Required IAM
permissions.

When creating a new task definition using the AWS Management Console, there is a FireLens
integration section that makes it easy to add a log router container. For more information, see
Creating a task definition using the console.

Amazon ECS converts the log configuration and generates the Fluentd or Fluent Bit output
configuration. The output configuration is mounted in the log routing container at /fluent-bit/
etc/fluent-bit.conf for Fluent Bit and /fluentd/etc/fluent.conf for Fluentd.

Important

FireLens listens on port 24224. Therefore, to ensure that the FireLens log router isn't
reachable outside of the task, you must not allow ingress traffic on port 24224 in the

Using custom log routing 300

Amazon Elastic Container Service Developer Guide

security group your task uses. For tasks that use the awsvpc network mode, this is the
security group that's associated with the task. For tasks that use the host network mode,
this is the security group that's associated with the Amazon EC2 instance hosting the task.
For tasks that use the bridge network mode, don't create any port mappings that use port
24224.

By default, Amazon ECS adds additional fields in your log entries that help identify the source of
the logs.

• ecs_cluster – The name of the cluster that the task is part of.

• ecs_task_arn – The full Amazon Resource Name (ARN) of the task that the container is part of.

• ecs_task_definition – The task definition name and revision that the task is using.

• ec2_instance_id – The Amazon EC2 instance ID that the container is hosted on. This field is
only valid for tasks using the EC2 launch type.

You can set the enable-ecs-log-metadata to false if you do not want the metadata.

The following task definition example defines a log router container that uses Fluent Bit to route
its logs to CloudWatch Logs. It also defines an application container that uses a log configuration
to route logs to Amazon Data Firehose and sets the memory that's used to buffer events to the 2
MiB.

Note

For more example task definitions, see Amazon ECS FireLens examples on GitHub.

{
 "family": "firelens-example-firehose",
 "taskRoleArn": "arn:aws:iam::123456789012:role/ecs_task_iam_role",
 "containerDefinitions": [
 {
 "essential": true,
 "image": "906394416424.dkr.ecr.us-west-2.amazonaws.com/aws-for-fluent-
bit:stable",
 "name": "log_router",
 "firelensConfiguration": {

Using custom log routing 301

https://github.com/aws-samples/amazon-ecs-firelens-examples

Amazon Elastic Container Service Developer Guide

 "type":"fluentbit",
 "options":{
 "enable-ecs-log-metadata":"true"
 },
 "logConfiguration": {
 "logDriver": "awslogs",
 "options": {
 "awslogs-group": "firelens-container",
 "awslogs-region": "us-west-2",
 "awslogs-create-group": "true",
 "awslogs-stream-prefix": "firelens"
 }
 },
 "memoryReservation": 50
 },
 {
 "essential": true,
 "image": "httpd",
 "name": "app",
 "logConfiguration": {
 "logDriver": "awsfirelens",
 "options": {
 "Name": "firehose",
 "region": "us-west-2",
 "delivery_stream": "my-stream",
 "log-driver-buffer-limit": "2097152"
 }
 },
 "memoryReservation": 100
 }
]
}

The key-value pairs specified as options in the logConfiguration object are used to generate
the Fluentd or Fluent Bit output configuration. The following is a code example from a Fluent Bit
output definition.

[OUTPUT]
 Name firehose
 Match app-firelens*
 region us-west-2
 delivery_stream my-stream

Using custom log routing 302

Amazon Elastic Container Service Developer Guide

Note

FireLens manages the match configuration. This configuration isn't specified in your task
definition.

Specifying a custom configuration file

In addition to the auto-generated configuration file that FireLens creates on your behalf, you can
also specify a custom configuration file. The configuration file format is the native format for the
log router that you're using. For more information, see Fluentd Config File Syntax and Fluent Bit
Configuration File.

In your custom configuration file, for tasks using the bridge or awsvpc network mode, don't set a
Fluentd or Fluent Bit forward input over TCP because FireLens adds it to the input configuration.

Your FireLens configuration must contain the following options to specify a custom configuration
file:

config-file-type

The source location of the custom configuration file. The available options are s3 or file.

Note

Tasks that are hosted on AWS Fargate only support the file configuration file type.

config-file-value

The source for the custom configuration file. If the s3 config file type is used, the config file
value is the full ARN of the Amazon S3 bucket and file. If the file config file type is used, the
config file value is the full path of the configuration file that exists either in the container image
or on a volume that's mounted in the container.

Important

When using a custom configuration file, you must specify a different path than the
one FireLens uses. Amazon ECS reserves the /fluent-bit/etc/fluent-bit.conf
filepath for Fluent Bit and /fluentd/etc/fluent.conf for Fluentd.

Using custom log routing 303

https://docs.fluentd.org/configuration/config-file
https://docs.fluentbit.io/manual/administration/configuring-fluent-bit/yaml/configuration-file
https://docs.fluentbit.io/manual/administration/configuring-fluent-bit/yaml/configuration-file

Amazon Elastic Container Service Developer Guide

The following example shows the syntax required when specifying a custom configuration.

Important

To specify a custom configuration file that's hosted in Amazon S3, ensure you have created
a task execution IAM role with the proper permissions. For more information, see Required
IAM permissions.

The following shows the syntax required when specifying a custom configuration.

{
 "containerDefinitions":[
 {
 "essential":true,
 "image":"906394416424.dkr.ecr.us-west-2.amazonaws.com/aws-for-fluent-
bit:stable",
 "name":"log_router",
 "firelensConfiguration":{
 "type":"fluentbit",
 "options":{
 "config-file-type":"s3 | file",
 "config-file-value":"arn:aws:s3:::mybucket/fluent.conf | filepath"
 }
 }
 }
]
}

Note

Tasks hosted on AWS Fargate only support the file configuration file type.

Filtering Fluentd and Fluent Bit logs

There might be times when you want to filter what logs get sent, for example send logs that
contain a specific error.

Fluentd and Fluent Bit both support filtering of logs based on their content. FireLens provides a
simple method for enabling this filtering.

Using custom log routing 304

Amazon Elastic Container Service Developer Guide

You can configure these in the logConfiguration options in a container definition by specifying the
regular expressions to match.

The exclude-pattern key causes all logs that match its regular expression to be dropped. The
include-pattern only sends logs that match the specified regular expression. You can use these
keys separately or together

The following example demonstrates how to use this filter.

{
 "containerDefinitions":[
 {
 "logConfiguration":{
 "logDriver":"awsfirelens",
 "options":{
 "@type":"cloudwatch_logs",
 "log_group_name":"firelens-testing",
 "auto_create_stream":"true",
 "use_tag_as_stream":"true",
 "region":"us-west-2",
 "exclude-pattern":"^[a-z][aeiou].*$",
 "include-pattern":"^.*[aeiou]$"
 }
 }
 }
]
}

Example logging option task definitions

The following are some example task definitions demonstrating common custom log routing
options. For more examples, see Amazon ECS FireLens examples on GitHub.

Note

The following logConfiguration task definition parameter shown in these examples
is used to send your AWS for Fluent Bit logs to CloudWatch. AWS recommends this
configuration so that you have additional information in CloudWatch to troubleshoot AWS
for Fluent Bit issues.

 "logConfiguration": {
 "logDriver": "awslogs",

Using custom log routing 305

https://github.com/aws-samples/amazon-ecs-firelens-examples

Amazon Elastic Container Service Developer Guide

 "options": {
 "awslogs-group": "firelens-container",
 "awslogs-region": "us-west-2",
 "awslogs-create-group": "true",
 "awslogs-stream-prefix": "firelens"
 }
 },

Topics

• Forwarding logs to CloudWatch Logs

• Forwarding logs to an Amazon Data Firehose delivery stream

• Forwarding logs to an Amazon OpenSearch Service domain

• Parsing container logs that are serialized JSON

• Forwarding to an external Fluentd or Fluent Bit

Forwarding logs to CloudWatch Logs

Note

For more examples, see Amazon ECS FireLens examples on GitHub.

The following task definition example demonstrates how to specify a log configuration that
forwards logs to a CloudWatch Logs log group. For more information, see What Is Amazon
CloudWatch Logs? in the Amazon CloudWatch Logs User Guide.

In the log configuration options, specify the log group name and the AWS Region it exists in. To
have Fluent Bit create the log group on your behalf, specify "auto_create_group":"true",
to set the fluentd-buffer-limit use log-driver-buffer-limit. You can also specify the task ID
as the log stream prefix, which assists in filtering. For more information, see Fluent Bit Plugin for
CloudWatch Logs.

{
 "family": "firelens-example-cloudwatch",
 "taskRoleArn": "arn:aws:iam::123456789012:role/ecs_task_iam_role",
 "containerDefinitions": [
 {

Using custom log routing 306

https://github.com/aws-samples/amazon-ecs-firelens-examples
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/WhatIsCloudWatchLogs.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/WhatIsCloudWatchLogs.html
https://github.com/aws/amazon-cloudwatch-logs-for-fluent-bit/blob/master/README.md
https://github.com/aws/amazon-cloudwatch-logs-for-fluent-bit/blob/master/README.md

Amazon Elastic Container Service Developer Guide

 "essential": true,
 "image": "906394416424.dkr.ecr.us-west-2.amazonaws.com/aws-for-fluent-
bit:latest",
 "name": "log_router",
 "firelensConfiguration": {
 "type": "fluentbit"
 },
 "logConfiguration": {
 "logDriver": "awslogs",
 "options": {
 "awslogs-group": "firelens-container",
 "awslogs-region": "us-west-2",
 "awslogs-create-group": "true",
 "awslogs-stream-prefix": "firelens"
 }
 },
 "memoryReservation": 50
 },
 {
 "essential": true,
 "image": "httpd",
 "name": "app",
 "logConfiguration": {
 "logDriver":"awsfirelens",
 "options": {
 "Name": "cloudwatch",
 "region": "us-west-2",
 "log_group_name": "firelens-blog",
 "auto_create_group": "true",
 "log_stream_prefix": "from-fluent-bit",
 "log-driver-buffer-limit": "2097152"
 }
 },
 "memoryReservation": 100
 }
]
}

Using custom log routing 307

Amazon Elastic Container Service Developer Guide

Forwarding logs to an Amazon Data Firehose delivery stream

Note

For more examples, see Amazon ECS FireLens examples on GitHub.

The following task definition example demonstrates how to specify a log configuration that
forwards logs to an Amazon Data Firehose delivery stream. The Firehose delivery stream must
already exist. For more information, see Creating an Amazon Data Firehose Delivery Stream in the
Amazon Data Firehose Developer Guide.

In the log configuration options, specify the delivery stream name and the Region it exists in. For
more information, see Fluent Bit Plugin for Amazon Kinesis Firehose.

{
 "family": "firelens-example-firehose",
 "taskRoleArn": "arn:aws:iam::123456789012:role/ecs_task_iam_role",
 "containerDefinitions": [
 {
 "essential": true,
 "image": "906394416424.dkr.ecr.us-west-2.amazonaws.com/aws-for-fluent-bit:stable",
 "name": "log_router",
 "firelensConfiguration": {
 "type": "fluentbit"
 },
 "logConfiguration": {
 "logDriver": "awslogs",
 "options": {
 "awslogs-group": "firelens-container",
 "awslogs-region": "us-west-2",
 "awslogs-create-group": "true",
 "awslogs-stream-prefix": "firelens"
 }
 },
 "memoryReservation": 50
 },
 {
 "essential": true,
 "image": "httpd",
 "name": "app",
 "logConfiguration": {

Using custom log routing 308

https://github.com/aws-samples/amazon-ecs-firelens-examples
https://docs.aws.amazon.com/firehose/latest/dev/basic-create.html
https://github.com/aws/amazon-kinesis-firehose-for-fluent-bit/blob/master/README.md

Amazon Elastic Container Service Developer Guide

 "logDriver":"awsfirelens",
 "options": {
 "Name": "firehose",
 "region": "us-west-2",
 "delivery_stream": "my-stream"
 }
 },
 "memoryReservation": 100
 }
]
}

Forwarding logs to an Amazon OpenSearch Service domain

Note

For more examples, see Amazon ECS FireLens examples on GitHub.

The following task definition example demonstrates how to specify a log configuration that
forwards logs to an Amazon OpenSearch Service; domain. The Amazon OpenSearch Service
domain must already exist. For more information, see What is Amazon OpenSearch Service in the
Amazon OpenSearch Service Developer Guide.

In the log configuration options, specify the log options required for OpenSearch Service
integration. For more information, see Fluent Bit for Amazon OpenSearch Service.

{
 "family": "firelens-example-opensearch",
 "taskRoleArn": "arn:aws:iam::123456789012:role/ecs_task_iam_role",
 "containerDefinitions": [
 {
 "essential": true,
 "image": "906394416424.dkr.ecr.us-west-2.amazonaws.com/aws-for-fluent-
bit:stable",
 "name": "log_router",
 "firelensConfiguration": {
 "type": "fluentbit"
 },
 "logConfiguration": {
 "logDriver": "awslogs",
 "options": {

Using custom log routing 309

https://github.com/aws-samples/amazon-ecs-firelens-examples
https://docs.aws.amazon.com/opensearch-service/latest/developerguide/what-is.html
https://docs.fluentbit.io/manual/pipeline/outputs/elasticsearch

Amazon Elastic Container Service Developer Guide

 "awslogs-group": "firelens-container",
 "awslogs-region": "us-west-2",
 "awslogs-create-group": "true",
 "awslogs-stream-prefix": "firelens"
 }
 },
 "memoryReservation": 50
 },
 {
 "essential": true,
 "image": "httpd",
 "name": "app",
 "logConfiguration": {
 "logDriver": "awsfirelens",
 "options": {
 "Name": "es",
 "Host": "vpc-fake-domain-ke7thhzo07jawrhmz6mb7ite7y.us-
west-2.es.amazonaws.com",
 "Port": "443",
 "Index": "my_index",
 "Type": "my_type",
 "AWS_Auth": "On",
 "AWS_Region": "us-west-2",
 "tls": "On"
 }
 },
 "memoryReservation": 100
 }
]
}

Parsing container logs that are serialized JSON

Note

For more examples, see Amazon ECS FireLens examples on GitHub.

Beginning with AWS for Fluent Bit version 1.3, there's a JSON parser that's included in the AWS for
Fluent Bit image. The following example shows how to reference the JSON parser in the FireLens
configuration of your task definition.

Using custom log routing 310

https://github.com/aws-samples/amazon-ecs-firelens-examples

Amazon Elastic Container Service Developer Guide

"firelensConfiguration": {
 "type": "fluentbit",
 "options": {
 "config-file-type": "file",
 "config-file-value": "/fluent-bit/configs/parse-json.conf"
 }
},

The Fluent Bit config file parses any logs that are in JSON (for example, if the logs at your
destination looked like the following without JSON parsing).

{
 "source": "stdout",
 "log": "{\"requestID\": \"b5d716fca19a4252ad90e7b8ec7cc8d2\", \"requestInfo\":
 {\"ipAddress\": \"204.16.5.19\", \"path\": \"/activate\", \"user\": \"TheDoctor\"}}",
 "container_id": "e54cccfac2b87417f71877907f67879068420042828067ae0867e60a63529d35",
 "container_name": "/ecs-demo-6-container2-a4eafbb3d4c7f1e16e00"
 "ecs_cluster": "mycluster",
 "ecs_task_arn": "arn:aws:ecs:us-east-2:01234567891011:task/
mycluster/3de392df-6bfa-470b-97ed-aa6f482cd7a6",
 "ecs_task_definition": "demo:7"
 "ec2_instance_id": "i-06bc83dbc2ac2fdf8"
}

With the JSON parsing, the log looks like the following.

{
 "source": "stdout",
 "container_id": "e54cccfac2b87417f71877907f67879068420042828067ae0867e60a63529d35",
 "container_name": "/ecs-demo-6-container2-a4eafbb3d4c7f1e16e00"
 "ecs_cluster": "mycluster",
 "ecs_task_arn": "arn:aws:ecs:us-east-2:01234567891011:task/
mycluster/3de392df-6bfa-470b-97ed-aa6f482cd7a6",
 "ecs_task_definition": "demo:7"
 "ec2_instance_id": "i-06bc83dbc2ac2fdf8"
 "requestID": "b5d716fca19a4252ad90e7b8ec7cc8d2",
 "requestInfo": {
 "ipAddress": "204.16.5.19",
 "path": "/activate",
 "user": "TheDoctor"
 }
}

Using custom log routing 311

Amazon Elastic Container Service Developer Guide

The serialized JSON is expanded into top level fields in the final JSON output. For more
information about JSON parsing, see Parser in the Fluent Bit documentation.

Forwarding to an external Fluentd or Fluent Bit

Note

For more examples, see Amazon ECS FireLens examples on GitHub.

The following task definition example demonstrates how to specify a log configuration that
forwards logs to an external Fluentd or Fluent Bit host. Specify the host and port for your
environment.

{
 "family": "firelens-example-forward",
 "taskRoleArn": "arn:aws:iam::123456789012:role/ecs_task_iam_role",
 "containerDefinitions": [
 {
 "essential": true,
 "image": "906394416424.dkr.ecr.us-west-2.amazonaws.com/aws-for-fluent-bit:stable",
 "name": "log_router",
 "firelensConfiguration": {
 "type": "fluentbit"
 },
 "logConfiguration": {
 "logDriver": "awslogs",
 "options": {
 "awslogs-group": "firelens-container",
 "awslogs-region": "us-west-2",
 "awslogs-create-group": "true",
 "awslogs-stream-prefix": "firelens"
 }
 },
 "memoryReservation": 50
 },
 {
 "essential": true,
 "image": "httpd",
 "name": "app",
 "logConfiguration": {
 "logDriver":"awsfirelens",

Using custom log routing 312

https://docs.fluentbit.io/manual/pipeline/filters/parser
https://github.com/aws-samples/amazon-ecs-firelens-examples

Amazon Elastic Container Service Developer Guide

 "options": {
 "Name": "forward",
 "Host": "fluentdhost",
 "Port": "24224"
 }
 },
 "memoryReservation": 100
 }
]
}

Private registry authentication for tasks

Use private registry to store your credentials in AWS Secrets Manager, and then reference them
in your task definition. This provides a way to reference container images that exist in private
registries outside of AWS that require authentication in your task definitions. This feature is
supported by tasks hosted on Fargate, Amazon EC2 instances, and external instances using Amazon
ECS Anywhere.

Important

If your task definition references an image that's stored in Amazon ECR, this topic doesn't
apply. For more information, see Using Amazon ECR Images with Amazon ECS in the
Amazon Elastic Container Registry User Guide.

For tasks hosted on Amazon EC2 instances, this feature requires version 1.19.0 or later of the
container agent. However, we recommend using the latest container agent version. For information
about how to check your agent version and update to the latest version, see Updating the Amazon
ECS container agent.

For tasks hosted on Fargate, this feature requires platform version 1.2.0 or later. For information,
see Fargate Linux platform versions.

Within your container definition, specify the repositoryCredentials object with the details
of the secret that you created. The secret you reference can be from a different AWS Region or a
different account than the task using it.

Private registry authentication for tasks 313

https://docs.aws.amazon.com/AmazonECR/latest/userguide/ECR_on_ECS.html

Amazon Elastic Container Service Developer Guide

Note

When using the Amazon ECS API, AWS CLI, or AWS SDK, if the secret exists in the same
AWS Region as the task that you're launching then you can use either the full ARN or name
of the secret. If the secret exists in a different account, the full ARN of the secret must be
specified. When using the AWS Management Console, the full ARN of the secret must be
specified always.

The following is a snippet of a task definition that shows the required parameters:

Substitute private-repo with the private repository host name and private-image with the
image name.

"containerDefinitions": [
 {
 "image": "private-repo/private-image",
 "repositoryCredentials": {
 "credentialsParameter":
 "arn:aws:secretsmanager:region:aws_account_id:secret:secret_name"
 }
 }
]

Note

Another method of enabling private registry authentication uses Amazon ECS container
agent environment variables to authenticate to private registries. This method is only
supported for tasks hosted on Amazon EC2 instances. For more information, see Private
registry authentication for container instances.

To use private registry

1. The Amazon ECS task execution role is required to use this feature. This allows the container
agent to pull the container image. For more information, see Amazon ECS task execution IAM
role.

Private registry authentication for tasks 314

Amazon Elastic Container Service Developer Guide

To provide access to the secrets that you create, add the following permissions as an inline
policy to the task execution role. For more information, see Adding and Removing IAM Policies.

• secretsmanager:GetSecretValue

• kms:Decrypt—Required only if your key uses a custom KMS key and not the default key.
The Amazon Resource Name (ARN) for your custom key must be added as a resource.

The following is an example inline policy that adds the permissions.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "kms:Decrypt",
 "secretsmanager:GetSecretValue"
],
 "Resource": [

 "arn:aws:secretsmanager:<region>:<aws_account_id>:secret:secret_name",
 "arn:aws:kms:<region>:<aws_account_id>:key/key_id"
]
 }
]
}

2. Use AWS Secrets Manager to create a secret for your private registry credentials. For
information about how to create a secret, see Create an AWS Secrets Manager secret in the
AWS Secrets Manager User Guide.

Enter your private registry credentials using the following format:

{
 "username" : "privateRegistryUsername",
 "password" : "privateRegistryPassword"
}

3. Register a task definition. For more information, see the section called “Creating a task
definition using the console”.

Private registry authentication for tasks 315

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_manage-attach-detach.html
https://docs.aws.amazon.com/secretsmanager/latest/userguide/create_secret.html

Amazon Elastic Container Service Developer Guide

Use task definition parameters to pass environment variables to a
container

Important

We recommend storing your sensitive data in either AWS Secrets Manager secrets or AWS
Systems Manager Parameter Store parameters. For more information, see Passing sensitive
data to a container.
Environment variables specified in the task definition are readable by all users and roles
that are allowed the DescribeTaskDefinition action for the task definition.

You can pass environment variables to your containers in the following ways:

• Individually using the environment container definition parameter. This maps to the --env
option to docker run.

• In bulk, using the environmentFiles container definition parameter to list one or more files
that contain the environment variables. The file must be hosted in Amazon S3. This maps to the
--env-file option to docker run.

The following is a snippet of a task definition showing how to specify individual environment
variables.

{
 "family": "",
 "containerDefinitions": [
 {
 "name": "",
 "image": "",
 ...
 "environment": [
 {
 "name": "variable",
 "value": "value"
 }
],
 ...
 }
],

Use task definition parameters to pass environment variables to a container 316

https://docs.docker.com/engine/reference/commandline/run/
https://docs.docker.com/engine/reference/commandline/run/

Amazon Elastic Container Service Developer Guide

 ...
}

Use a file to pass environment variables to a container

Important

We recommend storing your sensitive data in either AWS Secrets Manager secrets or AWS
Systems Manager Parameter Store parameters. For more information, see Passing sensitive
data to a container.
Environment variable files are objects in Amazon S3 and all Amazon S3 security
considerations apply.

You can create an environment variable file and store it in Amazon S3 to pass environment
variables to your container.

By specifying environment variables in a file, you can bulk inject environment variables. Within
your container definition, specify the environmentFiles object with a list of Amazon S3 buckets
containing your environment variable files.

Amazon ECS doesn't enforce a size limit on the environment variables, but a large environment
variables file might fill up the disk space. Each task that uses an environment variables file causes a
copy of the file to be downloaded to disk. Amazon ECS removes the file as part of the task cleanup.

For information about the supported environment variables, see Advanced container definition
parameters- Environment.

Considerations

Consider the following when specifying an environment variable file in a container definition.

• For Amazon ECS tasks on Amazon EC2, your container instances require that the container agent
is version 1.39.0 or later to use this feature. For information about how to check your agent
version and update to the latest version, see Updating the Amazon ECS container agent.

• For Amazon ECS tasks on AWS Fargate, your tasks must use platform version 1.4.0 or later
(Linux) to use this feature. For more information, see Fargate Linux platform versions.

Use a file to pass environment variables to a container 317

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/task_definition_parameters.html#container_definition_environment
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/task_definition_parameters.html#container_definition_environment

Amazon Elastic Container Service Developer Guide

Verify that the variable is supported for the operating system platform. For more information,
see the section called “Container definitions” and the section called “Other task definition
parameters”.

• The file must use the .env file extension and UTF-8 encoding.

• There is a limit of 10 files per task definition.

• Each line in an environment file must contain an environment variable in VARIABLE=VALUE
format. Spaces or quotation marks are included as part of the values for Amazon ECS files. Lines
beginning with # are treated as comments and are ignored. For more information about the
environment variable file syntax, see Declare default environment variables in file.

The following is the appropriate syntax.

#This is a comment and will be ignored
VARIABLE=VALUE
ENVIRONMENT=PRODUCTION

• If there are environment variables specified using the environment parameter in a container
definition, they take precedence over the variables contained within an environment file.

• If multiple environment files are specified and they contain the same variable, they're processed
in order of entry. This means that the first value of the variable is used and subsequent values of
duplicate variables are ignored. We recommend that you use unique variable names.

• If an environment file is specified as a container override, it's used. Moreover, any other
environment files that are specified in the container definition is ignored.

• The following rules apply to the Fargate launch type:

• The file is handled like a native Docker env-file.

• There is no support for shell escape handling.

• The container entry point interperts the VARIABLE values.

Required IAM permissions

The Amazon ECS task execution role is required to use this feature. This allows the container agent
to pull the environment variable file from Amazon S3. For more information, see Amazon ECS task
execution IAM role.

To provide access to the Amazon S3 objects that you create, manually add the following
permissions as an inline policy to the task execution role. Use the Resource parameter to scope

Use a file to pass environment variables to a container 318

https://docs.docker.com/compose/env-file/

Amazon Elastic Container Service Developer Guide

the permission to the Amazon S3 buckets that contain the environment variable files. For more
information, see Adding and Removing IAM Policies.

• s3:GetObject

• s3:GetBucketLocation

In the following example, the permissions are added to the inline policy.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "s3:GetObject"
],
 "Resource": [
 "arn:aws:s3:::examplebucket/folder_name/env_file_name"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "s3:GetBucketLocation"
],
 "Resource": [
 "arn:aws:s3:::examplebucket"
]
 }
]
}

Example

The following is a snippet of a task definition showing how to specify an environment variable file.

{
 "family": "",
 "containerDefinitions": [
 {
 "name": "",

Use a file to pass environment variables to a container 319

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_manage-attach-detach.html

Amazon Elastic Container Service Developer Guide

 "image": "",
 ...
 "environmentFiles": [
 {
 "value": "arn:aws:s3:::s3_bucket_name/envfile_object_name.env",
 "type": "s3"
 }
],
 ...
 }
],
 ...
}

Passing sensitive data to a container

You can safely pass sensitive data, such as credentials to a database, into your container.

You can use AWS Secrets Manager or as a parameter in AWS Systems Manager Parameter Store to
store the secret.

You can retrieve secrets programmatically from the application, or by using environment variables.

To start, first store the sensitive data as a secret in AWS Secrets Manager or as a parameter in AWS
Systems Manager Parameter Store. Then, use one of the following ways to expose the secret to the
container.

Topics

• Retrieve Secrets Manager secrets programatically

• Retrieve AWS Systems Manager Parameter Store parameters programatically

• Retrieve Secrets Manager secrets through environment variables

• Retrieving AWS Systems Manager parameters through environment variables

• Retrieve secrets for logging configuration

Retrieve Secrets Manager secrets programatically

Use Secrets Manager to protect sensitive data and rotate, manage, and retrieve database
credentials, API keys, and other secrets throughout their lifecycle.

Passing sensitive data to a container 320

Amazon Elastic Container Service Developer Guide

Instead of hardcoding sensitive information in plain text in your application, you can use Secrets
Manager to store the sensitive data.

We recommend this method of retrieving sensitive data because if the Secrets Manager secret is
subsequently updated, the application automatically retrieves the latest version of the secret.

Create a secret in Secrets Manager . After you create a Secrets Manager secret, update your
application code to retrieve the secret.

Considerations

Review the following considerations before securing sensitive data in Secrets Manager.

• Only secrets that store text data, which are secrets created with the SecretString parameter
of the CreateSecret API, are supported. Secrets that store binary data, which are secrets created
with the SecretBinary parameter of the CreateSecret API are not supported.

• Use interface VPC endpoints to enhance security controls. You must create the interface VPC
endpoints for Secrets Manager. For information about the VPC endpoint, see Create VPC
endpoints in the AWS Secrets Manager User Guide.

• The VPC your task uses must use DNS resolution.

Required IAM permissions

To use this feature, you must have the Amazon ECS task role and reference it in your task
definition. For more information, see Task IAM role.

To provide access to the Secrets Manager secrets that you create, manually add the following
permission to the task execution role. For information about how to manage permissions, see
Adding and Removing IAM identity permissions in the IAM User Guide.

• secretsmanager:GetSecretValue– Required if you are referencing a Secrets Manager secret.
Adds the permission to retrieve the secret from Secrets Manager.

The following example policy adds the required permissions.

{
 "Version": "2012-10-17",
 "Statement": [
 {

Passing sensitive data to a container 321

https://docs.aws.amazon.com/secretsmanager/latest/apireference/API_CreateSecret.html
https://docs.aws.amazon.com/secretsmanager/latest/apireference/API_CreateSecret.html
https://docs.aws.amazon.com/secretsmanager/latest/userguide/setup-create-vpc.html
https://docs.aws.amazon.com/secretsmanager/latest/userguide/setup-create-vpc.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_manage-attach-detach.html

Amazon Elastic Container Service Developer Guide

 "Effect": "Allow",
 "Action": [
 "secretsmanager:GetSecretValue"
],
 "Resource": [
 "arn:aws:secretsmanager:region:aws_account_id:secret:secret_name"
]
 }
]
}

Create the Secrets Manager secret

You can use the Secrets Manager console to create a secret for your sensitive data. For information
about how to create secrets, see Create an AWS Secrets Manager secret in the AWS Secrets Manager
User Guide.

Update your application to programmatically retrieve Secrets Manager secrets

You can retrieve secrets with a call to the Secrets Manager APIs directly from your application. For
information about how update your code to request the secret, see Retrieve secrets from AWS
Secrets Manager in the AWS Secrets Manager User Guide.

To retrieve the sensitive data stored in the AWS Secrets Manager, see Code examples for AWS
Secrets Manager using AWS SDKs in the AWS SDK Code Examples Code Library.

Retrieve AWS Systems Manager Parameter Store parameters programatically

Systems Manager Parameter Store provides secure storage and management of secrets. You can
store data such as passwords, database strings, Amazon Elastic Compute Cloud (Amazon EC2)
instance IDs and AMI IDs, and license codes as parameter values. You can store values as plain text
or encrypted data.

Instead of hardcoding sensitive information in plain text in your application, you can use Secrets
Manager to store the sensitive data.

We recommend this method of retrieving sensitive data because if the Systems Manager Parameter
Store parameter is subsequently updated, the application automatically retrieves the latest version.

Create a secret in Secrets Manager . After you create a Secrets Manager secret, update your
application code to retrieve the secret.

Passing sensitive data to a container 322

https://docs.aws.amazon.com/secretsmanager/latest/userguide/create_secret.html
https://docs.aws.amazon.com/secretsmanager/latest/userguide/retrieving-secrets.html
https://docs.aws.amazon.com/secretsmanager/latest/userguide/retrieving-secrets.html
https://docs.aws.amazon.com/code-library/latest/ug/secrets-manager_code_examples.html
https://docs.aws.amazon.com/code-library/latest/ug/secrets-manager_code_examples.html

Amazon Elastic Container Service Developer Guide

Considerations

Review the following considerations before securing sensitive data in Systems Manager Parameter
Store.

• Only secrets that store text data are supported. Secrets that store binary data are not supported.

• Use interface VPC endpoints to enhance security controls.

• The VPC your task uses must use DNS resolution.

Required IAM permissions

To use this feature, you must have the Amazon ECS task role and reference it in your task
definition. This allows the container agent to pull the necessary Systems Manager resources. For
more information, see Task IAM role.

Important

For tasks that use the EC2 launch type, you must use the ECS agent configuration variable
ECS_ENABLE_AWSLOGS_EXECUTIONROLE_OVERRIDE=true to use this feature. You can
add it to the ./etc/ecs/ecs.config file during container instance creation or you can
add it to an existing instance and then restart the ECS agent. For more information, see
Amazon ECS container agent configuration.

To provide access to the Systems Manager Parameter Store parameters that you create, manually
add the following permissions as a policy to the task execution role. For information about how to
manage permissions, see Adding and Removing IAM identity permissions in the IAM User Guide.

• ssm:GetParameters — Required if you are referencing a Systems Manager Parameter Store
parameter in a task definition. Adds the permission to retrieve Systems Manager parameters.

• secretsmanager:GetSecretValue — Required if you are referencing a Secrets Manager
secret either directly or if your Systems Manager Parameter Store parameter is referencing a
Secrets Manager secret in a task definition. Adds the permission to retrieve the secret from
Secrets Manager.

• kms:Decrypt — Required only if your secret uses a customer managed key and not the default
key. The ARN for your custom key should be added as a resource. Adds the permission to decrypt
the customer managed key .

Passing sensitive data to a container 323

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_manage-attach-detach.html

Amazon Elastic Container Service Developer Guide

The following example policy adds the required permissions:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "ssm:GetParameters",
 "secretsmanager:GetSecretValue",
 "kms:Decrypt"
],
 "Resource": [
 "arn:aws:ssm:region:aws_account_id:parameter/parameter_name",
 "arn:aws:secretsmanager:region:aws_account_id:secret:secret_name",
 "arn:aws:kms:region:aws_account_id:key/key_id"
]
 }
]
}

Create the parameter

You can use the Systems Manager console to create a Systems Manager Parameter Store parameter
for your sensitive data. For more information, see Create a Systems Manager parameter (console)
or Create a Systems Manager parameter (AWS CLI) in the AWS Systems Manager User Guide.

Update your application to programmatically retrieve Systems Manager Parameter Store
secrets

To retrieve the sensitive data stored in the Systems Manager Parameter Store parameter, see Code
examples for Systems Manager using AWS SDKs in the AWS SDK Code Examples Code Library.

Retrieve Secrets Manager secrets through environment variables

When you inject a secret as an environment variable, you can specify the full contents of a secret,
a specific JSON key within a secret, or a specific version of a secret to inject. This helps you control
the sensitive data exposed to your container. For more information about secret versioning, see Key
Terms and Concepts for AWS Secrets Manager in the AWS Secrets Manager User Guide.

Passing sensitive data to a container 324

https://docs.aws.amazon.com/systems-manager/latest/userguide/parameter-create-console.html
https://docs.aws.amazon.com/systems-manager/latest/userguide/param-create-cli.html
https://docs.aws.amazon.com/code-library/latest/ug/ssm_code_examples.html
https://docs.aws.amazon.com/code-library/latest/ug/ssm_code_examples.html
https://docs.aws.amazon.com/secretsmanager/latest/userguide/terms-concepts.html#term_secret
https://docs.aws.amazon.com/secretsmanager/latest/userguide/terms-concepts.html#term_secret

Amazon Elastic Container Service Developer Guide

Considerations

The following should be considered when using an environment variable to inject an Secrets
Manager secret into a container.

• Sensitive data is injected into your container when the container is initially started. If the secret is
subsequently updated or rotated, the container will not receive the updated value automatically.
You must either launch a new task or if your task is part of a service you can update the service
and use the Force new deployment option to force the service to launch a fresh task.

• For Amazon ECS tasks on AWS Fargate, the following should be considered:

• To inject the full content of a secret as an environment variable or in a log configuration,
you must use platform version 1.3.0 or later. For information, see Fargate Linux platform
versions.

• To inject a specific JSON key or version of a secret as an environment variable or in a log
configuration, you must use platform version 1.4.0 or later (Linux) or 1.0.0 (Windows). For
information, see Fargate Linux platform versions.

• For Amazon ECS tasks on EC2, the following should be considered:

• To inject a secret using a specific JSON key or version of a secret, your container instance must
have version 1.37.0 or later of the container agent. However, we recommend using the latest
container agent version. For information about checking your agent version and updating to
the latest version, see Updating the Amazon ECS container agent.

To inject the full contents of a secret as an environment variable or to inject a secret in a log
configuration, your container instance must have version 1.22.0 or later of the container
agent.

• Use interface VPC endpoints to enhance security controls. You must create the interface VPC
endpoints for Secrets Manager. For information about the VPC endpoint, see Create VPC
endpoints in the AWS Secrets Manager User Guide.

• For Windows tasks that are configured to use the awslogs logging driver, you must also set the
ECS_ENABLE_AWSLOGS_EXECUTIONROLE_OVERRIDE environment variable on your container
instance. This can be done with User Data with the following syntax:

<powershell>
[Environment]::SetEnvironmentVariable("ECS_ENABLE_AWSLOGS_EXECUTIONROLE_OVERRIDE",
 $TRUE, "Machine")
Initialize-ECSAgent -Cluster <cluster name> -EnableTaskIAMRole -LoggingDrivers
 '["json-file","awslogs"]'

Passing sensitive data to a container 325

https://docs.aws.amazon.com/secretsmanager/latest/userguide/setup-create-vpc.html
https://docs.aws.amazon.com/secretsmanager/latest/userguide/setup-create-vpc.html

Amazon Elastic Container Service Developer Guide

</powershell>

IAM permissions

To use this feature, you must have the Amazon ECS task execution role and reference it in your task
definition. For more information, see Amazon ECS task execution IAM role.

To provide access to the Secrets Manager secrets that you create, manually add the following
permissions as an inline policy to the task execution role. For more information, see Adding and
Removing IAM Policies.

• secretsmanager:GetSecretValue–Required if you are referencing a Secrets Manager secret.
Adds the permission to retrieve the secret from Secrets Manager.

• kms:Decrypt–Required only if your secret uses a customer managed key and not the default
key. The ARN for your customer managed key should be added as a resource. Adds the
permission to decrypt the customer managed key.

The following example policy adds the required permissions:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "secretsmanager:GetSecretValue",
 "kms:Decrypt"
],
 "Resource": [
 "arn:aws:secretsmanager:region:aws_account_id:secret:secret_name",
 "arn:aws:kms:region:aws_account_id:key/key_id"
]
 }
]
}

Create the AWS Secrets Manager secret

You can use the Secrets Manager console to create a secret for your sensitive data. For more
information, see Create an AWS Secrets Manager secret in the AWS Secrets Manager User Guide.

Passing sensitive data to a container 326

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_manage-attach-detach.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_manage-attach-detach.html
https://docs.aws.amazon.com/secretsmanager/latest/userguide/create_secret.html

Amazon Elastic Container Service Developer Guide

Add the environment variable to the container definition

Within your container definition, you can specify the following:

• The secrets object containing the name of the environment variable to set in the container

• The Amazon Resource Name (ARN) of the Secrets Manager secret

• Additional parameters that contain the sensitive data to present to the container

The following example shows the full syntax that must be specified for the Secrets Manager secret.

arn:aws:secretsmanager:region:aws_account_id:secret:secret-name:json-key:version-
stage:version-id

The following section describes the additional parameters. These parameters are optional, but
if you do not use them, you must include the colons : to use the default values. Examples are
provided below for more context.

json-key

Specifies the name of the key in a key-value pair with the value that you want to set as the
environment variable value. Only values in JSON format are supported. If you do not specify a
JSON key, then the full contents of the secret is used.

version-stage

Specifies the staging label of the version of a secret that you want to use. If a version staging
label is specified, you cannot specify a version ID. If no version stage is specified, the default
behavior is to retrieve the secret with the AWSCURRENT staging label.

Staging labels are used to keep track of different versions of a secret when they are either
updated or rotated. Each version of a secret has one or more staging labels and an ID. For more
information, see Key Terms and Concepts for AWS Secrets Manager in the AWS Secrets Manager
User Guide.

version-id

Specifies the unique identifier of the version of a secret that you want to use. If a version ID is
specified, you cannot specify a version staging label. If no version ID is specified, the default
behavior is to retrieve the secret with the AWSCURRENT staging label.

Passing sensitive data to a container 327

https://docs.aws.amazon.com/secretsmanager/latest/userguide/terms-concepts.html#term_secret

Amazon Elastic Container Service Developer Guide

Version IDs are used to keep track of different versions of a secret when they are either updated
or rotated. Each version of a secret has an ID. For more information, see Key Terms and
Concepts for AWS Secrets Manager in the AWS Secrets Manager User Guide.

Example container definitions

The following examples show ways in which you can reference Secrets Manager secrets in your
container definitions.

Example referencing a full secret

The following is a snippet of a task definition showing the format when referencing the full text of
a Secrets Manager secret.

{
 "containerDefinitions": [{
 "secrets": [{
 "name": "environment_variable_name",
 "valueFrom": "arn:aws:secretsmanager:region:aws_account_id:secret:secret_name-
AbCdEf"
 }]
 }]
}

To access the value of this secret from within the container you would need to call the
$environment_variable_name.

Example referencing a specific key within a secret

The following shows an example output from a get-secret-value command that displays the
contents of a secret along with the version staging label and version ID associated with it.

{
 "ARN": "arn:aws:secretsmanager:region:aws_account_id:secret:appauthexample-AbCdEf",
 "Name": "appauthexample",
 "VersionId": "871d9eca-18aa-46a9-8785-981ddEXAMPLE",
 "SecretString": "{\"username1\":\"password1\",\"username2\":\"password2\",
\"username3\":\"password3\"}",
 "VersionStages": [
 "AWSCURRENT"
],
 "CreatedDate": 1581968848.921

Passing sensitive data to a container 328

https://docs.aws.amazon.com/secretsmanager/latest/userguide/terms-concepts.html#term_secret
https://docs.aws.amazon.com/secretsmanager/latest/userguide/terms-concepts.html#term_secret
https://docs.aws.amazon.com/cli/latest/reference/secretsmanager/get-secret-value.html

Amazon Elastic Container Service Developer Guide

}

Reference a specific key from the previous output in a container definition by specifying the key
name at the end of the ARN.

{
 "containerDefinitions": [{
 "secrets": [{
 "name": "environment_variable_name",
 "valueFrom": "arn:aws:secretsmanager:region:aws_account_id:secret:appauthexample-
AbCdEf:username1::"
 }]
 }]
}

Example referencing a specific secret version

The following shows an example output from a describe-secret command that displays the
unencrypted contents of a secret along with the metadata for all versions of the secret.

{
 "ARN": "arn:aws:secretsmanager:region:aws_account_id:secret:appauthexample-AbCdEf",
 "Name": "appauthexample",
 "Description": "Example of a secret containing application authorization data.",
 "RotationEnabled": false,
 "LastChangedDate": 1581968848.926,
 "LastAccessedDate": 1581897600.0,
 "Tags": [],
 "VersionIdsToStages": {
 "871d9eca-18aa-46a9-8785-981ddEXAMPLE": [
 "AWSCURRENT"
],
 "9d4cb84b-ad69-40c0-a0ab-cead3EXAMPLE": [
 "AWSPREVIOUS"
]
 }
}

Reference a specific version staging label from the previous output in a container definition by
specifying the key name at the end of the ARN.

{

Passing sensitive data to a container 329

https://docs.aws.amazon.com/cli/latest/reference/secretsmanager/describe-secret.html

Amazon Elastic Container Service Developer Guide

 "containerDefinitions": [{
 "secrets": [{
 "name": "environment_variable_name",
 "valueFrom": "arn:aws:secretsmanager:region:aws_account_id:secret:appauthexample-
AbCdEf::AWSPREVIOUS:"
 }]
 }]
}

Reference a specific version ID from the previous output in a container definition by specifying the
key name at the end of the ARN.

{
 "containerDefinitions": [{
 "secrets": [{
 "name": "environment_variable_name",
 "valueFrom": "arn:aws:secretsmanager:region:aws_account_id:secret:appauthexample-
AbCdEf:::9d4cb84b-ad69-40c0-a0ab-cead3EXAMPLE"
 }]
 }]
}

Example referencing a specific key and version staging label of a secret

The following shows how to reference both a specific key within a secret and a specific version
staging label.

{
 "containerDefinitions": [{
 "secrets": [{
 "name": "environment_variable_name",
 "valueFrom": "arn:aws:secretsmanager:region:aws_account_id:secret:appauthexample-
AbCdEf:username1:AWSPREVIOUS:"
 }]
 }]
}

To specify a specific key and version ID, use the following syntax.

{
 "containerDefinitions": [{
 "secrets": [{

Passing sensitive data to a container 330

Amazon Elastic Container Service Developer Guide

 "name": "environment_variable_name",
 "valueFrom": "arn:aws:secretsmanager:region:aws_account_id:secret:appauthexample-
AbCdEf:username1::9d4cb84b-ad69-40c0-a0ab-cead3EXAMPLE"
 }]
 }]
}

Create a task definition that references sensitive data

You can use the Amazon ECS console to create a task definition that references a Secrets Manager
secret.

1. Open the console at https://console.aws.amazon.com/ecs/v2.

2. In the navigation pane, choose Task definitions

3. Choose Create new task definition, Create new task definition.

4. For Task definition family, specify a unique name for the task definition.

5. For each container to define in your task definition, complete the following steps.

a. For Name, enter a name for the container.

b. For Image URI, enter the image to use to start a container. Images in the Amazon ECR
Public Gallery registry may be specified using the Amazon ECR Public registry name
only. For example, if public.ecr.aws/ecs/amazon-ecs-agent:latest is specified,
the Amazon Linux container hosted on Amazon ECR Public Gallery is used. For all other
repositories, specify the repository using either the repository-url/image:tag or
repository-url/image@digest formats.

c. For Essential container, if your task definition has two or more containers defined, you
may specify whether the container should be considered essential. If a container is marked
as essential, if that container stops then the task is stopped. Each task definition must
contain at least one essential container.

d. A port mapping allows the container to access ports on the host to send or receive traffic.
Under Port mappings, do one of the following:

• When you use the awsvpc network mode, for Container port and Protocol, choose the
port mapping to use for the container.

• When you use the bridge network mode, for Container port and Protocol, choose the
port mapping to use for the container. You select the bridge network mode on the

Passing sensitive data to a container 331

https://console.aws.amazon.com/ecs/v2

Amazon Elastic Container Service Developer Guide

next page. After you select it, choose Previous, and then for Host port, specify the port
number on the container instance to reserve for your container.

Choose Add more port mappings to specify additional container port mappings.

e. For sensitive data to inject as environment variables, under Environment, for
Environment variables, complete the following fields:

i. For Key, enter the name of the environment variable to set in the container. This
corresponds to the name field in the secrets section of a container definition.

ii. For Value type, choose ValueFrom. For Add value, enter the ARN of the Secrets
Manager secret that contains the data to present to your container as an environment
variable.

f. (Optional) Choose Add more containers to add additional containers to the task
definition. Choose Next once all containers have been defined.

6. For App environment, Task size, and Container size, fill out the remaining required fields and
any optional fields.

7. (Optional) Expand the Task roles, network mode section to specify the following:

• For Task role, choose the IAM role to assign to the task. A task IAM role provides
permissions for the containers in a task to call AWS APIs.

8. (Optional) The Storage section is used to expand the amount of ephemeral storage for tasks
hosted on Fargate as well as add a data volume configuration for the task.

• To expand the available ephemeral storage beyond the default value of 20 GiB for your
Fargate tasks, for Amount, enter a value up to 200 GiB.

9. For sensitive data referenced in the log configuration for a container, under Use log collection,
for Log configuration, complete the following configuration:

a. Select the log option, and then under Key, choose Add.

b. For Key, enter the name of the log configuration option to set.

c. For Value, enter the full ARN of the Secrets Manager secret that contains the data to
present to your log configuration as a log option.

d. For Value type, choose ValueFrom.

10. Choose Next to review the task definition.

Passing sensitive data to a container 332

Amazon Elastic Container Service Developer Guide

11. On the Review and create page, review each task definition section. Choose Edit to make
changes. After the task definition is complete, choose Create to register the task definition.

Retrieving AWS Systems Manager parameters through environment variables

Amazon ECS enables you to inject sensitive data into your containers by storing your sensitive data
in AWS Systems Manager Parameter Store parameters and then referencing them in your container
definition.

Considerations

The following should be considered when using an environment variable to inject an AWS Systems
Manager secret into a container.

• Sensitive data is injected into your container when the container is initially started. If the secret is
subsequently updated or rotated, the container will not receive the updated value automatically.
You must either launch a new task or if your task is part of a service you can update the service
and use the Force new deployment option to force the service to launch a fresh task.

• For Amazon ECS tasks on AWS Fargate, the following should be considered:

• To inject the full content of a secret as an environment variable or in a log configuration,
you must use platform version 1.3.0 or later. For information, see Fargate Linux platform
versions.

• To inject a specific JSON key or version of a secret as an environment variable or in a log
configuration, you must use platform version 1.4.0 or later (Linux) or 1.0.0 (Windows). For
information, see Fargate Linux platform versions.

• For Amazon ECS tasks on EC2, the following should be considered:

• To inject a secret using a specific JSON key or version of a secret, your container instance must
have version 1.37.0 or later of the container agent. However, we recommend using the latest
container agent version. For information about checking your agent version and updating to
the latest version, see Updating the Amazon ECS container agent.

To inject the full contents of a secret as an environment variable or to inject a secret in a log
configuration, your container instance must have version 1.22.0 or later of the container
agent.

• Use interface VPC endpoints to enhance security controls. You must create the interface VPC
endpoints for AWS Systems Manager. For information about the VPC endpoint, see Create VPC
endpoints in the AWS Systems Manager User Guide.

Passing sensitive data to a container 333

https://docs.aws.amazon.com/systems-manager/latest/userguide/setup-create-vpc.html
https://docs.aws.amazon.com/systems-manager/latest/userguide/setup-create-vpc.html

Amazon Elastic Container Service Developer Guide

• For Windows tasks that are configured to use the awslogs logging driver, you must also set the
ECS_ENABLE_AWSLOGS_EXECUTIONROLE_OVERRIDE environment variable on your container
instance. This can be done with User Data using the following syntax:

<powershell>
[Environment]::SetEnvironmentVariable("ECS_ENABLE_AWSLOGS_EXECUTIONROLE_OVERRIDE",
 $TRUE, "Machine")
Initialize-ECSAgent -Cluster <cluster name> -EnableTaskIAMRole -LoggingDrivers
 '["json-file","awslogs"]'
</powershell>

IAM permissions

To use this feature, you must have the Amazon ECS task execution role and reference it in your task
definition. This allows the container agent to pull the necessary AWS Systems Manager resources.
For more information, see Amazon ECS task execution IAM role.

Important

For tasks that use the EC2 launch type, you must use the ECS agent configuration variable
ECS_ENABLE_AWSLOGS_EXECUTIONROLE_OVERRIDE=true to use this feature. You can
add it to the ./etc/ecs/ecs.config file during container instance creation or you can
add it to an existing instance and then restart the ECS agent. For more information, see
Amazon ECS container agent configuration.

To provide access to the AWS Systems Manager Parameter Store parameters that you create,
manually add the following permissions to the task execution role. For information about how to
manage permissions, see Adding and Removing IAM identity permissions in the IAM User Guide.

• ssm:GetParameters — Required if you are referencing a Systems Manager Parameter Store
parameter in a task definition. Adds the permission to retrieve Systems Manager parameters.

• secretsmanager:GetSecretValue — Required if you are referencing a Secrets Manager
secret either directly or if your Systems Manager Parameter Store parameter is referencing a
Secrets Manager secret in a task definition. Adds the permission to retrieve the secret from
Secrets Manager.

Passing sensitive data to a container 334

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_manage-attach-detach.html

Amazon Elastic Container Service Developer Guide

• kms:Decrypt — Required only if your secret uses a customer managed key and not the default
key. The ARN for your custom key should be added as a resource. Adds the permission to decrypt
the customer managed key .

The following example policy adds the required permissions:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "ssm:GetParameters",
 "secretsmanager:GetSecretValue",
 "kms:Decrypt"
],
 "Resource": [
 "arn:aws:ssm:region:aws_account_id:parameter/parameter_name",
 "arn:aws:secretsmanager:region:aws_account_id:secret:secret_name",
 "arn:aws:kms:region:aws_account_id:key/key_id"
]
 }
]
}

Create the AWS Systems Manager parameter

You can use the Systems Manager console to create a Systems Manager Parameter Store parameter
for your sensitive data. For more information, see Create a Systems Manager parameter (console)
or Create a Systems Manager parameter (AWS CLI) in the AWS Systems Manager User Guide.

Add the environment variable to the container definition

Within your container definition, specify secrets with the name of the environment variable
to set in the container and the full ARN of the Systems Manager Parameter Store parameter
containing the sensitive data to present to the container. For more information, see secrets.

The following is a snippet of a task definition showing the format when referencing a Systems
Manager Parameter Store parameter. If the Systems Manager Parameter Store parameter exists in
the same Region as the task you are launching, then you can use either the full ARN or name of the
parameter. If the parameter exists in a different Region, then specify the full ARN.

Passing sensitive data to a container 335

https://docs.aws.amazon.com/systems-manager/latest/userguide/parameter-create-console.html
https://docs.aws.amazon.com/systems-manager/latest/userguide/param-create-cli.html

Amazon Elastic Container Service Developer Guide

{
 "containerDefinitions": [{
 "secrets": [{
 "name": "environment_variable_name",
 "valueFrom": "arn:aws:ssm:region:aws_account_id:parameter/parameter_name"
 }]
 }]
}

Create a task definition that references sensitive data

You can use the Amazon ECS console to create a task definition that references a Systems Manager
Parameter Store parameter.

1. Open the console at https://console.aws.amazon.com/ecs/v2.

2. In the navigation pane, choose Task definitions

3. Choose Create new task definition, Create new task definition.

4. For Task definition family, specify a unique name for the task definition.

5. For each container to define in your task definition, complete the following steps.

a. For Name, enter a name for the container.

b. For Image URI, enter the image to use to start a container. Images in the Amazon ECR
Public Gallery registry may be specified using the Amazon ECR Public registry name
only. For example, if public.ecr.aws/ecs/amazon-ecs-agent:latest is specified,
the Amazon Linux container hosted on Amazon ECR Public Gallery is used. For all other
repositories, specify the repository using either the repository-url/image:tag or
repository-url/image@digest formats.

c. For Essential container, if your task definition has two or more containers defined, you
may specify whether the container should be considered essential. If a container is marked
as essential, if that container stops then the task is stopped. Each task definition must
contain at least one essential container.

d. A port mapping allows the container to access ports on the host to send or receive traffic.
Under Port mappings, do one of the following:

• When you use the awsvpc network mode, for Container port and Protocol, choose the
port mapping to use for the container.

Passing sensitive data to a container 336

https://console.aws.amazon.com/ecs/v2

Amazon Elastic Container Service Developer Guide

• When you use the bridge network mode, for Container port and Protocol, choose the
port mapping to use for the container. You select the bridge network mode on the
next page. After you select it, choose Previous, and then for Host port, specify the port
number on the container instance to reserve for your container.

Choose Add more port mappings to specify additional container port mappings.

e. For sensitive data to inject as environment variables, under Environment, for
Environment variables, complete the following fields:

i. For Key, enter the name of the environment variable to set in the container. This
corresponds to the name field in the secrets section of a container definition.

ii. For Value type, choose ValueFrom. For Value, enter the name or full ARN of the AWS
Systems Manager Parameter Store parameter that contains the data to present to
your log configuration as a log option.

Note

If the Systems Manager Parameter Store parameter exists in the same Region
as the task you are launching, then you can use either the full ARN or the
name of the secret. If the parameter exists in a different Region, then specify
the full ARN.

f. (Optional) Choose Add more containers to add additional containers to the task
definition. Choose Next once all containers have been defined.

6. For App environment, Task size, and Container size, fill out the remaining required fields and
any optional fields.

7. (Optional) Expand the Task roles, network mode section to specify the following:

• For Task role, choose the IAM role to assign to the task. A task IAM role provides
permissions for the containers in a task to call AWS APIs.

8. (Optional) The Storage section is used to expand the amount of ephemeral storage for tasks
hosted on Fargate as well as add a data volume configuration for the task.

• To expand the available ephemeral storage beyond the default value of 20 GiB for your
Fargate tasks, for Amount, enter a value up to 200 GiB.

Passing sensitive data to a container 337

Amazon Elastic Container Service Developer Guide

9. For sensitive data referenced in the log configuration for a container, under Use log collection,
for Log configuration, complete the following configuration:

a. Select the log option, and then under Key, choose Add.

b. For Key, enter the name of the log configuration option to set.

c. For Value, enter the name or full ARN of the AWS Systems Manager Parameter Store
parameter that contains the data to present to your log configuration as a log option.

Note

If the Systems Manager Parameter Store parameter exists in the same Region as
the task you are launching, then you can use either the full ARN or the name of
the secret. If the parameter exists in a different Region, then specify the full ARN.

d. For Value type, choose ValueFrom.

10. Choose Next to review the task definition.

11. On the Review and create page, review each task definition section. Choose Edit to make
changes. After the task definition is complete, choose Create to register the task definition.

Retrieve secrets for logging configuration

Using Secrets Manager

Within your container definition, when specifying a logConfiguration you can specify
secretOptions with the name of the log driver option to set in the container and the full ARN of
the Secrets Manager secret containing the sensitive data to present to the container.

The following is a snippet of a task definition showing the format when referencing an Secrets
Manager secret.

{
 "containerDefinitions": [{
 "logConfiguration": [{
 "logDriver": "splunk",
 "options": {
 "splunk-url": "https://your_splunk_instance:8088"
 },
 "secretOptions": [{

Passing sensitive data to a container 338

Amazon Elastic Container Service Developer Guide

 "name": "splunk-token",
 "valueFrom": "arn:aws:secretsmanager:region:aws_account_id:secret:secret_name-
AbCdEf"
 }]
 }]
 }]
}

Using AWS Systems Manager

You can inject sensitive data in a log configuration. Within your container definition, when
specifying a logConfiguration you can specify secretOptions with the name of the log driver
option to set in the container and the full ARN of the Systems Manager Parameter Store parameter
containing the sensitive data to present to the container.

Important

If the Systems Manager Parameter Store parameter exists in the same Region as the task
you are launching, then you can use either the full ARN or name of the parameter. If the
parameter exists in a different Region, then specify the full ARN.

The following is a snippet of a task definition showing the format when referencing a Systems
Manager Parameter Store parameter.

{
 "containerDefinitions": [{
 "logConfiguration": [{
 "logDriver": "fluentd",
 "options": {
 "tag": "fluentd demo"
 },
 "secretOptions": [{
 "name": "fluentd-address",
 "valueFrom": "arn:aws:ssm:region:aws_account_id:parameter:/parameter_name"
 }]
 }]
 }]
}

Passing sensitive data to a container 339

Amazon Elastic Container Service Developer Guide

Example task definitions

You can copy the examples and snippets to start creating your own task definitions.

You can copy the examples, and then paste them when you use the Configure via JSON option in
the console. Make sure to customize the examples, such as using your account ID. You can include
the snippets in your task definition JSON. For more information, see Creating a task definition
using the console and Task definition parameters.

For more task definition examples, see AWS Sample Task Definitions on GitHub.

Topics

• Webserver

• splunk log driver

• fluentd log driver

• gelf log driver

• Workloads on external instances

• Amazon ECR image and task definition IAM role

• Entrypoint with command

• Container dependency

• Windows sample task definitions

Webserver

The following is an example task definition using the Linux containers on Fargate launch type that
sets up a web server:

{
 "containerDefinitions": [
 {
 "command": [
 "/bin/sh -c \"echo '<html> <head> <title>Amazon ECS Sample App</
title> <style>body {margin-top: 40px; background-color: #333;} </style> </
head><body> <div style=color:white;text-align:center> <h1>Amazon ECS Sample App</h1>
 <h2>Congratulations!</h2> <p>Your application is now running on a container in Amazon
 ECS.</p> </div></body></html>' > /usr/local/apache2/htdocs/index.html && httpd-
foreground\""

Example task definitions 340

https://github.com/aws-samples/aws-containers-task-definitions

Amazon Elastic Container Service Developer Guide

],
 "entryPoint": [
 "sh",
 "-c"
],
 "essential": true,
 "image": "httpd:2.4",
 "logConfiguration": {
 "logDriver": "awslogs",
 "options": {
 "awslogs-group" : "/ecs/fargate-task-definition",
 "awslogs-region": "us-east-1",
 "awslogs-stream-prefix": "ecs"
 }
 },
 "name": "sample-fargate-app",
 "portMappings": [
 {
 "containerPort": 80,
 "hostPort": 80,
 "protocol": "tcp"
 }
]
 }
],
 "cpu": "256",
 "executionRoleArn": "arn:aws:iam::012345678910:role/ecsTaskExecutionRole",
 "family": "fargate-task-definition",
 "memory": "512",
 "networkMode": "awsvpc",
 "runtimePlatform": {
 "operatingSystemFamily": "LINUX"
 },
 "requiresCompatibilities": [
 "FARGATE"
]
}

The following is an example task definition using the Windows containers on Fargate launch type
that sets up a web server:

{
 "containerDefinitions": [

Webserver 341

Amazon Elastic Container Service Developer Guide

 {
 "command": ["New-Item -Path C:\\inetpub\\wwwroot\\index.html -Type file
 -Value '<html> <head> <title>Amazon ECS Sample App</title> <style>body {margin-top:
 40px; background-color: #333;} </style> </head><body> <div style=color:white;text-
align:center> <h1>Amazon ECS Sample App</h1> <h2>Congratulations!</h2> <p>Your
 application is now running on a container in Amazon ECS.</p>'; C:\\ServiceMonitor.exe
 w3svc"],
 "entryPoint": [
 "powershell",
 "-Command"
],
 "essential": true,
 "cpu": 2048,
 "memory": 4096,
 "image": "mcr.microsoft.com/windows/servercore/iis:windowsservercore-
ltsc2019",
 "name": "sample_windows_app",
 "portMappings": [
 {
 "hostPort": 80,
 "containerPort": 80,
 "protocol": "tcp"
 }
]
 }
],
 "memory": "4096",
 "cpu": "2048",
 "networkMode": "awsvpc",
 "family": "windows-simple-iis-2019-core",
 "executionRoleArn": "arn:aws:iam::012345678910:role/ecsTaskExecutionRole",
 "runtimePlatform": {"operatingSystemFamily": "WINDOWS_SERVER_2019_CORE"},
 "requiresCompatibilities": ["FARGATE"]
}

splunk log driver

The following snippet demonstrates how to use the splunk log driver in a task definition that
sends the logs to a remote service. The Splunk token parameter is specified as a secret option
because it can be treated as sensitive data. For more information, see Passing sensitive data to a
container.

"containerDefinitions": [{

splunk log driver 342

Amazon Elastic Container Service Developer Guide

 "logConfiguration": {
 "logDriver": "splunk",
 "options": {
 "splunk-url": "https://cloud.splunk.com:8080",
 "tag": "tag_name",
 },
 "secretOptions": [{
 "name": "splunk-token",
 "valueFrom": "arn:aws:secretsmanager:region:aws_account_id:secret:splunk-token-
KnrBkD"
}],

fluentd log driver

The following snippet demonstrates how to use the fluentd log driver in a task definition that
sends the logs to a remote service. The fluentd-address value is specified as a secret option as
it may be treated as sensitive data. For more information, see Passing sensitive data to a container.

"containerDefinitions": [{
 "logConfiguration": {
 "logDriver": "fluentd",
 "options": {
 "tag": "fluentd demo"
 },
 "secretOptions": [{
 "name": "fluentd-address",
 "valueFrom": "arn:aws:secretsmanager:region:aws_account_id:secret:fluentd-address-
KnrBkD"
 }]
 },
 "entryPoint": [],
 "portMappings": [{
 "hostPort": 80,
 "protocol": "tcp",
 "containerPort": 80
 },
 {
 "hostPort": 24224,
 "protocol": "tcp",
 "containerPort": 24224
 }]
}],

fluentd log driver 343

Amazon Elastic Container Service Developer Guide

gelf log driver

The following snippet demonstrates how to use the gelf log driver in a task definition that sends
the logs to a remote host running Logstash that takes Gelf logs as an input. For more information,
see logConfiguration.

"containerDefinitions": [{
 "logConfiguration": {
 "logDriver": "gelf",
 "options": {
 "gelf-address": "udp://logstash-service-address:5000",
 "tag": "gelf task demo"
 }
 },
 "entryPoint": [],
 "portMappings": [{
 "hostPort": 5000,
 "protocol": "udp",
 "containerPort": 5000
 },
 {
 "hostPort": 5000,
 "protocol": "tcp",
 "containerPort": 5000
 }
]
}],

Workloads on external instances

When registering an Amazon ECS task definition, use the requiresCompatibilities parameter
and specify EXTERNAL which validates that the task definition is compatible to use when running
Amazon ECS workloads on your external instances. If you use the console for registering a task
definition, you must use the JSON editor. For more information, see Creating a task definition using
the console.

Important

If your tasks require a task execution IAM role, make sure that it's specified in the task
definition.

gelf log driver 344

Amazon Elastic Container Service Developer Guide

When you deploy your workload, use the EXTERNAL launch type when creating your service or
running your standalone task.

The following is an example task definition.

Linux

{
 "requiresCompatibilities": [
 "EXTERNAL"
],
 "containerDefinitions": [{
 "name": "nginx",
 "image": "public.ecr.aws/nginx/nginx:latest",
 "memory": 256,
 "cpu": 256,
 "essential": true,
 "portMappings": [{
 "containerPort": 80,
 "hostPort": 8080,
 "protocol": "tcp"
 }]
 }],
 "networkMode": "bridge",
 "family": "nginx"
}

Windows

{
 "requiresCompatibilities": [
 "EXTERNAL"
],
 "containerDefinitions": [{
 "name": "windows-container",
 "image": "mcr.microsoft.com/windows/servercore/iis:windowsservercore-ltsc2019",
 "memory": 256,
 "cpu": 512,
 "essential": true,
 "portMappings": [{
 "containerPort": 80,
 "hostPort": 8080,
 "protocol": "tcp"

Workloads on external instances 345

Amazon Elastic Container Service Developer Guide

 }]
 }],
 "networkMode": "bridge",
 "family": "windows-container"
}

Amazon ECR image and task definition IAM role

The following snippet uses an Amazon ECR image called aws-nodejs-sample with the v1
tag from the 123456789012.dkr.ecr.us-west-2.amazonaws.com registry. The container
in this task inherits IAM permissions from the arn:aws:iam::123456789012:role/
AmazonECSTaskS3BucketRole role. For more information, see Task IAM role.

{
 "containerDefinitions": [
 {
 "name": "sample-app",
 "image": "123456789012.dkr.ecr.us-west-2.amazonaws.com/aws-nodejs-
sample:v1",
 "memory": 200,
 "cpu": 10,
 "essential": true
 }
],
 "family": "example_task_3",
 "taskRoleArn": "arn:aws:iam::123456789012:role/AmazonECSTaskS3BucketRole"
}

Entrypoint with command

The following snippet demonstrates the syntax for a Docker container that uses an entry point and
a command argument. This container pings google.com four times and then exits.

{
 "containerDefinitions": [
 {
 "memory": 32,
 "essential": true,
 "entryPoint": ["ping"],
 "name": "alpine_ping",
 "readonlyRootFilesystem": true,

Amazon ECR image and task definition IAM role 346

Amazon Elastic Container Service Developer Guide

 "image": "alpine:3.4",
 "command": [
 "-c",
 "4",
 "example.com"
],
 "cpu": 16
 }
],
 "family": "example_task_2"
}

Container dependency

This snippet demonstrates the syntax for a task definition with multiple containers where container
dependency is specified. In the following task definition, the envoy container must reach a healthy
status, determined by the required container health check parameters, before the app container
will start. For more information, see Container dependency.

{
 "family": "appmesh-gateway",
 "runtimePlatform": {
 "operatingSystemFamily": "LINUX"
 },
 "proxyConfiguration":{
 "type": "APPMESH",
 "containerName": "envoy",
 "properties": [
 {
 "name": "IgnoredUID",
 "value": "1337"
 },
 {
 "name": "ProxyIngressPort",
 "value": "15000"
 },
 {
 "name": "ProxyEgressPort",
 "value": "15001"
 },
 {
 "name": "AppPorts",
 "value": "9080"

Container dependency 347

Amazon Elastic Container Service Developer Guide

 },
 {
 "name": "EgressIgnoredIPs",
 "value": "169.254.170.2,169.254.169.254"
 }
]
 },
 "containerDefinitions": [
 {
 "name": "app",
 "image": "application_image",
 "portMappings": [
 {
 "containerPort": 9080,
 "hostPort": 9080,
 "protocol": "tcp"
 }
],
 "essential": true,
 "dependsOn": [
 {
 "containerName": "envoy",
 "condition": "HEALTHY"
 }
]
 },
 {
 "name": "envoy",
 "image": "840364872350.dkr.ecr.region-code.amazonaws.com/aws-appmesh-
envoy:v1.15.1.0-prod",
 "essential": true,
 "environment": [
 {
 "name": "APPMESH_VIRTUAL_NODE_NAME",
 "value": "mesh/meshName/virtualNode/virtualNodeName"
 },
 {
 "name": "ENVOY_LOG_LEVEL",
 "value": "info"
 }
],
 "healthCheck": {
 "command": [
 "CMD-SHELL",

Container dependency 348

Amazon Elastic Container Service Developer Guide

 "echo hello"
],
 "interval": 5,
 "timeout": 2,
 "retries": 3
 }
 }
],
 "executionRoleArn": "arn:aws:iam::123456789012:role/ecsTaskExecutionRole",
 "networkMode": "awsvpc"
}

Windows sample task definitions

The following is a sample task definition to help you get started with Windows containers on
Amazon ECS.

Example Amazon ECS Console Sample Application for Windows

The following task definition is the Amazon ECS console sample application that is produced in
the first-run wizard for Amazon ECS; it has been ported to use the microsoft/iis Windows
container image.

{
 "family": "windows-simple-iis",
 "containerDefinitions": [
 {
 "name": "windows_sample_app",
 "image": "mcr.microsoft.com/windows/servercore/iis",
 "cpu": 1024,
 "entryPoint":["powershell", "-Command"],
 "command":["New-Item -Path C:\\inetpub\\wwwroot\\index.html -Type file -
Value '<html> <head> <title>Amazon ECS Sample App</title> <style>body {margin-top:
 40px; background-color: #333;} </style> </head><body> <div style=color:white;text-
align:center> <h1>Amazon ECS Sample App</h1> <h2>Congratulations!</h2> <p>Your
 application is now running on a container in Amazon ECS.</p>'; C:\\ServiceMonitor.exe
 w3svc"],
 "portMappings": [
 {
 "protocol": "tcp",
 "containerPort": 80
 }
],

Windows sample task definitions 349

Amazon Elastic Container Service Developer Guide

 "memory": 1024,
 "essential": true
 }
],
 "networkMode": "awsvpc",
 "memory": "1024",
 "cpu": "1024"
}

Windows sample task definitions 350

Amazon Elastic Container Service Developer Guide

Amazon ECS clusters and capacity

An Amazon ECS cluster is a logical grouping of tasks or services. In addition to tasks and services, a
cluster consists of the following resources:

• The infrastructure capacity which can be a combination of the following:

• Amazon EC2 instances in the AWS cloud

• Serverless (AWS Fargate (Fargate)) in the AWS cloud

• On-premises virtual machines (VM) or servers

• The network (VPC and subnet) where your tasks and services run

When you use Amazon EC2 instances for the capacity, the subnet can be in Availability Zones,
Local Zones, Wavelength Zones or AWS Outposts.

• An optional namespace

The namespace is used for service-to-service communication with Service Connect.

• A monitoring option

CloudWatch Container Insights comes at an additional cost and is a fully managed service. It
automatically collects, aggregates, and summarizes Amazon ECS metrics and logs.

Capacity provider concepts

Capacity providers consist of the following components.

Capacity provider

A capacity provider defines the cluster capacity that Amazon ECS scales up and down of the
infrastructure you specify. You must first associate the capacity provider with a cluster before
you use the capacity provider.

You use a capacity provider in a capacity provider strategy to determine the infrastructure
that a task runs on. Every task must have a capacity provider strategy, a launch type, or use
the default capacity provider strategy that's associated with the selected cluster. You must
reference the capacity provider strategy and not the capacity provider. If a task uses a launch
type, the capacity it uses isn't counted by any capacity providers in the cluster.

Capacity provider concepts 351

Amazon Elastic Container Service Developer Guide

For AWS Fargate, the capacity providers are a FARGATE and a FARGATE_SPOT capacity provider
which AWS creates. You associate the capacity provider with your cluster, and then add them to
a capacity provider strategy.

For Amazon ECS on Amazon EC2 users, a capacity provider consists of a capacity provider name,
an Auto Scaling group. A capacity provider also consists of all of the settings for managed
scaling and managed termination protection. When you turn on managed scaling, Amazon ECS
scales Auto Scaling groups in and out on your behalf.

Default capacity provider strategy

You can associate a default capacity provider strategy with an Amazon ECS cluster. After you
do this, Amazon ECS uses a default capacity provider strategy when you create service or run a
standalone task in the cluster and don't specify a launch type or custom capacity provider. We
recommend that you define a default capacity provider strategy for each cluster.

Capacity provider strategy

A capacity provider strategy consists of one or more capacity providers. You can specify an
optional base and weight value for finer control. A capacity provider strategy is part of the
configuration of a cluster, service, or task. However, you can't create re-useable capacity
provider strategies. The capacity provider strategy of each cluster, service, or task capacity
provider strategy is independent.

If the default capacity provider strategy for a cluster doesn't meet your capacity requirements,
specify a custom capacity provider strategy when creating a service or running a standalone
task.

Important

When you set a launch type instead of a capacity provider strategy on tasks in clusters
where the capacity is managed by capacity providers, those tasks aren't counted for
capacity provider scaling actions.

Only capacity providers that are both already associated with a cluster and have an ACTIVE
or UPDATING status can be used in a capacity provider strategy. You can associate a capacity
provider with a cluster when you create a cluster.

Capacity provider concepts 352

Amazon Elastic Container Service Developer Guide

In a capacity provider strategy, the optional base value designates how many tasks, at a
minimum, run on a specified capacity provider. Only one capacity provider in a capacity provider
strategy can have a base defined.

The weight value determines the relative percentage of the total number of launched tasks
that use the specified capacity provider. Consider the following example. You have a strategy
that contains two capacity providers, and both have a weight of 1. When the base percentage
is reached, the tasks are split evenly across the two capacity providers. Using that same
logic, suppose that you specify a weight of 1 for capacityProviderA and a weight of 4 for
capacityProviderB. Then, for every one task that's run using capacityProviderA, there are four
tasks that use capacityProviderB.

Amazon ECS capacity providers

Amazon ECS capacity providers manage the scaling of infrastructure for tasks in your clusters.
Each cluster can have one or more capacity providers and an optional capacity provider strategy.
The capacity provider strategy determines how the tasks are spread across the cluster's capacity
providers. When you run a standalone task or create a service, you either use the cluster's default
capacity provider strategy or a capacity provider strategy that overrides the default one.

Capacity providers are available for tasks that run on Fargate or on Amazon EC2 instances. You
cannot use capacity providers for tasks that run on external container instances (Amazon ECS
Anywhere).

Capacity provider types

For Amazon ECS workloads that are hosted on Fargate, the following predefined capacity providers
are available:

• Fargate

• Fargate Spot

For Amazon ECS workloads that are hosted on Amazon EC2 instances, you must create and
maintain a capacity provider that consists of the following components:

• A name

• An Auto Scaling group

Capacity providers 353

Amazon Elastic Container Service Developer Guide

• The settings for managed scaling and managed termination protection.

You can create the Auto Scaling group when you create the cluster, or you can create the group
before the cluster, and then specify the group name when you create the cluster.

Capacity provider considerations

Consider the following when using capacity providers:

• A capacity provider must be associated with a cluster before being specified in a capacity
provider strategy.

• When you specify a capacity provider strategy, the number of capacity providers that you can
specify is limited to 20.

• You can't update a service using an Auto Scaling group capacity provider to use a Fargate
capacity provider. The opposite is also the case.

• In a capacity provider strategy, if no weight value is specified for a capacity provider in the
console, then the default value of 1 is used. If using the API or AWS CLI, the default value of 0 is
used.

• When multiple capacity providers are specified within a capacity provider strategy, at least one of
the capacity providers must have a weight value that's greater than zero. Moreover, any capacity
providers with a weight of zero aren't used to place tasks. If you specify multiple capacity
providers in a strategy with all the same weight of zero, then any RunTask or CreateService
actions using the capacity provider strategy fail.

• In a capacity provider strategy, only one capacity provider can have a defined base value. If no
base value is specified, the default value of zero is used.

• A cluster can contain a mix of both Auto Scaling group capacity providers and Fargate capacity
providers. However, a capacity provider strategy can only contain Auto Scaling group or Fargate
capacity providers, but not both.

• A cluster can contain a mix of services and standalone tasks that use both capacity providers and
launch types. A service can be updated to use a capacity provider strategy rather than a launch
type. However, you must force a new deployment when doing so.

• When you use managed termination protection, you must also use managed scaling. Otherwise,
managed termination protection doesn't work.

Topics

Capacity provider considerations 354

Amazon Elastic Container Service Developer Guide

• AWS Fargate capacity providers

• Amazon EC2 Auto Scaling group capacity providers

AWS Fargate capacity providers

With Amazon ECS on AWS Fargate capacity providers, you can use both Fargate and Fargate Spot
capacity with your Amazon ECS tasks.

With Fargate Spot, you can run interruption tolerant Amazon ECS tasks at a rate that's discounted
compared to the Fargate price. Fargate Spot runs tasks on spare compute capacity. When AWS
needs the capacity back, your tasks are interrupted with a two-minute warning.

Fargate capacity provider considerations

Consider the following when using Fargate capacity providers:

• Windows containers on Fargate don't support the Fargate Spot capacity provider.

• Linux tasks with the ARM64 architecture don't support the Fargate Spot capacity provider.
Fargate Spot only supports Linux tasks with the X86_64 architecture.

• You don't need to create Fargate and Fargate Spot capacity providers. They're available to all
accounts. To use them, all you need to do is associate them with a cluster.

• To associate Fargate and Fargate Spot capacity providers to a cluster, you must use the Amazon
ECS API or AWS CLI. You cannot associate them using the console.

• The Fargate and Fargate Spot capacity providers are reserved and can't be deleted. However,
you can disassociate them from a cluster using the PutClusterCapacityProviders API
operation.

• You can associate a capacity provider with an existing cluster using the
PutClusterCapacityProviders API operation.

• If you use Fargate Spot, your task must use platform version 1.3.0 or later (for Linux). For more
information, see Fargate Linux platform versions.

• When tasks that use the Fargate and Fargate Spot capacity providers are stopped, the task state
change event is sent to Amazon EventBridge. The stopped reason describes the cause. For more
information, see Amazon ECS task state change events.

• A cluster can contain a mix of Fargate and Auto Scaling group capacity providers. However,
a capacity provider strategy can only contain either Fargate or Auto Scaling group capacity

AWS Fargate capacity providers 355

Amazon Elastic Container Service Developer Guide

providers, but not both. For more information, see Auto Scaling Group Capacity Providers in the
Amazon Elastic Container Service Developer Guide.

Handling Fargate Spot termination notices

Understand that the following consequences because Spot capacity might not be available all the
time.

• During periods of extremely high demand, Fargate Spot capacity might be unavailable. This can
cause Fargate Spot tasks to be delayed. In these events, Amazon ECS services retry launching
tasks until the required capacity becomes available. Fargate doesn't replace Spot capacity with
on-demand capacity.

• When tasks using Fargate Spot capacity are stopped due to a Spot interruption, a two-minute
warning is sent before a task is stopped. The warning is sent as a task state change event to
Amazon EventBridge and as a SIGTERM signal to the running task. If you use Fargate Spot as
part of a service, then in this scenario the service scheduler receives the interruption signal and
attempts to launch additional tasks on Fargate Spot if there's capacity available. A service with
only one task is interrupted until capacity is available. For more information about a graceful
shutdown, see Graceful shutdowns with ECS .

To ensure that your containers exit gracefully before the task stops, you can configure the
following:

• A stopTimeout value of 120 seconds or less can be specified in the container definition that
the task is using. The default stopTimeout value is 30 seconds. You can specify a longer
stopTimeout value to give yourself more time between the moment that the task state change
event is received and the point in time when the container is forcefully stopped. For more
information, see Container timeouts.

• The SIGTERM signal must be received from within the container to perform any cleanup actions.
Failure to process this signal results in the task receiving a SIGKILL signal after the configured
stopTimeout and may result in data loss or corruption.

The following is a snippet of a task state change event. This snippet displays the stopped reason
and stop code for a Fargate Spot interruption.

{

AWS Fargate capacity providers 356

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/cluster-auto-scaling.html#asg-capacity-providers
https://aws.amazon.com/blogs/containers/graceful-shutdowns-with-ecs/

Amazon Elastic Container Service Developer Guide

 "version": "0",
 "id": "9bcdac79-b31f-4d3d-9410-fbd727c29fab",
 "detail-type": "ECS Task State Change",
 "source": "aws.ecs",
 "account": "111122223333",
 "resources": [
 "arn:aws:ecs:us-east-1:111122223333:task/b99d40b3-5176-4f71-9a52-9dbd6f1cebef"
],
 "detail": {
 "clusterArn": "arn:aws:ecs:us-east-1:111122223333:cluster/default",
 "createdAt": "2016-12-06T16:41:05.702Z",
 "desiredStatus": "STOPPED",
 "lastStatus": "RUNNING",
 "stoppedReason": "Your Spot Task was interrupted.",
 "stopCode": "SpotInterruption",
 "taskArn": "arn:aws:ecs:us-east-1:111122223333:task/
b99d40b3-5176-4f71-9a52-9dbd6fEXAMPLE",
 ...
 }
}

The following is an event pattern that's used to create an EventBridge rule for Amazon ECS task
state change events. You can optionally specify a cluster in the detail field. Doing so means that
you will receive task state change events for that cluster. For more information, see Creating an
EventBridge Rule in the Amazon EventBridge User Guide.

{
 "source": [
 "aws.ecs"
],
 "detail-type": [
 "ECS Task State Change"
],
 "detail": {
 "clusterArn": [
 "arn:aws:ecs:us-west-2:111122223333:cluster/default"
]
 }
}

AWS Fargate capacity providers 357

https://docs.aws.amazon.com/eventbridge/latest/userguide/create-eventbridge-rule.html
https://docs.aws.amazon.com/eventbridge/latest/userguide/create-eventbridge-rule.html

Amazon Elastic Container Service Developer Guide

Amazon EC2 Auto Scaling group capacity providers

When you use Amazon EC2 instances for your capacity, you use Auto Scaling groups to manage the
Amazon EC2 instances registered to their clusters. Auto Scaling helps you ensure that you have the
correct number of Amazon EC2 instances available to handle the load for your application.

You can use the managed scaling feature to have Amazon ECS manage the scale-in and scale-
out actions of the Auto Scaling group (managed scaling) or you can manage the scaling actions
yourself. For more information, see Amazon ECS cluster auto scaling.

Auto Scaling group capacity providers considerations

Consider the following when using Auto Scaling group capacity providers in the console:

• We recommend that you create a new empty Auto Scaling group to use with a capacity provider
rather than using an existing one. If you use an existing Auto Scaling group, any Amazon EC2
instances that are associated with the group that were already running and registered to an
Amazon ECS cluster before the Auto Scaling group being used to create a capacity provider
might not be properly registered with the capacity provider. This might cause issues when using
the capacity provider in a capacity provider strategy. Use DescribeContainerInstances to
confirm whether a container instance is associated with a capacity provider or not.

Note

To create an empty Auto Scaling group, set the desired count to zero. After you created
the capacity provider and associated it with a cluster, you can then scale it out.
When you use the Amazon ECS console Create Cluster with the Amazon EC2 instances
option under Infrastructure, Amazon ECS creates an Amazon EC2 Auto Scaling launch
configuration and Auto Scaling group on your behalf as part of the AWS CloudFormation
stack. They are prefixed with EC2ContainerService-<ClusterName>, which make
them easy to identify. You can use the Auto Scaling group as a capacity provider for that
cluster.

• An Auto Scaling group must have a MaxSize greater than zero to scale out.

• The Auto Scaling group can't have instance weighting settings. Instance weighting isn't
supported when used with an Amazon ECS capacity provider.

• If the Auto Scaling group can't scale out to accommodate the number of tasks run, the tasks fails
to transition beyond the PROVISIONING state.

Amazon EC2 Auto Scaling group capacity providers 358

Amazon Elastic Container Service Developer Guide

• Don't modify the scaling policy resource associated with your Auto Scaling groups that are
managed by capacity providers.

• When you use managed termination protection, you must also use managed scaling. Otherwise,
managed termination protection won't work.

• When managed scaling is turned on, the Auto Scaling group capacity provider creates a scaling
policy resource to manage the scaling of your Auto Scaling group. You can identify these
resources by the ECSManaged prefix.

When you use managed termination protection, Amazon ECS only terminates EC2 instances that
don't have any running Amazon ECS tasks.

• If managed termination protection is turned on when you create a capacity provider, the Auto
Scaling group and each Amazon EC2 instance in the Auto Scaling group must have instance
protection from scale in turned on. For more information, see Instance Protection in the AWS
Auto Scaling User Guide.

• You can add a warm pool to your Auto Scaling group. A warm pool is a group of pre-initialized
Amazon EC2 instances that are ready to be included in the cluster whenever your application
needs to scale out. For more information about warm pools, see Using a warm pool for your Auto
Scaling group.

• If managed scaling is turned on when you create a capacity provider, the Auto Scaling group
desired count can be set to 0. When managed scaling is turned on, Amazon ECS manages the
scale-in and scale-out actions of the Auto Scaling group.

• Managed instance draining is turned on by default when you create a capacity provider. We
recommend you use this feature to enable graceful termination of Amazon EC2 instances
without disrupting your workloads.

For more information about creating an Amazon EC2 Auto Scaling launch template, see Launch
Templates in the Amazon EC2 Auto Scaling User Guide. For more information about creating an
Amazon EC2 Auto Scaling group, see Auto Scaling groups in the Amazon EC2 Auto Scaling User
Guide.

Using a warm pool for your Auto Scaling group

Amazon ECS supports Amazon EC2 Auto Scaling warm pools. A warm pool is a group of pre-
initialized Amazon EC2 instances ready to be placed into service. Whenever your application needs
to scale out, Amazon EC2 Auto Scaling uses the pre-initialized instances from the warm pool rather

Amazon EC2 Auto Scaling group capacity providers 359

https://docs.aws.amazon.com/autoscaling/ec2/userguide/as-instance-termination.html#instance-protection
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/managed-instance-draining.html
https://docs.aws.amazon.com/autoscaling/ec2/userguide/LaunchTemplates.html
https://docs.aws.amazon.com/autoscaling/ec2/userguide/LaunchTemplates.html
https://docs.aws.amazon.com/autoscaling/ec2/userguide/AutoScalingGroup.html

Amazon Elastic Container Service Developer Guide

than launching cold instances, allows for any final initialization process to run, and then places the
instance into service.

To learn more about warm pools and how to add a warm pool to your Auto Scaling group, see
Warm pools for Amazon EC2 Auto Scaling in the Amazon EC2 Auto Scaling User Guide.

When you create or update a warm pool for an Auto Scaling group for Amazon ECS , you cannot
set the option that returns instances to the warm pool on scale in (ReuseOnScaleIn). For more
information, see put-warm-pool in the AWS Command Line Interface Reference.

To use warm pools with your Amazon ECS cluster, set the ECS_WARM_POOLS_CHECK agent
configuration variable to true in the User data field of your Amazon EC2 Auto Scaling group
launch template. The following shows an example of how the agent configuration variable can be
specified in the User data field of an Amazon EC2 launch template.

#!/bin/bash
cat <<'EOF' >> /etc/ecs/ecs.config
ECS_CLUSTER=MyCluster
ECS_WARM_POOLS_CHECK=true
EOF

The ECS_WARM_POOLS_CHECK variable is only supported on agent versions 1.59.0 and later. For
more information about the variable, see Amazon ECS container agent configuration.

Amazon ECS cluster auto scaling

Amazon ECS can manage the scaling of Amazon EC2 instances that are registered to your cluster.
This is referred to as Amazon ECS cluster auto scaling. This is done by using an Amazon ECS
Auto Scaling group capacity provider with managed scaling turned on. When you use an Auto
Scaling group capacity provider with managed scaling turned on, you set a target percentage (the
targetCapacity) for the utilization of the instances in this Auto Scaling group. Amazon ECS
creates two custom CloudWatch metrics and a target tracking scaling policy that attaches to your
Auto Scaling group. Amazon ECS then manages the scale-in and scale-out actions of the Auto
Scaling group based on the resource utilization that your tasks use from this capacity provider. For
more information about Auto Scaling group capacity providers, see the section called “Amazon EC2
Auto Scaling group capacity providers”.

Cluster auto scaling 360

https://docs.aws.amazon.com/autoscaling/ec2/userguide/ec2-auto-scaling-warm-pools.html
https://docs.aws.amazon.com/cli/latest/reference/autoscaling/put-warm-pool.html

Amazon Elastic Container Service Developer Guide

Note

Amazon ECS cluster auto scaling is only supported with Auto Scaling group capacity
providers. For Amazon ECS workloads that are hosted on AWS Fargate, see the section
called “AWS Fargate capacity providers”.

The following is your workflow to use Amazon ECS cluster auto scaling. For more information, see
the section called “Turn on cluster auto scaling”.

1. Create an Auto Scaling group.

2. Create a capacity provider that uses that Auto Scaling group.

3. Turn on managed scaling for the capacity provider.

4. Associate the capacity provider with a cluster.

5. Run a task or create a service with a capacity provider strategy that uses the capacity provider.

The capacity provider strategy determines how the tasks are spread across the cluster's
capacity providers. When you run a standalone task or create a service, you either use the
cluster's default capacity provider strategy or a capacity provider strategy that overrides the
default one.

6. (Optional) Create a default capacity provider strategy for the cluster.

As of May 27, 2022, Amazon ECS no longer creates an AWS Auto Scaling scaling plan for newly
created capacity providers. Instead, Amazon ECS uses the target tracking scaling policy attached to
the Auto Scaling group to perform dynamic scaling based on your target capacity specification. For
more information, see Amazon EC2 Auto Scaling group capacity providers.

With this new release, you can use an existing Auto Scaling group with a scaling policy for use
when creating a new capacity provider. We don't recommend that you modify the ECS managed
scaling policy or plan resources. However, when creating new capacity provider resources, if you
have customized tooling that made modifications to the AWS Auto Scaling scaling plan, do one of
the following:

• (Recommended) Update your capacity provider to modify the Amazon ECS managed scaling
settings. For more information, see UpdateCapacityProvider.

• Update the scaling policy associated with your Auto Scaling group to modify the target tracking
configuration used. For more information, see PutScalingPolicy.

Cluster auto scaling 361

https://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_UpdateCapacityProvider.html
https://docs.aws.amazon.com/autoscaling/ec2/APIReference/API_PutScalingPolicy.html

Amazon Elastic Container Service Developer Guide

Considerations

Consider the following when using cluster auto scaling:

• Don't change or manage the desired capacity for the Auto Scaling group that's associated with a
capacity provider with any scaling policies other than the one Amazon ECS manages.

• Amazon ECS uses the AWSServiceRoleForECS service-linked IAM role for the permissions
that it requires to call AWS Auto Scaling on your behalf. For more information about using and
creating Amazon ECS service-linked IAM roles, see Using service-linked roles for Amazon ECS.

• When using capacity providers with Auto Scaling groups, the user, group, or role that creates
the capacity providers requires the autoscaling:CreateOrUpdateTags permission. This is
because Amazon ECS adds a tag to the Auto Scaling group when it associates it with the capacity
provider.

Important

Make sure any tooling that you use doesn't remove the AmazonECSManaged tag from
the Auto Scaling group. If this tag is removed, Amazon ECS can't manage the scaling.

• Cluster auto scaling doesn't modify the MinimumCapacity or MaximumCapacity for the group.
For the group to scale out, the value for MaximumCapacity must be greater than zero.

• When Auto Scaling (managed scaling) is turned on, a capacity provider can only be connected to
one cluster at the same time. If your capacity provider has managed scaling turned off, you can
associate it with multiple clusters.

• When managed scaling is turned off, the capacity provider doesn't scale in or scale out. You can
use a capacity provider strategy to balance your tasks between capacity providers.

• The binpack strtagegy is the most efficient strategy in terms of capacity.

• When the target capacity is less than 100%, the placement strategy needs to use the binpack
strategy without the spread srategy having a higher order than the binpack strategy. This
prevents the capacity provider from scaling out until each task has a dedicated instance or the
limit is reached.

Consider the following when you use the console:

• By default, the Amazon ECS managed scaling feature is on. For more information, see Managed
scale-out behavior.

Considerations 362

Amazon Elastic Container Service Developer Guide

• By default, managed termination protection is off. For more information, see the next section the
section called “Managed termination protection”.

• By default, Auto Scaling instance scale-in protection is off. For more information, see Using
instance scale-in protection in the Amazon EC2 Auto Scaling User Guide.

• The Auto Scaling group that's used with your capacity provider can't use instance weighting
settings. Instance weighting isn't supported when used together with an Amazon ECS capacity
provider.

Cluster auto scaling overview

For each Auto Scaling group capacity provider that's associated with a cluster, Amazon ECS creates
and manages the following resources:

• A low metric value CloudWatch alarm

• A high metric value CloudWatch alarm

• A target tracking scaling policy

Note

Amazon ECS creates the target tracking scaling policy and attaches it to the Auto
Scaling group. To update the target tracking scaling policy, update the capacity provider
managed scaling settings, rather than updating the scaling policy directly.

When you turn off managed scaling or disassociate the capacity provider from a cluster, Amazon
ECS removes both CloudWatch metrics and the target tracking scaling policy resources.

Amazon ECS uses the following metrics to determine what actions to take:

CapacityProviderReservation

The percent of container instances in use for a specific capacity provider. Amazon ECS generates
this metric.

Amazon ECS sets the CapacityProviderReservation value to a number between 0-100.
Amazon ECS uses the following formula to represent the ratio of how much capacity remains
in the Auto Scaling group. Then, Amazon ECS publishes the metric to CloudWatch. For more

Cluster auto scaling overview 363

https://docs.aws.amazon.com/autoscaling/ec2/userguide/ec2-auto-scaling-instance-protection.html
https://docs.aws.amazon.com/autoscaling/ec2/userguide/ec2-auto-scaling-instance-protection.html

Amazon Elastic Container Service Developer Guide

information about how the metric is calculated, see Deep Dive on Amazon ECS Cluster Auto
Scaling

CapacityProviderReservation = (number of instances needed) / (number of running
 instances) x 100

DesiredCapacity

The amount of capacity for the Auto Scaling group.

Amazon ECS performs the cluster auto scaling process for each capacity provider that's associated
with your clusters. Amazon ECS performs the process every minute.

Amazon ECS publishes the CapacityProviderReservation metric to CloudWatch in the AWS/
ECS/ManagedScaling namespace. The CapacityProviderReservation metric causes one of
the following actions to occur:

The CapacityProviderReservation value equals targetCapacity

The Auto Scaling group doesn't need to scale in or scale out. The target utilization percentage
has been reached.

The CapacityProviderReservation value is greater than targetCapacity

There are more tasks using a higher percentage of the capacity than your targetCapacity
percentage. The increased value of the CapacityProviderReservation metric causes the
associated CloudWatch alarm to act. This alarm updates the DesiredCapacity value for the
Auto Scaling group. The Auto Scaling group uses this value to launch EC2 instances, and then
register them with the cluster.

When the targetCapacity is the default value of 100 %, the new tasks are in the PENDING
state during the scale-out because there is no available capacity on the instances to run the
tasks. After the new instances register with ECS, these tasks will start on the new instances.

The CapacityProviderReservation value is less than targetCapacity

There are less tasks using a lower percentage of the capacity than your targetCapacity
percentage and there is at least one instance that can be terminated. The decreased value of
the CapacityProviderReservation metric causes the associated CloudWatch alarm to act.
This alarm updates the DesiredCapacity value for the Auto Scaling group. The Auto Scaling

Cluster auto scaling overview 364

https://aws.amazon.com/blogs/containers/deep-dive-on-amazon-ecs-cluster-auto-scaling/
https://aws.amazon.com/blogs/containers/deep-dive-on-amazon-ecs-cluster-auto-scaling/

Amazon Elastic Container Service Developer Guide

group uses this value to terminate EC2 container instances, and then deregister them from the
cluster.

The Auto Scaling group follows the group termination policy to determine which instances it
terminates first during scale-in events. Additionally it avoids instances with the instance scale-
in protection setting turned on. Cluster auto scaling can manage which instances have the
instance scale-in protection setting if you turn on managed termination protection. For more
information about managed termination protection, see Managed termination protection. For
more information about how Auto Scaling groups terminate instances, see Control which Auto
Scaling instances terminate during scale in in the Amazon EC2 Auto Scaling User Guide.

Managed termination protection

Important

You must turn on Auto Scaling instance scale-in protection on the Auto Scaling group to use
the managed termination protection feature of cluster auto scaling.

Amazon ECS cluster auto scaling scales in the Auto Scaling group when the
CapacityProviderReservation value is less than targetCapacity percentage that you set. Cluster
auto scaling can control which instances are terminated if you turn on managed termination
protection. When you use managed termination protection, Amazon ECS only terminates EC2
instances that don't have any running Amazon ECS tasks. Tasks that are run by a service that uses
the DAEMON scheduling strategy are ignored and an instance can be terminated by cluster auto
scaling even when the instance is running these tasks. This is because all of the instances in the
cluster are running these tasks.

When you use managed termination protection, Amazon ECS first turns on the instance scale-
in protection option for the EC2 instances in the Auto Scaling group. Then, Amazon ECS places
the tasks on the instances. When all non-daemon tasks are stopped on an instance, Amazon ECS
initiates the scale-in process and turns off scale-in protection for the EC2 instance. The Auto
Scaling group can then terminate the instance.

Auto Scaling instance scale-in protection controls which EC2 instances can be terminated by Auto
Scaling. Instances with the scale-in feature turned on can't be terminated during the scale-in
process. For more information about Auto Scaling instance scale-in protection, see Using instance
scale-in protection in the Amazon EC2 Auto Scaling User Guide.

Managed termination protection 365

https://docs.aws.amazon.com/autoscaling/ec2/userguide/ec2-auto-scaling-instance-protection.html
https://docs.aws.amazon.com/autoscaling/ec2/userguide/ec2-auto-scaling-instance-protection.html
https://docs.aws.amazon.com/autoscaling/ec2/userguide/ec2-auto-scaling-instance-protection.html
https://docs.aws.amazon.com/autoscaling/ec2/userguide/ec2-auto-scaling-instance-protection.html

Amazon Elastic Container Service Developer Guide

You can set the targetCapacity percentage so that you have spare capacity. This helps future
tasks launch more quickly because the Auto Scaling group does not have to launch more instances.
Amazon ECS uses the target capacity value to manage the CloudWatch metric that the service
creates to facilitate cluster auto scaling. Amazon ECS manages the CloudWatch metric. This way,
the Auto Scaling group is treated as a steady state so that no scaling action is required. The values
can be from 0-100%. For example, to configure Amazon ECS to keep 10% free capacity on top of
that used by Amazon ECS tasks, set the target capacity value to 90%. Consider the following when
setting the targetCapacity value on a capacity provider.

• A targetCapacity value of less than 100% represents the amount of free capacity (Amazon
EC2 instances) that need to be present in the cluster. Free capacity means that there are no
running tasks.

• Placement constraints such as Availability Zones, without additional binpack forces Amazon
ECS to eventually run one task for each instance, which might not be the desired behavior. To
prevent this behavior, don't use the spread strategy together with the binpack strategy.

Consider the following when using managed termination protection with the console:

• By default, managed termination protection is turned off for new capacity providers that you
create.

• The console doesn't turn on the instance scale-in protection of the selected Auto Scaling group.
By default, Auto Scaling instance scale-in protection is off. You must turn on Auto Scaling
instance scale-in protection on the Auto Scaling group to use managed termination protection. If
you don't turn on scale-in protection, then turning on managed termination protection can lead
to undesirable behavior. For example, you may have instances stuck in draining state. For more
information, see Using instance scale-in protection in the Amazon EC2 Auto Scaling User Guide.

• When you use termination protection with a capacity provider, don't perform any manual
actions, like detaching the instance, on the Auto Scaling group associated with the capacity
provider. Manual actions can break the scale-in operation of the capacity provider. If you detach
an instance from the Auto Scaling group, you need to also deregister the detached instance from
the Amazon ECS cluster.

Managed termination protection 366

https://docs.aws.amazon.com/autoscaling/ec2/userguide/ec2-auto-scaling-instance-protection.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/deregister_container_instance.html

Amazon Elastic Container Service Developer Guide

Managed scale-out behavior

When you have Auto Scaling group capacity providers that use managed scaling, Amazon ECS
estimates the optimal number of instances to add to your cluster and uses the value to determine
how many instances to request. The following describes the scale-out behavior in more detail.

1. Amazon ECS selects a capacity provider for each task by following the capacity provider strategy
from the service, from the standalone task, or from the cluster default. Amazon ECS follows the
rest of these steps for a single capacity provider.

Tasks without a capacity provider strategy are ignored by capacity providers. A pending task that
doesn't have a capacity provider strategy won't cause any capacity provider to scale out. Tasks or
services can't set a capacity provider strategy if that task or service sets a launch type.

2. Group all of the provisioning tasks for this capacity provider so that each group has the same
exact resource requirements.

3. When you use multiple instance types in an Auto Scaling group, the instance types in the Auto
Scaling group are sorted by their parameters. These parameters include vCPU, memory, elastic
network interfaces (ENIs), ports, and GPUs. The smallest and the largest instance types for
each parameter are selected. For more information about how to choose the instance type, see
Characterizing your application in the Amazon ECS Best Practices Guide.

Important

If a group of tasks have resource requirements that are greater than the smallest
instance type in the Auto Scaling group, then that group of tasks can’t run with this
capacity provider. The capacity provider doesn’t scale the Auto Scaling group. The tasks
remain in the PENDING state.
To prevent tasks from staying in the PENDING state, we recommend that you create
separate Auto Scaling groups and capacity providers for different minimum resource
requirements. When you run tasks or create services, only add capacity providers to the
capacity provider strategy that can run the task on the smallest instance type in the Auto
Scaling group. For other parameters, you can use placement constraints

4. For each group of tasks, Amazon ECS calculates the number of instances that are required to
run the unplaced tasks. This calculation uses a binpack strategy. This strategy accounts for
the vCPU, memory, elastic network interfaces (ENI), ports, and GPUs requirements of the tasks.
It also accounts for the resource availability of the Amazon EC2 instances. The values for the

Managed termination protection 367

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/clusters.html#capacity-providers-concepts
https://docs.aws.amazon.com/AmazonECS/latest/bestpracticesguide/capacity-autoscaling.html#capacity-autoscaling-app

Amazon Elastic Container Service Developer Guide

largest instance types are treated as the maximum calculated instance count. The values for the
smallest instance type are used as protection. If the smallest instance type can't run at least one
instance of the task, the calculation considers the task as not compatible. As a result, the task
is excluded from scale-out calculation. When all the tasks aren't compatible with the smallest
instance type, cluster auto scaling stops and the CapacityProviderReservation value
remains at the targetCapacity value.

5. Amazon ECS publishes the CapacityProviderReservation metric to CloudWatch with
respect to the minimumScalingStepSize if either of the following is the case. Either, the
maximum calculated instance count is less than the minimum scaling step size. Or, the lower
value of either the maximumScalingStepSize or the maximum calculated instance count.

6. CloudWatch alarms use the CapacityProviderReservation metric for capacity providers.
When the CapacityProviderReservation metric is greater than the targetCapacity
value, alarms also increase the DesiredCapacity of the Auto Scaling group. The
targetCapacity value is a capacity provider setting that's sent to the CloudWatch alarm
during the cluster auto scaling activation phase.

You can set the targetCapacity when you create the Auto Scaling group, or modify the value
after the group is created. The default is 100%.

7. The Auto Scaling group launches additional EC2 instances. To prevent over-provisioning,
Auto Scaling makes sure that recently launched EC2 instance capacity is stabilized before
it launches new instances. Auto Scaling checks if all existing instances have passed the
instanceWarmupPeriod (now minus the instance launch time). The scale-out is blocked for
instances that are within the instanceWarmupPeriod.

The default number of seconds for a newly launched instance to warm up is 300.

For more information, see Deep dive on Amazon ECS cluster auto scaling.

Scale-out considerations

Consider the following for the scale-out process:

1. Although there are multiple placement constraints, we recommend that you only use the
distinctInstance task placement constraint. This prevents the scale-out process from
stopping because you're using a placement constraint that's not compatible with the sampled
instances.

Managed termination protection 368

https://aws.amazon.com/blogs/containers/deep-dive-on-amazon-ecs-cluster-auto-scaling/

Amazon Elastic Container Service Developer Guide

2. Managed scaling works best if your Auto Scaling group uses the same or similar instance types.
For more information, see Managed scale-out behavior.

3. When a scale-out process is required and there are no currently running container instances,
Amazon ECS always scales-out to two instances initially, and then performs additional scale-out
or scale-in processes. Any additional scale-out waits for the instance warmup period. For scale-
in processes, Amazon ECS waits 15 minutes after a scale-out process before starting scale-in
processes at all times.

4. The second scale-out step needs to wait until the instanceWarmupPeriod expires,
which might affect the overall scale limit. If you need to reduce this time, make sure that
instanceWarmupPeriod is large enough for the EC2 instance to launch and start the Amazon
ECS agent (which prevents overprovisioning).

5. Cluster auto scaling supports Launch Configuration, Launch Templates, and multiple instance
types in the capacity provider Auto Scaling group. You can also use attribute-based instance
type selection without multiple instances types.

6. When using an Auto Scaling group with On-Demand instances and multiple instance types or
Spot Instances, place the larger instance types higher in the priority list and don't specify a
weight. Specifying a weight isn't supported at this time. For more information, see Auto Scaling
groups with multiple instance types in the AWS Auto Scaling User Guide.

7. Amazon ECS then launch either the minimumScalingStepSize, if the maximum calculated
instance count is less than the minimum scaling step size, or the lower of either the
maximumScalingStepSize or the maximum calculated instance count value.

8. If an Amazon ECS service or the run-task API launches a task and the capacity provider
container instances don't have enough resources to start the task, then Amazon ECS limits the
number of tasks with this status for each cluster and prevents any tasks from exceeding this
limit. For more information, see Service quotas.

Managed scale-in behavior

Amazon ECS monitors container instances for each capacity provider within a cluster. When a
container instance isn't running any tasks, the container instance is considered empty and Amazon
ECS starts the scale-in process. The following describes the scale-in behavior in more detail:

1. Amazon ECS calculates the number of container instances that are empty. A container instance is
considered empty even when daemon tasks are running.

Managed termination protection 369

https://docs.aws.amazon.com/autoscaling/ec2/userguide/asg-purchase-options.html
https://docs.aws.amazon.com/autoscaling/ec2/userguide/asg-purchase-options.html

Amazon Elastic Container Service Developer Guide

2. Amazon ECS sets the CapacityProviderReservation value to a number between 0-100 that
uses the following formula to represent the ratio of how big the Auto Scaling group needs to
be relative to how big it actually is, expressed as a percentage. Then, Amazon ECS publishes the
metric to CloudWatch. For more information about how the metric is calculated, see Deep Dive
on Amazon ECS Cluster Auto Scaling

CapacityProviderReservation = (number of instances needed) / (number of running
 instances) x 100

3. The CapacityProviderReservation metric generates a CloudWatch alarm. This alarm
updates the DesiredCapacity value for the Auto Scaling group. Then, one of the following
actions occurs:

• If you don't use capacity provider managed termination, the Auto Scaling group selects EC2
instances using the Auto Scaling group termination policy and terminates the instances until
the number of EC2 instances reaches the DesiredCapacity. The container instances are
then deregistered from the cluster.

• If all the container instances use managed termination protection, Amazon ECS removes the
scale-in protection on the container instances that are empty. The Auto Scaling group will
then be able to terminate the EC2 instances. The container instances are then deregistered
from the cluster.

Scale-in considerations

Consider the following for the scale-in process:

• When there are no running non-daemon tasks, Amazon ECS container instances are considered
available for scale in.

• CloudWatch scale-in alarms require 15 data points (15 minutes) before the scale-in process for
the Auto Scaling group starts. After the scale-in process starts until Amazon ECS needs to reduce
the number of registered container instances, the Auto Scaling group sets the DesireCapacity
value to be greater than one instance and less than 50% each minute.

• When Amazon ECS requests a scale-out (when CapacityProviderReservation is greater
than 100) while a scale-in process is in progress, the scale-in process is stopped and starts from
the beginning if required.

Managed termination protection 370

https://aws.amazon.com/blogs/containers/deep-dive-on-amazon-ecs-cluster-auto-scaling/
https://aws.amazon.com/blogs/containers/deep-dive-on-amazon-ecs-cluster-auto-scaling/

Amazon Elastic Container Service Developer Guide

Update on the way Amazon ECS creates resources for cluster auto
scaling

As of May 27, 2022, Amazon ECS changed how it manages the resources that facilitate cluster auto
scaling. To simplify the experience, Amazon ECS no longer requires an AWS Auto Scaling scaling
plan when you turn on managed scaling for an Auto Scaling group capacity provider.

Important

This change has no functional impact on your cluster auto scaling workflows and no pricing
or performance impact.

Capacity providers created before May 27, 2022

Capacity providers that were created before May 27, 2022, and that use AWS Auto Scaling scaling
plans continue to function as before.

Review the following considerations:

• We don't recommend that you update or delete the ECS-managed AWS Auto Scaling scaling
plan or the scaling policy resources that are associated with your capacity providers.

• You can access the scaling plan resource for clusters on the Auto Scaling console and by the
describe-clusters with attachments. For more information, see the API documentation
DescribeClusters.

• You can't add scaling policies to the Auto Scaling group that functions as the cluster capacity
provider.

• The number of Auto Scaling plans for each account is limited. For more information, see Quotas
for your scaling plans in the Amazon EC2 Auto Scaling User Guide.

Capacity providers created on or after May 27, 2022

As of May 27, 2022, Amazon ECS no longer creates an AWS Auto Scaling scaling plan for newly
created capacity providers. Instead, Amazon ECS uses the target tracking scaling policy attached to
the Auto Scaling group to perform dynamic scaling based on your target capacity specification. For
more information, see Amazon EC2 Auto Scaling group capacity providers.

Update on the way Amazon ECS creates resources for cluster auto scaling 371

https://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_DescribeClusters.html
https://docs.aws.amazon.com/autoscaling/plans/userguide/scaling-plan-quotas.html
https://docs.aws.amazon.com/autoscaling/plans/userguide/scaling-plan-quotas.html

Amazon Elastic Container Service Developer Guide

With this new release, you can use an existing Auto Scaling group with a scaling policy for use
when creating a new capacity provider. We don't recommend that you modify the ECS managed
scaling policy or plan resources. However, when creating new capacity provider resources, if you
have customized tooling that made modifications to the AWS Auto Scaling scaling plan, do one of
the following:

• (Recommended) Update your capacity provider to modify the Amazon ECS managed scaling
settings. For more information, see UpdateCapacityProvider.

• Update the scaling policy associated with your Auto Scaling group to modify the target tracking
configuration used. For more information, see PutScalingPolicy.

Turn on cluster auto scaling

You can use the AWS CLI to turn on cluster auto scaling.

Before you begin, create an Auto Scaling group and a capacity provider. For more information, see
the section called “Amazon EC2 Auto Scaling group capacity providers”.

Associate the capacity provider with the cluster

Use the following steps to associate the capacity provider with the cluster.

1. Use the put-cluster-capacity-providers command to associate one or more capacity
providers with the cluster.

To add the AWS Fargate capacity providers, include the FARGATE and FARGATE_SPOT capacity
providers in the request. For more information, see put-cluster-capacity-providers in
the AWS CLI Command Reference.

aws ecs put-cluster-capacity-providers \
 --cluster ClusterName \
 --capacity-providers CapacityProviderName FARGATE FARGATE_SPOT \
 --default-capacity-provider-strategy capacityProvider=CapacityProvider,weight=1

To add an Auto Scaling group for the EC2 launch type, include the Auto Scaling group name in
the request. For more information, see put-cluster-capacity-providers in the AWS CLI
Command Reference.

aws ecs put-cluster-capacity-providers \

Turn on cluster auto scaling 372

https://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_UpdateCapacityProvider.html
https://docs.aws.amazon.com/autoscaling/ec2/APIReference/API_PutScalingPolicy.html
https://docs.aws.amazon.com/cli/latest/reference/ecs/put-cluster-capacity-providers.html
https://docs.aws.amazon.com/cli/latest/reference/ecs/put-cluster-capacity-providers.html

Amazon Elastic Container Service Developer Guide

 --cluster ClusterName \
 --capacity-providers CapacityProviderName \
 --default-capacity-provider-strategy capacityProvider=CapacityProvider,weight=1

2. Use the describe-clusters command to verify that the association was successful. For
more information, see describe-clusters in the AWS CLI Command Reference.

aws ecs describe-clusters \
 --cluster ClusterName \
 --include ATTACHMENTS

Turn on managed scaling for the capacity provider

Use the following steps to turn on managed scaling for the capacity provider.

• Use the update-capacity-provider command to turn on managed auto scaling for the
capacity provider. For more information, see update-capacity-provider in the AWS CLI
Command Reference.

aws ecs update-capacity-provider \
 --capacity-providers CapacityProviderName \
 --auto-scaling-group-provider managedScaling=ENABLED

Turn off cluster auto scaling

You can use the AWS CLI to turn off cluster auto scaling.

To turn off cluster auto scaling for a cluster, you can either disassociate the capacity provider
with managed scaling turned on from the cluster or by updating the capacity provider to turn off
managed scaling.

Disassociate the capacity provider with the cluster

Use the following steps to disassociate a capacity provider with a cluster.

1. Use the put-cluster-capacity-providers command to disassociate the Auto Scaling
group capacity provider with the cluster. The cluster can keep the association with the AWS
Fargate capacity providers. For more information, see put-cluster-capacity-providers
in the AWS CLI Command Reference.

Turn off cluster auto scaling 373

https://docs.aws.amazon.com/cli/latest/reference/ecs/describe-clusters.html
https://docs.aws.amazon.com/cli/latest/reference/ecs/update-capacity-provider.html
https://docs.aws.amazon.com/cli/latest/reference/ecs/put-cluster-capacity-providers.html

Amazon Elastic Container Service Developer Guide

aws ecs put-cluster-capacity-providers \
 --cluster ClusterName \
 --capacity-providers FARGATE FARGATE_SPOT \
 --default-capacity-provider-strategy '[]'

Use the put-cluster-capacity-providers command to disassociate the Auto Scaling
group capacity provider with the cluster. For more information, see put-cluster-
capacity-providers in the AWS CLI Command Reference.

aws ecs put-cluster-capacity-providers \
 --cluster ClusterName \
 --capacity-providers [] \
 --default-capacity-provider-strategy '[]'

2. Use the describe-clusters command to verify that the disassociation was successful. For
more information, see describe-clusters in the AWS CLI Command Reference.

aws ecs describe-clusters \
 --cluster ClusterName \
 --include ATTACHMENTS

Turn off managed scaling for the capacity provider

Use the following steps to turn off managed scaling for the capacity provider.

• Use the update-capacity-provider command to turn off managed auto scaling for the
capacity provider. For more information, see update-capacity-provider in the AWS CLI
Command Reference.

aws ecs update-capacity-provider \
 --capacity-providers CapacityProviderName \
 --auto-scaling-group-provider managedScaling=DISABLED

Cluster management

The following are general concepts about Amazon ECS clusters.

Cluster management 374

https://docs.aws.amazon.com/cli/latest/reference/ecs/put-cluster-capacity-providers.html
https://docs.aws.amazon.com/cli/latest/reference/ecs/put-cluster-capacity-providers.html
https://docs.aws.amazon.com/cli/latest/reference/ecs/describe-clusters.html
https://docs.aws.amazon.com/cli/latest/reference/ecs/update-capacity-provider.html

Amazon Elastic Container Service Developer Guide

• Amazon ECS creates a default cluster. You can create additional clusters in an account to keep
your resources separate.

• Clusters are AWS Region specific.

• The following are the possible states that a cluster can be in.

ACTIVE

The cluster is ready to accept tasks and, if applicable, you can register container instances
with the cluster.

PROVISIONING

The cluster has capacity providers associated with it and the resources needed for the
capacity provider are being created.

DEPROVISIONING

The cluster has capacity providers associated with it and the resources needed for the
capacity provider are being deleted.

FAILED

The cluster has capacity providers associated with it and the resources needed for the
capacity provider have failed to create.

INACTIVE

The cluster has been deleted. Clusters with an INACTIVE status may remain discoverable in
your account for a period of time. However, this behavior is subject to change in the future, so
make sure you do not rely on INACTIVE clusters persisting.

• A cluster can contain a mix of tasks that are hosted on AWS Fargate, Amazon EC2 instances, or
external instances. Tasks can run on Fargate or EC2 infrastructure as a launch type or a capacity
provider strategy. If you use EC2 as a launch type, ECS doesn't track and scale the capacity of
Amazon EC2 Auto Scaling groups. For more information about launch types, see Amazon ECS
launch types.

• A cluster can contain a mix of both Auto Scaling group capacity providers and Fargate capacity
providers. However, when you specify a capacity provider strategy, they may only contain one or
the other but not both. For more information, see Amazon ECS capacity providers.

• For tasks that use the EC2 launch type or Auto Scaling group capacity providers, clusters can
contain multiple different container instance types. However, each container instance can only be
registered to one cluster at a time.

Cluster management 375

Amazon Elastic Container Service Developer Guide

• Custom IAM policies may be created to allow or restrict user access to specific clusters. For more
information, see the Cluster examples section in Identity-based policy examples for Amazon
Elastic Container Service.

• Clusters with Fargate tasks can be scaled using Service Auto Scaling. For more information, see
Service auto scaling.

• *You can configure a default Service Connect namespace for a cluster. After you set a default
Service Connect namespace, any new services created in the cluster can be added as client
services in the namespace by turning on Service Connect. No additional configuration is required.
For more information, see Service Connect*.

• If you use EC2 instances, the cluster capacity can be located in any of the following AWS
resources:

For information about how to use these resources with Amazon ECS see Amazon ECS
applications in shared subnets, Local Zones, and Wavelength Zones.

• Availability Zones

• Local Zones

• Wavelength Zones

• AWS Outposts

Creating a cluster for the Fargate and External launch type using the
console

You can create an Amazon ECS cluster using the Amazon ECS console. Before you begin, be sure
that you've completed the steps in Set up to use Amazon ECS and assign the appropriate IAM
permission. For more information, see the section called “Cluster examples”. The Amazon ECS
console provides a simple way to create the resources that are needed by an Amazon ECS cluster by
creating a AWS CloudFormation stack.

To make the cluster creation process as easy as possible, the console has default selections for
many choices which we describe below. There are also help panels available for most of the
sections in the console which provide further context.

• Creates a default namespace in AWS Cloud Map that is the same name as the cluster. A
namespace allows services that you create in the cluster to connect to the other services in the
namespace without additional configuration.

Creating a cluster for the Fargate and External launch type using the console 376

Amazon Elastic Container Service Developer Guide

For more information, see Interconnecting services.

You can modify the following options:

• Change the default namespace associated with the cluster.

A namespace allows services that you create in the cluster can connect to the other services
in the namespace without additional configuration. The default namespace is the same as the
cluster name. For more information, see Interconnecting services.

• Configure the cluster for external instances

• Turn on Container Insights.

CloudWatch Container Insights collects, aggregates, and summarizes metrics and logs from
your containerized applications and microservices. Container Insights also provides diagnostic
information, such as container restart failures, that you use to isolate issues and resolve them
quickly. For more information, see the section called “Monitor Amazon ECS containers using
Container Insights”.

• Add tags to help you identify your cluster.

To create a new cluster (Amazon ECS console)

1. Open the console at https://console.aws.amazon.com/ecs/v2.

2. From the navigation bar, select the Region to use.

3. In the navigation pane, choose Clusters.

4. On the Clusters page, choose Create cluster.

5. Under Cluster configuration, configure the following:

• For Cluster name, enter a unique name.

The name can contain up to 255 letters (uppercase and lowercase), numbers, and hyphens.

• (Optional) To have the namespace used for Service Connect be different from the cluster
name, for Namespace, enter a unique name.

6. (Optional) Use external instances (Amazon ECS Anywhere) for your capacity. Expand
Infrastructure, clear AWS Fargate (serverless), and then select External instances using ECS
Anywhere.

Creating a cluster for the Fargate and External launch type using the console 377

https://console.aws.amazon.com/ecs/v2

Amazon Elastic Container Service Developer Guide

7. (Optional) To turn on Container Insights, expand Monitoring, and then turn on Use Container
Insights.

8. (Optional) To help identify your cluster, expand Tags, and then configure your tags.

[Add a tag] Choose Add tag and do the following:

• For Key, enter the key name.

• For Value, enter the key value.

[Remove a tag] Choose Remove to the right of the tag’s Key and Value.

9. Choose Create.

Next steps

If you are using external instances, you must register the instances with the cluster. For more
information, see Registering an external instance to a cluster.

After you create the cluster, you can create task definitions for your applications and then run them
as standalone tasks, or as part of a service. For more information, see the following:

• Amazon ECS task definitions

• Creating a standalone task

• Creating a service using the console

Creating a cluster for the Amazon EC2 launch type using the console

You can create an Amazon ECS cluster using the console. Before you begin, be sure that you've
completed the steps in Set up to use Amazon ECS and assign the appropriate IAM permission. For
more information, see the section called “Cluster examples”. The Amazon ECS console provides a
simple way to create the resources that are needed by an Amazon ECS cluster by creating a AWS
CloudFormation stack.

To make the cluster creation process as easy as possible, the console has default selections for
many choices which we describe below. There are also help panels available for most of the
sections in the console which provide further context.

Creating a cluster for the Amazon EC2 launch type using the console 378

Amazon Elastic Container Service Developer Guide

You can register Amazon EC2 instances when you create the cluster or register additional instances
with the cluster after it has been created.

You can modify the following default options:

• Change the subnets where your instances launch

• Change the security groups used to control traffic to the container instances

• Change the default namespace associated with the cluster.

A namespace allows services that you create in the cluster can connect to the other services
in the namespace without additional configuration. The default namespace is the same as the
cluster name. For more information, see Interconnecting services.

• Turn on Container Insights.

CloudWatch Container Insights collects, aggregates, and summarizes metrics and logs from
your containerized applications and microservices. Container Insights also provides diagnostic
information, such as container restart failures, that you use to isolate issues and resolve them
quickly. For more information, see the section called “Monitor Amazon ECS containers using
Container Insights”.

• Add tags to help you identify your cluster.

Auto Scaling group options

When you use Amazon EC2 instances, you must specify an Auto Scaling group to manage the
infrastructure that your tasks and services run on.

When you choose to create a new Auto Scaling group, it is automatically configured for the
following behavior:

• Amazon ECS manages the scale-in and scale-out actions of the Auto Scaling group.

• Amazon ECS will not prevent Amazon EC2 instances that contain tasks and that are in an Auto
Scaling group from being terminated during a scale-in action. For more information, see Instance
Protection in the AWS Auto Scaling User Guide.

You configure the following Auto Scaling group properties which determine the type and number
of instances to launch for the group:

• The Amazon ECS-optimized AMI.

Creating a cluster for the Amazon EC2 launch type using the console 379

https://docs.aws.amazon.com/autoscaling/ec2/userguide/as-instance-termination.html#instance-protection
https://docs.aws.amazon.com/autoscaling/ec2/userguide/as-instance-termination.html#instance-protection

Amazon Elastic Container Service Developer Guide

• The instance type.

• The SSH key pair that proves your identity when you connect to the instance. For information
about how to create SSH keys, see Amazon EC2 key pairs and Linux instances in the Amazon EC2
User Guide for Linux Instances.

• The minimum number of instances to launch for the Auto Scaling group.

• The maximum number of instances that are started for the Auto Scaling group.

In order for the group to scale out, the maximum must be greater than 0.

Amazon ECS creates an Amazon EC2 Auto Scaling launch template and Auto Scaling group on your
behalf as part of the AWS CloudFormation stack. The values that you specified for the AMI, the
instance types, and the SSH key pair are part of the launch template. The templates are prefixed
with EC2ContainerService-<ClusterName>, which makes them easy to identify. The Auto
Scaling groups are prefixed with <ClusterName>-ECS-Infra-ECSAutoScalingGroup.

Instances launched for the Auto Scaling group use the launch template.

Networking options

By default instances are launched into the default subnets for the Region. The security groups,
which control the traffic to your container instances, currently associated with the subnets are
used. You can changed the subnets and security groups for the instances.

You can choose an existing subnet. You can either use an existing security group, or create a new
one, When you create a new security group, you need to specify at least one inbound rule.

The inbound rules determine what traffic can reach your container instances and include the
following properties:

• The protocol to allow

• The range of ports to allow

• The inbound traffic (source)

To allow inbound traffic from a specific address or CIDR block, use Custom for Source with the
allowed CIDR.

To allow inbound traffic from all destinations, use Anywhere for Source. This automatically adds
the 0.0.0.0/0 IPv4 CIDR block and ::/0 IPv6 CIDR block.

Creating a cluster for the Amazon EC2 launch type using the console 380

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-key-pairs.html

Amazon Elastic Container Service Developer Guide

To allow inbound traffic from your local computer, use Source group for Source. This automatically
adds the current IP address of your local computer as the allowed source.

To create a new cluster (Amazon ECS console)

Before you begin, assign the appropriate IAM permission. For more information, see the section
called “Cluster examples”.

1. Open the console at https://console.aws.amazon.com/ecs/v2.

2. From the navigation bar, select the Region to use.

3. In the navigation pane, choose Clusters.

4. On the Clusters page, choose Create cluster.

5. Under Cluster configuration, configure the following:

• For Cluster name, enter a unique name.

The name can contain up to 255 letters (uppercase and lowercase), numbers, and hyphens.

• (Optional) To have the namespace used for Service Connect be different from the cluster
name, for Namespace, enter a unique name.

6. Add Amazon EC2 instances to your cluster, expand Infrastructure, clear AWS Fargate
(serverless), and then select Amazon EC2 instances. Next, configure the Auto Scaling group
which acts as the capacity provider:

a. To using an existing Auto Scaling group, from Auto Scaling group (ASG), select the group.

b. To create a Auto Scaling group, from Auto Scaling group (ASG), select Create new group,
and then provide the following details about the group:

• For Provisioning model, choose whether to use On-demand instances or Spot
Instances.

• If you choose to use Spot Instances, for Allocation Strategy, choose what Spot capacity
pools (instance types and Availability Zones) are used for the instances.

For most workloads, you can choose Price capacity optimized.

For more information, see Allocation strategies for Spot Instances in the Amazon EC2
User Guide for Linux Instances.

• For Operating system/Architecture, choose the Amazon ECS-optimized AMI for the
Auto Scaling group instances.

Creating a cluster for the Amazon EC2 launch type using the console 381

https://console.aws.amazon.com/ecs/v2
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-fleet-allocation-strategy.html

Amazon Elastic Container Service Developer Guide

• For EC2 instance type, choose the instance type for your workloads.

Managed scaling works best if your Auto Scaling group uses the same or similar instance
types.

• For Capacity, enter the minimum number and the maximum number of instances to
launch in the Auto Scaling group.

• For SSH key pair, choose the pair that proves your identity when you connect to the
instance.

• To allow for larger image and storage, for Root EBS volume size, enter the value in GiB.

7. (Optional) To change the VPC and subnets, under Networking for Amazon EC2 instances,
perform any of the following operations:

• To remove a subnet, under Subnets, choose X for each subnet that you want to remove.

• To change to a VPC other than the default VPC, under VPC, choose an existing VPC, and
then under Subnets, choose the subnets.

• Choose the security groups. Under Security group, choose one of the following options:

• To use an existing security group, choose Use an existing security group, and then choose
the security group.

• To create a security group, choose Create a new security group. Then, choose Add rule
for each inbound rule.

For information about inbound rules, see Networking options.

• To automatically assign public IP addresses to your Amazon EC2 container instances, for
Auto-assign public IP, choose one of the following options:

• Use subnet setting – Assign a public IP address to the instances when the subnet that the
instances launch in are a public subnet.

• Turn on – Assign a public IP address to the instances.

8. (Optional) To turn on Container Insights, expand Monitoring, and then turn on Use Container
Insights.

9. (Optional)

If you use Runtime Monitoring with the manual option and you want to have this cluster
monitored by GuardDuty, choose Add tag and do the following:

• For Key, enter guardDutyRuntimeMonitoringManaged
Creating a cluster for the Amazon EC2 launch type using the console 382

Amazon Elastic Container Service Developer Guide

• For Value, enter true.

10. (Optional) To manage the cluster tags, expand Tags, and then perform one of the following
operations:

[Add a tag] Choose Add tag and do the following:

• For Key, enter the key name.

• For Value, enter the key value.

[Remove a tag] Choose Remove to the right of the tag’s Key and Value.

11. Choose Create.

Next steps

After you create the cluster, you can create task definitions for your applications and then run them
as standalone tasks, or as part of a service. For more information, see the following:

• Amazon ECS task definitions

• Creating a standalone task

• Creating a service using the console

Updating a cluster using the console

You can modify the following cluster properties:

• Set a default capacity provider

Each cluster can have one or more capacity providers and an optional capacity provider strategy.
The capacity provider strategy determines how the tasks are spread across the cluster's capacity
providers. When you run a standalone task or create a service, you either use the cluster's default
capacity provider strategy or a capacity provider strategy that overrides the default one.

Capacity providers are an alternative to launch types. For more information, see Capacity
provider concepts.

• Turn on Container Insights.

Updating a cluster using the console 383

Amazon Elastic Container Service Developer Guide

CloudWatch Container Insights collects, aggregates, and summarizes metrics and logs from
your containerized applications and microservices. Container Insights also provides diagnostic
information, such as container restart failures, that you use to isolate issues and resolve them
quickly. For more information, see the section called “Monitor Amazon ECS containers using
Container Insights”.

• Add tags to help you identify your clusters.

To update the cluster (Amazon ECS console)

1. Open the console at https://console.aws.amazon.com/ecs/v2.

2. In the navigation pane, choose Clusters.

3. On the Clusters page, choose the cluster.

4. On the Cluster : name page, choose Update cluster.

5. To set the default capacity provider, under Default capacity provider strategy, choose Add
more.

a. For Capacity provider, choose the capacity provider.

b. (Optional) For Base, enter the minimum number of tasks that run on the capacity provider.

You can only set a Base value for one capacity provider.

c. (Optional) For Weight, enter the relative percentage of the total number of launched tasks
that use the specified capacity provider.

d. (Optional) Repeat the steps for any additional capacity providers.

6. To turn on or off Container Insights, expand Monitoring, and then turn on Use Container
Insights.

7. To help identify your cluster, expand Tags, and then configure your tags.

[Add a tag] Choose Add tag and do the following:

• For Key, enter the key name.

• For Value, enter the key value.

[Remove a tag] Choose Remove to the right of the tag’s Key and Value.

8. Choose Update.

Updating a cluster using the console 384

https://console.aws.amazon.com/ecs/v2

Amazon Elastic Container Service Developer Guide

Deleting a cluster using the console

If you are finished using a cluster, you can delete it. After you delete the cluster, it transitions to the
INACTIVE state. Clusters with an INACTIVE status may remain discoverable in your account for a
period of time. However, this behavior is subject to change in the future, so you should not rely on
INACTIVE clusters persisting.

Before you delete a cluster, you must perform the following operations:

• Delete all services in the cluster. For more information, see the section called “Deleting a
service”.

• Stop all currently running tasks. For more information, see the section called “Stopping a
standalone task”.

• Deregister all registered container instances in the cluster. For more information, see the section
called “Deregister a container instance”.

• Delete the namespace. For more information, see Deleting namespaces in the AWS Cloud Map
Developer Guide.

To delete a cluster (Amazon ECS console)

1. Open the console at https://console.aws.amazon.com/ecs/v2.

2. From the navigation bar, select the Region to use.

3. In the navigation pane, choose Clusters.

4. On the Clusters page, select the cluster to delete.

5. In the upper-right of the page, choose Delete Cluster.

A message is displayed when you did not delete all the resources associated with the cluster.

6. In the confirmation box, enter delete cluster name.

Creating a capacity provider for a cluster using the console

After the cluster creation completes, you can create a new capacity provider (Auto Scaling group)
for the EC2 launch type.

Before you create the capacity provider, you need to create an Auto Scaling group. For more
information, see Auto Scaling groups in the Amazon EC2 Auto Scaling User Guide.

Deleting a cluster using the console 385

https://docs.aws.amazon.com/cloud-map/latest/dg/deleting-namespaces.html
https://console.aws.amazon.com/ecs/v2
https://docs.aws.amazon.com/autoscaling/ec2/userguide/auto-scaling-groups.html

Amazon Elastic Container Service Developer Guide

To create a capacity provider for the cluster (Amazon ECS console)

1. Open the console at https://console.aws.amazon.com/ecs/v2.

2. In the navigation pane, choose Clusters.

3. On the Clusters page, choose the cluster.

4. On the Cluster : name page, choose Infrastructure, and then choose Create.

5. On the Create capacity providers page, configure the following options.

a. Under Basic details, for Capacity provider name, enter a unique capacity provider name.

b. Under Auto Scaling group, for Use an existing Auto Scaling group, choose the Auto
Scaling group.

c. (Optional) To configure a scaling policy, under Scaling policies, configure the following
options.

• To have Amazon ECS manage the scale-in and scale-out actions, select Turn on
managed scaling.

• To prevent EC2 instance with running Amazon ECS tasks from being terminated, select
Turn on scaling protection.

• For Set target capacity, enter the target value for the CloudWatch metric used in the
Amazon ECS-managed target tracking scaling policy.

6. Choose Create.

Updating a capacity provider for a cluster using the console

When you use an Auto Scaling group as a capacity provider, you can modify the group's scaling
policy.

To update a capacity provider for the cluster (Amazon ECS console)

1. Open the console at https://console.aws.amazon.com/ecs/v2.

2. In the navigation pane, choose Clusters.

3. On the Clusters page, choose the cluster.

4. On the Cluster : name page, choose Infrastructure, and then choose Update.

5. On the Create capacity providers page, configure the following options.

• Under Auto Scaling group, under Scaling policies, configure the following options.

Updating a capacity provider for a cluster using the console 386

https://console.aws.amazon.com/ecs/v2
https://console.aws.amazon.com/ecs/v2

Amazon Elastic Container Service Developer Guide

• To have Amazon ECS manage the scale-in and scale-out actions, select Turn on
managed scaling.

• To prevent EC2 instances with running Amazon ECS tasks from being terminated, select
Turn on scaling protection.

• For Set target capacity, enter the target value for the CloudWatch metric used in the
Amazon ECS-managed target tracking scaling policy.

6. Choose Update.

Deleting a capacity provider for a cluster using the console

If you are finished using an Auto Scaling group capacity provider, you can delete it. After the group
is deleted, the Auto Scaling group capacity provider will transition to the INACTIVE state. Capacity
providers with an INACTIVE status may remain discoverable in your account for a period of time.
However, this behavior is subject to change in the future, so you should not rely on INACTIVE
capacity providers persisting. Before the Auto Scaling group capacity provider is deleted, the
capacity provider must be removed from the capacity provider strategy from all services. You can
use the UpdateService API or the update service workflow in the Amazon ECS console to remove
a capacity provider from a service's capacity provider strategy. Use the force new deployment option
to ensure that any tasks using the Amazon EC2 instance capacity provided by the capacity provider
are transitioned to use the capacity from the remaining capacity providers.

To delete a capacity provider for the cluster (Amazon ECS console)

1. Open the console at https://console.aws.amazon.com/ecs/v2.

2. In the navigation pane, choose Clusters.

3. On the Clusters page, choose the cluster.

4. On the Cluster : name page, choose Infrastructure, the Auto Scaling group, and then choose
Delete.

5. In the confirmation box, enter delete Auto Scaling group name

6. Choose Delete.

Deleting a capacity provider for a cluster using the console 387

https://console.aws.amazon.com/ecs/v2

Amazon Elastic Container Service Developer Guide

Capacity creation

An Amazon ECS container instance is an Amazon EC2 instance that is running the Amazon ECS
container agent and has been registered into an Amazon ECS cluster. When you run tasks with
Amazon ECS using the EC2 launch type, External launch type or an Auto Scaling group capacity
provider, your tasks are placed on your active container instances. You are responsible for the
container instance management and maintenance.

Amazon ECS provides the Amazon ECS-optimized AMIs that are preconfigured with the
requirements and recommendations to run your container workloads. We recommend that you use
the Amazon ECS-optimized Amazon Linux 2023 AMI for your Amazon EC2 instances unless your
application requires Amazon EC2 GPU-based instances, a specific operating system or a Docker
version that is not yet available in that AMI. For information about the the Amazon Linux 2 and
Amazon Linux 2023 instances, see Comparing Amazon Linux 2 and Amazon Linux 2023 in the
Amazon Linux 2023 User Guide.

Although you can create your own Amazon EC2 instance AMI that meets the basic specifications
needed to run your containerized workloads on Amazon ECS, the Amazon ECS-optimized AMIs are
preconfigured and tested on Amazon ECS by AWS engineers. It is the simplest way for you to get
started and to get your containers running on AWS quickly.

You can run either Linux or Windows on your container instances. You can choose the instance
type based on your application requirements such as CPU architecture, network throughput, and
architecture. As a general rule, the CPU and memory must be large enough to hold at least one
replica of the task that you want to run. You can launch more tasks at the same time with larger
instances. You can scale out in a more fine-grained way to save costs with smaller instances. You
don't need to choose a single Amazon EC2 instance type that to fit all the applications in your
cluster. You can create multiple Auto Scaling Groups with different instance types to fit all the
applications. For more information, see Amazon EC2 Instances.

To determine which instance types you can use, start by eliminating the instance types or instance
families that don't meet the specific requirements of your application. For example, if your
application requires a GPU, you can exclude any instance types that don't have a GPU. However,
you should also consider other requirements, too. For example, consider the CPU architecture,
network throughput, and if instance storage is a requirement. Next, examine the amount of CPU
and memory provided by each instance type. As a general rule, the CPU and memory must be large
enough to hold at least one replica of the task that you want to run.

Capacity creation 388

https://docs.aws.amazon.com/linux/al2023/ug/compare-with-al2.html
https://aws.amazon.com/ec2/instance-types/

Amazon Elastic Container Service Developer Guide

You can choose from the instance types that are compatible with your application. With larger
instances, you can launch more tasks at the same time. And, with smaller instances, you can scale
out in a more fine-grained way to save costs. You don't need to choose a single Amazon EC2
instance type that to fit all the applications in your cluster. Instead, you can create multiple Auto
Scaling Groups,. Each group can have a different instance type. Then, you can create an Amazon
EC2 Capacity Provider for each one of these groups. Last, in the Capacity Provider strategy of
your service and task, you can select the Capacity Provider that best suits its needs. For more
information, see Amazon EC2 Instances.

Use the following guidelines for networking your instances:

• We recommend launching your container instances inside a VPC, because Amazon VPC delivers
more control over your network and offers more extensive configuration capabilities. For more
information, see Amazon EC2 and Amazon Virtual Private Cloud in the Amazon EC2 User Guide
for Linux Instances.

• If any of the containers associated with your tasks require external connectivity, you can map
their network ports to ports on the host Amazon ECS container instance so they are reachable
from the internet. Your container instance security group must allow inbound access to the
ports you want to expose. For more information, see Create a Security Group in the Amazon VPC
Getting Started Guide.

• Container instances need access to communicate with the Amazon ECS service endpoint. This
can be through an interface VPC endpoint or through your container instances having public IP
addresses.

For more information about interface VPC endpoints, see Amazon ECS interface VPC endpoints
(AWS PrivateLink).

If you do not have an interface VPC endpoint configured and your container instances do not
have public IP addresses, then they must use network address translation (NAT) to provide this
access. For more information, see NAT gateways in the Amazon VPC User Guide and HTTP proxy
configuration for Linux container instances in this guide. For more information, see the section
called “Create a virtual private cloud”.

Spot Instances

Spot capacity can provide significant cost savings over on-demand instances. Spot capacity is
excess capacity that's priced significantly lower than on-demand or reserved capacity. Spot capacity

Spot Instances 389

https://aws.amazon.com/ec2/instance-types/
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-vpc.html
https://docs.aws.amazon.com/AmazonVPC/latest/GettingStartedGuide/getting-started-create-security-group.html
https://docs.aws.amazon.com/AmazonVPC/latest/GettingStartedGuide/
https://docs.aws.amazon.com/AmazonVPC/latest/GettingStartedGuide/
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-nat-gateway.html

Amazon Elastic Container Service Developer Guide

is suitable for batch processing and machine-learning workloads, and development and staging
environments. More generally, it's suitable for any workload that tolerates temporary downtime.

Understand that the following consequences because Spot capacity might not be available all the
time.

• During periods of extremely high demand, Spot capacity might be unavailable. This can cause
Amazon EC2 Spot instance launches to be delayed. In these events, Amazon ECS services retry
launching tasks, and Amazon EC2 Auto Scaling groups also retry launching instances, until the
required capacity becomes available. Amazon EC2 doesn't replace Spot capacity with on-demand
capacity.

• When the overall demand for capacity increases, Spot instances and tasks might be terminated
with only a two-minute warning. After the warning is sent, tasks should begin an orderly
shutdown if necessary before the instance is fully terminated. This helps minimize the possibility
of errors. For more information about a graceful shutdown, see Graceful shutdowns with ECS.

To help minimize Spot capacity shortages, consider the following recommendations:

• Use multiple Regions and Availability Zones - Spot capacity varies by Region and Availability
Zone. You can improve Spot availability by running your workloads in multiple Regions and
Availability Zones. If possible, specify subnets in all the Availability Zones in the Regions where
you run your tasks and instances.

• Use multiple Amazon EC2 instance types - When you use Mixed Instance Policies with Amazon
EC2 Auto Scaling, multiple instance types are launched into your Auto Scaling Group. This
ensures that a request for Spot capacity can be fulfilled when needed. To maximize reliability
and minimize complexity, use instance types with roughly the same amount of CPU and memory
in your Mixed Instances Policy. These instances can be from a different generation, or variants of
the same base instance type. Note that they might come with additional features that you might
not require. An example of such a list could include m4.large, m5.large, m5a.large, m5d.large,
m5n.large, m5dn.large, and m5ad.large. For more information, see Auto Scaling groups with
multiple instance types and purchase options in the Amazon EC2 Auto Scaling User Guide.

• Use the capacity-optimized Spot allocation strategy - With Amazon EC2 Spot, you can choose
between the capacity- and cost-optimized allocation strategies. If you choose the capacity-
optimized strategy when launching a new instance, Amazon EC2 Spot selects the instance type
with the greatest availability in the selected Availability Zone. This helps reduce the possibility
that the instance is terminated soon after it launches.

Spot Instances 390

https://aws.amazon.com/blogs/containers/graceful-shutdowns-with-ecs/
https://docs.aws.amazon.com/autoscaling/ec2/userguide/asg-purchase-options.html
https://docs.aws.amazon.com/autoscaling/ec2/userguide/asg-purchase-options.html

Amazon Elastic Container Service Developer Guide

Linux Spot Instance draining

Amazon EC2 terminates, stops, or hibernates your Spot Instance when the Spot price exceeds
the maximum price for your request or capacity is no longer available. Amazon EC2 provides a
Spot Instance two-minute interruption notice for terminate and stop actions. It does not provide
the two-minute notice for the hibernate action. If Amazon ECS Spot Instance draining is enabled
on the instance, ECS receives the Spot Instance interruption notice and places the instance in
DRAINING status.

Important

Amazon ECS does not receive a notice from Amazon EC2 when instances are removed by
Auto Scaling Capacity Rebalancing. For more information, see Amazon EC2 Auto Scaling
Capacity Rebalancing.

When a container instance is set to DRAINING, Amazon ECS prevents new tasks from being
scheduled for placement on the container instance. Service tasks on the draining container
instance that are in the PENDING state are stopped immediately. If there are container instances in
the cluster that are available, replacement service tasks are started on them.

Spot Instance draining is turned off by default and must be manually enabled. To enable Spot
Instance draining for a new container instance, when launching the container instance add the
following script into the User data field, replacing MyCluster with the name of the cluster to
register the container instance to.

#!/bin/bash
cat <<'EOF' >> /etc/ecs/ecs.config
ECS_CLUSTER=MyCluster
ECS_ENABLE_SPOT_INSTANCE_DRAINING=true
EOF

For more information, see Launching an Amazon ECS Linux container instance.

To turn on Spot Instance draining for an existing container instance

1. Connect to the Spot Instance over SSH.

2. Edit the /etc/ecs/ecs.config file and add the following:

Spot Instances 391

https://docs.aws.amazon.com/autoscaling/ec2/userguide/ec2-auto-scaling-capacity-rebalancing.html
https://docs.aws.amazon.com/autoscaling/ec2/userguide/ec2-auto-scaling-capacity-rebalancing.html

Amazon Elastic Container Service Developer Guide

ECS_ENABLE_SPOT_INSTANCE_DRAINING=true

3. Restart the ecs service.

• For the Amazon ECS-optimized Amazon Linux 2 AMI:

sudo systemctl restart ecs

• For the Amazon ECS-optimized Amazon Linux AMI:

sudo stop ecs && sudo start ecs

4. (Optional) You can verify that the agent is running and see some information about your new
container instance by querying the agent introspection API operation. For more information,
see the section called “Container introspection”.

curl http://localhost:51678/v1/metadata

Windows Spot Instance draining

Amazon EC2 terminates, stops, or hibernates your Spot Instance when the Spot price exceeds
the maximum price for your request or capacity is no longer available. Amazon EC2 provides a
Spot Instance interruption notice, which gives the instance a two-minute warning before it is
interrupted. If Amazon ECS Spot Instance draining is enabled on the instance, ECS receives the Spot
Instance interruption notice and places the instance in DRAINING status.

Important

Amazon ECS monitors for the Spot Instance interruption notices that have the terminate
and stop instance-actions. If you specified either the hibernate instance interruption
behavior when requesting your Spot Instances or Spot Fleet, then Amazon ECS Spot
Instance draining is not supported for those instances.

When a container instance is set to DRAINING, Amazon ECS prevents new tasks from being
scheduled for placement on the container instance. Service tasks on the draining container

Spot Instances 392

Amazon Elastic Container Service Developer Guide

instance that are in the PENDING state are stopped immediately. If there are container instances in
the cluster that are available, replacement service tasks are started on them.

You must set the ECS_ENABLE_SPOT_INSTANCE_DRAINING parameter before you start the
container agent. Use the following commands to manually turn on Spot Instance draining.
Substitute my-cluster with the name of your cluster.

[Environment]::SetEnvironmentVariable("ECS_ENABLE_SPOT_INSTANCE_DRAINING", "true",
 "Machine")

Initialize the agent
Initialize-ECSAgent -Cluster my-cluster

For more information, see the section called “Launching a container instance”.

Linux instances

You can use EC2 instances with the following Linux operating systems to run your applications:

• Amazon Linux: This is a general purpose operating system.

• Bottlerocket: Bottlerocket is a Linux based open-source operating system that is purpose built by
AWS for running containers on virtual machines or bare metal hosts. The Amazon ECS-optimized
Bottlerocket AMI is secure and only includes the minimum number of packages that's required
to run containers. This improves resource usage, reduces security attack surface, and helps lower
management overhead. For information about the security features and guidance, see Security
Features and Security Guidance on the GitHub website.

Amazon ECS provides the Amazon ECS-optimized AMIs that are preconfigured with the
requirements and recommendations to run your container workloads. We recommend that you use
the Amazon ECS-optimized Amazon Linux 2023 AMI for your Amazon EC2 instances unless your
application requires Amazon EC2 GPU-based instances, a specific operating system or a Docker
version that is not yet available in that AMI. For information about the the Amazon Linux 2 and
Amazon Linux 2023 instances, see Comparing Amazon Linux 2 and Amazon Linux 2023 in the
Amazon Linux 2023 User Guide.

Although you can create your own Amazon EC2 instance AMI that meets the basic specifications
needed to run your containerized workloads on Amazon ECS, the Amazon ECS-optimized AMIs are
preconfigured and tested on Amazon ECS by AWS engineers. It is the simplest way for you to get
started and to get your containers running on AWS quickly.

Linux instances 393

https://github.com/bottlerocket-os/bottlerocket/blob/develop/SECURITY_FEATURES.md
https://github.com/bottlerocket-os/bottlerocket/blob/develop/SECURITY_FEATURES.md
https://github.com/bottlerocket-os/bottlerocket/blob/develop/SECURITY_GUIDANCE.md
https://docs.aws.amazon.com/linux/al2023/ug/compare-with-al2.html

Amazon Elastic Container Service Developer Guide

An Amazon ECS container instance specification consists of the following components:

Required

• A Linux distribution running at least version 3.10 of the Linux kernel.

• The Amazon ECS container agent (preferably the latest version). For more information, see
Updating the Amazon ECS container agent.

• A Docker daemon running at least version 1.9.0, and any Docker runtime dependencies. For more
information, see Check runtime dependencies in the Docker documentation.

Note

For the best experience, we recommend the Docker version that ships with and is tested
with the corresponding Amazon ECS container agent version that you are using.

Recommended

• An initialization and nanny process to run and monitor the Amazon ECS container agent.
The Amazon ECS-optimized AMIs use the ecs-init RPM to manage the agent. For more
information, see the ecs-init project on GitHub.

Topics

• Amazon ECS-optimized AMI

• Amazon ECS-optimized Bottlerocket AMIs

• Installing the Amazon ECS container agent

Amazon ECS-optimized AMI

Amazon ECS provides the Amazon ECS-optimized AMIs that are preconfigured with the
requirements and recommendations to run your container workloads. We recommend that you use
the Amazon ECS-optimized Amazon Linux 2023 AMI for your Amazon EC2 instances unless your
application requires Amazon EC2 GPU-based instances, a specific operating system or a Docker
version that is not yet available in that AMI. For information about the the Amazon Linux 2 and
Amazon Linux 2023 instances, see Comparing Amazon Linux 2 and Amazon Linux 2023 in the
Amazon Linux 2023 User Guide. Launching your container instances from the most recent Amazon
ECS-Optimized AMI ensures that you receive the current security updates and container agent

Linux instances 394

https://docs.docker.com/engine/installation/binaries/#check-runtime-dependencies
https://github.com/aws/amazon-ecs-init
https://docs.aws.amazon.com/linux/al2023/ug/compare-with-al2.html

Amazon Elastic Container Service Developer Guide

version. For information about how to launch an instance, see Launching an Amazon ECS Linux
container instance.

The Linux variants of the Amazon ECS-optimized AMI use the Amazon Linux 2 AMI as their base.
The Amazon Linux 2 AMI release notes are available as well. For more information, see Amazon
Linux 2 release notes.

The following variants of the Amazon ECS-optimized AMI are available for your Amazon EC2
instances.

Operating system AMI Description Storage configura
tion

Amazon Linux 2023 Amazon ECS-optim
ized Amazon Linux
2023 AMI

Amazon Linux 2023
is the next generatio
n of Amazon Linux
from AWS. For most
cases, recommend
ed for launching
your Amazon
EC2 instances for
your Amazon ECS
workloads. For more
information, see
What is Amazon
Linux 2023 in the
Amazon Linux 2023
User Guide.

Amazon Linux 2023
(arm64)

Amazon ECS-optim
ized Amazon Linux
2023 (arm64) AMI

Based on Amazon
Linux 2023 this AMI
is recommended for
use when launching
 your Amazon EC2
instances, which are
powered by Arm-
based AWS Graviton/
Graviton 2 Processor

By default, the
Amazon ECS-optim
ized Amazon Linux
2023 AMI ships with
a single 30-GiB root
volume. You can
modify the 30-GiB
root volume size
at launch time to
increase the available
storage on your
container instance.
This storage is used
for the operating
system and for
Docker images and
metadata.

The default filesyste
m for the Amazon
ECS-optimized
Amazon Linux 2023
AMI is xfs, and
Docker uses the
overlay2 storage

Linux instances 395

https://aws.amazon.com/amazon-linux-2/release-notes/
https://aws.amazon.com/amazon-linux-2/release-notes/
https://docs.aws.amazon.com/linux/al2023/ug/what-is-amazon-linux.html
https://docs.aws.amazon.com/linux/al2023/ug/what-is-amazon-linux.html

Amazon Elastic Container Service Developer Guide

Operating system AMI Description Storage configura
tion

s, for your Amazon
ECS workloads.
For more informati
on, see General
Purpose Instances
 in the Amazon EC2
User Guide for Linux
Instances.

The Amazon ECS-
optimized Amazon
Linux 2023 (arm64)
AMI does not come
with the AWS CLI
preinstalled.

driver. For more
information, see
Use the OverlayFS
storage driver in the
Docker documenta
tion.

Linux instances 396

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/general-purpose-instances.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/general-purpose-instances.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/general-purpose-instances.html
https://docs.docker.com/storage/storagedriver/overlayfs-driver/
https://docs.docker.com/storage/storagedriver/overlayfs-driver/

Amazon Elastic Container Service Developer Guide

Operating system AMI Description Storage configura
tion

Amazon Linux 2023
(Neuron)

Amazon ECS
optimized Amazon
Linux 2023 (Neuron)
AMI

Based on Amazon
Linux 2023, this AMI
is recommended for
use when launching
your Amazon EC2
Inf1 instances. It
comes pre-configured
with AWS Inferentia
drivers and the AWS
Neuron runtime for
Docker which makes
running machine
learning inference
workloads easier
on Amazon ECS.
For more informati
on, see Using AWS
Neuron on Amazon
Linux 2 on Amazon
ECS. The Amazon ECS
optimized Amazon
Linux 2023 (Neuron)
AMI does not come
with the AWS CLI
preinstalled.

Linux instances 397

Amazon Elastic Container Service Developer Guide

Operating system AMI Description Storage configura
tion

Amazon ECS-optim
ized Amazon Linux 2
AMI

This is for your
Amazon ECS
workloads. The
Amazon ECS-optim
ized Amazon Linux 2
AMI does not come
with the AWS CLI
preinstalled.

Amazon Linux 2

Amazon ECS-optim
ized Amazon Linux 2
kernel 5.10 AMI

Based on Amazon
Linux 2, this AMI
is for use when
launching your
Amazon EC2
instances and you
want to use Linux
kernel 5.10 instead
of kernel 4.14 for
your Amazon ECS
workloads. The
Amazon ECS-optim
ized Amazon Linux 2
kernel 5.10 AMI does
not come with the
AWS CLI preinstalled.

Amazon Linux 2
(arm64)

Amazon ECS-optim
ized Amazon Linux 2
(arm64) AMI

Based on Amazon
Linux 2, this AMI
is for use when
launching your
Amazon EC2
instances, which are
powered by Arm-
based AWS Graviton/

By default, the
Amazon Linux 2-
based Amazon ECS-
optimized AMIs
(Amazon ECS-optim
ized Amazon Linux
2 AMI, Amazon ECS-
optimized Amazon
Linux 2 (arm64) AMI,
and Amazon ECS
GPU-optimized AMI)
ship with a single
30-GiB root volume.
You can modify the
30-GiB root volume
size at launch time to
increase the available
storage on your
container instance.
This storage is used
for the operating
system and for
Docker images and
metadata.

The default filesyste
m for the Amazon
ECS-optimized
Amazon Linux 2 AMI
is xfs, and Docker
uses the overlay2
storage driver. For
more informati
on, see Use the

Linux instances 398

https://docs.docker.com/storage/storagedriver/overlayfs-driver/

Amazon Elastic Container Service Developer Guide

Operating system AMI Description Storage configura
tion

Graviton 2 Processor
s, for your Amazon
ECS workloads.
For more informati
on, see General
Purpose Instances
 in the Amazon EC2
User Guide for Linux
Instances.

The Amazon ECS-
optimized Amazon
Linux 2 (arm64) AMI
does not come with
the AWS CLI preinstal
led.

OverlayFS storage
driver in the Docker
documentation.

Linux instances 399

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/general-purpose-instances.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/general-purpose-instances.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/general-purpose-instances.html
https://docs.docker.com/storage/storagedriver/overlayfs-driver/
https://docs.docker.com/storage/storagedriver/overlayfs-driver/

Amazon Elastic Container Service Developer Guide

Operating system AMI Description Storage configura
tion

Amazon ECS-optim
ized Amazon Linux 2
kernel 5.10 (arm64)
AMI

Based on Amazon
Linux 2, this AMI is
for your Amazon
EC2 instances, which
are powered by
Arm-based AWS
Graviton/Graviton 2
Processors, and you
want to use Linux
kernel 5.10 instead
of Linux kernel 4.14
for your Amazon
ECS workloads. The
Amazon ECS-optim
ized Amazon Linux 2
kernel 5.10 (arm64)
AMI does not come
with the AWS CLI
preinstalled.

Linux instances 400

Amazon Elastic Container Service Developer Guide

Operating system AMI Description Storage configura
tion

Amazon Linux 2
(GPU)

Amazon ECS GPU-
optimized AMI

Based on Amazon
Linux 2, this AMI is
recommended for
use when launching
your Amazon EC2
GPU-based instances
for your Amazon
ECS workloads. It
comes pre-confi
gured with NVIDIA
kernel drivers and a
Docker GPU runtime
which makes running
workloads that take
advantage of GPUs
on Amazon ECS. For
more information,
see Working with
GPUs on Amazon
ECS.

Linux instances 401

Amazon Elastic Container Service Developer Guide

Operating system AMI Description Storage configura
tion

Amazon Linux 2
(Neuron)

Amazon ECS
optimized Amazon
Linux 2 (Neuron)
AMI

Based on Amazon
Linux 2, this AMI
is for Amazon EC2
Inf1, Trn1 or Inf2
instances. It comes
pre-configured with
AWS Inferentia
and AWS Trainium
drivers and the AWS
Neuron runtime for
Docker which makes
running machine
learning inference
workloads easier
on Amazon ECS.
For more informati
on, see Using AWS
Neuron on Amazon
Linux 2 on Amazon
ECS. The Amazon ECS
optimized Amazon
Linux 2 (Neuron) AMI
does not come with
the AWS CLI preinstal
led.

Amazon ECS provides a changelog for the Linux variant of the Amazon ECS-optimized AMI on
GitHub. For more information, see Changelog.

The Linux variants of the Amazon ECS-optimized AMI use the Amazon Linux 2 AMI or Amazon
Linux 2023 AMI as their base. You can retrieve the Amazon Linux 2 source AMI name or the Amazon
Linux 2023 AMI name for each variant by querying the Systems Manager Parameter Store API. For
more information, see Retrieving Amazon ECS-Optimized AMI metadata. The Amazon Linux 2 AMI

Linux instances 402

https://github.com/aws/amazon-ecs-ami/blob/main/CHANGELOG.md

Amazon Elastic Container Service Developer Guide

release notes are available as well. For more information, see Amazon Linux 2 release notes. The
Amazon Linux 2023 release notes are available as well. For more information see, Amazon Linux
2023 release notes.

The following pages provide additional information about the changes:

• Source AMI release notes on GitHub

• Docker Engine release notes in the Docker documentation

• NVIDIA Driver Documentation in the NVIDIA documentation

• Amazon ECS Agent changelog on GitHub

The source code for the ecs-init application and the scripts and configuration for packaging
the agent are now part of the agent repository. For older versions of ecs-init and packaging,
see Amazon ecs-init changelog on GitHub

Retrieving Amazon ECS-Optimized AMI metadata

You can programmatically retrieve the Amazon ECS-optimized AMI metadata. The metadata
includes the AMI name, Amazon ECS container agent version, and Amazon ECS runtime version
which includes the Docker version.

The AMI ID, image name, operating system, container agent version, source image name, and
runtime version for each variant of the Amazon ECS-optimized AMIs can be programmatically
retrieved by querying the Systems Manager Parameter Store API. For more information about the
Systems Manager Parameter Store API, see GetParameters and GetParametersByPath.

Note

Your administrative user must have the following IAM permissions to retrieve the
Amazon ECS-optimized AMI metadata. These permissions have been added to the
AmazonECS_FullAccess IAM policy.

• ssm:GetParameters

• ssm:GetParameter

• ssm:GetParametersByPath

Linux instances 403

https://aws.amazon.com/amazon-linux-2/release-notes/
https://docs.aws.amazon.com/linux/al2023/release-notes/relnotes.html
https://docs.aws.amazon.com/linux/al2023/release-notes/relnotes.html
https://github.com/aws/amazon-ecs-ami/releases
https://docs.docker.com/engine/release-notes/
https://docs.nvidia.com/datacenter/tesla/index.html
https://github.com/aws/amazon-ecs-agent/blob/master/CHANGELOG.md
https://github.com/aws/amazon-ecs-init/blob/master/CHANGELOG.md
https://docs.aws.amazon.com/systems-manager/latest/APIReference/API_GetParameters.html
https://docs.aws.amazon.com/systems-manager/latest/APIReference/API_GetParametersByPath.html

Amazon Elastic Container Service Developer Guide

Systems Manager Parameter Store parameter format

The following is the format of the parameter name for each Amazon ECS-optimized AMI variant.

Linux Amazon ECS-optimized AMIs

• Amazon Linux 2023 AMI metadata:

/aws/service/ecs/optimized-ami/amazon-linux-2023/<version>

• Amazon Linux 2023 (arm64) AMI metadata:

/aws/service/ecs/optimized-ami/amazon-linux-2023/arm64/<version>

• Amazon Linux 2023 (Neuron) AMI metadata:

/aws/service/ecs/optimized-ami/amazon-linux-2023/inf/<version>

• Amazon Linux 2 AMI metadata:

/aws/service/ecs/optimized-ami/amazon-linux-2/<version>

• Amazon Linux 2 kernel 5.10 AMI metadata:

/aws/service/ecs/optimized-ami/amazon-linux-2/kernel-5.10/<version>

• Amazon Linux 2 (arm64) AMI metadata:

/aws/service/ecs/optimized-ami/amazon-linux-2/arm64/<version>

• Amazon Linux 2 kernel 5.10 (arm64) AMI metadata:

/aws/service/ecs/optimized-ami/amazon-linux-2/kernel-5.10/arm64/<version>

• Amazon Linux 2 (GPU) AMI metadata:

/aws/service/ecs/optimized-ami/amazon-linux-2/gpu/<version>

• Amazon Linux 2 (Neuron) AMI metadata:

/aws/service/ecs/optimized-ami/amazon-linux-2/inf/<version>

Linux instances 404

Amazon Elastic Container Service Developer Guide

The following parameter name format retrieves the image ID of the latest stable Amazon ECS-
optimized Amazon Linux 2 AMI by using the sub-parameter image_id.

/aws/service/ecs/optimized-ami/amazon-linux-2/recommended/image_id

The following parameter name format retrieves the metadata of a specific Amazon ECS-optimized
AMI version by specifying the AMI name.

• Amazon ECS-optimized Amazon Linux 2 AMI metadata:

/aws/service/ecs/optimized-ami/amazon-linux-2/amzn2-ami-ecs-hvm-2.0.20181112-x86_64-
ebs

Note

All versions of the Amazon ECS-optimized Amazon Linux 2 AMI are available for retrieval.
Only Amazon ECS-optimized AMI versions amzn-ami-2017.09.l-amazon-ecs-
optimized (Linux) and later can be retrieved.

Examples

The following examples show ways in which you can retrieve the metadata for each Amazon ECS-
optimized AMI variant.

Retrieving the metadata of the latest stable Amazon ECS-optimized AMI

You can retrieve the latest stable Amazon ECS-optimized AMI using the AWS CLI with the following
AWS CLI commands.

Linux Amazon ECS-optimized AMIs

• For the Amazon ECS-optimized Amazon Linux 2023 AMIs:

aws ssm get-parameters --names /aws/service/ecs/optimized-ami/amazon-linux-2023/
recommended --region us-east-1

• For the Amazon ECS-optimized Amazon Linux 2023 (arm64) AMIs:

Linux instances 405

Amazon Elastic Container Service Developer Guide

aws ssm get-parameters --names /aws/service/ecs/optimized-ami/amazon-linux-2023/
arm64/recommended --region us-east-1

• For the Amazon ECS-optimized Amazon Linux 2 AMIs:

aws ssm get-parameters --names /aws/service/ecs/optimized-ami/amazon-linux-2/
recommended --region us-east-1

• For the Amazon ECS-optimized Amazon Linux 2 kernel 5.10 AMIs:

aws ssm get-parameters --names /aws/service/ecs/optimized-ami/amazon-linux-2/
kernel-5.10/recommended --region us-east-1

• For the Amazon ECS-optimized Amazon Linux 2 (arm64) AMIs:

aws ssm get-parameters --names /aws/service/ecs/optimized-ami/amazon-linux-2/arm64/
recommended --region us-east-1

• For the Amazon ECS-optimized Amazon Linux 2 kernel 5.10 (arm64) AMIs:

aws ssm get-parameters --names /aws/service/ecs/optimized-ami/amazon-linux-2/
kernel-5.10/arm64/recommended --region us-east-1

• For the Amazon ECS GPU-optimized AMIs:

aws ssm get-parameters --names /aws/service/ecs/optimized-ami/amazon-linux-2/gpu/
recommended --region us-east-1

• For the Amazon ECS optimized Amazon Linux 2 (Neuron) AMIs:

aws ssm get-parameters --names /aws/service/ecs/optimized-ami/amazon-linux-2/inf/
recommended --region us-east-1

Retrieving the image ID of the latest recommended Amazon ECS-optimized Amazon Linux 2023
AMI

You can retrieve the image ID of the latest recommended Amazon ECS-optimized Amazon Linux
2023 AMI ID by using the sub-parameter image_id.

Linux instances 406

Amazon Elastic Container Service Developer Guide

aws ssm get-parameters --names /aws/service/ecs/optimized-ami/amazon-
linux-2023/recommended/image_id --region us-east-1

To retrieve the image_id value only, you can query the specific parameter value; for example:

aws ssm get-parameters --names /aws/service/ecs/optimized-ami/amazon-linux-2023/
recommended/image_id --region us-east-1 --query "Parameters[0].Value"

Retrieving the metadata of a specific Amazon ECS-optimized Amazon Linux 2 AMI version

Retrieve the metadata of a specific Amazon ECS-optimized Amazon Linux AMI version using the
AWS CLI with the following AWS CLI command. Replace the AMI name with the name of the
Amazon ECS-optimized Amazon Linux AMI to retrieve.

aws ssm get-parameters --names /aws/service/ecs/optimized-ami/amazon-linux-2/amzn2-ami-
ecs-hvm-2.0.20200928-x86_64-ebs --region us-east-1

Retrieving the Amazon ECS-optimized Amazon Linux 2 AMI metadata using the Systems
Manager GetParametersByPath API

Retrieve the Amazon ECS-optimized Amazon Linux 2 AMI metadata with the Systems Manager
GetParametersByPath API using the AWS CLI with the following command.

aws ssm get-parameters-by-path --path /aws/service/ecs/optimized-ami/amazon-linux-2/ --
region us-east-1

Retrieving the image ID of the latest recommended Amazon ECS-optimized Amazon Linux 2
AMI

You can retrieve the image ID of the latest recommended Amazon ECS-optimized Amazon Linux 2
AMI ID by using the sub-parameter image_id.

aws ssm get-parameters --names /aws/service/ecs/optimized-ami/amazon-
linux-2/recommended/image_id --region us-east-1

To retrieve the image_id value only, you can query the specific parameter value; for example:

aws ssm get-parameters --names /aws/service/ecs/optimized-ami/amazon-linux-2/
recommended/image_id --region us-east-1 --query "Parameters[0].Value"

Linux instances 407

Amazon Elastic Container Service Developer Guide

Using the latest recommended Amazon ECS-optimized AMI in an AWS CloudFormation
template

You can reference the latest recommended Amazon ECS-optimized AMI in an AWS CloudFormation
template by referencing the Systems Manager parameter store name.

Linux example

Parameters:
 LatestECSOptimizedAMI:
 Description: AMI ID
 Type: AWS::SSM::Parameter::Value<AWS::EC2::Image::Id>
 Default: /aws/service/ecs/optimized-ami/amazon-linux-2/recommended/image_id

Amazon ECS-optimized Linux AMI build script

Amazon ECS has open-sourced the build scripts that are used to build the Linux variants of
the Amazon ECS-optimized AMI. These build scripts are now available on GitHub. For more
information, see amazon-ecs-ami on GitHub.

The build scripts repository includes a HashiCorp packer template and build scripts to generate
each of the Linux variants of the Amazon ECS-optimized AMI. These scripts are the source of truth
for Amazon ECS-optimized AMI builds, so you can follow the GitHub repository to monitor changes
to our AMIs. For example, perhaps you want your own AMI to use the same version of Docker that
the Amazon ECS team uses for the official AMI.

For more information, see the Amazon ECS AMI repository at aws/amazon-ecs-ami on GitHub.

To build an Amazon ECS-optimized Linux AMI

1. Clone the aws/amazon-ecs-ami GitHub repo.

git clone https://github.com/aws/amazon-ecs-ami.git

2. Add an environment variable for the AWS Region to use when creating the AMI. Replace the
us-west-2 value with the Region to use.

export REGION=us-west-2

Linux instances 408

https://github.com/aws/amazon-ecs-ami
https://www.packer.io/
https://github.com/aws/amazon-ecs-ami

Amazon Elastic Container Service Developer Guide

3. A Makefile is provided to build the AMI. From the root directory of the cloned repository,
use one of the following commands, corresponding to the Linux variant of the Amazon ECS-
optimized AMI you want to build.

• Amazon ECS-optimized Amazon Linux 2 AMI

make al2

• Amazon ECS-optimized Amazon Linux 2 (arm64) AMI

make al2arm

• Amazon ECS GPU-optimized AMI

make al2gpu

• Amazon ECS optimized Amazon Linux 2 (Neuron) AMI

make al2inf

• Amazon ECS-optimized Amazon Linux 2023 AMI

make al2023

• Amazon ECS-optimized Amazon Linux 2023 (arm64) AMI

make al2023arm

• Amazon ECS optimized Amazon Linux 2023 (Neuron) AMI

make al2023neu

Amazon ECS-optimized Bottlerocket AMIs

Bottlerocket is a Linux based open-source operating system that is purpose built by AWS
for running containers on virtual machines or bare metal hosts. The Amazon ECS-optimized
Bottlerocket AMI is secure and only includes the minimum number of packages that's required
to run containers. This improves resource usage, reduces security attack surface, and helps lower

Linux instances 409

Amazon Elastic Container Service Developer Guide

management overhead. The Bottlerocket AMI is also integrated with Amazon ECS to help reduce
the operational overhead involved in updating container instances in a cluster.

Bottlerocket differs from Amazon Linux in the following ways:

• Bottlerocket doesn't include a package manager, and its software can only be run as containers.
Updates to Bottlerocket are both applied and can be rolled back in a single step, which reduces
the likelihood of update errors.

• The primary mechanism to manage Bottlerocket hosts is with a container scheduler. Unlike
Amazon Linux, logging into individual Bottlerocket instances is intended to be an infrequent
operation for advanced debugging and troubleshooting purposes only.

For more information about Bottlerocket, see the documentation and releases on GitHub.

There are variants of the Amazon ECS-optimized Bottlerocket AMI for kernel 6.1 and kernel 5.10.

The following variants use kernel 6.1:

• aws-ecs-2

• aws-ecs-2-nvidia

The following variants use kernel 5.1.10:

• aws-ecs-1

• aws-ecs-1-nvidia

For more information about the aws-ecs-1-nvidia variant, see Announcing NVIDIA GPU
support for Bottlerocket on Amazon ECS.

Considerations

Consider the following when using a Bottlerocket AMI with Amazon ECS.

• Bottlerocket supports Amazon EC2 instances with x86_64 and arm64 processors. The
Bottlerocket AMI isn't recommended for use with Amazon EC2 instances with an Inferentia chip.

• Bottlerocket images don't include an SSH server or a shell. However, you can use out-of-band
management tools to gain SSH administrator access and perform bootstrapping. For more
information, see these sections in the bottlerocket README.md on GitHub:

Linux instances 410

https://github.com/bottlerocket-os/bottlerocket/blob/develop/README.md
https://github.com/bottlerocket-os/bottlerocket/releases
https://aws.amazon.com/blogs/containers/announcing-nvidia-gpu-support-for-bottlerocket-on-amazon-ecs/
https://aws.amazon.com/blogs/containers/announcing-nvidia-gpu-support-for-bottlerocket-on-amazon-ecs/
https://github.com/bottlerocket-os/bottlerocket

Amazon Elastic Container Service Developer Guide

• Exploration

• Admin container

• By default, Bottlerocket has a control container that's enabled. This container runs the AWS
Systems Manager agent that you can use to run commands or start shell sessions on Amazon
EC2 Bottlerocket instances. For more information, see Setting up Session Manager in the AWS
Systems Manager User Guide.

• Bottlerocket is optimized for container workloads and has a focus on security. Bottlerocket
doesn't include a package manager and is immutable. For information about the security
features and guidance, see Security Features and Security Guidance on GitHub.

• The awsvpc network mode is supported for Bottlerocket AMI version 1.1.0 or later.

• App Mesh in a task definition is supported for Bottlerocket AMI version 1.15.0 or later.

• The initProcessEnabled task definition parameter is supported for Bottlerocket AMI version
1.19.0 or later.

• The Bottlerocket AMIs also don't support the following services and features:

• ECS Anywhere

• Service Connect

• Amazon EFS in encrypted mode and awsvpc network mode

• Elastic Inference Accelerator

Retrieving an Amazon ECS-optimized Bottlerocket AMI

You can retrieve the Amazon Machine Image (AMI) ID for Amazon ECS-optimized AMIs by querying
the AWS Systems Manager Parameter Store API. Using this parameter, you don't need to manually
look up Amazon ECS-optimized AMI IDs. For more information about the Systems Manager
Parameter Store API, see GetParameter. The user that you use must have the ssm:GetParameter
IAM permission to retrieve the Amazon ECS-optimized AMI metadata.

Retrieving the aws-ecs-2 Bottlerocket AMI variant

You can retrieve the latest stable aws-ecs-2 Bottlerocket AMI variant by AWS Region and
architecture with the AWS CLI or the AWS Management Console.

• AWS CLI – You can retrieve the image ID of the latest recommended Amazon ECS-optimized
Bottlerocket AMI with the following AWS CLI command by using the subparameter image_id.

Linux instances 411

https://github.com/bottlerocket-os/bottlerocket#exploration
https://github.com/bottlerocket-os/bottlerocket#admin-container
https://github.com/bottlerocket-os/bottlerocket-control-container
https://github.com/aws/amazon-ssm-agent
https://github.com/aws/amazon-ssm-agent
https://docs.aws.amazon.com/systems-manager/latest/userguide/session-manager-getting-started.html
https://github.com/bottlerocket-os/bottlerocket/blob/develop/SECURITY_FEATURES.md
https://github.com/bottlerocket-os/bottlerocket/blob/develop/SECURITY_GUIDANCE.md
https://docs.aws.amazon.com/systems-manager/latest/APIReference/API_GetParameter.html

Amazon Elastic Container Service Developer Guide

Replace the region with the Region code that you want the AMI ID for. For information about
the supported AWS Regions, see Finding an AMI on GitHub. To retrieve a version other than the
latest, replace latest with the version number.

• For the 64-bit (x86_64) architecture:

aws ssm get-parameter --region us-east-2 --name "/aws/service/bottlerocket/aws-
ecs-2/x86_64/latest/image_id" --query Parameter.Value --output text

• For the 64-bit Arm (arm64) architecture:

aws ssm get-parameter --region us-east-2 --name "/aws/service/bottlerocket/aws-
ecs-2/arm64/latest/image_id" --query Parameter.Value --output text

• AWS Management Console – You can query for the recommended Amazon ECS-optimized
AMI ID using a URL in the AWS Management Console. The URL opens the Amazon EC2 Systems
Manager console with the value of the ID for the parameter. In the following URL, replace
region with the Region code that you want the AMI ID for. For information about the supported
AWS Regions, see Finding an AMI on GitHub.

• For the 64-bit (x86_64) architecture:

https://console.aws.amazon.com/systems-manager/parameters/aws/service/bottlerocket/
aws-ecs-2/x86_64/latest/image_id/description?region=region#

• For the 64-bit Arm (arm64) architecture:

https://console.aws.amazon.com/systems-manager/parameters/aws/service/bottlerocket/
aws-ecs-2/arm64/latest/image_id/description?region=region#

Retrieving the aws-ecs-2-nvidia Bottlerocket AMI variant

You can retrieve the latest stable aws-ecs-2-nvdia Bottlerocket AMI variant by Region and
architecture with the AWS CLI or the AWS Management Console.

• AWS CLI – You can retrieve the image ID of the latest recommended Amazon ECS-optimized
Bottlerocket AMI with the following AWS CLI command by using the subparameter image_id.
Replace the region with the Region code that you want the AMI ID for. For information about
the supported AWS Regions, see Finding an AMI on GitHub. To retrieve a version other than the
latest, replace latest with the version number.

Linux instances 412

https://github.com/bottlerocket-os/bottlerocket/blob/develop/QUICKSTART-ECS.md#finding-an-ami
https://github.com/bottlerocket-os/bottlerocket/blob/develop/QUICKSTART-ECS.md#finding-an-ami
https://github.com/bottlerocket-os/bottlerocket/blob/develop/QUICKSTART-ECS.md#finding-an-ami

Amazon Elastic Container Service Developer Guide

• For the 64-bit (x86_64) architecture:

aws ssm get-parameter --region us-east-1 --name "/aws/service/bottlerocket/aws-
ecs-2-nvidia/x86_64/latest/image_id" --query Parameter.Value --output text

• For the 64 bit Arm (arm64) architecture:

aws ssm get-parameter --region us-east-1 --name "/aws/service/bottlerocket/aws-
ecs-2-nvidia/arm64/latest/image_id" --query Parameter.Value --output text

• AWS Management Console – You can query for the recommended Amazon ECS optimized
AMI ID using a URL in the AWS Management Console. The URL opens the Amazon EC2 Systems
Manager console with the value of the ID for the parameter. In the following URL, replace
region with the Region code that you want the AMI ID for. For information about the supported
AWS Regions, see Finding an AMI on GitHub.

• For the 64 bit (x86_64) architecture:

https://regionconsole.aws.amazon.com/systems-manager/parameters/aws/service/
bottlerocket/aws-ecs-2-nvidia/x86_64/latest/image_id/description?region=region#

• For the 64 bit Arm (arm64) architecture:

https://regionconsole.aws.amazon.com/systems-manager/parameters/aws/service/
bottlerocket/aws-ecs-2-nvidia/arm64/latest/image_id/description?region=region#

Retrieving the aws-ecs-1 Bottlerocket AMI variant

You can retrieve the latest stable aws-ecs-1 Bottlerocket AMI variant by AWS Region and
architecture with the AWS CLI or the AWS Management Console.

• AWS CLI – You can retrieve the image ID of the latest recommended Amazon ECS-optimized
Bottlerocket AMI with the following AWS CLI command by using the subparameter image_id.
Replace the region with the Region code that you want the AMI ID for. For information about
the supported AWS Regions, see Finding an AMI on GitHub. To retrieve a version other than the
latest, replace latest with the version number.

• For the 64-bit (x86_64) architecture:

Linux instances 413

https://github.com/bottlerocket-os/bottlerocket/blob/develop/QUICKSTART-ECS.md#finding-an-ami
https://github.com/bottlerocket-os/bottlerocket/blob/develop/QUICKSTART-ECS.md#finding-an-ami

Amazon Elastic Container Service Developer Guide

aws ssm get-parameter --region us-east-1 --name "/aws/service/bottlerocket/aws-
ecs-1/x86_64/latest/image_id" --query Parameter.Value --output text

• For the 64-bit Arm (arm64) architecture:

aws ssm get-parameter --region us-east-1 --name "/aws/service/bottlerocket/aws-
ecs-1/arm64/latest/image_id" --query Parameter.Value --output text

• AWS Management Console – You can query for the recommended Amazon ECS-optimized
AMI ID using a URL in the AWS Management Console. The URL opens the Amazon EC2 Systems
Manager console with the value of the ID for the parameter. In the following URL, replace
region with the Region code that you want the AMI ID for. For information about the supported
AWS Regions, see Finding an AMI on GitHub.

• For the 64-bit (x86_64) architecture:

https://region.console.aws.amazon.com/systems-manager/parameters/aws/service/
bottlerocket/aws-ecs-1/x86_64/latest/image_id/description

• For the 64-bit Arm (arm64) architecture:

https://region.console.aws.amazon.com/systems-manager/parameters/aws/service/
bottlerocket/aws-ecs-1/arm64/latest/image_id/description

Retrieving the aws-ecs-1-nvidia Bottlerocket AMI variant

You can retrieve the latest stable aws-ecs-1-nvdia Bottlerocket AMI variant by Region and
architecture with the AWS CLI or the AWS Management Console.

• AWS CLI – You can retrieve the image ID of the latest recommended Amazon ECS-optimized
Bottlerocket AMI with the following AWS CLI command by using the subparameter image_id.
Replace the region with the Region code that you want the AMI ID for. For information about
the supported AWS Regions, see Finding an AMI on GitHub. To retrieve a version other than the
latest, replace latest with the version number.

• For the 64-bit (x86_64) architecture:

aws ssm get-parameter --region us-east-1 --name "/aws/service/bottlerocket/aws-
ecs-1-nvidia/x86_64/latest/image_id" --query Parameter.Value --output text

Linux instances 414

https://github.com/bottlerocket-os/bottlerocket/blob/develop/QUICKSTART-ECS.md#finding-an-ami
https://github.com/bottlerocket-os/bottlerocket/blob/develop/QUICKSTART-ECS.md#finding-an-ami

Amazon Elastic Container Service Developer Guide

• For the 64 bit Arm (arm64) architecture:

aws ssm get-parameter --region us-east-1 --name "/aws/service/bottlerocket/aws-
ecs-1-nvidia/arm64/latest/image_id" --query Parameter.Value --output text

• AWS Management Console – You can query for the recommended Amazon ECS optimized
AMI ID using a URL in the AWS Management Console. The URL opens the Amazon EC2 Systems
Manager console with the value of the ID for the parameter. In the following URL, replace
region with the Region code that you want the AMI ID for. For information about the supported
AWS Regions, see Finding an AMI on GitHub.

• For the 64 bit (x86_64) architecture:

https://console.aws.amazon.com/systems-manager/parameters/aws/service/bottlerocket/
aws-ecs-1-nvidia/x86_64/latest/image_id/description?region=region#

• For the 64 bit Arm (arm64) architecture:

https://console.aws.amazon.com/systems-manager/parameters/aws/service/bottlerocket/
aws-ecs-1-nvidia/arm64/latest/image_id/description?region=region#

Next steps

For a detailed walkthrough of how to get started with the Bottlerocket operating system on
Amazon ECS, see Using a Bottlerocket AMI with Amazon ECS on GitHub and Getting started
withBottlerocket and Amazon ECS on the AWS blog site.

For information about how to launch a Bottlerocket instance, see Launching a Bottlerocket
instance

Launching a Bottlerocket instance

You can launch a Bottlerocket instance so that you can run your container workloads.

You can use the AWS CLI to launch the Bottlerocket instance.

1. Create a file that's called userdata.toml. This file is used for the instance user data. Replace
cluster-name with the name of your cluster.

[settings.ecs]

Linux instances 415

https://github.com/bottlerocket-os/bottlerocket/blob/develop/QUICKSTART-ECS.md#finding-an-ami
https://github.com/bottlerocket-os/bottlerocket/blob/develop/QUICKSTART-ECS.md
https://aws.amazon.com/blogs/containers/getting-started-with-bottlerocket-and-amazon-ecs/
https://aws.amazon.com/blogs/containers/getting-started-with-bottlerocket-and-amazon-ecs/

Amazon Elastic Container Service Developer Guide

cluster = "cluster-name"

2. Use one of the commands that are included in the section called “Retrieving an Amazon ECS-
optimized Bottlerocket AMI” to get the Bottlerocket AMI ID. You use this in the following step.

3. Run the following command to launch the Bottlerocket instance. Remember to replace the
following parameters:

• Replace subnet with the ID of the private or public subnet that your instance will launch in.

• Replace bottlerocket_ami with the AMI ID from the previous step.

• Replace t3.large with the instance type that you want to use.

• Replace region with the Region code.

aws ec2 run-instances --key-name ecs-bottlerocket-example \
 --subnet-id subnet \
 --image-id bottlerocket_ami \
 --instance-type t3.large \
 --region region \
 --tag-specifications
 'ResourceType=instance,Tags=[{Key=bottlerocket,Value=example}]' \
 --user-data file://userdata.toml \
 --iam-instance-profile Name=ecsInstanceRole

4. Run the following command to verify that the container instance is registered to the cluster.
When you run this command, remember to replace the following parameters:

• Replace cluster with your cluster name.

• Replace region with your Region code.

aws ecs list-container-instances --cluster cluster-name --region region

For a detailed walkthrough of how to get started with the Bottlerocket operating system on
Amazon ECS, see Using a Bottlerocket AMI with Amazon ECS on GitHub and Getting started with
Bottlerocket and Amazon ECS on the AWS blog site.

Linux instances 416

https://github.com/bottlerocket-os/bottlerocket/blob/develop/QUICKSTART-ECS.md
https://aws.amazon.com/blogs/containers/getting-started-with-bottlerocket-and-amazon-ecs/

Amazon Elastic Container Service Developer Guide

Installing the Amazon ECS container agent

If your container instance was not launched using an Amazon ECS-optimized AMI, you can install
the Amazon ECS container agent manually using one of the following procedures. The Amazon ECS
container agent is included in the Amazon ECS-optimized AMIs and does not require installation.

• For Amazon Linux 2 instances, you can install the agent using the amazon-linux-extras
command. For more information, see Installing the Amazon ECS container agent on an Amazon
Linux 2 EC2 instance.

• For Amazon Linux AMIs instances, you can install the agent using the Amazon YUM repo. For
more information, see Installing the Amazon ECS container agent on an Amazon Linux EC2
instance.

• For non-Amazon Linux instances, you can either download the agent from one of the regional
S3 buckets or from Amazon Elastic Container Registry Public. If you download from one of the
regional S3 buckets, you can optionally verify the validity of the container agent file using the
PGP signature. For more information, see Installing the Amazon ECS container agent on a non-
Amazon Linux EC2 instance.

Note

The systemd units for both Amazon ECS and Docker services have a directive to wait
for cloud-init to finish before starting both services. The cloud-init process is not
considered finished until your Amazon EC2 user data has finished running. Therefore,
starting Amazon ECS or Docker via Amazon EC2 user data may cause a deadlock. To start
the container agent using Amazon EC2 user data you can use systemctl enable --now
--no-block ecs.service.

Installing the Amazon ECS container agent on an Amazon Linux 2 EC2 instance

To install the Amazon ECS container agent on an Amazon Linux 2 EC2 instance using the amazon-
linux-extras command, use the following steps.

To install the Amazon ECS container agent on an Amazon Linux 2 EC2 instance

1. Launch an Amazon Linux 2 EC2 instance with an IAM role that allows access to Amazon ECS.
For more information, see Amazon ECS container instance IAM role.

Linux instances 417

Amazon Elastic Container Service Developer Guide

2. Connect to your instance.

3. Disable the docker Amazon Linux extra repository. The ecs Amazon Linux extra repository
ships with its own version of Docker, so the docker extra must be turned off to avoid any
potential future conflicts. This ensures that you are always using the Docker version that
Amazon ECS intends for you to use with a particular version of the container agent.

[ec2-user ~]$ sudo amazon-linux-extras disable docker

4. Install and enable the ecs Amazon Linux extra repository.

[ec2-user ~]$ sudo amazon-linux-extras install -y ecs; sudo systemctl enable --now
 ecs

5. (Optional) You can verify that the agent is running and see some information about your new
container instance with the agent introspection API. For more information, see the section
called “Container introspection”.

[ec2-user ~]$ curl -s http://localhost:51678/v1/metadata | python -mjson.tool

Note

If you get no response, ensure that you associated the Amazon ECS container instance
IAM role when launching the instance. For more information, see Amazon ECS
container instance IAM role.

Installing the Amazon ECS container agent on an Amazon Linux EC2 instance

To install the Amazon ECS container agent on an Amazon Linux EC2 instance using the Amazon
YUM repo, use the following steps.

To install the Amazon ECS container agent on an Amazon Linux EC2 instance

1. Launch an Amazon Linux EC2 instance with an IAM role that allows access to Amazon ECS. For
more information, see Amazon ECS container instance IAM role.

2. Connect to your instance.

3. Install the ecs-init package. For more information about ecs-init, see the source code on
GitHub.

Linux instances 418

https://github.com/aws/amazon-ecs-init
https://github.com/aws/amazon-ecs-init

Amazon Elastic Container Service Developer Guide

[ec2-user ~]$ sudo yum install -y ecs-init

4. Start the Docker daemon.

[ec2-user ~]$ sudo service docker start

Output:

Starting cgconfig service: [OK]
Starting docker: [OK]

5. Start the ecs-init upstart job.

[ec2-user ~]$ sudo service ecs start

Output:

ecs start/running, process 2804

6. (Optional) You can verify that the agent is running and see some information about your new
container instance with the agent introspection API. For more information, see the section
called “Container introspection”.

[ec2-user ~]$ curl -s http://localhost:51678/v1/metadata | python -mjson.tool

Installing the Amazon ECS container agent on a non-Amazon Linux EC2 instance

To install the Amazon ECS container agent on a non-Amazon Linux EC2 instance, you can download
the agent from one of the regional S3 buckets and install it.

Note

When using a non-Amazon Linux AMI, your Amazon EC2 instance requires cgroupfs
support for the cgroup driver in order for the Amazon ECS agent to support task level
resource limits. For more information, see Amazon ECS agent on GitHub.

Linux instances 419

https://github.com/aws/amazon-ecs-agent

Amazon Elastic Container Service Developer Guide

The latest Amazon ECS container agent files, by Region, for each system architecture are listed
below for reference.

Region Region name Amazon ECS init deb
files

Amazon ECS init rpm
files

us-east-2 US East (Ohio) Amazon ECS init
amd64 (amd64)

Amazon ECS init
arm64 (arm64)

Amazon ECS init
x86_64 (x86_64)

Amazon ECS init
aarch64 (aarch64)

us-east-1 US East (N. Virginia) Amazon ECS init
amd64 (amd64)

Amazon ECS init
arm64 (arm64)

Amazon ECS init
x86_64 (x86_64)

Amazon ECS init
aarch64 (aarch64)

us-west-1 US West (N. Californi
a)

Amazon ECS init
amd64 (amd64)

Amazon ECS init
arm64 (arm64)

Amazon ECS init
x86_64 (x86_64)

Amazon ECS init
aarch64 (aarch64)

us-west-2 US West (Oregon) Amazon ECS init
amd64 (amd64)

Amazon ECS init
arm64 (arm64)

Amazon ECS init
x86_64 (x86_64)

Amazon ECS init
aarch64 (aarch64)

ap-east-1 Asia Pacific (Hong
Kong)

Amazon ECS init
amd64 (amd64)

Amazon ECS init
arm64 (arm64)

Amazon ECS init
x86_64 (x86_64)

Amazon ECS init
aarch64 (aarch64)

ap-northeast-1 Asia Pacific (Tokyo) Amazon ECS init
amd64 (amd64)

Amazon ECS init
x86_64 (x86_64)

Linux instances 420

https://s3.us-east-2.amazonaws.com/amazon-ecs-agent-us-east-2/amazon-ecs-init-latest.amd64.deb
https://s3.us-east-2.amazonaws.com/amazon-ecs-agent-us-east-2/amazon-ecs-init-latest.amd64.deb
https://s3.us-east-2.amazonaws.com/amazon-ecs-agent-us-east-2/amazon-ecs-init-latest.arm64.deb
https://s3.us-east-2.amazonaws.com/amazon-ecs-agent-us-east-2/amazon-ecs-init-latest.arm64.deb
https://s3.us-east-2.amazonaws.com/amazon-ecs-agent-us-east-2/amazon-ecs-init-latest.x86_64.rpm
https://s3.us-east-2.amazonaws.com/amazon-ecs-agent-us-east-2/amazon-ecs-init-latest.x86_64.rpm
https://s3.us-east-2.amazonaws.com/amazon-ecs-agent-us-east-2/amazon-ecs-init-latest.aarch64.rpm
https://s3.us-east-2.amazonaws.com/amazon-ecs-agent-us-east-2/amazon-ecs-init-latest.aarch64.rpm
https://s3.us-east-1.amazonaws.com/amazon-ecs-agent-us-east-1/amazon-ecs-init-latest.amd64.deb
https://s3.us-east-1.amazonaws.com/amazon-ecs-agent-us-east-1/amazon-ecs-init-latest.amd64.deb
https://s3.us-east-1.amazonaws.com/amazon-ecs-agent-us-east-1/amazon-ecs-init-latest.arm64.deb
https://s3.us-east-1.amazonaws.com/amazon-ecs-agent-us-east-1/amazon-ecs-init-latest.arm64.deb
https://s3.us-east-1.amazonaws.com/amazon-ecs-agent-us-east-1/amazon-ecs-init-latest.x86_64.rpm
https://s3.us-east-1.amazonaws.com/amazon-ecs-agent-us-east-1/amazon-ecs-init-latest.x86_64.rpm
https://s3.us-east-1.amazonaws.com/amazon-ecs-agent-us-east-1/amazon-ecs-init-latest.aarch64.rpm
https://s3.us-east-1.amazonaws.com/amazon-ecs-agent-us-east-1/amazon-ecs-init-latest.aarch64.rpm
https://s3.us-west-1.amazonaws.com/amazon-ecs-agent-us-west-1/amazon-ecs-init-latest.amd64.deb
https://s3.us-west-1.amazonaws.com/amazon-ecs-agent-us-west-1/amazon-ecs-init-latest.amd64.deb
https://s3.us-west-1.amazonaws.com/amazon-ecs-agent-us-west-1/amazon-ecs-init-latest.arm64.deb
https://s3.us-west-1.amazonaws.com/amazon-ecs-agent-us-west-1/amazon-ecs-init-latest.arm64.deb
https://s3.us-west-1.amazonaws.com/amazon-ecs-agent-us-west-1/amazon-ecs-init-latest.x86_64.rpm
https://s3.us-west-1.amazonaws.com/amazon-ecs-agent-us-west-1/amazon-ecs-init-latest.x86_64.rpm
https://s3.us-west-1.amazonaws.com/amazon-ecs-agent-us-west-1/amazon-ecs-init-latest.aarch64.rpm
https://s3.us-west-1.amazonaws.com/amazon-ecs-agent-us-west-1/amazon-ecs-init-latest.aarch64.rpm
https://s3.us-west-2.amazonaws.com/amazon-ecs-agent-us-west-2/amazon-ecs-init-latest.amd64.deb
https://s3.us-west-2.amazonaws.com/amazon-ecs-agent-us-west-2/amazon-ecs-init-latest.amd64.deb
https://s3.us-west-2.amazonaws.com/amazon-ecs-agent-us-west-2/amazon-ecs-init-latest.arm64.deb
https://s3.us-west-2.amazonaws.com/amazon-ecs-agent-us-west-2/amazon-ecs-init-latest.arm64.deb
https://s3.us-west-2.amazonaws.com/amazon-ecs-agent-us-west-2/amazon-ecs-init-latest.x86_64.rpm
https://s3.us-west-2.amazonaws.com/amazon-ecs-agent-us-west-2/amazon-ecs-init-latest.x86_64.rpm
https://s3.us-west-2.amazonaws.com/amazon-ecs-agent-us-west-2/amazon-ecs-init-latest.aarch64.rpm
https://s3.us-west-2.amazonaws.com/amazon-ecs-agent-us-west-2/amazon-ecs-init-latest.aarch64.rpm
https://s3.ap-east-1.amazonaws.com/amazon-ecs-agent-ap-east-1/amazon-ecs-init-latest.amd64.deb
https://s3.ap-east-1.amazonaws.com/amazon-ecs-agent-ap-east-1/amazon-ecs-init-latest.amd64.deb
https://s3.ap-east-1.amazonaws.com/amazon-ecs-agent-ap-east-1/amazon-ecs-init-latest.arm64.deb
https://s3.ap-east-1.amazonaws.com/amazon-ecs-agent-ap-east-1/amazon-ecs-init-latest.arm64.deb
https://s3.ap-east-1.amazonaws.com/amazon-ecs-agent-ap-east-1/amazon-ecs-init-latest.x86_64.rpm
https://s3.ap-east-1.amazonaws.com/amazon-ecs-agent-ap-east-1/amazon-ecs-init-latest.x86_64.rpm
https://s3.ap-east-1.amazonaws.com/amazon-ecs-agent-ap-east-1/amazon-ecs-init-latest.aarch64.rpm
https://s3.ap-east-1.amazonaws.com/amazon-ecs-agent-ap-east-1/amazon-ecs-init-latest.aarch64.rpm
https://s3.ap-northeast-1.amazonaws.com/amazon-ecs-agent-ap-northeast-1/amazon-ecs-init-latest.amd64.deb
https://s3.ap-northeast-1.amazonaws.com/amazon-ecs-agent-ap-northeast-1/amazon-ecs-init-latest.amd64.deb
https://s3.ap-northeast-1.amazonaws.com/amazon-ecs-agent-ap-northeast-1/amazon-ecs-init-latest.x86_64.rpm
https://s3.ap-northeast-1.amazonaws.com/amazon-ecs-agent-ap-northeast-1/amazon-ecs-init-latest.x86_64.rpm

Amazon Elastic Container Service Developer Guide

Region Region name Amazon ECS init deb
files

Amazon ECS init rpm
files

Amazon ECS init
arm64 (arm64)

Amazon ECS init
aarch64 (aarch64)

ap-northeast-2 Asia Pacific (Seoul) Amazon ECS init
amd64 (amd64)

Amazon ECS init
arm64 (arm64)

Amazon ECS init
x86_64 (x86_64)

Amazon ECS init
aarch64 (aarch64)

ap-south-1 Asia Pacific (Mumbai) Amazon ECS init
amd64 (amd64)

Amazon ECS init
arm64 (arm64)

Amazon ECS init
x86_64 (x86_64)

Amazon ECS init
aarch64 (aarch64)

ap-southeast-1 Asia Pacific (Singapor
e)

Amazon ECS init
amd64 (amd64)

Amazon ECS init
arm64 (arm64)

Amazon ECS init
x86_64 (x86_64)

Amazon ECS init
aarch64 (aarch64)

ap-southeast-2 Asia Pacific (Sydney) Amazon ECS init
amd64 (amd64)

Amazon ECS init
arm64 (arm64)

Amazon ECS init
x86_64 (x86_64)

Amazon ECS init
aarch64 (aarch64)

ca-central-1 Canada (Central) Amazon ECS init
amd64 (amd64)

Amazon ECS init
arm64 (arm64)

Amazon ECS init
x86_64 (x86_64)

Amazon ECS init
aarch64 (aarch64)

Linux instances 421

https://s3.ap-northeast-1.amazonaws.com/amazon-ecs-agent-ap-northeast-1/amazon-ecs-init-latest.arm64.deb
https://s3.ap-northeast-1.amazonaws.com/amazon-ecs-agent-ap-northeast-1/amazon-ecs-init-latest.arm64.deb
https://s3.ap-northeast-1.amazonaws.com/amazon-ecs-agent-ap-northeast-1/amazon-ecs-init-latest.aarch64.rpm
https://s3.ap-northeast-1.amazonaws.com/amazon-ecs-agent-ap-northeast-1/amazon-ecs-init-latest.aarch64.rpm
https://s3.ap-northeast-2.amazonaws.com/amazon-ecs-agent-ap-northeast-2/amazon-ecs-init-latest.amd64.deb
https://s3.ap-northeast-2.amazonaws.com/amazon-ecs-agent-ap-northeast-2/amazon-ecs-init-latest.amd64.deb
https://s3.ap-northeast-2.amazonaws.com/amazon-ecs-agent-ap-northeast-2/amazon-ecs-init-latest.arm64.deb
https://s3.ap-northeast-2.amazonaws.com/amazon-ecs-agent-ap-northeast-2/amazon-ecs-init-latest.arm64.deb
https://s3.ap-northeast-2.amazonaws.com/amazon-ecs-agent-ap-northeast-2/amazon-ecs-init-latest.x86_64.rpm
https://s3.ap-northeast-2.amazonaws.com/amazon-ecs-agent-ap-northeast-2/amazon-ecs-init-latest.x86_64.rpm
https://s3.ap-northeast-2.amazonaws.com/amazon-ecs-agent-ap-northeast-2/amazon-ecs-init-latest.aarch64.rpm
https://s3.ap-northeast-2.amazonaws.com/amazon-ecs-agent-ap-northeast-2/amazon-ecs-init-latest.aarch64.rpm
https://s3.ap-south-1.amazonaws.com/amazon-ecs-agent-ap-south-1/amazon-ecs-init-latest.amd64.deb
https://s3.ap-south-1.amazonaws.com/amazon-ecs-agent-ap-south-1/amazon-ecs-init-latest.amd64.deb
https://s3.ap-south-1.amazonaws.com/amazon-ecs-agent-ap-south-1/amazon-ecs-init-latest.arm64.deb
https://s3.ap-south-1.amazonaws.com/amazon-ecs-agent-ap-south-1/amazon-ecs-init-latest.arm64.deb
https://s3.ap-south-1.amazonaws.com/amazon-ecs-agent-ap-south-1/amazon-ecs-init-latest.x86_64.rpm
https://s3.ap-south-1.amazonaws.com/amazon-ecs-agent-ap-south-1/amazon-ecs-init-latest.x86_64.rpm
https://s3.ap-south-1.amazonaws.com/amazon-ecs-agent-ap-south-1/amazon-ecs-init-latest.aarch64.rpm
https://s3.ap-south-1.amazonaws.com/amazon-ecs-agent-ap-south-1/amazon-ecs-init-latest.aarch64.rpm
https://s3.ap-southeast-1.amazonaws.com/amazon-ecs-agent-ap-southeast-1/amazon-ecs-init-latest.amd64.deb
https://s3.ap-southeast-1.amazonaws.com/amazon-ecs-agent-ap-southeast-1/amazon-ecs-init-latest.amd64.deb
https://s3.ap-southeast-1.amazonaws.com/amazon-ecs-agent-ap-southeast-1/amazon-ecs-init-latest.arm64.deb
https://s3.ap-southeast-1.amazonaws.com/amazon-ecs-agent-ap-southeast-1/amazon-ecs-init-latest.arm64.deb
https://s3.ap-southeast-1.amazonaws.com/amazon-ecs-agent-ap-southeast-1/amazon-ecs-init-latest.x86_64.rpm
https://s3.ap-southeast-1.amazonaws.com/amazon-ecs-agent-ap-southeast-1/amazon-ecs-init-latest.x86_64.rpm
https://s3.ap-southeast-1.amazonaws.com/amazon-ecs-agent-ap-southeast-1/amazon-ecs-init-latest.aarch64.rpm
https://s3.ap-southeast-1.amazonaws.com/amazon-ecs-agent-ap-southeast-1/amazon-ecs-init-latest.aarch64.rpm
https://s3.ap-southeast-2.amazonaws.com/amazon-ecs-agent-ap-southeast-2/amazon-ecs-init-latest.amd64.deb
https://s3.ap-southeast-2.amazonaws.com/amazon-ecs-agent-ap-southeast-2/amazon-ecs-init-latest.amd64.deb
https://s3.ap-southeast-2.amazonaws.com/amazon-ecs-agent-ap-southeast-2/amazon-ecs-init-latest.arm64.deb
https://s3.ap-southeast-2.amazonaws.com/amazon-ecs-agent-ap-southeast-2/amazon-ecs-init-latest.arm64.deb
https://s3.ap-southeast-2.amazonaws.com/amazon-ecs-agent-ap-southeast-2/amazon-ecs-init-latest.x86_64.rpm
https://s3.ap-southeast-2.amazonaws.com/amazon-ecs-agent-ap-southeast-2/amazon-ecs-init-latest.x86_64.rpm
https://s3.ap-southeast-2.amazonaws.com/amazon-ecs-agent-ap-southeast-2/amazon-ecs-init-latest.aarch64.rpm
https://s3.ap-southeast-2.amazonaws.com/amazon-ecs-agent-ap-southeast-2/amazon-ecs-init-latest.aarch64.rpm
https://s3.ca-central-1.amazonaws.com/amazon-ecs-agent-ca-central-1/amazon-ecs-init-latest.amd64.deb
https://s3.ca-central-1.amazonaws.com/amazon-ecs-agent-ca-central-1/amazon-ecs-init-latest.amd64.deb
https://s3.ca-central-1.amazonaws.com/amazon-ecs-agent-ca-central-1/amazon-ecs-init-latest.arm64.deb
https://s3.ca-central-1.amazonaws.com/amazon-ecs-agent-ca-central-1/amazon-ecs-init-latest.arm64.deb
https://s3.ca-central-1.amazonaws.com/amazon-ecs-agent-ca-central-1/amazon-ecs-init-latest.x86_64.rpm
https://s3.ca-central-1.amazonaws.com/amazon-ecs-agent-ca-central-1/amazon-ecs-init-latest.x86_64.rpm
https://s3.ca-central-1.amazonaws.com/amazon-ecs-agent-ca-central-1/amazon-ecs-init-latest.aarch64.rpm
https://s3.ca-central-1.amazonaws.com/amazon-ecs-agent-ca-central-1/amazon-ecs-init-latest.aarch64.rpm

Amazon Elastic Container Service Developer Guide

Region Region name Amazon ECS init deb
files

Amazon ECS init rpm
files

eu-central-1 Europe (Frankfurt) Amazon ECS init
amd64 (amd64)

Amazon ECS init
arm64 (arm64)

Amazon ECS init
x86_64 (x86_64)

Amazon ECS init
aarch64 (aarch64)

eu-west-1 Europe (Ireland) Amazon ECS init
amd64 (amd64)

Amazon ECS init
arm64 (arm64)

Amazon ECS init
x86_64 (x86_64)

Amazon ECS init
aarch64 (aarch64)

eu-west-2 Europe (London) Amazon ECS init
amd64 (amd64)

Amazon ECS init
arm64 (arm64)

Amazon ECS init
x86_64 (x86_64)

Amazon ECS init
aarch64 (aarch64)

eu-west-3 Europe (Paris) Amazon ECS init
amd64 (amd64)

Amazon ECS init
arm64 (arm64)

Amazon ECS init
x86_64 (x86_64)

Amazon ECS init
aarch64 (aarch64)

sa-east-1 South America (São
Paulo)

Amazon ECS init
amd64 (amd64)

Amazon ECS init
arm64 (arm64)

Amazon ECS init
x86_64

Amazon ECS init
aarch64 (aarch64)

us-gov-east-1 AWS GovCloud (US-
East)

Amazon ECS init
amd64 (amd64)

Amazon ECS init
arm64 (arm64)

Amazon ECS init
x86_64 (x86_64)

Amazon ECS init
aarch64 (aarch64)

Linux instances 422

https://s3.eu-central-1.amazonaws.com/amazon-ecs-agent-eu-central-1/amazon-ecs-init-latest.amd64.deb
https://s3.eu-central-1.amazonaws.com/amazon-ecs-agent-eu-central-1/amazon-ecs-init-latest.amd64.deb
https://s3.eu-central-1.amazonaws.com/amazon-ecs-agent-eu-central-1/amazon-ecs-init-latest.arm64.deb
https://s3.eu-central-1.amazonaws.com/amazon-ecs-agent-eu-central-1/amazon-ecs-init-latest.arm64.deb
https://s3.eu-central-1.amazonaws.com/amazon-ecs-agent-eu-central-1/amazon-ecs-init-latest.x86_64.rpm
https://s3.eu-central-1.amazonaws.com/amazon-ecs-agent-eu-central-1/amazon-ecs-init-latest.x86_64.rpm
https://s3.eu-central-1.amazonaws.com/amazon-ecs-agent-eu-central-1/amazon-ecs-init-latest.aarch64.rpm
https://s3.eu-central-1.amazonaws.com/amazon-ecs-agent-eu-central-1/amazon-ecs-init-latest.aarch64.rpm
https://s3.eu-west-1.amazonaws.com/amazon-ecs-agent-eu-west-1/amazon-ecs-init-latest.amd64.deb
https://s3.eu-west-1.amazonaws.com/amazon-ecs-agent-eu-west-1/amazon-ecs-init-latest.amd64.deb
https://s3.eu-west-1.amazonaws.com/amazon-ecs-agent-eu-west-1/amazon-ecs-init-latest.arm64.deb
https://s3.eu-west-1.amazonaws.com/amazon-ecs-agent-eu-west-1/amazon-ecs-init-latest.arm64.deb
https://s3.eu-west-1.amazonaws.com/amazon-ecs-agent-eu-west-1/amazon-ecs-init-latest.x86_64.rpm
https://s3.eu-west-1.amazonaws.com/amazon-ecs-agent-eu-west-1/amazon-ecs-init-latest.x86_64.rpm
https://s3.eu-west-1.amazonaws.com/amazon-ecs-agent-eu-west-1/amazon-ecs-init-latest.aarch64.rpm
https://s3.eu-west-1.amazonaws.com/amazon-ecs-agent-eu-west-1/amazon-ecs-init-latest.aarch64.rpm
https://s3.eu-west-2.amazonaws.com/amazon-ecs-agent-eu-west-2/amazon-ecs-init-latest.amd64.deb
https://s3.eu-west-2.amazonaws.com/amazon-ecs-agent-eu-west-2/amazon-ecs-init-latest.amd64.deb
https://s3.eu-west-2.amazonaws.com/amazon-ecs-agent-eu-west-2/amazon-ecs-init-latest.arm64.deb
https://s3.eu-west-2.amazonaws.com/amazon-ecs-agent-eu-west-2/amazon-ecs-init-latest.arm64.deb
https://s3.eu-west-2.amazonaws.com/amazon-ecs-agent-eu-west-2/amazon-ecs-init-latest.x86_64.rpm
https://s3.eu-west-2.amazonaws.com/amazon-ecs-agent-eu-west-2/amazon-ecs-init-latest.x86_64.rpm
https://s3.eu-west-2.amazonaws.com/amazon-ecs-agent-eu-west-2/amazon-ecs-init-latest.aarch64.rpm
https://s3.eu-west-2.amazonaws.com/amazon-ecs-agent-eu-west-2/amazon-ecs-init-latest.aarch64.rpm
https://s3.eu-west-3.amazonaws.com/amazon-ecs-agent-eu-west-3/amazon-ecs-init-latest.amd64.deb
https://s3.eu-west-3.amazonaws.com/amazon-ecs-agent-eu-west-3/amazon-ecs-init-latest.amd64.deb
https://s3.eu-west-3.amazonaws.com/amazon-ecs-agent-eu-west-3/amazon-ecs-init-latest.arm64.deb
https://s3.eu-west-3.amazonaws.com/amazon-ecs-agent-eu-west-3/amazon-ecs-init-latest.arm64.deb
https://s3.eu-west-3.amazonaws.com/amazon-ecs-agent-eu-west-3/amazon-ecs-init-latest.x86_64.rpm
https://s3.eu-west-3.amazonaws.com/amazon-ecs-agent-eu-west-3/amazon-ecs-init-latest.x86_64.rpm
https://s3.eu-west-3.amazonaws.com/amazon-ecs-agent-eu-west-3/amazon-ecs-init-latest.aarch64.rpm
https://s3.eu-west-3.amazonaws.com/amazon-ecs-agent-eu-west-3/amazon-ecs-init-latest.aarch64.rpm
https://s3.sa-east-1.amazonaws.com/amazon-ecs-agent-sa-east-1/amazon-ecs-init-latest.amd64.deb
https://s3.sa-east-1.amazonaws.com/amazon-ecs-agent-sa-east-1/amazon-ecs-init-latest.amd64.deb
https://s3.sa-east-1.amazonaws.com/amazon-ecs-agent-sa-east-1/amazon-ecs-init-latest.arm64.deb
https://s3.sa-east-1.amazonaws.com/amazon-ecs-agent-sa-east-1/amazon-ecs-init-latest.arm64.deb
https://s3.sa-east-1.amazonaws.com/amazon-ecs-agent-sa-east-1/amazon-ecs-init-latest.x86_64.rpm
https://s3.sa-east-1.amazonaws.com/amazon-ecs-agent-sa-east-1/amazon-ecs-init-latest.x86_64.rpm
https://s3.sa-east-1.amazonaws.com/amazon-ecs-agent-sa-east-1/amazon-ecs-init-latest.aarch64.rpm
https://s3.sa-east-1.amazonaws.com/amazon-ecs-agent-sa-east-1/amazon-ecs-init-latest.aarch64.rpm
https://s3.us-gov-east-1.amazonaws.com/amazon-ecs-agent-us-gov-east-1/amazon-ecs-init-latest.amd64.deb
https://s3.us-gov-east-1.amazonaws.com/amazon-ecs-agent-us-gov-east-1/amazon-ecs-init-latest.amd64.deb
https://s3.us-gov-east-1.amazonaws.com/amazon-ecs-agent-us-gov-east-1/amazon-ecs-init-latest.arm64.deb
https://s3.us-gov-east-1.amazonaws.com/amazon-ecs-agent-us-gov-east-1/amazon-ecs-init-latest.arm64.deb
https://s3.us-gov-east-1.amazonaws.com/amazon-ecs-agent-us-gov-east-1/amazon-ecs-init-latest.x86_64.rpm
https://s3.us-gov-east-1.amazonaws.com/amazon-ecs-agent-us-gov-east-1/amazon-ecs-init-latest.x86_64.rpm
https://s3.us-gov-east-1.amazonaws.com/amazon-ecs-agent-us-gov-east-1/amazon-ecs-init-latest.aarch64.rpm
https://s3.us-gov-east-1.amazonaws.com/amazon-ecs-agent-us-gov-east-1/amazon-ecs-init-latest.aarch64.rpm

Amazon Elastic Container Service Developer Guide

Region Region name Amazon ECS init deb
files

Amazon ECS init rpm
files

us-gov-west-1 AWS GovCloud (US-
West)

Amazon ECS init
amd64 (amd64)

Amazon ECS init
arm64 (arm64)

Amazon ECS init
x86_64 (x86_64)

Amazon ECS init
aarch64 (aarch64)

To install the Amazon ECS container agent on an Amazon EC2 instance using a non-Amazon
Linux AMI

1. Launch an Amazon EC2 instance with an IAM role that allows access to Amazon ECS. For more
information, see Amazon ECS container instance IAM role.

2. Connect to your instance.

3. Install the latest version of Docker on your instance.

4. Check your Docker version to verify that your system meets the minimum version requirement.

Note

The minimum Docker version for reliable metrics is Docker version v20.10.13 and
newer, which is included in Amazon ECS-optimized AMI 20220607 and newer.
Amazon ECS agent versions 1.20.0 and newer have deprecated support for Docker
versions older than 1.9.0.

docker --version

5. Download the appropriate Amazon ECS agent file for your operating system and system
architecture and install it.

For deb architectures:

ubuntu:~$ curl -O https://s3.us-west-2.amazonaws.com/amazon-ecs-agent-us-west-2/
amazon-ecs-init-latest.amd64.deb
ubuntu:~$ sudo dpkg -i amazon-ecs-init-latest.amd64.deb

Linux instances 423

https://s3.us-gov-west-1.amazonaws.com/amazon-ecs-agent-us-gov-west-1/amazon-ecs-init-latest.amd64.deb
https://s3.us-gov-west-1.amazonaws.com/amazon-ecs-agent-us-gov-west-1/amazon-ecs-init-latest.amd64.deb
https://s3.us-gov-west-1.amazonaws.com/amazon-ecs-agent-us-gov-west-1/amazon-ecs-init-latest.arm64.deb
https://s3.us-gov-west-1.amazonaws.com/amazon-ecs-agent-us-gov-west-1/amazon-ecs-init-latest.arm64.deb
https://s3.us-gov-west-1.amazonaws.com/amazon-ecs-agent-us-gov-west-1/amazon-ecs-init-latest.x86_64.rpm
https://s3.us-gov-west-1.amazonaws.com/amazon-ecs-agent-us-gov-west-1/amazon-ecs-init-latest.x86_64.rpm
https://s3.us-gov-west-1.amazonaws.com/amazon-ecs-agent-us-gov-west-1/amazon-ecs-init-latest.aarch64.rpm
https://s3.us-gov-west-1.amazonaws.com/amazon-ecs-agent-us-gov-west-1/amazon-ecs-init-latest.aarch64.rpm

Amazon Elastic Container Service Developer Guide

For rpm architectures:

fedora:~$ curl -O https://s3.us-west-2.amazonaws.com/amazon-ecs-agent-us-west-2/
amazon-ecs-init-latest.x86_64.rpm
fedora:~$ sudo yum localinstall -y amazon-ecs-init-latest.x86_64.rpm

6. Edit the /lib/systemd/system/ecs.service file and add the following line at the end of
the [Unit] section.

After=cloud-final.service

7. (Optional) To register the instance with a cluster other than the default cluster, edit the /
etc/ecs/ecs.config file and add the following contents. The following example specifies
the MyCluster cluster.

ECS_CLUSTER=MyCluster

For more information about these and other agent runtime options, see Amazon ECS container
agent configuration.

Note

You can optionally store your agent environment variables in Amazon S3 (which can be
downloaded to your container instances at launch time using Amazon EC2 user data).
This is recommended for sensitive information such as authentication credentials for
private repositories. For more information, see Storing container instance configuration
in Amazon S3 and Private registry authentication for tasks.

8. Start the ecs service.

ubuntu:~$ sudo systemctl start ecs

Running the Amazon ECS agent with host network mode

When running the Amazon ECS container agent, ecs-init will create the container agent
container with the host network mode. This is the only supported network mode for the container
agent container.

Linux instances 424

Amazon Elastic Container Service Developer Guide

This allows you to block access to the Amazon EC2 instance metadata service endpoint
(http://169.254.169.254) for the containers started by the container agent. This ensures that
containers cannot access IAM role credentials from the container instance profile and enforces that
tasks use only the IAM task role credentials. For more information, see Task IAM role.

This also makes it so the container agent doesn't contend for connections and network traffic on
the docker0 bridge.

Windows instances

An Amazon ECS container instance is an Amazon EC2 instance that is running the Amazon ECS
container agent and has been registered into an Amazon ECS cluster. When you run tasks with
Amazon ECS using the EC2 launch type or an Auto Scaling group capacity provider, your tasks are
placed on your active container instances.

Note

Tasks using the Fargate launch type are deployed onto infrastructure managed by AWS, so
this topic does not apply.

Topics

• Amazon ECS-optimized AMI

• Building your own Amazon ECS-optimized Windows AMI

Amazon ECS-optimized AMI

The Amazon ECS-optimized AMIs are preconfigured with the necessary components that you need
to run Amazon ECS workloads. Although you can create your own container instance AMI that
meets the basic specifications needed to run your containerized workloads on Amazon ECS, the
Amazon ECS-optimized AMIs are preconfigured and tested on Amazon ECS by AWS engineers. It is
the simplest way for you to get started and to get your containers running on AWS quickly.

The Amazon ECS-optimized AMI metadata, including the AMI name, Amazon ECS container agent
version, and Amazon ECS runtime version which includes the Docker version, for each variant can
be retrieved programmatically. For more information, see the section called “Retrieving Amazon
ECS-Optimized AMI metadata”.

Windows instances 425

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-instance-metadata.html

Amazon Elastic Container Service Developer Guide

You can subscribe to the Windows AMI Amazon SNS topics to be notified when a new AMI is
released or an AMI version is marked private. For more information, see Subscribing to Amazon
ECS-optimized AMI update notifications.

Important

All ECS-optimized AMI variants produced after August will be migrating from Docker EE
(Mirantis) to Docker CE (Moby project).
To ensure that customers have the latest security updates by default, Amazon ECS
maintains at least the last three Windows Amazon ECS-optimized AMIs. After releasing new
Windows Amazon ECS-optimized AMIs, Amazon ECS makes the Windows Amazon ECS-
optimized AMIs that are older private. If there is a private AMI that you need access to, let
us know by filing a ticket with Cloud Support.

Amazon ECS-optimized AMI variants

The following Windows Server variants of the Amazon ECS-optimized AMI are available for your
Amazon EC2 instances.

Important

All ECS-optimized AMI variants produced after August will be migrating from Docker EE
(Mirantis) to Docker CE (Moby project).

• Amazon ECS-optimized Windows Server 2022 Full AMI

• Amazon ECS-optimized Windows Server 2022 Core AMI

• Amazon ECS-optimized Windows Server 2019 Full AMI

• Amazon ECS-optimized Windows Server 2019 Core AMI

• Amazon ECS-optimized Windows Server 2016 Full AMI

• Amazon ECS-optimized Windows Server 20H2 Core AMI

Windows instances 426

Amazon Elastic Container Service Developer Guide

Important

On August 9, 2022, the Amazon ECS-optimized Windows Server 20H2 Core AMI
reached its end of support date. No new versions of this AMI will be released. For more
information, see Windows Server release information.

Windows Server 2022, Windows Server 2019, and Windows Server 2016 are Long-Term Servicing
Channel (LTSC) releases. Windows Server 20H2 is a Semi-Annual Channel (SAC) release. For more
information, see Windows Server release information.

Windows container caveats

Here are some things you should know about Amazon EC2 Windows containers and Amazon ECS.

• Windows containers can't run on Linux container instances, and the opposite is also the case.
For better task placement for Windows and Linux tasks, keep Windows and Linux container
instances in separate clusters and only place Windows tasks on Windows clusters. You can ensure
that Windows task definitions are only placed on Windows instances by setting the following
placement constraint: memberOf(ecs.os-type=='windows').

• Windows containers are supported for tasks that use the EC2 and Fargate launch types.

• Windows containers and container instances can't support all the task definition parameters
that are available for Linux containers and container instances. For some parameters, they aren't
supported at all, and others behave differently on Windows than they do on Linux. For more
information, see EC2 Windows considerations.

• For the IAM roles for tasks feature, you need to configure your Windows container instances to
allow the feature at launch. Your containers must run some provided PowerShell code when they
use the feature. For more information, see Additional configuration for Windows IAM roles for
tasks.

• The IAM roles for tasks feature uses a credential proxy to provide credentials to the containers.
This credential proxy occupies port 80 on the container instance, so if you use IAM roles for tasks,
port 80 is not available for tasks. For web service containers, you can use an Application Load
Balancer and dynamic port mapping to provide standard HTTP port 80 connections to your
containers. For more information, see Service load balancing.

• The Windows Server Docker images are large (9 GiB). So, your Windows container instances
require more storage space than Linux container instances.

Windows instances 427

https://docs.microsoft.com/en-us/windows-server/get-started/windows-server-release-info
https://docs.microsoft.com/en-us/windows-server/get-started/windows-server-release-info

Amazon Elastic Container Service Developer Guide

• To run a Windows container on a Windows Server, the container’s base image OS version
must match that of the host. For more information, see Windows container version
compatibility on the Microsoft documentation website. If your cluster runs multiple Windows
versions, you can ensure that a task is placed on an EC2 instance running on the same
version by using the placement constraint: memberOf(attribute:ecs.os-family ==
WINDOWS_SERVER_<OS_Release>_<FULL or CORE>). For more information, see the section
called “Retrieving Amazon ECS-Optimized AMI metadata”.

Retrieving Amazon ECS-Optimized AMI metadata

The AMI ID, image name, operating system, container agent version, and runtime version for
each variant of the Amazon ECS-optimized AMIs can be programmatically retrieved by querying
the Systems Manager Parameter Store API. For more information about the Systems Manager
Parameter Store API, see GetParameters and GetParametersByPath.

Note

Your administrative user must have the following IAM permissions to retrieve the
Amazon ECS-optimized AMI metadata. These permissions have been added to the
AmazonECS_FullAccess IAM policy.

• ssm:GetParameters

• ssm:GetParameter

• ssm:GetParametersByPath

Systems Manager Parameter Store parameter format

Note

The following Systems Manager Parameter Store API parameters are deprecated and
should not be used to retrieve the latest Windows AMIs:

• /aws/service/ecs/optimized-ami/windows_server/2016/english/full/
recommended/image_id

• /aws/service/ecs/optimized-ami/windows_server/2019/english/full/
recommended/image_id

Windows instances 428

https://docs.microsoft.com/en-us/virtualization/windowscontainers/deploy-containers/version-compatibility?tabs=windows-server-2022%2Cwindows-10-21H1
https://docs.microsoft.com/en-us/virtualization/windowscontainers/deploy-containers/version-compatibility?tabs=windows-server-2022%2Cwindows-10-21H1
https://docs.aws.amazon.com/systems-manager/latest/APIReference/API_GetParameters.html
https://docs.aws.amazon.com/systems-manager/latest/APIReference/API_GetParametersByPath.html

Amazon Elastic Container Service Developer Guide

The following is the format of the parameter name for each Amazon ECS-optimized AMI variant.

• Windows Server 2022 Full AMI metadata:

/aws/service/ami-windows-latest/Windows_Server-2022-English-Full-ECS_Optimized

• Windows Server 2022 Core AMI metadata:

/aws/service/ami-windows-latest/Windows_Server-2022-English-Core-ECS_Optimized

• Windows Server 2019 Full AMI metadata:

/aws/service/ami-windows-latest/Windows_Server-2019-English-Full-ECS_Optimized

• Windows Server 2019 Core AMI metadata:

/aws/service/ami-windows-latest/Windows_Server-2019-English-Core-ECS_Optimized

• Windows Server 2016 Full AMI metadata:

/aws/service/ami-windows-latest/Windows_Server-2016-English-Full-ECS_Optimized

The following parameter name format retrieves the metadata of the latest stable Windows Server
2019 Full AMI

aws ssm get-parameters --names /aws/service/ami-windows-latest/Windows_Server-2019-
English-Full-ECS_Optimized

The following is an example of the JSON object that is returned for the parameter value.

{
 "Parameters": [
 {
 "Name": "/aws/service/ami-windows-latest/Windows_Server-2019-English-Full-
ECS_Optimized",
 "Type": "String",
 "Value": "{\"image_name\":\"Windows_Server-2019-English-Full-
ECS_Optimized-2023.06.13\",\"image_id\":\"ami-0debc1fb48e4aee16\",\"ecs_runtime_version
\":\"Docker (CE) version 20.10.21\",\"ecs_agent_version\":\"1.72.0\"}",
 "Version": 58,

Windows instances 429

Amazon Elastic Container Service Developer Guide

 "LastModifiedDate": "2023-06-22T19:37:37.841000-04:00",
 "ARN": "arn:aws:ssm:us-east-1::parameter/aws/service/ami-windows-latest/
Windows_Server-2019-English-Full-ECS_Optimized",
 "DataType": "text"
 }
],
 "InvalidParameters": []
}

Each of the fields in the output above are available to be queried as sub-parameters. Construct the
parameter path for a sub-parameter by appending the sub-parameter name to the path for the
selected AMI. The following sub-parameters are available:

• schema_version

• image_id

• image_name

• os

• ecs_agent_version

• ecs_runtime_version

Examples

The following examples show ways in which you can retrieve the metadata for each Amazon ECS-
optimized AMI variant.

Retrieving the metadata of the latest stable Amazon ECS-optimized AMI

You can retrieve the latest stable Amazon ECS-optimized AMI using the AWS CLI with the following
AWS CLI commands.

• For the Amazon ECS-optimized Windows Server 2022 Full AMI:

aws ssm get-parameters --names /aws/service/ami-windows-latest/Windows_Server-2022-
English-Full-ECS_Optimized --region us-east-1

• For the Amazon ECS-optimized Windows Server 2022 Core AMI:

aws ssm get-parameters --names /aws/service/ami-windows-latest/Windows_Server-2022-
English-Core-ECS_Optimized --region us-east-1

Windows instances 430

Amazon Elastic Container Service Developer Guide

• For the Amazon ECS-optimized Windows Server 2019 Full AMI:

aws ssm get-parameters --names /aws/service/ami-windows-latest/Windows_Server-2019-
English-Full-ECS_Optimized --region us-east-1

• For the Amazon ECS-optimized Windows Server 2019 Core AMI:

aws ssm get-parameters --names /aws/service/ami-windows-latest/Windows_Server-2019-
English-Core-ECS_Optimized --region us-east-1

• For the Amazon ECS-optimized Windows Server 2016 Full AMI:

aws ssm get-parameters --names /aws/service/ami-windows-latest/Windows_Server-2016-
English-Full-ECS_Optimized --region us-east-1

Using the latest recommended Amazon ECS-optimized AMI in an AWS CloudFormation
template

You can reference the latest recommended Amazon ECS-optimized AMI in an AWS CloudFormation
template by referencing the Systems Manager parameter store name.

Parameters:
 LatestECSOptimizedAMI:
 Description: AMI ID
 Type: AWS::SSM::Parameter::Value<AWS::EC2::Image::Id>
 Default: /aws/service/ami-windows-latest/Windows_Server-2019-English-Full-
ECS_Optimized/image_id

Subscribing to Amazon ECS-optimized AMI update notifications

AWS provides two Amazon SNS topic ARNs for notifications related to the Windows Server AMIs.
One topic sends update notifications when new Windows Server AMIs are released. The other topic
sends notifications when previously released Windows Server AMIs are made private. While these
topics are not specific to the Amazon ECS-optimized Windows AMIs, because the Amazon ECS-
optimized Windows AMIs follow the same release schedule, you can use these notifications for an
indication for when new Amazon ECS-optimized Windows AMIs are updated. For more information
on subscribing to Windows AMI notifications, see Subscribing to Windows AMI notifications in the
Amazon EC2 User Guide for Windows Instances.

Windows instances 431

https://docs.aws.amazon.com/AWSEC2/latest/WindowsGuide/aws-windows-ami.html#subscribe-notifications

Amazon Elastic Container Service Developer Guide

Note

Your user, or the role attached to your user must have the sns::subscribe IAM
permission to subscribe to an Amazon SNS topic.

Amazon ECS-optimized AMI versions

View the current and previous versions of the Amazon ECS-optimized AMIs and their corresponding
versions of the Amazon ECS container agent, Docker, and the ecs-init package.

The Amazon ECS-optimized AMI metadata, including the AMI ID, for each variant can be retrieved
programmatically. For more information, see the section called “Retrieving Amazon ECS-Optimized
AMI metadata”.

Windows Amazon ECS-optimized AMIs versions

The following tabs display a list of Windows Amazon ECS-optimized AMIs versions.

Note

For details on referencing the Systems Manager Parameter Store parameter in an AWS
CloudFormation template, see Using the latest recommended Amazon ECS-optimized AMI
in an AWS CloudFormation template.

Important

To ensure that customers have the latest security updates by default, Amazon ECS
maintains at least the last three Windows Amazon ECS-optimized AMIs. After releasing new
Windows Amazon ECS-optimized AMIs, Amazon ECS makes the Windows Amazon ECS-
optimized AMIs that are older private. If there is a private AMI that you need access to, let
us know by filing a ticket with Cloud Support.

Windows Server 2022 Full AMI versions

The table below lists the current and previous versions of the Amazon ECS-optimized Windows
Server 2022 Full AMI and their corresponding versions of the Amazon ECS container agent and
Docker.

Windows instances 432

Amazon Elastic Container Service Developer Guide

Amazon ECS-optim
ized Windows
Server 2022 Full
AMI

Amazon ECS
container agent
version

Docker version Visibility

Windows_S
erver-2022-English
-Full-ECS_Optimize
d-2024.02.13

1.81.0 20.10.23
(Docker CE)

Public

Windows_S
erver-2022-English
-Full-ECS_Optimize
d-2024.01.09

1.79.2 20.10.23
(Docker CE)

Public

Windows_S
erver-2022-English
-Full-ECS_Optimize
d-2023.12.12

1.79.1 20.10.23
(Docker CE)

Public

Windows_S
erver-2022-English
-Full-ECS_Optimize
d-2023.11.14

1.79.0 20.10.23
(Docker CE)

Public

Windows_S
erver-2022-English
-Full-ECS_Optimize
d-2023.10.11

1.77.0 20.10.21
(Docker CE)

Public

Windows_S
erver-2022-English
-Full-ECS_Optimize
d-2023.09.15

1.75.3 20.10.21
(Docker CE)

Private

Windows_S
erver-2022-English

1.74.1 20.10.21
(Docker CE)

Private

Windows instances 433

Amazon Elastic Container Service Developer Guide

Amazon ECS-optim
ized Windows
Server 2022 Full
AMI

Amazon ECS
container agent
version

Docker version Visibility

-Full-ECS_Optimize
d-2023.08.09

Windows_S
erver-2022-English
-Full-ECS_Optimize
d-2023.07.11

1.73.1 20.10.21
(Docker CE)

Private

Windows_S
erver-2022-English
-Full-ECS_Optimize
d-2023.06.13

1.72.0 20.10.21
(Docker CE)

Private

Windows_S
erver-2022-English
-Full-ECS_Optimize
d-2023.05.18

1.71.1 20.10.21
(Docker CE)

Private

Windows_S
erver-2022-English
-Full-ECS_Optimize
d-2023.04.18

1.70.2 20.10.21
(Docker CE)

Private

Windows_S
erver-2022-English
-Full-ECS_Optimize
d-2023.03.21

1.69.0 20.10.21
(Docker CE)

Private

Windows_S
erver-2022-English
-Full-ECS_Optimize
d-2023.02.21

1.68.2 20.10.21
(Docker CE)

Private

Windows instances 434

Amazon Elastic Container Service Developer Guide

Amazon ECS-optim
ized Windows
Server 2022 Full
AMI

Amazon ECS
container agent
version

Docker version Visibility

Windows_S
erver-2022-English
-Full-ECS_Optimize
d-2023.01.11

1.68.0 20.10.21
(Docker CE)

Private

Windows_S
erver-2022-English
-Full-ECS_Optimize
d-2022.12.14

1.67.2 20.10.21
(Docker CE)

Private

Windows_S
erver-2022-English
-Full-ECS_Optimize
d-2022.11.09

1.65.1 20.10.21
(Docker CE)

Private

Windows_S
erver-2022-English
-Full-ECS_Optimize
d-2022.10.12

1.64.0 20.10.17
(Docker CE)

Private

Windows_S
erver-2022-English
-Full-ECS_Optimize
d-2022.09.22

1.63.1 20.10.17
(Docker CE)

Private

Windows_S
erver-2022-English
-Full-ECS_Optimize
d-2022.09.14

1.62.2 20.10.17
(Docker CE)

Private

Windows instances 435

Amazon Elastic Container Service Developer Guide

Amazon ECS-optim
ized Windows
Server 2022 Full
AMI

Amazon ECS
container agent
version

Docker version Visibility

Windows_S
erver-2022-English
-Full-ECS_Optimize
d-2022.08.15

1.62.1 20.10.9 Private

Windows_S
erver-2022-English
-Full-ECS_Optimize
d-2022.07.13

1.61.3 20.10.9 Private

Windows_S
erver-2022-English
-Full-ECS_Optimize
d-2022.06.15

1.61.2 20.10.9 Private

Windows_S
erver-2022-English
-Full-ECS_Optimize
d-2022.01.18

1.57.1 20.10.9 Private

Windows_S
erver-2022-English
-Full-ECS_Optimize
d-2021.12.16

1.57.1 20.10.7 Private

Windows_S
erver-2022-English
-Full-ECS_Optimize
d-2021.11.11

1.57.0 20.10.7 Private

Windows instances 436

Amazon Elastic Container Service Developer Guide

Amazon ECS-optim
ized Windows
Server 2022 Full
AMI

Amazon ECS
container agent
version

Docker version Visibility

Windows_S
erver-2022-English
-Full-ECS_Optimize
d-2021.009.23

1.55.3 20.10.7 Private

Use the following AWS CLI command to retrieve the current Amazon ECS-optimized Windows
Server 2022 Full AMI.

aws ssm get-parameters --names /aws/service/ami-windows-latest/Windows_Server-2022-
English-Full-ECS_Optimized

Windows Server 2022 Core AMI versions

The table below lists the current and previous versions of the Amazon ECS-optimized Windows
Server 2022 Core AMI and their corresponding versions of the Amazon ECS container agent and
Docker.

Amazon ECS-optim
ized Windows
Server 2022 Core
AMI

Amazon ECS
container agent
version

Docker version Visibility

Windows_S
erver-2022-English-
Core-ECS_Optimize
d-2024.02.13

1.81.0 20.10.23
(Docker CE)

Public

Windows_S
erver-2022-English-
Core-ECS_Optimize
d-2024.01.09

1.79.2 20.10.23
(Docker CE)

Public

Windows instances 437

Amazon Elastic Container Service Developer Guide

Amazon ECS-optim
ized Windows
Server 2022 Core
AMI

Amazon ECS
container agent
version

Docker version Visibility

Windows_S
erver-2022-English-
Core-ECS_Optimize
d-2023.12.12

1.79.1 20.10.23
(Docker CE)

Public

Windows_S
erver-2022-English-
Core-ECS_Optimize
d-2023.11.14

1.79.0 20.10.23
(Docker CE)

Public

Windows_S
erver-2022-English-
Core-ECS_Optimize
d-2023.10.11

1.77.0 20.10.21
(Docker CE)

Public

Windows_S
erver-2022-English-
Core-ECS_Optimize
d-2023.09.15

1.75.3 20.10.21
(Docker CE)

Private

Windows_S
erver-2022-English-
Core-ECS_Optimize
d-2023.08.09

1.74.1 20.10.21
(Docker CE)

Private

Windows_S
erver-2022-English-
Core-ECS_Optimize
d-2023.07.11

1.73.1 20.10.21
(Docker CE)

Private

Windows instances 438

Amazon Elastic Container Service Developer Guide

Amazon ECS-optim
ized Windows
Server 2022 Core
AMI

Amazon ECS
container agent
version

Docker version Visibility

Windows_S
erver-2022-English-
Core-ECS_Optimize
d-2023.06.13

1.72.0 20.10.21
(Docker CE)

Private

Windows_S
erver-2022-English-
Core-ECS_Optimize
d-2023.05.18

1.71.1 20.10.21
(Docker CE)

Private

Windows_S
erver-2022-English-
Core-ECS_Optimize
d-2023.04.18

1.70.2 20.10.21
(Docker CE)

Private

Windows_S
erver-2022-English-
Core-ECS_Optimize
d-2023.03.21

1.69.0 20.10.21
(Docker CE)

Private

Windows_S
erver-2022-English-
Core-ECS_Optimize
d-2023.02.21

1.68.2 20.10.21
(Docker CE)

Private

Windows_S
erver-2022-English-
Core-ECS_Optimize
d-2023.01.11

1.68.0 20.10.21
(Docker CE)

Private

Windows instances 439

Amazon Elastic Container Service Developer Guide

Amazon ECS-optim
ized Windows
Server 2022 Core
AMI

Amazon ECS
container agent
version

Docker version Visibility

Windows_S
erver-2022-English-
Core-ECS_Optimize
d-2022.12.14

1.67.2 20.10.21
(Docker CE)

Private

Windows_S
erver-2022-English-
Core-ECS_Optimize
d-2022.11.09

1.65.1 20.10.21
(Docker CE)

Private

Windows_S
erver-2022-English-
Core-ECS_Optimize
d-2022.10.12

1.64.0 20.10.17
(Docker CE)

Private

Windows_S
erver-2022-English-
Core-ECS_Optimize
d-2022.09.22

1.63.1 20.10.17
(Docker CE)

Private

Windows_S
erver-2022-English-
Core-ECS_Optimize
d-2022.09.14

1.62.2 20.10.17
(Docker CE)

Private

Windows_S
erver-2022-English-
Core-ECS_Optimize
d-2022.08.15

1.62.1 20.10.9 Private

Windows instances 440

Amazon Elastic Container Service Developer Guide

Amazon ECS-optim
ized Windows
Server 2022 Core
AMI

Amazon ECS
container agent
version

Docker version Visibility

Windows_S
erver-2022-English-
Core-ECS_Optimize
d-2022.07.13

1.61.3 20.10.9 Private

Windows_S
erver-2022-English-
Core-ECS_Optimize
d-2022.06.15

1.61.2 20.10.9 Private

Windows_S
erver-2022-English-
Core-ECS_Optimize
d-2021.12.16

1.57.1 20.10.7 Private

Windows_S
erver-2022-English-
Core-ECS_Optimize
d-2021.11.11

1.57.0 20.10.7 Private

Windows_S
erver-2022-English-
Core-ECS_Optimize
d-2021.009.23

1.55.3 20.10.7 Private

Use the following AWS CLI command to retrieve the current Amazon ECS-optimized Windows
Server 2022 Full AMI.

aws ssm get-parameters --names /aws/service/ami-windows-latest/Windows_Server-2022-
English-Core-ECS_Optimized

Windows instances 441

Amazon Elastic Container Service Developer Guide

Windows Server 2019 Full AMI versions

The table below lists the current and previous versions of the Amazon ECS-optimized Windows
Server 2019 Full AMI and their corresponding versions of the Amazon ECS container agent and
Docker.

Amazon ECS-optim
ized Windows
Server 2019 Full
AMI

Amazon ECS
container agent
version

Docker version Visibility

Windows_S
erver-2019-English
-Full-ECS_Optimize
d-2024.02.13

1.81.0 20.10.23
(Docker CE)

Public

Windows_S
erver-2019-English
-Full-ECS_Optimize
d-2024.01.09

1.79.2 20.10.23
(Docker CE)

Public

Windows_S
erver-2019-English
-Full-ECS_Optimize
d-2023.12.12

1.79.1 20.10.23
(Docker CE)

Public

Windows_S
erver-2019-English
-Full-ECS_Optimize
d-2023.11.14

1.79.0 20.10.23
(Docker CE)

Public

Windows_S
erver-2019-English
-Full-ECS_Optimize
d-2023.10.11

1.77.0 20.10.21
(Docker CE)

Public

Windows_S
erver-2019-English

1.75.3 20.10.21
(Docker CE)

Private

Windows instances 442

Amazon Elastic Container Service Developer Guide

Amazon ECS-optim
ized Windows
Server 2019 Full
AMI

Amazon ECS
container agent
version

Docker version Visibility

-Full-ECS_Optimize
d-2023.09.15

Windows_S
erver-2019-English
-Full-ECS_Optimize
d-2023.08.09

1.74.1 20.10.21
(Docker CE)

Private

Windows_S
erver-2019-English
-Full-ECS_Optimize
d-2023.07.11

1.73.1 20.10.21
(Docker CE)

Private

Windows_S
erver-2019-English
-Full-ECS_Optimize
d-2023.06.13

1.72.0 20.10.21
(Docker CE)

Private

Windows_S
erver-2019-English
-Full-ECS_Optimize
d-2023.05.18

1.71.1 20.10.21
(Docker CE)

Private

Windows_S
erver-2019-English
-Full-ECS_Optimize
d-2023.04.18

1.70.2 20.10.21
(Docker CE)

Private

Windows_S
erver-2019-English
-Full-ECS_Optimize
d-2023.03.21

1.69.0 20.10.21
(Docker CE)

Private

Windows instances 443

Amazon Elastic Container Service Developer Guide

Amazon ECS-optim
ized Windows
Server 2019 Full
AMI

Amazon ECS
container agent
version

Docker version Visibility

Windows_S
erver-2019-English
-Full-ECS_Optimize
d-2023.02.21

1.68.2 20.10.21
(Docker CE)

Private

Windows_S
erver-2019-English
-Full-ECS_Optimize
d-2023.01.11

1.68.0 20.10.21
(Docker CE)

Private

Windows_S
erver-2019-English
-Full-ECS_Optimize
d-2022.12.14

1.67.2 20.10.21
(Docker CE)

Private

Windows_S
erver-2019-English
-Full-ECS_Optimize
d-2022.11.09

1.65.1 20.10.21
(Docker CE)

Private

Windows_S
erver-2019-English
-Full-ECS_Optimize
d-2022.10.12

1.64.0 20.10.17
(Docker CE)

Private

Windows_S
erver-2019-English
-Full-ECS_Optimize
d-2022.09.22

1.63.1 20.10.17
(Docker CE)

Private

Windows instances 444

Amazon Elastic Container Service Developer Guide

Amazon ECS-optim
ized Windows
Server 2019 Full
AMI

Amazon ECS
container agent
version

Docker version Visibility

Windows_S
erver-2019-English
-Full-ECS_Optimize
d-2022.09.14

1.62.2 20.10.17
(Docker CE)

Private

Windows_S
erver-2019-English
-Full-ECS_Optimize
d-2022.08.15

1.62.1 20.10.9 Private

Windows_S
erver-2019-English
-Full-ECS_Optimize
d-2022.07.13

1.61.3 20.10.9 Private

Windows_S
erver-2019-English
-Full-ECS_Optimize
d-2022.06.15

1.61.2 20.10.9 Private

Windows_S
erver-2019-English
-Full-ECS_Optimize
d-2022.01.18

1.57.1 20.10.9 Private

Windows_S
erver-2019-English
-Full-ECS_Optimize
d-2021.12.16

1.57.1 20.10.7 Private

Windows instances 445

Amazon Elastic Container Service Developer Guide

Amazon ECS-optim
ized Windows
Server 2019 Full
AMI

Amazon ECS
container agent
version

Docker version Visibility

Windows_S
erver-2019-English
-Full-ECS_Optimize
d-2021.11.11

1.57.0 20.10.7 Private

Windows_S
erver-2019-English
-Full-ECS_Optimize
d-2021.009.23

1.55.3 20.10.7 Private

Windows_S
erver-2019-English
-Full-ECS_Optimize
d-2021.08.12

1.55.0 20.10.6 Public

Windows_S
erver-2019-English
-Full-ECS_Optimize
d-2021.07.13

1.54.02 20.10.6 Private

Windows_S
erver-2019-English
-Full-ECS_Optimize
d-2021.07.08

1.54.0 20.10.5 Private

Windows_S
erver-2019-English
-Full-ECS_Optimize
d-2021.06.11

1.53.0 20.10.5 Private

Windows instances 446

Amazon Elastic Container Service Developer Guide

Amazon ECS-optim
ized Windows
Server 2019 Full
AMI

Amazon ECS
container agent
version

Docker version Visibility

Windows_S
erver-2019-English
-Full-ECS_Optimize
d-2021.05.21

1.52.2 20.10.4 Private

Windows_S
erver-2019-English
-Full-ECS_Optimize
d-2021.04.14

1.51.0 20.10.0 Private

Windows_S
erver-2019-English
-Full-ECS_Optimize
d-2021.03.11

1.50.2 19.03.14 Private

Windows_S
erver-2019-English
-Full-ECS_Optimize
d-2021.02.10

1.50.0 19.03.14 Private

Windows_S
erver-2019-English
-Full-ECS_Optimize
d-2021.01.13

1.49.0 19.03.14 Private

Windows_S
erver-2019-English
-Full-ECS_Optimize
d-2020.11.18

1.48.0 19.03.13 Private

Windows instances 447

Amazon Elastic Container Service Developer Guide

Amazon ECS-optim
ized Windows
Server 2019 Full
AMI

Amazon ECS
container agent
version

Docker version Visibility

Windows_S
erver-2019-English
-Full-ECS_Optimize
d-2020.11.06

1.47.0 19.03.11 Private

Windows_S
erver-2019-English
-Full-ECS_Optimize
d-2020.10.14

1.45.0 19.03.11 Private

Windows_S
erver-2019-English
-Full-ECS_Optimize
d-2020.08.12

1.43.0 19.03.11 Private

Windows_S
erver-2019-English
-Full-ECS_Optimize
d-2020.07.15

1.41.1 19.03.5 Private

Windows_S
erver-2019-English
-Full-ECS_Optimize
d-2020.06.11

1.40.0 19.03.5 Private

Windows_S
erver-2019-English
-Full-ECS_Optimize
d-2020.05.14

1.39.0 19.03.5 Private

Windows instances 448

Amazon Elastic Container Service Developer Guide

Amazon ECS-optim
ized Windows
Server 2019 Full
AMI

Amazon ECS
container agent
version

Docker version Visibility

Windows_S
erver-2019-English
-Full-ECS_Optimize
d-2020.01.15

1.35.0 19.03.5 Private

Windows_S
erver-2019-English
-Full-ECS_Optimize
d-2019.12.16

1.34.0 19.03.5 Private

Windows_S
erver-2019-English
-Full-ECS_Optimize
d-2019.11.25

1.34.0 19.03.4 Private

Windows_S
erver-2019-English
-Full-ECS_Optimize
d-2019.11.13

1.32.1 19.03.4 Private

Windows_S
erver-2019-English
-Full-ECS_Optimize
d-2019.10.09

1.32.0 19.03.2 Private

Windows_S
erver-2019-English
-Full-ECS_Optimize
d-2019.09.11

1.30.0 19.03.1 Private

Windows instances 449

Amazon Elastic Container Service Developer Guide

Amazon ECS-optim
ized Windows
Server 2019 Full
AMI

Amazon ECS
container agent
version

Docker version Visibility

Windows_S
erver-2019-English
-Full-ECS_Optimize
d-2019.08.16

1.29.1 19.03.1 Private

Windows_S
erver-2019-English
-Full-ECS_Optimize
d-2019.07.19

1.29.0 18.09.8 Private

Windows_S
erver-2019-English
-Full-ECS_Optimize
d-2019.05.10

1.27.0 18.09.4 Private

Use the following AWS CLI command to retrieve the current Amazon ECS-optimized Windows
Server 2019 Full AMI.

aws ssm get-parameters --names /aws/service/ami-windows-latest/Windows_Server-2019-
English-Full-ECS_Optimized

Windows Server 2019 Core AMI versions

The table below lists the current and previous versions of the Amazon ECS-optimized Windows
Server 2019 Core AMI and their corresponding versions of the Amazon ECS container agent and
Docker.

Windows instances 450

Amazon Elastic Container Service Developer Guide

Amazon ECS-optim
ized Windows
Server 2019 Core
AMI

Amazon ECS
container agent
version

Docker version Visibility

Windows_S
erver-2019-English-
Core-ECS_Optimize
d-2024.02.13

1.81.0 20.10.23
(Docker CE)

Public

Windows_S
erver-2019-English-
Core-ECS_Optimize
d-2024.01.09

1.79.2 20.10.23
(Docker CE)

Public

Windows_S
erver-2019-English-
Core-ECS_Optimize
d-2023.12.12

1.79.1 20.10.23
(Docker CE)

Public

Windows_S
erver-2019-English-
Core-ECS_Optimize
d-2023.11.14

1.79.0 20.10.23
(Docker CE)

Public

Windows_S
erver-2019-English-
Core-ECS_Optimize
d-2023.10.11

1.77.0 20.10.21
(Docker CE)

Public

Windows_S
erver-2019-English-
Core-ECS_Optimize
d-2023.09.15

1.75.3 20.10.21
(Docker CE)

Private

Windows_S
erver-2019-English-

1.74.1 20.10.21
(Docker CE)

Private

Windows instances 451

Amazon Elastic Container Service Developer Guide

Amazon ECS-optim
ized Windows
Server 2019 Core
AMI

Amazon ECS
container agent
version

Docker version Visibility

Core-ECS_Optimize
d-2023.08.09

Windows_S
erver-2019-English-
Core-ECS_Optimize
d-2023.07.11

1.73.1 20.10.21
(Docker CE)

Private

Windows_S
erver-2019-English-
Core-ECS_Optimize
d-2023.06.13

1.72.0 20.10.21
(Docker CE)

Private

Windows_S
erver-2019-English-
Core-ECS_Optimize
d-2023.05.18

1.71.1 20.10.21
(Docker CE)

Private

Windows_S
erver-2019-English-
Core-ECS_Optimize
d-2023.04.18

1.70.2 20.10.21
(Docker CE)

Private

Windows_S
erver-2019-English-
Core-ECS_Optimize
d-2023.03.21

1.69.0 20.10.21
(Docker CE)

Private

Windows_S
erver-2019-English-
Core-ECS_Optimize
d-2023.02.21

1.68.2 20.10.21
(Docker CE)

Private

Windows instances 452

Amazon Elastic Container Service Developer Guide

Amazon ECS-optim
ized Windows
Server 2019 Core
AMI

Amazon ECS
container agent
version

Docker version Visibility

Windows_S
erver-2019-English-
Core-ECS_Optimize
d-2023.01.11

1.68.0 20.10.21
(Docker CE)

Private

Windows_S
erver-2019-English-
Core-ECS_Optimize
d-2022.12.14

1.67.2 20.10.21
(Docker CE)

Private

Windows_S
erver-2019-English-
Core-ECS_Optimize
d-2022.11.09

1.65.1 20.10.21
(Docker CE)

Private

Windows_S
erver-2019-English-
Core-ECS_Optimize
d-2022.10.12

1.64.0 20.10.17
(Docker CE)

Private

Windows_S
erver-2019-English-
Core-ECS_Optimize
d-2022.09.22

1.63.1 20.10.17
(Docker CE)

Private

Windows_S
erver-2019-English-
Core-ECS_Optimize
d-2022.09.14

1.62.2 20.10.17
(Docker CE)

Private

Windows instances 453

Amazon Elastic Container Service Developer Guide

Amazon ECS-optim
ized Windows
Server 2019 Core
AMI

Amazon ECS
container agent
version

Docker version Visibility

Windows_S
erver-2019-English-
Core-ECS_Optimize
d-2022.08.15

1.62.1 20.10.9 Private

Windows_S
erver-2019-English-
Core-ECS_Optimize
d-2022.07.13

1.61.3 20.10.9 Private

Windows_S
erver-2019-English-
Core-ECS_Optimize
d-2022.06.15

1.61.2 20.10.9 Private

Windows_S
erver-2019-English-
Core-ECS_Optimize
d-2022.01.18

1.57.1 20.10.9 Private

Windows_S
erver-2019-English-
Core-ECS_Optimize
d-2021.12.16

1.57.1 20.10.7 Private

Windows_S
erver-2019-English-
Core-ECS_Optimize
d-2021.11.11

1.57.0 20.10.7 Private

Windows instances 454

Amazon Elastic Container Service Developer Guide

Amazon ECS-optim
ized Windows
Server 2019 Core
AMI

Amazon ECS
container agent
version

Docker version Visibility

Windows_S
erver-2019-English-
Core-ECS_Optimize
d-2021.09.23

1.55.3 20.10.7 Private

Windows_S
erver-2019-English-
Core-ECS_Optimize
d-2021.08.12

1.55.0 20.10.6 Private

Windows_S
erver-2019-English-
Core-ECS_Optimize
d-2021.07.13

1.54.02 20.10.6 Private

Windows_S
erver-2019-English-
Core-ECS_Optimize
d-2021.07.08

1.54.0 20.10.6 Private

Windows_S
erver-2019-English-
Core-ECS_Optimize
d-2021.06.11

1.53.0 20.10.5 Private

Windows_S
erver-2019-English-
Core-ECS_Optimize
d-2021.05.21

1.52.2 20.10.4 Private

Windows instances 455

Amazon Elastic Container Service Developer Guide

Amazon ECS-optim
ized Windows
Server 2019 Core
AMI

Amazon ECS
container agent
version

Docker version Visibility

Windows_S
erver-2019-English-
Core-ECS_Optimize
d-2021.04.14

1.51.0 20.10.0 Private

Windows_S
erver-2019-English-
Core-ECS_Optimize
d-2021.03.11

1.50.2 19.03.14 Private

Windows_S
erver-2019-English-
Core-ECS_Optimize
d-2021.02.10

1.50.0 19.03.14 Private

Windows_S
erver-2019-English-
Core-ECS_Optimize
d-2021.01.13

1.49.0 19.03.14 Private

Windows_S
erver-2019-English-
Core-ECS_Optimize
d-2020.11.18

1.48.0 19.03.13 Private

Windows_S
erver-2019-English-
Core-ECS_Optimize
d-2020.11.06

1.47.0 19.03.11 Private

Windows instances 456

Amazon Elastic Container Service Developer Guide

Amazon ECS-optim
ized Windows
Server 2019 Core
AMI

Amazon ECS
container agent
version

Docker version Visibility

Windows_S
erver-2019-English-
Core-ECS_Optimize
d-2020.10.14

1.45.0 19.03.11 Private

Windows_S
erver-2019-English-
Core-ECS_Optimize
d-2020.09.09

1.44.3 19.03.11 Private

Windows_S
erver-2019-English-
Core-ECS_Optimize
d-2020.08.12

1.43.0 19.03.11 Private

Windows_S
erver-2019-English-
Core-ECS_Optimize
d-2020.07.15

1.41.1 19.03.5 Private

Windows_S
erver-2019-English-
Core-ECS_Optimize
d-2020.06.11

1.40.0 19.03.5 Private

Windows_S
erver-2019-English-
Core-ECS_Optimize
d-2020.05.14

1.39.0 19.03.5 Private

Windows instances 457

Amazon Elastic Container Service Developer Guide

Amazon ECS-optim
ized Windows
Server 2019 Core
AMI

Amazon ECS
container agent
version

Docker version Visibility

Windows_S
erver-2019-English-
Core-ECS_Optimize
d-2020.01.15

1.35.0 19.03.5 Private

Windows_S
erver-2019-English-
Core-ECS_Optimize
d-2019.12.16

1.34.0 19.03.5 Private

Windows_S
erver-2019-English-
Core-ECS_Optimize
d-2019.11.25

1.34.0 19.03.4 Private

Windows_S
erver-2019-English-
Core-ECS_Optimize
d-2019.11.13

1.32.1 19.03.4 Private

Windows_S
erver-2019-English-
Core-ECS_Optimize
d-2019.10.09

1.32.0 19.03.2 Private

Use the following AWS CLI command to retrieve the current Amazon ECS-optimized Windows
Server 2019 Full AMI.

aws ssm get-parameters --names /aws/service/ami-windows-latest/Windows_Server-2019-
English-Core-ECS_Optimized

Windows instances 458

Amazon Elastic Container Service Developer Guide

Windows Server 2016 Full AMI versions

The table below lists the current and previous versions of the Amazon ECS-optimized Windows
Server 2016 Full AMI and their corresponding versions of the Amazon ECS container agent and
Docker.

Amazon ECS-optim
ized Windows
Server 2016 Full
AMI

Amazon ECS
container agent
version

Docker version Visibility

Windows_S
erver-2016-English
-Full-ECS_Optimize
d-2024.02.13

1.81.0 20.10.23
(Docker CE)

Public

Windows_S
erver-2016-English
-Full-ECS_Optimize
d-2024.01.09

1.79.2 20.10.23
(Docker CE)

Public

Windows_S
erver-2016-English
-Full-ECS_Optimize
d-2023.12.12

1.79.1 20.10.23
(Docker CE)

Public

Windows_S
erver-2016-English
-Full-ECS_Optimize
d-2023.11.14

1.79.0 20.10.23
(Docker CE)

Public

Windows_S
erver-2016-English
-Full-ECS_Optimize
d-2023.10.11

1.77.0 20.10.21
(Docker CE)

Public

Windows_S
erver-2016-English

1.75.3 20.10.21
(Docker CE)

Private

Windows instances 459

Amazon Elastic Container Service Developer Guide

Amazon ECS-optim
ized Windows
Server 2016 Full
AMI

Amazon ECS
container agent
version

Docker version Visibility

-Full-ECS_Optimize
d-2023.09.15

Windows_S
erver-2016-English
-Full-ECS_Optimize
d-2023.08.09

1.74.1 20.10.21
(Docker CE)

Private

Windows_S
erver-2016-English
-Full-ECS_Optimize
d-2023.07.11

1.73.1 20.10.21
(Docker CE)

Private

Windows_S
erver-2016-English
-Full-ECS_Optimize
d-2023.06.13

1.72.0 20.10.21
(Docker CE)

Private

Windows_S
erver-2016-English
-Full-ECS_Optimize
d-2023.05.18

1.71.1 20.10.21
(Docker CE)

Private

Windows_S
erver-2016-English
-Full-ECS_Optimize
d-2023.04.18

1.70.2 20.10.21
(Docker CE)

Private

Windows_S
erver-2016-English
-Full-ECS_Optimize
d-2023.03.21

1.69.0 20.10.21
(Docker CE)

Private

Windows instances 460

Amazon Elastic Container Service Developer Guide

Amazon ECS-optim
ized Windows
Server 2016 Full
AMI

Amazon ECS
container agent
version

Docker version Visibility

Windows_S
erver-2016-English
-Full-ECS_Optimize
d-2023.02.21

1.68.2 20.10.21
(Docker CE)

Private

Windows_S
erver-2016-English
-Full-ECS_Optimize
d-2023.01.11

1.68.0 20.10.21
(Docker CE)

Private

Windows_S
erver-2016-English
-Full-ECS_Optimize
d-2022.12.14

1.67.2 20.10.21
(Docker CE)

Private

Windows_S
erver-2016-English
-Full-ECS_Optimize
d-2022.11.09

1.65.1 20.10.21
(Docker CE)

Private

Windows_S
erver-2016-English
-Full-ECS_Optimize
d-2022.10.12

1.64.0 20.10.17
(Docker CE)

Private

Windows_S
erver-2016-English
-Full-ECS_Optimize
d-2022.09.22

1.63.1 20.10.17
(Docker CE)

Private

Windows instances 461

Amazon Elastic Container Service Developer Guide

Amazon ECS-optim
ized Windows
Server 2016 Full
AMI

Amazon ECS
container agent
version

Docker version Visibility

Windows_S
erver-2016-English
-Full-ECS_Optimize
d-2022.09.14

1.62.2 20.10.17
(Docker CE)

Private

Windows_S
erver-2016-English
-Full-ECS_Optimize
d-2022.08.15

1.62.1 20.10.9 Private

Windows_S
erver-2016-English
-Full-ECS_Optimize
d-2022.07.13

1.61.3 20.10.9 Private

Windows_S
erver-2016-English
-Full-ECS_Optimize
d-2022.06.15

1.61.2 20.10.9 Private

Windows_S
erver-2016-English
-Full-ECS_Optimize
d-2022.01.18

1.57.1 20.10.9 Private

Windows_S
erver-2016-English
-Full-ECS_Optimize
d-2021.12.16

1.57.1 20.10.7 Private

Windows instances 462

Amazon Elastic Container Service Developer Guide

Amazon ECS-optim
ized Windows
Server 2016 Full
AMI

Amazon ECS
container agent
version

Docker version Visibility

Windows_S
erver-2016-English
-Full-ECS_Optimize
d-2021.11.11

1.57.0 20.10.7 Private

Windows_S
erver-2016-English
-Full-ECS_Optimize
d-2021.09.23

1.55.3 20.10.7 Private

Windows_S
erver-2016-English
-Full-ECS_Optimize
d-2021.08.12

1.55.0 20.10.6 Private

Windows_S
erver-2016-English
-Full-ECS_Optimize
d-2021.07.13

1.54.02 20.10.6 Private

Windows_S
erver-2016-English
-Full-ECS_Optimize
d-2021.07.08

1.54.0 20.10.5 Private

Windows_S
erver-2016-English
-Full-ECS_Optimize
d-2021.06.11

1.53.0 20.10.5 Private

Windows instances 463

Amazon Elastic Container Service Developer Guide

Amazon ECS-optim
ized Windows
Server 2016 Full
AMI

Amazon ECS
container agent
version

Docker version Visibility

Windows_S
erver-2016-English
-Full-ECS_Optimize
d-2021.05.21

1.52.2 20.10.4 Private

Windows_S
erver-2016-English
-Full-ECS_Optimize
d-2021.04.14

1.51.0 20.10.0 Private

Windows_S
erver-2016-English
-Full-ECS_Optimize
d-2021.03.11

1.50.2 19.03.14 Private

Windows_S
erver-2016-English
-Full-ECS_Optimize
d-2021.02.10

1.50.0 19.03.14 Private

Windows_S
erver-2016-English
-Full-ECS_Optimize
d-2021.01.13

1.49.0 19.03.14 Private

Windows_S
erver-2016-English
-Full-ECS_Optimize
d-2020.11.18

1.48.0 19.03.13 Private

Windows instances 464

Amazon Elastic Container Service Developer Guide

Amazon ECS-optim
ized Windows
Server 2016 Full
AMI

Amazon ECS
container agent
version

Docker version Visibility

Windows_S
erver-2016-English
-Full-ECS_Optimize
d-2020.11.06

1.47.0 19.03.11 Private

Windows_S
erver-2016-English
-Full-ECS_Optimize
d-2020.10.14

1.45.0 19.03.12 Private

Windows_S
erver-2016-English
-Full-ECS_Optimize
d-2020.09.09

1.44.3 19.03.11 Private

Windows_S
erver-2016-English
-Full-ECS_Optimize
d-2020.08.12

1.43.0 19.03.11 Private

Windows_S
erver-2016-English
-Full-ECS_Optimize
d-2020.07.15

1.41.1 19.03.5 Private

Windows_S
erver-2016-English
-Full-ECS_Optimize
d-2020.06.11

1.40.0 19.03.5 Private

Windows instances 465

Amazon Elastic Container Service Developer Guide

Amazon ECS-optim
ized Windows
Server 2016 Full
AMI

Amazon ECS
container agent
version

Docker version Visibility

Windows_S
erver-2016-English
-Full-ECS_Optimize
d-2020.05.14

1.39.0 19.03.5 Private

Windows_S
erver-2016-English
-Full-ECS_Optimize
d-2020.01.15

1.35.0 19.03.5 Private

Windows_S
erver-2016-English
-Full-ECS_Optimize
d-2019.12.16

1.34.0 19.03.5 Private

Windows_S
erver-2016-English
-Full-ECS_Optimize
d-2019.11.25

1.34.0 19.03.4 Private

Windows_S
erver-2016-English
-Full-ECS_Optimize
d-2019.11.13

1.32.1 19.03.4 Private

Windows_S
erver-2016-English
-Full-ECS_Optimize
d-2019.10.09

1.32.0 19.03.2 Private

Windows instances 466

Amazon Elastic Container Service Developer Guide

Amazon ECS-optim
ized Windows
Server 2016 Full
AMI

Amazon ECS
container agent
version

Docker version Visibility

Windows_S
erver-2016-English
-Full-ECS_Optimize
d-2019.09.11

1.30.0 19.03.1 Private

Windows_S
erver-2016-English
-Full-ECS_Optimize
d-2019.08.16

1.29.1 19.03.1 Private

Windows_S
erver-2016-English
-Full-ECS_Optimize
d-2019.07.19

1.29.0 18.09.8 Private

Windows_S
erver-2016-English
-Full-ECS_Optimize
d-2019.03.07

1.26.0 18.03.1 Private

Use the following AWS CLI Amazon ECS-optimized Windows Server 2016 Full AMI.

aws ssm get-parameters --names /aws/service/ami-windows-latest/Windows_Server-2016-
English-Full-ECS_Optimized

Building your own Amazon ECS-optimized Windows AMI

Use EC2 Image Builder to build your own custom Amazon ECS-optimized Windows AMI. This
makes it easy to use a Windows AMI with your own license on Amazon ECS. Amazon ECS provides
a managed Image Builder component which provides the system configuration needed to run
Windows instances to host your containers. Each Amazon ECS managed component includes a
specific container agent and Docker version. You can customize your image to use either the latest

Windows instances 467

Amazon Elastic Container Service Developer Guide

Amazon ECS managed component, or if an older container agent or Docker version is needed you
can specify a different component.

For a full walkthrough of using EC2 Image Builder, see Getting started with EC2 Image Builder in
the EC2 Image Builder User Guide.

When building your own Amazon ECS-optimized Windows AMI using EC2 Image Builder, you create
an image recipe. Your image recipe must meet the following requirements:

• The Source image should be based on Windows Server 2016 Full, Windows Server 2019 Core,
Windows Server 2019 Full, Windows Server 2022 Core, or Windows Server 2022 Full. Any other
Windows operating system is not supported and may not be compatible with the component.

• When specifying the Build components, the ecs-optimized-ami-windows component is
required. The update-windows component is recommended, which ensures the image contains
the latest security updates.

To specify a different component version, expand the Versioning options menu and specify the
component version you want to use. For more information, see Listing the ecs-optimized-
ami-windows component versions.

Listing the ecs-optimized-ami-windows component versions

When creating an EC2 Image Builder recipe and specifying the ecs-optimized-ami-windows
component, you can either use the default option or you can specify a specific component version.
To determine what component versions are available, along with the Amazon ECS container agent
and Docker versions contained within the component, you can use the AWS Management Console.

Windows instances 468

https://docs.aws.amazon.com/imagebuilder/latest/userguide/getting-started-image-builder.html

Amazon Elastic Container Service Developer Guide

To list the available ecs-optimized-ami-windows component versions

1. Open the EC2 Image Builder console at https://console.aws.amazon.com/imagebuilder/.

2. On the navigation bar, select the Region that are building your image in.

3. In the navigation pane, under the Saved configurations menu, choose Components.

4. On the Components page, in the search bar type ecs-optimized-ami-windows and pull
down the qualification menu and select Quick start (Amazon-managed).

5. Use the Description column to determine the component version with the Amazon ECS
container agent and Docker version your image requires.

External instances (Amazon ECS Anywhere)

Amazon ECS Anywhere provides support for registering an external instance such as an on-
premises server or virtual machine (VM), to your Amazon ECS cluster. External instances are
optimized for running applications that generate outbound traffic or process data. If your
application requires inbound traffic, the lack of Elastic Load Balancing support makes running
these workloads less efficient. Amazon ECS added a new EXTERNAL launch type that you can use
to create services or run tasks on your external instances.

The following provides a high-level system architecture overview of Amazon ECS Anywhere.

External instances 469

https://console.aws.amazon.com/imagebuilder/

Amazon Elastic Container Service Developer Guide

Topics

• Supported operating systems and system architectures

• Considerations

• Registering an external instance to a cluster

• Deregistering an external instance

• Updating the AWS Systems Manager Agent and Amazon ECS container agent on an external
instance

Supported operating systems and system architectures

The following is the list of supported operating systems and system architectures.

• Amazon Linux 2

• CentOS 7

• CentOS Stream 8

• RHEL 7, RHEL 8 — Neither Docker or RHEL's open package repositories support installing Docker
natively on RHEL. You must ensure that Docker is installed before you run the install script that's
described in this document.

• Fedora 32, Fedora 33

• openSUSE Tumbleweed

• Ubuntu 18, Ubuntu 20, Ubuntu 22

• Debian 10

Important

Debian 9 Long Term Support (LTS support) ended on June 30, 2022 and is no longer
supported by Amazon ECS Anywhere.

• SUSE Enterprise Server 15

• The x86_64 and ARM64 CPU architectures are supported.

• The following Windows operating system versions are supported:

• Windows Server 2022

• Windows Server 2019

External instances 470

Amazon Elastic Container Service Developer Guide

• Windows Server 2016

• Windows Server 20H2

Considerations

Before you start using external instances, be aware of the following considerations.

• You can register an external instance to one cluster at a time. For instructions on how to register
an external instance with a different cluster, see Deregistering an external instance.

• Your external instances require an IAM role that allows them to communicate with AWS APIs. For
more information, see ECS Anywhere IAM role.

• Your external instances should not have a preconfigured instance credential chain defined locally
as this will interfere with the registration script.

• To send container logs to CloudWatch Logs, make sure that you create and specify a task
execution IAM role in your task definition.

• When an external instance is registered to a cluster, the ecs.capability.external attribute
is associated with the instance. This attribute identifies the instance as an external instance. You
can add custom attributes to your external instances to use as a task placement constraint. For
more information, see Custom attributes.

• You can add resource tags to your external instance. For more information, see Tagging an
external container instance.

• ECS Exec is supported on external instances. For more information, see Monitor Amazon ECS
containers with ECS Exec.

• The following are additional considerations that are specific to networking with your external
instances. For more information, see Networking with ECS Anywhere.

• Service load balancing isn't supported.

• Service discovery isn't supported.

• Tasks that run on external instances must use the bridge, host, or none network modes. The
awsvpc network mode isn't supported.

• There are Amazon ECS service domains in each AWS Region. These service domains must be
allowed to send traffic to your external instances.

• The SSM Agent installed on your external instance maintains IAM credentials that are rotated
every 30 minutes using a hardware fingerprint. If your external instance loses connection
to AWS, the SSM Agent automatically refreshes the credentials after the connection is re-

External instances 471

Amazon Elastic Container Service Developer Guide

established. For more information, see Validating on-premises servers and virtual machines
using a hardware fingerprint in the AWS Systems Manager User Guide.

• The UpdateContainerAgent API isn't supported. For instructions on how to update the SSM
Agent or the Amazon ECS agent on your external instances, see Updating the AWS Systems
Manager Agent and Amazon ECS container agent on an external instance.

• Amazon ECS capacity providers aren't supported. To create a service or run a standalone task on
your external instances, use the EXTERNAL launch type.

• SELinux isn't supported.

• Using Amazon EFS volumes or specifying an EFSVolumeConfiguration isn't supported.

• Integration with App Mesh isn't supported.

• If you use the console to create an external instance task definition, you must create the task
definition with the console JSON editor.

• When you run ECS Anywhere on Windows, you must use your own Windows license on the on-
premises infrastructure.

• When you use a non Amazon ECS-optimized AMI, run the following commands on the external
container instance to configure rules to use IAM roles for tasks. For more information, see Using
task IAM roles on your Amazon EC2 or external instances.

$ sysctl -w net.ipv4.conf.all.route_localnet=1
$ iptables -t nat -A PREROUTING -p tcp -d 169.254.170.2 --dport 80 -j DNAT --to-
destination 127.0.0.1:51679
$ iptables -t nat -A OUTPUT -d 169.254.170.2 -p tcp -m tcp --dport 80 -j REDIRECT --
to-ports 51679

Networking with ECS Anywhere

Amazon ECS external instances are optimized for running applications that generate outbound
traffic or process data. If your application requires inbound traffic, such as a web service, the lack
of Elastic Load Balancing support makes running these workloads less efficient because there isn't
support for placing these workloads behind a load balancer.

The following are additional considerations that are specific to networking with your external
instances.

• Service load balancing isn't supported.

• Service discovery isn't supported.

External instances 472

https://docs.aws.amazon.com/systems-manager/latest/userguide/ssm-agent-technical-details.html#fingerprint-validation
https://docs.aws.amazon.com/systems-manager/latest/userguide/ssm-agent-technical-details.html#fingerprint-validation

Amazon Elastic Container Service Developer Guide

• Linux tasks that run on external instances must use the bridge, host, or none network modes.
The awsvpc network mode isn't supported.

For more information about each network mode, see Choosing a network mode in the Amazon
ECS Best Practices Guide.

• Windows tasks that run on external instances must use the default network mode.

• There are Amazon ECS service domains in each Region and must be allowed to send traffic to
your external instances.

• The SSM Agent installed on your external instance maintains IAM credentials that are rotated
every 30 minutes using a hardware fingerprint. If your external instance loses connection
to AWS, the SSM Agent automatically refreshes the credentials after the connection is re-
established. For more information, see Validating on-premises servers and virtual machines using
a hardware fingerprint in the AWS Systems Manager User Guide.

The following domains are used for communication between the Amazon ECS service and the
Amazon ECS agent that's installed on your external instance. Make sure that traffic is allowed and
that DNS resolution works. For each endpoint, region represents the Region identifier for an AWS
Region that's supported by Amazon ECS, such as us-east-2 for the US East (Ohio) Region. The
endpoints for all Regions that you use should be allowed. For the ecs-a and ecs-t endpoints, you
should include an asterisk (for example, ecs-a-*).

• ecs-a-*.region.amazonaws.com — This endpoint is used when managing tasks.

• ecs-t-*.region.amazonaws.com — This endpoint is used to manage task and container
metrics.

• ecs.region.amazonaws.com — This is the service endpoint for Amazon ECS.

• ssm.region.amazonaws.com — This is the service endpoint for AWS Systems Manager.

• ec2messages.region.amazonaws.com — This is the service endpoint that AWS Systems
Manager uses to communicate between the Systems Manager agent and the Systems Manager
service in the cloud.

• ssmmessages.region.amazonaws.com — This is the service endpoint that is required to
create and delete session channels with the Session Manager service in the cloud.

• If your tasks require communication with any other AWS services, make sure that those service
endpoints are allowed. Example applications include using Amazon ECR to pull container images
or using CloudWatch for CloudWatch Logs. For more information, see Service endpoints in the
AWS General Reference.

External instances 473

https://docs.aws.amazon.com/AmazonECS/latest/bestpracticesguide/networking-networkmode.html
https://docs.aws.amazon.com/systems-manager/latest/userguide/ssm-agent-technical-details.html#fingerprint-validation
https://docs.aws.amazon.com/systems-manager/latest/userguide/ssm-agent-technical-details.html#fingerprint-validation
https://docs.aws.amazon.com/general/latest/gr/aws-service-information.html

Amazon Elastic Container Service Developer Guide

Amazon FSx for Windows File Server with ECS Anywhere

In order to use the Amazon FSx for Windows File Server with Amazon ECS external instances
you must establish a connection between your on-premises data center and the AWS Cloud. For
information about the options for connecting your network to your VPC, see Amazon Virtual
Private Cloud Connectivity Options.

gMSA with ECS Anywhere

The following use cases are supported for ECS Anywhere.

• The Active Directory is in the AWS Cloud - For this configuration, you create a connection
between your on-premises network and the AWS Cloud using an AWS Direct Connect connection.
For information about how to create the connection, see Amazon Virtual Private Cloud
Connectivity Options.You create an Active Directory in the AWS Cloud. For information about
how to get started with AWS Directory Service, see Setting up AWS Directory Service in the
AWS Directory Service Administration Guide. You can then join your external instances to the
domain using the AWS Direct Connect connection. For information about working with gMSA
with Amazon ECS, see the section called “Using gMSAs for Windows Containers on Amazon EC2”.

• The Active Directory is in the on-premises data center. - For this configuration, you join your
external instances to the on-premises Active Directory. You then use the locally available
credentials when you run the Amazon ECS tasks.

Registering an external instance to a cluster

For each external instance you register with an Amazon ECS cluster, it must have the SSM Agent,
the Amazon ECS container agent, and Docker installed. To register the external instance to an
Amazon ECS cluster, it must first be registered as an AWS Systems Manager managed instance. You
can create the installation script in a few clicks on the Amazon ECS console. The installation script
includes an Systems Manager activation key and commands to install each of the required agents
and Docker. The installation script must be run on your on-premises server or VM to complete the
installation and registration steps.

Note

Before registering your Linux external instance with the cluster, create the /etc/ecs/
ecs.config file on your external instance and add any container agent configuration

External instances 474

https://docs.aws.amazon.com/whitepapers/latest/aws-vpc-connectivity-options/introduction.html
https://docs.aws.amazon.com/whitepapers/latest/aws-vpc-connectivity-options/introduction.html
https://docs.aws.amazon.com/whitepapers/latest/aws-vpc-connectivity-options/introduction.html
https://docs.aws.amazon.com/whitepapers/latest/aws-vpc-connectivity-options/introduction.html
https://docs.aws.amazon.com/directoryservice/latest/admin-guide/setting_up.html

Amazon Elastic Container Service Developer Guide

parameters that you want. You can't do this after registering the external instance to a
cluster. For more information, see Amazon ECS container agent configuration.

AWS Management Console

1. Open the console at https://console.aws.amazon.com/ecs/v2.

2. From the navigation bar, select the Region to use.

3. In the navigation pane, choose Clusters.

4. On the Clusters page, choose a cluster to register your external instance to.

5. On the Cluster : name page, choose the Infrastructure tab.

6. On the Register external instances page, complete the following steps.

a. For Activation key duration (in days), enter the number of days that the activation key
remains active for. After the number of days you entered pass, the key no longer works
when registering an external instance.

b. For Number of instances, enter the number of external instances that you want to
register to your cluster with the activation key.

c. For Instance role, choose the IAM role to associate with your external instances. If a
role wasn't already created, choose Create new role to have Amazon ECS create a role
on your behalf. For more information about what IAM permissions are required for
your external instances, see ECS Anywhere IAM role.

d. Copy the registration command. This command should be run on each external
instance you want to register to the cluster.

Important

The bash portion of the script must be run as root. If the command isn't run as
root, an error is returned.

e. Choose Close.

AWS CLI for Linux operating systems

1. Create an Systems Manager activation pair. This is used for Systems Manager managed
instance activation. The output includes an ActivationId and ActivationCode. You

External instances 475

https://console.aws.amazon.com/ecs/v2

Amazon Elastic Container Service Developer Guide

use these in a later step. Make sure that you specify the ECS Anywhere IAM role that you
created. For more information, see ECS Anywhere IAM role.

aws ssm create-activation --iam-role ecsAnywhereRole | tee ssm-activation.json

2. On your on-premises server or virtual machine (VM), download the installation script.

curl --proto "https" -o "/tmp/ecs-anywhere-install.sh" "https://amazon-ecs-
agent.s3.amazonaws.com/ecs-anywhere-install-latest.sh"

3. (Optional) On your on-premises server or virtual machine (VM), use the following steps to
verify the installation script using the script signature file.

a. Download and install GnuPG. For more information about GNUpg, see the GnuPG
website. For Linux systems, install gpg using the package manager on your flavor of
Linux.

b. Retrieve the Amazon ECS PGP public key.

gpg --keyserver hkp://keys.gnupg.net:80 --recv BCE9D9A42D51784F

c. Download the installation script signature. The signature is an ascii detached PGP
signature stored in a file with the .asc extension.

curl --proto "https" -o "/tmp/ecs-anywhere-install.sh.asc" "https://amazon-
ecs-agent.s3.amazonaws.com/ecs-anywhere-install-latest.sh.asc"

d. Verify the installation script file using the key.

gpg --verify /tmp/ecs-anywhere-install.sh.asc /tmp/ecs-anywhere-install.sh

The following is the expected output.

gpg: Signature made Tue 25 May 2021 07:16:29 PM UTC
gpg: using RSA key 50DECCC4710E61AF
gpg: Good signature from "Amazon ECS <ecs-security@amazon.com>" [unknown]
gpg: WARNING: This key is not certified with a trusted signature!
gpg: There is no indication that the signature belongs to the
 owner.
Primary key fingerprint: F34C 3DDA E729 26B0 79BE AEC6 BCE9 D9A4 2D51 784F
 Subkey fingerprint: D64B B6F9 0CF3 77E9 B5FB 346F 50DE CCC4 710E 61AF

External instances 476

https://www.gnupg.org
https://www.gnupg.org

Amazon Elastic Container Service Developer Guide

4. On your on-premises server or virtual machine (VM), run the installation script. Specify the
cluster name, Region, and the Systems Manager activation ID and activation code from the
first step.

sudo bash /tmp/ecs-anywhere-install.sh \
 --region $REGION \
 --cluster $CLUSTER_NAME \
 --activation-id $ACTIVATION_ID \
 --activation-code $ACTIVATION_CODE

For an on-premises server or virtual machine (VM) that has the NVIDIA driver installed for
GPU workloads, you must add the --enable-gpu flag to the installation script. When this
flag is specified, the install script verifies that the NVIDIA driver is running and then adds
the required configuration variables to run your Amazon ECS tasks. For more information
about running GPU workloads and specifying GPU requirements in a task definition, see
Specifying GPUs in your task definition.

sudo bash /tmp/ecs-anywhere-install.sh \
 --region $REGION \
 --cluster $CLUSTER_NAME \
 --activation-id $ACTIVATION_ID \
 --activation-code $ACTIVATION_CODE \
 --enable-gpu

Use the following steps to register an existing external instance with a different cluster.

To register an existing external instance with a different cluster

1. Stop the Amazon ECS container agent.

sudo systemctl stop ecs.service

2. Edit the /etc/ecs/ecs.config file and on the ECS_CLUSTER line, ensure the cluster
name matches the name of the cluster to register the external instance with.

3. Remove the existing Amazon ECS agent data.

sudo rm /var/lib/ecs/data/agent.db

4. Start the Amazon ECS container agent.

External instances 477

Amazon Elastic Container Service Developer Guide

sudo systemctl start ecs.service

AWS CLI for Windows operating systems

1. Create an Systems Manager activation pair. This is used for Systems Manager managed
instance activation. The output includes an ActivationId and ActivationCode. You
use these in a later step. Make sure that you specify the ECS Anywhere IAM role that you
created. For more information, see ECS Anywhere IAM role.

aws ssm create-activation --iam-role ecsAnywhereRole | tee ssm-activation.json

2. On your on-premises server or virtual machine (VM), download the installation script.

Invoke-RestMethod -URI "https://amazon-ecs-agent.s3.amazonaws.com/ecs-anywhere-
install.ps1" -OutFile “ecs-anywhere-install.ps1”

3. (Optional) The Powershell script is signed by Amazon and therefore, Windows
automatically performs the certificate validation on the same. You do not need to perform
any manual validation.

To manually verify the certificate, right-click on the file, navigate to properties and use the
Digital Signatures tab to obtain more details.

This option is only available when the host has the certificate in the certificate store.

The verification should return information similar to the following:

Verification (PowerShell)
Get-AuthenticodeSignature -FilePath .\ecs-anywhere-install.ps1

SignerCertificate Status Path
----------------- ------ ----
EXAMPLECERTIFICATE Valid ecs-anywhere-install.ps1

...

Subject : CN="Amazon Web Services, Inc.",...

External instances 478

Amazon Elastic Container Service Developer Guide

4. On your on-premises server or virtual machine (VM), run the installation script. Specify the
cluster name, Region, and the Systems Manager activation ID and activation code from the
first step.

.\ecs-anywhere-install.ps1 -Region $Region -Cluster $Cluster -
ActivationID $ActivationID -ActivationCode $ActivationCode

5. Verify the Amazon ECS container agent is running.

Get-Service AmazonECS

Status Name DisplayName
------ ---- -----------
Running AmazonECS Amazon ECS

Use the following steps to register an existing external instance with a different cluster.

To register an existing external instance with a different cluster

1. Stop the Amazon ECS container agent.

Stop-Service AmazonECS

2. Modify the ECS_CLUSTER parameter so that the cluster name matches the name of the
cluster to register the external instance with.

[Environment]::SetEnvironmentVariable("ECS_CLUSTER", $ECSCluster,
 [System.EnvironmentVariableTarget]::Machine)

3. Remove the existing Amazon ECS agent data.

Remove-Item -Recurse -Force $env:ProgramData\Amazon\ECS\data*

4. Start the Amazon ECS container agent.

Start-Service AmazonECS

The AWS CLI can be used to create a Systems Manager activation before running the installation
script to complete the external instance registration process.

External instances 479

Amazon Elastic Container Service Developer Guide

Deregistering an external instance

We recommend that, after you finish using an external instance, you deregister the instance from
both Amazon ECS and AWS Systems Manager. Following deregistration, the external instance is no
longer able to accept new tasks.

If you have tasks that are running on the container instance when you deregister it, the tasks
remain running until they stop through some other means. However, these tasks are no longer
monitored or accounted for by Amazon ECS. If these tasks on your external instance are part of
an Amazon ECS service, then the service scheduler starts another copy of that task, on a different
instance, if possible.

To register an external instance to a new cluster, after the external instance has been deregistered
from both Amazon ECS and Systems Manager, you can clean up the remaining AWS resources on
the instance and register it with a new cluster.

AWS Management Console

1. Open the console at https://console.aws.amazon.com/ecs/v2.

2. From the navigation bar, choose the Region where your external instance is registered.

3. In the navigation pane, choose Clusters and select the cluster that hosts the external
instance.

4. On the Cluster : name page, choose the Infrastructure tab.

5. Under Container instances, select the external instance ID to deregister. You're redirected
to the container instance detail page.

6. On the Container Instance : id page, choose Deregister.

7. Review the deregistration message. Select Deregister from AWS Systems Manager to
also deregister the external instance as an Systems Manager managed instance. Choose
Deregister.

Note

You can deregister the external instance as an Systems Manager managed instance
in the Systems Manager console. For instructions, see Deregistering managed
instances in the AWS Systems Manager User Guide.

8. After you deregister the instance, clean up AWS resources on your on-premises server or
VM .

External instances 480

https://console.aws.amazon.com/ecs/v2
https://docs.aws.amazon.com/systems-manager/latest/userguide/systems-manager-managed-instances-advanced-deregister.html
https://docs.aws.amazon.com/systems-manager/latest/userguide/systems-manager-managed-instances-advanced-deregister.html

Amazon Elastic Container Service Developer Guide

Operating system Steps

Linux a. Stop the Amazon ECS
container agent and the
SSM Agent services on
the instance.

sudo systemctl stop
 ecs amazon-ssm-
agent

b. Remove the Amazon ECS
and Systems Manager
packages.

For CentOS 7, CentOS
8, and RHEL 7

sudo yum remove -y
 amazon-ecs-init
 amazon-ssm-agent

For SUSE Enterprise
Server 15

sudo zypper remove
 -y amazon-ecs-init
 amazon-ssm-agent

For Debian and Ubuntu

sudo apt remove -y
 amazon-ecs-init
 amazon-ssm-agent

c. Remove the leftover
directories.

External instances 481

Amazon Elastic Container Service Developer Guide

Operating system Steps

 sudo rm -rf /var/
lib/ecs /etc/ecs /
var/lib/amazon/ss
m /var/log/ecs /
var/log/amazon/ssm

Windows a. Stop the Amazon ECS
container agent and the
SSM Agent services on
the instance.

Stop-Service
 AmazonECS

Stop-Service
 AmazonSSMAgent

b. Remove the Amazon ECS
package.

.\ecs-anywhere-ins
tall.ps1 -Uninstal
l

AWS CLI

1. You need the instance ID and the container instance ARN to deregister the container
instance. If you do not have theses values, run the following comands

Run the following commandto get the instance ID.

You use the instance ID (instanceID) to get the container instance ARN
(containerInstanceARN).

External instances 482

Amazon Elastic Container Service Developer Guide

instanceId=$(aws ssm describe-instance-information --region "{{ region }}" |
 jq ".InstanceInformationList[] |select(.IPAddress==\"{{ IPv4 Address }}\")
 | .InstanceId" | tr -d'"'

Run the following commands.

You use the containerInstanceArn as a parameter in the command to deregister the
instance (deregister-container-instance).

instances=$(aws ecs list-container-instances --cluster "{{ cluster }}" --region
 "{{ region }}" | jq -c '.containerInstanceArns')
containerInstanceArn=$(aws ecs describe-container-instances --cluster
 "{{ cluster }}" --region "{{ region }}" --container-instances $instances
 | jq ".containerInstances[] | select(.ec2InstanceId==\"{{ instanceId }}\")
 | .containerInstanceArn" | tr -d '"')

2. Run the following command to drain the instance.

aws ecs update-container-instances-state --cluster "{{ cluster }}" --region
 "{{ region }}" --container-instances "{{ containerInstanceArn }}" --status
 DRAINING

3. After the container instance finishes draining, run the following command to deregister the
instance.

aws ecs deregister-container-instance --cluster "{{ cluster }}" --region
 "{{ region }}" --container-instance "{{ containerInstanceArn }}"

4. Run the following command to remove the container instance from SSM.

aws ssm deregister-managed-instance --region "{{ region }}" --instance-id
 "{{ instanceId }}"

5. After you deregister the instance, clean up AWS resources on your on-premises server or
VM .

Operating system Steps

Linux a. Stop the Amazon ECS
container agent and the

External instances 483

Amazon Elastic Container Service Developer Guide

Operating system Steps

SSM Agent services on
the instance.

sudo systemctl stop
 ecs amazon-ssm-
agent

b. Remove the Amazon ECS
and Systems Manager
packages.

sudo (yum/apt/
zypper) remove
 amazon-ecs-init
 amazon-ssm-agent

c. Remove the leftover
directories.

 sudo rm -rf /var/
lib/ecs /etc/ecs /
var/lib/amazon/ss
m /var/log/ecs /
var/log/amazon/ssm

External instances 484

Amazon Elastic Container Service Developer Guide

Operating system Steps

Windows a. Stop the Amazon ECS
container agent and the
SSM Agent services on
the instance.

Stop-Service
 AmazonECS

Stop-Service
 AmazonSSMAgent

b. Remove the Amazon ECS
package.

.\ecs-anywhere-ins
tall.ps1 -Uninstal
l

Updating the AWS Systems Manager Agent and Amazon ECS container agent on
an external instance

Your on-premises server or VM must run both the AWS Systems Manager Agent (SSM Agent) and
the Amazon ECS container agent when running Amazon ECS workloads. AWS releases new versions
of these agents when any capabilities are added or updated. If your external instances are using an
earlier version of either agent, you can update them using the following procedures.

Updating the SSM Agent on an external instance

AWS Systems Manager recommends that you automate the process of updating the SSM Agent
on your instances. They provide several methods to automate updates. For more information, see
Automating updates to SSM Agent in the AWS Systems Manager User Guide.

Updating the Amazon ECS agent on an external instance

On your external instances, the Amazon ECS container agent is updated by upgrading the ecs-
init package. Updating the Amazon ECS agent doesn't interrupt the running tasks or services.

External instances 485

https://docs.aws.amazon.com/systems-manager/latest/userguide/ssm-agent-automatic-updates.html

Amazon Elastic Container Service Developer Guide

Amazon ECS provides the ecs-init package and signature file in an Amazon S3 bucket in each
Region. Beginning with ecs-init version 1.52.1-1, Amazon ECS provides separate ecs-init
packages for use depending on the operating system and system architecture your external
instance uses.

Use the following table to determine the ecs-init package that you should download based on
the operating system and system architecture your external instance uses.

Note

You can determine which operating system and system architecture that your external
instance uses by using the following commands.

cat /etc/os-release
uname -m

Operating systems (architecture) ecs-init package

CentOS 7 (x86_64)

CentOS 8 (x86_64)

SUSE Enterprise Server 15 (x86_64)

RHEL 7 (x86_64)

RHEL 8 (x86_64)

amazon-ecs-init-latest.x86_
64.rpm

CentOS 7 (aarch64)

CentOS 8 (aarch64)

RHEL 7 (aarch64)

amazon-ecs-init-latest.aarc
h64.rpm

Debian 9 (x86_64)

Debian 10 (x86_64)

Ubuntu 18 (x86_64)

amazon-ecs-init-latest.amd64.deb

External instances 486

Amazon Elastic Container Service Developer Guide

Operating systems (architecture) ecs-init package

Ubuntu 20 (x86_64)

Debian 9 (aarch64)

Debian 10 (aarch64)

Ubuntu 18 (aarch64)

Ubuntu 20 (aarch64)

amazon-ecs-init-latest.arm64.deb

Follow these steps to update the Amazon ECS agent.

To update the Amazon ECS agent

1. Confirm the Amazon ECS agent version that you're running.

curl -s 127.0.0.1:51678/v1/metadata | python3 -mjson.tool

2. Download the ecs-init package for your operating system and system architecture. Amazon
ECS provides the ecs-init package file in an Amazon S3 bucket in each Region. Make sure
that you replace the <region> identifier in the command with the Region name (for example,
us-west-2) that you're geographically closest to.

amazon-ecs-init-latest.x86_64.rpm

curl -o amazon-ecs-init.rpm https://s3.<region>.amazonaws.com/amazon-ecs-
agent-<region>/amazon-ecs-init-latest.x86_64.rpm

amazon-ecs-init-latest.aarch64.rpm

curl -o amazon-ecs-init.rpm https://s3.<region>.amazonaws.com/amazon-ecs-
agent-<region>/amazon-ecs-init-latest.aarch64.rpm

amazon-ecs-init-latest.amd64.deb

curl -o amazon-ecs-init.deb https://s3.<region>.amazonaws.com/amazon-ecs-
agent-<region>/amazon-ecs-init-latest.amd64.deb

External instances 487

Amazon Elastic Container Service Developer Guide

amazon-ecs-init-latest.arm64.deb

curl -o amazon-ecs-init.deb https://s3.<region>.amazonaws.com/amazon-ecs-
agent-<region>/amazon-ecs-init-latest.arm64.deb

3. (Optional) Verify the validity of the ecs-init package file using the PGP signature.

a. Download and install GnuPG. For more information about GNUpg, see the GnuPG website.
For Linux systems, install gpg using the package manager on your flavor of Linux.

b. Retrieve the Amazon ECS PGP public key.

gpg --keyserver hkp://keys.gnupg.net:80 --recv BCE9D9A42D51784F

c. Download the ecs-init package signature. The signature is an ASCII detached PGP
signature that's stored in a file with the .asc extension. Amazon ECS provides the
signature file in an Amazon S3 bucket in each Region. Make sure that you replace the
<region> identifier in the command with the Region name (for example, us-west-2)
that you're geographically closest to.

amazon-ecs-init-latest.x86_64.rpm

curl -o amazon-ecs-init.rpm.asc https://s3.<region>.amazonaws.com/amazon-ecs-
agent-<region>/amazon-ecs-init-latest.x86_64.rpm.asc

amazon-ecs-init-latest.aarch64.rpm

curl -o amazon-ecs-init.rpm.asc https://s3.<region>.amazonaws.com/amazon-ecs-
agent-<region>/amazon-ecs-init-latest.aarch64.rpm.asc

amazon-ecs-init-latest.amd64.deb

curl -o amazon-ecs-init.deb.asc https://s3.<region>.amazonaws.com/amazon-ecs-
agent-<region>/amazon-ecs-init-latest.amd64.deb.asc

amazon-ecs-init-latest.arm64.deb

curl -o amazon-ecs-init.deb.asc https://s3.<region>.amazonaws.com/amazon-ecs-
agent-<region>/amazon-ecs-init-latest.arm64.deb.asc

External instances 488

https://www.gnupg.org

Amazon Elastic Container Service Developer Guide

d. Verify the ecs-init package file using the key.

For the rpm packages

gpg --verify amazon-ecs-init.rpm.asc ./amazon-ecs-init.rpm

For the deb packages

gpg --verify amazon-ecs-init.deb.asc ./amazon-ecs-init.deb

The following is the expected output.

gpg: Signature made Fri 14 May 2021 09:31:36 PM UTC
gpg: using RSA key 50DECCC4710E61AF
gpg: Good signature from "Amazon ECS <ecs-security@amazon.com>" [unknown]
gpg: WARNING: This key is not certified with a trusted signature!
gpg: There is no indication that the signature belongs to the owner.
Primary key fingerprint: F34C 3DDA E729 26B0 79BE AEC6 BCE9 D9A4 2D51 784F
 Subkey fingerprint: D64B B6F9 0CF3 77E9 B5FB 346F 50DE CCC4 710E 61AF

4. Install the ecs-init package.

For the rpm package on CentOS 7, CentOS 8, and RHEL 7

sudo yum install -y ./amazon-ecs-init.rpm

For the rpm package on SUSE Enterprise Server 15

sudo zypper install -y --allow-unsigned-rpm ./amazon-ecs-init.rpm

For the deb package

sudo dpkg -i ./amazon-ecs-init.deb

5. Restart the ecs service.

sudo systemctl restart ecs

6. Verify the Amazon ECS agent version was updated.
External instances 489

Amazon Elastic Container Service Developer Guide

curl -s 127.0.0.1:51678/v1/metadata | python3 -mjson.tool

Capacity management

AWS manages your Fargate capacity, but you are responsible for managing your EC2 instances and
external instances.

Management includes security patching as well as updating the container instances so that you
have access to the latest Amazon ECS features.

In addition to container agent management, there is additional instance management that might
be required depending on your configuration. This includes:

• Launching a container instance

• Bootstrapping a container instance

• Starting a task at launch

• Using ENI trunking

• Managing memory

• Managing your container instance remotely

• Using an HTTP proxy for both the container agent and the Docker daemon

• Updating the container agent

• Deregistering the container instance

• Managed instance draining

Topics

• Amazon ECS Linux container agent

• Linux container instance management

• Windows container instance management

• Amazon ECS managed instance draining

For more information on Fargate capacity providers and Amazon EC2 Auto Scaling group capacity
providers, see Capacity providers.

Capacity management 490

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/cluster-capacity-providers.html

Amazon Elastic Container Service Developer Guide

Amazon ECS Linux container agent

Each Amazon ECS container agent version supports a different feature set and provides bug fixes
from previous versions. When possible, we always recommend using the latest version of the
Amazon ECS container agent. To update your container agent to the latest version, see Updating
the Amazon ECS container agent.

To see which features and enhancements are included with each agent release, see https://
github.com/aws/amazon-ecs-agent/releases.

Important

The minimum Docker version for reliable metrics is Docker version v20.10.13 and newer,
which is included in Amazon ECS-optimized AMI 20220607 and newer.
Amazon ECS agent versions 1.20.0 and newer have deprecated support for Docker
versions older than 1.9.0.

Lifecycle

When the Amazon ECS container agent registers an Amazon EC2 instance to your cluster, the
Amazon EC2 instance reports its status as ACTIVE and its agent connection status as TRUE. This
container instance can accept run task requests.

If you stop (not terminate) a container instance, the status remains ACTIVE, but the agent
connection status transitions to FALSE within a few minutes. Any tasks that were running on the
container instance stop. If you start the container instance again, the container agent reconnects
with the Amazon ECS service, and you are able to run tasks on the instance again.

Important

If you stop and start a container instance, or reboot that instance, some older versions
of the Amazon ECS container agent register the instance again without deregistering the
original container instance ID. In this case, Amazon ECS lists more container instances in
your cluster than you actually have. (If you have duplicate container instance IDs for the
same Amazon EC2 instance ID, you can safely deregister the duplicates that are listed as
ACTIVE with an agent connection status of FALSE.) This issue is fixed in the current version

Container agent versions 491

https://github.com/aws/amazon-ecs-agent/releases
https://github.com/aws/amazon-ecs-agent/releases

Amazon Elastic Container Service Developer Guide

of the Amazon ECS container agent. For more information about updating to the current
version, see Updating the Amazon ECS container agent.

If you change the status of a container instance to DRAINING, new tasks are not placed on the
container instance. Any service tasks running on the container instance are removed, if possible, so
that you can perform system updates. For more information, see Container instance draining.

If you deregister or terminate a container instance, the container instance status changes to
INACTIVE immediately, and the container instance is no longer reported when you list your
container instances. However, you can still describe the container instance for one hour following
termination. After one hour, the instance description is no longer available.

Important

You can drain the instances manually, or build an Auto Scaling group lifecycle hook to set
the instance status to DRAINING. See Amazon EC2 Auto Scaling lifecycle hooks for more
information about Auto Scaling lifecycle hooks.

Amazon ECS-optimized AMI

The Linux variants of the Amazon ECS-optimized AMI use the Amazon Linux 2 AMI as their base.
The Amazon Linux 2 source AMI name for each variant can be retrieved by querying the Systems
Manager Parameter Store API. For more information, see Retrieving Amazon ECS-Optimized AMI
metadata. When you launch our container instances from the most recent Amazon ECS-optimized
Amazon Linux 2 AMI you receive the current container agent version. To launch a container
instance with the latest Amazon ECS-optimized Amazon Linux 2 AMI, see Launching an Amazon
ECS Linux container instance.

Using other Linux Operating Systems

To install the latest version of the Amazon ECS container agent on another operating system, see
Installing the Amazon ECS container agent. The table in Amazon ECS-optimized AMI shows the
Docker version that is tested on Amazon Linux 2 for each agent version.

Additional information

The following pages provide additional information about the changes:

Container agent versions 492

https://docs.aws.amazon.com/autoscaling/ec2/userguide/lifecycle-hooks.html

Amazon Elastic Container Service Developer Guide

• Amazon ECS Agent changelog on GitHub

• The source code for the ecs-init application and the scripts and configuration for packaging
the agent are now part of the agent repository. For older versions of ecs-init and packaging,
see Amazon ecs-init changelog on GitHub

• Amazon Linux 2 release notes.

• Docker Engine release notes in the Docker documentation

• NVIDIA Driver Documentation in the NVIDIA documentation

Amazon ECS container agent configuration

The Amazon ECS container agent supports a number of configuration options, most of which
should be set through environment variables. The following environment variables are available,
and all of them are optional.

If your container instance was launched with a Linux variant of the Amazon ECS-optimized AMI,
you can set these environment variables in the /etc/ecs/ecs.config file and then restart the
agent. You can also write these configuration variables to your container instances with Amazon
EC2 user data at launch time. For more information, see Bootstrapping container instances with
Amazon EC2 user data.

If your container instance was launched with a Windows variant of the Amazon ECS-optimized AMI,
you can set these environment variables with the PowerShell SetEnvironmentVariable command
and then restart the agent. For more information, see Run commands on your Windows instance
at launch in the Amazon EC2 User Guide for Windows Instances and the section called “Bootstrap
Container Instances”.

If you are manually starting the Amazon ECS container agent (for non Amazon ECS-optimized
AMIs), you can use these environment variables in the docker run command that you use to start
the agent. Use these variables with the syntax --env=VARIABLE_NAME=VARIABLE_VALUE. For
sensitive information, such as authentication credentials for private repositories, you should store
your agent environment variables in a file and pass them all at one time with the --env-file
path_to_env_file option. You can use the following commands to add the variables.

sudo systemctl stop ecs
sudo vi /etc/ecs/ecs.config
And add the environment variables with VARIABLE_NAME=VARIABLE_VALUE format.
sudo systemctl start ecs

Container agent versions 493

https://github.com/aws/amazon-ecs-agent/blob/master/CHANGELOG.md
https://github.com/aws/amazon-ecs-init/blob/master/CHANGELOG.md
https://aws.amazon.com/amazon-linux-2/release-notes/
https://docs.docker.com/engine/release-notes/
https://docs.nvidia.com/datacenter/tesla/index.html
https://docs.aws.amazon.com/AWSEC2/latest/WindowsGuide/ec2-windows-user-data.html
https://docs.aws.amazon.com/AWSEC2/latest/WindowsGuide/ec2-windows-user-data.html

Amazon Elastic Container Service Developer Guide

Available Parameters

For information about the available Amazon ECS container agent configuration parameters, see
Amazon ECS Container Agent on GitHub.

Storing container instance configuration in Amazon S3

Amazon ECS container agent configuration is controlled with the environment variables
described in the previous section. Linux variants of the Amazon ECS-optimized AMI look for
these variables in /etc/ecs/ecs.config when the container agent starts and configure the
agent accordingly. Certain innocuous environment variables, such as ECS_CLUSTER, can be
passed to the container instance at launch through Amazon EC2 user data and written to this file
without consequence. However, other sensitive information, such as your AWS credentials or the
ECS_ENGINE_AUTH_DATA variable, should never be passed to an instance in user data or written
to /etc/ecs/ecs.config in a way that would allow them to show up in a .bash_history file.

Storing configuration information in a private bucket in Amazon S3 and granting read-only access
to your container instance IAM role is a secure and convenient way to allow container instance
configuration at launch. You can store a copy of your ecs.config file in a private bucket. You can
then use Amazon EC2 user data to install the AWS CLI and copy your configuration information to
/etc/ecs/ecs.config when the instance launches.

To allow Amazon S3 read-only access for your container instance role

1. Open the IAM console at https://console.aws.amazon.com/iam/.

2. In the navigation pane, choose Roles and select the IAM role to use for your container
instances. This role is likely titled ecsInstanceRole. For more information, see Amazon ECS
container instance IAM role.

3. Under Managed Policies, choose Attach Policy.

4. To narrow the policy results, on the Attach Policy page, for Filter, type S3.

5. Select the box to the left of the AmazonS3ReadOnlyAccess policy and choose Attach Policy.

To store an ecs.config file in Amazon S3

1. Create an ecs.config file with valid Amazon ECS agent configuration variables using
the following format. This example configures private registry authentication. For more
information, see Private registry authentication for tasks.

Container agent versions 494

https://github.com/aws/amazon-ecs-agent/blob/master/README.md
https://console.aws.amazon.com/iam/

Amazon Elastic Container Service Developer Guide

ECS_ENGINE_AUTH_TYPE=dockercfg
ECS_ENGINE_AUTH_DATA={"https://index.docker.io/v1/":
{"auth":"zq212MzEXAMPLE7o6T25Dk0i","email":"email@example.com"}}

Note

For a full list of available Amazon ECS agent configuration variables, see Amazon ECS
Container Agent on GitHub.

2. To store your configuration file, create a private bucket in Amazon S3. For more information,
see Create a Bucket in the Amazon Simple Storage Service User Guide.

3. Upload the ecs.config file to your S3 bucket. For more information, see Add an Object to a
Bucket in the Amazon Simple Storage Service User Guide.

To load an ecs.config file from Amazon S3 at launch

1. Complete the earlier procedures in this section to allow read-only Amazon S3 access to your
container instances and store an ecs.config file in a private S3 bucket.

2. Launch new container instances by following the steps in Launching an Amazon ECS Linux
container instance. In Step 6.g, use the following example script that installs the AWS CLI and
copies your configuration file to /etc/ecs/ecs.config.

#!/bin/bash
yum install -y aws-cli
aws s3 cp s3://your_bucket_name/ecs.config /etc/ecs/ecs.config

Private registry authentication for container instances

The Amazon ECS container agent can authenticate with private registries, using basic
authentication. When you enable private registry authentication, you can use private Docker
images in your task definitions. This feature is only supported by tasks using the EC2 launch type.

Another method of enabling private registry authentication uses AWS Secrets Manager to store
your private registry credentials securely and then reference them in your container definition.
This allows your tasks to use images from private repositories. This method supports tasks using

Container agent versions 495

https://github.com/aws/amazon-ecs-agent/blob/master/README.md
https://github.com/aws/amazon-ecs-agent/blob/master/README.md
https://docs.aws.amazon.com/AmazonS3/latest/user-guide/CreatingaBucket.html
https://docs.aws.amazon.com/AmazonS3/latest/user-guide/PuttingAnObjectInABucket.html
https://docs.aws.amazon.com/AmazonS3/latest/user-guide/PuttingAnObjectInABucket.html

Amazon Elastic Container Service Developer Guide

either the EC2 or Fargate launch types. For more information, see Private registry authentication
for tasks.

The Amazon ECS container agent looks for two environment variables when it launches:

• ECS_ENGINE_AUTH_TYPE, which specifies the type of authentication data that is being sent.

• ECS_ENGINE_AUTH_DATA, which contains the actual authentication credentials.

Linux variants of the Amazon ECS-optimized AMI scan the /etc/ecs/ecs.config file for these
variables when the container instance launches, and each time the service is started (with the sudo
start ecs command). AMIs that are not Amazon ECS-optimized should store these environment
variables in a file and pass them with the --env-file path_to_env_file option to the docker
run command that starts the container agent.

Important

We do not recommend that you inject these authentication environment variables at
instance launch with Amazon EC2 user data or pass them with the --env option to the
docker run command. These methods are not appropriate for sensitive data, such as
authentication credentials. For information about safely adding authentication credentials
to your container instances, see Storing container instance configuration in Amazon S3.

Authentication formats

There are two available formats for private registry authentication, dockercfg and docker.

dockercfg authentication format

The dockercfg format uses the authentication information stored in the configuration file that is
created when you run the docker login command. You can create this file by running docker login
on your local system and entering your registry user name, password, and email address. You can
also log in to a container instance and run the command there. Depending on your Docker version,
this file is saved as either ~/.dockercfg or ~/.docker/config.json.

cat ~/.docker/config.json

Output:

Container agent versions 496

Amazon Elastic Container Service Developer Guide

{
 "auths": {
 "https://index.docker.io/v1/": {
 "auth": "zq212MzEXAMPLE7o6T25Dk0i"
 }
 }
}

Important

Newer versions of Docker create a configuration file as shown above with an outer auths
object. The Amazon ECS agent only supports dockercfg authentication data that is in the
below format, without the auths object. If you have the jq utility installed, you can extract
this data with the following command: cat ~/.docker/config.json | jq .auths

cat ~/.docker/config.json | jq .auths

Output:

{
 "https://index.docker.io/v1/": {
 "auth": "zq212MzEXAMPLE7o6T25Dk0i",
 "email": "email@example.com"
 }
}

In the above example, the following environment variables should be added to the environment
variable file (/etc/ecs/ecs.config for the Amazon ECS-optimized AMI) that the Amazon ECS
container agent loads at runtime. If you are not using an Amazon ECS-optimized AMI and you are
starting the agent manually with docker run, specify the environment variable file with the --
env-file path_to_env_file option when you start the agent.

ECS_ENGINE_AUTH_TYPE=dockercfg
ECS_ENGINE_AUTH_DATA={"https://index.docker.io/v1/":
{"auth":"zq212MzEXAMPLE7o6T25Dk0i","email":"email@example.com"}}

You can configure multiple private registries with the following syntax:

Container agent versions 497

Amazon Elastic Container Service Developer Guide

ECS_ENGINE_AUTH_TYPE=dockercfg
ECS_ENGINE_AUTH_DATA={"repo.example-01.com":
{"auth":"zq212MzEXAMPLE7o6T25Dk0i","email":"email@example-01.com"},"repo.example-02.com":
{"auth":"fQ172MzEXAMPLEoF7225DU0j","email":"email@example-02.com"}}

docker authentication format

The docker format uses a JSON representation of the registry server that the agent should
authenticate with. It also includes the authentication parameters required by that registry (such as
user name, password, and the email address for that account). For a Docker Hub account, the JSON
representation looks like the following:

{
 "https://index.docker.io/v1/": {
 "username": "my_name",
 "password": "my_password",
 "email": "email@example.com"
 }
}

In this example, the following environment variables should be added to the environment variable
file (/etc/ecs/ecs.config for the Amazon ECS-optimized AMI) that the Amazon ECS container
agent loads at runtime. If you are not using an Amazon ECS-optimized AMI, and you are starting
the agent manually with docker run, specify the environment variable file with the --env-file
path_to_env_file option when you start the agent.

ECS_ENGINE_AUTH_TYPE=docker
ECS_ENGINE_AUTH_DATA={"https://index.docker.io/v1/":
{"username":"my_name","password":"my_password","email":"email@example.com"}}

You can configure multiple private registries with the following syntax:

ECS_ENGINE_AUTH_TYPE=docker
ECS_ENGINE_AUTH_DATA={"repo.example-01.com":
{"username":"my_name","password":"my_password","email":"email@example-01.com"},"repo.example-02.com":
{"username":"another_name","password":"another_password","email":"email@example-02.com"}}

Turning on private registries

Use the following procedure to turn on private registries for your container instances.

Container agent versions 498

Amazon Elastic Container Service Developer Guide

To enable private registries in the Amazon ECS-optimized AMI

1. Log in to your container instance using SSH.

2. Open the /etc/ecs/ecs.config file and add the ECS_ENGINE_AUTH_TYPE and
ECS_ENGINE_AUTH_DATA values for your registry and account:

sudo vi /etc/ecs/ecs.config

This example authenticates a Docker Hub user account:

ECS_ENGINE_AUTH_TYPE=docker
ECS_ENGINE_AUTH_DATA={"https://index.docker.io/v1/":
{"username":"my_name","password":"my_password","email":"email@example.com"}}

3. Check to see if your agent uses the ECS_DATADIR environment variable to save its state:

docker inspect ecs-agent | grep ECS_DATADIR

Output:

"ECS_DATADIR=/data",

Important

If the previous command does not return the ECS_DATADIR environment variable,
you must stop any tasks running on this container instance before stopping the agent.
Newer agents with the ECS_DATADIR environment variable save their state and you
can stop and start them while tasks are running without issues. For more information,
see Updating the Amazon ECS container agent.

4. Stop the ecs service:

sudo stop ecs

Output:

ecs stop/waiting

Container agent versions 499

Amazon Elastic Container Service Developer Guide

5. Restart the ecs service.

• For the Amazon ECS-optimized Amazon Linux 2 AMI:

sudo systemctl restart ecs

• For the Amazon ECS-optimized Amazon Linux AMI:

sudo stop ecs && sudo start ecs

6. (Optional) You can verify that the agent is running and see some information about your new
container instance by querying the agent introspection API operation. For more information,
see the section called “Container introspection”.

curl http://localhost:51678/v1/metadata

Automated task and image cleanup

Each time a task is placed on a container instance, the Amazon ECS container agent checks to see
if the images referenced in the task are the most recent of the specified tag in the repository. If
not, the default behavior allows the agent to pull the images from their respective repositories.
If you frequently update the images in your tasks and services, your container instance storage
can quickly fill up with Docker images that you are no longer using and may never use again. For
example, you may use a continuous integration and continuous deployment (CI/CD) pipeline.

Note

The Amazon ECS agent image pull behavior can be customized using the
ECS_IMAGE_PULL_BEHAVIOR parameter. For more information, see Amazon ECS container
agent configuration.

Likewise, containers that belong to stopped tasks can also consume container instance storage
with log information, data volumes, and other artifacts. These artifacts are useful for debugging
containers that have stopped unexpectedly, but most of this storage can be safely freed up after a
period of time.

Container agent versions 500

Amazon Elastic Container Service Developer Guide

By default, the Amazon ECS container agent automatically cleans up stopped tasks and Docker
images that are not being used by any tasks on your container instances.

Note

The automated image cleanup feature requires at least version 1.13.0 of the Amazon ECS
container agent. To update your agent to the latest version, see Updating the Amazon ECS
container agent.

Tunable parameters

The following agent configuration variables are available to tune your automated task and image
cleanup experience. For more information about how to set these variables on your container
instances, see Amazon ECS container agent configuration.

ECS_ENGINE_TASK_CLEANUP_WAIT_DURATION

This variable specifies the time to wait before removing any containers that belong to stopped
tasks. The image cleanup process cannot delete an image as long as there is a container that
references it. After images are not referenced by any containers (either stopped or running), the
image becomes a candidate for cleanup. By default, this parameter is set to 3 hours, but you
can reduce this period to as low as 1 second if you need to for your application. The parameter
is ignored if you set the value less than 1 second.

ECS_DISABLE_IMAGE_CLEANUP

If you set this variable to true, then automated image cleanup is turned off on your container
instance and no images are automatically removed.

ECS_IMAGE_CLEANUP_INTERVAL

This variable specifies how frequently the automated image cleanup process should check for
images to delete. The default is every 30 minutes but you can reduce this period to as low as 10
minutes to remove images more frequently.

ECS_IMAGE_MINIMUM_CLEANUP_AGE

This variable specifies the minimum amount of time between when an image was pulled and
when it may become a candidate for removal. This is used to prevent cleaning up images that
have just been pulled. The default is 1 hour.

Container agent versions 501

Amazon Elastic Container Service Developer Guide

ECS_NUM_IMAGES_DELETE_PER_CYCLE

This variable specifies how many images may be removed during a single cleanup cycle. The
default is 5 and the minimum is 1.

Cleanup workflow

When the Amazon ECS container agent is running and automated image cleanup is not
turned off, the agent checks for Docker images that are not referenced by running or stopped
containers at a frequency determined by the ECS_IMAGE_CLEANUP_INTERVAL variable. If
unused images are found and they are older than the minimum cleanup time specified by the
ECS_IMAGE_MINIMUM_CLEANUP_AGE variable, the agent removes up to the maximum number
of images that are specified with the ECS_NUM_IMAGES_DELETE_PER_CYCLE variable. The least-
recently referenced images are deleted first. After the images are removed, the agent waits until
the next interval and repeats the process again.

Linux container instance management

Linux container instance management includes:

• Launching a container instance

• Bootstrapping a container instance

• Starting a task at launch

• Using ENI trunking

• Managing memory

• Managing your container instance remotely

• Using an HTTP proxy for both the container agent and the Docker daemon

• Updating the container agent

Each Amazon ECS container agent version supports a different feature set and provides bug fixes
from previous versions. When possible, we always recommend using the latest version of the
Amazon ECS container agent. To update your container agent to the latest version, see Updating
the Amazon ECS container agent.

To see which features and enhancements are included with each agent release, see https://
github.com/aws/amazon-ecs-agent/releases.

Linux container instance management 502

https://github.com/aws/amazon-ecs-agent/releases
https://github.com/aws/amazon-ecs-agent/releases

Amazon Elastic Container Service Developer Guide

Important

The minimum Docker version for reliable metrics is Docker version v20.10.13 and
newer, which is included in Amazon ECS-optimized AMI 20220607 and newer.
Amazon ECS agent versions 1.20.0 and newer have deprecated support for Docker
versions older than 1.9.0.

Launching an Amazon ECS Linux container instance

Your Amazon ECS container instances are created using the Amazon EC2 console. Before you begin,
be sure that you've completed the steps in Set up to use Amazon ECS.

You can launch an instance by various methods including the Amazon EC2 console, AWS CLI,
and SDK. The procedure on this page covers the launch wizard in the Amazon EC2 console. For
information about the other methods for launching an instance, see Launch your instance in the
Amazon EC2 User Guide for Linux Instances.

For more information about the launch wizard, see Launch an instance using the new launch
instance wizard in the Amazon EC2 User Guide for Linux Instances.

New Amazon EC2 launch instance wizard

You can use the new Amazon EC2 wizard to launch an instance. The launch instance wizard
specifies the launch parameters that are required for launching an instance. You can use the
following list for the parameters and leave the parameters not listed as the default. The following
instructions take you through each parameter group.

Parameters for instance configuration

• Initiate instance launch

• Name and tags

• Application and OS Images (Amazon Machine Image)

• Instance type

• Key pair (login)

• Network settings

• Configure storage

• Advanced details

Linux container instance management 503

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/LaunchingAndUsingInstances.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-launch-instance-wizard.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-launch-instance-wizard.html

Amazon Elastic Container Service Developer Guide

Initiate instance launch

1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.

2. In the navigation bar at the top of the screen, the current AWS Region is displayed (for
example, US East (Ohio)). Select a Region in which to launch the instance.

3. From the Amazon EC2 console dashboard, choose Launch instance.

Name and tags

The instance name is a tag, where the key is Name, and the value is the name that you specify. You
can tag the instance, the volumes, and elastic graphics. For Spot Instances, you can tag the Spot
Instance request only.

Specifying an instance name and additional tags is optional.

• For Name, enter a descriptive name for the instance. If you don't specify a name, the instance
can be identified by its ID, which is automatically generated when you launch the instance.

• To add additional tags, choose Add additional tags. Choose Add tag, and then enter a key and
value, and select the resource type to tag. Choose Add tag again for each additional tag to add.

Application and OS Images (Amazon Machine Image)

An Amazon Machine Image (AMI) contains the information required to create an instance. For
example, an AMI might contain the software that's required to act as a web server, such as Apache,
and your website.

Use the Search bar to find a suitable Amazon ECS-optimized AMI published by AWS.

1. Enter one of the following terms in the Search bar.

• ami-ecs

• The Value of an Amazon ECS-optimized AMI.

For the latest Amazon ECS-optimized AMIs and their values, see Linux Amazon ECS-optimized
AMI.

2. Press Enter.

3. On the Choose an Amazon Machine Image (AMI) page, select the AWS Marketplace AMIs tab.

4. From the left Refine results pane, select Amazon Web Services as the Publisher.

Linux container instance management 504

https://console.aws.amazon.com/ec2/
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/ecs-optimized_AMI.html#ecs-optimized-ami-linux
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/ecs-optimized_AMI.html#ecs-optimized-ami-linux

Amazon Elastic Container Service Developer Guide

5. Choose Select on the row of the AMI that you want to use.

Alternatively, choose Cancel (at top right) to return to the launch instance wizard without
choosing an AMI. A default AMI will be selected. Ensure that the AMI meets the requirements
outlined in Linux instances.

Instance type

The instance type defines the hardware configuration and size of the instance. Larger instance
types have more CPU and memory. For more information, see Instance types.

• For Instance type, select the instance type for the instance.

The instance type that you select determines the resources available for your tasks to run on.

Key pair (login)

For Key pair name, choose an existing key pair, or choose Create new key pair to create a new one.

Important

If you choose the Proceed without key pair (Not recommended) option, you won't be
able to connect to the instance unless you choose an AMI that is configured to allow users
another way to log in.

Network settings

Configure the network settings, as necessary.

• Networking platform: Choose Virtual Private Cloud (VPC), and then specify the subnet in the
Network interfaces section.

• VPC: Select an existing VPC in which to create the security group.

• Subnet: You can launch an instance in a subnet associated with an Availability Zone, Local Zone,
Wavelength Zone, or Outpost.

To launch the instance in an Availability Zone, select the subnet in which to launch your instance.
To create a new subnet, choose Create new subnet to go to the Amazon VPC console. When you

Linux container instance management 505

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/ecs-linux.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instance-types.html

Amazon Elastic Container Service Developer Guide

are done, return to the launch instance wizard and choose the Refresh icon to load your subnet
in the list.

To launch the instance in a Local Zone, select a subnet that you created in the Local Zone.

To launch an instance in an Outpost, select a subnet in a VPC that you associated with the
Outpost.

• Auto-assign Public IP: If your instance should be accessible from the internet, verify that the
Auto-assign Public IP field is set to Enable. If not, set this field to Disable.

Note

Container instances need access to communicate with the Amazon ECS service endpoint.
This can be through an interface VPC endpoint or through your container instances
having public IP addresses.
For more information about interface VPC endpoints, see Amazon ECS interface VPC
endpoints (AWS PrivateLink)
If you do not have an interface VPC endpoint configured and your container instances
do not have public IP addresses, then they must use network address translation (NAT)
to provide this access. For more information, see NAT gateways in the Amazon VPC User
Guide and HTTP proxy configuration for Linux container instances in this guide.

• Firewall (security groups): Use a security group to define firewall rules for your container
instance. These rules specify which incoming network traffic is delivered to your container
instance. All other traffic is ignored.

• To select an existing security group, choose Select existing security group, and select the
security group that you created in Set up to use Amazon ECS.

Configure storage

The AMI you selected includes one or more volumes of storage, including the root volume. You can
specify additional volumes to attach to the instance.

You can use the Simple view.

• Storage type: Configure the storage for your container instance.

Linux container instance management 506

https://docs.aws.amazon.com/vpc/latest/userguide/vpc-nat-gateway.html

Amazon Elastic Container Service Developer Guide

If you are using the Amazon ECS-optimized Amazon Linux 2 AMI, your instance has a single 30
GiB volume configured, which is shared between the operating system and Docker.

If you are using the Amazon ECS-optimized AMI, your instance has two volumes configured. The
Root volume is for the operating system's use, and the second Amazon EBS volume (attached to
/dev/xvdcz) is for Docker's use.

You can optionally increase or decrease the volume sizes for your instance to meet your
application needs.

Advanced details

For Advanced details, expand the section to view the fields and specify any additional parameters
for the instance.

• Purchasing option: Choose Request Spot Instances to request Spot Instances. You also need to
set the other fields related to Spot Instances. For more information, see Spot Instance Requests.

Note

If you are using Spot Instances and see a Not available message, you may need to
choose a different instance type.

.

• IAM instance profile: Select your container instance IAM role. This is usually named
ecsInstanceRole.

Important

If you do not launch your container instance with the proper IAM permissions, your
Amazon ECS agent cannot connect to your cluster. For more information, see Amazon
ECS container instance IAM role.

• (Optional) User data: Configure your Amazon ECS container instance with user data, such as the
agent environment variables from Amazon ECS container agent configuration. Amazon EC2 user

Linux container instance management 507

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/spot-requests.html

Amazon Elastic Container Service Developer Guide

data scripts are executed only one time, when the instance is first launched. The following are
common examples of what user data is used for:

• By default, your container instance launches into your default cluster. To launch into a non-
default cluster, choose the Advanced Details list. Then, paste the following script into the User
data field, replacing your_cluster_name with the name of your cluster.

#!/bin/bash
echo ECS_CLUSTER=your_cluster_name >> /etc/ecs/ecs.config

• If you have an ecs.config file in Amazon S3 and have enabled Amazon S3 read-only access
to your container instance role, choose the Advanced Details list. Then, paste the following
script into the User data field, replacing your_bucket_name with the name of your bucket to
install the AWS CLI and write your configuration file at launch time.

Note

For more information about this configuration, see Storing container instance
configuration in Amazon S3.

#!/bin/bash
yum install -y aws-cli
aws s3 cp s3://your_bucket_name/ecs.config /etc/ecs/ecs.config

• Specify tags for your container instance using the ECS_CONTAINER_INSTANCE_TAGS
configuration parameter. This creates tags that are associated with Amazon ECS only, they
cannot be listed using the Amazon EC2 API.

Important

If you launch your container instances using an Amazon EC2 Auto Scaling group, then
you should use the ECS_CONTAINER_INSTANCE_TAGS agent configuration parameter
to add tags. This is due to the way in which tags are added to Amazon EC2 instances
that are launched using Auto Scaling groups.

#!/bin/bash
cat <<'EOF' >> /etc/ecs/ecs.config

Linux container instance management 508

Amazon Elastic Container Service Developer Guide

ECS_CLUSTER=your_cluster_name
ECS_CONTAINER_INSTANCE_TAGS={"tag_key": "tag_value"}
EOF

• Specify tags for your container instance and then use the
ECS_CONTAINER_INSTANCE_PROPAGATE_TAGS_FROM configuration parameter to propagate
them from Amazon EC2 to Amazon ECS

The following is an example of a user data script that would propagate the tags associated
with a container instance, as well as register the container instance with a cluster named
your_cluster_name:

#!/bin/bash
cat <<'EOF' >> /etc/ecs/ecs.config
ECS_CLUSTER=your_cluster_name
ECS_CONTAINER_INSTANCE_PROPAGATE_TAGS_FROM=ec2_instance
EOF

For more information, see Bootstrapping container instances with Amazon EC2 user data.

Old Amazon EC2 launch instance wizard

To launch a container instance

1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.

2. From the navigation bar, select the Region to use.

3. From the EC2 Dashboard, choose Launch instance.

4. On the Choose an Amazon Machine Image (AMI) page, complete the following steps:

a. Choose AWS Marketplace.

b. Choose an AMI for your container instance. You can search for one of the Amazon ECS-
optimized AMIs, for example the Amazon ECS-Optimized Amazon Linux 2 AMI. If you do
not choose an Amazon ECS-optimized AMI, you must follow the procedures in Installing
the Amazon ECS container agent.

For more information on the latest Amazon ECS-optimized AMIs, see Amazon ECS-
optimized AMI.

Linux container instance management 509

https://console.aws.amazon.com/ec2/

Amazon Elastic Container Service Developer Guide

5. On the Choose an Instance Type page, you can select the hardware configuration of your
instance. The t2.micro instance type is selected by default. The instance type that you select
determines the resources available for your tasks to run on.

Choose Next: Configure Instance Details when you are done.

6. On the Configure Instance Details page, complete the following steps:

a. Set the Number of instances field depending on how many container instances you want
to add to your cluster.

b. (Optional) To use Spot Instances, for Purchasing option, select the check box next to
Request Spot Instances. You also need to set the other fields related to Spot Instances.
For more information, see Spot Instance Requests.

Note

If you are using Spot Instances and see a Not available message, you may need
to choose a different instance type.

c. For Network, choose the VPC into which to launch your container instance.

d. For Subnet, choose a subnet to use, or keep the default option to choose the default
subnet in any Availability Zone.

e. Set the Auto-assign Public IP field depending on whether you want your instance to be
accessible from the public internet. If your instance should be accessible from the internet,
verify that the Auto-assign Public IP field is set to Enable. If not, set this field to Disable.

Note

Container instances need access to communicate with the Amazon ECS service
endpoint. This can be through an interface VPC endpoint or through your
container instances having public IP addresses.
For more information about interface VPC endpoints, see Amazon ECS interface
VPC endpoints (AWS PrivateLink).
If you do not have an interface VPC endpoint configured and your container
instances do not have public IP addresses, then they must use network address
translation (NAT) to provide this access. For more information, see NAT gateways
in the Amazon VPC User Guide and HTTP proxy configuration for Linux container

Linux container instance management 510

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/spot-requests.html
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-nat-gateway.html

Amazon Elastic Container Service Developer Guide

instances in this guide. For more information, see the section called “Create a
virtual private cloud”.

f. Select your container instance IAM role. This is usually named ecsInstanceRole.

Important

If you do not launch your container instance with the proper IAM permissions,
your Amazon ECS agent cannot connect to your cluster. For more information, see
Amazon ECS container instance IAM role.

g. (Optional) Configure your Amazon ECS container instance with user data, such as the
agent environment variables from Amazon ECS container agent configuration. Amazon
EC2 user data scripts are executed only one time, when the instance is first launched. The
following are common examples of what user data is used for:

• By default, your container instance launches into your default cluster. To launch into a
non-default cluster, choose the Advanced Details list. Then, paste the following script
into the User data field, replacing your_cluster_name with the name of your cluster.

#!/bin/bash
echo ECS_CLUSTER=your_cluster_name >> /etc/ecs/ecs.config

• If you have an ecs.config file in Amazon S3 and have enabled Amazon S3 read-only
access to your container instance role, choose the Advanced Details list. Then, paste the
following script into the User data field, replacing your_bucket_name with the name
of your bucket to install the AWS CLI and write your configuration file at launch time.

Note

For more information about this configuration, see Storing container instance
configuration in Amazon S3.

#!/bin/bash
yum install -y aws-cli
aws s3 cp s3://your_bucket_name/ecs.config /etc/ecs/ecs.config

Linux container instance management 511

Amazon Elastic Container Service Developer Guide

• Specify tags for your container instance using the ECS_CONTAINER_INSTANCE_TAGS
configuration parameter. This creates tags that are associated with Amazon ECS only,
they cannot be listed using the Amazon EC2 API.

Important

If you launch your container instances using an Amazon EC2 Auto Scaling group,
then you should use the ECS_CONTAINER_INSTANCE_TAGS agent configuration
parameter to add tags. This is due to the way in which tags are added to
Amazon EC2 instances that are launched using Auto Scaling groups.

#!/bin/bash
cat <<'EOF' >> /etc/ecs/ecs.config
ECS_CLUSTER=your_cluster_name
ECS_CONTAINER_INSTANCE_TAGS={"tag_key": "tag_value"}
EOF

• Specify tags for your container instance and then use the
ECS_CONTAINER_INSTANCE_PROPAGATE_TAGS_FROM configuration parameter to
propagate them from Amazon EC2 to Amazon ECS

The following is an example of a user data script that would propagate the tags
associated with a container instance, as well as register the container instance with a
cluster named your_cluster_name:

#!/bin/bash
cat <<'EOF' >> /etc/ecs/ecs.config
ECS_CLUSTER=your_cluster_name
ECS_CONTAINER_INSTANCE_PROPAGATE_TAGS_FROM=ec2_instance
EOF

For more information, see Bootstrapping container instances with Amazon EC2 user data.

h. Choose Next: Add Storage.

7. On the Add Storage page, configure the storage for your container instance.

If you are using the Amazon ECS-optimized Amazon Linux 2 AMI, your instance has a single 30
GiB volume configured, which is shared between the operating system and Docker.

Linux container instance management 512

Amazon Elastic Container Service Developer Guide

If you are using the Amazon ECS-optimized AMI, your instance has two volumes configured.
The Root volume is for the operating system's use, and the second Amazon EBS volume
(attached to /dev/xvdcz) is for Docker's use.

You can optionally increase or decrease the volume sizes for your instance to meet your
application needs.

When done configuring your volumes, choose Next: Add Tags.

8. On the Add Tags page, specify tags by providing key and value combinations for the container
instance. Choose Add another tag to add more than one tag to your container instance. For
more information resource tags, see Amazon ECS resource tagging.

Choose Next: Configure Security Group when you are done.

9. On the Configure Security Group page, use a security group to define firewall rules for your
container instance. These rules specify which incoming network traffic is delivered to your
container instance. All other traffic is ignored. Select or create a security group as follows, and
then choose Review and Launch.

10. On the Review Instance Launch page, under Security Groups, you see that the wizard created
and selected a security group for you. Instead, select the security group that you created in Set
up to use Amazon ECS using the following steps:

a. Choose Edit security groups.

b. On the Configure Security Group page, select the Select an existing security group
option.

c. Select the security group you created for your container instance from the list of existing
security groups, and choose Review and Launch.

11. On the Review Instance Launch page, choose Launch.

12. In the Select an existing key pair or create a new key pair dialog box, choose Choose an
existing key pair, then select the key pair that you created when getting set up.

When you are ready, select the acknowledgment field, and then choose Launch Instances.

13. A confirmation page lets you know that your instance is launching. Choose View Instances to
close the confirmation page and return to the console.

14. On the Instances screen, you can view the status of your instance. It takes a short time for an
instance to launch. When you launch an instance, its initial state is pending. After the instance

Linux container instance management 513

Amazon Elastic Container Service Developer Guide

starts, its state changes to running, and it receives a public DNS name. If the Public DNS
column is hidden, choose Show/Hide, Public DNS.

Using Spot Instances

A Spot Instance is an unused Amazon EC2 instance that is available for less than the On-Demand
price. Because Spot Instances enable you to request unused EC2 instances at steep discounts, you
can lower your Amazon EC2 costs significantly. The hourly price for a Spot Instance is called a Spot
price. The Spot price of each instance type in each Availability Zone is set by Amazon EC2, and
adjusted gradually based on the long-term supply of and demand for Spot Instances. For more
information, see Spot Instances in the Amazon EC2 User Guide for Linux Instances.

You can register Spot Instances to your Amazon ECS clusters. For more information, see Launching
an Amazon ECS Linux container instance.

Spot Instance draining

Amazon EC2 terminates, stops, or hibernates your Spot Instance when the Spot price exceeds
the maximum price for your request or capacity is no longer available. Amazon EC2 provides a
Spot Instance two-minute interruption notice for terminate and stop actions. It does not provide
the two-minute notice for the hibernate action. If Amazon ECS Spot Instance draining is enabled
on the instance, ECS receives the Spot Instance interruption notice and places the instance in
DRAINING status.

Important

Amazon ECS does not receive a notice from Amazon EC2 when instances are removed by
Auto Scaling Capacity Rebalancing. For more information, see Amazon EC2 Auto Scaling
Capacity Rebalancing.

When a container instance is set to DRAINING, Amazon ECS prevents new tasks from being
scheduled for placement on the container instance. Service tasks on the draining container
instance that are in the PENDING state are stopped immediately. If there are container instances in
the cluster that are available, replacement service tasks are started on them.

Spot Instance draining is turned off by default and must be manually enabled. To enable Spot
Instance draining for a new container instance, when launching the container instance add the

Linux container instance management 514

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-spot-instances.html
https://docs.aws.amazon.com/autoscaling/ec2/userguide/ec2-auto-scaling-capacity-rebalancing.html
https://docs.aws.amazon.com/autoscaling/ec2/userguide/ec2-auto-scaling-capacity-rebalancing.html

Amazon Elastic Container Service Developer Guide

following script into the User data field, replacing MyCluster with the name of the cluster to
register the container instance to.

#!/bin/bash
cat <<'EOF' >> /etc/ecs/ecs.config
ECS_CLUSTER=MyCluster
ECS_ENABLE_SPOT_INSTANCE_DRAINING=true
EOF

For more information, see Launching an Amazon ECS Linux container instance.

To turn on Spot Instance draining for an existing container instance

1. Connect to the Spot Instance over SSH.

2. Edit the /etc/ecs/ecs.config file and add the following:

ECS_ENABLE_SPOT_INSTANCE_DRAINING=true

3. Restart the ecs service.

• For the Amazon ECS-optimized Amazon Linux 2 AMI:

sudo systemctl restart ecs

• For the Amazon ECS-optimized Amazon Linux AMI:

sudo stop ecs && sudo start ecs

4. (Optional) You can verify that the agent is running and see some information about your new
container instance by querying the agent introspection API operation. For more information,
see the section called “Container introspection”.

curl http://localhost:51678/v1/metadata

Container instance draining

There might be times when you need to remove a container instance from your cluster; for
example, to perform system updates, update the Docker daemon, or to scale down the cluster
capacity. Amazon ECS provides the ability to transition a container instance to a DRAINING status.

Linux container instance management 515

Amazon Elastic Container Service Developer Guide

This is referred to as container instance draining. When a container instance is set to DRAINING,
Amazon ECS prevents new tasks from being scheduled for placement on the container instance.

Draining behavior for services

Any tasks that are part of a service that are in a PENDING state are stopped immediately. If there
is available container instance capacity in the cluster, the service scheduler will start replacement
tasks. If there isn't enough container instance capacity, a service event message will be sent
indicating the issue.

Tasks that are part of a service on the container instance that are in a RUNNING state
are transitioned to a STOPPED state. The service scheduler attempts to replace the tasks
according to the service's deployment type and deployment configuration parameters,
minimumHealthyPercent and maximumPercent. For more information, see Amazon ECS
Deployment types and Service definition parameters.

• If minimumHealthyPercent is below 100%, the scheduler can ignore desiredCount
temporarily during task replacement. For example, desiredCount is four tasks, a minimum
of 50% allows the scheduler to stop two existing tasks before starting two new tasks. If the
minimum is 100%, the service scheduler can't remove existing tasks until the replacement
tasks are considered healthy. If tasks for services that do not use a load balancer are in the
RUNNING state, they are considered healthy. Tasks for services that use a load balancer are
considered healthy if they are in the RUNNING state and the container instance they are hosted
on is reported as healthy by the load balancer.

Important

If you use Spot Instances and minimumHealthyPercent is greater than or equal to
100%, then the service will not have enough time to replace the task before the Spot
Instance terminates.

• The maximumPercent parameter represents an upper limit on the number of running tasks
during task replacement, which allows you to define the replacement batch size. For example,
if desiredCount of four tasks, a maximum of 200% starts four new tasks before stopping the
four tasks to be drained (provided that the cluster resources required to do this are available). If
the maximum is 100%, then replacement tasks can't start until the draining tasks have stopped.

Linux container instance management 516

Amazon Elastic Container Service Developer Guide

Important

If both minimumHealthyPercent and maximumPercent are 100%, then the service
can't remove existing tasks, and also cannot start replacement tasks. This prevents
successful container instance draining and prevents making new deployments.

Draining behavior for standalone tasks

Any standalone tasks in the PENDING or RUNNING state are unaffected; you must wait for them to
stop on their own or stop them manually. The container instance will remain in DRAINING status.

A container instance has completed draining when all tasks running on the instance transition to
a STOPPED state. The container instance remains in a DRAINING state until it is activated again
or deleted. You can verify the state of the tasks on the container instance by using the ListTasks
operation with the containerInstance parameter to get a list of tasks on the instance followed
by a DescribeTasks operation with the Amazon Resource Name (ARN) or ID of each task to verify
the task state.

When you are ready for the container instance to start hosting tasks again, you change the state
of the container instance from DRAINING to ACTIVE. The Amazon ECS service scheduler will then
consider the container instance for task placement again.

Draining container instances

The following steps can be used to set a container instance to draining using the new AWS
Management Console.

You can also use the UpdateContainerInstancesState API action or the update-container-instances-
state command to change the status of a container instance to DRAINING.

AWS Management Console

1. Open the console at https://console.aws.amazon.com/ecs/v2.

2. In the navigation pane, choose Clusters.

3. On the Clusters page, choose a cluster that hosts your instances.

4. On the Cluster : name page, choose the Infrastructure tab. Then, under Container instances
select the check box for each container instance you want to drain.

Linux container instance management 517

https://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_ListTasks.html
https://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_DescribeTasks.html
https://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_UpdateContainerInstancesState.html
https://docs.aws.amazon.com/cli/latest/reference/ecs/update-container-instances-state.html
https://docs.aws.amazon.com/cli/latest/reference/ecs/update-container-instances-state.html
https://console.aws.amazon.com/ecs/v2

Amazon Elastic Container Service Developer Guide

5. Choose Actions, Drain.

Bootstrapping container instances with Amazon EC2 user data

When you launch an Amazon EC2 instance, you have the option of passing user data to the
instance. The data can be used to perform common automated configuration tasks and even run
scripts when the instance boots. For Amazon ECS, the most common use cases for user data are to
pass configuration information to the Docker daemon and the Amazon ECS container agent.

You can pass multiple types of user data to Amazon EC2, including cloud boothooks, shell scripts,
and cloud-init directives. For more information about these and other format types, see the
Cloud-Init documentation.

You can pass this user data when using the Amazon EC2 launch wizard. For more information, see
Launching an Amazon ECS Linux container instance.

Topics

• Amazon ECS container agent

• Docker daemon

Amazon ECS container agent

The Linux variants of the Amazon ECS-optimized AMI look for agent configuration data in the /
etc/ecs/ecs.config file when the container agent starts. You can specify this configuration
data at launch with Amazon EC2 user data. For more information about available Amazon ECS
container agent configuration variables, see Amazon ECS container agent configuration.

To set only a single agent configuration variable, such as the cluster name, use echo to copy the
variable to the configuration file:

#!/bin/bash
echo "ECS_CLUSTER=MyCluster" >> /etc/ecs/ecs.config

If you have multiple variables to write to /etc/ecs/ecs.config, use the following heredoc
format. This format writes everything between the lines beginning with cat and EOF to the
configuration file.

#!/bin/bash

Linux container instance management 518

https://cloudinit.readthedocs.io/en/latest/topics/format.html

Amazon Elastic Container Service Developer Guide

cat <<'EOF' >> /etc/ecs/ecs.config
ECS_CLUSTER=MyCluster
ECS_ENGINE_AUTH_TYPE=docker
ECS_ENGINE_AUTH_DATA={"https://index.docker.io/v1/":
{"username":"my_name","password":"my_password","email":"email@example.com"}}
ECS_LOGLEVEL=debug
ECS_WARM_POOLS_CHECK=true
EOF

To set custom instance attributes, set the ECS_INSTANCE_ATTRIBUTES environment variable.

#!/bin/bash
cat <<'EOF' >> ecs.config
ECS_INSTANCE_ATTRIBUTES={"envtype":"prod"}
EOF

Docker daemon

You can specify Docker daemon configuration information with Amazon EC2 user data. For more
information about configuration options, see the Docker daemon documentation.

In the example below, the custom options are added to the Docker daemon configuration file,
/etc/docker/daemon.json which is then specified in the user data when the instance is
launched.

#!/bin/bash
cat <<EOF >/etc/docker/daemon.json
{"debug": true}
EOF
systemctl restart docker --no-block

In the example below, the custom options are added to the Docker daemon configuration file,
/etc/docker/daemon.json which is then specified in the user data when the instance is
launched. This example shows how to disable the docker-proxy in the Docker daemon config file.

#!/bin/bash
cat <<EOF >/etc/docker/daemon.json
{"userland-proxy": false}
EOF
systemctl restart docker --no-block

Linux container instance management 519

https://docs.docker.com/engine/reference/commandline/dockerd/

Amazon Elastic Container Service Developer Guide

Starting a task at container instance launch time

Depending on your application architecture design, you may need to run a specific container on
every container instance to deal with operations or security concerns such as monitoring, security,
metrics, service discovery, or logging.

To do this, you can configure your container instances to call the docker run command with the
user data script at launch, or in some init system such as Upstart or systemd. While this method
works, it has some disadvantages because Amazon ECS has no knowledge of the container and
cannot monitor the CPU, memory, ports, or any other resources used. To ensure that Amazon ECS
can properly account for all task resources, create a task definition for the container to run on your
container instances. Then, use Amazon ECS to place the task at launch time with Amazon EC2 user
data.

The Amazon EC2 user data script in the following procedure uses the Amazon ECS introspection
API to identify the container instance. Then, it uses the AWS CLI and the start-task command to
run a specified task on itself during startup.

To start a task at container instance launch time

1. If you have not done so already, create a task definition with the container you want to run
on your container instance at launch by following the procedures in Creating a task definition
using the console.

2. Modify your ecsInstanceRole IAM role to add permissions for the StartTask API
operation. For more information, see Amazon ECS container instance IAM role.

a. Open the IAM console at https://console.aws.amazon.com/iam/.

b. In the navigation pane, choose Roles.

c. Choose the ecsInstanceRole. If the role does not exist, use the procedure in Amazon
ECS container instance IAM role to create the role and return to this procedure. If the role
does exist, select the role to view the attached policies.

d. In the Permissions tab, choose Add inline policy.

e. For Service, choose Choose a service, Elastic Container Service.

f. For Actions, type StartTask in the search field, and then select StartTask.

g. For Resources, select All resources, and then choose Review policy.

h. On the Review policy page, enter a name for your policy, such as ecs-start-task and
choose Create policy.

Linux container instance management 520

https://console.aws.amazon.com/iam/

Amazon Elastic Container Service Developer Guide

3. Launch one or more container instances using the Amazon ECS-optimized Amazon Linux 2
AMI by following the procedure in Launching an Amazon ECS Linux container instance, but in
Step 6.g copy and paste the MIME multi-part user data script below into the User data field.
Substitute your_cluster_name with the cluster for the container instance to register into
and my_task_def with the task definition to run on the instance at launch.

Note

The MIME multi-part content below uses a shell script to set configuration values and
install packages. It also uses a systemd job to start the task after the ecs service is
running and the introspection API is available.

Content-Type: multipart/mixed; boundary="==BOUNDARY=="
MIME-Version: 1.0

--==BOUNDARY==
Content-Type: text/x-shellscript; charset="us-ascii"

#!/bin/bash
Specify the cluster that the container instance should register into
cluster=your_cluster_name

Write the cluster configuration variable to the ecs.config file
(add any other configuration variables here also)
echo ECS_CLUSTER=$cluster >> /etc/ecs/ecs.config

START_TASK_SCRIPT_FILE="/etc/ecs/ecs-start-task.sh"
cat <<- 'EOF' > ${START_TASK_SCRIPT_FILE}
 exec 2>>/var/log/ecs/ecs-start-task.log
 set -x

 # Install prerequisite tools
 yum install -y jq aws-cli

 # Wait for the ECS service to be responsive
 until curl -s http://localhost:51678/v1/metadata
 do
 sleep 1
 done

Linux container instance management 521

Amazon Elastic Container Service Developer Guide

 # Grab the container instance ARN and AWS Region from instance metadata
 instance_arn=$(curl -s http://localhost:51678/v1/metadata | jq -r '.
 | .ContainerInstanceArn' | awk -F/ '{print $NF}')
 cluster=$(curl -s http://localhost:51678/v1/metadata | jq -r '. | .Cluster' | awk
 -F/ '{print $NF}')
 region=$(curl -s http://localhost:51678/v1/metadata | jq -r '.
 | .ContainerInstanceArn' | awk -F: '{print $4}')

 # Specify the task definition to run at launch
 task_definition=my_task_def

 # Run the AWS CLI start-task command to start your task on this container instance
 aws ecs start-task --cluster $cluster --task-definition $task_definition --
container-instances $instance_arn --started-by $instance_arn --region $region
EOF

Write systemd unit file
UNIT="ecs-start-task.service"
cat <<- EOF > /etc/systemd/system/${UNIT}
 [Unit]
 Description=ECS Start Task
 Requires=ecs.service
 After=ecs.service

 [Service]
 Restart=on-failure
 RestartSec=30
 ExecStart=/usr/bin/bash ${START_TASK_SCRIPT_FILE}

 [Install]
 WantedBy=default.target
EOF

Enable our ecs.service dependent service with `--no-block` to prevent systemd
 deadlock
See https://github.com/aws/amazon-ecs-agent/issues/1707
systemctl enable --now --no-block "${UNIT}"
--==BOUNDARY==--

4. Verify that your container instances launch into the correct cluster and that your tasks have
started.

a. Open the console at https://console.aws.amazon.com/ecs/v2.

Linux container instance management 522

https://console.aws.amazon.com/ecs/v2

Amazon Elastic Container Service Developer Guide

b. From the navigation bar, choose the Region that your cluster is in.

c. In the navigation pane, choose Clusters and select the cluster that hosts your container
instances.

d. On the Cluster page, choose Tasks, and then choose yor tasks.

Each container instance you launched should have your task running on it.

If you do not see your tasks, you can log in to your container instances with SSH and check
the /var/log/ecs/ecs-start-task.log file for debugging information.

Elastic network interface trunking

Note

This feature is not available on Fargate.

Each Amazon ECS task that uses the awsvpc network mode receives its own elastic network
interface (ENI), which is attached to the container instance that hosts it. There is a default limit
to the number of network interfaces that can be attached to an Amazon EC2 instance, and the
primary network interface counts as one. For example, by default a c5.large instance may have
up to three ENIs attached to it. The primary network interface for the instance counts as one,
so you can attach an additional two ENIs to the instance. Because each task using the awsvpc
network mode requires an ENI, you can typically only run two such tasks on this instance type.

Amazon ECS supports launching container instances with increased ENI density using supported
Amazon EC2 instance types. When you use these instance types and enable the awsvpcTrunking
account setting, additional ENIs are available on newly launched container instances. This
configuration allows you to place more tasks using the awsvpc network mode on each container
instance. For information about the awsvpcTrunking account setting, see Accessing Amazon ECS
features through account settings.

Using this feature, a c5.large instance with awsvpcTrunking enabled has an increased ENI limit
of twelve. The container instance will have the primary network interface and Amazon ECS creates
and attaches a "trunk" network interface to the container instance. So this configuration allows you
to launch ten tasks on the container instance instead of the current two tasks.

Linux container instance management 523

Amazon Elastic Container Service Developer Guide

The trunk network interface is fully managed by Amazon ECS and is deleted when you either
terminate or deregister your container instance from the cluster. For more information, see Task
networking for tasks on Amazon EC2 instances.

Considerations

There are several things to consider when using the ENI trunking feature.

• Only Linux variants of the Amazon ECS-optimized AMI, or other Amazon Linux variants with
version 1.28.1 or later of the container agent and version 1.28.1-2 or later of the ecs-init
package, support the increased ENI limits. If you use the latest Linux variant of the Amazon ECS-
optimized AMI, these requirements will be met. Windows containers are not supported at this
time.

• Only new Amazon EC2 instances launched after enabling awsvpcTrunking receive the
increased ENI limits and the trunk network interface. Previously launched instances do not
receive these features regardless of the actions taken.

• Amazon EC2 instances must have resource-based IPv4 DNS requests turned off. To disable this
option, ensure the Enable resource-based IPV4 (A record) DNS requests option is deselected
when creating a new instance using the Amazon EC2 console. To disable this option using the
AWS CLI, use the following command.

aws ec2 modify-private-dns-name-options --instance-id i-xxxxxxx --no-enable-resource-
name-dns-a-record --no-dry-run

• Amazon EC2 instances in shared subnets are not supported. They will fail to register to a cluster
if they are used.

• Your Amazon ECS tasks must use the awsvpc network mode and the EC2 launch type. Tasks
using the Fargate launch type always received a dedicated ENI regardless of how many are
launched, so this feature is not needed.

• Your Amazon ECS tasks must be launched in the same Amazon VPC as your container instance.
Your tasks will fail to start with an attribute error if they are not within the same VPC.

• When launching a new container instance, the instance transitions to a REGISTERING status
while the trunk elastic network interface is provisioned for the instance. If the registration
fails, the instance transitions to a REGISTRATION_FAILED status. You can troubleshoot a
failed registration by describing the container instance to view the statusReason field which
describes the reason for the failure. The container instance then can be manually deregistered or

Linux container instance management 524

Amazon Elastic Container Service Developer Guide

terminated. Once the container instance is successfully deregistered or terminated, Amazon ECS
will delete the trunk ENI.

Note

Amazon ECS emits container instance state change events which you can monitor for
instances that transition to a REGISTRATION_FAILED state. For more information, see
Amazon ECS container instance state change events.

• Once the container instance is terminated, the instance transitions to a DEREGISTERING status
while the trunk elastic network interface is deprovisioned. The instance then transitions to an
INACTIVE status.

• If a container instance in a public subnet with the increased ENI limits is stopped and then
restarted, the instance loses its public IP address, and the container agent loses its connection.

• When you enable awsvpcTrunking, container instances receive an additional ENI that uses the
VPC's default security group, and is managed by Amazon ECS.

Prerequisites

Before you launch a container instance with the increased ENI limits, the following prerequisites
must be completed.

• The service-linked role for Amazon ECS must be created. The Amazon ECS service-linked role
provides Amazon ECS with the permissions to make calls to other AWS services on your behalf.
This role is created for you automatically when you create a cluster, or if you create or update
a service in the AWS Management Console. For more information, see Using service-linked
roles for Amazon ECS. You can also create the service-linked role with the following AWS CLI
command.

aws iam create-service-linked-role --aws-service-name ecs.amazonaws.com

• Your account or container instance IAM role must enable the awsvpcTrunking account setting.
We recommend that you create 2 container instance roles (ecsInstanceRole). You can then
enable the awsvpcTrunking account setting for one role and use that role for tasks that require
ENI trunking. For information about the container instance role, see Amazon ECS container
instance IAM role.

Linux container instance management 525

https://docs.aws.amazon.com/cli/latest/reference/iam/create-service-linked-role.html

Amazon Elastic Container Service Developer Guide

After the prerequisites are met, you can launch a new container instance using one of the
supported Amazon EC2 instance types, and the instance will have the increased ENI limits. For a
list of supported instance types, see Supported Amazon EC2 instance types. The container instance
must have version 1.28.1 or later of the container agent and version 1.28.1-2 or later of the
ecs-init package. If you use the latest Linux variant of the Amazon ECS-optimized AMI, these
requirements will be met. For more information, see Launching an Amazon ECS Linux container
instance.

Important

Amazon EC2 instances must have resource-based IPv4 DNS requests turned off. To disable
this option, ensure the Enable resource-based IPV4 (A record) DNS requests option is
deselected when creating a new instance using the Amazon EC2 console. To disable this
option using the AWS CLI, use the following command.

aws ec2 modify-private-dns-name-options --instance-id i-xxxxxxx --no-enable-
resource-name-dns-a-record --no-dry-run

To view your container instances with increased ENI limits with the AWS CLI

Each container instance has a default network interface, referred to as a trunk network interface.
Use the following command to list your container instances with increased ENI limits by querying
for the ecs.awsvpc-trunk-id attribute, which indicates it has a trunk network interface.

• list-attributes (AWS CLI)

aws ecs list-attributes \
 --target-type container-instance \
 --attribute-name ecs.awsvpc-trunk-id \
 --cluster cluster_name \
 --region us-east-1

• Get-ECSAttributeList (AWS Tools for Windows PowerShell)

Get-ECSAttributeList -TargetType container-instance -AttributeName ecs.awsvpc-trunk-
id -Region us-east-1

Linux container instance management 526

https://docs.aws.amazon.com/cli/latest/reference/ecs/list-attributes.html
https://docs.aws.amazon.com/powershell/latest/reference/items/Get-ECSAttributeList.html

Amazon Elastic Container Service Developer Guide

Supported Amazon EC2 instance types

The following shows the supported Amazon EC2 instance types and how many tasks using the
awsvpc network mode can be launched on each instance type before and after enabling the
awsvpcTrunking account setting. For the elastic network interface (ENI) limits on each instance
type, add one to the current task limit, as the primary network interface counts against the limit,
and add two to the new task limit, as both the primary network interface and the trunk network
interface count again the limit.

Important

Although other instance types are supported in the same instance family, the a1.metal,
c5.metal, c5a.8xlarge, c5ad.8xlarge, c5d.metal, m5.metal, p3dn.24xlarge,
r5.metal, r5.8xlarge, and r5d.metal instance types are not supported.
The c5n, d3, d3en, g3, g3s, g4dn, i3, i3en, inf1, m5dn, m5n, m5zn, mac1, r5b, r5n,
r5dn, u-12tb1, u-6tb1, u-9tb1, and z1d instance families are not supported.

Topics

• General purpose

• Compute optimized

• Memory optimized

• Storage optimized

• Accelerated computing

General purpose

Instance type Task limit without ENI
trunking

Task limit with ENI trunking

a1.medium 1 10

a1.large 2 10

a1.xlarge 3 20

a1.2xlarge 3 40

Linux container instance management 527

Amazon Elastic Container Service Developer Guide

Instance type Task limit without ENI
trunking

Task limit with ENI trunking

a1.4xlarge 7 60

m5.large 2 10

m5.xlarge 3 20

m5.2xlarge 3 40

m5.4xlarge 7 60

m5.8xlarge 7 60

m5.12xlarge 7 60

m5.16xlarge 14 120

m5.24xlarge 14 120

m5a.large 2 10

m5a.xlarge 3 20

m5a.2xlarge 3 40

m5a.4xlarge 7 60

m5a.8xlarge 7 60

m5a.12xlarge 7 60

m5a.16xlarge 14 120

m5a.24xlarge 14 120

m5ad.large 2 10

m5ad.xlarge 3 20

m5ad.2xlarge 3 40

Linux container instance management 528

Amazon Elastic Container Service Developer Guide

Instance type Task limit without ENI
trunking

Task limit with ENI trunking

m5ad.4xlarge 7 60

m5ad.8xlarge 7 60

m5ad.12xlarge 7 60

m5ad.16xlarge 14 120

m5ad.24xlarge 14 120

m5d.large 2 10

m5d.xlarge 3 20

m5d.2xlarge 3 40

m5d.4xlarge 7 60

m5d.8xlarge 7 60

m5d.12xlarge 7 60

m5d.16xlarge 14 120

m5d.24xlarge 14 120

m5d.metal 14 120

m5n.large 2 10

m5n.xlarge 3 20

m5n.2xlarge 3 40

m5n.4xlarge 7 60

m5n.8xlarge 7 60

m5n.12xlarge 7 60

Linux container instance management 529

Amazon Elastic Container Service Developer Guide

Instance type Task limit without ENI
trunking

Task limit with ENI trunking

m5n.16xlarge 14 120

m5zn.large 2 14

m5zn.xlarge 3 31

m5zn.2xlarge 3 64

m5zn.3xlarge 7 98

m5zn.6xlarge 7 120

m6a.large 2 10

m6a.xlarge 3 20

m6a.2xlarge 3 40

m6a.4xlarge 7 60

m6a.8xlarge 7 90

m6a.12xlarge 7 120

m6a.16xlarge 14 120

m6a.24xlarge 14 120

m6a.32xlarge 14 120

m6a.48xlarge 14 120

m6a.metal 14 120

m6g.medium 1 4

m6g.large 2 10

m6g.xlarge 3 20

Linux container instance management 530

Amazon Elastic Container Service Developer Guide

Instance type Task limit without ENI
trunking

Task limit with ENI trunking

m6g.2xlarge 3 40

m6g.4xlarge 7 60

m6g.8xlarge 7 60

m6g.12xlarge 7 60

m6g.16xlarge 14 120

m6g.metal 14 120

m6gd.medium 1 4

m6gd.large 2 10

m6gd.xlarge 3 20

m6gd.2xlarge 3 40

m6gd.4xlarge 7 60

m6gd.8xlarge 7 60

m6gd.12xlarge 7 60

m6gd.16xlarge 14 120

m6gd.metal 14 120

m6i.large 2 10

m6i.xlarge 3 20

m6i.2xlarge 3 40

m6i.4xlarge 7 60

m6i.8xlarge 7 90

Linux container instance management 531

Amazon Elastic Container Service Developer Guide

Instance type Task limit without ENI
trunking

Task limit with ENI trunking

m6i.12xlarge 7 120

m6i.16xlarge 14 120

m6i.24xlarge 14 120

m6i.32xlarge 14 120

m6i.metal 14 120

m6id.large 2 10

m6id.xlarge 3 20

m6id.2xlarge 3 40

m6id.4xlarge 7 60

m6id.8xlarge 7 90

m6id.12xlarge 7 120

m6id.16xlarge 14 120

m6id.24xlarge 14 120

m6id.32xlarge 14 120

m6id.metal 14 120

m6idn.large 2 10

m6idn.xlarge 3 20

m6idn.2xlarge 3 40

m6idn.4xlarge 7 60

m6idn.8xlarge 7 90

Linux container instance management 532

Amazon Elastic Container Service Developer Guide

Instance type Task limit without ENI
trunking

Task limit with ENI trunking

m6idn.12xlarge 7 120

m6idn.16xlarge 14 120

m6idn.24xlarge 14 120

m6idn.32xlarge 13 120

m6idn.metal 13 120

m6in.large 2 10

m6in.xlarge 3 20

m6in.2xlarge 3 40

m6in.4xlarge 7 60

m6in.8xlarge 7 90

m6in.12xlarge 7 120

m6in.16xlarge 14 120

m6in.24xlarge 14 120

m6in.32xlarge 13 120

m6in.metal 13 120

m7a.medium 1 4

m7a.large 2 10

m7a.xlarge 3 20

m7a.2xlarge 3 40

m7a.4xlarge 7 60

Linux container instance management 533

Amazon Elastic Container Service Developer Guide

Instance type Task limit without ENI
trunking

Task limit with ENI trunking

m7a.8xlarge 7 90

m7a.12xlarge 7 120

m7a.16xlarge 14 120

m7a.24xlarge 14 120

m7a.32xlarge 14 120

m7a.48xlarge 14 120

m7a.metal-48xl 14 120

m7g.medium 1 4

m7g.large 2 10

m7g.xlarge 3 20

m7g.2xlarge 3 40

m7g.4xlarge 7 60

m7g.8xlarge 7 60

m7g.12xlarge 7 60

m7g.16xlarge 14 120

m7g.metal 14 120

m7gd.medium 1 4

m7gd.large 2 10

m7gd.xlarge 3 20

m7gd.2xlarge 3 40

Linux container instance management 534

Amazon Elastic Container Service Developer Guide

Instance type Task limit without ENI
trunking

Task limit with ENI trunking

m7gd.4xlarge 7 60

m7gd.8xlarge 7 60

m7gd.12xlarge 7 60

m7gd.16xlarge 14 120

m7gd.metal 14 120

m7i.large 2 10

m7i.xlarge 3 20

m7i.2xlarge 3 40

m7i.4xlarge 7 60

m7i.8xlarge 7 90

m7i.12xlarge 7 120

m7i.16xlarge 14 120

m7i.24xlarge 14 120

m7i.48xlarge 14 120

m7i.metal-24xl 14 120

m7i.metal-48xl 14 120

m7i-flex.large 2 4

m7i-flex.xlarge 3 10

m7i-flex.2xlarge 3 20

m7i-flex.4xlarge 7 40

Linux container instance management 535

Amazon Elastic Container Service Developer Guide

Instance type Task limit without ENI
trunking

Task limit with ENI trunking

m7i-flex.8xlarge 7 60

mac2.metal 7 12

mac2-m2.metal 7 12

mac2-m2pro.metal 7 12

Compute optimized

Instance type Task limit without ENI
trunking

Task limit with ENI trunking

c5.large 2 10

c5.xlarge 3 20

c5.2xlarge 3 40

c5.4xlarge 7 60

c5.9xlarge 7 60

c5.12xlarge 7 60

c5.18xlarge 14 120

c5.24xlarge 14 120

c5a.large 2 10

c5a.xlarge 3 20

c5a.2xlarge 3 40

c5a.4xlarge 7 60

Linux container instance management 536

Amazon Elastic Container Service Developer Guide

Instance type Task limit without ENI
trunking

Task limit with ENI trunking

c5a.12xlarge 7 60

c5a.16xlarge 14 120

c5a.24xlarge 14 120

c5ad.large 2 10

c5ad.xlarge 3 20

c5ad.2xlarge 3 40

c5ad.4xlarge 7 60

c5ad.12xlarge 7 60

c5ad.16xlarge 14 120

c5ad.24xlarge 14 120

c5d.large 2 10

c5d.xlarge 3 20

c5d.2xlarge 3 40

c5d.4xlarge 7 60

c5d.9xlarge 7 60

c5d.12xlarge 7 60

c5d.18xlarge 14 120

c5d.24xlarge 14 120

c6a.large 2 10

c6a.xlarge 3 20

Linux container instance management 537

Amazon Elastic Container Service Developer Guide

Instance type Task limit without ENI
trunking

Task limit with ENI trunking

c6a.2xlarge 3 40

c6a.4xlarge 7 60

c6a.8xlarge 7 90

c6a.12xlarge 7 120

c6a.16xlarge 14 120

c6a.24xlarge 14 120

c6a.32xlarge 14 120

c6a.48xlarge 14 120

c6a.metal 14 120

c6g.medium 1 4

c6g.large 2 10

c6g.xlarge 3 20

c6g.2xlarge 3 40

c6g.4xlarge 7 60

c6g.8xlarge 7 60

c6g.12xlarge 7 60

c6g.16xlarge 14 120

c6g.metal 14 120

c6gd.medium 1 4

c6gd.large 2 10

Linux container instance management 538

Amazon Elastic Container Service Developer Guide

Instance type Task limit without ENI
trunking

Task limit with ENI trunking

c6gd.xlarge 3 20

c6gd.2xlarge 3 40

c6gd.4xlarge 7 60

c6gd.8xlarge 7 60

c6gd.12xlarge 7 60

c6gd.16xlarge 14 120

c6gd.metal 14 120

c6gn.medium 1 4

c6gn.large 2 10

c6gn.xlarge 3 20

c6gn.2xlarge 3 40

c6gn.4xlarge 7 60

c6gn.8xlarge 7 60

c6gn.12xlarge 7 60

c6gn.16xlarge 14 120

c6i.large 2 10

c6i.xlarge 3 20

c6i.2xlarge 3 40

c6i.4xlarge 7 60

c6i.8xlarge 7 90

Linux container instance management 539

Amazon Elastic Container Service Developer Guide

Instance type Task limit without ENI
trunking

Task limit with ENI trunking

c6i.12xlarge 7 120

c6i.16xlarge 14 120

c6i.24xlarge 14 120

c6i.32xlarge 14 120

c6i.metal 14 120

c6id.large 2 10

c6id.xlarge 3 20

c6id.2xlarge 3 40

c6id.4xlarge 7 60

c6id.8xlarge 7 90

c6id.12xlarge 7 120

c6id.16xlarge 14 120

c6id.24xlarge 14 120

c6id.32xlarge 14 120

c6id.metal 14 120

c6in.large 2 10

c6in.xlarge 3 20

c6in.2xlarge 3 40

c6in.4xlarge 7 60

c6in.8xlarge 7 90

Linux container instance management 540

Amazon Elastic Container Service Developer Guide

Instance type Task limit without ENI
trunking

Task limit with ENI trunking

c6in.12xlarge 7 120

c6in.16xlarge 14 120

c6in.24xlarge 14 120

c6in.32xlarge 13 120

c6in.metal 13 120

c7a.medium 1 4

c7a.large 2 10

c7a.xlarge 3 20

c7a.2xlarge 3 40

c7a.4xlarge 7 60

c7a.8xlarge 7 90

c7a.12xlarge 7 120

c7a.16xlarge 14 120

c7a.24xlarge 14 120

c7a.32xlarge 14 120

c7a.48xlarge 14 120

c7a.metal-48xl 14 120

c7g.medium 1 4

c7g.large 2 10

c7g.xlarge 3 20

Linux container instance management 541

Amazon Elastic Container Service Developer Guide

Instance type Task limit without ENI
trunking

Task limit with ENI trunking

c7g.2xlarge 3 40

c7g.4xlarge 7 60

c7g.8xlarge 7 60

c7g.12xlarge 7 60

c7g.16xlarge 14 120

c7g.metal 14 120

c7gd.medium 1 4

c7gd.large 2 10

c7gd.xlarge 3 20

c7gd.2xlarge 3 40

c7gd.4xlarge 7 60

c7gd.8xlarge 7 60

c7gd.12xlarge 7 60

c7gd.16xlarge 14 120

c7gd.metal 14 120

c7gn.medium 1 4

c7gn.large 2 10

c7gn.xlarge 3 20

c7gn.2xlarge 3 40

c7gn.4xlarge 7 60

Linux container instance management 542

Amazon Elastic Container Service Developer Guide

Instance type Task limit without ENI
trunking

Task limit with ENI trunking

c7gn.8xlarge 7 60

c7gn.12xlarge 7 60

c7gn.16xlarge 14 120

c7i.large 2 10

c7i.xlarge 3 20

c7i.2xlarge 3 40

c7i.4xlarge 7 60

c7i.8xlarge 7 90

c7i.12xlarge 7 120

c7i.16xlarge 14 120

c7i.24xlarge 14 120

c7i.48xlarge 14 120

c7i.metal-24xl 14 120

c7i.metal-48xl 14 120

Memory optimized

Instance type Task limit without ENI
trunking

Task limit with ENI trunking

r5.large 2 10

r5.xlarge 3 20

Linux container instance management 543

Amazon Elastic Container Service Developer Guide

Instance type Task limit without ENI
trunking

Task limit with ENI trunking

r5.2xlarge 3 40

r5.4xlarge 7 60

r5.12xlarge 7 60

r5.16xlarge 14 120

r5.24xlarge 14 120

r5a.large 2 10

r5a.xlarge 3 20

r5a.2xlarge 3 40

r5a.4xlarge 7 60

r5a.8xlarge 7 60

r5a.12xlarge 7 60

r5a.16xlarge 14 120

r5a.24xlarge 14 120

r5ad.large 2 10

r5ad.xlarge 3 20

r5ad.2xlarge 3 40

r5ad.4xlarge 7 60

r5ad.8xlarge 7 60

r5ad.12xlarge 7 60

r5ad.16xlarge 14 120

Linux container instance management 544

Amazon Elastic Container Service Developer Guide

Instance type Task limit without ENI
trunking

Task limit with ENI trunking

r5ad.24xlarge 14 120

r5b.16xlarge 14 120

r5d.large 2 10

r5d.xlarge 3 20

r5d.2xlarge 3 40

r5d.4xlarge 7 60

r5d.8xlarge 7 60

r5d.12xlarge 7 60

r5d.16xlarge 14 120

r5d.24xlarge 14 120

r5dn.16xlarge 14 120

r6a.large 2 10

r6a.xlarge 3 20

r6a.2xlarge 3 40

r6a.4xlarge 7 60

r6a.8xlarge 7 90

r6a.12xlarge 7 120

r6a.16xlarge 14 120

r6a.24xlarge 14 120

r6a.32xlarge 14 120

Linux container instance management 545

Amazon Elastic Container Service Developer Guide

Instance type Task limit without ENI
trunking

Task limit with ENI trunking

r6a.48xlarge 14 120

r6a.metal 14 120

r6g.medium 1 4

r6g.large 2 10

r6g.xlarge 3 20

r6g.2xlarge 3 40

r6g.4xlarge 7 60

r6g.8xlarge 7 60

r6g.12xlarge 7 60

r6g.16xlarge 14 120

r6g.metal 14 120

r6gd.medium 1 4

r6gd.large 2 10

r6gd.xlarge 3 20

r6gd.2xlarge 3 40

r6gd.4xlarge 7 60

r6gd.8xlarge 7 60

r6gd.12xlarge 7 60

r6gd.16xlarge 14 120

r6gd.metal 14 120

Linux container instance management 546

Amazon Elastic Container Service Developer Guide

Instance type Task limit without ENI
trunking

Task limit with ENI trunking

r6i.large 2 10

r6i.xlarge 3 20

r6i.2xlarge 3 40

r6i.4xlarge 7 60

r6i.8xlarge 7 90

r6i.12xlarge 7 120

r6i.16xlarge 14 120

r6i.24xlarge 14 120

r6i.32xlarge 14 120

r6i.metal 14 120

r6idn.large 2 10

r6idn.xlarge 3 20

r6idn.2xlarge 3 40

r6idn.4xlarge 7 60

r6idn.8xlarge 7 90

r6idn.12xlarge 7 120

r6idn.16xlarge 14 120

r6idn.24xlarge 14 120

r6idn.32xlarge 13 120

r6idn.metal 13 120

Linux container instance management 547

Amazon Elastic Container Service Developer Guide

Instance type Task limit without ENI
trunking

Task limit with ENI trunking

r6in.large 2 10

r6in.xlarge 3 20

r6in.2xlarge 3 40

r6in.4xlarge 7 60

r6in.8xlarge 7 90

r6in.12xlarge 7 120

r6in.16xlarge 14 120

r6in.24xlarge 14 120

r6in.32xlarge 13 120

r6in.metal 13 120

r6id.large 2 10

r6id.xlarge 3 20

r6id.2xlarge 3 40

r6id.4xlarge 7 60

r6id.8xlarge 7 90

r6id.12xlarge 7 120

r6id.16xlarge 14 120

r6id.24xlarge 14 120

r6id.32xlarge 14 120

r6id.metal 14 120

Linux container instance management 548

Amazon Elastic Container Service Developer Guide

Instance type Task limit without ENI
trunking

Task limit with ENI trunking

r7a.medium 1 4

r7a.large 2 10

r7a.xlarge 3 20

r7a.2xlarge 3 40

r7a.4xlarge 7 60

r7a.8xlarge 7 90

r7a.12xlarge 7 120

r7a.16xlarge 14 120

r7a.24xlarge 14 120

r7a.32xlarge 14 120

r7a.48xlarge 14 120

r7a.metal-48xl 14 120

r7g.medium 1 4

r7g.large 2 10

r7g.xlarge 3 20

r7g.2xlarge 3 40

r7g.4xlarge 7 60

r7g.8xlarge 7 60

r7g.12xlarge 7 60

r7g.16xlarge 14 120

Linux container instance management 549

Amazon Elastic Container Service Developer Guide

Instance type Task limit without ENI
trunking

Task limit with ENI trunking

r7g.metal 14 120

r7gd.medium 1 4

r7gd.large 2 10

r7gd.xlarge 3 20

r7gd.2xlarge 3 40

r7gd.4xlarge 7 60

r7gd.8xlarge 7 60

r7gd.12xlarge 7 60

r7gd.16xlarge 14 120

r7gd.metal 14 120

r7i.large 2 10

r7i.xlarge 3 20

r7i.2xlarge 3 40

r7i.4xlarge 7 60

r7i.8xlarge 7 90

r7i.12xlarge 7 120

r7i.16xlarge 14 120

r7i.24xlarge 14 120

r7i.48xlarge 14 120

r7i.metal-24xl 14 120

Linux container instance management 550

Amazon Elastic Container Service Developer Guide

Instance type Task limit without ENI
trunking

Task limit with ENI trunking

r7i.metal-48xl 14 120

r7iz.large 2 10

r7iz.xlarge 3 20

r7iz.2xlarge 3 40

r7iz.4xlarge 7 60

r7iz.8xlarge 7 90

r7iz.12xlarge 7 120

r7iz.16xlarge 14 120

r7iz.32xlarge 14 120

r7iz.metal-16xl 14 120

r7iz.metal-32xl 14 120

u-3tb1.56xlarge 7 12

u-6tb1.56xlarge 14 12

u-18tb1.112xlarge 14 12

u-18tb1.metal 14 12

u-24tb1.112xlarge 14 12

u-24tb1.metal 14 12

x2gd.medium 1 10

x2gd.large 2 10

x2gd.xlarge 3 20

Linux container instance management 551

Amazon Elastic Container Service Developer Guide

Instance type Task limit without ENI
trunking

Task limit with ENI trunking

x2gd.2xlarge 3 40

x2gd.4xlarge 7 60

x2gd.8xlarge 7 60

x2gd.12xlarge 7 60

x2gd.16xlarge 14 120

x2gd.metal 14 120

x2idn.16xlarge 14 120

x2idn.24xlarge 14 120

x2idn.32xlarge 14 120

x2idn.metal 14 120

x2iedn.xlarge 3 13

x2iedn.2xlarge 3 29

x2iedn.4xlarge 7 60

x2iedn.8xlarge 7 120

x2iedn.16xlarge 14 120

x2iedn.24xlarge 14 120

x2iedn.32xlarge 14 120

x2iedn.metal 14 120

x2iezn.2xlarge 3 64

x2iezn.4xlarge 7 120

Linux container instance management 552

Amazon Elastic Container Service Developer Guide

Instance type Task limit without ENI
trunking

Task limit with ENI trunking

x2iezn.6xlarge 7 120

x2iezn.8xlarge 7 120

x2iezn.12xlarge 14 120

x2iezn.metal 14 120

Storage optimized

Instance type Task limit without ENI
trunking

Task limit with ENI trunking

i4g.large 2 10

i4g.xlarge 3 20

i4g.2xlarge 3 40

i4g.4xlarge 7 60

i4g.8xlarge 7 60

i4g.16xlarge 14 120

i4i.xlarge 3 8

i4i.2xlarge 3 28

i4i.4xlarge 7 58

i4i.8xlarge 7 118

i4i.12xlarge 7 118

i4i.16xlarge 14 248

Linux container instance management 553

Amazon Elastic Container Service Developer Guide

Instance type Task limit without ENI
trunking

Task limit with ENI trunking

i4i.24xlarge 14 118

i4i.32xlarge 14 498

i4i.metal 14 498

im4gn.large 2 10

im4gn.xlarge 3 20

im4gn.2xlarge 3 40

im4gn.4xlarge 7 60

im4gn.8xlarge 7 60

im4gn.16xlarge 14 120

is4gen.medium 1 4

is4gen.large 2 10

is4gen.xlarge 3 20

is4gen.2xlarge 3 40

is4gen.4xlarge 7 60

is4gen.8xlarge 7 60

Accelerated computing

Instance type Task limit without ENI
trunking

Task limit with ENI trunking

dl1.24xlarge 59 120

Linux container instance management 554

Amazon Elastic Container Service Developer Guide

Instance type Task limit without ENI
trunking

Task limit with ENI trunking

dl2q.24xlarge 14 120

g4ad.xlarge 1 12

g4ad.2xlarge 1 12

g4ad.4xlarge 2 12

g4ad.8xlarge 3 12

g4ad.16xlarge 7 12

g5.xlarge 3 6

g5.2xlarge 3 19

g5.4xlarge 7 40

g5.8xlarge 7 90

g5.12xlarge 14 120

g5.16xlarge 7 120

g5.24xlarge 14 120

g5.48xlarge 6 120

g5g.xlarge 3 20

g5g.2xlarge 3 40

g5g.4xlarge 7 60

g5g.8xlarge 7 60

g5g.16xlarge 14 120

g5g.metal 14 120

Linux container instance management 555

Amazon Elastic Container Service Developer Guide

Instance type Task limit without ENI
trunking

Task limit with ENI trunking

inf2.xlarge 3 20

inf2.8xlarge 7 90

inf2.24xlarge 14 120

inf2.48xlarge 14 120

p4d.24xlarge 59 120

p4de.24xlarge 59 120

p5.48xlarge 63 242

trn1.2xlarge 3 19

trn1.32xlarge 39 120

trn1n.32xlarge 79 242

vt1.3xlarge 3 40

vt1.6xlarge 7 60

vt1.24xlarge 14 120

Container instance memory management

When the Amazon ECS container agent registers a container instance into a cluster, the agent
must determine how much memory the container instance has available to reserve for your tasks.
Because of platform memory overhead and memory occupied by the system kernel, this number
is different than the installed memory amount that is advertised for Amazon EC2 instances. For
example, an m4.large instance has 8 GiB of installed memory. However, this does not always
translate to exactly 8192 MiB of memory available for tasks when the container instance registers.

Linux container instance management 556

Amazon Elastic Container Service Developer Guide

The Amazon ECS container agent provides a configuration variable called ECS_RESERVED_MEMORY,
which you can use to remove a specified number of MiB of memory from the pool that is allocated
to your tasks. This effectively reserves that memory for critical system processes.

If you occupy all of the memory on a container instance with your tasks, then it is possible that
your tasks will contend with critical system processes for memory and possibly start a system
failure.

For example, if you specify ECS_RESERVED_MEMORY=256 in your container agent configuration
file, then the agent registers the total memory minus 256 MiB for that instance, and 256 MiB of
memory could not be allocated by ECS tasks. For more information about agent configuration
variables and how to set them, see Amazon ECS container agent configuration and Bootstrapping
container instances with Amazon EC2 user data.

If you specify 8192 MiB for the task, and none of your conatiner instances have 8192 MiB or
greater of memory available to satisfy this requirement, then the task cannot be placed in your
cluster. If you are using a managed compute environment, then AWS Batch must launch a larger
instance type to accommodate the request.

You should also reserve some memory for the Amazon ECS container agent and other critical
system processes on your container instances, so that your task's containers do not contend for the
same memory and possibly starts a system failure.

The Amazon ECS container agent uses the Docker ReadMemInfo() function to query the total
memory available to the operating system. Both Linux and Windows provide command line utilities
to determine the total memory.

Example - Determine Linux total memory

The free command returns the total memory that is recognized by the operating system.

$ free -b

Example output for an m4.large instance running the Amazon ECS-optimized Amazon Linux AMI.

 total used free shared buffers cached
Mem: 8373026816 348180480 8024846336 90112 25534464 205418496
-/+ buffers/cache: 117227520 8255799296

This instance has 8373026816 bytes of total memory, which translates to 7985 MiB available for
tasks.

Linux container instance management 557

Amazon Elastic Container Service Developer Guide

Example - Determine Windows total memory

The wmic command returns the total memory that is recognized by the operating system.

C:\> wmic ComputerSystem get TotalPhysicalMemory

Example output for an m4.large instance running the Amazon ECS-optimized Windows Server
AMI.

TotalPhysicalMemory
8589524992

This instance has 8589524992 bytes of total memory, which translates to 8191 MiB available for
tasks.

Viewing container instance memory

You can view how much memory a container instance registers with in the Amazon ECS console (or
with the DescribeContainerInstances API operation). If you are trying to maximize your resource
utilization by providing your tasks as much memory as possible for a particular instance type, you
can observe the memory available for that container instance and then assign your tasks that much
memory.

To view container instance memory

1. Open the console at https://console.aws.amazon.com/ecs/v2.

2. In the navigation pane, choose Clusters, and then choose the cluster that hosts your container
instance.

3. Choose Infrastructure, and then under Container instances, choose a container instance.

4. The Resources section shows the registered and available memory for the container instance.

The Registered memory value is what the container instance; registered with Amazon ECS
when it was first launched, and the Available memory value is what has not already been
allocated to tasks.

Manage container instances remotely using AWS Systems Manager

You can use the Run Command capability in AWS Systems Manager (Systems Manager) to securely
and remotely manage the configuration of your Amazon ECS container instances. Run Command

Linux container instance management 558

https://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_DescribeContainerInstances.html
https://console.aws.amazon.com/ecs/v2

Amazon Elastic Container Service Developer Guide

provides a simple way to perform common administrative tasks without logging on locally to the
instance. You can manage configuration changes across your clusters by simultaneously executing
commands on multiple container instances. Run Command reports the status and results of each
command.

Here are some examples of the types of tasks you can perform with Run Command:

• Install or uninstall packages.

• Perform security updates.

• Clean up Docker images.

• Stop or start services.

• View system resources.

• View log files.

• Perform file operations.

For more information about Run Command, see AWS Systems Manager Run Command in the AWS
Systems Manager User Guide.

Topics

• Run Command IAM policy

• Using Run Command

Run Command IAM policy

Before you can send commands to your container instances with Run Command, you must attach
an IAM policy that allows ecsInstanceRole to have access to the Systems Manager APIs. The
following procedure describes how to attach the Systems Manager managed policies to your
container instance role so that instances launched with this role can use Run Command.

To attach the Systems Manager policies to your ecsInstanceRole

1. Open the IAM console at https://console.aws.amazon.com/iam/.

2. In the navigation pane, choose Roles.

3. Choose ecsInstanceRole. If the role does not exist, follow the procedures in Amazon ECS
container instance IAM role to create the role.

4. Choose the Permissions tab.

Linux container instance management 559

https://docs.aws.amazon.com/systems-manager/latest/userguide/execute-remote-commands.html
https://console.aws.amazon.com/iam/

Amazon Elastic Container Service Developer Guide

5. Choose Attach policies.

6. To narrow the available policies to attach, for Filter, type SSM.

7. In the list of policies, select the box next AmazonSSMManagedInstanceCore. Use this policy to
provide the minimum permissions that are necessary to use Systems Manager.

For information about other policies you can provide for Systems Manager operations, see
Create an IAM Instance Profile for Systems Manager in the AWS Systems Manager User Guide.

8. Choose Attach Policy.

Using Run Command

After you attach Systems Manager managed policies to your ecsInstanceRole and verify
that AWS Systems Manager Agent (SSM Agent) is installed on your container instances, you can
start using Run Command to send commands to your container instances. For information about
running commands and shell scripts on your instances and viewing the resulting output, see
Running Commands Using Systems Manager Run Command and Run Command Walkthroughs in
the AWS Systems Manager User Guide.

Example: To update container instance software with Run Command

A common use case for Run Command is to update the instance software on your entire fleet of
container instances at one time.

1. Attach Systems Manager managed policies to your ecsInstanceRole.

2. Verify that SSM Agent is installed on your container instances. For more information, see
Manually install SSM Agent on EC2 instances for Linux.

3. Open the Systems Manager console at https://console.aws.amazon.com/systems-manager.

4. In the left navigation pane, choose Run Command, and then choose Run command.

5. For Command document, choose AWS-RunShellScript.

6. In the Commands section, enter the command or commands to send to your container
instances. In this example, the following command updates the instance software:

$ yum update -y

7. In the Target instances section, select the boxes next to the container instances where you
want to run the update command.

8. Choose Run to send the command to the specified instances.

Linux container instance management 560

https://docs.aws.amazon.com/systems-manager/latest/userguide/setup-instance-profile.html
https://docs.aws.amazon.com/systems-manager/latest/userguide/run-command.html
https://docs.aws.amazon.com/systems-manager/latest/userguide/run-command-walkthroughs.html
https://docs.aws.amazon.com/systems-manager/latest/userguide/sysman-manual-agent-install.html
https://console.aws.amazon.com/systems-manager

Amazon Elastic Container Service Developer Guide

9. (Optional) Choose the refresh icon to monitor the command status.

10. (Optional) In Targets and output, choose the button next to the instance ID, and then choose
View output.

HTTP proxy configuration for Linux container instances

You can configure your Amazon ECS container instances to use an HTTP proxy for both the Amazon
ECS container agent and the Docker daemon. This is useful if your container instances do not have
external network access through an Amazon VPC internet gateway, NAT gateway, or instance.

To configure your Amazon ECS Linux container instance to use an HTTP proxy, set the following
variables in the relevant files at launch time (with Amazon EC2 user data). You could also manually
edit the configuration file and restart the agent afterwards.

/etc/ecs/ecs.config (Amazon Linux 2 and AmazonLinux AMI)

HTTP_PROXY=10.0.0.131:3128

Set this value to the hostname (or IP address) and port number of an HTTP proxy to use for
the Amazon ECS agent to connect to the internet. For example, your container instances
may not have external network access through an Amazon VPC internet gateway, NAT
gateway, or instance.

NO_PROXY=169.254.169.254,169.254.170.2,/var/run/docker.sock

Set this value to 169.254.169.254,169.254.170.2,/var/run/docker.sock to filter
EC2 instance metadata, IAM roles for tasks, and Docker daemon traffic from the proxy.

/etc/systemd/system/ecs.service.d/http-proxy.conf (Amazon Linux 2 only)

Environment="HTTP_PROXY=10.0.0.131:3128/"

Set this value to the hostname (or IP address) and port number of an HTTP proxy to use
for ecs-init to connect to the internet. For example, your container instances may not
have external network access through an Amazon VPC internet gateway, NAT gateway, or
instance.

Environment="NO_PROXY=169.254.169.254,169.254.170.2,/var/run/
docker.sock"

Set this value to 169.254.169.254,169.254.170.2,/var/run/docker.sock to filter
EC2 instance metadata, IAM roles for tasks, and Docker daemon traffic from the proxy.

Linux container instance management 561

Amazon Elastic Container Service Developer Guide

/etc/init/ecs.override (Amazon Linux AMI only)

env HTTP_PROXY=10.0.0.131:3128

Set this value to the hostname (or IP address) and port number of an HTTP proxy to use
for ecs-init to connect to the internet. For example, your container instances may not
have external network access through an Amazon VPC internet gateway, NAT gateway, or
instance.

env NO_PROXY=169.254.169.254,169.254.170.2,/var/run/docker.sock

Set this value to 169.254.169.254,169.254.170.2,/var/run/docker.sock to filter
EC2 instance metadata, IAM roles for tasks, and Docker daemon traffic from the proxy.

/etc/systemd/system/docker.service.d/http-proxy.conf (Amazon Linux 2 only)

Environment="HTTP_PROXY=http://10.0.0.131:3128"

Set this value to the hostname (or IP address) and port number of an HTTP proxy to use for
the Docker daemon to connect to the internet. For example, your container instances may
not have external network access through an Amazon VPC internet gateway, NAT gateway,
or instance.

Environment="NO_PROXY=169.254.169.254"

Set this value to 169.254.169.254 to filter EC2 instance metadata from the proxy.

/etc/sysconfig/docker (Amazon Linux AMI and Amazon Linux 2 only)

export HTTP_PROXY=http://10.0.0.131:3128

Set this value to the hostname (or IP address) and port number of an HTTP proxy to use for
the Docker daemon to connect to the internet. For example, your container instances may
not have external network access through an Amazon VPC internet gateway, NAT gateway,
or instance.

export NO_PROXY=169.254.169.254,169.254.170.2

Set this value to 169.254.169.254 to filter EC2 instance metadata from the proxy.

Setting these environment variables in the above files only affects the Amazon ECS container
agent, ecs-init, and the Docker daemon. They do not configure any other services (such as yum)
to use the proxy.

Linux container instance management 562

Amazon Elastic Container Service Developer Guide

Example Amazon Linux HTTP proxy user data script

The example user data cloud-boothook script below configures the Amazon ECS container agent,
ecs-init, the Docker daemon, and yum to use an HTTP proxy that you specify. You can also
specify a cluster into which the container instance registers itself.

To use this script when you launch a container instance, follow the steps in Launching an Amazon
ECS Linux container instance, and in Step 6.g. Then, copy and paste the cloud-boothook script
below into the User data field (be sure to substitute the red example values with your own proxy
and cluster information).

Note

The user data script below only supports Amazon Linux 2 and Amazon Linux AMI variants
of the Amazon ECS-optimized AMI.

#cloud-boothook
Configure Yum, the Docker daemon, and the ECS agent to use an HTTP proxy

Specify proxy host, port number, and ECS cluster name to use
PROXY_HOST=10.0.0.131
PROXY_PORT=3128
CLUSTER_NAME=proxy-test

if grep -q 'Amazon Linux release 2' /etc/system-release ; then
 OS=AL2
 echo "Setting OS to Amazon Linux 2"
elif grep -q 'Amazon Linux AMI' /etc/system-release ; then
 OS=ALAMI
 echo "Setting OS to Amazon Linux AMI"
else
 echo "This user data script only supports Amazon Linux 2 and Amazon Linux AMI."
fi

Set Yum HTTP proxy
if [! -f /var/lib/cloud/instance/sem/config_yum_http_proxy]; then
 echo "proxy=http://$PROXY_HOST:$PROXY_PORT" >> /etc/yum.conf
 echo "$$: $(date +%s.%N | cut -b1-13)" > /var/lib/cloud/instance/sem/
config_yum_http_proxy
fi

Linux container instance management 563

Amazon Elastic Container Service Developer Guide

Set Docker HTTP proxy (different methods for Amazon Linux 2 and Amazon Linux AMI)
Amazon Linux 2
if [$OS == "AL2"] && [! -f /var/lib/cloud/instance/sem/config_docker_http_proxy];
 then
 mkdir /etc/systemd/system/docker.service.d
 cat <<EOF > /etc/systemd/system/docker.service.d/http-proxy.conf
[Service]
Environment="HTTP_PROXY=http://$PROXY_HOST:$PROXY_PORT/"
Environment="HTTPS_PROXY=https://$PROXY_HOST:$PROXY_PORT/"
Environment="NO_PROXY=169.254.169.254,169.254.170.2"
EOF
 systemctl daemon-reload
 if ["$(systemctl is-active docker)" == "active"]
 then
 systemctl restart docker
 fi
 echo "$$: $(date +%s.%N | cut -b1-13)" > /var/lib/cloud/instance/sem/
config_docker_http_proxy
fi
Amazon Linux AMI
if [$OS == "ALAMI"] && [! -f /var/lib/cloud/instance/sem/config_docker_http_proxy];
 then
 echo "export HTTP_PROXY=http://$PROXY_HOST:$PROXY_PORT/" >> /etc/sysconfig/docker
 echo "export HTTPS_PROXY=https://$PROXY_HOST:$PROXY_PORT/" >> /etc/sysconfig/docker
 echo "export NO_PROXY=169.254.169.254,169.254.170.2" >> /etc/sysconfig/docker
 echo "$$: $(date +%s.%N | cut -b1-13)" > /var/lib/cloud/instance/sem/
config_docker_http_proxy
fi

Set ECS agent HTTP proxy
if [! -f /var/lib/cloud/instance/sem/config_ecs-agent_http_proxy]; then
 cat <<EOF > /etc/ecs/ecs.config
ECS_CLUSTER=$CLUSTER_NAME
HTTP_PROXY=$PROXY_HOST:$PROXY_PORT
NO_PROXY=169.254.169.254,169.254.170.2,/var/run/docker.sock
EOF
 echo "$$: $(date +%s.%N | cut -b1-13)" > /var/lib/cloud/instance/sem/config_ecs-
agent_http_proxy
fi

Set ecs-init HTTP proxy (different methods for Amazon Linux 2 and Amazon Linux AMI)
Amazon Linux 2
if [$OS == "AL2"] && [! -f /var/lib/cloud/instance/sem/config_ecs-init_http_proxy];
 then

Linux container instance management 564

Amazon Elastic Container Service Developer Guide

 mkdir /etc/systemd/system/ecs.service.d
 cat <<EOF > /etc/systemd/system/ecs.service.d/http-proxy.conf
[Service]
Environment="HTTP_PROXY=$PROXY_HOST:$PROXY_PORT/"
Environment="NO_PROXY=169.254.169.254,169.254.170.2,/var/run/docker.sock"
EOF
 systemctl daemon-reload
 if ["$(systemctl is-active ecs)" == "active"]; then
 systemctl restart ecs
 fi
 echo "$$: $(date +%s.%N | cut -b1-13)" > /var/lib/cloud/instance/sem/config_ecs-
init_http_proxy
fi
Amazon Linux AMI
if [$OS == "ALAMI"] && [! -f /var/lib/cloud/instance/sem/config_ecs-
init_http_proxy]; then
 cat <<EOF > /etc/init/ecs.override
env HTTP_PROXY=$PROXY_HOST:$PROXY_PORT
env NO_PROXY=169.254.169.254,169.254.170.2,/var/run/docker.sock
EOF
 echo "$$: $(date +%s.%N | cut -b1-13)" > /var/lib/cloud/instance/sem/config_ecs-
init_http_proxy
fi

Updating the Amazon ECS container agent

Occasionally, you may need to update the Amazon ECS container agent to pick up bug fixes
and new features. Updating the Amazon ECS container agent does not interrupt running tasks
or services on the container instance. The process for updating the agent differs depending on
whether your container instance was launched with an Amazon ECS-optimized AMI or another
operating system.

Note

Agent updates do not apply to Windows container instances. We recommend that you
launch new container instances to update the agent version in your Windows clusters.

Topics

• Checking the Amazon ECS container agent version

• Updating the Amazon ECS container agent on an Amazon ECS-optimized AMI

Linux container instance management 565

Amazon Elastic Container Service Developer Guide

• Manually updating the Amazon ECS container agent (for non-Amazon ECS-Optimized AMIs)

Checking the Amazon ECS container agent version

You can check the version of the container agent that is running on your container instances to see
if you need to update it. The container instance view in the Amazon ECS console provides the agent
version. Use the following procedure to check your agent version.

Amazon ECS console

1. Open the console at https://console.aws.amazon.com/ecs/v2.

2. From the navigation bar, choose the Region where your external instance is registered.

3. In the navigation pane, choose Clusters and select the cluster that hosts the external
instance.

4. On the Cluster : name page, choose the Infrastructure tab.

5. Under Container instances, note the Agent version column for your container instances.
If the container instance does not contain the latest version of the container agent, the
console alerts you with a message and flags the outdated agent version.

If your agent version is outdated, you can update your container agent with the following
procedures:

• If your container instance is running an Amazon ECS-optimized AMI, see Updating the
Amazon ECS container agent on an Amazon ECS-optimized AMI.

• If your container instance is not running an Amazon ECS-optimized AMI, see Manually
updating the Amazon ECS container agent (for non-Amazon ECS-Optimized AMIs).

Important

To update the Amazon ECS agent version from versions before v1.0.0 on your
Amazon ECS-optimized AMI, we recommend that you terminate your current
container instance and launch a new instance with the most recent AMI version. Any
container instances that use a preview version should be retired and replaced with
the most recent AMI. For more information, see Launching an Amazon ECS Linux
container instance.

Linux container instance management 566

https://console.aws.amazon.com/ecs/v2

Amazon Elastic Container Service Developer Guide

Amazon ECS container agent introspection API

You can also use the to check the agent Amazon ECS container agent introspection API version
from the container instance itself. For more information, see Container introspection.

To check if your Amazon ECS container agent is running the latest version with the
introspection API

1. Log in to your container instance via SSH.

2. Query the introspection API.

[ec2-user ~]$ curl -s 127.0.0.1:51678/v1/metadata | python -mjson.tool

Note

The introspection API added Version information in the version v1.0.0 of the
Amazon ECS container agent. If Version is not present when querying the
introspection API, or the introspection API is not present in your agent at all, then
the version you are running is v0.0.3 or earlier. You should update your version.

Updating the Amazon ECS container agent on an Amazon ECS-optimized AMI

If you are using an Amazon ECS-optimized AMI, you have several options to get the latest version
of the Amazon ECS container agent (shown in order of recommendation):

• Terminate the container instance and launch the latest version of the Amazon ECS-optimized
Amazon Linux 2 AMI (either manually or by updating your Auto Scaling launch configuration
with the latest AMI). This provides a fresh container instance with the most current tested and
validated versions of Amazon Linux, Docker, ecs-init, and the Amazon ECS container agent.
For more information, see Amazon ECS-optimized AMI.

• Connect to the instance with SSH and update the ecs-init package (and its dependencies)
to the latest version. This operation provides the most current tested and validated versions of
Docker and ecs-init that are available in the Amazon Linux repositories and the latest version
of the Amazon ECS container agent. For more information, see To update the ecs-init package
on an Amazon ECS-optimized AMI.

Linux container instance management 567

Amazon Elastic Container Service Developer Guide

• Update the container agent with the UpdateContainerAgent API operation, either through
the console or with the AWS CLI or AWS SDKs. For more information, see Updating the Amazon
ECS container agent with the UpdateContainerAgent API operation.

Note

Agent updates do not apply to Windows container instances. We recommend that you
launch new container instances to update the agent version in your Windows clusters.

To update the ecs-init package on an Amazon ECS-optimized AMI

1. Log in to your container instance via SSH.

2. Update the ecs-init package with the following command.

sudo yum update -y ecs-init

Note

The ecs-init package and the Amazon ECS container agent are updated
immediately. However, newer versions of Docker are not loaded until the Docker
daemon is restarted. Restart either by rebooting the instance, or by running the
following commands on your instance:

• Amazon ECS-optimized Amazon Linux 2 AMI:

sudo systemctl restart docker

• Amazon ECS-optimized Amazon Linux AMI:

sudo service docker restart && sudo start ecs

Linux container instance management 568

Amazon Elastic Container Service Developer Guide

Updating the Amazon ECS container agent with the UpdateContainerAgent API operation

Important

The UpdateContainerAgent API is only supported on Linux variants of the Amazon ECS-
optimized AMI, with the exception of the Amazon ECS-optimized Amazon Linux 2 (arm64)
AMI. For container instances using the Amazon ECS-optimized Amazon Linux 2 (arm64)
AMI, update the ecs-init package to update the agent. For container instances that are
running other operating systems, see Manually updating the Amazon ECS container agent
(for non-Amazon ECS-Optimized AMIs). If you are using Windows container instances, we
recommend that you launch new container instances to update the agent version in your
Windows clusters.

The UpdateContainerAgent API process begins when you request an agent update, either
through the console or with the AWS CLI or AWS SDKs. Amazon ECS checks your current agent
version against the latest available agent version, and if an update is possible, the update process
progresses as shown in the flow chart below. If an update is not available, for example, if the agent
is already running the most recent version, then a NoUpdateAvailableException is returned.

The stages in the update process shown above are as follows:

Linux container instance management 569

Amazon Elastic Container Service Developer Guide

PENDING

An agent update is available, and the update process has started.

STAGING

The agent has begun downloading the agent update. If the agent cannot download the update,
or if the contents of the update are incorrect or corrupted, then the agent sends a notification
of the failure and the update transitions to the FAILED state.

STAGED

The agent download has completed and the agent contents have been verified.

UPDATING

The ecs-init service is restarted and it picks up the new agent version. If the agent is for
some reason unable to restart, the update transitions to the FAILED state; otherwise, the agent
signals Amazon ECS that the update is complete.

Note

Agent updates do not apply to Windows container instances. We recommend that you
launch new container instances to update the agent version in your Windows clusters.

To update the Amazon ECS container agent on an Amazon ECS-optimized AMI in the console

1. Open the console at https://console.aws.amazon.com/ecs/v2.

2. From the navigation bar, choose the Region where your external instance is registered.

3. In the navigation pane, choose Clusters and select the cluster.

4. On the Cluster : name page, choose the Infrastructure tab.

5. Under Container instances, select the instances to update, and then choose Actions, Update
agent.

Linux container instance management 570

https://console.aws.amazon.com/ecs/v2

Amazon Elastic Container Service Developer Guide

Manually updating the Amazon ECS container agent (for non-Amazon ECS-Optimized AMIs)

To manually update the Amazon ECS container agent (for non-Amazon ECS-optimized AMIs)

Note

Agent updates do not apply to Windows container instances. We recommend that you
launch new container instances to update the agent version in your Windows clusters.

1. Log in to your container instance via SSH.

2. Check to see if your agent uses the ECS_DATADIR environment variable to save its state.

ubuntu:~$ docker inspect ecs-agent | grep ECS_DATADIR

Output:

"ECS_DATADIR=/data",

Important

If the previous command does not return the ECS_DATADIR environment variable, you
must stop any tasks running on this container instance before updating your agent.
Newer agents with the ECS_DATADIR environment variable save their state and you
can update them while tasks are running without issues.

3. Stop the Amazon ECS container agent.

ubuntu:~$ docker stop ecs-agent

4. Delete the agent container.

ubuntu:~$ docker rm ecs-agent

5. Ensure that the /etc/ecs directory and the Amazon ECS container agent configuration file
exist at /etc/ecs/ecs.config.

ubuntu:~$ sudo mkdir -p /etc/ecs && sudo touch /etc/ecs/ecs.config

Linux container instance management 571

Amazon Elastic Container Service Developer Guide

6. Edit the /etc/ecs/ecs.config file and ensure that it contains at least the following
variable declarations. If you do not want your container instance to register with the default
cluster, specify your cluster name as the value for ECS_CLUSTER.

ECS_DATADIR=/data
ECS_ENABLE_TASK_IAM_ROLE=true
ECS_ENABLE_TASK_IAM_ROLE_NETWORK_HOST=true
ECS_LOGFILE=/log/ecs-agent.log
ECS_AVAILABLE_LOGGING_DRIVERS=["json-file","awslogs"]
ECS_LOGLEVEL=info
ECS_CLUSTER=default

For more information about these and other agent runtime options, see Amazon ECS container
agent configuration.

Note

You can optionally store your agent environment variables in Amazon S3 (which can be
downloaded to your container instances at launch time using Amazon EC2 user data).
This is recommended for sensitive information such as authentication credentials for
private repositories. For more information, see Storing container instance configuration
in Amazon S3 and Private registry authentication for tasks.

7. Pull the latest Amazon ECS container agent image from Amazon Elastic Container Registry
Public.

ubuntu:~$ docker pull public.ecr.aws/ecs/amazon-ecs-agent:latest

Output:

Pulling repository amazon/amazon-ecs-agent
a5a56a5e13dc: Download complete
511136ea3c5a: Download complete
9950b5d678a1: Download complete
c48ddcf21b63: Download complete
Status: Image is up to date for amazon/amazon-ecs-agent:latest

8. Run the latest Amazon ECS container agent on your container instance.

Linux container instance management 572

Amazon Elastic Container Service Developer Guide

Note

Use Docker restart policies or a process manager (such as upstart or systemd) to
treat the container agent as a service or a daemon and ensure that it is restarted after
exiting. For more information, see Automatically start containers and Restart policies in
the Docker documentation. The Amazon ECS-optimized AMI uses the ecs-init RPM
for this purpose, and you can view the source code for this RPM on GitHub.

The following example of the agent run command is broken into separate lines to show each
option. For more information about these and other agent runtime options, see Amazon ECS
container agent configuration.

Important

Operating systems with SELinux enabled require the --privileged option in your
docker run command. In addition, for SELinux-enabled container instances, we
recommend that you add the :Z option to the /log and /data volume mounts.
However, the host mounts for these volumes must exist before you run the command
or you receive a no such file or directory error. Take the following action
if you experience difficulty running the Amazon ECS agent on an SELinux-enabled
container instance:

• Create the host volume mount points on your container instance.

ubuntu:~$ sudo mkdir -p /var/log/ecs /var/lib/ecs/data

• Add the --privileged option to the docker run command below.

• Append the :Z option to the /log and /data container volume mounts (for
example, --volume=/var/log/ecs/:/log:Z) to the docker run command below.

ubuntu:~$ sudo docker run --name ecs-agent \
--detach=true \
--restart=on-failure:10 \
--volume=/var/run:/var/run \
--volume=/var/log/ecs/:/log \

Linux container instance management 573

https://docs.docker.com/engine/admin/host_integration/
https://docs.docker.com/engine/reference/run/#restart-policies-restart
https://github.com/aws/amazon-ecs-init

Amazon Elastic Container Service Developer Guide

--volume=/var/lib/ecs/data:/data \
--volume=/etc/ecs:/etc/ecs \
--volume=/etc/ecs:/etc/ecs/pki \
--net=host \
--env-file=/etc/ecs/ecs.config \
amazon/amazon-ecs-agent:latest

Note

If you receive an Error response from daemon: Cannot start container
message, you can delete the failed container with the sudo docker rm ecs-agent
command and try running the agent again.

Windows container instance management

Windows container instance management includes:

• Launching a container instance

• Bootstrapping a container instance

• Connecting to your container instance

• Using an HTTP proxy for both the container agent and the Docker daemon

• Deregistering a container instance

Agent updates do not apply to Windows container instances. We recommend that you launch new
container instances to update the agent version in your Windows clusters.

Launching an Amazon ECS Windows container instance

Your Amazon ECS container instances are created using the Amazon EC2 console. Before you begin,
be sure that you've completed the steps in Set up to use Amazon ECS.

For more information about the launch wizard, see Launch an instance using the new launch
instance wizard in the Amazon EC2 User Guide for Windows Instances.

Windows container instance management 574

https://docs.aws.amazon.com/AWSEC2/latest/WindowsGuide/ec2-launch-instance-wizard.html
https://docs.aws.amazon.com/AWSEC2/latest/WindowsGuide/ec2-launch-instance-wizard.html

Amazon Elastic Container Service Developer Guide

New Amazon EC2 launch instance wizard

You can use the new Amazon EC2 wizard to launch an instance. You can use the following list for
the parameters and leave the parameters not listed as the default. The following instructions take
you through each parameter group.

Parameters for instance configuration

• Initiate instance launch

• Name and tags

• Application and OS Images (Amazon Machine Image)

• Instance type

• Key pair (login)

• Network settings

• Configure storage

• Advanced details

Initiate instance launch

1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.

2. In the navigation bar at the top of the screen, the current AWS Region is displayed (for
example, US East (Ohio)). Select a Region in which to launch the instance. This choice is
important because some Amazon EC2 resources can be shared between Regions, while others
can't.

3. From the Amazon EC2 console dashboard, choose Launch instance.

Name and tags

The instance name is a tag, where the key is Name, and the value is the name that you specify. You
can tag the instance, the volumes, and elastic graphics. For Spot Instances, you can tag the Spot
Instance request only.

Specifying an instance name and additional tags is optional.

• For Name, enter a descriptive name for the instance. If you don't specify a name, the instance
can be identified by its ID, which is automatically generated when you launch the instance.

Windows container instance management 575

https://console.aws.amazon.com/ec2/

Amazon Elastic Container Service Developer Guide

• To add additional tags, choose Add additional tags. Choose Add tag, and then enter a key and
value, and select the resource type to tag. Choose Add tag again for each additional tag to add.

Application and OS Images (Amazon Machine Image)

An Amazon Machine Image (AMI) contains the information required to create an instance. For
example, an AMI might contain the software that's required to act as a web server, such as Apache,
and your website.

For the latest Amazon ECS-optimized AMIs and their values, see Windows Amazon ECS-optimized
AMI.

Use the Search bar to find a suitable Amazon ECS-optimized AMI published by AWS.

1. Based on your requirements, enter one of the following AMIs in the Search bar and press Enter.

• Windows_Server-2022-English-Full-ECS_Optimized

• Windows_Server-2022-English-Core-ECS_Optimized

• Windows_Server-2019-English-Full-ECS_Optimized

• Windows_Server-2019-English-Core-ECS_Optimized

• Windows_Server-2016-English-Full-ECS_Optimized

2. On the Choose an Amazon Machine Image (AMI) page, select the Community AMIs tab.

3. From the list that appears, choose a Microsoft-verified AMI with the most recent publish date
and click Select.

Instance type

The instance type defines the hardware configuration and size of the instance. Larger instance
types have more CPU and memory. For more information, see Instance types.

• For Instance type, select the instance type for the instance.

The instance type that you select determines the resources available for your tasks to run on.

Key pair (login)

For Key pair name, choose an existing key pair, or choose Create new key pair to create a new one.

Windows container instance management 576

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/ecs-optimized_windows_AMI.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/ecs-optimized_windows_AMI.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instance-types.html

Amazon Elastic Container Service Developer Guide

Important

If you choose the Proceed without key pair (Not recommended) option, you won't be
able to connect to the instance unless you choose an AMI that is configured to allow users
another way to log in.

Network settings

Configure the network settings, as necessary.

• Networking platform: Choose Virtual Private Cloud (VPC), and then specify the subnet in the
Network interfaces section.

• VPC: Select an existing VPC in which to create the security group.

• Subnet: You can launch an instance in a subnet associated with an Availability Zone, Local Zone,
Wavelength Zone, or Outpost.

To launch the instance in an Availability Zone, select the subnet in which to launch your instance.
To create a new subnet, choose Create new subnet to go to the Amazon VPC console. When you
are done, return to the launch instance wizard and choose the Refresh icon to load your subnet
in the list.

To launch the instance in a Local Zone, select a subnet that you created in the Local Zone.

To launch an instance in an Outpost, select a subnet in a VPC that you associated with the
Outpost.

• Auto-assign Public IP: If your instance should be accessible from the internet, verify that the
Auto-assign Public IP field is set to Enable. If not, set this field to Disable.

Note

Container instances need access to communicate with the Amazon ECS service endpoint.
This can be through an interface VPC endpoint or through your container instances
having public IP addresses.
For more information about interface VPC endpoints, see Amazon ECS interface VPC
endpoints (AWS PrivateLink)
If you do not have an interface VPC endpoint configured and your container instances
do not have public IP addresses, then they must use network address translation (NAT)

Windows container instance management 577

Amazon Elastic Container Service Developer Guide

to provide this access. For more information, see NAT gateways in the Amazon VPC User
Guide and HTTP proxy configuration for Linux container instances in this guide.

• Firewall (security groups): Use a security group to define firewall rules for your container
instance. These rules specify which incoming network traffic is delivered to your container
instance. All other traffic is ignored.

• To select an existing security group, choose Select existing security group, and select the
security group that you created in Set up to use Amazon ECS

Configure storage

The AMI you selected includes one or more volumes of storage, including the root volume. You can
specify additional volumes to attach to the instance.

You can use the Simple view.

• Storage type: Configure the storage for your container instance.

If you are using the Amazon ECS-optimized Amazon Linux 2 AMI, your instance has a single 30
GiB volume configured, which is shared between the operating system and Docker.

If you are using the Amazon ECS-optimized AMI, your instance has two volumes configured. The
Root volume is for the operating system's use, and the second Amazon EBS volume (attached to
/dev/xvdcz) is for Docker's use.

You can optionally increase or decrease the volume sizes for your instance to meet your
application needs.

Advanced details

For Advanced details, expand the section to view the fields and specify any additional parameters
for the instance.

• Purchasing option: Choose Request Spot Instances to request Spot Instances. You also need to
set the other fields related to Spot Instances. For more information, see Spot Instance Requests.

Windows container instance management 578

https://docs.aws.amazon.com/vpc/latest/userguide/vpc-nat-gateway.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/spot-requests.html

Amazon Elastic Container Service Developer Guide

Note

If you are using Spot Instances and see a Not available message, you may need to
choose a different instance type.

.

• IAM instance profile: Select your container instance IAM role. This is usually named
ecsInstanceRole.

Important

If you do not launch your container instance with the proper IAM permissions, your
Amazon ECS agent cannot connect to your cluster. For more information, see Amazon
ECS container instance IAM role.

• (Optional) User data: Configure your Amazon ECS container instance with user data, such as the
agent environment variables from Amazon ECS container agent configuration. Amazon EC2 user
data scripts are executed only one time, when the instance is first launched. The following are
common examples of what user data is used for:

• By default, your container instance launches into your default cluster. To launch into a non-
default cluster, choose the Advanced Details list. Then, paste the following script into the User
data field, replacing your_cluster_name with the name of your cluster.

The EnableTaskIAMRole turns on the Task IAM roles feature for the tasks.

In addition, the following options are available when you use the awsvpc network mode.

• EnableTaskENI: This flag turns on task networking and is required when you use the
awsvpc network mode.

• AwsvpcBlockIMDS: This optional flag blocks IMDS access for the task containers running in
the awsvpc network mode.

• AwsvpcAdditionalLocalRoutes: This optional flag allows you to have additional routes
in the task namespace.

Replace ip-address with the IP Address for the additional routes, for example
172.31.42.23/32.

Windows container instance management 579

Amazon Elastic Container Service Developer Guide

<powershell>
Import-Module ECSTools
Initialize-ECSAgent -Cluster your_cluster_name -EnableTaskIAMRole -EnableTaskENI -
AwsvpcBlockIMDS -AwsvpcAdditionalLocalRoutes
'["ip-address"]'
</powershell>

Old Amazon EC2 launch instance wizard

To launch a container instance

1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.

2. From the navigation bar, select the Region to use.

3. From the EC2 Dashboard, choose Launch instance.

4. On the Choose an Amazon Machine Image (AMI) page, complete the following steps:

a. Choose AWS Marketplace.

b. Choose an AMI for your container instance. You can search for one of the Amazon ECS-
optimized AMIs, for example Windows_2019_Full_ECS_Optimized. If you do not choose
an Amazon ECS-optimized AMI, you must follow the procedures in Installing the Amazon
ECS container agent.

5. On the Choose an Instance Type page, you can select the hardware configuration of your
instance. The t2.micro instance type is selected by default. The instance type that you select
determines the resources available for your tasks to run on.

Choose Next: Configure Instance Details when you are done.

6. On the Configure Instance Details page, complete the following steps:

a. Set the Number of instances field depending on how many container instances you want
to add to your cluster.

b. (Optional) To use Spot Instances, for Purchasing option, select the check box next to
Request Spot Instances. You also need to set the other fields related to Spot Instances.
For more information, see Spot Instance Requests.

Windows container instance management 580

https://console.aws.amazon.com/ec2/
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/spot-requests.html

Amazon Elastic Container Service Developer Guide

Note

If you are using Spot Instances and see a Not available message, you may need
to choose a different instance type.

c. For Network, choose the VPC into which to launch your container instance.

d. For Subnet, choose a subnet to use, or keep the default option to choose the default
subnet in any Availability Zone.

e. Set the Auto-assign Public IP field depending on whether you want your instance to be
accessible from the public internet. If your instance should be accessible from the internet,
verify that the Auto-assign Public IP field is set to Enable. If not, set this field to Disable.

Note

Container instances need access to communicate with the Amazon ECS service
endpoint. This can be through an interface VPC endpoint or through your
container instances having public IP addresses.
For more information about interface VPC endpoints, see Amazon ECS interface
VPC endpoints (AWS PrivateLink).
If you do not have an interface VPC endpoint configured and your container
instances do not have public IP addresses, then they must use network address
translation (NAT) to provide this access. For more information, see NAT gateways
in the Amazon VPC User Guide and HTTP proxy configuration for Linux container
instances in this guide. For more information, see the section called “Create a
virtual private cloud”.

f. Select your container instance IAM role. This is usually named ecsInstanceRole.

Important

If you do not launch your container instance with the proper IAM permissions,
your Amazon ECS agent cannot connect to your cluster. For more information, see
Amazon ECS container instance IAM role.

g. Configure your Amazon ECS container instance with user data, such as the agent
environment variables from Amazon ECS container agent configuration. Amazon EC2 user

Windows container instance management 581

https://docs.aws.amazon.com/vpc/latest/userguide/vpc-nat-gateway.html

Amazon Elastic Container Service Developer Guide

data scripts are executed only one time, when the instance is first launched. The following
are common examples of what user data is used for:

• By default, your container instance launches into your default cluster. To launch into a
non-default cluster, choose the Advanced Details list. Then, paste the following script
into the User data field, replacing your_cluster_name with the name of your cluster.

The EnableTaskIAMRole turns on the Task IAM roles feature for the tasks.

In addition, the following options are available when you use the awsvpc network
mode.

• EnableTaskENI: This flag turns on task networking and is required when you use the
awsvpc network mode.

• AwsvpcBlockIMDS: This optional flag blocks IMDS access for the task containers
running in the awsvpc network mode.

• AwsvpcAdditionalLocalRoutes: This optional flag allows you to have additional
routes in the task namespace.

Replace ip-address with the IP Address for the additional routes, for example
172.31.42.23/32.

<powershell>
Import-Module ECSTools
Initialize-ECSAgent -Cluster your_cluster_name -EnableTaskIAMRole -
EnableTaskENI -AwsvpcBlockIMDS -AwsvpcAdditionalLocalRoutes
'["ip-address"]'
</powershell>

h. Choose Next: Add Storage.

7. On the Add Storage page, configure the storage for your container instance.

You can optionally increase or decrease the volume sizes for your instance to meet your
application needs.

When done configuring your volumes, choose Next: Add Tags.

8. On the Add Tags page, specify tags by providing key and value combinations for the container
instance. Choose Add another tag to add more than one tag to your container instance. For
more information resource tags, see Amazon ECS resource tagging.

Windows container instance management 582

Amazon Elastic Container Service Developer Guide

Choose Next: Configure Security Group when you are done.

9. On the Configure Security Group page, use a security group to define firewall rules for your
container instance. These rules specify which incoming network traffic is delivered to your
container instance. All other traffic is ignored. Select or create a security group as follows, and
then choose Review and Launch.

10. On the Review Instance Launch page, under Security Groups, you see that the wizard created
and selected a security group for you. Instead, select the security group that you created in Set
up to use Amazon ECS using the following steps:

a. Choose Edit security groups.

b. On the Configure Security Group page, select the Select an existing security group
option.

c. Select the security group you created for your container instance from the list of existing
security groups, and choose Review and Launch.

11. On the Review Instance Launch page, choose Launch.

12. In the Select an existing key pair or create a new key pair dialog box, choose Choose an
existing key pair, then select the key pair that you created when getting set up.

When you are ready, select the acknowledgment field, and then choose Launch Instances.

13. A confirmation page lets you know that your instance is launching. Choose View Instances to
close the confirmation page and return to the console.

14. On the Instances screen, you can view the status of your instance. It takes a short time for an
instance to launch. When you launch an instance, its initial state is pending. After the instance
starts, its state changes to running, and it receives a public DNS name. If the Public DNS
column is hidden, choose Show/Hide, Public DNS.

Using Spot Instances

A Spot Instance is an unused Amazon EC2 instance that is available for less than the On-Demand
price. Because Spot Instances allow you to request unused EC2 instances at steep discounts, you
can lower your Amazon EC2 costs significantly. The hourly price for a Spot Instance is called a Spot
price. The Spot price of each instance type in each Availability Zone is set by Amazon EC2, and
adjusted gradually based on the long-term supply of and demand for Spot Instances. For more
information, see Spot Instances in the Amazon EC2 User Guide for Windows Instances.

Windows container instance management 583

https://docs.aws.amazon.com/AWSEC2/latest/WindowsGuide/using-spot-instances.html

Amazon Elastic Container Service Developer Guide

You can register Spot Instances to your Amazon ECS clusters. For more information, see Launching
an Amazon ECS Linux container instance.

Spot Instance draining

Amazon EC2 terminates, stops, or hibernates your Spot Instance when the Spot price exceeds
the maximum price for your request or capacity is no longer available. Amazon EC2 provides a
Spot Instance interruption notice, which gives the instance a two-minute warning before it is
interrupted. If Amazon ECS Spot Instance draining is enabled on the instance, ECS receives the Spot
Instance interruption notice and places the instance in DRAINING status.

Important

Amazon ECS monitors for the Spot Instance interruption notices that have the terminate
and stop instance-actions. If you specified either the hibernate instance interruption
behavior when requesting your Spot Instances or Spot Fleet, then Amazon ECS Spot
Instance draining is not supported for those instances.

When a container instance is set to DRAINING, Amazon ECS prevents new tasks from being
scheduled for placement on the container instance. Service tasks on the draining container
instance that are in the PENDING state are stopped immediately. If there are container instances in
the cluster that are available, replacement service tasks are started on them.

You must set the ECS_ENABLE_SPOT_INSTANCE_DRAINING parameter before you start the
container agent. Use the following commands to manually turn on Spot Instance draining.
Substitute my-cluster with the name of your cluster.

[Environment]::SetEnvironmentVariable("ECS_ENABLE_SPOT_INSTANCE_DRAINING", "true",
 "Machine")

Initialize the agent
Initialize-ECSAgent -Cluster my-cluster

For more information, see the section called “Launching a container instance”.

Bootstrapping Windows container instances with Amazon EC2 user data

When you launch an Amazon ECS container instance, you have the option of passing user data to
the instance. The data can be used to perform common automated configuration tasks and run

Windows container instance management 584

Amazon Elastic Container Service Developer Guide

scripts when the instance boots. For Amazon ECS, the most common use cases for user data are to
pass configuration information to the Docker daemon and the Amazon ECS container agent.

You can pass multiple types of user data to Amazon EC2, including cloud boothooks, shell scripts,
and cloud-init directives. For more information about these and other format types, see the
Cloud-Init documentation.

You can pass this user data when using the Amazon EC2 launch wizard. For more information, see
Launching an Amazon ECS Linux container instance.

Topics

• Default Windows user data

• Windows agent installation user data

• Windows IAM roles for tasks

Default Windows user data

This example user data script shows the default user data that your Windows container instances
receive if you use the console. The script below does the following:

• Sets the cluster name to the name you entered.

• Sets the IAM roles for tasks.

• Sets json-file and awslogs as the available logging drivers.

In addition, the following options are available when you use the awsvpc network mode.

• EnableTaskENI: This flag turns on task networking and is required when you use the awsvpc
network mode.

• AwsvpcBlockIMDS: This optional flag blocks IMDS access for the task containers running in
awsvpc network mode.

• AwsvpcAdditionalLocalRoutes: This optional flag allows you to have additional routes.

Replace ip-address with the IP Address for the additional routes, for example
172.31.42.23/32.

You can use this script for your own container instances (provided that they are launched from the
Amazon ECS-optimized Windows Server AMI).

Windows container instance management 585

https://cloudinit.readthedocs.io/en/latest/topics/format.html

Amazon Elastic Container Service Developer Guide

Replace the -Cluster cluster-name line to specify your own cluster name.

<powershell>
Initialize-ECSAgent -Cluster cluster-name -EnableTaskIAMRole -LoggingDrivers '["json-
file","awslogs"]' -EnableTaskENI -AwsvpcBlockIMDS -AwsvpcAdditionalLocalRoutes
'["ip-address"]'
</powershell>

For Windows tasks that are configured to use the awslogs logging driver, you must also set the
ECS_ENABLE_AWSLOGS_EXECUTIONROLE_OVERRIDE environment variable on your container
instance. Use the following syntax.

Replace the -Cluster cluster-name line to specify your own cluster name.

<powershell>
[Environment]::SetEnvironmentVariable("ECS_ENABLE_AWSLOGS_EXECUTIONROLE_OVERRIDE",
 $TRUE, "Machine")
Initialize-ECSAgent -Cluster cluster-name -EnableTaskIAMRole -LoggingDrivers '["json-
file","awslogs"]'
</powershell>

Windows agent installation user data

This example user data script installs the Amazon ECS container agent on an instance launched
with a Windows_Server-2016-English-Full-Containers AMI. It has been adapted from the agent
installation instructions on the Amazon ECS Container Agent GitHub repository README page.

Note

This script is shared for example purposes. It is much easier to get started with Windows
containers by using the Amazon ECS-optimized Windows Server AMI. For more information,
see Creating a cluster for the Fargate and External launch type using the console.

You can use this script for your own container instances (provided that they are launched with
a version of the Windows_Server-2016-English-Full-Containers AMI). Be sure to replace the
windows line to specify your own cluster name (if you are not using a cluster called windows).

<powershell>
Set up directories the agent uses
New-Item -Type directory -Path ${env:ProgramFiles}\Amazon\ECS -Force

Windows container instance management 586

https://github.com/aws/amazon-ecs-agent

Amazon Elastic Container Service Developer Guide

New-Item -Type directory -Path ${env:ProgramData}\Amazon\ECS -Force
New-Item -Type directory -Path ${env:ProgramData}\Amazon\ECS\data -Force
Set up configuration
$ecsExeDir = "${env:ProgramFiles}\Amazon\ECS"
[Environment]::SetEnvironmentVariable("ECS_CLUSTER", "windows", "Machine")
[Environment]::SetEnvironmentVariable("ECS_LOGFILE", "${env:ProgramData}\Amazon\ECS\log
\ecs-agent.log", "Machine")
[Environment]::SetEnvironmentVariable("ECS_DATADIR", "${env:ProgramData}\Amazon\ECS
\data", "Machine")
Download the agent
$agentVersion = "latest"
$agentZipUri = "https://s3.amazonaws.com/amazon-ecs-agent/ecs-agent-windows-
$agentVersion.zip"
$zipFile = "${env:TEMP}\ecs-agent.zip"
Invoke-RestMethod -OutFile $zipFile -Uri $agentZipUri
Put the executables in the executable directory.
Expand-Archive -Path $zipFile -DestinationPath $ecsExeDir -Force
Set-Location ${ecsExeDir}
Set $EnableTaskIAMRoles to $true to enable task IAM roles
Note that enabling IAM roles will make port 80 unavailable for tasks.
[bool]$EnableTaskIAMRoles = $false
if (${EnableTaskIAMRoles}) {
 $HostSetupScript = Invoke-WebRequest https://raw.githubusercontent.com/aws/amazon-
ecs-agent/master/misc/windows-deploy/hostsetup.ps1
 Invoke-Expression $($HostSetupScript.Content)
}
Install the agent service
New-Service -Name "AmazonECS" `
 -BinaryPathName "$ecsExeDir\amazon-ecs-agent.exe -windows-service" `
 -DisplayName "Amazon ECS" `
 -Description "Amazon ECS service runs the Amazon ECS agent" `
 -DependsOn Docker `
 -StartupType Manual
sc.exe failure AmazonECS reset=300 actions=restart/5000/restart/30000/restart/60000
sc.exe failureflag AmazonECS 1
Start-Service AmazonECS
</powershell>

Windows IAM roles for tasks

See the following Windows examples regarding bootstrapping IAM task roles.

• Additional configuration for Windows IAM roles for tasks

Windows container instance management 587

Amazon Elastic Container Service Developer Guide

• IAM roles for task container bootstrap script

Connect to your container Windows instance

You can connect to your Windows instances to perform basic administrative tasks, such as
installing or updating software or accessing diagnostic logs. To connect to your instance using
Remote Desktop Protocol (RDP), your Windows instance must meet the following prerequisites.

• Amazon EC2 instances created from most Windows AMIs allow you to connect using Remote
Desktop Protocol (RDP). RDP allows you to connect to and use your instance in the same way you
use a computer sitting in front of you. It is available on most editions of Windows and available
for Mac OS.

• Your Windows instance must have been launched with a valid Amazon EC2 key pair. Amazon
EC2 instances have no password, you use a key pair for access over RDP. If you did not specify a
key pair when you launched your instance, there is no way to connect to the instance. For more
information, see the section called “Launching a container instance”.

• Ensure that the security group associated with your instance allows incoming RDP traffic (port
3389) from your IP address. The default security group doesn't allow incoming RDP traffic by
default. For more information, see Authorize inbound traffic for your Windows instances in the
Amazon EC2 User Guide for Windows Instances.

1. Find the public IP or DNS address for your container instance.

a. Open the console at https://console.aws.amazon.com/ecs/v2.

b. In the navigation pane, choose Clusters and select the cluster that hosts the instance.

c. On the Cluster : name page, choose the Infrastructure tab.

d. Under Container instances, select the instance ID.

e. On the Instances page, record the Public IP or Public DNS for your instance.

2. Find the default username for your container instance AMI.

3. You can connect to your instance by using RDP. For more information, see Connect to your
Windows instance using RDP in the Amazon EC2 User Guide for Windows Instances.

Windows container instance management 588

https://docs.aws.amazon.com/AWSEC2/latest/WindowsGuide/authorizing-access-to-an-instance.html
https://console.aws.amazon.com/ecs/v2
https://docs.aws.amazon.com/AWSEC2/latest/WindowsGuide/connecting_to_windows_instance.html
https://docs.aws.amazon.com/AWSEC2/latest/WindowsGuide/connecting_to_windows_instance.html

Amazon Elastic Container Service Developer Guide

HTTP proxy configuration for Windows container instances

You can configure your Amazon ECS container instances to use an HTTP proxy for both the Amazon
ECS container agent and the Docker daemon. This is useful if your container instances do not have
external network access through an Amazon VPC internet gateway, NAT gateway, or instance.

To configure your Amazon ECS Windows container instance to use an HTTP proxy, set the following
variables at launch time (with Amazon EC2 user data).

[Environment]::SetEnvironmentVariable("HTTP_PROXY",
"http://proxy.mydomain:port", "Machine")

Set HTTP_PROXY to the hostname (or IP address) and port number of an HTTP proxy to use for
the Amazon ECS agent to connect to the internet. For example, your container instances may
not have external network access through an Amazon VPC internet gateway, NAT gateway, or
instance.

[Environment]::SetEnvironmentVariable("NO_PROXY",
"169.254.169.254,169.254.170.2,\\.\pipe\docker_engine", "Machine")

Set NO_PROXY to 169.254.169.254,169.254.170.2,\\.\pipe\docker_engine to filter
EC2 instance metadata, IAM roles for tasks, and Docker daemon traffic from the proxy.

Example Windows HTTP proxy user data script

The example user data PowerShell script below configures the Amazon ECS container agent and
the Docker daemon to use an HTTP proxy that you specify. You can also specify a cluster into which
the container instance registers itself.

To use this script when you launch a container instance, follow the steps in the section called
“Launching a container instance”. Just copy and paste the PowerShell script below into the
User data field (be sure to substitute the red example values with your own proxy and cluster
information).

Note

The -EnableTaskIAMRole option is required to enable IAM roles for tasks. For more
information, see Additional configuration for Windows IAM roles for tasks.

Windows container instance management 589

Amazon Elastic Container Service Developer Guide

<powershell>
Import-Module ECSTools

$proxy = "http://proxy.mydomain:port"
[Environment]::SetEnvironmentVariable("HTTP_PROXY", $proxy, "Machine")
[Environment]::SetEnvironmentVariable("NO_PROXY", "169.254.169.254,169.254.170.2,\\.
\pipe\docker_engine", "Machine")

Restart-Service Docker
Initialize-ECSAgent -Cluster MyCluster -EnableTaskIAMRole
</powershell>

Deregister an Amazon EC2 backed container instance

Important

This topic is for container instances created in Amazon EC2 only. For more information
about deregistering external instances, see Deregistering an external instance.

When you are finished with an Amazon EC2 backed container instance, you should deregister it
from your cluster. Following deregistration, the container instance is no longer able to accept new
tasks.

If you have tasks running on the container instance when you deregister it, these tasks remain
running until you terminate the instance or the tasks stop through some other means. However,
these tasks are orphaned which means they are no longer monitored or accounted for by Amazon
ECS. If an orphaned task on your container instance is part of an Amazon ECS service, then the
service scheduler starts another copy of that task, on a different container instance, if possible.
Any containers in orphaned service tasks that are registered with an Application Load Balancer
target group are deregistered. They begin connection draining according to the settings on the
load balancer or target group. If an orphaned tasks is using the awsvpc network mode, their elastic
network interfaces are deleted.

If you intend to use the container instance for some other purpose after deregistration, you
should stop all of the tasks running on the container instance before deregistration. This stops any
orphaned tasks from consuming resources.

When deregistering a container instance, be aware of the following considerations.

Windows container instance management 590

Amazon Elastic Container Service Developer Guide

• Because each container instance has unique state information, they should not be deregistered
from one cluster and re-registered into another. To relocate container instance resources, we
recommend that you terminate container instances from one cluster and launch new container
instances in the new cluster. For more information, see Terminate your instance in the Amazon
EC2 User Guide for Linux Instances and Launching an Amazon ECS Linux container instance.

• If the container instance is managed by an Auto Scaling group or a AWS CloudFormation stack,
terminate the instance by updating the Auto Scaling group or AWS CloudFormation stack.
Otherwise, the Auto Scaling group or AWS CloudFormation will create a new instance after you
terminate it.

• If you terminate a running container instance with a connected Amazon ECS container agent, the
agent automatically deregisters the instance from your cluster. Stopped container instances or
instances with disconnected agents are not automatically deregistered when terminated.

• Deregistering a container instance removes the instance from a cluster, but it does not terminate
the Amazon EC2 instance. If you are finished using the instance, be sure to terminate it to stop
billing. For more information, see Terminate your instance in the Amazon EC2 User Guide for
Linux Instances.

1. Open the console at https://console.aws.amazon.com/ecs/v2.

2. From the navigation bar, choose the Region where your external instance is registered.

3. In the navigation pane, choose Clusters and select the cluster that hosts the instance.

4. On the Cluster : name page, choose the Infrastructure tab.

5. Under Container instances, select the instance ID to deregister. You're redirected to the
container instance detail page.

6. On the Container Instance : id page, choose Deregister.

7. On the confirmation screen, choose Deregister.

8. If you are finished with the container instance, terminate the underlying Amazon EC2 instance.
For more information, see Terminate Your Instance in the Amazon EC2 User Guide for Linux
Instances.

Amazon ECS managed instance draining

Managed instance draining facilitates graceful termination of Amazon EC2 instances. This allows
your workloads to stop safely and be rescheduled to non-terminating instances. Infrastructure

Amazon ECS managed instance draining 591

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/terminating-instances.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/terminating-instances.html
https://console.aws.amazon.com/ecs/v2
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/terminating-instances.html

Amazon Elastic Container Service Developer Guide

maintenance and updates are performed without worrying about disruption to workloads. By
using managed instance draining, you simplify your infrastructure management workflows that
require replacement of Amazon EC2 instances while you ensure resilience and availability of your
applications.

Amazon ECS managed instance draining works with Auto Scaling group instance replacements.
Based on instance refresh and maximum instance lifetime, customers can ensure that they stay
compliant with the latest OS and security mandates for their capacity.

Managed instance draining can only be used with Amazon ECS capacity providers and is enabled
when creating or updating your Auto Scaling group capacity providers using the Amazon ECS
console, AWS CLI, or SDK.

The following events are covered by Amazon ECS managed instance draining.

• Auto Scaling group instance refresh ‐ Use instance refresh to perform rolling replacement of your
Amazon EC2 instances in your Auto Scaling group instead of manually doing it in batches. This
is especially useful when you need to replace a large number of instances. An instance refresh is
initiated through the Amazon EC2 console or the StartInstanceRefresh API. Make sure you
select Replace for Scale-in protection when calling StartInstanceRefresh if you're using
managed termination protection.

• Maximum instance lifetime ‐ You can define a maximum lifetime when it comes to replacing
Auto Scaling group instances. This is helpful for scheduling replacement instances based on
internal security policies or compliance.

• Auto Scaling group scale-in ‐ Based on scaling policies and scheduled scaling actions, Auto
Scaling group supports automatic scaling of instances. By using Auto Scaling group with Amazon
ECS capacity providers, which facilitate cluster-autoscaling, you can scale-in Auto Scaling group
instances when no tasks are running in them.

• Auto Scaling group health checks ‐ Auto Scaling group supports many health checks to manage
termination of unhealthy instances.

• AWS CloudFormation stack updates ‐ You can add an UpdatePolicy attribute to your AWS
CloudFormation to perform rolling updates when group changes.

• Spot capacity rebalancing ‐ Auto Scaling group tries to proactively replace Spot instances that
have a higher risk of interruption based on Amazon EC2 capacity rebalance notice. The Auto
Scaling group terminates the old instance when the replacement is launched and healthy.
Amazon ECS-managed instance draining drains the Spot instance that's terminating just like it
drains a non-Spot instance.

Amazon ECS managed instance draining 592

https://docs.aws.amazon.com/autoscaling/ec2/userguide/asg-instance-refresh.html
https://docs.aws.amazon.com/autoscaling/ec2/userguide/asg-max-instance-lifetime.html
https://docs.aws.amazon.com/autoscaling/ec2/userguide/ec2-auto-scaling-health-checks.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/using-cfn-updating-stacks.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/spot-interruptions.html

Amazon Elastic Container Service Developer Guide

• Spot interruption ‐ Spot instances are terminated with a two minute notice. Amazon ECS-
managed instance draining puts the instance in draining state in response.

Amazon EC2 Auto Scaling lifecycle hooks with managed instance draining

Auto Scaling group lifecycle hooks enable customer to create solutions that are triggered by
certain events in the instance lifecycle and perform a custom action when that certain event
occurs. An Auto Scaling group allows for up to 50 hooks. Multiple termination hooks can exist and
are executed in parallel, and Auto Scaling group waits for all hooks to finish before terminating an
instance.

In addition to the Amazon ECS-managed hook termination, you can also configure your own
lifecycle termination hooks. Lifecycle hooks have a default action, and we recommend setting
continue as the default to ensure other hooks, such as the Amazon ECS-managed hook, aren't
impacted by any errors from custom hooks.

If you've already configured an Auto Scaling group termination lifecycle hook and also enabled
Amazon ECS-managed instance draining, both lifecycle hooks will execute. The relative timings,
however, are not guaranteed. Lifecycle hooks have a default action setting to specify the
action to take when timeout elapses. In case of failures we recommend using continue as the
default result in your custom hook. This ensures other hooks, particularly the Amazon ECS-
managed hooks, aren't impacted by any errors in your custom lifecyle hook. The alternative result
of abandon causes all other hooks to be skipped and should be avoided.

Tasks and managed instance draining

Amazon ECS managed instance draining uses the existing draining feature found in container
instances. The container instance draining feature performs replacement and stops for replica
tasks that belong to an Amazon ECS service. A standalone task, like one invoked by RunTask,
that is in the pending or running state will remain unaffected. You'll have to wait for these to
either complete or stop them manually. The container instance remains in the draining state
until either all tasks are stopped or 48 hours has passed. Daemon tasks are the last to stop after all
replica tasks have stopped.

Managed instance draining and managed termination protection

Since Amazon ECS managed instance draining facilitates graceful draining of Amazon EC2
instances, it keeps your applications from being disrupted by any termination events. Managed

Amazon ECS managed instance draining 593

https://docs.aws.amazon.com/autoscaling/ec2/userguide/ec2-auto-scaling-capacity-rebalancing.html
https://docs.aws.amazon.com/autoscaling/ec2/userguide/lifecycle-hooks.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/container-instance-draining.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/cluster-auto-scaling.html#managed-termination-protection

Amazon Elastic Container Service Developer Guide

instance draining facilitates graceful shutdown of Amazon ECS service tasks for instances being
scaled-in, even if managed termination is disabled.

The following table summarizes the behavior for different combinations of managed termination
and managed draining.

Managed termination Managed draining Outcome

Enabled Enabled Amazon
ECS
protects
Amazon
EC2
instances
that are
running
tasks from
being
terminate
d by scale-
in events.
Any
instances
undergoin
g terminati
on, such as
those that
don't have
terminati
on
protectio
n set, have
received
Spot
interrupt
ion, or are
forced by

Amazon ECS managed instance draining 594

Amazon Elastic Container Service Developer Guide

Managed termination Managed draining Outcome

instance
refresh are
gracefully
drained.

Disabled Enabled Amazon
ECS don't
protect
Amazon
EC2
instances
running
tasks from
being
scaled-in.
However,
any
instances
that are
being
terminate
d are
gracefully
drained.

Amazon ECS managed instance draining 595

Amazon Elastic Container Service Developer Guide

Managed termination Managed draining Outcome

Enabled Disabled Amazon
ECS
protects
Amazon
EC2
instances
that are
running
tasks from
being
terminate
d by scale-
in events.
However,
instances
can
still get
terminate
d by Spot
interrupt
ion or
forced
instance
refresh,
or if they
aren't
running
any tasks.
Amazon
ECS
doesn't
perform
graceful
draining

Amazon ECS managed instance draining 596

Amazon Elastic Container Service Developer Guide

Managed termination Managed draining Outcome

for these
instances
, and
launches
replaceme
nt service
tasks after
they stop.

Disabled Disabled Amazon
EC2
instances
can be
scaled-
in or
terminate
d at any
time, even
if they are
running
Amazon
ECS tasks.
Amazon
ECS will
launch
replaceme
nt service
tasks after
they stop.

Managed instance draining and Spot instance draining

With Amazon ECS Spot instance draining, you can set an environment variable
ECS_ENABLE_SPOT_INSTANCE_DRAINING on the Amazon ECS Agent which enables Amazon
ECS to place an instance in the draining status in response to the two-minute Spot interruption.

Amazon ECS managed instance draining 597

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/container-instance-spot.html

Amazon Elastic Container Service Developer Guide

Amazon ECS managed instance draining facilitates graceful shutdown of Amazon EC2 instances
undergoing termination due to many reasons, not just Spot interruption. For instance, you can use
Amazon EC2 Auto Scaling capacity rebalancing to proactively replace Spot instances at elevated
risk of interruption, and managed instance draining performs graceful shutdown of Spot instances
being replaced. When you use managed instance draining, you don't need to enable Spot instance
draining separately, so ECS_ENABLE_SPOT_INSTANCE_DRAINING in ASG user data is redundant.

Amazon ECS managed instance draining troubleshooting

Amazon ECS managed instance draining events are published to Amazon EventBridge, and Amazon
ECS creates an EventBridge managed rule in your account’s default bus to support managed
instance draining. You can filter these events to other AWS services like Lambda, Amazon SNS, and
Amazon SQS to monitor and troubleshoot.

• Amazon EC2 Auto Scaling sends an event to EventBridge whena lifecycle hook is invoked.

• Spot interruption notices are published to EventBridge.

• Amazon ECS generates error messages that are retrievable on the Amazon ECS console and API if
there are any failures when provisioning managed instance draining resources.

• EventBridge has retry mechanisms built in as mitigations for temporary failures.

Using Amazon ECS managed instance draining

You enable managed instance draining when you create or update your Auto Scaling group
capacity providers using the Amazon ECS console and AWS CLI.

Note

Managed instance draining is enabled by default when you create a capacity provider.

The following are examples using the AWS CLI for creating a capacity provider with managed
instance draining enabled and enabling managed instance draining for a cluster's existing capacity
provider.

Create a capacity provider with managed instance draining enabled

To create a capacity provider with managed instance draining enabled, use the create-
capacity-provider command.

Amazon ECS managed instance draining 598

Amazon Elastic Container Service Developer Guide

aws ecs create-capacity-provider \
--name capacity-provider \
--auto-scaling-group-provider '{
 "autoScalingGroupArn": "asg-arn",
 "managedScaling": {
 "status": "ENABLED",
 "targetCapacity": 100,
 "minimumScalingStepSize": 1,
 "maximumScalingStepSize": 1
 },
 "managedDraining": "ENABLED",
 "managedTerminationProtection": "ENABLED",
}'

Response:

{
 "capacityProvider": {
 "capacityProviderArn": "capacity-provider-arn",
 "name": "capacity-provider",
 "status": "ACTIVE",
 "autoScalingGroupProvider": {
 "autoScalingGroupArn": "asg-arn",
 "managedScaling": {
 "status": "ENABLED",
 "targetCapacity": 100,
 "minimumScalingStepSize": 1,
 "maximumScalingStepSize": 1
 },
 "managedTerminationProtection": "ENABLED"
 "managedDraining": "ENABLED"
 }
 }
}

Enable managed instance draining for a cluster's existing capacity provider

Enable managed instance draining for a cluster's existing capacity provider uses the update-
capacity-provider command. You see that managedDraining currently says DISABLED and
updateStatus says UPDATE_IN_PROGRESS.

aws ecs update-capacity-provider \

Amazon ECS managed instance draining 599

Amazon Elastic Container Service Developer Guide

--name cp-draining \
--auto-scaling-group-provider '{
 "managedDraining": "ENABLED"
}

Response:

{
 "capacityProvider": {
 "capacityProviderArn": "cp-draining-arn",
 "name": "cp-draining",
 "status": "ACTIVE",
 "autoScalingGroupProvider": {
 "autoScalingGroupArn": "asg-draining-arn",
 "managedScaling": {
 "status": "ENABLED",
 "targetCapacity": 100,
 "minimumScalingStepSize": 1,
 "maximumScalingStepSize": 1,
 "instanceWarmupPeriod": 300
 },
 "managedTerminationProtection": "DISABLED",
 "managedDraining": "DISABLED" // before update
 },
 "updateStatus": "UPDATE_IN_PROGRESS", // in progress and need describe again to
 find out the result
 "tags": [
]
 }
}

Use the describe-clusters command and include ATTACHMENTS. The status of the managed
instance draining attachment is PRECREATED, and the overall attachmentsStatus is UPDATING.

aws ecs describe-clusters --clusters cluster-name --include ATTACHMENTS

Response:

{
 "clusters": [
 {

Amazon ECS managed instance draining 600

Amazon Elastic Container Service Developer Guide

 ...

 "capacityProviders": [
 "cp-draining"
],
 "defaultCapacityProviderStrategy": [],
 "attachments": [
 # new precreated managed draining attachment
 {
 "id": "a1b2c3d4-5678-90ab-cdef-EXAMPLE11111",
 "type": "managed_draining",
 "status": "PRECREATED",
 "details": [
 {
 "name": "capacityProviderName",
 "value": "cp-draining"
 },
 {
 "name": "autoScalingLifecycleHookName",
 "value": "ecs-managed-draining-termination-hook"
 }
]
 },

 ...

],
 "attachmentsStatus": "UPDATING"
 }
],
 "failures": []
}

When the update is finished, use describe-capacity-providers, and you see
managedDraining is now ENABLED.

aws ecs describe-capacity-providers --capacity-providers cp-draining

Response:

{
 "capacityProviders": [
 {

Amazon ECS managed instance draining 601

Amazon Elastic Container Service Developer Guide

 "capacityProviderArn": "cp-draining-arn",
 "name": "cp-draining",
 "status": "ACTIVE",
 "autoScalingGroupProvider": {
 "autoScalingGroupArn": "asg-draning-arn",
 "managedScaling": {
 "status": "ENABLED",
 "targetCapacity": 100,
 "minimumScalingStepSize": 1,
 "maximumScalingStepSize": 1,
 "instanceWarmupPeriod": 300
 },
 "managedTerminationProtection": "DISABLED",
 "managedDraining": "ENABLED" // successfully update
 },
 "updateStatus": "UPDATE_COMPLETE",
 "tags": []
 }
]
}

Amazon ECS managed instance draining 602

Amazon Elastic Container Service Developer Guide

Scheduling your containers on Amazon ECS

Amazon Elastic Container Service (Amazon ECS) is a shared state, optimistic concurrency system
that provides flexible scheduling capabilities for your containerized workloads. The Amazon ECS
schedulers use the same cluster state information as the Amazon ECS API to make appropriate
placement decisions.

Amazon ECS provides a service scheduler for long-running tasks and applications. It also provides
the ability to run standalone tasks or scheduled tasks for batch jobs or single run tasks. You can
specify the task placement strategies and constraints for running tasks that best meet your needs.
For example, you can specify whether tasks run across multiple Availability Zones or within a single
Availability Zone. And, optionally, you can integrate tasks with your own custom or third-party
schedulers.

Service scheduler

The service scheduler is suitable for long running stateless services and applications. The service
scheduler ensures that the scheduling strategy that you specify is followed and reschedules tasks
when a task fails. For example, if the underlying infrastructure fails, the service scheduler can
reschedule tasks.

The service scheduler also replaces tasks determined to be unhealthy after a container health
check or a load balancer target group health check fails. This replacement depends on the
maximumPercent and desiredCount service definition parameters. If a task is marked unhealthy,
the service scheduler will first start a replacement task. If the replacement task has a health status
of HEALTHY, the service scheduler stops the unhealthy task. If the replacement task has a health
status of UNHEALTHY, the scheduler will stop either the unhealthy replacement task or the existing
unhealthy task to get the total task count to equal desiredCount. If the maximumPercent
parameter limits the scheduler from starting a replacement task first, the scheduler will stop an
unhealthy task one at a time at random to free up capacity, and then start a replacement task. The
start and stop process continues until all unhealthy tasks are replaced with healthy tasks. Once
all unhealthy tasks have been replaced and only healthy tasks are running, if the total task count
exceeds the desiredCount, healthy tasks are stopped at random until the total task count equals
desiredCount. For more information about maximumPercent and desiredCount, see Service
definition parameters.

Service scheduler 603

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/service_definition_parameters.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/service_definition_parameters.html

Amazon Elastic Container Service Developer Guide

Note

This behavior does not apply to tasks run and maintained by services that use the rolling
update deployment type. During a rolling update, the service scheduler first stops
unhealthy tasks and then starts replacement tasks.

There are two service scheduler strategies available:

• REPLICA—The replica scheduling strategy places and maintains the desired number of tasks
across your cluster. By default, the service scheduler spreads tasks across Availability Zones. You
can use task placement strategies and constraints to customize task placement decisions. For
more information, see Replica.

• DAEMON—The daemon scheduling strategy deploys exactly one task on each active container
instance that meets all of the task placement constraints that you specify in your cluster. When
using this strategy, there is no need to specify a desired number of tasks, a task placement
strategy, or use Service Auto Scaling policies. For more information, see Daemon.

Note

Fargate tasks do not support the DAEMON scheduling strategy.

The service scheduler optionally also makes sure that tasks are registered against an Elastic Load
Balancing load balancer. You can update your services that are maintained by the service scheduler.
This might include deploying a new task definition or changing the number of desired tasks that
are running. By default, the service scheduler spreads tasks across multiple Availability Zones.
However, you can use task placement strategies and constraints to customize task placement
decisions. For more information, see Amazon ECS services.

Standalone tasks

The RunTask action is suitable for processes such as batch jobs that perform work and then
stop. For example, you can have a process call RunTask when work comes into a queue. The task
pulls work from the queue, performs the work, and then exits. Using RunTask, you can allow the
default task placement strategy to distribute tasks randomly across your cluster. This minimizes
the chances that a single instance gets a disproportionate number of tasks. Alternatively, you can

Standalone tasks 604

Amazon Elastic Container Service Developer Guide

use RunTask to customize how the scheduler places tasks using task placement strategies and
constraints. For more information, see Creating a standalone task and RunTask in the Amazon
Elastic Container Service API Reference.

Scheduled tasks

Running tasks on a cron-like schedule

If you have tasks to run at set intervals in your cluster, you can use EventBridge Scheduler to create
a schedule. You can run tasks for a backup operation or a log scan. The EventBridge Scheduler
schedule that you create can run one or more tasks in your cluster at specified times. Your
scheduled event can be set to a specific interval (run every N minutes, hours, or days). Otherwise,
for more complicated scheduling, you can use a cron expression. For more information, see
Amazon ECS scheduled tasks.

Custom schedulers

With Amazon ECS, you can create your own schedulers or use third-party schedulers. For more
information, see How to create a custom scheduler for Amazon ECS. Custom schedulers use the
StartTask API operation to place tasks on specific container instances within your cluster.

Note

Custom schedulers are only compatible with tasks hosted on EC2 instances. If you use
Amazon ECS on Fargate, the StartTask API doesn't work.

Task lifecycle

When a task is started, either manually or as part of a service, it can pass through several states
before it finishes on its own or is stopped manually. Some tasks are meant to run as batch jobs that
naturally progress through from PENDING to RUNNING to STOPPED. Other tasks, which can be part
of a service, are meant to continue running indefinitely, or to be scaled up and down as needed.

When task status changes are requested, such as stopping a task or updating the desired count of
a service to scale it up or down, the Amazon ECS container agent tracks these changes as the last
known status (lastStatus) of the task and the desired status (desiredStatus) of the task. Both

Scheduled tasks 605

https://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_RunTask.html
https://aws.amazon.com/blogs/compute/how-to-create-a-custom-scheduler-for-amazon-ecs/
https://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_StartTask.html

Amazon Elastic Container Service Developer Guide

the last known status and desired status of a task can be seen either in the console or by describing
the task with the API or AWS CLI.

The flow chart below shows the task lifecycle flow.

Lifecycle states

The following are descriptions of each of the task lifecycle states.

PROVISIONING

Amazon ECS has to perform additional steps before the task is launched. For example, for tasks
that use the awsvpc network mode, the elastic network interface needs to be provisioned.

Lifecycle states 606

Amazon Elastic Container Service Developer Guide

PENDING

This is a transition state where Amazon ECS is waiting on the container agent to take further
action. A task stays in the pending state until there are available resources for the task.

ACTIVATING

This is a transition state where Amazon ECS has to perform additional steps after the task is
launched but before the task can transition to the RUNNING state. For example, for tasks that
have service discovery configured, the service discovery resources must be created. For tasks
that are part of a service that's configured to use multiple Elastic Load Balancing target groups,
the target group registration occurs during this state.

RUNNING

The task is successfully running.

DEACTIVATING

This is a transition state where Amazon ECS has to perform additional steps before the task
is stopped. For example, for tasks that are part of a service that's configured to use multiple
Elastic Load Balancing target groups, the target group deregistration occurs during this state.

STOPPING

This is a transition state where Amazon ECS is waiting on the container agent to take further
action.

For Linux containers, the container agent will send the SIGTERM signal to notify the application
needs to finish and shut down, and then the sends a SIGKILL after waiting the StopTimeout
duration set in the task definition.

DEPROVISIONING

Amazon ECS has to perform additional steps after the task has stopped but before the task
transitions to the STOPPED state. For example, for tasks that use the awsvpc network mode,
the elastic network interface needs to be detached and deleted.

STOPPED

The task has been successfully stopped.

DELETED

This is a transition state when a task stops. This state is not displayed in the console, but is
displayed in describe-tasks.

Lifecycle states 607

Amazon Elastic Container Service Developer Guide

Amazon ECS task placement

A task placement strategy is an algorithm for selecting container instances for task placement or
tasks for termination. For example, Amazon ECS can select container instances at random, or it can
select container instances such that tasks are distributed evenly across a group of instances.

A task placement constraint is a rule that's considered during task placement. For example, you can
use constraints to place tasks based on Availability Zone or instance type. You can also associate
attributes, which are name/value pairs, with your container instances and then use a constraint to
place tasks based on attribute.

EC2 launch type

When a task that uses the EC2 launch type is launched, Amazon ECS must determine where to
place the task based on the requirements specified in the task definition, such as CPU and memory.
Similarly, when you scale down the task count, Amazon ECS must determine which tasks to
terminate. You can apply task placement strategies and constraints to customize how Amazon ECS
places and terminates tasks.

The default task placement strategies depend on whether you run tasks manually (standalone
tasks) or within a service. For tasks running as part of an Amazon ECS service, the task placement
strategy is spread using the attribute:ecs.availability-zone. There isn't a default task
placement constraint for tasks in services. For more information, see Scheduling your containers on
Amazon ECS.

Note

Task placement strategies are a best effort. Amazon ECS still attempts to place tasks
even when the most optimal placement option is unavailable. However, task placement
constraints are binding, and they can prevent task placement.

You can use task placement strategies and constraints together. For example, you can use a task
placement strategy and a task placement constraint to distribute tasks across Availability Zones
and bin pack tasks based on memory within each Availability Zone, but only for G2 instances.

When Amazon ECS places tasks, it uses the following process to select container instances:

Task placement 608

Amazon Elastic Container Service Developer Guide

1. Identify the container instances that satisfy the CPU, GPU, memory, and port requirements in
the task definition.

2. Identify the container instances that satisfy the task placement constraints.

3. Identify the container instances that satisfy the task placement strategies.

4. Select the container instances for task placement.

Fargate launch type

Task placement strategies and constraints aren't supported for tasks using the Fargate launch type.
Fargate will try its best to spread tasks across accessible Availability Zones. If the capacity provider
includes both Fargate and Fargate Spot, the spread behavior is independent for each capacity
provider.

Task groups

You can identify a set of related tasks as a task group. All tasks with the same task group name
are considered as a set when using the spread task placement strategy. For example, suppose
that you're running different applications in one cluster, such as databases and web servers. To
ensure that your databases are balanced across Availability Zones, add them to a task group named
databases and then use the spread task placement strategy. For more information, see Amazon
ECS task placement strategies.

Task groups can also be used as a task placement constraint. When you specify a task group in the
memberOf constraint, tasks are only sent to container instances that run tasks in the specified task
group. For an example, see Example constraints.

By default, standalone tasks use the task definition family name (for example, family:my-task-
definition) as the task group name if a custom task group name isn't specified. Tasks launched
as part of a service use the service name as the task group name and can't be changed.

The following requirements for the task group name must be considered.

• A task group name must be 255 or fewer characters.

• Each task can be in exactly one group.

• After launching a task, you can't modify its task group.

Fargate launch type 609

Amazon Elastic Container Service Developer Guide

Amazon ECS task placement strategies

When a task that uses the EC2 launch type is launched, Amazon ECS must determine where to
place the task based on the requirements specified in the task definition, such as CPU and memory.
Similarly, when you scale down the task count, Amazon ECS must determine which tasks to
terminate. You can apply task placement strategies and constraints to customize how Amazon ECS
places and terminates tasks.

The default task placement strategies depend on whether you run tasks manually (standalone
tasks) or within a service. For tasks running as part of an Amazon ECS service, the task placement
strategy is spread using the attribute:ecs.availability-zone. There isn't a default task
placement constraint for tasks in services. For more information, see Scheduling your containers on
Amazon ECS.

Note

Task placement strategies are a best effort. Amazon ECS still attempts to place tasks
even when the most optimal placement option is unavailable. However, task placement
constraints are binding, and they can prevent task placement.

You can use task placement strategies and constraints together. For example, you can use a task
placement strategy and a task placement constraint to distribute tasks across Availability Zones
and bin pack tasks based on memory within each Availability Zone, but only for G2 instances.

When Amazon ECS places tasks, it uses the following process to select container instances:

1. Identify the container instances that satisfy the CPU, GPU, memory, and port requirements in
the task definition.

2. Identify the container instances that satisfy the task placement constraints.

3. Identify the container instances that satisfy the task placement strategies.

4. Select the container instances for task placement.

The task placement strategies can be updated for existing services as well. For more information,
see Amazon ECS task placement.

You can create a task placement strategy that uses multiple strategies by creating arrays of
strategies in the order that you want them performed. For example, if you want to spread tasks

Task placement strategies 610

Amazon Elastic Container Service Developer Guide

across Availability Zones and then bin pack tasks based on memory within each Availability Zone,
specify the Availability Zone strategy followed by the memory strategy. For example strategies, see
Example strategies.

Strategy types

Amazon ECS supports the following task placement strategies:

binpack

Tasks are placed on container instances so as to leave the least amount of unused CPU or
memory. This strategy minimizes the number of container instances in use.

When this strategy is used and a scale-in action is taken, Amazon ECS terminates tasks. It
does this based on the amount of resources that are left on the container instance after the
task is terminated. The container instance that has the most available resources left after task
termination has that task terminated.

random

Tasks are placed randomly.

spread

Tasks are placed evenly based on the specified value. Accepted values are instanceId (or
host, which has the same effect), or any platform or custom attribute that's applied to a
container instance, such as attribute:ecs.availability-zone.

Service tasks are spread based on the tasks from that service. Standalone tasks are spread
based on the tasks from the same task group. For more information about task groups, see Task
groups.

When the spread strategy is used and a scale-in action is taken, Amazon ECS selects tasks to
terminate that maintain a balance across Availability Zones. Within an Availability Zone, tasks
are selected at random.

Example strategies

You can specify task placement strategies with the following actions: CreateService, UpdateService,
and RunTask.

Examples

Task placement strategies 611

https://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_CreateService.html
https://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_UpdateService.html
https://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_RunTask.html

Amazon Elastic Container Service Developer Guide

• Distribute tasks evenly across Availability Zones

• Distribute tasks evenly across all instances

• Bin pack tasks based on memory

• Place tasks randomly

• Distribute tasks evenly across Availability Zones and then distributes tasks evenly across the
instances within each Availability Zone

• Distribute tasks evenly across Availability Zones and then bin pack tasks based on memory
within each Availability Zone

• Distribute tasks evenly across instances and then bin pack tasks based on memory

Distribute tasks evenly across Availability Zones

The following strategy distributes tasks evenly across Availability Zones.

"placementStrategy": [
 {
 "field": "attribute:ecs.availability-zone",
 "type": "spread"
 }
]

Distribute tasks evenly across all instances

The following strategy distributes tasks evenly across all instances.

"placementStrategy": [
 {
 "field": "instanceId",
 "type": "spread"
 }
]

Bin pack tasks based on memory

The following strategy bin packs tasks based on memory.

"placementStrategy": [
 {
 "field": "memory",

Task placement strategies 612

Amazon Elastic Container Service Developer Guide

 "type": "binpack"
 }
]

Place tasks randomly

The following strategy places tasks randomly.

"placementStrategy": [
 {
 "type": "random"
 }
]

Distribute tasks evenly across Availability Zones and then distributes tasks evenly across the
instances within each Availability Zone

The following strategy distributes tasks evenly across Availability Zones and then distributes tasks
evenly across the instances within each Availability Zone.

"placementStrategy": [
 {
 "field": "attribute:ecs.availability-zone",
 "type": "spread"
 },
 {
 "field": "instanceId",
 "type": "spread"
 }
]

Distribute tasks evenly across Availability Zones and then bin pack tasks based on memory
within each Availability Zone

The following strategy distributes tasks evenly across Availability Zones and then bin packs tasks
based on memory within each Availability Zone.

"placementStrategy": [
 {
 "field": "attribute:ecs.availability-zone",
 "type": "spread"
 },

Task placement strategies 613

Amazon Elastic Container Service Developer Guide

 {
 "field": "memory",
 "type": "binpack"
 }
]

Distribute tasks evenly across instances and then bin pack tasks based on memory

The following strategy distributes tasks evenly across evenly across all instances and then bin packs
tasks based on memory within each instance.

"placementStrategy": [
 {
 "field": "instanceId",
 "type": "spread"
 },
 {
 "field": "memory",
 "type": "binpack"
 }
]

Amazon ECS task placement constraints

A task placement constraint is a rule that's considered during task placement. At least one container
instance must match the constraint. If there are no instances that match the constraint, the task
remains in a PENDING state. When you create a new service or update an existing one, you can
specify task placement constraints for the service's tasks. You can also specify task placement
constraints for standalone tasks. For more information, see Amazon ECS task placement.

Constraints consists of a constraint type and a expression in the cluster query language. The
constraint type is required, but the expression is optional.

Constraint types

Amazon ECS supports the following types of task placement constraints:

distinctInstance

Place each task on a different container instance. This task placement constraint can be
specified when either running a task or creating a new service.

Task placement constraints 614

Amazon Elastic Container Service Developer Guide

Important

We recommend that customers looking for strong isolation for their tasks use Fargate.
Fargate runs each task in a hardware virtualization environment. This ensures that these
containerized workloads do not share network interfaces, Fargate ephemeral storage,
CPU, or memory with other tasks. For more information, see Security Overview of AWS
Fargate.

memberOf

Place tasks on container instances that satisfy an expression. For more information about the
expression syntax for constraints, see Cluster query language.

The memberOf task placement constraint can be specified with the following actions:

• Running a task

• Creating a new service

• Creating a new task definition

• Creating a new revision of an existing task definition

Attributes

You can add custom metadata to your container instances, known as attributes. Each attribute has
a name and an optional string value. You can use the built-in attributes provided by Amazon ECS or
define custom attributes.

The following sections contain sample built-in, optional, and custom attributes.

Built-in attributes

Amazon ECS automatically applies the following attributes to your container instances.

ecs.ami-id

The ID of the AMI used to launch the instance. An example value for this attribute is
ami-1234abcd.

ecs.availability-zone

The Availability Zone for the instance. An example value for this attribute is us-east-1a.

Task placement constraints 615

https://d1.awsstatic.com/whitepapers/AWS_Fargate_Security_Overview_Whitepaper.pdf
https://d1.awsstatic.com/whitepapers/AWS_Fargate_Security_Overview_Whitepaper.pdf

Amazon Elastic Container Service Developer Guide

ecs.instance-type

The instance type for the instance. An example value for this attribute is g2.2xlarge.

ecs.os-type

The operating system for the instance. The possible values for this attribute are linux and
windows.

ecs.os-family

The operating system version for the instance.

For Linux instances, the valid value is LINUX. For Windows instances, ECS sets the
value in the WINDOWS_SERVER_<OS_Release>_<FULL or CORE> format. The
valid values are WINDOWS_SERVER_2022_FULL, WINDOWS_SERVER_2022_CORE,
WINDOWS_SERVER_20H2_CORE, WINDOWS_SERVER_2019_FULL,
WINDOWS_SERVER_2019_CORE, and WINDOWS_SERVER_2016_FULL.

This is important for Windows containers and Windows containers on AWS Fargate because
the OS version of every Windows container must match that of the host. If the Windows
version of the container image is different than the host, the container doesn't start. For more
information, see Windows container version compatibility on the Microsoft documentation
website.

If your cluster runs multiple Windows versions, you can ensure that a task is placed
on an EC2 instance running on the same version by using the placement constraint:
memberOf(attribute:ecs.os-family == WINDOWS_SERVER_<OS_Release>_<FULL or
CORE>). For more information, see the section called “Retrieving Amazon ECS-Optimized AMI
metadata”.

ecs.cpu-architecture

The CPU architecture for the instance. Example values for this attribute are x86_64 and arm64.

ecs.vpc-id

The VPC the instance was launched into. An example value for this attribute is vpc-1234abcd.

ecs.subnet-id

The subnet the instance is using. An example value for this attribute is subnet-1234abcd.

Task placement constraints 616

https://docs.microsoft.com/en-us/virtualization/windowscontainers/deploy-containers/version-compatibility?tabs=windows-server-2022%2Cwindows-10-21H1

Amazon Elastic Container Service Developer Guide

Optional attributes

Amazon ECS may add the following attributes to your container instances.

ecs.awsvpc-trunk-id

If this attribute exists, the instance has a trunk network interface. For more information, see
Elastic network interface trunking.

ecs.outpost-arn

If this attribute exists, it contains the Amazon Resource Name (ARN) of the Outpost. For more
information, see the section called “Amazon Elastic Container Service on AWS Outposts”.

ecs.capability.external

If this attribute exists, the instance is identified as an external instance. For more information,
see External instances (Amazon ECS Anywhere).

Custom attributes

You can apply custom attributes to your container instances. For example, you can define an
attribute with the name "stack" and a value of "prod".

When specifying custom attributes, you must consider the following.

• The name must contain between 1 and 128 characters and name may contain letters (uppercase
and lowercase), numbers, hyphens, underscores, forward slashes, back slashes, or periods.

• The value must contain between 1 and 128 characters and may contain letters (uppercase and
lowercase), numbers, hyphens, underscores, periods, at signs (@), forward slashes, back slashes,
colons, or spaces. The value can't contain any leading or trailing whitespace.

Adding an attribute

You can add custom attributes at instance registration time using the container agent or manually,
using the AWS Management Console. For information about the available Amazon ECS container
agent configuration parameters, see Amazon ECS Container Agent on GitHub.

To add custom attributes using the console

1. Open the console at https://console.aws.amazon.com/ecs/v2.

Task placement constraints 617

https://github.com/aws/amazon-ecs-agent/blob/master/README.md
https://console.aws.amazon.com/ecs/v2

Amazon Elastic Container Service Developer Guide

2. In the navigation pane, choose Clusters, and then choose the cluster.

3. Choose Infrastructure.

4. Choose the container instance, and then coose Attributes.

5. Choose Add custom attribute.

6. For Attribute name and Value, enter a name and a value for the attribute, and then choose
Submit.

Repeat for each attribute that you want to add.

Adding custom attributes using the AWS CLI

The following examples demonstrate how to add custom attributes using the put-attributes
command.

Example: Single Attribute

The following example adds the custom attribute "stack=prod" to the specified container instance
in the default cluster.

aws ecs put-attributes --attributes name=stack,value=prod,targetId=arn

Example: Multiple Attributes

The following example adds the custom attributes "stack=prod" and "project=a" to the specified
container instance in the default cluster.

aws ecs put-attributes --attributes name=stack,value=prod,targetId=arn
 name=project,value=a,targetId=arn

Filtering by attribute using the console

You can apply a filter for your container instances, allowing you to see custom attributes.

Filter container instances by attribute using the console

1. Open the console at https://console.aws.amazon.com/ecs/v2.

2. In the navigation pane, choose Clusters, and then choose the cluster.

3. Choose Infrastructure,

Task placement constraints 618

https://docs.aws.amazon.com/cli/latest/reference/ecs/put-attributes.html
https://console.aws.amazon.com/ecs/v2

Amazon Elastic Container Service Developer Guide

4. Choose the container instance.

5. Using the Filter custom attributes by key or value text field, enter the attributes you want to
filter by. The format must be AttributeName:AttributeValue.

Filter container instances by attribute using the AWS CLI

The following examples demonstrate how to filter container instances by attribute using the list-
constainer-instances command. For more information about the filter syntax, see Cluster query
language.

Example: Built-in attribute

The following example uses built-in attributes to list the g2.2xlarge instances.

aws ecs list-container-instances --filter "attribute:ecs.instance-type == g2.2xlarge"

Example: Custom attribute

The following example lists the instances with the custom attribute "stack=prod".

aws ecs list-container-instances --filter "attribute:stack == prod"

Example: Exclude an attribute value

The following example lists the instances with the custom attribute "stack" unless the attribute
value is "prod".

aws ecs list-container-instances --filter "attribute:stack != prod"

Example: Multiple attribute values

The following example uses built-in attributes to list the instances of type t2.small or
t2.medium.

aws ecs list-container-instances --filter "attribute:ecs.instance-type in [t2.small,
 t2.medium]"

Example: Multiple attributes

Task placement constraints 619

https://docs.aws.amazon.com/cli/latest/reference/ecs/list-container-instances.html
https://docs.aws.amazon.com/cli/latest/reference/ecs/list-container-instances.html

Amazon Elastic Container Service Developer Guide

The following example uses built-in attributes to list the T2 instances in the us-east-1a Availability
Zone.

aws ecs list-container-instances --filter "attribute:ecs.instance-type =~ t2.* and
 attribute:ecs.availability-zone == us-east-1a"

Example constraints

The following are task placement constraint examples.

This example uses the memberOf constraint to place tasks on T2 instances. It can be specified with
the following actions: CreateService, UpdateService, RegisterTaskDefinition, and RunTask.

"placementConstraints": [
 {
 "expression": "attribute:ecs.instance-type =~ t2.*",
 "type": "memberOf"
 }
]

The example uses the memberOf constraint to place replica tasks on instances with tasks in the
daemon service daemon-service task group, respecting any task placement strategies that are
also specified. This constraint ensures that the daemon service tasks get placed on the EC2 instance
prior to the replica service tasks.

Replace daemon-service with the name of the daemon service.

"placementConstraints": [
 {
 "expression": "task:group == service:daemon-service",
 "type": "memberOf"
 }
]

The example uses the memberOf constraint to place tasks on instances with other tasks in the
databases task group, respecting any task placement strategies that are also specified. For more
information about task groups, see Task groups. It can be specified with the following actions:
CreateService, UpdateService, RegisterTaskDefinition, and RunTask.

"placementConstraints": [

Task placement constraints 620

https://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_CreateService.html
https://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_UpdateService.html
https://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_RegisterTaskDefinition.html
https://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_RunTask.html
https://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_CreateService.html
https://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_UpdateService.html
https://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_RegisterTaskDefinition.html
https://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_RunTask.html

Amazon Elastic Container Service Developer Guide

 {
 "expression": "task:group == databases",
 "type": "memberOf"
 }
]

The distinctInstance constraint places each task in the group on a different instance. It can be
specified with the following actions: CreateService, UpdateService, and RunTask

"placementConstraints": [
 {
 "type": "distinctInstance"
 }
]

Cluster query language

Cluster queries are expressions that allow you to group objects. For example, you can group
container instances by attributes such as Availability Zone, instance type, or custom metadata. For
more information, see Attributes.

After you have defined a group of container instances, you can customize Amazon ECS to place
tasks on container instances based on group. For more information, see Creating a standalone task,
and Creating a service using the console. You can also apply a group filter when listing container
instances. For more information, see Filtering by attribute using the console.

Expression syntax

Expressions have the following syntax:

subject operator [argument]

Subject

The attribute or field to be evaluated.

agentConnected

Select container instances by their Amazon ECS container agent connection status. You can use
this filter to search for instances with container agents that are disconnected.

Cluster query language 621

https://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_CreateService.html
https://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_UpdateService.html
https://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_RunTask.html

Amazon Elastic Container Service Developer Guide

Valid operators: equals (==), not_equals (!=), in, not_in (!in), matches (=~), not_matches (!~)

agentVersion

Select container instances by their Amazon ECS container agent version. You can use this filter
to find instances that are running outdated versions of the Amazon ECS container agent.

Valid operators: equals (==), not_equals (!=), greater_than (>), greater_than_equal (>=),
less_than (<), less_than_equal (<=)

attribute:attribute-name

Select container instances by attribute. For more information, see Attributes.

ec2InstanceId

Select container instances by their Amazon EC2 instance ID.

Valid operators: equals (==), not_equals (!=), in, not_in (!in), matches (=~), not_matches (!~)

registeredAt

Select container instances by their container instance registration date. You can use this filter to
find newly registered instances or instances that are very old.

Valid operators: equals (==), not_equals (!=), greater_than (>), greater_than_equal (>=),
less_than (<), less_than_equal (<=)

Valid date formats: 2018-06-18T22:28:28+00:00, 2018-06-18T22:28:28Z,
2018-06-18T22:28:28, 2018-06-18

runningTasksCount

Select container instances by number of running tasks. You can use this filter to find instances
that are empty or near empty (few tasks running on them).

Valid operators: equals (==), not_equals (!=), greater_than (>), greater_than_equal (>=),
less_than (<), less_than_equal (<=)

task:group

Select container instances by task group. For more information, see Task groups.

Operator

The comparison operator. The following operators are supported.

Cluster query language 622

Amazon Elastic Container Service Developer Guide

Operator Description

==, equals String equality

!=, not_equals String inequality

>, greater_than Greater than

>=, greater_than_equal Greater than or equal to

<, less_than Less than

<=, less_than_equal Less than or equal to

exists Subject exists

!exists, not_exists Subject doesn't exist

in Value in argument list

!in, not_in Value not in argument list

=~, matches Pattern match

!~, not_matches Pattern mismatch

Note

A single expression can't contain parentheses. However, parentheses can be used to specify
precedence in compound expressions.

Argument

For many operators, the argument is a literal value.

The in and not_in operators expect an argument list as the argument. You specify an argument
list as follows:

[argument1, argument2, ..., argumentN]

Cluster query language 623

Amazon Elastic Container Service Developer Guide

The matches and not_matches operators expect an argument that conforms to the Java regular
expression syntax. For more information, see java.util.regex.Pattern.

Compound expressions

You can combine expressions using the following Boolean operators:

• &&, and

• ||, or

• !, not

You can specify precedence using parentheses:

(expression1 or expression2) and expression3

Example expressions

The following are example expressions.

Example: String Equality

The following expression selects instances with the specified instance type.

attribute:ecs.instance-type == t2.small

Example: Argument List

The following expression selects instances in the us-east-1a or us-east-1b Availability Zone.

attribute:ecs.availability-zone in [us-east-1a, us-east-1b]

Example: Compound Expression

The following expression selects G2 instances that aren't in the us-east-1d Availability Zone.

attribute:ecs.instance-type =~ g2.* and attribute:ecs.availability-zone != us-east-1d

Example: Task Affinity

The following expression selects instances that are hosting tasks in the service:production
group.

Cluster query language 624

http://docs.oracle.com/javase/6/docs/api/java/util/regex/Pattern.html

Amazon Elastic Container Service Developer Guide

task:group == service:production

Example: Task Anti-Affinity

The following expression selects instances that aren't hosting tasks in the database group.

not(task:group == database)

Example: Running task count

The following expression selects instances that are only running one task.

runningTasksCount == 1

Example: Amazon ECS container agent version

The following expression selects instances that are running a container agent version below 1.14.5.

agentVersion < 1.14.5

Example: Instance registration time

The following expression selects instances that were registered before February 13, 2018.

registeredAt < 2018-02-13

Example: Amazon EC2 instance ID

The following expression selects instances with the following Amazon EC2 instance IDs.

ec2InstanceId in ['i-abcd1234', 'i-wxyx7890']

Amazon ECS standalone tasks

A standalone task is a task initiated by using the RunTask or StartTask APIs. A standalone task
is suitable for one-off processes such as a batch job that performs some work and then stops. They
aren't typically used for long-running applications. For a long-running application or to place your
tasks behind a load balancer, create an Amazon ECS service instead. For more information, see
Amazon ECS services.

Standalone tasks 625

https://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_RunTask.html
https://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_StartTask.html

Amazon Elastic Container Service Developer Guide

Creating a standalone task

The following steps walk you through creating a standalone task using the AWS Management
Console.

To create a standalone task (AWS Management Console)

1. Open the console at https://console.aws.amazon.com/ecs/v2.

2. The Amazon ECS console allows you to create a standalone task from either your cluster detail
page or from the task definition revision list. Use the following steps to create your standalone
task depending on the resource page you choose.

To start a service from Steps

a cluster detail page... a. On the Clusters page,
select the cluster to
create the service in.

b. From the Tasks tab,
choose Run new task.

a task definition revision
page...

a. On the Task definitio
ns page, choose the
task definition family to
display the revisions for
that family.

b. Select the revision you
want to use.

c. From the Deploy menu,
choose Run task.

3. (Optional) The Compute configuration (advanced) section is where you choose how your
tasks will be distributed. You can use either a Capacity provider strategy or a Launch type.
To use a capacity provider strategy, you must configure your capacity providers at the cluster
level. For more information, see Amazon ECS capacity providers. If you haven't configured your
cluster to use a capacity provider, use a launch type instead.

Creating a standalone task 626

https://console.aws.amazon.com/ecs/v2

Amazon Elastic Container Service Developer Guide

Distribution method Steps

Capacity provider strategy a. In the Compute options
section, select Capacity
provider strategy.

b. Choose a strategy:

• To use the cluster's
default capacity
provider strategy,
choose Use cluster
default.

• If your cluster doesn't
have a default capacity
provider strategy, or to
use a custom strategy,
choose Use custom,
Add capacity provider
strategy and define
your custom capacity
provider strategy by
specifying a Base,
Capacity provider, and
Weight.

Note

To use a capacity
provider in a
strategy, the
capacity provider
must be associate
d with the cluster.
For more informati
on about capacity

Creating a standalone task 627

Amazon Elastic Container Service Developer Guide

Distribution method Steps

provider strategie
s, see Amazon ECS
capacity providers.

Launch type a. In the Compute options
section, select Launch
type.

b. For Launch type, choose
a launch type.

c. (Optional) When the
Fargate launch type is
specified, for Platform
version, specify the
platform version to use.
If a platform version isn't
specified, the LATEST
platform version is used.

4. For Application type, choose Task.

5. For Task definition, choose the task definition family and revision.

Important

The console validates the selection to ensure that the selected task definition family
and revision are compatible with the defined compute configuration.

6. For Desired tasks, enter the number of tasks to launch.

7. If your task definition uses the awsvpc network mode, expand Networking. Use the following
steps to specify a custom configuration.

a. For VPC, select the VPC to use.

b. For Subnets, select one or more subnets in the VPC that the task scheduler considers
when placing your tasks.

Creating a standalone task 628

Amazon Elastic Container Service Developer Guide

Important

Only private subnets are supported for the awsvpc network mode. Tasks do not
receive public IP addresses. Therefore, a NAT gateway is required for outbound
internet access, and inbound internet traffic is routed through a load balancer.

c. For Security group, you can either choose an existing security group or create a new one.
To use an existing security group, choose the security group and move to the next step.
To create a new security group, choose Create a new security group. You must specify a
security group name, description, and then add one or more inbound rules for the security
group.

d. For Public IP, choose whether to auto-assign a public IP address to the elastic network
interface (ENI) of the task.

AWS Fargate tasks can be assigned a public IP address when run in a public subnet so they
have a route to the internet. For more information, see Fargate task networking in the
Amazon Elastic Container Service User Guide for AWS Fargate.

8. If your task uses a data volume that's compatible with configuration at deployment, you can
configure the volume by expanding Volume.

The volume name and volume type are configured when creating a task definition revision and
can't be changed when you run a standalone task. To update the volume name and type, you
must create a new task definition revision and run a task by using the new revision.

To configure this volume
type

Do this

Amazon EBS a. For EBS volume type,
choose the type of EBS
volume that you want to
attach to your task.

b. For Size (GiB), enter a
valid value for the volume
size in gibibytes (GiB). You
can specify a minimum
of 1 GiB and a maximum

Creating a standalone task 629

https://docs.aws.amazon.com/AmazonECS/latest/userguide/fargate-task-networking.html

Amazon Elastic Container Service Developer Guide

To configure this volume
type

Do this

of 16,384 GiB volume
size. This value is required
unless you provide a
snapshot ID.

c. For IOPS, enter the
maximum number of
input/output operation
s (IOPS) that the volume
should provide. This value
is configurable only for
io1,io2, and gp3 volume
types.

d. For Throughput (MiB/
s), enter the throughpu
t that the volume should
provide, in mebibytes per
second (MiBps, or MiB/s).
This value is configurable
only for the gp3 volume
type.

e. For Snapshot ID, choose
an existing Amazon EBS
volume snapshot or enter
the ARN of a snapshot
if you want to create a
volume from a snapshot.
You can also create a new,
empty volume by not
choosing or entering a
snapshot ID.

f. For Termination policy,
deselect the checkbox
if you want the volume

Creating a standalone task 630

Amazon Elastic Container Service Developer Guide

To configure this volume
type

Do this

configured for attachmen
t to the task to be
preserved after the task
is terminated. By default,
EBS volumes that are
attached to tasks are
deleted when the task is
terminated.

g. For File system type,
choose the type of file
system that will be used
for data storage and
retrieval on the volume.
You can choose either
the operating system
default or a specific file
system type. The default
for Linux is XFS. For
volumes created from
a snapshot, you must
specify the same filesyste
m type that the volume
was using when the
snapshot was created. If
there is a filesystem type
mismatch, the task will
fail to start.

h. For Infrastructure role,
choose an IAM role with
the necessary permissio
ns that allow Amazon
ECS to manage Amazon
EBS volumes for tasks.

Creating a standalone task 631

Amazon Elastic Container Service Developer Guide

To configure this volume
type

Do this

You can attach the
AmazonECSInfrastru
ctureRole
PolicyForVolumes
managed policy to the
role, or you can use the
policy as a guide to create
and attach an your own
policy with permissions
that meet your specific
needs. For more informati
on about the necessary
 permissions, see see
Amazon ECS infrastru
cture IAM role.

i. For Encryption, choose
Default if you want to
use the Amazon EBS
encryption by default
settings. If your account
has Encryption by default
configured, the volume
will be encrypted with
the AWS Key Managemen
t Service (AWS KMS) key
that's specified in the
setting. If you choose
Default and Amazon EBS
default encryption isn't
turned on, the volume
will be unencrypted.

If you choose Custom,
you can specify an AWS

Creating a standalone task 632

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EBSEncryption.html#encryption-by-default

Amazon Elastic Container Service Developer Guide

To configure this volume
type

Do this

KMS key of your choice
for volume encryption.

If you choose None, the
volume will be unencrypt
ed unless you have
encryption by default
configured, or if you
create a volume from an
encrypted snapshot.

j. If you've chosen Custom
for Encryption, you must
specify the AWS KMS key
that you want to use.
For KMS key, choose an
AWS KMS key or enter a
key ARN. If you choose
to encrypt your volume
by using a symmetric
customer managed key,
make sure that you have
the right permissions
defined in your AWS
KMS key policy. For more
information, see Data
encryption for Amazon
EBS volumes.

9. (Optional) To use a task placement strategy other than the default, expand Task Placement,
and then choose from the following options.

For more information, see Amazon ECS task placement.

• AZ Balanced Spread – Distribute tasks across Availability Zones and across container
instances in the Availability Zone.

Creating a standalone task 633

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/ebs-volumes.html?icmpid=docs_ecs_hp-deploy#ebs-kms-encryption
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/ebs-volumes.html?icmpid=docs_ecs_hp-deploy#ebs-kms-encryption
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/ebs-volumes.html?icmpid=docs_ecs_hp-deploy#ebs-kms-encryption

Amazon Elastic Container Service Developer Guide

• AZ Balanced BinPack – Distribute tasks across Availability Zones and across container
instances with the least available memory.

• BinPack – Distribute tasks based on the least available amount of CPU or memory.

• One Task Per Host – Place, at most, one task from the service on each container instance.

• Custom – Define your own task placement strategy.

If you chose Custom, define the algorithm for placing tasks and the rules that are considered
during task placement.

• Under Strategy, for Type and Field, choose the algorithm and the entity to use for the
algorithm.

You can enter a maximum of 5 strategies.

• Under Constraint, for Type and Expression, choose the rule and attribute for the constraint.

For example, to set the constraint to place tasks on T2 instances, for the Expression, enter
attribute:ecs.instance-type =~ t2.*.

You can enter a maximum of 10 constraints.

10. (Optional) To override the task IAM role, or task execution role that is defined in your task
definition, expand Task overrides, and then complete the following steps:

a. For Task role, choose an IAM role for this task. For more information, see Task IAM role.

Only roles with the ecs-tasks.amazonaws.com trust relationship are displayed. For
instructions on how to create an IAM role for your tasks, see Creating an IAM role and
policy for your tasks.

b. For Task execution role, choose a task execution role. For more information, see Amazon
ECS task execution IAM role.

11. (Optional) To override the container commands and environment variables, expand Container
Overrides, and then expand the container.

• To send a command to the container other than the task definition command, for Command
override, enter the Docker command.

For more information about the Docker run command, see Docker Run reference in the
Docker Reference Manual.

Creating a standalone task 634

https://docs.docker.com/engine/reference/run/

Amazon Elastic Container Service Developer Guide

• To add an environment variable, choose Add Environment Variable. For Key, enter the
name of your environment variable. For Value, enter a string value for your environment
value (without the surrounding double quotation marks (" ")).

AWS surrounds the strings with double quotation marks (" ") and passes the string to the
container in the following format:

MY_ENV_VAR="This variable contains a string."

12. (Optional) To help identify your task, expand the Tags section, and then configure your tags.

To have Amazon ECS automatically tag all newly launched tasks with the cluster name and
the task definition tags, select Turn on Amazon ECS managed tags, and then select Task
definitions.

Add or remove a tag.

• [Add a tag] Choose Add tag, and then do the following:

• For Key, enter the key name.

• For Value, enter the key value.

• [Remove a tag] Next to the tag, choose Remove tag.

13. Choose Create.

Stopping a standalone task

If you no longer need to keep a standalone task running, you can stop the task. The Amazon ECS
console makes it easy to stop one or more tasks.

If you want to stop a service, see Deleting a service using the console.

To stop a standalone task (AWS Management Console)

1. Open the console at https://console.aws.amazon.com/ecs/v2.

2. In the navigation pane, choose Clusters.

3. On the Clusters page, choose the cluster to navigate to the cluster details page.

4. On the cluster detail page, choose the Tasks tab.

5. You can filter tasks by launch type using the Filter launch type dropdown list.

Stopping a standalone task 635

https://console.aws.amazon.com/ecs/v2

Amazon Elastic Container Service Developer Guide

Tasks to stop Steps

One or more a. Select the tasks, and
then choose Stop, Stop
selected.

b. On the Stop task
confirmation page,
choose Stop

Blue/green deployment
Important

If you choose
to stop all tasks
using the console,
Amazon ECS stops
all standalone
tasks and tasks
that are part of a
service. Therefore
, we recommend
caution when using
this option.

a. Choose Stop, Stop all.

b. On the Stop task
confirmation page, enter
Stop all tasks, and then
choose Stop.

Amazon ECS scheduled tasks

You can use Amazon EventBridge Scheduler or Amazon EventBridge with rules to schedule your
Amazon ECS tasks.

Scheduled tasks 636

Amazon Elastic Container Service Developer Guide

EventBridge Scheduler is a serverless scheduler that allows you to create, run, and manage tasks
from one central, managed service. It provides one-time and recurring scheduling functionality
independent of event buses and rules. EventBridge Scheduler is highly customizable, and offers
improved scalability over EventBridge scheduled rules, with a wider set of target API operations
and AWS services. EventBridge Scheduler provides the following schedules which you can configure
for your tasks in the EventBridge Scheduler console:

• Rate-based

• Cron-based

You can configure cron-based schedules in any time zone.

• One-time schedules

You can configure one-time schedules in any time zone.

We recommend that you use EventBridge Scheduler to invoke targets on a schedule.

EventBridge provides provides the following schedules which you can configure for your tasks in
the Amazon ECS console:

• Rate-based

• Cron-based

Contents

• EventBridge Scheduler scheduled tasks

• Scheduled tasks using EventBridge rules

EventBridge Scheduler scheduled tasks

Amazon ECS supports creating scheduled tasks. Scheduled tasks use Amazon EventBridge
Scheduler.

Contents

• Create a scheduled task in the EventBridge Scheduler console

• Next steps

EventBridge Scheduler scheduled tasks 637

Amazon Elastic Container Service Developer Guide

Create a scheduled task in the EventBridge Scheduler console

Scheduled tasks are started by Amazon EventBridge Scheduler schedule, which you can create
using the EventBridge Scheduler console. Although you can create a scheduled task in the Amazon
ECS console, currently the EventBridge Scheduler console provides more functionality so the
following steps walk you through creating an EventBridge Scheduler schedule that starts a
scheduled task.

Complete the following steps before you schedule a task:

1. Use the VPC console to get the subnet IDs where the tasks run and the security group IDs for
the subnets. For more information, see View your subnets, and View your security groups in the
Amazon VPC User Guide.

2. Configure the EventBridge Scheduler execution role. For more information, see Set up the
execution role in the Amazon EventBridge Scheduler User Guide.

To create a new schedule using the console

1. Open the Amazon EventBridge Scheduler console at https://console.aws.amazon.com/
scheduler/home.

2. On the Schedules page, choose Create schedule.

3. On the Specify schedule detail page, in the Schedule name and description section, do the
following:

a. For Schedule name, enter a name for your schedule. For example, MyTestSchedule.

b. (Optional) For Description, enter a description for your schedule. For example,
TestSchedule.

c. For Schedule group, choose a schedule group from the dropdown list. If you don't have a
group, choose default. To create a schedule group, choose create your own schedule.

You use schedule groups to add tags to groups of schedules.

4. Choose your schedule options.

Occurrence Do this...

One-time schedule For Date and time, do the
following:

EventBridge Scheduler scheduled tasks 638

https://docs.aws.amazon.com/vpc/latest/userguide/modify-subnets.html#view-subnet
https://docs.aws.amazon.com/vpc/latest/userguide/security-groups.html#viewing-security-groups
https://docs.aws.amazon.com/scheduler/latest/UserGuide/setting-up.html#setting-up-execution-role
https://docs.aws.amazon.com/scheduler/latest/UserGuide/setting-up.html#setting-up-execution-role
https://console.aws.amazon.com/scheduler/home/
https://console.aws.amazon.com/scheduler/home/

Amazon Elastic Container Service Developer Guide

Occurrence Do this...

A one-time schedule invokes
a target only once at the
date and time that you
specify.

• Enter a valid date in
YYYY/MM/DD format.

• Enter a timestamp in 24-
hour hh:mm format.

• For Timezone, choose the
timezone.

EventBridge Scheduler scheduled tasks 639

Amazon Elastic Container Service Developer Guide

Occurrence Do this...

Recurring schedule

A recurring schedule invokes
a target at a rate that
you specify using a cron
expression or rate expressio
n.

a. For Schedule type, do
one of the following:

• To use a cron expressio
n to define the
schedule, choose
Cron-based schedule
and enter the cron
expression.

• To use a rate expression
to define the schedule,
choose Rate-based
schedule and enter the
rate expression.

For more informati
on about cron and
rate expressions, see
Schedule types on
EventBridge Scheduler
 in the Amazon
EventBridge Scheduler
User Guide.

b. For Flexible time
window, choose Off to
turn off the option, or
choose one of the pre-
defined time windows.
For example, if you
choose 15 minutes
and you set a recurring
 schedule to invoke its
target once every hour,
the schedule runs within

EventBridge Scheduler scheduled tasks 640

https://docs.aws.amazon.com/scheduler/latest/UserGuide/schedule-types.html#cron-based
https://docs.aws.amazon.com/scheduler/latest/UserGuide/schedule-types.html#cron-based
https://docs.aws.amazon.com/scheduler/latest/UserGuide/schedule-types.html#cron-based

Amazon Elastic Container Service Developer Guide

Occurrence Do this...

15 minutes after the start
of every hour.

5. (Optional) If you chose Recurring schedule in the previous step, in the Timeframe section, do
the following:

a. For Timezone, choose a timezone.

b. For Start date and time, enter a valid date in YYYY/MM/DD format, and then specify a
timestamp in 24-hour hh:mm format.

c. For End date and time, enter a valid date in YYYY/MM/DD format, and then specify a
timestamp in 24-hour hh:mm format.

6. Choose Next.

7. On the Select target page, do the following:

a. Choose All APIs, and then in the search box enter ECS.

b. Select Amazon ECS.

c. In the search box, enter RunTask, and then choose RunTask.

d. For ECS cluster, choose the cluster.

e. For ECS task, choose the task definition to use for the task.

f. To use a launch type, expand Compute options, and then select Launch type. Then,
choose the launch type.

When the Fargate launch type is specified, for Platform version, enter the platform
version to use. If there is no platform specified, the LATEST platform version is used.

g. For Subnets, enter the subnet IDs to run the task in.

h. For Security groups, enter the security group IDs for the subnet.

i. (Optional) To use a task placement strategy other than the default, expand Placement
constraint, and then enter the constraints.

For more information, see Amazon ECS task placement.

j. (Optional) To help identify your tasks, under Tags configure your tags.

To have Amazon ECS automatically tag all newly launched tasks with the task definition
tags, select Enable Amazon ECS managed tags.

EventBridge Scheduler scheduled tasks 641

Amazon Elastic Container Service Developer Guide

8. Choose Next.

9. On the Settings page, do the following:

a. To turn on the schedule, under Schedule state, toggle Enable schedule.

b. To configure a retry policy for your schedule, under Retry policy and dead-letter queue
(DLQ), do the following:

• Toggle Retry.

• For Maximum retention time of event, enter the maximum hour(s) and min(s) that
EventBridge Scheduler must keep an unprocessed event.

• The maximum time is 24 hours.

• For Maximum retries, enter the maximum number of times EventBridge Scheduler
retries the schedule if the target returns an error.

The maximum value is 185 retries.

With retry policies, if a schedule fails to invoke its target, EventBridge Scheduler re-runs
the schedule. If configured, you must set the maximum retention time and retries for the
schedule.

c. Choose where EventBridge Scheduler stores undelivered events.

Dead-letter queue (DLQ)
option

Do this...

Don't store Choose None.

Store the event in the
same AWS account
where you're creating the
schedule

a. Choose Select an
Amazon SQS queue in
my AWS account as a
DLQ.

b. Choose the Amazon
Resource Name (ARN) of
the Amazon SQS queue.

Store the event in a
different AWS account

a. Choose Specify an
Amazon SQS queue in

EventBridge Scheduler scheduled tasks 642

Amazon Elastic Container Service Developer Guide

Dead-letter queue (DLQ)
option

Do this...

from where you're creating
the schedule

other AWS accounts as
a DLQ.

b. Enter the Amazon
Resource Name (ARN) of
the Amazon SQS queue.

d. To use a customer managed key to encrypt your target input, under Encryption, choose
Customize encryption settings (advanced).

If you choose this option, enter an existing KMS key ARN or choose Create an AWS KMS
key to navigate to the AWS KMS console. For more information about how EventBridge
Scheduler encrypts your data at rest, see Encryption at rest in the Amazon EventBridge
Scheduler User Guide.

e. For Permissions, choose Use existing role, then select the role.

To have EventBridge Scheduler create a new execution role for you, choose Create new
role for this schedule. Then, enter a name for Role name. If you choose this option,
EventBridge Scheduler attaches the required permissions necessary for your templated
target to the role.

10. Choose Next.

11. In the Review and create schedule page, review the details of your schedule. In each section,
choose Edit to go back to that step and edit its details.

12. Choose Create schedule.

You can view a list of your new and existing schedules on the Schedules page. Under the
Status column, verify that your new schedule is Enabled.

Next steps

You can use the EventBridge Scheduler console or the AWS CLI to manage the schedule. For more
information, see Managing a schedule in the Amazon EventBridge Scheduler User Guide.

Scheduled tasks using EventBridge rules

You can use the Amazon ECS console to schedule tasks using EventBridge rules.

Scheduled tasks using EventBridge rules 643

https://docs.aws.amazon.com/scheduler/latest/UserGuide/encryption-rest.html
https://docs.aws.amazon.com/scheduler/latest/UserGuide/managing-schedule.html

Amazon Elastic Container Service Developer Guide

Note

EventBridge Scheduler is a serverless scheduler that allows you to create, run, and manage
tasks from one central, managed service. It provides one-time and recurring scheduling
functionality independent of event buses and rules. EventBridge Scheduler is highly
customizable, and offers improved scalability over EventBridge scheduled rules, with a
wider set of target API operations and AWS services.
We recommend that you use EventBridge Scheduler to invoke targets on a schedule. For
more information, see EventBridge Scheduler scheduled tasks.

Contents

• Create a scheduled task using EventBridge rules in the Amazon ECS console

• View your EventBridge scheduled tasks in the console

• Edit an EventBridge scheduled task

Create a scheduled task using EventBridge rules in the Amazon ECS console

To schedule tasks using EventBridge rules (Amazon ECS console)

1. Open the console at https://console.aws.amazon.com/ecs/v2.

2. Choose Clusters, and then choose the cluster your scheduled tasks are run in.

3. On the Cluster: cluster-name page, choose Scheduled tasks, and then choose Create.

4. On the Create new scheduled task page, in the Schedule name and description section, do
the following:

a. For Schedule name, enter a unique name.

b. (Optional) For Description, enter a description for your schedule.

c. To turn on the rule, toggle Turned on.

d. For Scheduled rule type, choose your schedule options.

Occurrence Do this...

Fixed rate For Value for the rate
expression and Unit for

Scheduled tasks using EventBridge rules 644

https://console.aws.amazon.com/ecs/v2

Amazon Elastic Container Service Developer Guide

Occurrence Do this...

the rate expression, do
the following:

• Enter a valid rate, for
example 1.

• Enter a unit, for example
Days.

Specific time For Cron expression, enter
the rate expression.

For more information
about cron and rate
expressions, see Cron
expressions reference in
the Amazon EventBridge
User Guide.

5. In the Target section, configure the information about the task:

a. For Target id, enter a unique name for the target.

b. Choose the launch type. Under Launch type, choose the launch type.

When the Fargate launch type is specified, for Platform version, enter the platform
version to use. If there is no platform specified, the LATEST platform version is used.

c. For Task definition, choose the task definition family and revision.

Important

The console validates the selection to ensure that the selected task definition
family and revision are compatible with the defined compute configuration.

d. For Desired tasks, enter the number of tasks to launch.

6. If your task definition uses the awsvpc network mode, expand Networking. Use the following
steps to specify a custom configuration.

a. For VPC, select the VPC to use.

Scheduled tasks using EventBridge rules 645

https://docs.aws.amazon.com/eventbridge/latest/userguide/eb-cron-expressions.html
https://docs.aws.amazon.com/eventbridge/latest/userguide/eb-cron-expressions.html

Amazon Elastic Container Service Developer Guide

b. For Subnets, select one or more subnets in the VPC that the task scheduler considers
when placing your tasks.

Important

Only private subnets are supported for the awsvpc network mode. Tasks do not
receive public IP addresses. Therefore, a NAT gateway is required for outbound
internet access, and inbound internet traffic is routed through a load balancer.

c. For Security group, you can either choose an existing security group or create a new one.
To use an existing security group, choose the security group and move to the next step.
To create a new security group, choose Create a new security group. You must specify a
security group name, description, and then add one or more inbound rules for the security
group.

d. For Public IP, choose whether to auto-assign a public IP address to the elastic network
interface (ENI) of the task.

AWS Fargate tasks can be assigned a public IP address when run in a public subnet so they
have a route to the internet. For more information, see Fargate task networking in the
Amazon Elastic Container Service User Guide for AWS Fargate.

7. (Optional) To use a differnt task role for the target, for Task role override, choose the role.

8. (Optional) To associate the ecsEventsRole with the task definition, for EventBridge IAM role
for this target, choose the role.

9. (Optional) To override the container commands and environment variables, expand Container
Overrides, and then expand the container.

• To send a command to the container other than the task definition command, for Command
override, enter the Docker command.

For more information about the Docker run command, see Docker Run reference in the
Docker Reference Manual.

• To add an environment variable, choose Add Environment Variable. For Key, enter the
name of your environment variable. For Value, enter a string value for your environment
value (without the surrounding double quotation marks (" ")).

AWS surrounds the strings with double quotation marks (" ") and passes the string to the
container in the following format:

Scheduled tasks using EventBridge rules 646

https://docs.aws.amazon.com/AmazonECS/latest/userguide/fargate-task-networking.html
https://docs.docker.com/engine/reference/run/

Amazon Elastic Container Service Developer Guide

MY_ENV_VAR="This variable contains a string."

10. Choose Create.

View your EventBridge scheduled tasks in the console

Your EventBridge Scheduler scheduled tasks can be viewed in the Amazon ECS console.

To view your scheduled tasks (Amazon ECS console)

1. Open the console at https://console.aws.amazon.com/ecs/v2.

2. Choose Clusters, and then choose the cluster your scheduled tasks are run in.

3. On the Cluster: cluster-name page, choose the Scheduled Tasks tab.

4. All of your scheduled tasks are listed.

Edit an EventBridge scheduled task

You can modify an existing EventBridge schedule using the console.

To edit an EventBridge scheduled task (Amazon ECS console)

1. Open the console at https://console.aws.amazon.com/ecs/v2.

2. Choose the cluster in which to edit your scheduled task.

3. On the Cluster: cluster-name page, choose the Scheduled Tasks tab.

4. Choose the schedule rule to edit, and then choose Update.

5. To turn off the schedule, under Scheduled rule, toggle Turned on.

6. To modify your schedule options, for Schedule type, do one of the following.

Occurrence Do this...

Run at a fixed interval For Value, enter the number
of hours, minutes or days,
and then for Unit, choose
the interval unit.

Scheduled tasks using EventBridge rules 647

https://console.aws.amazon.com/ecs/v2
https://console.aws.amazon.com/ecs/v2

Amazon Elastic Container Service Developer Guide

Occurrence Do this...

Cron a. For Cron expression,
enter the cron expression.

For more information
about cron and rate
expressions, see Schedule
types on EventBridge
Scheduler in the Amazon
EventBridge Scheduler
User Guide.

7. Make any additional changes to the targets (clusters and tasks), and then choose Update.

Amazon ECS services

You can use an Amazon ECS service to run and maintain a specified number of instances of a task
definition simultaneously in an Amazon ECS cluster. If one of your tasks fails or stops, the Amazon
ECS service scheduler launches another instance of your task definition to replace it. This helps
maintain your desired number of tasks in the service.

You can also optionally run your service behind a load balancer. The load balancer distributes
traffic across the tasks that are associated with the service.

Service scheduler concepts

We recommend that you use the service scheduler for long running stateless services and
applications. The service scheduler ensures that the scheduling strategy that you specify is
followed and reschedules tasks when a task fails. For example, if the underlying infrastructure fails,
the service scheduler reschedules a task. You can use task placement strategies and constraints to
customize how the scheduler places and terminates tasks. If a task in a service stops, the scheduler
launches a new task to replace it. This process continues until your service reaches your desired
number of tasks based on the scheduling strategy that the service uses. The scheduling strategy of
the service is also referred to as the service type.

The service scheduler also replaces tasks determined to be unhealthy after a container health
check or a load balancer target group health check fails. This replacement depends on the

Services 648

https://docs.aws.amazon.com/scheduler/latest/UserGuide/schedule-types.html#cron-based
https://docs.aws.amazon.com/scheduler/latest/UserGuide/schedule-types.html#cron-based
https://docs.aws.amazon.com/scheduler/latest/UserGuide/schedule-types.html#cron-based

Amazon Elastic Container Service Developer Guide

maximumPercent and desiredCount service definition parameters. If a task is marked unhealthy,
the service scheduler will first start a replacement task. If the replacement task has a health status
of HEALTHY, the service scheduler stops the unhealthy task. If the replacement task has a health
status of UNHEALTHY, the scheduler will stop either the unhealthy replacement task or the existing
unhealthy task to get the total task count to equal desiredCount. If the maximumPercent
parameter limits the scheduler from starting a replacement task first, the scheduler will stop an
unhealthy task one at a time at random to free up capacity, and then start a replacement task. The
start and stop process continues until all unhealthy tasks are replaced with healthy tasks. Once
all unhealthy tasks have been replaced and only healthy tasks are running, if the total task count
exceeds the desiredCount, healthy tasks are stopped at random until the total task count equals
desiredCount. For more information about maximumPercent and desiredCount, see Service
definition parameters.

Note

This behavior does not apply to tasks run and maintained by services that use the rolling
update deployment type. During a rolling update, the service scheduler first stops
unhealthy tasks and then starts replacement tasks.

The service scheduler includes logic that throttles how often tasks are restarted if tasks repeatedly
fail to start. If a task is stopped without having entered a RUNNING state, the service scheduler
starts to slow down the launch attempts and sends out a service event message. This behavior
prevents unnecessary resources from being used for failed tasks before you can resolve the issue.
After the service is updated, the service scheduler resumes normal scheduling behavior. For more
information, see Amazon ECS service throttle logic and Service event messages.

There are two service scheduler strategies available:

• REPLICA—The replica scheduling strategy places and maintains the desired number of tasks
across your cluster. By default, the service scheduler spreads tasks across Availability Zones. You
can use task placement strategies and constraints to customize task placement decisions. For
more information, see Replica.

• DAEMON—The daemon scheduling strategy deploys exactly one task on each active container
instance that meets all of the task placement constraints that you specify in your cluster. When
using this strategy, there is no need to specify a desired number of tasks, a task placement
strategy, or use Service Auto Scaling policies. For more information, see Daemon.

Service scheduler concepts 649

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/service_definition_parameters.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/service_definition_parameters.html

Amazon Elastic Container Service Developer Guide

Note

Fargate tasks do not support the DAEMON scheduling strategy.

Daemon

The daemon scheduling strategy deploys exactly one task on each active container instance that
meets all of the task placement constraints specified in your cluster. The service scheduler also
evaluates the task placement constraints for running tasks, and stops tasks that don't meet the
placement constraints. When using this strategy, you don't need to specify a desired number of
tasks, a task placement strategy, or use Service Auto Scaling policies.

Amazon ECS reserves container instance compute resources including CPU, memory, and network
interfaces for the daemon tasks. When you launch a daemon service on a cluster with other replica
services, Amazon ECS prioritizes the daemon task. This means that the daemon task is the first
task to launch on the instances and the last task to stop. This strategy ensures that resources aren't
used by pending replica tasks and are available for the daemon tasks.

The daemon service scheduler doesn't place any tasks on instances that have a DRAINING status.
If a container instance transitions to a DRAINING status, the daemon tasks on it are stopped. The
service scheduler ensures that daemon tasks are the last to stop after all replica tasks are stopped.
The service scheduler also monitors when new container instances are added to your cluster and
adds the daemon tasks to them.

If a deployment configuration is specified, the maximum percent parameter must be 100. The
default value for a daemon service for maximumPercent is 200%. The default value for a daemon
service for minimumHealthyPercent is 0%.

You must restart the service when you change the placement constraints for the daemon service.
Amazon ECS dynamically updates the resources that are reserved on qualifying instances for the
daemon task. For existing instances, the scheduler tries to place the task on the instance.

A new deployment starts when there is a change to the task size or container resource reservation
in the task definition. Amazon ECS picks up the updated CPU and memory reservations for the
daemon, and then blocks that capacity for the daemon task.

If there are insufficient resources for either of the above cases, the following happens:

Service scheduler concepts 650

Amazon Elastic Container Service Developer Guide

• The task placement fails.

• A CloudWatch event is generated.

• Amazon ECS continues to try and schedule the task on the instance by waiting for resources to
become available.

• Amazon ECS frees up any reserved instances that no longer meet the placement constraint
criteria and stops the corresponding daemon tasks.

The daemon scheduling strategy can be used in the following cases:

• Running application containers

• Running support containers for logging, monitoring and tracing tasks

Tasks using the Fargate launch type or the CODE_DEPLOY or EXTERNAL deployment controller
types don't support the daemon scheduling strategy.

When the service scheduler stops running tasks, it attempts to maintain balance across the
Availability Zones in your cluster. The scheduler uses the following logic:

• If a placement strategy is defined, use that strategy to select which tasks to terminate. For
example, if a service has an Availability Zone spread strategy defined, a task is selected that
leaves the remaining tasks with the best spread.

• If no placement strategy is defined, use the following logic to maintain balance across the
Availability Zones in your cluster:

• Sort the valid container instances. Give priority to instances that have the largest number of
running tasks for this service in their respective Availability Zone. For example, if zone A has
one running service task and zones B and C each have two running service task, container
instances in either zone B or C are considered optimal for termination.

• Stop the task on a container instance in an optimal Availability Zone based on the previous
steps. Favoring container instances with the largest number of running tasks for this service.

Replica

The replica scheduling strategy places and maintains the desired number of tasks in your cluster.

Service scheduler concepts 651

Amazon Elastic Container Service Developer Guide

For a service that runs tasks on Fargate, when the service scheduler launches new tasks or stops
running tasks, the service scheduler uses a best attempt to maintain a balance across Availability
Zones. You don't need to specify task placement strategies or constraints.

When you create a service that runs tasks on EC2 instances, you can optionally specify task
placement strategies and constraints to customize task placement decisions. If no task placement
strategies or constraints are specified, then by default the service scheduler spreads the tasks
across Availability Zones. The service scheduler uses the following logic:

• Determines which of the container instances in your cluster can support your service's task
definition (for example, required CPU, memory, ports, and container instance attributes).

• Determines which container instances satisfy any placement constraints that are defined for the
service.

• When you have a replica service that depends on a daemon service (for example, a daemon
log router task that needs to be running before tasks can use logging), create a task placement
constraint that ensures that the daemon service tasks get placed on the EC2 instance prior to the
replica service tasks. For more information, see Example constraints.

• When there's a defined placement strategy, use that strategy to select an instance from the
remaining candidates.

• When there's no defined placement strategy, use the following logic to balance tasks across the
Availability Zones in your cluster:

• Sorts the valid container instances. Gives priority to instances that have the fewest number of
running tasks for this service in their respective Availability Zone. For example, if zone A has
one running service task and zones B and C each have zero, valid container instances in either
zone B or C are considered optimal for placement.

• Places the new service task on a valid container instance in an optimal Availability Zone based
on the previous steps. Favors container instances with the fewest number of running tasks for
this service.

Additional service concepts

• You can optionally run your service behind a load balancer. For more information, see Service
load balancing.

• You can optionally specify a deployment configuration for your service. A deployment is initiated
by updating the task definition of a service. During a deployment, the service scheduler uses

Additional service concepts 652

Amazon Elastic Container Service Developer Guide

the minimum healthy percent and maximum percent parameters to determine the deployment
strategy. For more information, see Service definition parameters.

• You can optionally configure your service to use Amazon ECS service discovery. Service discovery
uses the AWS Cloud Map autonaming APIs to manage DNS entries for your service's tasks. This
makes them discoverable from within your VPC. For more information, see Service discovery.

• When you delete a service, if there are still running tasks that require cleanup, the service moves
from an ACTIVE to a DRAINING status, and the service is no longer visible in the console or in
the ListServices API operation. After all tasks transition to either a STOPPING or STOPPED
status, the service moves from a DRAINING to INACTIVE status. You can view services in the
DRAINING or INACTIVE status by using the DescribeServices API operation. However, in the
future, INACTIVE services might be cleaned up and purged from Amazon ECS record keeping,
and DescribeServices calls on those services return a ServiceNotFoundException error.

• The bake time is a period of time after a new service version has scaled out and the old service
version has scaled in, during which Amazon ECS continues to monitor the alarm associated
with the deployment. Amazon ECS computes this time period based on the alarm configuration
associated with the deployment.

The bake time applies only when you use CloudWatch alarms to detect deployment failures. For
more information, see the section called “Failure detection methods”.

Creating a service using the console

You can create a service using the console.

Consider the following when you use the console:

• There are two compute options that distribute your tasks.

• A capacity provider strategy causes Amazon ECS to distribute your tasks in one or across
multiple capacity providers.

• A launch type causes Amazon ECS to launch our tasks directly on either Fargate or on the
Amazon EC2 instances registered to your clusters.

• Task definitions that use the awsvpc network mode or services configured to use a load balancer
must have a networking configuration. By default, the console selects the default Amazon VPC
along with all subnets and the default security group within the default Amazon VPC.

• The default the task placement strategy distributes tasks evenly across Availability Zones.

Creating a service 653

Amazon Elastic Container Service Developer Guide

• When you use the Launch Type for your service deployment, by default the service starts in the
subnets in your cluster VPC.

• For the capacity provider strategy, the console selects a compute option by default. The
following describes the order that the console uses to select a default:

• If your cluster has a default capacity provider strategy defined, it is selected.

• If your cluster doesn't have a default capacity provider strategy defined but you do have the
Fargate capacity providers added to the cluster, a custom capacity provider strategy that uses
the FARGATE capacity provider is selected.

• If your cluster doesn't have a default capacity provider strategy defined but you do have one or
more Auto Scaling group capacity providers added to the cluster, the Use custom (Advanced)
option is selected and you need to manually define the strategy.

• If your cluster doesn't have a default capacity provider strategy defined and no capacity
providers added to the cluster, the Fargate launch type is selected.

• The default Deployment failure detection default options are to use the Amazon ECS
deployment circuit breaker option with the Rollback on failures option.

For more information, see Deployment circuit breaker.

• If you want to use the blue/green deployment option, determine how CodeDeploy moves the
applications. The following options are available:

• CodeDeployDefault.ECSAllAtOnce: Shifts all traffic to the updated Amazon ECS container at
once

• CodeDeployDefault.ECSLinear10PercentEvery1Minutes: Shifts 10 percent of traffic every
minute until all traffic is shifted.

• CodeDeployDefault.ECSLinear10PercentEvery3Minutes: Shifts 10 percent of traffic every 3
minutes until all traffic is shifted.

• CodeDeployDefault.ECSCanary10Percent5Minutes: Shifts 10 percent of traffic in the first
increment. The remaining 90 percent is deployed five minutes later.

• CodeDeployDefault.ECSCanary10Percent15Minutes: Shifts 10 percent of traffic in the first
increment. The remaining 90 percent is deployed 15 minutes later.

• If you need an application to connect to other applications that run in Amazon ECS, determine
the option that fits your architecture. For more information, see Interconnecting services.

• You must use AWS CloudFormation or the AWS Command Line Interface to deploy a service that
uses any of the following parameters:

• Tracking policy with a custom metric

Creating a service 654

Amazon Elastic Container Service Developer Guide

• Update Service – You cannot update the awsvpc network configuration and the health check
grace period.

For information about how to create a service using the AWS CLI, see create-service in the AWS
Command Line Interface Reference.

For information about how to create a service using AWS CloudFormation, see AWS::ECS::Service
in the AWS CloudFormation User Guide.

Quickly create a service

You can use the console to quickly create and deploy a service. The service has the following
configuration:

• Deploys in the VPC and subnets associated with your cluster

• Deploys one task

• Uses the rolling deployment

• Uses the capacity provider strategy with your default capacity provider

• Uses the deployment circuit breaker to detect failures and sets the option to automatically roll
back the deployment on failure

To deploy a service using the default parameters follow these steps.

To create a service (Amazon ECS console)

1. Open the console at https://console.aws.amazon.com/ecs/v2.

2. In the navigation page, choose Clusters.

3. On the Clusters page, choose the cluster to create the service in.

4. From the Services tab, choose Create.

5. Under Deployment configuration, specify how your application is deployed.

a. For Application type, choose Service.

b. For Task definition, choose the task definition family and revision to use.

c. For Service name, enter a name for your service.

d. For Desired tasks, enter the number of tasks to launch and maintain in the service.

Creating a service 655

https://docs.aws.amazon.com/cli/latest/reference/ecs/create-service.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-ecs-service.html
https://console.aws.amazon.com/ecs/v2

Amazon Elastic Container Service Developer Guide

6. (Optional) To help identify your service and tasks, expand the Tags section, and then configure
your tags.

To have Amazon ECS automatically tag all newly launched tasks with the cluster name and
the task definition tags, select Turn on Amazon ECS managed tags, and then select Task
definitions.

To have Amazon ECS automatically tag all newly launched tasks with the cluster name and the
service tags, select Turn on Amazon ECS managed tags, and then select Service.

Add or remove a tag.

• [Add a tag] Choose Add tag, and then do the following:

• For Key, enter the key name.

• For Value, enter the key value.

• [Remove a tag] Next to the tag, choose Remove tag.

Create a service using defined parameters

To create a service by using defined parameters, follow these steps.

To create a service (Amazon ECS console)

1. Open the console at https://console.aws.amazon.com/ecs/v2.

2. Determine the resource from where you launch the service.

To start a service from Steps

Clusters a. On the Clusters page,
select the cluster to
create the service in.

b. From the Services tab,
choose Create.

Launch type a. On the Task definitions
page, select the option
button next to the task
definition.

Creating a service 656

https://console.aws.amazon.com/ecs/v2

Amazon Elastic Container Service Developer Guide

To start a service from Steps

b. On the Deploy menu,
choose Create service.

3. (Optional) Choose how your tasks are distributed across your cluster infrastructure. Expand
Compute configuration, and then choose your option.

Distribution method Steps

Capacity provider strategy a. Under Compute options,
choose Capacity provider
strategy.

b. Choose a strategy:

• To use the cluster's
default capacity
provider strategy,
choose Use cluster
default.

• If your cluster doesn't
have a default capacity
provider strategy, or to
use a custom strategy,
choose Use custom,
Add capacity provider
strategy, and then
define your custom
capacity provider
strategy by specifyin
g a Base, Capacity
provider, and Weight.

Note

To use a capacity
provider in a

Creating a service 657

Amazon Elastic Container Service Developer Guide

Distribution method Steps

strategy, the
capacity provider
must be associate
d with the cluster.
For more informati
on about capacity
provider strategie
s, see Amazon ECS
capacity providers.

Launch type a. In the Compute options
section, select Launch
type.

b. For Launch type, choose
a launch type.

c. (Optional) When the
Fargate launch type is
specified, for Platform
version, specify the
platform version to use.
If a platform version isn't
specified, the LATEST
platform version is used.

4. To specify how your service is deployed, go to theDeployment configuration section, and then
choose your options.

a. For Application type, leave the choice as Service.

b. For Task definition and Revision, choose the task definition family and revision to use.

c. For Service name, enter a name for your service.

d. For Service type, choose the service scheduling strategy.

• To have the scheduler deploy exactly one task on each active container instance that
meets all of the task placement constraints, choose Daemon.

Creating a service 658

Amazon Elastic Container Service Developer Guide

• To have the scheduler place and maintain the desired number of tasks in your cluster,
choose Replica.

For more information, see the section called “Service scheduler concepts”.

e. If you chose Replica, for Desired tasks, enter the number of tasks to launch and maintain
in the service.

f. Determine the deployment type for your service. Expand Deployment options, and then
specify the following parameters.

Creating a service 659

Amazon Elastic Container Service Developer Guide

Deployment type Steps

Rolling update a. For Min running tasks,
enter the lower limit
on the number of
tasks in the service
that must remain in
the RUNNING state
during a deploymen
t, as a percentage of
the desired number of
tasks (rounded up to
the nearest integer). For
more information, see
Deployment configura
tion.

b. For Max running tasks,
enter the upper limit
on the number of tasks
in the service that are
allowed in the RUNNING
or PENDING state
during a deployment,
as a percentage of the
desired number of tasks
(rounded down to the
nearest integer).

Creating a service 660

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/service_definition_parameters.html#sd-deploymentconfiguration
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/service_definition_parameters.html#sd-deploymentconfiguration

Amazon Elastic Container Service Developer Guide

Deployment type Steps

Blue/green deployment a. For Deployment
configuration, choose
how CodeDeploy routes
production traffic to
your replacement task
set during a deploymen
t.

b. For Service role for
CodeDeploy, choose the
IAM role the service uses
to make API requests
to authorized AWS
services.

g. To configure how Amazon ECS detects and handles deployment failures, expand
Deployment failure detection, and then choose your options.

i. To stop a deployment when the tasks cannot start, select Use the Amazon ECS
deployment circuit breaker.

To have the software automatically roll back the deployment to the last completed
deployment state when the deployment circuit breaker sets the deployment to a
failed state, select Rollback on failures.

ii. To stop a deployment based on application metrics, select Use CloudWatch alarm(s).
Then, from CloudWatch alarm name, choose the alarms. To create a new alarm, go to
the CloudWatch console.

To have the software automatically roll back the deployment to the last completed
deployment state when a CloudWatch alarm sets the deployment to a failed state,
select Rollback on failures.

5. (Optional) To configure service Auto Scaling, expand Service auto scaling, and then specify
the following parameters.

a. To use service auto scaling, select Service auto scaling.

Creating a service 661

Amazon Elastic Container Service Developer Guide

b. For Minimum number of tasks, enter the lower limit of the number of tasks for service
auto scaling to use. The desired count will not go below this count.

c. For Maximum number of tasks, enter the upper limit of the number of tasks for service
auto scaling to use. The desired count will not go above this count.

d. Choose the policy type. Under Scaling policy type, choose one of the following options.

Creating a service 662

Amazon Elastic Container Service Developer Guide

To use this policy type... Do this...

Target tracking a. For Scaling policy type,
choose Target tracking.

b. For Policy name, enter
the name of the policy.

c. For ECS service metric,
select one of the
following metrics.

• ECSServiceAverageC
PUUtilization –
Average CPU utilizati
on of the service.

• ECSServiceAverageM
emoryUtilization
– Average memory
utilization of the
service.

• ALBRequestCountPer
Target – Number of
requests completed
per target in an
Application Load
Balancer target group.

d. For Target value, enter
the value the service
maintains for the
selected metric.

e. For Scale-out cooldown
period,, , enter the
amount of time, in
seconds, after a scale-
out activity (add tasks)
that the scaling policy

Creating a service 663

Amazon Elastic Container Service Developer Guide

To use this policy type... Do this...

blocks scale-in activitie
s and limits how many
tasks can be scale out at
a time.

f. For Scale-in cooldown
period,, enter the
amount of time, in
seconds, after a scale-in
activity (remove tasks)
that must pass before
another scale-in activity
can start.

g. To prevent the policy
from performing a
scale-in activity, select
Turn off scale-in.

h. • (Optional) Select Turn
off scale-in if you want
your scaling policy to
scale out for increased
traffic but don’t need it
to scale in when traffic
decreases.

Creating a service 664

Amazon Elastic Container Service Developer Guide

To use this policy type... Do this...

Step scaling a. For Scaling policy type,
choose Step scaling.

b. For Policy name, enter
the policy name.

c. For Alarm name, enter
a unique name for the
alarm.

d. For Amazon ECS service
metric, choose the
metric to use for the
alarm.

e. For Statistic, choose the
alarm statistic.

f. For Period, choose the
period for the alarm.

g. For Alarm condition,
choose how to compare
the selected metric to
the defined threshold.

h. For Threshold to
compare metrics and
Evaluation period to
initiate alarm, enter the
threshold used for the
alarm and how long to
evaluate the threshold.

i. Under Scaling actions,
do the following:

• For Action, select
whether to add,
remove, or set a
specific desired count
for your service.

Creating a service 665

Amazon Elastic Container Service Developer Guide

To use this policy type... Do this...

• If you chose to add
or remove tasks,
for Value, enter the
number of tasks (or
percent of existing
tasks) to add or
remove when the
scaling action is
initiated. If you chose
to set the desired
count, enter the
number of tasks.
For Type, select
whether the Value
is an integer or a
percent value of the
existing desired count.

• For Lower bound
and Upper bound,
enter the lower
boundary and upper
boundary of your step
scaling adjustmen
t. By default, the
lower bound for an
add policy is the
alarm threshold and
the upper bound is
positive (+) infinity.
By default, the
upper bound for a
remove policy is the
alarm threshold and

Creating a service 666

Amazon Elastic Container Service Developer Guide

To use this policy type... Do this...

the lower bound is
negative (-) infinity.

• (Optional) Add
additional scaling
options. Choose Add
new scaling action,
and then repeat the
Scaling actions steps.

• For Cooldown period,
enter the amount of
time, in seconds, to
wait for a previous
scaling activity to
take effect. For an
add policy, this is the
time after a scale-
out activity that the
scaling policy blocks
scale-in activities
and limits how many
tasks can be scale
out at a time. For a
remove policy, this is
the time after a scale-
in activity that must
pass before another
scale-in activity can
start.

6. (Optional) To use Service Connect, select Turn on Service Connect, and then specify the
following:

a. Under Service Connect configuration, specify the client mode.

Creating a service 667

Amazon Elastic Container Service Developer Guide

• If your service runs s network client application that only needs to connect to other
services in the namespace, choose Client side only.

• If your service runs a network or web service application and needs to provide endpoints
for this service, and connects to other services in the namespace, choose Client and
server.

b. To use a namespace that is not the default cluster namespace, for Namespace, choose the
service namespace.

c. (Optional) Select the Use log collection option to specify a log configuration. For each
available log driver, there are log driver options to specify. The default option sends
container logs to CloudWatch Logs. The other log driver options are configured using AWS
FireLens. For more information, see Using custom log routing.

The following describes each container log destination in more detail.

• Amazon CloudWatch – Configure the task to send container logs to CloudWatch Logs.
The default log driver options are provided, which create a CloudWatch log group on
your behalf. To specify a different log group name, change the driver option values.

• Amazon Data Firehose – Configure the task to send container logs to Firehose. The
default log driver options are provided, which send logs to a Firehose delivery stream.
To specify a different delivery stream name, change the driver option values.

• Amazon Kinesis Data Streams – Configure the task to send container logs to Kinesis
Data Streams. The default log driver options are provided, which send logs to an Kinesis
Data Streams stream. To specify a different stream name, change the driver option
values.

• Amazon OpenSearch Service – Configure the task to send container logs to an
OpenSearch Service domain. The log driver options must be provided. For more
information, see Forwarding logs to an Amazon OpenSearch Service domain.

• Amazon S3 – Configure the task to send container logs to an Amazon S3 bucket. The
default log driver options are provided, but you must specify a valid Amazon S3 bucket
name.

7. To have Amazon ECS perform periodic container-level health checks, select Enable Amazon
ECS task health propagation.

8. Configure your DNS records.

Creating a service 668

Amazon Elastic Container Service Developer Guide

For DNS record type, select the DNS record type to create for your service. Amazon ECS
service discovery only supports A and SRV records, depending on the network mode that your
task definition specifies. For more information about these record types, see Supported DNS
Record Types in the Amazon Route 53 Developer Guide.

• If the task definition that your service task specifies uses the bridge or host network
mode, only type SRV records are supported. Choose a container name and port combination
to associate with the record.

• If the task definition that your service task specifies uses the awsvpc network mode, select
either the A or SRV record type. If you choose A, skip to the next step. If you choose SRV,
specify either the port that the service can be found on or a container name and port
combination to associate with the record.

For TTL, enter the time in seconds how long a record set is cached by DNS resolvers and by
web browsers.

9. (Optional) To configure a load balancer for your service, expand Load balancing.

Choose the load balancer.

To use this load balancer Do this

Application Load Balancer a. For Load balancer type,
select Application Load
Balancer.

b. Choose Create a new
load balancer to
create a new Applicati
on Load Balancer or
Use an existing load
balancer to select an
existing Application Load
Balancer.

c. For Load balancer name,
enter a unique name.

Creating a service 669

https://docs.aws.amazon.com/Route53/latest/DeveloperGuide/ResourceRecordTypes.html
https://docs.aws.amazon.com/Route53/latest/DeveloperGuide/ResourceRecordTypes.html

Amazon Elastic Container Service Developer Guide

To use this load balancer Do this

d. For Choose container to
load balance, choose the
container that hosts the
service.

e. For Listener, enter a
port and protocol for the
Application Load Balancer
to listen for connection
requests on. By default,
the load balancer will be
configured to use port 80
and HTTP.

f. For Target group name,
enter a name and a
protocol for the target
group that the Applicati
on Load Balancer routes
requests to. By default,
the target group routes
requests to the first
container defined in your
task definition.

g. For Degregistration
delay, enter the number
of seconds for the load
balancer to change the
target state to UNUSED.
The default is 300
seconds.

h. For Health check path,
enter an existing path
within your container
where the Application
Load Balancer periodica

Creating a service 670

Amazon Elastic Container Service Developer Guide

To use this load balancer Do this

lly sends requests to
verify the connectio
n health between the
Application Load Balancer
and the container.
The default is the root
directory (/).

i. For Health check grace
period, enter the amount
of time (in seconds) that
the service scheduler
should ignore unhealthy
Elastic Load Balancing
target health checks.

Creating a service 671

Amazon Elastic Container Service Developer Guide

To use this load balancer Do this

Network Load Balancer a. For Load balancer type,
select Network Load
Balancer.

b. For Load Balancer,
choose an existing
Network Load Balancer.

c. For Choose container to
load balance, choose the
container that hosts the
service.

d. For Target group name,
enter a name and a
protocol for the target
group that the Network
Load Balancer routes
requests to. By default,
the target group routes
requests to the first
container defined in your
task definition.

e. For Degregistration
delay, enter the number
of seconds for the load
balancer to change the
target state to UNUSED.
The default is 300
seconds.

f. For Health check path,
enter an existing path
within your container
where the Network Load
Balancer periodically
sends requests to verify

Creating a service 672

Amazon Elastic Container Service Developer Guide

To use this load balancer Do this

the connection health
between the Application
Load Balancer and the
container. The default is
the root directory (/).

g. For Health check grace
period, enter the amount
of time (in seconds) that
the service scheduler
should ignore unhealthy
Elastic Load Balancing
target health checks.

10. (Optional) To use a task placement strategy other than the default, expand Task Placement,
and then choose from the following options.

For more information, see Amazon ECS task placement.

• AZ Balanced Spread – Distribute tasks across Availability Zones and across container
instances in the Availability Zone.

• AZ Balanced BinPack – Distribute tasks across Availability Zones and across container
instances with the least available memory.

• BinPack – Distribute tasks based on the least available amount of CPU or memory.

• One Task Per Host – Place, at most, one task from the service on each container instance.

• Custom – Define your own task placement strategy.

If you chose Custom, define the algorithm for placing tasks and the rules that are considered
during task placement.

• Under Strategy, for Type and Field, choose the algorithm and the entity to use for the
algorithm.

You can enter a maximum of 5 strategies.

• Under Constraint, for Type and Expression, choose the rule and attribute for the constraint.

Creating a service 673

Amazon Elastic Container Service Developer Guide

For example, to set the constraint to place tasks on T2 instances, for the Expression, enter
attribute:ecs.instance-type =~ t2.*.

You can enter a maximum of 10 constraints.

11. If your task definition uses the awsvpc network mode, expand Networking. Use the following
steps to specify a custom configuration.

a. For VPC, select the VPC to use.

b. For Subnets, select one or more subnets in the VPC that the task scheduler considers
when placing your tasks.

Important

Only private subnets are supported for the awsvpc network mode. Tasks don't
receive public IP addresses. Therefore, a NAT gateway is required for outbound
internet access, and inbound internet traffic is routed through a load balancer.

c. For Security group, you can either select an existing security group or create a new one.
To use an existing security group, select the security group and move to the next step.
To create a new security group, choose Create a new security group. You must specify a
security group name, description, and then add one or more inbound rules for the security
group.

12. (Optional) To configure a load balancer for your service, expand Load balancing.

Choose the load balancer.

To use this load balancer Do this

Application Load Balancer a. For Load balancer type,
select Application Load
Balancer.

b. Choose Create a new
load balancer to
create a new Applicati
on Load Balancer or
Use an existing load

Creating a service 674

Amazon Elastic Container Service Developer Guide

To use this load balancer Do this

balancer to select an
existing Application Load
Balancer.

c. For Load balancer name,
enter a unique name.

d. For Choose container to
load balance, choose the
container that hosts the
service.

e. For Listener, enter a
port and protocol for the
Application Load Balancer
to listen for connection
requests on. By default,
the load balancer will be
configured to use port 80
and HTTP.

f. For Target group name,
enter a name and a
protocol for the target
group that the Applicati
on Load Balancer routes
requests to. By default,
the target group routes
requests to the first
container defined in your
task definition.

g. For Health check path,
enter an existing path
within your container
where the Application
Load Balancer periodica
lly sends requests to
verify the connectio

Creating a service 675

Amazon Elastic Container Service Developer Guide

To use this load balancer Do this

n health between the
Application Load Balancer
and the container.
The default is the root
directory (/).

h. For Health check grace
period, enter the amount
of time (in seconds) that
the service scheduler
should ignore unhealthy
Elastic Load Balancing
target health checks.

Creating a service 676

Amazon Elastic Container Service Developer Guide

To use this load balancer Do this

Network Load Balancer a. For Load balancer type,
select Network Load
Balancer.

b. For Load Balancer,
choose an existing
Network Load Balancer.

c. For Choose container to
load balance, choose the
container that hosts the
service.

d. For Target group name,
enter a name and a
protocol for the target
group that the Network
Load Balancer routes
requests to. By default,
the target group routes
requests to the first
container defined in your
task definition.

e. For Health check path,
enter an existing path
within your container
where the Network Load
Balancer periodically
sends requests to verify
the connection health
between the Application
Load Balancer and the
container. The default is
the root directory (/).

f. For Health check grace
period, enter the amount

Creating a service 677

Amazon Elastic Container Service Developer Guide

To use this load balancer Do this

of time (in seconds) that
the service scheduler
should ignore unhealthy
Elastic Load Balancing
target health checks.

13. (Optional) To use a task placement strategy other than the default, expand Task Placement,
and then choose from the following options.

For more information, see Amazon ECS task placement.

• AZ Balanced Spread – Distribute tasks across Availability Zones and across container
instances in the Availability Zone.

• AZ Balanced BinPack – Distribute tasks across Availability Zones and across container
instances with the least available memory.

• BinPack – Distribute tasks based on the least available amount of CPU or memory.

• One Task Per Host – Place, at most, one task from the service on each container instance.

• Custom – Define your own task placement strategy.

If you chose Custom, define the algorithm for placing tasks and the rules that are considered
during task placement.

• Under Strategy, for Type and Field, choose the algorithm and the entity to use for the
algorithm.

You can enter a maximum of 5 strategies.

• Under Constraint, for Type and Expression, choose the rule and attribute for the constraint.

For example, to set the constraint to place tasks on T2 instances, for the Expression, enter
attribute:ecs.instance-type =~ t2.*.

You can enter a maximum of 10 constraints.

14. If your task uses a data volume that's compatible with configuration at deployment, you can
configure the volume by expanding Volume.

Creating a service 678

Amazon Elastic Container Service Developer Guide

The volume name and volume type are configured when you create a task definition revision
and can't be changed when creating a service. To update the volume name and type, you must
create a new task definition revision and create a service by using the new revision.

Creating a service 679

Amazon Elastic Container Service Developer Guide

To configure this volume
type

Do this

Amazon EBS a. For EBS volume type,
choose the type of EBS
volume that you want to
attach to your task.

b. For Size (GiB), enter a
valid value for the volume
size in gibibytes (GiB). You
can specify a minimum
of 1 GiB and a maximum
of 16,384 GiB volume
size. This value is required
unless you provide a
snapshot ID.

c. For IOPS, enter the
maximum number of
input/output operation
s (IOPS) that the volume
should provide. This value
is configurable only for
io1,io2, and gp3 volume
types.

d. For Throughput (MiB/
s), enter the throughpu
t that the volume should
provide, in mebibytes per
second (MiBps, or MiB/s).
This value is configurable
only for the gp3 volume
type.

e. For Snapshot ID, choose
an existing Amazon EBS
volume snapshot or enter

Creating a service 680

Amazon Elastic Container Service Developer Guide

To configure this volume
type

Do this

the ARN of a snapshot
if you want to create a
volume from a snapshot.
You can also create a new,
empty volume by not
choosing or entering a
snapshot ID.

f. For File system type,
choose the type of file
system that will be used
for data storage and
retrieval on the volume.
You can choose either
the operating system
default or a specific file
system type. The default
for Linux is XFS. For
volumes created from
a snapshot, you must
specify the same filesyste
m type that the volume
was using when the
snapshot was created. If
there is a filesystem type
mismatch, the task will
fail to start.

g. For Infrastructure role,
choose an IAM role with
the necessary permissio
ns that allow Amazon
ECS to manage Amazon
EBS volumes for tasks.
You can attach the

Creating a service 681

Amazon Elastic Container Service Developer Guide

To configure this volume
type

Do this

AmazonECSInfrastru
ctureRole
PolicyForVolumes
managed policy to the
role, or you can use the
policy as a guide to create
and attach an your own
policy with permissions
that meet your specific
needs. For more informati
on about the necessary
 permissions, see Amazon
ECS infrastructure IAM
role.

h. For Encryption, choose
Default if you want to
use the Amazon EBS
encryption by default
settings. If your account
has Encryption by default
configured, the volume
will be encrypted with
the AWS Key Managemen
t Service (AWS KMS) key
that's specified in the
setting. If you choose
Default and Amazon EBS
default encryption isn't
turned on, the volume
will be unencrypted.

If you choose Custom,
you can specify an AWS

Creating a service 682

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EBSEncryption.html#encryption-by-default

Amazon Elastic Container Service Developer Guide

To configure this volume
type

Do this

KMS key of your choice
for volume encryption.

If you choose None, the
volume will be unencrypt
ed unless you have
encryption by default
configured, or if you
create a volume from an
encrypted snapshot.

i. If you've chosen Custom
for Encryption, you must
specify the AWS KMS key
that you want to use.
For KMS key, choose an
AWS KMS key or enter a
key ARN. If you choose
to encrypt your volume
by using a symmetric
customer managed key,
make sure that you have
the right permissions
defined in your AWS
KMS key policy. For more
information, see Data
encryption for Amazon
EBS volumes.

15. (Optional) To help identify your service and tasks, expand the Tags section, and then configure
your tags.

To have Amazon ECS automatically tag all newly launched tasks with the cluster name and the
task definition tags, select Turn on Amazon ECS managed tags, and then for Propagate tags
from, choose Task definitions.

Creating a service 683

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/ebs-volumes.html?icmpid=docs_ecs_hp-deploy#ebs-kms-encryption
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/ebs-volumes.html?icmpid=docs_ecs_hp-deploy#ebs-kms-encryption
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/ebs-volumes.html?icmpid=docs_ecs_hp-deploy#ebs-kms-encryption

Amazon Elastic Container Service Developer Guide

To have Amazon ECS automatically tag all newly launched tasks with the cluster name and the
service tags, select Turn on Amazon ECS managed tags, and then for Propagate tags from,
choose Service.

Add or remove a tag.

• [Add a tag] Choose Add tag, and then do the following:

• For Key, enter the key name.

• For Value, enter the key value.

• [Remove a tag] Next to the tag, choose Remove tag.

Updating a service using the console

You can update an Amazon ECS service using the Amazon ECS console. The current service
configuration is pre-populated. You can update the task definition, desired task count, capacity
provider strategy, platform version, and deployment configuration; or any combination of these.

For information about how to update the blue/green deployment configuration, see Updating a
blue/green deployment configuration using the console.

Consider the following when you use the console:

If you want to temporarily stop your service, set Desired tasks to 0. Then, when you are ready to
start the service, update the service with the original Desired tasks count.

Consider the following when you use the console:

• You must use the AWS Command Line Interface to update a service that uses any of the
following parameters:

• Blue/green deployments

• Service Discovery – You can only view your Service Discovery configuration.

• Tracking policy with a custom metric

• Update Service – You cannot update the awsvpc network configuration and the health check
grace period.

For information about how to update a service using the AWS CLI, see update-service in the AWS
Command Line Interface Reference.

Updating a service 684

https://docs.aws.amazon.com/cli/latest/reference/ecs/update-service.html

Amazon Elastic Container Service Developer Guide

• If you are changing the ports used by containers in a task definition, you might need to update
the security groups for the container instances to work with the updated ports.

• Amazon ECS does not automatically update the security groups associated with Elastic Load
Balancing load balancers or Amazon ECS container instances.

• If your service uses a load balancer, the load balancer configuration defined for your service
when it was created cannot be changed using the console. You can instead use the AWS CLI
or SDK to modify the load balancer configuration. For information about how to modify the
configuration, see UpdateService in the Amazon Elastic Container Service API Reference.

• If you update the task definition for the service, the container name and container port that are
specified in the load balancer configuration must remain in the task definition.

You can update an existing service to change some of the service configuration parameters, such
as the number of tasks that are maintained by a service, which task definition is used by the tasks,
or if your tasks are using the Fargate launch type, you can change the platform version your service
uses. A service using a Linux platform version cannot be updated to use a Windows platform
version and vice versa. If you have an application that needs more capacity, you can scale up your
service. If you have unused capacity to scale down, you can reduce the number of desired tasks in
your service and free up resources.

If you want to use an updated container image for your tasks, you can create a new task definition
revision with that image and deploy it to your service by using the force new deployment option in
the console.

The service scheduler uses the minimum healthy percent and maximum percent parameters (in the
deployment configuration for the service) to determine the deployment strategy.

If a service is using the rolling update (ECS) deployment type, the minimum healthy percent
represents a lower limit on the number of tasks in a service that must remain in the RUNNING state
during a deployment, as a percentage of the desired number of tasks (rounded up to the nearest
integer). The parameter also applies while any container instances are in the DRAINING state if
the service contains tasks using the EC2 launch type. Use this parameter to deploy without using
additional cluster capacity. For example, if your service has a desired number of four tasks and
a minimum healthy percent of 50 percent, the scheduler may stop two existing tasks to free up
cluster capacity before starting two new tasks. Tasks for services that do not use a load balancer
are considered healthy if they are in the RUNNING state. Tasks for services that do use a load
balancer are considered healthy if they are in the RUNNING state and they are reported as healthy
by the load balancer. The default value for minimum healthy percent is 100 percent.

Updating a service 685

https://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_UpdateService.html

Amazon Elastic Container Service Developer Guide

If a service is using the rolling update (ECS) deployment type, the maximum percent parameter
represents an upper limit on the number of tasks in a service that are allowed in the PENDING,
RUNNING, or STOPPING state during a deployment, as a percentage of the desired number of
tasks (rounded down to the nearest integer). The parameter also applies while any container
instances are in the DRAINING state if the service contains tasks using the EC2 launch type. Use
this parameter to define the deployment batch size. For example, if your service has a desired
number of four tasks and a maximum percent value of 200 percent, the scheduler may start four
new tasks before stopping the four older tasks. That is provided that the cluster resources required
to do this are available. The default value for the maximum percent is 200 percent.

When the service scheduler replaces a task during an update, the service first removes the task
from the load balancer (if used) and waits for the connections to drain. Then, the equivalent of
docker stop is issued to the containers running in the task. This results in a SIGTERM signal and
a 30-second timeout, after which SIGKILL is sent and the containers are forcibly stopped. If the
container handles the SIGTERM signal gracefully and exits within 30 seconds from receiving it, no
SIGKILL signal is sent. The service scheduler starts and stops tasks as defined by your minimum
healthy percent and maximum percent settings.

The service scheduler also replaces tasks determined to be unhealthy after a container health
check or a load balancer target group health check fails. This replacement depends on the
maximumPercent and desiredCount service definition parameters. If a task is marked unhealthy,
the service scheduler will first start a replacement task. If the replacement task has a health status
of HEALTHY, the service scheduler stops the unhealthy task. If the replacement task has a health
status of UNHEALTHY, the scheduler will stop either the unhealthy replacement task or the existing
unhealthy task to get the total task count to equal desiredCount. If the maximumPercent
parameter limits the scheduler from starting a replacement task first, the scheduler will stop an
unhealthy task one at a time at random to free up capacity, and then start a replacement task. The
start and stop process continues until all unhealthy tasks are replaced with healthy tasks. Once
all unhealthy tasks have been replaced and only healthy tasks are running, if the total task count
exceeds the desiredCount, healthy tasks are stopped at random until the total task count equals
desiredCount. For more information about maximumPercent and desiredCount, see Service
definition parameters.

Updating a service 686

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/service_definition_parameters.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/service_definition_parameters.html

Amazon Elastic Container Service Developer Guide

Note

This behavior does not apply to tasks run and maintained by services that use the rolling
update deployment type. During a rolling update, the service scheduler first stops
unhealthy tasks and then starts replacement tasks.

Important

If you are changing the ports used by containers in a task definition, you may need to
update the security groups for the container instances to work with the updated ports.
If you update the task definition for the service, the container name and container port that
were specified when the service was created must remain in the task definition.
Amazon ECS does not automatically update the security groups associated with Elastic
Load Balancing load balancers or Amazon ECS container instances.

To update a service (Amazon ECS console)

1. Open the console at https://console.aws.amazon.com/ecs/v2.

2. On the Clusters page, choose the cluster.

3. On the cluster details page, in the Services section, select the check box next to the service,
and then choose Update.

4. To have your service start a new deployment, select Force new deployment.

5. For Task definition, choose the task definition family and revision.

Important

The console validates that the selected task definition family and revision are
compatible with the defined compute configuration. If you receive a warning, verify
both your task definition compatibility and the compute configuration that you
selected.

6. For Desired tasks, enter the number of tasks that you want to run for the service.

7. For Min running tasks, enter the lower limit on the number of tasks in the service that
must remain in the RUNNING state during a deployment, as a percentage of the desired

Updating a service 687

https://console.aws.amazon.com/ecs/v2

Amazon Elastic Container Service Developer Guide

number of tasks (rounded up to the nearest integer). For more information, see Deployment
configuration.

8. For Max running tasks, enter the upper limit on the number of tasks in the service that are
allowed in the RUNNING or PENDING state during a deployment, as a percentage of the desired
number of tasks (rounded down to the nearest integer).

9. To configure how Amazon ECS detects and handles deployment failures, expand Deployment
failure detection, and then choose your options.

a. To stop a deployment when the tasks cannot start, select Use the Amazon ECS
deployment circuit breaker.

To have the software automatically roll back the deployment to the last completed
deployment state when the deployment circuit breaker sets the deployment to a failed
state, select Rollback on failures.

b. To stop a deployment based on application metrics, select Use CloudWatch alarm(s).
Then, from CloudWatch alarm name, choose the alarms. To create a new alarm, go to the
CloudWatch console.

To have the software automatically roll back the deployment to the last completed
deployment state when a CloudWatch alarm sets the deployment to a failed state, select
Rollback on failures.

10. To change the compute options, expand Compute configuration, and then do the following:

a. For services on AWS Fargate, for Platform version, choose the new version.

b. For services that use a capacity provider strategy, for Capacity provider strategy, do the
following:

• To add an additional capacity provider, choose Add more. Then, for Capacity provider,
choose the capacity provider.

• To remove a capacity provider, to the right of the capacity provider, choose Remove.

A service that's using an Auto Scaling group capacity provider can't be updated to use a
Fargate capacity provider and vice versa.

11. (Optional) To configure service Auto Scaling, expand Service auto scaling, and then specify
the following parameters.

a. To use service auto scaling, select Service auto scaling.

Updating a service 688

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/service_definition_parameters.html#sd-deploymentconfiguration
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/service_definition_parameters.html#sd-deploymentconfiguration

Amazon Elastic Container Service Developer Guide

b. For Minimum number of tasks, enter the lower limit of the number of tasks for service
auto scaling to use. The desired count will not go below this count.

c. For Maximum number of tasks, enter the upper limit of the number of tasks for service
auto scaling to use. The desired count will not go above this count.

d. Choose the policy type. Under Scaling policy type, choose one of the following options.

Updating a service 689

Amazon Elastic Container Service Developer Guide

To use this policy type... Do this...

Target tracking a. For Scaling policy type,
choose Target tracking.

b. For Policy name, enter
the name of the policy.

c. For ECS service metric,
select one of the
following metrics.

• ECSServiceAverageC
PUUtilization –
Average CPU utilizati
on of the service.

• ECSServiceAverageM
emoryUtilization
– Average memory
utilization of the
service.

• ALBRequestCountPer
Target – Number of
requests completed
per target in an
Application Load
Balancer target group.

d. For Target value, enter
the value the service
maintains for the
selected metric.

e. For Scale-out cooldown
period,, , enter the
amount of time, in
seconds, after a scale-
out activity (add tasks)
that the scaling policy

Updating a service 690

Amazon Elastic Container Service Developer Guide

To use this policy type... Do this...

blocks scale-in activitie
s and limits how many
tasks can be scale out at
a time.

f. For Scale-in cooldown
period,, enter the
amount of time, in
seconds, after a scale-in
activity (remove tasks)
that must pass before
another scale-in activity
can start.

g. To prevent the policy
from performing a
scale-in activity, select
Turn off scale-in.

h. • (Optional) Select Turn
off scale-in if you want
your scaling policy to
scale out for increased
traffic but don’t need it
to scale in when traffic
decreases.

Updating a service 691

Amazon Elastic Container Service Developer Guide

To use this policy type... Do this...

Step scaling a. For Scaling policy type,
choose Step scaling.

b. For Policy name, enter
the policy name.

c. For Alarm name, enter
a unique name for the
alarm.

d. For Amazon ECS service
metric, choose the
metric to use for the
alarm.

e. For Statistic, choose the
alarm statistic.

f. For Period, choose the
period for the alarm.

g. For Alarm condition,
choose how to compare
the selected metric to
the defined threshold.

h. For Threshold to
compare metrics and
Evaluation period to
initiate alarm, enter the
threshold used for the
alarm and how long to
evaluate the threshold.

i. Under Scaling actions,
do the following:

• For Action, select
whether to add,
remove, or set a
specific desired count
for your service.

Updating a service 692

Amazon Elastic Container Service Developer Guide

To use this policy type... Do this...

• If you chose to add
or remove tasks,
for Value, enter the
number of tasks (or
percent of existing
tasks) to add or
remove when the
scaling action is
initiated. If you chose
to set the desired
count, enter the
number of tasks.
For Type, select
whether the Value
is an integer or a
percent value of the
existing desired count.

• For Lower bound
and Upper bound,
enter the lower
boundary and upper
boundary of your step
scaling adjustmen
t. By default, the
lower bound for an
add policy is the
alarm threshold and
the upper bound is
positive (+) infinity.
By default, the
upper bound for a
remove policy is the
alarm threshold and

Updating a service 693

Amazon Elastic Container Service Developer Guide

To use this policy type... Do this...

the lower bound is
negative (-) infinity.

• (Optional) Add
additional scaling
options. Choose Add
new scaling action,
and then repeat the
Scaling actions steps.

• For Cooldown period,
enter the amount of
time, in seconds, to
wait for a previous
scaling activity to
take effect. For an
add policy, this is the
time after a scale-
out activity that the
scaling policy blocks
scale-in activities
and limits how many
tasks can be scale
out at a time. For a
remove policy, this is
the time after a scale-
in activity that must
pass before another
scale-in activity can
start.

12. (Optional) To use Service Connect, select Turn on Service Connect, and then specify the
following:

a. Under Service Connect configuration, specify the client mode.

Updating a service 694

Amazon Elastic Container Service Developer Guide

• If your service runs s network client application that only needs to connect to other
services in the namespace, choose Client side only.

• If your service runs a network or web service application and needs to provide endpoints
for this service, and connects to other services in the namespace, choose Client and
server.

b. To use a namespace that is not the default cluster namespace, for Namespace, choose the
service namespace.

13. If your task uses a data volume that's compatible with configuration at deployment, you can
configure the volume by expanding Volume.

The volume name and volume type are configured when you create a task definition revision
and can't be changed when you update a service. To update the volume name and type, you
must create a new task definition revision and update the service by using the new revision.

To configure this volume
type

Do this

Amazon EBS a. For EBS volume type,
choose the type of EBS
volume that you want to
attach to your task.

b. For Size (GiB), enter a
valid value for the volume
size in gibibytes (GiB). You
can specify a minimum
of 1 GiB and a maximum
of 16,384 GiB volume
size. This value is required
unless you provide a
snapshot ID.

c. For IOPS, enter the
maximum number of
input/output operation
s (IOPS) that the volume
should provide. This value

Updating a service 695

Amazon Elastic Container Service Developer Guide

To configure this volume
type

Do this

is configurable only for
io1,io2, and gp3 volume
types.

d. For Throughput (MiB/
s), enter the throughpu
t that the volume should
provide, in mebibytes per
second (MiBps, or MiB/s).
This value is configurable
only for the gp3 volume
type.

e. For Snapshot ID, choose
an existing Amazon EBS
volume snapshot or enter
the ARN of a snapshot
if you want to create a
volume from a snapshot.
You can also create a new,
empty volume by not
choosing or entering a
snapshot ID.

f. For File system type,
choose the type of file
system that will be used
for data storage and
retrieval on the volume.
You can choose either
the operating system
default or a specific file
system type. The default
for Linux is XFS. For
volumes created from
a snapshot, you must

Updating a service 696

Amazon Elastic Container Service Developer Guide

To configure this volume
type

Do this

specify the same filesyste
m type that the volume
was using when the
snapshot was created. If
there is a filesystem type
mismatch, the task will
fail to start.

g. For Infrastructure role,
choose an IAM role with
the necessary permissio
ns that allow Amazon
ECS to manage Amazon
EBS volumes for tasks.
You can attach the
AmazonECSInfrastru
ctureRole
PolicyForVolumes
managed policy to the
role, or you can use the
policy as a guide to create
and attach an your own
policy with permissions
that meet your specific
needs. For more informati
on about the necessary
 permissions, see Amazon
ECS infrastructure IAM
role.

h. For Encryption, choose
Default if you want to
use the Amazon EBS
encryption by default
settings. If your account

Updating a service 697

Amazon Elastic Container Service Developer Guide

To configure this volume
type

Do this

has Encryption by default
configured, the volume
will be encrypted with
the AWS Key Managemen
t Service (AWS KMS) key
that's specified in the
setting. If you choose
Default and Amazon EBS
default encryption isn't
turned on, the volume
will be unencrypted.

If you choose Custom,
you can specify an AWS
KMS key of your choice
for volume encryption.

If you choose None, the
volume will be unencrypt
ed unless you have
encryption by default
configured, or if you
create a volume from an
encrypted snapshot.

i. If you've chosen Custom
for Encryption, you must
specify the AWS KMS key
that you want to use.
For KMS key, choose an
AWS KMS key or enter a
key ARN. If you choose
to encrypt your volume
by using a symmetric
customer managed key,

Updating a service 698

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EBSEncryption.html#encryption-by-default

Amazon Elastic Container Service Developer Guide

To configure this volume
type

Do this

make sure that you have
the right permissions
defined in your AWS
KMS key policy. For more
information, see Data
encryption for Amazon
EBS volumes.

14. (Optional) To help identify your service, expand the Tags section, and then configure your tags.

• [Add a tag] Choose Add tag, and do the following:

• For Key, enter the key name.

• For Value, enter the key value.

• [Remove a tag] Next to the tag, choose Remove tag.

15. Choose Update.

Updating a blue/green deployment configuration using the console

You can update a blue/green deployment configuration using the Amazon ECS console. The
current blue/green deployment configuration is pre-populated. You can update the following blue/
green deployment options:

• Deployment group name - The CodeDeploy deployment settings

• Application name - The CodeDeploy deployment group

• Deployment configuration - How CodeDeploy routes production traffic to your replacement task
set during a deployment

• Test listener on the load balancer - CodeDeploy uses the test listener to route your test traffic to
the replacement task set during a deployment

You must configure the new option before you update the configuration.

To update a blue/green deployment configuration (Amazon ECS console)

1. Open the console at https://console.aws.amazon.com/ecs/v2.

Updating a blue/green deployment configuration 699

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/ebs-volumes.html?icmpid=docs_ecs_hp-deploy#ebs-kms-encryption
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/ebs-volumes.html?icmpid=docs_ecs_hp-deploy#ebs-kms-encryption
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/ebs-volumes.html?icmpid=docs_ecs_hp-deploy#ebs-kms-encryption
https://console.aws.amazon.com/ecs/v2

Amazon Elastic Container Service Developer Guide

2. On the Clusters page, select the cluster.

3. On the Cluster overview page, select the service, and then choose Update.

4. Expand Deployment options - Powered by CodeDeploy, and then choose which options to
update:

• To modify the CodeDeploy deployment group, for Application name, choose the
deployment group.

• To modify the CodeDeploy deployment settings, for Deployment group name, choose the
group.

• To modify how CodeDeploy routes production traffic to your replacement task set during a
deployment, for Deployment configuration, choose the option.

5. Select the deployment lifecycle event hooks and the associated Lambda functions to run as
part of the new revision of the service deployment. The available lifecycle hooks are:

• BeforeInstall – Use this deployment lifecycle event hook to invoke a Lambda function
before the replacement task set is created. The result of the Lambda function at this
lifecycle event does not initiate a rollback.

• AfterInstall – Use this deployment lifecycle event hook to invoke a Lambda function after
the replacement task set is created. The result of the Lambda function at this lifecycle event
can initiate a rollback.

• BeforeAllowTraffic – Use this deployment lifecycle event hook to invoke a Lambda function
before the production traffic has been rerouted to the replacement task set. The result of
the Lambda function at this lifecycle event can initiate a rollback.

• AfterAllowTraffic – Use this deployment lifecycle event hook to invoke a Lambda function
after the production traffic has been rerouted to the replacement task set. The result of the
Lambda function at this lifecycle event can initiate a rollback.

6. To modify the test listener, expand Load balancing, and then for Test listener for CodeDeploy
deployment, choose the test listener.

7. Choose Update.

Deleting a service using the console

You can delete an Amazon ECS service using the console. The service is automatically scaled down
to zero before it is deleted. Load balancer resources or service discovery resources associated with
the service are not affected by the service deletion. To delete your Elastic Load Balancing resources,

Deleting a service 700

Amazon Elastic Container Service Developer Guide

see one of the following topics, depending on your load balancer type: Delete an Application Load
Balancer or Delete a Network Load Balancer.

When you delete a service, if there are still running tasks that require cleanup, the service status
moves from ACTIVE to DRAINING, and the service is no longer visible in the console or in the
ListServices API operation. After all tasks have transitioned to either STOPPING or STOPPED
status, the service status moves from DRAINING to INACTIVE. Services in the DRAINING or
INACTIVE status can still be viewed with the DescribeServices API operation.

Important

If you attempt to create a new service with the same name as an existing service in either
ACTIVE or DRAINING status, you receive an error.

To delete a service (Amazon ECS console)

1. Open the console at https://console.aws.amazon.com/ecs/v2.

2. On the Clusters page, select the cluster for the service.

3. On the Clusters page, choose the cluster.

4. On the Cluster : name page, choose the Services tab.

5. Select the services, and then choose Delete.

6. To delete a service even if it wasn't scaled down to zero tasks, select Force delete service.

7. At the confirmation prompt, enter delete, and then choose Delete.

Amazon ECS Deployment types

An Amazon ECS deployment type determines the deployment strategy that your service uses.
There are three deployment types: rolling update, blue/green, and external.

You can view information about the service deployment type on the service details page, or by
using the describe-services API. For more information, see DescribeServices in the Amazon
Elastic Container Service API Reference.

Topics

• Rolling update

• Blue/Green deployment with CodeDeploy

Deployment types 701

https://docs.aws.amazon.com/elasticloadbalancing/latest/application/load-balancer-delete.html
https://docs.aws.amazon.com/elasticloadbalancing/latest/application/load-balancer-delete.html
https://docs.aws.amazon.com/elasticloadbalancing/latest/network/load-balancer-delete.html
https://console.aws.amazon.com/ecs/v2
https://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_DescribeServices.html

Amazon Elastic Container Service Developer Guide

• External deployment

Rolling update

When you create a service which uses the rolling update (ECS) deployment type, the Amazon ECS
service scheduler replaces the currently running tasks with new tasks. The number of tasks that
Amazon ECS adds or removes from the service during a rolling update is controlled by the service
deployment configuration. The deployment configuration consists of the following:

• The minimumHealthyPercent represents the lower limit on the number of tasks that should
be running for a service during a deployment or when a container instance is draining, as a
percent of the desired number of tasks for the service. This value is rounded up. For example if
the minimum healthy percent is 50 and the desired task count is four, then the scheduler can
stop two existing tasks before starting two new tasks. Likewise, if the minimum healthy percent
is 75% and the desired task count is two, then the scheduler can't stop any tasks due to the
resulting value also being two.

• The maximumPercent represents the upper limit on the number of tasks that should be running
for a service during a deployment or when a container instance is draining, as a percent of the
desired number of tasks for a service. This value is rounded down. For example if the maximum
percent is 200 and the desired task count is four then the scheduler can start four new tasks
before stopping four existing tasks. Likewise, if the maximum percent is 125 and the desired task
count is three, the scheduler can't start any tasks due to the resulting value also being three.

Important

When setting a minimum healthy percent or a maximum percent, you should ensure that
the scheduler can stop or start at least one task when a deployment is initiated. If your
service has a deployment that is stuck due to an invalid deployment configuration, a
service event message will be sent. For more information, see service (service-name)
was unable to stop or start tasks during a deployment because of the service deployment
configuration. Update the minimumHealthyPercent or maximumPercent value and try
again..

A rolling deployment uses the deployment circuit breaker to determine if the tasks reach a steady
state. The deployment circuit breaker can optionally roll back a deployment on failure.

Deployment types 702

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/create-service-console-v2.html

Amazon Elastic Container Service Developer Guide

Failure detection methods

The are two methods which provide a way to quickly identify when a deployment has failed, and
then to optionally roll back the failure to the last working deployment.

• the section called “Deployment circuit breaker”

• the section called “CloudWatch alarms”

The methods can be used separately or together. When both methods are use, the deployment is
set to failed as soon as the failure criteria for either failure method is met.

Use the following guidelines to help determine which method to use:

• Circuit breaker - Use this method when you want to stop a deployment when the tasks can't
start.

• CloudWatch alarms - Use this method when you want to stop a deployment based on application
metrics.

For information about the Amazon ECS deployment process best practices, see Task deployment in
the Amazon ECS Best Practices Guide.

Deployment circuit breaker

The deployment circuit breaker is the rolling update mechanism that determines if the tasks reach
a steady state. The deployment circuit breaker has an option that will automatically roll back a
failed deployment to the deployment that is in the COMPLETED state.

When a service deployment changes state, Amazon ECS sends a service deployment state
change event to EventBridge. This provides a programmatic way to monitor the status of your
service deployments. For more information, see Amazon ECS service deployment state change
events. We recommend that you create and monitor an EventBridge rule with an eventName of
SERVICE_DEPLOYMENT_FAILED so that you can take manual action to start your deployment. For
more information, see Creating an EventBridge Rule in the Amazon EventBridge User Guide.

When the deployment circuit breaker determines that a deployment failed, it looks for the most
recent deployment that is in a COMPLETED state. This is the deployment that it uses as the roll-
back deployment. When the rollback starts, the deployment changes from a COMPLETED to
IN_PROGRESS. This means that the deployment is not eligible for another rollback until it reaches

Deployment types 703

https://docs.aws.amazon.com/AmazonECS/latest/bestpracticesguide/service-options.html
https://docs.aws.amazon.com/eventbridge/latest/userguide/create-eventbridge-rule.html

Amazon Elastic Container Service Developer Guide

the a COMPLETED state. When the deployment circuit breaker does not find a deployment that is in
a COMPLETED state, the circuit breaker does not launch new tasks and the deployment is stalled.

When you create a service, the scheduler keeps track of the tasks that failed to launch in two
stages.

• Stage 1 - The scheduler monitors the tasks to see if they transition into the RUNNING state.

• Success - The deployment has a chance of transitioning to the COMPLETED state because
there is more than one task that transitioned to the RUNNING state. The failure criteria is
skipped and the circuit breaker moves to stage 2.

• Failure - There are consecutive tasks that did not transition to the RUNNING state and the
deployment might transition to the FAILED state.

• Stage 2 - The deployment enters this stage when there is at least one task in the RUNNING
state. The circuit breaker checks the health checks for the tasks in the current deployment being
evaluated. The validated health checks are Elastic Load Balancing, AWS Cloud Map service health
checks, and container health checks.

• Success - There is at least one task in the running state with health checks that have passed.

• Failure - The tasks that are replaced because of health check failures have reached the failure
threshold.

Consider the following when you use the deployment circuit breaker method on a service.
EventBridge generates the rule.

• The DescribeServices response provides insight into the state of a deployment, the
rolloutState and rolloutStateReason. When a new deployment is started, the rollout
state begins in an IN_PROGRESS state. When the service reaches a steady state, the rollout state
transitions to COMPLETED. If the service fails to reach a steady state and circuit breaker is turned
on, the deployment will transition to a FAILED state. A deployment in a FAILED state doesn't
launch any new tasks.

• In addition to the service deployment state change events Amazon ECS sends for deployments
that have started and have completed, Amazon ECS also sends an event when a deployment
with circuit breaker turned on fails. These events provide details about why a deployment failed
or if a deployment was started because of a rollback. For more information, see Amazon ECS
service deployment state change events.

Deployment types 704

Amazon Elastic Container Service Developer Guide

• If a new deployment is started because a previous deployment failed and a rollback occurred,
the reason field of the service deployment state change event indicates the deployment was
started because of a rollback.

• The deployment circuit breaker is only supported for Amazon ECS services that use the rolling
update (ECS) deployment controller.

• You must use the Amazon ECS console, or the AWS CLI when you use the deployment circuit
breaker with the CloudWatch option. For more information, see the section called “Create
a service using defined parameters” and create-service in the AWS Command Line Interface
Reference.

The following create-service AWS CLI example shows how to create a Linux service when the
deployment circuit breaker is used with the rollback option.

aws ecs create-service \
 --service-name MyService \
 --deployment-controller type=ECS \
 --desired-count 3 \
 --deployment-configuration "deploymentCircuitBreaker={enable=true,rollback=true}"
 \
 --task-definition sample-fargate:1 \
 --launch-type FARGATE \
 --platform-family LINUX \
 --platform-version 1.4.0 \
 --network-configuration
 "awsvpcConfiguration={subnets=[subnet-12344321],securityGroups=[sg-12344321],assignPublicIp=ENABLED}"

Example:

Deployment 1 is in a COMPLETED state.

Deployment 2 cannot start, so the circuit breaker rolls back to Deployment 1. Deployment 1
transitions to the IN_PROGRESS state.

Deployment 3 starts and there is no deployment in the COMPLETED state, so Deployment 3 cannot
roll back, or launch tasks.

Failure threshold

The deployment circuit breaker calculates the threshold value, and then uses the value to
determine when to move the deployment to a FAILED state.

Deployment types 705

https://docs.aws.amazon.com/cli/latest/reference/ecs/create-service.html

Amazon Elastic Container Service Developer Guide

The deployment circuit breaker has a minimum threshold of 3 and a maximum threshold of 200.
and uses the values in the following formula to determine the deployment failure.

Minimum threshold <= 0.5 * desired task count => maximum threshold

When the result of the calculation is greater than the minimum of 3, but smaller than the
maximum of 200, the failure threshold is set to the calculated threshold (rounded up).

Note

You cannot change either of the threshold values.

There are two stages for the deployment status check.

1. The deployment circuit breaker monitors tasks that are part of the deployment and checks for
tasks that are in the RUNNING state. The scheduler ignores the failure criteria when a task in the
current deployment is in the RUNNING state and proceeds to the next stage. When tasks fail to
reach in the RUNNING state, the deployment circuit breaker increases the failure count by one.
When the failure count equals the threshold, the deployment is marked as FAILED.

2. This stage is entered when there are one or more tasks in the RUNNING state. The deployment
circuit breaker performs health checks on the following resources for the tasks in the current
deployment:

• Elastic Load Balancing load balancers

• AWS Cloud Map service

• Amazon ECS container health checks

When a health check fails for the task, the deployment circuit breaker increases the failure count
by one. When the failure count equals the threshold, the deployment is marked as FAILED.

The following table provides some examples.

Desired task count Calculation Threshold

1 3 <= 0.5 * 1 => 200 3 (the calculated value is less
than the minimum)

Deployment types 706

Amazon Elastic Container Service Developer Guide

Desired task count Calculation Threshold

25 3 <= 0.5 * 25 => 200 13 (the value is rounded up)

400 3 <= 0.5 * 400 => 200 200

800 3 <= 0.5 * 800 => 200 200 (the calculated value is
greater than the maximum)

For example, when the threshold is 3, the circuit breaker starts with the failure count set at 0.
When a task fails to reach the RUNNING state, the deployment circuit breaker increases the failure
count by one. When the failure count equals 3, the deployment is marked as FAILED.

For additional examples about how to use the rollback option, see Announcing Amazon ECS
deployment circuit breaker.

CloudWatch alarms

You can configure Amazon ECS to set the deployment to failed when it detects that a specified
CloudWatch alarm has gone into the ALARM state.

You can optionally set the configuration to roll back a failed deployment to the last completed
deployment.

The following create-service AWS CLI example shows how to create a Linux service when the
deployment alarms are used with the rollback option.

aws ecs create-service \
 --service-name MyService \
 --deployment-controller type=ECS \
 --desired-count 3 \
 --deployment-configuration
 "alarms={alarmNames=[alarm1Name,alarm2Name],enable=true,rollback=true}" \
 --task-definition sample-fargate:1 \
 --launch-type FARGATE \
 --platform-family LINUX \
 --platform-version 1.4.0 \
 --network-configuration
 "awsvpcConfiguration={subnets=[subnet-12344321],securityGroups=[sg-12344321],assignPublicIp=ENABLED}"

Deployment types 707

https://aws.amazon.com/blogs/containers/announcing-amazon-ecs-deployment-circuit-breaker/
https://aws.amazon.com/blogs/containers/announcing-amazon-ecs-deployment-circuit-breaker/

Amazon Elastic Container Service Developer Guide

Consider the following when you use the Amazon CloudWatch alarms method on a service.

• The deploymentConfiguration request parameter now contains the alarms data type. You
can specify the alarm names, whether to use the method, and whether to initiate a rollback
when the alarms indicate a deployment failure. For more information, see CreateService in the
Amazon Elastic Container Service API Reference.

• The DescribeServices response provides insight into the state of a deployment, the
rolloutState and rolloutStateReason. When a new deployment starts, the rollout state
begins in an IN_PROGRESS state. When the service reaches a steady state and the bake time is
complete, the rollout state transitions to COMPLETED. If the service fails to reach a steady state
and the alarm has gone into the ALARM state, the deployment will transition to a FAILED state.
A deployment in a FAILED state won't launch any new tasks.

• In addition to the service deployment state change events Amazon ECS sends for deployments
that have started and have completed, Amazon ECS also sends an event when a deployment that
uses alarms fails. These events provide details about why a deployment failed or if a deployment
was started because of a rollback. For more information, see Amazon ECS service deployment
state change events.

• If a new deployment is started because a previous deployment failed and rollback was turned on,
the reason field of the service deployment state change event will indicate the deployment was
started because of a rollback.

• If you use the deployment circuit breaker and the Amazon CloudWatch alarms to detect failures,
either one can initiate a deployment failure as soon as the criteria for either method is met. A
rollback occurs when you use the rollback option for the method that initiated the deployment
failure.

• The Amazon CloudWatch alarms is only supported for Amazon ECS services that use the rolling
update (ECS) deployment controller.

• You can configure this option by using the Amazon ECS console, or the AWS CLI. For more
information, see the section called “Create a service using defined parameters” and create-
service in the AWS Command Line Interface Reference.

• You might notice that the deployment status remains IN_PROGRESS for a prolonged amount of
time. The reason for this is that Amazon ECS does not change the status until it has deleted the
active deployment, and this does not happen until after the bake time. Depending on your alarm
configuration, the deployment might appear to take several minutes longer than it does when
you don't use alarms (even though the new primary task set is scaled up and the old deployment

Deployment types 708

https://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_CreateService.html
https://docs.aws.amazon.com/cli/latest/reference/ecs/create-service.html
https://docs.aws.amazon.com/cli/latest/reference/ecs/create-service.html

Amazon Elastic Container Service Developer Guide

is scaled down). If you use CloudFormation timeouts, consider increasing the timeouts. For more
information, see Creating wait conditions in a template in the AWS CloudFormation User Guide.

• Amazon ECS calls DescribeAlarms to poll the alarms. The calls to DescribeAlarms count
toward the CloudWatch service quotas associated with your account. If you have other AWS
services that call DescribeAlarms, there might be an impact on Amazon ECS to poll the
alarms. For example, if another service makes enough DescribeAlarms calls to reach the
quota, that service is throttled and Amazon ECS' is also throttled and unable to poll alarms. If
an alarm is generated during the throttling period, Amazon ECS' might miss the alarm and the
roll back might not occur. There is no other impact on the deployment. For more information on
CloudWatch service quotas, see CloudWatch service quotas in the CloudWatch User Guide.

• If an alarm is in the ALARM state at the beginning of a deployment, Amazon ECS will not monitor
alarms for the duration of that deployment (Amazon ECS ignores the alarm configuration). This
behavior address the case where you want to start a new deployment to fix an initial deployment
failure.

Recommended alarms

We recommend that you use the following alarm metrics:

• If you use an Application Load Balancer, use the HTTPCode_ELB_5XX_Count and
HTTPCode_ELB_4XX_Count Application Load Balancer metrics. These metrics check for HTTP
spikes. For more information about the Application Load Balancer metrics, see CloudWatch
metrics for your Application Load Balancer in the User Guide for Application Load Balancers.

• If you have an existing application, use the CPUUtilization and MemoryUtilization
metrics. These metrics check for the percentage of CPU and memory that the cluster or service
uses. For more information, see the section called “Considerations”.

• If you use Amazon Simple Queue Service queues in your tasks, use
ApproximateNumberOfMessagesNotVisible Amazon SQS metric. This metric checks for
number of messages in the queue that are delayed and not available for reading immediately.
For more information about Amazon SQS metrics, see Available CloudWatch metrics for Amazon
SQS in the Amazon Simple Queue Service Developer Guide.

Blue/Green deployment with CodeDeploy

The blue/green deployment type uses the blue/green deployment model controlled by
CodeDeploy. Use this deployment type to verify a new deployment of a service before sending

Deployment types 709

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/using-cfn-waitcondition.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/cloudwatch_limits.htm
https://docs.aws.amazon.com/elasticloadbalancing/latest/application/load-balancer-cloudwatch-metrics.html
https://docs.aws.amazon.com/elasticloadbalancing/latest/application/load-balancer-cloudwatch-metrics.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-available-cloudwatch-metrics.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-available-cloudwatch-metrics.html

Amazon Elastic Container Service Developer Guide

production traffic to it. For more information, see What Is CodeDeploy in the AWS CodeDeploy User
Guide.

There are three ways traffic can shift during a blue/green deployment:

• Canary — Traffic is shifted in two increments. You can choose from predefined canary options
that specify the percentage of traffic shifted to your updated task set in the first increment and
the interval, in minutes, before the remaining traffic is shifted in the second increment.

• Linear — Traffic is shifted in equal increments with an equal number of minutes between each
increment. You can choose from predefined linear options that specify the percentage of traffic
shifted in each increment and the number of minutes between each increment.

• All-at-once — All traffic is shifted from the original task set to the updated task set all at once.

The following are components of CodeDeploy that Amazon ECS uses when a service uses the blue/
green deployment type:

CodeDeploy application

A collection of CodeDeploy resources. This consists of one or more deployment groups.

CodeDeploy deployment group

The deployment settings. This consists of the following:

• Amazon ECS cluster and service

• Load balancer target group and listener information

• Deployment roll back strategy

• Traffic rerouting settings

• Original revision termination settings

• Deployment configuration

• CloudWatch alarms configuration that can be set up to stop deployments

• SNS or CloudWatch Events settings for notifications

For more information, see Working with Deployment Groups in the AWS CodeDeploy User Guide.

CodeDeploy deployment configuration

Specifies how CodeDeploy routes production traffic to your replacement task set during
a deployment. The following pre-defined linear and canary deployment configuration are

Deployment types 710

https://docs.aws.amazon.com/codedeploy/latest/userguide/welcome.html
https://docs.aws.amazon.com/codedeploy/latest/userguide/deployment-groups.html

Amazon Elastic Container Service Developer Guide

available. You can also create custom defined linear and canary deployments as well. For more
information, see Working with Deployment Configurations in the AWS CodeDeploy User Guide.

• CodeDeployDefault.ECSAllAtOnce: Shifts all traffic to the updated Amazon ECS container at
once

• CodeDeployDefault.ECSLinear10PercentEvery1Minutes: Shifts 10 percent of traffic every
minute until all traffic is shifted.

• CodeDeployDefault.ECSLinear10PercentEvery3Minutes: Shifts 10 percent of traffic every 3
minutes until all traffic is shifted.

• CodeDeployDefault.ECSCanary10Percent5Minutes: Shifts 10 percent of traffic in the first
increment. The remaining 90 percent is deployed five minutes later.

• CodeDeployDefault.ECSCanary10Percent15Minutes: Shifts 10 percent of traffic in the first
increment. The remaining 90 percent is deployed 15 minutes later.

Revision

A revision is the CodeDeploy application specification file (AppSpec file). In the AppSpec file,
you specify the full ARN of the task definition and the container and port of your replacement
task set where traffic is to be routed when a new deployment is created. The container
name must be one of the container names referenced in your task definition. If the network
configuration or platform version has been updated in the service definition, you must also
specify those details in the AppSpec file. You can also specify the Lambda functions to run
during the deployment lifecycle events. The Lambda functions allow you to run tests and return
metrics during the deployment. For more information, see AppSpec File Reference in the AWS
CodeDeploy User Guide.

Blue/Green Deployment Considerations

Consider the following when using the blue/green deployment type:

• When an Amazon ECS service using the blue/green deployment type is initially created, an
Amazon ECS task set is created.

• You must configure the service to use either an Application Load Balancer or Network Load
Balancer. The following are the load balancer requirements:

• You must add a production listener to the load balancer, which is used to route production
traffic.

Deployment types 711

https://docs.aws.amazon.com/codedeploy/latest/userguide/deployment-configurations.html
https://docs.aws.amazon.com/codedeploy/latest/userguide/reference-appspec-file.html

Amazon Elastic Container Service Developer Guide

• An optional test listener can be added to the load balancer, which is used to route test traffic.
If you specify a test listener, CodeDeploy routes your test traffic to the replacement task set
during a deployment.

• Both the production and test listeners must belong to the same load balancer.

• You must define a target group for the load balancer. The target group routes traffic to the
original task set in a service through the production listener.

• When a Network Load Balancer is used, only the CodeDeployDefault.ECSAllAtOnce
deployment configuration is supported.

• For services configured to use service auto scaling and the blue/green deployment type,
auto scaling is not blocked during a deployment but the deployment may fail under some
circumstances. The following describes this behavior in more detail.

• If a service is scaling and a deployment starts, the green task set is created and CodeDeploy
will wait up to an hour for the green task set to reach steady state and won't shift any traffic
until it does.

• If a service is in the process of a blue/green deployment and a scaling event occurs, traffic
will continue to shift for 5 minutes. If the service doesn't reach steady state within 5 minutes,
CodeDeploy will stop the deployment and mark it as failed.

• If a service is in the process of a blue/green deployment and a scaling event occurs, the desired
task count might be set to an unexpected value. This is caused by auto scaling considering the
running task count as current capacity, which is twice the appropriate number of tasks being
used in the desired task count calculation.

• Tasks using the Fargate launch type or the CODE_DEPLOY deployment controller types don't
support the DAEMON scheduling strategy.

• When you initially create a CodeDeploy application and deployment group, you must specify the
following:

• You must define two target groups for the load balancer. One target group should be the
initial target group defined for the load balancer when the Amazon ECS service was created.
The second target group's only requirement is that it can't be associated with a different load
balancer than the one the service uses.

• When you create a CodeDeploy deployment for an Amazon ECS service, CodeDeploy creates a
replacement task set (or green task set) in the deployment. If you added a test listener to the load
balancer, CodeDeploy routes your test traffic to the replacement task set. This is when you can
run any validation tests. Then CodeDeploy reroutes the production traffic from the original task

Deployment types 712

Amazon Elastic Container Service Developer Guide

set to the replacement task set according to the traffic rerouting settings for the deployment
group.

Blue/green deployment required IAM permissions

Amazon ECS blue/green deployments are made possible by a combination of the Amazon ECS and
CodeDeploy APIs. Users must have the appropriate permissions for these services before they can
use Amazon ECS blue/green deployments in the AWS Management Console or with the AWS CLI or
SDKs.

In addition to the standard IAM permissions for creating and updating services, Amazon
ECS requires the following permissions. These permissions have been added to the
AmazonECS_FullAccess IAM policy. For more information, see AmazonECS_FullAccess.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "codedeploy:CreateApplication",
 "codedeploy:CreateDeployment",
 "codedeploy:CreateDeploymentGroup",
 "codedeploy:GetApplication",
 "codedeploy:GetDeployment",
 "codedeploy:GetDeploymentGroup",
 "codedeploy:ListApplications",
 "codedeploy:ListDeploymentGroups",
 "codedeploy:ListDeployments",
 "codedeploy:StopDeployment",
 "codedeploy:GetDeploymentTarget",
 "codedeploy:ListDeploymentTargets",
 "codedeploy:GetDeploymentConfig",
 "codedeploy:GetApplicationRevision",
 "codedeploy:RegisterApplicationRevision",
 "codedeploy:BatchGetApplicationRevisions",
 "codedeploy:BatchGetDeploymentGroups",
 "codedeploy:BatchGetDeployments",
 "codedeploy:BatchGetApplications",
 "codedeploy:ListApplicationRevisions",
 "codedeploy:ListDeploymentConfigs",
 "codedeploy:ContinueDeployment",

Deployment types 713

Amazon Elastic Container Service Developer Guide

 "sns:ListTopics",
 "cloudwatch:DescribeAlarms",
 "lambda:ListFunctions"
],
 "Resource": ["*"]
 }
]
}

Note

In addition to the standard Amazon ECS permissions required to run tasks and services,
users also require iam:PassRole permissions to use IAM roles for tasks.

CodeDeploy needs permissions to call Amazon ECS APIs, modify your Elastic Load Balancing,
invoke Lambda functions, and describe CloudWatch alarms, as well as permissions to modify
your service's desired count on your behalf. Before creating an Amazon ECS service that uses the
blue/green deployment type, you must create an IAM role (ecsCodeDeployRole). For more
information, see Amazon ECS CodeDeploy IAM Role.

The Create service example and Update service example IAM policy examples show the permissions
that are required for users to use Amazon ECS blue/green deployments on the AWS Management
Console.

External deployment

The external deployment type allows you to use any third-party deployment controller for full
control over the deployment process for an Amazon ECS service. The details for your service are
managed by either the service management API actions (CreateService, UpdateService, and
DeleteService) or the task set management API actions (CreateTaskSet, UpdateTaskSet,
UpdateServicePrimaryTaskSet, and DeleteTaskSet). Each API action manages a subset of
the service definition parameters.

The UpdateService API action updates the desired count and health check grace period
parameters for a service. If the launch type, platform version, load balancer details, network
configuration, or task definition need to be updated, you must create a new task set.

The UpdateTaskSet API action updates only the scale parameter for a task set.

Deployment types 714

Amazon Elastic Container Service Developer Guide

The UpdateServicePrimaryTaskSet API action modifies which task set in a service is the
primary task set. When you call the DescribeServices API action, it returns all fields specified
for a primary task set. If the primary task set for a service is updated, any task set parameter values
that exist on the new primary task set that differ from the old primary task set in a service are
updated to the new value when a new primary task set is defined. If no primary task set is defined
for a service, when describing the service, the task set fields are null.

External deployment considerations

Consider the following when using the external deployment type:

• The supported load balancer types are either an Application Load Balancer or a Network Load
Balancer.

• The Fargate launch type or EXTERNAL deployment controller types don't support the DAEMON
scheduling strategy.

External deployment workflow

The following is the basic workflow to managing an external deployment on Amazon ECS.

To manage an Amazon ECS service using an external deployment controller

1. Create an Amazon ECS service. The only required parameter is the service name. You can
specify the following parameters when creating a service using an external deployment
controller. All other service parameters are specified when creating a task set within the
service.

serviceName

Type: String

Required: Yes

The name of your service. Up to 255 letters (uppercase and lowercase), numbers, hyphens,
and underscores are allowed. Service names must be unique within a cluster, but you
can have similarly named services in multiple clusters within a Region or across multiple
Regions.

Deployment types 715

Amazon Elastic Container Service Developer Guide

desiredCount

The number of instantiations of the specified task set task definition to place and keep
running within the service.

deploymentConfiguration

Optional deployment parameters that control how many tasks run during a
deployment and the ordering of stopping and starting tasks. For more information, see
deploymentConfiguration.

tags

Type: Array of objects

Required: No

The metadata that you apply to the service to help you categorize and organize them. Each
tag consists of a key and an optional value, both of which you define. When a service is
deleted, the tags are deleted as well. A maximum of 50 tags can be applied to the service.
For more information, see Amazon ECS resource tagging.

key

Type: String

Length Constraints: Minimum length of 1. Maximum length of 128.

Required: No

One part of a key-value pair that make up a tag. A key is a general label that acts like a
category for more specific tag values.

value

Type: String

Length Constraints: Minimum length of 0. Maximum length of 256.

Required: No

The optional part of a key-value pair that make up a tag. A value acts as a descriptor
within a tag category (key).

Deployment types 716

Amazon Elastic Container Service Developer Guide

enableECSManagedTags

Specifies whether to use Amazon ECS managed tags for the tasks within the service. For
more information, see Tagging your resources for billing.

propagateTags

Type: String

Valid values: TASK_DEFINITION | SERVICE

Required: No

Specifies whether to copy the tags from the task definition or the service to the tasks in
the service. If no value is specified, the tags are not copied. Tags can only be copied to the
tasks within the service during service creation. To add tags to a task after service creation
or task creation, use the TagResource API action.

healthCheckGracePeriodSeconds

Type: Integer

Required: No

The period of time, in seconds, that the Amazon ECS service scheduler should ignore
unhealthy Elastic Load Balancing target health checks, container health checks, and
Route 53 health checks after a task enters a RUNNING state. This is only valid if your service
is configured to use a load balancer. If your service has a load balancer defined and you do
not specify a health check grace period value, the default value of 0 is used.

If your service's tasks take a while to start and respond to health checks, you can specify
a health check grace period of up to 2,147,483,647 seconds during which the ECS service
scheduler ignores the health check status. This grace period can prevent the ECS service
scheduler from marking tasks as unhealthy and stopping them before they have time to
come up.

If you do not use an Elastic Load Balancing, we recommend that you use the startPeriod
in the task definition health check parameters. For more information, see Health check.

Deployment types 717

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/task_definition_parameters.html#container_definition_healthcheck

Amazon Elastic Container Service Developer Guide

schedulingStrategy

The scheduling strategy to use. Services using an external deployment controller support
only the REPLICA scheduling strategy. For more information, see Service scheduler
concepts.

placementConstraints

An array of placement constraint objects to use for tasks in your service. You can specify
a maximum of 10 constraints per task (this limit includes constraints in the task definition
and those specified at run time). If you are using the Fargate launch type, task placement
constraints aren't supported.

placementStrategy

The placement strategy objects to use for tasks in your service. You can specify a maximum
of four strategy rules per service.

The following is an example service definition for creating a service using an external
deployment controller.

{
 "cluster": "",
 "serviceName": "",
 "desiredCount": 0,
 "role": "",
 "deploymentConfiguration": {
 "maximumPercent": 0,
 "minimumHealthyPercent": 0
 },
 "placementConstraints": [
 {
 "type": "distinctInstance",
 "expression": ""
 }
],
 "placementStrategy": [
 {
 "type": "binpack",
 "field": ""
 }
],

Deployment types 718

Amazon Elastic Container Service Developer Guide

 "healthCheckGracePeriodSeconds": 0,
 "schedulingStrategy": "REPLICA",
 "deploymentController": {
 "type": "EXTERNAL"
 },
 "tags": [
 {
 "key": "",
 "value": ""
 }
],
 "enableECSManagedTags": true,
 "propagateTags": "TASK_DEFINITION"
}

2. Create an initial task set. The task set contains the following details about your service:

taskDefinition

The task definition for the tasks in the task set to use.

launchType

Type: String

Valid values: EC2 | FARGATE | EXTERNAL

Required: No

The launch type on which to run your service. If a launch type is not specified, the default
capacityProviderStrategy is used by default. For more information, see Amazon ECS
launch types.

If a launchType is specified, the capacityProviderStrategy parameter must be
omitted.

platformVersion

Type: String

Required: No

Deployment types 719

Amazon Elastic Container Service Developer Guide

The platform version on which your tasks in the service are running. A platform version
is only specified for tasks using the Fargate launch type. If one is not specified, the latest
version (LATEST) is used by default.

AWS Fargate platform versions are used to refer to a specific runtime environment for the
Fargate task infrastructure. When specifying the LATEST platform version when running
a task or creating a service, you get the most current platform version available for your
tasks. When you scale up your service, those tasks receive the platform version that was
specified on the service's current deployment. For more information, see Fargate Linux
platform versions.

Note

Platform versions are not specified for tasks using the EC2 launch type.

loadBalancers

A load balancer object representing the load balancer to use with your service. When using
an external deployment controller, only Application Load Balancers and Network Load
Balancers are supported. If you're using an Application Load Balancer, only one Application
Load Balancer target group is allowed per task set.

The following snippet shows an example loadBalancer object to use.

"loadBalancers": [
 {
 "targetGroupArn": "",
 "containerName": "",
 "containerPort": 0
 }
]

Note

When specifying a loadBalancer object, you must specify a targetGroupArn
and omit the loadBalancerName parameters.

Deployment types 720

Amazon Elastic Container Service Developer Guide

networkConfiguration

The network configuration for the service. This parameter is required for task definitions
that use the awsvpc network mode to receive their own elastic network interface, and
it's not supported for other network modes. For more information about networking for
the Amazon EC2 launch type, see Fargate Task Networking. For more information about
networking for the Fargate launch type, see Task networking for tasks on Fargate.

serviceRegistries

The details of the service discovery registries to assign to this service. For more
information, see Service discovery.

scale

A floating-point percentage of the desired number of tasks to place and keep running
in the task set. The value is specified as a percent total of a service's desiredCount.
Accepted values are numbers between 0 and 100.

The following is a JSON example for creating a task set for an external deployment controller.

{
 "service": "",
 "cluster": "",
 "externalId": "",
 "taskDefinition": "",
 "networkConfiguration": {
 "awsvpcConfiguration": {
 "subnets": [
 ""
],
 "securityGroups": [
 ""
],
 "assignPublicIp": "DISABLED"
 }
 },
 "loadBalancers": [
 {
 "targetGroupArn": "",
 "containerName": "",

Deployment types 721

https://docs.aws.amazon.com/AmazonECS/latest/userguide/fargate-task-networking.html

Amazon Elastic Container Service Developer Guide

 "containerPort": 0
 }
],
 "serviceRegistries": [
 {
 "registryArn": "",
 "port": 0,
 "containerName": "",
 "containerPort": 0
 }
],
 "launchType": "EC2",
 "capacityProviderStrategy": [
 {
 "capacityProvider": "",
 "weight": 0,
 "base": 0
 }
],
 "platformVersion": "",
 "scale": {
 "value": null,
 "unit": "PERCENT"
 },
 "clientToken": ""
}

3. When service changes are needed, use the UpdateService, UpdateTaskSet, or
CreateTaskSet API action depending on which parameters you're updating. If you created a
task set, use the scale parameter for each task set in a service to determine how many tasks
to keep running in the service. For example, if you have a service that contains tasksetA and
you create a tasksetB, you might test the validity of tasksetB before wanting to transition
production traffic to it. You could set the scale for both task sets to 100, and when you
were ready to transition all production traffic to tasksetB, you could update the scale for
tasksetA to 0 to scale it down.

Service load balancing

Your Amazon ECS service can optionally be configured to use Elastic Load Balancing to distribute
traffic evenly across the tasks in your service.

Service load balancing 722

Amazon Elastic Container Service Developer Guide

Note

When you use tasks sets, all the tasks in the set must all be configured to use Elastic Load
Balancing or to not use Elastic Load Balancing.

Amazon ECS services hosted on AWS Fargate support the Application Load Balancer and Network
Load Balancer load balancer types. Application Load Balancers are used to route HTTP/HTTPS (or
layer 7) traffic. Network Load Balancers are used to route TCP or UDP (or layer 4) traffic. For more
information, see Load balancer types.

Application Load Balancers offer several features that make them attractive for use with Amazon
ECS services:

• Each service can serve traffic from multiple load balancers and expose multiple load balanced
ports by specifying multiple target groups.

• They are supported by tasks hosted on both Fargate and EC2 instances.

• Application Load Balancers allow containers to use dynamic host port mapping (so that multiple
tasks from the same service are allowed per container instance).

• Application Load Balancers support path-based routing and priority rules (so that multiple
services can use the same listener port on a single Application Load Balancer).

We recommend that you use Application Load Balancers for your Amazon ECS services so that
you can take advantage of these latest features, unless your service requires a feature that is only
available with Network Load Balancers. For more information about Elastic Load Balancing and the
differences between the load balancer types, see the Elastic Load Balancing User Guide.

With your load balancer, you pay only for what you use. For more information, see Elastic Load
Balancing pricing.

Topics

• Load balancer types

• Creating a load balancer

• Registering multiple target groups with a service

Service load balancing 723

https://docs.aws.amazon.com/elasticloadbalancing/latest/userguide/
https://aws.amazon.com/elasticloadbalancing/pricing/
https://aws.amazon.com/elasticloadbalancing/pricing/

Amazon Elastic Container Service Developer Guide

Load balancer types

Elastic Load Balancing supports the following types of load balancers: Application Load Balancers,
and Network Load Balancers. Amazon ECS services can use these types of load balancer.
Application Load Balancers are used to route HTTP/HTTPS (or Layer 7) traffic. Network Load
Balancers and Classic Load Balancers are used to route TCP (or Layer 4) traffic.

Topics

• Application Load Balancer

• Network Load Balancer

• Application Load Balancer and Network Load Balancer considerations

Application Load Balancer

An Application Load Balancer makes routing decisions at the application layer (HTTP/HTTPS),
supports path-based routing, and can route requests to one or more ports on each container
instance in your cluster. Application Load Balancers support dynamic host port mapping. For
example, if your task's container definition specifies port 80 for an NGINX container port, and
port 0 for the host port, then the host port is dynamically chosen from the ephemeral port range
of the container instance (such as 32768 to 61000 on the latest Amazon ECS-optimized AMI).
When the task is launched, the NGINX container is registered with the Application Load Balancer
as an instance ID and port combination, and traffic is distributed to the instance ID and port
corresponding to that container. This dynamic mapping allows you to have multiple tasks from
a single service on the same container instance. For more information, see the User Guide for
Application Load Balancers.

Service load balancing 724

https://docs.aws.amazon.com/elasticloadbalancing/latest/application/
https://docs.aws.amazon.com/elasticloadbalancing/latest/application/

Amazon Elastic Container Service Developer Guide

Network Load Balancer

A Network Load Balancer makes routing decisions at the transport layer (TCP/SSL). It can handle
millions of requests per second. After the load balancer receives a connection, it selects a target
from the target group for the default rule using a flow hash routing algorithm. It attempts to
open a TCP connection to the selected target on the port specified in the listener configuration.
It forwards the request without modifying the headers. Network Load Balancers support dynamic
host port mapping. For example, if your task's container definition specifies port 80 for an NGINX
container port, and port 0 for the host port, then the host port is dynamically chosen from the
ephemeral port range of the container instance (such as 32768 to 61000 on the latest Amazon
ECS-optimized AMI). When the task is launched, the NGINX container is registered with the
Network Load Balancer as an instance ID and port combination, and traffic is distributed to the
instance ID and port corresponding to that container. This dynamic mapping allows you to have
multiple tasks from a single service on the same container instance. For more information, see the
User Guide for Network Load Balancers.

Service load balancing 725

https://docs.aws.amazon.com/elasticloadbalancing/latest/network/

Amazon Elastic Container Service Developer Guide

Application Load Balancer and Network Load Balancer considerations

The following considerations are specific to Amazon ECS services using Application Load Balancers
or Network Load Balancers:

• Amazon ECS requires the service-linked IAM role which provides the permissions needed to
register and deregister targets with your load balancer when tasks are created and stopped. For
more information, see Using service-linked roles for Amazon ECS.

• For services that use an Application Load Balancer or Network Load Balancer, you cannot attach
more than five target groups to a service.

• For services with tasks using the awsvpc network mode, when you create a target group for your
service, you must choose ip as the target type, not instance. This is because tasks that use
the awsvpc network mode are associated with an elastic network interface, not an Amazon EC2
instance.

• If your service uses an Application Load Balancer and requires access to multiple load balanced
ports, such as port 80 and port 443 for an HTTP/HTTPS service, you can configure two listeners.
One listener is responsible for HTTPS that forwards the request to the service, and another
listener that is responsible for redirecting HTTP requests to the appropriate HTTPS port. For
more information, see Create a listener to your Application Load Balancer in the User Guide for
Application Load Balancers.

• Your load balancer subnet configuration must include all Availability Zones that your container
instances reside in.

Service load balancing 726

https://docs.aws.amazon.com/elasticloadbalancing/latest/application/create-listener.html

Amazon Elastic Container Service Developer Guide

• After you create a service, the load balancer configuration can't be changed from the AWS
Management Console. You can use the AWS Copilot, AWS CloudFormation, AWS CLI or SDK
to modify the load balancer configuration for the ECS rolling deployment controller only,
not AWS CodeDeploy blue/green or external. When you add, update, or remove a load
balancer configuration, Amazon ECS starts a new deployment with the updated Elastic Load
Balancing configuration. This causes tasks to register to and deregister from load balancers.
We recommend that you verify this on a test environment before you update the Elastic
Load Balancing configuration. For information about how to modify the configuration, see
UpdateService in the Amazon Elastic Container Service API Reference.

• If a service's task fails the load balancer health check criteria, the task is stopped and restarted.
This process continues until your service reaches the number of desired running tasks.

• When you use a Network Load Balancer configured with IP addresses as targets and Client IP
Preservation disabled, requests are seen as coming from the Network Load Balancers private IP
address. This means that services behind an Network Load Balancer are effectively open to the
world as soon as you allow incoming requests and health checks in the target's security group.

• Using a Network Load Balancer to route UDP traffic to your Amazon ECS tasks on Fargate require
the task to use platform version 1.4.0 (Linux) or 1.0.0 (Windows).

• Minimize errors in your client applications by setting the StopTimeout in the task definition
longer than the target group deregistration delay, which should be longer than your client
connection timeout. See the Builders Library for more information on recommended client
configuration here .

Also, the Network Load Balancer target group attribute for connection termination closes all
remaining connections after the deregistration time. This can cause clients to display undesired
error messages, if the client does not handle them.

• If you are experiencing problems with your load balancer-enabled services, see Troubleshooting
service load balancers.

• Your tasks and load balancer (Application Load Balancer or Network Load Balancer) must be in
the same VPC.

• The Network Load Balancer client IP address preservation is also compatible with Fargate
targets.

• Use a unique target group for each service.

Using the same target group for multiple services might lead to issues during service
deployments.

Service load balancing 727

https://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_UpdateService.html
https://aws.amazon.com/builders-library/timeouts-retries-and-backoff-with-jitter

Amazon Elastic Container Service Developer Guide

Creating a load balancer

This section provides a hands-on introduction to using Elastic Load Balancing through the AWS
Management Console to use with your Amazon ECS services. In this section, you create an external
load balancer that receives public network traffic and routes it to your Amazon ECS container
instances.

Elastic Load Balancing supports the following types of load balancers: Application Load Balancers,
and Network Load Balancers, and Amazon ECS services can use either type of load balancer.
Application Load Balancers are used to route HTTP/HTTPS traffic. Network Load Balancers are used
to route TCP or Layer 4 traffic.

Application Load Balancers offer several features that make them attractive for use with Amazon
ECS services:

• Application Load Balancers allow containers to use dynamic host port mapping (so that multiple
tasks from the same service are allowed per container instance).

• Application Load Balancers support path-based routing and priority rules (so that multiple
services can use the same listener port on a single Application Load Balancer).

We recommend that you use Application Load Balancers for your Amazon ECS services so that you
can take advantage of these latest features. For more information about Elastic Load Balancing and
the differences between the load balancer types, see the Elastic Load Balancing User Guide.

Prior to using a load balancer with your Amazon ECS service, your account must already have the
Amazon ECS service-linked role created. For more information, see Using service-linked roles for
Amazon ECS.

Topics

• Creating an Application Load Balancer

• Creating a Network Load Balancer

Creating an Application Load Balancer

Create an Application Load Balancer in the AWS Management Console. For information about how
to create an Application Load Balancer using the AWS CLI, see Tutorial: Create an Application Load
Balancer using the AWS CLI in the User Guide for Application Load Balancers.

Service load balancing 728

https://docs.aws.amazon.com/elasticloadbalancing/latest/userguide/
https://docs.aws.amazon.com/elasticloadbalancing/latest/application/tutorial-application-load-balancer-cli.html
https://docs.aws.amazon.com/elasticloadbalancing/latest/application/tutorial-application-load-balancer-cli.html

Amazon Elastic Container Service Developer Guide

Configure a target group for routing

In this section, you create a target group for your load balancer and the health check criteria for
targets that are registered within that group.

Each target group is used to route requests to one or more registered targets. When a rule
condition is met, traffic is forwarded to the corresponding target group.

Your load balancer distributes traffic between the targets that are registered to its target groups.
When you associate a target group to an Amazon ECS service, Amazon ECS automatically
registers and deregisters containers with your target group. Because Amazon ECS handles target
registration, you do not add targets to your target group at this time.

To create a target group using the console

1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.

2. On the navigation pane, under LOAD BALANCING, choose Target Groups.

3. Choose Create target group.

4. For Choose a target type,Instances to register targets by instance ID, IP addresses to register
targets by IP address, or Lambda function to register a Lambda function as a target.

Important

If your service's task definition uses the awsvpc network mode (which is required
for the Fargate launch type), you must choose IP addresses as the target type This
is because tasks that use the awsvpc network mode are associated with an elastic
network interface, not an Amazon EC2 instance.

5. For Target group name, enter a name for the target group. This name must be unique per
region per account, can have a maximum of 32 characters, must contain only alphanumeric
characters or hyphens, and must not begin or end with a hyphen.

6. (Optional) For Protocol and Port, modify the default values as needed.

7. If the target type is IP addresses, choose IPv4 as the IP address type, otherwise skip to the
next step.

Note that only targets that have the selected IP address type can be included in this target
group. The IP address type cannot be changed after the target group is created.

Service load balancing 729

https://console.aws.amazon.com/ec2/

Amazon Elastic Container Service Developer Guide

8. For VPC, select a virtual private cloud (VPC). Note that for IP addresses target types, the
VPCs available for selection are those that support the IP address type that you chose in the
previous step.

9. (Optional) For Protocol version, modify the default value as needed.

10. (Optional) In the Health checks section, modify the default settings as needed.

11. If the target type is Lambda function, you can enable health checks by selecting Enable in the
Health checks section.

12. (Optional) Add one or more tags as follows:

a. Expand the Tags section.

b. Choose Add tag.

c. Enter the tag key and the tag value.

13. Choose Next.

14. Choose Create target group.

Define your load balancer

First, provide some basic configuration information for your load balancer, such as a name, a
network, and a listener.

A listener is a process that checks for connection requests. It is configured with a protocol and a
port for the frontend (client to load balancer) connections, and protocol and a port for the backend
(load balancer to backend instance) connections. In this example, you configure a listener that
accepts HTTP requests on port 80 and sends them to the containers in your tasks on port 80 using
HTTP.

To configure your load balancer and listener

1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.

2. In the navigation pane, under Load Balancing, choose Load Balancers.

3. Choose Create Load Balancer.

4. Under Application Load Balancer, choose Create.

5. Under Basic configuration, do the following:

a. For Load balancer name, enter a name for your load balancer. For example, my-nlb.

Service load balancing 730

https://console.aws.amazon.com/ec2/

Amazon Elastic Container Service Developer Guide

The name of your Application Load Balancer must be unique within your set of Application
Load Balancers and Network Load Balancers for the Region. Names can have a maximum
of 32 characters, and can contain only alphanumeric characters and hyphens. They cannot
begin or end with a hyphen, or with internal-.

b. For Scheme, choose Internet-facing or Internal.

An internet-facing load balancer routes requests from clients to targets over the internet.
An internal load balancer routes requests to targets using private IP addresses.

c. For IP address type, choose the IP adressing for the containers subnets.

6. Under Network mapping, do the following:

a. For VPC, select the same VPC that you used for the container instances on which you
intend to run your service.

b. For Mappings, select the Availability Zones to use for your load balancer. If there is one
subnet for that Availability Zone, it is selected. If there is more than one subnet for that
Availability Zone, select one of the subnets. You can select only one subnet per Availability
Zone. Your load balancer subnet configuration must include all Availability Zones that
your container instances reside in.

7. Under Security groups, do the following:

For Security groups, select an existing security group, or create a new one.

The security group for your load balancer must allow it to communicate with registered targets
on both the listener port and the health check port. The console can create a security group
for your load balancer on your behalf with rules that allow this communication. You can also
create a security group and select it instead. For information about how to create a security
group, see Security groups for your Application Load Balancer in Elastic Load Balancing
Application Load Balancers.

(Optional) To create a new security group for your load balancer, choose Create a new security
group.

8. Under Listeners and routing, do the following:

The default listener accepts HTTP traffic on port 80. You can keep the default protocol and
port. For Default action, choose the target group that you created.

Service load balancing 731

https://docs.aws.amazon.com/elasticloadbalancing/latest/application/load-balancer-update-security-groups.html

Amazon Elastic Container Service Developer Guide

You can optionally add an HTTPS listener after you create the load balancer. For information
about how to add the listener, see Add an HTTPS listener in Elastic Load Balancing Application
Load Balancers.

9. (Optional) You can use Add-on services, such as the AWS Global Accelerator to create an
accelerator and associate the load balancer with the accelerator.

The accelerator name can have up to 64 characters. Allowed characters are a-z, A-Z, 0-9, . and
- (hyphen). After the accelerator is created, you can use the AWS Global Accelerator console to
manage it.

10. (Optional) Tag your Application Load Balancer. Under Tag and create, do the following

a. Expand the Tags section.

b. Choose Add tag.

c. Enter the tag key and the tag value.

11. Review your configuration, and choose Create load balancer.

Create a security group rule for your container instances

After your Application Load Balancer has been created, you must add an inbound rule to your
container instance security group that allows traffic from your load balancer to reach the
containers.

To allow inbound traffic from your load balancer to your container instances

1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.

2. In the left navigation, choose Security Groups.

3. Choose the security group that your container instances use. If you created your container
instances by using the Amazon ECS first run wizard, this security group may have the
description, ECS Allowed Ports.

4. Choose the Inbound tab, and then choose Edit inbound rules.

5. For Type, choose All traffic.

6. For Source, choose Custom, and then select the Application Load Balancer security group.

This rule allows all traffic from your Application Load Balancer to reach the containers in your
tasks that are registered with your load balancer.

Service load balancing 732

https://docs.aws.amazon.com/elasticloadbalancing/latest/application/create-https-listener.html#add-https-listener
https://console.aws.amazon.com/ec2/

Amazon Elastic Container Service Developer Guide

7. Choose Save to finish.

Create an Amazon ECS service

After your load balancer and target group are created, you can specify the target group in a service
definition when you create a service. When each task for your service is started, the container and
port combination specified in the service definition is registered with your target group and traffic
is routed from the load balancer to that container. For more information, see Creating a service
using the console.

Creating a Network Load Balancer

Learn how to create an Network Load Balancer in the AWS Management Console.

Configure a target group for routing

In this section, you create a target group for your load balancer and the health check criteria for
targets that are registered within that group.

Each target group is used to route requests to one or more registered targets. When a rule
condition is met, traffic is forwarded to the corresponding target group.

Your load balancer distributes traffic between the targets that are registered to its target groups.
When you associate a target group to an Amazon ECS service, Amazon ECS automatically
registers and deregisters containers with your target group. Because Amazon ECS handles target
registration, you do not add targets to your target group at this time.

To create a target group using the console

1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.

2. On the navigation pane, under LOAD BALANCING, choose Target Groups.

3. Choose Create target group.

4. For Choose a target type,Instances to register targets by instance ID, IP addresses to register
targets by IP address, or Lambda function to register a Lambda function as a target.

Important

If your service's task definition uses the awsvpc network mode (which is required
for the Fargate launch type), you must choose IP addresses as the target type This

Service load balancing 733

https://console.aws.amazon.com/ec2/

Amazon Elastic Container Service Developer Guide

is because tasks that use the awsvpc network mode are associated with an elastic
network interface, not an Amazon EC2 instance.

5. For Target group name, enter a name for the target group. This name must be unique per
region per account, can have a maximum of 32 characters, must contain only alphanumeric
characters or hyphens, and must not begin or end with a hyphen.

6. (Optional) For Protocol and Port, modify the default values as needed.

7. If the target type is IP addresses, choose IPv4 as the IP address type, otherwise skip to the
next step.

Note that only targets that have the selected IP address type can be included in this target
group. The IP address type cannot be changed after the target group is created.

8. For VPC, select a virtual private cloud (VPC). Note that for IP addresses target types, the
VPCs available for selection are those that support the IP address type that you chose in the
previous step.

9. (Optional) For Protocol version, modify the default value as needed.

10. (Optional) In the Health checks section, modify the default settings as needed.

11. (Optional) Add one or more tags as follows:

a. Expand the Tags section.

b. Choose Add tag.

c. Enter the tag key and the tag value.

12. Choose Next.

13. Register your targets with an instance ID or an IP address.

Important

If your service's task definition uses the awsvpc network mode (which is required for
the Fargate launch type), you must choose ip as the target type, not instance. This
is because tasks that use the awsvpc network mode are associated with an elastic
network interface, not an Amazon EC2 instance.
You cannot register instances by instance ID if they have the following instance types:
C1, CC1, CC2, CG1, CG2, CR1, G1, G2, HI1, HS1, M1, M2, M3, and T1. You can register
instances of these types by IP address.

14. Choose Create target group.

Service load balancing 734

Amazon Elastic Container Service Developer Guide

Define your load balancer

First, provide some basic configuration information for your load balancer, such as a name, a
network, and a listener.

A listener is a process that checks for connection requests. It is configured with a protocol and a
port for the frontend (client to load balancer) connections, and protocol and a port for the backend
(load balancer to backend instance) connections.

To create a Network Load Balancer

1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.

2. On the navigation bar, choose a Region for your load balancer. Be sure to choose the same
Region that you used for your EC2 instances.

3. In the navigation pane, under Load Balancing, choose Load Balancers.

4. Choose Create load balancer.

5. For Network Load Balancer, choose Create.

6. For Load balancer name, enter a name for your load balancer. For example, my-nlb.

7. For Scheme, choose Internet-facing or Internal.

An internet-facing load balancer routes requests from clients to targets over the internet. An
internal load balancer routes requires private IP addresses for targets.

8. For IP address type, choose the IP adressing for the containers subnets.

9. For Network mapping, select the VPC that you used for your EC2 instances. For each
Availability Zone that you used to launch your EC2 instances, select the Availability Zone and
then select one public subnet for that Availability Zone.

By default, AWS assigns an IPv4 address to each load balancer node from the subnet for its
Availability Zone. Alternatively, when you create an internet-facing load balancer, you can
select an Elastic IP address for each Availability Zone. This provides your load balancer with
static IP addresses.

10. For Listeners and routing, keep the default protocol and port, and select your target group
from the list. This configures a listener that accepts TCP traffic on port 80 and forwards traffic
to the selected target group by default.

11. For Default action, select the target group that you created.

Service load balancing 735

https://console.aws.amazon.com/ec2/

Amazon Elastic Container Service Developer Guide

12. (Optional) Add tags to categorize your load balancer. Tag keys must be unique for each load
balancer. Allowed characters are letters, spaces, numbers (in UTF-8), and the following special
characters: + - = . _ : / @. Do not use leading or trailing spaces. Tag values are case-sensitive.

13. Review your configuration, and choose Create load balancer.

Create an Amazon ECS service

After your load balancer and target group are created, you can specify the target group in a service
definition when you create a service. When each task for your service is started, the container and
port combination specified in the service definition is registered with your target group and traffic
is routed from the load balancer to that container. For more information, see Creating a service
using the console.

Registering multiple target groups with a service

Your Amazon ECS service can serve traffic from multiple load balancers and expose multiple load
balanced ports when you specify multiple target groups in a service definition.

To create a service specifying multiple target groups, you must create the service using the Amazon
ECS API, SDK, AWS CLI, or an AWS CloudFormation template. After the service is created, you can
view the service and the target groups registered to it with the AWS Management Console. You
must use UpdateService to modify the load balancer configuration of an existing service.

Multiple target groups can be specified in a service definition using the following format. For the
full syntax of a service definition, see Service definition template.

"loadBalancers":[
 {

 "targetGroupArn":"arn:aws:elasticloadbalancing:region:123456789012:targetgroup/
target_group_name_1/1234567890123456",
 "containerName":"container_name",
 "containerPort":container_port
 },
 {

 "targetGroupArn":"arn:aws:elasticloadbalancing:region:123456789012:targetgroup/
target_group_name_2/6543210987654321",
 "containerName":"container_name",
 "containerPort":container_port
 }

Service load balancing 736

https://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_UpdateService.html

Amazon Elastic Container Service Developer Guide

]

Multiple target group considerations

The following should be considered when you specify multiple target groups in a service definition.

• For services that use an Application Load Balancer or Network Load Balancer, you cannot attach
more than five target groups to a service.

• Specifying multiple target groups in a service definition is only supported under the following
conditions:

• The service must use either an Application Load Balancer or Network Load Balancer.

• The service must use the rolling update (ECS) deployment controller type.

• Specifying multiple target groups is supported for services containing tasks using both the
Fargate and EC2 launch types.

• When creating a service that specifies multiple target groups, the Amazon ECS service-linked
role must be created. The role is created by omitting the role parameter in API requests, or the
Role property in AWS CloudFormation. For more information, see Using service-linked roles for
Amazon ECS.

Example service definitions

Following are a few example use cases for specifying multiple target groups in a service definition.
For the full syntax of a service definition, see Service definition template.

Example: Having separate load balancers for internal and external traffic

In the following use case, a service uses two separate load balancers, one for internal traffic and a
second for internet-facing traffic, for the same container and port.

"loadBalancers":[
 //Internal ELB
 {

 "targetGroupArn":"arn:aws:elasticloadbalancing:region:123456789012:targetgroup/
target_group_name_1/1234567890123456",
 "containerName":"nginx",
 "containerPort":8080
 },
 //Internet-facing ELB

Service load balancing 737

Amazon Elastic Container Service Developer Guide

 {

 "targetGroupArn":"arn:aws:elasticloadbalancing:region:123456789012:targetgroup/
target_group_name_2/6543210987654321",
 "containerName":"nginx",
 "containerPort":8080
 }
]

Example: Exposing multiple ports from the same container

In the following use case, a service uses one load balancer but exposes multiple ports from the
same container. For example, a Jenkins container might expose port 8080 for the Jenkins web
interface and port 50000 for the API.

"loadBalancers":[
 {

 "targetGroupArn":"arn:aws:elasticloadbalancing:region:123456789012:targetgroup/
target_group_name_1/1234567890123456",
 "containerName":"jenkins",
 "containerPort":8080
 },
 {

 "targetGroupArn":"arn:aws:elasticloadbalancing:region:123456789012:targetgroup/
target_group_name_2/6543210987654321",
 "containerName":"jenkins",
 "containerPort":50000
 }
]

Example: Exposing ports from multiple containers

In the following use case, a service uses one load balancer and two target groups to expose ports
from separate containers.

"loadBalancers":[
 {

 "targetGroupArn":"arn:aws:elasticloadbalancing:region:123456789012:targetgroup/
target_group_name_1/1234567890123456",

Service load balancing 738

Amazon Elastic Container Service Developer Guide

 "containerName":"webserver",
 "containerPort":80
 },
 {

 "targetGroupArn":"arn:aws:elasticloadbalancing:region:123456789012:targetgroup/
target_group_name_2/6543210987654321",
 "containerName":"database",
 "containerPort":3306
 }
]

Service auto scaling

Automatic scaling is the ability to increase or decrease the desired count of tasks in your Amazon
ECS service automatically. Amazon ECS leverages the Application Auto Scaling service to provide
this functionality. For more information, see the Application Auto Scaling User Guide.

Amazon ECS publishes CloudWatch metrics with your service’s average CPU and memory usage.
For more information, see Service utilization. You can use these and other CloudWatch metrics to
scale out your service (add more tasks) to deal with high demand at peak times, and to scale in
your service (run fewer tasks) to reduce costs during periods of low utilization.

Amazon ECS Service Auto Scaling supports the following types of automatic scaling:

• Target tracking scaling policies— Increase or decrease the number of tasks that your service
runs based on a target value for a specific metric. This is similar to the way that your thermostat
maintains the temperature of your home. You select temperature and the thermostat does the
rest.

• Step scaling policies— Increase or decrease the number of tasks that your service runs based on
a set of scaling adjustments, known as step adjustments, that vary based on the size of the alarm
breach.

• Scheduled scaling—Increase or decrease the number of tasks that your service runs based on the
date and time.

Considerations

When using scaling policies, consider the following:

Service auto scaling 739

https://docs.aws.amazon.com/autoscaling/application/userguide/what-is-application-auto-scaling.html

Amazon Elastic Container Service Developer Guide

• Amazon ECS sends metrics in 1-minute intervals to CloudWatch. Metrics are not available until
the clusters and services send the metrics to CloudWatch, and you cannot create CloudWatch
alarms for metrics that do not exist.

• The scaling policies support a cooldown period. This is the number of seconds to wait for a
previous scaling activity to take effect.

• For scale-out events, the intention is to continuously (but not excessively) scale out. After
Service Auto Scaling successfully scales out using a scaling policy, it starts to calculate the
cooldown time. The scaling policy won't increase the desired capacity again unless either a
larger scale out is initiated or the cooldown period ends. While the scale-out cooldown period
is in effect, the capacity added by the initiating scale-out activity is calculated as part of the
desired capacity for the next scale-out activity.

• For scale-in events, the intention is to scale in conservatively to protect your application's
availability, so scale-in activities are blocked until the cooldown period has expired. However,
if another alarm initiates a scale-out activity during the scale-in cooldown period, Service Auto
Scaling scales out the target immediately. In this case, the scale-in cooldown period stops and
doesn't complete.

• The service scheduler respects the desired count at all times, but as long as you have active
scaling policies and alarms on a service, Service Auto Scaling could change a desired count that
was manually set by you.

• If a service's desired count is set below its minimum capacity value, and an alarm initiates a scale-
out activity, Service Auto Scaling scales the desired count up to the minimum capacity value and
then continues to scale out as required, based on the scaling policy associated with the alarm.
However, a scale-in activity does not adjust the desired count, because it is already below the
minimum capacity value.

• If a service's desired count is set above its maximum capacity value, and an alarm initiates a scale
in activity, Service Auto Scaling scales the desired count out to the maximum capacity value and
then continues to scale in as required, based on the scaling policy associated with the alarm.
However, a scale-out activity does not adjust the desired count, because it is already above the
maximum capacity value.

• During scaling activities, the actual running task count in a service is the value that Service
Auto Scaling uses as its starting point, as opposed to the desired count. This is what processing
capacity is supposed to be. This prevents excessive (runaway) scaling that might not be satisfied,
for example, if there aren't enough container instance resources to place the additional tasks. If
the container instance capacity is available later, the pending scaling activity may succeed, and
then further scaling activities can continue after the cooldown period.

Service auto scaling 740

Amazon Elastic Container Service Developer Guide

• If you want your task count to scale to zero when there's no work to be done, set a minimum
capacity of 0. With target tracking scaling policies, when actual capacity is 0 and the metric
indicates that there is workload demand, Service Auto Scaling waits for one data point to be sent
before scaling out. In this case, it scales out by the minimum possible amount as a starting point
and then resumes scaling based on the actual running task count.

• Application Auto Scaling turns off scale-in processes while Amazon ECS deployments are
in progress. However, scale-out processes continue to occur, unless suspended, during a
deployment. For more information, see Service auto scaling and deployments.

• You have several Application Auto Scaling options for Amazon ECS tasks. Target tracking is the
easiest mode to use. With it, all you need to do is set a target value for a metric, such as CPU
average utilization. Then, the auto scaler automatically manages the number of tasks that are
needed to attain that value. With step scaling you can more quickly react to changes in demand,
because you define the specific thresholds for your scaling metrics, and how many tasks to add
or remove when the thresholds are crossed. And, more importantly, you can react very quickly to
changes in demand by minimizing the amount of time a threshold alarm is in breach.

Service auto scaling and deployments

Application Auto Scaling turns off scale-in processes while Amazon ECS deployments are in
progress. However, scale-out processes continue to occur, unless suspended, during a deployment.
If you want to suspend scale-out processes while deployments are in progress, take the following
steps.

1. Call the describe-scalable-targets command, specifying the resource ID of the service
associated with the scalable target in Application Auto Scaling (Example: service/default/
sample-webapp). Record the output. You will need it when you call the next command.

2. Call the register-scalable-target command, specifying the resource ID, namespace,
and scalable dimension. Specify true for both DynamicScalingInSuspended and
DynamicScalingOutSuspended.

3. After deployment is complete, you can call the register-scalable-target command to resume
scaling.

For more information, see Suspending and resuming scaling for Application Auto Scaling.

Service auto scaling 741

https://docs.aws.amazon.com/cli/latest/reference/application-autoscaling/describe-scalable-targets.html
https://docs.aws.amazon.com/cli/latest/reference/application-autoscaling/register-scalable-target.html
https://docs.aws.amazon.com/cli/latest/reference/application-autoscaling/register-scalable-target.html
https://docs.aws.amazon.com/autoscaling/application/userguide/application-auto-scaling-suspend-resume-scaling.html

Amazon Elastic Container Service Developer Guide

Target tracking scaling policies

With target tracking scaling policies, you select a metric and set a target value. Amazon ECS Service
Auto Scaling creates and manages the CloudWatch alarms that control the scaling policy and
calculates the scaling adjustment based on the metric and the target value. The scaling policy adds
or removes service tasks as required to keep the metric at, or close to, the specified target value. In
addition to keeping the metric close to the target value, a target tracking scaling policy also adjusts
to the fluctuations in the metric due to a fluctuating load pattern and minimizes rapid fluctuations
in the number of tasks running in your service.

Considerations

Consider the following when using target tracking policies:

• A target tracking scaling policy assumes that it should perform scale out when the specified
metric is above the target value. You cannot use a target tracking scaling policy to scale out
when the specified metric is below the target value.

• A target tracking scaling policy does not perform scaling when the specified metric has
insufficient data. It does not perform scale in because it does not interpret insufficient data as
low utilization.

• You may see gaps between the target value and the actual metric data points. This is because
Service Auto Scaling always acts conservatively by rounding up or down when it determines how
much capacity to add or remove. This prevents it from adding insufficient capacity or removing
too much capacity.

• To ensure application availability, the service scales out proportionally to the metric as fast as it
can, but scales in more gradually.

• Application Auto Scaling turns off scale-in processes while Amazon ECS deployments are
in progress. However, scale-out processes continue to occur, unless suspended, during a
deployment. For more information, see Service auto scaling and deployments.

• You can have multiple target tracking scaling policies for an Amazon ECS service, provided that
each of them uses a different metric. The intention of Service Auto Scaling is to always prioritize
availability, so its behavior differs depending on whether the target tracking policies are ready
for scale out or scale in. It will scale out the service if any of the target tracking policies are ready
for scale out, but will scale in only if all of the target tracking policies (with the scale-in portion
turned on) are ready to scale in.

Service auto scaling 742

Amazon Elastic Container Service Developer Guide

• Do not edit or delete the CloudWatch alarms that Service Auto Scaling manages for a target
tracking scaling policy. Service Auto Scaling deletes the alarms automatically when you delete
the scaling policy.

• The ALBRequestCountPerTarget metric for target tracking scaling policies is not supported
for the blue/green deployment type.

For more information about target tracking scaling policies, see Target tracking scaling policies in
the Application Auto Scaling User Guide.

To configure target scaling policies for your Amazon ECS service using the Amazon ECS console

1. In addition to the standard IAM permissions for creating and updating services, you need
additional permissions. For more information, see IAM permissions required for service auto
scaling.

2. You can configure a scaling policy when you create or update a service. For more information,
see one of the following:

• Create a service using defined parameters— Create a new service

• Updating a service using the console— Update an existing service

To configure target scaling policies for your Amazon ECS service using the AWS CLI

1. In addition to the standard IAM permissions for creating and updating services, you need
additional permissions. For more information, see IAM permissions required for service auto
scaling.

2. Register your Amazon ECS service as a scalable target using the register-scalable-target
command.

3. Create a scaling policy using the put-scaling-policy command.

Step scaling policies

With step scaling policies, you specify CloudWatch alarms that initiate the scaling process. For
example, if you want to scale out when CPU utilization reaches a certain level, create an alarm
using the CPUUtilization metric provided. When you create a step scaling policy, you must
specify one of the following scaling adjustment types:

Service auto scaling 743

https://docs.aws.amazon.com/autoscaling/application/userguide/application-auto-scaling-target-tracking.html
https://docs.aws.amazon.com/cli/latest/reference/application-autoscaling/register-scalable-target.html
https://docs.aws.amazon.com/cli/latest/reference/application-autoscaling/put-scaling-policy.html

Amazon Elastic Container Service Developer Guide

• Add – Increase the number of tasks by a specified number of capacity units or a specified
percentage of the current capacity.

• Remove – Decrease the number of tasks by a specified number of capacity units or a specified
percentage of the current capacity.

• Set to - Set the number of tasks to the specified number of capacity units.

For example, suppose that the target capacity and fulfilled capacity are 10 and the scaling policy
adds 1. When the alarm is breached, the automatic scaling process adds 1 to 10 to get 11, so
Amazon ECS launches 1 task for the service.

We strongly recommend that you use target tracking scaling policies to scale on metrics like
average CPU utilization or average request count per target. Metrics that decrease when capacity
increases and increase when capacity decreases can be used to proportionally scale out or in the
number of tasks using target tracking. This helps ensure that Service Auto Scaling follows the
demand curve for your applications closely.

For an overview of step scaling policies and how they work, see Step scaling policies in the
Application Auto Scaling User Guide. After you read this introduction, see the following sections to
learn how to configure step scaling for Amazon ECS using the console and AWS Command Line
Interface.

To configure step scaling policies for your Amazon ECS service using the Amazon ECS console

1. In addition to the standard IAM permissions for creating and updating services, you need
additional permissions. For more information, see IAM permissions required for service auto
scaling.

2. You can configure a scaling policy when you create or update a service. For more information,
see one of the following:

• Create a service using defined parameters— Create a new service

• Updating a service using the console— Update an existing service

To configure step scaling policies for your Amazon ECS service using the AWS CLI

1. In addition to the standard IAM permissions for creating and updating services, you need
additional permissions. For more information, see IAM permissions required for service auto
scaling.

Service auto scaling 744

https://docs.aws.amazon.com/autoscaling/application/userguide/application-auto-scaling-step-scaling-policies.html

Amazon Elastic Container Service Developer Guide

2. Register your Amazon ECS service as a scalable target using the register-scalable-target
command.

3. Create a scaling policy using the put-scaling-policy command.

4. Create an alarm that initiates the scaling policy using the put-metric-alarm command.

Scheduled scaling

With scheduled scaling, you can set up automatic scaling for your application based on predictable
load changes by creating scheduled actions that increase or decrease capacity at specific times.
This allows you to scale your application proactively to match predictable load changes.

These scheduled scaling actions allow you to optimize costs and performance. Your application
has sufficient capacity to handle the mid-week traffic peak, but does not over-provision unneeded
capacity at other times.

You can use scheduled scaling and scaling policies together to get the benefits of proactive
and reactive approaches to scaling. After a scheduled scaling action runs, the scaling policy can
continue to make decisions about whether to further scale capacity. This helps you ensure that you
have sufficient capacity to handle the load for your application. While your application scales to
match demand, current capacity must fall within the minimum and maximum capacity that was set
by your scheduled action.

You can configure schedule scaling using the AWS CLI. For more information about scheduled
scaling, see Scheduled Scaling in the Application Auto Scaling User Guide.

Interconnecting services

Applications that run in Amazon ECS tasks often need to receive connections from the internet or
to connect to other applications that run in Amazon ECS services. If you need external connections
from the internet, we recommend using Elastic Load Balancing. For more information about
integrated load balancing, see the section called “Service load balancing”.

Choosing an interconnection method

If you need an application to connect to other applications that run in Amazon ECS services,
Amazon ECS provides the following ways to do this without a load balancer:

• Amazon ECS Service Connect

Interconnecting services 745

https://docs.aws.amazon.com/cli/latest/reference/application-autoscaling/register-scalable-target.html
https://docs.aws.amazon.com/cli/latest/reference/application-autoscaling/put-scaling-policy.html
https://docs.aws.amazon.com/cli/latest/reference/cloudwatch/put-metric-alarm.html
https://docs.aws.amazon.com/autoscaling/application/userguide/application-auto-scaling-scheduled-scaling.html

Amazon Elastic Container Service Developer Guide

Amazon ECS Service Connect provides management of service-to-service communication as
Amazon ECS configuration. It does this by building both service discovery and a service mesh in
Amazon ECS. This provides the complete configuration inside each Amazon ECS service that you
manage by service deployments, a unified way to refer to your services within namespaces that
doesn't depend on the Amazon VPC DNS configuration, and standardized metrics and logs to
monitor all of your applications on Amazon ECS. Amazon ECS Service Connect only interconnects
Amazon ECS services.

You must configure any cross-VPC connectivity that you want to use with Amazon ECS Service
Connect. There's no additional Amazon VPC or network infrastructure configuration required
for service-to-service communication when using Service Connect beyond the cross-VPC
connectivity. Service Connect configures each task for your applications to discover services.
Service Connect configures DNS names for your services in the task itself, and doesn't require nor
create DNS records in your hosted zones.

For more information, see Service Connect.

• Amazon ECS service discovery

Amazon ECS service discovery integrates services with AWS Cloud Map namespaces to add
entries (specifically, AWS Cloud Map service instances) to the namespace for each task in the
Amazon ECS service. To connect, an app resolves these entries as DNS hostname records or uses
the AWS Cloud Map API to get the IP address of the tasks.

Amazon ECS service discovery can be used with any applications, including UDP connections.
Service discovery doesn't affect the connecting protocol or traffic route.

For more information, see Service discovery

Network mode compatibility table

The following table covers the compatibility between these options and the task network modes.
In the table, "client" refers to the application that's making the connections from inside an Amazon
ECS task.

Interconnecting services 746

Amazon Elastic Container Service Developer Guide

Interconnection Options Bridged awsvpc Host

Service discovery yes, but requires
clients be aware
of SRV records
in DNS without
hostPort.

yes yes, but requires
clients be aware
of SRV records
in DNS without
hostPort.

Service Connect yes yes no

Service Connect

Amazon ECS Service Connect provides management of service-to-service communication as
Amazon ECS configuration. It does this by building both service discovery and a service mesh in
Amazon ECS. This provides the complete configuration inside each Amazon ECS service that you
manage by service deployments, a unified way to refer to your services within namespaces that
doesn't depend on the Amazon VPC DNS configuration, and standardized metrics and logs to
monitor all of your applications on Amazon ECS. Amazon ECS Service Connect only interconnects
Amazon ECS services.

The following diagram shows an example Service Connect network with 2 subnets in the VPC and
2 services. A client service that runs WordPress with 1 task in each subnets. A server service that
runs MySQL with 1 task in each subnet. Both services are highly available and resilient to task
and Availability Zone issues because each service runs multiple tasks that are spread out over 2
subnets. The solid arrows show a connection from WordPress to MySQL. For example, a mysql
--host=mysql CLI command that is run from inside the WordPress container in the task with
the IP address 172.31.16.1. The command uses the short name mysql on the default port for
MySQL. This name and port connects to the Service Connect proxy in the same task. The proxy in
the WordPress task uses round-robin load balancing and any previous failure information in outlier
detection to pick which MySQL task to connect to. As shown by the solid arrows in the diagram,
the proxy connects to the second proxy in the MySQL task with the IP Address 172.31.16.2. The
second proxy connects to the local MySQL server in the same task. Both proxies report connection
performance that is visible in graphs in the Amazon ECS and Amazon CloudWatch consoles so that
you can get performance metrics from all kinds of applications in the same way.

Interconnecting services 747

Amazon Elastic Container Service Developer Guide

Overview of steps to configure Service Connect

Follow these steps to configure Service Connect for a group of related services.

Important

• Amazon ECS Service Connect creates AWS Cloud Map services in your account. Modifying
these AWS Cloud Map resources by manually registering/deregistering instances,
changing instance attributes, or deleting a service may lead to unexpected behaviour for
your application traffic or subsequent deployments.

• Amazon ECS Service Connect doesn't support links in the task definition.

1. Add port names to the port mappings in your task definitions. Additionally, you can identify the
layer 7 protocol of the application, to get additional metrics.

Interconnecting services 748

Amazon Elastic Container Service Developer Guide

2. Create an ECS cluster with a AWS Cloud Map namespace or create the namespace separately.
For simple organization, create an Amazon ECS cluster with the name that you want for the
namespace and specify the identical name for the namespace. In this case, Amazon ECS creates
a new HTTP namespace with the necessary configuration. Amazon ECS Service Connect doesn't
use or create DNS hosted zones in Amazon Route 53.

3. Configure services to create Service Connect endpoints within the namespace.

4. Deploy services to create the endpoints. Amazon ECS adds a Service Connect proxy container
to each task, and creates the Service Connect endpoints in AWS Cloud Map. This container isn't
configured in the task definition, and the task definition can be reused without modification to
create multiple services in the same namespace or in multiple namespaces.

5. Deploy client apps as services to connect to the endpoints. Amazon ECS connects them to the
Service Connect endpoints through the Service Connect proxy in each task.

Applications only use the proxy to connect to Service Connect endpoints. There is no additional
configuration to use the proxy. The proxy performs round-robin load balancing, outlier
detection, and retries. For more information about the proxy, see Service Connect proxy.

6. Monitor traffic through the Service Connect proxy in Amazon CloudWatch.

Regions with Service Connect

Amazon ECS Service Connect is available in the following AWS Regions:

Region Name Region

US East (Ohio) us-east-2

US East (N. Virginia) us-east-1

US West (N. California) us-west-1

US West (Oregon) us-west-2

Africa (Cape Town) af-south-1

Asia Pacific (Hong Kong) ap-east-1

Asia Pacific (Jakarta) ap-southeast-3

Interconnecting services 749

Amazon Elastic Container Service Developer Guide

Region Name Region

Asia Pacific (Mumbai) ap-south-1

Asia Pacific (Hyderabad) ap-south-2

Asia Pacific (Osaka) ap-northeast-3

Asia Pacific (Seoul) ap-northeast-2

Asia Pacific (Singapore) ap-southeast-1

Asia Pacific (Sydney) ap-southeast-2

Asia Pacific (Melbourne) ap-southeast-4

Asia Pacific (Tokyo) ap-northeast-1

Canada (Central) ca-central-1

Canada West (Calgary) ca-west-1

China (Beijing) cn-north-1 (Note: TLS for Service Connect is
not available in this region.)

China (Ningxia) cn-northwest-1 (Note: TLS for Service Connect
is not available in this region.)

Europe (Frankfurt) eu-central-1

Europe (Ireland) eu-west-1

Europe (London) eu-west-2

Europe (Paris) eu-west-3

Europe (Milan) eu-south-1

Europe (Spain) eu-south-2

Europe (Stockholm) eu-north-1

Interconnecting services 750

Amazon Elastic Container Service Developer Guide

Region Name Region

Europe (Zurich) eu-central-2

Israel (Tel Aviv) il-central-1

Middle East (Bahrain) me-south-1

Middle East (UAE) me-central-1

South America (São Paulo) sa-east-1

Service Connect concepts

The Service Connect feature creates a virtual network of related services. The same service
configuration can be used across multiple different namespaces to run independent yet identical
sets of applications. Service Connect defines the proxy container in the Amazon ECS service. This
way, the same task definition can be used to run identical applications in different namespaces
with different Service Connect configurations. Each task that the Amazon ECS service makes runs a
proxy container in the task.

Service Connect is suitable for connections between Amazon ECS services within the same
namespace. For the following applications, you need to use an additional interconnection method
to connect to an Amazon ECS service that is configured with Service Connect:

• Amazon ECS tasks that are configured in other namespaces

• Amazon ECS tasks that aren’t configured for Service Connect

• Other applications outside of Amazon ECS

These applications can connect through the Service Connect proxy but can’t resolve Service
Connect endpoint names.

For these applications to resolve the IP addresses of Amazon ECS tasks, you need to use another
interconnection method. For a list of interconnection methods, see Choosing an interconnection
method.

Service Connect terminology

The following terms are used with Service Connect.

Interconnecting services 751

Amazon Elastic Container Service Developer Guide

port name

The Amazon ECS task definition configuration that assigns a name to a particular port mapping.
This configuration is only used by Amazon ECS Service Connect.

client alias

The Amazon ECS service configuration that assigns the port number that is used in the
endpoint. Additionally, the client alias can assign the DNS name of the endpoint, overriding the
discovery name. If a discovery name isn't provided in the Amazon ECS service, the client alias
name overrides the port name as the endpoint name. For endpoint examples, see the definition
of endpoint. Multiple client aliases can be assigned to an Amazon ECS service. This configuration
is only used by Amazon ECS Service Connect.

discovery name

The optional, intermediate name that you can create for a specified port from the task
definition. This name is used to create a AWS Cloud Map service. If this name isn't provided,
the port name from the task definition is used. Multiple discovery names can be assigned to
a specific port an Amazon ECS service. This configuration is only used by Amazon ECS Service
Connect.

AWS Cloud Map service names must be unique within a namespace. Because of this limitation,
you can have only one Service Connect configuration without a discovery name for a particular
task definition in each namespace.

endpoint

The URL to connect to an API or website. The URL contains the protocol, a DNS name, and the
port. For more information about endpoints in general, see endpoint in the AWS glossary in the
Amazon Web Services General Reference.

Service Connect creates endpoints that connect to Amazon ECS services and configures the
tasks in Amazon ECS services to connect to the endpoints. The URL contains the protocol, a DNS
name, and the port. You select the protocol and port name in the task definition, as the port
must match the application that is inside the container image. In the service, you select each
port by name and can assign the DNS name. If you don't specify a DNS name in the Amazon
ECS service configuration, the port name from the task definition is used by default. For
example, a Service Connect endpoint could be http://blog:80, grpc://checkout:8080,
or http://_db.production.internal:99.

Interconnecting services 752

https://docs.aws.amazon.com/general/latest/gr/glos-chap.html#endpoint

Amazon Elastic Container Service Developer Guide

Service Connect service

The configuration of a single endpoint in an Amazon ECS service. This is a part of the Service
Connect configuration, consisting of a single row in the Service Connect and discovery name
configuration in the console, or one object in the services list in the JSON configuration of
an Amazon ECS service. This configuration is only used by Amazon ECS Service Connect.

For more information, see ServiceConnectService in the Amazon Elastic Container Service API
Reference.

namespace

The short name or full Amazon Resource Name (ARN) of the AWS Cloud Map namespace for
use with Service Connect. The namespace must be in the same AWS Region as the Amazon ECS
service and cluster. The type of namespace in AWS Cloud Map doesn't affect Service Connect.

Service Connect uses the AWS Cloud Map namespace as a logical grouping of Amazon ECS
tasks that talk to one another. Each Amazon ECS service can belong to only one namespace.
The services within a namespace can be spread across different Amazon ECS clusters within
the same AWS Region in the same AWS account. Because each cluster can run tasks of every
operating system, CPU architecture, VPC, and EC2, Fargate, and External types, you can freely
organize your services by any criteria that you choose.

client service

An Amazon ECS service that runs a network client application. This service must have a
namespace configured. Each task in the service can discover and connect to all of the endpoints
in the namespace through a Service Connect proxy container.

If any of your containers in the task need to connect to an endpoint from a service in a
namespace, choose a client service. If a frontend, reverse proxy, or load balancer application
receives external traffic through other methods such as from Elastic Load Balancing, it could use
this type of Service Connect configuration.

client-server service

An Amazon ECS service that runs a network or web service application. This service must have a
namespace and at least one endpoint configured. Each task in the service is reachable by using
the endpoints. The Service Connect proxy container listens on the endpoint name and port to
direct traffic to the app containers in the task.

If any of the containers expose and listen on a port for network traffic, choose a client-server
service. These applications don't need to connect to other client-server services in the same

Interconnecting services 753

https://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_ServiceConnectService.html

Amazon Elastic Container Service Developer Guide

namespace, but the client configuration is configured. A backend, middleware, business tier,
or most microservices would use this type of Service Connect configuration. If you want a
frontend, reverse proxy, or load balancer application to receive traffic from other services
configured with Service Connect in the same namespace, these services should use this type of
Service Connect configuration.

Cluster configuration

You can set a default namespace for Service Connect when you create the cluster or by updating
the cluster. If you specify a namespace name that doesn't exist in the same AWS Region and
account, a new HTTP namespace is created.

If you create a cluster and specify a default Service Connect namespace, the cluster waits in the
PROVISIONING status while Amazon ECS creates the namespace. You can see an attachment in
the status of the cluster that shows the status of the namespace. Attachments aren't displayed by
default in the AWS CLI, you must add --include ATTACHMENTS to see them.

Service Connect service configuration

Service Connect is designed to require the minimum configuration. You need to set a name for
each port mapping that you would like to use with Service Connect in the task definition. In the
service, you need to turn on Service Connect and select a namespace to make a client service. To
make a client-server service, you need to add a single Service Connect service configuration that
matches the name of one of the port mappings. Amazon ECS reuses the port number and port
name from the task definition to define the Service Connect service and endpoint. To override
those values, you can use the other parameters Discovery, DNS, and Port in the console, or
discoveryName and clientAliases, respectively in the Amazon ECS API.

The following example shows each kind of Service Connect configuration being used together
in the same Amazon ECS service. Shell comments are provided, however note that the JSON
configuration used to Amazon ECS services doesn't support comments.

{
 ...
 serviceConnectConfiguration: {
 enabled: true,
 namespace: "internal",
 #config for client services can end here, only these two parameters are
 required.

Interconnecting services 754

Amazon Elastic Container Service Developer Guide

 services: [{
 portName: "http"
 }, #minimal client - server service config can end here.portName must match
 the "name"
 parameter of a port mapping in the task definition. {
 discoveryName: "http-second"
 #name the discoveryName to avoid a Task def port name collision with
 the minimal config in the same Cloud Map namespace
 portName: "http"
 },
 {
 clientAliases: [{
 dnsName: "db",
 port: 81
 }] #use when the port in Task def is not the port that client apps
 use.Client apps can use http: //db:81 to connect
 discoveryName: "http-three"
 portName: "http"
 },
 {
 clientAliases: [{
 dnsName: "db.app",
 port: 81
 }] #use when the port in Task def is not the port that client apps
 use.duplicates are fine as long as the discoveryName is different.
 discoveryName: "http-four"
 portName: "http",
 ingressPortOverride: 99 #If App should also accept traffic directly on
 Task def port.
 }
]
 }
}

Deployment order

When you use Amazon ECS Service Connect, you configure each Amazon ECS service either to
run a server application that receives network requests (client-server service) or to run a client
application that makes the requests (client service).

When you prepare to start using Service Connect, start with a client-server service. You can add a
Service Connect configuration to a new service or an existing service. After you edit and update an

Interconnecting services 755

Amazon Elastic Container Service Developer Guide

Amazon ECS service to add a Service Connect configuration, Amazon ECS creates a Service Connect
endpoint in the namespace. Additionally, Amazon ECS creates a new deployment in the service to
replace the tasks that are currently running.

Existing tasks and other applications can continue to connect to existing endpoints, and external
applications. If a client-server service adds tasks by scaling out, new connections from clients
will be balanced between all of the tasks immediately. If a client-server service is updated, new
connections from clients will be balanced between the tasks of the new version immediately.

Existing tasks can't resolve and connect to the new endpoint. Only new Amazon ECS tasks that
have a Service Connect configuration in the same namespace and that start running after this
deployment can resolve and connect to this endpoint. For example, an Amazon ECS service that
runs a client application must be redeployed to connect to a new database server endpoint. Start
the client deployment after the deployment completes for the server.

This means that the operator of the client application determines when the configuration of their
app changes, even though the operator of the server application can change their configuration
at any time. The list of endpoints in the namespace can change every time that any Amazon ECS
service in the namespace is deployed, but existing tasks and replacement tasks continue to behave
the same as they did after the most recent deployment.

Consider the following examples.

First, assume that you are creating an application that is available to the public internet in a single
AWS CloudFormation template and single AWS CloudFormation stack. The public discovery and
reachability should be created last by AWS CloudFormation, including the frontend client service.
The services need to be created in this order to prevent an time period when the frontend client
service is running and available the public, but a backend isn't. This eliminates error messages
from being sent to the public during that time period. In AWS CloudFormation, you must use the
dependsOn to indicate to AWS CloudFormation that multiple Amazon ECS services can't be made
in parallel or simultaneously. You should add the dependsOn to the frontend client service for
each backend client-server service that the client tasks connect to.

Second, assume that a frontend service exists without Service Connect configuration. The tasks are
connecting to an existing backend service. Add a client-server Service Connect configuration to the
backend service first, using the same name in the DNS or clientAlias that the frontend uses.
This creates a new deployment, so all the deployment rollback detection or AWS Management
Console, AWS CLI, AWS SDKs and other methods to roll back and revert the backend service to the
previous deployment and configuration. If you are satisfied with the performance and behavior

Interconnecting services 756

Amazon Elastic Container Service Developer Guide

of the backend service, add a client or client-server Service Connect configuration to the frontend
service. Only the tasks in the new deployment use the Service Connect proxy that is added to
those new tasks. If you have issues with this configuration, you can roll back and revert to your
previous configuration by using the deployment rollback detection or AWS Management Console,
AWS CLI, AWS SDKs and other methods to roll back and revert the backend service to the previous
deployment and configuration. If you use another service discovery system that is based on DNS
instead of Service Connect, any frontend or client applications begin using new endpoints and
changed endpoint configuration after the local DNS cache expires, commonly taking multiple
hours.

Networking

In the default configuration, the Service Connect proxy listens on the containerPort from
the port mapping in the task definition. You need rules in your security group to allow incoming
(ingress) traffic to this port from the VPC CIDRs, or specifically from subnets where clients will run.

Even if you set a port number in the Service Connect service configuration, this doesn't change the
port for the client-server service that the Service Connect proxy listens on. When you set this port
number, Amazon ECS changes the port of the endpoint that the client services connect to, on the
Service Connect proxy inside those tasks. The proxy in the client service connects to the proxy in
the client-server service using the containerPort.

If you want to change the port that the Service Connect proxy listens on, change the
ingressPortOverride in the Service Connect configuration of the client-server service. If you
change this port number, you must allow inbound traffic on this port in the Amazon VPC security
group that is used by traffic to this service.

Traffic that your applications send to Amazon ECS services configured for Service Connect require
that the Amazon VPC and subnets have route table rules and network ACL rules that allow the
containerPort and ingressPortOverride port numbers that you are using.

You can send traffic between VPCs with Service Connect. You must consider the same requirements
for the route table rules, network ACLs, and security groups as they apply to both VPCs.

For example, two clusters create tasks in different VPCs. A service in each cluster is configured
to use the same namespace. The applications in these two services can resolve every endpoint in
the namespace without any VPC DNS configuration. However, the proxies can't connect unless
the VPC peering, VPC or subnet route tables, and VPC network ACLs allow the traffic on the
containerPort and ingressPortOverride port numbers you are using

Interconnecting services 757

Amazon Elastic Container Service Developer Guide

Service Connect proxy

If you create or update an Amazon ECS service with Service Connect configuration, Amazon ECS
adds a new container to each new task as it is started. This pattern of using a separate container
is called a sidecar. This container isn't present in the task definition and you can't configure it.
Amazon ECS manages the configuration of this container in the Amazon ECS service. Because of
this, you can reuse the same task definitions between multiple Amazon ECS services, namespaces,
and you can run tasks without Service Connect also.

Proxy resources

• The task CPU and memory limits are the only parameters that you need to configure for this
container in the task definition. The only parameter you need to configure for this container
in the Amazon ECS service is the log configuration, which you'll find in the Service Connect
configuration. For more information about Service Connect configuration, see Service Connect
service configuration.

• The task definition must set the task memory limit to use Service Connect. The additional
CPU and memory in the task limits that you don't allocate in the container limits in your other
containers are used by the Service Connect proxy container and other containers that don't set
container limits.

• We recommend adding 256 CPU units and at least 64 MiB of memory to your task CPU and
memory for the Service Connect proxy container. On AWS Fargate, the lowest amount of
memory that you can set is 512 MiB of memory. On Amazon EC2, task memory is optional, but it
is required for Service Connect.

• If you expect tasks in this service to receive more than 500 requests per second at their peak
load, we recommend adding 512 CPU units to your task CPU in this task definition for the
Service Connect proxy container.

• If you expect to create more than 100 Service Connect services in the namespace or 2000 tasks
in total across all Amazon ECS services within the namespace, we recommend adding 128 MiB
of memory to your task memory for the Service Connect proxy container. You should do this in
every task definition that is used by all of the Amazon ECS services in the namespace.

Proxy configuration

Your applications connect to the proxy in the sidecar container in the same task as the application
is in. Amazon ECS configures the task and containers so that applications only connect to the
proxy if the application is connecting to the endpoint names in the same namespace. All other

Interconnecting services 758

Amazon Elastic Container Service Developer Guide

traffic doesn't use the proxy. The other traffic includes IP addresses in the same VPC, AWS service
endpoints, and external traffic.

Load balancing

Service Connect configures the proxy to use the round-robin strategy for load balancing
between the tasks in a Service Connect endpoint. The local proxy that is in the task where the
connection comes from, picks one of the tasks in the client-server service that provides the
endpoint.

For example, consider a task that runs WordPress in an Amazon ECS service that is configured
as a client service in a namespace called local. There is another service with 2 tasks that
run the MySQL database. This service is configured to provide an endpoint called mysql
through Service Connect in the same namespace. In the WordPress task, the WordPress
application connects to the database using the endpoint name. Because of the Service Connect
configuration, connections to this name go to the proxy that runs in a sidecar container in the
same task. Then, the proxy can connect to either of the MySQL tasks using the round-robin
strategy.

Load balancing strategies: round-robin

Outlier detection

This feature uses data that the proxy has about prior failed connections to avoid sending new
connections to the hosts that had the failed connections. Service Connect configures the outlier
detection feature of the proxy to provide passive health checks.

For example, consider a task that runs WordPress in an Amazon ECS service that is configured
as a client service in a namespace called local. There is another service with 2 tasks that run
the MySQL database. This service is configured to provide an endpoint called mysql through
Service Connect in the same namespace. In the WordPress task, the WordPress application
connects to the proxy that runs in a sidecar container in the same task. The proxy can connect
to either of the MySQL tasks. If the proxy made multiple connections to a specific MySQL task,
and 5 or more of the connections failed in the last 30 seconds, then the proxy avoids that
MySQL task for 30 to 300 seconds.

Retries

Service Connect configures the proxy to retry connection that pass through the proxy and fail,
and the second attempt avoids using the host from the previous connection. This ensures that
each connection through Service Connect doesn't fail for one-off reasons.

Interconnecting services 759

Amazon Elastic Container Service Developer Guide

Number of retries: 2

Timeout

Service Connect configures the proxy to wait a maximum time for your client-server
applications to respond. The default timeout value is 15 seconds, but it can be updated.

Optional parameters:

idleTimeout ‐ The amount of time in seconds a connection will stay active while idle. A value of
0 disables idleTimeout.

The idleTimeout default for HTTP/HTTP2/GRPC is 5 minutes.

The idleTimeout default for TCP is 1 hour.

perRequestTimeout ‐ The amount of time waiting for the upstream to respond with a complete
response per request. A value of 0 disables perRequestTimeout. Can only be set when the
appProtocol for application container is HTTP/HTTP2/GRPC. The default is 15 seconds.

Note

If idleTimeout is set to a time that is less than perRequestTimeout, the connection
will close when the idleTimeout is reached and not the perRequestTimeout.

Service Connect considerations

• Windows containers aren't supported with Service Connect.

• Tasks that run in Fargate must use the Fargate Linux platform version 1.4.0 or higher to use
Service Connect.

• The ECS agent version on the container instance must be 1.67.2 or higher.

• Container instances must run the Amazon ECS-optimized Amazon Linux 2023 AMI version
20230428 or later, or Amazon ECS-optimized Amazon Linux 2 AMI version 2.0.20221115 to
use Service Connect. These versions have the Service Connect agent in addition to the Amazon
ECS container agent. For more information about the Service Connect agent, see Amazon ECS
Service Connect Agent on GitHub.

• Container instances must have the ecs:Poll permission for the resource
arn:aws:ecs:region:0123456789012:task-set/cluster/*. If you are
using the ecsInstanceRole, you don't need to add additional permissions. The

Interconnecting services 760

https://github.com/aws/amazon-ecs-service-connect-agent
https://github.com/aws/amazon-ecs-service-connect-agent

Amazon Elastic Container Service Developer Guide

AmazonEC2ContainerServiceforEC2Role managed policy has the necessary permissions.
For more information, see Amazon ECS container instance IAM role.

• External container instance for Amazon ECS Anywhere aren't supported with Service Connect.

• Only services that use rolling deployments are supported with Service Connect. Services that use
the blue/green and external deployment types aren’t supported.

• Task definitions must set the task memory limit to use Service Connect. For more information,
see Service Connect proxy.

• Task definitions that set container memory limits for all containers instead of setting the task
memory limit aren't supported.

You can set container memory limits on your containers, but you must set the task memory
limit to a number greater than the sum of the container memory limits. The additional CPU
and memory in the task limits that aren't allocated in the container limits are used by the
Service Connect proxy container and other containers that don't set container limits. For more
information, see Service Connect proxy.

• You can configure Service Connect in a service to use any AWS Cloud Map namespace in the
same AWS Region in the same AWS account.

• Each Amazon ECS service can belong to only one namespace.

• Only the tasks that Amazon ECS services create are supported. Standalone tasks can't be
configured for Service Connect.

• All endpoints must be unique within a namespace.

• All discovery names must be unique within a namespace.

• Existing services must be redeployed before the applications in them can resolve new endpoints.
New endpoints that are added to the namespace after the most recent deployment won't be
added to the task configuration. For more information, see the section called “Deployment
order”.

• You can create a namespace when creating a new cluster. Amazon ECS Service Connect doesn't
delete namespaces when clusters are deleted. You must delete namespaces directly in AWS
Cloud Map if you are done using them.

• Service Connect doesn't support HTTP 1.0.

Service Connect console experience

To create a new namespace, either create a new Amazon ECS cluster using the Amazon ECS console
and specify a namespace name to create, or use the AWS Cloud Map console. Amazon ECS Service

Interconnecting services 761

Amazon Elastic Container Service Developer Guide

Connect can use any instance discovery type of AWS Cloud Map namespace. We recommend the
API calls type to make the minimum amount of additional resources. To create a new Amazon
ECS cluster and namespace in the Amazon ECS console, see Creating a cluster for the Fargate and
External launch type using the console.

Every AWS Cloud Map namespace in this AWS account in the selected AWS Region is displayed in
the Namespaces in the Amazon ECS console.

To delete a namespace, use the AWS Cloud Map console. A namespace must be empty before it can
be deleted.

To create a new Amazon ECS task definition, or register a new revision to an existing task definition
and use Service Connect, see Creating a task definition using the console.

To create a new Amazon ECS service that uses Service Connect, see Creating a service using the
console.

Service Connect pricing

Amazon ECS Service Connect pricing depends on whether you use AWS Fargate or Amazon EC2
infrastructure to host your containerized workloads. When using Amazon ECS on AWS Outposts,
the pricing follows the same model that's used when you use Amazon EC2 directly. For more
information, see Amazon ECS Pricing.

AWS Cloud Map usage is completely free, when it’s consumed through Amazon ECS Service
Connect.

TLS with Service Connect

Amazon ECS Service Connect supports automatic traffic encryption with Transport Layer Security
(TLS) certificates for Amazon ECS services. When you point your Amazon ECS services toward an
AWS Private Certificate Authority (AWS Private CA), Amazon ECS automatically provisions TLS
certificates to encrypt traffic between your Amazon ECS Service Connect services. Amazon ECS
generates, rotates, and distributes TLS certificates used for traffic encryption.

Automatic traffic encryption with Amazon ECS Service Connect uses industry-leading encryption
capabilities to secure your inter-service communication that helps you meet your security
requirements. It supports AWS Private Certificate Authority TLS certificates with 256-bit ECDSA
and 2048-bit RSA encryption. By default, TLS 1.3 is supported, but TLS 1.0 - 1.2 are not

Interconnecting services 762

https://aws.amazon.com/ecs/pricing
https://docs.aws.amazon.com/privateca/latest/userguide/PcaWelcome.html

Amazon Elastic Container Service Developer Guide

supported. You also have full control over private certificates and signing keys to help you meet
compliance requirements.

Note

Only inbound and outbound traffic passing though the Amazon ECS Service Connect Agent
is encrypted.

AWS Private Certificate Authority certificates and Service Connect

AWS Private Certificate Authority modes for Service Connect

AWS Private Certificate Authority can run in two modes: general purpose and short-lived.

• General purpose ‐ Certificates that can be configured with any expiration date.

• Short-lived ‐ Certificates with a maximum validity of seven days.

While Amazon ECS supports both modes, we recommend using short-lived certificates. By default,
certificates rotate every five days, and running in short-lived mode offers significant cost savings
over general purpose.

Service Connect doesn't support certificate revocation and instead leverages short-lived certificates
with frequent certificate rotation. You have the authority to modify the rotation frequency, disable,
or delete the secrets using managed rotation in Secrets Manager, but doing so can come with the
following possible consequences.

• Shorter Rotation Frequency ‐ A shorter rotation frequency incurs higher costs due to AWS Private
CA, AWS KMS and Secrets Manager, and Auto Scaling experiencing an increased workload for
rotation.

• Longer Rotation Frequency ‐ Your applications’ communications fail if the rotation frequency
exceeds seven days.

• Deletion of Secret ‐ Deleting the secret results in rotation failure and impacts customer
application communications.

In the event of your secret rotation failing, a RotationFailed event is published in AWS
CloudTrail. You can also set up a CloudWatch Alarm for RotationFailed.

Interconnecting services 763

https://docs.aws.amazon.com/secretsmanager/latest/userguide/rotate-secrets_managed.html
https://docs.aws.amazon.com/secretsmanager/latest/userguide/intro.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-user-guide.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-user-guide.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/AlarmThatSendsEmail.html

Amazon Elastic Container Service Developer Guide

Subordinate Certificate Authorities

You can bring any AWS Private CA, root or subordinate, to Amazon ECS Service Connect TLS to
issue end-entity certificates for the services. The provided issuer is treated as the signer and root of
trust everywhere. You can issue end-entity certificates for different parts of your application from
different subordinate CAs. When using the AWS CLI, provide the Amazon Resource Name (ARN) of
the CA to establish the trust chain.

On-premises Certificate Authorities

To use your on-premises CA, you create and configure a subordinate CA in AWS Private Certificate
Authority. This ensures all TLS certificates issued for your Amazon ECS workloads share the trust
chain with the workloads you run on premises and are able to securely connect.

Important

Please add the required tag AmazonECSManaged : true in your AWS Private CA.

AmazonECSInfrastructureRolePolicyForServiceConnectTransportLayerSecurity IAM policy

Amazon ECS provides a new managed resource trust policy that outlines the set of
permissions required for issuing certificates. For more information about this new policy, see
AmazonECSInfrastructureRolePolicyForServiceConnectTransportLayerSecurity in the AWS
managed policies for Amazon ECS.

Service Connect and AWS Key Management Service

You can use AWS Key Management Service to encrypt and decrypt your Service Connect resources.
AWS KMS is a service managed by AWS where you can make and manage cryptographic keys that
protect your data.

When using AWS KMS with Service Connect, you can either choose to use an AWS owned key that
AWS manages for you, or you can choose an existing AWS KMS key. You can also create a new AWS
KMS key to use.

Providing your own encryption key

You can provide your own key materials, or you can use an external key store through AWS Key
Management Service Import your own key into AWS KMS, and then specify the Amazon Resource
Name (ARN) of that key in Amazon ECS Service Connect.

Interconnecting services 764

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/security-iam-awsmanpol.html#security-iam-awsmanpol-AmazonECSInfrastructureRolePolicyForServiceConnectTransportLayerSecurity
https://docs.aws.amazon.com/kms/latest/developerguide/overview.html
https://docs.aws.amazon.com/kms/latest/developerguide/create-keys.html#create-symmetric-cmk
https://docs.aws.amazon.com/kms/latest/developerguide/create-keys.html#create-symmetric-cmk

Amazon Elastic Container Service Developer Guide

The following is an example AWS KMS policy. Replace the red values with your own.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "id",
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::111122223333:role/role-name"
 },
 "Action": [
 "kms:Encrypt",
 "kms:Decrypt",
 "kms:GenerateDataKey",
 "kms:GenerateDataKeyPair"
],
 "Resource": "*"
 }
]
}

For more information about key policies, see Creating a key policy in the AWS Key Management
Service Developer Guide.

Note

Service Connect supports only symmetric encryption AWS KMS keys. You can't use
any other type of AWS KMS key to encrypt your Service Connect resources. For help
determining whether a AWS KMS key is a symmetric encryption key, see Identifying
symmetric and asymmetric AWS KMS keys.

For more information on AWS Key Management Service symmetric encryption keys, see Symmetric
encryption AWS KMS keys in the AWS Key Management Service Developer Guide.

Enable TLS with Service Connect

You enable traffic encryption when you create or update a Service Connect service.

Interconnecting services 765

https://docs.aws.amazon.com/kms/latest/developerguide/key-policy-overview.html
https://docs.aws.amazon.com/kms/latest/developerguide/find-symm-asymm.html
https://docs.aws.amazon.com/kms/latest/developerguide/find-symm-asymm.html
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#symmetric-cmks
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#symmetric-cmks

Amazon Elastic Container Service Developer Guide

To enable traffic encryption for a service in an existing namespace using the AWS Management
Console

1. Choose the Namespace with the Service you'd like to enable traffic encryption for.

2. Choose the Service you'd like to enable traffic encryption for.

3. Choose Update Service in the top right corner and scroll down to the Service Connect section.

4. Choose Turn on traffic encryption under your service information to enable TLS.

5. For Service Connect TLS role, choose an existing role or to create a new one.

6. For Signer certificate authority, choose an existing certificate authority or to create a new
one.

7. For Choose an AWS KMS key, choose an AWS owned and managed key or you can choose a
different key. You can also choose to create a new one.

For an example of using the AWS CLI to configure TLS for your service, see Tutorial: Using Service
Connect in Fargate with the AWS CLI.

Verify TLS is enabled

Service Connect initiates TLS at the Service Connect agent and terminates it at the destination
agent. As a result, the application code never sees TLS interactions. In order to verify that TLS is
enabled, you can use the following steps.

1. Ensure your application image has the openssl CLI.

2. Enable ECS Exec on your services to connect to your tasks via SSM. Alternately, you can spin up
an Amazon EC2 instance in the same Amazon VPC as the service.

3. Retrieve the IP and port of a task from a service that you want to verify. For example, if your
redis service has TLS turned on, you can retrieve its task IP by navigating to AWS Cloud Map,
finding the service, and looking at the IP and port of one instance.

Interconnecting services 766

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/create-service-connect.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/create-service-connect.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/ecs-exec.html

Amazon Elastic Container Service Developer Guide

4. Log on to any of your Amazon ECS tasks using execute-command like in the following
example. Alternately, log on to the Amazon EC2 instance created in Step 2.

$ aws ecs execute-command --cluster cluster-name \
 --task < TASK_ID> \
 --container app \
 --interactive \
 --command "/bin/sh"

Note

Calling the DNS name directly does not reveal the certificate.

5. In the connected shell, use the openssl CLI to verify and view the certificate attached to the
task.

Example:

openssl s_client -connect 10.0.147.43:6379 < /dev/null 2> /dev/null \
| openssl x509 -noout -text

Example response:

Certificate:
 Data:
 Version: 3 (0x2)
 Serial Number:
 <serial-number>
 Signature Algorithm: ecdsa-with-SHA256
 Issuer: <issuer>
 Validity
 Not Before: Jan 23 21:38:12 2024 GMT
 Not After : Jan 30 22:38:12 2024 GMT
 Subject: <subject>
 Subject Public Key Info:
 Public Key Algorithm: id-ecPublicKey
 Public-Key: (256 bit)
 pub:
 <pub>
 ASN1 OID: prime256v1
 NIST CURVE: P-256

Interconnecting services 767

Amazon Elastic Container Service Developer Guide

 X509v3 extensions:
 X509v3 Subject Alternative Name:
 DNS:redis.yelb-cftc
 X509v3 Basic Constraints:
 CA:FALSE
 X509v3 Authority Key Identifier:
 keyid:<key-id>

 X509v3 Subject Key Identifier:
 1D:<id>
 X509v3 Key Usage: critical
 Digital Signature, Key Encipherment
 X509v3 Extended Key Usage:
 TLS Web Server Authentication, TLS Web Client Authentication
 Signature Algorithm: ecdsa-with-SHA256
 <hash>

Service Connect parameters

The following parameters have extra fields when using Service Connect.

Parameter location App type Description Required?

Task definition Client There are no changes available for
Service Connect in client task definitio
ns.

N/A

Task definition Client-se
rver

Servers must add name fields to ports
in the portMappings of containers.
For more information, see portMappi
ngs

Yes

Task definition Client-se
rver

Servers can optionally provide an
application protocol (for example,
HTTP) to receive protocol-specific
metrics for their server applications (for
example, HTTP 5xx).

No

Service definition Client Client services must add a serviceCo
nnectConfiguration to

Yes

Interconnecting services 768

Amazon Elastic Container Service Developer Guide

Parameter location App type Description Required?

configure the namespace to join. This
namespace must contain all of the
server services that this service needs
to discover. For more information, see
serviceConnectConfiguration

.

Service definition Client-se
rver

Server services must add a serviceCo
nnectConfiguration to
configure the DNS names, port
numbers, and namespace that
the service is available from. For
more information, see serviceCo
nnectConfiguration .

Yes

Cluster Client Clusters can add a default Service
Connect namespace. New services
in the cluster inherit the namespace
when Service Connect is configured in
a service. For more information, see
Amazon ECS clusters.

No

Cluster Client-se
rver

There are no changes available for
Service Connect in clusters that apply
to server services. Server task definitio
ns and services must set the respective
configuration.

N/A

Using Service Connect in Fargate with the AWS CLI

The following tutorial shows how to create an Amazon ECS service containing a Fargate task that
uses Service Connect with the AWS CLI.

Amazon ECS supports the Service Connect feature in the AWS Regions listed in Regions with
Service Connect.

Interconnecting services 769

Amazon Elastic Container Service Developer Guide

Prerequisites

This tutorial assumes that the following prerequisites have been completed:

• The latest version of the AWS CLI is installed and configured. For more information, see Installing
the AWS Command Line Interface.

• The steps in Set up to use Amazon ECS have been completed.

• Your AWS user has the required permissions specified in the AmazonECS_FullAccess IAM policy
example.

• You have a VPC, subnet, route table, and security group created to use. For more information,
see the section called “Create a virtual private cloud”.

• You have a task execution role with the name ecsTaskExecutionRole and the
AmazonECSTaskExecutionRolePolicy managed policy is attached to the role. This
role allows Fargate to write the NGINX application logs and Service Connect proxy logs
to Amazon CloudWatch Logs. For more information, see Creating the task execution
(ecsTaskExecutionRole) role.

Step 1: Create the Amazon ECS cluster

Use the following steps to create your Amazon ECS cluster and namespace.

To create the Amazon ECS cluster and AWS Cloud Map namespace

1. Create an Amazon ECS cluster named tutorial to use. The parameter --service-
connect-defaults sets the default namespace of the cluster. In the example output, a
AWS Cloud Map namespace of the name service-connect doesn't exist in this account and
AWS Region, so the namespace is created by Amazon ECS. The namespace is made in AWS
Cloud Map in the account, and is visible with all of the other namespaces, so use a name that
indicates the purpose.

aws ecs create-cluster --cluster-name tutorial --service-connect-defaults
 namespace=service-connect

Output:

{
 "cluster": {
 "clusterArn": "arn:aws:ecs:us-west-2:123456789012:cluster/tutorial",

Interconnecting services 770

https://docs.aws.amazon.com/cli/latest/userguide/install-cliv2.html
https://docs.aws.amazon.com/cli/latest/userguide/install-cliv2.html

Amazon Elastic Container Service Developer Guide

 "clusterName": "tutorial",
 "serviceConnectDefaults": {
 "namespace": "arn:aws:servicediscovery:us-
west-2:123456789012:namespace/ns-EXAMPLE"
 },
 "status": "PROVISIONING",
 "registeredContainerInstancesCount": 0,
 "runningTasksCount": 0,
 "pendingTasksCount": 0,
 "activeServicesCount": 0,
 "statistics": [],
 "tags": [],
 "settings": [
 {
 "name": "containerInsights",
 "value": "disabled"
 }
],
 "capacityProviders": [],
 "defaultCapacityProviderStrategy": [],
 "attachments": [
 {
 "id": "a1b2c3d4-5678-90ab-cdef-EXAMPLE11111",
 "type": "sc",
 "status": "ATTACHING",
 "details": []
 }
],
 "attachmentsStatus": "UPDATE_IN_PROGRESS"
 }
}
}

2. Verify that the cluster is created:

aws ecs describe-clusters --clusters tutorial

Output:

{
 "clusters": [
 {
 "clusterArn": "arn:aws:ecs:us-west-2:123456789012:cluster/tutorial",

Interconnecting services 771

Amazon Elastic Container Service Developer Guide

 "clusterName": "tutorial",
 "serviceConnectDefaults": {
 "namespace": "arn:aws:servicediscovery:us-
west-2:123456789012:namespace/ns-EXAMPLE"
 },
 "status": "ACTIVE",
 "registeredContainerInstancesCount": 0,
 "runningTasksCount": 0,
 "pendingTasksCount": 0,
 "activeServicesCount": 0,
 "statistics": [],
 "tags": [],
 "settings": [],
 "capacityProviders": [],
 "defaultCapacityProviderStrategy": []
 }
],
 "failures": []
}

3. (Optional) Verify that the namespace is created in AWS Cloud Map. You can use the AWS
Management Console or the normal AWS CLI configuration as this is created in AWS Cloud
Map.

For example, use the AWS CLI:

aws servicediscovery --region us-west-2 get-namespace --id ns-EXAMPLE

Output:

{
 "Namespace": {
 "Id": "ns-EXAMPLE",
 "Arn": "arn:aws:servicediscovery:us-west-2:123456789012:namespace/ns-
EXAMPLE",
 "Name": "service-connect",
 "Type": "HTTP",
 "Properties": {
 "DnsProperties": {
 "SOA": {}
 },

Interconnecting services 772

Amazon Elastic Container Service Developer Guide

 "HttpProperties": {
 "HttpName": "service-connect"
 }
 },
 "CreateDate": 1661749852.422,
 "CreatorRequestId": "service-connect"
 }
}

Step 2: Create the Amazon ECS service for the server

The Service Connect feature is intended for interconnecting multiple applications on Amazon ECS.
At least one of those applications needs to provide a web service to connect to. In this step, you
create:

• The task definition that uses the unmodified official NGINX container image and includes Service
Connect configuration.

• The Amazon ECS service definition that configures Service Connect to provide service discovery
and service mesh proxying for traffic to this service. The configuration reuses the default
namespace from the cluster configuration to reduce the amount of service configuration that
you make for each service.

• The Amazon ECS service. It runs one task using the task definition, and inserts an additional
container for the Service Connect proxy. The proxy listens on the port from the container port
mapping of the task definition. In a client application running in Amazon ECS, the proxy in the
client task listens for outbound connections to the task definition port name, service discovery
name or service client alias name, and the port number from the client alias.

To create the web service with Amazon ECS Service Connect

1. Register a task definition that's compatible with Fargate and uses the awsvpc network mode.
Follow these steps:

a. Create a file that's named service-connect-nginx.json with the contents of the
following task definition.

This task definition configures Service Connect by adding name and appProtocol
parameters to the port mapping. The port name makes this port more identifiable in the

Interconnecting services 773

Amazon Elastic Container Service Developer Guide

service configuration when multiple ports are used. The port name is also used by default
as the discoverable name for use by other applications in the namespace.

The task definition contains the task IAM role because the service has ECS Exec enabled.

Important

This task definition uses a logConfiguration to send the nginx output from
stdout and stderr to Amazon CloudWatch Logs. This task execution role doesn't
have the extra permissions required to make the CloudWatch Logs log group.
Create the log group in CloudWatch Logs using the AWS Management Console
or AWS CLI. If you don't want to send the nginx logs to CloudWatch Logs you can
remove the logConfiguration.
Replace the AWS account id in the execution role with your AWS account id.

{
 "family": "service-connect-nginx",
 "executionRoleArn": "arn:aws:iam::123456789012:role/ecsTaskExecutionRole",
 "taskRoleArn": "arn:aws:iam::123456789012:role/ecsTaskRole",
 "networkMode": "awsvpc",
 "containerDefinitions": [
 {
 "name": "webserver",
 "image": "public.ecr.aws/docker/library/nginx:latest",
 "cpu": 100,
 "portMappings": [
 {
 "name": "nginx",
 "containerPort": 80,
 "protocol": "tcp",
 "appProtocol": "http"
 }
],
 "essential": true,
 "logConfiguration": {
 "logDriver": "awslogs",
 "options": {
 "awslogs-group": "/ecs/service-connect-nginx",
 "awslogs-region": "region",

Interconnecting services 774

Amazon Elastic Container Service Developer Guide

 "awslogs-stream-prefix": "nginx"
 }
 }
 }
],
 "cpu": "256",
 "memory": "512"
}

b. Register the task definition using the service-connect-nginx.json file:

aws ecs register-task-definition --cli-input-json file://service-connect-
nginx.json

2. Create an ECS service by following these steps:

a. Create a file that's named service-connect-nginx-service.json with the contents
of the Amazon ECS service that you're creating. This example uses the task definition that
was created in the previous step. An awsvpcConfiguration is required because the
example task definition uses the awsvpc network mode.

When you create the ECS service, specify the Fargate launch type, and the LATEST
platform version that supports Service Connect. The securityGroups and subnets
must belong to a VPC that has the requirements for using Amazon ECS. You can obtain
the security group and subnet IDs from the Amazon VPC Console.

This service configures Service Connect by adding the serviceConnectConfiguration
parameter. The namespace is not required because the cluster has a default namespace
configured. Client applications running in ECS in the namespace connect to this service
by using the portName and the port in the clientAliases. For example, this service
is reachable using http://nginx:80/, as nginx provides a welcome page in the root
location /. External applications that are not running in Amazon ECS or are not in the
same namespace can reach this application through the Service Connect proxy by using
the IP address of the task and the port number from the task definition. For your tls
configuration, add the certificate arn for your awsPcaAuthorityArn, your kmsKey, and
roleArn of your IAM role.

This service uses a logConfiguration to send the service connect proxy output from
stdout and stderr to Amazon CloudWatch Logs. This task execution role doesn't

Interconnecting services 775

Amazon Elastic Container Service Developer Guide

have the extra permissions required to make the CloudWatch Logs log group. Create
the log group in CloudWatch Logs using the AWS Management Console or AWS CLI.
We recommend that you create this log group and store the proxy logs in CloudWatch
Logs. If you don't want to send the proxy logs to CloudWatch Logs you can remove the
logConfiguration.

{
 "cluster": "tutorial",
 "deploymentConfiguration": {
 "maximumPercent": 200,
 "minimumHealthyPercent": 0
 },
 "deploymentController": {
 "type": "ECS"
 },
 "desiredCount": 1,
 "enableECSManagedTags": true,
 "enableExecuteCommand": true,
 "launchType": "FARGATE",
 "networkConfiguration": {
 "awsvpcConfiguration": {
 "assignPublicIp": "ENABLED",
 "securityGroups": [
 "sg-EXAMPLE"
],
 "subnets": [
 "subnet-EXAMPLE",
 "subnet-EXAMPLE",
 "subnet-EXAMPLE"
]
 }
 },
 "platformVersion": "LATEST",
 "propagateTags": "SERVICE",
 "serviceName": "service-connect-nginx-service",
 "serviceConnectConfiguration": {
 "enabled": true,
 "services": [
 {
 "portName": "nginx",
 "clientAliases": [
 {

Interconnecting services 776

Amazon Elastic Container Service Developer Guide

 "port": 80
 }
],
 "tls": {
 "issuerCertificateAuthority": {
 "awsPcaAuthorityArn": "certificateArn"
 },
 "kmsKey": "kmsKey",
 "roleArn": "iamRoleArn"
 }
 }
],
 "logConfiguration": {
 "logDriver": "awslogs",
 "options": {
 "awslogs-group": "/ecs/service-connect-proxy",
 "awslogs-region": "region",
 "awslogs-stream-prefix": "service-connect-proxy"
 }
 }
 },
 "taskDefinition": "service-connect-nginx"
}

b. Create an ECS service using the service-connect-nginx-service.json file:

aws ecs create-service --cluster tutorial --cli-input-json file://service-
connect-nginx-service.json

Output:

{
 "service": {
 "serviceArn": "arn:aws:ecs:us-west-2:123456789012:service/tutorial/
service-connect-nginx-service",
 "serviceName": "service-connect-nginx-service",
 "clusterArn": "arn:aws:ecs:us-west-2:123456789012:cluster/tutorial",
 "loadBalancers": [],
 "serviceRegistries": [],
 "status": "ACTIVE",
 "desiredCount": 1,

Interconnecting services 777

Amazon Elastic Container Service Developer Guide

 "runningCount": 0,
 "pendingCount": 0,
 "launchType": "FARGATE",
 "platformVersion": "LATEST",
 "platformFamily": "Linux",
 "taskDefinition": "arn:aws:ecs:us-west-2:123456789012:task-definition/
service-connect-nginx:1",
 "deploymentConfiguration": {
 "deploymentCircuitBreaker": {
 "enable": false,
 "rollback": false
 },
 "maximumPercent": 200,
 "minimumHealthyPercent": 0
 },
 "deployments": [
 {
 "id": "ecs-svc/3763308422771520962",
 "status": "PRIMARY",
 "taskDefinition": "arn:aws:ecs:us-west-2:123456789012:task-
definition/service-connect-nginx:1",
 "desiredCount": 1,
 "pendingCount": 0,
 "runningCount": 0,
 "failedTasks": 0,
 "createdAt": 1661210032.602,
 "updatedAt": 1661210032.602,
 "launchType": "FARGATE",
 "platformVersion": "1.4.0",
 "platformFamily": "Linux",
 "networkConfiguration": {
 "awsvpcConfiguration": {
 "assignPublicIp": "ENABLED",
 "securityGroups": [
 "sg-EXAMPLE"
],
 "subnets": [
 "subnet-EXAMPLEf",
 "subnet-EXAMPLE",
 "subnet-EXAMPLE"
]
 }
 },
 "rolloutState": "IN_PROGRESS",

Interconnecting services 778

Amazon Elastic Container Service Developer Guide

 "rolloutStateReason": "ECS deployment ecs-
svc/3763308422771520962 in progress.",
 "failedLaunchTaskCount": 0,
 "replacedTaskCount": 0,
 "serviceConnectConfiguration": {
 "enabled": true,
 "namespace": "service-connect",
 "services": [
 {
 "portName": "nginx",
 "clientAliases": [
 {
 "port": 80
 }
]
 }
],
 "logConfiguration": {
 "logDriver": "awslogs",
 "options": {
 "awslogs-group": "/ecs/service-connect-proxy",
 "awslogs-region": "us-west-2",
 "awslogs-stream-prefix": "service-connect-proxy"
 },
 "secretOptions": []
 }
 },
 "serviceConnectResources": [
 {
 "discoveryName": "nginx",
 "discoveryArn": "arn:aws:servicediscovery:us-
west-2:123456789012:service/srv-EXAMPLE"
 }
]
 }
],
 "roleArn": "arn:aws:iam::123456789012:role/aws-service-role/
ecs.amazonaws.com/AWSServiceRoleForECS",
 "version": 0,
 "events": [],
 "createdAt": 1661210032.602,
 "placementConstraints": [],
 "placementStrategy": [],
 "networkConfiguration": {

Interconnecting services 779

Amazon Elastic Container Service Developer Guide

 "awsvpcConfiguration": {
 "assignPublicIp": "ENABLED",
 "securityGroups": [
 "sg-EXAMPLE"
],
 "subnets": [
 "subnet-EXAMPLE",
 "subnet-EXAMPLE",
 "subnet-EXAMPLE"
]
 }
 },
 "schedulingStrategy": "REPLICA",
 "enableECSManagedTags": true,
 "propagateTags": "SERVICE",
 "enableExecuteCommand": true
 }
}

The serviceConnectConfiguration that you provided appears inside the first
deployment of the output. As you make changes to the ECS service in ways that need to
make changes to tasks, a new deployment is created by Amazon ECS.

Step 3: Verify that you can connect

To verify that Service Connect is configured and working, follow these steps to connect to the
web service from an external application. Then, see the additional metrics in CloudWatch that are
created by the Service Connect proxy.

To connect to the web service from an external application

• Connect to the task IP address and container port using the task IP address

Use the AWS CLI to get the task ID, using the aws ecs list-tasks --cluster tutorial.

If your subnets and security group permit traffic from the public internet on the port from
the task definition, you can connect to the public IP from your computer. The public IP isn't
available from `describe-tasks` however, so the steps involve going to the Amazon EC2 AWS
Management Console or AWS CLI to get the details of the elastic network interface.

Interconnecting services 780

Amazon Elastic Container Service Developer Guide

In this example, an Amazon EC2 instance in the same VPC uses the private IP of the task. The
application is nginx, but the server: envoy header shows that the Service Connect proxy is
used. The Service Connect proxy is listening on the container port from the task definition.

$ curl -v 10.0.19.50:80/
* Trying 10.0.19.50:80...
* Connected to 10.0.19.50 (10.0.19.50) port 80 (#0)
> GET / HTTP/1.1
> Host: 10.0.19.50
> User-Agent: curl/7.79.1
> Accept: */*
>
* Mark bundle as not supporting multiuse
< HTTP/1.1 200 OK
< server: envoy
< date: Tue, 23 Aug 2022 03:53:06 GMT
< content-type: text/html
< content-length: 612
< last-modified: Tue, 16 Apr 2019 13:08:19 GMT
< etag: "5cb5d3c3-264"
< accept-ranges: bytes
< x-envoy-upstream-service-time: 0
<
<!DOCTYPE html>
<html>
<head>
<title>Welcome to nginx!</title>
<style>
 body {
 width: 35em;
 margin: 0 auto;
 font-family: Tahoma, Verdana, Arial, sans-serif;
 }
</style>
</head>
<body>
<h1>Welcome to nginx!</h1>
<p>If you see this page, the nginx web server is successfully installed and
working. Further configuration is required.</p>

<p>For online documentation and support please refer to

Interconnecting services 781

Amazon Elastic Container Service Developer Guide

nginx.org.

Commercial support is available at
nginx.com.</p>

<p>Thank you for using nginx.</p>
</body>
</html>

To view Service Connect metrics

The Service Connect proxy creates application (HTTP, HTTP2, gRPC, or TCP connection) metrics in
CloudWatch metrics. When you use the CloudWatch console, see the additional metric dimensions
of DiscoveryName, (DiscoveryName, ServiceName, ClusterName), TargetDiscoveryName,
and (TargetDiscoveryName, ServiceName, ClusterName) under the ECS namespace. For more
information about these metrics and the dimensions, see Available metrics and dimensions for
Amazon ECS.

Service discovery

Your Amazon ECS service can optionally be configured to use Amazon ECS service discovery.
Service discovery uses AWS Cloud Map API actions to manage HTTP and DNS namespaces for your
Amazon ECS services. For more information, see What Is AWS Cloud Map? in the AWS Cloud Map
Developer Guide.

Service discovery is available in the following AWS Regions:

Region Name Region

US East (N. Virginia) us-east-1

US East (Ohio) us-east-2

US West (N. California) us-west-1

US West (Oregon) us-west-2

Africa (Cape Town) af-south-1

Asia Pacific (Hong Kong) ap-east-1

Interconnecting services 782

https://docs.aws.amazon.com/cloud-map/latest/dg/Welcome.html

Amazon Elastic Container Service Developer Guide

Region Name Region

Asia Pacific (Mumbai) ap-south-1

Asia Pacific (Hyderabad) ap-south-2

Asia Pacific (Tokyo) ap-northeast-1

Asia Pacific (Seoul) ap-northeast-2

Asia Pacific (Osaka) ap-northeast-3

Asia Pacific (Singapore) ap-southeast-1

Asia Pacific (Sydney) ap-southeast-2

Asia Pacific (Jakarta) ap-southeast-3

Asia Pacific (Melbourne) ap-southeast-4

Canada (Central) ca-central-1

Canada West (Calgary) ca-west-1

China (Beijing) cn-north-1

China (Ningxia) cn-northwest-1

Europe (Frankfurt) eu-central-1

Europe (Zurich) eu-central-2

Europe (Ireland) eu-west-1

Europe (London) eu-west-2

Europe (Paris) eu-west-3

Europe (Milan) eu-south-1

Europe (Stockholm) eu-north-1

Interconnecting services 783

Amazon Elastic Container Service Developer Guide

Region Name Region

Israel (Tel Aviv) il-central-1

Europe (Spain) eu-south-2

Middle East (UAE) me-central-1

Middle East (Bahrain) me-south-1

South America (São Paulo) sa-east-1

AWS GovCloud (US-East) us-gov-east-1

AWS GovCloud (US-West) us-gov-west-1

Service Discovery concepts

Service discovery consists of the following components:

• Service discovery namespace: A logical group of service discovery services that share the
same domain name, such as example.com. This is the domain name where you want to route
traffic to. You can create a namespace with a call to the aws servicediscovery create-
private-dns-namespace command or in the Amazon ECS console. You can use the aws
servicediscovery list-namespaces command to view the summary information about
the namespaces that were created by the current account. For more information about the
service discovery commands, see create-private-dns-namespace and list-namespaces
in the AWS Cloud Map (service discovery) AWS CLI Reference Guide.

• Service discovery service: Exists within the service discovery namespace and consists of
the service name and DNS configuration for the namespace. It provides the following core
component:

• Service registry: Allows you to look up a service via DNS or AWS Cloud Map API actions and
get back one or more available endpoints that can be used to connect to the service.

• Service discovery instance: Exists within the service discovery service and consists of the
attributes associated with each Amazon ECS service in the service directory.

• Instance attributes: The following metadata is added as custom attributes for each Amazon
ECS service that is configured to use service discovery:

Interconnecting services 784

https://docs.aws.amazon.com/cli/latest/reference/servicediscovery/create-private-dns-namespace.html
https://docs.aws.amazon.com/cli/latest/reference/servicediscovery/list-namespaces.html

Amazon Elastic Container Service Developer Guide

• AWS_INSTANCE_IPV4 – For an A record, the IPv4 address that Route 53 returns in response
to DNS queries and AWS Cloud Map returns when discovering instance details, for example,
192.0.2.44.

• AWS_INSTANCE_PORT – The port value associated with the service discovery service.

• AVAILABILITY_ZONE – The Availability Zone into which the task was launched. For tasks
using the EC2 launch type, this is the Availability Zone in which the container instance exists.
For tasks using the Fargate launch type, this is the Availability Zone in which the elastic
network interface exists.

• REGION – The Region in which the task exists.

• ECS_SERVICE_NAME – The name of the Amazon ECS service to which the task belongs.

• ECS_CLUSTER_NAME – The name of the Amazon ECS cluster to which the task belongs.

• EC2_INSTANCE_ID – The ID of the container instance the task was placed on. This custom
attribute is not added if the task is using the Fargate launch type.

• ECS_TASK_DEFINITION_FAMILY – The task definition family that the task is using.

• ECS_TASK_SET_EXTERNAL_ID – If a task set is created for an external deployment and
is associated with a service discovery registry, then the ECS_TASK_SET_EXTERNAL_ID
attribute will contain the external ID of the task set.

• Amazon ECS health checks: Amazon ECS performs periodic container-level health checks. If
an endpoint does not pass the health check, it is removed from DNS routing and marked as
unhealthy.

Service discovery considerations

The following should be considered when using service discovery:

• Service discovery is supported for tasks on Fargate that use platform version 1.1.0 or later. For
more information, see Fargate Linux platform versions.

• Services configured to use service discovery have a limit of 1,000 tasks per service. This is due to
a Route 53 service quota.

• The Create Service workflow in the Amazon ECS console only supports registering services
into private DNS namespaces. When an AWS Cloud Map private DNS namespace is created, a
Route 53 private hosted zone will be created automatically.

• The VPC DNS attributes must be configured for successful DNS resolution. For information about
how to configure the attributes, see DNS support in your VPC in the Amazon VPC User Guide.

Interconnecting services 785

https://docs.aws.amazon.com/vpc/latest/userguide/vpc-dns.html#vpc-dns-support

Amazon Elastic Container Service Developer Guide

• The DNS records created for a service discovery service always register with the private IP
address for the task, rather than the public IP address, even when public namespaces are used.

• Service discovery requires that tasks specify either the awsvpc, bridge, or host network mode
(none is not supported).

• If the service task definition uses the awsvpc network mode, you can create any combination of
A or SRV records for each service task. If you use SRV records, a port is required.

• If the service task definition uses the bridge or host network mode, the SRV record is the only
supported DNS record type. Create a SRV record for each service task. The SRV record must
specify a container name and container port combination from the task definition.

• DNS records for a service discovery service can be queried within your VPC. They use the
following format: <service discovery service name>.<service discovery
namespace>.

• When doing a DNS query on the service name, A records return a set of IP addresses that
correspond to your tasks. SRV records return a set of IP addresses and ports for each task.

• If you have eight or fewer healthy records, Route 53 responds to all DNS queries with all of the
healthy records.

• When all records are unhealthy, Route 53 responds to DNS queries with up to eight unhealthy
records.

• You can configure service discovery for a service that's behind a load balancer, but service
discovery traffic is always routed to the task and not the load balancer.

• Service discovery doesn't support the use of Classic Load Balancers.

• We recommend you use container-level health checks managed by Amazon ECS for your service
discovery service.

• HealthCheckCustomConfig—Amazon ECS manages health checks on your behalf. Amazon
ECS uses information from container and health checks, and your task state, to update
the health with AWS Cloud Map. This is specified using the --health-check-custom-
config parameter when creating your service discovery service. For more information, see
HealthCheckCustomConfig in the AWS Cloud Map API Reference.

• The AWS Cloud Map resources created when service discovery is used must be cleaned up
manually.

• Tasks and instances are registered as UNHEALTHY until the container health checks return a
value. If the health checks pass, the status is updated to HEALTHY. If the container health checks
fail, the service discovery instance is deregistered.

Interconnecting services 786

https://docs.aws.amazon.com/cloud-map/latest/api/API_HealthCheckCustomConfig.html

Amazon Elastic Container Service Developer Guide

Service discovery pricing

Customers using Amazon ECS service discovery are charged for Route 53 resources and AWS Cloud
Map discovery API operations. This involves costs for creating the Route 53 hosted zones and
queries to the service registry. For more information, see AWS Cloud Map Pricing in the AWS Cloud
Map Developer Guide.

Amazon ECS performs container level health checks and exposes them to AWS Cloud Map custom
health check API operations. This is currently made available to customers at no extra cost. If you
configure additional network health checks for publicly exposed tasks, you're charged for those
health checks.

Task scale-in protection

You can use Amazon ECS task scale-in protection to protect your tasks from being terminated by
scale-in events from either Service Auto Scaling or deployments.

Certain applications require a mechanism to safeguard mission-critical tasks from termination by
scale-in events during times of low utilization or during service deployments. For example:

• You have a queue-processing asynchronous application such as a video transcoding job where
some tasks need to run for hours even when cumulative service utilization is low.

• You have a gaming application that runs game servers as Amazon ECS tasks that need to
continue running even if all users have logged-out to reduce start-up latency of a server reboot.

• When you deploy a new code version, you need tasks to continue running because it would be
expensive to reprocess.

To protect tasks that belong to your service from terminating in a scale-in event, set the
protectionEnabled attribute to true. By default, tasks are protected for 2 hours. You can
customize the protection period by using the expiresInMinutes attribute. You can protect your
tasks for a minimum of 1 minute and up to a maximum of 2880 minutes (48 hours).

After a task finishes its requisite work, you can set the protectionEnabled attribute to false,
allowing the task to be terminated by subsequent scale-in events.

Task scale-in protection mechanisms

You can set and get task scale-in protection using either the Amazon ECS container agent endpoint
or the Amazon ECS API.

Task scale-in protection 787

https://docs.aws.amazon.com/cloud-map/latest/dg/cloud-map-pricing.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/service-auto-scaling.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/deployment-types.html

Amazon Elastic Container Service Developer Guide

• Amazon ECS container agent endpoint

We recommend using the Amazon ECS container agent endpoint for tasks that can self-
determine the need to be protected. Use this approach for queue-based or job-processing
workloads.

When a container starts processing work, for example by consuming an SQS message, you can
set the ProtectionEnabled attribute through the task scale-in protection endpoint path
$ECS_AGENT_URI/task-protection/v1/state from within the container. Amazon ECS
will not terminate this task during scale-in events. After your task finishes its work, you can
clear the ProtectionEnabled attribute using the same endpoint, making the task eligible for
termination during subsequent scale-in events.

For more information about the Amazon ECS container agent endpoint, see Amazon ECS task
scale-in protection endpoint.

• Amazon ECS API

You can use the Amazon ECS API to set and retrieve task scale-in protection if your application
has a component that tracks the status of active tasks. Use UpdateTaskProtection to mark
one or more tasks as protected. Use GetTaskProtection to retrieve the protection status.

An example of this approach would be if your application is hosting game server sessions as
Amazon ECS tasks. When a user logs in to a session on the server (task), you can mark the task as
protected. After the user logs out, you can either clear the protection specifically for this task or
periodically clear protection for similar tasks that no longer have active sessions, depending on
your requirement to keep idle servers.

For more information, see UpdateTaskProtection and GetTaskProtection in the Amazon Elastic
Container Service API Reference.

You can combine both approaches. For example, use the Amazon ECS agent endpoint to set task
protection from within a container and use the Amazon ECS API to remove task protection from
your external controller service.

Considerations

Consider the following points before using task scale-in protection:

Task scale-in protection 788

https://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_UpdateTaskProtection.html
https://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_GetTaskProtection.html

Amazon Elastic Container Service Developer Guide

• We recommend using the Amazon ECS container agent endpoint because the Amazon ECS agent
has built-in retry mechanisms and a simpler interface.

• You can reset the task scale-in protection expiration period by calling UpdateTaskProtection
for a task that already has protection turned on.

• Determine how long a task would need to complete its requisite work and set the
expiresInMinutes property accordingly. If you set the protection expiration longer than
necessary, then you will incur costs and face delays in the deployment of new tasks.

• Task scale-in protection is supported on Amazon ECS container agent 1.65.0 or later.

You can add support for this feature on Amazon EC2 instances using older versions of the
Amazon ECS container agent by updating the agent to the latest version. For more information,
see Updating the Amazon ECS container agent.

• Deployment considerations:

• If the service uses a rolling update, new tasks will be created but tasks running older version
will not be terminated until protectionEnabled is cleared or expires. You can adjust the
maximumPercentage parameter in deployment configuration to a value that allows new
tasks to be created when old tasks are protected.

• If a blue/green update is applied, the blue deployment with protected tasks will not be
removed if tasks have protectionEnabled. Traffic will be diverted to the new tasks that
come up and older tasks will only be removed when protectionEnabled is cleared or
expires. Depending on the timeout of the CodeDeploy or CloudFormation updates, the
deployment may timeout and the older Blue tasks may still be present.

• If you use CloudFormation, the update-stack has a 3 hour timeout. Therefore, if you set your
task protection for longer than 3 hours, then your CloudFormation deployment may result in
failure and rollback.

During the time your old tasks are protected, the CloudFormation stack shows
UPDATE_IN_PROGRESS. If task scale-in protection is removed or expires within the 3 hour
window, your deployment will succeed and move to the UPDATE_COMPLETE status. If the
deployment is stuck in UPDATE_IN_PROGRESS for more than 3 hours, it will fail and show
UPDATE_FAILED state, and will then be rolled back to old task set.

• Amazon ECS sends service events when protected tasks keep a deployment (rolling or blue/
green) from reaching the steady state, so that you can take remedial actions. While trying to
update the protection status of a task, if you receive a DEPLOYMENT_BLOCKED error message,

Task scale-in protection 789

Amazon Elastic Container Service Developer Guide

it means the service has more protected tasks than the desired count of tasks for the service.
To resolve this error, do one the following:

• Wait for the current task protection to expire. Then set task protection.

• Determine which tasks can be stopped. Then use UpdateTaskProtectionwith the
protectionEnabled option set to false for these tasks.

• Increase the desired task count of the service to more than the number of protected tasks.

IAM permissions required for task scale-in protection

If you plan to use the Amazon ECS API to get or update task protection, the task must have the
Amazon ECS task role with the following permissions:

• ecs:GetTaskProtection: Allows the Amazon ECS container agent to call
GetTaskProtection.

• ecs:UpdateTaskProtection: Allows the Amazon ECS container agent to call
UpdateTaskProtection.

Amazon ECS task scale-in protection endpoint

The Amazon ECS container agent automatically injects the ECS_AGENT_URI environment variable
into the containers of Amazon ECS tasks to provide a method to interact with the container agent
API endpoint.

We recommend using the Amazon ECS container agent endpoint for tasks that can self-determine
the need to be protected.

When a container starts processing work, you can set the protectionEnabled attribute using the
task scale-in protection endpoint path $ECS_AGENT_URI/task-protection/v1/state from
within the container.

Use a PUT request to this URI from within a container to set task scale-in protection. A GET request
to this URI returns the current protection status of a task.

Task scale-in protection request parameters

You can set task scale-in protection using the ${ECS_AGENT_URI}/task-protection/v1/
state endpoint with the following request parameters.

Task scale-in protection 790

Amazon Elastic Container Service Developer Guide

ProtectionEnabled

Specify true to mark a task for protection. Specify false to remove protection and make the
task eligible for termination.

Type: Boolean

Required: Yes

ExpiresInMinutes

The number of minutes the task is protected. You can specify a minimum of 1 minute to up
to 2,880 minutes (48 hours). During this time period, your task will not be terminated by
scale-in events from service Auto Scaling or deployments. After this time period lapses, the
protectionEnabled parameter is set to false.

If you don’t specify the time, then the task is automatically protected for 120 minutes (2 hours).

Type: Integer

Required: No

The following examples show how to set task protection with different durations.

Example of how to protect a task with the default time period

This example shows how to protect a task with the default time period of 2 hours.

curl --request PUT --header 'Content-Type: application/json' ${ECS_AGENT_URI}/task-
protection/v1/state --data '{"ProtectionEnabled":true}'

Example of how to protect a task for 60 minutes

This example shows how to protect a task for 60 minutes using the expiresInMinutes
parameter.

curl --request PUT --header 'Content-Type: application/json' ${ECS_AGENT_URI}/task-
protection/v1/state --data '{"ProtectionEnabled":true,"ExpiresInMinutes":60}'

Example of how to protect a task for 24 hours

Task scale-in protection 791

Amazon Elastic Container Service Developer Guide

This example shows how to protect a task for 24 hours using the expiresInMinutes parameter.

curl --request PUT --header 'Content-Type: application/json' ${ECS_AGENT_URI}/task-
protection/v1/state --data '{"ProtectionEnabled":true,"ExpiresInMinutes":1440}'

The PUT request returns the following response.

{
 "protection": {
 "ExpirationDate": "2023-12-20T21:57:44.837Z",
 "ProtectionEnabled": true,
 "TaskArn": "arn:aws:ecs:us-west-2:111122223333:task/1234567890abcdef0"
 }
}

Task scale-in protection response parameters

The following information is returned from the task scale-in protection endpoint
${ECS_AGENT_URI}/task-protection/v1/state in the JSON response.

ExpirationDate

The epoch time when protection for the task will expire. If the task is not protected, this value is
null.

ProtectionEnabled

The protection status of the task. If scale-in protection is enabled for a task, the value is true.
Otherwise, it is false.

TaskArn

The full Amazon Resource Name (ARN) of the task that the container belongs to.

The following example shows the details returned for a protected task.

curl --request GET ${ECS_AGENT_URI}/task-protection/v1/state

{
 "protection":{

Task scale-in protection 792

Amazon Elastic Container Service Developer Guide

 "ExpirationDate":"2023-12-20T21:57:44Z",
 "ProtectionEnabled":true,
 "TaskArn":"arn:aws:ecs:us-west-2:111122223333:task/1234567890abcdef0"
 }
}

The following information is returned when a failure occurs.

Arn

The full Amazon Resource Name (ARN) of the task.

Detail

The details related to the failure.

Reason

The reason for the failure.

The following example shows the details returned for a task that is not protected.

{
 "failure":{
 "Arn":"arn:aws:ecs:us-west-2:111122223333:task/1234567890abcdef0",
 "Detail":null,
 "Reason":"TASK_NOT_VALID"
 }
}

The following information is returned when an exception occurs.

requestID

The AWS request ID for the Amazon ECS API call that results in an exception.

Arn

The full Amazon Resource Name (ARN) of the task or service.

Code

The error code.

Task scale-in protection 793

Amazon Elastic Container Service Developer Guide

Message

The error message.

Note

If a RequestError or RequestTimeout error appears, it is likely that it's a networking
issue. Try using VPC endpoints for Amazon ECS.

The following example shows the details returned when an error occurs.

{
 "requestID":"12345-abc-6789-0123-abc",
 "error":{
 "Arn":"arn:aws:ecs:us-west-2:555555555555:task/my-cluster-
name/1234567890abcdef0",
 "Code":"AccessDeniedException",
 "Message":"User: arn:aws:sts::444455556666:assumed-role/my-ecs-task-
role/1234567890abcdef0 is not authorized to perform: ecs:GetTaskProtection on resource:
 arn:aws:ecs:us-west-2:555555555555:task/test/1234567890abcdef0 because no identity-
based policy allows the ecs:GetTaskProtection action"
 }
}

The following error appears if the Amazon ECS agent is unable to get a response from the Amazon
ECS endpoint for reasons such as network issues or the Amazon ECS control plane is down.

{
 "error": {
 "Arn": "arn:aws:ecs:us-west-2:555555555555:task/my-cluster-name/1234567890abcdef0",
 "Code": "RequestCanceled",
 "Message": "Timed out calling Amazon ECS Task Protection API"
 }
}

The following error appears when the Amazon ECS agent gets a throttling exception from Amazon
ECS.

{
 "requestID": "12345-abc-6789-0123-abc",

Task scale-in protection 794

Amazon Elastic Container Service Developer Guide

 "error": {
 "Arn": "arn:aws:ecs:us-west-2:555555555555:task/my-cluster-name/1234567890abcdef0",
 "Code": "ThrottlingException",
 "Message": "Rate exceeded"
 }
}

Amazon ECS service throttle logic

The Amazon ECS service scheduler includes logic that throttles how often service tasks are
launched if they repeatedly fail to start.

If tasks for a service repeatedly fail to enter the RUNNING state (progressing directly from
a PENDING to a STOPPED status), then the time between subsequent restart attempts is
incrementally increased up to a maximum of 27 minutes. This maximum period is subject to
change in the future. This behavior reduces the effect that failing tasks have on your Amazon ECS
cluster resources or Fargate infrastructure costs. If your service initiates the throttle logic, you
receive the following service event message:

(service service-name) is unable to consistently start tasks successfully.

Amazon ECS doesn't ever stop a failing service from retrying. It also doesn't attempt to modify it in
any way other than increasing the time between restarts. The service throttle logic doesn't provide
any user-tunable parameters.

If you update your service to use a new task definition, your service returns to a normal, non-
throttled state immediately. For more information, see Updating a service using the console.

The following are some common causes that initiate this logic. We recommend that you take
manual action to address the issue:

• A lack of resources to host your task with, such as ports, memory, or CPU units in your cluster. In
this case, you also see the insufficient resource service event message.

• The Amazon ECS container agent can't pull your task Docker image. This might be because a bad
container image name, image, or tag, or a lack of private registry authentication or permissions.
In this case, you also see CannotPullContainerError in your stopped task errors.

• Insufficient disk space on your container instance to create the container. In this case, you also
see CannotCreateContainerError in your stopped task errors. For more information, see
CannotCreateContainerError: API error (500): devmapper.

Amazon ECS service throttle logic 795

Amazon Elastic Container Service Developer Guide

Important

Tasks that are stopped after they reach the RUNNING state don't start the throttle logic
or the associated service event message. For example, assume that failed Elastic Load
Balancing health checks for a service cause a task to be flagged as unhealthy, and Amazon
ECS deregisters it and stops the task. At this point, the tasks aren't throttled. Even if a task's
container command immediately exits with a non-zero exit code, the task already moved
to the RUNNING state. Tasks that fail immediately because command errors don't cause the
throttle or the service event message.

Amazon ECS service throttle logic 796

Amazon Elastic Container Service Developer Guide

Amazon ECS resource tagging

To help you manage your Amazon ECS resources, you can optionally assign your own metadata to
each resource using tags. Each tag consists of a key and an optional value.

You can use tags to categorize your Amazon ECS resources in different ways, for example, by
purpose, owner, or environment. This is useful when you have many resources of the same type.
You can quickly identify a specific resource based on the tags that you assigned to it. For example,
you can define a set of tags for your account's Amazon ECS container instances. This helps you
track each instance's owner and stack level.

You can use tags for your Cost and Usage reports. You can use these reports to analyze the cost
and usage of your Amazon ECS resources. For more information, see the section called “Usage
Reports”.

Warning

There are many APIs that return tag keys and their values. Denying access to
DescribeTags doesn’t automatically deny access to tags returned by other APIs. As a best
practice, we recommend that you do not include sensitive data in your tags.

We recommend that you devise a set of tag keys that meets your needs for each resource type. You
can use a consistent set of tag keys for easier management of your resources. You can search and
filter the resources based on the tags you add.

Tags don't have any semantic meaning to Amazon ECS and are interpreted strictly as a string of
characters. You can edit tag keys and values, and you can remove tags from a resource at any time.
You can set the value of a tag to an empty string, but you can't set the value of a tag to null. If you
add a tag that has the same key as an existing tag on that resource, the new value overwrites the
earlier value. When you delete a resource, any tags for the resource are also deleted.

If you use AWS Identity and Access Management (IAM), you can control which users in your AWS
account have permission to manage tags.

How resources are tagged

There are multiple ways that Amazon ECS tasks, services, task definitions, and clusters are tagged:

How resources are tagged 797

Amazon Elastic Container Service Developer Guide

• A user manually tags a resource by using the AWS Management Console, Amazon ECS API, the
AWS CLI, or an AWS SDK.

• A user creates a service or runs a standalone task and selects the Amazon ECS-managed tags
option.

Amazon ECS automatically tags all newly launched tasks. For more information, see the section
called “Amazon ECS-managed tags”.

• A user creates a resource using the console. The console automatically tags the resources.

These tags are returned in the AWS CLI, and AWS SDK responses and are displayed in the
console. You cannot modify or delete these tags.

For information about the added tags, see the Tags automatically added by the console column
in the Tagging support for Amazon ECS resources table.

If you specify tags when you create a resource and the tags can't be applied, Amazon ECS rolls
back the creation process. This ensures that resources are either created with tags or not created at
all, and that no resources are left untagged at any time. By tagging resources while they're being
created, you can eliminate the need to run custom tagging scripts after resource creation.

The following table describes the Amazon ECS resources that support tagging.

Tagging support for Amazon ECS resources

Resource Supports tags Supports tag
propagation

Tags automatic
ally added by the
console

Amazon ECS tasks Yes Yes, from the task
definition.

Key: aws:ecs:c
lusterName

Value: cluster-n
ame

Amazon ECS services Yes Yes, from either the
task definition or the
service to the tasks
in the service.

Key: ecs:servi
ce:stackId

How resources are tagged 798

Amazon Elastic Container Service Developer Guide

Resource Supports tags Supports tag
propagation

Tags automatic
ally added by the
console

Value arn:aws:c
loudforma
tion: arn

Amazon ECS task sets Yes No
N/A

Amazon ECS task
definitions

Yes No
Key: ecs:taskD
efinition
:createdFrom

Value: ecs-conso
le-v2

Amazon ECS clusters Yes No
Key: aws:cloud
formation
:logical-id

Value: ECSCluster
Key: aws:cloud
formation
:stack-id

Value: arn:aws:c
loudforma
tion: arn

Key: aws:cloud
formation
:stack-name

Value: ECS-Conso
le-V2-Clu
ster- EXAMPLE

How resources are tagged 799

Amazon Elastic Container Service Developer Guide

Resource Supports tags Supports tag
propagation

Tags automatic
ally added by the
console

Amazon ECS
container instances

Yes Yes, from the Amazon
EC2 instance. For
more information,
see Adding tags
to an Amazon EC2
container instance.

N/A

Amazon ECS External
instances

Yes No
N/A

Amazon ECS capacity
provider

Yes.

You cannot tag the
predefined FARGATE
and FARGATE_SPOT
capacity providers.

No N/A

Tagging resources on creation

The following resources support tagging on creation using the Amazon ECS API, AWS CLI, or AWS
SDK:

• Amazon ECS tasks

• Amazon ECS services

• Amazon ECS task definition

• Amazon ECS task sets

• Amazon ECS clusters

• Amazon ECS container instances

• Amazon ECS capacity providers

Tagging resources on creation 800

Amazon Elastic Container Service Developer Guide

Amazon ECS has the option to use tagging authorization for resource creation. When the AWS
account is configured for tagging authorization, users must have permissions for actions that
create the resource, such as ecsCreateCluster. If you specify tags in the resource-creating
action, AWS performs additional authorization to verify if users or roles have permissions to create
tags. Therefore, you must grant explicit permissions to use the ecs:TagResource action. For
more information, see the section called “Tag resources during creation”. For information about
how to configure the option, see the section called “Tagging authorization”.

Restrictions

The following restrictions apply to tags:

• A maximum of 50 tags can be associated with a resource.

• Tag keys can't be repeated for one resource. Each tag key must be unique, and can only have one
value.

• Keys can be up to 128 characters long in UTF-8.

• Values can be up to 256 characters long in UTF-8.

• If multiple AWS services and resources use your tagging schema, limit the types of characters
you use. Some services might have restrictions on allowed characters. Generally, allowed
characters are letters, numbers, spaces, and the following characters: + - = . _ : / @.

• Tag keys and values are case sensitive.

• You can't use aws:, AWS:, or any upper or lowercase combination of such as a prefix for either
keys or values. These are reserved only for AWS use. You can't edit or delete tag keys or values
with this prefix. Tags with this prefix don't count against your tags-per-resource limit.

Amazon ECS-managed tags

When you use Amazon ECS-managed tags, Amazon ECS automatically tags all newly launched
tasks and any Amazon EBS volumes attached to the tasks with the cluster information and either
the user-added task definition tags or the service tags. The following describes the added tags:

• Standalone tasks – a tag with a Key as aws:ecs:clusterName and a Value set to the cluster
name. All task definition tags that were added by users. An Amazon EBS volume attached to a
standalone task will receive the tag with a Key as aws:ecs:clusterName and a Value set to the
cluster name. For more information about Amazon EBS volume tagging, see Tagging Amazon
EBS volumes.

Restrictions 801

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/specify-ebs-config.html#ebs-volume-tagging
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/specify-ebs-config.html#ebs-volume-tagging

Amazon Elastic Container Service Developer Guide

• Tasks that are part of a service – a tag with a Key as aws:ecs:clusterName and a Value set
to the cluster name. A tag with a Key as aws:ecs:serviceName and a Value set to the service
name. Tags from one of the following resources:

• Task definitions – All task definition tags that were added by users.

• Services – All service tags that were added by users.

An Amazon EBS volume attached to a task that is part of a service will receive a tag with a
Key as aws:ecs:clusterName and a Value set to the cluster name, and a tag with a Key as
aws:ecs:serviceName and a Value set to the service name. For more information about
Amazon EBS volume tagging, see Tagging Amazon EBS volumes.

The following options are required for this feature:

• You must opt in to the new Amazon Resource Name (ARN) and resource identifier (ID) formats.
For more information, see Amazon Resource Names (ARNs) and IDs.

• When you use the APIs to create a service or run a task, you must set enableECSManagedTags
to true for run-task and create-service. For more information, see create-service and run-
task in the AWS Command Line Interface API Reference.

• Amazon ECS uses managed tags to determine when some features are enabled, for example
cluster Auto Scaling. We recommend that you do not manually modify tags so that the Amazon
ECS can effectively manage the features.

Tagging your resources for billing

AWS provides a reporting tool called Cost Explorer that you can use to analyze the cost and usage
of your Amazon ECS resources.

You can use Cost Explorer to view charts of your usage and costs. You can view data from the
last 13 months, and forecast how much you're likely to spend for the next three months. You
can use Cost Explorer to see patterns in how much you spend on AWS resources over time. For
example, you can use it to identify areas that need further inquiry and see trends that you can use
to understand your costs. You also can specify time ranges for the data, and view time data by day
or by month.

You can use Amazon ECS-managed tags or user-added tags for your Cost and Usage Report. For
more information, see Amazon ECS usage reports.

Tagging your resources for billing 802

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/specify-ebs-config.html#ebs-volume-tagging
https://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_CreateService.html
https://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_RunTask.html
https://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_RunTask.html

Amazon Elastic Container Service Developer Guide

To see the cost of your combined resources, you can organize your billing information based on
resources that have the same tag key values. For example, you can tag several resources with a
specific application name, and then organize your billing information to see the total cost of that
application across several services. For more information about setting up a cost allocation report
with tags, see The Monthly Cost Allocation Report in the AWS Billing User Guide.

Additionally, you can turn on Split Cost Allocation Data to get task-level CPU and memory usage
data in your Cost and Usage Reports. For more information, see Task-level Cost and Usage Reports.

Note

If you've turned on reporting, it can take up to 24 hours before the data for the current
month is available for viewing.

Working with tags using the console

You can use the Amazon ECS console, you can manage the tags that are associated with new or
existing tasks, services, task definitions, clusters, or container instances.

When you select a resource-specific page in the Amazon ECS console, it displays a list of those
resources. For example, if you select Clusters from the navigation pane, the console displays a list
of Amazon ECS clusters. When you select a resource from one of these lists (for example, a specific
cluster) that supports tags, you can view and manage its tags on the Tags tab.

Warning

As a best practice, we recommend that you do not include sensitive data in your tags.

Contents

• Adding tags on an individual resource during launch

• Managing individual resource tags

Adding tags on an individual resource during launch

You can use the following resources to specify tags when you create the resource.

Working with tags using the console 803

https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/configurecostallocreport.html

Amazon Elastic Container Service Developer Guide

Task Console

Run one or more tasks. Creating a standalone task

Create a service. Creating a service using the
console

Create a task set. External deployment

Register a task definition.
the section called “Creating
a task definition using the co
nsole”

Create a cluster. Creating a cluster for the
Fargate and External launch
type using the console

Run one or more container instances. Launching an Amazon ECS
Linux container instance

Managing individual resource tags

You can add or delete tags that are associated with your clusters, services, tasks, and task
definitions directly from the resource's page. For information about tagging your container
instances, see Adding tags to an Amazon EC2 container instance.

Warning

Do not add personally identifiable information (PII) or other confidential or sensitive
information in tags. Tags are accessible to many AWS services, including billing. Tags are
not intended to be used for private or sensitive data.

Managing individual resource tags 804

Amazon Elastic Container Service Developer Guide

To modify a tag for an individual resource

1. Open the console at https://console.aws.amazon.com/ecs/v2.

2. From the navigation bar, select the AWS Region to use.

3. In the navigation pane, select a resource type (for example, Clusters).

4. Select the resource from the resource list, choose the Tags tab, and then choose Manage tags.

5. Configure your tags.

[Add a tag] Choose Add tag, and then do the following:

• For Key, enter the key name.

• For Value, enter the key value.

[Remove a tag] Choose Remove to the right of the tag’s Key and Value.

6. Choose Save.

Adding tags to an Amazon EC2 container instance

You can associate tags with your container instances using one of the following methods:

• Method 1 – When creating the container instance using the Amazon EC2 API, CLI, or console,
specify tags by passing user data to the instance using the container agent configuration
parameter ECS_CONTAINER_INSTANCE_TAGS. This creates tags that are associated with the
container instance in Amazon ECS only, they cannot be listed using the Amazon EC2 API. For
more information, see Bootstrapping container instances with Amazon EC2 user data.

Important

If you launch your container instances using an Amazon EC2 Auto Scaling group, then
you should use the ECS_CONTAINER_INSTANCE_TAGS agent configuration parameter to
add tags. This is due to the way in which tags are added to Amazon EC2 instances that
are launched using Auto Scaling groups.

The following is an example of a user data script that associates tags with your container
instance:

Adding tags to an Amazon EC2 container instance 805

https://console.aws.amazon.com/ecs/v2

Amazon Elastic Container Service Developer Guide

#!/bin/bash
cat <<'EOF' >> /etc/ecs/ecs.config
ECS_CLUSTER=MyCluster
ECS_CONTAINER_INSTANCE_TAGS={"tag_key": "tag_value"}
EOF

• Method 2 – When you create your container instance using the Amazon EC2 API,
CLI, or console, first specify tags using the TagSpecification.N parameter. Then,
pass user data to the instance by using the container agent configuration parameter
ECS_CONTAINER_INSTANCE_PROPAGATE_TAGS_FROM. Doing so propagates them from
Amazon EC2 to Amazon ECS.

The following is an example of a user data script that propagates the tags that are associated
with an Amazon EC2 instance, and registers the instance with a cluster that's named MyCluster.

#!/bin/bash
cat <<'EOF' >> /etc/ecs/ecs.config
ECS_CLUSTER=MyCluster
ECS_CONTAINER_INSTANCE_PROPAGATE_TAGS_FROM=ec2_instance
EOF

To provide access to allow container instance tags to propagate from Amazon EC2 to Amazon
ECS, manually add the following permissions as an inline policy to the Amazon ECS container
instance IAM role. For more information, see Adding and Removing IAM Policies.

• ec2:DescribeTags

The following is an example policy that's used to add these permissions.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "ec2:DescribeTags"
],
 "Resource": "*"
 }
]

Adding tags to an Amazon EC2 container instance 806

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_manage-attach-detach.html

Amazon Elastic Container Service Developer Guide

}

Tagging an external container instance

You can associate tags with your external container instances by using one of the following
methods.

• Method 1 – Before running the installation script to register your external instance with your
cluster, create or edit the Amazon ECS container agent configuration file at /etc/ecs/
ecs.config and add the ECS_CONTAINER_INSTANCE_TAGS container agent configuration
parameter. This creates tags that are associated with the external instance.

The following is example syntax.

ECS_CONTAINER_INSTANCE_TAGS={"tag_key": "tag_value"}

• Method 2 – After your external instance is registered to your cluster, you can use the AWS
Management Console to add tags. For more information, see Managing individual resource tags.

Working with tags using the CLI or API

You can use the AWS Command Line Interface or API to tag your Amazon ECS resources.

Use the following to add, update, list, and delete the tags for your resources. The corresponding
documentation provides examples.

Warning

Don't add personally identifiable information (PII) or other confidential or sensitive
information in tags. Tags are accessible to many AWS services, including billing. Tags aren't
intended to be used for private or sensitive data.

Tagging support for Amazon ECS resources

Task AWS CLI API action

Tagging an external container instance 807

Amazon Elastic Container Service Developer Guide

Task AWS CLI API action

Add or overwrite one or more
tags.

tag-resource TagResource

Delete one or more tags. untag-resource UntagResource

You can use some resource-creating actions to specify tags when you create the resource. The
following actions support tagging on creation.

You must have the ecsTagResource permission. For more information, see Grant permission to
tag resources on creation.

Task AWS CLI AWS Tools for
Windows PowerShell

API Action

Run one or more tasks. run-task Start-ECSTask RunTask

Create a service. create-service New-ECSService CreateService

Create a task set. create-task-set New-ECSTaskSet CreateTaskSet

Register a task definition. register-task-
definition

Register-ECSTaskDe
finition

RegisterT
askDefinition

Create a cluster. create-cluster New-ECSCluster CreateCluster

Run one or more container
instances.

run-instances New-EC2Instance RunInstances

Working with tags using the CLI or API 808

https://docs.aws.amazon.com/cli/latest/reference/ecs/tag-resource.html
https://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_TagResource.html
https://docs.aws.amazon.com/cli/latest/reference/ecs/untag-resource.html
https://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_UntagResource.html
https://docs.aws.amazon.com/cli/latest/reference/ecs/run-task.html
https://docs.aws.amazon.com/powershell/latest/reference/items/Start-ECSTask.html
https://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_RunTask.html
https://docs.aws.amazon.com/cli/latest/reference/ecs/create-service.html
https://docs.aws.amazon.com/powershell/latest/reference/items/New-ECSService.html
https://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_CreateService.html
https://docs.aws.amazon.com/cli/latest/reference/ecs/create-task-set.html
https://docs.aws.amazon.com/powershell/latest/reference/items/New-ECSTaskSet.html
https://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_CreateTaskSet.html
https://docs.aws.amazon.com/cli/latest/reference/ecs/register-task-definition.html
https://docs.aws.amazon.com/cli/latest/reference/ecs/register-task-definition.html
https://docs.aws.amazon.com/powershell/latest/reference/items/Register-ECSTaskDefinition.html
https://docs.aws.amazon.com/powershell/latest/reference/items/Register-ECSTaskDefinition.html
https://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_RegisterTaskDefinition.html
https://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_RegisterTaskDefinition.html
https://docs.aws.amazon.com/cli/latest/reference/ecs/create-cluster.html
https://docs.aws.amazon.com/powershell/latest/reference/items/New-ECSCluster.html
https://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_CreateCluster.html
https://docs.aws.amazon.com/cli/latest/reference/ec2/run-instances.html
https://docs.aws.amazon.com/powershell/latest/reference/items/New-EC2Instance.html
https://docs.aws.amazon.com/AWSEC2/latest/APIReference/API_RunInstances.html

Amazon Elastic Container Service Developer Guide

Amazon ECS usage reports

AWS provides a reporting tool called Cost Explorer that you can use to analyze the cost and usage
of your Amazon ECS resources.

You can use Cost Explorer to view charts of your usage and costs. You can view data from the
last 13 months, and forecast how much you're likely to spend for the next three months. You
can use Cost Explorer to see patterns in how much you spend on AWS resources over time. For
example, you can use it to identify areas that need further inquiry and see trends that you can use
to understand your costs. You also can specify time ranges for the data, and view time data by day
or by month.

The metering data in your Cost and Usage Report shows usage across all of your Amazon ECS
tasks. The metering data includes CPU usage as vCPU-Hours and memory usage as GB-Hours for
each task that was run. How that data is presented depends on the launch type of the task.

For tasks using the Fargate launch type, the lineItem/Operation column shows FargateTask
and you will see the cost associated with each task.

For tasks that use the EC2 launch type, the lineItem/Operation column shows ECSTask-
EC2 and the tasks don't have a direct cost associated with them. The metering data that's shown
in the report, such as memory usage, represents the total resources that the task reserved over
the billing period that you specify. You can use this data to determine the cost of your underlying
cluster of Amazon EC2 instances. The cost and usage data for your Amazon EC2 instances are listed
separately under the Amazon EC2 service.

You can also use the Amazon ECS managed tags to identify the service or cluster that each task
belongs to. For more information, see Tagging your resources for billing.

Important

The metering data is only viewable for tasks that are launched on or after November 16,
2018. Tasks that are launched before this date don't show metering data.

The following is an example of some of the fields that you can use to sort cost allocation data in
Cost Explorer.

• Cluster name

Usage Reports 809

Amazon Elastic Container Service Developer Guide

• Service name

• Resource tags

• Launch type

• AWS Region

• Usage type

For more information about creating an AWS Cost and Usage Report, see AWS Cost and Usage
Report in the AWS Billing User Guide.

Task-level Cost and Usage Reports

AWS Cost Management can provide CPU and memory usage data in the AWS Cost and Usage
Report for the each task on Amazon ECS, including tasks on Fargate and tasks on EC2. This data is
called Split Cost Allocation Data. You can use this data to analyze costs and usage for applications.
Additionally, you can split and allocate the costs to individual business units and teams with cost
allocation tags and cost categories. For more information about Split Cost Allocation Data, see
Understanding split cost allocation data in the AWS Cost and Usage Report User Guide.

You can opt in to task-level Split Cost Allocation Data for the account in the AWS Cost Management
Console. If you have a management (payer) account, you can opt in from the payer account to
apply this configuration to every linked account.

After you set up Split Cost Allocation Data, there will be additional columns under the
splitLineItem header in the report. For more information see Split line item details in the AWS Cost
and Usage Report User Guide

For tasks on EC2, this data splits the cost of the EC2 instance based on the resource usage or
reservations and the remaining resources on the instance.

Prerequisites

• To use Split Cost Allocation Data, you must create a report, and select Split cost allocation data.
For more information, see Creating Cost and Usage Reports in the AWS Cost and Usage Report
User Guide.

• The minimum Docker version for reliable metrics is Docker version v20.10.13 and newer, which is
included in Amazon ECS-optimized AMI 20220607 and newer.

• Ensure that the Amazon ECS agent has the ECS_DISABLE_METRICS configuration set to false.
When this setting is false, the Amazon ECS agent sends metrics to Amazon CloudWatch.

Task-level cost and usage 810

https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/billing-reports-costusage.html
https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/billing-reports-costusage.html
https://docs.aws.amazon.com/cur/latest/userguide/split-cost-allocation-data.html
https://docs.aws.amazon.com/cur/latest/userguide/split-line-item-columns.html
https://docs.aws.amazon.com/cur/latest/userguide/cur-create.html

Amazon Elastic Container Service Developer Guide

On Linux, this setting is false by default and metrics are sent to CloudWatch. On Windows,
this setting is true by default, so you must change the setting to false to send the metrics
to CloudWatch for AWS Cost Management to use. For more information about ECS agent
configuration, see Amazon ECS container agent configuration.

Note

AWS Cost Management calculates the Split Cost Allocation Data with the task CPU and
memory usage. AWS Cost Management can use the task CPU and memory reservation
instead of the usage, if the usage is unavailable. If you see the CUR is using the
reservations, check that your container instances meet the prerequisites and the task
resource usage metrics appear in CloudWatch.

Setting up Task-level Cost and Usage Reports

You can turn on Split Cost Allocation Data for ECS in the Cost Management Console, AWS
Command Line Interface, or the AWS SDKs.

Use the following for Split Cost Allocation Data.

1. Opt in to Split Cost Allocation Data. For more information, see Enabling split cost allocation
data in the AWS Cost and Usage Report User Guide.

2. Include the data in a new or existing report.

3. View the report. You can use the Billing and Cost Management console or view the report files
in Amazon Simple Storage Service.

Task-level cost and usage 811

https://docs.aws.amazon.com/cur/latest/userguide/enabling-split-cost-allocation-data.html
https://docs.aws.amazon.com/cur/latest/userguide/enabling-split-cost-allocation-data.html

Amazon Elastic Container Service Developer Guide

Monitoring Amazon ECS

Monitoring is an important part of maintaining the reliability, availability, and performance of
Amazon ECS and your AWS solutions. You should collect monitoring data from all of the parts of
your AWS solution so that you can more easily debug a multi-point failure if one occurs. Before
you start monitoring Amazon ECS, create a monitoring plan that includes answers to the following
questions:

• What are your monitoring goals?

• What resources will you monitor?

• How often will you monitor these resources?

• What monitoring tools will you use?

• Who will perform the monitoring tasks?

• Who should be notified when something goes wrong?

The metrics made available depend on the launch type of the tasks and services in your clusters. If
you are using the Fargate launch type for your services, then CPU and memory utilization metrics
are provided to assist in the monitoring of your services. For the Amazon EC2 launch type, you own
and need to monitor the EC2 instances that make your underlying infrastructure. Additional CPU
and memory reservation and utilization metrics are made available at the cluster, service, and task.

The next step is to establish a baseline for normal Amazon ECS performance in your environment,
by measuring performance at various times and under different load conditions. As you monitor
Amazon ECS, store historical monitoring data so that you can compare it with current performance
data, identify normal performance patterns and performance anomalies, and devise methods to
address issues.

To establish a baseline you should, at a minimum, monitor the following items:

• The CPU and memory reservation and utilization metrics for your Amazon ECS clusters

• The CPU and memory utilization metrics for your Amazon ECS services

For more information, see Viewing Amazon ECS metrics.

Topics

• Best practices for monitoring Amazon ECS

812

Amazon Elastic Container Service Developer Guide

• Monitoring tools for Amazon ECS

• Monitor Amazon ECS using CloudWatch

• Automate responses to Amazon ECS errors using EventBridge

• Monitor Amazon ECS containers using Container Insights

• Monitor Amazon ECS container instance health

• Identify Amazon ECS optimization opportunities using application trace data

• Correlate Amazon ECS application performance using application metrics

• Log Amazon ECS API calls using AWS CloudTrail

• Identify unauthorized behavior using Runtime Monitoring

• Monitor Amazon ECS containers with ECS Exec

• AWS Compute Optimizer recommendations for Amazon ECS

Best practices for monitoring Amazon ECS

Use the following best practices for monitoring Amazon ECS.

• Make monitoring a priority to head off small problems before they become big ones

• Create a monitoring plan that includes answers to the following question

• What are your monitoring goals?

• What resources will you monitor?

• How often will you monitor these resources?

• What monitoring tools will you use?

• Who will perform the monitoring tasks?

• Who should be notified when something goes wrong?

• Automate monitoring as much as possible.

• Check the Amazon ECS log files. For more information, see Amazon ECS log file locations.

Monitoring tools for Amazon ECS

AWS provides various tools that you can use to monitor Amazon ECS. You can configure some of
these tools to do the monitoring for you, while some of the tools require manual intervention. We
recommend that you automate monitoring tasks as much as possible.

Best practices for monitoring Amazon ECS 813

Amazon Elastic Container Service Developer Guide

Automated monitoring tools

You can use the following automated monitoring tools to watch Amazon ECS and report when
something is wrong:

• Amazon CloudWatch alarms – Watch a single metric over a time period that you specify, and
perform one or more actions based on the value of the metric relative to a given threshold over
a number of time periods. The action is a notification sent to an Amazon Simple Notification
Service (Amazon SNS) topic or Amazon EC2 Auto Scaling policy. CloudWatch alarms do not
invoke actions simply because they are in a particular state; the state must have changed and
been maintained for a specified number of periods. For more information, see Monitor Amazon
ECS using CloudWatch .

For services with tasks that use the Fargate launch type, you can use CloudWatch alarms to scale
in and scale out the tasks in your service based on CloudWatch metrics, such as CPU and memory
utilization. For more information, see Service auto scaling.

For clusters with tasks or services using the EC2 launch type, you can use CloudWatch alarms
to scale in and scale out the container instances based on CloudWatch metrics, such as cluster
memory reservation.

For your container instances that were launched with the Amazon ECS-optimized Amazon Linux
AMI, you can use CloudWatch Logs to view different logs from your container instances in one
convenient location. You must install the CloudWatch agent on your container instances. For
more information, see Download and configure the CloudWatch agent using the command line
in the Amazon CloudWatch User Guide. You must also add the ECS-CloudWatchLogs policy to
the ecsInstanceRole role. For more information, see Required permissions for monitoring
container instances.

• Amazon CloudWatch Logs – Monitor, store, and access the log files from the containers in your
Amazon ECS tasks by specifying the awslogs log driver in your task definitions. For more
information, see Using the awslogs log driver.

You can also monitor, store, and access the operating system and Amazon ECS container agent
log files from your Amazon ECS container instances. This method for accessing logs can be used
for containers using the EC2 launch type.

• Amazon CloudWatch Events – Match events and route them to one or more target functions
or streams to make changes, capture state information, and take corrective action. For more

Automated Tools 814

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/download-cloudwatch-agent-commandline.html

Amazon Elastic Container Service Developer Guide

information, see Automate responses to Amazon ECS errors using EventBridge in this guide and
What Is Amazon CloudWatch Events? in the Amazon CloudWatch Events User Guide.

• Container Insights – Collect, aggregate, and summarize metrics and logs from your containerized
applications and microservices. Container Insights collects data as performance log events using
embedded metric format. These performance log events are entries that use a structured JSON
schema that allow high-cardinality data to be ingested and stored at scale. From this data,
CloudWatch creates aggregated metrics at the cluster, task, and service level as CloudWatch
metrics. The metrics that Container Insights collects are available in CloudWatch automatic
dashboards, and are also viewable in the Metrics section of the CloudWatch console.

• AWS CloudTrail log monitoring – Share log files between accounts, monitor CloudTrail log files
in real time by sending them to CloudWatch Logs, write log processing applications in Java, and
validate that your log files have not changed after delivery by CloudTrail. For more information,
see Log Amazon ECS API calls using AWS CloudTrail in this guide, and Working with CloudTrail
Log Files in the AWS CloudTrail User Guide.

• Runtime Monitoring – Detect threats for clusters and containers within your AWS environment.
Runtime Monitoring uses a GuardDuty security agent that adds runtime visibility into individual
Amazon ECS workloads, for example, file access, process execution, and network connections.

Manual monitoring tools

Another important part of monitoring Amazon ECS involves manually monitoring those items
that the CloudWatch alarms don't cover. The CloudWatch, Trusted Advisor, and other AWS console
dashboards provide an at-a-glance view of the state of your AWS environment. We recommend
that you also check the log files on your container instances and the containers in your tasks.

• Amazon ECS console:

• Cluster metrics for the EC2 launch type

• Service metrics

• Service health status

• Service deployment events

• CloudWatch home page:

• Current alarms and status

• Graphs of alarms and resources

• Service health status
Manual Tools 815

https://docs.aws.amazon.com/AmazonCloudWatch/latest/events/WhatIsCloudWatchEvents.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-working-with-log-files.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-working-with-log-files.html

Amazon Elastic Container Service Developer Guide

In addition, you can use CloudWatch to do the following:

• Create customized dashboards to monitor the services you care about.

• Graph metric data to troubleshoot issues and discover trends.

• Search and browse all your AWS resource metrics.

• Create and edit alarms to be notified of problems.

• AWS Trusted Advisor can help you monitor your AWS resources to improve performance,
reliability, security, and cost effectiveness. Four Trusted Advisor checks are available to all users;
more than 50 checks are available to users with a Business or Enterprise support plan. For more
information, see AWS Trusted Advisor.

Trusted Advisor has these checks that relate to Amazon ECS:

• A fault tolerance which indicates that you have a service running in a single Availability Zone.

• A fault tolerance which indicates that you have not used the spread placement strategy for
multiple Availability Zones.

• AWS Compute Optimizer is a service that analyzes the configuration and utilization metrics of
your AWS resources. It reports whether your resources are optimal, and generates optimization
recommendations to reduce the cost and improve the performance of your workloads.

For more information, see AWS Compute Optimizer recommendations for Amazon ECS.

Monitor Amazon ECS using CloudWatch

You can monitor your Amazon ECS resources using Amazon CloudWatch, which collects and
processes raw data from Amazon ECS into readable, near real-time metrics. These statistics
are recorded for a period of two weeks so that you can access historical information and gain a
better perspective on how your clusters or services are performing. Amazon ECS metric data is
automatically sent to CloudWatch in 1-minute periods. For more information about CloudWatch,
see the Amazon CloudWatch User Guide.

Amazon ECS provides free metrics for clusters and services. For an additional cost, you can turn
on Amazon ECS CloudWatch Container Insights for your cluster for per-task metrics, including
CPU, memory, and EBS filesystem utilization. For more information about Container Insights, see
Monitor Amazon ECS containers using Container Insights.

Monitor Amazon ECS using CloudWatch 816

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/CloudWatch_Dashboards.html
https://aws.amazon.com/premiumsupport/trustedadvisor/
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/

Amazon Elastic Container Service Developer Guide

Considerations

The following should be considered when using Amazon ECS CloudWatch metrics.

• Any Amazon ECS service hosted on Fargate has CloudWatch CPU and memory utilization metrics
automatically, so you don't need to take any manual steps.

• For any Amazon ECS task or service hosted on Amazon EC2 instances, the Amazon EC2 instance
requires version 1.4.0 or later (Linux) or 1.0.0 or later (Windows) of the container agent for
CloudWatch metrics to be generated. However, we recommend using the latest container agent
version. For information about checking your agent version and updating to the latest version,
see Updating the Amazon ECS container agent.

• The minimum Docker version for reliable CloudWatch metrics is Docker version 20.10.13 and
newer.

• Your Amazon EC2 instances also require the ecs:StartTelemetrySession permission on
the IAM role that you launch your Amazon EC2 instances with. If you created your Amazon ECS
container instance IAM role before CloudWatch metrics were available for Amazon ECS, you
might need to add this permission. For information about the container instance IAM role and
attaching the managed IAM policy for container instances, see Amazon ECS container instance
IAM role.

• You can disable CloudWatch metrics collection on your Amazon EC2 instances by setting
ECS_DISABLE_METRICS=true in your Amazon ECS container agent configuration. For more
information, see Amazon ECS container agent configuration.

Available metrics and dimensions for Amazon ECS

Amazon ECS provides free CloudWatch metrics you can use to monitor your resources.

A metric represents a time-ordered set of data points that are published to CloudWatch. The
infrastructure your Amazon ECS tasks are hosted on in your clusters determines which metrics are
available.

CloudWatch metrics have namespaces, dimensions, and statistics. Namespaces are used to isolate
metrics. The Amazon ECS namespace is AWS/ECS.

Dimensions which are name/value pairs that are part of the metric identity. Dimensions are like
categories for the metrics. Dimensions for Amazon ECS include ClusterName, and ServiceName.

Considerations 817

Amazon Elastic Container Service Developer Guide

Statistics are metric data aggregations over specified periods of time. CloudWatch provides
statistics based on the metric data points provided by your custom data or provided by other
services in AWS to CloudWatch. Aggregations are made using the namespace, metric name,
dimensions, and the data point unit of measure, within the time period you specify.

Amazon ECS sends the following metrics to CloudWatch every minute. When Amazon ECS collects
metrics, it collects multiple data points every minute. It then aggregates them to one data point
before sending the data to CloudWatch. So in CloudWatch, one sample count is actually the
aggregate of multiple data points during one minute.

Statistic Description

Average The value of Sum / SampleCount during the specified period. By comparing
this statistic with the Minimum and Maximum, you can determine the full scope
of a metric and how close the average use is to the Minimum and Maximum. This
comparison helps you to know when to increase or decrease your resources as
needed.

Maximum The highest value observed during the specified period. You can use this value
to determine high volumes of activity for your application.

Minimum The lowest value observed during the specified period. You can use this value to
determine low volumes of activity for your application.

SampleCou
nt

The count (number) of data points used for the statistical calculation.

Sum All values submitted for the matching metric added together. This statistic can
be useful for determining the total volume of a metric.

Topics

• Amazon ECS metrics

• Dimensions for Amazon ECS metrics

• Cluster reservation metrics

• Cluster utilization

• Service utilization

Available metrics and dimensions for Amazon ECS 818

Amazon Elastic Container Service Developer Guide

• Service RUNNING task count

Amazon ECS metrics

Amazon ECS provides free CloudWatch metrics you can use to monitor your resources. The
CPU and memory reservation and the CPU, memory, and EBS filesystem utilization across your
cluster as a whole, and the CPU, memory, and EBS filesystem utilization on the services in your
clusters can be measured using these metrics. For your GPU workloads, you can measure your GPU
reservation across your cluster.

The infrastructure your Amazon ECS tasks are hosted on in your clusters determines which metrics
are available. For tasks hosted on Fargate infrastructure, Amazon ECS provides CPU, memory, and
EBS filesystem utilization metrics are provided to assist in the monitoring of your services. For
tasks hosted on EC2 instances, Amazon ECS provides CPU, memory, and GPU reservation metrics
and CPU and memory utilization metrics at the cluster and service level. You need to monitor the
Amazon EC2 instances that make your underlying infrastructure separately. For more information
about monitoring your Amazon EC2 instances, see Monitoring Amazon EC2 in the Amazon EC2 User
Guide for Linux Instances.

The AWS/ECS namespace in CloudWatch includes the following metrics.

CPUReservation

The percentage of CPU units that are reserved in the cluster or service.

The CPU reservation (filtered by ClusterName) is measured as the total CPU units that are
reserved by Amazon ECS tasks on the cluster, divided by the total CPU units for all of the
Amazon EC2 instances registered in the cluster. Only Amazon EC2 instances in ACTIVE or
DRAINING status will affect CPU reservation metrics. The metric is only supported for tasks
hosted on an Amazon EC2 instance.

Reason to use: You can use this alarm to determine when to scale-out or add additional
capacity.

Recommended value: We recommend that you set this metric to 90%. We do not recommend
that you use this alarm when you have EC2 capacity providers with managed scaling turned on,
or you have Fargate capacity providers. In these cases, Amazon ECS manages scaling on your
behalf.

Valid dimensions: ClusterName.

Available metrics and dimensions for Amazon ECS 819

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/monitoring_ec2.html

Amazon Elastic Container Service Developer Guide

Useful statistics: Average, Minimum, Maximum

Unit: Percent.

CPUUtilization

The percentage of CPU units that is used by the cluster or service.

The cluster-level CPU utilization (filtered by ClusterName) is measured as the total CPU units
that are in use by Amazon ECS tasks on the cluster, divided by the total CPU units for all of
the Amazon EC2 instances registered in the cluster. Only Amazon EC2 instances in ACTIVE or
DRAINING status will affect CPU reservation metrics. The cluster-level metric is only supported
for tasks hosted on an Amazon EC2 instance.

The service-level CPU utilization (filtered by ClusterName, ServiceName) is measured as the
total CPU units in use by the tasks that belong to the service, divided by the total number of
CPU units that are reserved for the tasks that belong to the service. The service-level metric is
supported for tasks hosted on Amazon EC2 instances and Fargate.

Reason to use: You can use this metric to determine when to add more CPU for your instances
or tasks so that there are no resource bottleneck or application performance problems.

Recommended value: Even though the service-level metric might exceed 100% utilization, we
recommend that you set the threshold to 90-95%. This can help to avoid an impact to other
services. We recommend that you update your task definitions to reflect the actual usage to
prevent future issues with services.

Valid dimensions: ClusterName, ServiceName.

Useful statistics: Average, Minimum, Maximum

Unit: Percent.

MemoryReservation

The percentage of memory that is reserved by running tasks in the cluster.

Cluster memory reservation is measured as the total memory that is reserved by Amazon
ECS tasks on the cluster, divided by the total amount of memory for all of the Amazon EC2
instances registered in the cluster. This metric can only be filtered by ClusterName. Only
Amazon EC2 instances in ACTIVE or DRAINING status will affect memory reservation metrics.

Available metrics and dimensions for Amazon ECS 820

Amazon Elastic Container Service Developer Guide

The cluster level memory reservation metric is only supported for tasks hosted on an Amazon
EC2 instance.

Note

When calculating memory utilization, if MemoryReservation is specified, it's used in
the calculation instead of total memory.

Reason to use: You can use this metric to determine when to scale out the cluster. Reaching the
total memory units for the cluster can cause the cluster to be unable to launch new tasks.

Recommended value: We recommend that you set this metric to 90%. We do not recommend
that you use this alarm when you have EC2 capacity providers with managed scaling turned on,
or you have Fargate capacity providers. In these cases, Amazon ECS manages scaling on your
behalf.

Valid dimensions: ClusterName.

Useful statistics: Average, Minimum, Maximum

Unit: Percent.

MemoryUtilization

The percentage of memory in use by the cluster or service.

The cluster-level memory utilization (filtered by ClusterName) is measured as the total
memory in use by Amazon ECS tasks on the cluster, divided by the total memory for all of
the Amazon EC2 instances registered in the cluster. Only Amazon EC2 instances in ACTIVE
or DRAINING status will affect memory utilization metrics. The cluster-level metric is only
supported for tasks hosted on an Amazon EC2 instance.

The service-level memory utilization (filtered by ClusterName, ServiceName) is measured as
the total memory in use by the tasks that belong to the service, divided by the total memory
reserved for the tasks that belong to the service. The service-level metric is supported for tasks
hosted on Amazon EC2 instances and Fargate.

Reason to use: You can use this metric to determine when to add more memory for your
instances or tasks so that there are no resource bottleneck or application performance
problems.

Available metrics and dimensions for Amazon ECS 821

Amazon Elastic Container Service Developer Guide

Recommended value: We recommend that you set the threshold to 90-95%. This can help to
avoid an impact to other services. We recommend that you update your task definitions to
reflect the actual usage to prevent future issues with services.

Valid dimensions: ClusterName, ServiceName.

Useful statistics: Average, Minimum, Maximum

Unit: Percent.

EBSFilesystemUtilization

The percentage of the Amazon EBS filesystem that is used by tasks in a service.

The service level EBS filesystem utilization metric (filtered by ClusterName, ServiceName)
is measured as the total amount of the EBS filesystem in use by the tasks that belong to the
service, divided by the total amount of EBS filesystem storage that is allocated for all tasks that
belong to the service. The service level EBS filesystem utilization metric is only available for
tasks hosted on Amazon EC2 instances (using container agent version 1.79.0) and Fargate
(using platform version 1.4.0) that have an EBS volume attached.

Note

For tasks hosted on Fargate, there is space on the disk that is only used by Fargate.
There is no cost associated with the space Fargate uses, but you will see this additional
storage using tools like df.

Valid dimensions: ClusterName, ServiceName.

Useful statistics: Average, Minimum, Maximum

Unit: Percent.

GPUReservation

The percentage of total available GPUs that are reserved by running tasks in the cluster.

The cluster level GPU reservation metric is measured as the number of GPUs reserved by
Amazon ECS tasks on the cluster, divided by the total number of GPUs that was available on all
of the Amazon EC2 instances with GPUs registered in the cluster. Only Amazon EC2 instances in
ACTIVE or DRAINING status will affect GPU reservation metrics.

Available metrics and dimensions for Amazon ECS 822

Amazon Elastic Container Service Developer Guide

Valid dimensions: ClusterName.

Useful statistics: Average, Minimum, Maximum

All statistics: Average, Minimum, Maximum, Sum, Sample Count.

Unit: Percent.

ActiveConnectionCount

The total number of concurrent connections active from clients to the Amazon ECS Service
Connect proxies that run in tasks that share the selected DiscoveryName.

This metric is only available if you have configured Amazon ECS Service Connect.

Valid dimensions: DiscoveryName and DiscoveryName, ServiceName, ClusterName.

Useful statistics: Average, Minimum, Maximum, Sum.

Unit: Count.

NewConnectionCount

The total number of new connections established from clients to the Amazon ECS Service
Connect proxies that run in tasks that share the selected DiscoveryName.

This metric is only available if you have configured Amazon ECS Service Connect.

Valid dimensions: DiscoveryName and DiscoveryName, ServiceName, ClusterName.

Useful statistics: Average, Minimum, Maximum, Sum.

Unit: Count.

ProcessedBytes

The total number of bytes of inbound traffic processed by the Service Connect proxies.

This metric is only available if you have configured Amazon ECS Service Connect.

Valid dimensions: DiscoveryName and DiscoveryName, ServiceName, ClusterName.

Useful statistics: Average, Minimum, Maximum, Sum.

Available metrics and dimensions for Amazon ECS 823

Amazon Elastic Container Service Developer Guide

Unit: Bytes.

RequestCount

The number of inbound traffic requests processed by the Service Connect proxies.

This metric is only available if you have configured Amazon ECS Service Connect.

Valid dimensions: DiscoveryName and DiscoveryName, ServiceName, ClusterName.

Useful statistics: Average, Minimum, Maximum, Sum.

Unit: Count.

GrpcRequestCount

The number of gRPC inbound traffic requests processed by the Service Connect proxies.

This metric is only available if you have configured Amazon ECS Service Connect and the
appProtocol is GRPC in the port mapping in the task definition.

Valid dimensions: DiscoveryName and DiscoveryName, ServiceName, ClusterName.

Useful statistics: Average, Minimum, Maximum, Sum.

Unit: Count.

HTTPCode_Target_2XX_Count

The number of HTTP response codes with numbers 200 to 299 generated by the applications
in these tasks. These tasks are the targets. This metric only counts the responses sent to the
Service Connect proxies by the applications in these tasks, not responses sent directly.

This metric is only available if you have configured Amazon ECS Service Connect and the
appProtocol is HTTP or HTTP2 in the port mapping in the task definition.

Valid dimensions: TargetDiscoveryName and TargetDiscoveryName, ServiceName,
ClusterName.

Useful statistics: Average, Minimum, Maximum, Sum.

Unit: Count.

Available metrics and dimensions for Amazon ECS 824

Amazon Elastic Container Service Developer Guide

HTTPCode_Target_3XX_Count

The number of HTTP response codes with numbers 300 to 399 generated by the applications
in these tasks. These tasks are the targets. This metric only counts the responses sent to the
Service Connect proxies by the applications in these tasks, not responses sent directly.

This metric is only available if you have configured Amazon ECS Service Connect and the
appProtocol is HTTP or HTTP2 in the port mapping in the task definition.

Valid dimensions: TargetDiscoveryName and TargetDiscoveryName, ServiceName,
ClusterName.

Useful statistics: Average, Minimum, Maximum, Sum.

Unit: Count.

HTTPCode_Target_4XX_Count

The number of HTTP response codes with numbers 400 to 499 generated by the applications
in these tasks. These tasks are the targets. This metric only counts the responses sent to the
Service Connect proxies by the applications in these tasks, not responses sent directly.

This metric is only available if you have configured Amazon ECS Service Connect and the
appProtocol is HTTP or HTTP2 in the port mapping in the task definition.

Valid dimensions: TargetDiscoveryName and TargetDiscoveryName, ServiceName,
ClusterName.

Useful statistics: Average, Minimum, Maximum, Sum

Unit: Count.

HTTPCode_Target_5XX_Count

The number of HTTP response codes with numbers 500 to 599 generated by the applications
in these tasks. These tasks are the targets. This metric only counts the responses sent to the
Service Connect proxies by the applications in these tasks, not responses sent directly.

This metric is only available if you have configured Amazon ECS Service Connect and the
appProtocol is HTTP or HTTP2 in the port mapping in the task definition.

Reason to use: You can use this metric to detect a high server-side error count for a service.

Available metrics and dimensions for Amazon ECS 825

Amazon Elastic Container Service Developer Guide

Recommended value: We recommend that you initially set the value to 5% of your average
traffic. You can use the RequestCount metric to find the average traffic. You might need adjust
the value so that the alarm is not too sensitive.

Useful statistics: Average, Minimum, Maximum, Sum.

Unit: Count.

RequestCountPerTarget

The average number of requests received by each target that share the selected
DiscoveryName.

This metric is only available if you have configured Amazon ECS Service Connect.

Valid dimensions: TargetDiscoveryName and TargetDiscoveryName, ServiceName,
ClusterName.

Useful statistics: Average.

Unit: Count.

TargetProcessedBytes

The total number of bytes processed by the Service Connect proxies.

This metric is only available if you have configured Amazon ECS Service Connect.

Valid dimensions: TargetDiscoveryName and TargetDiscoveryName, ServiceName,
ClusterName.

Useful statistics: Average, Minimum, Maximum, Sum.

Unit: Bytes.

TargetResponseTime

The latency of the application request processing. The time elapsed, in milliseconds, after the
request reached the Service Connect proxy in the target task until a response from the target
application is received back to the proxy.

This metric is only available if you have configured Amazon ECS Service Connect.

Available metrics and dimensions for Amazon ECS 826

Amazon Elastic Container Service Developer Guide

Reason to use: You can use this metric to detect a high service response time. You can then look
at other metrics such as CPUUtilization to determine if the service has enough resources.

Recommended value: Review the critical response time and historical behavior of the metric to
determine a value.

Valid dimensions: TargetDiscoveryName and TargetDiscoveryName, ServiceName,
ClusterName.

Useful statistics: Average, Minimum, Maximum.

All statistics: Average, Minimum, Maximum, Sum, Sample Count.

Unit: Milliseconds.

ClientTLSNegotiationErrorCount

The total number of times the TLS connection failed. This metric is only used when TLS is
enabled.

This metric is only available if you have configured Amazon ECS Service Connect.

Valid dimensions: DiscoveryName and DiscoveryName, ServiceName, ClusterName.

Useful statistics: Average, Minimum, Maximum, Sum.

Unit: Count.

TargetTLSNegotiationErrorCount

The total number of times the TLS connection failed due to missing client certificates, failed
AWS Private CA verifications, or failed SAN verifications. This metric is only used when TLS is
enabled.

This metric is only available if you have configured Amazon ECS Service Connect.

Valid dimensions: ServiceName, ClusterName, TargetDiscoveryName and
TargetDiscoveryName.

Useful statistics: Average, Minimum, Maximum, Sum.

Unit: Count.

Available metrics and dimensions for Amazon ECS 827

Amazon Elastic Container Service Developer Guide

Dimensions for Amazon ECS metrics

Amazon ECS metrics use the AWS/ECS namespace and provide metrics for the following
dimensions. Amazon ECS only sends metrics for resources that have tasks in the RUNNING state.
For example, if you have a cluster with one service in it but that service has no tasks in a RUNNING
state, there will be no metrics sent to CloudWatch. If you have two services and one of them has
running tasks and the other doesn't, only the metrics for the service with running tasks would be
sent.

ClusterName

This dimension filters the data that you request for all resources in a specified cluster. All
Amazon ECS metrics are filtered by ClusterName.

ServiceName

This dimension filters the data that you request for all resources in a specified service within a
specified cluster.

DiscoveryName

This dimension filters the data that you request for traffic metrics to a specified Service Connect
discovery name across all Amazon ECS clusters.

Note that a specific port in a running container can have multiple discovery names.

DiscoveryName, ServiceName, ClusterName

This dimension filters the data that you request for traffic metrics to a specified Service Connect
discovery name across tasks that have this discovery name and that are created by this service
in this cluster.

Use this dimension to see the inbound traffic metrics for a specific service, if you have reused
the same discovery name in multiple services in different namespaces.

Note that a specific port in a running container can have multiple discovery names.

TargetDiscoveryName

This dimension filters the data that you request for traffic metrics to a specified Service Connect
discovery name across all Amazon ECS clusters.

Different from DiscoveryName, these traffic metrics only measure inbound traffic to this
DiscoveryName that come from other Amazon ECS tasks that have a Service Connect

Available metrics and dimensions for Amazon ECS 828

Amazon Elastic Container Service Developer Guide

configuration in this namespace. This includes tasks made by services with either a client-only
or client-server Service Connect configuration.

Note that a specific port in a running container can have multiple discovery names.

TargetDiscoveryName, ServiceName, ClusterName

This dimension filters the data that you request for traffic metrics to a specified Service Connect
discovery name but only counts traffic from tasks created by this service in this cluster.

Use this dimension to see the inbound traffic metrics that come from a specific client in another
service.

Different from DiscoveryName, ServiceName, ClusterName, these traffic metrics only
measure inbound traffic to this DiscoveryName that come from other Amazon ECS tasks that
have a Service Connect configuration in this namespace. This includes tasks made by services
with either a client-only or client-server Service Connect configuration.

Note that a specific port in a running container can have multiple discovery names.

Cluster reservation metrics

Cluster reservation metrics are measured as the percentage of CPU, memory, and GPUs that are
reserved by all Amazon ECS tasks on a cluster when compared to the aggregate CPU, memory,
and GPUs that were registered for each active container instance in the cluster. Only container
instances in ACTIVE or DRAINING status will affect cluster reservation metrics. This metric is used
only on clusters with tasks or services hosted on EC2 instances. It's not supported on clusters with
tasks hosted on AWS Fargate.

 (Total CPU units reserved by tasks in cluster) x 100
Cluster CPU reservation =
 --
 (Total CPU units registered by container instances in
 cluster)

 (Total MiB of memory reserved by tasks in cluster x
 100)
Cluster memory reservation =
 --
 (Total MiB of memory registered by container instances in
 cluster)

Available metrics and dimensions for Amazon ECS 829

Amazon Elastic Container Service Developer Guide

 (Total GPUs reserved by tasks in cluster x 100)
Cluster GPU reservation =
 --
 (Total GPUs registered by container instances in cluster)

When you run a task in a cluster, Amazon ECS parses its task definition and reserves the aggregate
CPU units, MiB of memory, and GPUs that are specified in its container definitions. Each minute,
Amazon ECS calculates the number of CPU units, MiB of memory, and GPUs that are currently
reserved for each task that is running in the cluster. The total amount of CPU, memory, and GPUs
reserved for all tasks running on the cluster is calculated, and those numbers are reported to
CloudWatch as a percentage of the total registered resources for the cluster. If you specify a soft
limit (memoryReservation) in the task definition, it's used to calculate the amount of reserved
memory. Otherwise, the hard limit (memory) is used. The total MiB of memory reserved by tasks
in a cluster also includes temporary file system (tmpfs) volume size and sharedMemorySize if
defined in the task definition. For more information about hard and soft limits, shared memory
size, and tmpfs volume size, see Task Definition Parameters.

For example, a cluster has two active container instances registered: a c4.4xlarge instance and a
c4.large instance. The c4.4xlarge instance registers into the cluster with 16,384 CPU units and
30,158 MiB of memory. The c4.large instance registers with 2,048 CPU units and 3,768 MiB of
memory. The aggregate resources of this cluster are 18,432 CPU units and 33,926 MiB of memory.

If a task definition reserves 1,024 CPU units and 2,048 MiB of memory, and ten tasks are started
with this task definition on this cluster (and no other tasks are currently running), a total of 10,240
CPU units and 20,480 MiB of memory are reserved. This is reported to CloudWatch as 55% CPU
reservation and 60% memory reservation for the cluster.

The following illustration shows the total registered CPU units in a cluster and what their
reservation and utilization means to existing tasks and new task placement. The lower (Reserved,
used) and center (Reserved, not used) blocks represent the total CPU units that are reserved for
the existing tasks that are running on the cluster, or the CPUReservation CloudWatch metric.
The lower block represents the reserved CPU units that the running tasks are actually using on the
cluster, or the CPUUtilization CloudWatch metric. The upper block represents CPU units that
are not reserved by existing tasks; these CPU units are available for new task placement. Existing
tasks can use these unreserved CPU units as well, if their need for CPU resources increases. For
more information, see the cpu task definition parameter documentation.

Available metrics and dimensions for Amazon ECS 830

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/task_definition_parameters.html#container_definitions

Amazon Elastic Container Service Developer Guide

Cluster utilization

The cluster utilization metrics are available for CPU, memory, and, when there is an EBS volume
attached to your tasks, EBS filesystem utilization. These metrics are only available for clusters with
tasks or services hosted on Amazon EC2 instances. They're not supported on clusters with tasks
hosted on AWS Fargate.

Cluster level CPU and memory utilization

The CPU and memory utilization is measured as the percentage of CPU and memory that is used
by all tasks on a cluster when compared to the aggregate CPU and memory that was registered for
each active Amazon EC2 instances registered to the cluster. Only Amazon EC2 instances in ACTIVE
or DRAINING status will affect cluster utilization metrics.

 (Total CPU units used by tasks in cluster) x 100
Cluster CPU utilization =
 --
 (Total CPU units registered by container instances in
 cluster)

Available metrics and dimensions for Amazon ECS 831

Amazon Elastic Container Service Developer Guide

 (Total MiB of memory used by tasks in cluster x
 100)
Cluster memory utilization =
 --
 (Total MiB of memory registered by container instances in
 cluster)

Each minute, the Amazon ECS container agent on each Amazon EC2 instance calculates the
number of CPU units and MiB of memory that is currently being used for each task that is running
on that Amazon EC2 instance, and this information is reported back to Amazon ECS. The total
amount of CPU and memory used for all tasks running on the cluster is calculated, and those
numbers are reported to CloudWatch as a percentage of the total registered resources for the
cluster.

For example, a cluster has two active Amazon EC2 instances registered, a c4.4xlarge instance
and a c4.large instance. The c4.4xlarge instance registers into the cluster with 16,384 CPU
units and 30,158 MiB of memory. The c4.large instance registers with 2,048 CPU units and
3,768 MiB of memory. The aggregate resources of this cluster are 18,432 CPU units and 33,926
MiB of memory.

If ten tasks are running on this cluster and each task consumes 1,024 CPU units and 2,048 MiB of
memory, a total of 10,240 CPU units and 20,480 MiB of memory are used on the cluster. This is
reported to CloudWatch as 55% CPU utilization and 60% memory utilization for the cluster.

Cluster level EBS filesystem utilization

The cluster level EBS filesystem utilization metric is measured as the total amount of the EBS
filesystem in use by the tasks running on the cluster, divided by the total amount of EBS filesystem
storage that was allocated for all of the tasks in the cluster.

 (Total GB of EBS filesystem used by tasks in
 cluster x 100)
Cluster EBS filesystem utilization =

 (Total GB of EBS filesystem allocated to tasks
 in cluster)

Available metrics and dimensions for Amazon ECS 832

Amazon Elastic Container Service Developer Guide

Service utilization

The service utilization metrics are available for CPU, memory, and, when there is an EBS volume
attached to your tasks, EBS filesystem utilization. The service level metrics are supported for
services with tasks hosted on both Amazon EC2 instances and Fargate.

Service level CPU and memory utilization

The CPU and memory utilization is measured as the percentage of CPU and memory that is used
by the Amazon ECS tasks that belong to a service on a cluster when compared to the CPU and
memory that is specified in the service's task definition.

 (Total CPU units used by tasks in service) x 100
Service CPU utilization =
 --
 (Total CPU units specified in task definition) x (number of
 tasks in service)

 (Total MiB of memory used by tasks in service) x
 100
Service memory utilization =
 --
 (Total MiB of memory specified in task definition) x
 (number of tasks in service)

Each minute, the Amazon ECS container agent calculates the number of CPU units and MiB of
memory that are currently being used for each task owned by the service, and this information
is reported back to Amazon ECS. The total amount of CPU and memory used for all tasks owned
by the service that are running on the cluster is calculated, and those numbers are reported to
CloudWatch as a percentage of the total resources that are specified for the service in the service's
task definition. If you specify a soft limit (memoryReservation), it's used to calculate the amount
of reserved memory. Otherwise, the hard limit (memory) is used. For more information about hard
and soft limits, see Task size.

For example, the task definition for a service specifies a total of 512 CPU units and 1,024 MiB of
memory (with the hard limit memory parameter) for all of its containers. The service has a desired
count of 1 running task, the service is running on a cluster with 1 c4.large container instance
(with 2,048 CPU units and 3,768 MiB of total memory), and there are no other tasks running on
the cluster. Although the task specifies 512 CPU units, because it is the only running task on a

Available metrics and dimensions for Amazon ECS 833

Amazon Elastic Container Service Developer Guide

container instance with 2,048 CPU units, it can use up to four times the specified amount (2,048 /
512). However, the specified memory of 1,024 MiB is a hard limit and it can't be exceeded, so in
this case, service memory utilization can't exceed 100%.

If the previous example used the soft limit memoryReservation instead of the hard limit memory
parameter, the service's tasks could use more than the specified 1,024 MiB of memory as needed.
In this case, the service's memory utilization could exceed 100%.

If your application has a sudden spike in memory utilization for a short amount of time, you will
not see the service memory utilization increasing because Amazon ECS collects multiple data
points every minute, and then aggregates them to one data point that is sent to CloudWatch.

If this task is performing CPU-intensive work during a period and using all 2,048 of the available
CPU units and 512 MiB of memory, the service reports 400% CPU utilization and 50% memory
utilization. If the task is idle and using 128 CPU units and 128 MiB of memory, the service reports
25% CPU utilization and 12.5% memory utilization.

Note

In this example, the CPU utilization will only go above 100% when the CPU units are
defined at the container level. If you define CPU units at the task level, the utilization will
not go above the defined task-level limit.

Service level EBS filesystem utilization

The service level EBS filesystem utilization is measured as the total amount of the EBS filesystem in
use by the tasks that belong to the service, divided by the total amount of EBS filesystem storage
that is allocated for all tasks that belong to the service.

 (Total GB of EBS filesystem used by tasks in the
 service x 100)
Service EBS filesystem utilization =

 (Total GB of EBS filesystem allocated to tasks
 in the service)

Available metrics and dimensions for Amazon ECS 834

Amazon Elastic Container Service Developer Guide

Service RUNNING task count

You can use CloudWatch metrics to view the number of tasks in your services that are in the
RUNNING state. For example, you can set a CloudWatch alarm for this metric to alert you if the
number of running tasks in your service falls below a specified value.

Service RUNNING task count in Amazon ECS CloudWatch Container Insights

A "Number of Running Tasks" (RunningTaskCount) metric is available per cluster and per service
when you use Amazon ECS CloudWatch Container Insights. You can use Container Insights for
all new clusters created by opting in to the containerInsights account setting, on individual
clusters by turning on the cluster settings during cluster creation, or on existing clusters by using
the UpdateClusterSettings API. Metrics collected by CloudWatch Container Insights are charged as
custom metrics. For more information about CloudWatch pricing, see CloudWatch Pricing.

To view this metric, see Amazon ECS Container Insights Metrics in the Amazon CloudWatch User
Guide.

AWS Fargate usage metrics

You can use CloudWatch usage metrics to provide visibility into your accounts usage of resources.
Use these metrics to visualize your current service usage on CloudWatch graphs and dashboards.

AWS Fargate usage metrics correspond to AWS service quotas. You can configure alarms that alert
you when your usage approaches a service quota. For more information about Fargate service
quotas, see AWS Fargate service quotas.

AWS Fargate publishes the following metrics in the AWS/Usage namespace.

Metric Description

ResourceCount The total number of the specified resource running on your
account. The resource is defined by the dimensions associated
with the metric.

The following dimensions are used to refine the usage metrics that are published by AWS Fargate.

AWS Fargate usage metrics 835

https://aws.amazon.com/cloudwatch/pricing/
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/Container-Insights-view-metrics.html

Amazon Elastic Container Service Developer Guide

Dimension Description

Service The name of the AWS service containing the resource. For
AWS Fargate usage metrics, the value for this dimension is
Fargate.

Type The type of entity that is being reported. Currently, the only
valid value for AWS Fargate usage metrics is Resource.

Resource The type of resource that is running. The type of resource that
is running. Currently, the only valid value for AWS Fargate
usage metrics is vCPU which returns information about the
running instances.

Class The class of resource being tracked. The class of resource being
tracked. For AWS Fargate usage metrics with vCPU as the value
of the Resource dimension, the valid values are Standard/
OnDemand and Standard/Spot .

You can use the Service Quotas console to visualize your usage on a graph and configure alarms
that alert you when your AWS Fargate usage approaches a service quota. For information about
how to create a CloudWatch alarm to notify you when you're close to a quota value threshold, see
Service Quotas and Amazon CloudWatch alarms in the Service Quotas User Guide

.

Viewing Amazon ECS metrics

After you have resources running in your cluster, you can view the metrics on the Amazon ECS
and CloudWatch consoles. The Amazon ECS console provides a 24-hour maximum, minimum, and
average view of your cluster and service metrics. The CloudWatch console provides a fine-grained
and customizable display of your resources, as well as the number of running tasks in a service.

Amazon ECS console

Amazon ECS service CPU and memory utilization metrics are available on the Amazon ECS console.
The view provided for service metrics shows the average, minimum, and maximum values for the

Viewing Amazon ECS metrics 836

https://docs.aws.amazon.com/servicequotas/latest/userguide/configure-cloudwatch.html

Amazon Elastic Container Service Developer Guide

previous 24-hour period, with data points available in 5-minute intervals. For more information,
see Service utilization.

1. Open the console at https://console.aws.amazon.com/ecs/v2.

2. Select the cluster that you want to view metrics for.

3. Determine the metrics to view.

Toview metrics from Steps

Clusters On the cluster details page,
choose the Metrics tab.
There is also a link provided
to the CloudWatch console
to view your CloudWatch
Container Insights metrics if
you have those turned on.

Services On the cluster details page,
on the Services tab, select
the service. The metrics are
then available on the Health
and metrics tab.

CloudWatch console

For the Fargate launch type, Amazon ECS service metrics can also be viewed on the CloudWatch
console. The console provides the most detailed view of Amazon ECS metrics, and you can tailor
the views to suit your needs. You can view the service utilization and service RUNNING task count.

For the EC2 launch type, Amazon ECS cluster and service metrics can also be viewed on the
CloudWatch console. The console provides the most detailed view of Amazon ECS metrics, and you
can tailor the views to suit your needs.

For information about how to view the metrics, see View available metrics the Amazon CloudWatch
User Guide.

Viewing Amazon ECS metrics 837

https://console.aws.amazon.com/ecs/v2
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/viewing_metrics_with_cloudwatch.html

Amazon Elastic Container Service Developer Guide

Automate responses to Amazon ECS errors using EventBridge

Using Amazon EventBridge, you can automate your AWS services and respond automatically to
system events such as application availability issues or resource changes. Events from AWS services
are delivered to EventBridge in near real time. You can write simple rules to indicate which events
are of interest to you and what automated actions to take when an event matches a rule. The
actions that can be automatically configured to include the following:

• Adding events to log groups in CloudWatch Logs

• Invoking an AWS Lambda function

• Invoking Amazon EC2 Run Command

• Relaying the event to Amazon Kinesis Data Streams

• Activating an AWS Step Functions state machine

• Notifying an Amazon SNS topic or an Amazon Simple Queue Service (Amazon SQS) queue

For more information, see Getting Started with Amazon EventBridge in the Amazon EventBridge
User Guide.

You can use Amazon ECS events for EventBridge to receive near real-time notifications regarding
the current state of your Amazon ECS clusters. If your tasks are using the EC2 launch type, you can
see the state of both the container instances and the current state of all tasks running on those
container instances. If your tasks are using the Fargate launch type, you can see the state of the
container instances.

Using EventBridge, you can build custom schedulers on top of Amazon ECS that are responsible
for orchestrating tasks across clusters and monitoring the state of clusters in near real time. You
can eliminate scheduling and monitoring code that continuously polls the Amazon ECS service
for status changes and instead handle Amazon ECS state changes asynchronously using any
EventBridge target. Targets might include AWS Lambda, Amazon Simple Queue Service, Amazon
Simple Notification Service, or Amazon Kinesis Data Streams.

An Amazon ECS event stream ensures that every event is delivered at least one time. If duplicate
events are sent, the event provides enough information to identify duplicates. For more
information, see Handling Amazon ECS events.

Events are relatively ordered, so that you can easily tell when an event occurred in relation to other
events.

Automate responses to Amazon ECS errors using EventBridge 838

https://docs.aws.amazon.com/eventbridge/latest/userguide/eventbridge-getting-set-up.html

Amazon Elastic Container Service Developer Guide

Topics

• Amazon ECS events

• Handling Amazon ECS events

Amazon ECS events

Amazon ECS tracks the state of each of your tasks and services. If the state of a task or service
changes, an event is generated and is sent to Amazon EventBridge. These events are classified
as task state change events and service action events. These events and their possible causes are
described in greater detail in the following sections.

Amazon ECS generated and sends the following types of events to EventBridge: container instance
state change events, task state change events, service action, and service deployment state change
events.

• Container instance state change

• Task state change

• Deployment state change

• Service action

Note

Amazon ECS may add other event types, sources, and details in the future. If you are de-
serializing event JSON data in code, make sure that your application is prepared to handle
unknown properties to avoid issues if and when these additional properties are added.

In some cases, multiple events are generated for the same activity. For example, when a task
is started on a container instance, a task state change event is generated for the new task.
A container instance state change event is generated to account for the change in available
resources, such as CPU, memory, and available ports, on the container instance. Likewise, if a
container instance is terminated, events are generated for the container instance, the container
agent connection status, and every task that was running on the container instance.

Amazon ECS events 839

Amazon Elastic Container Service Developer Guide

Container state change and task state change events contain two version fields: one in the
main body of the event, and one in the detail object of the event. The following describes the
differences between these two fields:

• The version field in the main body of the event is set to 0 on all events. For more information
about EventBridge parameters, see Events and Event Patterns in the Amazon EventBridge User
Guide.

• The version field in the detail object of the event describes the version of the associated
resource. Each time a resource changes state, this version is incremented. Because events can be
sent multiple times, this field allows you to identify duplicate events. Duplicate events have the
same version in the detail object. If you are replicating your Amazon ECS container instance
and task state with EventBridge, you can compare the version of a resource reported by the
Amazon ECS APIs with the version reported in EventBridge for the resource (inside the detail
object) to verify that the version in your event stream is current.

Service action events only contain the version field in the main body.

For additional information about how to integrate Amazon ECS and EventBridge, see Integrating
Amazon EventBridge and Amazon ECS.

Amazon ECS container instance state change events

The following scenarios cause container instance state change events:

You call the StartTask, RunTask, or StopTask API operations, either directly or with the AWS
Management Console or SDKs.

Placing or stopping tasks on a container instance modifies the available resources on the
container instance, such as CPU, memory, and available ports.

The Amazon ECS service scheduler starts or stops a task.

Placing or stopping tasks on a container instance modifies the available resources on the
container instance, such as CPU, memory, and available ports.

The Amazon ECS container agent calls the SubmitTaskStateChange API operation with a
STOPPED status for a task with a desired status of RUNNING.

The Amazon ECS container agent monitors the state of tasks on your container instances, and it
reports any state changes. If a task that is supposed to be RUNNING is transitioned to STOPPED,

Amazon ECS events 840

https://docs.aws.amazon.com/eventbridge/latest/userguide/eventbridge-and-event-patterns.html
https://aws.amazon.com/blogs/compute/integrating-amazon-eventbridge-and-amazon-ecs/
https://aws.amazon.com/blogs/compute/integrating-amazon-eventbridge-and-amazon-ecs/

Amazon Elastic Container Service Developer Guide

the agent releases the resources that were allocated to the stopped task, such as CPU, memory,
and available ports.

You deregister the container instance with the DeregisterContainerInstance API operation,
either directly or with the AWS Management Console or SDKs.

Deregistering a container instance changes the status of the container instance and the
connection status of the Amazon ECS container agent.

A task was stopped when an EC2 instance was stopped.

When you stop a container instance, the tasks that are running on it are transitioned to the
STOPPED status.

The Amazon ECS container agent registers a container instance for the first time.

The first time the Amazon ECS container agent registers a container instance (at launch or when
first run manually), this creates a state change event for the instance.

The Amazon ECS container agent connects or disconnects from Amazon ECS.

When the Amazon ECS container agent connects or disconnects from the Amazon ECS backend,
it changes the agentConnected status of the container instance.

Note

The Amazon ECS container agent disconnects and reconnects several times per hour as
a part of its normal operation, so agent connection events should be expected. These
events are not an indication that there is an issue with the container agent or your
container instance.

You upgrade the Amazon ECS container agent on an instance.

The container instance detail contains an object for the container agent version. If you upgrade
the agent, this version information changes and generates an event.

Example Container instance state change event

Container instance state change events are delivered in the following format. The detail section
below resembles the ContainerInstance object that is returned from a DescribeContainerInstances

Amazon ECS events 841

https://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_ContainerInstance.html
https://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_DescribeContainerInstances.html

Amazon Elastic Container Service Developer Guide

API operation in the Amazon Elastic Container Service API Reference. For more information about
EventBridge parameters, see Events and Event Patterns in the Amazon EventBridge User Guide.

{
 "version": "0",
 "id": "8952ba83-7be2-4ab5-9c32-6687532d15a2",
 "detail-type": "ECS Container Instance State Change",
 "source": "aws.ecs",
 "account": "111122223333",
 "time": "2016-12-06T16:41:06Z",
 "region": "us-east-1",
 "resources": [
 "arn:aws:ecs:us-east-1:111122223333:container-instance/
b54a2a04-046f-4331-9d74-3f6d7f6ca315"
],
 "detail": {
 "agentConnected": true,
 "attributes": [
 {
 "name": "com.amazonaws.ecs.capability.logging-driver.syslog"
 },
 {
 "name": "com.amazonaws.ecs.capability.task-iam-role-network-host"
 },
 {
 "name": "com.amazonaws.ecs.capability.logging-driver.awslogs"
 },
 {
 "name": "com.amazonaws.ecs.capability.logging-driver.json-file"
 },
 {
 "name": "com.amazonaws.ecs.capability.docker-remote-api.1.17"
 },
 {
 "name": "com.amazonaws.ecs.capability.privileged-container"
 },
 {
 "name": "com.amazonaws.ecs.capability.docker-remote-api.1.18"
 },
 {
 "name": "com.amazonaws.ecs.capability.docker-remote-api.1.19"
 },
 {

Amazon ECS events 842

https://docs.aws.amazon.com/eventbridge/latest/userguide/eventbridge-and-event-patterns.html

Amazon Elastic Container Service Developer Guide

 "name": "com.amazonaws.ecs.capability.ecr-auth"
 },
 {
 "name": "com.amazonaws.ecs.capability.docker-remote-api.1.20"
 },
 {
 "name": "com.amazonaws.ecs.capability.docker-remote-api.1.21"
 },
 {
 "name": "com.amazonaws.ecs.capability.docker-remote-api.1.22"
 },
 {
 "name": "com.amazonaws.ecs.capability.docker-remote-api.1.23"
 },
 {
 "name": "com.amazonaws.ecs.capability.task-iam-role"
 }
],
 "clusterArn": "arn:aws:ecs:us-east-1:111122223333:cluster/default",
 "containerInstanceArn": "arn:aws:ecs:us-east-1:111122223333:container-instance/
b54a2a04-046f-4331-9d74-3f6d7f6ca315",
 "ec2InstanceId": "i-f3a8506b",
 "registeredResources": [
 {
 "name": "CPU",
 "type": "INTEGER",
 "integerValue": 2048
 },
 {
 "name": "MEMORY",
 "type": "INTEGER",
 "integerValue": 3767
 },
 {
 "name": "PORTS",
 "type": "STRINGSET",
 "stringSetValue": [
 "22",
 "2376",
 "2375",
 "51678",
 "51679"
]
 },

Amazon ECS events 843

Amazon Elastic Container Service Developer Guide

 {
 "name": "PORTS_UDP",
 "type": "STRINGSET",
 "stringSetValue": []
 }
],
 "remainingResources": [
 {
 "name": "CPU",
 "type": "INTEGER",
 "integerValue": 1988
 },
 {
 "name": "MEMORY",
 "type": "INTEGER",
 "integerValue": 767
 },
 {
 "name": "PORTS",
 "type": "STRINGSET",
 "stringSetValue": [
 "22",
 "2376",
 "2375",
 "51678",
 "51679"
]
 },
 {
 "name": "PORTS_UDP",
 "type": "STRINGSET",
 "stringSetValue": []
 }
],
 "status": "ACTIVE",
 "version": 14801,
 "versionInfo": {
 "agentHash": "aebcbca",
 "agentVersion": "1.13.0",
 "dockerVersion": "DockerVersion: 1.11.2"
 },
 "updatedAt": "2016-12-06T16:41:06.991Z"
 }

Amazon ECS events 844

Amazon Elastic Container Service Developer Guide

}

Amazon ECS task state change events

The following scenarios cause task state change events:

You call the StartTask, RunTask, or StopTask API operations, either directly or with the AWS
Management Console, AWS CLI, or SDKs.

Starting or stopping tasks creates new task resources or modifies the state of existing task
resources.

The Amazon ECS service scheduler starts or stops a task.

Starting or stopping tasks creates new task resources or modifies the state of existing task
resources.

The Amazon ECS container agent calls the SubmitTaskStateChange API operation.

For the Fargate launch type, the Amazon ECS container agent monitors the state of your
container instances. For the Amazon EC2 launch type, the Amazon ECS container agent
monitors the state of your tasks on your container instances. The Amazon ECS container agent
reports any state changes. State changes might include changes from PENDING to RUNNING or
from RUNNING to STOPPED.

You force deregistration of the underlying container instance with the
DeregisterContainerInstance API operation and the force flag, either directly or with the
AWS Management Console or SDKs.

Deregistering a container instance changes the status of the container instance and the
connection status of the Amazon ECS container agent. If tasks are running on the container
instance, the force flag must be set to allow deregistration. This stops all tasks on the
instance.

The underlying container instance is stopped or terminated.

When you stop or terminate a container instance, the tasks that are running on it are
transitioned to the STOPPED status.

A container in the task changes state.

The Amazon ECS container agent monitors the state of containers within tasks. For example, if a
container that is running within a task stops, this container state change generates an event.

Amazon ECS events 845

Amazon Elastic Container Service Developer Guide

A task using the Fargate Spot capacity provider receives a termination notice.

When a task is using the FARGATE_SPOT capacity provider and is stopped due to a Spot
interruption, a task state change event is generated.

Example Task state change event

Task state change events are delivered in the following format. The detail section below
resembles the Task object that is returned from a DescribeTasks API operation in the Amazon
Elastic Container Service API Reference. If your containers are using an image hosted with Amazon
ECR, the imageDigest field is returned.

Note

The values for the createdAt, connectivityAt, pullStartedAt, startedAt,
pullStoppedAt, and updatedAt fields are UNIX timestamps in the response of a
DescribeTasks action whereas in the task state change event they are ISO string
timestamps.

For more information about CloudWatch Events parameters, see Events and Event Patterns in the
Amazon EventBridge User Guide.

{
 "version": "0",
 "id": "3317b2af-7005-947d-b652-f55e762e571a",
 "detail-type": "ECS Task State Change",
 "source": "aws.ecs",
 "account": "111122223333",
 "time": "2020-01-23T17:57:58Z",
 "region": "us-west-2",
 "resources": [
 "arn:aws:ecs:us-west-2:111122223333:task/FargateCluster/
c13b4cb40f1f4fe4a2971f76ae5a47ad"
],
 "detail": {
 "attachments": [
 {
 "id": "1789bcae-ddfb-4d10-8ebe-8ac87ddba5b8",
 "type": "eni",
 "status": "ATTACHED",

Amazon ECS events 846

https://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_Task.html
https://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_DescribeTasks.html
https://docs.aws.amazon.com/eventbridge/latest/userguide/eventbridge-and-event-patterns.html

Amazon Elastic Container Service Developer Guide

 "details": [
 {
 "name": "subnetId",
 "value": "subnet-abcd1234"
 },
 {
 "name": "networkInterfaceId",
 "value": "eni-abcd1234"
 },
 {
 "name": "macAddress",
 "value": "0a:98:eb:a7:29:ba"
 },
 {
 "name": "privateIPv4Address",
 "value": "10.0.0.139"
 }
]
 }
],
 "availabilityZone": "us-west-2c",
 "clusterArn": "arn:aws:ecs:us-west-2:111122223333:cluster/FargateCluster",
 "containers": [
 {
 "containerArn": "arn:aws:ecs:us-west-2:111122223333:container/
cf159fd6-3e3f-4a9e-84f9-66cbe726af01",
 "lastStatus": "RUNNING",
 "name": "FargateApp",
 "image": "111122223333.dkr.ecr.us-west-2.amazonaws.com/hello-
repository:latest",
 "imageDigest":
 "sha256:74b2c688c700ec95a93e478cdb959737c148df3fbf5ea706abe0318726e885e6",
 "runtimeId":
 "ad64cbc71c7fb31c55507ec24c9f77947132b03d48d9961115cf24f3b7307e1e",
 "taskArn": "arn:aws:ecs:us-west-2:111122223333:task/FargateCluster/
c13b4cb40f1f4fe4a2971f76ae5a47ad",
 "networkInterfaces": [
 {
 "attachmentId": "1789bcae-ddfb-4d10-8ebe-8ac87ddba5b8",
 "privateIpv4Address": "10.0.0.139"
 }
],
 "cpu": "0"
 }

Amazon ECS events 847

Amazon Elastic Container Service Developer Guide

],
 "createdAt": "2020-01-23T17:57:34.402Z",
 "launchType": "FARGATE",
 "cpu": "256",
 "memory": "512",
 "desiredStatus": "RUNNING",
 "group": "family:sample-fargate",
 "lastStatus": "RUNNING",
 "overrides": {
 "containerOverrides": [
 {
 "name": "FargateApp"
 }
]
 },
 "connectivity": "CONNECTED",
 "connectivityAt": "2020-01-23T17:57:38.453Z",
 "pullStartedAt": "2020-01-23T17:57:52.103Z",
 "startedAt": "2020-01-23T17:57:58.103Z",
 "pullStoppedAt": "2020-01-23T17:57:55.103Z",
 "updatedAt": "2020-01-23T17:57:58.103Z",
 "taskArn": "arn:aws:ecs:us-west-2:111122223333:task/FargateCluster/
c13b4cb40f1f4fe4a2971f76ae5a47ad",
 "taskDefinitionArn": "arn:aws:ecs:us-west-2:111122223333:task-definition/
sample-fargate:1",
 "version": 4,
 "platformVersion": "1.3.0"
 }
}

Amazon ECS service action events

Amazon ECS sends service action events with the detail type ECS Service Action. Unlike the
container instance and task state change events, the service action events do not include a version
number in the details response field. The following is an event pattern that is used to create
an EventBridge rule for Amazon ECS service action events. For more information, see Creating an
EventBridge Rule in the Amazon EventBridge User Guide.

{
 "source": [
 "aws.ecs"
],
 "detail-type": [

Amazon ECS events 848

https://docs.aws.amazon.com/eventbridge/latest/userguide/create-eventbridge-rule.html
https://docs.aws.amazon.com/eventbridge/latest/userguide/create-eventbridge-rule.html

Amazon Elastic Container Service Developer Guide

 "ECS Service Action"
]
}

Amazon ECS sends events with INFO, WARN, and ERROR event types. The following are the service
action events.

Service action events with INFO event type

SERVICE_STEADY_STATE

The service is healthy and at the desired number of tasks, thus reaching a steady state. The
service scheduler reports the status periodically, so you might receive this message multiple
times.

TASKSET_STEADY_STATE

The task set is healthy and at the desired number of tasks, thus reaching a steady state.

CAPACITY_PROVIDER_STEADY_STATE

A capacity provider associated with a service reaches a steady state.

SERVICE_DESIRED_COUNT_UPDATED

When the service scheduler updates the computed desired count for a service or task set. This
event is not sent when the desired count is manually updated by a user.

Service action events with WARN event type

SERVICE_TASK_START_IMPAIRED

The service is unable to consistently start tasks successfully.

SERVICE_DISCOVERY_INSTANCE_UNHEALTHY

A service using service discovery contains an unhealthy task. The service scheduler detects that
a task within a service registry is unhealthy.

Amazon ECS events 849

Amazon Elastic Container Service Developer Guide

Service action events with ERROR event type

SERVICE_DAEMON_PLACEMENT_CONSTRAINT_VIOLATED

A task in a service using the DAEMON service scheduler strategy no longer meets the placement
constraint strategy for the service.

ECS_OPERATION_THROTTLED

The service scheduler has been throttled due to the Amazon ECS API throttle limits.

SERVICE_DISCOVERY_OPERATION_THROTTLED

The service scheduler has been throttled due to the AWS Cloud Map API throttle limits. This can
occur on services configured to use service discovery.

SERVICE_TASK_PLACEMENT_FAILURE

The service scheduler is unable to place a task. The cause will be described in the reason field.

A common cause for this service event being generated is because of a lack of resources in the
cluster to place the task. For example, not enough CPU or memory capacity on the available
container instances or no container instances being available. Another common cause is
when the Amazon ECS container agent is disconnected on the container instance, causing the
scheduler to be unable to place the task.

SERVICE_TASK_CONFIGURATION_FAILURE

The service scheduler is unable to place a task due to a configuration error. The cause will be
described in the reason field.

A common cause of this service event being generated is because tags were being applied to
the service but the user or role had not opted in to the new Amazon Resource Name (ARN)
format in the Region. For more information, see Amazon Resource Names (ARNs) and IDs.
Another common cause is that Amazon ECS was unable to assume the task IAM role provided.

Example Service steady state event

Service steady state events are delivered in the following format. For more information about
EventBridge parameters, see Events and Event Patterns in the Amazon EventBridge User Guide.

{
 "version": "0",

Amazon ECS events 850

https://docs.aws.amazon.com/eventbridge/latest/userguide/eventbridge-and-event-patterns.html

Amazon Elastic Container Service Developer Guide

 "id": "af3c496d-f4a8-65d1-70f4-a69d52e9b584",
 "detail-type": "ECS Service Action",
 "source": "aws.ecs",
 "account": "111122223333",
 "time": "2019-11-19T19:27:22Z",
 "region": "us-west-2",
 "resources": [
 "arn:aws:ecs:us-west-2:111122223333:service/default/servicetest"
],
 "detail": {
 "eventType": "INFO",
 "eventName": "SERVICE_STEADY_STATE",
 "clusterArn": "arn:aws:ecs:us-west-2:111122223333:cluster/default",
 "createdAt": "2019-11-19T19:27:22.695Z"
 }
}

Example Capacity provider steady state event

Capacity provider steady state events are delivered in the following format.

{
 "version": "0",
 "id": "b9baa007-2f33-0eb1-5760-0d02a572d81f",
 "detail-type": "ECS Service Action",
 "source": "aws.ecs",
 "account": "111122223333",
 "time": "2019-11-19T19:37:00Z",
 "region": "us-west-2",
 "resources": [
 "arn:aws:ecs:us-west-2:111122223333:service/default/servicetest"
],
 "detail": {
 "eventType": "INFO",
 "eventName": "CAPACITY_PROVIDER_STEADY_STATE",
 "clusterArn": "arn:aws:ecs:us-west-2:111122223333:cluster/default",
 "capacityProviderArns": [
 "arn:aws:ecs:us-west-2:111122223333:capacity-provider/ASG-tutorial-
capacity-provider"
],
 "createdAt": "2019-11-19T19:37:00.807Z"
 }
}

Amazon ECS events 851

Amazon Elastic Container Service Developer Guide

Example Service task start impaired event

Service task start impaired events are delivered in the following format.

{
 "version": "0",
 "id": "57c9506e-9d21-294c-d2fe-e8738da7e67d",
 "detail-type": "ECS Service Action",
 "source": "aws.ecs",
 "account": "111122223333",
 "time": "2019-11-19T19:55:38Z",
 "region": "us-west-2",
 "resources": [
 "arn:aws:ecs:us-west-2:111122223333:service/default/servicetest"
],
 "detail": {
 "eventType": "WARN",
 "eventName": "SERVICE_TASK_START_IMPAIRED",
 "clusterArn": "arn:aws:ecs:us-west-2:111122223333:cluster/default",
 "createdAt": "2019-11-19T19:55:38.725Z"
 }
}

Example Service task placement failure event

Service task placement failure events are delivered in the following format. For more information
about EventBridge parameters, see Events and Event Patterns in the Amazon EventBridge User
Guide.

In the following example, the task was attempting to use the FARGATE_SPOT capacity provider but
the service scheduler was unable to acquire any Fargate Spot capacity.

{
 "version": "0",
 "id": "ddca6449-b258-46c0-8653-e0e3a6d0468b",
 "detail-type": "ECS Service Action",
 "source": "aws.ecs",
 "account": "111122223333",
 "time": "2019-11-19T19:55:38Z",
 "region": "us-west-2",
 "resources": [
 "arn:aws:ecs:us-west-2:111122223333:service/default/servicetest"

Amazon ECS events 852

https://docs.aws.amazon.com/eventbridge/latest/userguide/eventbridge-and-event-patterns.html

Amazon Elastic Container Service Developer Guide

],
 "detail": {
 "eventType": "ERROR",
 "eventName": "SERVICE_TASK_PLACEMENT_FAILURE",
 "clusterArn": "arn:aws:ecs:us-west-2:111122223333:cluster/default",
 "capacityProviderArns": [
 "arn:aws:ecs:us-west-2:111122223333:capacity-provider/FARGATE_SPOT"
],
 "reason": "RESOURCE:FARGATE",
 "createdAt": "2019-11-06T19:09:33.087Z"
 }
}

In the following example for the EC2 launch type, the task was attempted to launch on the
Container Instance 2dd1b186f39845a584488d2ef155c131 but the service scheduler was unable
to place the task because of insufficient CPU.

{
 "version": "0",
 "id": "ddca6449-b258-46c0-8653-e0e3a6d0468b",
 "detail-type": "ECS Service Action",
 "source": "aws.ecs",
 "account": "111122223333",
 "time": "2019-11-19T19:55:38Z",
 "region": "us-west-2",
 "resources": [
 "arn:aws:ecs:us-west-2:111122223333:service/default/servicetest"
],
 "detail": {
 "eventType": "ERROR",
 "eventName": "SERVICE_TASK_PLACEMENT_FAILURE",
 "clusterArn": "arn:aws:ecs:us-west-2:111122223333:cluster/default",
 "containerInstanceArns": [
 "arn:aws:ecs:us-west-2:111122223333:container-instance/
default/2dd1b186f39845a584488d2ef155c131"
],
 "reason": "RESOURCE:CPU",
 "createdAt": "2019-11-06T19:09:33.087Z"
 }
}

Amazon ECS events 853

Amazon Elastic Container Service Developer Guide

Amazon ECS service deployment state change events

Amazon ECS sends service deployment change state events with the detail type ECS Deployment
State Change. The following is an event pattern that is used to create an EventBridge rule for
Amazon ECS service deployment state change events. For more information, see Creating an
EventBridge Rule in the Amazon EventBridge User Guide.

{
 "source": [
 "aws.ecs"
],
 "detail-type": [
 "ECS Deployment State Change"
]
}

Amazon ECS sends events with INFO and ERROR event types. The following are the service
deployment state change events.

SERVICE_DEPLOYMENT_IN_PROGRESS

The service deployment is in progress. This event is sent for both initial deployments and
rollback deployments.

SERVICE_DEPLOYMENT_COMPLETED

The service deployment has completed. This event is sent once a service reaches a steady state
after a deployment.

SERVICE_DEPLOYMENT_FAILED

The service deployment has failed. This event is sent for services with deployment circuit
breaker logic turned on.

Example service deployment in progress event

Service deployment in progress events are delivered when both an initial and a rollback
deployment is started. The difference between the two is in the reason field. For more
information about EventBridge parameters, see Events and Event Patterns in the Amazon
EventBridge User Guide.

The following shows an example output for an initial deployment starting.

Amazon ECS events 854

https://docs.aws.amazon.com/eventbridge/latest/userguide/create-eventbridge-rule.html
https://docs.aws.amazon.com/eventbridge/latest/userguide/create-eventbridge-rule.html
https://docs.aws.amazon.com/eventbridge/latest/userguide/eventbridge-and-event-patterns.html

Amazon Elastic Container Service Developer Guide

{
 "version": "0",
 "id": "ddca6449-b258-46c0-8653-e0e3a6EXAMPLE",
 "detail-type": "ECS Deployment State Change",
 "source": "aws.ecs",
 "account": "111122223333",
 "time": "2020-05-23T12:31:14Z",
 "region": "us-west-2",
 "resources": [
 "arn:aws:ecs:us-west-2:111122223333:service/default/servicetest"
],
 "detail": {
 "eventType": "INFO",
 "eventName": "SERVICE_DEPLOYMENT_IN_PROGRESS",
 "deploymentId": "ecs-svc/123",
 "updatedAt": "2020-05-23T11:11:11Z",
 "reason": "ECS deployment deploymentId in progress."
 }
}

The following shows an example output for a rollback deployment starting. The reason field
provides the ID of the deployment the service is rolling back to.

{
 "version": "0",
 "id": "ddca6449-b258-46c0-8653-e0e3aEXAMPLE",
 "detail-type": "ECS Deployment State Change",
 "source": "aws.ecs",
 "account": "111122223333",
 "time": "2020-05-23T12:31:14Z",
 "region": "us-west-2",
 "resources": [
 "arn:aws:ecs:us-west-2:111122223333:service/default/servicetest"
],
 "detail": {
 "eventType": "INFO",
 "eventName": "SERVICE_DEPLOYMENT_IN_PROGRESS",
 "deploymentId": "ecs-svc/123",
 "updatedAt": "2020-05-23T11:11:11Z",
 "reason": "ECS deployment circuit breaker: rolling back to
 deploymentId deploymentID."
 }

Amazon ECS events 855

Amazon Elastic Container Service Developer Guide

}

Example service deployment completed event

Service deployment completed state events are delivered in the following format. For more
information, see Rolling update.

{
 "version": "0",
 "id": "ddca6449-b258-46c0-8653-e0e3aEXAMPLE",
 "detail-type": "ECS Deployment State Change",
 "source": "aws.ecs",
 "account": "111122223333",
 "time": "2020-05-23T12:31:14Z",
 "region": "us-west-2",
 "resources": [
 "arn:aws:ecs:us-west-2:111122223333:service/default/servicetest"
],
 "detail": {
 "eventType": "INFO",
 "eventName": "SERVICE_DEPLOYMENT_COMPLETED",
 "deploymentId": "ecs-svc/123",
 "updatedAt": "2020-05-23T11:11:11Z",
 "reason": "ECS deployment deploymentID completed."
 }
}

Example service deployment failed event

Service deployment failed state events are delivered in the following format. A service deployment
failed state event will only be sent for services that have deployment circuit breaker logic turned
on. For more information, see Rolling update.

{
 "version": "0",
 "id": "ddca6449-b258-46c0-8653-e0e3aEXAMPLE",
 "detail-type": "ECS Deployment State Change",
 "source": "aws.ecs",
 "account": "111122223333",
 "time": "2020-05-23T12:31:14Z",
 "region": "us-west-2",
 "resources": [
 "arn:aws:ecs:us-west-2:111122223333:service/default/servicetest"

Amazon ECS events 856

Amazon Elastic Container Service Developer Guide

],
 "detail": {
 "eventType": "ERROR",
 "eventName": "SERVICE_DEPLOYMENT_FAILED",
 "deploymentId": "ecs-svc/123",
 "updatedAt": "2020-05-23T11:11:11Z",
 "reason": "ECS deployment circuit breaker: task failed to start."
 }
}

Handling Amazon ECS events

Amazon ECS sends events on an at least once basis. This means you might receive multiple copies
of a given event. Additionally, events may not be delivered to your event listeners in the order in
which the events occurred.

To order of events properly, the detail section of each event contains a version property. Each
time a resource changes state, this version is incremented. Duplicate events have the same
version in the detail object. If you are replicating your Amazon ECS container instance and
task state with EventBridge, you can compare the version of a resource reported by the Amazon
ECS APIs with the version reported in EventBridge for the resource to verify that the version in
your event stream is current. Events with a higher version property number should be treated as
occurring later than events with lower version numbers.

Example: Handling events in an AWS Lambda function

The following example shows a Lambda function written in Python 3.9 that captures both task and
container instance state change events and saves them to one of two Amazon DynamoDB tables:

• ECSCtrInstanceState – Stores the latest state for a container instance. The table ID is the
containerInstanceArn value of the container instance.

• ECSTaskState – Stores the latest state for a task. The table ID is the taskArn value of the task.

import json
import boto3

def lambda_handler(event, context):
 id_name = ""
 new_record = {}

Handling events 857

Amazon Elastic Container Service Developer Guide

 # For debugging so you can see raw event format.
 print('Here is the event:')
 print((json.dumps(event)))

 if event["source"] != "aws.ecs":
 raise ValueError("Function only supports input from events with a source type
 of: aws.ecs")

 # Switch on task/container events.
 table_name = ""
 if event["detail-type"] == "ECS Task State Change":
 table_name = "ECSTaskState"
 id_name = "taskArn"
 event_id = event["detail"]["taskArn"]
 elif event["detail-type"] == "ECS Container Instance State Change":
 table_name = "ECSCtrInstanceState"
 id_name = "containerInstanceArn"
 event_id = event["detail"]["containerInstanceArn"]
 else:
 raise ValueError("detail-type for event is not a supported type. Exiting
 without saving event.")

 new_record["cw_version"] = event["version"]
 new_record.update(event["detail"])

 # "status" is a reserved word in DDB, but it appears in containerPort
 # state change messages.
 if "status" in event:
 new_record["current_status"] = event["status"]
 new_record.pop("status")

 # Look first to see if you have received a newer version of an event ID.
 # If the version is OLDER than what you have on file, do not process it.
 # Otherwise, update the associated record with this latest information.
 print("Looking for recent event with same ID...")
 dynamodb = boto3.resource("dynamodb", region_name="us-east-1")
 table = dynamodb.Table(table_name)
 saved_event = table.get_item(
 Key={
 id_name : event_id
 }
)
 if "Item" in saved_event:

Handling events 858

Amazon Elastic Container Service Developer Guide

 # Compare events and reconcile.
 print(("EXISTING EVENT DETECTED: Id " + event_id + " - reconciling"))
 if saved_event["Item"]["version"] < event["detail"]["version"]:
 print("Received event is a more recent version than the stored event -
 updating")
 table.put_item(
 Item=new_record
)
 else:
 print("Received event is an older version than the stored event -
 ignoring")
 else:
 print(("Saving new event - ID " + event_id))

 table.put_item(
 Item=new_record
)

The following Fargate example shows a Lambda function written in Python 3.9 that captures task
state change events and saves them to the following Amazon DynamoDB table:

import json
import boto3

def lambda_handler(event, context):
 id_name = ""
 new_record = {}

 # For debugging so you can see raw event format.
 print('Here is the event:')
 print((json.dumps(event)))

 if event["source"] != "aws.ecs":
 raise ValueError("Function only supports input from events with a source type
 of: aws.ecs")

 # Switch on task/container events.
 table_name = ""
 if event["detail-type"] == "ECS Task State Change":
 table_name = "ECSTaskState"
 id_name = "taskArn"
 event_id = event["detail"]["taskArn"]
 else:

Handling events 859

Amazon Elastic Container Service Developer Guide

 raise ValueError("detail-type for event is not a supported type. Exiting
 without saving event.")

 new_record["cw_version"] = event["version"]
 new_record.update(event["detail"])

 # "status" is a reserved word in DDB, but it appears in containerPort
 # state change messages.
 if "status" in event:
 new_record["current_status"] = event["status"]
 new_record.pop("status")

 # Look first to see if you have received a newer version of an event ID.
 # If the version is OLDER than what you have on file, do not process it.
 # Otherwise, update the associated record with this latest information.
 print("Looking for recent event with same ID...")
 dynamodb = boto3.resource("dynamodb", region_name="us-east-1")
 table = dynamodb.Table(table_name)
 saved_event = table.get_item(
 Key={
 id_name : event_id
 }
)
 if "Item" in saved_event:
 # Compare events and reconcile.
 print(("EXISTING EVENT DETECTED: Id " + event_id + " - reconciling"))
 if saved_event["Item"]["version"] < event["detail"]["version"]:
 print("Received event is a more recent version than the stored event -
 updating")
 table.put_item(
 Item=new_record
)
 else:
 print("Received event is an older version than the stored event -
 ignoring")
 else:
 print(("Saving new event - ID " + event_id))

 table.put_item(
 Item=new_record
)

Handling events 860

Amazon Elastic Container Service Developer Guide

Monitor Amazon ECS containers using Container Insights

CloudWatch Container Insights collects, aggregates, and summarizes metrics and logs from your
containerized applications and microservices.

Container Insights uses a containerized version of the CloudWatch agent to discover all the
running containers in a cluster and collect performance data at every layer of the performance
stack. Operational data is collected as performance log events. These are entries that use a
structured JSON schema for high-cardinality data to be ingested and stored at scale. From this
data, CloudWatch creates higher-level aggregated metrics at the cluster, service, and task level as
CloudWatch metrics. The metrics include utilization for resources such as CPU, memory, disk, and
network. The metrics are available in CloudWatch automatic dashboards. For information about
the available metrics, see Amazon ECS Container Insights metrics in the Amazon CloudWatch User
Guide.

Important

Metrics collected by CloudWatch Container Insights are charged as custom metrics. For
more information about CloudWatch pricing, see CloudWatch Pricing. Amazon ECS also
provides monitoring metrics that are provided at no additional cost. For more information,
see Monitor Amazon ECS using CloudWatch .

Considerations

The following should be considered when using CloudWatch Container Insights.

• CloudWatch Container Insights metrics only reflect the resources with running tasks during the
specified time range. For example, if you have a cluster with one service in it but that service
has no tasks in a RUNNING state, there will be no metrics sent to CloudWatch. If you have two
services and one of them has running tasks and the other doesn't, only the metrics for the
service with running tasks will be sent.

• Network metrics are available for all tasks run on Fargate and tasks run on Amazon EC2 instances
that use either the bridge or awsvpc network modes.

Monitor Amazon ECS containers using Container Insights 861

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/Container-Insights-metrics-ECS.html
https://aws.amazon.com/cloudwatch/pricing/

Amazon Elastic Container Service Developer Guide

You can view Amazon ECS task and service lifecycle events within the CloudWatch Container
Insights console. This helps you correlate your container metrics, logs, and events in a single view
to give you a more complete operational visibility.

The events that you can view are the ones that Amazon ECS sends to Amazon EventBridge. For
more information, see Amazon ECS events.

You can choose to configure performance metrics for clusters, tasks, or services. Depending on the
resource you choose, the following events are reported:

• Container instance state change events

• Service action events

• Task state change events

Configuring CloudWatch Container Insights for Amazon ECS

You can configure Container Insights using the Amazon ECS console, the AWS CLI, API, and SDKs.

Use the following table to determine the action to take for adding Container Insights.

Tagging support for Amazon ECS resources

Task Console AWS CLI API action

Change the default
for all users

Modifying account
settings

put-account-setting-
default

PutAccountSettingD
efault

Change the default
for a specific user

Modifying account
settings

put-account-setting PutAccountSetting

Configure Container
Insights for a specific
cluster

Creating a cluster
for the Fargate and
External launch type
using the console

Creating a cluster
for the Amazon EC2
launch type using the
console

create-cluster

UpdateCluster

CreateCluster

UpdateCluster

Configuring CloudWatch Container Insights for Amazon ECS 862

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/ecs_cwe_events.html
https://docs.aws.amazon.com/cli/latest/reference/ecs/put-account-setting-default.html
https://docs.aws.amazon.com/cli/latest/reference/ecs/put-account-setting-default.html
https://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_PutAccountSettingDefault.html
https://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_PutAccountSettingDefault.html
https://docs.aws.amazon.com/cli/latest/reference/ecs/put-account-setting.html
https://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_PutAccountSetting.html
https://docs.aws.amazon.com/cli/latest/reference/ecs/create-cluster.html
https://docs.aws.amazon.com/cli/latest/reference/ecs/update-cluster.html
https://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_CreateCluster.html
https://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_UpdateCluster.html

Amazon Elastic Container Service Developer Guide

Task Console AWS CLI API action

Updating a cluster
using the console

Important

For clusters containing tasks or services using the EC2 launch type, your container instances
must be running version 1.29.0 or later of the Amazon ECS agent. For more information,
see Linux container instance management.

Required permissions for CloudWatch Container Insights to view
Amazon ECS lifecycle events

You must configure the correct permissions, and then you can configure and view the events in the
CloudWatch Container Insights console. For more information, see Amazon ECS lifecycle events
within Container Insights in the Amazon CloudWatch User Guide. For more information on IAM
policies for CloudWatch, see AWS Identity and Access Management for CloudWatch.

Permissions required to configure Container Insights to view Amazon ECS
lifecycle events

The following permissions are required in the task role to configure the lifecycle events:

• events:PutRule

• events:PutTargets

• logs:CreateLogGroup

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "events:PutRule",
 "events:PutTargets",

Required permissions for CloudWatch Container Insights to view Amazon ECS lifecycle events 863

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/container-insights-ECS-lifecycle-events.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/container-insights-ECS-lifecycle-events.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/auth-and-access-control-cw.html

Amazon Elastic Container Service Developer Guide

 "logs:CreateLogGroup"
],
 "Resource": "*"
 }
]
}

Permissions required to view Amazon ECS lifecycle events in Container Insights

The following permissions are required to view the lifecycle events. Add the following permissions
as an inline policy to the task execution role. For more information, see Adding and Removing IAM
Policies.

• events:DescribeRule

• events:ListTargetsByRule

• logs:DescribeLogGroups

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "events:DescribeRule",
 "events:ListTargetsByRule",
 "logs:DescribeLogGroups"
],
 "Resource": "*"
 }
]
}

Monitor Amazon ECS container instance health

Amazon ECS provides container instance health monitoring. You can quickly determine whether
Amazon ECS has detected any problems that might prevent your container instances from running
containers. Amazon ECS performs automated checks on every running container instance with
agent version 1.57.0 or later to identify issues. For more information on verifying the agent
version an a container instance, see Updating the Amazon ECS container agent.

Monitor Amazon ECS container instance health 864

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_manage-attach-detach.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_manage-attach-detach.html

Amazon Elastic Container Service Developer Guide

You must be using AWS CLI version 1.22.3 or later or AWS CLI version 2.3.6 or later. For
information about how to update the AWS CLI, see Installing or updating the latest version of the
AWS CLI in the AWS Command Line Interface User Guide Version 2.

Status checks are performed about twice per minute, returning a pass or a fail status. If all checks
pass, the overall status of the instance is OK. If one or more checks fail, the overall status is
IMPAIRED. Status checks are built into Amazon ECS container agent, so they cannot be turned
off or deleted. You can view the results of these status checks to identify specific and detectable
problems. For more information, see the section called “Health check”.

Run the DescribeContainerInstances API with the CONTAINER_INSTANCE_HEALTH option to
retrieve the container instance health.

aws ecs describe-container-instances \
 --cluster cluster_name \
 --container-instances 47279cd2cadb41cbaef2dcEXAMPLE \
 --include CONTAINER_INSTANCE_HEALTH

The following is an example of the health status object in the output.

"healthStatus": {
 "overallStatus": "OK",
 "details": [{
 "type": "CONTAINER_RUNTIME",
 "status": "OK",
 "lastUpdated": "2021-11-10T03:30:26+00:00",
 "lastStatusChange": "2021-11-10T03:26:41+00:00"
 }]
}

Related topics

• Monitor Amazon ECS using CloudWatch

Identify Amazon ECS optimization opportunities using
application trace data

Amazon ECS integrates with AWS Distro for OpenTelemetry to collect trace data from your
application. Amazon ECS uses an AWS Distro for OpenTelemetry sidecar container to collect

Related topics 865

https://docs.aws.amazon.com/cli/latest/userguide/getting-started-install.html
https://docs.aws.amazon.com/cli/latest/userguide/getting-started-install.html

Amazon Elastic Container Service Developer Guide

and route trace data to AWS X-Ray. For more information, see Setting up AWS Distro for
OpenTelemetry Collector in Amazon ECS. You can then use AWS X-Ray to identify errors and
exceptions, analyze performance bottlenecks and response times.

For the AWS Distro for OpenTelemetry Collector to send trace data to AWS X-Ray, your application
must be configured to create the trace data. For more information, see Instrumenting your
application for AWS X-Ray in the AWS X-Ray Developer Guide.

Required IAM permissions for AWS Distro for OpenTelemetry
integration with AWS X-Ray

The Amazon ECS integration with AWS Distro for OpenTelemetry requires that you create a task
IAM role and specify the role in your task definition. We recommend that the AWS Distro for
OpenTelemetry sidecar also be configured to route container logs to CloudWatch Logs which
requires a task execution IAM role be created and specified in your task definition as well. The
Amazon ECS console takes care of the task execution IAM role on your behalf, but the task IAM
role must be created manually. For more information about creating a task execution IAM role, see
Amazon ECS task execution IAM role.

Important

If you're also collecting application metrics using the AWS Distro for OpenTelemetry
integration, ensure your task IAM role also contains the permissions necessary for that
integration. For more information, see Correlate Amazon ECS application performance
using application metrics.

To create the service role for Elastic Container Service (IAM console)

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. In the navigation pane of the IAM console, choose Roles, and then choose Create role.

3. For Trusted entity type, choose AWS service.

4. For Service or use case, choose Elastic Container Service, and then choose the Elastic
Container Service Task use case.

5. Choose Next.

Required IAM permissions for AWS Distro for OpenTelemetry integration with AWS X-Ray 866

https://aws-otel.github.io/docs/setup/ecs
https://aws-otel.github.io/docs/setup/ecs
https://docs.aws.amazon.com/xray/latest/devguide/xray-instrumenting-your-app.html
https://docs.aws.amazon.com/xray/latest/devguide/xray-instrumenting-your-app.html
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/

Amazon Elastic Container Service Developer Guide

6. In the Add permissions section, search for AWSDistroOpenTelemetryPolicyForXray, then
select the policy.

7. (Optional) Set a permissions boundary. This is an advanced feature that is available for service
roles, but not service-linked roles.

a. Open the Set permissions boundary section, and then choose Use a permissions
boundary to control the maximum role permissions.

IAM includes a list of the AWS managed and customer-managed policies in your account.

b. Select the policy to use for the permissions boundary.

8. Choose Next.

9. Enter a role name or a role name suffix to help you identify the purpose of the role.

Important

When you name a role, note the following:

• Role names must be unique within your AWS account, and can't be made unique by
case.

For example, don't create roles named both PRODROLE and prodrole. When a
role name is used in a policy or as part of an ARN, the role name is case sensitive,
however when a role name appears to customers in the console, such as during the
sign-in process, the role name is case insensitive.

• You can't edit the name of the role after it's created because other entities might
reference the role.

10. (Optional) For Description, enter a description for the role.

11. (Optional) To edit the use cases and permissions for the role, in the Step 1: Select trusted
entities or Step 2: Add permissions sections, choose Edit.

12. (Optional) To help identify, organize, or search for the role, add tags as key-value pairs. For
more information about using tags in IAM, see Tagging IAM resources in the IAM User Guide.

13. Review the role, and then choose Create role.

Required IAM permissions for AWS Distro for OpenTelemetry integration with AWS X-Ray 867

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_boundaries.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_tags.html

Amazon Elastic Container Service Developer Guide

Specifying the AWS Distro for OpenTelemetry sidecar for AWS X-Ray
integration in your task definition

The Amazon ECS console simplifies creating the AWS Distro for OpenTelemetry sidecar container
by using the Use trace collection option. For more information, see Creating a task definition using
the console.

If you're not using the Amazon ECS console, you can add the AWS Distro for OpenTelemetry
sidecar container to your task definition. The following task definition snippet shows the container
definition for adding the AWS Distro for OpenTelemetry sidecar for AWS X-Ray integration.

{
 "family": "otel-using-xray",
 "taskRoleArn": "arn:aws:iam::111122223333:role/AmazonECS_OpenTelemetryXrayRole",
 "executionRoleArn": "arn:aws:iam::111122223333:role/ecsTaskExecutionRole",
 "containerDefinitions": [{
 "name": "aws-otel-emitter",
 "image": "application-image",
 "logConfiguration": {
 "logDriver": "awslogs",
 "options": {
 "awslogs-create-group": "true",
 "awslogs-group": "/ecs/aws-otel-emitter",
 "awslogs-region": "us-east-1",
 "awslogs-stream-prefix": "ecs"
 }
 },
 "dependsOn": [{
 "containerName": "aws-otel-collector",
 "condition": "START"
 }]
 },
 {
 "name": "aws-otel-collector",
 "image": "public.ecr.aws/aws-observability/aws-otel-collector:v0.30.0",
 "essential": true,
 "command": [
 "--config=/etc/ecs/otel-instance-metrics-config.yaml"
],
 "logConfiguration": {
 "logDriver": "awslogs",
 "options": {

Specifying the AWS Distro for OpenTelemetry sidecar for AWS X-Ray integration in your task definition 868

Amazon Elastic Container Service Developer Guide

 "awslogs-create-group": "True",
 "awslogs-group": "/ecs/ecs-aws-otel-sidecar-collector",
 "awslogs-region": "us-east-1",
 "awslogs-stream-prefix": "ecs"
 }
 }
 }
],
 "networkMode": "awsvpc",
 "requiresCompatibilities": [
 "FARGATE"
],
 "cpu": "1024",
 "memory": "3072"
}

Correlate Amazon ECS application performance using
application metrics

Amazon ECS on Fargate supports collecting metrics from your applications running on Fargate and
exporting them to either Amazon CloudWatch or Amazon Managed Service for Prometheus.

You can use the collected metadata to correlate application performance data with underlying
infrastructure data, reducing the mean time to resolve the problem.

Amazon ECS uses an AWS Distro for OpenTelemetry sidecar container to collect and route your
application metrics to the destination. The Amazon ECS console experience simplifies the process
of adding this integration when creating your task definitions.

Topics

• Exporting application metrics to Amazon CloudWatch

• Exporting application metrics to Amazon Managed Service for Prometheus

Exporting application metrics to Amazon CloudWatch

Amazon ECS on Fargate supports exporting your custom application metrics to Amazon
CloudWatch as custom metrics. This is done by adding the AWS Distro for OpenTelemetry sidecar
container to your task definition. The Amazon ECS console simplifies this process by adding the Use

Correlate Amazon ECS application performance using application metrics 869

Amazon Elastic Container Service Developer Guide

metric collection option when creating a new task definition. For more information, see Creating a
task definition using the console.

The application metrics are exported to CloudWatch Logs with log group name /aws/ecs/
application/metrics and the metrics can be viewed in the ECS/AWSOTel/Application
namespace. Your application must be instrumented with the OpenTelemetry SDK. For
more information, see Introduction to AWS Distro for OpenTelemetry in the AWS Distro for
OpenTelemetry documentation.

Considerations

The following should be considered when using the Amazon ECS on Fargate integration with AWS
Distro for OpenTelemetry to send application metrics to Amazon CloudWatch.

• This integration only sends your custom application metrics to CloudWatch. If you want task-
level metrics, you can turn on Container Insights in the Amazon ECS cluster configuration. For
more information, see Monitor Amazon ECS containers using Container Insights.

• The AWS Distro for OpenTelemetry integration is supported for Amazon ECS workloads hosted
on Fargate and Amazon ECS workloads hosted on Amazon EC2 instances. External instances
aren't currently supported.

• CloudWatch supports a maximum of 30 dimensions per metric. By default, Amazon ECS
defaults to including the TaskARN, ClusterARN, LaunchType, TaskDefinitionFamily,
and TaskDefinitionRevision dimensions to the metrics. The remaining 25 dimensions
can be defined by your application. If more than 30 dimensions are configured, CloudWatch
can't display them. When this occurs, the application metrics will appear in the ECS/
AWSOTel/Application CloudWatch metric namespace but without any dimensions. You can
instrument your application to add additional dimensions. For more information, see Using
CloudWatch metrics with AWS Distro for OpenTelemetry in the AWS Distro for OpenTelemetry
documentation.

Required IAM permissions for AWS Distro for OpenTelemetry integration with
Amazon CloudWatch

The Amazon ECS integration with AWS Distro for OpenTelemetry requires that you create a task
IAM role and specify the role in your task definition. We recommend that the AWS Distro for
OpenTelemetry sidecar also be configured to route container logs to CloudWatch Logs which
requires a task execution IAM role be created and specified in your task definition as well. The

Exporting application metrics to Amazon CloudWatch 870

https://aws-otel.github.io/docs/introduction
https://aws-otel.github.io/docs/getting-started/cloudwatch-metrics#cloudwatch-emf-exporter-awsemf
https://aws-otel.github.io/docs/getting-started/cloudwatch-metrics#cloudwatch-emf-exporter-awsemf

Amazon Elastic Container Service Developer Guide

Amazon ECS console takes care of the task execution IAM role on your behalf, but the task IAM role
must be created manually and added to your task definition. For more information about the task
execution IAM role, see Amazon ECS task execution IAM role.

Important

If you're also collecting application trace data using the AWS Distro for OpenTelemetry
integration, ensure your task IAM role also contains the permissions necessary for that
integration. For more information, see Identify Amazon ECS optimization opportunities
using application trace data.
If your application requires any additional permissions, you should add them to this
policy. Each task definition may only specify one task IAM role. For example, if you
are using a custom configuration file stored in Systems Manager, you should add the
ssm:GetParameters permission to this IAM policy.

To create the service role for Elastic Container Service (IAM console)

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. In the navigation pane of the IAM console, choose Roles, and then choose Create role.

3. For Trusted entity type, choose AWS service.

4. For Service or use case, choose Elastic Container Service, and then choose the Elastic
Container Service Task use case.

5. Choose Next.

6. In the Add permissions section, search for AWSDistroOpenTelemetryPolicyForXray, then
select the policy.

7. (Optional) Set a permissions boundary. This is an advanced feature that is available for service
roles, but not service-linked roles.

a. Open the Set permissions boundary section, and then choose Use a permissions
boundary to control the maximum role permissions.

IAM includes a list of the AWS managed and customer-managed policies in your account.

b. Select the policy to use for the permissions boundary.

8. Choose Next.

Exporting application metrics to Amazon CloudWatch 871

https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_boundaries.html

Amazon Elastic Container Service Developer Guide

9. Enter a role name or a role name suffix to help you identify the purpose of the role.

Important

When you name a role, note the following:

• Role names must be unique within your AWS account, and can't be made unique by
case.

For example, don't create roles named both PRODROLE and prodrole. When a
role name is used in a policy or as part of an ARN, the role name is case sensitive,
however when a role name appears to customers in the console, such as during the
sign-in process, the role name is case insensitive.

• You can't edit the name of the role after it's created because other entities might
reference the role.

10. (Optional) For Description, enter a description for the role.

11. (Optional) To edit the use cases and permissions for the role, in the Step 1: Select trusted
entities or Step 2: Add permissions sections, choose Edit.

12. (Optional) To help identify, organize, or search for the role, add tags as key-value pairs. For
more information about using tags in IAM, see Tagging IAM resources in the IAM User Guide.

13. Review the role, and then choose Create role.

Specifying the AWS Distro for OpenTelemetry sidecar in your task definition

The Amazon ECS console simplifies the experience of creating the AWS Distro for OpenTelemetry
sidecar container by using the Use metric collection option. For more information, see Creating a
task definition using the console.

If you're not using the Amazon ECS console, you can add the AWS Distro for OpenTelemetry
sidecar container to your task definition manually. The following task definition example shows the
container definition for adding the AWS Distro for OpenTelemetry sidecar for Amazon CloudWatch
integration.

{
 "family": "otel-using-cloudwatch",
 "taskRoleArn": "arn:aws:iam::111122223333:role/AmazonECS_OpenTelemetryCloudWatchRole",
 "executionRoleArn": "arn:aws:iam::111122223333:role/ecsTaskExecutionRole",

Exporting application metrics to Amazon CloudWatch 872

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_tags.html

Amazon Elastic Container Service Developer Guide

 "containerDefinitions": [{
 "name": "aws-otel-emitter",
 "image": "application-image",
 "logConfiguration": {
 "logDriver": "awslogs",
 "options": {
 "awslogs-create-group": "true",
 "awslogs-group": "/ecs/aws-otel-emitter",
 "awslogs-region": "us-east-1",
 "awslogs-stream-prefix": "ecs"
 }
 },
 "dependsOn": [{
 "containerName": "aws-otel-collector",
 "condition": "START"
 }]
 },
 {
 "name": "aws-otel-collector",
 "image": "public.ecr.aws/aws-observability/aws-otel-collector:v0.30.0",
 "essential": true,
 "command": [
 "--config=/etc/ecs/ecs-cloudwatch.yaml"
],
 "logConfiguration": {
 "logDriver": "awslogs",
 "options": {
 "awslogs-create-group": "True",
 "awslogs-group": "/ecs/ecs-aws-otel-sidecar-collector",
 "awslogs-region": "us-east-1",
 "awslogs-stream-prefix": "ecs"
 }
 }
 }
],
 "networkMode": "awsvpc",
 "requiresCompatibilities": [
 "FARGATE"
],
 "cpu": "1024",
 "memory": "3072"
}

Exporting application metrics to Amazon CloudWatch 873

Amazon Elastic Container Service Developer Guide

Exporting application metrics to Amazon Managed Service for
Prometheus

Amazon ECS supports exporting your task-level CPU, memory, network, and storage metrics and
your custom application metrics to Amazon Managed Service for Prometheus. This is done by
adding the AWS Distro for OpenTelemetry sidecar container to your task definition. The Amazon
ECS console simplifies this process by adding the Use metric collection option when creating a
new task definition. For more information, see Creating a task definition using the console.

The metrics are exported to Amazon Managed Service for Prometheus and can be viewed using
the Amazon Managed Grafana dashboard. Your application must be instrumented with either
Prometheus libraries or with the OpenTelemetry SDK. For more information about instrumenting
your application with the OpenTelemetry SDK, see Introduction to AWS Distro for OpenTelemetry
in the AWS Distro for OpenTelemetry documentation.

When using the Prometheus libraries, your application must expose a /metrics endpoint which is
used to scrape the metrics data. For more information about instrumenting your application with
Prometheus libraries, see Prometheus client libraries in the Prometheus documentation.

Considerations

The following should be considered when using the Amazon ECS on Fargate integration with AWS
Distro for OpenTelemetry to send application metrics to Amazon Managed Service for Prometheus.

• The AWS Distro for OpenTelemetry integration is supported for Amazon ECS workloads hosted
on Fargate and Amazon ECS workloads hosted on Amazon EC2 instances. External instances
aren't supported currently.

• By default, AWS Distro for OpenTelemetry includes all available task-level dimensions for your
application metrics when exporting to Amazon Managed Service for Prometheus. You can also
instrument your application to add additional dimensions. For more information, see Getting
Started with Prometheus Remote Write Exporter for Amazon Managed Service for Prometheus in
the AWS Distro for OpenTelemetry documentation.

Required IAM permissions for AWS Distro for OpenTelemetry integration with
Amazon Managed Service for Prometheus

The Amazon ECS integration with Amazon Managed Service for Prometheus using the AWS Distro
for OpenTelemetry sidecar requires that you create a task IAM role and specify the role in your task

Exporting application metrics to Amazon Managed Service for Prometheus 874

https://aws-otel.github.io/docs/introduction
https://prometheus.io/docs/instrumenting/clientlibs/
https://aws-otel.github.io/docs/getting-started/prometheus-remote-write-exporter
https://aws-otel.github.io/docs/getting-started/prometheus-remote-write-exporter

Amazon Elastic Container Service Developer Guide

definition. This task IAM role must be created manually using the steps below prior to registering
your task definition.

We recommend that the AWS Distro for OpenTelemetry sidecar also be configured to route
container logs to CloudWatch Logs which requires a task execution IAM role be created and
specified in your task definition as well. The Amazon ECS console takes care of the task execution
IAM role on your behalf, but the task IAM role must be created manually. For more information
about creating a task execution IAM role, see Amazon ECS task execution IAM role.

Important

If you're also collecting application trace data using the AWS Distro for OpenTelemetry
integration, ensure your task IAM role also contains the permissions necessary for that
integration. For more information, see Identify Amazon ECS optimization opportunities
using application trace data.

To create the service role for Elastic Container Service (IAM console)

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. In the navigation pane of the IAM console, choose Roles, and then choose Create role.

3. For Trusted entity type, choose AWS service.

4. For Service or use case, choose Elastic Container Service, and then choose the Elastic
Container Service Task use case.

5. Choose Next.

6. In the Add permissions section, search for AmazonPrometheusRemoteWriteAccess, then
select the policy.

7. (Optional) Set a permissions boundary. This is an advanced feature that is available for service
roles, but not service-linked roles.

a. Open the Set permissions boundary section, and then choose Use a permissions
boundary to control the maximum role permissions.

IAM includes a list of the AWS managed and customer-managed policies in your account.

b. Select the policy to use for the permissions boundary.

8. Choose Next.

Exporting application metrics to Amazon Managed Service for Prometheus 875

https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_boundaries.html

Amazon Elastic Container Service Developer Guide

9. Enter a role name or a role name suffix to help you identify the purpose of the role.

Important

When you name a role, note the following:

• Role names must be unique within your AWS account, and can't be made unique by
case.

For example, don't create roles named both PRODROLE and prodrole. When a
role name is used in a policy or as part of an ARN, the role name is case sensitive,
however when a role name appears to customers in the console, such as during the
sign-in process, the role name is case insensitive.

• You can't edit the name of the role after it's created because other entities might
reference the role.

10. (Optional) For Description, enter a description for the role.

11. (Optional) To edit the use cases and permissions for the role, in the Step 1: Select trusted
entities or Step 2: Add permissions sections, choose Edit.

12. (Optional) To help identify, organize, or search for the role, add tags as key-value pairs. For
more information about using tags in IAM, see Tagging IAM resources in the IAM User Guide.

13. Review the role, and then choose Create role.

Specifying the AWS Distro for OpenTelemetry sidecar in your task definition

The Amazon ECS console simplifies the experience of creating the AWS Distro for OpenTelemetry
sidecar container by using the Use metric collection option. For more information, see Creating a
task definition using the console.

If you're not using the Amazon ECS console, you can add the AWS Distro for OpenTelemetry
sidecar container to your task definition manually. The following task definition example shows the
container definition for adding the AWS Distro for OpenTelemetry sidecar for Amazon Managed
Service for Prometheus integration.

{
 "family": "otel-using-cloudwatch",
 "taskRoleArn": "arn:aws:iam::111122223333:role/AmazonECS_OpenTelemetryCloudWatchRole",
 "executionRoleArn": "arn:aws:iam::111122223333:role/ecsTaskExecutionRole",

Exporting application metrics to Amazon Managed Service for Prometheus 876

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_tags.html

Amazon Elastic Container Service Developer Guide

 "containerDefinitions": [{
 "name": "aws-otel-emitter",
 "image": "application-image",
 "logConfiguration": {
 "logDriver": "awslogs",
 "options": {
 "awslogs-create-group": "true",
 "awslogs-group": "/ecs/aws-otel-emitter",
 "awslogs-region": "aws-region",
 "awslogs-stream-prefix": "ecs"
 }
 },
 "dependsOn": [{
 "containerName": "aws-otel-collector",
 "condition": "START"
 }]
 },
 {
 "name": "aws-otel-collector",
 "image": "public.ecr.aws/aws-observability/aws-otel-collector:v0.30.0",
 "essential": true,
 "command": [
 "--config=/etc/ecs/ecs-amp.yaml"
],
 "environment": [{
 "name": "AWS_PROMETHEUS_ENDPOINT",
 "value": "https://aps-workspaces.aws-region.amazonaws.com/workspaces/
ws-a1b2c3d4-5678-90ab-cdef-EXAMPLE11111/api/v1/remote_write"
 }],
 "logConfiguration": {
 "logDriver": "awslogs",
 "options": {
 "awslogs-create-group": "True",
 "awslogs-group": "/ecs/ecs-aws-otel-sidecar-collector",
 "awslogs-region": "aws-region",
 "awslogs-stream-prefix": "ecs"
 }
 }
 }
],
 "networkMode": "awsvpc",
 "requiresCompatibilities": [
 "FARGATE"
],

Exporting application metrics to Amazon Managed Service for Prometheus 877

Amazon Elastic Container Service Developer Guide

 "cpu": "1024",
 "memory": "3072"
}

Log Amazon ECS API calls using AWS CloudTrail

Amazon ECS is integrated with AWS CloudTrail, a service that provides a record of actions taken by
a user, role, or an AWS service in Amazon ECS. CloudTrail captures all API calls for Amazon ECS as
events, including calls from the Amazon ECS console and from code calls to the Amazon ECS API
operations. To protect your VPC, requests that are denied by a VPC endpoint policy, but otherwise
would have been allowed, are not recorded in CloudTrail.

If you create a trail, you can enable continuous delivery of CloudTrail events to an Amazon S3
bucket, including events for Amazon ECS. If you don't configure a trail, you can still view the
most recent events in the CloudTrail console in Event history. Using the information collected
by CloudTrail, you can determine the request that was made to Amazon ECS, the IP address from
which the request was made, who made the request, when it was made, and additional details.

For more information, see the AWS CloudTrail User Guide.

Amazon ECS information in CloudTrail

CloudTrail is turned on in your AWS account when you create the account. When activity occurs in
Amazon ECS, that activity is recorded in a CloudTrail event along with other AWS service events in
Event history. You can view, search, and download recent events in your AWS account. For more
information, see Viewing Events with CloudTrail Event History.

For an ongoing record of events in your AWS account, including events for Amazon ECS, create a
trail which CloudTrail uses to deliver log files to an Amazon S3 bucket. By default, when you create
a trail in the console, the trail applies to all regions. The trail logs events from all Regions in the
AWS partition and delivers the log files to the Amazon S3 bucket that you specify. Additionally,
you can configure other AWS services to further analyze and act upon the event data collected in
CloudTrail logs. For more information, see:

• Overview for Creating a Trail

• CloudTrail Supported Services and Integrations

• Configuring Amazon SNS Notifications for CloudTrail

Log Amazon ECS API calls using AWS CloudTrail 878

https://docs.aws.amazon.com/awscloudtrail/latest/userguide/
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/view-cloudtrail-events.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-create-and-update-a-trail.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-aws-service-specific-topics.html#cloudtrail-aws-service-specific-topics-integrations
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/getting_notifications_top_level.html

Amazon Elastic Container Service Developer Guide

• Receiving CloudTrail Log Files from Multiple Regions and Receiving CloudTrail Log Files from
Multiple Accounts

All Amazon ECS actions are logged by CloudTrail and are documented in the Amazon Elastic
Container Service API Reference. For example, calls to the CreateService, RunTask and
DeleteCluster sections generate entries in the CloudTrail log files.

Every event or log entry contains information about who generated the request. The identity
information helps you determine the following:

• Whether the request was made with root user or user credentials.

• Whether the request was made with temporary security credentials for a role or federated user.

• Whether the request was made by another AWS service.

For more information, see the CloudTrail userIdentity Element.

Understanding Amazon ECS log file entries

A trail is a configuration that allows the delivery of events as log files to an Amazon S3 bucket
that you specify. CloudTrail log files contain one or more log entries. An event represents a single
request from any source and includes information about the requested action, the date and time of
the action, request parameters, and so on. CloudTrail log files are not an ordered stack trace of the
public API calls, so they do not appear in any specific order.

Note

These examples have been formatted for improved readability. In a CloudTrail log file,
all entries and events are concatenated into a single line. In addition, this example has
been limited to a single Amazon ECS entry. In a real CloudTrail log file, you see entries and
events from multiple AWS services.

The following example shows a CloudTrail log entry that demonstrates the CreateCluster
action:

{
 "eventVersion": "1.04",
 "userIdentity": {

Understanding Amazon ECS log file entries 879

https://docs.aws.amazon.com/awscloudtrail/latest/userguide/receive-cloudtrail-log-files-from-multiple-regions.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-receive-logs-from-multiple-accounts.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-receive-logs-from-multiple-accounts.html
https://docs.aws.amazon.com/AmazonECS/latest/APIReference/
https://docs.aws.amazon.com/AmazonECS/latest/APIReference/
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-event-reference-user-identity.html

Amazon Elastic Container Service Developer Guide

 "type": "AssumedRole",
 "principalId": "AIDACKCEVSQ6C2EXAMPLE:account_name",
 "arn": "arn:aws:sts::123456789012:user/Mary_Major",
 "accountId": "123456789012",
 "accessKeyId": "AKIAIOSFODNN7EXAMPLE",
 "sessionContext": {
 "attributes": {
 "mfaAuthenticated": "false",
 "creationDate": "2018-06-20T18:32:25Z"
 },
 "sessionIssuer": {
 "type": "Role",
 "principalId": "AIDACKCEVSQ6C2EXAMPLE",
 "arn": "arn:aws:iam::123456789012:role/Admin",
 "accountId": "123456789012",
 "userName": "Mary_Major"
 }
 }
 },
 "eventTime": "2018-06-20T19:04:36Z",
 "eventSource": "ecs.amazonaws.com",
 "eventName": "CreateCluster",
 "awsRegion": "us-east-1",
 "sourceIPAddress": "203.0.113.12",
 "userAgent": "console.amazonaws.com",
 "requestParameters": {
 "clusterName": "default"
 },
 "responseElements": {
 "cluster": {
 "clusterArn": "arn:aws:ecs:us-east-1:123456789012:cluster/default",
 "pendingTasksCount": 0,
 "registeredContainerInstancesCount": 0,
 "status": "ACTIVE",
 "runningTasksCount": 0,
 "statistics": [],
 "clusterName": "default",
 "activeServicesCount": 0
 }
 },
 "requestID": "cb8c167e-EXAMPLE",
 "eventID": "e3c6f4ce-EXAMPLE",
 "eventType": "AwsApiCall",
 "recipientAccountId": "123456789012"

Understanding Amazon ECS log file entries 880

Amazon Elastic Container Service Developer Guide

}

Identify unauthorized behavior using Runtime Monitoring

Amazon GuardDuty is a threat detection service that helps protect your accounts, containers,
workloads, and the data within your AWS environment. Using machine learning (ML) models, and
anomaly and threat detection capabilities, GuardDuty continuously monitors different log sources
and runtime activity to identify and prioritize potential security risks and malicious activities in
your environment.

Runtime Monitoring in GuardDuty protects workloads running on Fargate and EC2 container
instances by continuously monitoring AWS log and networking activity to identify malicious
or unauthorized behavior. Runtime Monitoring uses a lightweight, fully managed GuardDuty
security agent that analyzes on-host behavior, such as file access, process execution, and network
connections. This covers issues including escalation of privileges, use of exposed credentials,
or communication with malicious IP addresses, domains, and the presence of malware on your
Amazon EC2 instances and container workloads. For more information, see GuardDuty Runtime
Monitoring in the GuardDuty User Guide.

Your security administrator enables Runtime Monitoring for a single or multiple accounts in AWS
Organizations for GuardDuty. They also select whether GuardDuty automatically deploys the
GuardDuty security agent when you use Fargate. All your clusters are automatically protected, and
GuardDuty manages the security agent on your behalf.

You can also manually configure the GuardDuty security agent in the following cases:

• You use EC2 container instances

• You need granular control to enable Runtime Monitoring at the cluster level

To use Runtime Monitoring, you must configure the clusters that are protected, and install and
manage the GuardDuty security agent on your EC2 container instances.

How Runtime Monitoring works with Amazon ECS

Runtime Monitoring uses a lightweight GuardDuty security agent that monitors Amazon ECS
workload activity for how applications are requesting, gaining access and consuming underlying
system resources.

For Fargate tasks, the GuardDuty security agent runs as a sidecar container for each task.

Identify unauthorized behavior using Runtime Monitoring 881

https://docs.aws.amazon.com/guardduty/latest/ug/runtime-monitoring.html
https://docs.aws.amazon.com/guardduty/latest/ug/runtime-monitoring.html

Amazon Elastic Container Service Developer Guide

For EC2 container instances, the GuardDuty security agent runs as a process on the instance.

The GuardDuty security agent collects data from the following resources, and then sends the
data to GuardDuty to process. You can view the findings in the GuardDuty console. You can also
send them to other AWS services such as AWS Security Hub, or a third-party security vendor
for aggregation and remediation. For information about how to view and manage findings, see
Managing Amazon GuardDuty findings in the Amazon GuardDuty User Guide.

• Responses from the following Amazon ECS API calls:

• DescribeClusters

The response parameters include the Runtime Monitoring tag (when the tag is set) when you
use the --include TAGS option.

• DescribeTasks

For the Fargate launch type, the response parameters include the GuardDuty sidecar container.

• ListAccountSettings

The response parameters include the Runtime Monitoring account setting, which is set by your
security administrator.

• The container agent introspection data. For more information, see Container introspection.

• The task metadata endpoint for the launch type:

• Task metadata endpoint version 4

• Task metadata endpoint version 4 for tasks on Fargate

Considerations

Consider the following when using Runtime Monitoring:

• Runtime Monitoring has a cost associated with it. For more information, see Amazon GuardDuty
Pricing.

• Runtime Monitoring is not supported on Amazon ECS Anywhere.

• Runtime Monitoring is not supported for the Windows operating system.

• When you use Amazon ECS Exec on Fargate, you must specify the container name because the
GuardDuty security agent runs as a sidecar container.

• You cannot use Amazon ECS Exec on the GuardDuty security agent sidecar container.

Considerations 882

https://docs.aws.amazon.com/guardduty/latest/ug/findings_management.html
https://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_DescribeClusters.html
https://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_DescribeTasks.html
https://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_ListAccountSettings.html
https://aws.amazon.com/guardduty/pricing/
https://aws.amazon.com/guardduty/pricing/

Amazon Elastic Container Service Developer Guide

• The IAM user that controls Runtime Monitoring at the cluster level, must have the appropriate
IAM permissions for tagging. For more information, see IAM tutorial: Define permissions to
access AWS resources based on tags in the IAM User Guide.

• Fargate tasks must use a task execution role. This role grants the tasks permission to retrieve,
update, and manage the GuardDuty security agent, which is stored in an Amazon ECR private
repository, on your behalf.

Resource utilization

The tag that you add to the cluster counts toward the cluster tag quota.

The GuardDuty agent sidecar container does not count toward the containers per task definition
quota.

As with most security software, there is a slight overhead for GuardDuty. For information about the
Fargate memory limits, see CPU and memory limits in the GuardDuty User Guide. For information
about the Amazon EC2 memory limits, see CPU and memory limit for GuardDuty agent.

GuardDuty agent management

If you use EC2 container instances, you must manually configure Runtime Monitoring. For more
information, see Manual Runtime Monitoring management.

When you use GuardDuty agent management, GuardDuty performs the following operations:

• Creates VPC endpoints for GuardDuty for each VPC that hosts a cluster.

• Retrieves, and installs the latest GuardDuty security agent as a sidecar container on all new
standalone Fargate tasks, and new service deployments.

A new service deployment happens the first time you launch a service, or when you update an
existing service with the force new deployment option.

Prerequisites

The following are prerequisites for using Runtime Monitoring:

• The Fargate platform version must be 1.4.0 or later for Linux.

• For information about the supported Linux operating systems and architectures, see Which
operating models and workloads does GuardDuty Runtime Monitoring support.

Resource utilization 883

https://docs.aws.amazon.com/IAM/latest/UserGuide/tutorial_attribute-based-access-control.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/tutorial_attribute-based-access-control.html
https://docs.aws.amazon.com/guardduty/latest/ug/prereq-runtime-monitoring-ecs-support.html#ecs-runtime-agent-cpu-memory-limits
https://docs.aws.amazon.com/guardduty/latest/ug/prereq-runtime-monitoring-ec2-support.html#ec2-cpu-memory-limits-gdu-agent
https://aws.amazon.com/guardduty/faqs/?nc1=h_ls%23product-faqs%23guardduty-faqs%23guardduty-ecs-runtime-monitoring
https://aws.amazon.com/guardduty/faqs/?nc1=h_ls%23product-faqs%23guardduty-faqs%23guardduty-ecs-runtime-monitoring

Amazon Elastic Container Service Developer Guide

• IAM roles and permissions for Amazon ECS:

• Fargate tasks must use a task execution role. This role grants the tasks permission to retrieve,
update, and manage the GuardDuty security agent on your behalf. For more information see
Amazon ECS task execution IAM role.

• You control Runtime Monitoring for a cluster with a pre-defined tag. If your access policies
restrict access based on tags, you must grant explicit permissions to your IAM users to tag
clusters. For more information, see IAM tutorial: Define permissions to access AWS resources
based on tags in the IAM User Guide.

• Connecting to the Amazon ECR repository:

The GuardDuty security agent is stored in an Amazon ECR repository. Each standalone and
service task must have access to the repository. You can use one of the following options:

• For tasks in public subnets, you can either use a public IP address for the task, or create a
VPC endpoint for Amazon ECR in the subnet where the task runs. For more information, see
Amazon ECR interface VPC endpoints (AWS PrivateLink) in the Amazon Elastic Container
Registry User Guide.

• For tasks in private subnets, you can use a Network Address Translation (NAT) gateway, or
create a VPC endpoint for Amazon ECR in the subnet where the task runs.

For more information, see Using a private subnet and NAT gateway.

• You must have the AWSServiceRoleForAmazonGuardDuty role for GuardDuty. For more
information, see Service-linked role permissions for GuardDuty in the Amazon GuardDuty User
Guide.

• Any files that you want to protect with Runtime Monitoring must be accessible by the root user.
If you manually changed the permissions of a file, you must set it to 755.

Enabling Runtime Monitoring

You enable Runtime Monitoring in GuardDuty. For information about how to enable the feature,
see Enabling Runtime Monitoring in the Amazon GuardDuty User Guide.

Adding Runtime Monitoring to existing Fargate tasks

When you enable Runtime Monitoring, all new standalone tasks, and new service deployments in
the cluster are protected automatically. In order to preserve the immutability constraint, existing

GuardDuty agent management 884

https://docs.aws.amazon.com/IAM/latest/UserGuide/tutorial_attribute-based-access-control.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/tutorial_attribute-based-access-control.html
https://docs.aws.amazon.com/AmazonECR/latest/userguide/vpc-endpoints.html
https://docs.aws.amazon.com/AmazonECS/latest/bestpracticesguide/networking-outbound.html#networking-private-subnet
https://docs.aws.amazon.com/guardduty/latest/ug/slr-permissions.html
https://docs.aws.amazon.com/guardduty/latest/ug/runtime-monitoring-configuration.html

Amazon Elastic Container Service Developer Guide

tasks are not affected. To immediately protect a task, you need to perform one of the following
actions:

• For standalone tasks, stop the tasks, and then start them.

• For tasks that are part of a service, update the service with the "force new deployment" option.

Removing Runtime Monitoring from a cluster

You might want to exclude certain clusters from protection, for example clusters that you use for
testing. This causes GuardDuty to perform the following operations on resources in the cluster:

• No longer deploy the GuardDuty security agent to new standalone Fargate tasks, or new service
deployments.

In order to preserve the immutability constraint, existing tasks and deployments with Runtime
Monitoring enabled are not affected.

• Stop billing and no longer accepts run time events for tasks.

Perform the following operations to remove Runtime Monitoring from a cluster.

1. Use the Amazon ECS console or AWS CLI to set the GuardDutyManaged tag key on the cluster
to false. For more information, see Updating a cluster or Working with tags using the CLI or
API. Use the following values for the tag.

Note

The Key and Value are case sensitive and must exactly match the strings.

Key = GuardDutyManaged, Value = false

2. Delete the GuardDuty VPC endpoint for the cluster. For more information about how to delete
VPC endpoints, see Delete an interface endpoint in the AWS PrivateLink User Guide.

GuardDuty agent management 885

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/update-cluster-v2.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/ecs-using-tags.html#tag-resources-api-sdk
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/ecs-using-tags.html#tag-resources-api-sdk
https://docs.aws.amazon.com/vpc/latest/privatelink/delete-interface-endpoint.html

Amazon Elastic Container Service Developer Guide

Removing Runtime Monitoring from an account

When you no longer want to use Runtime Monitoring, disable the feature in GuardDuty. For
information about how to disable the feature, see Enabling Runtime Monitoring in the Amazon
GuardDuty User Guide.

GuardDuty performs the following operations:

• Deletes the VPC endpoints for GuardDuty for each VPC that hosts a cluster.

• No longer deploys the GuardDuty security agent to new standalone Fargate tasks, or new service
deployments.

In order to preserve the immutability constraint, existing tasks and deployments are not affected
until they are stopped, replicated, or scaled.

• Stops billing and no longer accepts run time events for tasks.

Manual Runtime Monitoring management

Use this when you use EC2 instances for your capacity, or when you need granular control of
enabling Runtime Monitoring at the cluster-level on Fargate.

You provision the clusters for Runtime Monitoring by adding a pre-defined tag.

For EC2 container instances, you download, install, and manage the GuardDuty security agent.

For Fargate, GuardDuty manages the security agent on your behalf.

Prerequisites

The following are prerequisites for using Runtime Monitoring:

• The Fargate platform version must be 1.4.0 or later for Linux.

• IAM roles and permissions for Amazon ECS:

• Fargate tasks must use a task execution role. This role grants the tasks permission to retrieve,
update, and manage the GuardDuty security agent on your behalf. For more information see
Amazon ECS task execution IAM role.

• You control Runtime Monitoring for a cluster with a pre-defined tag. If your access policies
restrict access based on tags, you must grant explicit permissions to your IAM users to tag

Manual Runtime Monitoring management 886

https://docs.aws.amazon.com/guardduty/latest/ug/runtime-monitoring-configuration.html

Amazon Elastic Container Service Developer Guide

clusters. For more information, see IAM tutorial: Define permissions to access AWS resources
based on tags in the IAM User Guide.

• Connecting to the Amazon ECR repository:

The GuardDuty security agent is stored in an Amazon ECR repository. Each standalone and
service task must have access to the repository. You can use one of the following options:

• For tasks in public subnets, you can either use a public IP address for the task, or create a
VPC endpoint for Amazon ECR in the subnet where the task runs. For more information, see
Amazon ECR interface VPC endpoints (AWS PrivateLink) in the Amazon Elastic Container
Registry User Guide.

• For tasks in private subnets, you can use a Network Address Translation (NAT) gateway, or
create a VPC endpoint for Amazon ECR in the subnet where the task runs.

For more information, see Using a private subnet and NAT gateway.

• You must have the AWSServiceRoleForAmazonGuardDuty role for GuardDuty. For more
information, see Service-linked role permissions for GuardDuty in the Amazon GuardDuty User
Guide.

• Any files that you want to protect with Runtime Monitoring must be accessible by the root user.
If you manually changed the permissions of a file, you must set it to 755.

The following are prerequisites for using Runtime Monitoring on EC2 container instances:

• You must use version 20230929 or later of the Amazon ECS-AMI.

• You must run Amazon ECS agent to version 1.77 or later on the container instances.

• You must use kernel version 5.10 or later.

• For information about the supported Linux operating systems and architectures, see Which
operating models and workloads does GuardDuty Runtime Monitoring support.

• You can use Systems Manager to manage your container instances. For more information, see
Setting up Systems Manager for EC2 instances in the AWS Systems Manager Session Manager
User Guide.

Enabling Runtime Monitoring

You enable this feature in GuardDuty. For information about how to enable the feature, see
Enabling Runtime Monitoring in the Amazon GuardDuty User Guide.

Manual Runtime Monitoring management 887

https://docs.aws.amazon.com/IAM/latest/UserGuide/tutorial_attribute-based-access-control.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/tutorial_attribute-based-access-control.html
https://docs.aws.amazon.com/AmazonECR/latest/userguide/vpc-endpoints.html
https://docs.aws.amazon.com/AmazonECS/latest/bestpracticesguide/networking-outbound.html#networking-private-subnet
https://docs.aws.amazon.com/guardduty/latest/ug/slr-permissions.html
https://aws.amazon.com/guardduty/faqs/?nc1=h_ls%23product-faqs%23guardduty-faqs%23guardduty-ecs-runtime-monitoring
https://aws.amazon.com/guardduty/faqs/?nc1=h_ls%23product-faqs%23guardduty-faqs%23guardduty-ecs-runtime-monitoring
https://docs.aws.amazon.com/systems-manager/latest/userguide/systems-manager-setting-up-ec2.html
https://docs.aws.amazon.com/guardduty/latest/ug/runtime-monitoring-configuration.html

Amazon Elastic Container Service Developer Guide

Configuring Runtime Monitoring for clusters

Configure Runtime Monitoring for the cluster, and then install the GuardDuty security agent on
your EC2 container instances.

Adding Runtime Monitoring to a cluster

Perform the following operations to add Runtime Monitoring to a cluster.

1. Create a VPC endpoint for GuardDuty for each cluster VPC. For more information, see Creating
Amazon VPC endpoint manually in the GuardDuty User Guide.

2. Configure the EC2 container instances.

a. Update the Amazon ECS agent to version 1.77 or later on the EC2 container instances in
the cluster. For more information see Updating the Amazon ECS container agent.

b. Install the GuardDuty security agent on the EC2 container instances in the cluster. For
more information, see Managing the security agent on an Amazon EC2 instance manually
in the GuardDuty User Guide.

All new and existing tasks, and deployments are immediately protected because the
GuardDuty security agent runs as a process on the EC2 container instance.

3. Use the Amazon ECS console or AWS CLI to set the GuardDutyManaged tag key on the cluster
to true. For more information, see Updating a cluster or Working with tags using the CLI or
API. Use the following values for the tag.

Note

The Key and Value are case sensitive and must exactly match the strings.

Key = GuardDutyManaged, Value = true

Adding Runtime Monitoring to existing Fargate tasks

When you enable Runtime Monitoring, all new standalone tasks, and new service deployments in
the cluster are protected automatically. In order to preserve the immutability constraint, existing
tasks are not affected. To immediately protect a task, you need to perform one of the following
actions:

Manual Runtime Monitoring management 888

https://docs.aws.amazon.com/guardduty/latest/ug/managing-gdu-agent-ec2-manually.html#creating-vpc-endpoint-ec2-agent-manually
https://docs.aws.amazon.com/guardduty/latest/ug/managing-gdu-agent-ec2-manually.html#creating-vpc-endpoint-ec2-agent-manually
https://docs.aws.amazon.com/guardduty/latest/ug/managing-gdu-agent-ec2-manually.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/update-cluster-v2.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/ecs-using-tags.html#tag-resources-api-sdk
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/ecs-using-tags.html#tag-resources-api-sdk

Amazon Elastic Container Service Developer Guide

• For standalone tasks, stop the tasks, and then start them.

• For tasks that are part of a service, update the service with the "force new deployment" option.

Removing Runtime Monitoring from a cluster

You can remove Runtime Monitoring from a cluster. This causes GuardDuty to stop monitoring all
resources in the cluster.

To remove Runtime Monitoring from a cluster.

1. Use the Amazon ECS console or AWS CLI to set the GuardDutyManaged tag key on the cluster
to false. For more information, see Updating a cluster or Working with tags using the CLI or
API.

Note

The Key and Value are case sensitive and must exactly match the strings.

Key = GuardDutyManaged, Value = false

2. Uninstall the GuardDuty security agent on you EC2 container instances in the cluster.

For more information, see Uninstalling the security agent manually in the GuardDuty User
Guide.

3. Delete the GuardDuty VPC endpoint for each cluster VPC. For more information about how to
delete VPC endpoints, see Delete an interface endpoint in the AWS PrivateLink User Guide.

Updating the GuardDuty security agent on your EC2 container instances

For information about how to update the GuardDuty security agent on your EC2 container
instances, see Updating GuardDuty security agent in the Amazon GuardDuty User Guide.

Removing Runtime Monitoring from an account

When you no longer want to use Runtime Monitoring, disable the feature in GuardDuty. For
information about how to disable the feature, see Enabling Runtime Monitoring in the Amazon
GuardDuty User Guide.

Manual Runtime Monitoring management 889

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/update-cluster-v2.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/ecs-using-tags.html#tag-resources-api-sdk
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/ecs-using-tags.html#tag-resources-api-sdk
https://docs.aws.amazon.com/guardduty/latest/ug/managing-gdu-agent-ec2-manually.html#gdu-update-security-agent-ec2
https://docs.aws.amazon.com/vpc/latest/privatelink/delete-interface-endpoint.html
https://docs.aws.amazon.com/guardduty/latest/ug/managing-gdu-agent-ec2-manually.html#gdu-update-security-agent-ec2
https://docs.aws.amazon.com/guardduty/latest/ug/runtime-monitoring-configuration.html

Amazon Elastic Container Service Developer Guide

Remove Runtime Monitoring from all clusters. For more information, see Removing Runtime
Monitoring from a cluster.

Runtime Monitoring Troubleshooting FAQs

You might need to troubleshoot or verify that Runtime Monitoring is enabled and running on your
tasks and containers.

Topics

• How can I tell if Runtime Monitoring is active on my account?

• How can I tell if Runtime Monitoring is active on a cluster?

• How can I tell if the GuardDuty security agent is running on a Fargate task?

• How can I tell if the GuardDuty security agent is running on an EC2 container instance?

• What happens when there is no task execution role for a task running on the cluster?

• How can I tell if I have the correct permissions to tag clusters for Runtime Monitoring?

• What happens when there is no connection Amazon ECR?

• How do I address out of memory errors on my Fargate tasks after enabling Runtime Monitoring?

How can I tell if Runtime Monitoring is active on my account?

In the Amazon ECS console, the information is in on the Account Settings page.

You can also run list-account-settings with the effective-settings option.

aws ecs list-account-settings --effective-settings

Output

The setting with name set to guardDutyActivate and value set to on indicates that the account
is configured. You must check with your GuardDuty administrator to see if the management is
automatic or manual.

{
 "setting": {
 "name": "guardDutyActivate",
 "value": "enabled",
 "principalArn": "arn:aws:iam::123456789012:root",
 "type": "aws-managed"

Troubleshooting FAQs 890

Amazon Elastic Container Service Developer Guide

 }
}

How can I tell if Runtime Monitoring is active on a cluster?

In the Amazon ECS console, the information is on Tags tab of the Cluster detail page.

You can also run describe-clusters with the TAGS option.

The following example shows the output for the default cluster

aws ecs describe-clusters --cluster default --include TAGS

Output

The tag with Key set to GuardDutyManaged and Value set to true indicates that the cluster is
configured for Runtime Monitoring.

{
 "clusters": [
 {
 "clusterArn": "arn:aws:ecs:us-east-1:1234567890:cluster/default",
 "clusterName": "default",
 "status": "ACTIVE",
 "registeredContainerInstancesCount": 0,
 "runningTasksCount": 1,
 "pendingTasksCount": 0,
 "activeServicesCount": 0,
 "statistics": [],
 "tags": [
 {
 "key": "GuardDutyManaged",
 "value": "true"
 }
],
 "settings": [],
 "capacityProviders": [],
 "defaultCapacityProviderStrategy": []
 }
],
 "failures": []
}

Troubleshooting FAQs 891

Amazon Elastic Container Service Developer Guide

How can I tell if the GuardDuty security agent is running on a Fargate task?

The GuardDuty security agent runs as a sidecar container for Fargate tasks.

In the Amazon ECS console, the sidecar is displayed under Containers on the Task details page.

You can run describe-tasks and look for the container with a name set to aws-gd-agent and
the lastStatus set to RUNNING.

The following example shows the output for the default cluster for task aws:ecs:us-
east-1:123456789012:task/0b69d5c0-d655-4695-98cd-5d2d5EXAMPLE.

aws ecs describe-tasks --cluster default --tasks aws:ecs:us-
east-1:123456789012:task/0b69d5c0-d655-4695-98cd-5d2d5EXAMPLE

Output

The container named gd-agent is in the RUNNING state.

"containers": [
 {
 "containerArn": "arn:aws:ecs:us-east-1:123456789012:container/4df26bb4-
f057-467b-a079-96167EXAMPLE",
 "taskArn": "arn:aws:ecs:us-east-1:123456789012:task/0b69d5c0-
d655-4695-98cd-5d2d5EXAMPLE",
 "lastStatus": "RUNNING",
 "healthStatus": "UNKNOWN",
 "memory": "string",
 "name": "aws-gd-agent"
 }
]

How can I tell if the GuardDuty security agent is running on an EC2 container
instance?

Run the following command to view the status:

sudo systemctl status amazon-guardduty-agent

The log file is in the following location:

Troubleshooting FAQs 892

Amazon Elastic Container Service Developer Guide

/var/log/amzn-guardduty-agent

What happens when there is no task execution role for a task running on the
cluster?

For Fargate tasks, the task starts without the GuardDuty security agent sidecar container. The
GuardDuty dashboard will show that the task is missing protection in the coverage statistics
dashboard.

How can I tell if I have the correct permissions to tag clusters for Runtime
Monitoring?

In order to tag a cluster, you must have the ecs:TagResource action for both CreateCluster
and UpdateCluster.

The following is a snippet of an example policy.

{
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "ecs:TagResource"
],
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "ecs:CreateAction" : "CreateCluster",
 "ecs:CreateAction" : "UpdateCluster",
 }
 }
 }
]
}

What happens when there is no connection Amazon ECR?

For Fargate tasks, the task starts without the GuardDuty security agent sidecar container. The
GuardDuty dashboard will show that the task is missing protection in the coverage statistics
dashboard.

Troubleshooting FAQs 893

Amazon Elastic Container Service Developer Guide

How do I address out of memory errors on my Fargate tasks after enabling
Runtime Monitoring?

The GuardDuty security agent is a lightweight process. However, the process still consumes
resources according to the size of the workload. We recommend using container resource tracking
tooling, such as Amazon CloudWatch Container Insights to stage GuardDuty deployments in your
cluster. These tools help you to discover the consumption profile of the GuardDuty security agent
for your applications. You can then adjust your Fargate task size, if required, to avoid potential out
of memory conditions.

Monitor Amazon ECS containers with ECS Exec

With Amazon ECS Exec, you can directly interact with containers without needing to first interact
with the host container operating system, open inbound ports, or manage SSH keys. You can use
ECS Exec to run commands in or get a shell to a container running on an Amazon EC2 instance or
on AWS Fargate. This makes it easier to collect diagnostic information and quickly troubleshoot
errors. For example, in a development context, you can use ECS Exec to easily interact with various
process in your containers and troubleshoot your applications. And in production scenarios, you can
use it to gain break-glass access to your containers to debug issues.

You can run commands in a running Linux or Windows container using ECS Exec from the Amazon
ECS API, AWS Command Line Interface (AWS CLI), AWS SDKs, or the AWS Copilot CLI. For details on
using ECS Exec, as well as a video walkthrough, using the AWS Copilot CLI, see the Copilot GitHub
documentation.

You can also use ECS Exec to maintain stricter access control policies and audit container access. By
selectively turning on this feature, you can control who can run commands and on which tasks they
can run those commands. With a log of each command and their output, you can use ECS Exec to
audit which tasks were run and you can use CloudTrail to audit who accessed a container.

Considerations for using ECS Exec

For this topic, you should be familiar with the following aspects involved with using ECS Exec:

• ECS Exec is not currently supported using the AWS Management Console.

• ECS Exec is supported for tasks that run on the following infrastructure:

• Linux containers on Amazon EC2 on any Amazon ECS-optimized AMI, including Bottlerocket

Monitor Amazon ECS containers with ECS Exec 894

https://aws.github.io/copilot-cli/docs/commands/svc-exec/
https://aws.github.io/copilot-cli/docs/commands/svc-exec/

Amazon Elastic Container Service Developer Guide

• Linux and Windows containers on external instances (Amazon ECS Anywhere)

• Linux and Windows containers on AWS Fargate

• Windows containers on Amazon EC2 on the following Windows Amazon ECS-optimized AMIs
(with the container agent version 1.56 or later):

• Amazon ECS-optimized Windows Server 2022 Full AMI

• Amazon ECS-optimized Windows Server 2022 Core AMI

• Amazon ECS-optimized Windows Server 2019 Full AMI

• Amazon ECS-optimized Windows Server 2019 Core AMI

• Amazon ECS-optimized Windows Server 20H2 Core AMI

• ECS Exec and Amazon VPC

• If you are using interface Amazon VPC endpoints with Amazon ECS, you must create the
interface Amazon VPC endpoints for the Systems Manager Session Manager (ssmmessages).
For more information about Systems Manager VPC endpoints, see Use AWS PrivateLink to set
up a VPC endpoint for Session Manager in the AWS Systems Manager User Guide.

• If you are using interface Amazon VPC endpoints with Amazon ECS, and you are using AWS
KMS key for encryption, then you must create the interface Amazon VPC endpoint for AWS
KMS key. For more information, see Connecting to AWS KMS key through a VPC endpoint in
the AWS Key Management Service Developer Guide.

• When you have tasks that run on Amazon EC2 instances, use awsvpc networking mode. If you
don't have internet access, such as not configured to use a NAT gateway), you must create the
interface Amazon VPC endpoints for the Systems Manager Session Manager (ssmmessages).
For more information about awsvpc network mode considerations, see Considerations. For
more information about Systems Manager VPC endpoints, see Use AWS PrivateLink to set up a
VPC endpoint for Session Manager in the AWS Systems Manager User Guide.

• ECS Exec and SSM

• When a user runs commands on a container using ECS Exec, these commands are run as the
root user. The SSM agent and its child processes run as root even when you specify a user ID
for the container.

• The SSM agent requires that the container file system can be written to in order to create
the required directories and files. Therefore, making the root file system read-only using the
readonlyRootFilesystem task definition parameter, or any other method, isn't supported.

• While starting SSM sessions outside of the execute-command action is possible, this results
in the sessions not being logged and being counted against the session limit. We recommend

Considerations for using ECS Exec 895

https://docs.aws.amazon.com/systems-manager/latest/userguide/session-manager-getting-started-privatelink.html
https://docs.aws.amazon.com/systems-manager/latest/userguide/session-manager-getting-started-privatelink.html
https://docs.aws.amazon.com/kms/latest/developerguide/kms-vpc-endpoint.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/task-networking-awsvpc.html#linux
https://docs.aws.amazon.com/systems-manager/latest/userguide/session-manager-getting-started-privatelink.html
https://docs.aws.amazon.com/systems-manager/latest/userguide/session-manager-getting-started-privatelink.html

Amazon Elastic Container Service Developer Guide

limiting this access by denying the ssm:start-session action using an IAM policy. For more
information, see Limiting access to the Start Session action.

• The following features run as a sidecar container. Therefore, you must specify the container
name to run the command on.

• Runtime Monitoring

• Service Connect

• Users can run all of the commands that are available within the container context. The following
actions might result in orphaned and zombie processes: terminating the main process of the
container, terminating the command agent, and deleting dependencies. To cleanup zombie
processes, we recommend adding the initProcessEnabled flag to your task definition.

• ECS Exec uses some CPU and memory. You'll want to accommodate for that when specifying the
CPU and memory resource allocations in your task definition.

• You must be using AWS CLI version 1.22.3 or later or AWS CLI version 2.3.6 or later. For
information about how to update the AWS CLI, see Installing or updating the latest version of
the AWS CLI in the AWS Command Line Interface User Guide Version 2.

• You can have only one ECS Exec session per process ID (PID) namespace. If you are sharing a PID
namespace in a task, you can only start ECS Exec sessions into one container.

• The ECS Exec session has an idle timeout time of 20 minutes. This value can't be changed.

• You can't turn on ECS Exec for existing tasks. It can only be turned on for new tasks.

• You can't use ECS Exec when you use run-task to launch a task on a cluster that uses managed
scaling with asynchronous placement (launch a task with no instance).

• You can't run ECS Exec against Microsoft Nano Server containers. For more information about
Nano Server containers, see Nano Server on the Docker web site.

Prerequisites for using ECS Exec

Before you start using ECS Exec, make sure that you have completed these actions:

• Install and configure the AWS CLI. For more information, see AWS CLI.

• Install Session Manager plugin for the AWS CLI. For more information, see Install the Session
Manager plugin for the AWS CLI.

• You must use a task role with the appropriate permissions for ECS Exec. For more information,
see Task IAM role.

Prerequisites for using ECS Exec 896

https://docs.aws.amazon.com/cli/latest/userguide/getting-started-install.html
https://docs.aws.amazon.com/cli/latest/userguide/getting-started-install.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/task_definition_parameters.html#other_task_definition_params
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/task_definition_parameters.html#other_task_definition_params
https://hub.docker.com/_/microsoft-windows-nanoserver
https://docs.aws.amazon.com/cli/latest/userguide/cli-environment.html
https://docs.aws.amazon.com/systems-manager/latest/userguide/session-manager-working-with-install-plugin.html
https://docs.aws.amazon.com/systems-manager/latest/userguide/session-manager-working-with-install-plugin.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/task-iam-roles.html

Amazon Elastic Container Service Developer Guide

• ECS Exec has version requirements depending on whether your tasks are hosted on Amazon EC2
or AWS Fargate:

• If you're using Amazon EC2, you must use an Amazon ECS optimized AMI that was released
after January 20th, 2021, with an agent version of 1.50.2 or greater. For more information, see
Amazon ECS optimized AMIs.

• If you're using AWS Fargate, you must use platform version 1.4.0 or higher (Linux) or 1.0.0
(Windows). For more information, see AWS Fargate platform versions.

Architecture

ECS Exec makes use of AWS Systems Manager (SSM) Session Manager to establish a connection
with the running container and uses AWS Identity and Access Management (IAM) policies to control
access to running commands in a running container. This is made possible by bind-mounting
the necessary SSM agent binaries into the container. The Amazon ECS or AWS Fargate agent is
responsible for starting the SSM core agent inside the container alongside your application code.
For more information, see Systems Manager Session Manager.

You can audit which user accessed the container using the ExecuteCommand event in AWS
CloudTrail and log each command (and their output) to Amazon S3 or Amazon CloudWatch Logs.
To encrypt data between the local client and container with your own encryption key, you must
provide the AWS Key Management Service (AWS KMS) key.

Using ECS Exec

Optional task definition changes

If you set the task definition parameter initProcessEnabled to true, this starts the init process
inside the container. This removes any zombie SSM agent child processes found. The following
provides an example.

{
 "taskRoleArn": "ecsTaskRole",
 "networkMode": "awsvpc",
 "requiresCompatibilities": [
 "EC2",
 "FARGATE"
],
 "executionRoleArn": "ecsTaskExecutionRole",

Architecture 897

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/ecs-optimized_AMI.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/platform-linux-fargate.html
https://docs.aws.amazon.com/systems-manager/latest/userguide/session-manager.html

Amazon Elastic Container Service Developer Guide

 "memory": ".5 gb",
 "cpu": ".25 vcpu",
 "containerDefinitions": [
 {
 "name": "amazon-linux",
 "image": "amazonlinux:latest",
 "essential": true,
 "command": ["sleep","3600"],
 "linuxParameters": {
 "initProcessEnabled": true
 }
 }
],
 "family": "ecs-exec-task"
}

Turning on ECS Exec for your tasks and services

You can turn on the ECS Exec feature for your services and standalone tasks by specifying the --
enable-execute-command flag when using one of the following AWS CLI commands: create-
service, update-service, start-task, or run-task.

For example, if you run the following command, the ECS Exec feature is turned on for a newly
created service. For more information about creating services, see create-service.

aws ecs create-service \
 --cluster cluster-name \
 --task-definition task-definition-name \
 --enable-execute-command \
 --service-name service-name \
 --desired-count 1

After you turn on ECS Exec for a task, you can run the following command to confirm the task is
ready to be used. If the lastStatus property of the ExecuteCommandAgent is listed as RUNNING
and the enableExecuteCommand property is set to true, then your task is ready.

aws ecs describe-tasks \
 --cluster cluster-name \
 --tasks task-id

The following output snippet is an example of what you might see.

Using ECS Exec 898

https://docs.aws.amazon.com/cli/latest/reference/ecs/create-service.html
https://docs.aws.amazon.com/cli/latest/reference/ecs/create-service.html
https://docs.aws.amazon.com/cli/latest/reference/ecs/update-service.html
https://docs.aws.amazon.com/cli/latest/reference/ecs/start-task.html
https://docs.aws.amazon.com/cli/latest/reference/ecs/run-task.html
https://docs.aws.amazon.com/cli/latest/reference/ecs/create-service.html

Amazon Elastic Container Service Developer Guide

{
 "tasks": [
 {
 ...
 "containers": [
 {
 ...
 "managedAgents": [
 {
 "lastStartedAt": "2021-03-01T14:49:44.574000-06:00",
 "name": "ExecuteCommandAgent",
 "lastStatus": "RUNNING"
 }
]
 }
],
 ...
 "enableExecuteCommand": true,
 ...
 }
]
}

Running commands using ECS Exec

After you have confirmed the ExecuteCommandAgent is running, you can open an interactive
shell on your container using the following command. If your task contains multiple containers,
you must specify the container name using the --container flag. Amazon ECS only supports
initiating interactive sessions, so you must use the --interactive flag.

The following command will run an interactive /bin/sh command against a container named
container-name for a task with an ID of task-id.

The task-id is the Amazon Resource Name (ARN) of the task.

aws ecs execute-command --cluster cluster-name \
 --task task-id \
 --container container-name \
 --interactive \
 --command "/bin/sh"

Using ECS Exec 899

Amazon Elastic Container Service Developer Guide

Logging and Auditing using ECS Exec

Turning on logging and auditing in your tasks and services

Important

For more information about CloudWatch pricing, see CloudWatch Pricing. Amazon ECS also
provides monitoring metrics that are provided at no additional cost. For more information,
see Monitor Amazon ECS using CloudWatch .

Amazon ECS provides a default configuration for logging commands run using ECS Exec by sending
logs to CloudWatch Logs using the awslogs log driver that's configured in your task definition.
If you want to provide a custom configuration, the AWS CLI supports a --configuration flag
for both the create-cluster and update-cluster commands. It’s also important to know
that the container image requires script and cat to be installed in order to have command
logs uploaded correctly to Amazon S3 or CloudWatch Logs. For more information about creating
clusters, see create-cluster.

Note

This configuration only handles the logging of the execute-command session. It doesn't
affect logging of your application.

The following example creates a cluster and then logs the output to your CloudWatch Logs
LogGroup named cloudwatch-log-group-name and your Amazon S3 bucket named s3-
bucket-name.

You must use an AWS KMS customer managed key to encrypt the log group when you set the
CloudWatchEncryptionEnabled option to true. For information about how to encrypt the
log group, see Encrypt log data in CloudWatch Logs using AWS Key Management Service, in the
Amazon CloudWatch Logs User Guide.

aws ecs create-cluster \
 --cluster-name cluster-name \
 --configuration executeCommandConfiguration="{ \
 kmsKeyId=string, \

Logging and Auditing using ECS Exec 900

https://aws.amazon.com/cloudwatch/pricing/
https://docs.aws.amazon.com/cli/latest/reference/ecs/create-cluster.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/encrypt-log-data-kms.html#encrypt-log-data-kms-policy

Amazon Elastic Container Service Developer Guide

 logging=OVERRIDE, \
 logConfiguration={ \
 cloudWatchLogGroupName=cloudwatch-log-group-name, \
 cloudWatchEncryptionEnabled=true, \
 s3BucketName=s3-bucket-name, \
 s3EncryptionEnabled=true, \
 s3KeyPrefix=demo \
 } \
 }"

The logging property determines the behavior of the logging capability of ECS Exec:

• NONE: logging is turned off.

• DEFAULT: logs are sent to the configured awslogs driver. If the driver isn't configured, then no
log is saved.

• OVERRIDE: logs are sent to the provided Amazon CloudWatch Logs LogGroup, Amazon S3
bucket, or both.

IAM permissions required for Amazon CloudWatch Logs or Amazon S3 Logging

To enable logging, the Amazon ECS task role that's referenced in your task definition needs to have
additional permissions. These additional permissions can be added as a policy to the task role.
They're different depending on if you direct your logs to Amazon CloudWatch Logs or Amazon S3.

Amazon CloudWatch Logs

The following example policy adds the required Amazon CloudWatch Logs permissions.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "logs:DescribeLogGroups"
],
 "Resource": "*"
 },
 {
 "Effect": "Allow",

Logging and Auditing using ECS Exec 901

Amazon Elastic Container Service Developer Guide

 "Action": [
 "logs:CreateLogStream",
 "logs:DescribeLogStreams",
 "logs:PutLogEvents"
],
 "Resource": "arn:aws:logs:region:account-id:log-group:/aws/
ecs/cloudwatch-log-group-name:*"
 }
]
}

Amazon S3

The following example policy adds the required Amazon S3 permissions.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "s3:GetBucketLocation"
],
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Action": [
 "s3:GetEncryptionConfiguration"
],
 "Resource": "arn:aws:s3:::s3-bucket-name"
 },
 {
 "Effect": "Allow",
 "Action": [
 "s3:PutObject"
],
 "Resource": "arn:aws:s3:::s3-bucket-name/*"
 }
]
 }

Logging and Auditing using ECS Exec 902

Amazon Elastic Container Service Developer Guide

IAM permissions required for encryption using your own AWS KMS key (KMS key)

By default, the data transferred between your local client and the container uses TLS 1.2
encryption that AWS provides. To further encrypt data using your own KMS key, you must create
a KMS key and add the kms:Decrypt permission to your task IAM role. This permission is used by
your container to decrypt the data. For more information about creating a KMS key, see Creating
keys.

You add the following inline policy to your task IAM role which requires the AWS KMS permissions.
For more information, see IAM permissions required for ECS Exec.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "kms:Decrypt"
],
 "Resource": "kms-key-arn"
 }
]
}

For the data to be encrypted using your own KMS key, the user or group using the execute-
command action must be granted the kms:GenerateDataKey permission.

The following example policy for your user or group contains the required permission to use your
own KMS key. You must specify the Amazon Resource Name (ARN) of your KMS key.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "kms:GenerateDataKey"
],
 "Resource": "kms-key-arn"
 }
]

Logging and Auditing using ECS Exec 903

https://docs.aws.amazon.com/kms/latest/developerguide/create-keys.html
https://docs.aws.amazon.com/kms/latest/developerguide/create-keys.html

Amazon Elastic Container Service Developer Guide

}

Using IAM policies to limit access to ECS Exec

You limit user access to the execute-command API action by using one or more of the following
IAM policy condition keys:

• aws:ResourceTag/clusterTagKey

• ecs:ResourceTag/clusterTagKey

• aws:ResourceTag/taskTagKey

• ecs:ResourceTag/taskTagKey

• ecs:container-name

• ecs:cluster

• ecs:task

• ecs:enable-execute-command

With the following example IAM policy, users can run commands in containers that are running
within tasks with a tag that has an environment key and development value and in a cluster
that's named cluster-name.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "ecs:ExecuteCommand",
 "ecs:DescribeTasks"
],
 "Resource": [
 "arn:aws:ecs:region:aws-account-id:task/cluster-name/*",
 "arn:aws:ecs:region:aws-account-id:cluster/*"
],
 "Condition": {
 "StringEquals": {
 "ecs:ResourceTag/environment": "development"
 }
 }
 }

Using IAM policies to limit access to ECS Exec 904

Amazon Elastic Container Service Developer Guide

]
}

With the following IAM policy example, users can't use the execute-command API when the
container name is production-app.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Deny",
 "Action": [
 "ecs:ExecuteCommand"
],
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "ecs:container-name": "production-app"
 }
 }
 }
]
}

With the following IAM policy, users can only launch tasks when ECS Exec is turned off.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "ecs:RunTask",
 "ecs:StartTask",
 "ecs:CreateService",
 "ecs:UpdateService"
],
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "ecs:enable-execute-command": "false"
 }
 }

Using IAM policies to limit access to ECS Exec 905

Amazon Elastic Container Service Developer Guide

 }
]
}

Note

Because the execute-command API action contains only task and cluster resources in a
request, only cluster and task tags are evaluated.

For more information about IAM policy condition keys, see Actions, resources, and condition keys
for Amazon Elastic Container Service in the Service Authorization Reference.

Limiting access to the Start Session action

While starting SSM sessions on your container outside of ECS Exec is possible, this could potentially
result in the sessions not being logged. Sessions started outside of ECS Exec also count against the
session quota. We recommend limiting this access by denying the ssm:start-session action
directly for your Amazon ECS tasks using an IAM policy. You can deny access to all Amazon ECS
tasks or to specific tasks based on the tags used.

The following is an example IAM policy that denies access to the ssm:start-session action for
tasks in all Regions with a specified cluster name. You can optionally include a wildcard with the
cluster-name.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Deny",
 "Action": "ssm:StartSession",
 "Resource": [
 "arn:aws:ecs:region:aws-account-id:task/cluster-name/*",
 "arn:aws:ecs:region:aws-account-id:cluster/*"
]
 }
]
}

The following is an example IAM policy that denies access to the ssm:start-session action on
resources in all Regions tagged with tag key Task-Tag-Key and tag value Exec-Task.

Using IAM policies to limit access to ECS Exec 906

Amazon Elastic Container Service Developer Guide

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Deny",
 "Action": "ssm:StartSession",
 "Resource": "arn:aws:ecs:*:*:task/*",
 "Condition": {
 "StringEquals": {
 "aws:ResourceTag/Task-Tag-Key": "Exec-Task"
 }
 }
 }
]
}

For help with any issues you may run into when using Amazon ECS Exec, see Troubleshooting issues
with Exec.

AWS Compute Optimizer recommendations for Amazon ECS

AWS Compute Optimizer generates recommendations for Amazon ECS task and container sizes. For
more information, see What is AWS Compute Optimizer? in the AWS Compute Optimizer User Guide.

Task and container size recommendations for Amazon ECS services on
AWS Fargate

AWS Compute Optimizer generates recommendations for Amazon ECS services on AWS Fargate.
AWS Compute Optimizer recommends task CPU and task memory size and container CPU,
container memory and container memory reservation sizes. These recommendations are displayed
on the following pages of the Compute Optimizer console.

• Recommendations for Amazon ECS services on Fargate page

• Amazon ECS services on Fargate details page

For more information, see Viewing recommendations for Amazon ECS services on Fargate in the
AWS Compute Optimizer User Guide.

Compute Optimizer recommendations 907

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/ecs-exec-troubleshooting.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/ecs-exec-troubleshooting.html
https://docs.aws.amazon.com/compute-optimizer/latest/ug/what-is-compute-optimizer.html
https://docs.aws.amazon.com/compute-optimizer/latest/ug/view-ecs-recommendations.html

Amazon Elastic Container Service Developer Guide

Security in Amazon Elastic Container Service

Cloud security at AWS is the highest priority. As an AWS customer, you benefit from a data center
and network architecture that is built to meet the requirements of the most security-sensitive
organizations.

Security is a shared responsibility between AWS and you. The shared responsibility model describes
this as security of the cloud and security in the cloud:

• Security of the cloud – AWS is responsible for protecting the infrastructure that runs AWS
services in the AWS Cloud. AWS also provides you with services that you can use securely. Third-
party auditors regularly test and verify the effectiveness of our security as part of the AWS
compliance programs. To learn about the compliance programs that apply to Amazon Elastic
Container Service, see AWS Services in Scope by Compliance Program.

• Security in the cloud – Your responsibility is determined by the AWS service that you use. You
are also responsible for other factors including the sensitivity of your data, your company’s
requirements, and applicable laws and regulations.

This documentation helps you understand how to apply the shared responsibility model when
using Amazon ECS. The following topics show you how to configure Amazon ECS to meet your
security and compliance objectives. You also learn how to use other AWS services that help you to
monitor and secure your Amazon ECS resources.

Topics

• Identity and Access Management for Amazon Elastic Container Service

• Logging and Monitoring in Amazon Elastic Container Service

• Compliance validation for Amazon Elastic Container Service

• AWS Fargate Federal Information Processing Standard (FIPS-140)

• Infrastructure Security in Amazon Elastic Container Service

• Security Best Practices

Identity and Access Management for Amazon Elastic Container
Service

Identity and Access Management 908

https://aws.amazon.com/compliance/shared-responsibility-model/
https://aws.amazon.com/compliance/programs/
https://aws.amazon.com/compliance/programs/
https://aws.amazon.com/compliance/services-in-scope/

Amazon Elastic Container Service Developer Guide

AWS Identity and Access Management (IAM) is an AWS service that helps an administrator securely
control access to AWS resources. IAM administrators control who can be authenticated (signed in)
and authorized (have permissions) to use Amazon ECS resources. IAM is an AWS service that you
can use with no additional charge.

Topics

• Audience

• Authenticating with identities

• Managing access using policies

• How Amazon Elastic Container Service works with IAM

• Identity-based policy examples for Amazon Elastic Container Service

• AWS managed policies for Amazon Elastic Container Service

• Using service-linked roles for Amazon ECS

• Permissions required for the Amazon ECS console

• Amazon ECS task execution IAM role

• Task IAM role

• Amazon ECS infrastructure IAM role

• Additional configuration for Windows IAM roles for tasks

• Amazon ECS container instance IAM role

• ECS Anywhere IAM role

• Amazon ECS CodeDeploy IAM Role

• Amazon ECS EventBridge IAM Role

• IAM permissions required for service auto scaling

• Grant permission to tag resources on creation

• Troubleshooting Amazon Elastic Container Service identity and access

Audience

How you use AWS Identity and Access Management (IAM) differs, depending on the work that you
do in Amazon ECS.

Audience 909

Amazon Elastic Container Service Developer Guide

Service user – If you use the Amazon ECS service to do your job, then your administrator provides
you with the credentials and permissions that you need. As you use more Amazon ECS features to
do your work, you might need additional permissions. Understanding how access is managed can
help you request the right permissions from your administrator. If you cannot access a feature in
Amazon ECS, see Troubleshooting Amazon Elastic Container Service identity and access.

Service administrator – If you're in charge of Amazon ECS resources at your company, you
probably have full access to Amazon ECS. It's your job to determine which Amazon ECS features
and resources your service users should access. You must then submit requests to your IAM
administrator to change the permissions of your service users. Review the information on this page
to understand the basic concepts of IAM. To learn more about how your company can use IAM with
Amazon ECS, see How Amazon Elastic Container Service works with IAM.

IAM administrator – If you're an IAM administrator, you might want to learn details about how you
can write policies to manage access to Amazon ECS. To view example Amazon ECS identity-based
policies that you can use in IAM, see Identity-based policy examples for Amazon Elastic Container
Service.

Authenticating with identities

Authentication is how you sign in to AWS using your identity credentials. You must be
authenticated (signed in to AWS) as the AWS account root user, as an IAM user, or by assuming an
IAM role.

You can sign in to AWS as a federated identity by using credentials provided through an identity
source. AWS IAM Identity Center (IAM Identity Center) users, your company's single sign-on
authentication, and your Google or Facebook credentials are examples of federated identities.
When you sign in as a federated identity, your administrator previously set up identity federation
using IAM roles. When you access AWS by using federation, you are indirectly assuming a role.

Depending on the type of user you are, you can sign in to the AWS Management Console or the
AWS access portal. For more information about signing in to AWS, see How to sign in to your AWS
account in the AWS Sign-In User Guide.

If you access AWS programmatically, AWS provides a software development kit (SDK) and a
command line interface (CLI) to cryptographically sign your requests by using your credentials. If
you don't use AWS tools, you must sign requests yourself. For more information about using the
recommended method to sign requests yourself, see Signing AWS API requests in the IAM User
Guide.

Authenticating with identities 910

https://docs.aws.amazon.com/signin/latest/userguide/how-to-sign-in.html
https://docs.aws.amazon.com/signin/latest/userguide/how-to-sign-in.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-signing.html

Amazon Elastic Container Service Developer Guide

Regardless of the authentication method that you use, you might be required to provide additional
security information. For example, AWS recommends that you use multi-factor authentication
(MFA) to increase the security of your account. To learn more, see Multi-factor authentication in the
AWS IAM Identity Center User Guide and Using multi-factor authentication (MFA) in AWS in the IAM
User Guide.

AWS account root user

When you create an AWS account, you begin with one sign-in identity that has complete access to
all AWS services and resources in the account. This identity is called the AWS account root user and
is accessed by signing in with the email address and password that you used to create the account.
We strongly recommend that you don't use the root user for your everyday tasks. Safeguard your
root user credentials and use them to perform the tasks that only the root user can perform. For
the complete list of tasks that require you to sign in as the root user, see Tasks that require root
user credentials in the IAM User Guide.

Federated identity

As a best practice, require human users, including users that require administrator access, to use
federation with an identity provider to access AWS services by using temporary credentials.

A federated identity is a user from your enterprise user directory, a web identity provider, the AWS
Directory Service, the Identity Center directory, or any user that accesses AWS services by using
credentials provided through an identity source. When federated identities access AWS accounts,
they assume roles, and the roles provide temporary credentials.

For centralized access management, we recommend that you use AWS IAM Identity Center. You can
create users and groups in IAM Identity Center, or you can connect and synchronize to a set of users
and groups in your own identity source for use across all your AWS accounts and applications. For
information about IAM Identity Center, see What is IAM Identity Center? in the AWS IAM Identity
Center User Guide.

IAM users and groups

An IAM user is an identity within your AWS account that has specific permissions for a single person
or application. Where possible, we recommend relying on temporary credentials instead of creating
IAM users who have long-term credentials such as passwords and access keys. However, if you have
specific use cases that require long-term credentials with IAM users, we recommend that you rotate
access keys. For more information, see Rotate access keys regularly for use cases that require long-
term credentials in the IAM User Guide.

Authenticating with identities 911

https://docs.aws.amazon.com/singlesignon/latest/userguide/enable-mfa.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mfa.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/root-user-tasks.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/root-user-tasks.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/what-is.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#rotate-credentials
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#rotate-credentials

Amazon Elastic Container Service Developer Guide

An IAM group is an identity that specifies a collection of IAM users. You can't sign in as a group. You
can use groups to specify permissions for multiple users at a time. Groups make permissions easier
to manage for large sets of users. For example, you could have a group named IAMAdmins and give
that group permissions to administer IAM resources.

Users are different from roles. A user is uniquely associated with one person or application, but
a role is intended to be assumable by anyone who needs it. Users have permanent long-term
credentials, but roles provide temporary credentials. To learn more, see When to create an IAM user
(instead of a role) in the IAM User Guide.

IAM roles

An IAM role is an identity within your AWS account that has specific permissions. It is similar to an
IAM user, but is not associated with a specific person. You can temporarily assume an IAM role in
the AWS Management Console by switching roles. You can assume a role by calling an AWS CLI or
AWS API operation or by using a custom URL. For more information about methods for using roles,
see Using IAM roles in the IAM User Guide.

IAM roles with temporary credentials are useful in the following situations:

• Federated user access – To assign permissions to a federated identity, you create a role
and define permissions for the role. When a federated identity authenticates, the identity
is associated with the role and is granted the permissions that are defined by the role. For
information about roles for federation, see Creating a role for a third-party Identity Provider
in the IAM User Guide. If you use IAM Identity Center, you configure a permission set. To control
what your identities can access after they authenticate, IAM Identity Center correlates the
permission set to a role in IAM. For information about permissions sets, see Permission sets in
the AWS IAM Identity Center User Guide.

• Temporary IAM user permissions – An IAM user or role can assume an IAM role to temporarily
take on different permissions for a specific task.

• Cross-account access – You can use an IAM role to allow someone (a trusted principal) in a
different account to access resources in your account. Roles are the primary way to grant cross-
account access. However, with some AWS services, you can attach a policy directly to a resource
(instead of using a role as a proxy). To learn the difference between roles and resource-based
policies for cross-account access, see How IAM roles differ from resource-based policies in the
IAM User Guide.

• Cross-service access – Some AWS services use features in other AWS services. For example, when
you make a call in a service, it's common for that service to run applications in Amazon EC2 or

Authenticating with identities 912

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_groups.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id.html#id_which-to-choose
https://docs.aws.amazon.com/IAM/latest/UserGuide/id.html#id_which-to-choose
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-console.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-idp.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/permissionsetsconcept.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_compare-resource-policies.html

Amazon Elastic Container Service Developer Guide

store objects in Amazon S3. A service might do this using the calling principal's permissions,
using a service role, or using a service-linked role.

• Forward access sessions (FAS) – When you use an IAM user or role to perform actions in
AWS, you are considered a principal. When you use some services, you might perform an
action that then initiates another action in a different service. FAS uses the permissions of the
principal calling an AWS service, combined with the requesting AWS service to make requests
to downstream services. FAS requests are only made when a service receives a request that
requires interactions with other AWS services or resources to complete. In this case, you must
have permissions to perform both actions. For policy details when making FAS requests, see
Forward access sessions.

• Service role – A service role is an IAM role that a service assumes to perform actions on your
behalf. An IAM administrator can create, modify, and delete a service role from within IAM. For
more information, see Creating a role to delegate permissions to an AWS service in the IAM
User Guide.

• Service-linked role – A service-linked role is a type of service role that is linked to an AWS
service. The service can assume the role to perform an action on your behalf. Service-linked
roles appear in your AWS account and are owned by the service. An IAM administrator can
view, but not edit the permissions for service-linked roles.

• Applications running on Amazon EC2 – You can use an IAM role to manage temporary
credentials for applications that are running on an EC2 instance and making AWS CLI or AWS API
requests. This is preferable to storing access keys within the EC2 instance. To assign an AWS role
to an EC2 instance and make it available to all of its applications, you create an instance profile
that is attached to the instance. An instance profile contains the role and enables programs that
are running on the EC2 instance to get temporary credentials. For more information, see Using
an IAM role to grant permissions to applications running on Amazon EC2 instances in the IAM
User Guide.

To learn whether to use IAM roles or IAM users, see When to create an IAM role (instead of a user)
in the IAM User Guide.

Managing access using policies

You control access in AWS by creating policies and attaching them to AWS identities or resources.
A policy is an object in AWS that, when associated with an identity or resource, defines their
permissions. AWS evaluates these policies when a principal (user, root user, or role session) makes
a request. Permissions in the policies determine whether the request is allowed or denied. Most

Managing access using policies 913

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_forward_access_sessions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-ec2.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-ec2.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id.html#id_which-to-choose_role

Amazon Elastic Container Service Developer Guide

policies are stored in AWS as JSON documents. For more information about the structure and
contents of JSON policy documents, see Overview of JSON policies in the IAM User Guide.

Administrators can use AWS JSON policies to specify who has access to what. That is, which
principal can perform actions on what resources, and under what conditions.

By default, users and roles have no permissions. To grant users permission to perform actions on
the resources that they need, an IAM administrator can create IAM policies. The administrator can
then add the IAM policies to roles, and users can assume the roles.

IAM policies define permissions for an action regardless of the method that you use to perform the
operation. For example, suppose that you have a policy that allows the iam:GetRole action. A
user with that policy can get role information from the AWS Management Console, the AWS CLI, or
the AWS API.

Identity-based policies

Identity-based policies are JSON permissions policy documents that you can attach to an identity,
such as an IAM user, group of users, or role. These policies control what actions users and roles can
perform, on which resources, and under what conditions. To learn how to create an identity-based
policy, see Creating IAM policies in the IAM User Guide.

Identity-based policies can be further categorized as inline policies or managed policies. Inline
policies are embedded directly into a single user, group, or role. Managed policies are standalone
policies that you can attach to multiple users, groups, and roles in your AWS account. Managed
policies include AWS managed policies and customer managed policies. To learn how to choose
between a managed policy or an inline policy, see Choosing between managed policies and inline
policies in the IAM User Guide.

Resource-based policies

Resource-based policies are JSON policy documents that you attach to a resource. Examples of
resource-based policies are IAM role trust policies and Amazon S3 bucket policies. In services that
support resource-based policies, service administrators can use them to control access to a specific
resource. For the resource where the policy is attached, the policy defines what actions a specified
principal can perform on that resource and under what conditions. You must specify a principal
in a resource-based policy. Principals can include accounts, users, roles, federated users, or AWS
services.

Managing access using policies 914

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html#access_policies-json
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#choosing-managed-or-inline
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#choosing-managed-or-inline
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_principal.html

Amazon Elastic Container Service Developer Guide

Resource-based policies are inline policies that are located in that service. You can't use AWS
managed policies from IAM in a resource-based policy.

Access control lists (ACLs)

Access control lists (ACLs) control which principals (account members, users, or roles) have
permissions to access a resource. ACLs are similar to resource-based policies, although they do not
use the JSON policy document format.

Amazon S3, AWS WAF, and Amazon VPC are examples of services that support ACLs. To learn more
about ACLs, see Access control list (ACL) overview in the Amazon Simple Storage Service Developer
Guide.

Other policy types

AWS supports additional, less-common policy types. These policy types can set the maximum
permissions granted to you by the more common policy types.

• Permissions boundaries – A permissions boundary is an advanced feature in which you set
the maximum permissions that an identity-based policy can grant to an IAM entity (IAM user
or role). You can set a permissions boundary for an entity. The resulting permissions are the
intersection of an entity's identity-based policies and its permissions boundaries. Resource-based
policies that specify the user or role in the Principal field are not limited by the permissions
boundary. An explicit deny in any of these policies overrides the allow. For more information
about permissions boundaries, see Permissions boundaries for IAM entities in the IAM User Guide.

• Service control policies (SCPs) – SCPs are JSON policies that specify the maximum permissions
for an organization or organizational unit (OU) in AWS Organizations. AWS Organizations is a
service for grouping and centrally managing multiple AWS accounts that your business owns. If
you enable all features in an organization, then you can apply service control policies (SCPs) to
any or all of your accounts. The SCP limits permissions for entities in member accounts, including
each AWS account root user. For more information about Organizations and SCPs, see How SCPs
work in the AWS Organizations User Guide.

• Session policies – Session policies are advanced policies that you pass as a parameter when you
programmatically create a temporary session for a role or federated user. The resulting session's
permissions are the intersection of the user or role's identity-based policies and the session
policies. Permissions can also come from a resource-based policy. An explicit deny in any of these
policies overrides the allow. For more information, see Session policies in the IAM User Guide.

Managing access using policies 915

https://docs.aws.amazon.com/AmazonS3/latest/dev/acl-overview.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_boundaries.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_about-scps.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_about-scps.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html#policies_session

Amazon Elastic Container Service Developer Guide

Multiple policy types

When multiple types of policies apply to a request, the resulting permissions are more complicated
to understand. To learn how AWS determines whether to allow a request when multiple policy
types are involved, see Policy evaluation logic in the IAM User Guide.

How Amazon Elastic Container Service works with IAM

Before you use IAM to manage access to Amazon ECS, learn what IAM features are available to use
with Amazon ECS.

IAM features you can use with Amazon Elastic Container Service

IAM feature Amazon ECS support

Identity-based policies Yes

Resource-based policies No

Policy actions Yes

Policy resources Partial

Policy condition keys Yes

ACLs No

ABAC (tags in policies) Yes

Temporary credentials Yes

Forward access sessions (FAS) Yes

Service roles Yes

Service-linked roles Yes

To get a high-level view of how Amazon ECS and other AWS services work with most IAM features,
see AWS services that work with IAM in the IAM User Guide.

How Amazon Elastic Container Service works with IAM 916

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_evaluation-logic.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html

Amazon Elastic Container Service Developer Guide

Identity-based policies for Amazon ECS

Supports identity-based policies Yes

Identity-based policies are JSON permissions policy documents that you can attach to an identity,
such as an IAM user, group of users, or role. These policies control what actions users and roles can
perform, on which resources, and under what conditions. To learn how to create an identity-based
policy, see Creating IAM policies in the IAM User Guide.

With IAM identity-based policies, you can specify allowed or denied actions and resources as well
as the conditions under which actions are allowed or denied. You can't specify the principal in an
identity-based policy because it applies to the user or role to which it is attached. To learn about all
of the elements that you can use in a JSON policy, see IAM JSON policy elements reference in the
IAM User Guide.

Identity-based policy examples for Amazon ECS

To view examples of Amazon ECS identity-based policies, see Identity-based policy examples for
Amazon Elastic Container Service.

Resource-based policies within Amazon ECS

Supports resource-based policies No

Resource-based policies are JSON policy documents that you attach to a resource. Examples of
resource-based policies are IAM role trust policies and Amazon S3 bucket policies. In services that
support resource-based policies, service administrators can use them to control access to a specific
resource. For the resource where the policy is attached, the policy defines what actions a specified
principal can perform on that resource and under what conditions. You must specify a principal
in a resource-based policy. Principals can include accounts, users, roles, federated users, or AWS
services.

To enable cross-account access, you can specify an entire account or IAM entities in another
account as the principal in a resource-based policy. Adding a cross-account principal to a resource-
based policy is only half of establishing the trust relationship. When the principal and the resource
are in different AWS accounts, an IAM administrator in the trusted account must also grant

How Amazon Elastic Container Service works with IAM 917

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_principal.html

Amazon Elastic Container Service Developer Guide

the principal entity (user or role) permission to access the resource. They grant permission by
attaching an identity-based policy to the entity. However, if a resource-based policy grants access
to a principal in the same account, no additional identity-based policy is required. For more
information, see How IAM roles differ from resource-based policies in the IAM User Guide.

Policy actions for Amazon ECS

Supports policy actions Yes

Administrators can use AWS JSON policies to specify who has access to what. That is, which
principal can perform actions on what resources, and under what conditions.

The Action element of a JSON policy describes the actions that you can use to allow or deny
access in a policy. Policy actions usually have the same name as the associated AWS API operation.
There are some exceptions, such as permission-only actions that don't have a matching API
operation. There are also some operations that require multiple actions in a policy. These
additional actions are called dependent actions.

Include actions in a policy to grant permissions to perform the associated operation.

To see a list of Amazon ECS actions, see Actions defined by Amazon Elastic Container Service in the
Service Authorization Reference.

Policy actions in Amazon ECS use the following prefix before the action:

ecs

To specify multiple actions in a single statement, separate them with commas.

"Action": [
 "ecs:action1",
 "ecs:action2"
]

You can specify multiple actions using wildcards (*). For example, to specify all actions that begin
with the word Describe, include the following action:

How Amazon Elastic Container Service works with IAM 918

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_compare-resource-policies.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonelasticcontainerservice.html#amazonelasticcontainerservice-actions-as-permissions

Amazon Elastic Container Service Developer Guide

"Action": "ecs:Describe*"

To view examples of Amazon ECS identity-based policies, see Identity-based policy examples for
Amazon Elastic Container Service.

Policy resources for Amazon ECS

Supports policy resources Partial

Administrators can use AWS JSON policies to specify who has access to what. That is, which
principal can perform actions on what resources, and under what conditions.

The Resource JSON policy element specifies the object or objects to which the action applies.
Statements must include either a Resource or a NotResource element. As a best practice,
specify a resource using its Amazon Resource Name (ARN). You can do this for actions that support
a specific resource type, known as resource-level permissions.

For actions that don't support resource-level permissions, such as listing operations, use a wildcard
(*) to indicate that the statement applies to all resources.

"Resource": "*"

To see a list of Amazon ECS resource types and their ARNs, see Resources defined by Amazon
Elastic Container Service in the Service Authorization Reference. To learn with which actions you can
specify the ARN of each resource, see Actions defined by Amazon Elastic Container Service.

Some Amazon ECS API actions support multiple resources. For example, multiple clusters can be
referenced when calling the DescribeClusters API action. To specify multiple resources in a
single statement, separate the ARNs with commas.

"Resource": [
 "EXAMPLE-RESOURCE-1",
 "EXAMPLE-RESOURCE-2"

For example, the Amazon ECS cluster resource has the following ARN:

arn:${Partition}:ecs:${Region}:${Account}:cluster/${clusterName}

How Amazon Elastic Container Service works with IAM 919

https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonelasticcontainerservice.html#amazonelasticcontainerservice-resources-for-iam-policies
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonelasticcontainerservice.html#amazonelasticcontainerservice-resources-for-iam-policies
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonelasticcontainerservice.html#amazonelasticcontainerservice-actions-as-permissions

Amazon Elastic Container Service Developer Guide

To specify my-cluster-1 and my-cluster-2 cluster in your statement, use the following ARNs:

"Resource": [
 "arn:aws:ecs:us-east-1:123456789012:cluster/my-cluster-1",
 "arn:aws:ecs:us-east-1:123456789012:cluster/my-cluster-2"

To specify all clusters that belong to a specific account, use the wildcard (*):

"Resource": "arn:aws:ecs:us-east-1:123456789012:cluster/*"

For task definitions, you can specify the latest revision, or a specific revision.

To specify the latest task definition, use:

"Resource:arn:${Partition}:ecs:${Region}:${Account}:task-definition/
${TaskDefinitionFamilyName}"

To specify a specific task definition revision, use ${TaskDefinitionRevisionNumber}:

"Resource:arn:${Partition}:ecs:${Region}:${Account}:task-definition/
${TaskDefinitionFamilyName}:${TaskDefinitionRevisionNumber}"

To view examples of Amazon ECS identity-based policies, see Identity-based policy examples for
Amazon Elastic Container Service.

Policy condition keys for Amazon ECS

Supports service-specific policy condition keys Yes

Administrators can use AWS JSON policies to specify who has access to what. That is, which
principal can perform actions on what resources, and under what conditions.

The Condition element (or Condition block) lets you specify conditions in which a statement
is in effect. The Condition element is optional. You can create conditional expressions that use
condition operators, such as equals or less than, to match the condition in the policy with values in
the request.

How Amazon Elastic Container Service works with IAM 920

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition_operators.html

Amazon Elastic Container Service Developer Guide

If you specify multiple Condition elements in a statement, or multiple keys in a single
Condition element, AWS evaluates them using a logical AND operation. If you specify multiple
values for a single condition key, AWS evaluates the condition using a logical OR operation. All of
the conditions must be met before the statement's permissions are granted.

You can also use placeholder variables when you specify conditions. For example, you can grant
an IAM user permission to access a resource only if it is tagged with their IAM user name. For more
information, see IAM policy elements: variables and tags in the IAM User Guide.

AWS supports global condition keys and service-specific condition keys. To see all AWS global
condition keys, see AWS global condition context keys in the IAM User Guide.

Amazon ECS supports the following service-specific condition keys that you can use to provide
fine-grained filtering for your IAM policies:

Condition Key Description Evaluation
Types

aws:RequestTag/
${TagKey}

The context key is formatted "aws:Requ
estTag/ tag-key":"tag-value " where tag-
keyand tag-value are a tag key and value pair.

Checks that the tag key–value pair is present in an AWS
request. For example, you could check to see that the
request includes the tag key "Dept" and that it has the
value "Accounting" .

String

aws:Resou
rceTag/${
TagKey}

The context key is formatted "aws:Reso
urceTag/ tag-key":"tag-value " where tag-
keyand tag-value are a tag key and value pair.

Checks that the tag attached to the identity resource
(user or role) matches the specified key name and value.

String

aws:TagKeys This context key is formatted "aws:TagKeys":" tag-
key" where tag-key is a list of tag keys without values
(for example, ["Dept","Cost-Center"]).

Checks the tag keys that are present in an AWS request.

String

How Amazon Elastic Container Service works with IAM 921

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_variables.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html

Amazon Elastic Container Service Developer Guide

Condition Key Description Evaluation
Types

ecs:Resou
rceTag/${
TagKey}

The context key is formatted "ecs:Reso
urceTag/ tag-key":"tag-value " where tag-
keyand tag-value are a tag key and value pair.

Checks that the tag attached to the identity resource
(user or role) matches the specified key name and value.

String

ecs:cluster The context key is formatted "ecs:clus
ter":" cluster-arn " where cluster-arn is the
ARN for the Amazon ECS cluster.

ARN, Null

ecs:container-
instances

The context key is formatted "ecs:container-
instances":" container-instance-arns "
where container-instance-arns is one or more
container instance ARNs.

ARN, Null

ecs:container-
name

The context key is formatted "ecs:container-
name":" container-name " where container-
instance- is the name of an Amazon ECS container
which is defined in the task definition.

String

ecs:enabl
e-execute-
command

The context key is formatted "ecs:enable-execut
e-command":" value" where value- is "true" or
"false".

String

ecs:enable-
service-connect

The context key is formatted "ecs:enable-servic
e-connect":" value" where value is "true" or
"false".

String

ecs:enable-ebs-
volumes

The context key is formatted "ecs:enable-ebs-
volumes":" value" where value is "true" or
"false".

String

How Amazon Elastic Container Service works with IAM 922

Amazon Elastic Container Service Developer Guide

Condition Key Description Evaluation
Types

ecs:namespace The context key is formatted "ecs:name
space":" namespace-arn " where namespace-
arn is the ARN for the AWS Cloud Map namespace.

ARN, Null

ecs:service The context key is formatted "ecs:serv
ice":" service-arn " where service-arn is the
ARN for the Amazon ECS service.

ARN, Null

ecs:task-definitio
n

The context key is formatted "ecs:task-definiti
on":" task-definition-arn " where task-defi
nition-arn is the ARN for the Amazon ECS task
definition.

ARN, Null

ecs:account-
setting

The context key is formatted "ecs:account-setti
ng":" account-setting " where account-s
etting is the name of an Amazon ECS account
setting.

String

To see a list of Amazon ECS condition keys, see Condition keys for Amazon Elastic Container
Service in the Service Authorization Reference. To learn with which actions and resources you can
use a condition key, see Actions defined by Amazon Elastic Container Service.

To view examples of Amazon ECS identity-based policies, see Identity-based policy examples for
Amazon Elastic Container Service.

Access control lists (ACLs) in Amazon ECS

Supports ACLs No

Access control lists (ACLs) control which principals (account members, users, or roles) have
permissions to access a resource. ACLs are similar to resource-based policies, although they do not
use the JSON policy document format.

How Amazon Elastic Container Service works with IAM 923

https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonelasticcontainerservice.html#amazonelasticcontainerservice-policy-keys
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonelasticcontainerservice.html#amazonelasticcontainerservice-policy-keys
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonelasticcontainerservice.html#amazonelasticcontainerservice-actions-as-permissions

Amazon Elastic Container Service Developer Guide

Attribute-based access control (ABAC) with Amazon ECS

Important

Amazon ECS supports attributes-based access control for all Amazon ECS resources. To
determine whether you can use attributes to scope an action, use the Actions defined by
Amazon ECS table in Service Authorization Reference. First verify that there is a resource in
the Resource column. Then, use the Condition keys column to see the keys for the action/
resource combination.

Supports ABAC (tags in policies) Yes

Attribute-based access control (ABAC) is an authorization strategy that defines permissions based
on attributes. In AWS, these attributes are called tags. You can attach tags to IAM entities (users or
roles) and to many AWS resources. Tagging entities and resources is the first step of ABAC. Then
you design ABAC policies to allow operations when the principal's tag matches the tag on the
resource that they are trying to access.

ABAC is helpful in environments that are growing rapidly and helps with situations where policy
management becomes cumbersome.

To control access based on tags, you provide tag information in the condition element of a policy
using the aws:ResourceTag/key-name, aws:RequestTag/key-name, or aws:TagKeys
condition keys.

If a service supports all three condition keys for every resource type, then the value is Yes for the
service. If a service supports all three condition keys for only some resource types, then the value is
Partial.

For more information about ABAC, see What is ABAC? in the IAM User Guide. To view a tutorial with
steps for setting up ABAC, see Use attribute-based access control (ABAC) in the IAM User Guide.

For more information about tagging Amazon ECS resources, see Amazon ECS resource tagging.

To view an example identity-based policy for limiting access to a resource based on the tags on
that resource, see Describing Amazon ECS services based on tags.

How Amazon Elastic Container Service works with IAM 924

https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonelasticcontainerservice.html#amazonelasticcontainerservice-actions-as-permissions
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonelasticcontainerservice.html#amazonelasticcontainerservice-actions-as-permissions
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/introduction_attribute-based-access-control.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/tutorial_attribute-based-access-control.html

Amazon Elastic Container Service Developer Guide

Using Temporary credentials with Amazon ECS

Supports temporary credentials Yes

Some AWS services don't work when you sign in using temporary credentials. For additional
information, including which AWS services work with temporary credentials, see AWS services that
work with IAM in the IAM User Guide.

You are using temporary credentials if you sign in to the AWS Management Console using
any method except a user name and password. For example, when you access AWS using your
company's single sign-on (SSO) link, that process automatically creates temporary credentials. You
also automatically create temporary credentials when you sign in to the console as a user and then
switch roles. For more information about switching roles, see Switching to a role (console) in the
IAM User Guide.

You can manually create temporary credentials using the AWS CLI or AWS API. You can then use
those temporary credentials to access AWS. AWS recommends that you dynamically generate
temporary credentials instead of using long-term access keys. For more information, see
Temporary security credentials in IAM.

Forward access sessions for Amazon ECS

Supports forward access sessions (FAS) Yes

When you use an IAM user or role to perform actions in AWS, you are considered a principal.
When you use some services, you might perform an action that then initiates another action in a
different service. FAS uses the permissions of the principal calling an AWS service, combined with
the requesting AWS service to make requests to downstream services. FAS requests are only made
when a service receives a request that requires interactions with other AWS services or resources to
complete. In this case, you must have permissions to perform both actions. For policy details when
making FAS requests, see Forward access sessions.

Service roles for Amazon ECS

Supports service roles Yes

How Amazon Elastic Container Service works with IAM 925

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-console.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_forward_access_sessions.html

Amazon Elastic Container Service Developer Guide

A service role is an IAM role that a service assumes to perform actions on your behalf. An IAM
administrator can create, modify, and delete a service role from within IAM. For more information,
see Creating a role to delegate permissions to an AWS service in the IAM User Guide.

Warning

Changing the permissions for a service role might break Amazon ECS functionality. Edit
service roles only when Amazon ECS provides guidance to do so.

Service-linked roles for Amazon ECS

Supports service-linked roles Yes

A service-linked role is a type of service role that is linked to an AWS service. The service can
assume the role to perform an action on your behalf. Service-linked roles appear in your AWS
account and are owned by the service. An IAM administrator can view, but not edit the permissions
for service-linked roles.

For details about creating or managing Amazon ECS service-linked roles, see Using service-linked
roles for Amazon ECS.

Identity-based policy examples for Amazon Elastic Container Service

By default, users and roles don't have permission to create or modify Amazon ECS resources. They
also can't perform tasks by using the AWS Management Console, AWS Command Line Interface
(AWS CLI), or AWS API. To grant users permission to perform actions on the resources that they
need, an IAM administrator can create IAM policies. The administrator can then add the IAM
policies to roles, and users can assume the roles.

To learn how to create an IAM identity-based policy by using these example JSON policy
documents, see Creating IAM policies in the IAM User Guide.

For details about actions and resource types defined by Amazon ECS, including the format of the
ARNs for each of the resource types, see Actions, resources, and condition keys for Amazon Elastic
Container Service in the Service Authorization Reference.

Topics

Identity-based policy examples 926

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create-console.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonelasticcontainerservice.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonelasticcontainerservice.html

Amazon Elastic Container Service Developer Guide

• Policy best practices

• Allow users to view their own permissions

• Cluster examples

• Container instance examples

• Task definition examples

• Run Task Example

• Start task example

• List and describe task examples

• Create service example

• Update service example

• Describing Amazon ECS services based on tags

• Deny Service Connect Namespace Override Example

Policy best practices

Identity-based policies determine whether someone can create, access, or delete Amazon ECS
resources in your account. These actions can incur costs for your AWS account. When you create or
edit identity-based policies, follow these guidelines and recommendations:

• Get started with AWS managed policies and move toward least-privilege permissions – To
get started granting permissions to your users and workloads, use the AWS managed policies
that grant permissions for many common use cases. They are available in your AWS account. We
recommend that you reduce permissions further by defining AWS customer managed policies
that are specific to your use cases. For more information, see AWS managed policies or AWS
managed policies for job functions in the IAM User Guide.

• Apply least-privilege permissions – When you set permissions with IAM policies, grant only the
permissions required to perform a task. You do this by defining the actions that can be taken on
specific resources under specific conditions, also known as least-privilege permissions. For more
information about using IAM to apply permissions, see Policies and permissions in IAM in the
IAM User Guide.

• Use conditions in IAM policies to further restrict access – You can add a condition to your
policies to limit access to actions and resources. For example, you can write a policy condition to
specify that all requests must be sent using SSL. You can also use conditions to grant access to

Identity-based policy examples 927

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#aws-managed-policies
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_job-functions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_job-functions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html

Amazon Elastic Container Service Developer Guide

service actions if they are used through a specific AWS service, such as AWS CloudFormation. For
more information, see IAM JSON policy elements: Condition in the IAM User Guide.

• Use IAM Access Analyzer to validate your IAM policies to ensure secure and functional
permissions – IAM Access Analyzer validates new and existing policies so that the policies
adhere to the IAM policy language (JSON) and IAM best practices. IAM Access Analyzer provides
more than 100 policy checks and actionable recommendations to help you author secure and
functional policies. For more information, see IAM Access Analyzer policy validation in the IAM
User Guide.

• Require multi-factor authentication (MFA) – If you have a scenario that requires IAM users
or a root user in your AWS account, turn on MFA for additional security. To require MFA when
API operations are called, add MFA conditions to your policies. For more information, see
Configuring MFA-protected API access in the IAM User Guide.

For more information about best practices in IAM, see Security best practices in IAM in the IAM User
Guide.

Allow users to view their own permissions

This example shows how you might create a policy that allows IAM users to view the inline and
managed policies that are attached to their user identity. This policy includes permissions to
complete this action on the console or programmatically using the AWS CLI or AWS API.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "ViewOwnUserInfo",
 "Effect": "Allow",
 "Action": [
 "iam:GetUserPolicy",
 "iam:ListGroupsForUser",
 "iam:ListAttachedUserPolicies",
 "iam:ListUserPolicies",
 "iam:GetUser"
],
 "Resource": ["arn:aws:iam::*:user/${aws:username}"]
 },
 {
 "Sid": "NavigateInConsole",
 "Effect": "Allow",

Identity-based policy examples 928

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access-analyzer-policy-validation.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mfa_configure-api-require.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mfa_configure-api-require.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html

Amazon Elastic Container Service Developer Guide

 "Action": [
 "iam:GetGroupPolicy",
 "iam:GetPolicyVersion",
 "iam:GetPolicy",
 "iam:ListAttachedGroupPolicies",
 "iam:ListGroupPolicies",
 "iam:ListPolicyVersions",
 "iam:ListPolicies",
 "iam:ListUsers"
],
 "Resource": "*"
 }
]
}

Cluster examples

The following IAM policy allows permission to create and list clusters. The CreateCluster and
ListClusters actions do not accept any resources, so the resource definition is set to * for all
resources.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "ecs:CreateCluster",
 "ecs:ListClusters"
],
 "Resource": ["*"]
 }
]
}

The following IAM policy allows permission to describe and delete a specific cluster. The
DescribeClusters and DeleteCluster actions accept cluster ARNs as resources.

{
 "Version": "2012-10-17",
 "Statement": [
 {

Identity-based policy examples 929

Amazon Elastic Container Service Developer Guide

 "Effect": "Allow",
 "Action": [
 "ecs:DescribeClusters",
 "ecs:DeleteCluster"
],
 "Resource": ["arn:aws:ecs:us-east-1:<aws_account_id>:cluster/
<cluster_name>"]
 }
]
}

The following IAM policy can be attached to a user or group that would only allow that user or
group to perform operations on a specific cluster.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "ecs:Describe*",
 "ecs:List*"
],
 "Effect": "Allow",
 "Resource": "*"
 },
 {
 "Action": [
 "ecs:DeleteCluster",
 "ecs:DeregisterContainerInstance",
 "ecs:ListContainerInstances",
 "ecs:RegisterContainerInstance",
 "ecs:SubmitContainerStateChange",
 "ecs:SubmitTaskStateChange"
],
 "Effect": "Allow",
 "Resource": "arn:aws:ecs:us-east-1:<aws_account_id>:cluster/default"
 },
 {
 "Action": [
 "ecs:DescribeContainerInstances",
 "ecs:DescribeTasks",
 "ecs:ListTasks",
 "ecs:UpdateContainerAgent",

Identity-based policy examples 930

Amazon Elastic Container Service Developer Guide

 "ecs:StartTask",
 "ecs:StopTask",
 "ecs:RunTask"
],
 "Effect": "Allow",
 "Resource": "*",
 "Condition": {
 "ArnEquals": {"ecs:cluster": "arn:aws:ecs:us-
east-1:<aws_account_id>:cluster/default"}
 }
 }
]
}

Container instance examples

Container instance registration is handled by the Amazon ECS agent, but there may be times where
you want to allow a user to deregister an instance manually from a cluster. Perhaps the container
instance was accidentally registered to the wrong cluster, or the instance was terminated with tasks
still running on it.

The following IAM policy allows a user to list and deregister container instances in a specified
cluster:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "ecs:DeregisterContainerInstance",
 "ecs:ListContainerInstances"
],
 "Resource": ["arn:aws:ecs:<region>:<aws_account_id>:cluster/
<cluster_name>"]
 }
]
}

The following IAM policy allows a user to describe a specified container instance in a specified
cluster. To open this permission up to all container instances in a cluster, you can replace the
container instance UUID with *.

Identity-based policy examples 931

Amazon Elastic Container Service Developer Guide

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": ["ecs:DescribeContainerInstances"],
 "Condition": {
 "ArnEquals": {"ecs:cluster":
 "arn:aws:ecs:<region>:<aws_account_id>:cluster/<cluster_name>"}
 },
 "Resource": ["arn:aws:ecs:<region>:<aws_account_id>:container-instance/
<cluster_name>/<container_instance_UUID>"]
 }
]
}

Task definition examples

Task definition IAM policies do not support resource-level permissions, but the following IAM policy
allows a user to register, list, and describe task definitions:

If you use the console, you must add CloudFormation: CreateStack as an Action.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "ecs:RegisterTaskDefinition",
 "ecs:ListTaskDefinitions",
 "ecs:DescribeTaskDefinition"
],
 "Resource": ["*"]
 }
]
}

Run Task Example

The resources for RunTask are task definitions. To limit which clusters a user can run task
definitions on, you can specify them in the Condition block. The advantage is that you don't have

Identity-based policy examples 932

Amazon Elastic Container Service Developer Guide

to list both task definitions and clusters in your resources to allow the appropriate access. You can
apply one, the other, or both.

The following IAM policy allows permission to run any revision of a specific task definition on a
specific cluster:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": ["ecs:RunTask"],
 "Condition": {
 "ArnEquals": {"ecs:cluster":
 "arn:aws:ecs:<region>:<aws_account_id>:cluster/<cluster_name>"}
 },
 "Resource": ["arn:aws:ecs:<region>:<aws_account_id>:task-definition/
<task_family>:*"]
 }
]
}

Start task example

The resources for StartTask are task definitions. To limit which clusters and container instances
a user can start task definitions on, you can specify them in the Condition block. The advantage
is that you don't have to list both task definitions and clusters in your resources to allow the
appropriate access. You can apply one, the other, or both.

The following IAM policy allows permission to start any revision of a specific task definition on a
specific cluster and specific container instance.

Note

For this example, when you call the StartTask API with the AWS CLI or another AWS SDK,
you must specify the task definition revision so that the Resource mapping matches.

{
 "Version": "2012-10-17",
 "Statement": [

Identity-based policy examples 933

Amazon Elastic Container Service Developer Guide

 {
 "Effect": "Allow",
 "Action": ["ecs:StartTask"],
 "Condition": {
 "ArnEquals": {
 "ecs:cluster": "arn:aws:ecs:<region>:<aws_account_id>:cluster/
<cluster_name>",
 "ecs:container-instances":
 ["arn:aws:ecs:<region>:<aws_account_id>:container-instance/<cluster_name>/
<container_instance_UUID>"]
 }
 },
 "Resource": ["arn:aws:ecs:<region>:<aws_account_id>:task-definition/
<task_family>:*"]
 }
]
}

List and describe task examples

The following IAM policy allows a user to list tasks for a specified cluster:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": ["ecs:ListTasks"],
 "Condition": {
 "ArnEquals": {"ecs:cluster":
 "arn:aws:ecs:<region>:<aws_account_id>:cluster/<cluster_name>"}
 },
 "Resource": ["*"]
 }
]
}

The following IAM policy allows a user to describe a specified task in a specified cluster:

{
 "Version": "2012-10-17",
 "Statement": [
 {

Identity-based policy examples 934

Amazon Elastic Container Service Developer Guide

 "Effect": "Allow",
 "Action": ["ecs:DescribeTasks"],
 "Condition": {
 "ArnEquals": {"ecs:cluster":
 "arn:aws:ecs:<region>:<aws_account_id>:cluster/<cluster_name>"}
 },
 "Resource": ["arn:aws:ecs:<region>:<aws_account_id>:task/<cluster_name>/
<task_UUID>"]
 }
]
}

Create service example

The following IAM policy allows a user to create Amazon ECS services in the AWS Management
Console:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "application-autoscaling:Describe*",
 "application-autoscaling:PutScalingPolicy",
 "application-autoscaling:RegisterScalableTarget",
 "cloudwatch:DescribeAlarms",
 "cloudwatch:PutMetricAlarm",
 "ecs:List*",
 "ecs:Describe*",
 "ecs:CreateService",
 "elasticloadbalancing:Describe*",
 "iam:GetPolicy",
 "iam:GetPolicyVersion",
 "iam:GetRole",
 "iam:ListAttachedRolePolicies",
 "iam:ListRoles",
 "iam:ListGroups",
 "iam:ListUsers"
],
 "Resource": ["*"]
 }
]

Identity-based policy examples 935

Amazon Elastic Container Service Developer Guide

}

Update service example

The following IAM policy allows a user to update Amazon ECS services in the AWS Management
Console:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "application-autoscaling:Describe*",
 "application-autoscaling:PutScalingPolicy",
 "application-autoscaling:DeleteScalingPolicy",
 "application-autoscaling:RegisterScalableTarget",
 "cloudwatch:DescribeAlarms",
 "cloudwatch:PutMetricAlarm",
 "ecs:List*",
 "ecs:Describe*",
 "ecs:UpdateService",
 "iam:GetPolicy",
 "iam:GetPolicyVersion",
 "iam:GetRole",
 "iam:ListAttachedRolePolicies",
 "iam:ListRoles",
 "iam:ListGroups",
 "iam:ListUsers"
],
 "Resource": ["*"]
 }
]
}

Describing Amazon ECS services based on tags

You can use conditions in your identity-based policy to control access to Amazon ECS resources
based on tags. This example shows how you might create a policy that allows describing your
services. However, permission is granted only if the service tag Owner has the value of that user's
user name. This policy also grants the permissions necessary to complete this action on the
console.

Identity-based policy examples 936

Amazon Elastic Container Service Developer Guide

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "DescribeServices",
 "Effect": "Allow",
 "Action": "ecs:DescribeServices",
 "Resource": "*"
 },
 {
 "Sid": "ViewServiceIfOwner",
 "Effect": "Allow",
 "Action": "ecs:DescribeServices",
 "Resource": "arn:aws:ecs:*:*:service/*",
 "Condition": {
 "StringEquals": {"ecs:ResourceTag/Owner": "${aws:username}"}
 }
 }
]
}

You can attach this policy to the IAM users in your account. If a user named richard-roe
attempts to describe an Amazon ECS service, the service must be tagged Owner=richard-roe or
owner=richard-roe. Otherwise he is denied access. The condition tag key Owner matches both
Owner and owner because condition key names are not case-sensitive. For more information, see
IAM JSON Policy Elements: Condition in the IAM User Guide.

Deny Service Connect Namespace Override Example

The following IAM policy denies a user from overriding the default Service Connect namespace in
a service configuration. The default namespace is set in the cluster. However, you can override it
in a service configuration. For consistency, consider setting all your new services to use the same
namespace. Use the following context keys to require services to use a specific namespace. Replace
the <region>, <aws_account_id>, <cluster_name> and <namespace_id> with your own in
the following example.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",

Identity-based policy examples 937

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition.html

Amazon Elastic Container Service Developer Guide

 "Action": [
 "ecs:CreateService",
 "ecs:UpdateService"
],
 "Condition": {
 "ArnEquals": {
 "ecs:cluster": "arn:aws:ecs:<region>:<aws_account_id>:cluster/
<cluster_name>",
 "ecs:namespace":
 "arn:aws:servicediscovery:<region>:<aws_account_id>:namespace/<namespace_id>"
 }
 },
 "Resource": "*"
 }
]
}

AWS managed policies for Amazon Elastic Container Service

To add permissions to users, groups, and roles, it is easier to use AWS managed policies than to
write policies yourself. It takes time and expertise to create IAM customer managed policies that
provide your team with only the permissions they need. To get started quickly, you can use our
AWS managed policies. These policies cover common use cases and are available in your AWS
account. For more information about AWS managed policies, see AWS managed policies in the IAM
User Guide.

AWS services maintain and update AWS managed policies. You can't change the permissions in
AWS managed policies. Services occasionally add additional permissions to an AWS managed
policy to support new features. This type of update affects all identities (users, groups, and roles)
where the policy is attached. Services are most likely to update an AWS managed policy when
a new feature is launched or when new operations become available. Services do not remove
permissions from an AWS managed policy, so policy updates won't break your existing permissions.

Additionally, AWS supports managed policies for job functions that span multiple services. For
example, the ReadOnlyAccess AWS managed policy provides read-only access to all AWS services
and resources. When a service launches a new feature, AWS adds read-only permissions for new
operations and resources. For a list and descriptions of job function policies, see AWS managed
policies for job functions in the IAM User Guide.

AWS managed policies for Amazon ECS 938

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create-console.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#aws-managed-policies
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_job-functions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_job-functions.html

Amazon Elastic Container Service Developer Guide

Amazon ECS and Amazon ECR provide several managed policies and trust relationships that
you can attach to users, groups, roles, Amazon EC2 instances, and Amazon ECS tasks that allow
differing levels of control over resources and API operations. You can apply these policies directly,
or you can use them as starting points for creating your own policies. For more information about
the Amazon ECR managed policies, see Amazon ECR managed policies.

AmazonECS_FullAccess

You can attach the AmazonECS_FullAccess policy to your IAM identities.

This policy grants administrative access to Amazon ECS resources and grants an IAM identity (such
as a user, group, or role) access to the AWS services that Amazon ECS is integrated with to use all
of Amazon ECS features. Using this policy allows access to all of Amazon ECS features that are
available in the AWS Management Console.

Permissions details

The AmazonECS_FullAccess managed IAM policy includes the following permissions. Following
the best practice of granting least privilege, you can use the AmazonECS_FullAccess managed
policy as a template for creating you own custom policy. That way, you can take away or add
permissions to and from the managed policy based on your specific requirements.

• ecs – Allows principals full access to all Amazon ECS API operations.

• application-autoscaling – Allows principals to create, describe, and manage Application
Auto Scaling resources. This is required when enabling service auto scaling for your Amazon ECS
services.

• appmesh – Allows principals to list App Mesh service meshes and virtual nodes and describe App
Mesh virtual nodes. This is required when integrating your Amazon ECS services with App Mesh.

• autoscaling – Allows principals to create, manage, and describe Amazon EC2 Auto Scaling
resources. This is required when managing Amazon EC2 Auto Scaling groups when using the
cluster auto scaling feature.

• cloudformation – Allows principals to create and manage AWS CloudFormation stacks. This
is required when creating Amazon ECS clusters using the AWS Management Console and the
subsequent managing of those clusters.

• cloudwatch – Allows principals to create, manage, and describe Amazon CloudWatch alarms.

• codedeploy – Allows principals to create and manage application deployments and view their
configurations, revisions, and deployment targets.

AWS managed policies for Amazon ECS 939

https://docs.aws.amazon.com/AmazonECR/latest/userguide/ecr_managed_policies.html

Amazon Elastic Container Service Developer Guide

• sns – Allows principals to view a list of Amazon SNS topics.

• lambda – Allows principals to view a list of AWS Lambda functions and their version specific
configurations.

• ec2 – Allows principals to run Amazon EC2 instances and create and manage routes, route
tables, internet gateways, launch groups, security groups, virtual private clouds, Spot Fleets, and
subnets.

• elasticloadbalancing – Allows principals to create, describe, and delete Elastic Load
Balancing load balancers. Principals will also be able to add tags to newly created target groups,
listeners, and listener rules for load balancers.

• events – Allows principals to create, manage, and delete Amazon EventBridge rules and their
targets.

• iam– Allows principals to list IAM roles and their attached policies. Principals can also list
instance profiles available to your Amazon EC2 instances.

• logs – Allows principals to create and describe Amazon CloudWatch Logs log groups. Principals
can also list log events for these log groups.

• route53 – Allows principals to create, manage, and delete Amazon Route 53 hosted zones.
Principals can also view Amazon Route 53 health check configuration and information. For more
information about hosted zones, see Working with hosted zones.

• servicediscovery – Allows principals to create, manage, and delete AWS Cloud Map services
and create private DNS namespaces.

The following is an example AmazonECS_FullAccess policy.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "application-autoscaling:DeleteScalingPolicy",
 "application-autoscaling:DeregisterScalableTarget",
 "application-autoscaling:DescribeScalableTargets",
 "application-autoscaling:DescribeScalingActivities",
 "application-autoscaling:DescribeScalingPolicies",
 "application-autoscaling:PutScalingPolicy",
 "application-autoscaling:RegisterScalableTarget",
 "appmesh:DescribeVirtualGateway",

AWS managed policies for Amazon ECS 940

https://docs.aws.amazon.com/Route53/latest/DeveloperGuide/hosted-zones-working-with.html

Amazon Elastic Container Service Developer Guide

 "appmesh:DescribeVirtualNode",
 "appmesh:ListMeshes",
 "appmesh:ListVirtualGateways",
 "appmesh:ListVirtualNodes",
 "autoscaling:CreateAutoScalingGroup",
 "autoscaling:CreateLaunchConfiguration",
 "autoscaling:DeleteAutoScalingGroup",
 "autoscaling:DeleteLaunchConfiguration",
 "autoscaling:Describe*",
 "autoscaling:UpdateAutoScalingGroup",
 "cloudformation:CreateStack",
 "cloudformation:DeleteStack",
 "cloudformation:DescribeStack*",
 "cloudformation:UpdateStack",
 "cloudwatch:DeleteAlarms",
 "cloudwatch:DescribeAlarms",
 "cloudwatch:GetMetricStatistics",
 "cloudwatch:PutMetricAlarm",
 "codedeploy:BatchGetApplicationRevisions",
 "codedeploy:BatchGetApplications",
 "codedeploy:BatchGetDeploymentGroups",
 "codedeploy:BatchGetDeployments",
 "codedeploy:ContinueDeployment",
 "codedeploy:CreateApplication",
 "codedeploy:CreateDeployment",
 "codedeploy:CreateDeploymentGroup",
 "codedeploy:GetApplication",
 "codedeploy:GetApplicationRevision",
 "codedeploy:GetDeployment",
 "codedeploy:GetDeploymentConfig",
 "codedeploy:GetDeploymentGroup",
 "codedeploy:GetDeploymentTarget",
 "codedeploy:ListApplicationRevisions",
 "codedeploy:ListApplications",
 "codedeploy:ListDeploymentConfigs",
 "codedeploy:ListDeploymentGroups",
 "codedeploy:ListDeployments",
 "codedeploy:ListDeploymentTargets",
 "codedeploy:RegisterApplicationRevision",
 "codedeploy:StopDeployment",
 "ec2:AssociateRouteTable",
 "ec2:AttachInternetGateway",
 "ec2:AuthorizeSecurityGroupIngress",
 "ec2:CancelSpotFleetRequests",

AWS managed policies for Amazon ECS 941

Amazon Elastic Container Service Developer Guide

 "ec2:CreateInternetGateway",
 "ec2:CreateLaunchTemplate",
 "ec2:CreateRoute",
 "ec2:CreateRouteTable",
 "ec2:CreateSecurityGroup",
 "ec2:CreateSubnet",
 "ec2:CreateVpc",
 "ec2:DeleteLaunchTemplate",
 "ec2:DeleteSubnet",
 "ec2:DeleteVpc",
 "ec2:Describe*",
 "ec2:DetachInternetGateway",
 "ec2:DisassociateRouteTable",
 "ec2:ModifySubnetAttribute",
 "ec2:ModifyVpcAttribute",
 "ec2:RequestSpotFleet",
 "ec2:RunInstances",
 "ecs:*",
 "elasticfilesystem:DescribeAccessPoints",
 "elasticfilesystem:DescribeFileSystems",
 "elasticloadbalancing:CreateListener",
 "elasticloadbalancing:CreateLoadBalancer",
 "elasticloadbalancing:CreateRule",
 "elasticloadbalancing:CreateTargetGroup",
 "elasticloadbalancing:DeleteListener",
 "elasticloadbalancing:DeleteLoadBalancer",
 "elasticloadbalancing:DeleteRule",
 "elasticloadbalancing:DeleteTargetGroup",
 "elasticloadbalancing:DescribeListeners",
 "elasticloadbalancing:DescribeLoadBalancers",
 "elasticloadbalancing:DescribeRules",
 "elasticloadbalancing:DescribeTargetGroups",
 "events:DeleteRule",
 "events:DescribeRule",
 "events:ListRuleNamesByTarget",
 "events:ListTargetsByRule",
 "events:PutRule",
 "events:PutTargets",
 "events:RemoveTargets",
 "fsx:DescribeFileSystems",
 "iam:ListAttachedRolePolicies",
 "iam:ListInstanceProfiles",
 "iam:ListRoles",
 "lambda:ListFunctions",

AWS managed policies for Amazon ECS 942

Amazon Elastic Container Service Developer Guide

 "logs:CreateLogGroup",
 "logs:DescribeLogGroups",
 "logs:FilterLogEvents",
 "route53:CreateHostedZone",
 "route53:DeleteHostedZone",
 "route53:GetHealthCheck",
 "route53:GetHostedZone",
 "route53:ListHostedZonesByName",
 "servicediscovery:CreatePrivateDnsNamespace",
 "servicediscovery:CreateService",
 "servicediscovery:DeleteService",
 "servicediscovery:GetNamespace",
 "servicediscovery:GetOperation",
 "servicediscovery:GetService",
 "servicediscovery:ListNamespaces",
 "servicediscovery:ListServices",
 "servicediscovery:UpdateService",
 "sns:ListTopics"
],
 "Resource": ["*"]
 },
 {
 "Effect": "Allow",
 "Action": [
 "ssm:GetParameter",
 "ssm:GetParameters",
 "ssm:GetParametersByPath"
],
 "Resource": "arn:aws:ssm:*:*:parameter/aws/service/ecs*"
 },
 {
 "Effect": "Allow",
 "Action": [
 "ec2:DeleteInternetGateway",
 "ec2:DeleteRoute",
 "ec2:DeleteRouteTable",
 "ec2:DeleteSecurityGroup"
],
 "Resource": ["*"],
 "Condition": {
 "StringLike": {"ec2:ResourceTag/aws:cloudformation:stack-name":
 "EC2ContainerService-*"}
 }
 },

AWS managed policies for Amazon ECS 943

Amazon Elastic Container Service Developer Guide

 {
 "Action": "iam:PassRole",
 "Effect": "Allow",
 "Resource": ["*"],
 "Condition": {
 "StringLike": {"iam:PassedToService": "ecs-tasks.amazonaws.com"}
 }
 },
 {
 "Action": "iam:PassRole",
 "Effect": "Allow",
 "Resource": ["arn:aws:iam::*:role/ecsInstanceRole*"],
 "Condition": {
 "StringLike": {
 "iam:PassedToService": [
 "ec2.amazonaws.com",
 "ec2.amazonaws.com.cn"
]
 }
 }
 },
 {
 "Action": "iam:PassRole",
 "Effect": "Allow",
 "Resource": ["arn:aws:iam::*:role/ecsAutoscaleRole*"],
 "Condition": {
 "StringLike": {
 "iam:PassedToService": [
 "application-autoscaling.amazonaws.com",
 "application-autoscaling.amazonaws.com.cn"
]
 }
 }
 },
 {
 "Effect": "Allow",
 "Action": "iam:CreateServiceLinkedRole",
 "Resource": "*",
 "Condition": {
 "StringLike": {
 "iam:AWSServiceName": [
 "autoscaling.amazonaws.com",
 "ecs.amazonaws.com",
 "ecs.application-autoscaling.amazonaws.com",

AWS managed policies for Amazon ECS 944

Amazon Elastic Container Service Developer Guide

 "spot.amazonaws.com",
 "spotfleet.amazonaws.com"
]
 }
 }
 },
 {
 "Effect": "Allow",
 "Action": ["elasticloadbalancing:AddTags"],
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "elasticloadbalancing:CreateAction": [
 "CreateTargetGroup",
 "CreateRule",
 "CreateListener",
 "CreateLoadBalancer"
]
 }
 }
 }
]
}

AmazonECSInfrastructureRolePolicyForVolumes

The AmazonECSInfrastructureRolePolicyForVolumes managed IAM policy grants the
permissions that are needed by Amazon ECS to make AWS API calls on your behalf. You can attach
this policy to the IAM role that you provide with your volume configuration when launching
Amazon ECS tasks and services. The role enables Amazon ECS to manage volumes attached to your
tasks. For more information, see Amazon ECS infrastructure IAM role.

Permissions details

The AmazonECSInfrastructureRolePolicyForVolumes managed IAM policy includes the
following permissions. Following the standard security advice of granting least privilege, you can
use the AmazonECSInfrastructureRolePolicyForVolumes managed policy as a template for
creating your own custom policy that includes only the permissions that you require.

• ec2:CreateVolume – Allows a principal to create an Amazon EBS volume if and only if they are
tagged with the AmazonECSCreated and AmazonECSManaged tags. This permission is required

AWS managed policies for Amazon ECS 945

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/infrastructure_IAM_role.html

Amazon Elastic Container Service Developer Guide

to create Amazon EBS volumes that are attached to Amazon ECS tasks and minimize permissions
provided to Amazon ECS by this policy.

• ec2:CreateTags – Allows a principal to add tags to an Amazon EBS volume as part of
ec2:CreateVolume. This permission is required by Amazon ECS to add customer specified tags
to Amazon EBS volumes created on your behalf.

• ec2:AttachVolume – Allows a principal to attach an Amazon EBS volume to an Amazon EC2
instance. This permission is required by Amazon ECS to attach Amazon EBS volumes to the
Amazon EC2 instance hosting the associated Amazon ECS task.

• ec2:DescribeVolume – Allows a principal to retrieve information about Amazon EBS volumes.
This permission is required to manage the lifecycle of Amazon EBS volumes.

• ec2:DescribeAvailabilityZones – Allows a principal to retrieve information about
Availability Zones in your account. This is required to manage the lifecycle of EBS Volumes.

• ec2:DetachVolume – Allows a principal to detach an Amazon EBS volume from an Amazon EC2
instance. This permission is required by Amazon ECS to detach the Amazon EBS volume from the
Amazon EC2 instance that's hosting the associated Amazon ECS task when the task terminates.

• ec2:DeleteVolume – Allows a principal to delete an Amazon EBS volume. This permission is
required by Amazon ECS to delete Amazon EBS volumes that are no longer used by the Amazon
ECS task.

• ec2:DeleteTags – Allows a principal to delete the AmazonECSManaged tag from an Amazon
EBS volume. This permission is required by Amazon ECS to remove access to an Amazon EBS
volume after it is no longer associated with an Amazon ECS workload. This is only applicable
when an Amazon EBS volume is not deleted after task shutdown.

The following is an example AmazonECSInfrastructureRolePolicyForVolumes policy.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "CreateEBSManagedVolume",
 "Effect": "Allow",
 "Action": "ec2:CreateVolume",
 "Resource": "arn:aws:ec2:*:*:volume/*",
 "Condition": {
 "ArnLike": {
 "aws:RequestTag/AmazonECSCreated": "arn:aws:ecs:*:*:task/*"
 },

AWS managed policies for Amazon ECS 946

Amazon Elastic Container Service Developer Guide

 "StringEquals": {
 "aws:RequestTag/AmazonECSManaged": "true"
 }
 }
 },
 {
 "Sid": "TagOnCreateVolume",
 "Effect": "Allow",
 "Action": "ec2:CreateTags",
 "Resource": "arn:aws:ec2:*:*:volume/*",
 "Condition": {
 "ArnLike": {
 "aws:RequestTag/AmazonECSCreated": "arn:aws:ecs:*:*:task/*"
 },
 "StringEquals": {
 "ec2:CreateAction": "CreateVolume",
 "aws:RequestTag/AmazonECSManaged": "true"
 }
 }
 },
 {
 "Sid": "DescribeVolumesForLifecycle",
 "Effect": "Allow",
 "Action": [
 "ec2:DescribeVolumes",
 "ec2:DescribeAvailabilityZones"
],
 "Resource": "*"
 },
 {
 "Sid": "ManageEBSVolumeLifecycle",
 "Effect": "Allow",
 "Action": [
 "ec2:AttachVolume",
 "ec2:DetachVolume"
],
 "Resource": "arn:aws:ec2:*:*:volume/*",
 "Condition": {
 "StringEquals": {
 "aws:ResourceTag/AmazonECSManaged": "true"
 }
 }
 },
 {

AWS managed policies for Amazon ECS 947

Amazon Elastic Container Service Developer Guide

 "Sid": "ManageVolumeAttachmentsForEC2",
 "Effect": "Allow",
 "Action": [
 "ec2:AttachVolume",
 "ec2:DetachVolume"
],
 "Resource": "arn:aws:ec2:*:*:instance/*"
 },
 {
 "Sid": "DeleteEBSManagedVolume",
 "Effect": "Allow",
 "Action": "ec2:DeleteVolume",
 "Resource": "arn:aws:ec2:*:*:volume/*",
 "Condition": {
 "ArnLike": {
 "aws:ResourceTag/AmazonECSCreated": "arn:aws:ecs:*:*:task/*"
 },
 "StringEquals": {
 "aws:ResourceTag/AmazonECSManaged": "true"
 }
 }
 }
]
}

AmazonEC2ContainerServiceforEC2Role

Amazon ECS attaches this policy to a service role that allows Amazon ECS to perform actions on
your behalf against Amazon EC2 instances or external instances.

This policy grants administrative permissions that allow Amazon ECS container instances to make
calls to AWS on your behalf. For more information, see Amazon ECS container instance IAM role.

Considerations

You should consider the following recommendations and considerations when using the
AmazonEC2ContainerServiceforEC2Role managed IAM policy.

• Following the standard security advice of granting least privilege, you can modify the
AmazonEC2ContainerServiceforEC2Role managed policy to fit your specific needs.
If any of the permissions granted in the managed policy aren't needed for your use case,
create a custom policy and add only the permissions that you require. For example, the

AWS managed policies for Amazon ECS 948

Amazon Elastic Container Service Developer Guide

UpdateContainerInstancesState permission is provided for Spot Instance draining. If that
permission isn't needed for your use case, exclude it using a custom policy. For more information,
see Permissions details.

• Containers that are running on your container instances have access to all of the permissions that
are supplied to the container instance role through instance metadata. We recommend that you
limit the permissions in your container instance role to the minimal list of permissions that are
provided in the managed AmazonEC2ContainerServiceforEC2Role policy. If the containers
in your tasks need extra permissions that aren't listed, we recommend providing those tasks with
their own IAM roles. For more information, see Task IAM role.

You can prevent containers on the docker0 bridge from accessing the permissions supplied to
the container instance role. You can do this while still allowing the permissions that are provided
by Task IAM role by running the following iptables command on your container instances.
Containers can't query instance metadata with this rule in effect. This command assumes the
default Docker bridge configuration and it doesn't work with containers that use the host
network mode. For more information, see Network mode.

sudo yum install -y iptables-services; sudo iptables --insert DOCKER USER 1 --in-
interface docker+ --destination 169.254.169.254/32 --jump DROP

You must save this iptables rule on your container instance for it to survive a reboot. For the
Amazon ECS-optimized AMI, use the following command. For other operating systems, consult
the documentation for that OS.

• For the Amazon ECS-optimized Amazon Linux 2 AMI:

sudo iptables-save | sudo tee /etc/sysconfig/iptables && sudo systemctl enable --
now iptables

• For the Amazon ECS-optimized Amazon Linux AMI:

sudo service iptables save

Permissions details

The AmazonEC2ContainerServiceforEC2Role managed IAM policy includes the
following permissions. Following the standard security advice of granting least privilege, the
AmazonEC2ContainerServiceforEC2Role managed policy can be used as a guide. If you don't

AWS managed policies for Amazon ECS 949

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-instance-metadata.html

Amazon Elastic Container Service Developer Guide

need any of the permissions that are granted in the managed policy for your use case, create a
custom policy and add only the permissions that you need.

• ec2:DescribeTags – Allows a principal to describe the tags that are associated with an
Amazon EC2 instance. This permission is used by the Amazon ECS container agent to support
resource tag propagation. For more information, see How resources are tagged.

• ecs:CreateCluster – Allows a principal to create an Amazon ECS cluster. This permission is
used by the Amazon ECS container agent to create a default cluster, if one doesn't already
exist.

• ecs:DeregisterContainerInstance – Allows a principal to deregister an Amazon ECS
container instance from a cluster. The Amazon ECS container agent doesn't call this API
operation, but this permission remains to help ensure backwards compatibility.

• ecs:DiscoverPollEndpoint – This action returns endpoints that the Amazon ECS container
agent uses to poll for updates.

• ecs:Poll – Allows the Amazon ECS container agent to communicate with the Amazon ECS
control plane to report task state changes.

• ecs:RegisterContainerInstance – Allows a principal to register a container instance with a
cluster. This permission is used by the Amazon ECS container agent to register the Amazon EC2
instance with a cluster and to support resource tag propagation.

• ecs:StartTelemetrySession – Allows the Amazon ECS container agent to communicate with
the Amazon ECS control plane to report health information and metrics for each container and
task.

• ecs:TagResource – Allows the Amazon ECS container agent to tag cluster on creation and to
tag container instances when they are registered to a cluster.

• ecs:UpdateContainerInstancesState – Allows a principal to modify the status of an
Amazon ECS container instance. This permission is used by the Amazon ECS container agent for
Spot Instance draining. For more information, see Spot Instance draining.

• ecs:Submit* – This includes the SubmitAttachmentStateChanges,
SubmitContainerStateChange, and SubmitTaskStateChange API actions. They're used
by the Amazon ECS container agent to report state changes for each resource to the Amazon
ECS control plane. The SubmitContainerStateChange permission is no longer used by the
Amazon ECS container agent but remains to help ensure backwards compatibility.

• ecr:GetAuthorizationToken – Allows a principal to retrieve an authorization token. The
authorization token represents your IAM authentication credentials and can be used to access

AWS managed policies for Amazon ECS 950

Amazon Elastic Container Service Developer Guide

any Amazon ECR registry that the IAM principal has access to. The authorization token received is
valid for 12 hours.

• ecr:BatchCheckLayerAvailability – When a container image is pushed to an Amazon ECR
private repository, each image layer is checked to verify if it's already pushed. If it is, then the
image layer is skipped.

• ecr:GetDownloadUrlForLayer – When a container image is pulled from an Amazon ECR
private repository, this API is called once for each image layer that's not already cached.

• ecr:BatchGetImage – When a container image is pulled from an Amazon ECR private
repository, this API is called once to retrieve the image manifest.

• logs:CreateLogStream – Allows a principal to create a CloudWatch Logs log stream for a
specified log group.

• logs:PutLogEvents – Allows a principal to upload a batch of log events to a specified log
stream.

The following is an example AmazonEC2ContainerServiceforEC2Role policy.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "ec2:DescribeTags",
 "ecs:CreateCluster",
 "ecs:DeregisterContainerInstance",
 "ecs:DiscoverPollEndpoint",
 "ecs:Poll",
 "ecs:RegisterContainerInstance",
 "ecs:StartTelemetrySession",
 "ecs:UpdateContainerInstancesState",
 "ecs:Submit*",
 "ecr:GetAuthorizationToken",
 "ecr:BatchCheckLayerAvailability",
 "ecr:GetDownloadUrlForLayer",
 "ecr:BatchGetImage",
 "logs:CreateLogStream",
 "logs:PutLogEvents"
],
 "Resource": "*"

AWS managed policies for Amazon ECS 951

Amazon Elastic Container Service Developer Guide

 },
 {
 "Effect": "Allow",
 "Action": "ecs:TagResource",
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "ecs:CreateAction": [
 "CreateCluster",
 "RegisterContainerInstance"
]
 }
 }
 }
]
}

AmazonEC2ContainerServiceEventsRole

This policy grants permissions that allow Amazon EventBridge (formerly CloudWatch Events) to run
tasks on your behalf. This policy can be attached to the IAM role that's specified when you create
scheduled tasks. For more information, see Amazon ECS EventBridge IAM Role.

Permissions details

This policy includes the following permissions.

• ecs – Allows a principal in a service to call the Amazon ECS RunTask API. Allows a principal in a
service to add tags (TagResource) when they call the Amazon ECS RunTask API.

• iam – Allows passing any IAM service role to any Amazon ECS tasks.

The following is an example AmazonEC2ContainerServiceEventsRole policy.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": ["ecs:RunTask"],
 "Resource": ["*"]
 },

AWS managed policies for Amazon ECS 952

Amazon Elastic Container Service Developer Guide

 {
 "Effect": "Allow",
 "Action": "iam:PassRole",
 "Resource": ["*"],
 "Condition": {
 "StringLike": {"iam:PassedToService": "ecs-tasks.amazonaws.com"}
 }
 },
 {
 "Effect": "Allow",
 "Action": "ecs:TagResource",
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "ecs:CreateAction": ["RunTask"]
 }
 }
 }
]
}

AmazonECSTaskExecutionRolePolicy

The AmazonECSTaskExecutionRolePolicy managed IAM policy grants the permissions that
are needed by the Amazon ECS container agent and AWS Fargate container agents to make
AWS API calls on your behalf. This policy can be added to your task execution IAM role. For more
information, see Amazon ECS task execution IAM role.

Permissions details

The AmazonECSTaskExecutionRolePolicy managed IAM policy includes the following
permissions. Following the standard security advice of granting least privilege, the
AmazonECSTaskExecutionRolePolicy managed policy can be used as a guide. If any of the
permissions that are granted in the managed policy aren't needed for your use case, create a
custom policy and add only the permissions that you require.

• ecr:GetAuthorizationToken – Allows a principal to retrieve an authorization token. The
authorization token represents your IAM authentication credentials and can be used to access
any Amazon ECR registry that the IAM principal has access to. The authorization token received is
valid for 12 hours.

AWS managed policies for Amazon ECS 953

Amazon Elastic Container Service Developer Guide

• ecr:BatchCheckLayerAvailability – When a container image is pushed to an Amazon ECR
private repository, each image layer is checked to verify if it's already pushed. If it's pushed, then
the image layer is skipped.

• ecr:GetDownloadUrlForLayer – When a container image is pulled from an Amazon ECR
private repository, this API is called once for each image layer that's not already cached.

• ecr:BatchGetImage – When a container image is pulled from an Amazon ECR private
repository, this API is called once to retrieve the image manifest.

• logs:CreateLogStream – Allows a principal to create a CloudWatch Logs log stream for a
specified log group.

• logs:PutLogEvents – Allows a principal to upload a batch of log events to a specified log
stream.

The following is an example AmazonECSTaskExecutionRolePolicy policy.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "ecr:GetAuthorizationToken",
 "ecr:BatchCheckLayerAvailability",
 "ecr:GetDownloadUrlForLayer",
 "ecr:BatchGetImage",
 "logs:CreateLogStream",
 "logs:PutLogEvents"
],
 "Resource": "*"
 }
]
}

AmazonECSServiceRolePolicy

The AmazonECSServiceRolePolicy managed IAM policy enables Amazon Elastic Container
Service to manage your cluster. This policy can be added to your task execution IAM role. For more
information, see Amazon ECS task execution IAM role.

AWS managed policies for Amazon ECS 954

Amazon Elastic Container Service Developer Guide

Permissions details

The AmazonECSServiceRolePolicy managed IAM policy includes the following
permissions. Following the standard security advice of granting least privilege, the
AmazonECSServiceRolePolicy managed policy can be used as a guide. If any of the
permissions that are granted in the managed policy aren't needed for your use case, create a
custom policy and add only the permissions that you require.

• autoscaling – Allows principals to create, manage, and describe Amazon EC2 Auto Scaling
resources. This is required when managing Amazon EC2 Auto Scaling groups when using the
cluster auto scaling feature.

• autoscaling-plans – Allows principals to create, delete, and describe autoscaling plans.

• cloudwatch – Allows principals to create, manage, and describe Amazon CloudWatch alarms.

• ec2 – Allows principals run to Amazon EC2 instances and create and manage network interfaces
and tags.

• elasticloadbalancing – Allows principals to create, describe, and delete Elastic Load
Balancing load balancers. Principals will also be able to add and describe target groups.

• logs – Allows principals to create and describe Amazon CloudWatch Logs log groups. Principals
can also list log events for these log groups.

• route53 – Allows principals to create, manage, and delete Amazon Route 53 hosted zones.
Principals can also view Amazon Route 53 health check configuration and information. For more
information about hosted zones, see Working with hosted zones.

• servicediscovery – Allows principals to create, manage, and delete AWS Cloud Map services
and create private DNS namespaces.

• events – Allows principals to create, manage, and delete Amazon EventBridge rules and their
targets.

The following is an example AmazonECSServiceRolePolicy policy.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "ECSTaskManagement",
 "Effect": "Allow",
 "Action": [
 "ec2:AttachNetworkInterface",

AWS managed policies for Amazon ECS 955

https://docs.aws.amazon.com/Route53/latest/DeveloperGuide/hosted-zones-working-with.html

Amazon Elastic Container Service Developer Guide

 "ec2:CreateNetworkInterface",
 "ec2:CreateNetworkInterfacePermission",
 "ec2:DeleteNetworkInterface",
 "ec2:DeleteNetworkInterfacePermission",
 "ec2:Describe*",
 "ec2:DetachNetworkInterface",
 "elasticloadbalancing:DeregisterInstancesFromLoadBalancer",
 "elasticloadbalancing:DeregisterTargets",
 "elasticloadbalancing:Describe*",
 "elasticloadbalancing:RegisterInstancesWithLoadBalancer",
 "elasticloadbalancing:RegisterTargets",
 "route53:ChangeResourceRecordSets",
 "route53:CreateHealthCheck",
 "route53:DeleteHealthCheck",
 "route53:Get*",
 "route53:List*",
 "route53:UpdateHealthCheck",
 "servicediscovery:DeregisterInstance",
 "servicediscovery:Get*",
 "servicediscovery:List*",
 "servicediscovery:RegisterInstance",
 "servicediscovery:UpdateInstanceCustomHealthStatus"
],
 "Resource": "*"
 },
 {
 "Sid": "AutoScaling",
 "Effect": "Allow",
 "Action": [
 "autoscaling:Describe*"
],
 "Resource": "*"
 },
 {
 "Sid": "AutoScalingManagement",
 "Effect": "Allow",
 "Action": [
 "autoscaling:DeletePolicy",
 "autoscaling:PutScalingPolicy",
 "autoscaling:SetInstanceProtection",
 "autoscaling:UpdateAutoScalingGroup",
 "autoscaling:PutLifecycleHook",
 "autoscaling:DeleteLifecycleHook",
 "autoscaling:CompleteLifecycleAction",

AWS managed policies for Amazon ECS 956

Amazon Elastic Container Service Developer Guide

 "autoscaling:RecordLifecycleActionHeartbeat"
],
 "Resource": "*",
 "Condition": {
 "Null": {
 "autoscaling:ResourceTag/AmazonECSManaged": "false"
 }
 }
 },
 {
 "Sid": "AutoScalingPlanManagement",
 "Effect": "Allow",
 "Action": [
 "autoscaling-plans:CreateScalingPlan",
 "autoscaling-plans:DeleteScalingPlan",
 "autoscaling-plans:DescribeScalingPlans",
 "autoscaling-plans:DescribeScalingPlanResources"
],
 "Resource": "*"
 },
 {
 "Sid": "EventBridge",
 "Effect": "Allow",
 "Action": [
 "events:DescribeRule",
 "events:ListTargetsByRule"
],
 "Resource": "arn:aws:events:*:*:rule/ecs-managed-*"
 },
 {
 "Sid": "EventBridgeRuleManagement",
 "Effect": "Allow",
 "Action": [
 "events:PutRule",
 "events:PutTargets"
],
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "events:ManagedBy": "ecs.amazonaws.com"
 }
 }
 },
 {

AWS managed policies for Amazon ECS 957

Amazon Elastic Container Service Developer Guide

 "Sid": "CWAlarmManagement",
 "Effect": "Allow",
 "Action": [
 "cloudwatch:DeleteAlarms",
 "cloudwatch:DescribeAlarms",
 "cloudwatch:PutMetricAlarm"
],
 "Resource": "arn:aws:cloudwatch:*:*:alarm:*"
 },
 {
 "Sid": "ECSTagging",
 "Effect": "Allow",
 "Action": [
 "ec2:CreateTags"
],
 "Resource": "arn:aws:ec2:*:*:network-interface/*"
 },
 {
 "Sid": "CWLogGroupManagement",
 "Effect": "Allow",
 "Action": [
 "logs:CreateLogGroup",
 "logs:DescribeLogGroups",
 "logs:PutRetentionPolicy"
],
 "Resource": "arn:aws:logs:*:*:log-group:/aws/ecs/*"
 },
 {
 "Sid": "CWLogStreamManagement",
 "Effect": "Allow",
 "Action": [
 "logs:CreateLogStream",
 "logs:DescribeLogStreams",
 "logs:PutLogEvents"
],
 "Resource": "arn:aws:logs:*:*:log-group:/aws/ecs/*:log-stream:*"
 },
 {
 "Sid": "ExecuteCommandSessionManagement",
 "Effect": "Allow",
 "Action": [
 "ssm:DescribeSessions"
],
 "Resource": "*"

AWS managed policies for Amazon ECS 958

Amazon Elastic Container Service Developer Guide

 },
 {
 "Sid": "ExecuteCommand",
 "Effect": "Allow",
 "Action": [
 "ssm:StartSession"
],
 "Resource": [
 "arn:aws:ecs:*:*:task/*",
 "arn:aws:ssm:*:*:document/AmazonECS-ExecuteInteractiveCommand"
]
 },
 {
 "Sid": "CloudMapResourceCreation",
 "Effect": "Allow",
 "Action": [
 "servicediscovery:CreateHttpNamespace",
 "servicediscovery:CreateService"
],
 "Resource": "*",
 "Condition": {
 "ForAllValues:StringEquals": {
 "aws:TagKeys": [
 "AmazonECSManaged"
]
 }
 }
 },
 {
 "Sid": "CloudMapResourceTagging",
 "Effect": "Allow",
 "Action": "servicediscovery:TagResource",
 "Resource": "*",
 "Condition": {
 "StringLike": {
 "aws:RequestTag/AmazonECSManaged": "*"
 }
 }
 },
 {
 "Sid": "CloudMapResourceDeletion",
 "Effect": "Allow",
 "Action": [
 "servicediscovery:DeleteService"

AWS managed policies for Amazon ECS 959

Amazon Elastic Container Service Developer Guide

],
 "Resource": "*",
 "Condition": {
 "Null": {
 "aws:ResourceTag/AmazonECSManaged": "false"
 }
 }
 },
 {
 "Sid": "CloudMapResourceDiscovery",
 "Effect": "Allow",
 "Action": [
 "servicediscovery:DiscoverInstances",
 "servicediscovery:DiscoverInstancesRevision"
],
 "Resource": "*"
 }
]
}

AmazonECSInfrastructureRolePolicyForServiceConnectTransportLayerSecurity

Provides administrative access to AWS Private Certificate Authority, Secrets Manager and other
AWS Services required to manage Amazon ECS Service Connect TLS features on your behalf.

Permissions details

The
AmazonECSInfrastructureRolePolicyForServiceConnectTransportLayerSecurity
managed IAM policy includes the following permissions. Following the standard security advice of
granting least privilege, the
AmazonECSInfrastructureRolePolicyForServiceConnectTransportLayerSecurity
managed policy can be used as a guide. If any of the permissions that are granted in the managed
policy aren't needed for your use case, create a custom policy and add only the permissions that
you require.

• secretsmanager:CreateSecret – Allows principal to create the secret. It's required for
Service Connect TLS, Amazon ECS keeps the customer’s private key in the customer’s Secrets
Manager secret.

• secretsmanager:TagResource – Allows principal to attach tag on the created secret. It
is required for Service Connect TLS, because Amazon ECS creates the secret on behalf of the

AWS managed policies for Amazon ECS 960

Amazon Elastic Container Service Developer Guide

customer and attaches tag with resource. These tags provide an easier way for the customer to
identify the managed secret and restrict actions on these secrets.

• secretsmanager:DescribeSecret – Allow principal to describe the secret and retrieve the
current version stage. It is required for Amazon ECS to do Amazon ECS Service Connect TLS
materials rotation.

• secretsmanager:UpdateSecret – Allow principal to update the secret. It is required for
Amazon ECS to do Amazon ECS Service Connect TLS materials rotation and update the secret
with new materials.

• secretsmanager:GetSecretValue – Allow principal to get the secret value. It is required for
Amazon ECS to do Amazon ECS Service Connect TLS materials rotation.

• secretsmanager:PutSecretValue – Allow principal to put the secret value. It is required for
Amazon ECS to do Amazon ECS Service Connect TLS materials rotation.

• secretsmanager:UpdateSecretVersionStage – Allow principal to update the secret
version stage. It is required for Amazon ECS to do Amazon ECS Service Connect TLS materials
rotation.

• acm-pca:IssueCertificate – Allow principal to call IssueCertificate for End entity
certificate for Amazon ECS Service Connect TLS. It required for ECS to generate certificate
for customer’s upstream service.

• acm-pca:GetCertificate – Allow principal to call GetCertificate for End entity
certificate for Amazon ECS Service Connect TLS.

• acm-pca:GetCertificateAuthorityCertificate – Allow principal to get certificate
authorities certificate. It’s required for Amazon ECS Service Connect TLS so that customer’s
downstream service can trust the upstream end entity certificate.

• acm-pca:DescribeCertificateAuthority – Allow principal to get details about the
certificate authority. It is required for Amazon ECS Service Connect TLS to reuse information like
signing algorithm to create the CSR (Certificate Signing Request).

The following is an example
AmazonECSInfrastructureRolePolicyForServiceConnectTransportLayerSecurity
policy.

{
 "Version": "2012-10-17",
 "Statement": [
 {

AWS managed policies for Amazon ECS 961

Amazon Elastic Container Service Developer Guide

 "Sid": "CreateSecret",
 "Effect": "Allow",
 "Action": "secretsmanager:CreateSecret",
 "Resource": "arn:aws:secretsmanager:*:*:secret:ecs-sc!*",
 "Condition": {
 "ArnLike": {
 "aws:RequestTag/AmazonECSCreated": [
 "arn:aws:ecs:*:*:service/*/*",
 "arn:aws:ecs:*:*:task-set/*/*"
]
 },
 "StringEquals": {
 "aws:RequestTag/AmazonECSManaged": "true",
 "aws:ResourceAccount": "${aws:PrincipalAccount}"
 }
 }
 },
 {
 "Sid": "TagOnCreateSecret",
 "Effect": "Allow",
 "Action": "secretsmanager:TagResource",
 "Resource": "arn:aws:secretsmanager:*:*:secret:ecs-sc!*",
 "Condition": {
 "ArnLike": {
 "aws:RequestTag/AmazonECSCreated": [
 "arn:aws:ecs:*:*:service/*/*",
 "arn:aws:ecs:*:*:task-set/*/*"
]
 },
 "StringEquals": {
 "aws:RequestTag/AmazonECSManaged": "true",
 "aws:ResourceAccount": "${aws:PrincipalAccount}"
 }
 }
 },
 {
 "Sid": "RotateTLSCertificateSecret",
 "Effect": "Allow",
 "Action": [
 "secretsmanager:DescribeSecret",
 "secretsmanager:UpdateSecret",
 "secretsmanager:GetSecretValue",
 "secretsmanager:PutSecretValue",
 "secretsmanager:DeleteSecret",

AWS managed policies for Amazon ECS 962

Amazon Elastic Container Service Developer Guide

 "secretsmanager:RotateSecret",
 "secretsmanager:UpdateSecretVersionStage"
],
 "Resource": "arn:aws:secretsmanager:*:*:secret:ecs-sc!*",
 "Condition": {
 "StringEquals": {
 "secretsmanager:ResourceTag/aws:secretsmanager:owningService":
 "ecs-sc",
 "aws:ResourceAccount": "${aws:PrincipalAccount}"
 }
 }
 },
 {
 "Sid": "ManagePrivateCertificateAuthority",
 "Effect": "Allow",
 "Action": [
 "acm-pca:GetCertificate",
 "acm-pca:GetCertificateAuthorityCertificate",
 "acm-pca:DescribeCertificateAuthority"
],
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "aws:ResourceTag/AmazonECSManaged": "true"
 }
 }
 },
 {
 "Sid": "ManagePrivateCertificateAuthorityForIssuingEndEntityCertificate",
 "Effect": "Allow",
 "Action": [
 "acm-pca:IssueCertificate"
],
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "aws:ResourceTag/AmazonECSManaged": "true",
 "acm-pca:TemplateArn":"arn:aws:acm-pca:::template/
EndEntityCertificate/V1"
 }
 }
 }
]

AWS managed policies for Amazon ECS 963

Amazon Elastic Container Service Developer Guide

}

AWSApplicationAutoscalingECSServicePolicy

You can't attach AWSApplicationAutoscalingECSServicePolicy to your IAM entities. This
policy is attached to a service-linked role that allows Application Auto Scaling to perform actions
on your behalf. For more information, see Service-linked roles for Application Auto Scaling.

AWSCodeDeployRoleForECS

You can't attach AWSCodeDeployRoleForECS to your IAM entities. This policy is attached
to a service-linked role that allows CodeDeploy to perform actions on your behalf. For more
information, see Create a service role for CodeDeploy in the AWS CodeDeploy User Guide.

AWSCodeDeployRoleForECSLimited

You can't attach AWSCodeDeployRoleForECSLimited to your IAM entities. This policy is
attached to a service-linked role that allows CodeDeploy to perform actions on your behalf. For
more information, see Create a service role for CodeDeploy in the AWS CodeDeploy User Guide.

Amazon ECS updates to AWS managed policies

View details about updates to AWS managed policies for Amazon ECS since this service started
tracking these changes. For automatic alerts about changes to this page, subscribe to the RSS feed
on the Amazon ECS Document history page.

Change Description Date

Add new AmazonECSInfrastru
ctureRolePolicyForServiceCo
nnectTransportLayerSecurity
 policy

Added new AmazonECS
InfrastructureRolePolicyFor
ServiceConnectTransportLaye
rSecurity policy that provides
administrative access to AWS
KMS, AWS Private Certificate
Authority, Secrets Manager
and enables Amazon ECS
Service Connect TLS features
to work properly.

January 22, 2024

AWS managed policies for Amazon ECS 964

https://docs.aws.amazon.com/autoscaling/application/userguide/application-auto-scaling-service-linked-roles.html
https://docs.aws.amazon.com/codedeploy/latest/userguide/getting-started-create-service-role.html
https://docs.aws.amazon.com/codedeploy/latest/userguide/getting-started-create-service-role.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/security-iam-awsmanpol.html#security-iam-awsmanpol-AmazonECSInfrastructureRolePolicyForServiceConnectTransportLayerSecurity
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/security-iam-awsmanpol.html#security-iam-awsmanpol-AmazonECSInfrastructureRolePolicyForServiceConnectTransportLayerSecurity
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/security-iam-awsmanpol.html#security-iam-awsmanpol-AmazonECSInfrastructureRolePolicyForServiceConnectTransportLayerSecurity
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/security-iam-awsmanpol.html#security-iam-awsmanpol-AmazonECSInfrastructureRolePolicyForServiceConnectTransportLayerSecurity

Amazon Elastic Container Service Developer Guide

Change Description Date

Add new policy AmazonECS
InfrastructureRolePolicyFor
Volumes

The AmazonECSInfrastru
ctureRolePolicyFor
Volumes policy was
added. The policy grants the
permissions that are needed
by Amazon ECS to make AWS
API calls to manage Amazon
EBS volumes associated with
Amazon ECS workloads.

January 11, 2024

Add permissions to
AmazonECSServiceRolePolicy

The AmazonECSServiceRo
lePolicy managed IAM
policy was updated with new
events permissions and
additional autoscaling
and autoscaling-plans
permissions.

December 4, 2023

Add permissions to
AmazonEC2Container
ServiceEventsRole

The AmazonECSServiceRo
lePolicy managed IAM
policy was updated to allow
access to the AWS Cloud Map
DiscoverInstancesR
evision API operation.

October 4, 2023

Add permissions to
AmazonEC2Container
ServiceforEC2Role

The AmazonEC2Container
ServiceforEC2Role
policy was modified to add
the ecs:TagResource
permission, which includes
a condition that limits the
permission only to newly
created clusters and registere
d container instances.

March 6, 2023

AWS managed policies for Amazon ECS 965

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/security-iam-awsmanpol.html#security-iam-awsmanpol-AmazonECSInfrastructureRolePolicyForVolumes
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/security-iam-awsmanpol.html#security-iam-awsmanpol-AmazonECSInfrastructureRolePolicyForVolumes
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/security-iam-awsmanpol.html#security-iam-awsmanpol-AmazonECSInfrastructureRolePolicyForVolumes
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/security-iam-awsmanpol.html#security-iam-awsmanpol-AmazonECSServiceRolePolicy
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/security-iam-awsmanpol.html#security-iam-awsmanpol-AmazonEC2ContainerServiceEventsRole
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/security-iam-awsmanpol.html#security-iam-awsmanpol-AmazonEC2ContainerServiceEventsRole
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/security-iam-awsmanpol.html#security-iam-awsmanpol-AmazonEC2ContainerServiceforEC2Role
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/security-iam-awsmanpol.html#security-iam-awsmanpol-AmazonEC2ContainerServiceforEC2Role

Amazon Elastic Container Service Developer Guide

Change Description Date

Add permissions to the
section called “AmazonEC
S_FullAccess”

The AmazonECS_FullAcce
ss policy was modified
to add the elasticlo
adbalancing:AddTags
permission, which includes
a condition that limits the
permission only to newly
created load balancers, target
groups, rules, and listeners
created. This permission
doesn't allow tags to be
added to any already created
Elastic Load Balancing
 resources.

January 4, 2023

Amazon ECS started tracking
changes

Amazon ECS started tracking
changes for its AWS managed
policies.

June 8, 2021

Phased out AWS managed IAM policies for Amazon Elastic Container Service

The following AWS managed IAM policies are phased out. These policies are now replaced by the
updated policies. We recommend that you update your users or roles to use the updated policies.

AmazonEC2ContainerServiceFullAccess

Important

The AmazonEC2ContainerServiceFullAccess managed IAM policy was phased
out as of January 29, 2021, in response to a security finding with the iam:passRole
permission. This permission grants access to all resources including credentials to
roles in the account. Now that the policy is phased out, you can't attach the policy to
any new users or roles. Any users or roles that already have the policy attached can
continue using it. However, we recommend that you update your users or roles to use the

AWS managed policies for Amazon ECS 966

Amazon Elastic Container Service Developer Guide

AmazonECS_FullAccess managed policy instead. For more information, see Migrating to
the AmazonECS_FullAccess managed policy.

AmazonEC2ContainerServiceRole

Important

The AmazonEC2ContainerServiceRole managed IAM policy is phased out. It's now
replaced by the Amazon ECS service-linked role. For more information, see Using service-
linked roles for Amazon ECS.

AmazonEC2ContainerServiceAutoscaleRole

Important

The AmazonEC2ContainerServiceAutoscaleRole managed IAM policy is phased out.
It's now replaced by the Application Auto Scaling service-linked role for Amazon ECS. For
more information, see Service-linked roles for Application Auto Scaling in the Application
Auto Scaling User Guide.

Migrating to the AmazonECS_FullAccess managed policy

The AmazonEC2ContainerServiceFullAccess managed IAM policy was phased out on January
29, 2021, in response to a security finding with the iam:passRole permission. This permission
grants access to all resources including credentials to roles in the account. Now that the policy is
phased out, you can't attach the policy to any new groups, users, or roles. Any groups, users, or
roles that already have the policy attached can continue using it. However, we recommend that you
update your groups, users, or roles to use the AmazonECS_FullAccess managed policy instead.

The permissions that are granted by the AmazonECS_FullAccess policy include the complete list
of permissions that are necessary to use ECS as an administrator. If you currently use permissions
that are granted by the AmazonEC2ContainerServiceFullAccess policy that aren't in the
AmazonECS_FullAccess policy, you can add them to an inline policy statement. For more
information, see AWS managed policies for Amazon Elastic Container Service.

AWS managed policies for Amazon ECS 967

https://docs.aws.amazon.com/autoscaling/application/userguide/application-auto-scaling-service-linked-roles.html

Amazon Elastic Container Service Developer Guide

Use the following steps to determine if you have any groups, users, or roles that are currently using
the AmazonEC2ContainerServiceFullAccess managed IAM policy. Then, update them to
detach the earlier policy and attach the AmazonECS_FullAccess policy.

To update a group, user, or role to use the AmazonECS_FullAccess policy (AWS Management
Console)

1. Open the IAM console at https://console.aws.amazon.com/iam/.

2. In the navigation pane, choose Policies and search for and select the
AmazonEC2ContainerServiceFullAccess policy.

3. Choose the Policy usage tab that displays any IAM role that's currently using this policy.

4. For each IAM role that's currently using the AmazonEC2ContainerServiceFullAccess
policy, select the role and use the following steps to detach the phased out policy and attach
the AmazonECS_FullAccess policy.

a. On the Permissions tab, choose the X next to the AmazonEC2ContainerServiceFullAccess
policy.

b. Choose Add permissions.

c. Choose Attach existing policies directly, search for and select the
AmazonECS_FullAccess policy, and then choose Next: Review.

d. Review the changes and then choose Add permissions.

e. Repeat these steps for each group, user, or role that's using the
AmazonEC2ContainerServiceFullAccess policy.

To update a group, user, or role to use the AmazonECS_FullAccess policy (AWS CLI)

1. Use the generate-service-last-accessed-details command to generate a report that includes
details about when the phased out policy was last used.

aws iam generate-service-last-accessed-details \
 --arn arn:aws:iam::aws:policy/AmazonEC2ContainerServiceFullAccess

Example output:

{
 "JobId": "32bb1fb0-1ee0-b08e-3626-ae83EXAMPLE"

AWS managed policies for Amazon ECS 968

https://console.aws.amazon.com/iam/
https://docs.aws.amazon.com/cli/latest/reference/iam/generate-service-last-accessed-details.html

Amazon Elastic Container Service Developer Guide

}

2. Use the job ID from the previous output with the get-service-last-accessed-details command
to retrieve the last accessed report of the service. This report displays the Amazon Resource
Name (ARN) of the IAM entities that last used the phased out policy.

aws iam get-service-last-accessed-details \
 --job-id 32bb1fb0-1ee0-b08e-3626-ae83EXAMPLE

3. Use one of the following commands to detach the
AmazonEC2ContainerServiceFullAccess policy from a group, user, or role.

• detach-group-policy

• detach-role-policy

• detach-user-policy

4. Use one of the following commands to attach the AmazonECS_FullAccess policy to a group,
user, or role.

• attach-group-policy

• attach-role-policy

• attach-user-policy

Using service-linked roles for Amazon ECS

Amazon Elastic Container Service uses AWS Identity and Access Management (IAM) service-linked
roles. A service-linked role is a unique type of IAM role that is linked directly to Amazon ECS. The
service-linked role is predefined by Amazon ECS and includes all the permissions that the service
requires to call other AWS services on your behalf.

A service-linked role makes setting up Amazon ECS easier because you don’t have to manually add
the necessary permissions. Amazon ECS defines the permissions of its service-linked roles, and
unless defined otherwise, only Amazon ECS can assume its roles. The defined permissions include
the trust policy and the permissions policy, and that permissions policy cannot be attached to any
other IAM entity.

For information about other services that support service-linked roles, see AWS services that work
with IAM and look for the services that have Yes in the Service-linked roles column. Choose a Yes
with a link to view the service-linked role documentation for that service.

Using service-linked roles 969

https://docs.aws.amazon.com/cli/latest/reference/iam/get-service-last-accessed-details.html
https://docs.aws.amazon.com/cli/latest/reference/iam/detach-group-policy.html
https://docs.aws.amazon.com/cli/latest/reference/iam/detach-role-policy.html
https://docs.aws.amazon.com/cli/latest/reference/iam/detach-user-policy.html
https://docs.aws.amazon.com/cli/latest/reference/iam/attach-group-policy.html
https://docs.aws.amazon.com/cli/latest/reference/iam/attach-role-policy.html
https://docs.aws.amazon.com/cli/latest/reference/iam/attach-user-policy.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_terms-and-concepts.html#iam-term-service-linked-role
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_terms-and-concepts.html#iam-term-service-linked-role
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html

Amazon Elastic Container Service Developer Guide

Service-linked role permissions for Amazon ECS

Amazon ECS uses the service-linked role named AWSServiceRoleForECS.

The AWSServiceRoleForECS service-linked role trusts the following services to assume the role:

• ecs.amazonaws.com

The role permissions policy named AmazonECSServiceRolePolicy allows Amazon ECS to complete
the following actions on the specified resources:

• Action: When using the awsvpc network mode for your Amazon ECS tasks, Amazon ECS
manages the lifecycle of the elastic network interfaces associated with the task. This also
includes tags that Amazon ECS adds to your elastic network interfaces.

• Action: When using a load balancer with your Amazon ECS service, Amazon ECS manages the
registration and deregistration of resources with the load balancer.

• Action: When using Amazon ECS service discovery, Amazon ECS manages the required Route 53
and AWS Cloud Map resources for service discovery to work.

• Action: When using Amazon ECS service auto scaling, Amazon ECS manages the required Auto
Scaling resources.

• Action: Amazon ECS creates and manages CloudWatch alarms and log streams that assist in the
monitoring of your Amazon ECS resources.

• Action: When using Amazon ECS Exec, Amazon ECS manages the permissions needed to start
Amazon ECS Exec sessions to your tasks.

• Action: When using Amazon ECS Service Connect, Amazon ECS manages the required AWS Cloud
Map resources to use the feature.

• Action: When using Amazon ECS capacity providers, Amazon ECS manages the permissions
required to modify the Auto Scaling group and its Amazon EC2 instances.

You must configure permissions to allow an IAM entity (such as a user, group, or role) to create,
edit, or delete a service-linked role. For more information, see Service-linked role permissions in
the IAM User Guide.

Creating a service-linked role for Amazon ECS

In most cases you don't need to manually create a service-linked role. When you create a cluster or
create or update a service in the AWS Management Console, the AWS CLI, or the AWS API, Amazon

Using service-linked roles 970

https://docs.aws.amazon.com/IAM/latest/UserGuide/using-service-linked-roles.html#service-linked-role-permissions

Amazon Elastic Container Service Developer Guide

ECS creates the service-linked role for you. If you do not see the AWSServiceRoleForECS role after
you create a cluster, perform the following to fix the issue:

• Verify and configure the permissions to allow Amazon ECS to create, edit, or delete a service-
linked role on your behalf. For more information, see Service-linked role permissions in the IAM
User Guide.

• Retry the cluster creation operation, or manually create the service-linked role.

You can use the IAM console to create the AWSServiceRoleForECS service-linked role. In the
AWS CLI or the AWS API, create a service-linked role with the ecs.amazonaws.com service
name. For more information, see Creating a service-linked role in the IAM User Guide.

Important

This service-linked role can appear in your account if you completed an action in another
service that uses the features supported by this role.

If you delete this service-linked role, and then need to create it again, you can use the same process
to recreate the role in your account. When you create a cluster or create or update a service,
Amazon ECS creates the service-linked role for you again.

If you delete this service-linked role, you can use the same IAM process to create the role again.

Editing a service-linked role for Amazon ECS

Amazon ECS doesn't allow you to edit the AWSServiceRoleForECS service-linked role. After you
create a service-linked role, you cannot change the name of the role because various entities
might reference the role. However, you can edit the description of the role using IAM. For more
information, see Editing a service-linked role in the IAM User Guide.

Deleting a service-linked role for Amazon ECS

If you no longer need to use a feature or service that requires a service-linked role, we recommend
that you delete that role. That way you don’t have an unused entity that is not actively monitored
or maintained. However, you must clean up the resources for your service-linked role before you
can manually delete it.

Using service-linked roles 971

https://docs.aws.amazon.com/IAM/latest/UserGuide/using-service-linked-roles.html#service-linked-role-permissions
https://docs.aws.amazon.com/IAM/latest/UserGuide/using-service-linked-roles.html#create-service-linked-role
https://docs.aws.amazon.com/IAM/latest/UserGuide/using-service-linked-roles.html#edit-service-linked-role

Amazon Elastic Container Service Developer Guide

Note

If the Amazon ECS service is using the role when you try to delete the resources, then the
deletion might fail. If that happens, wait for a few minutes and try the operation again.

To check whether the service-linked role has an active session

1. Open the IAM console at https://console.aws.amazon.com/iam/.

2. In the navigation pane, choose Roles and choose the AWSServiceRoleForECS name (not the
check box).

3. On the Summary page, choose Access Advisor and review recent activity for the service-linked
role.

Note

If you are unsure whether Amazon ECS is using the AWSServiceRoleForECS role, you
can try to delete the role. If the service is using the role, then the deletion fails and you
can view the regions where the role is being used. If the role is being used, then you
must wait for the session to end before you can delete the role. You cannot revoke the
session for a service-linked role.

To remove Amazon ECS resources used by the AWSServiceRoleForECS service-linked role

You must delete all Amazon ECS clusters in all AWS Regions before you can delete the
AWSServiceRoleForECS role.

1. Scale all Amazon ECS services down to a desired count of 0 in all regions, and then delete the
services. For more information, see Updating a service using the console and Deleting a service
using the console.

2. Force deregister all container instances from all clusters in all regions. For more information,
see Deregister an Amazon EC2 backed container instance.

3. Delete all Amazon ECS clusters in all regions. For more information, see Deleting a cluster
using the console.

To manually delete the service-linked role using IAM

Using service-linked roles 972

https://console.aws.amazon.com/iam/

Amazon Elastic Container Service Developer Guide

Use the IAM console, the AWS CLI, or the AWS API to delete the AWSServiceRoleForECS service-
linked role. For more information, see Deleting a service-linked role in the IAM User Guide.

Supported regions for Amazon ECS service-linked roles

Amazon ECS supports using service-linked roles in all of the regions where the service is available.
For more information, see AWS regions and endpoints.

Permissions required for the Amazon ECS console

Following the best practice of granting least privilege, you can use the AmazonECS_FullAccess
managed policy as a template for creating you own custom policy. That way, you can take away or
add permissions to and from the managed policy based on your specific requirements. For more
information, see Permissions details.

The Amazon ECS console is powered by AWS CloudFormation and requires additional IAM
permissions in the following cases:

• Creating a cluster

• Creating a service

• Creating a capacity provider

You can create a policy for the additional permissions, and then attach them to the IAM role you
use to access the console. For more information, see Creating IAM policies in the IAM User Guide.

IAM permissions required for creating a cluster

When you create a cluster in the console, you need additional permissions that grant you
permissions to manage AWS CloudFormation stacks.

The following additional permissions are required:

• cloudformation – Allows principals to create and manage AWS CloudFormation stacks. This
is required when creating Amazon ECS clusters using the AWS Management Console and the
subsequent managing of those clusters.

The following policy contains the required AWS CloudFormation permissions, and limits the actions
to resources created in the Amazon ECS console.

Permissions required for the Amazon ECS console 973

https://docs.aws.amazon.com/IAM/latest/UserGuide/using-service-linked-roles.html#delete-service-linked-role
https://docs.aws.amazon.com/general/latest/gr/rande.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create.html#access_policies_create-start

Amazon Elastic Container Service Developer Guide

{
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "cloudformation:CreateStack",
 "cloudformation:DeleteStack",
 "cloudformation:DescribeStack*",
 "cloudformation:UpdateStack"
],
 "Resource": [
 "arn:*:cloudformation:*:*:stack/Infra-ECS-Cluster-*"
]
 }
]
}

If you have not created the Amazon ECS container instance role (ecsInstanceRole), and you are
creating a cluster that uses Amazon EC2 instances, then the console will create the role on your
behalf.

In addition, if you use Auto Scaling groups, then you need additional permissions so that the
console can add tags to the auto scaling groups when using the cluster auto scaling feature.

The following additional permissions are required:

• autoscaling – Allows the console to tag Amazon EC2 Auto Scaling group. This is required
when managing Amazon EC2 auto scaling groups when using the cluster auto scaling feature.
The tag is the ECS-managed tag that the console automatically adds to the group to indicate is
was created in the console.

• iam– Allows principals to list IAM roles and their attached policies. Principals can also list
instance profiles available to your Amazon EC2 instances.

The following policy contains the required IAM permissions, and limits the actions to the
ecsInstanceRole role.

The Auto Scaling permissions are not limited.

{
 "Statement": [

Permissions required for the Amazon ECS console 974

Amazon Elastic Container Service Developer Guide

 {
 "Effect": "Allow",
 "Action": [
 "iam:AttachRolePolicy",
 "iam:CreateRole",
 "iam:CreateInstanceProfile",
 "iam:AddRoleToInstanceProfile",
 "iam:ListInstanceProfilesForRole",
 "iam:GetRole"
],
 "Resource": "arn:aws:iam::*:role/ecsInstanceRole"
 },
 {
 "Effect": "Allow",
 "Action": "autoscaling:CreateOrUpdateTags",
 "Resource": "*"
 }
]
}

IAM permissions required for creating a capacity provider

When you create a service in the console, you need additional permissions that grant you
permissions to manage AWS CloudFormation stacks. The following additional permissions are
required:

• cloudformation – Allows principals to create and manage AWS CloudFormation stacks. This is
required when creating Amazon ECS capacity providers using the AWS Management Console and
the subsequent managing of those capacity providers.

The following policy contains the required permissions, and limits the actions to resources created
in the Amazon ECS console.

{
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "cloudformation:CreateStack",
 "cloudformation:DeleteStack",
 "cloudformation:DescribeStack*",
 "cloudformation:UpdateStack"

Permissions required for the Amazon ECS console 975

Amazon Elastic Container Service Developer Guide

],
 "Resource": [
 "arn:*:cloudformation:*:*:stack/Infra-ECS-CapacityProvider-*"
]
 }
]
}

IAM permissions required for creating a service

When you create a service in the console, you need additional permissions that grant you
permissions to manage AWS CloudFormation stacks. The following additional permissions are
required:

• cloudformation – Allows principals to create and manage AWS CloudFormation stacks. This
is required when creating Amazon ECS services using the AWS Management Console and the
subsequent managing of those services.

The following policy contains the required permissions, and limits the actions to resources created
in the Amazon ECS console.

{
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "cloudformation:CreateStack",
 "cloudformation:DeleteStack",
 "cloudformation:DescribeStack*",
 "cloudformation:UpdateStack"
],
 "Resource": [
 "arn:*:cloudformation:*:*:stack/ECS-Console-V2-Service-*"
]
 }
]
}

Permissions for creating IAM roles

The following actions require additional permissions in order to complete the operation:

Permissions required for the Amazon ECS console 976

Amazon Elastic Container Service Developer Guide

• Registering an external instance - for more information, see ECS Anywhere IAM role

• Registering a task definition - for more information, see Amazon ECS task execution IAM role

• Creating an EventBridge rule to use for scheduling tasks - for more information, see Amazon ECS
EventBridge IAM Role

You can add these permissions by creating a role in IAM before you use them in the Amazon ECS
console. If you do not create the roles, the Amazon ECS console creates then on your behalf.

IAM permissions required for registering an external instance to a cluster

You need additional permissions when you register an external instance to a cluster and you want
to create a new external instance (escExternalInstanceRole) role.

The following additional permissions are required:

• iam– Allows principals to create and list IAM roles and their attached policies.

• ssm – Allows principals to register the external instance with Systems Manager.

Note

In order to choose an existing escExternalInstanceRole, you must have the
iam:GetRole and iam:PassRole permissions.

The following policy contains the required permissions, and limits the actions to the
escExternalInstanceRole role.

{
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "iam:AttachRolePolicy",
 "iam:CreateRole",
 "iam:CreateInstanceProfile",
 "iam:AddRoleToInstanceProfile",
 "iam:ListInstanceProfilesForRole",
 "iam:GetRole"

Permissions required for the Amazon ECS console 977

Amazon Elastic Container Service Developer Guide

],
 "Resource": "arn:aws:iam::*:role/escExternalInstanceRole"
 },
 {
 "Effect": "Allow",
 "Action": ["iam:PassRole", "ssm:CreateActivation"],
 "Resource": "arn:aws:iam::*:role/escExternalInstanceRole"
 }
]
}

IAM permissions required for registering a task definition

You need additional permissions when you register a task definition and you want to create a new
task execution (ecsTaskExecutionRole) role.

The following additional permissions are required:

• iam– Allows principals to create and list IAM roles and their attached policies.

Note

In order to choose an existing ecsTaskExecutionRole, you must have the iam:GetRole
permission.

The following policy contains the required permissions, and limits the actions to the
ecsTaskExecutionRole role.

{
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "iam:AttachRolePolicy",
 "iam:CreateRole",
 "iam:GetRole"
],
 "Resource": "arn:aws:iam::*:role/ecsTaskExecutionRole"
 }
]

Permissions required for the Amazon ECS console 978

Amazon Elastic Container Service Developer Guide

}

IAM permissions required for creating an EventBridge rule for scheduled tasks

You need additional permissions when you schedule a task and you want to create a new
CloudWatch Events role (ecsEventsRole) role.

The following additional permissions are required:

• iam– Allows principals to create and list IAM roles and their attached policies, and to allow
Amazon ECS to pass the role to other services to assume the role.

Note

In order to choose an existing ecsEventsRole, you must have the iam:GetRole and
iam:PassRole permissions.

The following policy contains the required permissions, and limits the actions to the
ecsEventsRole role.

{
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "iam:AttachRolePolicy",
 "iam:CreateRole",
 "iam:GetRole",
 "iam: PassRole"
],
 "Resource": "arn:aws:iam::*:role/ecsEventsRole"
 }
]
}

Amazon ECS task execution IAM role

The task execution role grants the Amazon ECS container and Fargate agents permission to
make AWS API calls on your behalf. The task execution IAM role is required depending on the

Task execution IAM role 979

Amazon Elastic Container Service Developer Guide

requirements of your task. You can have multiple task execution roles for different purposes and
services associated with your account. For the IAM permissions that your application needs to run,
see Task IAM role.

The following are common use cases for a task execution IAM role:

• Your task is hosted on AWS Fargate or on an external instance and:

• is pulling a container image from an Amazon ECR private repository.

• is pulling a container image from an Amazon ECR private repository in a different account
from the account that runs the task.

• sends container logs to CloudWatch Logs using the awslogs log driver. For more information,
see Using the awslogs log driver.

• Your tasks are hosted on either AWS Fargate or Amazon EC2 instances and...

• is using private registry authentication. For more information, see Required IAM permissions
for private registry authentication.

• is using Runtime Monitoring.

• the task definition is referencing sensitive data using Secrets Manager secrets or AWS Systems
Manager Parameter Store parameters. For more information, see Required IAM permissions for
Amazon ECS secrets.

Note

The task execution role is supported by Amazon ECS container agent version 1.16.0 and
later.

Amazon ECS provides the managed policy named AmazonECSTaskExecutionRolePolicy which
contains the permissions the common use cases described above require. It might be necessary to
add inline policies to your task execution role for special use cases which are outlined below.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "ecr:GetAuthorizationToken",

Task execution IAM role 980

Amazon Elastic Container Service Developer Guide

 "ecr:BatchCheckLayerAvailability",
 "ecr:GetDownloadUrlForLayer",
 "ecr:BatchGetImage",
 "logs:CreateLogStream",
 "logs:PutLogEvents"
],
 "Resource": "*"
 }
]
}

An Amazon ECS task execution role can be created for you in the Amazon ECS console; however,
you should manually attach the managed IAM policy for tasks to allow Amazon ECS to add
permissions for future features and enhancements as they are introduced. You can use IAM console
search to search for ecsTaskExecutionRole and see if your account already has the task
execution role. For more information, see IAM console search in the IAM user guide.

Creating the task execution (ecsTaskExecutionRole) role

If your account doesn't already have a task execution role, use the following steps to create the
role.

AWS Management Console

To create a task execution IAM role (AWS Management Console)

1. Open the IAM console at https://console.aws.amazon.com/iam/.

2. In the navigation pane, choose Roles, Create role.

3. In the Trusted entity type section, choose AWS service, Elastic Container Service.

4. For Use case, choose Elastic Container Service Task, and then choose Next.

5. In the Add permissions section, do the following:

a. Search for AmazonECSTaskExecutionRolePolicy, then select the policy.

b. Under Set permissions boundary - optional, choose Create role without a
permissions boundary.

c. Choose Next.

6. Under Name, review, and create, do the following:

a. For Role name, type ecsTaskExecutionRole.

Task execution IAM role 981

https://docs.aws.amazon.com/IAM/latest/UserGuide/console_search.html
https://console.aws.amazon.com/iam/

Amazon Elastic Container Service Developer Guide

b. For Add tags (optional), specify any custom tags to associate with the policy .

7. Choose Create role.

AWS CLI

Replace all user input with your own information.

1. Create a file named ecs-tasks-trust-policy.json that contains the trust policy to
use for the IAM role. The file should contain the following:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "",
 "Effect": "Allow",
 "Principal": {
 "Service": "ecs-tasks.amazonaws.com"
 },
 "Action": "sts:AssumeRole"
 }
]
}

2. Create an IAM role named ecsTaskExecutionRole using the trust policy created in the
previous step.

aws iam create-role \
 --role-name ecsTaskExecutionRole \
 --assume-role-policy-document file://ecs-tasks-trust-policy.json

3. Attach the AWS managed AmazonECSTaskExecutionRolePolicy policy to the
ecsTaskExecutionRole role.

aws iam attach-role-policy \
 --role-name ecsTaskExecutionRole \
 --policy-arn arn:aws:iam::aws:policy/service-role/
AmazonECSTaskExecutionRolePolicy

Task execution IAM role 982

Amazon Elastic Container Service Developer Guide

Required IAM permissions for private registry authentication

The Amazon ECS task execution role is required to use this feature. This allows the container agent
to pull the container image.

To provide access to the secrets that you create, add the following permissions as an inline policy
to the task execution role. For more information, see Adding and Removing IAM Policies.

• secretsmanager:GetSecretValue

• kms:Decrypt—Required only if your key uses a custom KMS key and not the default key. The
Amazon Resource Name (ARN) for your custom key must be added as a resource.

The following is an example inline policy that adds the permissions.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "kms:Decrypt",
 "secretsmanager:GetSecretValue"
],
 "Resource": [
 "arn:aws:secretsmanager:<region>:<aws_account_id>:secret:secret_name",
 "arn:aws:kms:<region>:<aws_account_id>:key/key_id"
]
 }
]
}

Required IAM permissions for Amazon ECS secrets

To use the Amazon ECS secrets feature, you must have the Amazon ECS task execution role and
reference it in your task definition. This allows the container agent to pull the necessary AWS
Systems Manager or Secrets Manager resources. For more information, see Passing sensitive data
to a container.

Using Secrets Manager

Task execution IAM role 983

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_manage-attach-detach.html

Amazon Elastic Container Service Developer Guide

To provide access to the Secrets Manager secrets that you create, manually add the following
permission to the task execution role. For information about how to manage permissions, see
Adding and Removing IAM identity permissions in the IAM User Guide.

• secretsmanager:GetSecretValue– Required if you are referencing a Secrets Manager secret.
Adds the permission to retrieve the secret from Secrets Manager.

The following example policy adds the required permissions.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "secretsmanager:GetSecretValue"
],
 "Resource": [
 "arn:aws:secretsmanager:region:aws_account_id:secret:secret_name"
]
 }
]
}

Using Systems Manager

Important

For tasks that use the EC2 launch type, you must use the ECS agent configuration variable
ECS_ENABLE_AWSLOGS_EXECUTIONROLE_OVERRIDE=true to use this feature. You can
add it to the ./etc/ecs/ecs.config file during container instance creation or you can
add it to an existing instance and then restart the ECS agent. For more information, see
Amazon ECS container agent configuration.

To provide access to the Systems Manager Parameter Store parameters that you create, manually
add the following permissions as a policy to the task execution role. For information about how to
manage permissions, see Adding and Removing IAM identity permissions in the IAM User Guide.

Task execution IAM role 984

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_manage-attach-detach.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_manage-attach-detach.html

Amazon Elastic Container Service Developer Guide

• ssm:GetParameters — Required if you are referencing a Systems Manager Parameter Store
parameter in a task definition. Adds the permission to retrieve Systems Manager parameters.

• secretsmanager:GetSecretValue — Required if you are referencing a Secrets Manager
secret either directly or if your Systems Manager Parameter Store parameter is referencing a
Secrets Manager secret in a task definition. Adds the permission to retrieve the secret from
Secrets Manager.

• kms:Decrypt — Required only if your secret uses a customer managed key and not the default
key. The ARN for your custom key should be added as a resource. Adds the permission to decrypt
the customer managed key .

The following example policy adds the required permissions:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "ssm:GetParameters",
 "secretsmanager:GetSecretValue",
 "kms:Decrypt"
],
 "Resource": [
 "arn:aws:ssm:region:aws_account_id:parameter/parameter_name",
 "arn:aws:secretsmanager:region:aws_account_id:secret:secret_name",
 "arn:aws:kms:region:aws_account_id:key/key_id"
]
 }
]
}

Optional IAM permissions for Fargate tasks pulling Amazon ECR images over
interface endpoints

When launching tasks that use the Fargate launch type that pull images from Amazon ECR when
Amazon ECR is configured to use an interface VPC endpoint, you can restrict the tasks access to a
specific VPC or VPC endpoint. Do this by creating a task execution role for the tasks to use that use
IAM condition keys.

Task execution IAM role 985

Amazon Elastic Container Service Developer Guide

Use the following IAM global condition keys to restrict access to a specific VPC or VPC endpoint.
For more information, see AWS Global Condition Context Keys.

• aws:SourceVpc—Restricts access to a specific VPC.

• aws:SourceVpce—Restricts access to a specific VPC endpoint.

The following task execution role policy provides an example for adding condition keys:

Important

The ecr:GetAuthorizationToken API action cannot have the aws:sourceVpc or
aws:sourceVpce condition keys applied to it because the GetAuthorizationToken API call
goes through the elastic network interface owned by AWS Fargate rather than the elastic
network interface of the task.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "ecr:GetAuthorizationToken",
 "logs:CreateLogStream",
 "logs:PutLogEvents"
],
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Action": [
 "ecr:BatchCheckLayerAvailability",
 "ecr:GetDownloadUrlForLayer",
 "ecr:BatchGetImage"
],
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "aws:sourceVpce": "vpce-xxxxxx",
 "aws:sourceVpc": "vpc-xxxxx"
 }

Task execution IAM role 986

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html

Amazon Elastic Container Service Developer Guide

 }
 }
]
}

Task IAM role

Your Amazon ECS tasks can have an IAM role associated with them. The permissions granted in the
IAM role are assumed by the containers running in the task. For the IAM permissions that Amazon
ECS needs to pull container images and run the task, see Amazon ECS task execution IAM role.

If your containerized applications need to call AWS APIs, they must sign their AWS API requests
with AWS credentials, and a task IAM role provides a strategy for managing credentials for your
applications to use, similar to the way that an Amazon EC2 instance profile provides credentials to
Amazon EC2 instances. Instead of creating and distributing your AWS credentials to the containers
or using the Amazon EC2 instance’s role, you can associate an IAM role with an Amazon ECS task
definition or RunTask API operation. Your containers can then use the AWS SDK or AWS CLI to
make API requests to authorized AWS services.

The following explain the benefits of using IAM roles with your tasks.

• Credential Isolation: A container can only retrieve credentials for the IAM role that is defined
in the task definition to which it belongs; a container never has access to credentials that are
intended for another container that belongs to another task.

• Authorization: Unauthorized containers cannot access IAM role credentials defined for other
tasks.

• Auditability: Access and event logging is available through CloudTrail to ensure retrospective
auditing. Task credentials have a context of taskArn that is attached to the session, so
CloudTrail logs show which task is using which role.

Note

When you specify an IAM role for a task, the AWS CLI or other SDKs in the containers for
that task use the AWS credentials provided by the task role exclusively and they no longer
inherit any IAM permissions from the Amazon EC2 or external instance they are running on.

Task IAM role 987

Amazon Elastic Container Service Developer Guide

You can specify a task IAM role in your task definitions, or you can use a taskRoleArn override
when running a task manually with the RunTask API operation. The Amazon ECS agent
receives a payload message for starting the task with additional fields that contain the role
credentials. The Amazon ECS agent sets a unique task credential ID as an identification token
and updates its internal credential cache so that the identification token for the task points
to the role credentials that are received in the payload. The Amazon ECS agent populates the
AWS_CONTAINER_CREDENTIALS_RELATIVE_URI environment variable in the Env object
(available with the docker inspect container_id command) for all containers that belong to
this task with the following relative URI: /credential_provider_version/credentials?
id=task_credential_id.

From inside the container, you can query the credential endpoint with the following command:

curl 169.254.170.2$AWS_CONTAINER_CREDENTIALS_RELATIVE_URI

Output:

{
 "AccessKeyId": "ACCESS_KEY_ID",
 "Expiration": "EXPIRATION_DATE",
 "RoleArn": "TASK_ROLE_ARN",
 "SecretAccessKey": "SECRET_ACCESS_KEY",
 "Token": "SECURITY_TOKEN_STRING"
}

If your Amazon EC2 instance is using at least version 1.11.0 of the container agent
and a supported version of the AWS CLI or SDKs, then the SDK client will see that the
AWS_CONTAINER_CREDENTIALS_RELATIVE_URI variable is available, and it will use the provided
credentials to make calls to the AWS APIs. For more information, see Using task IAM roles on your
Amazon EC2 or external instances.

Each time the credential provider is used, the request is logged locally on the host container
instance at /var/log/ecs/audit.log.YYYY-MM-DD-HH. For more information, see IAM Roles
for Tasks Credential Audit Log.

Considerations for tasks hosted on Amazon EC2 instances

When using an IAM role with your tasks that are running on Amazon EC2 instances, the containers
aren't prevented from accessing the credentials that are supplied to the Amazon EC2 instance
profile (through the Amazon EC2 instance metadata server). We recommend that you limit

Task IAM role 988

Amazon Elastic Container Service Developer Guide

the permissions in your container instance role to the minimal list of permissions used in the
AmazonEC2ContainerServiceforEC2Role managed IAM policy. For more information, see
Amazon ECS container instance IAM role.

The following should also be considered when using a task IAM role for tasks hosted on Amazon
EC2 instances.

• To prevent containers run by tasks that use the awsvpc network mode from accessing the
credential information supplied to the Amazon EC2 instance profile, while still allowing the
permissions that are provided by the task role, set the ECS_AWSVPC_BLOCK_IMDS agent
configuration variable to true in the agent configuration file and restart the agent. For more
information, see Amazon ECS container agent configuration.

• To prevent containers run by tasks that use the bridge network mode from accessing the
credential information supplied to the Amazon EC2 instance profile, while still allowing the
permissions that are provided by the task role, by running the following iptables command on
your Amazon EC2 instances. This command doesn't affect containers in tasks that use the host
or awsvpc network modes. For more information, see Network mode.

sudo yum install -y iptables-services; sudo iptables --insert DOCKER-USER 1 --in-
interface docker+ --destination 169.254.169.254/32 --jump DROP

You must save this iptables rule on your Amazon EC2 instance for it to survive a reboot. When
using the Amazon ECS-optimized AMI, you can use the following command. For other operating
systems, consult the documentation for that operating system.

sudo iptables-save | sudo tee /etc/sysconfig/iptables && sudo systemctl enable --now
 iptables

Using task IAM roles on your Amazon EC2 or external instances

Your Amazon EC2 or external instances require at least version 1.11.0 of the container agent
to use task IAM roles; however, we recommend using the latest container agent version. For
information about checking your agent version and updating to the latest version, see Updating
the Amazon ECS container agent. If you are using an Amazon ECS-optimized AMI, your instance
needs at least 1.11.0-1 of the ecs-init package. If your instances are using the latest Amazon
ECS-optimized AMI, then they contain the required versions of the container agent and ecs-init.
For more information, see Amazon ECS-optimized AMI.

Task IAM role 989

Amazon Elastic Container Service Developer Guide

If you are not using the Amazon ECS-optimized AMI for your container instances, be sure to add
the --net=host option to your docker run command that starts the agent and the following
agent configuration variables for your desired configuration (for more information, see Amazon
ECS container agent configuration):

ECS_ENABLE_TASK_IAM_ROLE=true

Uses IAM roles for tasks for containers with the bridge and default network modes.

ECS_ENABLE_TASK_IAM_ROLE_NETWORK_HOST=true

Uses IAM roles for tasks for containers with the host network mode. This variable is only
supported on agent versions 1.12.0 and later.

For an example run command, see Manually updating the Amazon ECS container agent (for non-
Amazon ECS-Optimized AMIs). You will also need to set the following networking commands on
your container instance so that the containers in your tasks can retrieve their AWS credentials:

sudo sysctl -w net.ipv4.conf.all.route_localnet=1
sudo iptables -t nat -A PREROUTING -p tcp -d 169.254.170.2 --dport 80 -j DNAT --to-
destination 127.0.0.1:51679
sudo iptables -t nat -A OUTPUT -d 169.254.170.2 -p tcp -m tcp --dport 80 -j REDIRECT --
to-ports 51679

You must save these iptables rules on your container instance for them to survive a reboot. You
can use the iptables-save and iptables-restore commands to save your iptables rules and restore
them at boot. For more information, consult your specific operating system documentation.

Creating an IAM role and policy for your tasks

When creating an IAM policy for your tasks to use, the policy should include the permissions that
you would like the containers in your tasks to assume. You can use an existing AWS managed
policy, or you can create a custom policy from scratch that meets your specific needs. For more
information, see Creating IAM policies in the IAM User Guide.

Important

For Amazon ECS tasks (for all launch types), we recommend that you use the IAM policy
and role for your tasks. These credentials allow your task to make AWS API requests
without calling sts:AssumeRole to assume the same role that is already associated with

Task IAM role 990

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create.html

Amazon Elastic Container Service Developer Guide

the task. If your task requires that a role assumes itself, you must create a trust policy that
explicitly allows that role to assume itself. For more information, see Modifying a role trust
policy in the IAM User Guide.

After the IAM policy is created, you can create an IAM role which includes that policy which you
reference in your Amazon ECS task definition. You can create the role using the Elastic Container
Service Task use case in the IAM console. Then, you can attach your specific IAM policy to the role
that gives the containers in your task the permissions you desire. The procedures below describe
how to do this.

If you have multiple task definitions or services that require IAM permissions, you should consider
creating a role for each specific task definition or service with the minimum required permissions
for the tasks to operate so that you can minimize the access that you provide for each task.

For information about the service endpoint for your Region, see Service endpoints in the Amazon
Web Services General Reference Reference Guide.

The IAM task role must have a trust policy that specifies the ecs-tasks.amazonaws.com service.
The sts:AssumeRole permission allows your tasks to assume an IAM role that's different from
the one that the Amazon EC2 instance uses. This way, your task doesn't inherit the role associated
with the Amazon EC2 instance. The following is an example trust policy. Replace the Region
identifier and specify the AWS account number that you use when launching tasks.

{
 "Version":"2012-10-17",
 "Statement":[
 {
 "Effect":"Allow",
 "Principal":{
 "Service":[
 "ecs-tasks.amazonaws.com"
]
 },
 "Action":"sts:AssumeRole",
 "Condition":{
 "ArnLike":{
 "aws:SourceArn":"arn:aws:ecs:us-west-2:111122223333:*"
 },
 "StringEquals":{
 "aws:SourceAccount":"111122223333"

Task IAM role 991

https://docs.aws.amazon.com/IAM/latest/UserGuide/roles-managingrole-editing-console.html#roles-managingrole_edit-trust-policy
https://docs.aws.amazon.com/IAM/latest/UserGuide/roles-managingrole-editing-console.html#roles-managingrole_edit-trust-policy
https://docs.aws.amazon.com/general/latest/gr/ecs-service.html#ecs_region

Amazon Elastic Container Service Developer Guide

 }
 }
 }
]
}

Important

When creating your task IAM role, it is recommended that you use the
aws:SourceAccount or aws:SourceArn condition keys in either the trust relationship
or the IAM policy associated with the role to scope the permissions further to prevent
the confused deputy security issue. Using the aws:SourceArn condition key to specify
a specific cluster is not currently supported, you should use the wildcard to specify all
clusters. To learn more about the confused deputy problem and how to protect your AWS
account, see The confused deputy problem in the IAM User Guide.

The following procedures describe how to create a policy to retrieve objects from Amazon S3 with
an example policy. Replace all user input with your own values.

AWS Management Console

To use the JSON policy editor to create a policy

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. In the navigation pane on the left, choose Policies.

If this is your first time choosing Policies, the Welcome to Managed Policies page appears.
Choose Get Started.

3. At the top of the page, choose Create policy.

4. In the Policy editor section, choose the JSON option.

5. Enter the following JSON policy document:

{
 "Version":"2012-10-17",
 "Statement":[
 {
 "Effect":"Allow",

Task IAM role 992

https://docs.aws.amazon.com/IAM/latest/UserGuide/confused-deputy.html
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/

Amazon Elastic Container Service Developer Guide

 "Action":[
 "s3:GetObject"
],
 "Resource":[
 "arn:aws:s3:::my-task-secrets-bucket/*"
],
 "Condition":{
 "ArnLike":{
 "aws:SourceArn":"arn:aws:ecs:region:123456789012:*"
 },
 "StringEquals":{
 "aws:SourceAccount":"123456789012"
 }
 }
 }
]
}

6. Choose Next.

Note

You can switch between the Visual and JSON editor options anytime. However,
if you make changes or choose Next in the Visual editor, IAM might restructure
your policy to optimize it for the visual editor. For more information, see Policy
restructuring in the IAM User Guide.

7. On the Review and create page, enter a Policy name and a Description (optional) for
the policy that you are creating. Review Permissions defined in this policy to see the
permissions that are granted by your policy.

8. Choose Create policy to save your new policy.

AWS CLI

Replace all user input with your own values.

1. Create a file called s3-policy.json with the following content.

{
 "Version":"2012-10-17",
 "Statement":[

Task IAM role 993

https://docs.aws.amazon.com/IAM/latest/UserGuide/troubleshoot_policies.html#troubleshoot_viseditor-restructure
https://docs.aws.amazon.com/IAM/latest/UserGuide/troubleshoot_policies.html#troubleshoot_viseditor-restructure

Amazon Elastic Container Service Developer Guide

 {
 "Effect":"Allow",
 "Action":[
 "s3:GetObject"
],
 "Resource":[
 "arn:aws:s3:::my-task-secrets-bucket/*"
],
 "Condition":{
 "ArnLike":{
 "aws:SourceArn":"arn:aws:ecs:region:123456789012:*"
 },
 "StringEquals":{
 "aws:SourceAccount":"123456789012"
 }
 }
 }
]
}

2. Use the following command to create the IAM policy using the JSON policy document file.

aws iam create-policy \
 --policy-name taskRolePolicy \
 --policy-document file://s3-policy.json

The following procedures describe how to create a task IAM role by attaching an IAM policy that
you create.

AWS Management Console

To create an IAM role for your tasks (AWS Management Console)

1. Open the IAM console at https://console.aws.amazon.com/iam/.

2. In the navigation pane, choose Roles, Create role.

3. For Select trusted entity section, choose AWS service.

4. For Use case, using the drop down menu, select Elastic Container Service and then the
Elastic Container Service Task use case and then choose Next.

5. For Add permissions, search for and choose the policy you created, and then choose Next.

6. On Step 3: Name, review, and create, do the following:

Task IAM role 994

https://console.aws.amazon.com/iam/

Amazon Elastic Container Service Developer Guide

a. For Role name, enter a name for your role. For this example, type
AmazonECSTaskS3BucketRole to name the role.

b. (Optional) For Description. specify a description for this IAM role.

c. Review the trusted entity and permissions policy for the role.

d. For Add tags (Optional), enter any metadata tags you want to associate with the IAM
role, and then choose Create role.

AWS CLI

Replace all user input with your own values.

1. Create a file named ecs-tasks-trust-policy.json that contains the trust policy
to use for the task IAM role. The file should contain the following. Replace the Region
identifier and specify the AWS account number that you use when launching tasks.

{
 "Version":"2012-10-17",
 "Statement":[
 {
 "Effect":"Allow",
 "Principal":{
 "Service":[
 "ecs-tasks.amazonaws.com"
]
 },
 "Action":"sts:AssumeRole",
 "Condition":{
 "ArnLike":{
 "aws:SourceArn":"arn:aws:ecs:us-west-2:111122223333:*"
 },
 "StringEquals":{
 "aws:SourceAccount":"111122223333"
 }
 }
 }
]
}

2. Create an IAM role named ecsTaskRole using the trust policy created in the previous step.

Task IAM role 995

Amazon Elastic Container Service Developer Guide

aws iam create-role \
 --role-name ecsTaskRole \
 --assume-role-policy-document file://ecs-tasks-trust-policy.json

3. Retrieve the ARN of the IAM policy you created using the following command. Replace
taskRolePolicy with the name of the policy you created.

aws iam list-policies --scope Local --query 'Policies[?
PolicyName==`taskRolePolicy`].Arn'

4. Attach the IAM policy you created to the ecsTaskRole role. Replace the policy-arn with
the ARN of the policy that you created.

aws iam attach-role-policy \
 --role-name ecsTaskRole \
 --policy-arn arn:aws:iam:111122223333:aws:policy/taskRolePolicy

IAM permissions required for ECS Exec

The ECS Exec feature requires a task IAM role to grant containers the permissions needed for
communication between the managed SSM agent (execute-command agent) and the SSM service.
You should add the following permissions to a task IAM role and include the task IAM role in your
task definition. For more information, see Adding and Removing IAM Policies in the IAM User Guide.

Use the following policy for your task IAM role to add the required SSM permissions.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "ssmmessages:CreateControlChannel",
 "ssmmessages:CreateDataChannel",
 "ssmmessages:OpenControlChannel",
 "ssmmessages:OpenDataChannel"
],
 "Resource": "*"
 }
]

Task IAM role 996

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/ecs-exec.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_manage-attach-detach.html

Amazon Elastic Container Service Developer Guide

}

Specifying an IAM role for your tasks

After you have created a role and attached a policy to that role, you can run tasks that assume the
role. You have several options to do this:

• Specify an IAM role for your tasks in the task definition. You can create a new task definition or a
new revision of an existing task definition and specify the role you created previously. If you use
the console to create your task definition, choose your IAM role in the Task Role field. For more
information, see Creating a task definition using the console.

If you use the AWS CLI or SDKs, specify the Amazon Resource Name (ARN) of your task role using
the taskRoleArn parameter. For more information, see TaskDefinition in the Amazon ECS API
Reference and Task definition parameters.

Note

This option is required if you want to use IAM task roles in an Amazon ECS service.

• Specify an IAM task role override when running a task. You can specify an IAM task role override
when running a task. If you use the AWS CLI or SDKs, specify your task role ARN using the
taskRoleArn parameter in the overrides JSON object. For more information, about the
overrides parameter, see RunTask and TaskOverride in the Amazon ECS API Reference. For
more information about overriding using the console, see Creating a standalone task.

Note

In addition to the standard Amazon ECS permissions required to run tasks and services,
users also require iam:PassRole permissions to use IAM roles for tasks.

Amazon ECS infrastructure IAM role

An Amazon ECS infrastructure IAM role allows Amazon ECS to manage infrastructure resources in
your clusters on your behalf, and is used when:

Infrastructure IAM role 997

https://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_TaskDefinition.html
https://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_RunTask.html
https://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_TaskOverride.html

Amazon Elastic Container Service Developer Guide

• You want to attach Amazon EBS volumes to your Fargate or EC2 launch type Amazon ECS tasks.
The infrastructure role allows Amazon ECS to manage Amazon EBS volumes for your tasks.

• You want to use Transport Layer Security (TLS) to encrypt traffic between your Amazon ECS
Service Connect services.

When Amazon ECS assumes this role to take actions on your behalf, the events will be visible
in AWS CloudTrail. If Amazon ECS uses the role to manage Amazon EBS volumes attached to
your tasks, the CloudTrail log roleSessionName will be ECSTaskVolumesForEBS. If the role
is used to encrypt traffic between your Amazon ECS Service Connect services, the CloudTrail log
roleSessionName will be ECSServiceConnectForTLS. You can use this name to search events
in the CloudTrail console by filtering for User name.

Amazon ECS provides the following managed policies named
AmazonECSInfrastructureRolePolicyForVolumes and
AmazonECSInfrastructureRolePolicyForServiceConnectTransportLayerSecurity
which contain the permissions required for volume attachment and TLS respectively. For more
information, see AWS managed policies for Amazon Elastic Container Service.

AmazonECSInfrastructureRolePolicyForVolumes

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "CreateEBSManagedVolume",
 "Effect": "Allow",
 "Action": "ec2:CreateVolume",
 "Resource": "arn:aws:ec2:*:*:volume/*",
 "Condition": {
 "ArnLike": {
 "aws:RequestTag/AmazonECSCreated": "arn:aws:ecs:*:*:task/*"
 },
 "StringEquals": {
 "aws:RequestTag/AmazonECSManaged": "true"
 }
 }
 },
 {
 "Sid": "TagOnCreateVolume",
 "Effect": "Allow",

Infrastructure IAM role 998

Amazon Elastic Container Service Developer Guide

 "Action": "ec2:CreateTags",
 "Resource": "arn:aws:ec2:*:*:volume/*",
 "Condition": {
 "ArnLike": {
 "aws:RequestTag/AmazonECSCreated": "arn:aws:ecs:*:*:task/*"
 },
 "StringEquals": {
 "ec2:CreateAction": "CreateVolume",
 "aws:RequestTag/AmazonECSManaged": "true"
 }
 }
 },
 {
 "Sid": "DescribeVolumesForLifecycle",
 "Effect": "Allow",
 "Action": [
 "ec2:DescribeVolumes",
 "ec2:DescribeAvailabilityZones"
],
 "Resource": "*"
 },
 {
 "Sid": "ManageEBSVolumeLifecycle",
 "Effect": "Allow",
 "Action": [
 "ec2:AttachVolume",
 "ec2:DetachVolume"
],
 "Resource": "arn:aws:ec2:*:*:volume/*",
 "Condition": {
 "StringEquals": {
 "aws:ResourceTag/AmazonECSManaged": "true"
 }
 }
 },
 {
 "Sid": "ManageVolumeAttachmentsForEC2",
 "Effect": "Allow",
 "Action": [
 "ec2:AttachVolume",
 "ec2:DetachVolume"
],
 "Resource": "arn:aws:ec2:*:*:instance/*"
 },

Infrastructure IAM role 999

Amazon Elastic Container Service Developer Guide

 {
 "Sid": "DeleteEBSManagedVolume",
 "Effect": "Allow",
 "Action": "ec2:DeleteVolume",
 "Resource": "arn:aws:ec2:*:*:volume/*",
 "Condition": {
 "ArnLike": {
 "aws:ResourceTag/AmazonECSCreated": "arn:aws:ecs:*:*:task/*"
 },
 "StringEquals": {
 "aws:ResourceTag/AmazonECSManaged": "true"
 }
 }
 }
]
}

AmazonECSInfrastructureRolePolicyForServiceConnectTransportLayerSecurity

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "CreateSecret",
 "Effect": "Allow",
 "Action": "secretsmanager:CreateSecret",
 "Resource": "arn:aws:secretsmanager:*:*:secret:ecs-sc!*",
 "Condition": {
 "ArnLike": {
 "aws:RequestTag/AmazonECSCreated": [
 "arn:aws:ecs:*:*:service/*/*",
 "arn:aws:ecs:*:*:task-set/*/*"
]
 },
 "StringEquals": {
 "aws:RequestTag/AmazonECSManaged": "true",
 "aws:ResourceAccount": "${aws:PrincipalAccount}"
 }
 }
 },
 {
 "Sid": "TagOnCreateSecret",
 "Effect": "Allow",

Infrastructure IAM role 1000

Amazon Elastic Container Service Developer Guide

 "Action": "secretsmanager:TagResource",
 "Resource": "arn:aws:secretsmanager:*:*:secret:ecs-sc!*",
 "Condition": {
 "ArnLike": {
 "aws:RequestTag/AmazonECSCreated": [
 "arn:aws:ecs:*:*:service/*/*",
 "arn:aws:ecs:*:*:task-set/*/*"
]
 },
 "StringEquals": {
 "aws:RequestTag/AmazonECSManaged": "true",
 "aws:ResourceAccount": "${aws:PrincipalAccount}"
 }
 }
 },
 {
 "Sid": "RotateTLSCertificateSecret",
 "Effect": "Allow",
 "Action": [
 "secretsmanager:DescribeSecret",
 "secretsmanager:UpdateSecret",
 "secretsmanager:GetSecretValue",
 "secretsmanager:PutSecretValue",
 "secretsmanager:DeleteSecret",
 "secretsmanager:RotateSecret",
 "secretsmanager:UpdateSecretVersionStage"
],
 "Resource": "arn:aws:secretsmanager:*:*:secret:ecs-sc!*",
 "Condition": {
 "StringEquals": {
 "secretsmanager:ResourceTag/aws:secretsmanager:owningService":
 "ecs-sc",
 "aws:ResourceAccount": "${aws:PrincipalAccount}"
 }
 }
 },
 {
 "Sid": "ManagePrivateCertificateAuthority",
 "Effect": "Allow",
 "Action": [
 "acm-pca:GetCertificate",
 "acm-pca:GetCertificateAuthorityCertificate",
 "acm-pca:DescribeCertificateAuthority"
],

Infrastructure IAM role 1001

Amazon Elastic Container Service Developer Guide

 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "aws:ResourceTag/AmazonECSManaged": "true"
 }
 }
 },
 {
 "Sid":
 "ManagePrivateCertificateAuthorityForIssuingEndEntityCertificate",
 "Effect": "Allow",
 "Action": [
 "acm-pca:IssueCertificate"
],
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "aws:ResourceTag/AmazonECSManaged": "true",
 "acm-pca:TemplateArn":"arn:aws:acm-pca:::template/
EndEntityCertificate/V1"
 }
 }
 }
]
}

Creating the ECS infrastructure role (ecsInfrastructureRole)

Replace all user input with your own information.

1. Create a file named ecs-infrastructure-trust-policy.json that contains the trust
policy to use for the IAM role. The file should contain the following:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "AllowAccessToECSForInfrastructureManagement",
 "Effect": "Allow",
 "Principal": {
 "Service": "ecs.amazonaws.com"
 },

Infrastructure IAM role 1002

Amazon Elastic Container Service Developer Guide

 "Action": "sts:AssumeRole"
 }
]
}

2. Use the following AWS CLI command to create an IAM role named ecsInfrastructureRole
by using the trust policy that you created in the previous step.

aws iam create-role \
 --role-name ecsInfrastructureRole \
 --assume-role-policy-document file://ecs-infrastructure-trust-policy.json

3. Depending on your use case, attach the AWS managed
AmazonECSInfrastructureRolePolicyForVolumes or
AmazonECSInfrastructureRolePolicyForServiceConnectTransportLayerSecurity
policy to the ecsInfrastructureRole role.

aws iam attach-role-policy \
 --role-name ecsInfrastructureRole \
 --policy-arn arn:aws:iam::aws:policy/service-role/
AmazonECSInfrastructureRolePolicyForVolumes

aws iam attach-role-policy \
 --role-name ecsInfrastructureRole \
 --policy-arn arn:aws::iam::aws:policy/service-role/
AmazonECSInfrastructureRolePolicyForServiceConnectTransportLayerSecurity

You can also use the IAM console's Custom trust policy workflow (https://
console.aws.amazon.com/iam/) to create the role. For more information, see Creating a role using
custom trust policies (console) in the IAM User Guide.

Granting a user permission to pass the ECS infrastructure role to Amazon ECS

To use an ECS infrastructure IAM role, you must grant your user permission to pass the
role to Amazon ECS. Attach the following iam:PassRole permission to your user. Replace
ecsInfrastructureRole with the name of the infrastructure role that you created.

{
 "Version": "2012-10-17",

Infrastructure IAM role 1003

https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-custom.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-custom.html

Amazon Elastic Container Service Developer Guide

 "Statement": [

 {
 "Action": "iam:PassRole",
 "Effect": "Allow",
 "Resource": ["arn:aws:iam::*:role/ecsInfrastructureRole"],
 "Condition": {
 "StringEquals": {"iam:PassedToService": "ecs.amazonaws.com"}
 }
 }
]
}

For more information about iam:Passrole and updating permissions for your user, see Granting
a user permissions to pass a role to an AWS service and Changing permissions for an IAM user in
the AWS Identity and Access Management User Guide.

Additional configuration for Windows IAM roles for tasks

Important

For Windows containers on Fargate that use task roles, no further action is necessary. For
Windows containers on EC2 that use task roles, follow these steps.

The IAM roles for tasks with Windows features requires additional configuration on EC2, but much
of this configuration is similar to configuring IAM roles for tasks on Linux container instances. The
following requirements must be met to configure IAM roles for tasks for Windows containers.

• When you launch your container instances, you must set the -EnableTaskIAMRole option in
the container instances user data script. The EnableTaskIAMRole turns on the Task IAM roles
feature for the tasks. For example:

<powershell>
Import-Module ECSTools
Initialize-ECSAgent -Cluster 'windows' -EnableTaskIAMRole
</powershell>

• You must bootstrap your container with the networking commands that are provided in IAM
roles for task container bootstrap script.

Additional configuration for Windows task role 1004

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_passrole.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_passrole.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_change-permissions.html

Amazon Elastic Container Service Developer Guide

• You must create an IAM role and policy for your tasks. For more information, see Creating an IAM
role and policy for your tasks.

• You must specify the IAM role you created for your tasks when you register the task definition, or
as an override when you run the task. For more information, see Specifying an IAM role for your
tasks.

• The IAM roles for the task credential provider use port 80 on the container instance. Therefore,
if you configure IAM roles for tasks on your container instance, your containers can't use port 80
for the host port in any port mappings. To expose your containers on port 80, we recommend
configuring a service for them that uses load balancing. You can use port 80 on the load
balancer. By doing so, traffic can be routed to another host port on your container instances. For
more information, see Service load balancing.

• If your Windows instance is restarted, you must delete the proxy interface and initialize the
Amazon ECS container agent again to bring the credential proxy back up.

IAM roles for task container bootstrap script

Before containers can access the credential proxy on the container instance to get credentials, the
container must be bootstrapped with the required networking commands. The following code
example script should be run on your containers when they start.

Note

You do not need to run this script when you use awsvpc network mode on Windows.

If you run Windows containers which include Powershell, then use the following script:

Copyright Amazon.com Inc. or its affiliates. All Rights Reserved.
#
Licensed under the Apache License, Version 2.0 (the "License"). You may
not use this file except in compliance with the License. A copy of the
License is located at
#
http://aws.amazon.com/apache2.0/
#
or in the "license" file accompanying this file. This file is distributed
on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either
express or implied. See the License for the specific language governing

Additional configuration for Windows task role 1005

Amazon Elastic Container Service Developer Guide

permissions and limitations under the License.

$gateway = (Get-NetRoute | Where { $_.DestinationPrefix -eq '0.0.0.0/0' } | Sort-Object
 RouteMetric | Select NextHop).NextHop
$ifIndex = (Get-NetAdapter -InterfaceDescription "Hyper-V Virtual Ethernet*" | Sort-
Object | Select ifIndex).ifIndex
New-NetRoute -DestinationPrefix 169.254.170.2/32 -InterfaceIndex $ifIndex -NextHop
 $gateway -PolicyStore ActiveStore # credentials API
New-NetRoute -DestinationPrefix 169.254.169.254/32 -InterfaceIndex $ifIndex -NextHop
 $gateway -PolicyStore ActiveStore # metadata API

If you run Windows containers that only have the Command shell, then use the following script:

Copyright Amazon.com Inc. or its affiliates. All Rights Reserved.
#
Licensed under the Apache License, Version 2.0 (the "License"). You may
not use this file except in compliance with the License. A copy of the
License is located at
#
http://aws.amazon.com/apache2.0/
#
or in the "license" file accompanying this file. This file is distributed
on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either
express or implied. See the License for the specific language governing
permissions and limitations under the License.

for /f "tokens=1" %i in ('netsh interface ipv4 show interfaces ^| findstr /x /r
 ".*vEthernet.*"') do set interface=%i
for /f "tokens=3" %i in ('netsh interface ipv4 show addresses %interface% ^| findstr /
x /r ".*Default.Gateway.*"') do set gateway=%i
netsh interface ipv4 add route prefix=169.254.170.2/32 interface="%interface%"
 nexthop="%gateway%" store=active # credentials API
netsh interface ipv4 add route prefix=169.254.169.254/32 interface="%interface%"
 nexthop="%gateway%" store=active # metadata API

Amazon ECS container instance IAM role

Amazon ECS container instances, including both Amazon EC2 and external instances, run the
Amazon ECS container agent and require an IAM role for the service to know that the agent
belongs to you. Before you launch container instances and register them to a cluster, you must
create an IAM role for your container instances to use. The role is created in the account that you
use to log into the console or run the AWS CLI commands.

Container instance IAM role 1006

Amazon Elastic Container Service Developer Guide

Important

If you are registering external instances to your cluster, the IAM role you use requires
Systems Manager permissions as well. For more information, see ECS Anywhere IAM role.

Amazon ECS provides the AmazonEC2ContainerServiceforEC2Role managed IAM policy
which contains the permissions needed to use the full Amazon ECS feature set. This managed
policy can be attached to an IAM role and associated with your container instances. Alternatively,
you can use the managed policy as a guide when creating a custom policy to use. The container
instance role provides permissions needed for the Amazon ECS container agent and Docker
daemon to call AWS APIs on your behalf. For more information on the managed policy, see
AmazonEC2ContainerServiceforEC2Role.

Amazon ECS supports launching container instances with increased ENI density using supported
Amazon EC2 instance types. When you use this feature, we recommend that you create 2 container
instance roles. Enable the awsvpcTrunking account setting for one role and use that role for
tasks that require ENI trunking. For information about the awsvpcTrunking account setting, see
Accessing Amazon ECS features through account settings.

Creating the container instance (ecsInstanceRole) role

Important

If you are registering external instances to your cluster, see ECS Anywhere IAM role.

You can manually create the role and attach the managed IAM policy for container instances
to allow Amazon ECS to add permissions for future features and enhancements as they are
introduced. Use the following procedure to attach the managed IAM policy if needed.

AWS Management Console

To create the ecsInstanceRole IAM role for your container instances

1. Open the IAM console at https://console.aws.amazon.com/iam/.

2. In the navigation pane, choose Roles, and then choose Create role.

3. Choose the AWS service role type, and then under Use cases for other AWS services,
choose Elastic Container Service.

Container instance IAM role 1007

https://console.aws.amazon.com/iam/

Amazon Elastic Container Service Developer Guide

4. Choose the EC2 Role for Elastic Container Service use case, and then choose Next:
Permissions.

5. In the Permissions policies section, verify the AmazonEC2ContainerServiceforEC2Role
policy is selected, and then choose Next.

Important

The AmazonEC2ContainerServiceforEC2Role managed policy should be attached
to the container instance IAM role, otherwise you will receive an error using the
AWS Management Console to create clusters.

6. For Role name, enter ecsInstanceRole and optionally you can enter a description.

7. For Add tags (optional), enter any custom tags to associate with the policy, and then
choose Next: Review.

8. Review your role information and then choose Create role to finish.

AWS CLI

Replace all user input with your own values.

1. Create a file called instance-role-trust-policy.json with the following contents.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": { "Service": "ec2.amazonaws.com"},
 "Action": "sts:AssumeRole"
 }
]
}

2. Use the following command to create the instance IAM role using the trust policy
document.

aws iam create-role \
 --role-name ecsInstanceRole \
 --assume-role-policy-document file://instance-role-trust-policy.json

Container instance IAM role 1008

Amazon Elastic Container Service Developer Guide

3. Create an instance profile named ecsInstanceRole-profile using the create-instance-
profile command.

aws iam create-instance-profile --instance-profile-name ecsInstanceRole-profile

Example response

{
 "InstanceProfile": {
 "InstanceProfileId": "AIPAJTLBPJLEGREXAMPLE",
 "Roles": [],
 "CreateDate": "2022-04-12T23:53:34.093Z",
 "InstanceProfileName": "ecsInstanceRole-profile",
 "Path": "/",
 "Arn": "arn:aws:iam::123456789012:instance-profile/ecsInstanceRole-
profile"
 }
}

4. Add the ecsInstanceRole role to the ecsInstanceRole-profile instance profile.

aws iam add-role-to-instance-profile \
 --instance-profile-name ecsInstanceRole-profile \
 --role-name ecsInstanceRole

5. Attach the AmazonEC2ContainerServiceRoleForEC2Role managed policy to the role
using the following command.

aws iam attach-role-policy \
 --policy-arn arn:aws:iam::aws:policy/service-role/
AmazonEC2ContainerServiceforEC2Role \
 --role-name ecsInstanceRole

Adding Amazon S3 read-only access to your container instance (
ecsInstanceRole) role

Storing configuration information in a private bucket in Amazon S3 and granting read-only access
to your container instance IAM role is a secure and convenient way to allow container instance
configuration at launch time. You can store a copy of your ecs.config file in a private bucket, use

Container instance IAM role 1009

https://docs.aws.amazon.com/cli/latest/reference/iam/create-instance-profile.html
https://docs.aws.amazon.com/cli/latest/reference/iam/create-instance-profile.html

Amazon Elastic Container Service Developer Guide

Amazon EC2 user data to install the AWS CLI and then copy your configuration information to /
etc/ecs/ecs.config when the instance launches.

For more information about creating an ecs.config file, storing it in Amazon S3, and launching
instances with this configuration, see Storing container instance configuration in Amazon S3.

You can use the following AWS CLI command to allow Amazon S3 read-only access for your
container instance role. Replace ecsInstanceRole with the name of the role that you created.

aws iam attach-role-policy \
 --role-name ecsInstanceRole \
 --policy-arn arn:aws::iam::aws:policy/AmazonS3ReadOnlyAccess

You can also use the IAM console to add Amazon S3 read-only access
(AmazonS3ReadOnlyAccess) to your role. For more information, see Modifying a role permissions
policy (console) in the AWS Identity and Access Management User Guide.

Required permissions for monitoring container instances

Before your container instances can send log data to CloudWatch Logs, you must create an IAM
policy to allow your container instances to use the CloudWatch Logs APIs, and then you must
attach that policy to ecsInstanceRole.

AWS Management Console

To use the JSON policy editor to create a policy

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. In the navigation pane on the left, choose Policies.

If this is your first time choosing Policies, the Welcome to Managed Policies page appears.
Choose Get Started.

3. At the top of the page, choose Create policy.

4. In the Policy editor section, choose the JSON option.

5. Enter the following JSON policy document:

{
 "Version": "2012-10-17",

Container instance IAM role 1010

https://docs.aws.amazon.com/IAM/latest/UserGuide/roles-managingrole-editing-console.html#roles-modify_permissions-policy
https://docs.aws.amazon.com/IAM/latest/UserGuide/roles-managingrole-editing-console.html#roles-modify_permissions-policy
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/

Amazon Elastic Container Service Developer Guide

 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "logs:CreateLogGroup",
 "logs:CreateLogStream",
 "logs:PutLogEvents",
 "logs:DescribeLogStreams"
],
 "Resource": ["arn:aws:logs:*:*:*"]
 }
]
}

6. Choose Next.

Note

You can switch between the Visual and JSON editor options anytime. However,
if you make changes or choose Next in the Visual editor, IAM might restructure
your policy to optimize it for the visual editor. For more information, see Policy
restructuring in the IAM User Guide.

7. On the Review and create page, enter a Policy name and a Description (optional) for
the policy that you are creating. Review Permissions defined in this policy to see the
permissions that are granted by your policy.

8. Choose Create policy to save your new policy.

After you create the policy, attach the policy to the container instance role. For information
about how to attach the policy to the role, see Modifying a role permissions policy (console) in
the AWS Identity and Access Management User Guide.

AWS CLI

1. Create a file called instance-cw-logs.json with the following content.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",

Container instance IAM role 1011

https://docs.aws.amazon.com/IAM/latest/UserGuide/troubleshoot_policies.html#troubleshoot_viseditor-restructure
https://docs.aws.amazon.com/IAM/latest/UserGuide/troubleshoot_policies.html#troubleshoot_viseditor-restructure
https://docs.aws.amazon.com/IAM/latest/UserGuide/roles-managingrole-editing-console.html#roles-modify_permissions-policy

Amazon Elastic Container Service Developer Guide

 "Action": [
 "logs:CreateLogGroup",
 "logs:CreateLogStream",
 "logs:PutLogEvents",
 "logs:DescribeLogStreams"
],
 "Resource": ["arn:aws:logs:*:*:*"]
 }
]
}

2. Use the following command to create the IAM policy using the JSON policy document file.

aws iam create-policy \
 --policy-name cwlogspolicy \
 --policy-document file://instance-cw-logs.json

3. Retrieve the ARN of the IAM policy you created using the following command. Replace
cwlogspolicy with the name of the policy you created.

aws iam list-policies --scope Local --query 'Policies[?
PolicyName==`cwlogsppolicy`].Arn'

4. Use the following command to attach the policy to the container instance IAM role using
the policy ARN.

aws iam attach-role-policy \
 --role-name ecsInstanceRole \
 --policy-arn arn:aws:iam:111122223333:aws:policy/cwlogspolicy

ECS Anywhere IAM role

When you register an on-premises server or virtual machine (VM) to your cluster, the server
or VM requires an IAM role to communicate with AWS APIs. You only need to create this IAM
role once for each AWS account. However, this IAM role must be associated with each server or
VM that you register to a cluster. This role is the ECSAnywhereRole. You can create this role
manually. Alternatively, Amazon ECS can create the role on your behalf when you register an
external instance in the AWS Management Console. You can use IAM console search to search for
ecsAnywhereRole and see if your account already has the role. For more information, see IAM
console search in the IAM user guide.

ECS Anywhere IAM role 1012

https://docs.aws.amazon.com/IAM/latest/UserGuide/console_search.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/console_search.html

Amazon Elastic Container Service Developer Guide

AWS provides two managed IAM policies that can be used when creating the ECS Anywhere IAM
role, the AmazonSSMManagedInstanceCore and AmazonEC2ContainerServiceforEC2Role
policies. The AmazonEC2ContainerServiceforEC2Role policy includes permissions that likely
provide more access than you need. Therefore, depending on your specific use case, we recommend
that you create a custom policy adding only the permissions from that policy that you require in it.
For more information, see Amazon ECS container instance IAM role.

Creating the ECS Anywhere (ecsAnywhereRole) role

Replace all user input with your own information.

1. Create a local file named ssm-trust-policy.json with the following trust policy.

{
 "Version": "2012-10-17",
 "Statement": {
 "Effect": "Allow",
 "Principal": {"Service": [
 "ssm.amazonaws.com"
]},
 "Action": "sts:AssumeRole"
 }
}

2. Create the role and attach the trust policy by using the following AWS CLI command.

aws iam create-role --role-name ecsAnywhereRole --assume-role-policy-document
 file://ssm-trust-policy.json

3. Attach the AWS managed policies by using the following command.

aws iam attach-role-policy --role-name ecsAnywhereRole --policy-arn
 arn:aws:iam::aws:policy/AmazonSSMManagedInstanceCore
aws iam attach-role-policy --role-name ecsAnywhereRole --policy-arn
 arn:aws:iam::aws:policy/service-role/AmazonEC2ContainerServiceforEC2Role

You can also use the IAM console's Custom trust policy workflow (https://
console.aws.amazon.com/iam/) to create the role. For more information, see Creating a role using
custom trust policies (console) in the IAM User Guide.

ECS Anywhere IAM role 1013

https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-custom.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-custom.html

Amazon Elastic Container Service Developer Guide

Conditional IAM permissions

The task execution IAM role grants the Amazon ECS container agent permission to make AWS
API calls on your behalf. When a task execution IAM role is used, it must be specified in your task
definition. For more information, see Amazon ECS task execution IAM role.

The task execution role is required if any of the following conditions apply:

• You're sending container logs to CloudWatch Logs using the awslogs log driver.

• Your task definition specifies a container image that's hosted in an Amazon ECR private
repository. However, if the ECSAnywhereRole IAM role that's associated with your external
instance also includes the permissions necessary to pull images from Amazon ECR then your task
execution role doesn't need to include them.

Amazon ECS CodeDeploy IAM Role

Before you can use the CodeDeploy blue/green deployment type with Amazon ECS, the
CodeDeploy service needs permissions to update your Amazon ECS service on your behalf. These
permissions are provided by the CodeDeploy IAM role (ecsCodeDeployRole).

Note

Users also require permissions to use CodeDeploy; these permissions are described in Blue/
green deployment required IAM permissions.

There are two managed policies provided. The AWSCodeDeployRoleForECS policy, shown
below, gives CodeDeploy permission to update any resource using the associated action. The
AWSCodeDeployRoleForECSLimited policy, shown below, gives CodeDeploy more limited
permissions.

AWSCodeDeployRoleForECS

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "ecs:DescribeServices",

CodeDeploy IAM Role 1014

Amazon Elastic Container Service Developer Guide

 "ecs:CreateTaskSet",
 "ecs:UpdateServicePrimaryTaskSet",
 "ecs:DeleteTaskSet",
 "elasticloadbalancing:DescribeTargetGroups",
 "elasticloadbalancing:DescribeListeners",
 "elasticloadbalancing:ModifyListener",
 "elasticloadbalancing:DescribeRules",
 "elasticloadbalancing:ModifyRule",
 "lambda:InvokeFunction",
 "cloudwatch:DescribeAlarms",
 "sns:Publish",
 "s3:GetObject",
 "s3:GetObjectVersion"
],
 "Resource": "*",
 "Effect": "Allow"
 },
 {
 "Action": ["iam:PassRole"],
 "Effect": "Allow",
 "Resource": "*",
 "Condition": {
 "StringLike": {
 "iam:PassedToService": ["ecs-tasks.amazonaws.com"]
 }
 }
 }
]
}

AWSCodeDeployRoleForECSLimited

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "ecs:DescribeServices",
 "ecs:CreateTaskSet",
 "ecs:UpdateServicePrimaryTaskSet",
 "ecs:DeleteTaskSet",
 "cloudwatch:DescribeAlarms"
],

CodeDeploy IAM Role 1015

Amazon Elastic Container Service Developer Guide

 "Resource": "*",
 "Effect": "Allow"
 },
 {
 "Action": ["sns:Publish"],
 "Resource": "arn:aws:sns:*:*:CodeDeployTopic_*",
 "Effect": "Allow"
 },
 {
 "Action": [
 "elasticloadbalancing:DescribeTargetGroups",
 "elasticloadbalancing:DescribeListeners",
 "elasticloadbalancing:ModifyListener",
 "elasticloadbalancing:DescribeRules",
 "elasticloadbalancing:ModifyRule"
],
 "Resource": "*",
 "Effect": "Allow"
 },
 {
 "Action": ["lambda:InvokeFunction"],
 "Resource": "arn:aws:lambda:*:*:function:CodeDeployHook_*",
 "Effect": "Allow"
 },
 {
 "Action": [
 "s3:GetObject",
 "s3:GetObjectVersion"
],
 "Resource": "*",
 "Condition": {
 "StringEquals": {"s3:ExistingObjectTag/UseWithCodeDeploy": "true"}
 },
 "Effect": "Allow"
 },
 {
 "Action": ["iam:PassRole"],
 "Effect": "Allow",
 "Resource": [
 "arn:aws:iam::*:role/ecsTaskExecutionRole",
 "arn:aws:iam::*:role/ECSTaskExecution*"
],
 "Condition": {
 "StringLike": {

CodeDeploy IAM Role 1016

Amazon Elastic Container Service Developer Guide

 "iam:PassedToService": ["ecs-tasks.amazonaws.com"]
 }
 }
 }
]
}

Creating the CodeDeploy AWSCodeDeployRoleForECS role

You can use the following procedures to create a CodeDeploy role for Amazon ECS

AWS Management Console

To create an IAM role for CodeDeploy

1. Open the IAM console at https://console.aws.amazon.com/iam/.

2. In the navigation pane, choose Roles, Create role.

3. For Select type of trusted entity section, choose AWS service.

4. For Choose the service that will use this role, choose CodeDeploy.

5. For Select your use case, choose CodeDeploy - ECS, Next.

6. In the Add permissions section, do the following

a. Ensure that the AWSCodeDeployRoleForECS policy is selected.

b. Under Set permissions boundary - optional, choose Create role without a
permissions boundary.

c. Choose Next.

7. Under Name, review, and create, do the following:

a. For Role name, enter ecsCodeDeployRole, and enter an optional description.

b. For Add tags (optional), enter any custom tags to associate with the policy .

8. Choose Create role.

AWS CLI

Replace all user input with your own information.

CodeDeploy IAM Role 1017

https://console.aws.amazon.com/iam/

Amazon Elastic Container Service Developer Guide

1. Create a file named codedeploy-trust-policy.json that contains the trust policy to
use for the CodeDeploy IAM role.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "",
 "Effect": "Allow",
 "Principal": {
 "Service": ["codedeploy.amazonaws.com"]
 },
 "Action": "sts:AssumeRole"
 }
]
}

2. Create an IAM role named ecsCodedeployRole using the trust policy created in the
previous step.

aws iam create-role \
 --role-name ecsCodedeployRole \
 --assume-role-policy-document file://codedeploy-trust-policy.json

3. Attach the AWSCodeDeployRoleForECS or AWSCodeDeployRoleForECSLimited
managed policy to the ecsTaskRole role.

aws iam attach-role-policy \
 --role-name ecsCodedeployRole \
 --policy-arn arn:aws::iam::aws:policy/AWSCodeDeployRoleForECS

aws iam attach-role-policy \
 --role-name ecsCodedeployRole \
 --policy-arn arn:aws::iam::aws:policy/AWSCodeDeployRoleForECSLimited

Adding permissions for blue/green deployments

If the tasks in your Amazon ECS service using the blue/green deployment type require the use of
the task execution role or a task role override, then you must add the iam:PassRole permission

CodeDeploy IAM Role 1018

Amazon Elastic Container Service Developer Guide

for each task execution role or task role override to the CodeDeploy IAM role as a policy. For more
information, see Amazon ECS task execution IAM role and Task IAM role.

Use the following procedure to create the policy

AWS Management Console

To use the JSON policy editor to create a policy

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. In the navigation pane on the left, choose Policies.

If this is your first time choosing Policies, the Welcome to Managed Policies page appears.
Choose Get Started.

3. At the top of the page, choose Create policy.

4. In the Policy editor section, choose the JSON option.

5. Enter the following JSON policy document:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "iam:PassRole",
 "Resource": ["arn:aws:iam::<aws_account_id>:role/
<ecsTaskExecutionRole_or_TaskRole_name>"]
 }
]
}

6. Choose Next.

Note

You can switch between the Visual and JSON editor options anytime. However,
if you make changes or choose Next in the Visual editor, IAM might restructure
your policy to optimize it for the visual editor. For more information, see Policy
restructuring in the IAM User Guide.

CodeDeploy IAM Role 1019

https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/
https://docs.aws.amazon.com/IAM/latest/UserGuide/troubleshoot_policies.html#troubleshoot_viseditor-restructure
https://docs.aws.amazon.com/IAM/latest/UserGuide/troubleshoot_policies.html#troubleshoot_viseditor-restructure

Amazon Elastic Container Service Developer Guide

7. On the Review and create page, enter a Policy name and a Description (optional) for
the policy that you are creating. Review Permissions defined in this policy to see the
permissions that are granted by your policy.

8. Choose Create policy to save your new policy.

After you create the policy, attach the policy to the CodeDeploy role. For information about
how to attach the policy to the role, see Modifying a role permissions policy (console) in the
AWS Identity and Access Management User Guide.

AWS CLI

Replace all user input with your own information.

1. Create a file called blue-green-iam-passrole.json with the following content.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "iam:PassRole",
 "Resource": ["arn:aws:iam::<aws_account_id>:role/
<ecsTaskExecutionRole_or_TaskRole_name>"]
 }
]
}

2. Use the following command to create the IAM policy using the JSON policy document file.

aws iam create-policy \
 --policy-name cdTaskExecutionPolicy \
 --policy-document file://blue-green-iam-passrole.json

3. Retrieve the ARN of the IAM policy you created using the following command.

aws iam list-policies --scope Local --query 'Policies[?
PolicyName==`cdTaskExecutionPolicy`].Arn'

4. Use the following command to attach the policy to the CodeDeploy IAM role.

aws iam attach-role-policy \

CodeDeploy IAM Role 1020

https://docs.aws.amazon.com/IAM/latest/UserGuide/roles-managingrole-editing-console.html#roles-modify_permissions-policy

Amazon Elastic Container Service Developer Guide

 --role-name ecsCodedeployRole \
 --policy-arn arn:aws:iam:111122223333:aws:policy/cdTaskExecutionPolicy

Amazon ECS EventBridge IAM Role

Before you can use Amazon ECS scheduled tasks with EventBridge rules and targets, the
EventBridge service needs permissions to run Amazon ECS tasks on your behalf. These permissions
are provided by the EventBridge IAM role (ecsEventsRole).

The AmazonEC2ContainerServiceEventsRole policy is shown below.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": ["ecs:RunTask"],
 "Resource": ["*"]
 },
 {
 "Effect": "Allow",
 "Action": "iam:PassRole",
 "Resource": ["*"],
 "Condition": {
 "StringLike": {"iam:PassedToService": "ecs-tasks.amazonaws.com"}
 }
 },
 {
 "Effect": "Allow",
 "Action": "ecs:TagResource",
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "ecs:CreateAction": ["RunTask"]
 }
 }
 }
]
}

EventBridge IAM Role 1021

Amazon Elastic Container Service Developer Guide

If your scheduled tasks require the use of the task execution role, a task role, or a task role override,
then you must add iam:PassRole permissions for each task execution role, task role, or task
role override to the EventBridge IAM role. For more information about the task execution role, see
Amazon ECS task execution IAM role.

Note

Specify the full ARN of your task execution role or task role override.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "iam:PassRole",
 "Resource": ["arn:aws:iam::<aws_account_id>:role/
<ecsTaskExecutionRole_or_TaskRole_name>"]
 }
]
}

You can choose to let the AWS Management Console create the EventBridge role for you when you
configure a scheduled task. For more information, see Amazon ECS scheduled tasks.

Creating the Amazon ECS EventBridge (ecsEventsRole) role

Replace all user input with your own information.

1. Create a file named eventbridge-trust-policy.json that contains the trust policy to use
for the IAM role. The file should contain the following:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "",
 "Effect": "Allow",
 "Principal": {
 "Service": "events.amazonaws.com"
 },

EventBridge IAM Role 1022

Amazon Elastic Container Service Developer Guide

 "Action": "sts:AssumeRole"
 }
]
}

2. Use the following command to create an IAM role named ecsEventsRole by using the trust
policy that you created in the previous step.

aws iam create-role \
 --role-name ecsEventsRole \
 --assume-role-policy-document file://eventbridge-policy.json

3. Attach the AWS managed AmazonEC2ContainerServiceEventsRole to the
ecsEventsRole role using the following command .

aws iam attach-role-policy \
 -\-role-name ecsEventsRole \
 -\-policy-arn arn:aws:iam::aws:policy/service-role/
AmazonEC2ContainerServiceEventsRole

You can also use the IAM console's Custom trust policy workflow (https://
console.aws.amazon.com/iam/) to create the role. For more information, see Creating a role using
custom trust policies (console) in the IAM User Guide.

Attaching a policy to the ecsEventsRole role

You can use the following procedures to add permissions for the task execution role to the
EventBridge IAM role.

AWS Management Console

To use the JSON policy editor to create a policy

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. In the navigation pane on the left, choose Policies.

If this is your first time choosing Policies, the Welcome to Managed Policies page appears.
Choose Get Started.

3. At the top of the page, choose Create policy.

EventBridge IAM Role 1023

https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-custom.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-custom.html
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/

Amazon Elastic Container Service Developer Guide

4. In the Policy editor section, choose the JSON option.

5. Enter the following JSON policy document:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "iam:PassRole",
 "Resource": ["arn:aws:iam::<aws_account_id>:role/
<ecsTaskExecutionRole_or_TaskRole_name>"]
 }
]
}

6. Choose Next.

Note

You can switch between the Visual and JSON editor options anytime. However,
if you make changes or choose Next in the Visual editor, IAM might restructure
your policy to optimize it for the visual editor. For more information, see Policy
restructuring in the IAM User Guide.

7. On the Review and create page, enter a Policy name and a Description (optional) for
the policy that you are creating. Review Permissions defined in this policy to see the
permissions that are granted by your policy.

8. Choose Create policy to save your new policy.

After you create the policy, attach the policy to the EventBridge role. For information about
how to attach the policy to the role, see Modifying a role permissions policy (console) in the
AWS Identity and Access Management User Guide.

AWS CLI

Replace all user input with your own information.

1. Create a file called ev-iam-passrole.json with the following content.

{

EventBridge IAM Role 1024

https://docs.aws.amazon.com/IAM/latest/UserGuide/troubleshoot_policies.html#troubleshoot_viseditor-restructure
https://docs.aws.amazon.com/IAM/latest/UserGuide/troubleshoot_policies.html#troubleshoot_viseditor-restructure
https://docs.aws.amazon.com/IAM/latest/UserGuide/roles-managingrole-editing-console.html#roles-modify_permissions-policy

Amazon Elastic Container Service Developer Guide

 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "iam:PassRole",
 "Resource": ["arn:aws:iam::<aws_account_id>:role/
<ecsTaskExecutionRole_or_TaskRole_name>"]
 }
]
}

2. Use the following AWS CLI command to create the IAM policy using the JSON policy
document file.

aws iam create-policy \
 --policy-name eventsTaskExecutionPolicy \
 --policy-document file://ev-iam-passrole.json

3. Retrieve the ARN of the IAM policy you created using the following command.

aws iam list-policies --scope Local --query 'Policies[?
PolicyName==`eventsTaskExecutionPolicy`].Arn'

4. Use the following command to attach the policy to the EventBridge IAM role by using the
policy ARN.

aws iam attach-role-policy \
 --role-name ecsEventsRole \
 --policy-arn arn:aws:iam:111122223333:aws:policy/eventsTaskExecutionPolicy

IAM permissions required for service auto scaling

Service Auto Scaling is made possible by a combination of the Amazon ECS, CloudWatch, and
Application Auto Scaling APIs. Services are created and updated with Amazon ECS, alarms are
created with CloudWatch, and scaling policies are created with Application Auto Scaling.

In addition to the standard IAM permissions for creating and updating services, the following
permissions are required to interact with Service Auto Scaling settings as shown in the following
example policy.

{

IAM permissions required for service auto scaling 1025

Amazon Elastic Container Service Developer Guide

 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "application-autoscaling:*",
 "ecs:DescribeServices",
 "ecs:UpdateService",
 "cloudwatch:DescribeAlarms",
 "cloudwatch:PutMetricAlarm",
 "cloudwatch:DeleteAlarms",
 "cloudwatch:DescribeAlarmHistory",
 "cloudwatch:DescribeAlarmsForMetric",
 "cloudwatch:GetMetricStatistics",
 "cloudwatch:ListMetrics",
 "cloudwatch:DisableAlarmActions",
 "cloudwatch:EnableAlarmActions",
 "iam:CreateServiceLinkedRole",
 "sns:CreateTopic",
 "sns:Subscribe",
 "sns:Get*",
 "sns:List*"
],
 "Resource": ["*"]
 }
]
}

The Create service example and Update service example IAM policy examples show the required
permissions to use Service Auto Scaling in the AWS Management Console.

The Application Auto Scaling service also needs permission to describe your Amazon ECS services
and CloudWatch alarms, and permissions to modify your service's desired count on your behalf. The
sns: permissions are for the notifications that CloudWatch sends to an Amazon SNS topic when a
threshold has been exceeded. If you use automatic scaling for your Amazon ECS services, it creates
a service-linked role named AWSServiceRoleForApplicationAutoScaling_ECSService.
This service-linked role grants Application Auto Scaling permission to describe the alarms for
your policies, to monitor the current running task count of the service, and to modify the desired
count of the service. The original managed Amazon ECS role for Application Auto Scaling was
ecsAutoscaleRole, but it is no longer required. The service-linked role is the default role for

IAM permissions required for service auto scaling 1026

Amazon Elastic Container Service Developer Guide

Application Auto Scaling. For more information, see Service-linked roles for Application Auto
Scaling in the Application Auto Scaling User Guide.

If you created your Amazon ECS container instance role before CloudWatch metrics are available
for Amazon ECS, you might need to add the ecs:StartTelemetrySession permission. For more
information, see Considerations .

Grant permission to tag resources on creation

The following tag-on create Amazon ECS API actions allow you to specify tags when you create
the resource. If tags are specified in the resource-creating action, AWS performs additional
authorization to verify that the correct permissions are assigned to create tags.

• CreateCapacityProvider

• CreateCluster

• CreateService

• CreateTaskSet

• RegisterContainerInstance

• RegisterTaskDefinition

• RunTask

• StartTask

You can use resource tags to implement attribute-based control (ABAC). For more information, see
the section called “Control access to Amazon ECS resources using resource tags” and Amazon ECS
resource tagging.

To allow tagging on creation, create or modify a policy to include both the permissions to use
the action that creates the resource, such as ecs:CreateCluster or ecs:RunTask and the
ecs:TagResource action.

The following example demonstrates a policy that allows users to create clusters and run tasks, but
can only add tags during the cluster creation. Users are not permitted to tag any existing resources
(they cannot call the ecs:TagResource action directly).

{
 "Statement": [
 {

Tag resources during creation 1027

https://docs.aws.amazon.com/autoscaling/application/userguide/application-auto-scaling-service-linked-roles.html
https://docs.aws.amazon.com/autoscaling/application/userguide/application-auto-scaling-service-linked-roles.html

Amazon Elastic Container Service Developer Guide

 "Effect": "Allow",
 "Action": [
 "ecs:CreateCluster",
 "ecs:RunTask"
],
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Action": [
 "ecs:TagResource"
],
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "ecs:CreateAction" : "CreateCluster"
 }
 }
 }
]
}

The ecs:TagResource action is only evaluated if tags are applied during the resource-creating
action. Therefore, a user that has permissions to create a resource (assuming there are no tagging
conditions) does not require permissions to use the ecs:TagResource action if no tags are
specified in the request. However, if the user attempts to create a resource with tags, the request
fails if the user does not have permissions to use the ecs:TagResource action.

Control access to specific tags

You can use additional conditions in the Condition element of your IAM policies to control the
tag keys and values that can be applied to resources.

The following condition keys can be used with the examples in the preceding section:

• aws:RequestTag: To indicate that a particular tag key or tag key and value must be present in a
request. Other tags can also be specified in the request.

• Use with the StringEquals condition operator to enforce a specific tag key and value
combination, for example, to enforce the tag cost-center=cc123:

"StringEquals": { "aws:RequestTag/cost-center": "cc123" }

Tag resources during creation 1028

Amazon Elastic Container Service Developer Guide

• Use with the StringLike condition operator to enforce a specific tag key in the request; for
example, to enforce the tag key purpose:

"StringLike": { "aws:RequestTag/purpose": "*" }

• aws:TagKeys: To enforce the tag keys that are used in the request.

• Use with the ForAllValues modifier to enforce specific tag keys if they are provided in the
request (if tags are specified in the request, only specific tag keys are allowed; no other tags
are allowed). For example, the tag keys environment or cost-center are allowed:

"ForAllValues:StringEquals": { "aws:TagKeys": ["environment","cost-center"] }

• Use with the ForAnyValue modifier to enforce the presence of at least one of the specified
tag keys in the request. For example, at least one of the tag keys environment or webserver
must be present in the request:

"ForAnyValue:StringEquals": { "aws:TagKeys": ["environment","webserver"] }

These condition keys can be applied to resource-creating actions that support tagging, as well as
the ecs:TagResource action. To learn whether an Amazon ECS API action supports tagging, see
Actions, resources, and condition keys for Amazon ECS.

To force users to specify tags when they create a resource, you must use the aws:RequestTag
condition key or the aws:TagKeys condition key with the ForAnyValue modifier on the resource-
creating action. The ecs:TagResource action is not evaluated if a user does not specify tags for
the resource-creating action.

For conditions, the condition key is not case-sensitive and the condition value is case-sensitive.
Therefore, to enforce the case-sensitivity of a tag key, use the aws:TagKeys condition key, where
the tag key is specified as a value in the condition.

For more information about multi-value conditions, see Creating a Condition That Tests Multiple
Key Values in the IAM User Guide.

Control access to Amazon ECS resources using resource tags

When you create an IAM policy that grants users permission to use Amazon ECS resources, you can
include tag information in the Condition element of the policy to control access based on tags.

Tag resources during creation 1029

https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonelasticcontainerservice.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_multi-value-conditions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_multi-value-conditions.html

Amazon Elastic Container Service Developer Guide

This is known as attribute-based access control (ABAC). ABAC provides better control over which
resources a user can modify, use, or delete. For more information, see What is ABAC for AWS?

For example, you can create a policy that allows users to delete a cluster, but denies the action if
the cluster has the tag environment=production. To do this, you use the aws:ResourceTag
condition key to allow or deny access to the resource based on the tags that are attached to the
resource.

"StringEquals": { "aws:ResourceTag/environment": "production" }

To learn whether an Amazon ECS API action supports controlling access using the
aws:ResourceTag condition key, see Actions, resources, and condition keys for Amazon ECS. Note
that the Describe actions do not support resource-level permissions, so you must specify them in
a separate statement without conditions.

For example IAM policies, see Example policies .

If you allow or deny users access to resources based on tags, you must consider explicitly denying
users the ability to add those tags to or remove them from the same resources. Otherwise, it's
possible for a user to circumvent your restrictions and gain access to a resource by modifying its
tags.

Example policies

You can use IAM policies to grant users permissions to view and work with specific resources in the
Amazon ECS console. You can use the example policies in the previous section; however, they are
designed for requests that are made with the AWS CLI or an AWS SDK.

Example: Allow users to delete a cluster based on tags

The following policy allows users to delete clusters when the tag has a key/value pair of "Purpose/
Testing".

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "ecs:DeleteCluster"
],

Tag resources during creation 1030

https://docs.aws.amazon.com/IAM/latest/UserGuide/introduction_attribute-based-access-control.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonelasticcontainerservice.html

Amazon Elastic Container Service Developer Guide

 "Effect": "Allow",
 "Resource": "arn:aws:ecs:region:account-id:cluster/*",
 "Condition": {
 "StringEquals": {
 "aws:ResourceTag/Purpose": "Testing"
 }
 }
 }
]
}

Troubleshooting Amazon Elastic Container Service identity and access

Use the following information to help you diagnose and fix common issues that you might
encounter when working with Amazon ECS and IAM.

Topics

• I am not authorized to perform an action in Amazon ECS

• I am not authorized to perform iam:PassRole

• I want to allow people outside of my AWS account to access my Amazon ECS resources

I am not authorized to perform an action in Amazon ECS

If you receive an error that you're not authorized to perform an action, your policies must be
updated to allow you to perform the action.

The following example error occurs when the mateojackson IAM user tries to use the console
to view details about a fictional my-example-widget resource but doesn't have the fictional
ecs:GetWidget permissions.

User: arn:aws:iam::123456789012:user/mateojackson is not authorized to perform:
 ecs:GetWidget on resource: my-example-widget

In this case, the policy for the mateojackson user must be updated to allow access to the my-
example-widget resource by using the ecs:GetWidget action.

If you need help, contact your AWS administrator. Your administrator is the person who provided
you with your sign-in credentials.

Troubleshooting 1031

Amazon Elastic Container Service Developer Guide

I am not authorized to perform iam:PassRole

If you receive an error that you're not authorized to perform the iam:PassRole action, your
policies must be updated to allow you to pass a role to Amazon ECS.

Some AWS services allow you to pass an existing role to that service instead of creating a new
service role or service-linked role. To do this, you must have permissions to pass the role to the
service.

The following example error occurs when an IAM user named marymajor tries to use the console
to perform an action in Amazon ECS. However, the action requires the service to have permissions
that are granted by a service role. Mary does not have permissions to pass the role to the service.

User: arn:aws:iam::123456789012:user/marymajor is not authorized to perform:
 iam:PassRole

In this case, Mary's policies must be updated to allow her to perform the iam:PassRole action.

If you need help, contact your AWS administrator. Your administrator is the person who provided
you with your sign-in credentials.

I want to allow people outside of my AWS account to access my Amazon ECS
resources

You can create a role that users in other accounts or people outside of your organization can use to
access your resources. You can specify who is trusted to assume the role. For services that support
resource-based policies or access control lists (ACLs), you can use those policies to grant people
access to your resources.

To learn more, consult the following:

• To learn whether Amazon ECS supports these features, see How Amazon Elastic Container
Service works with IAM.

• To learn how to provide access to your resources across AWS accounts that you own, see
Providing access to an IAM user in another AWS account that you own in the IAM User Guide.

• To learn how to provide access to your resources to third-party AWS accounts, see Providing
access to AWS accounts owned by third parties in the IAM User Guide.

• To learn how to provide access through identity federation, see Providing access to externally
authenticated users (identity federation) in the IAM User Guide.

Troubleshooting 1032

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_aws-accounts.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_third-party.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_third-party.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_federated-users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_federated-users.html

Amazon Elastic Container Service Developer Guide

• To learn the difference between using roles and resource-based policies for cross-account access,
see How IAM roles differ from resource-based policies in the IAM User Guide.

Logging and Monitoring in Amazon Elastic Container Service

Monitoring is an important part of maintaining the reliability, availability, and performance of
Amazon Elastic Container Service and your AWS solutions. You should collect monitoring data from
all of the parts of your AWS solution so that you can more easily debug a multi-point failure if one
occurs. AWS provides several tools for monitoring your Amazon ECS resources and responding to
potential incidents:

Amazon CloudWatch Alarms

Watch a single metric over a time period that you specify, and perform one or more actions
based on the value of the metric relative to a given threshold over a number of time periods.
The action is a notification sent to an Amazon Simple Notification Service (Amazon SNS) topic
or Amazon EC2 Auto Scaling policy. CloudWatch alarms do not invoke actions simply because
they are in a particular state; the state must have changed and been maintained for a specified
number of periods. For more information, see Monitor Amazon ECS using CloudWatch .

For services with tasks that use the Fargate launch type, you can use CloudWatch alarms to
scale in and scale out the tasks in your service based on CloudWatch metrics, such as CPU and
memory utilization. For more information, see Service auto scaling.

For clusters with tasks or services using the EC2 launch type, you can use CloudWatch alarms
to scale in and scale out the container instances based on CloudWatch metrics, such as cluster
memory reservation.

Amazon CloudWatch Logs

Monitor, store, and access the log files from the containers in your Amazon ECS tasks by
specifying the awslogs log driver in your task definitions. For more information, see Using the
awslogs driver.

You can also monitor, store, and access the operating system and Amazon ECS container agent
log files from your Amazon ECS container instances. This method for accessing logs can be used
for containers using the EC2 launch type..

Logging and Monitoring 1033

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_compare-resource-policies.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/using_awslogs.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/using_awslogs.html

Amazon Elastic Container Service Developer Guide

Amazon CloudWatch Events

Match events and route them to one or more target functions or streams to make changes,
capture state information, and take corrective action. For more information, see Automate
responses to Amazon ECS errors using EventBridge in this guide and What Is Amazon
CloudWatch Events? in the Amazon CloudWatch Events User Guide.

AWS CloudTrail Logs

CloudTrail provides a record of actions taken by a user, role, or an AWS service in Amazon ECS.
Using the information collected by CloudTrail, you can determine the request that was made
to Amazon ECS, the IP address from which the request was made, who made the request, when
it was made, and additional details. For more information, see Log Amazon ECS API calls using
AWS CloudTrail.

AWS Trusted Advisor

Trusted Advisor draws upon best practices learned from serving hundreds of thousands of AWS
customers. Trusted Advisor inspects your AWS environment and then makes recommendations
when opportunities exist to save money, improve system availability and performance, or help
close security gaps. All AWS customers have access to five Trusted Advisor checks. Customers
with a Business or Enterprise support plan can view all Trusted Advisor checks.

For more information, see AWS Trusted Advisor in the AWS Support User Guide.

AWS Compute Optimizer

AWS Compute Optimizer is a service that analyzes the configuration and utilization metrics of
your AWS resources. It reports whether your resources are optimal, and generates optimization
recommendations to reduce the cost and improve the performance of your workloads.

For more information, see AWS Compute Optimizer recommendations for Amazon ECS.

Another important part of monitoring Amazon ECS involves manually monitoring those items
that the CloudWatch alarms don't cover. The CloudWatch, Trusted Advisor, and other AWS console
dashboards provide an at-a-glance view of the state of your AWS environment. We recommend
that you also check the log files on your container instances and the containers in your tasks.

Logging and Monitoring 1034

https://docs.aws.amazon.com/AmazonCloudWatch/latest/events/WhatIsCloudWatchEvents.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/events/WhatIsCloudWatchEvents.html
https://docs.aws.amazon.com/awssupport/latest/user/getting-started.html#trusted-advisor

Amazon Elastic Container Service Developer Guide

Compliance validation for Amazon Elastic Container Service

To learn whether an AWS service is within the scope of specific compliance programs, see AWS
services in Scope by Compliance Program and choose the compliance program that you are
interested in. For general information, see AWS Compliance Programs.

You can download third-party audit reports using AWS Artifact. For more information, see
Downloading Reports in AWS Artifact.

Your compliance responsibility when using AWS services is determined by the sensitivity of your
data, your company's compliance objectives, and applicable laws and regulations. AWS provides the
following resources to help with compliance:

• Security and Compliance Quick Start Guides – These deployment guides discuss architectural
considerations and provide steps for deploying baseline environments on AWS that are security
and compliance focused.

• Architecting for HIPAA Security and Compliance on Amazon Web Services – This whitepaper
describes how companies can use AWS to create HIPAA-eligible applications.

Note

Not all AWS services are HIPAA eligible. For more information, see the HIPAA Eligible
Services Reference.

• AWS Compliance Resources – This collection of workbooks and guides might apply to your
industry and location.

• AWS Customer Compliance Guides – Understand the shared responsibility model through the
lens of compliance. The guides summarize the best practices for securing AWS services and map
the guidance to security controls across multiple frameworks (including National Institute of
Standards and Technology (NIST), Payment Card Industry Security Standards Council (PCI), and
International Organization for Standardization (ISO)).

• Evaluating Resources with Rules in the AWS Config Developer Guide – The AWS Config service
assesses how well your resource configurations comply with internal practices, industry
guidelines, and regulations.

• AWS Security Hub – This AWS service provides a comprehensive view of your security state within
AWS. Security Hub uses security controls to evaluate your AWS resources and to check your

Compliance validation 1035

https://aws.amazon.com/compliance/services-in-scope/
https://aws.amazon.com/compliance/services-in-scope/
https://aws.amazon.com/compliance/programs/
https://docs.aws.amazon.com/artifact/latest/ug/downloading-documents.html
https://aws.amazon.com/quickstart/?awsf.filter-tech-category=tech-category%23security-identity-compliance
https://docs.aws.amazon.com/whitepapers/latest/architecting-hipaa-security-and-compliance-on-aws/welcome.html
https://aws.amazon.com/compliance/hipaa-eligible-services-reference/
https://aws.amazon.com/compliance/hipaa-eligible-services-reference/
https://aws.amazon.com/compliance/resources/
https://d1.awsstatic.com/whitepapers/compliance/AWS_Customer_Compliance_Guides.pdf
https://docs.aws.amazon.com/config/latest/developerguide/evaluate-config.html
https://docs.aws.amazon.com/securityhub/latest/userguide/what-is-securityhub.html

Amazon Elastic Container Service Developer Guide

compliance against security industry standards and best practices. For a list of supported services
and controls, see Security Hub controls reference.

• AWS Audit Manager – This AWS service helps you continuously audit your AWS usage to simplify
how you manage risk and compliance with regulations and industry standards.

AWS Fargate Federal Information Processing Standard
(FIPS-140)

Federal Information Processing Standard (FIPS). FIPS-140 is a U.S. and Canadian government
standard that specifies the security requirements for cryptographic modules that protect sensitive
information. FIPS-140 defines a set of validated cryptography functions that can be used to
encrypt data in transit and data at rest.

When you turn on FIPS-140 compliance, you can run workloads on Fargate in a manner that
is compliant with FIPS-140. For more information about FIPS-140 compliance, see Federal
Information Processing Standard (FIPS) 140-2.

Considerations

Consider the following when using FIPS-140 compliance on Fargate:

• FIPS-140 compliance is only available in the AWS GovCloud (US) Regions.

• FIPS-140 compliance is turned off by default. You must turn it on.

• Your tasks must use the following configuration for FIPS-140 compliance:

• The operatingSystemFamily must be LINUX.

• The cpuArchitecture must be X86_64.

• The Fargate platform version must be 1.4.0 or later.

Use FIPS on Fargate

Use the following procedure to use FIPS-140 compliance on Fargate.

1. Turn on FIPS-140 compliance. For more information, see the section called “AWS Fargate
Federal Information Processing Standard (FIPS-140) compliance”.

2. You can optionally use ECS Exec to run the following command to verify the FIPS-140
compliance status for a cluster.

AWS Fargate FIPS-140 compliance 1036

https://docs.aws.amazon.com/securityhub/latest/userguide/securityhub-controls-reference.html
https://docs.aws.amazon.com/audit-manager/latest/userguide/what-is.html
https://aws.amazon.com/compliance/fips/
https://aws.amazon.com/compliance/fips/

Amazon Elastic Container Service Developer Guide

Replace my-cluster with the name of your cluster.

A return value of "1" indicates that you are using FIPS.

aws ecs execute-command --cluster cluster-name \
 --interactive \
 --command "cat /proc/sys/crypto/fips_enabled"

Use CloudTrail for auditing

CloudTrail is turned on in your AWS account when you create the account. When API and console
activity occurs in Amazon ECS, that activity is recorded in a CloudTrail event along with other AWS
service events in Event history. You can view, search, and download recent events in your AWS
account. For more information, see Viewing Events with CloudTrail Event History.

For an ongoing record of events in your AWS account, including events for Amazon ECS, create a
trail which CloudTrail uses to deliver log files to an Amazon S3 bucket. By default, when you create
a trail in the console, the trail applies to all regions. The trail logs events from all Regions in the
AWS partition and delivers the log files to the Amazon S3 bucket that you specify. Additionally,
you can configure other AWS services to further analyze and act upon the event data collected in
CloudTrail logs. For more information, see the section called “Log Amazon ECS API calls using AWS
CloudTrail”.

The following example shows a CloudTrail log entry that demonstrates the
PutAccountSettingDefault API action:

{
 "eventVersion": "1.08",
 "userIdentity": {
 "type": "IAMUser",
 "principalId": "AIDAIV5AJI5LXF5EXAMPLE",
 "arn": "arn:aws:iam::123456789012:user/jdoe",
 "accountId": "123456789012",
 "accessKeyId": "AKIAIPWIOFC3EXAMPLE",
 },
 "eventTime": "2023-03-01T21:45:18Z",
 "eventSource": "ecs.amazonaws.com",
 "eventName": "PutAccountSettingDefault",
 "awsRegion": "us-gov-east-1",

Use CloudTrail for auditing 1037

https://docs.aws.amazon.com/awscloudtrail/latest/userguide/view-cloudtrail-events.html

Amazon Elastic Container Service Developer Guide

 "sourceIPAddress": "52.94.133.131",
 "userAgent": "aws-cli/2.9.8 Python/3.9.11 Windows/10 exe/AMD64 prompt/off command/
ecs.put-account-setting",
 "requestParameters": {
 "name": "fargateFIPSMode",
 "value": "enabled"
 },
 "responseElements": {
 "setting": {
 "name": "fargateFIPSMode",
 "value": "enabled",
 "principalArn": "arn:aws:iam::123456789012:user/jdoe"
 }
 },
 "requestID": "acdc731e-e506-447c-965d-f5f75EXAMPLE",
 "eventID": "6afced68-75cd-4d44-8076-0beEXAMPLE",
 "readOnly": false,
 "eventType": "AwsApiCall",
 "managementEvent": true,
 "recipientAccountId": "123456789012",
 "eventCategory": "Management",
 "tlsDetails": {
 "tlsVersion": "TLSv1.2",
 "cipherSuite": "ECDHE-RSA-AES128-GCM-SHA256",
 "clientProvidedHostHeader": "ecs-fips.us-gov-east-1.amazonaws.com"
 }
}

Infrastructure Security in Amazon Elastic Container Service

As a managed service, Amazon Elastic Container Service is protected by AWS global network
security. For information about AWS security services and how AWS protects infrastructure, see
AWS Cloud Security. To design your AWS environment using the best practices for infrastructure
security, see Infrastructure Protection in Security Pillar AWS Well‐Architected Framework.

You use AWS published API calls to access Amazon ECS through the network. Clients must support
the following:

• Transport Layer Security (TLS). We require TLS 1.2 and recommend TLS 1.3.

Infrastructure Security 1038

https://aws.amazon.com/security/
https://docs.aws.amazon.com/wellarchitected/latest/security-pillar/infrastructure-protection.html

Amazon Elastic Container Service Developer Guide

• Cipher suites with perfect forward secrecy (PFS) such as DHE (Ephemeral Diffie-Hellman) or
ECDHE (Elliptic Curve Ephemeral Diffie-Hellman). Most modern systems such as Java 7 and later
support these modes.

Additionally, requests must be signed by using an access key ID and a secret access key that is
associated with an IAM principal. Or you can use the AWS Security Token Service (AWS STS) to
generate temporary security credentials to sign requests.

You can call these API operations from any network location. Amazon ECS supports resource-based
access policies, which can include restrictions based on the source IP address, so make sure that the
policies account for the IP address for the network location. You can also use Amazon ECS policies
to control access from specific Amazon Virtual Private Cloud endpoints or specific VPCs. Effectively,
this isolates network access to a given Amazon ECS resource from only the specific VPC within the
AWS network. For more information, see Amazon ECS interface VPC endpoints (AWS PrivateLink).

Amazon ECS interface VPC endpoints (AWS PrivateLink)

You can improve the security posture of your VPC by configuring Amazon ECS to use an interface
VPC endpoint. Interface endpoints are powered by AWS PrivateLink, a technology that allows you
to privately access Amazon ECS APIs by using private IP addresses. AWS PrivateLink restricts all
network traffic between your VPC and Amazon ECS to the Amazon network. You don't need an
internet gateway, a NAT device, or a virtual private gateway.

For more information about AWS PrivateLink and VPC endpoints, see VPC Endpoints in the
Amazon VPC User Guide.

Considerations for Amazon ECS VPC endpoints

Considerations for Amazon ECS VPC endpoints for the Fargate launch type

Before you set up interface VPC endpoints for Amazon ECS, be aware of the following
considerations:

• Tasks using the Fargate launch type don't require the interface VPC endpoints for Amazon ECS,
but you might need interface VPC endpoints for Amazon ECR, Secrets Manager, or Amazon
CloudWatch Logs described in the following points.

• To allow your tasks to pull private images from Amazon ECR, you must create the interface
VPC endpoints for Amazon ECR. For more information, see Interface VPC Endpoints (AWS
PrivateLink) in the Amazon Elastic Container Registry User Guide.

Interface VPC endpoints (AWS PrivateLink) 1039

https://docs.aws.amazon.com/STS/latest/APIReference/Welcome.html
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-endpoints.html
https://docs.aws.amazon.com/AmazonECR/latest/userguide/vpc-endpoints.html
https://docs.aws.amazon.com/AmazonECR/latest/userguide/vpc-endpoints.html

Amazon Elastic Container Service Developer Guide

If your VPC doesn't have an internet gateway, you must create the gateway endpoint for
Amazon S3. For more information, see Create the Amazon S3 gateway endpoint in the Amazon
Elastic Container Registry User Guide. The interface endpoints for Amazon S3 can't be used
with Amazon ECR.

Important

If you configure Amazon ECR to use an interface VPC endpoint, you can create a task
execution role that includes condition keys to restrict access to a specific VPC or VPC
endpoint. For more information, see Optional IAM permissions for Fargate tasks pulling
Amazon ECR images over interface endpoints.

• To allow your tasks to pull sensitive data from Secrets Manager, you must create the interface
VPC endpoints for Secrets Manager. For more information, see Using Secrets Manager with
VPC Endpoints in the AWS Secrets Manager User Guide.

• If your VPC doesn't have an internet gateway and your tasks use the awslogs log driver to
send log information to CloudWatch Logs, you must create an interface VPC endpoint for
CloudWatch Logs. For more information, see Using CloudWatch Logs with Interface VPC
Endpoints in the Amazon CloudWatch Logs User Guide.

• VPC endpoints currently don't support cross-Region requests. Ensure that you create your
endpoint in the same Region where you plan to issue your API calls to Amazon ECS. For example,
assume that you want to run tasks in US East (N. Virginia). Then, you must create the Amazon
ECS VPC endpoint in US East (N. Virginia). An Amazon ECS VPC endpoint created in any other
region can't run tasks in US East (N. Virginia).

• VPC endpoints only support Amazon-provided DNS through Amazon Route 53. If you want to
use your own DNS, you can use conditional DNS forwarding. For more information, see DHCP
Options Sets in the Amazon VPC User Guide.

• The security group attached to the VPC endpoint must allow incoming connections on TCP port
443 from the private subnet of the VPC.

• Service Connect management of the Envoy proxy uses the com.amazonaws.region.ecs-
agent VPC endpoint. When you don't use the VPC endpoints, Service Connect management
of the Envoy proxy uses the ecs-sc endpoint in that Region. For a list of the Amazon ECS
endpoints in each Region, see Amazon ECS endpoints and quotas.

Interface VPC endpoints (AWS PrivateLink) 1040

https://docs.aws.amazon.com/AmazonECR/latest/userguide/vpc-endpoints.html#ecr-setting-up-s3-gateway
https://docs.aws.amazon.com/secretsmanager/latest/userguide/vpc-endpoint-overview.html
https://docs.aws.amazon.com/secretsmanager/latest/userguide/vpc-endpoint-overview.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/cloudwatch-logs-and-interface-VPC.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/cloudwatch-logs-and-interface-VPC.html
https://docs.aws.amazon.com/vpc/latest/userguide/VPC_DHCP_Options.html
https://docs.aws.amazon.com/vpc/latest/userguide/VPC_DHCP_Options.html
https://docs.aws.amazon.com/general/latest/gr/ecs-service.html

Amazon Elastic Container Service Developer Guide

Considerations for Amazon ECS VPC endpoints for the EC2 launch type

Before you set up interface VPC endpoints for Amazon ECS, be aware of the following
considerations:

• Tasks using the EC2 launch type require that the container instances that they're launched on to
run version 1.25.1 or later of the Amazon ECS container agent. For more information, see Linux
container instance management.

• To allow your tasks to pull sensitive data from Secrets Manager, you must create the interface
VPC endpoints for Secrets Manager. For more information, see Using Secrets Manager with VPC
Endpoints in the AWS Secrets Manager User Guide.

• If your VPC doesn't have an internet gateway and your tasks use the awslogs log driver to send
log information to CloudWatch Logs, you must create an interface VPC endpoint for CloudWatch
Logs. For more information, see Using CloudWatch Logs with Interface VPC Endpoints in the
Amazon CloudWatch Logs User Guide.

• VPC endpoints currently don't support cross-Region requests. Ensure that you create your
endpoint in the same Region where you plan to issue your API calls to Amazon ECS. For example,
assume that you want to run tasks in US East (N. Virginia). Then, you must create the Amazon
ECS VPC endpoint in US East (N. Virginia). An Amazon ECS VPC endpoint created in any other
region can't run tasks in US East (N. Virginia).

• VPC endpoints only support Amazon-provided DNS through Amazon Route 53. If you want to
use your own DNS, you can use conditional DNS forwarding. For more information, see DHCP
Options Sets in the Amazon VPC User Guide.

• The security group attached to the VPC endpoint must allow incoming connections on TCP port
443 from the private subnet of the VPC.

Creating the VPC Endpoints for Amazon ECS

To create the VPC endpoint for the Amazon ECS service, use the Creating an Interface Endpoint
procedure in the Amazon VPC User Guide to create the following endpoints. If you have existing
container instances within your VPC, you should create the endpoints in the order that they're
listed. If you plan on creating your container instances after your VPC endpoint is created, the order
doesn't matter.

• com.amazonaws.region.ecs-agent

• com.amazonaws.region.ecs-telemetry

Interface VPC endpoints (AWS PrivateLink) 1041

https://docs.aws.amazon.com/secretsmanager/latest/userguide/vpc-endpoint-overview.html
https://docs.aws.amazon.com/secretsmanager/latest/userguide/vpc-endpoint-overview.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/cloudwatch-logs-and-interface-VPC.html
https://docs.aws.amazon.com/vpc/latest/userguide/VPC_DHCP_Options.html
https://docs.aws.amazon.com/vpc/latest/userguide/VPC_DHCP_Options.html
https://docs.aws.amazon.com/vpc/latest/userguide/vpce-interface.html#create-interface-endpoint

Amazon Elastic Container Service Developer Guide

• com.amazonaws.region.ecs

Note

region represents the Region identifier for an AWS Region supported by Amazon ECS,
such as us-east-2 for the US East (Ohio) Region.

If you have existing tasks that are using the EC2 launch type, after you have created the VPC
endpoints, each container instance needs to pick up the new configuration. For this to happen, you
must either reboot each container instance or restart the Amazon ECS container agent on each
container instance. To restart the container agent, do the following.

To restart the Amazon ECS container agent

1. Log in to your container instance via SSH.

2. Stop the container agent.

sudo docker stop ecs-agent

3. Start the container agent.

sudo docker start ecs-agent

After you have created the VPC endpoints and restarted the Amazon ECS container agent on each
container instance, all newly launched tasks pick up the new configuration.

Creating a VPC endpoint policy for Amazon ECS

You can attach an endpoint policy to your VPC endpoint that controls access to Amazon ECS. The
policy specifies the following information:

• The principal that can perform actions.

• The actions that can be performed.

• The resources on which actions can be performed.

Interface VPC endpoints (AWS PrivateLink) 1042

Amazon Elastic Container Service Developer Guide

For more information, see Controlling access to services with VPC endpoints in the Amazon VPC
User Guide.

Example: VPC endpoint policy for Amazon ECS actions

The following is an example of an endpoint policy for Amazon ECS. When attached to an endpoint,
this policy grants access to permission to create and list clusters. The CreateCluster and
ListClusters actions do not accept any resources, so the resource definition is set to * for all
resources.

{
 "Statement":[
 {
 "Effect": "Allow",
 "Action": [
 "ecs:CreateCluster",
 "ecs:ListClusters"
],
 "Resource": [
 "*"
]
 }
]
}

Security Best Practices

This guide provides security and compliance recommendations for protecting your information,
systems, and other assets that are reliant on Amazon ECS. It also introduces some risk assessments
and mitigation strategies that you can use to have a better grip on the security controls that are
built for Amazon ECS clusters and the workloads that they support. Each topic in this guide starts
with a brief overview, followed by a list of recommendations and best practices that you can use to
secure your Amazon ECS clusters.

Topics

• AWS Identity and Access Management

• Using IAM roles with Amazon ECS tasks

• Network security

Best Practices 1043

https://docs.aws.amazon.com/vpc/latest/userguide/vpc-endpoints-access.html

Amazon Elastic Container Service Developer Guide

• Secrets management

• Using temporary security credentials with API operations

• Compliance and security

• Logging and monitoring

• AWS Fargate security

• EC2 container instance security considerations

• Task and container security

• Runtime security

• AMI best practices

• AWS Partners

AWS Identity and Access Management

You can use AWS Identity and Access Management (IAM) to manage and control access to your
AWS services and resources through rule-based policies for authentication and authorization
purposes. More specifically, through this service, you control access to your AWS resources by using
policies that are applied to users, groups, or roles. Among these three, users are accounts that can
have access to your resources. And, an IAM role is a set of permissions that can be assumed by an
authenticated identity, which isn't associated with a particular identity outside of IAM. For more
information, see Overview of access management: Permissions and policies.

Managing access to Amazon ECS

You can control access to Amazon ECS by creating and applying IAM policies. These policies are
composed of a set of actions that apply to a specific set of resources. The action of a policy defines
the list of operations (such as Amazon ECS APIs) that are allowed or denied, whereas the resource
controls what are the Amazon ECS objects that the action applies to. Conditions can be added
to a policy to narrow its scope. For example, a policy can be written to only allow an action to be
performed against tasks with a particular set of tags. For more information, see How Amazon ECS
works with IAM in the Amazon Elastic Container Service Developer Guide.

Recommendations

We recommend that you do the following when setting up your IAM roles and policies.

AWS Identity and Access Management 1044

https://docs.aws.amazon.com/IAM/latest/UserGuide/introduction_access-management.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/security_iam_service-with-iam.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/security_iam_service-with-iam.html

Amazon Elastic Container Service Developer Guide

Follow the policy of least privileged access

Create policies that are scoped to allow users to perform their prescribed jobs. For example, if a
developer needs to periodically stop a task, create a policy that only permits that particular action.
The following example only allows a user to stop a task that belongs to a particular task_family
on a cluster with a specific Amazon Resource Name (ARN). Referring to an ARN in a condition is also
an example of using resource-level permissions. You can use resource-level permissions to specify
the resource that you want an action to apply to.

Note

When referencing an ARN in a policy, use the new longer ARN format. For more
information, see Amazon Resource Names (ARNs) and IDs in the Amazon Elastic Container
Service Developer Guide.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "ecs:StopTask"
],
 "Condition": {
 "ArnEquals": {
 "ecs:cluster": "arn:aws:ecs:region:account_id:cluster/cluster_name"
 }
 },
 "Resource": [
 "arn:aws:ecs:region:account_id:task-definition/task_family:*"
]
 }
]
}

Let the cluster resource serve as the administrative boundary

Policies that are too narrowly scoped can cause a proliferation of roles and increase administrative
overhead. Rather than creating roles that are scoped to particular tasks or services only, create
roles that are scoped to clusters and use the cluster as your primary administrative boundary.

AWS Identity and Access Management 1045

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/ecs-account-settings.html#ecs-resource-ids

Amazon Elastic Container Service Developer Guide

Isolate end-users from the Amazon ECS API by creating automated pipelines

You can limit the actions that users can use by creating pipelines that automatically package
and deploy applications onto Amazon ECS clusters. This effectively delegates the job of creating,
updating, and deleting tasks to the pipeline. For more information, see Tutorial: Amazon ECS
standard deployment with CodePipeline in the AWS CodePipeline User Guide.

Use policy conditions for an added layer of security

When you need an added layer of security, add a condition to your policy. This can be useful if
you're performing a privileged operation or when you need to restrict the set of actions that can
be performed against particular resources. The following example policy requires multi-factor
authorization when deleting a cluster.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "ecs:DeleteCluster"
],
 "Condition": {
 "Bool": {
 "aws:MultiFactorAuthPresent": "true"
 }
 },
 "Resource": ["*"]
 }
]
}

Tags applied to services are propagated to all the tasks that are part of that service. Because
of this, you can create roles that are scoped to Amazon ECS resources with specific tags. In the
following policy, an IAM principals starts and stops all tasks with a tag-key of Department and a
tag-value of Accounting.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",

AWS Identity and Access Management 1046

https://docs.aws.amazon.com/codepipeline/latest/userguide/ecs-cd-pipeline.html
https://docs.aws.amazon.com/codepipeline/latest/userguide/ecs-cd-pipeline.html

Amazon Elastic Container Service Developer Guide

 "Action": [
 "ecs:StartTask",
 "ecs:StopTask",
 "ecs:RunTask"
],
 "Resource": "arn:aws:ecs:*",
 "Condition": {
 "StringEquals": {"ecs:ResourceTag/Department": "Accounting"}
 }
 }
]
}

Periodically audit access to the Amazon ECS APIs

A user might change roles. After they change roles, the permissions that were previously granted
to them might no longer apply. Make sure that you audit who has access to the Amazon ECS
APIs and whether that access is still warranted. Consider integrating IAM with a user lifecycle
management solution that automatically revokes access when a user leaves the organization. For
more information, see Amazon ECS security audit guidelines in the Amazon Web Services General
Reference.

Using IAM roles with Amazon ECS tasks

We recommend that you assign a task an IAM role. Its role can be distinguished from the role of
the Amazon EC2 instance that it's running on. Assigning each task a role aligns with the principle of
least privileged access and allows for greater granular control over actions and resources.

When assigning IAM roles for a task, you must use the following trust policy so that each of your
tasks can assume an IAM role that's different from the one that your EC2 instance uses. This way,
your task doesn't inherit the role of your EC2 instance.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "",
 "Effect": "Allow",
 "Principal": {
 "Service": "ecs-tasks.amazonaws.com"
 },
 "Action": "sts:AssumeRole"

Using IAM roles with Amazon ECS tasks 1047

https://docs.aws.amazon.com/general/latest/gr/aws-security-audit-guide.html

Amazon Elastic Container Service Developer Guide

 }
]
}

When you add a task role to a task definition, the Amazon ECS container agent
automatically creates a token with a unique credential ID (for example, 12345678-90ab-
cdef-1234-567890abcdef) for the task. This token and the role credentials are then
added to the agent's internal cache. The agent populates the environment variable
AWS_CONTAINER_CREDENTIALS_RELATIVE_URI in the container with the URI of the credential
ID (for example, /v2/credentials/12345678-90ab-cdef-1234-567890abcdef).

You can manually retrieve the temporary role credentials from inside a container by appending the
environment variable to the IP address of the Amazon ECS container agent and running the curl
command on the resulting string.

curl 169.254.170.2$AWS_CONTAINER_CREDENTIALS_RELATIVE_URI

The expected output is as follows:

Using IAM roles with Amazon ECS tasks 1048

Amazon Elastic Container Service Developer Guide

{
 "RoleArn": "arn:aws:iam::123456789012:role/SSMTaskRole-SSMFargateTaskIAMRole-
DASWWSF2WGD6",
 "AccessKeyId": "AKIAIOSFODNN7EXAMPLE",
 "SecretAccessKey": "wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY",
 "Token": "IQoJb3JpZ2luX2VjEEM/Example==",
 "Expiration": "2021-01-16T00:51:53Z"
}

Newer versions of the AWS SDKs automatically fetch these credentials from the
AWS_CONTAINER_CREDENTIALS_RELATIVE_URI environment variable when making AWS API
calls.

The output includes an access key-pair consisting of a secret access key ID and a secret key which
your application uses to access AWS resources. It also includes a token that AWS uses to verify that
the credentials are valid. By default, credentials assigned to tasks using task roles are valid for six
hours. After that, they are automatically rotated by the Amazon ECS container agent.

Task execution role

The task execution role is used to grant the Amazon ECS container agent permission to call specific
AWS API actions on your behalf. For example, when you use AWS Fargate, Fargate needs an IAM
role that allows it to pull images from Amazon ECR and write logs to CloudWatch Logs. An IAM role
is also required when a task references a secret that's stored in AWS Secrets Manager, such as an
image pull secret.

Note

If you're pulling images as an authenticated user, you're less likely to be impacted by the
changes that occurred to Docker Hub's pull rate limits. For more information see, Private
registry authentication for container instances.
By using Amazon ECR and Amazon ECR Public, you can avoid the limits imposed by Docker.
If you pull images from Amazon ECR, this also helps shorten network pull times and
reduces data transfer changes when traffic leaves your VPC.

Using IAM roles with Amazon ECS tasks 1049

https://www.docker.com/pricing/resource-consumption-updates
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/private-auth-container-instances.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/private-auth-container-instances.html

Amazon Elastic Container Service Developer Guide

Important

When you use Fargate, you must authenticate to a private image registry using
repositoryCredentials. It's not possible to set the Amazon ECS container agent
environment variables ECS_ENGINE_AUTH_TYPE or ECS_ENGINE_AUTH_DATA or modify
the ecs.config file for tasks hosted on Fargate. For more information, see Private registry
authentication for tasks.

Amazon EC2 container instance role

The Amazon ECS container agent is a container that runs on each Amazon EC2 instance in an
Amazon ECS cluster. It's initialized outside of Amazon ECS using the init command that's
available on the operating system. Consequently, it can't be granted permissions through a task
role. Instead, the permissions have to be assigned to the Amazon EC2 instances that the agents run
on. The actions list in the example AmazonEC2ContainerServiceforEC2Role policy need to be
granted to the ecsInstanceRole. If you don't do this, your instances cannot join the cluster.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "ec2:DescribeTags",
 "ecs:CreateCluster",
 "ecs:DeregisterContainerInstance",
 "ecs:DiscoverPollEndpoint",
 "ecs:Poll",
 "ecs:RegisterContainerInstance",
 "ecs:StartTelemetrySession",
 "ecs:UpdateContainerInstancesState",
 "ecs:Submit*",
 "ecr:GetAuthorizationToken",
 "ecr:BatchCheckLayerAvailability",
 "ecr:GetDownloadUrlForLayer",
 "ecr:BatchGetImage",
 "logs:CreateLogStream",
 "logs:PutLogEvents"
],
 "Resource": "*"

Using IAM roles with Amazon ECS tasks 1050

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/private-auth.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/private-auth.html

Amazon Elastic Container Service Developer Guide

 }
]
}

In this policy, the ecr and logs API actions allow the containers that are running on your instances
to pull images from Amazon ECR and write logs to Amazon CloudWatch. The ecs actions allow
the agent to register and de-register instances and to communicate with the Amazon ECS control
plane. Of these, the ecs:CreateCluster action is optional.

Service-linked roles

You can use the service-linked role for Amazon ECS to grant the Amazon ECS service permission
to call other service APIs on your behalf. Amazon ECS needs the permissions to create and delete
network interfaces, register, and de-register targets with a target group. It also needs the necessary
permissions to create and delete scaling policies. These permissions are granted through the
service-linked role. This role is created on your behalf the first time that you use the service.

Note

If you inadvertently delete the service-linked role, you can recreate it. For instructions, see
Create the service-linked role.

Recommendations

We recommend that you do the following when setting up your task IAM roles and policies.

Block access to Amazon EC2 metadata

When you run your tasks on Amazon EC2 instances, we strongly recommend that you block access
to Amazon EC2 metadata to prevent your containers from inheriting the role assigned to those
instances. If your applications have to call an AWS API action, use IAM roles for tasks instead.

To prevent tasks running in bridge mode from accessing Amazon EC2 metadata, run the following
command or update the instance's user data. For more instruction on updating the user data of
an instance, see this AWS Support Article. For more information about the task definition bridge
mode, see task definition network mode.

sudo yum install -y iptables-services; sudo iptables --insert FORWARD 1 --in-interface
 docker+ --destination 192.0.2.0/32 --jump DROP

Using IAM roles with Amazon ECS tasks 1051

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/using-service-linked-roles.html#create-service-linked-role
https://aws.amazon.com/premiumsupport/knowledge-center/ecs-container-ec2-metadata/
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/task_definition_parameters.html#network_mode

Amazon Elastic Container Service Developer Guide

For this change to persist after a reboot, run the following command that's specific for your
Amazon Machine Image (AMI):

• Amazon Linux 2

sudo iptables-save | sudo tee /etc/sysconfig/iptables && sudo systemctl enable --now
 iptables

• Amazon Linux

sudo service iptables save

For tasks that use awsvpc network mode, set the environment variable
ECS_AWSVPC_BLOCK_IMDS to true in the /etc/ecs/ecs.config file.

You should set the ECS_ENABLE_TASK_IAM_ROLE_NETWORK_HOST variable to false in the ecs-
agent config file to prevent the containers that are running within the host network from
accessing the Amazon EC2 metadata.

Use awsvpc network mode

Use the network awsvpc network mode to restrict the flow of traffic between different tasks or
between your tasks and other services that run within your Amazon VPC. This adds an additional
layer of security. The awsvpc network mode provides task-level network isolation for tasks that
run on Amazon EC2. It is the default mode on AWS Fargate. it's the only network mode that you
can use to assign a security group to tasks.

Use IAM Access Advisor to refine roles

We recommend that you remove any actions that were never used or haven't been used for some
time. This prevents unwanted access from happening. To do this, review the results produced by
IAM Access Advisor, and then remove actions that were never used or haven't been used recently.
You can do this by following the following steps.

Run the following command to generate a report showing the last access information for the
referenced policy:

aws iam generate-service-last-accessed-details --arn arn:aws:iam::123456789012:policy/
ExamplePolicy1

Using IAM roles with Amazon ECS tasks 1052

Amazon Elastic Container Service Developer Guide

use the JobId that was in the output to run the following command. After you do this, you can
view the results of the report.

aws iam get-service-last-accessed-details --job-id 98a765b4-3cde-2101-2345-example678f9

For more information, see IAM Access Advisor.

Monitor AWS CloudTrail for suspicious activity

You can monitor AWS CloudTrail for any suspicious activity. Most AWS API calls are logged to
AWS CloudTrail as events. They are analyzed by AWS CloudTrail Insights, and you're alerted of
any suspicious behavior that's associated with write API calls. This might include a spike in call
volume. These alerts include such information as the time the unusual activity occurred and the
top identity ARN that contributed to the APIs.

You can identify actions that are performed by tasks with an IAM role in AWS CloudTrail by
looking at the event's userIdentity property. In the following example, the arn includes of
the name of the assumed role, s3-write-go-bucket-role, followed by the name of the task,
7e9894e088ad416eb5cab92afExample.

"userIdentity": {
 "type": "AssumedRole",
 "principalId": "AROA36C6WWEJ2YEXAMPLE:7e9894e088ad416eb5cab92afExample",
 "arn": "arn:aws:sts::123456789012:assumed-role/s3-write-go-bucket-
role/7e9894e088ad416eb5cab92afExample",
 ...
}

Note

When tasks that assume a role are run on Amazon EC2 container instances, a request
is logged by Amazon ECS container agent to the audit log of the agent that's located
at an address in the /var/log/ecs/audit.log.YYYY-MM-DD-HH format. For more
information, see Task IAM Roles Log and Logging Insights Events for Trails.

Network security

Network security is a broad topic that encompasses several subtopics. These include encryption-in-
transit, network segmentation and isolation, firewalling, traffic routing, and observability.

Network security 1053

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_access-advisor.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/logs.html#task_iam_roles-logs
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/logging-insights-events-with-cloudtrail.html

Amazon Elastic Container Service Developer Guide

Encryption in transit

Encrypting network traffic prevents unauthorized users from intercepting and reading data
when that data is transmitted across a network. With Amazon ECS, network encryption can be
implemented in any of the following ways.

• With a service mesh (TLS):

With AWS App Mesh, you can configure TLS connections between the Envoy proxies that are
deployed with mesh endpoints. Two examples are virtual nodes and virtual gateways. The TLS
certificates can come from AWS Certificate Manager (ACM). Or, it can come from your own
private certificate authority.

• Enabling Transport Layer Security (TLS)

• Enable traffic encryption between services in AWS App Mesh using ACM certificates or
customer provided certs

• TLS ACM walkthrough

• TLS file walkthrough

• Envoy

• Using Nitro instances:

By default, traffic is automatically encrypted between the following Nitro instance types: C5n,
G4, I3en, M5dn, M5n, P3dn, R5dn, and R5n. Traffic isn't encrypted when it's routed through a
transit gateway, load balancer, or similar intermediary.

• Encryption in transit

• What's new announcement from 2019

• This talk from re:Inforce 2019

• Using Server Name Indication (SNI) with an Application Load Balancer:

The Application Load Balancer (ALB) and Network Load Balancer (NLB) support Server Name
Indication (SNI). By using SNI, you can put multiple secure applications behind a single listener.
For this, each has its own TLS certificate. We recommend that you provision certificates for
the load balancer using AWS Certificate Manager (ACM) and then add them to the listener's
certificate list. The AWS load balancer uses a smart certificate selection algorithm with SNI. If
the hostname that's provided by a client matches a single certificate in the certificate list, the
load balancer chooses that certificate. If a hostname that's provided by a client matches multiple

Network security 1054

https://docs.aws.amazon.com/app-mesh/latest/userguide/tls.html
https://aws.amazon.com/blogs/containers/enable-traffic-encryption-between-services-in-aws-app-mesh-using-aws-certificate-manager-or-customer-provided-certificates/
https://aws.amazon.com/blogs/containers/enable-traffic-encryption-between-services-in-aws-app-mesh-using-aws-certificate-manager-or-customer-provided-certificates/
https://github.com/aws/aws-app-mesh-examples/tree/master/walkthroughs/howto-k8s-tls-acm
https://github.com/aws/aws-app-mesh-examples/tree/master/walkthroughs/howto-mutual-tls-file-provided
https://www.envoyproxy.io
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/data-protection.html#encryption-transit
https://aws.amazon.com/about-aws/whats-new/2019/10/introducing-amazon-ec2-m5n-m5dn-r5n-and-r5dn-instances-featuring-100-gbps-of-network-bandwidth/
https://youtu.be/oqHLLbOoxDg?t=2409

Amazon Elastic Container Service Developer Guide

certificates in the list, the load balancer selects a certificate that the client can support. Examples
include self-signed certificate or a certificate generated through the ACM.

• SNI with Application Load Balancer

• SNI with Network Load Balancer

• End-to-end encryption with TLS certificates:

This involves deploying a TLS certificate with the task. This can either be a self-signed certificate
or a certificate from a trusted certificate authority. You can obtain the certificate by referencing a
secret for the certificate. Otherwise, you can choose to run an container that issues a Certificate
Signing Request (CSR) to ACM and then mounts the resulting secret to a shared volume.

• Maintaining transport layer security all the way to your containers using the Network Load
Balancer with Amazon ECS part 1

• Maintaining Transport Layer Security (TLS) all the way to your container part 2: Using AWS
Private Certificate Authority

Task networking

The following recommendations are in consideration of how Amazon ECS works. Amazon ECS
doesn't use an overlay network. Instead, tasks are configured to operate in different network
modes. For example, tasks that are configured to use bridge mode acquire a non-routable IP
address from a Docker network that runs on each host. Tasks that are configured to use the
awsvpc network mode acquire an IP address from the subnet of the host. Tasks that are configured
with host networking use the host's network interface. awsvpc is the preferred network mode.
This is because it's the only mode that you can use to assign security groups to tasks. It's also the
only mode that's available for AWS Fargate tasks on Amazon ECS.

Security groups for tasks

We recommend that you configure your tasks to use the awsvpc network mode. After you
configure your task to use this mode, the Amazon ECS agent automatically provisions and attaches
an Elastic Network Interface (ENI) to the task. When the ENI is provisioned, the task is enrolled
in an AWS security group. The security group acts as a virtual firewall that you can use to control
inbound and outbound traffic.

Network security 1055

https://docs.aws.amazon.com/elasticloadbalancing/latest/application/create-https-listener.html#https-listener-certificates
https://docs.aws.amazon.com/elasticloadbalancing/latest/network/create-tls-listener.html#tls-listener-certificates
https://aws.amazon.com/blogs/compute/maintaining-transport-layer-security-all-the-way-to-your-container-using-the-network-load-balancer-with-amazon-ecs/
https://aws.amazon.com/blogs/compute/maintaining-transport-layer-security-all-the-way-to-your-container-using-the-network-load-balancer-with-amazon-ecs/
https://aws.amazon.com/blogs/compute/maintaining-transport-layer-security-all-the-way-to-your-container-part-2-using-aws-certificate-manager-private-certificate-authority/
https://aws.amazon.com/blogs/compute/maintaining-transport-layer-security-all-the-way-to-your-container-part-2-using-aws-certificate-manager-private-certificate-authority/

Amazon Elastic Container Service Developer Guide

AWS PrivateLink

AWS PrivateLink is a networking technology that allows you to create private endpoints for
different AWS services, including Amazon ECS. The endpoints are required in sandboxed
environments where there is no Internet Gateway (IGW) attached to the Amazon VPC and no
alternative routes to the Internet. Using AWS PrivateLink ensures that calls to the Amazon ECS
service stay within the Amazon VPC and do not traverse the internet. For instructions on how to
create AWS PrivateLink endpoints for Amazon ECS and other related services, see Amazon ECS
interface Amazon VPC endpoints.

Important

AWS Fargate tasks don't require a AWS PrivateLink endpoint for Amazon ECS.

Amazon ECR and Amazon ECS both support endpoint policies. These policies allow you to refine
access to a service's APIs. For example, you could create an endpoint policy for Amazon ECR that
only allows images to be pushed to registries in particular AWS accounts. A policy like this could be
used to prevent data from being exfiltrated through container images while still allowing users to
push to authorized Amazon ECR registries. For more information, see Use VPC endpoint policies.

The following policy allows all AWS principals in your account to perform all actions against only
your Amazon ECR repositories:

{
 "Statement": [
 {
 "Sid": "LimitECRAccess",
 "Principal": "*",
 "Action": "*",
 "Effect": "Allow",
 "Resource": "arn:aws:ecr:region:account_id:repository/*"
 },
]
}

You can enhance this further by setting a condition that uses the new PrincipalOrgID property.
This prevents pushing and pulling of images by an IAM principal that isn't part of your AWS
Organizations. For more information, see aws:PrincipalOrgID.

Network security 1056

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/vpc-endpoints.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/vpc-endpoints.html
https://docs.aws.amazon.com/vpc/latest/privatelink/vpc-endpoints-access.html#vpc-endpoint-policies
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-principalorgid

Amazon Elastic Container Service Developer Guide

We recommended applying the same policy to both the com.amazonaws.region.ecr.dkr and
the com.amazonaws.region.ecr.api endpoints.

Amazon ECS container agent settings

The Amazon ECS container agent configuration file includes several environment
variables that relate to network security. ECS_AWSVPC_BLOCK_IMDS and
ECS_ENABLE_TASK_IAM_ROLE_NETWORK_HOST are used to block a task's access to Amazon EC2
metadata. HTTP_PROXY is used to configure the agent to route through a HTTP proxy to connect
to the internet. For instructions on configuring the agent and the Docker runtime to route through
a proxy, see HTTP Proxy Configuration.

Important

These settings aren't available when you use AWS Fargate.

Recommendations

We recommend that you do the following when setting up your Amazon VPC, load balancers, and
network.

Use network encryption where applicable

You should use network encryption where applicable. Certain compliance programs, such as PCI
DSS, require that you encrypt data in transit if the data contains cardholder data. If your workload
has similar requirements, configure network encryption.

Modern browsers warn users when connecting to insecure sites. If your service is fronted by a
public facing load balancer, use TLS/SSL to encrypt the traffic from the client's browser to the load
balancer and re-encrypt to the backend if warranted.

Use awsvpc network mode and security groups when you need to control traffic between tasks
or between tasks and other network resources

You should use awsvpc network mode and security groups when you need to control traffic
between tasks and between tasks and other network resources. If your service behind an ALB, use
security groups to only allow inbound traffic from other network resources using the same security
group as your ALB. If your application is behind an NLB, configure the task's security group to only

Network security 1057

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/http_proxy_config.html

Amazon Elastic Container Service Developer Guide

allow inbound traffic from the Amazon VPC CIDR range and the static IP addresses assigned to the
NLB.

Security groups should also be used to control traffic between tasks and other resources within the
Amazon VPC such as Amazon RDS databases.

Create clusters in separate Amazon VPCs when network traffic needs to be strictly isolated

You should create clusters in separate Amazon VPCs when network traffic needs to be strictly
isolated. Avoid running workloads that have strict security requirements on clusters with workloads
that don't have to adhere to those requirements. When strict network isolation is mandatory,
create clusters in separate Amazon VPCs and selectively expose services to other Amazon VPCs
using Amazon VPC endpoints. For more information, see Amazon VPC endpoints.

Configure AWS PrivateLink endpoints when warranted

You should configure AWS PrivateLink endpoints endpoints when warranted. If your security
policy prevents you from attaching an Internet Gateway (IGW) to your Amazon VPCs, configure
AWS PrivateLink endpoints for Amazon ECS and other services such as Amazon ECR, AWS Secrets
Manager, and Amazon CloudWatch.

Use Amazon VPC Flow Logs to analyze the traffic to and from long-running tasks

You should use Amazon VPC Flow Logs to analyze the traffic to and from long-running tasks. Tasks
that use awsvpc network mode get their own ENI. Doing this, you can monitor traffic that goes to
and from individual tasks using Amazon VPC Flow Logs. A recent update to Amazon VPC Flow Logs
(v3), enriches the logs with traffic metadata including the vpc ID, subnet ID, and the instance ID.
This metadata can be used to help narrow an investigation. For more information, see Amazon VPC
Flow Logs.

Note

Because of the temporary nature of containers, flow logs might not always be an effective
way to analyze traffic patterns between different containers or containers and other
network resources.

Network security 1058

https://docs.aws.amazon.com/vpc/latest/userguide/vpc-endpoints.html
https://docs.aws.amazon.com/vpc/latest/userguide/flow-logs.html#flow-logs-basics
https://docs.aws.amazon.com/vpc/latest/userguide/flow-logs.html#flow-logs-basics

Amazon Elastic Container Service Developer Guide

Secrets management

Secrets, such as API keys and database credentials, are frequently used by applications to gain
access other systems. They often consist of a username and password, a certificate, or API key.
Access to these secrets should be restricted to specific IAM principals that are using IAM and
injected into containers at runtime.

Secrets can be seamlessly injected into containers from AWS Secrets Manager and Amazon EC2
Systems Manager Parameter Store. These secrets can be referenced in your task as any of the
following.

1. They're referenced as environment variables that use the secrets container definition
parameter.

2. They're referenced as secretOptions if your logging platform requires authentication. For
more information, see logging configuration options.

3. They're referenced as secrets pulled by images that use the repositoryCredentials
container definition parameter if the registry where the container is being pulled from requires
authentication. Use this method when pulling images from Amazon ECR Public Gallery. For more
information, see Private registry authentication for tasks.

Recommendations

We recommend that you do the following when setting up secrets management.

Use AWS Secrets Manager or Amazon EC2 Systems Manager Parameter Store for storing secret
materials

You should securely store API keys, database credentials, and other secret materials in AWS Secrets
Manager or as an encrypted parameter in Amazon EC2 Systems Manager Parameter Store. These
services are similar because they're both managed key-value stores that use AWS KMS to encrypt
sensitive data. AWS Secrets Manager, however, also includes the ability to automatically rotate
secrets, generate random secrets, and share secrets across AWS accounts. If you deem these
important features, use AWS Secrets Manager otherwise use encrypted parameters.

Note

Tasks that reference a secret from AWS Secrets Manager or Amazon EC2 Systems Manager
Parameter Store require a Task Execution Role with a policy that grants the Amazon

Secrets management 1059

https://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_LogConfiguration.html#API_LogConfiguration_Contents
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/private-auth.html

Amazon Elastic Container Service Developer Guide

ECS access to the desired secret and, if applicable, the AWS KMS key used to encrypt and
decrypt that secret.

Important

Secrets that are referenced in tasks aren't rotated automatically. If your secret changes, you
must force a new deployment or launch a new task to retrieve the latest secret value. For
more information, see the following topics:

• AWS Secrets Manager: Injecting data as environment variables

• Amazon EC2 Systems Manager Parameter Store: Injecting data as environment variables

Retrieving data from an encrypted Amazon S3 bucket

Because the value of environment variables can inadvertently leak in logs and are revealed when
running docker inspect, you should store secrets in an encrypted Amazon S3 bucket and use
task roles to restrict access to those secrets. When you do this, your application must be written
to read the secret from the Amazon S3 bucket. For instructions, see Setting default server-side
encryption behavior for Amazon S3 buckets.

Mount the secret to a volume using a sidecar container

Because there's an elevated risk of data leakage with environment variables, you should run a
sidecar container that reads your secrets from AWS Secrets Manager and write them to a shared
volume. This container can run and exit before the application container by using Amazon ECS
container ordering. When you do this, the application container subsequently mounts the volume
where the secret was written. Like the Amazon S3 bucket method, your application must be written
to read the secret from the shared volume. Because the volume is scoped to the task, the volume
is automatically deleted after the task stops. For an example of a sidecar container, see the aws-
secret-sidecar-injector project.

Note

On Amazon EC2, the volume that the secret is written to can be encrypted with a AWS KMS
customer managed key. On AWS Fargate, volume storage is automatically encrypted using
a service managed key.

Secrets management 1060

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/specifying-sensitive-data-secrets.html#secrets-envvar
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/specifying-sensitive-data-secrets.html#secrets-logconfig
https://docs.aws.amazon.com/AmazonS3/latest/userguide/bucket-encryption.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/bucket-encryption.html
https://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_ContainerDependency.html
https://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_ContainerDependency.html
https://github.com/aws-samples/aws-secret-sidecar-injector/blob/master/ecs-task-def/task-def.json
https://github.com/aws-samples/aws-secret-sidecar-injector/blob/master/ecs-task-def/task-def.json

Amazon Elastic Container Service Developer Guide

Additional resources

• Passing secrets to containers in an Amazon ECS task

• Chamber is a wrapper for storing secrets in Amazon EC2 Systems Manager Parameter Store

Using temporary security credentials with API operations

If you're making direct HTTPS API requests to AWS, you can sign those requests with the temporary
security credentials that you get from the AWS Security Token Service. For more information, see
Signing AWS API requests in the AWS General Reference.

Compliance and security

Your compliance responsibility when using Amazon ECS is determined by the sensitivity of your
data, and the compliance objectives of your company, and applicable laws and regulations.

AWS provides the following resources to help with compliance:

• Security and compliance quick start guides: These deployment guides discuss architectural
considerations and provide steps for deploying security and compliance-focused baseline
environments on AWS.

• Architecting for HIPAA Security and Compliance Whitepaper: This whitepaper describes how
companies can use AWS to create HIPAA-compliant applications.

• AWS Services in Scope by Compliance Program: This list contains the AWS services in scope of
specific compliance programs. For more information, see AWS Compliance Programs.

Payment Card Industry Data Security Standards (PCI DSS)

It's important that you understand the complete flow of cardholder data (CHD) within the
environment when adhering to PCI DSS. The CHD flow determines the applicability of the PCI DSS,
defines the boundaries and components of a cardholder data environment (CDE), and therefore
the scope of a PCI DSS assessment. Accurate determination of the PCI DSS scope is key to defining
the security posture and ultimately a successful assessment. Customers must have a procedure
for scope determination that assures its completeness and detects changes or deviations from the
scope.

The temporary nature of containerized applications provides additional complexities when auditing
configurations. As a result, customers need to maintain an awareness of all container configuration

Using temporary security credentials with API operations 1061

https://aws.amazon.com/premiumsupport/knowledge-center/ecs-data-security-container-task/
https://github.com/segmentio/chamber
https://docs.aws.amazon.com/general/latest/gr/signing_aws_api_requests.html
http://aws.amazon.com/quickstart/?awsf.quickstart-homepage-filter=categories%23security-identity-compliance
https://docs.aws.amazon.com/whitepapers/latest/architecting-hipaa-security-and-compliance-on-aws/architecting-hipaa-security-and-compliance-on-aws.html
http://aws.amazon.com/compliance/services-in-scope/
http://aws.amazon.com/compliance/programs/

Amazon Elastic Container Service Developer Guide

parameters to ensure compliance requirements are addressed throughout all phases of a container
lifecycle.

For additional information on achieving PCI DSS compliance on Amazon ECS, refer to the following
whitepapers.

• Architecting on Amazon ECS for PCI DSS compliance

• Architecting for PCI DSS Scoping and Segmentation on AWS

HIPAA (U.S. Health Insurance Portability and Accountability Act)

Using Amazon ECS with workloads that process protected health information (PHI) requires no
additional configuration. Amazon ECS acts as an orchestration service that coordinates the launch
of containers on Amazon EC2. It doesn't operate with or upon data within the workload being
orchestrated. Consistent with HIPAA regulations and the AWS Business Associate Addendum, PHI
should be encrypted in transit and at-rest when accessed by containers launched with Amazon ECS.

Various mechanisms for encrypting at-rest are available with each AWS storage option, such as
Amazon S3, Amazon EBS, and AWS KMS. You may deploy an overlay network (such as VNS3 or
Weave Net) to ensure complete encryption of PHI transferred between containers or to provide
a redundant layer of encryption. Complete logging should also be enabled and all container logs
should be directed to Amazon CloudWatch. To design your AWS environment using the best
practices for infrastructure security, see Infrastructure Protection in Security Pillar AWS Well‐
Architected Framework.

AWS Security Hub

Use AWS Security Hub to monitor your usage of Amazon ECS as it relates to security best practices.
Security Hub uses controls to evaluate resource configurations and security standards to help you
comply with various compliance frameworks. For more information about using Security Hub to
evaluate Amazon ECS resources, see Amazon ECS controls in the AWS Security Hub User Guide.

Amazon GuardDuty Runtime Monitoring

Amazon GuardDuty is a threat detection service that helps protect your accounts, containers,
workloads, and the data within your AWS environment. Using machine learning (ML) models, and
anomaly and threat detection capabilities, GuardDuty continuously monitors different log sources
and runtime activity to identify and prioritize potential security risks and malicious activities in
your environment.

Compliance and security 1062

https://d1.awsstatic.com/whitepapers/compliance/architecting-on-amazon-ecs-for-pci-dss-compliance.pdf
https://d1.awsstatic.com/whitepapers/pci-dss-scoping-on-aws.pdf
https://docs.aws.amazon.com/wellarchitected/latest/security-pillar/infrastructure-protection.html
https://docs.aws.amazon.com/securityhub/latest/userguide/ecs-controls.html

Amazon Elastic Container Service Developer Guide

Use Runtime Monitoring in GuardDuty to identify malicious or unauthorized behavior. Runtime
Monitoring protects workloads running on Fargate and EC2 by continuously monitoring AWS log
and networking activity to identify malicious or unauthorized behavior. Runtime Monitoring uses
a lightweight, fully managed GuardDuty security agent that analyzes on-host behavior, such as
file access, process execution, and network connections. This covers issues including escalation of
privileges, use of exposed credentials, or communication with malicious IP addresses, domains,
and the presence of malware on your Amazon EC2 instances and container workloads. For more
information, see GuardDuty Runtime Monitoring in the GuardDuty User Guide.

Recommendations

You should engage the compliance program owners within your business early and use the AWS
shared responsibility model to identify compliance control ownership for success with the relevant
compliance programs.

Logging and monitoring

Logging and monitoring are an important aspect of maintaining the reliability, availability, and
performance of Amazon ECS and your AWS solutions. AWS provides several tools for monitoring
your Amazon ECS resources and responding to potential incidents:

• Amazon CloudWatch Alarms

• Amazon CloudWatch Logs

• Amazon CloudWatch Events

• AWS CloudTrail Logs

You can configure the containers in your tasks to send log information to Amazon CloudWatch
Logs. If you're using the AWS Fargate launch type for your tasks, you can view the logs from your
containers. If you're using the Amazon EC2 launch type, you can view different logs from your
containers in one convenient location. This also prevents your container logs from taking up disk
space on your container instances.

For more information about Amazon CloudWatch Logs, see Monitor Logs from Amazon EC2
Instances in the Amazon CloudWatch User Guide. For instruction on sending container logs from
your tasks to Amazon CloudWatch Logs, see Using the awslogs log driver.

Logging and monitoring 1063

https://docs.aws.amazon.com/guardduty/latest/ug/runtime-monitoring.html
https://aws.amazon.com/compliance/shared-responsibility-model/
https://aws.amazon.com/compliance/shared-responsibility-model/
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/cloudwatch-metrics.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/using_awslogs.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/cloudwatch_event_stream.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/logging-using-cloudtrail.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/WhatIsCloudWatchLogs.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/using_awslogs.html

Amazon Elastic Container Service Developer Guide

Container logging with Fluent Bit

AWS provides a Fluent Bit image with plugins for both Amazon CloudWatch Logs and Amazon Data
Firehose. This image provides the capability to route logs to Amazon CloudWatch and Amazon
Data Firehose destinations (which include Amazon S3, Amazon OpenSearch Service, and Amazon
Redshift). We recommend using Fluent Bit as your log router because it has a lower resource
utilization rate than Fluentd. For more information, see Amazon CloudWatch Logs for Fluent Bit
and Amazon Data Firehose for Fluent Bit.

The AWS for Fluent Bit image is available on:

• Amazon ECR on Amazon ECR Public Gallery

• Amazon ECR repository (in most Regions of high availability)

The following shows the syntax to use for the Docker CLI.

docker pull public.ecr.aws/aws-observability/aws-for-fluent-bit:tag

For example, you can pull the latest AWS for Fluent Bit image using this Docker CLI command:

docker pull public.ecr.aws/aws-observability/aws-for-fluent-bit:latest

Also refer to the following blog posts for more information on Fluent Bit and related features:

• Fluent Bit for Amazon EKS on AWS Fargate

• Centralized Container Logging with Fluent Bit

• Building a scalable log solution aggregator with AWS Fargate, Fluentd, and Amazon Data
Firehose

Custom log routing - FireLens for Amazon ECS

With FireLens for Amazon ECS, you can use task definition parameters to route logs to an AWS
service or AWS Partner Network (APN) destination for log storage and analytics. FireLens works
with Fluentd and Fluent Bit. We provide the AWS for Fluent Bit image. Or, you can alternatively use
your own Fluentd or Fluent Bit image.

You should consider the following conditions and considerations when using FireLens for Amazon
ECS:

Logging and monitoring 1064

https://github.com/aws/amazon-cloudwatch-logs-for-fluent-bit
https://github.com/aws/amazon-kinesis-firehose-for-fluent-bit
https://gallery.ecr.aws/aws-observability/aws-for-fluent-bit
https://github.com/aws/aws-for-fluent-bit#amazon-ecr
https://aws.amazon.com/blogs/containers/fluent-bit-for-amazon-eks-on-aws-fargate-is-here/
https://aws.amazon.com/blogs/opensource/centralized-container-logging-fluent-bit/
https://aws.amazon.com/blogs/compute/building-a-scalable-log-solution-aggregator-with-aws-fargate-fluentd-and-amazon-kinesis-data-firehose/
https://aws.amazon.com/blogs/compute/building-a-scalable-log-solution-aggregator-with-aws-fargate-fluentd-and-amazon-kinesis-data-firehose/
https://www.fluentd.org/
https://fluentbit.io/

Amazon Elastic Container Service Developer Guide

• FireLens for Amazon ECS is supported for tasks that are hosted both on AWS Fargate and
Amazon EC2.

• FireLens for Amazon ECS is supported in AWS CloudFormation templates. For more information,
see AWS::ECS::TaskDefinition FirelensConfiguration in the AWS CloudFormation User Guide.

• For tasks that use the bridge network mode, containers with the FireLens configuration must
start before any of the application containers that rely on it start. To control the order that your
containers start in, use dependency conditions in your task definition. For more information, see
Container dependency.

AWS Fargate security

We recommend that you take into account the following best practices when you use AWS Fargate.
For additional guidance, see Security overview of AWS Fargate.

Use AWS KMS to encrypt ephemeral storage

You should have your ephemeral storage encrypted by AWS KMS. For Amazon ECS tasks that
are hosted on AWS Fargate using platform version 1.4.0 or later, each task receives 20 GiB of
ephemeral storage. You can increase the total amount of ephemeral storage, up to a maximum of
200 GiB, by specifying the ephemeralStorage parameter in your task definition. For such tasks
that were launched on May 28, 2020 or later, the ephemeral storage is encrypted with an AES-256
encryption algorithm using an encryption key managed by AWS Fargate.

For more information, see Using data volumes in tasks .

Example: Launching an Amazon ECS task on AWS Fargate platform version 1.4.0 with
ephemeral storage encryption

The following command will launch an Amazon ECS task on AWS Fargate platform version 1.4.
Because this task is launched as part of the Amazon ECS cluster, it uses the 20 GiB of ephemeral
storage that's automatically encrypted.

aws ecs run-task --cluster clustername \
 --task-definition taskdefinition:version \
 --count 1
 --launch-type "FARGATE" \
 --platform-version 1.4.0 \
 --network-configuration
 "awsvpcConfiguration={subnets=[subnetid],securityGroups=[securitygroupid]}" \

AWS Fargate security 1065

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-ecs-taskdefinition-firelensconfiguration.html
https://docs.aws.amazon.com/AmazonECS/latest/userguide/task_definition_parameters.html#container_definition_dependson
https://d1.awsstatic.com/whitepapers/AWS_Fargate_Security_Overview_Whitepaper.pdf
https://docs.aws.amazon.com/AmazonECS/latest/userguide/using_data_volumes.html

Amazon Elastic Container Service Developer Guide

 --region region

SYS_PTRACE capability for kernel syscall tracing

The default configuration of Linux capabilities that are added or removed from your container are
provided by Docker. For more information about the available capabilities, see Runtime privilege
and Linux capabilities in the Docker run documentation.

Tasks that are launched on AWS Fargate only support adding the SYS_PTRACE kernel capability.

Refer to the tutorial video below that shows how to use this feature through the Sysdig Falco
project.

#ContainersFromTheCouch - Troubleshooting your AWS Fargate Task using SYS_PTRACE capability

The code discussed in the previous video can be found on GitHub here.

Use Amazon GuardDuty Runtime Monitoring

Amazon GuardDuty is a threat detection service that helps protect your accounts, containers,
workloads, and the data within your AWS environment. Using machine learning (ML) models, and
anomaly and threat detection capabilities, GuardDuty continuously monitors different log sources
and runtime activity to identify and prioritize potential security risks and malicious activities in
your environment.

Runtime Monitoring in GuardDuty protects workloads running on Fargate by continuously
monitoring AWS log and networking activity to identify malicious or unauthorized behavior.
Runtime Monitoring uses a lightweight, fully managed GuardDuty security agent that analyzes on-
host behavior, such as file access, process execution, and network connections. This covers issues
including escalation of privileges, use of exposed credentials, or communication with malicious IP
addresses, domains, and the presence of malware on your Amazon EC2 instances and container
workloads. For more information, see GuardDuty Runtime Monitoring in the GuardDuty User Guide.

AWS Fargate security considerations

Each task has a dedicated infrastructure capacity because Fargate runs each workload on an
isolated virtual environment. Workloads that run on Fargate do not share network interfaces,
ephemeral storage, CPU, or memory with other tasks. You can run multiple containers within a task
including application containers and sidecar containers, or simply sidecars. A sidecar is a container
that runs alongside an application container in an Amazon ECS task. While the application

AWS Fargate security 1066

https://docs.docker.com/engine/reference/run/#runtime-privilege-and-linux-capabilities
https://docs.docker.com/engine/reference/run/#runtime-privilege-and-linux-capabilities
https://github.com/falcosecurity/falco
https://www.youtube.com/embed/OYGKjmFeLqI
https://github.com/paavan98pm/ecs-fargate-pv1.4-falco
https://docs.aws.amazon.com/guardduty/latest/ug/runtime-monitoring.html

Amazon Elastic Container Service Developer Guide

container runs core application code, processes running in sidecars can augment the application.
Sidecars help you segregate application functions into dedicated containers, making it easier for
you to update parts of your application.

Containers that are part of the same task share resources for the Fargate launch type because
these containers will always run on the same host and share compute resources. These containers
also share the ephemeral storage provided by Fargate. Linux containers in a task share network
namespaces, including the IP address and network ports. Inside a task, containers that belong to
the task can inter-communicate over localhost.

The runtime environment in Fargate prevents you from using certain controller features that are
supported on EC2 instances. Consider the following when you architect workloads that run on
Fargate:

• No privileged containers or access - Features such as privileged containers or access are currently
unavailable on Fargate. This will affect uses cases such as running Docker in Docker.

• Limited access to Linux capabilities - The environment in which containers run on Fargate is
locked down. Additional Linux capabilities, such as CAP_SYS_ADMIN and CAP_NET_ADMIN, are
restricted to prevent a privilege escalation. Fargate supports adding the CAP_SYS_PTRACE Linux
capability to tasks to allow observability and security tools deployed within the task to monitor
the containerized application.

• No access to the underlying host - Neither customers nor AWS operators can connect to a host
running customer workloads. You can use ECS exec to run commands in or get a shell to a
container running on Fargate. You can use ECS exec to help collect diagnostic information for
debugging. Fargate also prevents containers from accessing the underlying host’s resources, such
as the file system, devices, networking, and container runtime.

• Networking - You can use security groups and network ACLs to control inbound and outbound
traffic. Fargate tasks receive an IP address from the configured subnet in your VPC.

EC2 container instance security considerations

You should consider a single container instance and its access within your threat model. For
example, a single affected task might be able to leverage the IAM permissions of a non-infected
task on the same instance.

We recommend that you use the following to help prevent this:

• Do not use administrator privileges when running your tasks.

EC2 container instance security 1067

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/task_definition_parameters.html#other_task_definition_params

Amazon Elastic Container Service Developer Guide

• Assign a task role with least-privileged access to your tasks.

The container agent automatically creates a token with a unique credential ID which are used to
access Amazon ECS resources.

• To prevent containers run by tasks that use the awsvpc network mode from accessing the
credential information supplied to the Amazon EC2 instance profile, while still allowing the
permissions that are provided by the task role set the ECS_AWSVPC_BLOCK_IMDS agent
configuration variable to true in the agent configuration file and restart the agent.

• Use Amazon GuardDuty Runtime Monitoring to detect threats for clusters and containers within
your AWS environment. Runtime Monitoring uses a GuardDuty security agent that adds runtime
visibility into individual Amazon ECS workloads, for example, file access, process execution,
and network connections. For more information, see GuardDuty Runtime Monitoring in the
GuardDuty User Guide.

Task and container security

You should consider the container image as your first line of defense against an attack. An insecure,
poorly constructed image can allow an attacker to escape the bounds of the container and gain
access to the host. You should do the following to mitigate the risk of this happening.

Recommendations

We recommend that you do the following when setting up your tasks and containers.

Create minimal or use distroless images

Start by removing all extraneous binaries from the container image. If you’re using an unfamiliar
image from Amazon ECR Public Gallery, inspect the image to refer to the contents of each of the
container's layers. You can use an application such as Dive to do this.

Alternatively, you can use distroless images that only include your application and its runtime
dependencies. They don't contain package managers or shells. Distroless images improve the
"signal to noise of scanners and reduces the burden of establishing provenance to just what you
need." For more information, see the GitHub documentation on distroless.

Docker has a mechanism for creating images from a reserved, minimal image known as scratch. For
more information, see Creating a simple parent image using scratch in the Docker documentation.
With languages like Go, you can create a static linked binary and reference it in your Dockerfile. The
following example shows how you can accomplish this.

Task and container security 1068

https://docs.aws.amazon.com/guardduty/latest/ug/runtime-monitoring.html
https://github.com/wagoodman/dive
https://github.com/GoogleContainerTools/distroless
https://docs.docker.com/develop/develop-images/baseimages/#create-a-simple-parent-image-using-scratch

Amazon Elastic Container Service Developer Guide

############################
STEP 1 build executable binary
############################
FROM golang:alpine AS builder
Install git.
Git is required for fetching the dependencies.
RUN apk update && apk add --no-cache git
WORKDIR $GOPATH/src/mypackage/myapp/
COPY . .
Fetch dependencies.
Using go get.
RUN go get -d -v
Build the binary.
RUN go build -o /go/bin/hello
############################
STEP 2 build a small image
############################
FROM scratch
Copy our static executable.
COPY --from=builder /go/bin/hello /go/bin/hello
Run the hello binary.
ENTRYPOINT ["/go/bin/hello"]
This creates a container image that consists of your application and nothing else,
 making it extremely secure.

The previous example is also an example of a multi-stage build. These types of builds are attractive
from a security standpoint because you can use them to minimize the size of the final image
pushed to your container registry. Container images devoid of build tools and other extraneous
binaries improves your security posture by reducing the attack surface of the image. For more
information about multi-stage builds, see creating multi-stage builds.

Scan your images for vulnerabilities

Similar to their virtual machine counterparts, container images can contain binaries and application
libraries with vulnerabilities or develop vulnerabilities over time. The best way to safeguard against
exploits is by regularly scanning your images with an image scanner.

Images that are stored in Amazon ECR can be scanned on push or on-demand (once every 24
hours). Amazon ECR basic scanning uses Clair, an open-source image scanning solution. Amazon
ECR enhanced scanning uses Amazon Inspector. After an image is scanned, the results are logged
to the Amazon ECR event stream in Amazon EventBridge. You can also see the results of a scan

Task and container security 1069

https://docs.docker.com/develop/develop-images/multistage-build/
https://github.com/quay/clair

Amazon Elastic Container Service Developer Guide

from within the Amazon ECR console or by calling the DescribeImageScanFindings API. Images
with a HIGH or CRITICAL vulnerability should be deleted or rebuilt. If an image that has been
deployed develops a vulnerability, it should be replaced as soon as possible.

Docker Desktop Edge version 2.3.6.0 or later can scan local images. The scans are powered by Snyk,
an application security service. When vulnerabilities are discovered, Snyk identifies the layers and
dependencies with the vulnerability in the Dockerfile. It also recommends safe alternatives like
using a slimmer base image with fewer vulnerabilities or upgrading a particular package to a newer
version. By using Docker scan, developers can resolve potential security issues before pushing their
images to the registry.

• Automating image compliance using Amazon ECR and AWS Security Hub explains how to surface
vulnerability information from Amazon ECR in AWS Security Hub and automate remediation by
blocking access to vulnerable images.

Remove special permissions from your images

The access rights flags setuid and setgid allow running an executable with the permissions of
the owner or group of the executable. Remove all binaries with these access rights from your image
as these binaries can be used to escalate privileges. Consider removing all shells and utilities like nc
and curl that can be used for malicious purposes. You can find the files with setuid and setgid
access rights by using the following command.

find / -perm /6000 -type f -exec ls -ld {} \;

To remove these special permissions from these files, add the following directive to your container
image.

RUN find / -xdev -perm /6000 -type f -exec chmod a-s {} \; || true

Create a set of curated images

Rather than allowing developers to create their own images, create a set of vetted images for
the different application stacks in your organization. By doing so, developers can forego learning
how to compose Dockerfiles and concentrate on writing code. As changes are merged into your
codebase, a CI/CD pipeline can automatically compile the asset and then store it in an artifact
repository. And, last, copy the artifact into the appropriate image before pushing it to a Docker

Task and container security 1070

https://docs.aws.amazon.com/AmazonECR/latest/APIReference/API_DescribeImageScanFindings.html
https://www.docker.com/products/docker-desktop
https://docs.docker.com/engine/scan/
https://snyk.io/
https://aws.amazon.com/blogs/containers/automating-image-compliance-for-amazon-eks-using-amazon-elastic-container-registry-and-aws-security-hub/

Amazon Elastic Container Service Developer Guide

registry such as Amazon ECR. At the very least you should create a set of base images that
developers can create their own Dockerfiles from. You should avoid pulling images from Docker
Hub. You don't always know what is in the image and about a fifth of the top 1000 images
have vulnerabilities. A list of those images and their vulnerabilities can be found at https://
vulnerablecontainers.org/.

Scan application packages and libraries for vulnerabilities

Use of open source libraries is now common. As with operating systems and OS packages, these
libraries can have vulnerabilities . As part of the development lifecycle these libraries should be
scanned and updated when critical vulnerabilities are found.

Docker Desktop performs local scans using Snyk. It can also be used to find vulnerabilities and
potential licensing issues in open source libraries. It can be integrated directly into developer
workflows giving you the ability to mitigate risks posed by open source libraries. For more
information, see the following topics:

• Open Source Application Security Tools includes a list of tools for detecting vulnerabilities in
applications.

Perform static code analysis

You should perform static code analysis before building a container image. It's performed against
your source code and is used to identify coding errors and code that could be exploited by a
malicious actor, such as fault injections. SonarQube is a popular option for static application
security testing (SAST), with support for a variety of different programming languages.

Run containers as a non-root user

You should run containers as a non-root user. By default, containers run as the root user unless
the USER directive is included in your Dockerfile. The default Linux capabilities that are assigned by
Docker restrict the actions that can be run as root, but only marginally. For example, a container
running as root is still not allowed to access devices.

As part of your CI/CD pipeline you should lint Dockerfiles to look for the USER directive and fail the
build if it's missing. For more information, see the following topics:

• Dockerfile-lint is an open-source tool from RedHat that can be used to check if the file conforms
to best practices.

• Hadolint is another tool for building Docker images that conform to best practices.

Task and container security 1071

https://vulnerablecontainers.org/
https://vulnerablecontainers.org/
https://owasp.org/www-community/Free_for_Open_Source_Application_Security_Tools
https://www.sonarqube.org/features/security/
https://github.com/projectatomic/dockerfile_lint
https://github.com/hadolint/hadolint

Amazon Elastic Container Service Developer Guide

Use a read-only root file system

You should use a read-only root file system. A container's root file system is writable by default.
When you configure a container with a RO (read-only) root file system it forces you to explicitly
define where data can be persisted. This reduces your attack surface because the container's file
system can't be written to unless permissions are specifically granted.

Note

Having a read-only root file system can cause issues with certain OS packages that expect
to be able to write to the filesystem. If you're planning to use read-only root file systems,
thoroughly test beforehand.

Configure tasks with CPU and Memory limits (Amazon EC2)

You should configure tasks with CPU and memory limits to minimize the following risk. A task's
resource limits set an upper bound for the amount of CPU and memory that can be reserved by all
the containers within a task. If no limits are set, tasks have access to the host's CPU and memory.
This can cause issues where tasks deployed on a shared host can starve other tasks of system
resources.

Note

Amazon ECS on AWS Fargate tasks require you to specify CPU and memory limits because
it uses these values for billing purposes. One task hogging all of the system resources isn't
an issue for Amazon ECS Fargate because each task is run on its own dedicated instance.
If you don't specify a memory limit, Amazon ECS allocates a minimum of 4MB to each
container. Similarly, if no CPU limit is set for the task, the Amazon ECS container agent
assigns it a minimum of 2 CPUs.

Use immutable tags with Amazon ECR

With Amazon ECR, you can and should use configure images with immutable tags. This prevents
pushing an altered or updated version of an image to your image repository with an identical tag.
This protects against an attacker pushing a compromised version of an image over your image with
the same tag. By using immutable tags, you effectively force yourself to push a new image with a
different tag for each change.

Task and container security 1072

Amazon Elastic Container Service Developer Guide

Avoid running containers as privileged (Amazon EC2)

You should avoid running containers as privileged. For background, containers run as privileged
are run with extended privileges on the host. This means the container inherits all of the Linux
capabilities assigned to root on the host. It's use should be severely restricted or forbidden. We
advise setting the Amazon ECS container agent environment variable ECS_DISABLE_PRIVILEGED
to true to prevent containers from running as privileged on particular hosts if privileged
isn't needed. Alternatively you can use AWS Lambda to scan your task definitions for the use of the
privileged parameter.

Note

Running a container as privileged isn't supported on Amazon ECS on AWS Fargate.

Remove unnecessary Linux capabilities from the container

The following is a list of the default Linux capabilities assigned to Docker containers. For more
information about each capability, see Overview of Linux Capabilities.

CAP_CHOWN, CAP_DAC_OVERRIDE, CAP_FOWNER, CAP_FSETID, CAP_KILL,
CAP_SETGID, CAP_SETUID, CAP_SETPCAP, CAP_NET_BIND_SERVICE,
CAP_NET_RAW, CAP_SYS_CHROOT, CAP_MKNOD, CAP_AUDIT_WRITE,
CAP_SETFCAP

If a container doesn't require all of the Docker kernel capabilities listed above, consider dropping
them from the container. For more information about each Docker kernel capability, see
KernalCapabilities. You can find out which capabilities are in use by doing the following:

• Install the OS package libcap-ng and run the pscap utility to list the capabilities that each
process is using.

• You can also use capsh to decipher which capabilities a process is using.

• Refer to Linux Capabilities 101 for more information.

Use a customer managed key (CMK) to encrypt images pushed to Amazon ECR

You should use a customer managed key (CMK) to encrypt images that are pushed to Amazon
ECR. Images that are pushed to Amazon ECR are automatically encrypted at rest with a AWS Key

Task and container security 1073

https://man7.org/linux/man-pages/man7/capabilities.7.html
https://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_KernelCapabilities.html
https://people.redhat.com/sgrubb/libcap-ng/
https://www.man7.org/linux/man-pages/man1/capsh.1.html
https://linux-audit.com/linux-capabilities-101/

Amazon Elastic Container Service Developer Guide

Management Service (AWS KMS) managed key. If you would rather use your own key, Amazon ECR
now supports AWS KMS encryption with customer managed keys (CMK). Before enabling server
side encryption with a CMK, review the Considerations listed in the documentation on encryption
at rest.

Runtime security

Runtime security provides active protection for your containers while they're running. The idea
is to detect and prevent malicious activity from occurring on your containers. Runtime security
configuration differs between Windows and Linux containers.

To secure a Microsoft Windows container, see Secure Windows containers.

To secure a Linux container, you can add or drop Linux kernel capabilities using the
linuxParameters and apply SELinux labels, or an AppArmor profile using the
dockerSecurityOptions, both per container within a task definition. SELinux or AppArmor have
to be configured on the container instance before they can be used. SELinux and AppArmor are not
available in AWS Fargate. For more information, see dockerSecurityOptions in the Amazon
Elastic Container Service API Reference, and Security configuration in the Docker run reference.

AppArmor is a Linux security module that restricts a container's capabilities including accessing
parts of the file system. It can be run in either enforcement or complain mode. Because building
AppArmor profiles can be challenging, we recommend that you use a tool like bane. For more
information about AppArmor, see the official AppArmor page.

Important

AppArmor is only available for Ubuntu and Debian distributions of Linux.

Recommendations

We recommend that you take the following actions when setting up your runtime security.

Use Amazon GuardDuty Runtime Monitoring

Amazon GuardDuty is a threat detection service that helps protect your accounts, containers,
workloads, and the data within your AWS environment. Using machine learning (ML) models, and
anomaly and threat detection capabilities, GuardDuty continuously monitors different log sources

Runtime security 1074

https://docs.aws.amazon.com/AmazonECR/latest/userguide/encryption-at-rest.html
https://docs.aws.amazon.com/AmazonECR/latest/userguide/encryption-at-rest.html
https://docs.microsoft.com/en-us/virtualization/windowscontainers/manage-containers/container-security
https://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_ContainerDefinition.html#ECS-Type-ContainerDefinition-dockerSecurityOptions
https://docs.docker.com/engine/reference/run/#security-configuration
https://github.com/genuinetools/bane
https://www.apparmor.net/

Amazon Elastic Container Service Developer Guide

and runtime activity to identify and prioritize potential security risks and malicious activities in
your environment.

Runtime Monitoring in GuardDuty protects workloads running on Fargate by continuously
monitoring AWS log and networking activity to identify malicious or unauthorized behavior.
Runtime Monitoring uses a lightweight, fully managed GuardDuty security agent that analyzes on-
host behavior, such as file access, process execution, and network connections. This covers issues
including escalation of privileges, use of exposed credentials, or communication with malicious IP
addresses, domains, and the presence of malware on your Amazon EC2 instances and container
workloads. For more information, see GuardDuty Runtime Monitoring in the GuardDuty User Guide.

Use a third-party solution for runtime defense

Use a third-party solution for runtime defense. If you're familiar with how Linux security works,
create and manage AppArmor profiles. Both are open-source projects. Otherwise, consider using
a different third-party service instead. Most use machine learning to block or alert on suspicious
activity. For a list of available third-party solutions, see AWS Marketplace for Containers.

AMI best practices

Amazon ECS provides the Amazon ECS-optimized AMIs that are preconfigured with the
requirements and recommendations to run your container workloads. We recommend that you use
the Amazon ECS-optimized Amazon Linux 2023 AMI for your Amazon EC2 instances unless your
application requires Amazon EC2 GPU-based instances, a specific operating system or a Docker
version that is not yet available in that AMI. For information about the the Amazon Linux 2 and
Amazon Linux 2023 instances, see Comparing Amazon Linux 2 and Amazon Linux 2023 in the
Amazon Linux 2023 User Guide.

Although you can create your own Amazon EC2 instance AMI that meets the basic specifications
needed to run your containerized workloads on Amazon ECS, the Amazon ECS-optimized AMIs are
preconfigured and tested on Amazon ECS by AWS engineers. It is the simplest way for you to get
started and to get your containers running on AWS quickly.

AWS Partners

You can use any of the following AWS Partner products to add additional security and features to
your Amazon ECS workloads. For more information, see Amazon ECS Partners.

Aqua Security

AMI best practices 1075

https://docs.aws.amazon.com/guardduty/latest/ug/runtime-monitoring.html
https://aws.amazon.com/marketplace/features/containers
https://docs.aws.amazon.com/linux/al2023/ug/compare-with-al2.html
https://aws.amazon.com/ecs/partners/

Amazon Elastic Container Service Developer Guide

You can use Aqua Security to secure your cloud-native applications from development to
production. The Aqua Cloud Native Security Platform integrates with your cloud-native resources
and orchestration tools to provide transparent and automated security. It can prevent suspicious
activity and attacks in real time, and help to enforce policy and simplify regulatory compliance.

Palo Alto Networks

Palo Alto Networks provides security and protection for your hosts, containers, and serverless
infrastructure in the cloud and throughout the development and software lifecycle.

Twistlock is supplied by Palo Alto Networks and can be integrated with Amazon ECS FireLens. With
it, you have access to high fidelity security logs and incidents that are seamlessly aggregated into
several AWS services. These include Amazon CloudWatch, Amazon Athena, and Amazon Kinesis.
Twistlock secures workloads that are deployed on AWS container services.

Sysdig

You can use Sysdig to run secure and compliant cloud-native workloads in production scenarios.
The Sysdig Secure DevOps Platform has embedded security and compliance features to protect
your cloud-native workloads, and also offers enterprise-grade scalability, performance, and
customization.

AWS Partners 1076

https://partners.amazonaws.com/partners/001E000001LiLQqIAN/Aqua%20Security
https://partners.amazonaws.com/partners/001E0000013FeQXIA0/Palo%20Alto%20Networks
https://partners.amazonaws.com/partners/001E000000wNQeoIAG/Sysdig

Amazon Elastic Container Service Developer Guide

Retrieve Amazon ECS metadata

Amazon ECS provides various metadata for your configuration.

You can use the metadata to get task information including:

• Task-level attributes that provide information about where the task is running.

• Container-level attributes that provide the Docker ID, name, and image details. This provides
visibility into the container.

• Network settings such as IP addresses, subnets, and network mode. This helps with network
configuration and troubleshooting.

• Task status and health

You can view metadata by any of the following methods:

• Container metadata file

Beginning with version 1.15.0 of the Amazon ECS container agent, various container metadata is
available within your containers or the host container instance. By enabling this feature, you can
query the information about a task, container, and container instance from within the container
or the host container instance. The metadata file is created on the host instance and mounted
in the container as a Docker volume and therefore is not available when a task is hosted on AWS
Fargate.

• Task metadata endpoint

The Amazon ECS container agent injects an environment variable into each container, referred
to as the task metadata endpoint which provides various task metadata and Docker stats to the
container.

• Container introspection

The Amazon ECS container agent provides an API operation for gathering details about the
container instance on which the agent is running and the associated tasks running on that
instance.

1077

https://docs.docker.com/engine/api/v1.30/#operation/ContainerStats

Amazon Elastic Container Service Developer Guide

Amazon ECS container metadata file

Beginning with version 1.15.0 of the Amazon ECS container agent, various container metadata is
available within your containers or the host container instance. By enabling this feature, you can
query the information about a task, container, and container instance from within the container or
the host container instance. The metadata file is created on the host instance and mounted in the
container as a Docker volume and therefore is not available when a task is hosted on AWS Fargate.

The container metadata file is cleaned up on the host instance when the container is cleaned
up. You can adjust when this happens with the ECS_ENGINE_TASK_CLEANUP_WAIT_DURATION
container agent variable. For more information, see Automated task and image cleanup.

Topics

• Container metadata file locations

• Turning on container metadata

• Container metadata file format

Container metadata file locations

By default, the container metadata file is written to the following host and container paths.

• For Linux instances:

• Host path: /var/lib/ecs/data/metadata/cluster_name/task_id/container_name/
ecs-container-metadata.json

Note

The Linux host path assumes that the default data directory mount path (/var/lib/
ecs/data) is used when the agent is started. If you are not using an Amazon ECS-
optimized AMI (or the ecs-init package to start and maintain the container agent),
be sure to set the ECS_HOST_DATA_DIR agent configuration variable to the host path
where the container agent's state file is located. For more information, see Amazon
ECS container agent configuration.

• Container path: /opt/ecs/metadata/random_ID/ecs-container-metadata.json

• For Windows instances:

Container metadata file 1078

Amazon Elastic Container Service Developer Guide

• Host path: C:\ProgramData\Amazon\ECS\data\metadata
\task_id\container_name\ecs-container-metadata.json

• Container path: C:\ProgramData\Amazon\ECS\metadata\random_ID\ecs-container-
metadata.json

However, for easy access, the container metadata file location is set to the
ECS_CONTAINER_METADATA_FILE environment variable inside the container. You can read the
file contents from inside the container with the following command:

• For Linux instances:

cat $ECS_CONTAINER_METADATA_FILE

• For Windows instances (PowerShell):

Get-Content -path $env:ECS_CONTAINER_METADATA_FILE

Turning on container metadata

You can turn on container metadata at the container instance level by setting the
ECS_ENABLE_CONTAINER_METADATA container agent variable to true. You can set this variable
in the /etc/ecs/ecs.config configuration file and restart the agent. You can also set it as a
Docker environment variable at runtime when the agent container is started. For more information,
see Amazon ECS container agent configuration.

If the ECS_ENABLE_CONTAINER_METADATA is set to true when the agent starts, metadata
files are created for any containers created from that point forward. The Amazon ECS
container agent cannot create metadata files for containers that were created before the
ECS_ENABLE_CONTAINER_METADATA container agent variable was set to true. To ensure that all
containers receive metadata files, you should set this agent variable at container instance launch.
The following is an example user data script that will set this variable as well as register your
container instance with your cluster.

#!/bin/bash
cat <<'EOF' >> /etc/ecs/ecs.config
ECS_CLUSTER=your_cluster_name
ECS_ENABLE_CONTAINER_METADATA=true

Turning on container metadata 1079

Amazon Elastic Container Service Developer Guide

EOF

Container metadata file format

The following information is stored in the container metadata JSON file.

Cluster

The name of the cluster that the container's task is running on.

ContainerInstanceARN

The full Amazon Resource Name (ARN) of the host container instance.

TaskARN

The full Amazon Resource Name (ARN) of the task that the container belongs to.

TaskDefinitionFamily

The name of the task definition family the container is using.

TaskDefinitionRevision

The task definition revision the container is using.

ContainerID

The Docker container ID (and not the Amazon ECS container ID) for the container.

ContainerName

The container name from the Amazon ECS task definition for the container.

DockerContainerName

The container name that the Docker daemon uses for the container (for example, the name that
shows up in docker ps command output).

ImageID

The SHA digest for the Docker image used to start the container.

ImageName

The image name and tag for the Docker image used to start the container.

PortMappings

Any port mappings associated with the container.

Container metadata file format 1080

Amazon Elastic Container Service Developer Guide

ContainerPort

The port on the container that is exposed.

HostPort

The port on the host container instance that is exposed.

BindIp

The bind IP address that is assigned to the container by Docker. This IP address is only
applied with the bridge network mode, and it is only accessible from the container
instance.

Protocol

The network protocol used for the port mapping.

Networks

The network mode and IP address for the container.

NetworkMode

The network mode for the task to which the container belongs.

IPv4Addresses

The IP addresses associated with the container.

Important

If your task is using the awsvpc network mode, the IP address of the container will
not be returned. In this case, you can retrieve the IP address by reading the /etc/
hosts file with the following command:

tail -1 /etc/hosts | awk '{print $1}'

MetadataFileStatus

The status of the metadata file. When the status is READY, the metadata file is current and
complete. If the file is not ready yet (for example, the moment the task is started), a truncated
version of the file format is available. To avoid a likely race condition where the container
has started, but the metadata has not yet been written, you can parse the metadata file and

Container metadata file format 1081

Amazon Elastic Container Service Developer Guide

wait for this parameter to be set to READY before depending on the metadata. This is usually
available in less than 1 second from when the container starts.

AvailabilityZone

The Availability Zone the host container instance resides in.

HostPrivateIPv4Address

The private IP address for the task the container belongs to.

HostPublicIPv4Address

The public IP address for the task the container belongs to.

Example Amazon ECS container metadata file (READY)

The following example shows a container metadata file in the READY status.

{
 "Cluster": "default",
 "ContainerInstanceARN": "arn:aws:ecs:us-west-2:012345678910:container-instance/
default/1f73d099-b914-411c-a9ff-81633b7741dd",
 "TaskARN": "arn:aws:ecs:us-west-2:012345678910:task/default/2b88376d-
aba3-4950-9ddf-bcb0f388a40c",
 "TaskDefinitionFamily": "console-sample-app-static",
 "TaskDefinitionRevision": "1",
 "ContainerID": "aec2557997f4eed9b280c2efd7afccdcedfda4ac399f7480cae870cfc7e163fd",
 "ContainerName": "simple-app",
 "CreatedAt": "2023-10-08T20:09:11.44527186Z",
 "StartedAt": "2023-10-08T20:09:11.44527186Z",
 "DockerContainerName": "/ecs-console-sample-app-static-1-simple-app-
e4e8e495e8baa5de1a00",
 "ImageID":
 "sha256:2ae34abc2ed0a22e280d17e13f9c01aaf725688b09b7a1525d1a2750e2c0d1de",
 "ImageName": "httpd:2.4",
 "PortMappings": [
 {
 "ContainerPort": 80,
 "HostPort": 80,
 "BindIp": "0.0.0.0",
 "Protocol": "tcp"
 }
],
 "Networks": [

Container metadata file format 1082

Amazon Elastic Container Service Developer Guide

 {
 "NetworkMode": "bridge",
 "IPv4Addresses": ["192.0.2.0"]
 }
],
 "MetadataFileStatus": "READY",
 "AvailabilityZone": "us-east-1b",
 "HostPrivateIPv4Address": "192.0.2.0",
 "HostPublicIPv4Address": "203.0.113.0"
}

Example Incomplete Amazon ECS container metadata file (not yet READY)

The following example shows a container metadata file that has not yet reached the READY status.
The information in the file is limited to a few parameters that are known from the task definition.
The container metadata file should be ready within 1 second after the container starts.

{
 "Cluster": "default",
 "ContainerInstanceARN": "arn:aws:ecs:us-west-2:012345678910:container-instance/
default/1f73d099-b914-411c-a9ff-81633b7741dd",
 "TaskARN": "arn:aws:ecs:us-west-2:012345678910:task/default/
d90675f8-1a98-444b-805b-3d9cabb6fcd4",
 "ContainerName": "metadata"
}

Task metadata available for tasks on EC2

The Amazon ECS container agent provides a method to retrieve various task metadata and Docker
stats. This is referred to as the task metadata endpoint. The following versions are available:

• Task metadata endpoint version 4 – Provides a variety of metadata and Docker stats to
containers. Can also provide network rate data. Available for Amazon ECS tasks launched on
Amazon EC2 Linux instances running at least version 1.39.0 of the Amazon ECS container
agent. For Amazon EC2 Windows instances that use awsvpc network mode, the Amazon ECS
container agent must be at least version 1.54.0. For more information, see Task metadata
endpoint version 4.

• Task metadata endpoint version 3 – Provides a variety of metadata and Docker stats to
containers. Available for Amazon ECS tasks launched on Amazon EC2 Linux instances running at
least version 1.21.0 of the Amazon ECS container agent. For Amazon EC2 Windows instances

Task metadata available for tasks on EC2 1083

https://docs.docker.com/engine/api/v1.30/#operation/ContainerStats
https://docs.docker.com/engine/api/v1.30/#operation/ContainerStats

Amazon Elastic Container Service Developer Guide

that use awsvpc network mode, the Amazon ECS container agent must be at least version
1.54.0. For more information, see Task metadata endpoint version 3.

• Task metadata endpoint version 2 – Available for Amazon ECS tasks launched on Amazon EC2
Linux instances running at least version 1.17.0 of the Amazon ECS container agent. For Amazon
EC2 Windows instances that use awsvpc network mode, the Amazon ECS container agent must
be at least version 1.54.0. For more information, see Task metadata endpoint version 2.

If your Amazon ECS task is hosted on Amazon EC2, you can also access task host metadata using
the Instance Metadata Service (IMDS) endpoint. The following command, when run from within the
instance hosting the task, lists the ID of the host instance.

 curl http://169.254.169.254/latest/meta-data/instance-id

The information you can obtain from the endpoint is divided into categories such as instance-
id. For more information on the different categories of host instance metadata you can obtain
using the endpoint, see Instance metadata categories .

Task metadata endpoint version 4

The Amazon ECS container agent injects an environment variable into each container, referred
to as the task metadata endpoint which provides various task metadata and Docker stats to the
container.

The task metadata and network rate stats are sent to CloudWatch Container Insights and can
be viewed in the AWS Management Console. For more information, see Monitor Amazon ECS
containers using Container Insights.

Note

Amazon ECS provides earlier versions of the task metadata endpoint. To avoid the need
to create new task metadata endpoint versions in the future, additional metadata may be
added to the version 4 output. We will not remove any existing metadata or change the
metadata field names.

The environment variable is injected by default into the containers of Amazon ECS tasks launched
on Amazon EC2 Linux instances that are running at least version 1.39.0 of the Amazon ECS

Task metadata endpoint version 4 1084

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-instance-metadata.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instancedata-data-categories.html
https://docs.docker.com/engine/api/v1.30/#operation/ContainerStats

Amazon Elastic Container Service Developer Guide

container agent. For Amazon EC2 Windows instances that use awsvpc network mode, the Amazon
ECS container agent must be at least version 1.54.0. For more information, see Linux container
instance management.

Note

You can add support for this feature on Amazon EC2 instances using older versions of
the Amazon ECS container agent by updating the agent to the latest version. For more
information, see Updating the Amazon ECS container agent.

Task metadata endpoint version 4 paths

The following task metadata endpoint paths are available to containers.

${ECS_CONTAINER_METADATA_URI_V4}

This path returns metadata for the container.

${ECS_CONTAINER_METADATA_URI_V4}/task

This path returns metadata for the task, including a list of the container IDs and names for all
of the containers associated with the task. For more information about the response for this
endpoint, see Task metadata V4 JSON response.

${ECS_CONTAINER_METADATA_URI_V4}/taskWithTags

This path returns the metadata for the task included in the /task endpoint in addition to the
task and container instance tags that can be retrieved using the ListTagsForResource API.
Any errors received when retrieving the tag metadata will be included in the Errors field in the
response.

Note

The Errors field is only in the response for tasks hosted on Amazon EC2 Linux
instances running at least version 1.50.0 of the container agent. For Amazon EC2
Windows instances that use awsvpc network mode, the Amazon ECS container agent
must be at least version 1.54.0
This endpoint requires the ecs.ListTagsForResource permission.

Task metadata endpoint version 4 1085

Amazon Elastic Container Service Developer Guide

${ECS_CONTAINER_METADATA_URI_V4}/stats

This path returns Docker stats for the specific container. For more information about each of the
returned stats, see ContainerStats in the Docker API documentation.

For Amazon ECS tasks that use the awsvpc or bridge network modes hosted on Amazon EC2
Linux instances running at least version 1.43.0 of the container agent, there will be additional
network rate stats included in the response. For all other tasks, the response will only include
the cumulative network stats.

${ECS_CONTAINER_METADATA_URI_V4}/task/stats

This path returns Docker stats for all of the containers associated with the task. This can be
used by sidecar containers to extract network metrics. For more information about each of the
returned stats, see ContainerStats in the Docker API documentation.

For Amazon ECS tasks that use the awsvpc or bridge network modes hosted on Amazon EC2
Linux instances running at least version 1.43.0 of the container agent, there will be additional
network rate stats included in the response. For all other tasks, the response will only include
the cumulative network stats.

Task metadata V4 JSON response

The following information is returned from the task metadata endpoint
(${ECS_CONTAINER_METADATA_URI_V4}/task) JSON response. This includes metadata
associated with the task in addition to the metadata for each container within the task.

Cluster

The Amazon Resource Name (ARN) or short name of the Amazon ECS cluster to which the task
belongs.

ServiceName

The name of the service to which the task belongs. ServiceName will appear for Amazon EC2
and Amazon ECS Anywhere container instances if the task is associated with a service.

Note

The ServiceName metadata is only included when using Amazon ECS container agent
version 1.63.1 or later.

Task metadata endpoint version 4 1086

https://docs.docker.com/engine/api/v1.30/#operation/ContainerStats
https://docs.docker.com/engine/api/v1.30/#operation/ContainerStats

Amazon Elastic Container Service Developer Guide

VPCID

The VPC ID of the Amazon EC2 container instance. This field only appears for Amazon EC2
instances.

Note

The VPCID metadata is only included when using Amazon ECS container agent version
1.63.1 or later.

TaskARN

The full Amazon Resource Name (ARN) of the task to which the container belongs.

Family

The family of the Amazon ECS task definition for the task.

Revision

The revision of the Amazon ECS task definition for the task.

DesiredStatus

The desired status for the task from Amazon ECS.

KnownStatus

The known status for the task from Amazon ECS.

Limits

The resource limits specified at the task level, such as CPU (expressed in vCPUs) and memory.
This parameter is omitted if no resource limits are defined.

PullStartedAt

The timestamp for when the first container image pull began.

PullStoppedAt

The timestamp for when the last container image pull finished.

AvailabilityZone

The Availability Zone the task is in.

Task metadata endpoint version 4 1087

Amazon Elastic Container Service Developer Guide

Note

The Availability Zone metadata is only available for Fargate tasks using platform version
1.4 or later (Linux) or 1.0.0 (Windows).

LaunchType

The launch type the task is using. When using cluster capacity providers, this indicates whether
the task is using Fargate or EC2 infrastructure.

Note

This LaunchType metadata is only included when using Amazon ECS Linux container
agent version 1.45.0 or later (Linux) or 1.0.0 or later (Windows).

Containers

A list of container metadata for each container associated with the task.

DockerId

The Docker ID for the container.

When you use Fargate, the id is a 32-digit hex followed by a 10 digit number.

Name

The name of the container as specified in the task definition.

DockerName

The name of the container supplied to Docker. The Amazon ECS container agent generates
a unique name for the container to avoid name collisions when multiple copies of the same
task definition are run on a single instance.

Image

The image for the container.

ImageID

The SHA-256 digest for the image.

Task metadata endpoint version 4 1088

Amazon Elastic Container Service Developer Guide

Ports

Any ports exposed for the container. This parameter is omitted if there are no exposed ports.

Labels

Any labels applied to the container. This parameter is omitted if there are no labels applied.

DesiredStatus

The desired status for the container from Amazon ECS.

KnownStatus

The known status for the container from Amazon ECS.

ExitCode

The exit code for the container. This parameter is omitted if the container has not exited.

Limits

The resource limits specified at the container level, such as CPU (expressed in CPU units) and
memory. This parameter is omitted if no resource limits are defined.

CreatedAt

The time stamp for when the container was created. This parameter is omitted if the
container has not been created yet.

StartedAt

The time stamp for when the container started. This parameter is omitted if the container
has not started yet.

FinishedAt

The time stamp for when the container stopped. This parameter is omitted if the container
has not stopped yet.

Type

The type of the container. Containers that are specified in your task definition are of type
NORMAL. You can ignore other container types, which are used for internal task resource
provisioning by the Amazon ECS container agent.

LogDriver

The log driver the container is using.

Task metadata endpoint version 4 1089

Amazon Elastic Container Service Developer Guide

Note

This LogDriver metadata is only included when using Amazon ECS Linux container
agent version 1.45.0 or later.

LogOptions

The log driver options defined for the container.

Note

This LogOptions metadata is only included when using Amazon ECS Linux
container agent version 1.45.0 or later.

ContainerARN

The full Amazon Resource Name (ARN) of the container.

Note

This ContainerARN metadata is only included when using Amazon ECS Linux
container agent version 1.45.0 or later.

Networks

The network information for the container, such as the network mode and IP address. This
parameter is omitted if no network information is defined.

ExecutionStoppedAt

The time stamp for when the tasks DesiredStatus moved to STOPPED. This occurs when an
essential container moves to STOPPED.

Task metadata v4 examples

The following examples show example outputs from each of the task metadata endpoints.

Task metadata endpoint version 4 1090

Amazon Elastic Container Service Developer Guide

Example container metadata response

When querying the ${ECS_CONTAINER_METADATA_URI_V4} endpoint you are returned only
metadata about the container itself. The following is an example output.

{
 "DockerId": "ea32192c8553fbff06c9340478a2ff089b2bb5646fb718b4ee206641c9086d66",
 "Name": "curl",
 "DockerName": "ecs-curltest-24-curl-cca48e8dcadd97805600",
 "Image": "111122223333.dkr.ecr.us-west-2.amazonaws.com/curltest:latest",
 "ImageID":
 "sha256:d691691e9652791a60114e67b365688d20d19940dde7c4736ea30e660d8d3553",
 "Labels": {
 "com.amazonaws.ecs.cluster": "default",
 "com.amazonaws.ecs.container-name": "curl",
 "com.amazonaws.ecs.task-arn": "arn:aws:ecs:us-west-2:111122223333:task/
default/8f03e41243824aea923aca126495f665",
 "com.amazonaws.ecs.task-definition-family": "curltest",
 "com.amazonaws.ecs.task-definition-version": "24"
 },
 "DesiredStatus": "RUNNING",
 "KnownStatus": "RUNNING",
 "Limits": {
 "CPU": 10,
 "Memory": 128
 },
 "CreatedAt": "2020-10-02T00:15:07.620912337Z",
 "StartedAt": "2020-10-02T00:15:08.062559351Z",
 "Type": "NORMAL",
 "LogDriver": "awslogs",
 "LogOptions": {
 "awslogs-create-group": "true",
 "awslogs-group": "/ecs/metadata",
 "awslogs-region": "us-west-2",
 "awslogs-stream": "ecs/curl/8f03e41243824aea923aca126495f665"
 },
 "ContainerARN": "arn:aws:ecs:us-west-2:111122223333:container/0206b271-
b33f-47ab-86c6-a0ba208a70a9",
 "Networks": [
 {
 "NetworkMode": "awsvpc",
 "IPv4Addresses": [
 "10.0.2.100"
],

Task metadata endpoint version 4 1091

Amazon Elastic Container Service Developer Guide

 "AttachmentIndex": 0,
 "MACAddress": "0e:9e:32:c7:48:85",
 "IPv4SubnetCIDRBlock": "10.0.2.0/24",
 "PrivateDNSName": "ip-10-0-2-100.us-west-2.compute.internal",
 "SubnetGatewayIpv4Address": "10.0.2.1/24"
 }
]
}

Example task metadata response

When querying the ${ECS_CONTAINER_METADATA_URI_V4}/task endpoint you are returned
metadata about the task the container is part of in addition to the metadata for each container
within the task. The following is an example output.

{
 "Cluster": "default",
 "TaskARN": "arn:aws:ecs:us-west-2:111122223333:task/
default/158d1c8083dd49d6b527399fd6414f5c",
 "Family": "curltest",
 "ServiceName": "MyService",
 "Revision": "26",
 "DesiredStatus": "RUNNING",
 "KnownStatus": "RUNNING",
 "PullStartedAt": "2020-10-02T00:43:06.202617438Z",
 "PullStoppedAt": "2020-10-02T00:43:06.31288465Z",
 "AvailabilityZone": "us-west-2d",
 "VPCID": "vpc-1234567890abcdef0",
 "LaunchType": "EC2",
 "Containers": [
 {
 "DockerId":
 "598cba581fe3f939459eaba1e071d5c93bb2c49b7d1ba7db6bb19deeb70d8e38",
 "Name": "~internal~ecs~pause",
 "DockerName": "ecs-curltest-26-internalecspause-e292d586b6f9dade4a00",
 "Image": "amazon/amazon-ecs-pause:0.1.0",
 "ImageID": "",
 "Labels": {
 "com.amazonaws.ecs.cluster": "default",
 "com.amazonaws.ecs.container-name": "~internal~ecs~pause",
 "com.amazonaws.ecs.task-arn": "arn:aws:ecs:us-west-2:111122223333:task/
default/158d1c8083dd49d6b527399fd6414f5c",
 "com.amazonaws.ecs.task-definition-family": "curltest",

Task metadata endpoint version 4 1092

Amazon Elastic Container Service Developer Guide

 "com.amazonaws.ecs.task-definition-version": "26"
 },
 "DesiredStatus": "RESOURCES_PROVISIONED",
 "KnownStatus": "RESOURCES_PROVISIONED",
 "Limits": {
 "CPU": 0,
 "Memory": 0
 },
 "CreatedAt": "2020-10-02T00:43:05.602352471Z",
 "StartedAt": "2020-10-02T00:43:06.076707576Z",
 "Type": "CNI_PAUSE",
 "Networks": [
 {
 "NetworkMode": "awsvpc",
 "IPv4Addresses": [
 "10.0.2.61"
],
 "AttachmentIndex": 0,
 "MACAddress": "0e:10:e2:01:bd:91",
 "IPv4SubnetCIDRBlock": "10.0.2.0/24",
 "PrivateDNSName": "ip-10-0-2-61.us-west-2.compute.internal",
 "SubnetGatewayIpv4Address": "10.0.2.1/24"
 }
]
 },
 {
 "DockerId":
 "ee08638adaaf009d78c248913f629e38299471d45fe7dc944d1039077e3424ca",
 "Name": "curl",
 "DockerName": "ecs-curltest-26-curl-a0e7dba5aca6d8cb2e00",
 "Image": "111122223333.dkr.ecr.us-west-2.amazonaws.com/curltest:latest",
 "ImageID":
 "sha256:d691691e9652791a60114e67b365688d20d19940dde7c4736ea30e660d8d3553",
 "Labels": {
 "com.amazonaws.ecs.cluster": "default",
 "com.amazonaws.ecs.container-name": "curl",
 "com.amazonaws.ecs.task-arn": "arn:aws:ecs:us-west-2:111122223333:task/
default/158d1c8083dd49d6b527399fd6414f5c",
 "com.amazonaws.ecs.task-definition-family": "curltest",
 "com.amazonaws.ecs.task-definition-version": "26"
 },
 "DesiredStatus": "RUNNING",
 "KnownStatus": "RUNNING",
 "Limits": {

Task metadata endpoint version 4 1093

Amazon Elastic Container Service Developer Guide

 "CPU": 10,
 "Memory": 128
 },
 "CreatedAt": "2020-10-02T00:43:06.326590752Z",
 "StartedAt": "2020-10-02T00:43:06.767535449Z",
 "Type": "NORMAL",
 "LogDriver": "awslogs",
 "LogOptions": {
 "awslogs-create-group": "true",
 "awslogs-group": "/ecs/metadata",
 "awslogs-region": "us-west-2",
 "awslogs-stream": "ecs/curl/158d1c8083dd49d6b527399fd6414f5c"
 },
 "ContainerARN": "arn:aws:ecs:us-west-2:111122223333:container/
abb51bdd-11b4-467f-8f6c-adcfe1fe059d",
 "Networks": [
 {
 "NetworkMode": "awsvpc",
 "IPv4Addresses": [
 "10.0.2.61"
],
 "AttachmentIndex": 0,
 "MACAddress": "0e:10:e2:01:bd:91",
 "IPv4SubnetCIDRBlock": "10.0.2.0/24",
 "PrivateDNSName": "ip-10-0-2-61.us-west-2.compute.internal",
 "SubnetGatewayIpv4Address": "10.0.2.1/24"
 }
]
 }
]
}

Example task with tags metadata response

When querying the ${ECS_CONTAINER_METADATA_URI_V4}/taskWithTags endpoint you are
returned metadata about the task, including the task and container instance tags. The following is
an example output.

{
 "Cluster": "default",
 "TaskARN": "arn:aws:ecs:us-west-2:111122223333:task/
default/158d1c8083dd49d6b527399fd6414f5c",
 "Family": "curltest",

Task metadata endpoint version 4 1094

Amazon Elastic Container Service Developer Guide

 "ServiceName": "MyService",
 "Revision": "26",
 "DesiredStatus": "RUNNING",
 "KnownStatus": "RUNNING",
 "PullStartedAt": "2020-10-02T00:43:06.202617438Z",
 "PullStoppedAt": "2020-10-02T00:43:06.31288465Z",
 "AvailabilityZone": "us-west-2d",
 "VPCID": "vpc-1234567890abcdef0",
 "TaskTags": {
 "tag-use": "task-metadata-endpoint-test"
 },
 "ContainerInstanceTags":{
 "tag_key":"tag_value"
 },
 "LaunchType": "EC2",
 "Containers": [
 {
 "DockerId":
 "598cba581fe3f939459eaba1e071d5c93bb2c49b7d1ba7db6bb19deeb70d8e38",
 "Name": "~internal~ecs~pause",
 "DockerName": "ecs-curltest-26-internalecspause-e292d586b6f9dade4a00",
 "Image": "amazon/amazon-ecs-pause:0.1.0",
 "ImageID": "",
 "Labels": {
 "com.amazonaws.ecs.cluster": "default",
 "com.amazonaws.ecs.container-name": "~internal~ecs~pause",
 "com.amazonaws.ecs.task-arn": "arn:aws:ecs:us-west-2:111122223333:task/
default/158d1c8083dd49d6b527399fd6414f5c",
 "com.amazonaws.ecs.task-definition-family": "curltest",
 "com.amazonaws.ecs.task-definition-version": "26"
 },
 "DesiredStatus": "RESOURCES_PROVISIONED",
 "KnownStatus": "RESOURCES_PROVISIONED",
 "Limits": {
 "CPU": 0,
 "Memory": 0
 },
 "CreatedAt": "2020-10-02T00:43:05.602352471Z",
 "StartedAt": "2020-10-02T00:43:06.076707576Z",
 "Type": "CNI_PAUSE",
 "Networks": [
 {
 "NetworkMode": "awsvpc",
 "IPv4Addresses": [

Task metadata endpoint version 4 1095

Amazon Elastic Container Service Developer Guide

 "10.0.2.61"
],
 "AttachmentIndex": 0,
 "MACAddress": "0e:10:e2:01:bd:91",
 "IPv4SubnetCIDRBlock": "10.0.2.0/24",
 "PrivateDNSName": "ip-10-0-2-61.us-west-2.compute.internal",
 "SubnetGatewayIpv4Address": "10.0.2.1/24"
 }
]
 },
 {
 "DockerId":
 "ee08638adaaf009d78c248913f629e38299471d45fe7dc944d1039077e3424ca",
 "Name": "curl",
 "DockerName": "ecs-curltest-26-curl-a0e7dba5aca6d8cb2e00",
 "Image": "111122223333.dkr.ecr.us-west-2.amazonaws.com/curltest:latest",
 "ImageID":
 "sha256:d691691e9652791a60114e67b365688d20d19940dde7c4736ea30e660d8d3553",
 "Labels": {
 "com.amazonaws.ecs.cluster": "default",
 "com.amazonaws.ecs.container-name": "curl",
 "com.amazonaws.ecs.task-arn": "arn:aws:ecs:us-west-2:111122223333:task/
default/158d1c8083dd49d6b527399fd6414f5c",
 "com.amazonaws.ecs.task-definition-family": "curltest",
 "com.amazonaws.ecs.task-definition-version": "26"
 },
 "DesiredStatus": "RUNNING",
 "KnownStatus": "RUNNING",
 "Limits": {
 "CPU": 10,
 "Memory": 128
 },
 "CreatedAt": "2020-10-02T00:43:06.326590752Z",
 "StartedAt": "2020-10-02T00:43:06.767535449Z",
 "Type": "NORMAL",
 "LogDriver": "awslogs",
 "LogOptions": {
 "awslogs-create-group": "true",
 "awslogs-group": "/ecs/metadata",
 "awslogs-region": "us-west-2",
 "awslogs-stream": "ecs/curl/158d1c8083dd49d6b527399fd6414f5c"
 },
 "ContainerARN": "arn:aws:ecs:us-west-2:111122223333:container/
abb51bdd-11b4-467f-8f6c-adcfe1fe059d",

Task metadata endpoint version 4 1096

Amazon Elastic Container Service Developer Guide

 "Networks": [
 {
 "NetworkMode": "awsvpc",
 "IPv4Addresses": [
 "10.0.2.61"
],
 "AttachmentIndex": 0,
 "MACAddress": "0e:10:e2:01:bd:91",
 "IPv4SubnetCIDRBlock": "10.0.2.0/24",
 "PrivateDNSName": "ip-10-0-2-61.us-west-2.compute.internal",
 "SubnetGatewayIpv4Address": "10.0.2.1/24"
 }
]
 }
]
}

Example task with tags with an error metadata response

When querying the ${ECS_CONTAINER_METADATA_URI_V4}/taskWithTags endpoint you
are returned metadata about the task, including the task and container instance tags. If there
is an error retrieving the tagging data, the error is returned in the response. The following is an
example output for when the IAM role associated with the container instance doesn't have the
ecs:ListTagsForResource permission allowed.

{
 "Cluster": "default",
 "TaskARN": "arn:aws:ecs:us-west-2:111122223333:task/
default/158d1c8083dd49d6b527399fd6414f5c",
 "Family": "curltest",
 "ServiceName": "MyService",
 "Revision": "26",
 "DesiredStatus": "RUNNING",
 "KnownStatus": "RUNNING",
 "PullStartedAt": "2020-10-02T00:43:06.202617438Z",
 "PullStoppedAt": "2020-10-02T00:43:06.31288465Z",
 "AvailabilityZone": "us-west-2d",
 "VPCID": "vpc-1234567890abcdef0",
 "Errors": [
 {
 "ErrorField": "ContainerInstanceTags",
 "ErrorCode": "AccessDeniedException",

Task metadata endpoint version 4 1097

Amazon Elastic Container Service Developer Guide

 "ErrorMessage": "User: arn:aws:sts::111122223333:assumed-
role/ecsInstanceRole/i-0744a608689EXAMPLE is not authorized to perform:
 ecs:ListTagsForResource on resource: arn:aws:ecs:us-west-2:111122223333:container-
instance/default/2dd1b186f39845a584488d2ef155c131",
 "StatusCode": 400,
 "RequestId": "cd597ef0-272b-4643-9bd2-1de469870fa6",
 "ResourceARN": "arn:aws:ecs:us-west-2:111122223333:container-instance/
default/2dd1b186f39845a584488d2ef155c131"
 },
 {
 "ErrorField": "TaskTags",
 "ErrorCode": "AccessDeniedException",
 "ErrorMessage": "User: arn:aws:sts::111122223333:assumed-
role/ecsInstanceRole/i-0744a608689EXAMPLE is not authorized to perform:
 ecs:ListTagsForResource on resource: arn:aws:ecs:us-west-2:111122223333:task/
default/9ef30e4b7aa44d0db562749cff4983f3",
 "StatusCode": 400,
 "RequestId": "862c5986-6cd2-4aa6-87cc-70be395531e1",
 "ResourceARN": "arn:aws:ecs:us-west-2:111122223333:task/
default/9ef30e4b7aa44d0db562749cff4983f3"
 }
],
 "LaunchType": "EC2",
 "Containers": [
 {
 "DockerId":
 "598cba581fe3f939459eaba1e071d5c93bb2c49b7d1ba7db6bb19deeb70d8e38",
 "Name": "~internal~ecs~pause",
 "DockerName": "ecs-curltest-26-internalecspause-e292d586b6f9dade4a00",
 "Image": "amazon/amazon-ecs-pause:0.1.0",
 "ImageID": "",
 "Labels": {
 "com.amazonaws.ecs.cluster": "default",
 "com.amazonaws.ecs.container-name": "~internal~ecs~pause",
 "com.amazonaws.ecs.task-arn": "arn:aws:ecs:us-west-2:111122223333:task/
default/158d1c8083dd49d6b527399fd6414f5c",
 "com.amazonaws.ecs.task-definition-family": "curltest",
 "com.amazonaws.ecs.task-definition-version": "26"
 },
 "DesiredStatus": "RESOURCES_PROVISIONED",
 "KnownStatus": "RESOURCES_PROVISIONED",
 "Limits": {
 "CPU": 0,
 "Memory": 0

Task metadata endpoint version 4 1098

Amazon Elastic Container Service Developer Guide

 },
 "CreatedAt": "2020-10-02T00:43:05.602352471Z",
 "StartedAt": "2020-10-02T00:43:06.076707576Z",
 "Type": "CNI_PAUSE",
 "Networks": [
 {
 "NetworkMode": "awsvpc",
 "IPv4Addresses": [
 "10.0.2.61"
],
 "AttachmentIndex": 0,
 "MACAddress": "0e:10:e2:01:bd:91",
 "IPv4SubnetCIDRBlock": "10.0.2.0/24",
 "PrivateDNSName": "ip-10-0-2-61.us-west-2.compute.internal",
 "SubnetGatewayIpv4Address": "10.0.2.1/24"
 }
]
 },
 {
 "DockerId":
 "ee08638adaaf009d78c248913f629e38299471d45fe7dc944d1039077e3424ca",
 "Name": "curl",
 "DockerName": "ecs-curltest-26-curl-a0e7dba5aca6d8cb2e00",
 "Image": "111122223333.dkr.ecr.us-west-2.amazonaws.com/curltest:latest",
 "ImageID":
 "sha256:d691691e9652791a60114e67b365688d20d19940dde7c4736ea30e660d8d3553",
 "Labels": {
 "com.amazonaws.ecs.cluster": "default",
 "com.amazonaws.ecs.container-name": "curl",
 "com.amazonaws.ecs.task-arn": "arn:aws:ecs:us-west-2:111122223333:task/
default/158d1c8083dd49d6b527399fd6414f5c",
 "com.amazonaws.ecs.task-definition-family": "curltest",
 "com.amazonaws.ecs.task-definition-version": "26"
 },
 "DesiredStatus": "RUNNING",
 "KnownStatus": "RUNNING",
 "Limits": {
 "CPU": 10,
 "Memory": 128
 },
 "CreatedAt": "2020-10-02T00:43:06.326590752Z",
 "StartedAt": "2020-10-02T00:43:06.767535449Z",
 "Type": "NORMAL",
 "LogDriver": "awslogs",

Task metadata endpoint version 4 1099

Amazon Elastic Container Service Developer Guide

 "LogOptions": {
 "awslogs-create-group": "true",
 "awslogs-group": "/ecs/metadata",
 "awslogs-region": "us-west-2",
 "awslogs-stream": "ecs/curl/158d1c8083dd49d6b527399fd6414f5c"
 },
 "ContainerARN": "arn:aws:ecs:us-west-2:111122223333:container/
abb51bdd-11b4-467f-8f6c-adcfe1fe059d",
 "Networks": [
 {
 "NetworkMode": "awsvpc",
 "IPv4Addresses": [
 "10.0.2.61"
],
 "AttachmentIndex": 0,
 "MACAddress": "0e:10:e2:01:bd:91",
 "IPv4SubnetCIDRBlock": "10.0.2.0/24",
 "PrivateDNSName": "ip-10-0-2-61.us-west-2.compute.internal",
 "SubnetGatewayIpv4Address": "10.0.2.1/24"
 }
]
 }
]
}

Example container stats response

When querying the ${ECS_CONTAINER_METADATA_URI_V4}/stats endpoint you are returned
network metrics for the container. For Amazon ECS tasks that use the awsvpc or bridge network
modes hosted on Amazon EC2 instances running at least version 1.43.0 of the container agent,
there will be additional network rate stats included in the response. For all other tasks, the
response will only include the cumulative network stats.

The following is an example output from an Amazon ECS task on Amazon EC2 that uses the
bridge network mode.

{
 "read": "2020-10-02T00:51:13.410254284Z",
 "preread": "2020-10-02T00:51:12.406202398Z",
 "pids_stats": {
 "current": 3
 },
 "blkio_stats": {

Task metadata endpoint version 4 1100

Amazon Elastic Container Service Developer Guide

 "io_service_bytes_recursive": [

],
 "io_serviced_recursive": [

],
 "io_queue_recursive": [

],
 "io_service_time_recursive": [

],
 "io_wait_time_recursive": [

],
 "io_merged_recursive": [

],
 "io_time_recursive": [

],
 "sectors_recursive": [

]
 },
 "num_procs": 0,
 "storage_stats": {

 },
 "cpu_stats": {
 "cpu_usage": {
 "total_usage": 360968065,
 "percpu_usage": [
 182359190,
 178608875
],
 "usage_in_kernelmode": 40000000,
 "usage_in_usermode": 290000000
 },
 "system_cpu_usage": 13939680000000,
 "online_cpus": 2,
 "throttling_data": {
 "periods": 0,
 "throttled_periods": 0,

Task metadata endpoint version 4 1101

Amazon Elastic Container Service Developer Guide

 "throttled_time": 0
 }
 },
 "precpu_stats": {
 "cpu_usage": {
 "total_usage": 360968065,
 "percpu_usage": [
 182359190,
 178608875
],
 "usage_in_kernelmode": 40000000,
 "usage_in_usermode": 290000000
 },
 "system_cpu_usage": 13937670000000,
 "online_cpus": 2,
 "throttling_data": {
 "periods": 0,
 "throttled_periods": 0,
 "throttled_time": 0
 }
 },
 "memory_stats": {
 "usage": 1806336,
 "max_usage": 6299648,
 "stats": {
 "active_anon": 606208,
 "active_file": 0,
 "cache": 0,
 "dirty": 0,
 "hierarchical_memory_limit": 134217728,
 "hierarchical_memsw_limit": 268435456,
 "inactive_anon": 0,
 "inactive_file": 0,
 "mapped_file": 0,
 "pgfault": 4185,
 "pgmajfault": 0,
 "pgpgin": 2926,
 "pgpgout": 2778,
 "rss": 606208,
 "rss_huge": 0,
 "total_active_anon": 606208,
 "total_active_file": 0,
 "total_cache": 0,
 "total_dirty": 0,

Task metadata endpoint version 4 1102

Amazon Elastic Container Service Developer Guide

 "total_inactive_anon": 0,
 "total_inactive_file": 0,
 "total_mapped_file": 0,
 "total_pgfault": 4185,
 "total_pgmajfault": 0,
 "total_pgpgin": 2926,
 "total_pgpgout": 2778,
 "total_rss": 606208,
 "total_rss_huge": 0,
 "total_unevictable": 0,
 "total_writeback": 0,
 "unevictable": 0,
 "writeback": 0
 },
 "limit": 134217728
 },
 "name": "/ecs-curltest-26-curl-c2e5f6e0cf91b0bead01",
 "id": "5fc21e5b015f899d22618f8aede80b6d70d71b2a75465ea49d9462c8f3d2d3af",
 "networks": {
 "eth0": {
 "rx_bytes": 84,
 "rx_packets": 2,
 "rx_errors": 0,
 "rx_dropped": 0,
 "tx_bytes": 84,
 "tx_packets": 2,
 "tx_errors": 0,
 "tx_dropped": 0
 }
 },
 "network_rate_stats": {
 "rx_bytes_per_sec": 0,
 "tx_bytes_per_sec": 0
 }
}

Example task stats response

When querying the ${ECS_CONTAINER_METADATA_URI_V4}/task/stats endpoint you are
returned network metrics about the task the container is part of. The following is an example
output.

{

Task metadata endpoint version 4 1103

Amazon Elastic Container Service Developer Guide

 "01999f2e5c6cf4df3873f28950e6278813408f281c54778efec860d0caad4854": {
 "read": "2020-10-02T00:51:32.51467703Z",
 "preread": "2020-10-02T00:51:31.50860463Z",
 "pids_stats": {
 "current": 1
 },
 "blkio_stats": {
 "io_service_bytes_recursive": [

],
 "io_serviced_recursive": [

],
 "io_queue_recursive": [

],
 "io_service_time_recursive": [

],
 "io_wait_time_recursive": [

],
 "io_merged_recursive": [

],
 "io_time_recursive": [

],
 "sectors_recursive": [

]
 },
 "num_procs": 0,
 "storage_stats": {

 },
 "cpu_stats": {
 "cpu_usage": {
 "total_usage": 177232665,
 "percpu_usage": [
 13376224,
 163856441
],
 "usage_in_kernelmode": 0,

Task metadata endpoint version 4 1104

Amazon Elastic Container Service Developer Guide

 "usage_in_usermode": 160000000
 },
 "system_cpu_usage": 13977820000000,
 "online_cpus": 2,
 "throttling_data": {
 "periods": 0,
 "throttled_periods": 0,
 "throttled_time": 0
 }
 },
 "precpu_stats": {
 "cpu_usage": {
 "total_usage": 177232665,
 "percpu_usage": [
 13376224,
 163856441
],
 "usage_in_kernelmode": 0,
 "usage_in_usermode": 160000000
 },
 "system_cpu_usage": 13975800000000,
 "online_cpus": 2,
 "throttling_data": {
 "periods": 0,
 "throttled_periods": 0,
 "throttled_time": 0
 }
 },
 "memory_stats": {
 "usage": 532480,
 "max_usage": 6279168,
 "stats": {
 "active_anon": 40960,
 "active_file": 0,
 "cache": 0,
 "dirty": 0,
 "hierarchical_memory_limit": 9223372036854771712,
 "hierarchical_memsw_limit": 9223372036854771712,
 "inactive_anon": 0,
 "inactive_file": 0,
 "mapped_file": 0,
 "pgfault": 2033,
 "pgmajfault": 0,
 "pgpgin": 1734,

Task metadata endpoint version 4 1105

Amazon Elastic Container Service Developer Guide

 "pgpgout": 1724,
 "rss": 40960,
 "rss_huge": 0,
 "total_active_anon": 40960,
 "total_active_file": 0,
 "total_cache": 0,
 "total_dirty": 0,
 "total_inactive_anon": 0,
 "total_inactive_file": 0,
 "total_mapped_file": 0,
 "total_pgfault": 2033,
 "total_pgmajfault": 0,
 "total_pgpgin": 1734,
 "total_pgpgout": 1724,
 "total_rss": 40960,
 "total_rss_huge": 0,
 "total_unevictable": 0,
 "total_writeback": 0,
 "unevictable": 0,
 "writeback": 0
 },
 "limit": 4073377792
 },
 "name": "/ecs-curltest-26-internalecspause-a6bcc3dbadfacfe85300",
 "id": "01999f2e5c6cf4df3873f28950e6278813408f281c54778efec860d0caad4854",
 "networks": {
 "eth0": {
 "rx_bytes": 84,
 "rx_packets": 2,
 "rx_errors": 0,
 "rx_dropped": 0,
 "tx_bytes": 84,
 "tx_packets": 2,
 "tx_errors": 0,
 "tx_dropped": 0
 }
 },
 "network_rate_stats": {
 "rx_bytes_per_sec": 0,
 "tx_bytes_per_sec": 0
 }
 },
 "5fc21e5b015f899d22618f8aede80b6d70d71b2a75465ea49d9462c8f3d2d3af": {
 "read": "2020-10-02T00:51:32.512771349Z",

Task metadata endpoint version 4 1106

Amazon Elastic Container Service Developer Guide

 "preread": "2020-10-02T00:51:31.510597736Z",
 "pids_stats": {
 "current": 3
 },
 "blkio_stats": {
 "io_service_bytes_recursive": [

],
 "io_serviced_recursive": [

],
 "io_queue_recursive": [

],
 "io_service_time_recursive": [

],
 "io_wait_time_recursive": [

],
 "io_merged_recursive": [

],
 "io_time_recursive": [

],
 "sectors_recursive": [

]
 },
 "num_procs": 0,
 "storage_stats": {

 },
 "cpu_stats": {
 "cpu_usage": {
 "total_usage": 379075681,
 "percpu_usage": [
 191355275,
 187720406
],
 "usage_in_kernelmode": 60000000,
 "usage_in_usermode": 310000000
 },

Task metadata endpoint version 4 1107

Amazon Elastic Container Service Developer Guide

 "system_cpu_usage": 13977800000000,
 "online_cpus": 2,
 "throttling_data": {
 "periods": 0,
 "throttled_periods": 0,
 "throttled_time": 0
 }
 },
 "precpu_stats": {
 "cpu_usage": {
 "total_usage": 378825197,
 "percpu_usage": [
 191104791,
 187720406
],
 "usage_in_kernelmode": 60000000,
 "usage_in_usermode": 310000000
 },
 "system_cpu_usage": 13975800000000,
 "online_cpus": 2,
 "throttling_data": {
 "periods": 0,
 "throttled_periods": 0,
 "throttled_time": 0
 }
 },
 "memory_stats": {
 "usage": 1814528,
 "max_usage": 6299648,
 "stats": {
 "active_anon": 606208,
 "active_file": 0,
 "cache": 0,
 "dirty": 0,
 "hierarchical_memory_limit": 134217728,
 "hierarchical_memsw_limit": 268435456,
 "inactive_anon": 0,
 "inactive_file": 0,
 "mapped_file": 0,
 "pgfault": 5377,
 "pgmajfault": 0,
 "pgpgin": 3613,
 "pgpgout": 3465,
 "rss": 606208,

Task metadata endpoint version 4 1108

Amazon Elastic Container Service Developer Guide

 "rss_huge": 0,
 "total_active_anon": 606208,
 "total_active_file": 0,
 "total_cache": 0,
 "total_dirty": 0,
 "total_inactive_anon": 0,
 "total_inactive_file": 0,
 "total_mapped_file": 0,
 "total_pgfault": 5377,
 "total_pgmajfault": 0,
 "total_pgpgin": 3613,
 "total_pgpgout": 3465,
 "total_rss": 606208,
 "total_rss_huge": 0,
 "total_unevictable": 0,
 "total_writeback": 0,
 "unevictable": 0,
 "writeback": 0
 },
 "limit": 134217728
 },
 "name": "/ecs-curltest-26-curl-c2e5f6e0cf91b0bead01",
 "id": "5fc21e5b015f899d22618f8aede80b6d70d71b2a75465ea49d9462c8f3d2d3af",
 "networks": {
 "eth0": {
 "rx_bytes": 84,
 "rx_packets": 2,
 "rx_errors": 0,
 "rx_dropped": 0,
 "tx_bytes": 84,
 "tx_packets": 2,
 "tx_errors": 0,
 "tx_dropped": 0
 }
 },
 "network_rate_stats": {
 "rx_bytes_per_sec": 0,
 "tx_bytes_per_sec": 0
 }
 }
}

Task metadata endpoint version 4 1109

Amazon Elastic Container Service Developer Guide

Task metadata endpoint version 3

Important

The task metadata version 3 endpoint is no longer being actively maintained. We
recommend that you update the task metadata version 4 endpoint to get the latest
metadata endpoint information. For more information, see the section called “Task
metadata endpoint version 4”.
If you are using Amazon ECS tasks hosted on AWS Fargate, see Task metadata endpoint
version 3 in the Amazon Elastic Container Service User Guide for AWS Fargate.

Beginning with version 1.21.0 of the Amazon ECS container agent, the agent injects an
environment variable called ECS_CONTAINER_METADATA_URI into each container in a task. When
you query the task metadata version 3 endpoint, various task metadata and Docker stats are
available to tasks. For tasks that use the bridge network mode, network metrics are available
when querying the /stats endpoints.

The task metadata endpoint version 3 feature is enabled by default for tasks that use the Fargate
launch type on platform version v1.3.0 or later and tasks that use the EC2 launch type and are
launched on Amazon EC2 Linux infrastructure running at least version 1.21.0 of the Amazon ECS
container agent or on Amazon EC2 Windows infrastructure running at least version 1.54.0 of
the Amazon ECS container agent and use awsvpc network mode. For more information, see Linux
container instance management.

You can add support for this feature on older container instances by updating the agent to the
latest version. For more information, see Updating the Amazon ECS container agent.

Important

For tasks using the Fargate launch type and platform versions prior to v1.3.0, the task
metadata version 2 endpoint is supported. For more information, see Task metadata
endpoint version 2.

Task Metadata endpoint version 3 paths

The following task metadata endpoints are available to containers:

Task metadata endpoint version 3 1110

https://docs.aws.amazon.com/AmazonECS/latest/userguide/task-metadata-endpoint-v3-fargate.html
https://docs.aws.amazon.com/AmazonECS/latest/userguide/task-metadata-endpoint-v3-fargate.html
https://docs.docker.com/engine/api/v1.30/#operation/ContainerStats

Amazon Elastic Container Service Developer Guide

${ECS_CONTAINER_METADATA_URI}

This path returns metadata JSON for the container.

${ECS_CONTAINER_METADATA_URI}/task

This path returns metadata JSON for the task, including a list of the container IDs and names
for all of the containers associated with the task. For more information about the response for
this endpoint, see Task metadata v3 JSON response.

${ECS_CONTAINER_METADATA_URI}/taskWithTags

This path returns the metadata for the task included in the /task endpoint in addition to the
task and container instance tags that can be retrieved using the ListTagsForResource API.

${ECS_CONTAINER_METADATA_URI}/stats

This path returns Docker stats JSON for the specific Docker container. For more information
about each of the returned stats, see ContainerStats in the Docker API documentation.

${ECS_CONTAINER_METADATA_URI}/task/stats

This path returns Docker stats JSON for all of the containers associated with the task. For
more information about each of the returned stats, see ContainerStats in the Docker API
documentation.

Task metadata v3 JSON response

The following information is returned from the task metadata endpoint
(${ECS_CONTAINER_METADATA_URI}/task) JSON response.

Cluster

The Amazon Resource Name (ARN) or short name of the Amazon ECS cluster to which the task
belongs.

TaskARN

The full Amazon Resource Name (ARN) of the task to which the container belongs.

Family

The family of the Amazon ECS task definition for the task.

Task metadata endpoint version 3 1111

https://docs.docker.com/engine/api/v1.30/#operation/ContainerStats
https://docs.docker.com/engine/api/v1.30/#operation/ContainerStats

Amazon Elastic Container Service Developer Guide

Revision

The revision of the Amazon ECS task definition for the task.

DesiredStatus

The desired status for the task from Amazon ECS.

KnownStatus

The known status for the task from Amazon ECS.

Limits

The resource limits specified at the task level, such as CPU (expressed in vCPUs) and memory.
This parameter is omitted if no resource limits are defined.

PullStartedAt

The timestamp for when the first container image pull began.

PullStoppedAt

The timestamp for when the last container image pull finished.

AvailabilityZone

The Availability Zone the task is in.

Note

The Availability Zone metadata is only available for Fargate tasks using platform version
1.4 or later (Linux) or 1.0.0 or later (Windows).

Containers

A list of container metadata for each container associated with the task.

DockerId

The Docker ID for the container.

Name

The name of the container as specified in the task definition.

Task metadata endpoint version 3 1112

Amazon Elastic Container Service Developer Guide

DockerName

The name of the container supplied to Docker. The Amazon ECS container agent generates
a unique name for the container to avoid name collisions when multiple copies of the same
task definition are run on a single instance.

Image

The image for the container.

ImageID

The SHA-256 digest for the image.

Ports

Any ports exposed for the container. This parameter is omitted if there are no exposed ports.

Labels

Any labels applied to the container. This parameter is omitted if there are no labels applied.

DesiredStatus

The desired status for the container from Amazon ECS.

KnownStatus

The known status for the container from Amazon ECS.

ExitCode

The exit code for the container. This parameter is omitted if the container has not exited.

Limits

The resource limits specified at the container level, such as CPU (expressed in CPU units) and
memory. This parameter is omitted if no resource limits are defined.

CreatedAt

The time stamp for when the container was created. This parameter is omitted if the
container has not been created yet.

StartedAt

The time stamp for when the container started. This parameter is omitted if the container
has not started yet.

Task metadata endpoint version 3 1113

Amazon Elastic Container Service Developer Guide

FinishedAt

The time stamp for when the container stopped. This parameter is omitted if the container
has not stopped yet.

Type

The type of the container. Containers that are specified in your task definition are of type
NORMAL. You can ignore other container types, which are used for internal task resource
provisioning by the Amazon ECS container agent.

Networks

The network information for the container, such as the network mode and IP address. This
parameter is omitted if no network information is defined.

ClockDrift

The information about the difference between the reference time and the system time. This
applies to the Linux operating system. This capability uses Amazon Time Sync Service to
measure clock accuracy and provide the clock error bound for containers. For more information,
see Set the time for your Linux instance in the Amazon EC2 User Guide for Linux instances.

ReferenceTime

The basis of clock accuracy. Amazon ECS uses the Coordinated Universal Time (UTC) global
standard through NTP, for example 2021-09-07T16:57:44Z.

ClockErrorBound

The measure of clock error, defined as the offset to UTC. This error is the difference in
milliseconds between the reference time and the system time.

ClockSynchronizationStatus

Indicates whether the most recent synchronization attempt between the system time and
the reference time was successful.

The valid values are SYNCHRONIZED and NOT_SYNCHRONIZED.

ExecutionStoppedAt

The time stamp for when the tasks DesiredStatus moved to STOPPED. This occurs when an
essential container moves to STOPPED.

Task metadata endpoint version 3 1114

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/set-time.html

Amazon Elastic Container Service Developer Guide

Task metadata v3 examples

The following examples show sample outputs from the task metadata endpoints.

Example Container Metadata Response

When querying the ${ECS_CONTAINER_METADATA_URI} endpoint you are returned only
metadata about the container itself. The following is an example output.

{
 "DockerId": "43481a6ce4842eec8fe72fc28500c6b52edcc0917f105b83379f88cac1ff3946",
 "Name": "nginx-curl",
 "DockerName": "ecs-nginx-5-nginx-curl-ccccb9f49db0dfe0d901",
 "Image": "nrdlngr/nginx-curl",
 "ImageID":
 "sha256:2e00ae64383cfc865ba0a2ba37f61b50a120d2d9378559dcd458dc0de47bc165",
 "Labels": {
 "com.amazonaws.ecs.cluster": "default",
 "com.amazonaws.ecs.container-name": "nginx-curl",
 "com.amazonaws.ecs.task-arn": "arn:aws:ecs:us-
east-2:012345678910:task/9781c248-0edd-4cdb-9a93-f63cb662a5d3",
 "com.amazonaws.ecs.task-definition-family": "nginx",
 "com.amazonaws.ecs.task-definition-version": "5"
 },
 "DesiredStatus": "RUNNING",
 "KnownStatus": "RUNNING",
 "Limits": {
 "CPU": 512,
 "Memory": 512
 },
 "CreatedAt": "2018-02-01T20:55:10.554941919Z",
 "StartedAt": "2018-02-01T20:55:11.064236631Z",
 "Type": "NORMAL",
 "Networks": [
 {
 "NetworkMode": "awsvpc",
 "IPv4Addresses": [
 "10.0.2.106"
]
 }
]
}

Task metadata endpoint version 3 1115

Amazon Elastic Container Service Developer Guide

Example task metadata response

When querying the ${ECS_CONTAINER_METADATA_URI}/task endpoint you are returned
metadata about the task the container is part of. The following is an example output.

The following JSON response is for a single-container task.

{
 "Cluster": "default",
 "TaskARN": "arn:aws:ecs:us-east-2:012345678910:task/9781c248-0edd-4cdb-9a93-
f63cb662a5d3",
 "Family": "nginx",
 "Revision": "5",
 "DesiredStatus": "RUNNING",
 "KnownStatus": "RUNNING",
 "Containers": [
 {
 "DockerId": "731a0d6a3b4210e2448339bc7015aaa79bfe4fa256384f4102db86ef94cbbc4c",
 "Name": "~internal~ecs~pause",
 "DockerName": "ecs-nginx-5-internalecspause-acc699c0cbf2d6d11700",
 "Image": "amazon/amazon-ecs-pause:0.1.0",
 "ImageID": "",
 "Labels": {
 "com.amazonaws.ecs.cluster": "default",
 "com.amazonaws.ecs.container-name": "~internal~ecs~pause",
 "com.amazonaws.ecs.task-arn": "arn:aws:ecs:us-
east-2:012345678910:task/9781c248-0edd-4cdb-9a93-f63cb662a5d3",
 "com.amazonaws.ecs.task-definition-family": "nginx",
 "com.amazonaws.ecs.task-definition-version": "5"
 },
 "DesiredStatus": "RESOURCES_PROVISIONED",
 "KnownStatus": "RESOURCES_PROVISIONED",
 "Limits": {
 "CPU": 0,
 "Memory": 0
 },
 "CreatedAt": "2018-02-01T20:55:08.366329616Z",
 "StartedAt": "2018-02-01T20:55:09.058354915Z",
 "Type": "CNI_PAUSE",
 "Networks": [
 {
 "NetworkMode": "awsvpc",
 "IPv4Addresses": [
 "10.0.2.106"

Task metadata endpoint version 3 1116

Amazon Elastic Container Service Developer Guide

]
 }
]
 },
 {
 "DockerId": "43481a6ce4842eec8fe72fc28500c6b52edcc0917f105b83379f88cac1ff3946",
 "Name": "nginx-curl",
 "DockerName": "ecs-nginx-5-nginx-curl-ccccb9f49db0dfe0d901",
 "Image": "nrdlngr/nginx-curl",
 "ImageID":
 "sha256:2e00ae64383cfc865ba0a2ba37f61b50a120d2d9378559dcd458dc0de47bc165",
 "Labels": {
 "com.amazonaws.ecs.cluster": "default",
 "com.amazonaws.ecs.container-name": "nginx-curl",
 "com.amazonaws.ecs.task-arn": "arn:aws:ecs:us-
east-2:012345678910:task/9781c248-0edd-4cdb-9a93-f63cb662a5d3",
 "com.amazonaws.ecs.task-definition-family": "nginx",
 "com.amazonaws.ecs.task-definition-version": "5"
 },
 "DesiredStatus": "RUNNING",
 "KnownStatus": "RUNNING",
 "Limits": {
 "CPU": 512,
 "Memory": 512
 },
 "CreatedAt": "2018-02-01T20:55:10.554941919Z",
 "StartedAt": "2018-02-01T20:55:11.064236631Z",
 "Type": "NORMAL",
 "Networks": [
 {
 "NetworkMode": "awsvpc",
 "IPv4Addresses": [
 "10.0.2.106"
]
 }
]
 }
],
 "PullStartedAt": "2018-02-01T20:55:09.372495529Z",
 "PullStoppedAt": "2018-02-01T20:55:10.552018345Z",
 "AvailabilityZone": "us-east-2b"
}

Task metadata endpoint version 3 1117

Amazon Elastic Container Service Developer Guide

Task metadata endpoint version 2

Important

The task metadata version 2 endpoint is no longer being actively maintained. We
recommend that you update the task metadata version 4 endpoint to get the latest
metadata endpoint information. For more information, see the section called “Task
metadata endpoint version 4”.

Beginning with version 1.17.0 of the Amazon ECS container agent, various task metadata and
Docker stats are available to tasks that use the awsvpc network mode at an HTTP endpoint that is
provided by the Amazon ECS container agent.

All containers belonging to tasks that are launched with the awsvpc network mode receive a local
IPv4 address within a predefined link-local address range. When a container queries the metadata
endpoint, the Amazon ECS container agent can determine which task the container belongs to
based on its unique IP address, and metadata and stats for that task are returned.

Enabling task metadata

The task metadata version 2 feature is enabled by default for the following:

• Tasks using the Fargate launch type that use platform version v1.1.0 or later. For more
information, see Fargate Linux platform versions.

• Tasks using the EC2 launch type that also use the awsvpc network mode and are launched on
Amazon EC2 Linux infrastructure running at least version 1.17.0 of the Amazon ECS container
agent or on Amazon EC2 Windows infrastructure running at least version 1.54.0 of the Amazon
ECS container agent. For more information, see Linux container instance management.

You can add support for this feature on older container instances by updating the agent to the
latest version. For more information, see Updating the Amazon ECS container agent.

Task metadata endpoint paths

The following API endpoints are available to containers:

Task metadata endpoint version 2 1118

https://docs.docker.com/engine/api/v1.30/#operation/ContainerStats

Amazon Elastic Container Service Developer Guide

169.254.170.2/v2/metadata

This endpoint returns metadata JSON for the task, including a list of the container IDs and
names for all of the containers associated with the task. For more information about the
response for this endpoint, see Task metadata JSON response.

169.254.170.2/v2/metadata/<container-id>

This endpoint returns metadata JSON for the specified Docker container ID.

169.254.170.2/v2/metadata/taskWithTags

This path returns the metadata for the task included in the /task endpoint in addition to the
task and container instance tags that can be retrieved using the ListTagsForResource API.

169.254.170.2/v2/stats

This endpoint returns Docker stats JSON for all of the containers associated with the task.
For more information about each of the returned stats, see ContainerStats in the Docker API
documentation.

169.254.170.2/v2/stats/<container-id>

This endpoint returns Docker stats JSON for the specified Docker container ID. For more
information about each of the returned stats, see ContainerStats in the Docker API
documentation.

Task metadata JSON response

The following information is returned from the task metadata endpoint (169.254.170.2/v2/
metadata) JSON response.

Cluster

The Amazon Resource Name (ARN) or short name of the Amazon ECS cluster to which the task
belongs.

TaskARN

The full Amazon Resource Name (ARN) of the task to which the container belongs.

Family

The family of the Amazon ECS task definition for the task.

Task metadata endpoint version 2 1119

https://docs.docker.com/engine/api/v1.30/#operation/ContainerStats
https://docs.docker.com/engine/api/v1.30/#operation/ContainerStats

Amazon Elastic Container Service Developer Guide

Revision

The revision of the Amazon ECS task definition for the task.

DesiredStatus

The desired status for the task from Amazon ECS.

KnownStatus

The known status for the task from Amazon ECS.

Limits

The resource limits specified at the task level, such as CPU (expressed in vCPUs) and memory.
This parameter is omitted if no resource limits are defined.

PullStartedAt

The timestamp for when the first container image pull began.

PullStoppedAt

The timestamp for when the last container image pull finished.

AvailabilityZone

The Availability Zone the task is in.

Note

The Availability Zone metadata is only available for Fargate tasks using platform version
1.4 or later (Linux) or 1.0.0 or later (Windows).

Containers

A list of container metadata for each container associated with the task.

DockerId

The Docker ID for the container.

Name

The name of the container as specified in the task definition.

Task metadata endpoint version 2 1120

Amazon Elastic Container Service Developer Guide

DockerName

The name of the container supplied to Docker. The Amazon ECS container agent generates
a unique name for the container to avoid name collisions when multiple copies of the same
task definition are run on a single instance.

Image

The image for the container.

ImageID

The SHA-256 digest for the image.

Ports

Any ports exposed for the container. This parameter is omitted if there are no exposed ports.

Labels

Any labels applied to the container. This parameter is omitted if there are no labels applied.

DesiredStatus

The desired status for the container from Amazon ECS.

KnownStatus

The known status for the container from Amazon ECS.

ExitCode

The exit code for the container. This parameter is omitted if the container has not exited.

Limits

The resource limits specified at the container level, such as CPU (expressed in CPU units) and
memory. This parameter is omitted if no resource limits are defined.

CreatedAt

The time stamp for when the container was created. This parameter is omitted if the
container has not been created yet.

StartedAt

The time stamp for when the container started. This parameter is omitted if the container
has not started yet.

Task metadata endpoint version 2 1121

Amazon Elastic Container Service Developer Guide

FinishedAt

The time stamp for when the container stopped. This parameter is omitted if the container
has not stopped yet.

Type

The type of the container. Containers that are specified in your task definition are of type
NORMAL. You can ignore other container types, which are used for internal task resource
provisioning by the Amazon ECS container agent.

Networks

The network information for the container, such as the network mode and IP address. This
parameter is omitted if no network information is defined.

ClockDrift

The information about the difference between the reference time and the system time. This
applies to the Linux operating system. This capability uses Amazon Time Sync Service to
measure clock accuracy and provide the clock error bound for containers. For more information,
see Set the time for your Linux instance in the Amazon EC2 User Guide for Linux instances.

ReferenceTime

The basis of clock accuracy. Amazon ECS uses the Coordinated Universal Time (UTC) global
standard through NTP, for example 2021-09-07T16:57:44Z.

ClockErrorBound

The measure of clock error, defined as the offset to UTC. This error is the difference in
milliseconds between the reference time and the system time.

ClockSynchronizationStatus

Indicates whether the most recent synchronization attempt between the system time and
the reference time was successful.

The valid values are SYNCHRONIZED and NOT_SYNCHRONIZED.

ExecutionStoppedAt

The time stamp for when the tasks DesiredStatus moved to STOPPED. This occurs when an
essential container moves to STOPPED.

Task metadata endpoint version 2 1122

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/set-time.html

Amazon Elastic Container Service Developer Guide

Example task metadata response

The following JSON response is for a single-container task.

{
 "Cluster": "default",
 "TaskARN": "arn:aws:ecs:us-east-2:012345678910:task/9781c248-0edd-4cdb-9a93-
f63cb662a5d3",
 "Family": "nginx",
 "Revision": "5",
 "DesiredStatus": "RUNNING",
 "KnownStatus": "RUNNING",
 "Containers": [
 {
 "DockerId": "731a0d6a3b4210e2448339bc7015aaa79bfe4fa256384f4102db86ef94cbbc4c",
 "Name": "~internal~ecs~pause",
 "DockerName": "ecs-nginx-5-internalecspause-acc699c0cbf2d6d11700",
 "Image": "amazon/amazon-ecs-pause:0.1.0",
 "ImageID": "",
 "Labels": {
 "com.amazonaws.ecs.cluster": "default",
 "com.amazonaws.ecs.container-name": "~internal~ecs~pause",
 "com.amazonaws.ecs.task-arn": "arn:aws:ecs:us-
east-2:012345678910:task/9781c248-0edd-4cdb-9a93-f63cb662a5d3",
 "com.amazonaws.ecs.task-definition-family": "nginx",
 "com.amazonaws.ecs.task-definition-version": "5"
 },
 "DesiredStatus": "RESOURCES_PROVISIONED",
 "KnownStatus": "RESOURCES_PROVISIONED",
 "Limits": {
 "CPU": 0,
 "Memory": 0
 },
 "CreatedAt": "2018-02-01T20:55:08.366329616Z",
 "StartedAt": "2018-02-01T20:55:09.058354915Z",
 "Type": "CNI_PAUSE",
 "Networks": [
 {
 "NetworkMode": "awsvpc",
 "IPv4Addresses": [
 "10.0.2.106"
]
 }
]

Task metadata endpoint version 2 1123

Amazon Elastic Container Service Developer Guide

 },
 {
 "DockerId": "43481a6ce4842eec8fe72fc28500c6b52edcc0917f105b83379f88cac1ff3946",
 "Name": "nginx-curl",
 "DockerName": "ecs-nginx-5-nginx-curl-ccccb9f49db0dfe0d901",
 "Image": "nrdlngr/nginx-curl",
 "ImageID":
 "sha256:2e00ae64383cfc865ba0a2ba37f61b50a120d2d9378559dcd458dc0de47bc165",
 "Labels": {
 "com.amazonaws.ecs.cluster": "default",
 "com.amazonaws.ecs.container-name": "nginx-curl",
 "com.amazonaws.ecs.task-arn": "arn:aws:ecs:us-
east-2:012345678910:task/9781c248-0edd-4cdb-9a93-f63cb662a5d3",
 "com.amazonaws.ecs.task-definition-family": "nginx",
 "com.amazonaws.ecs.task-definition-version": "5"
 },
 "DesiredStatus": "RUNNING",
 "KnownStatus": "RUNNING",
 "Limits": {
 "CPU": 512,
 "Memory": 512
 },
 "CreatedAt": "2018-02-01T20:55:10.554941919Z",
 "StartedAt": "2018-02-01T20:55:11.064236631Z",
 "Type": "NORMAL",
 "Networks": [
 {
 "NetworkMode": "awsvpc",
 "IPv4Addresses": [
 "10.0.2.106"
]
 }
]
 }
],
 "PullStartedAt": "2018-02-01T20:55:09.372495529Z",
 "PullStoppedAt": "2018-02-01T20:55:10.552018345Z",
 "AvailabilityZone": "us-east-2b"
}

Task metadata endpoint version 2 1124

Amazon Elastic Container Service Developer Guide

Task metadata available for tasks on Fargate

Amazon ECS on Fargate provides a method to retrieve various metadata, network metrics, and
Docker stats about your containers and the tasks they are a part of. This is referred to as the task
metadata endpoint. The following task metadata endpoint versions are available for Amazon ECS
on Fargate tasks:

• Task metadata endpoint version 4 – Available for tasks that use platform version 1.4.0 or later.

• Task metadata endpoint version 3 – Available for tasks that use platform version 1.1.0 or later.

All containers belonging to tasks that are launched with the awsvpc network mode receive a local
IPv4 address within a predefined link-local address range. When a container queries the metadata
endpoint, the container agent can determine which task the container belongs to based on its
unique IP address, and metadata and stats for that task are returned.

Topics

• Task metadata endpoint version 4 for tasks on Fargate

• Task metadata endpoint version 3 for tasks on Fargate

Task metadata endpoint version 4 for tasks on Fargate

Important

If you are using Amazon ECS tasks hosted on Amazon EC2 instances, see Amazon ECS task
metadata endpoint.

Beginning with Fargate platform version 1.4.0, an environment variable named
ECS_CONTAINER_METADATA_URI_V4 is injected into each container in a task. When you query the
task metadata endpoint version 4, various task metadata and Docker stats are available to tasks.

The task metadata endpoint version 4 functions like the version 3 endpoint but provides additional
network metadata for your containers and tasks. Additional network metrics are available when
querying the /stats endpoints as well.

The task metadata endpoint is on by default for all Amazon ECS tasks run on AWS Fargate that use
platform version 1.4.0 or later.

Task metadata available for tasks on Fargate 1125

https://docs.docker.com/engine/api/v1.30/#operation/ContainerStats
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/task-metadata-endpoint.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/task-metadata-endpoint.html
https://docs.docker.com/engine/api/v1.30/#operation/ContainerStats

Amazon Elastic Container Service Developer Guide

Note

To avoid the need to create new task metadata endpoint versions in the future, additional
metadata may be added to the version 4 output. We will not remove any existing metadata
or change the metadata field names.

Fargate task metadata endpoint version 4 paths

The following task metadata endpoints are available to containers:

${ECS_CONTAINER_METADATA_URI_V4}

This path returns metadata for the container.

${ECS_CONTAINER_METADATA_URI_V4}/task

This path returns metadata for the task, including a list of the container IDs and names for all
of the containers associated with the task. For more information about the response for this
endpoint, see Fargate task metadata v4 JSON response.

${ECS_CONTAINER_METADATA_URI_V4}/stats

This path returns Docker stats for the Docker container. For more information about each of the
returned stats, see ContainerStats in the Docker API documentation.

Note

Amazon ECS tasks on AWS Fargate require that the container run for ~1 second prior to
returning the container stats.

${ECS_CONTAINER_METADATA_URI_V4}/task/stats

This path returns Docker stats for all of the containers associated with the task. For
more information about each of the returned stats, see ContainerStats in the Docker API
documentation.

Fargate task metadata endpoint v4 1126

https://docs.docker.com/engine/api/v1.30/#operation/ContainerStats
https://docs.docker.com/engine/api/v1.30/#operation/ContainerStats

Amazon Elastic Container Service Developer Guide

Note

Amazon ECS tasks on AWS Fargate require that the container run for ~1 second prior to
returning the container stats.

Fargate task metadata v4 JSON response

The following metadata is returned in the task metadata endpoint
(${ECS_CONTAINER_METADATA_URI_V4}/task) JSON response.

Cluster

The Amazon Resource Name (ARN) or short name of the Amazon ECS cluster to which the task
belongs.

VPCID

The VPC ID of the Amazon EC2 container instance. This field only appears for Amazon EC2
instances.

Note

The VPCID metadata is only included when using Amazon ECS container agent version
1.63.1 or later.

TaskARN

The full Amazon Resource Name (ARN) of the task to which the container belongs.

Family

The family of the Amazon ECS task definition for the task.

Revision

The revision of the Amazon ECS task definition for the task.

DesiredStatus

The desired status for the task from Amazon ECS.

Fargate task metadata endpoint v4 1127

Amazon Elastic Container Service Developer Guide

KnownStatus

The known status for the task from Amazon ECS.

Limits

The resource limits specified at the task levels such as CPU (expressed in vCPUs) and memory.
This parameter is omitted if no resource limits are defined.

PullStartedAt

The timestamp for when the first container image pull began.

PullStoppedAt

The timestamp for when the last container image pull finished.

AvailabilityZone

The Availability Zone the task is in.

Note

The Availability Zone metadata is only available for Fargate tasks using platform version
1.4 or later (Linux) or 1.0.0 (Windows).

LaunchType

The launch type the task is using. When using cluster capacity providers, this indicates whether
the task is using Fargate or EC2 infrastructure.

Note

This LaunchType metadata is only included when using Amazon ECS Linux container
agent version 1.45.0 or later (Linux) or 1.0.0 or later (Windows).

EphemeralStorageMetrics

The reserved size and current usage of the ephemeral storage of this task.

Fargate task metadata endpoint v4 1128

Amazon Elastic Container Service Developer Guide

Note

Fargate reserves space on disk. It is only used by Fargate. You aren't billed for it. It isn't
shown in these metrics. However, you can see this additional storage in other tools such
as df.

Utilized

The current ephemeral storage usage (in MiB) of this task.

Reserved

The reserved ephemeral storage (in MiB) of this task. The size of the ephemeral storage can't
be changed in a running task. You can specify the ephermalStorage object in your task
definition to change the amount of ephemeral storage. The ephermalStorage is specified
in GiB, not MiB. The ephermalStorage and the EphemeralStorageMetrics are only
available on Fargate Linux platform version 1.4.0 or later.

Containers

A list of container metadata for each container associated with the task.

DockerId

The Docker ID for the container.

When you use Fargate, the id is a 32-digit hex followed by a 10 digit number.

Name

The name of the container as specified in the task definition.

DockerName

The name of the container supplied to Docker. The Amazon ECS container agent generates
a unique name for the container to avoid name collisions when multiple copies of the same
task definition are run on a single instance.

Image

The image for the container.

ImageID

The SHA-256 digest for the image.

Fargate task metadata endpoint v4 1129

Amazon Elastic Container Service Developer Guide

Ports

Any ports exposed for the container. This parameter is omitted if there are no exposed ports.

Labels

Any labels applied to the container. This parameter is omitted if there are no labels applied.

DesiredStatus

The desired status for the container from Amazon ECS.

KnownStatus

The known status for the container from Amazon ECS.

ExitCode

The exit code for the container. This parameter is omitted if the container has not exited.

Limits

The resource limits specified at the container level such as CPU (expressed in CPU units) and
memory. This parameter is omitted if no resource limits are defined.

CreatedAt

The time stamp for when the container was created. This parameter is omitted if the
container has not been created yet.

StartedAt

The time stamp for when the container started. This parameter is omitted if the container
has not started yet.

FinishedAt

The time stamp for when the container stopped. This parameter is omitted if the container
has not stopped yet.

Type

The type of the container. Containers that are specified in your task definition are of type
NORMAL. You can ignore other container types, which are used for internal task resource
provisioning by the Amazon ECS container agent.

LogDriver

The log driver the container is using.

Fargate task metadata endpoint v4 1130

Amazon Elastic Container Service Developer Guide

Note

This LogDriver metadata is only included when using Amazon ECS Linux container
agent version 1.45.0 or later.

LogOptions

The log driver options defined for the container.

Note

This LogOptions metadata is only included when using Amazon ECS Linux
container agent version 1.45.0 or later.

ContainerARN

The full Amazon Resource Name (ARN) of the container.

Note

This ContainerARN metadata is only included when using Amazon ECS Linux
container agent version 1.45.0 or later.

Networks

The network information for the container, such as the network mode and IP address. This
parameter is omitted if no network information is defined.

Snapshotter

The snapshotter that was used by containerd to download this container image. Valid values
are overlayfs, which is the default, and soci, used when lazy loading with a SOCI index.
This parameter is only available for tasks that run on Linux platform version 1.4.0.

ClockDrift

The information about the difference between the reference time and the system time. This
capability uses Amazon Time Sync Service to measure clock accuracy and provide the clock

Fargate task metadata endpoint v4 1131

Amazon Elastic Container Service Developer Guide

error bound for containers. For more information, see Set the time for your Linux instance in the
Amazon EC2 User Guide for Linux instances.

ReferenceTime

The basis of clock accuracy. Amazon ECS uses the Coordinated Universal Time (UTC) global
standard through NTP, for example 2021-09-07T16:57:44Z.

ClockErrorBound

The measure of clock error, defined as the offset to UTC. This error is the difference in
milliseconds between the reference time and the system time.

ClockSynchronizationStatus

Indicates whether the most recent synchronization attempt between the system time and
the reference time was successful.

The valid values are SYNCHRONIZED and NOT_SYNCHRONIZED.

ExecutionStoppedAt

The time stamp for when the tasks DesiredStatus moved to STOPPED. This occurs when an
essential container moves to STOPPED.

Fargate task metadata v4 examples

The following examples show sample outputs from the task metadata endpoints for Amazon ECS
tasks run on AWS Fargate.

From the container, you can use curl followed by the task meta data endpoint to query the
endpoint for example curl ${ECS_CONTAINER_METADATA_URI_V4}/task.

Example container metadata response

When querying the ${ECS_CONTAINER_METADATA_URI_V4} endpoint you are returned only
metadata about the container itself. The following is an example output.

{
 "DockerId": "cd189a933e5849daa93386466019ab50-2495160603",
 "Name": "curl",
 "DockerName": "curl",
 "Image": "111122223333.dkr.ecr.us-west-2.amazonaws.com/curltest:latest",
 "ImageID":
 "sha256:25f3695bedfb454a50f12d127839a68ad3caf91e451c1da073db34c542c4d2cb",

Fargate task metadata endpoint v4 1132

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/set-time.html

Amazon Elastic Container Service Developer Guide

 "Labels": {
 "com.amazonaws.ecs.cluster": "arn:aws:ecs:us-west-2:111122223333:cluster/
default",
 "com.amazonaws.ecs.container-name": "curl",
 "com.amazonaws.ecs.task-arn": "arn:aws:ecs:us-west-2:111122223333:task/default/
cd189a933e5849daa93386466019ab50",
 "com.amazonaws.ecs.task-definition-family": "curltest",
 "com.amazonaws.ecs.task-definition-version": "2"
 },
 "DesiredStatus": "RUNNING",
 "KnownStatus": "RUNNING",
 "Limits": {
 "CPU": 10,
 "Memory": 128
 },
 "CreatedAt": "2020-10-08T20:09:11.44527186Z",
 "StartedAt": "2020-10-08T20:09:11.44527186Z",
 "Type": "NORMAL",
 "Networks": [
 {
 "NetworkMode": "awsvpc",
 "IPv4Addresses": [
 "192.0.2.3"
],
 "AttachmentIndex": 0,
 "MACAddress": "0a:de:f6:10:51:e5",
 "IPv4SubnetCIDRBlock": "192.0.2.0/24",
 "DomainNameServers": [
 "192.0.2.2"
],
 "DomainNameSearchList": [
 "us-west-2.compute.internal"
],
 "PrivateDNSName": "ip-10-0-0-222.us-west-2.compute.internal",
 "SubnetGatewayIpv4Address": "192.0.2.0/24"
 }
],
 "ContainerARN": "arn:aws:ecs:us-west-2:111122223333:container/05966557-
f16c-49cb-9352-24b3a0dcd0e1",
 "LogOptions": {
 "awslogs-create-group": "true",
 "awslogs-group": "/ecs/containerlogs",
 "awslogs-region": "us-west-2",
 "awslogs-stream": "ecs/curl/cd189a933e5849daa93386466019ab50"

Fargate task metadata endpoint v4 1133

Amazon Elastic Container Service Developer Guide

 },
 "LogDriver": "awslogs",
 "Snapshotter": "overlayfs"
}

Example Fargate task metadata response

When querying the ${ECS_CONTAINER_METADATA_URI_V4}/task endpoint you are returned
metadata about the task the container is part of. The following is an example output.

{
 "Cluster": "arn:aws:ecs:us-east-1:123456789012:cluster/clusterName",
 "TaskARN": "arn:aws:ecs:us-east-1:123456789012:task/MyEmptyCluster/
bfa2636268144d039771334145e490c5",
 "Family": "sample-fargate",
 "Revision": "5",
 "DesiredStatus": "RUNNING",
 "KnownStatus": "RUNNING",
 "Limits": {
 "CPU": 0.25,
 "Memory": 512
 },
 "PullStartedAt": "2023-07-21T15:45:33.532811081Z",
 "PullStoppedAt": "2023-07-21T15:45:38.541068435Z",
 "AvailabilityZone": "us-east-1d",
 "Containers": [
 {
 "DockerId": "bfa2636268144d039771334145e490c5-1117626119",
 "Name": "curl-image",
 "DockerName": "curl-image",
 "Image": "curlimages/curl",
 "ImageID":
 "sha256:daf3f46a2639c1613b25e85c9ee4193af8a1d538f92483d67f9a3d7f21721827",
 "Labels": {
 "com.amazonaws.ecs.cluster": "arn:aws:ecs:us-east-1:123456789012:cluster/
MyEmptyCluster",
 "com.amazonaws.ecs.container-name": "curl-image",
 "com.amazonaws.ecs.task-arn": "arn:aws:ecs:us-east-1:123456789012:task/
MyEmptyCluster/bfa2636268144d039771334145e490c5",
 "com.amazonaws.ecs.task-definition-family": "sample-fargate",
 "com.amazonaws.ecs.task-definition-version": "5"
 },
 "DesiredStatus": "RUNNING",

Fargate task metadata endpoint v4 1134

Amazon Elastic Container Service Developer Guide

 "KnownStatus": "RUNNING",
 "Limits": { "CPU": 128 },
 "CreatedAt": "2023-07-21T15:45:44.91368314Z",
 "StartedAt": "2023-07-21T15:45:44.91368314Z",
 "Type": "NORMAL",
 "Networks": [
 {
 "NetworkMode": "awsvpc",
 "IPv4Addresses": ["172.31.42.189"],
 "AttachmentIndex": 0,
 "MACAddress": "0e:98:9f:33:76:d3",
 "IPv4SubnetCIDRBlock": "172.31.32.0/20",
 "DomainNameServers": ["172.31.0.2"],
 "DomainNameSearchList": ["ec2.internal"],
 "PrivateDNSName": "ip-172-31-42-189.ec2.internal",
 "SubnetGatewayIpv4Address": "172.31.32.1/20"
 }
],
 "ContainerARN": "arn:aws:ecs:us-east-1:123456789012:container/MyEmptyCluster/
bfa2636268144d039771334145e490c5/da6cccf7-1178-400c-afdf-7536173ee209",
 "Snapshotter": "overlayfs"
 },
 {
 "DockerId": "bfa2636268144d039771334145e490c5-3681984407",
 "Name": "fargate-app",
 "DockerName": "fargate-app",
 "Image": "public.ecr.aws/docker/library/httpd:latest",
 "ImageID":
 "sha256:8059bdd0058510c03ae4c808de8c4fd2c1f3c1b6d9ea75487f1e5caa5ececa02",
 "Labels": {
 "com.amazonaws.ecs.cluster": "arn:aws:ecs:us-east-1:123456789012:cluster/
MyEmptyCluster",
 "com.amazonaws.ecs.container-name": "fargate-app",
 "com.amazonaws.ecs.task-arn": "arn:aws:ecs:us-east-1:123456789012:task/
MyEmptyCluster/bfa2636268144d039771334145e490c5",
 "com.amazonaws.ecs.task-definition-family": "sample-fargate",
 "com.amazonaws.ecs.task-definition-version": "5"
 },
 "DesiredStatus": "RUNNING",
 "KnownStatus": "RUNNING",
 "Limits": { "CPU": 2 },
 "CreatedAt": "2023-07-21T15:45:44.954460255Z",
 "StartedAt": "2023-07-21T15:45:44.954460255Z",
 "Type": "NORMAL",

Fargate task metadata endpoint v4 1135

Amazon Elastic Container Service Developer Guide

 "Networks": [
 {
 "NetworkMode": "awsvpc",
 "IPv4Addresses": ["172.31.42.189"],
 "AttachmentIndex": 0,
 "MACAddress": "0e:98:9f:33:76:d3",
 "IPv4SubnetCIDRBlock": "172.31.32.0/20",
 "DomainNameServers": ["172.31.0.2"],
 "DomainNameSearchList": ["ec2.internal"],
 "PrivateDNSName": "ip-172-31-42-189.ec2.internal",
 "SubnetGatewayIpv4Address": "172.31.32.1/20"
 }
],
 "ContainerARN": "arn:aws:ecs:us-east-1:123456789012:container/MyEmptyCluster/
bfa2636268144d039771334145e490c5/f65b461d-aa09-4acb-a579-9785c0530cbc",
 "Snapshotter": "overlayfs"
 }
],
 "LaunchType": "FARGATE",
 "ClockDrift": {
 "ClockErrorBound": 0.446931,
 "ReferenceTimestamp": "2023-07-21T16:09:17Z",
 "ClockSynchronizationStatus": "SYNCHRONIZED"
 },
 "EphemeralStorageMetrics": {
 "Utilized": 261,
 "Reserved": 20496
 }
}

Example task stats response

When querying the ${ECS_CONTAINER_METADATA_URI_V4}/task/stats endpoint you are
returned network metrics about the task the container is part of. The following is an example
output.

{
 "3d1f891cded94dc795608466cce8ddcf-464223573": {
 "read": "2020-10-08T21:24:44.938937019Z",
 "preread": "2020-10-08T21:24:34.938633969Z",
 "pids_stats": {},
 "blkio_stats": {
 "io_service_bytes_recursive": [

Fargate task metadata endpoint v4 1136

Amazon Elastic Container Service Developer Guide

 {
 "major": 202,
 "minor": 26368,
 "op": "Read",
 "value": 638976
 },
 {
 "major": 202,
 "minor": 26368,
 "op": "Write",
 "value": 0
 },
 {
 "major": 202,
 "minor": 26368,
 "op": "Sync",
 "value": 638976
 },
 {
 "major": 202,
 "minor": 26368,
 "op": "Async",
 "value": 0
 },
 {
 "major": 202,
 "minor": 26368,
 "op": "Total",
 "value": 638976
 }
],
 "io_serviced_recursive": [
 {
 "major": 202,
 "minor": 26368,
 "op": "Read",
 "value": 12
 },
 {
 "major": 202,
 "minor": 26368,
 "op": "Write",
 "value": 0
 },

Fargate task metadata endpoint v4 1137

Amazon Elastic Container Service Developer Guide

 {
 "major": 202,
 "minor": 26368,
 "op": "Sync",
 "value": 12
 },
 {
 "major": 202,
 "minor": 26368,
 "op": "Async",
 "value": 0
 },
 {
 "major": 202,
 "minor": 26368,
 "op": "Total",
 "value": 12
 }
],
 "io_queue_recursive": [],
 "io_service_time_recursive": [],
 "io_wait_time_recursive": [],
 "io_merged_recursive": [],
 "io_time_recursive": [],
 "sectors_recursive": []
 },
 "num_procs": 0,
 "storage_stats": {},
 "cpu_stats": {
 "cpu_usage": {
 "total_usage": 1137691504,
 "percpu_usage": [
 696479228,
 441212276,
 0,
 0,
 0,
 0,
 0,
 0,
 0,
 0,
 0,
 0,

Fargate task metadata endpoint v4 1138

Amazon Elastic Container Service Developer Guide

 0,
 0,
 0
],
 "usage_in_kernelmode": 80000000,
 "usage_in_usermode": 810000000
 },
 "system_cpu_usage": 9393210000000,
 "online_cpus": 2,
 "throttling_data": {
 "periods": 0,
 "throttled_periods": 0,
 "throttled_time": 0
 }
 },
 "precpu_stats": {
 "cpu_usage": {
 "total_usage": 1136624601,
 "percpu_usage": [
 695639662,
 440984939,
 0,
 0,
 0,
 0,
 0,
 0,
 0,
 0,
 0,
 0,
 0,
 0,
 0
],
 "usage_in_kernelmode": 80000000,
 "usage_in_usermode": 810000000
 },
 "system_cpu_usage": 9373330000000,
 "online_cpus": 2,
 "throttling_data": {
 "periods": 0,
 "throttled_periods": 0,
 "throttled_time": 0

Fargate task metadata endpoint v4 1139

Amazon Elastic Container Service Developer Guide

 }
 },
 "memory_stats": {
 "usage": 6504448,
 "max_usage": 8458240,
 "stats": {
 "active_anon": 1675264,
 "active_file": 557056,
 "cache": 651264,
 "dirty": 0,
 "hierarchical_memory_limit": 536870912,
 "hierarchical_memsw_limit": 9223372036854772000,
 "inactive_anon": 0,
 "inactive_file": 3088384,
 "mapped_file": 430080,
 "pgfault": 11034,
 "pgmajfault": 5,
 "pgpgin": 8436,
 "pgpgout": 7137,
 "rss": 4669440,
 "rss_huge": 0,
 "total_active_anon": 1675264,
 "total_active_file": 557056,
 "total_cache": 651264,
 "total_dirty": 0,
 "total_inactive_anon": 0,
 "total_inactive_file": 3088384,
 "total_mapped_file": 430080,
 "total_pgfault": 11034,
 "total_pgmajfault": 5,
 "total_pgpgin": 8436,
 "total_pgpgout": 7137,
 "total_rss": 4669440,
 "total_rss_huge": 0,
 "total_unevictable": 0,
 "total_writeback": 0,
 "unevictable": 0,
 "writeback": 0
 },
 "limit": 9223372036854772000
 },
 "name": "curltest",
 "id": "3d1f891cded94dc795608466cce8ddcf-464223573",
 "networks": {

Fargate task metadata endpoint v4 1140

Amazon Elastic Container Service Developer Guide

 "eth1": {
 "rx_bytes": 2398415937,
 "rx_packets": 1898631,
 "rx_errors": 0,
 "rx_dropped": 0,
 "tx_bytes": 1259037719,
 "tx_packets": 428002,
 "tx_errors": 0,
 "tx_dropped": 0
 }
 },
 "network_rate_stats": {
 "rx_bytes_per_sec": 43.298687872232854,
 "tx_bytes_per_sec": 215.39347269466413
 }
 }
}

Task metadata endpoint version 3 for tasks on Fargate

Important

The task metadata version 3 endpoint is no longer being actively maintained. We
recommend that you update the task metadata version 4 endpoint to get the latest
metadata endpoint information. For more information, see the section called “Fargate task
metadata endpoint v4”.

Beginning with Fargate platform version 1.1.0, an environment variable named
ECS_CONTAINER_METADATA_URI is injected into each container in a task. When you query the
task metadata version 3 endpoint, various task metadata and Docker stats are available to tasks.

The task metadata endpoint feature is enabled by default for Amazon ECS tasks hosted on Fargate
that use platform version 1.1.0 or later. For more information, see Fargate Linux platform
versions.

Task metadata endpoint paths for tasks on Fargate

The following API endpoints are available to containers:

Fargate task metadata endpoint v3 1141

https://docs.docker.com/engine/api/v1.30/#operation/ContainerStats

Amazon Elastic Container Service Developer Guide

${ECS_CONTAINER_METADATA_URI}

This path returns metadata JSON for the container.

${ECS_CONTAINER_METADATA_URI}/task

This path returns metadata JSON for the task, including a list of the container IDs and names
for all of the containers associated with the task. For more information about the response for
this endpoint, see Fargate task metadata v3 JSON response.

${ECS_CONTAINER_METADATA_URI}/stats

This path returns Docker stats JSON for the specific Docker container. For more information
about each of the returned stats, see ContainerStats in the Docker API documentation.

${ECS_CONTAINER_METADATA_URI}/task/stats

This path returns Docker stats JSON for all of the containers associated with the task. For
more information about each of the returned stats, see ContainerStats in the Docker API
documentation.

Fargate task metadata v3 JSON response

The following information is returned from the task metadata endpoint
(${ECS_CONTAINER_METADATA_URI}/task) JSON response.

Cluster

The Amazon Resource Name (ARN) or short name of the Amazon ECS cluster to which the task
belongs.

TaskARN

The full Amazon Resource Name (ARN) of the task to which the container belongs.

Family

The family of the Amazon ECS task definition for the task.

Revision

The revision of the Amazon ECS task definition for the task.

DesiredStatus

The desired status for the task from Amazon ECS.

Fargate task metadata endpoint v3 1142

https://docs.docker.com/engine/api/v1.30/#operation/ContainerStats
https://docs.docker.com/engine/api/v1.30/#operation/ContainerStats

Amazon Elastic Container Service Developer Guide

KnownStatus

The known status for the task from Amazon ECS.

Limits

The resource limits specified at the task level, such as CPU (expressed in vCPUs) and memory.
This parameter is omitted if no resource limits are defined.

PullStartedAt

The timestamp for when the first container image pull began.

PullStoppedAt

The timestamp for when the last container image pull finished.

AvailabilityZone

The Availability Zone the task is in.

Note

The Availability Zone metadata is only available for Fargate tasks using platform version
1.4 or later (Linux) or 1.0.0 or later (Windows).

Containers

A list of container metadata for each container associated with the task.

DockerId

The Docker ID for the container.

Name

The name of the container as specified in the task definition.

DockerName

The name of the container supplied to Docker. The Amazon ECS container agent generates
a unique name for the container to avoid name collisions when multiple copies of the same
task definition are run on a single instance.

Image

The image for the container.

Fargate task metadata endpoint v3 1143

Amazon Elastic Container Service Developer Guide

ImageID

The SHA-256 digest for the image.

Ports

Any ports exposed for the container. This parameter is omitted if there are no exposed ports.

Labels

Any labels applied to the container. This parameter is omitted if there are no labels applied.

DesiredStatus

The desired status for the container from Amazon ECS.

KnownStatus

The known status for the container from Amazon ECS.

ExitCode

The exit code for the container. This parameter is omitted if the container has not exited.

Limits

The resource limits specified at the container level, such as CPU (expressed in CPU units) and
memory. This parameter is omitted if no resource limits are defined.

CreatedAt

The time stamp for when the container was created. This parameter is omitted if the
container has not been created yet.

StartedAt

The time stamp for when the container started. This parameter is omitted if the container
has not started yet.

FinishedAt

The time stamp for when the container stopped. This parameter is omitted if the container
has not stopped yet.

Type

The type of the container. Containers that are specified in your task definition are of type
NORMAL. You can ignore other container types, which are used for internal task resource
provisioning by the Amazon ECS container agent.

Fargate task metadata endpoint v3 1144

Amazon Elastic Container Service Developer Guide

Networks

The network information for the container, such as the network mode and IP address. This
parameter is omitted if no network information is defined.

ClockDrift

The information about the difference between the reference time and the system time. This
applies to the Linux operating system. This capability uses Amazon Time Sync Service to
measure clock accuracy and provide the clock error bound for containers. For more information,
see Set the time for your Linux instance in the Amazon EC2 User Guide for Linux instances.

ReferenceTime

The basis of clock accuracy. Amazon ECS uses the Coordinated Universal Time (UTC) global
standard through NTP, for example 2021-09-07T16:57:44Z.

ClockErrorBound

The measure of clock error, defined as the offset to UTC. This error is the difference in
milliseconds between the reference time and the system time.

ClockSynchronizationStatus

Indicates whether the most recent synchronization attempt between the system time and
the reference time was successful.

The valid values are SYNCHRONIZED and NOT_SYNCHRONIZED.

ExecutionStoppedAt

The time stamp for when the tasks DesiredStatus moved to STOPPED. This occurs when an
essential container moves to STOPPED.

Fargate task metadata v3 examples

The following JSON response is for a single-container task.

{
 "Cluster": "default",
 "TaskARN": "arn:aws:ecs:us-east-2:012345678910:task/9781c248-0edd-4cdb-9a93-
f63cb662a5d3",
 "Family": "nginx",
 "Revision": "5",
 "DesiredStatus": "RUNNING",

Fargate task metadata endpoint v3 1145

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/set-time.html

Amazon Elastic Container Service Developer Guide

 "KnownStatus": "RUNNING",
 "Containers": [
 {
 "DockerId": "731a0d6a3b4210e2448339bc7015aaa79bfe4fa256384f4102db86ef94cbbc4c",
 "Name": "~internal~ecs~pause",
 "DockerName": "ecs-nginx-5-internalecspause-acc699c0cbf2d6d11700",
 "Image": "amazon/amazon-ecs-pause:0.1.0",
 "ImageID": "",
 "Labels": {
 "com.amazonaws.ecs.cluster": "default",
 "com.amazonaws.ecs.container-name": "~internal~ecs~pause",
 "com.amazonaws.ecs.task-arn": "arn:aws:ecs:us-
east-2:012345678910:task/9781c248-0edd-4cdb-9a93-f63cb662a5d3",
 "com.amazonaws.ecs.task-definition-family": "nginx",
 "com.amazonaws.ecs.task-definition-version": "5"
 },
 "DesiredStatus": "RESOURCES_PROVISIONED",
 "KnownStatus": "RESOURCES_PROVISIONED",
 "Limits": {
 "CPU": 0,
 "Memory": 0
 },
 "CreatedAt": "2018-02-01T20:55:08.366329616Z",
 "StartedAt": "2018-02-01T20:55:09.058354915Z",
 "Type": "CNI_PAUSE",
 "Networks": [
 {
 "NetworkMode": "awsvpc",
 "IPv4Addresses": [
 "10.0.2.106"
]
 }
]
 },
 {
 "DockerId": "43481a6ce4842eec8fe72fc28500c6b52edcc0917f105b83379f88cac1ff3946",
 "Name": "nginx-curl",
 "DockerName": "ecs-nginx-5-nginx-curl-ccccb9f49db0dfe0d901",
 "Image": "nrdlngr/nginx-curl",
 "ImageID":
 "sha256:2e00ae64383cfc865ba0a2ba37f61b50a120d2d9378559dcd458dc0de47bc165",
 "Labels": {
 "com.amazonaws.ecs.cluster": "default",
 "com.amazonaws.ecs.container-name": "nginx-curl",

Fargate task metadata endpoint v3 1146

Amazon Elastic Container Service Developer Guide

 "com.amazonaws.ecs.task-arn": "arn:aws:ecs:us-
east-2:012345678910:task/9781c248-0edd-4cdb-9a93-f63cb662a5d3",
 "com.amazonaws.ecs.task-definition-family": "nginx",
 "com.amazonaws.ecs.task-definition-version": "5"
 },
 "DesiredStatus": "RUNNING",
 "KnownStatus": "RUNNING",
 "Limits": {
 "CPU": 512,
 "Memory": 512
 },
 "CreatedAt": "2018-02-01T20:55:10.554941919Z",
 "StartedAt": "2018-02-01T20:55:11.064236631Z",
 "Type": "NORMAL",
 "Networks": [
 {
 "NetworkMode": "awsvpc",
 "IPv4Addresses": [
 "10.0.2.106"
]
 }
]
 }
],
 "PullStartedAt": "2018-02-01T20:55:09.372495529Z",
 "PullStoppedAt": "2018-02-01T20:55:10.552018345Z",
 "AvailabilityZone": "us-east-2b"
}

Container introspection

The Amazon ECS container agent provides an API operation for gathering details about the
container instance on which the agent is running and the associated tasks running on that instance.
You can use the curl command from within the container instance to query the Amazon ECS
container agent (port 51678) and return container instance metadata or task information.

Important

Your container instance must have an IAM role that allows access to Amazon ECS in order
to retrieve the metadata. For more information, see Amazon ECS container instance IAM
role.

Container introspection 1147

Amazon Elastic Container Service Developer Guide

To view container instance metadata, log in to your container instance via SSH and run the
following command. Metadata includes the container instance ID, the Amazon ECS cluster in which
the container instance is registered, and the Amazon ECS container agent version information.

curl -s http://localhost:51678/v1/metadata | python -mjson.tool

Output:

{
 "Cluster": "cluster_name",
 "ContainerInstanceArn": "arn:aws:ecs:region:aws_account_id:container-
instance/cluster_name/container_instance_id",
 "Version": "Amazon ECS Agent - v1.30.0 (02ff320c)"
}

To view information about all of the tasks that are running on a container instance, log in to your
container instance via SSH and run the following command:

curl http://localhost:51678/v1/tasks

Output:

{
 "Tasks": [
 {
 "Arn": "arn:aws:ecs:us-west-2:012345678910:task/default/example5-58ff-46c9-
ae05-543f8example",
 "DesiredStatus": "RUNNING",
 "KnownStatus": "RUNNING",
 "Family": "hello_world",
 "Version": "8",
 "Containers": [
 {
 "DockerId":
 "9581a69a761a557fbfce1d0f6745e4af5b9dbfb86b6b2c5c4df156f1a5932ff1",
 "DockerName": "ecs-hello_world-8-mysql-fcae8ac8f9f1d89d8301",
 "Name": "mysql",
 "CreatedAt": "2023-10-08T20:09:11.44527186Z",
 "StartedAt": "2023-10-08T20:09:11.44527186Z",
 "ImageID":
 "sha256:2ae34abc2ed0a22e280d17e13f9c01aaf725688b09b7a1525d1a2750e2c0d1de"

Container introspection 1148

Amazon Elastic Container Service Developer Guide

 },
 {
 "DockerId":
 "bf25c5c5b2d4dba68846c7236e75b6915e1e778d31611e3c6a06831e39814a15",
 "DockerName": "ecs-hello_world-8-wordpress-e8bfddf9b488dff36c00",
 "Name": "wordpress"
 }
]
}
]
}

You can view information for a particular task that is running on a container instance. To specify a
specific task or container, append one of the following to the request:

• The task ARN (?taskarn=task_arn)

• The Docker ID for a container (?dockerid=docker_id)

To get task information with a container's Docker ID, log in to your container instance via SSH and
run the following command.

Note

Amazon ECS container agents before version 1.14.2 require full Docker container IDs for
the introspection API, not the short version that is shown with docker ps. You can get
the full Docker ID for a container by running the docker ps --no-trunc command on the
container instance.

curl http://localhost:51678/v1/tasks?dockerid=79c796ed2a7f

Output:

{
 "Arn": "arn:aws:ecs:us-west-2:012345678910:task/default/e01d58a8-151b-40e8-
bc01-22647b9ecfec",
 "Containers": [
 {

Container introspection 1149

Amazon Elastic Container Service Developer Guide

 "DockerId":
 "79c796ed2a7f864f485c76f83f3165488097279d296a7c05bd5201a1c69b2920",
 "DockerName": "ecs-nginx-efs-2-nginx-9ac0808dd0afa495f001",
 "Name": "nginx",
 "CreatedAt": "2023-10-08T20:09:11.44527186Z",
 "StartedAt": "2023-10-08T20:09:11.44527186Z",
 "ImageID":
 "sha256:2ae34abc2ed0a22e280d17e13f9c01aaf725688b09b7a1525d1a2750e2c0d1de"
 }
],
 "DesiredStatus": "RUNNING",
 "Family": "nginx-efs",
 "KnownStatus": "RUNNING",
 "Version": "2"
}

Container introspection 1150

Amazon Elastic Container Service Developer Guide

AWS services integrated with Amazon ECS

Amazon ECS works with other AWS services to provide additional solutions for your business
challenges. This topic identifies services that either use Amazon ECS to add functionality, or
services that Amazon ECS uses to perform tasks.

Contents

• Using Amazon ECR with Amazon ECS

• AWS Deep Learning Containers on Amazon ECS

• Using AWS User Notifications with Amazon ECS

Using Amazon ECR with Amazon ECS

Amazon ECR is a managed AWS Docker registry service. Customers can use the familiar Docker CLI
to push, pull, and manage images. Amazon ECR provides a secure, scalable, and reliable registry.
Amazon ECR supports private Docker repositories with resource-based permissions using AWS IAM
so that specific users or Amazon EC2 instances can access repositories and images. Developers can
use the Docker CLI to author and manage images.

For more information on how to create repositories, push and pull images from Amazon ECR, and
set access controls on your repositories, see the Amazon Elastic Container Registry User Guide.

Using Amazon ECR Images with Amazon ECS

You can use your ECR images with Amazon ECS, but you need to satisfy the following prerequisites.

• Your container instances must be using at least version 1.7.0 of the Amazon ECS container agent.
The latest version of the Amazon ECS–optimized AMI supports ECR images in task definitions.
For more information, including the latest Amazon ECS–optimized AMI IDs, see Amazon ECS
Container Agent Versions in the Amazon Elastic Container Service Developer Guide.

• The Amazon ECS container instance role (ecsInstanceRole) that you use with your container
instances must possess the following IAM policy permissions for Amazon ECR.

{
 "Version": "2012-10-17",
 "Statement": [

Using Amazon ECR with Amazon ECS 1151

https://docs.aws.amazon.com/AmazonECR/latest/userguide/
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/manage-linux.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/manage-linux.html

Amazon Elastic Container Service Developer Guide

 {
 "Effect": "Allow",
 "Action": [
 "ecr:BatchCheckLayerAvailability",
 "ecr:BatchGetImage",
 "ecr:GetDownloadUrlForLayer",
 "ecr:GetAuthorizationToken"
],
 "Resource": "*"
 }
]
}

If you use the AmazonEC2ContainerServiceforEC2Role managed policy for your container
instances, then your role has the proper permissions. To check that your role supports Amazon
ECR, see Amazon ECS Container Instance IAM Role in the Amazon Elastic Container Service
Developer Guide.

• In your ECS task definitions, make sure that you are using the full
registry/repository:tag naming for your ECR images. For example,
aws_account_id.dkr.ecr.region.amazonaws.com/my-web-app:latest.

AWS Deep Learning Containers on Amazon ECS

AWS Deep Learning Containers provide a set of Docker images for training and serving models
in TensorFlow and Apache MXNet (Incubating) on Amazon ECS. Deep Learning Containers enable
optimized environments with TensorFlow, NVIDIA CUDA (for GPU instances), and Intel MKL (for
CPU instances) libraries. Container images for Deep Learning Containers are available in Amazon
ECR to reference in Amazon ECS task definitions. You can use Deep Learning Containers along with
Amazon Elastic Inference to lower your inference costs.

To get started using Deep Learning Containers without Elastic Inference on Amazon ECS, see Deep
Learning Containers on Amazon ECS in the AWS Deep Learning AMI Developer Guide.

Deep Learning Containers with Elastic Inference on Amazon ECS

Note

Starting April 15, 2023, AWS will not onboard new customers to Amazon Elastic Inference
(EI), and will help current customers migrate their workloads to options that offer better

AWS Deep Learning Containers on Amazon ECS 1152

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/instance_IAM_role.html
https://docs.aws.amazon.com/dlami/latest/devguide/deep-learning-containers-ecs.html
https://docs.aws.amazon.com/dlami/latest/devguide/deep-learning-containers-ecs.html

Amazon Elastic Container Service Developer Guide

price and performance. After April 15, 2023, new customers will not be able to launch
instances with Amazon EI accelerators in Amazon SageMaker, Amazon ECS, or Amazon EC2.
However, customers who have used Amazon EI at least once during the past 30-day period
are considered current customers and will be able to continue using the service.

AWS Deep Learning Containers provide a set of Docker images for serving models in TensorFlow
and Apache MXNet (Incubating) that take advantage of Amazon Elastic Inference accelerators.
Amazon ECS provides task definition parameters to attach Elastic Inference accelerators to your
containers. When you specify an Elastic Inference accelerator type in your task definition, Amazon
ECS manages the lifecycle of, and configuration for, the accelerator. The Amazon ECS service-linked
role is required when using this feature. For more information about Elastic Inference accelerators,
see Amazon Elastic Inference Basics.

Important

Your Amazon ECS container instances require at least version 1.30.0 of the container
agent. For information about checking your agent version and updating to the latest
version, see Updating the Amazon ECS container agent.

To get started using Deep Learning Containers with Elastic Inference on Amazon ECS, see Deep
Learning Containers with Elastic Inference on Amazon ECS in the Amazon Elastic Inference
Developer Guide.

Using AWS User Notifications with Amazon ECS

You can use AWS User Notifications to set up delivery channels to get notified about Amazon
ECS events. You receive a notification when an event matches a rule that you specify. You can
receive notifications for events through multiple channels, including email, AWS Chatbot chat
notifications, or AWS Console Mobile Application push notifications. You can also see notifications
in the Console Notifications Center. User Notifications supports aggregation, which can reduce the
number of notifications you receive during specific events.

Example

The following event pattern matches a task state change on the cluster named default.

Using AWS User Notifications with Amazon ECS 1153

https://docs.aws.amazon.com/elastic-inference/latest/developerguide/basics.html
https://docs.aws.amazon.com/elastic-inference/latest/developerguide/ei-dlc-ecs.html
https://docs.aws.amazon.com/elastic-inference/latest/developerguide/ei-dlc-ecs.html
https://docs.aws.amazon.com/notifications/latest/userguide/what-is.html
https://docs.aws.amazon.com/chatbot/latest/adminguide/what-is.html
https://docs.aws.amazon.com/consolemobileapp/latest/userguide/what-is-consolemobileapp.html
https://console.aws.amazon.com/notifications/

Amazon Elastic Container Service Developer Guide

{
 "source": ["aws.ecs"],
 "detail-type": ["ECS Task State Change"]
 "detail": {
 "clusterArn": [
 "default"
]
 }
}

Example 1154

Amazon Elastic Container Service Developer Guide

Tutorials for Amazon ECS

The following tutorials show you how to perform common tasks when using Amazon ECS.

Topics

• Using Windows containers on AWS Fargate

• Creating a cluster with a Fargate Linux task using the AWS CLI

• Creating a cluster with a Fargate Windows task using the AWS CLI

• Creating a cluster with an EC2 task using the AWS CLI

• Using cluster auto scaling with the AWS Management Console and the Amazon ECS console

• Specifying Sensitive Data Using Secrets Manager Secrets

• Creating a service using Service Discovery

• Creating a service using a blue/green deployment

• Listening for Amazon ECS CloudWatch Events

• Sending Amazon Simple Notification Service alerts for task stopped events

• Concatenate multiline or stack-trace log messages

• Using Amazon EFS file systems with Amazon ECS using the console

• Using FSx for Windows File Server file systems with Amazon ECS

• Deploying Fluent Bit on Amazon ECS for Windows containers

• Using gMSAs for Windows Containers on Amazon EC2

• Using Windows Containers with Domainless gMSA using the AWS CLI

• Using gMSA for Linux Containers on Amazon EC2

• Using gMSA for Linux containers on Fargate

• Using EC2 Image Builder to build customized Amazon ECS-optimized AMIs

Using Windows containers on AWS Fargate

Get started with Amazon ECS on AWS Fargate by using the Fargate launch type for your tasks in
the Regions where Amazon ECS supports AWS Fargate.

Complete the following steps to get started with Amazon ECS on AWS Fargate.

Using Windows containers on AWS Fargate 1155

Amazon Elastic Container Service Developer Guide

Prerequisites

Before you begin, complete the steps in Set up to use Amazon ECS and that your AWS user has the
permissions specified in the AdministratorAccess IAM policy example.

The console attempts to automatically create the task execution IAM role, which is required for
Fargate tasks. To ensure that the console is able to create this IAM role, one of the following must
be true:

• Your user has administrator access. For more information, see Set up to use Amazon ECS.

• Your user has the IAM permissions to create a service role. For more information, see Creating a
Role to Delegate Permissions to an AWS Service.

• A user with administrator access has manually created the task execution role so that it is
available on the account to be used. For more information, see Amazon ECS task execution IAM
role.

Important

The security group you select when creating a service with your task definition must have
port 80 open for inbound traffic. Add the following inbound rule to your security group. For
information about how to create a security group, see Add rules to your security group in
the Amazon EC2 User Guide for Linux Instances.

• Type: HTTP

• Protocol: TCP

• Port range: 80

• Source: Anywhere (0.0.0.0/0)

Step 1: Create a cluster

You can create a new cluster called windows that uses the default VPC.

To create a cluster with the AWS Management Console

1. Open the console at https://console.aws.amazon.com/ecs/v2.

2. From the navigation bar, select the Region to use.

Prerequisites 1156

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/working-with-security-groups.html#adding-security-group-rule
https://console.aws.amazon.com/ecs/v2

Amazon Elastic Container Service Developer Guide

3. In the navigation pane, choose Clusters.

4. On the Clusters page, choose Create cluster.

5. Under Cluster configuration, for Cluster name, enter windows.

6. (Optional) To turn on Container Insights, expand Monitoring, and then turn on Use Container
Insights.

7. (Optional) To help identify your cluster, expand Tags, and then configure your tags.

[Add a tag] Choose Add tag and do the following:

• For Key, enter the key name.

• For Value, enter the key value.

[Remove a tag] Choose Remove to the right of the tag’s Key and Value.

8. Choose Create.

Step 2: Register a Windows task definition

Before you can run Windows containers in your Amazon ECS cluster, you must register a task
definition. The following task definition example displays a simple webpage on port 8080 of a
container instance with the mcr.microsoft.com/windows/servercore/iis container image.

To register the sample task definition with the AWS Management Console

1. In the navigation pane, choose Task definitions.

2. Choose Create new task definition, Create new task definition with JSON.

3. Copy and paste the following example task definition into the box and then choose Save.

{
 "containerDefinitions": [
 {
 "command": ["New-Item -Path C:\\inetpub\\wwwroot\\index.html
 -Type file -Value '<html> <head> <title>Amazon ECS Sample App</title>
 <style>body {margin-top: 40px; background-color: #333;} </style> </head><body>
 <div style=color:white;text-align:center> <h1>Amazon ECS Sample App</h1>
 <h2>Congratulations!</h2> <p>Your application is now running on a container in
 Amazon ECS.</p>'; C:\\ServiceMonitor.exe w3svc"],
 "entryPoint": [

Step 2: Register a Windows task definition 1157

Amazon Elastic Container Service Developer Guide

 "powershell",
 "-Command"
],
 "essential": true,
 "cpu": 2048,
 "memory": 4096,
 "image": "mcr.microsoft.com/windows/servercore/iis:windowsservercore-
ltsc2019",
 "name": "sample_windows_app",
 "portMappings": [
 {
 "hostPort": 80,
 "containerPort": 80,
 "protocol": "tcp"
 }
]
 }
],
 "memory": "4096",
 "cpu": "2048",
 "networkMode": "awsvpc",
 "family": "windows-simple-iis-2019-core",
 "executionRoleArn": "arn:aws:iam::012345678910:role/ecsTaskExecutionRole",
 "runtimePlatform": {"operatingSystemFamily": "WINDOWS_SERVER_2019_CORE"},
 "requiresCompatibilities": ["FARGATE"]
}

4. Verify your information and choose Create.

Step 3: Create a service with your task definition

After you have registered your task definition, you can place tasks in your cluster with it. The
following procedure creates a service with your task definition and places one task in your cluster.

To create a service from your task definition with the console

1. In the navigation pane, choose Clusters, and then select the cluster you created in Step 1:
Create a cluster.

2. From the Services tab, choose Create.

3. Under Deployment configuration, specify how your application is deployed.

Step 3: Create a service with your task definition 1158

Amazon Elastic Container Service Developer Guide

a. For Task definition, choose the task definition you created in Step 2: Register a Windows
task definition.

b. For Service name, enter a name for your service.

c. For Desired tasks, enter 1.

4. Under Networking, you can create a security group or choose an existing group. Ensure that
the security group you use has the inbound rule listed under Prerequisites.

5. Choose Create.

Step 4: View your service

After your service has launched a task into your cluster, you can view the service and open the IIS
test page in a browser to verify that the container is running.

Note

It can take up to 15 minutes for your container instance to download and extract the
Windows container base layers.

To view your service

1. Open the console at https://console.aws.amazon.com/ecs/v2.

2. In the navigation pane, choose Clusters.

3. Choose the cluster where you ran the service.

4. In the Services tab, under Service name, choose the service you created in Step 3: Create a
service with your task definition.

5. Choose the Tasks tab, and then choose the task in your service.

6. On the task page, in the Configuration section, under Public IP, choose Open address.

Step 5: Clean Up

When you are finished using an Amazon ECS cluster, you should clean up the resources associated
with it to avoid incurring charges for resources that you are not using.

Step 4: View your service 1159

https://console.aws.amazon.com/ecs/v2

Amazon Elastic Container Service Developer Guide

Some Amazon ECS resources, such as tasks, services, clusters, and container instances, are cleaned
up using the Amazon ECS console. Other resources, such as Amazon EC2 instances, Elastic Load
Balancing load balancers, and Auto Scaling groups, must be cleaned up manually in the Amazon
EC2 console or by deleting the AWS CloudFormation stack that created them.

1. In the navigation pane, choose Clusters.

2. On the Clusters page, select the cluster you created for this tutorial.

3. Choose the Services tab.

4. Select the service, and then choose Delete.

5. At the confirmation prompt, enter delete and then choose Delete.

Wait until the service is deleted.

6. Choose Delete Cluster. At the confirmation prompt, enter delete cluster-name, and then
choose Delete. Deleting the cluster cleans up the associated resources that were created with
the cluster, including Auto Scaling groups, VPCs, or load balancers.

Creating a cluster with a Fargate Linux task using the AWS CLI

The following steps help you set up a cluster, register a task definition, run a Linux task, and
perform other common scenarios in Amazon ECS with the AWS CLI. Ensure that you are using the
latest version of the AWS CLI. For more information on how to upgrade to the latest version, see
Installing the AWS Command Line Interface.

Topics

• Prerequisites

• Step 1: Create a Cluster

• Step 2: Register a Linux Task Definition

• Step 3: List Task Definitions

• Step 4: Create a Service

• Step 5: List Services

• Step 6: Describe the Running Service

• Step 7: Test

• Step 8: Clean Up

Creating a cluster with a Fargate Linux task using the AWS CLI 1160

https://docs.aws.amazon.com/cli/latest/userguide/install-cliv2.html

Amazon Elastic Container Service Developer Guide

Prerequisites

This tutorial assumes that the following prerequisites have been completed.

• The latest version of the AWS CLI is installed and configured. For more information about
installing or upgrading your AWS CLI, see Installing the AWS Command Line Interface.

• The steps in Set up to use Amazon ECS have been completed.

• Your AWS user has the required permissions specified in the AmazonECS_FullAccess IAM policy
example.

• You have a VPC and security group created to use. This tutorial uses a container image hosted
on Amazon ECR Public so your task must have internet access. To give your task a route to the
internet, use one of the following options.

• Use a private subnet with a NAT gateway that has an elastic IP address.

• Use a public subnet and assign a public IP address to the task.

For more information, see the section called “Create a virtual private cloud”.

For information about security groups and rules, see, Default security groups for your VPCs and
Example rules in the Amazon Virtual Private Cloud User Guide.

• If you follow this tutorial using a private subnet, you can use Amazon ECS Exec to directly
interact with your container and test the deployment. You will need to create a task IAM role
to use ECS Exec. For more information on the task IAM role and other prerequisites, see Using
Amazon ECS Exec for debugging.

• (Optional) AWS CloudShell is a tool that gives customers a command line without needing to
create their own EC2 instance. For more information, see What is AWS CloudShell? in the AWS
CloudShell User Guide.

Step 1: Create a Cluster

By default, your account receives a default cluster.

Note

The benefit of using the default cluster that is provided for you is that you don't have to
specify the --cluster cluster_name option in the subsequent commands. If you do

Prerequisites 1161

https://docs.aws.amazon.com/cli/latest/userguide/install-cliv2.html
https://docs.aws.amazon.com/vpc/latest/userguide/VPC_SecurityGroups.html#DefaultSecurityGroup
https://docs.aws.amazon.com/vpc/latest/userguide/VPC_SecurityGroups.html#security-group-rule-examples
https://docs.aws.amazon.com/AmazonECS/latest/userguide/ecs-exec.html
https://docs.aws.amazon.com/AmazonECS/latest/userguide/ecs-exec.html
https://docs.aws.amazon.com/cloudshell/latest/userguide/welcome.html

Amazon Elastic Container Service Developer Guide

create your own, non-default, cluster, you must specify --cluster cluster_name for
each command that you intend to use with that cluster.

Create your own cluster with a unique name with the following command:

aws ecs create-cluster --cluster-name fargate-cluster

Output:

{
 "cluster": {
 "status": "ACTIVE",
 "defaultCapacityProviderStrategy": [],
 "statistics": [],
 "capacityProviders": [],
 "tags": [],
 "clusterName": "fargate-cluster",
 "settings": [
 {
 "name": "containerInsights",
 "value": "disabled"
 }
],
 "registeredContainerInstancesCount": 0,
 "pendingTasksCount": 0,
 "runningTasksCount": 0,
 "activeServicesCount": 0,
 "clusterArn": "arn:aws:ecs:region:aws_account_id:cluster/fargate-cluster"
 }
}

Step 2: Register a Linux Task Definition

Before you can run a task on your ECS cluster, you must register a task definition. Task definitions
are lists of containers grouped together. The following example is a simple task definition
that creates a PHP web app using the httpd container image hosted on Docker Hub. For more
information about the available task definition parameters, see Amazon ECS task definitions. For
this tutorial, the taskRoleArn is only needed if you are deploying the task in a private subnet and
wish to test the deployment. Replace the taskRoleArn with the IAM task role you created to use
ECS Exec as mentioned in Prerequisites.

Step 2: Register a Linux Task Definition 1162

Amazon Elastic Container Service Developer Guide

 {
 "family": "sample-fargate",
 "networkMode": "awsvpc",
 "taskRoleArn": "arn:aws:iam::aws_account_id:role/execCommandRole",
 "containerDefinitions": [
 {
 "name": "fargate-app",
 "image": "public.ecr.aws/docker/library/httpd:latest",
 "portMappings": [
 {
 "containerPort": 80,
 "hostPort": 80,
 "protocol": "tcp"
 }
],
 "essential": true,
 "entryPoint": [
 "sh",
 "-c"
],
 "command": [
 "/bin/sh -c \"echo '<html> <head> <title>Amazon ECS Sample
 App</title> <style>body {margin-top: 40px; background-color: #333;} </style> </
head><body> <div style=color:white;text-align:center> <h1>Amazon ECS Sample App</h1>
 <h2>Congratulations!</h2> <p>Your application is now running on a container in Amazon
 ECS.</p> </div></body></html>' > /usr/local/apache2/htdocs/index.html && httpd-
foreground\""
]
 }
],
 "requiresCompatibilities": [
 "FARGATE"
],
 "cpu": "256",
 "memory": "512"
}

Save the task definition JSON as a file and pass it with the --cli-input-json
file://path_to_file.json option.

To use a JSON file for container definitions:

Step 2: Register a Linux Task Definition 1163

Amazon Elastic Container Service Developer Guide

aws ecs register-task-definition --cli-input-json file://$HOME/tasks/fargate-task.json

The register-task-definition command returns a description of the task definition after it
completes its registration.

Step 3: List Task Definitions

You can list the task definitions for your account at any time with the list-task-definitions
command. The output of this command shows the family and revision values that you can use
together when calling run-task or start-task.

aws ecs list-task-definitions

Output:

{
 "taskDefinitionArns": [
 "arn:aws:ecs:region:aws_account_id:task-definition/sample-fargate:1"
]
}

Step 4: Create a Service

After you have registered a task for your account, you can create a service for the registered task in
your cluster. For this example, you create a service with one instance of the sample-fargate:1
task definition running in your cluster. The task requires a route to the internet, so there are two
ways you can achieve this. One way is to use a private subnet configured with a NAT gateway with
an elastic IP address in a public subnet. Another way is to use a public subnet and assign a public IP
address to your task. We provide both examples below.

Example using a private subnet. The enable-execute-command option is needed to use
Amazon ECS Exec.

aws ecs create-service --cluster fargate-cluster --service-name fargate-service --
task-definition sample-fargate:1 --desired-count 1 --launch-type "FARGATE" --network-
configuration "awsvpcConfiguration={subnets=[subnet-abcd1234],securityGroups=[sg-
abcd1234]}" --enable-execute-command

Example using a public subnet.

Step 3: List Task Definitions 1164

Amazon Elastic Container Service Developer Guide

aws ecs create-service --cluster fargate-cluster --service-name fargate-service --
task-definition sample-fargate:1 --desired-count 1 --launch-type "FARGATE" --network-
configuration "awsvpcConfiguration={subnets=[subnet-abcd1234],securityGroups=[sg-
abcd1234],assignPublicIp=ENABLED}"

The create-service command returns a description of the task definition after it completes its
registration.

Step 5: List Services

List the services for your cluster. You should see the service that you created in the previous
section. You can take the service name or the full ARN that is returned from this command and use
it to describe the service later.

aws ecs list-services --cluster fargate-cluster

Output:

{
 "serviceArns": [
 "arn:aws:ecs:region:aws_account_id:service/fargate-cluster/fargate-service"
]
}

Step 6: Describe the Running Service

Describe the service using the service name retrieved earlier to get more information about the
task.

aws ecs describe-services --cluster fargate-cluster --services fargate-service

If successful, this will return a description of the service failures and services. For example, in
the services section, you will find information on deployments, such as the status of the
tasks as running or pending. You may also find information on the task definition, the network
configuration and time-stamped events. In the failures section, you will find information on
failures, if any, associated with the call. For troubleshooting, see Service Event Messages. For more
information about the service description, see Describe Services.

{

Step 5: List Services 1165

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/service-event-messages.html
https://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_DescribeServices

Amazon Elastic Container Service Developer Guide

 "services": [
 {
 "networkConfiguration": {
 "awsvpcConfiguration": {
 "subnets": [
 "subnet-abcd1234"
],
 "securityGroups": [
 "sg-abcd1234"
],
 "assignPublicIp": "ENABLED"
 }
 },
 "launchType": "FARGATE",
 "enableECSManagedTags": false,
 "loadBalancers": [],
 "deploymentController": {
 "type": "ECS"
 },
 "desiredCount": 1,
 "clusterArn": "arn:aws:ecs:region:aws_account_id:cluster/fargate-cluster",
 "serviceArn": "arn:aws:ecs:region:aws_account_id:service/fargate-service",
 "deploymentConfiguration": {
 "maximumPercent": 200,
 "minimumHealthyPercent": 100
 },
 "createdAt": 1692283199.771,
 "schedulingStrategy": "REPLICA",
 "placementConstraints": [],
 "deployments": [
 {
 "status": "PRIMARY",
 "networkConfiguration": {
 "awsvpcConfiguration": {
 "subnets": [
 "subnet-abcd1234"
],
 "securityGroups": [
 "sg-abcd1234"
],
 "assignPublicIp": "ENABLED"
 }
 },
 "pendingCount": 0,

Step 6: Describe the Running Service 1166

Amazon Elastic Container Service Developer Guide

 "launchType": "FARGATE",
 "createdAt": 1692283199.771,
 "desiredCount": 1,
 "taskDefinition": "arn:aws:ecs:region:aws_account_id:task-
definition/sample-fargate:1",
 "updatedAt": 1692283199.771,
 "platformVersion": "1.4.0",
 "id": "ecs-svc/9223370526043414679",
 "runningCount": 0
 }
],
 "serviceName": "fargate-service",
 "events": [
 {
 "message": "(service fargate-service) has started 2 tasks: (task
 53c0de40-ea3b-489f-a352-623bf1235f08) (task d0aec985-901b-488f-9fb4-61b991b332a3).",
 "id": "92b8443e-67fb-4886-880c-07e73383ea83",
 "createdAt": 1510811841.408
 },
 {
 "message": "(service fargate-service) has started 2 tasks: (task
 b4911bee-7203-4113-99d4-e89ba457c626) (task cc5853e3-6e2d-4678-8312-74f8a7d76474).",
 "id": "d85c6ec6-a693-43b3-904a-a997e1fc844d",
 "createdAt": 1510811601.938
 },
 {
 "message": "(service fargate-service) has started 2 tasks: (task
 cba86182-52bf-42d7-9df8-b744699e6cfc) (task f4c1ad74-a5c6-4620-90cf-2aff118df5fc).",
 "id": "095703e1-0ca3-4379-a7c8-c0f1b8b95ace",
 "createdAt": 1510811364.691
 }
],
 "runningCount": 0,
 "status": "ACTIVE",
 "serviceRegistries": [],
 "pendingCount": 0,
 "createdBy": "arn:aws:iam::aws_account_id:user/user_name",
 "platformVersion": "LATEST",
 "placementStrategy": [],
 "propagateTags": "NONE",
 "roleArn": "arn:aws:iam::aws_account_id:role/aws-service-role/
ecs.amazonaws.com/AWSServiceRoleForECS",
 "taskDefinition": "arn:aws:ecs:region:aws_account_id:task-definition/
sample-fargate:1"

Step 6: Describe the Running Service 1167

Amazon Elastic Container Service Developer Guide

 }
],
 "failures": []
}

Step 7: Test

Testing task deployed using public subnet

Describe the task in the service so that you can get the Elastic Network Interface (ENI) for the task.

First, get the task ARN.

aws ecs list-tasks --cluster fargate-cluster --service fargate-service

The output contains the task ARN.

{
 "taskArns": [
 "arn:aws:ecs:us-east-1:123456789012:task/fargate-service/EXAMPLE
]
}

Describe the task and locate the ENI ID. Use the task ARN for the tasks parameter.

aws ecs describe-tasks --cluster fargate-cluster --tasks arn:aws:ecs:us-
east-1:123456789012:task/service/EXAMPLE

The attachment information is listed in the output.

{
 "tasks": [
 {
 "attachments": [
 {
 "id": "d9e7735a-16aa-4128-bc7a-b2d5115029e9",
 "type": "ElasticNetworkInterface",
 "status": "ATTACHED",
 "details": [
 {

Step 7: Test 1168

Amazon Elastic Container Service Developer Guide

 "name": "subnetId",
 "value": "subnetabcd1234"
 },
 {
 "name": "networkInterfaceId",
 "value": "eni-0fa40520aeEXAMPLE"
 },
]
 }
…
}

Describe the ENI to get the public IP address.

aws ec2 describe-network-interfaces --network-interface-id eni-0fa40520aeEXAMPLE

The public IP address is in the output.

{
 "NetworkInterfaces": [
 {
 "Association": {
 "IpOwnerId": "amazon",
 "PublicDnsName": "ec2-34-229-42-222.compute-1.amazonaws.com",
 "PublicIp": "198.51.100.2"
 },
…
}

Enter the public IP address in your web browser and you should see a webpage that displays the
Amazon ECS sample application.

Testing task deployed using private subnet

Describe the task and locate managedAgents to verify that the ExecuteCommandAgent is
running. Note the privateIPv4Address for later use.

aws ecs describe-tasks --cluster fargate-cluster --tasks arn:aws:ecs:us-
east-1:123456789012:task/fargate-service/EXAMPLE

The managed agent information is listed in the output.

Step 7: Test 1169

Amazon Elastic Container Service Developer Guide

{
 "tasks": [
 {
 "attachments": [
 {
 "id": "d9e7735a-16aa-4128-bc7a-b2d5115029e9",
 "type": "ElasticNetworkInterface",
 "status": "ATTACHED",
 "details": [
 {
 "name": "subnetId",
 "value": "subnetabcd1234"
 },
 {
 "name": "networkInterfaceId",
 "value": "eni-0fa40520aeEXAMPLE"
 },
 {
 "name": "privateIPv4Address",
 "value": "10.0.143.156"
 }
]
 }
],
 ...
 "containers": [
 {
 ...
 "managedAgents": [
 {
 "lastStartedAt": "2023-08-01T16:10:13.002000+00:00",
 "name": "ExecuteCommandAgent",
 "lastStatus": "RUNNING"
 }
],
 ...
 }

After verifying that the ExecuteCommandAgent is running, you can run the following command
to run an interactive shell on the container in the task.

 aws ecs execute-command --cluster fargate-cluster \
 --task arn:aws:ecs:us-east-1:123456789012:task/fargate-service/EXAMPLE \

Step 7: Test 1170

Amazon Elastic Container Service Developer Guide

 --container fargate-app \
 --interactive \
 --command "/bin/sh"

After the interactive shell is running, run the following commands to install cURL.

apt update

apt install curl

After installing cURL, run the following command using the private IP address you obtained earlier.

 curl 10.0.143.156

You should see the HTML equivalent of the Amazon ECS sample application webpage.

<html>
 <head>
 <title>Amazon ECS Sample App</title>
 <style>body {margin-top: 40px; background-color: #333;} </style>
 </head>
 <body>
 <div style=color:white;text-align:center>
 <h1>Amazon ECS Sample App</h1>
 <h2>Congratulations!</h2> <p>Your application is now running on a container in
 Amazon ECS.</p>
 </div>
 </body>
</html>

Step 8: Clean Up

When you are finished with this tutorial, you should clean up the associated resources to avoid
incurring charges for unused resources.

Delete the service.

aws ecs delete-service --cluster fargate-cluster --service fargate-service --force

Delete the cluster.

Step 8: Clean Up 1171

Amazon Elastic Container Service Developer Guide

aws ecs delete-cluster --cluster fargate-cluster

Creating a cluster with a Fargate Windows task using the AWS
CLI

The following steps help you set up a cluster, register a task definition, run a Windows task, and
perform other common scenarios in Amazon ECS with the AWS CLI. Ensure that you are using the
latest version of the AWS CLI. For more information on how to upgrade to the latest version, see
Installing the AWS Command Line Interface.

Topics

• Prerequisites

• Step 1: Create a Cluster

• Step 2: Register a Windows Task Definition

• Step 3: List task definitions

• Step 4: Create a service

• Step 5: List services

• Step 6: Describe the Running Service

• Step 7: Clean Up

Prerequisites

This tutorial assumes that the following prerequisites have been completed.

• The latest version of the AWS CLI is installed and configured. For more information about
installing or upgrading your AWS CLI, see Installing the AWS Command Line Interface.

• The steps in Set up to use Amazon ECS have been completed.

• Your AWS user has the required permissions specified in the AmazonECS_FullAccess IAM policy
example.

• You have a VPC and security group created to use. This tutorial uses a container image hosted on
Docker Hub so your task must have internet access. To give your task a route to the internet, use
one of the following options.

• Use a private subnet with a NAT gateway that has an elastic IP address.

Creating a cluster with a Fargate Windows task using the AWS CLI 1172

https://docs.aws.amazon.com/cli/latest/userguide/install-cliv2.html
https://docs.aws.amazon.com/cli/latest/userguide/install-cliv2.html

Amazon Elastic Container Service Developer Guide

• Use a public subnet and assign a public IP address to the task.

For more information, see the section called “Create a virtual private cloud”.

For information about security groups and rules, see, Default security groups for your VPCs and
Example rules in the Amazon Virtual Private Cloud User Guide.

• (Optional) AWS CloudShell is a tool that gives customers a command line without needing to
create their own EC2 instance. For more information, see What is AWS CloudShell? in the AWS
CloudShell User Guide.

Step 1: Create a Cluster

By default, your account receives a default cluster.

Note

The benefit of using the default cluster that is provided for you is that you don't have to
specify the --cluster cluster_name option in the subsequent commands. If you do
create your own, non-default, cluster, you must specify --cluster cluster_name for
each command that you intend to use with that cluster.

Create your own cluster with a unique name with the following command:

aws ecs create-cluster --cluster-name fargate-cluster

Output:

{
 "cluster": {
 "status": "ACTIVE",
 "statistics": [],
 "clusterName": "fargate-cluster",
 "registeredContainerInstancesCount": 0,
 "pendingTasksCount": 0,
 "runningTasksCount": 0,
 "activeServicesCount": 0,
 "clusterArn": "arn:aws:ecs:region:aws_account_id:cluster/fargate-cluster"
 }

Step 1: Create a Cluster 1173

https://docs.aws.amazon.com/vpc/latest/userguide/VPC_SecurityGroups.html#DefaultSecurityGroup
https://docs.aws.amazon.com/vpc/latest/userguide/VPC_SecurityGroups.html#security-group-rule-examples
https://docs.aws.amazon.com/cloudshell/latest/userguide/welcome.html

Amazon Elastic Container Service Developer Guide

}

Step 2: Register a Windows Task Definition

Before you can run a Windows task on your Amazon ECS cluster, you must register a task definition.
Task definitions are lists of containers grouped together. The following example is a simple
task definition that creates a web app. For more information about the available task definition
parameters, see Amazon ECS task definitions.

{
 "containerDefinitions": [
 {
 "command": ["New-Item -Path C:\\inetpub\\wwwroot\\index.html -Type file
 -Value '<html> <head> <title>Amazon ECS Sample App</title> <style>body {margin-top:
 40px; background-color: #333;} </style> </head><body> <div style=color:white;text-
align:center> <h1>Amazon ECS Sample App</h1> <h2>Congratulations!</h2> <p>Your
 application is now running on a container in Amazon ECS.</p>'; C:\\ServiceMonitor.exe
 w3svc"],
 "entryPoint": [
 "powershell",
 "-Command"
],
 "essential": true,
 "cpu": 2048,
 "memory": 4096,
 "image": "mcr.microsoft.com/windows/servercore/iis:windowsservercore-
ltsc2019",
 "name": "sample_windows_app",
 "portMappings": [
 {
 "hostPort": 80,
 "containerPort": 80,
 "protocol": "tcp"
 }
]
 }
],
 "memory": "4096",
 "cpu": "2048",
 "networkMode": "awsvpc",
 "family": "windows-simple-iis-2019-core",
 "executionRoleArn": "arn:aws:iam::012345678910:role/ecsTaskExecutionRole",
 "runtimePlatform": {"operatingSystemFamily": "WINDOWS_SERVER_2019_CORE"},

Step 2: Register a Windows Task Definition 1174

Amazon Elastic Container Service Developer Guide

 "requiresCompatibilities": ["FARGATE"]
}

The above example JSON can be passed to the AWS CLI in two ways: You can save the task
definition JSON as a file and pass it with the --cli-input-json file://path_to_file.json
option.

To use a JSON file for container definitions:

aws ecs register-task-definition --cli-input-json file://$HOME/tasks/fargate-task.json

The register-task-definition command returns a description of the task definition after it
completes its registration.

Step 3: List task definitions

You can list the task definitions for your account at any time with the list-task-definitions
command. The output of this command shows the family and revision values that you can use
together when calling run-task or start-task.

aws ecs list-task-definitions

Output:

{
 "taskDefinitionArns": [
 "arn:aws:ecs:region:aws_account_id:task-definition/sample-fargate-windows:1"
]
}

Step 4: Create a service

After you have registered a task for your account, you can create a service for the registered task in
your cluster. For this example, you create a service with one instance of the sample-fargate:1
task definition running in your cluster. The task requires a route to the internet, so there are two
ways you can achieve this. One way is to use a private subnet configured with a NAT gateway with
an elastic IP address in a public subnet. Another way is to use a public subnet and assign a public IP
address to your task. We provide both examples below.

Example using a private subnet.

Step 3: List task definitions 1175

Amazon Elastic Container Service Developer Guide

aws ecs create-service --cluster fargate-cluster --service-name fargate-service
 --task-definition sample-fargate-windows:1 --desired-count 1 --launch-type
 "FARGATE" --network-configuration "awsvpcConfiguration={subnets=[subnet-
abcd1234],securityGroups=[sg-abcd1234]}"

Example using a public subnet.

aws ecs create-service --cluster fargate-cluster --service-name fargate-service
 --task-definition sample-fargate-windows:1 --desired-count 1 --launch-type
 "FARGATE" --network-configuration "awsvpcConfiguration={subnets=[subnet-
abcd1234],securityGroups=[sg-abcd1234],assignPublicIp=ENABLED}"

The create-service command returns a description of the task definition after it completes its
registration.

Step 5: List services

List the services for your cluster. You should see the service that you created in the previous
section. You can take the service name or the full ARN that is returned from this command and use
it to describe the service later.

aws ecs list-services --cluster fargate-cluster

Output:

{
 "serviceArns": [
 "arn:aws:ecs:region:aws_account_id:service/fargate-service"
]
}

Step 6: Describe the Running Service

Describe the service using the service name retrieved earlier to get more information about the
task.

aws ecs describe-services --cluster fargate-cluster --services fargate-service

If successful, this will return a description of the service failures and services. For example,
in services section, you will find information on deployments, such as the status of the tasks

Step 5: List services 1176

Amazon Elastic Container Service Developer Guide

as running or pending. You may also find information on the task definition, the network
configuration and time-stamped events. In the failures section, you will find information on
failures, if any, associated with the call. For troubleshooting, see Service Event Messages. For more
information about the service description, see Describe Services.

{
 "services": [
 {
 "status": "ACTIVE",
 "taskDefinition": "arn:aws:ecs:region:aws_account_id:task-definition/
sample-fargate-windows:1",
 "pendingCount": 2,
 "launchType": "FARGATE",
 "loadBalancers": [],
 "roleArn": "arn:aws:iam::aws_account_id:role/aws-service-role/
ecs.amazonaws.com/AWSServiceRoleForECS",
 "placementConstraints": [],
 "createdAt": 1510811361.128,
 "desiredCount": 2,
 "networkConfiguration": {
 "awsvpcConfiguration": {
 "subnets": [
 "subnet-abcd1234"
],
 "securityGroups": [
 "sg-abcd1234"
],
 "assignPublicIp": "DISABLED"
 }
 },
 "platformVersion": "LATEST",
 "serviceName": "fargate-service",
 "clusterArn": "arn:aws:ecs:region:aws_account_id:cluster/fargate-cluster",
 "serviceArn": "arn:aws:ecs:region:aws_account_id:service/fargate-service",
 "deploymentConfiguration": {
 "maximumPercent": 200,
 "minimumHealthyPercent": 100
 },
 "deployments": [
 {
 "status": "PRIMARY",
 "networkConfiguration": {
 "awsvpcConfiguration": {

Step 6: Describe the Running Service 1177

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/service-event-messages.html
https://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_DescribeServices

Amazon Elastic Container Service Developer Guide

 "subnets": [
 "subnet-abcd1234"
],
 "securityGroups": [
 "sg-abcd1234"
],
 "assignPublicIp": "DISABLED"
 }
 },
 "pendingCount": 2,
 "launchType": "FARGATE",
 "createdAt": 1510811361.128,
 "desiredCount": 2,
 "taskDefinition": "arn:aws:ecs:region:aws_account_id:task-
definition/sample-fargate-windows:1",
 "updatedAt": 1510811361.128,
 "platformVersion": "0.0.1",
 "id": "ecs-svc/9223370526043414679",
 "runningCount": 0
 }
],
 "events": [
 {
 "message": "(service fargate-service) has started 2 tasks: (task
 53c0de40-ea3b-489f-a352-623bf1235f08) (task d0aec985-901b-488f-9fb4-61b991b332a3).",
 "id": "92b8443e-67fb-4886-880c-07e73383ea83",
 "createdAt": 1510811841.408
 },
 {
 "message": "(service fargate-service) has started 2 tasks: (task
 b4911bee-7203-4113-99d4-e89ba457c626) (task cc5853e3-6e2d-4678-8312-74f8a7d76474).",
 "id": "d85c6ec6-a693-43b3-904a-a997e1fc844d",
 "createdAt": 1510811601.938
 },
 {
 "message": "(service fargate-service) has started 2 tasks: (task
 cba86182-52bf-42d7-9df8-b744699e6cfc) (task f4c1ad74-a5c6-4620-90cf-2aff118df5fc).",
 "id": "095703e1-0ca3-4379-a7c8-c0f1b8b95ace",
 "createdAt": 1510811364.691
 }
],
 "runningCount": 0,
 "placementStrategy": []
 }

Step 6: Describe the Running Service 1178

Amazon Elastic Container Service Developer Guide

],
 "failures": []
}

Step 7: Clean Up

When you are finished with this tutorial, you should clean up the associated resources to avoid
incurring charges for unused resources.

Delete the service.

aws ecs delete-service --cluster fargate-cluster --service fargate-service --force

Delete the cluster.

aws ecs delete-cluster --cluster fargate-cluster

Creating a cluster with an EC2 task using the AWS CLI

The following steps help you set up a cluster, register a task definition, run a task, and perform
other common scenarios in Amazon ECS with the AWS CLI. Ensure that you are using the latest
version of the AWS CLI. For more information on how to upgrade to the latest version, see
Installing the AWS Command Line Interface.

Topics

• Prerequisites

• Step 1: Create a Cluster

• Step 2: Launch an Instance with the Amazon ECS AMI

• Step 3: List Container Instances

• Step 4: Describe your Container Instance

• Step 5: Register a Task Definition

• Step 6: List Task Definitions

• Step 7: Run a Task

• Step 8: List Tasks

• Step 9: Describe the Running Task

Step 7: Clean Up 1179

https://docs.aws.amazon.com/cli/latest/userguide/install-cliv2.html

Amazon Elastic Container Service Developer Guide

Prerequisites

This tutorial assumes that the following prerequisites have been completed:

• The latest version of the AWS CLI is installed and configured. For more information about
installing or upgrading your AWS CLI, see Installing the AWS Command Line Interface.

• The steps in Set up to use Amazon ECS have been completed.

• Your AWS user has the required permissions specified in the AmazonECS_FullAccess IAM policy
example.

• You have a VPC and security group created to use. For more information, see the section called
“Create a virtual private cloud”.

• (Optional) AWS CloudShell is a tool that gives customers a command line without needing to
create their own EC2 instance. For more information, see What is AWS CloudShell? in the AWS
CloudShell User Guide.

Step 1: Create a Cluster

By default, your account receives a default cluster when you launch your first container instance.

Note

The benefit of using the default cluster that is provided for you is that you don't have to
specify the --cluster cluster_name option in the subsequent commands. If you do
create your own, non-default, cluster, you must specify --cluster cluster_name for
each command that you intend to use with that cluster.

Create your own cluster with a unique name with the following command:

aws ecs create-cluster --cluster-name MyCluster

Output:

{
 "cluster": {
 "clusterName": "MyCluster",
 "status": "ACTIVE",
 "clusterArn": "arn:aws:ecs:region:aws_account_id:cluster/MyCluster"

Prerequisites 1180

https://docs.aws.amazon.com/cli/latest/userguide/install-cliv2.html
https://docs.aws.amazon.com/cloudshell/latest/userguide/welcome.html

Amazon Elastic Container Service Developer Guide

 }
}

Step 2: Launch an Instance with the Amazon ECS AMI

You must have an Amazon ECS container instance in your cluster before you can run tasks on it.
If you do not have any container instances in your cluster, see Launching an Amazon ECS Linux
container instance for more information.

Step 3: List Container Instances

Within a few minutes of launching your container instance, the Amazon ECS agent registers the
instance with your default cluster. You can list the container instances in a cluster by running the
following command:

aws ecs list-container-instances --cluster default

Output:

{
 "containerInstanceArns": [
 "arn:aws:ecs:us-east-1:aws_account_id:container-instance/container_instance_ID"
]
}

Step 4: Describe your Container Instance

After you have the ARN or ID of a container instance, you can use the describe-container-instances
command to get valuable information on the instance, such as remaining and registered CPU and
memory resources.

aws ecs describe-container-instances --cluster default --container-
instances container_instance_ID

Output:

{
 "failures": [],
 "containerInstances": [
 {

Step 2: Launch an Instance with the Amazon ECS AMI 1181

Amazon Elastic Container Service Developer Guide

 "status": "ACTIVE",
 "registeredResources": [
 {
 "integerValue": 1024,
 "longValue": 0,
 "type": "INTEGER",
 "name": "CPU",
 "doubleValue": 0.0
 },
 {
 "integerValue": 995,
 "longValue": 0,
 "type": "INTEGER",
 "name": "MEMORY",
 "doubleValue": 0.0
 },
 {
 "name": "PORTS",
 "longValue": 0,
 "doubleValue": 0.0,
 "stringSetValue": [
 "22",
 "2376",
 "2375",
 "51678"
],
 "type": "STRINGSET",
 "integerValue": 0
 },
 {
 "name": "PORTS_UDP",
 "longValue": 0,
 "doubleValue": 0.0,
 "stringSetValue": [],
 "type": "STRINGSET",
 "integerValue": 0
 }
],
 "ec2InstanceId": "instance_id",
 "agentConnected": true,
 "containerInstanceArn": "arn:aws:ecs:us-west-2:aws_account_id:container-
instance/container_instance_ID",
 "pendingTasksCount": 0,
 "remainingResources": [

Step 4: Describe your Container Instance 1182

Amazon Elastic Container Service Developer Guide

 {
 "integerValue": 1024,
 "longValue": 0,
 "type": "INTEGER",
 "name": "CPU",
 "doubleValue": 0.0
 },
 {
 "integerValue": 995,
 "longValue": 0,
 "type": "INTEGER",
 "name": "MEMORY",
 "doubleValue": 0.0
 },
 {
 "name": "PORTS",
 "longValue": 0,
 "doubleValue": 0.0,
 "stringSetValue": [
 "22",
 "2376",
 "2375",
 "51678"
],
 "type": "STRINGSET",
 "integerValue": 0
 },
 {
 "name": "PORTS_UDP",
 "longValue": 0,
 "doubleValue": 0.0,
 "stringSetValue": [],
 "type": "STRINGSET",
 "integerValue": 0
 }
],
 "runningTasksCount": 0,
 "attributes": [
 {
 "name": "com.amazonaws.ecs.capability.privileged-container"
 },
 {
 "name": "com.amazonaws.ecs.capability.docker-remote-api.1.17"
 },

Step 4: Describe your Container Instance 1183

Amazon Elastic Container Service Developer Guide

 {
 "name": "com.amazonaws.ecs.capability.docker-remote-api.1.18"
 },
 {
 "name": "com.amazonaws.ecs.capability.docker-remote-api.1.19"
 },
 {
 "name": "com.amazonaws.ecs.capability.logging-driver.json-file"
 },
 {
 "name": "com.amazonaws.ecs.capability.logging-driver.syslog"
 }
],
 "versionInfo": {
 "agentVersion": "1.5.0",
 "agentHash": "b197edd",
 "dockerVersion": "DockerVersion: 1.7.1"
 }
 }
]
}

You can also find the Amazon EC2 instance ID that you can use to monitor the instance in the
Amazon EC2 console or with the aws ec2 describe-instances --instance-id instance_id
command.

Step 5: Register a Task Definition

Before you can run a task on your ECS cluster, you must register a task definition. Task definitions
are lists of containers grouped together. The following example is a simple task definition that uses
a busybox image from Docker Hub and simply sleeps for 360 seconds. For more information about
the available task definition parameters, see Amazon ECS task definitions.

{
 "containerDefinitions": [
 {
 "name": "sleep",
 "image": "busybox",
 "cpu": 10,
 "command": [
 "sleep",
 "360"

Step 5: Register a Task Definition 1184

Amazon Elastic Container Service Developer Guide

],
 "memory": 10,
 "essential": true
 }
],
 "family": "sleep360"
}

The above example JSON can be passed to the AWS CLI in two ways: You can save the task
definition JSON as a file and pass it with the --cli-input-json file://path_to_file.json
option. Or, you can escape the quotation marks in the JSON and pass the JSON container
definitions on the command line as in the below example. If you choose to pass the container
definitions on the command line, your command additionally requires a --family parameter that
is used to keep multiple versions of your task definition associated with each other.

To use a JSON file for container definitions:

aws ecs register-task-definition --cli-input-json file://$HOME/tasks/sleep360.json

To use a JSON string for container definitions:

aws ecs register-task-definition --family sleep360 --container-definitions "[{\"name
\":\"sleep\",\"image\":\"busybox\",\"cpu\":10,\"command\":[\"sleep\",\"360\"],\"memory
\":10,\"essential\":true}]"

The register-task-definition returns a description of the task definition after it completes its
registration.

{
 "taskDefinition": {
 "volumes": [],
 "taskDefinitionArn": "arn:aws:ec2:us-east-1:aws_account_id:task-definition/
sleep360:1",
 "containerDefinitions": [
 {
 "environment": [],
 "name": "sleep",
 "mountPoints": [],
 "image": "busybox",
 "cpu": 10,
 "portMappings": [],

Step 5: Register a Task Definition 1185

Amazon Elastic Container Service Developer Guide

 "command": [
 "sleep",
 "360"
],
 "memory": 10,
 "essential": true,
 "volumesFrom": []
 }
],
 "family": "sleep360",
 "revision": 1
 }
}

Step 6: List Task Definitions

You can list the task definitions for your account at any time with the list-task-definitions
command. The output of this command shows the family and revision values that you can use
together when calling run-task or start-task.

aws ecs list-task-definitions

Output:

{
 "taskDefinitionArns": [
 "arn:aws:ec2:us-east-1:aws_account_id:task-definition/sleep300:1",
 "arn:aws:ec2:us-east-1:aws_account_id:task-definition/sleep300:2",
 "arn:aws:ec2:us-east-1:aws_account_id:task-definition/sleep360:1",
 "arn:aws:ec2:us-east-1:aws_account_id:task-definition/wordpress:3",
 "arn:aws:ec2:us-east-1:aws_account_id:task-definition/wordpress:4",
 "arn:aws:ec2:us-east-1:aws_account_id:task-definition/wordpress:5",
 "arn:aws:ec2:us-east-1:aws_account_id:task-definition/wordpress:6"
]
}

Step 7: Run a Task

After you have registered a task for your account and have launched a container instance that is
registered to your cluster, you can run the registered task in your cluster. For this example, you
place a single instance of the sleep360:1 task definition in your default cluster.

Step 6: List Task Definitions 1186

Amazon Elastic Container Service Developer Guide

aws ecs run-task --cluster default --task-definition sleep360:1 --count 1

Output:

{
 "tasks": [
 {
 "taskArn": "arn:aws:ecs:us-east-1:aws_account_id:task/task_ID",
 "overrides": {
 "containerOverrides": [
 {
 "name": "sleep"
 }
]
 },
 "lastStatus": "PENDING",
 "containerInstanceArn": "arn:aws:ecs:us-east-1:aws_account_id:container-
instance/container_instance_ID",
 "clusterArn": "arn:aws:ecs:us-east-1:aws_account_id:cluster/default",
 "desiredStatus": "RUNNING",
 "taskDefinitionArn": "arn:aws:ecs:us-east-1:aws_account_id:task-definition/
sleep360:1",
 "containers": [
 {
 "containerArn": "arn:aws:ecs:us-
east-1:aws_account_id:container/container_ID",
 "taskArn": "arn:aws:ecs:us-east-1:aws_account_id:task/task_ID",
 "lastStatus": "PENDING",
 "name": "sleep"
 }
]
 }
]
}

Step 8: List Tasks

List the tasks for your cluster. You should see the task that you ran in the previous section. You can
take the task ID or the full ARN that is returned from this command and use it to describe the task
later.

Step 8: List Tasks 1187

Amazon Elastic Container Service Developer Guide

aws ecs list-tasks --cluster default

Output:

{
 "taskArns": [
 "arn:aws:ecs:us-east-1:aws_account_id:task/task_ID"
]
}

Step 9: Describe the Running Task

Describe the task using the task ID retrieved earlier to get more information about the task.

aws ecs describe-tasks --cluster default --task task_ID

Output:

{
 "failures": [],
 "tasks": [
 {
 "taskArn": "arn:aws:ecs:us-east-1:aws_account_id:task/task_ID",
 "overrides": {
 "containerOverrides": [
 {
 "name": "sleep"
 }
]
 },
 "lastStatus": "RUNNING",
 "containerInstanceArn": "arn:aws:ecs:us-east-1:aws_account_id:container-
instance/container_instance_ID",
 "clusterArn": "arn:aws:ecs:us-east-1:aws_account_id:cluster/default",
 "desiredStatus": "RUNNING",
 "taskDefinitionArn": "arn:aws:ecs:us-east-1:aws_account_id:task-definition/
sleep360:1",
 "containers": [
 {
 "containerArn": "arn:aws:ecs:us-
east-1:aws_account_id:container/container_ID",

Step 9: Describe the Running Task 1188

Amazon Elastic Container Service Developer Guide

 "taskArn": "arn:aws:ecs:us-east-1:aws_account_id:task/task_ID",
 "lastStatus": "RUNNING",
 "name": "sleep",
 "networkBindings": []
 }
]
 }
]
}

Using cluster auto scaling with the AWS Management Console
and the Amazon ECS console

This tutorial walks you through creating the resources for cluster auto scaling using the AWS
Management Console. Where resources require a name, we will use the prefix ConsoleTutorial
to ensure they all have unique names and to make them easy to locate.

Topics

• Prerequisites

• Step 1: Create an Amazon ECS cluster

• Step 2: Register a task definition

• Step 3: Run a task

• Step 4: Verify

• Step 5: Clean up

Prerequisites

This tutorial assumes that the following prerequisites have been completed:

• The steps in Set up to use Amazon ECS have been completed.

• Your AWS user has the required permissions specified in the AmazonECS_FullAccess IAM policy
example.

• The Amazon ECS container instance IAM role is created. For more information, see Amazon ECS
container instance IAM role.

• The Amazon ECS service-linked IAM role is created. For more information, see Using service-
linked roles for Amazon ECS.

Using cluster auto scaling with the AWS Management Console and the Amazon ECS console 1189

Amazon Elastic Container Service Developer Guide

• The Auto Scaling service-linked IAM role is created. For more information, see Service-Linked
Roles for Amazon EC2 Auto Scaling in the Amazon EC2 Auto Scaling User Guide.

• You have a VPC and security group created to use. For more information, see the section called
“Create a virtual private cloud”.

Step 1: Create an Amazon ECS cluster

Use the following steps to create an Amazon ECS cluster.

Amazon ECS creates an Amazon EC2 Auto Scaling launch template and Auto Scaling group on your
behalf as part of the AWS CloudFormation stack.

1. Open the console at https://console.aws.amazon.com/ecs/v2.

2. In the navigation pane, choose Clusters, and then choose Create cluster.

3. Under Cluster configuration, for Cluster name, enter ConsoleTutorial-cluster.

4. Under Infrastructure, clear AWS Fargate (serverless), and then select Amazon EC2 instances.
Next, configure the Auto Scaling group which acts as the capacity provider.

• Under Auto Scaling group (ASG) . Select Create new ASG, and then provide the
following details about the group:

• For Operating system/Architecture, choose Amazon Linux 2.

• For EC2 instance type, choose t3.nano.

• For Capacity, enter the minimum number and the maximum number of instances to
launch in the Auto Scaling group.

5. (Optional) To manage the cluster tags, expand Tags, and then perform one of the following
operations:

[Add a tag] Choose Add tag and do the following:

• For Key, enter the key name.

• For Value, enter the key value.

[Remove a tag] Choose Remove to the right of the tag’s Key and Value.

6. Choose Create.

Step 1: Create an Amazon ECS cluster 1190

https://docs.aws.amazon.com/autoscaling/ec2/userguide/autoscaling-service-linked-role.html
https://docs.aws.amazon.com/autoscaling/ec2/userguide/autoscaling-service-linked-role.html
https://console.aws.amazon.com/ecs/v2

Amazon Elastic Container Service Developer Guide

Step 2: Register a task definition

Before you can run a task on your cluster, you must register a task definition. Task definitions are
lists of containers grouped together. The following example is a simple task definition that uses
an amazonlinux image from Docker Hub and simply sleeps. For more information about the
available task definition parameters, see Amazon ECS task definitions.

1. Open the console at https://console.aws.amazon.com/ecs/v2.

2. In the navigation pane, choose Task definitions.

3. Choose Create new task definition, Create new task definition with JSON.

4. In the JSON editor box, paste the following contents.

{
 "family": "ConsoleTutorial-taskdef",
 "containerDefinitions": [
 {
 "name": "sleep",
 "image": "amazonlinux:2",
 "memory": 20,
 "essential": true,
 "command": [
 "sh",
 "-c",
 "sleep infinity"
]
 }
],
 "requiresCompatibilities": [
 "EC2"
]
}

5. Choose Create.

Step 3: Run a task

After you have registered a task definition for your account, you can run a task in the cluster. For
this tutorial, you run five instances of the ConsoleTutorial-taskdef task definition in your
ConsoleTutorial-cluster cluster.

Step 2: Register a task definition 1191

https://console.aws.amazon.com/ecs/v2

Amazon Elastic Container Service Developer Guide

1. Open the console at https://console.aws.amazon.com/ecs/v2.

2. On the Clusters page, choose ConsoleTutorial-cluster.

3. Under Tasks, choose Run new task.

4. In the Environment section, under Compute options, choose Capacity provider strategy.

5. Under Deployment configuration, for Application type, choose Task.

6. Choose ConsoleTutorial-taskdef from the Family dropdown list.

7. Under Desired tasks, enter 5.

8. Choose Create.

Step 4: Verify

At this point in the tutorial, you should have a cluster with five tasks running and an Auto Scaling
group with a capacity provider. The capacity provider has Amazon ECS managed scaling enabled.

We can verify that everything is working properly by viewing the CloudWatch metrics, the Auto
Scaling group settings, and finally the Amazon ECS cluster task count.

To view the CloudWatch metrics for your cluster

1. Open the CloudWatch console at https://console.aws.amazon.com/cloudwatch/.

2. On the navigation bar at the top of the screen, select the Region.

3. On the navigation pane, under Metrics, choose All metrics.

4. On the All metrics page, under the Browse tab, choose AWS/ECS/ManagedScaling.

5. Choose CapacityProviderName, ClusterName.

6. Select the check box that corresponds to the ConsoleTutorial-cluster ClusterName.

7. Under the Graphed metrics tab, change Period to 30 seconds and Statistic to Maximum.

The value displayed in the graph shows the target capacity value for the capacity provider. It
should begin at 100, which was the target capacity percent we set. You should see it scale up
to 200, which will trigger an alarm for the target tracking scaling policy. The alarm will then
trigger the Auto Scaling group to scale out.

Use the following steps to view your Auto Scaling group details to confirm that the scale-out
action occurred.

Step 4: Verify 1192

https://console.aws.amazon.com/ecs/v2
https://console.aws.amazon.com/cloudwatch/

Amazon Elastic Container Service Developer Guide

To verify the Auto Scaling group scaled out

1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.

2. On the navigation bar at the top of the screen, select the Region.

3. On the navigation pane, under Auto Scaling, choose Auto Scaling Groups.

4. Choose the ConsoleTutorial-cluster Auto Scaling group created in this tutorial. View the
value under Desired capacity and view the instances under the Instance management tab to
confirm your group scaled out to two instances.

Use the following steps to view your Amazon ECS cluster to confirm that the Amazon EC2 instances
were registered with the cluster and your tasks transitioned to a RUNNING status.

To verify the instances in the Auto Scaling group

1. Open the console at https://console.aws.amazon.com/ecs/v2.

2. In the navigation pane, choose Clusters.

3. On the Clusters page, choose the ConsoleTutorial-cluster cluster.

4. On the Tasks tab, confirm you see five tasks in the RUNNING status.

Step 5: Clean up

When you have finished this tutorial, clean up the resources associated with it to avoid incurring
charges for resources that you aren't using. Deleting capacity providers and task definitions are not
supported, but there is no cost associated with these resources.

To clean up the tutorial resources

1. Open the console at https://console.aws.amazon.com/ecs/v2.

2. In the navigation pane, choose Clusters.

3. On the Clusters page, choose ConsoleTutorial-cluster.

4. On the ConsoleTutorial-cluster page, choose the Tasks tab, and then choose Stop, Stop all.

5. In the navigation pane, choose Clusters.

6. On the Clusters page, choose ConsoleTutorial-cluster.

7. In the upper-right of the page, choose Delete cluster.

8. In the confirmation box, enter delete ConsoleTutorial-cluster and choose Delete.

Step 5: Clean up 1193

https://console.aws.amazon.com/ec2/
https://console.aws.amazon.com/ecs/v2
https://console.aws.amazon.com/ecs/v2

Amazon Elastic Container Service Developer Guide

9. Delete the Auto Scaling groups using the following steps.

a. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.

b. On the navigation bar at the top of the screen, select the Region.

c. On the navigation pane, under Auto Scaling, choose Auto Scaling Groups.

d. Select the ConsoleTutorial-cluster Auto Scaling group, then choose Actions.

e. From the Actions menu, choose Delete. Enter delete in the confirmation box and then
choose Delete.

Specifying Sensitive Data Using Secrets Manager Secrets

Amazon ECS enables you to inject sensitive data into your containers by storing your sensitive data
in AWS Secrets Manager secrets and then referencing them in your container definition. For more
information, see Passing sensitive data to a container.

The following tutorial shows how to create an Secrets Manager secret, reference the secret in an
Amazon ECS task definition, and then verify it worked by querying the environment variable inside
a container showing the contents of the secret.

Prerequisites

This tutorial assumes that the following prerequisites have been completed:

• The steps in Set up to use Amazon ECS have been completed.

• Your AWS user has the required IAM permissions to create the Secrets Manager and Amazon ECS
resources described.

Step 1: Create an Secrets Manager Secret

You can use the Secrets Manager console to create a secret for your sensitive data. In this tutorial
we will be creating a basic secret for storing a username and password to reference later in a
container. For more information, see Creating a Basic Secret in the AWS Secrets Manager User
Guide.

The key/value pairs to be stored in this secret is the environment variable value in your container
at the end of the tutorial.

Specifying Sensitive Data Using Secrets Manager Secrets 1194

https://console.aws.amazon.com/ec2/
https://docs.aws.amazon.com/secretsmanager/latest/userguide/manage_create-basic-secret.html

Amazon Elastic Container Service Developer Guide

Save the Secret ARN to reference in your task execution IAM policy and task definition in later
steps.

Step 2: Update Your Task Execution IAM Role

In order for Amazon ECS to retrieve the sensitive data from your Secrets Manager secret, you must
have the Amazon ECS task execution role and reference it in your task definition. This allows the
container agent to pull the necessary Secrets Manager resources. If you have not already created
your task execution IAM role, see Amazon ECS task execution IAM role.

The following steps assume you already have the task execution IAM role created and properly
configured.

To update your task execution IAM role

Use the IAM console to update your task execution role with the required permissions.

1. Open the IAM console at https://console.aws.amazon.com/iam/.

2. In the navigation pane, choose Roles.

3. Search the list of roles for ecsTaskExecutionRole and select it.

4. Choose Permissions, Add inline policy.

5. Choose the JSON tab and specify the following JSON text, ensuring that you specify the full
ARN of the Secrets Manager secret you created in step 1.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "secretsmanager:GetSecretValue"
],
 "Resource": [

 "arn:aws:secretsmanager:region:aws_account_id:secret:username_value"
]
 }
]
}

6. Choose Review policy. For Name specify ECSSecretsTutorial, then choose Create policy.

Step 2: Update Your Task Execution IAM Role 1195

https://console.aws.amazon.com/iam/

Amazon Elastic Container Service Developer Guide

Step 3: Create an Amazon ECS Task Definition

You can use the Amazon ECS console to create a task definition that references a Secrets Manager
secret.

To create a task definition that specifies a secret

Use the IAM console to update your task execution role with the required permissions.

1. Open the console at https://console.aws.amazon.com/ecs/v2.

2. In the navigation pane, choose Task definitions.

3. Choose Create new task definition, Create new task definition with JSON.

4. In the JSON editor box, enter the following task definition JSON text, ensuring that you specify
the full ARN of the Secrets Manager secret you created in step 1 and the task execution IAM
role you updated in step 2. Choose Save.

5. {
 "executionRoleArn": "arn:aws:iam::aws_account_id:role/ecsTaskExecutionRole",
 "containerDefinitions": [
 {
 "entryPoint": [
 "sh",
 "-c"
],
 "portMappings": [
 {
 "hostPort": 80,
 "protocol": "tcp",
 "containerPort": 80
 }
],
 "command": [
 "/bin/sh -c \"echo '<html> <head> <title>Amazon ECS Sample
 App</title> <style>body {margin-top: 40px; background-color: #333;} </style> </
head><body> <div style=color:white;text-align:center> <h1>Amazon ECS Sample App</
h1> <h2>Congratulations!</h2> <p>Your application is now running on a container in
 Amazon ECS.</p> </div></body></html>' > /usr/local/apache2/htdocs/index.html &&
 httpd-foreground\""
],
 "cpu": 10,
 "secrets": [
 {

Step 3: Create an Amazon ECS Task Definition 1196

https://console.aws.amazon.com/ecs/v2

Amazon Elastic Container Service Developer Guide

 "valueFrom":
 "arn:aws:secretsmanager:region:aws_account_id:secret:username_value",
 "name": "username_value"
 }
],
 "memory": 300,
 "image": "httpd:2.4",
 "essential": true,
 "name": "ecs-secrets-container"
 }
],
 "family": "ecs-secrets-tutorial"
}

6. Choose Create.

Step 4: Create an Amazon ECS Cluster

You can use the Amazon ECS console to create a cluster containing a container instance to run the
task on. If you have an existing cluster with at least one container instance registered to it with the
available resources to run one instance of the task definition created for this tutorial you can skip
to the next step.

For this tutorial we will be creating a cluster with one t2.micro container instance using the
Amazon ECS-optimized Amazon Linux 2 AMI.

For information about how to create a cluster for the EC2 launch type, see the section called
“Creating a cluster for the Amazon EC2 launch type using the console”.

Step 5: Run an Amazon ECS Task

You can use the Amazon ECS console to run a task using the task definition you created. For this
tutorial we will be running a task using the EC2 launch type, using the cluster we created in the
previous step.

For information about how to run a task, see the section called “Creating a standalone task”.

Step 6: Verify

You can verify all of the steps were completed successfully and the environment variable was
created properly in your container using the following steps.

Step 4: Create an Amazon ECS Cluster 1197

Amazon Elastic Container Service Developer Guide

To verify that the environment variable was created

1. Find the public IP or DNS address for your container instance.

a. Open the console at https://console.aws.amazon.com/ecs/v2.

b. In the navigation pane, choose Clusters, and then chosse the cluster you created.

c. Choose Infrastructure, and then choose the container instance.

d. Record the Public IP or Public DNS for your instance.

2. If you are using a macOS or Linux computer, connect to your instance with the following
command, substituting the path to your private key and the public address for your instance:

$ ssh -i /path/to/my-key-pair.pem ec2-user@ec2-198-51-100-1.compute-1.amazonaws.com

For more information about using a Windows computer, see Connecting to Your Linux Instance
from Windows Using PuTTY in the Amazon EC2 User Guide for Linux Instances.

Important

For more information about any issues while connecting to your instance, see
Troubleshooting Connecting to Your Instance in the Amazon EC2 User Guide for Linux
Instances.

3. List the containers running on the instance. Note the container ID for ecs-secrets-
tutorial container.

docker ps

4. Connect to the ecs-secrets-tutorial container using the container ID from the output of
the previous step.

docker exec -it container_ID /bin/bash

5. Use the echo command to print the value of the environment variable.

echo $username_value

If the tutorial was successful, you should see the following output:

Step 6: Verify 1198

https://console.aws.amazon.com/ecs/v2
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/putty.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/putty.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/TroubleshootingInstancesConnecting.html

Amazon Elastic Container Service Developer Guide

password_value

Note

Alternatively, you can list all environment variables in your container using the env (or
printenv) command.

Step 7: Clean Up

When you are finished with this tutorial, you should clean up the associated resources to avoid
incurring charges for unused resources.

To clean up the resources

1. Open the console at https://console.aws.amazon.com/ecs/v2.

2. In the navigation pane, choose Clusters.

3. On the Clusters page, choose the cluster.

4. Choose Delete Cluster.

5. In the confirmation box, enter delete cluster name, and then choose Delete.

6. Open the IAM console at https://console.aws.amazon.com/iam/.

7. In the navigation pane, choose Roles.

8. Search the list of roles for ecsTaskExecutionRole and select it.

9. Choose Permissions, then choose the X next to ECSSecretsTutorial. Choose Remove.

10. Open the Secrets Manager console at https://console.aws.amazon.com/secretsmanager/.

11. Select the username_value secret you created and choose Actions, Delete secret.

Creating a service using Service Discovery

Service discovery is now integrated into the Create Service wizard in the Amazon ECS console. For
more information, see Creating a service using the console.

The following tutorial shows how to create an ECS service containing a Fargate task that uses
service discovery with the AWS CLI.

Step 7: Clean Up 1199

https://console.aws.amazon.com/ecs/v2
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/secretsmanager/

Amazon Elastic Container Service Developer Guide

For a list of AWS Regions that support service discovery, see Service discovery.

For information about the Regions that support Fargate, see the section called “AWS Fargate
Regions”.

Prerequisites

Before you start this tutorial, make sure that the following prerequisites are met:

• The latest version of the AWS CLI is installed and configured. For more information, see Installing
the AWS Command Line Interface.

• The steps described in Set up to use Amazon ECS are complete.

• Your AWS user has the required permissions specified in the AmazonECS_FullAccess IAM policy
example.

• You have created at least one VPC and one security group. For more information, see the section
called “Create a virtual private cloud”.

Step 1: Create the Service Discovery resources in AWS Cloud Map

Follow these steps to create your service discovery namespace and service discovery service:

1. Create a private Cloud Map service discovery namespace. This example creates a namespace
that's called tutorial. Replace vpc-abcd1234 with the ID of one of your existing VPCs.

aws servicediscovery create-private-dns-namespace \
 --name tutorial \
 --vpc vpc-abcd1234

The output of this command is as follows.

{
 "OperationId": "h2qe3s6dxftvvt7riu6lfy2f6c3jlhf4-je6chs2e"
}

2. Using the OperationId from the output of the previous step, verify that the private
namespace was created successfully. Make note of the namespace ID because you use it in
subsequent commands.

aws servicediscovery get-operation \

Prerequisites 1200

https://docs.aws.amazon.com/cli/latest/userguide/install-cliv2.html
https://docs.aws.amazon.com/cli/latest/userguide/install-cliv2.html

Amazon Elastic Container Service Developer Guide

 --operation-id h2qe3s6dxftvvt7riu6lfy2f6c3jlhf4-je6chs2e

The output is as follows.

{
 "Operation": {
 "Id": "h2qe3s6dxftvvt7riu6lfy2f6c3jlhf4-je6chs2e",
 "Type": "CREATE_NAMESPACE",
 "Status": "SUCCESS",
 "CreateDate": 1519777852.502,
 "UpdateDate": 1519777856.086,
 "Targets": {
 "NAMESPACE": "ns-uejictsjen2i4eeg"
 }
 }
}

3. Using the NAMESPACE ID from the output of the previous step, create a service discovery
service. This example creates a service named myapplication. Make note of the service ID
and ARN because you use them in subsequent commands.

aws servicediscovery create-service \
 --name myapplication \
 --dns-config "NamespaceId="ns-
uejictsjen2i4eeg",DnsRecords=[{Type="A",TTL="300"}]" \
 --health-check-custom-config FailureThreshold=1

The output is as follows.

{
 "Service": {
 "Id": "srv-utcrh6wavdkggqtk",
 "Arn": "arn:aws:servicediscovery:region:aws_account_id:service/srv-
utcrh6wavdkggqtk",
 "Name": "myapplication",
 "DnsConfig": {
 "NamespaceId": "ns-uejictsjen2i4eeg",
 "DnsRecords": [
 {
 "Type": "A",
 "TTL": 300
 }

Step 1: Create the Service Discovery resources in AWS Cloud Map 1201

Amazon Elastic Container Service Developer Guide

]
 },
 "HealthCheckCustomConfig": {
 "FailureThreshold": 1
 },
 "CreatorRequestId": "e49a8797-b735-481b-a657-b74d1d6734eb"
 }
}

Step 2: Create the Amazon ECS resources

Follow these steps to create your Amazon ECS cluster, task definition, and service:

1. Create an Amazon ECS cluster. This example creates a cluster that's named tutorial.

aws ecs create-cluster \
 --cluster-name tutorial

2. Register a task definition that's compatible with Fargate and uses the awsvpc network mode.
Follow these steps:

a. Create a file that's named fargate-task.json with the contents of the following task
definition.

{
 "family": "tutorial-task-def",
 "networkMode": "awsvpc",
 "containerDefinitions": [
 {
 "name": "sample-app",
 "image": "httpd:2.4",
 "portMappings": [
 {
 "containerPort": 80,
 "hostPort": 80,
 "protocol": "tcp"
 }
],
 "essential": true,
 "entryPoint": [
 "sh",

Step 2: Create the Amazon ECS resources 1202

Amazon Elastic Container Service Developer Guide

 "-c"
],
 "command": [
 "/bin/sh -c \"echo '<html> <head> <title>Amazon ECS Sample
 App</title> <style>body {margin-top: 40px; background-color: #333;} </style>
 </head><body> <div style=color:white;text-align:center> <h1>Amazon ECS Sample
 App</h1> <h2>Congratulations!</h2> <p>Your application is now running on a
 container in Amazon ECS.</p> </div></body></html>' > /usr/local/apache2/
htdocs/index.html && httpd-foreground\""
]
 }
],
 "requiresCompatibilities": [
 "FARGATE"
],
 "cpu": "256",
 "memory": "512"
}

b. Register the task definition using fargate-task.json.

aws ecs register-task-definition \
 --cli-input-json file://fargate-task.json

3. Create an ECS service by following these steps:

a. Create a file that's named ecs-service-discovery.json with the contents of the ECS
service that you're creating. This example uses the task definition that was created in the
previous step. An awsvpcConfiguration is required because the example task definition
uses the awsvpc network mode.

When you create the ECS service, specify the Fargate launch type, and the LATEST
platform version that supports service discovery. When the service discovery service is
created in AWS Cloud Map , registryArn is the ARN returned. The securityGroups
and subnets must belong to the VPC that's used to create the Cloud Map namespace.
You can obtain the security group and subnet IDs from the Amazon VPC Console.

{
 "cluster": "tutorial",
 "serviceName": "ecs-service-discovery",
 "taskDefinition": "tutorial-task-def",
 "serviceRegistries": [

Step 2: Create the Amazon ECS resources 1203

Amazon Elastic Container Service Developer Guide

 {
 "registryArn":
 "arn:aws:servicediscovery:region:aws_account_id:service/srv-utcrh6wavdkggqtk"
 }
],
 "launchType": "FARGATE",
 "platformVersion": "LATEST",
 "networkConfiguration": {
 "awsvpcConfiguration": {
 "assignPublicIp": "ENABLED",
 "securityGroups": ["sg-abcd1234"],
 "subnets": ["subnet-abcd1234"]
 }
 },
 "desiredCount": 1
}

b. Create your ECS service using ecs-service-discovery.json.

aws ecs create-service \
 --cli-input-json file://ecs-service-discovery.json

Step 3: Verify Service Discovery in AWS Cloud Map

You can verify that everything is created properly by querying your service discovery information.
After service discovery is configured, you can either use AWS Cloud Map API operations, or call dig
from an instance within your VPC. Follow these steps:

1. Using the service discovery service ID, list the service discovery instances. Make note of the
instance ID (marked in bold) for resource cleanup.

 aws servicediscovery list-instances \
 --service-id srv-utcrh6wavdkggqtk

The output is as follows.

{
 "Instances": [
 {
 "Id": "16becc26-8558-4af1-9fbd-f81be062a266",

Step 3: Verify Service Discovery in AWS Cloud Map 1204

Amazon Elastic Container Service Developer Guide

 "Attributes": {
 "AWS_INSTANCE_IPV4": "172.31.87.2"
 "AWS_INSTANCE_PORT": "80",
 "AVAILABILITY_ZONE": "us-east-1a",
 "REGION": "us-east-1",
 "ECS_SERVICE_NAME": "ecs-service-discovery",
 "ECS_CLUSTER_NAME": "tutorial",
 "ECS_TASK_DEFINITION_FAMILY": "tutorial-task-def"
 }
 }
]
}

2. Use the service discovery namespace, service, and additional parameters such as ECS cluster
name to query details about the service discovery instances.

aws servicediscovery discover-instances \
 --namespace-name tutorial \
 --service-name myapplication \
 --query-parameters ECS_CLUSTER_NAME=tutorial

3. The DNS records that are created in the Route 53 hosted zone for the service discovery service
can be queried with the following AWS CLI commands:

a. Using the namespace ID, get information about the namespace, which includes the
Route 53 hosted zone ID.

aws servicediscovery \
 get-namespace --id ns-uejictsjen2i4eeg

The output is as follows.

{
 "Namespace": {
 "Id": "ns-uejictsjen2i4eeg",
 "Arn": "arn:aws:servicediscovery:region:aws_account_id:namespace/ns-
uejictsjen2i4eeg",
 "Name": "tutorial",
 "Type": "DNS_PRIVATE",
 "Properties": {
 "DnsProperties": {
 "HostedZoneId": "Z35JQ4ZFDRYPLV"

Step 3: Verify Service Discovery in AWS Cloud Map 1205

Amazon Elastic Container Service Developer Guide

 }
 },
 "CreateDate": 1519777852.502,
 "CreatorRequestId": "9049a1d5-25e4-4115-8625-96dbda9a6093"
 }
}

b. Using the Route 53 hosted zone ID from the previous step (see the text in bold), get the
resource record set for the hosted zone.

aws route53 list-resource-record-sets \
 --hosted-zone-id Z35JQ4ZFDRYPLV

4. You can also query the DNS from an instance within your VPC using dig.

dig +short myapplication.tutorial

Step 4: Clean up

When you're finished with this tutorial, clean up the associated resources to avoid incurring charges
for unused resources. Follow these steps:

1. Deregister the service discovery service instances using the service ID and instance ID that you
noted previously.

aws servicediscovery deregister-instance \
 --service-id srv-utcrh6wavdkggqtk \
 --instance-id 16becc26-8558-4af1-9fbd-f81be062a266

The output is as follows.

{
 "OperationId": "xhu73bsertlyffhm3faqi7kumsmx274n-jh0zimzv"
}

2. Using the OperationId from the output of the previous step, verify that the service discovery
service instances were deregistered successfully.

aws servicediscovery get-operation \

Step 4: Clean up 1206

Amazon Elastic Container Service Developer Guide

 --operation-id xhu73bsertlyffhm3faqi7kumsmx274n-jh0zimzv

{
 "Operation": {
 "Id": "xhu73bsertlyffhm3faqi7kumsmx274n-jh0zimzv",
 "Type": "DEREGISTER_INSTANCE",
 "Status": "SUCCESS",
 "CreateDate": 1525984073.707,
 "UpdateDate": 1525984076.426,
 "Targets": {
 "INSTANCE": "16becc26-8558-4af1-9fbd-f81be062a266",
 "ROUTE_53_CHANGE_ID": "C5NSRG1J4I1FH",
 "SERVICE": "srv-utcrh6wavdkggqtk"
 }
 }
}

3. Delete the service discovery service using the service ID.

aws servicediscovery delete-service \
 --id srv-utcrh6wavdkggqtk

4. Delete the service discovery namespace using the namespace ID.

aws servicediscovery delete-namespace \
 --id ns-uejictsjen2i4eeg

The output is as follows.

{
 "OperationId": "c3ncqglftesw4ibgj5baz6ktaoh6cg4t-jh0ztysj"
}

5. Using the OperationId from the output of the previous step, verify that the service discovery
namespace was deleted successfully.

aws servicediscovery get-operation \
 --operation-id c3ncqglftesw4ibgj5baz6ktaoh6cg4t-jh0ztysj

The output is as follows.

Step 4: Clean up 1207

Amazon Elastic Container Service Developer Guide

{
 "Operation": {
 "Id": "c3ncqglftesw4ibgj5baz6ktaoh6cg4t-jh0ztysj",
 "Type": "DELETE_NAMESPACE",
 "Status": "SUCCESS",
 "CreateDate": 1525984602.211,
 "UpdateDate": 1525984602.558,
 "Targets": {
 "NAMESPACE": "ns-rymlehshst7hhukh",
 "ROUTE_53_CHANGE_ID": "CJP2A2M86XW3O"
 }
 }
}

6. Update the desired count for the Amazon ECS service to 0. You must do this to delete the
service in the next step.

aws ecs update-service \
 --cluster tutorial \
 --service ecs-service-discovery \
 --desired-count 0

7. Delete the Amazon ECS service.

aws ecs delete-service \
 --cluster tutorial \
 --service ecs-service-discovery

8. Delete the Amazon ECS cluster.

aws ecs delete-cluster \
 --cluster tutorial

Creating a service using a blue/green deployment

The following tutorial shows how to create an Amazon ECS service containing a Fargate task that
uses the blue/green deployment type with the AWS CLI.

Creating a service using a blue/green deployment 1208

Amazon Elastic Container Service Developer Guide

Note

Support for performing a blue/green deployment has been added for AWS
CloudFormation. For more information, see Perform Amazon ECS blue/green deployments
through CodeDeploy using AWS CloudFormation in the AWS CloudFormation User Guide.

Prerequisites

This tutorial assumes that you have completed the following prerequisites:

• The latest version of the AWS CLI is installed and configured. For more information about
installing or upgrading the AWS CLI, see Installing the AWS Command Line Interface.

• The steps in Set up to use Amazon ECS have been completed.

• Your AWS user has the required permissions specified in the AmazonECS_FullAccess IAM policy
example.

• You have a VPC and security group created to use. For more information, see the section called
“Create a virtual private cloud”.

• The Amazon ECS CodeDeploy IAM role is created. For more information, see Amazon ECS
CodeDeploy IAM Role.

Step 1: Create an Application Load Balancer

Amazon ECS services using the blue/green deployment type require the use of either an
Application Load Balancer or a Network Load Balancer. This tutorial uses an Application Load
Balancer.

To create an Application Load Balancer

1. Use the create-load-balancer command to create an Application Load Balancer. Specify two
subnets that aren't from the same Availability Zone as well as a security group.

aws elbv2 create-load-balancer \
 --name bluegreen-alb \
 --subnets subnet-abcd1234 subnet-abcd5678 \
 --security-groups sg-abcd1234 \
 --region us-east-1

Prerequisites 1209

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/blue-green.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/blue-green.html
https://docs.aws.amazon.com/cli/latest/userguide/installing.html
https://docs.aws.amazon.com/cli/latest/reference/elbv2/create-load-balancer.html

Amazon Elastic Container Service Developer Guide

The output includes the Amazon Resource Name (ARN) of the load balancer, with the following
format:

arn:aws:elasticloadbalancing:region:aws_account_id:loadbalancer/app/bluegreen-alb/
e5ba62739c16e642

2. Use the create-target-group command to create a target group. This target group will route
traffic to the original task set in your service.

aws elbv2 create-target-group \
 --name bluegreentarget1 \
 --protocol HTTP \
 --port 80 \
 --target-type ip \
 --vpc-id vpc-abcd1234 \
 --region us-east-1

The output includes the ARN of the target group, with the following format:

arn:aws:elasticloadbalancing:region:aws_account_id:targetgroup/
bluegreentarget1/209a844cd01825a4

3. Use the create-listener command to create a load balancer listener with a default rule that
forwards requests to the target group.

aws elbv2 create-listener \
 --load-balancer-arn
 arn:aws:elasticloadbalancing:region:aws_account_id:loadbalancer/app/bluegreen-alb/
e5ba62739c16e642 \
 --protocol HTTP \
 --port 80 \
 --default-actions
 Type=forward,TargetGroupArn=arn:aws:elasticloadbalancing:region:aws_account_id:targetgroup/
bluegreentarget1/209a844cd01825a4 \
 --region us-east-1

The output includes the ARN of the listener, with the following format:

arn:aws:elasticloadbalancing:region:aws_account_id:listener/app/bluegreen-alb/
e5ba62739c16e642/665750bec1b03bd4

Step 1: Create an Application Load Balancer 1210

https://docs.aws.amazon.com/cli/latest/reference/elbv2/create-target-group.html
https://docs.aws.amazon.com/cli/latest/reference/elbv2/create-listener.html

Amazon Elastic Container Service Developer Guide

Step 2: Create an Amazon ECS cluster

Use the create-cluster command to create a cluster named tutorial-bluegreen-cluster to
use.

aws ecs create-cluster \
 --cluster-name tutorial-bluegreen-cluster \
 --region us-east-1

The output includes the ARN of the cluster, with the following format:

arn:aws:ecs:region:aws_account_id:cluster/tutorial-bluegreen-cluster

Step 3: Register a task definition

Use the register-task-definition command to register a task definition that is compatible with
Fargate. It requires the use of the awsvpc network mode. The following is the example task
definition used for this tutorial.

First, create a file named fargate-task.json with the following contents. Ensure that you use
the ARN for your task execution role. For more information, see Amazon ECS task execution IAM
role.

{
 "family": "tutorial-task-def",
 "networkMode": "awsvpc",
 "containerDefinitions": [
 {
 "name": "sample-app",
 "image": "httpd:2.4",
 "portMappings": [
 {
 "containerPort": 80,
 "hostPort": 80,
 "protocol": "tcp"
 }
],
 "essential": true,
 "entryPoint": [
 "sh",
 "-c"

Step 2: Create an Amazon ECS cluster 1211

https://docs.aws.amazon.com/cli/latest/reference/ecs/create-cluster.html
https://docs.aws.amazon.com/cli/latest/reference/ecs/register-task-definition.html

Amazon Elastic Container Service Developer Guide

],
 "command": [
 "/bin/sh -c \"echo '<html> <head> <title>Amazon ECS Sample
 App</title> <style>body {margin-top: 40px; background-color: #00FFFF;} </style> </
head><body> <div style=color:white;text-align:center> <h1>Amazon ECS Sample App</h1>
 <h2>Congratulations!</h2> <p>Your application is now running on a container in Amazon
 ECS.</p> </div></body></html>' > /usr/local/apache2/htdocs/index.html && httpd-
foreground\""
]
 }
],
 "requiresCompatibilities": [
 "FARGATE"
],
 "cpu": "256",
 "memory": "512",
 "executionRoleArn": "arn:aws:iam::aws_account_id:role/ecsTaskExecutionRole"
}

Then register the task definition using the fargate-task.json file that you created.

aws ecs register-task-definition \
 --cli-input-json file://fargate-task.json \
 --region us-east-1

Step 4: Create an Amazon ECS service

Use the create-service command to create a service.

First, create a file named service-bluegreen.json with the following contents.

{
 "cluster": "tutorial-bluegreen-cluster",
 "serviceName": "service-bluegreen",
 "taskDefinition": "tutorial-task-def",
 "loadBalancers": [
 {
 "targetGroupArn":
 "arn:aws:elasticloadbalancing:region:aws_account_id:targetgroup/
bluegreentarget1/209a844cd01825a4",
 "containerName": "sample-app",
 "containerPort": 80
 }

Step 4: Create an Amazon ECS service 1212

https://docs.aws.amazon.com/cli/latest/reference/ecs/create-service.html

Amazon Elastic Container Service Developer Guide

],
 "launchType": "FARGATE",
 "schedulingStrategy": "REPLICA",
 "deploymentController": {
 "type": "CODE_DEPLOY"
 },
 "platformVersion": "LATEST",
 "networkConfiguration": {
 "awsvpcConfiguration": {
 "assignPublicIp": "ENABLED",
 "securityGroups": ["sg-abcd1234"],
 "subnets": ["subnet-abcd1234", "subnet-abcd5678"]
 }
 },
 "desiredCount": 1
}

Then create your service using the service-bluegreen.json file that you created.

aws ecs create-service \
 --cli-input-json file://service-bluegreen.json \
 --region us-east-1

The output includes the ARN of the service, with the following format:

arn:aws:ecs:region:aws_account_id:service/service-bluegreen

Obtain the DNS name of the load balancer using the following command.

 aws elbv2 describe-load-balancers --name bluegreen-alb --query
 'LoadBalancers[*].DNSName'

Enter the DNS name in your web browser and you should see a webpage that displays the sample
app with a blue background.

Step 5: Create the AWS CodeDeploy resources

Use the following steps to create your CodeDeploy application, the Application Load Balancer
target group for the CodeDeploy deployment group, and the CodeDeploy deployment group.

Step 5: Create the AWS CodeDeploy resources 1213

Amazon Elastic Container Service Developer Guide

To create CodeDeploy resources

1. Use the create-application command to create a CodeDeploy application. Specify the ECS
compute platform.

aws deploy create-application \
 --application-name tutorial-bluegreen-app \
 --compute-platform ECS \
 --region us-east-1

The output includes the application ID, with the following format:

{
 "applicationId": "b8e9c1ef-3048-424e-9174-885d7dc9dc11"
}

2. Use the create-target-group command to create a second Application Load Balancer target
group, which will be used when creating your CodeDeploy deployment group.

aws elbv2 create-target-group \
 --name bluegreentarget2 \
 --protocol HTTP \
 --port 80 \
 --target-type ip \
 --vpc-id "vpc-0b6dd82c67d8012a1" \
 --region us-east-1

The output includes the ARN for the target group, with the following format:

arn:aws:elasticloadbalancing:region:aws_account_id:targetgroup/
bluegreentarget2/708d384187a3cfdc

3. Use the create-deployment-group command to create a CodeDeploy deployment group.

First, create a file named tutorial-deployment-group.json with the following contents.
This example uses the resource that you created. For the serviceRoleArn, specify the ARN
of your Amazon ECS CodeDeploy IAM role. For more information, see Amazon ECS CodeDeploy
IAM Role.

{

Step 5: Create the AWS CodeDeploy resources 1214

https://docs.aws.amazon.com/cli/latest/reference/deploy/create-application.html
https://docs.aws.amazon.com/cli/latest/reference/elbv2/create-target-group.html
https://docs.aws.amazon.com/cli/latest/reference/deploy/create-deployment-group.html

Amazon Elastic Container Service Developer Guide

 "applicationName": "tutorial-bluegreen-app",
 "autoRollbackConfiguration": {
 "enabled": true,
 "events": ["DEPLOYMENT_FAILURE"]
 },
 "blueGreenDeploymentConfiguration": {
 "deploymentReadyOption": {
 "actionOnTimeout": "CONTINUE_DEPLOYMENT",
 "waitTimeInMinutes": 0
 },
 "terminateBlueInstancesOnDeploymentSuccess": {
 "action": "TERMINATE",
 "terminationWaitTimeInMinutes": 5
 }
 },
 "deploymentGroupName": "tutorial-bluegreen-dg",
 "deploymentStyle": {
 "deploymentOption": "WITH_TRAFFIC_CONTROL",
 "deploymentType": "BLUE_GREEN"
 },
 "loadBalancerInfo": {
 "targetGroupPairInfoList": [
 {
 "targetGroups": [
 {
 "name": "bluegreentarget1"
 },
 {
 "name": "bluegreentarget2"
 }
],
 "prodTrafficRoute": {
 "listenerArns": [
 "arn:aws:elasticloadbalancing:region:aws_account_id:listener/
app/bluegreen-alb/e5ba62739c16e642/665750bec1b03bd4"
]
 }
 }
]
 },
 "serviceRoleArn": "arn:aws:iam::aws_account_id:role/ecsCodeDeployRole",
 "ecsServices": [
 {
 "serviceName": "service-bluegreen",

Step 5: Create the AWS CodeDeploy resources 1215

Amazon Elastic Container Service Developer Guide

 "clusterName": "tutorial-bluegreen-cluster"
 }
]
}

Then create the CodeDeploy deployment group.

aws deploy create-deployment-group \
 --cli-input-json file://tutorial-deployment-group.json \
 --region us-east-1

The output includes the deployment group ID, with the following format:

{
 "deploymentGroupId": "6fd9bdc6-dc51-4af5-ba5a-0a4a72431c88"
}

Step 6: Create and monitor a CodeDeploy deployment

Before creating a CodeDeploy deployment, update the task definition command in fargate-
task.json as follows to change the sample app background color to green.

{
 ...
 "containerDefinitions": [
 {
 ...
 "command": [
 "/bin/sh -c \"echo '<html> <head> <title>Amazon ECS Sample
 App</title> <style>body {margin-top: 40px; background-color: #097969;} </style> </
head><body> <div style=color:white;text-align:center> <h1>Amazon ECS Sample App</h1>
 <h2>Congratulations!</h2> <p>Your application is now running on a container in Amazon
 ECS.</p> </div></body></html>' > /usr/local/apache2/htdocs/index.html && httpd-
foreground\""
]
 }
],
 ...
}

Step 6: Create and monitor a CodeDeploy deployment 1216

Amazon Elastic Container Service Developer Guide

Register the updated task definition using the following command.

aws ecs register-task-definition \
 --cli-input-json file://fargate-task.json \
 --region us-east-1

Now, use the following steps to create and upload an application specification file (AppSpec file)
and an CodeDeploy deployment.

To create and monitor a CodeDeploy deployment

1. Create and upload an AppSpec file using the following steps.

a. Create a file named appspec.yaml with the contents of the CodeDeploy deployment
group. This example uses the updated task definition.

version: 0.0
Resources:
 - TargetService:
 Type: AWS::ECS::Service
 Properties:
 TaskDefinition: "arn:aws:ecs:region:aws_account_id:task-
definition/tutorial-task-def:2"
 LoadBalancerInfo:
 ContainerName: "sample-app"
 ContainerPort: 80
 PlatformVersion: "LATEST"

b. Use the s3 mb command to create an Amazon S3 bucket for the AppSpec file.

aws s3 mb s3://tutorial-bluegreen-bucket

c. Use the s3 cp command to upload the AppSpec file to the Amazon S3 bucket.

aws s3 cp ./appspec.yaml s3://tutorial-bluegreen-bucket/appspec.yaml

2. Create the CodeDeploy deployment using the following steps.

a. Create a file named create-deployment.json with the contents of the CodeDeploy
deployment. This example uses the resources that you created earlier in the tutorial.

{

Step 6: Create and monitor a CodeDeploy deployment 1217

https://docs.aws.amazon.com/cli/latest/reference/s3/mb.html
https://docs.aws.amazon.com/cli/latest/reference/s3/cp.html

Amazon Elastic Container Service Developer Guide

 "applicationName": "tutorial-bluegreen-app",
 "deploymentGroupName": "tutorial-bluegreen-dg",
 "revision": {
 "revisionType": "S3",
 "s3Location": {
 "bucket": "tutorial-bluegreen-bucket",
 "key": "appspec.yaml",
 "bundleType": "YAML"
 }
 }
}

b. Use the create-deployment command to create the deployment.

aws deploy create-deployment \
 --cli-input-json file://create-deployment.json \
 --region us-east-1

The output includes the deployment ID, with the following format:

{
 "deploymentId": "d-RPCR1U3TW"
}

3. Use the get-deployment-target command to get the details of the deployment, specifying the
deploymentId from the previous output.

aws deploy get-deployment-target \
--deployment-id "d-IMJU3A8TW" \
--target-id tutorial-bluegreen-cluster:service-bluegreen \
--region us-east-1

Initially, the deployment status is InProgress. Traffic is directed to the original task set,
which has a taskSetLabel of BLUE, a status of PRIMARY, and a trafficWeight of
100.0. The replacement task set has a taskSetLabel of GREEN, a status of ACTIVE, and
a trafficWeight of 0.0. The web browser you entered the DNS name in still displays the
sample app with a blue background.

{
"deploymentTarget": {
"deploymentTargetType": "ECSTarget",

Step 6: Create and monitor a CodeDeploy deployment 1218

https://docs.aws.amazon.com/cli/latest/reference/deploy/create-deployment.html
https://docs.aws.amazon.com/cli/latest/reference/deploy/get-deployment-target.html

Amazon Elastic Container Service Developer Guide

"ecsTarget": {
 "deploymentId": "d-RPCR1U3TW",
 "targetId": "tutorial-bluegreen-cluster:service-bluegreen",
 "targetArn": "arn:aws:ecs:region:aws_account_id:service/service-bluegreen",
 "lastUpdatedAt": "2023-08-10T12:07:24.797000-05:00",
 "lifecycleEvents": [
 {
 "lifecycleEventName": "BeforeInstall",
 "startTime": "2023-08-10T12:06:22.493000-05:00",
 "endTime": "2023-08-10T12:06:22.790000-05:00",
 "status": "Succeeded"
 },
 {
 "lifecycleEventName": "Install",
 "startTime": "2023-08-10T12:06:22.936000-05:00",
 "status": "InProgress"
 },
 {
 "lifecycleEventName": "AfterInstall",
 "status": "Pending"
 },
 {
 "lifecycleEventName": "BeforeAllowTraffic",
 "status": "Pending"
 },
 {
 "lifecycleEventName": "AllowTraffic",
 "status": "Pending"
 },
 {
 "lifecycleEventName": "AfterAllowTraffic",
 "status": "Pending"
 }
],
 "status": "InProgress",
 "taskSetsInfo": [
 {
 "identifer": "ecs-svc/9223370493423413672",
 "desiredCount": 1,
 "pendingCount": 0,
 "runningCount": 1,
 "status": "ACTIVE",
 "trafficWeight": 0.0,
 "targetGroup": {

Step 6: Create and monitor a CodeDeploy deployment 1219

Amazon Elastic Container Service Developer Guide

 "name": "bluegreentarget2"
 },
 "taskSetLabel": "Green"
 },
 {
 "identifer": "ecs-svc/9223370493425779968",
 "desiredCount": 1,
 "pendingCount": 0,
 "runningCount": 1,
 "status": "PRIMARY",
 "trafficWeight": 100.0,
 "targetGroup": {
 "name": "bluegreentarget1"
 },
 "taskSetLabel": "Blue"
 }
]
}
}
}

Continue to retrieve the deployment details using the command until the deployment status
is Succeeded, as shown in the following output. Traffic is now redirected to the replacement
task set, which now has a status of PRIMARY and a trafficWeight of 100.0. Refresh the
web browser you entered the load balancer DNS name in, and you should now see the sample
app with a green background.

{
"deploymentTarget": {
"deploymentTargetType": "ECSTarget",
"ecsTarget": {
 "deploymentId": "d-RPCR1U3TW",
 "targetId": "tutorial-bluegreen-cluster:service-bluegreen",
 "targetArn": "arn:aws:ecs:region:aws_account_id:service/service-bluegreen",
 "lastUpdatedAt": "2023-08-10T12:07:24.797000-05:00",
 "lifecycleEvents": [
 {
 "lifecycleEventName": "BeforeInstall",
 "startTime": "2023-08-10T12:06:22.493000-05:00",
 "endTime": "2023-08-10T12:06:22.790000-05:00",
 "status": "Succeeded"
 },

Step 6: Create and monitor a CodeDeploy deployment 1220

Amazon Elastic Container Service Developer Guide

 {
 "lifecycleEventName": "Install",
 "startTime": "2023-08-10T12:06:22.936000-05:00",
 "endTime": "2023-08-10T12:08:25.939000-05:00",
 "status": "Succeeded"
 },
 {
 "lifecycleEventName": "AfterInstall",
 "startTime": "2023-08-10T12:08:26.089000-05:00",
 "endTime": "2023-08-10T12:08:26.403000-05:00",
 "status": "Succeeded"
 },
 {
 "lifecycleEventName": "BeforeAllowTraffic",
 "startTime": "2023-08-10T12:08:26.926000-05:00",
 "endTime": "2023-08-10T12:08:27.256000-05:00",
 "status": "Succeeded"
 },
 {
 "lifecycleEventName": "AllowTraffic",
 "startTime": "2023-08-10T12:08:27.416000-05:00",
 "endTime": "2023-08-10T12:08:28.195000-05:00",
 "status": "Succeeded"
 },
 {
 "lifecycleEventName": "AfterAllowTraffic",
 "startTime": "2023-08-10T12:08:28.715000-05:00",
 "endTime": "2023-08-10T12:08:28.994000-05:00",
 "status": "Succeeded"
 }
],
 "status": "Succeeded",
 "taskSetsInfo": [
 {
 "identifer": "ecs-svc/9223370493425779968",
 "desiredCount": 1,
 "pendingCount": 0,
 "runningCount": 1,
 "status": "ACTIVE",
 "trafficWeight": 0.0,
 "targetGroup": {
 "name": "bluegreentarget1"
 },
 "taskSetLabel": "Blue"

Step 6: Create and monitor a CodeDeploy deployment 1221

Amazon Elastic Container Service Developer Guide

 },
 {
 "identifer": "ecs-svc/9223370493423413672",
 "desiredCount": 1,
 "pendingCount": 0,
 "runningCount": 1,
 "status": "PRIMARY",
 "trafficWeight": 100.0,
 "targetGroup": {
 "name": "bluegreentarget2"
 },
 "taskSetLabel": "Green"
 }
]
}
}
}

Step 7: Clean up

When you have finished this tutorial, clean up the resources associated with it to avoid incurring
charges for resources that you aren't using.

Cleaning up the tutorial resources

1. Use the delete-deployment-group command to delete the CodeDeploy deployment group.

aws deploy delete-deployment-group \
 --application-name tutorial-bluegreen-app \
 --deployment-group-name tutorial-bluegreen-dg \
 --region us-east-1

2. Use the delete-application command to delete the CodeDeploy application.

aws deploy delete-application \
 --application-name tutorial-bluegreen-app \
 --region us-east-1

3. Use the delete-service command to delete the Amazon ECS service. Using the --force flag
allows you to delete a service even if it has not been scaled down to zero tasks.

Step 7: Clean up 1222

https://docs.aws.amazon.com/cli/latest/reference/deploy/delete-deployment-group.html
https://docs.aws.amazon.com/cli/latest/reference/deploy/delete-application.html
https://docs.aws.amazon.com/cli/latest/reference/ecs/delete-service.html

Amazon Elastic Container Service Developer Guide

aws ecs delete-service \
 --service arn:aws:ecs:region:aws_account_id:service/service-bluegreen \
 --force \
 --region us-east-1

4. Use the delete-cluster command to delete the Amazon ECS cluster.

aws ecs delete-cluster \
 --cluster tutorial-bluegreen-cluster \
 --region us-east-1

5. Use the s3 rm command to delete the AppSpec file from the Amazon S3 bucket.

aws s3 rm s3://tutorial-bluegreen-bucket/appspec.yaml

6. Use the s3 rb command to delete the Amazon S3 bucket.

aws s3 rb s3://tutorial-bluegreen-bucket

7. Use the delete-load-balancer command to delete the Application Load Balancer.

aws elbv2 delete-load-balancer \
 --load-balancer-arn
 arn:aws:elasticloadbalancing:region:aws_account_id:loadbalancer/app/bluegreen-alb/
e5ba62739c16e642 \
 --region us-east-1

8. Use the delete-target-group command to delete the two Application Load Balancer target
groups.

aws elbv2 delete-target-group \
 --target-group-arn
 arn:aws:elasticloadbalancing:region:aws_account_id:targetgroup/
bluegreentarget1/209a844cd01825a4 \
 --region us-east-1

aws elbv2 delete-target-group \
 --target-group-arn
 arn:aws:elasticloadbalancing:region:aws_account_id:targetgroup/
bluegreentarget2/708d384187a3cfdc \

Step 7: Clean up 1223

https://docs.aws.amazon.com/cli/latest/reference/ecs/delete-cluster.html
https://docs.aws.amazon.com/cli/latest/reference/s3/rm.html
https://docs.aws.amazon.com/cli/latest/reference/s3/rb.html
https://docs.aws.amazon.com/cli/latest/reference/elbv2/delete-load-balancer.html
https://docs.aws.amazon.com/cli/latest/reference/elbv2/delete-target-group.html

Amazon Elastic Container Service Developer Guide

 --region us-east-1

Listening for Amazon ECS CloudWatch Events

In this tutorial, you set up a simple AWS Lambda function that listens for Amazon ECS task events
and writes them out to a CloudWatch Logs log stream.

Prerequisite: Set up a test cluster

If you do not have a running cluster to capture events from, follow the steps in the section called
“Creating a cluster for the Fargate and External launch type using the console” to create one. At
the end of this tutorial, you run a task on this cluster to test that you have configured your Lambda
function correctly.

Step 1: Create the Lambda function

In this procedure, you create a simple Lambda function to serve as a target for Amazon ECS event
stream messages.

1. Open the AWS Lambda console at https://console.aws.amazon.com/lambda/.

2. Choose Create function.

3. On the Author from scratch screen, do the following:

a. For Name, enter a value.

b. For Runtime, choose your version of Python, for example, Python 3.9.

c. For Role, choose Create a new role with basic Lambda permissions.

4. Choose Create function.

5. In the Function code section, edit the sample code to match the following example:

import json

def lambda_handler(event, context):
 if event["source"] != "aws.ecs":
 raise ValueError("Function only supports input from events with a source
 type of: aws.ecs")

 print('Here is the event:')

Listening for Amazon ECS CloudWatch Events 1224

https://console.aws.amazon.com/lambda/

Amazon Elastic Container Service Developer Guide

 print(json.dumps(event))

This is a simple Python 3.9 function that prints the event sent by Amazon ECS. If everything
is configured correctly, at the end of this tutorial, you see that the event details appear in the
CloudWatch Logs log stream associated with this Lambda function.

6. Choose Save.

Step 2: Register an event rule

Next, you create a CloudWatch Events event rule that captures task events coming from
your Amazon ECS clusters. This rule captures all events coming from all clusters within the
account where it is defined. The task messages themselves contain information about the
event source, including the cluster on which it resides, that you can use to filter and sort events
programmatically.

Note

When you use the AWS Management Console to create an event rule, the console
automatically adds the IAM permissions necessary to grant CloudWatch Events permission
to call your Lambda function. If you are creating an event rule using the AWS CLI, you need
to grant this permission explicitly. For more information, see Events and Event Patterns in
the Amazon CloudWatch Events User Guide.

To route events to your Lambda function

1. Open the CloudWatch console at https://console.aws.amazon.com/cloudwatch/.

2. On the navigation pane, choose Events, Rules, Create rule.

3. For Event Source, choose ECS as the event source. By default, the rule applies to all Amazon
ECS events for all of your Amazon ECS groups. Alternatively, you can select specific events or a
specific Amazon ECS group.

4. For Targets, choose Add target, for Target type, choose Lambda function, and then select
your Lambda function.

5. Choose Configure details.

6. For Rule definition, type a name and description for your rule and choose Create rule.

Step 2: Register an event rule 1225

https://docs.aws.amazon.com/AmazonCloudWatch/latest/events/CloudWatchEventsandEventPatterns.html
https://console.aws.amazon.com/cloudwatch/

Amazon Elastic Container Service Developer Guide

Step 3: Create a task definition

Create a task definition.

1. Open the console at https://console.aws.amazon.com/ecs/v2.

2. In the navigation pane, choose Task Definitions.

3. Choose Create new Task Definition, Create new revision with JSON.

4. Copy and paste the following example task definition into the box and then choose Save.

{
 "containerDefinitions": [
 {
 "entryPoint": [
 "sh",
 "-c"
],
 "portMappings": [
 {
 "hostPort": 80,
 "protocol": "tcp",
 "containerPort": 80
 }
],
 "command": [
 "/bin/sh -c \"echo '<html> <head> <title>Amazon ECS Sample
 App</title> <style>body {margin-top: 40px; background-color: #333;} </style> </
head><body> <div style=color:white;text-align:center> <h1>Amazon ECS Sample App</
h1> <h2>Congratulations!</h2> <p>Your application is now running on a container in
 Amazon ECS.</p> </div></body></html>' > /usr/local/apache2/htdocs/index.html &&
 httpd-foreground\""
],
 "cpu": 10,
 "memory": 300,
 "image": "httpd:2.4",
 "name": "simple-app"
 }
],
 "family": "console-sample-app-static"
}

5. Choose Create.

Step 3: Create a task definition 1226

https://console.aws.amazon.com/ecs/v2

Amazon Elastic Container Service Developer Guide

Step 4: Test your rule

Finally, you create a CloudWatch Events event rule that captures task events coming from
your Amazon ECS clusters. This rule captures all events coming from all clusters within the
account where it is defined. The task messages themselves contain information about the
event source, including the cluster on which it resides, that you can use to filter and sort events
programmatically.

To test your rule

1. Open the console at https://console.aws.amazon.com/ecs/v2.

2. Choose Task definitions.

3. Choose console-sample-app-static, and then choose Deploy, Run new task.

4. For Cluster, choose default, and then choose Deploy.

5. Open the CloudWatch console at https://console.aws.amazon.com/cloudwatch/.

6. On the navigation pane, choose Logs and select the log group for your Lambda function (for
example, /aws/lambda/my-function).

7. Select a log stream to view the event data.

Sending Amazon Simple Notification Service alerts for task
stopped events

In this tutorial, you configure an Amazon EventBridge event rule that only captures task events
where the task has stopped running because one of its essential containers has terminated. The
event sends only task events with a specific stoppedReason property to the designated Amazon
SNS topic.

Prerequisite: Set up a test cluster

If you do not have a running cluster to capture events from, follow the steps in Getting started
with the console using Linux containers on AWS Fargate to create one. At the end of this tutorial,
you run a task on this cluster to test that you have configured your Amazon SNS topic and
EventBridge rule correctly.

Step 4: Test your rule 1227

https://console.aws.amazon.com/ecs/v2
https://console.aws.amazon.com/cloudwatch/
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/getting-started-fargate.html#get-started-fargate-cluster
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/getting-started-fargate.html#get-started-fargate-cluster

Amazon Elastic Container Service Developer Guide

Prerequisite: Configure permissions for Amazon SNS

To allow EventBridge to publish to an Amazon SNS topic, use the aws sns get-topic-attributes and
the aws sns set-topic-attributes commands.

For information about how to add the permission, see Amazon SNS permissions in the Amazon
Simple Notification Service Developer Guide

Add the following permissions:

{
 "Sid": "PublishEventsToMyTopic",
 "Effect": "Allow",
 "Principal": {
 "Service": "events.amazonaws.com"
 },
 "Action": "sns: Publish",
 "Resource": "arn:aws:sns:region:account-id:TaskStoppedAlert",
}

Step 1: Create and subscribe to an Amazon SNS topic

For this tutorial, you configure an Amazon SNS topic to serve as an event target for your new event
rule.

For information about how to create and subscribe to an Amazon SNS topic , see Getting started
with Amazon SNS in the Amazon Simple Notification Service Developer Guide and use the following
table to determine what options to select.

Option Value

Type Standard

Name TaskStoppedAlert

Protocol Email

Endpoint An email address to which
you currently have access

Prerequisite: Configure permissions for Amazon SNS 1228

https://docs.aws.amazon.com/eventbridge/latest/userguide/eb-use-resource-based.html#eb-sns-permissions
https://docs.aws.amazon.com/sns/latest/dg/sns-getting-started.html#step-create-queue
https://docs.aws.amazon.com/sns/latest/dg/sns-getting-started.html#step-create-queue

Amazon Elastic Container Service Developer Guide

Step 2: Register an event rule

Next, you register an event rule that captures only task-stopped events for tasks with stopped
containers.

For information about how to create and subscribe to an Amazon SNS topic , see Create a rule
in Amazon EventBridge in the Amazon EventBridge User Guide and use the following table to
determine what options to select.

Option Value

Rule type Rule with an event pattern

Event source AWS events or EventBridge
partner events

Event pattern Custom pattern (JSON editor)

Event pattern {
 "source":[
 "aws.ecs"
],
 "detail-type":[
 "ECS Task State
 Change"
],
 "detail":{
 "lastStatus":[
 "STOPPED"
],
 "stoppedReason":[
 "Essentia
l container in task
 exited"
]
 }
}

Target type AWS service

Target SNS topic

Step 2: Register an event rule 1229

https://docs.aws.amazon.com/eventbridge/latest/userguide/eb-get-started.html
https://docs.aws.amazon.com/eventbridge/latest/userguide/eb-get-started.html

Amazon Elastic Container Service Developer Guide

Option Value

Topic TaskStoppedAlert (The topic
you created in Step 1)

Step 3: Test your rule

Verify that the rule is working by running a task that exits shortly after it starts. If your event rule is
configured correctly, you receive an email message within a few minutes with the event text. If you
have an existing task definition that can satisfy the rule requirements, run a task using it. If you do
not, the following steps will walk you through registering a Fargate task definition and running it
that will.

1. Open the console at https://console.aws.amazon.com/ecs/v2.

2. In the navigation pane, choose Task definitions.

3. Choose Create new task definition, Create new task definition with JSON.

4. In the JSON editor box, edit your JSON file, copy the following into the editor.

{
 "containerDefinitions":[
 {
 "command":[
 "sh",
 "-c",
 "sleep 5"
],
 "essential":true,
 "image":"amazonlinux:2",
 "name":"test-sleep"
 }
],
 "cpu":"256",
 "executionRoleArn":"arn:aws:iam::012345678910:role/ecsTaskExecutionRole",
 "family":"fargate-task-definition",
 "memory":"512",
 "networkMode":"awsvpc",
 "requiresCompatibilities":[
 "FARGATE"
]

Step 3: Test your rule 1230

https://console.aws.amazon.com/ecs/v2

Amazon Elastic Container Service Developer Guide

}

5. Choose Create.

To run a task from the console

1. Open the console at https://console.aws.amazon.com/ecs/v2.

2. On the Clusters page, choose the cluster you created in the prerequisites.

3. From the Tasks tab, choose Run new task.

4. For Application type, choose Task.

5. For Task definition, choose fargate-task-definition.

6. For Desired tasks, enter the number of tasks to launch.

7. Choose Create.

Concatenate multiline or stack-trace log messages

Beginning with AWS for Fluent Bit version 2.22.0, a multiline filter is included. The multiline
filter helps concatenate log messages that originally belong to one context but were split across
multiple records or log lines. For more information about the multiline filter, see the Fluent Bit
documentation.

Common examples of split log messages are:

• Stack traces.

• Applications that print logs on multiple lines.

• Log messages that were split because they were longer than the specified runtime max buffer
size. You can concatenate log messages split by the container runtime by following the example
on GitHub: FireLens Example: Concatenate Partial/Split Container Logs.

Required IAM permissions

You have the necessary IAM permissions for the container agent to pull the container images from
Amazon ECR and for the container to route logs to CloudWatch Logs.

For these permissions, you must have the following roles:

Concatenate multiline or stack-trace log messages 1231

https://console.aws.amazon.com/ecs/v2
https://docs.fluentbit.io/manual/pipeline/filters/multiline-stacktrace
https://docs.fluentbit.io/manual/pipeline/filters/multiline-stacktrace
https://github.com/aws-samples/amazon-ecs-firelens-examples/tree/mainline/examples/fluent-bit/filter-multiline-partial-message-mode

Amazon Elastic Container Service Developer Guide

• A task IAM role.

• An Amazon ECS task execution IAM role.

To use the JSON policy editor to create a policy

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. In the navigation pane on the left, choose Policies.

If this is your first time choosing Policies, the Welcome to Managed Policies page appears.
Choose Get Started.

3. At the top of the page, choose Create policy.

4. In the Policy editor section, choose the JSON option.

5. Enter the following JSON policy document:

{
 "Version": "2012-10-17",
 "Statement": [{
 "Effect": "Allow",
 "Action": [
 "logs:CreateLogStream",
 "logs:CreateLogGroup",
 "logs:PutLogEvents"
],
 "Resource": "*"
 }]
}

6. Choose Next.

Note

You can switch between the Visual and JSON editor options anytime. However, if you
make changes or choose Next in the Visual editor, IAM might restructure your policy to
optimize it for the visual editor. For more information, see Policy restructuring in the
IAM User Guide.

Required IAM permissions 1232

https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/
https://docs.aws.amazon.com/IAM/latest/UserGuide/troubleshoot_policies.html#troubleshoot_viseditor-restructure

Amazon Elastic Container Service Developer Guide

7. On the Review and create page, enter a Policy name and a Description (optional) for the
policy that you are creating. Review Permissions defined in this policy to see the permissions
that are granted by your policy.

8. Choose Create policy to save your new policy.

Determine when to use the multiline log setting

The following are example log snippets that you see in the CloudWatch Logs console with the
default log setting. You can look at the line that starts with log to determine if you need the
multiline filter. When the context is the same, you can use the multiline log setting, In this
example, the context is "

2022-09-20T15:47:56:595-05-00 {"container_id":
 "82ba37cada1d44d389b03e78caf74faa-EXAMPLE", "container_name": "example-
app", "source=": "stdout", "log": ": " at com.myproject.modele.
(MyProject.badMethod.java:22)",
 {
 "container_id": "82ba37cada1d44d389b03e78caf74faa-EXAMPLE",
 "container_name: ": "example-app",
 "source": "stdout",
 "log": ": " at com.myproject.model.MyProject.badMethod(MyProject.java:22)",
 "ecs_cluster": "default",
 "ecs_task_arn": "arn:aws:region:123456789012:task/default/
b23c940d29ed4714971cba72cEXAMPLE",
 "ecs_task_definition": "firelense-example-multiline:3"
 }

2022-09-20T15:47:56:595-05-00 {"container_id":
 "82ba37cada1d44d389b03e78caf74faa-EXAMPLE", "container_name": "example-app", "stdout",
 "log": ": " at com.myproject.modele.(MyProject.oneMoreMethod.java:18)",
 {
 "container_id": "82ba37cada1d44d389b03e78caf74faa-EXAMPLE",
 "container_name: ": "example-app",
 "source": "stdout",
 "log": ": " at
 com.myproject.model.MyProject.oneMoreMethod(MyProject.java:18)",
 "ecs_cluster": "default",
 "ecs_task_arn": "arn:aws:region:123456789012:task/default/
b23c940d29ed4714971cba72cEXAMPLE,

Determine when to use the multiline log setting 1233

Amazon Elastic Container Service Developer Guide

 "ecs_task_definition": "firelense-example-multiline:3"
 }

After you use the multiline log setting, the output will look similar to the example below.

2022-09-20T15:47:56:595-05-00 {"container_id":
 "82ba37cada1d44d389b03e78caf74faa-EXAMPLE", "container_name": "example-app",
 "stdout",...
 {
 "container_id": "82ba37cada1d44d389b03e78caf74faa-EXAMPLE",
 "container_name: ": "example-app",
 "source": "stdout",
 "log: "September 20, 2022 06:41:48 Exception in thread \"main\"
 java.lang.RuntimeException: Something has gone wrong, aborting!\n
 at com.myproject.module.MyProject.badMethod(MyProject.java:22)\n at
 at com.myproject.model.MyProject.oneMoreMethod(MyProject.java:18)
 com.myproject.module.MyProject.main(MyProject.java:6)",
 "ecs_cluster": "default",
 "ecs_task_arn": "arn:aws:region:123456789012:task/default/
b23c940d29ed4714971cba72cEXAMPLE",
 "ecs_task_definition": "firelense-example-multiline:2"
 }

Parse and concatenate options

To parse logs and concatenate lines that were split because of newlines, you can use either of these
two options.

• Use your own parser file that contains the rules to parse and concatenate lines that belong to the
same message.

• Use a Fluent Bit built-in parser. For a list of languages supported by the Fluent Bit built-in
parsers, see Fluent Bit documentation.

The following tutorial walks you through the steps for each use case. The steps show you how
to concatenate multilines and send the logs to Amazon CloudWatch. You can specify a different
destination for your logs.

Parse and concatenate options 1234

https://docs.fluentbit.io/manual/pipeline/filters/multiline-stacktrace

Amazon Elastic Container Service Developer Guide

Example: Use a parser that you create

In this example, you will complete the following steps:

1. Build and upload the image for a Fluent Bit container.

2. Build and upload the image for a demo multiline application that runs, fails, and generates a
multiline stack trace.

3. Create the task definition and run the task.

4. View the logs to verify that messages that span multiple lines appear concatenated.

Build and upload the image for a Fluent Bit container

This image will include the parser file where you specify the regular expression and a configuration
file that references the parser file.

1. Create a folder with the name FluentBitDockerImage.

2. Within the folder, create a parser file that contains the rules to parse the log and concatenate
lines that belong in the same message.

a. Paste the following contents in the parser file:

[MULTILINE_PARSER]
 name multiline-regex-test
 type regex
 flush_timeout 1000
 #
 # Regex rules for multiline parsing
 # ---------------------------------
 #
 # configuration hints:
 #
 # - first state always has the name: start_state
 # - every field in the rule must be inside double quotes
 #
 # rules | state name | regex pattern | next state
 # ------|---------------|--
 rule "start_state" "/(Dec \d+ \d+\:\d+\:\d+)(.*)/" "cont"
 rule "cont" "/^\s+at.*/" "cont"

Parse and concatenate options 1235

Amazon Elastic Container Service Developer Guide

As you customize your regex pattern, we recommend you use a regular expression editor
to test the expression.

b. Save the file as parsers_multiline.conf.

3. Within the FluentBitDockerImage folder, create a custom configuration file that references
the parser file that you created in the previous step.

For more information about the custom configuration file, see Specifying a custom
configuration file in the Amazon Elastic Container Service Developer Guide

a. Paste the following contents in the file:

[SERVICE]
 flush 1
 log_level info
 parsers_file /parsers_multiline.conf

[FILTER]
 name multiline
 match *
 multiline.key_content log
 multiline.parser multiline-regex-test

Note

You must use the absolute path of the parser.

b. Save the file as extra.conf.

4. Within the FluentBitDockerImage folder, create the Dockerfile with the Fluent Bit image
and the parser and configuration files that you created.

a. Paste the following contents in the file:

FROM public.ecr.aws/aws-observability/aws-for-fluent-bit:latest

ADD parsers_multiline.conf /parsers_multiline.conf
ADD extra.conf /extra.conf

b. Save the file as Dockerfile.

Parse and concatenate options 1236

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/firelens-taskdef.html#firelens-taskdef-customconfig
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/firelens-taskdef.html#firelens-taskdef-customconfig

Amazon Elastic Container Service Developer Guide

5. Using the Dockerfile, build a custom Fluent Bit image with the parser and custom
configuration files included.

Note

You can place the parser file and configuration file anywhere in the Docker image
except /fluent-bit/etc/fluent-bit.conf as this file path is used by FireLens.

a. Build the image: docker build -t fluent-bit-multiline-image .

Where: fluent-bit-multiline-image is the name for the image in this example.

b. Verify that the image was created correctly: docker images —filter
reference=fluent-bit-multiline-image

If successful, the output shows the image and the latest tag.

6. Upload the custom Fluent Bit image to Amazon Elastic Container Registry.

a. Create an Amazon ECR repository to store the image: aws ecr create-repository
--repository-name fluent-bit-multiline-repo --region us-east-1

Where: fluent-bit-multiline-repo is the name for the repository and us-east-1 is
the region in this example.

The output gives you the details of the new repository.

b. Tag your image with the repositoryUri value from the previous output: docker tag
fluent-bit-multiline-image repositoryUri

Example: docker tag fluent-bit-multiline-image
xxxxxxxxxxxx.dkr.ecr.us-east-1.amazonaws.com/fluent-bit-multiline-
repo

c. Run the docker image to verify it ran correctly: docker images —filter
reference=repositoryUri

In the output, the repository name changes from fluent-bit-multiline-repo to the
repositoryUri.

d. Authenticate to Amazon ECR by running the aws ecr get-login-password command
and specifying the registry ID you want to authenticate to: aws ecr get-login-

Parse and concatenate options 1237

Amazon Elastic Container Service Developer Guide

password | docker login --username AWS --password-stdin registry
ID.dkr.ecr.region.amazonaws.com

Example: ecr get-login-password | docker login --username AWS --
password-stdin xxxxxxxxxxxx.dkr.ecr.us-east-1.amazonaws.com

A successful login message appears.

e. Push the image to Amazon ECR: docker push registry
ID.dkr.ecr.region.amazonaws.com/repository name

Example: docker push xxxxxxxxxxxx.dkr.ecr.us-east-1.amazonaws.com/
fluent-bit-multiline-repo

Build and upload the image for a demo multiline application

This image will include a Python script file that runs the application and a sample log file.

When you run the task, the application simulates runs, then fails and creates a stack trace.

1. Create a folder named multiline-app: mkdir multiline-app

2. Create a Python script file.

a. Within the multiline-app folder, create a file and name it main.py.

b. Paste the following contents in the file:

import os
import time
file1 = open('/test.log', 'r')
Lines = file1.readlines()

count = 0

for i in range(10):
 print("app running normally...")
 time.sleep(1)

Strips the newline character
for line in Lines:
 count += 1
 print(line.rstrip())
print(count)

Parse and concatenate options 1238

Amazon Elastic Container Service Developer Guide

print("app terminated.")

c. Save the main.py file.

3. Create a sample log file.

a. Within the multiline-app folder, create a file and name it test.log.

b. Paste the following contents in the file:

single line...
Dec 14 06:41:08 Exception in thread "main" java.lang.RuntimeException:
 Something has gone wrong, aborting!
 at com.myproject.module.MyProject.badMethod(MyProject.java:22)
 at com.myproject.module.MyProject.oneMoreMethod(MyProject.java:18)
 at com.myproject.module.MyProject.anotherMethod(MyProject.java:14)
 at com.myproject.module.MyProject.someMethod(MyProject.java:10)
 at com.myproject.module.MyProject.main(MyProject.java:6)
another line...

c. Save the test.log file.

4. Within the multiline-app folder, create the Dockerfile.

a. Paste the following contents in the file:

FROM public.ecr.aws/amazonlinux/amazonlinux:latest
ADD test.log /test.log

RUN yum upgrade -y && yum install -y python3

WORKDIR /usr/local/bin

COPY main.py .

CMD ["python3", "main.py"]

b. Save the Dockerfile file.

5. Using the Dockerfile, build an image.

a. Build the image: docker build -t multiline-app-image .

Where: multiline-app-image is the name for the image in this example.

Parse and concatenate options 1239

Amazon Elastic Container Service Developer Guide

b. Verify that the image was created correctly: docker images —filter
reference=multiline-app-image

If successful, the output shows the image and the latest tag.

6. Upload the image to Amazon Elastic Container Registry.

a. Create an Amazon ECR repository to store the image: aws ecr create-repository
--repository-name multiline-app-repo --region us-east-1

Where: multiline-app-repo is the name for the repository and us-east-1 is the
region in this example.

The output gives you the details of the new repository. Note the repositoryUri value as
you will need it in the next steps.

b. Tag your image with the repositoryUri value from the previous output: docker tag
multiline-app-image repositoryUri

Example: docker tag multiline-app-image xxxxxxxxxxxx.dkr.ecr.us-
east-1.amazonaws.com/multiline-app-repo

c. Run the docker image to verify it ran correctly: docker images —filter
reference=repositoryUri

In the output, the repository name changes from multiline-app-repo to the
repositoryUri value.

d. Push the image to Amazon ECR: docker push
aws_account_id.dkr.ecr.region.amazonaws.com/repository name

Example: docker push xxxxxxxxxxxx.dkr.ecr.us-east-1.amazonaws.com/
multiline-app-repo

Create the task definition and run the task

1. Create a task definition file with the file name multiline-task-definition.json.

2. Paste the following contents in the multiline-task-definition.json file:

{
 "family": "firelens-example-multiline",
 "taskRoleArn": "task role ARN,

Parse and concatenate options 1240

Amazon Elastic Container Service Developer Guide

 "executionRoleArn": "execution role ARN",
 "containerDefinitions": [
 {
 "essential": true,
 "image": "aws_account_id.dkr.ecr.us-east-1.amazonaws.com/fluent-bit-
multiline-image:latest",
 "name": "log_router",
 "firelensConfiguration": {
 "type": "fluentbit",
 "options": {
 "config-file-type": "file",
 "config-file-value": "/extra.conf"
 }
 },
 "memoryReservation": 50
 },
 {
 "essential": true,
 "image": "aws_account_id.dkr.ecr.us-east-1.amazonaws.com/multiline-app-
image:latest",
 "name": "app",
 "logConfiguration": {
 "logDriver": "awsfirelens",
 "options": {
 "Name": "cloudwatch_logs",
 "region": "us-east-1",
 "log_group_name": "multiline-test/application",
 "auto_create_group": "true",
 "log_stream_prefix": "multiline-"
 }
 },
 "memoryReservation": 100
 }
],
 "requiresCompatibilities": ["FARGATE"],
 "networkMode": "awsvpc",
 "cpu": "256",
 "memory": "512"
}

Replace the following in the multiline-task-definition.json task definition:

a. task role ARN

Parse and concatenate options 1241

Amazon Elastic Container Service Developer Guide

To find the task role ARN, go to the IAM console. Choose Roles and find the ecs-task-
role-for-firelens task role that you created. Choose the role and copy the ARN that
appears in the Summary section.

b. execution role ARN

To find the execution role ARN, go to the IAM console. Choose Roles and find the
ecsTaskExecutionRole role. Choose the role and copy the ARN that appears in the
Summary section.

c. aws_account_id

To find your aws_account_id, log into the AWS Management Console. Choose your user
name on the top right and copy your Account ID.

d. us-east-1

Replace the region if necessary.

3. Register the task definition file: aws ecs register-task-definition --cli-input-
json file://multiline-task-definition.json --region region

4. Open the console at https://console.aws.amazon.com/ecs/v2.

5. In the navigation pane, choose Task Definitions and then choose the firelens-example-
multiline family because we registered the task definition to this family in the first line of
the task definition above.

6. Choose the latest version.

7. Choose the Deploy, Run task.

8. On the Run Task page, For Cluster, choose the cluster, and then under Networking, for
Subnets, choose the available subnets for your task.

9. Choose Create.

Verify that multiline log messages in Amazon CloudWatch appear concatenated

1. Open the CloudWatch console at https://console.aws.amazon.com/cloudwatch/.

2. From the navigation pane, expand Logs and choose Log groups.

3. Choose the multiline-test/applicatio log group.

4. Choose the log. View messages. Lines that matched the rules in the parser file are
concatenated and appear as a single message.

Parse and concatenate options 1242

https://console.aws.amazon.com/ecs/v2
https://console.aws.amazon.com/cloudwatch/

Amazon Elastic Container Service Developer Guide

The following log snippet shows lines concatenated in a single Java stack trace event:

{
 "container_id": "xxxxxx",
 "container_name": "app",
 "source": "stdout",
 "log": "Dec 14 06:41:08 Exception in thread \"main\"
 java.lang.RuntimeException: Something has gone wrong, aborting!\n
 at com.myproject.module.MyProject.badMethod(MyProject.java:22)\n at
 com.myproject.module.MyProject.oneMoreMethod(MyProject.java:18)\n
 at com.myproject.module.MyProject.anotherMethod(MyProject.java:14)\n
 at com.myproject.module.MyProject.someMethod(MyProject.java:10)\n at
 com.myproject.module.MyProject.main(MyProject.java:6)",
 "ecs_cluster": "default",
 "ecs_task_arn": "arn:aws:ecs:us-east-1:xxxxxxxxxxxx:task/default/xxxxxx",
 "ecs_task_definition": "firelens-example-multiline:2"
}

The following log snippet shows how the same message appears with just a single line if you
run an Amazon ECS container that is not configured to concatenate multiline log messages.

{
 "log": "Dec 14 06:41:08 Exception in thread \"main\"
 java.lang.RuntimeException: Something has gone wrong, aborting!",
 "container_id": "xxxxxx-xxxxxx",
 "container_name": "app",
 "source": "stdout",
 "ecs_cluster": "default",
 "ecs_task_arn": "arn:aws:ecs:us-east-1:xxxxxxxxxxxx:task/default/xxxxxx",
 "ecs_task_definition": "firelens-example-multiline:3"
}

Example: Use a Fluent Bit built-in parser

In this example, you will complete the following steps:

1. Build and upload the image for a Fluent Bit container.

2. Build and upload the image for a demo multiline application that runs, fails, and generates a
multiline stack trace.

Parse and concatenate options 1243

Amazon Elastic Container Service Developer Guide

3. Create the task definition and run the task.

4. View the logs to verify that messages that span multiple lines appear concatenated.

Build and upload the image for a Fluent Bit container

This image will include a configuration file that references the Fluent Bit parser.

1. Create a folder with the name FluentBitDockerImage.

2. Within the FluentBitDockerImage folder, create a custom configuration file that references
the Fluent Bit built-in parser file.

For more information about the custom configuration file, see Specifying a custom
configuration file in the Amazon Elastic Container Service Developer Guide

a. Paste the following contents in the file:

[FILTER]
 name multiline
 match *
 multiline.key_content log
 multiline.parser go

b. Save the file as extra.conf.

3. Within the FluentBitDockerImage folder, create the Dockerfile with the Fluent Bit image
and the parser and configuration files that you created.

a. Paste the following contents in the file:

FROM public.ecr.aws/aws-observability/aws-for-fluent-bit:latest
ADD extra.conf /extra.conf

b. Save the file as Dockerfile.

4. Using the Dockerfile, build a custom Fluent Bit image with the custom configuration file
included.

Note

You can place the configuration file anywhere in the Docker image except /fluent-
bit/etc/fluent-bit.conf as this file path is used by FireLens.

Parse and concatenate options 1244

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/firelens-taskdef.html#firelens-taskdef-customconfig
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/firelens-taskdef.html#firelens-taskdef-customconfig

Amazon Elastic Container Service Developer Guide

a. Build the image: docker build -t fluent-bit-multiline-image .

Where: fluent-bit-multiline-image is the name for the image in this example.

b. Verify that the image was created correctly: docker images —filter
reference=fluent-bit-multiline-image

If successful, the output shows the image and the latest tag.

5. Upload the custom Fluent Bit image to Amazon Elastic Container Registry.

a. Create an Amazon ECR repository to store the image: aws ecr create-repository
--repository-name fluent-bit-multiline-repo --region us-east-1

Where: fluent-bit-multiline-repo is the name for the repository and us-east-1 is
the region in this example.

The output gives you the details of the new repository.

b. Tag your image with the repositoryUri value from the previous output: docker tag
fluent-bit-multiline-image repositoryUri

Example: docker tag fluent-bit-multiline-image
xxxxxxxxxxxx.dkr.ecr.us-east-1.amazonaws.com/fluent-bit-multiline-
repo

c. Run the docker image to verify it ran correctly: docker images —filter
reference=repositoryUri

In the output, the repository name changes from fluent-bit-multiline-repo to the
repositoryUri.

d. Authenticate to Amazon ECR by running the aws ecr get-login-password command
and specifying the registry ID you want to authenticate to: aws ecr get-login-
password | docker login --username AWS --password-stdin registry
ID.dkr.ecr.region.amazonaws.com

Example: ecr get-login-password | docker login --username AWS --
password-stdin xxxxxxxxxxxx.dkr.ecr.us-east-1.amazonaws.com

A successful login message appears.

Parse and concatenate options 1245

Amazon Elastic Container Service Developer Guide

e. Push the image to Amazon ECR: docker push registry
ID.dkr.ecr.region.amazonaws.com/repository name

Example: docker push xxxxxxxxxxxx.dkr.ecr.us-east-1.amazonaws.com/
fluent-bit-multiline-repo

Build and upload the image for a demo multiline application

This image will include a Python script file that runs the application and a sample log file.

1. Create a folder named multiline-app: mkdir multiline-app

2. Create a Python script file.

a. Within the multiline-app folder, create a file and name it main.py.

b. Paste the following contents in the file:

import os
import time
file1 = open('/test.log', 'r')
Lines = file1.readlines()

count = 0

for i in range(10):
 print("app running normally...")
 time.sleep(1)

Strips the newline character
for line in Lines:
 count += 1
 print(line.rstrip())
print(count)
print("app terminated.")

c. Save the main.py file.

3. Create a sample log file.

a. Within the multiline-app folder, create a file and name it test.log.

b. Paste the following contents in the file:

Parse and concatenate options 1246

Amazon Elastic Container Service Developer Guide

panic: my panic

goroutine 4 [running]:
panic(0x45cb40, 0x47ad70)
 /usr/local/go/src/runtime/panic.go:542 +0x46c fp=0xc42003f7b8 sp=0xc42003f710
 pc=0x422f7c
main.main.func1(0xc420024120)
 foo.go:6 +0x39 fp=0xc42003f7d8 sp=0xc42003f7b8 pc=0x451339
runtime.goexit()
 /usr/local/go/src/runtime/asm_amd64.s:2337 +0x1 fp=0xc42003f7e0
 sp=0xc42003f7d8 pc=0x44b4d1
created by main.main
 foo.go:5 +0x58

goroutine 1 [chan receive]:
runtime.gopark(0x4739b8, 0xc420024178, 0x46fcd7, 0xc, 0xc420028e17, 0x3)
 /usr/local/go/src/runtime/proc.go:280 +0x12c fp=0xc420053e30 sp=0xc420053e00
 pc=0x42503c
runtime.goparkunlock(0xc420024178, 0x46fcd7, 0xc, 0x1000f010040c217, 0x3)
 /usr/local/go/src/runtime/proc.go:286 +0x5e fp=0xc420053e70 sp=0xc420053e30
 pc=0x42512e
runtime.chanrecv(0xc420024120, 0x0, 0xc420053f01, 0x4512d8)
 /usr/local/go/src/runtime/chan.go:506 +0x304 fp=0xc420053f20 sp=0xc420053e70
 pc=0x4046b4
runtime.chanrecv1(0xc420024120, 0x0)
 /usr/local/go/src/runtime/chan.go:388 +0x2b fp=0xc420053f50 sp=0xc420053f20
 pc=0x40439b
main.main()
 foo.go:9 +0x6f fp=0xc420053f80 sp=0xc420053f50 pc=0x4512ef
runtime.main()
 /usr/local/go/src/runtime/proc.go:185 +0x20d fp=0xc420053fe0 sp=0xc420053f80
 pc=0x424bad
runtime.goexit()
 /usr/local/go/src/runtime/asm_amd64.s:2337 +0x1 fp=0xc420053fe8
 sp=0xc420053fe0 pc=0x44b4d1

goroutine 2 [force gc (idle)]:
runtime.gopark(0x4739b8, 0x4ad720, 0x47001e, 0xf, 0x14, 0x1)
 /usr/local/go/src/runtime/proc.go:280 +0x12c fp=0xc42003e768 sp=0xc42003e738
 pc=0x42503c
runtime.goparkunlock(0x4ad720, 0x47001e, 0xf, 0xc420000114, 0x1)
 /usr/local/go/src/runtime/proc.go:286 +0x5e fp=0xc42003e7a8 sp=0xc42003e768
 pc=0x42512e

Parse and concatenate options 1247

Amazon Elastic Container Service Developer Guide

runtime.forcegchelper()
 /usr/local/go/src/runtime/proc.go:238 +0xcc fp=0xc42003e7e0 sp=0xc42003e7a8
 pc=0x424e5c
runtime.goexit()
 /usr/local/go/src/runtime/asm_amd64.s:2337 +0x1 fp=0xc42003e7e8
 sp=0xc42003e7e0 pc=0x44b4d1
created by runtime.init.4
 /usr/local/go/src/runtime/proc.go:227 +0x35

goroutine 3 [GC sweep wait]:
runtime.gopark(0x4739b8, 0x4ad7e0, 0x46fdd2, 0xd, 0x419914, 0x1)
 /usr/local/go/src/runtime/proc.go:280 +0x12c fp=0xc42003ef60 sp=0xc42003ef30
 pc=0x42503c
runtime.goparkunlock(0x4ad7e0, 0x46fdd2, 0xd, 0x14, 0x1)
 /usr/local/go/src/runtime/proc.go:286 +0x5e fp=0xc42003efa0 sp=0xc42003ef60
 pc=0x42512e
runtime.bgsweep(0xc42001e150)
 /usr/local/go/src/runtime/mgcsweep.go:52 +0xa3 fp=0xc42003efd8
 sp=0xc42003efa0 pc=0x419973
runtime.goexit()
 /usr/local/go/src/runtime/asm_amd64.s:2337 +0x1 fp=0xc42003efe0
 sp=0xc42003efd8 pc=0x44b4d1
created by runtime.gcenable
 /usr/local/go/src/runtime/mgc.go:216 +0x58
one more line, no multiline

c. Save the test.log file.

4. Within the multiline-app folder, create the Dockerfile.

a. Paste the following contents in the file:

FROM public.ecr.aws/amazonlinux/amazonlinux:latest
ADD test.log /test.log

RUN yum upgrade -y && yum install -y python3

WORKDIR /usr/local/bin

COPY main.py .

CMD ["python3", "main.py"]

b. Save the Dockerfile file.

Parse and concatenate options 1248

Amazon Elastic Container Service Developer Guide

5. Using the Dockerfile, build an image.

a. Build the image: docker build -t multiline-app-image .

Where: multiline-app-image is the name for the image in this example.

b. Verify that the image was created correctly: docker images —filter
reference=multiline-app-image

If successful, the output shows the image and the latest tag.

6. Upload the image to Amazon Elastic Container Registry.

a. Create an Amazon ECR repository to store the image: aws ecr create-repository
--repository-name multiline-app-repo --region us-east-1

Where: multiline-app-repo is the name for the repository and us-east-1 is the
region in this example.

The output gives you the details of the new repository. Note the repositoryUri value as
you will need it in the next steps.

b. Tag your image with the repositoryUri value from the previous output: docker tag
multiline-app-image repositoryUri

Example: docker tag multiline-app-image xxxxxxxxxxxx.dkr.ecr.us-
east-1.amazonaws.com/multiline-app-repo

c. Run the docker image to verify it ran correctly: docker images —filter
reference=repositoryUri

In the output, the repository name changes from multiline-app-repo to the
repositoryUri value.

d. Push the image to Amazon ECR: docker push
aws_account_id.dkr.ecr.region.amazonaws.com/repository name

Example: docker push xxxxxxxxxxxx.dkr.ecr.us-east-1.amazonaws.com/
multiline-app-repo

Create the task definition and run the task

1. Create a task definition file with the file name multiline-task-definition.json.
Parse and concatenate options 1249

Amazon Elastic Container Service Developer Guide

2. Paste the following contents in the multiline-task-definition.json file:

{
 "family": "firelens-example-multiline",
 "taskRoleArn": "task role ARN,
 "executionRoleArn": "execution role ARN",
 "containerDefinitions": [
 {
 "essential": true,
 "image": "aws_account_id.dkr.ecr.us-east-1.amazonaws.com/fluent-bit-
multiline-image:latest",
 "name": "log_router",
 "firelensConfiguration": {
 "type": "fluentbit",
 "options": {
 "config-file-type": "file",
 "config-file-value": "/extra.conf"
 }
 },
 "memoryReservation": 50
 },
 {
 "essential": true,
 "image": "aws_account_id.dkr.ecr.us-east-1.amazonaws.com/multiline-app-
image:latest",
 "name": "app",
 "logConfiguration": {
 "logDriver": "awsfirelens",
 "options": {
 "Name": "cloudwatch_logs",
 "region": "us-east-1",
 "log_group_name": "multiline-test/application",
 "auto_create_group": "true",
 "log_stream_prefix": "multiline-"
 }
 },
 "memoryReservation": 100
 }
],
 "requiresCompatibilities": ["FARGATE"],
 "networkMode": "awsvpc",
 "cpu": "256",
 "memory": "512"

Parse and concatenate options 1250

Amazon Elastic Container Service Developer Guide

}

Replace the following in the multiline-task-definition.json task definition:

a. task role ARN

To find the task role ARN, go to the IAM console. Choose Roles and find the ecs-task-
role-for-firelens task role that you created. Choose the role and copy the ARN that
appears in the Summary section.

b. execution role ARN

To find the execution role ARN, go to the IAM console. Choose Roles and find the
ecsTaskExecutionRole role. Choose the role and copy the ARN that appears in the
Summary section.

c. aws_account_id

To find your aws_account_id, log into the AWS Management Console. Choose your user
name on the top right and copy your Account ID.

d. us-east-1

Replace the region if necessary.

3. Register the task definition file: aws ecs register-task-definition --cli-input-
json file://multiline-task-definition.json --region us-east-1

4. Open the console at https://console.aws.amazon.com/ecs/v2.

5. In the navigation pane, choose Task Definitions and then choose the firelens-example-
multiline family because we registered the task definition to this family in the first line of
the task definition above.

6. Choose the latest version.

7. Choose the Deploy, Run task.

8. On the Run Task page, For Cluster, choose the cluster, and then under Networking, for
Subnets, choose the available subnets for your task.

9. Choose Create.

Verify that multiline log messages in Amazon CloudWatch appear concatenated

1. Open the CloudWatch console at https://console.aws.amazon.com/cloudwatch/.

Parse and concatenate options 1251

https://console.aws.amazon.com/ecs/v2
https://console.aws.amazon.com/cloudwatch/

Amazon Elastic Container Service Developer Guide

2. From the navigation pane, expand Logs and choose Log groups.

3. Choose the multiline-test/applicatio log group.

4. Choose the log and view the messages. Lines that matched the rules in the parser file are
concatenated and appear as a single message.

The following log snippet shows a Go stack trace that is concatenated into a single event:

{
 "log": "panic: my panic\n\ngoroutine 4 [running]:\npanic(0x45cb40,
 0x47ad70)\n /usr/local/go/src/runtime/panic.go:542 +0x46c fp=0xc42003f7b8
 sp=0xc42003f710 pc=0x422f7c\nmain.main.func1(0xc420024120)\n foo.go:6
 +0x39 fp=0xc42003f7d8 sp=0xc42003f7b8 pc=0x451339\nruntime.goexit()\n /usr/
local/go/src/runtime/asm_amd64.s:2337 +0x1 fp=0xc42003f7e0 sp=0xc42003f7d8
 pc=0x44b4d1\ncreated by main.main\n foo.go:5 +0x58\n\ngoroutine 1 [chan receive]:
\nruntime.gopark(0x4739b8, 0xc420024178, 0x46fcd7, 0xc, 0xc420028e17, 0x3)\n /usr/
local/go/src/runtime/proc.go:280 +0x12c fp=0xc420053e30 sp=0xc420053e00 pc=0x42503c
\nruntime.goparkunlock(0xc420024178, 0x46fcd7, 0xc, 0x1000f010040c217, 0x3)\n
 /usr/local/go/src/runtime/proc.go:286 +0x5e fp=0xc420053e70 sp=0xc420053e30
 pc=0x42512e\nruntime.chanrecv(0xc420024120, 0x0, 0xc420053f01, 0x4512d8)\n
 /usr/local/go/src/runtime/chan.go:506 +0x304 fp=0xc420053f20 sp=0xc420053e70
 pc=0x4046b4\nruntime.chanrecv1(0xc420024120, 0x0)\n /usr/local/go/src/runtime/
chan.go:388 +0x2b fp=0xc420053f50 sp=0xc420053f20 pc=0x40439b\nmain.main()\n
 foo.go:9 +0x6f fp=0xc420053f80 sp=0xc420053f50 pc=0x4512ef\nruntime.main()\n
 /usr/local/go/src/runtime/proc.go:185 +0x20d fp=0xc420053fe0 sp=0xc420053f80
 pc=0x424bad\nruntime.goexit()\n /usr/local/go/src/runtime/asm_amd64.s:2337
 +0x1 fp=0xc420053fe8 sp=0xc420053fe0 pc=0x44b4d1\n\ngoroutine 2 [force gc
 (idle)]:\nruntime.gopark(0x4739b8, 0x4ad720, 0x47001e, 0xf, 0x14, 0x1)\n /
usr/local/go/src/runtime/proc.go:280 +0x12c fp=0xc42003e768 sp=0xc42003e738
 pc=0x42503c\nruntime.goparkunlock(0x4ad720, 0x47001e, 0xf, 0xc420000114, 0x1)\n
 /usr/local/go/src/runtime/proc.go:286 +0x5e fp=0xc42003e7a8 sp=0xc42003e768
 pc=0x42512e\nruntime.forcegchelper()\n /usr/local/go/src/runtime/proc.go:238
 +0xcc fp=0xc42003e7e0 sp=0xc42003e7a8 pc=0x424e5c\nruntime.goexit()\n /usr/
local/go/src/runtime/asm_amd64.s:2337 +0x1 fp=0xc42003e7e8 sp=0xc42003e7e0
 pc=0x44b4d1\ncreated by runtime.init.4\n /usr/local/go/src/runtime/proc.go:227
 +0x35\n\ngoroutine 3 [GC sweep wait]:\nruntime.gopark(0x4739b8, 0x4ad7e0,
 0x46fdd2, 0xd, 0x419914, 0x1)\n /usr/local/go/src/runtime/proc.go:280 +0x12c
 fp=0xc42003ef60 sp=0xc42003ef30 pc=0x42503c\nruntime.goparkunlock(0x4ad7e0,
 0x46fdd2, 0xd, 0x14, 0x1)\n /usr/local/go/src/runtime/proc.go:286 +0x5e
 fp=0xc42003efa0 sp=0xc42003ef60 pc=0x42512e\nruntime.bgsweep(0xc42001e150)\n
 /usr/local/go/src/runtime/mgcsweep.go:52 +0xa3 fp=0xc42003efd8 sp=0xc42003efa0
 pc=0x419973\nruntime.goexit()\n /usr/local/go/src/runtime/asm_amd64.s:2337 +0x1

Parse and concatenate options 1252

Amazon Elastic Container Service Developer Guide

 fp=0xc42003efe0 sp=0xc42003efd8 pc=0x44b4d1\ncreated by runtime.gcenable\n /usr/
local/go/src/runtime/mgc.go:216 +0x58",
 "container_id": "xxxxxx-xxxxxx",
 "container_name": "app",
 "source": "stdout",
 "ecs_cluster": "default",
 "ecs_task_arn": "arn:aws:ecs:us-east-1:xxxxxxxxxxxx:task/default/xxxxxx",
 "ecs_task_definition": "firelens-example-multiline:2"
}

The following log snippet shows how the same event appears if you run an ECS container that
is not configured to concatenate multiline log messages. The log field contains a single line.

{
 "log": "panic: my panic",
 "container_id": "xxxxxx-xxxxxx",
 "container_name": "app",
 "source": "stdout",
 "ecs_cluster": "default",
 "ecs_task_arn": "arn:aws:ecs:us-east-1:xxxxxxxxxxxx:task/default/xxxxxx",
 "ecs_task_definition": "firelens-example-multiline:3"

Note

If your logs go to log files instead of the standard output, we recommend specifying the
multiline.parser and multiline.key_content configuration parameters in the Tail
input plugin instead of the Filter.

Using Amazon EFS file systems with Amazon ECS using the
console

Amazon Elastic File System (Amazon EFS) provides simple, scalable file storage for use with
your Amazon ECS tasks. With Amazon EFS, storage capacity is elastic, growing and shrinking
automatically as you add and remove files. Your applications can have the storage they need, when
they need it.

Tutorial: Using Amazon EFS 1253

https://docs.fluentbit.io/manual/pipeline/inputs/tail#multiline-support
https://docs.fluentbit.io/manual/pipeline/inputs/tail#multiline-support

Amazon Elastic Container Service Developer Guide

You can use Amazon EFS file systems with Amazon ECS to access file system data across your fleet
of Amazon ECS tasks. That way, your tasks have access to the same persistent storage, no matter
the infrastructure or container instance on which they land. When you reference your Amazon EFS
file system and container mount point in your Amazon ECS task definition, Amazon ECS takes care
of mounting the file system in your container. The following sections help you get started using
Amazon EFS with Amazon ECS.

This feature is supported by tasks that use both the EC2 and Fargate launch types, however this
tutorial will use an Amazon ECS task that uses the EC2 launch type. This tutorial is also meant to
be followed step by step, however if you already have some of these resources created on your
account then you may be able to skip some steps.

Note

Amazon EFS may not be available in all Regions. For more information about which Regions
support Amazon EFS, see Amazon Elastic File System Endpoints and Quotas in the AWS
General Reference.

Step 1: Create an Amazon ECS cluster

Use the following steps to create an Amazon ECS cluster.

To create a new cluster (Amazon ECS console)

Before you begin, assign the appropriate IAM permission. For more information, see the section
called “Cluster examples”.

1. Open the console at https://console.aws.amazon.com/ecs/v2.

2. From the navigation bar, select the Region to use.

3. In the navigation pane, choose Clusters.

4. On the Clusters page, choose Create cluster.

5. Under Cluster configuration, for Cluster name, enter EFS-tutorial for the cluster name.

6. (Optional) To change the VPC and subnets where your tasks and services launch, under
Networking, perform any of the following operations:

• To remove a subnet, under Subnets, choose X for each subnet that you want to remove.

Step 1: Create an Amazon ECS cluster 1254

https://docs.aws.amazon.com/general/latest/gr/elasticfilesystem.html
https://console.aws.amazon.com/ecs/v2

Amazon Elastic Container Service Developer Guide

• To change to a VPC other than the default VPC, under VPC, choose an existing VPC, and
then under Subnets, select each subnet.

7. To add Amazon EC2 instances to your cluster, expand Infrastructure, and then select Amazon
EC2 instances. Next, configure the Auto Scaling group which acts as the capacity provider:

• To create a Auto Scaling group, from Auto Scaling group (ASG), select Create new group,
and then provide the following details about the group:

• For Operating system/Architecture, choose Amazon Linux 2.

• For EC2 instance type, choose t2.micro.

For SSH key pair, choose the pair that proves your identity when you connect to the
instance.

• For Capacity, enter 1.

8. Choose Create.

Step 2: Create a security group for Amazon EC2 instances and the
Amazon EFS file system

In this step, you create a security group for your Amazon EC2 instances that allows inbound
network traffic on port 80 and your Amazon EFS file system that allows inbound access from your
container instances.

Create a security group for your Amazon EC2 instances with the following options:

• Security group name - a unique name for your security group.

• VPC - the VPC that you identified earlier for your cluster.

• Inbound rule

• Type - HTTP

• Source - 0.0.0.0/0.

Create a security group for your Amazon EFS file system with the following options:

• Security group name - a unique name for your security group. For example, EFS-access-for-
sg-dc025fa2.

• VPC - the VPC that you identified earlier for your cluster.

Step 2: Create a security group for Amazon EC2 instances and the Amazon EFS file system 1255

Amazon Elastic Container Service Developer Guide

• Inbound rule

• Type - NFS

• Source - Custom with the ID of the security group you created for your instances.

For information about how to create a security group, see Create a security group in the Amazon
EC2 User Guide for Linux Instances.

Step 3: Create an Amazon EFS file system

In this step, you create an Amazon EFS file system.

To create an Amazon EFS file system for Amazon ECS tasks.

1. Open the Amazon Elastic File System console at https://console.aws.amazon.com/efs/.

2. Choose Create file system.

3. Enter a name for your file system and then choose the VPC that your container instances are
hosted in. By default, each subnet in the specified VPC receives a mount target that uses the
default security group for that VPC. Then, choose Customize.

Note

This tutorial assumes that your Amazon EFS file system, Amazon ECS cluster, container
instances, and tasks are in the same VPC. For more information about mounting a file
system from a different VPC, see Walkthrough: Mount a file system from a different
VPC in the Amazon EFS User Guide.

4. On the File system settings page, configure optional settings and then under Performance
settings, choose the Bursting throughput mode for your file system. After you have
configured settings, select Next.

a. (Optional) Add tags for your file system. For example, you could specify a unique name for
the file system by entering that name in the Value column next to the Name key.

b. (Optional) Enable lifecycle management to save money on infrequently accessed storage.
For more information, see EFS Lifecycle Management in the Amazon Elastic File System
User Guide.

c. (Optional) Enable encryption. Select the check box to enable encryption of your Amazon
EFS file system at rest.

Step 3: Create an Amazon EFS file system 1256

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/working-with-security-groups.html#creating-security-group
https://console.aws.amazon.com/efs/
https://docs.aws.amazon.com/efs/latest/ug/efs-different-vpc.html
https://docs.aws.amazon.com/efs/latest/ug/efs-different-vpc.html
https://docs.aws.amazon.com/efs/latest/ug/lifecycle-management-efs.html

Amazon Elastic Container Service Developer Guide

5. On the Network access page, under Mount targets, replace the existing security group
configuration for every availability zone with the security group you created for the file system
in Step 2: Create a security group for Amazon EC2 instances and the Amazon EFS file system
and then choose Next.

6. You do not need to configure File system policy for this tutorial, so you can skip the section by
choosing Next.

7. Review your file system options and choose Create to complete the process.

8. From the File systems screen, record the File system ID. In the next step, you will reference
this value in your Amazon ECS task definition.

Step 4: Add content to the Amazon EFS file system

In this step, you mount the Amazon EFS file system to an Amazon EC2 instance and add content to
it. This is for testing purposes in this tutorial, to illustrate the persistent nature of the data. When
using this feature you would normally have your application or another method of writing data to
your Amazon EFS file system.

To create an Amazon EC2 instance and mount the Amazon EFS file system

1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.

2. Choose Launch Instance.

3. Under Application and OS Images (Amazon Machine Image), select the Amazon Linux 2 AMI
(HVM).

4. Under Instance type, keep the default instance type, t2.micro.

5. Under Key pair (login), select a key pair for SSH access to the instance.

6. Under Network settings, select the VPC that you specified for your Amazon EFS file system
and Amazon ECS cluster. Select a subnet and the instance security group created in Step 2:
Create a security group for Amazon EC2 instances and the Amazon EFS file system. Configure
the instance's security group. Ensure that Auto-assign public IP is enabled.

7. Under Configure storage, choose the Edit button for file systems and then choose EFS. Select
the file system you created in Step 3: Create an Amazon EFS file system. You can optionally
change the mount point or leave the default value.

Step 4: Add content to the Amazon EFS file system 1257

https://console.aws.amazon.com/ec2/

Amazon Elastic Container Service Developer Guide

Important

Your must select a subnet before you can add a file system to the instance.

8. Clear the Automatically create and attach security groups. Leave the other check box
selected. Choose Add shared file system.

9. Under Advanced Details, ensure that the user data script is populated automatically with the
Amazon EFS file system mounting steps.

10. Under Summary, ensure the Number of instances is 1. Choose Launch instance.

11. On the Launch an instance page, choose View all instances to see the status of your
instances. Initially, the Instance state status is PENDING. After the state changes to RUNNING
and the instance passes all status checks, the instance is ready for use.

Now, you connect to the Amazon EC2 instance and add content to the Amazon EFS file system.

To connect to the Amazon EC2 instance and add content to the Amazon EFS file system

1. SSH to the Amazon EC2 instance you created. For more information, see Connect to Your Linux
Instance in the Amazon EC2 User Guide for Linux Instances.

2. From the terminal window, run the df -T command to verify that the Amazon EFS file system is
mounted. In the following output, we have highlighted the Amazon EFS file system mount.

$ df -T
Filesystem Type 1K-blocks Used Available Use% Mounted on
devtmpfs devtmpfs 485468 0 485468 0% /dev
tmpfs tmpfs 503480 0 503480 0% /dev/shm
tmpfs tmpfs 503480 424 503056 1% /run
tmpfs tmpfs 503480 0 503480 0% /sys/fs/
cgroup
/dev/xvda1 xfs 8376300 1310952 7065348 16% /
127.0.0.1:/ nfs4 9007199254739968 0 9007199254739968 0% /mnt/efs/fs1
tmpfs tmpfs 100700 0 100700 0% /run/
user/1000

3. Navigate to the directory that the Amazon EFS file system is mounted at. In the example
above, that is /mnt/efs/fs1.

4. Create a file named index.html with the following content:

Step 4: Add content to the Amazon EFS file system 1258

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/AccessingInstances.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/AccessingInstances.html

Amazon Elastic Container Service Developer Guide

<html>
 <body>
 <h1>It Works!</h1>
 <p>You are using an Amazon EFS file system for persistent container
 storage.</p>
 </body>
</html>

Step 5: Create a task definition

The following task definition creates a data volume named efs-html. The nginx container
mounts the host data volume at the NGINX root, /usr/share/nginx/html.

To create a new task definition using the Amazon ECS console

1. Open the console at https://console.aws.amazon.com/ecs/v2.

2. In the navigation pane, choose Task definitions.

3. Choose Create new task definition, Create new task definition with JSON.

4. In the JSON editor box, copy and paste the following JSON text, replacing the fileSystemId
with the ID of your Amazon EFS file system.

{
 "containerDefinitions": [
 {
 "memory": 128,
 "portMappings": [
 {
 "hostPort": 80,
 "containerPort": 80,
 "protocol": "tcp"
 }
],
 "essential": true,
 "mountPoints": [
 {
 "containerPath": "/usr/share/nginx/html",
 "sourceVolume": "efs-html"
 }
],

Step 5: Create a task definition 1259

https://console.aws.amazon.com/ecs/v2

Amazon Elastic Container Service Developer Guide

 "name": "nginx",
 "image": "nginx"
 }
],
 "volumes": [
 {
 "name": "efs-html",
 "efsVolumeConfiguration": {
 "fileSystemId": "fs-1324abcd",
 "transitEncryption": "ENABLED"
 }
 }
],
 "family": "efs-tutorial",
 "executionRoleArn":"arn:aws::iam::111122223333:role/ecsTaskExecutionRole"
}

Note

You can add the following permissions to your Amazon ECS task execution IAM role to
allow the Amazon ECS agent to locate and mount an Amazon EFS file system to a task
at startup.

• elasticfilesystem:ClientMount

• elasticfilesystem:ClientWrite

• elasticfilesystem:DescribeMountTargets

• elasticfilesystem:DescribeFileSystems

5. Choose Create.

Step 6: Run a task and view the results

Now that your Amazon EFS file system is created and there is web content for the NGINX container
to serve, you can run a task using the task definition that you created. The NGINX web server
serves your simple HTML page. If you update the content in your Amazon EFS file system, those
changes are propagated to any containers that have also mounted that file system.

The task runs in the subnet that you defined for the cluster.

Step 6: Run a task and view the results 1260

Amazon Elastic Container Service Developer Guide

To run a task and view the results using the console

1. Open the console at https://console.aws.amazon.com/ecs/v2.

2. On the Clusters page, select the cluster to run the standalone task in.

Determine the resource from where you launch the service.

To start a service from Steps

Clusters a. On the Clusters page,
select the cluster to
create the service in.

b. From the Tasks tab,
choose Run new task.

Launch type a. On the Task page, choose
the task definition.

b. If there is more than
one revision, select the
revision.

c. Choose Create, Run task.

3. (Optional) Choose how your scheduled task is distributed across your cluster infrastructure.
Expand Compute configuration, and then do the following:

Distribution method Steps

Launch type a. In the Compute options
section, select Launch
type.

b. For Launch type, choose
EC2.

4. For Application type, choose Task.

5. For Task definition, choose the efs-tutorial task definition that you created earlier .

6. For Desired tasks, enter 1.

7. Choose Create.

Step 6: Run a task and view the results 1261

https://console.aws.amazon.com/ecs/v2

Amazon Elastic Container Service Developer Guide

8. On the Cluster page, choose Infrastructure.

9. Under Container Instances, choose the container instance to connect to.

10. On the Container Instance page, under Networking, record the Public IP for your instance.

11. Open a browser and enter the public IP address. You should see the following message:

It works!
You are using an Amazon EFS file system for persistent container storage.

Note

If you do not see the message, make sure that the security group for your container
instance allows inbound network traffic on port 80 and the security group for your file
system allows inbound access from the container instance.

Using FSx for Windows File Server file systems with Amazon
ECS

FSx for Windows File Server provides fully managed Microsoft Windows file servers, that are
backed by a fully native Windows file system. When using FSx for Windows File Server together
with Amazon ECS, you can provision your Windows tasks with persistent, distributed, shared, and
static file storage. For more information, see What Is FSx for Windows File Server? in the FSx for
Windows File Server User Guide.

You can use FSx for Windows File Server to deploy Windows workloads that require access to
shared external storage, highly available regional storage, or high-throughput storage. You can
mount one or more FSx for Windows File Server file system volumes to a container running on
an EC2 Windows instance. You can share FSx for Windows File Server file system volumes among
multiple containers within a single ECS task.

Note

FSx for Windows File Server might not be available in all Regions. For more information
about which Regions support FSx for Windows File Server, see Amazon FSx Endpoints and
Quotas in the AWS General Reference.

Tutorial: Using FSx for Windows File Server 1262

https://docs.aws.amazon.com/fsx/latest/WindowsGuide/what-is.html
https://docs.aws.amazon.com/general/latest/gr/fsxn.html
https://docs.aws.amazon.com/general/latest/gr/fsxn.html

Amazon Elastic Container Service Developer Guide

In this tutorial, you launch an ECS Optimized Windows instance that hosts an FSx for Windows File
Server file system and containers that can access the file system. To do this, you first create an AWS
Directory Service AWS Managed Microsoft Active Directory. Then, you create an Amazon FSx for
Windows File Server file system and an ECS cluster with an Amazon EC2 instance and an ECS task
definition. You configure the task definition for your containers to use the FSx for Windows File
Server file system. Finally, you test the file system.

It takes 20 to 45 minutes each time you launch or delete either the Active Directory or the FSx
for Windows File Server file system. Be prepared to reserve at least 90 minutes to complete the
tutorial or complete the tutorial over a few sessions.

Prerequisites for the tutorial

• An administrative user. See Set up to use Amazon ECS.

• (Optional) A PEM key pair for connecting to your EC2 Windows instance through RDP access. For
information about how to create key pairs, see Amazon EC2 key pairs and Windows instances in
the User Guide for Windows Instances.

• A VPC with at least one public and one private subnet, and one security group. You can use your
default VPC. You don't need a NAT gateway or device. AWS Directory Service doesn't support
Network Address Translation (NAT) with Active Directory. For this to work, the Active Directory,
FSx for Windows File Server file system, ECS Cluster, and EC2 instance must be located within
your VPC. For more information regarding VPCs and Active Directories, see Amazon VPC console
wizard configurations and AWS Managed Microsoft AD Prerequisites.

• The IAM ecsInstanceRole and ecsTaskExecutionRole permissions are associated with your
account. These service-linked roles allow services to make API calls and access containers,
secrets, directories, and file servers on your behalf.

Step 1: Create IAM access roles

Create a cluster with the AWS Management Console.

1. See Amazon ECS container instance IAM role to check whether you have an ecsInstanceRole
and to see how you can create one if you don't have one.

2. We recommend that role policies are customized for minimum permissions in an actual
production environment. For the purpose of working through this tutorial, verify that the
following AWS managed policy is attached to your ecsInstanceRole. Attach the policy if it is
not already attached.

Prerequisites for the tutorial 1263

https://docs.aws.amazon.com/AWSEC2/latest/WindowsGuide/ec2-key-pairs.html
https://docs.aws.amazon.com/vpc/latest/userguide/VPC_wizard.html
https://docs.aws.amazon.com/vpc/latest/userguide/VPC_wizard.html
https://docs.aws.amazon.com/directoryservice/latest/admin-guide/ms_ad_getting_started_prereqs.html

Amazon Elastic Container Service Developer Guide

• AmazonEC2ContainerServiceforEC2Role

• AmazonSSMManagedInstanceCore

• AmazonSSMDirectoryServiceAccess

To attach AWS managed policies.

a. Open the IAM console.

b. In the navigation pane, choose Roles.

c. Choose an AWS managed role.

d. Choose Permissions, Attach policies.

e. To narrow the available policies to attach, use Filter.

f. Select the appropriate policy and choose Attach policy.

3. See Amazon ECS task execution IAM role to check whether you have an ecsTaskExecutionRole
and to see how you can create one if you don't have one.

We recommend that role policies are customized for minimum permissions in an actual
production environment. For the purpose of working through this tutorial, verify that the
following AWS managed policies are attached to your ecsTaskExecutionRole. Attach the
policies if they are not already attached. Use the procedure given in the preceding section to
attach the AWS managed policies.

• SecretsManagerReadWrite

• AmazonFSxReadOnlyAccess

• AmazonSSMReadOnlyAccess

• AmazonECSTaskExecutionRolePolicy

Step 2: Create Windows Active Directory (AD)

1. Follow the steps described in Create Your AWS Managed AD Directory in the AWS Directory
Service Administration Guide. Use the VPC you have designated for this tutorial. On Step 3
of Create Your AWS Managed AD Directory, save the user name and password for use in a
following step. Also, note the fully qualified domain name for future steps. You can go on to
complete the following step while the Active Directory is being created.

Step 2: Create Windows Active Directory (AD) 1264

https://console.aws.amazon.com/iam/
https://docs.aws.amazon.com/directoryservice/latest/admin-guide/ms_ad_getting_started_create_directory.html

Amazon Elastic Container Service Developer Guide

2. Create an AWS Secrets Manager secret to use in the following steps. For more information, see
Getting Started with AWS Secrets Manager in the AWS Secrets Manager User Guide.

a. Open the Secrets Manager console.

b. Click Store a new secret.

c. Select Other type of secrets.

d. For Secret key/value, in the first row, create a key username with value admin. Click on +
Add row.

e. In the new row, create a key password. For value, type in the password you entered in
Step 3 of Create Your AWS Managed AD Directory.

f. Click on the Next button.

g. Provide a secret name and description. Click Next.

h. Click Next. Click Store.

i. From the list of Secrets page, click on the secret you have just created.

j. Save the ARN of the new secret for use in the following steps.

k. You can proceed to the next step while your Active Directory is being created.

Step 3: Verify and update your security group

In this step, you verify and update the rules for the security group that you're using. For this, you
can use the default security group that was created for your VPC.

Verify and update security group.

You need to create or edit your security group to send data from and to the ports, which are
described in Amazon VPC Security Groups in the FSx for Windows File Server User Guide. You can
do this by creating the security group inbound rule shown in the first row of the following table
of inbound rules. This rule allows inbound traffic from network interfaces (and their associated
instances) that are assigned to the security group. All of the cloud resources you create are within
the same VPC and attached to the same security group. Therefore, this rule allows traffic to be
sent to and from the FSx for Windows File Server file system, Active Directory, and ECS instance as
required. The other inbound rules allow traffic to serve the website and RDP access for connecting
to your ECS instance.

The following table shows which security group inbound rules are required for this tutorial.
Step 3: Verify and update your security group 1265

https://docs.aws.amazon.com/secretsmanager/latest/userguide/getting-started.html
https://console.aws.amazon.com/secretsmanager/
https://docs.aws.amazon.com/fsx/latest/WindowsGuide/limit-access-security-groups.html#fsx-vpc-security-groups

Amazon Elastic Container Service Developer Guide

Type Protocol Port range Source

All traffic All All sg-securi
tygroup

HTTPS TCP 443 0.0.0.0/0

RDP TCP 3389 your laptop IP
address

The following table shows which security group outbound rules are required for this tutorial.

Type Protocol Port range Destination

All traffic All All 0.0.0.0/0

1. Open the EC2 console and select Security Groups from the left-hand menu.

2. From the list of security groups now displayed, select check the check-box to the left of the
security group that you are using for this tutorial.

Your security group details are displayed.

3. Edit the inbound and outbound rules by selecting the Inbound rules or Outbound rules tabs
and choosing the Edit inbound rules or Edit outbound rules buttons. Edit the rules to match
those displayed in the preceding tables. After you create your EC2 instance later on in this
tutorial, edit the inbound rule RDP source with the public IP address of your EC2 instance as
described in Connect to your Windows instance from the Amazon EC2 User Guide for Windows
Instances.

Step 4: Create an FSx for Windows File Server file system

After your security group is verified and updated and your Active Directory is created and is in the
active status, create the FSx for Windows File Server file system in the same VPC as your Active

Step 4: Create an FSx for Windows File Server file system 1266

https://console.aws.amazon.com/ec2/
https://docs.aws.amazon.com/AWSEC2/latest/WindowsGuide/connecting_to_windows_instance.html

Amazon Elastic Container Service Developer Guide

Directory. Use the following steps to create an FSx for Windows File Server file system for your
Windows tasks.

Create your first file system.

1. Open the Amazon FSx console.

2. On the dashboard, choose Create file system to start the file system creation wizard.

3. On the Select file system type page, choose FSx for Windows File Server, and then choose
Next. The Create file system page appears.

4. In the File system details section, provide a name for your file system. Naming your file
systems makes it easier to find and manage your them. You can use up to 256 Unicode
characters. Allowed characters are letters, numbers, spaces, and the special characters plus
sign (+). minus sign (-), equal sign (=), period (.), underscore (_), colon (:), and forward slash (/).

5. For Deployment type choose Single-AZ to deploy a file system that is deployed in a single
Availability Zone. Single-AZ 2 is the latest generation of single Availability Zone file systems,
and it supports SSD and HDD storage.

6. For Storage type, choose HDD.

7. For Storage capacity, enter the minimum storage capacity.

8. Keep Throughput capacity at its default setting.

9. In the Network & security section, choose the same Amazon VPC that you chose for your AWS
Directory Service directory.

10. For VPC Security Groups, choose the security group that you verified in Step 3: Verify and
update your security group.

11. For Windows authentication, choose AWS Managed Microsoft Active Directory, and then
choose your AWS Directory Service directory from the list.

12. For Encryption, keep the default Encryption key setting of aws/fsx (default).

13. Keep the default settings for Maintenance preferences.

14. Click on the Next button.

15. Review the file system configuration shown on the Create file system page. For your reference,
note which file system settings you can modify after file system is created. Choose Create file
system.

16. Note the file system ID. You will need to use it in a later step.

Step 4: Create an FSx for Windows File Server file system 1267

https://console.aws.amazon.com/fsx/

Amazon Elastic Container Service Developer Guide

You can go on to the next steps to create a cluster and EC2 instance while the FSx for Windows
File Server file system is being created.

Step 5: Create an Amazon ECS cluster

Create a cluster using the Amazon ECS console

1. Open the console at https://console.aws.amazon.com/ecs/v2.

2. From the navigation bar, select the Region to use.

3. In the navigation pane, choose Clusters.

4. On the Clusters page, choose Create cluster.

5. Under Cluster configuration, for Cluster name, enter windows-fsx-cluster.

6. Expand Infrastructure, clear AWS Fargate (serverless) and then select Amazon EC2 instances.

• To create a Auto Scaling group, from Auto Scaling group (ASG), select Create new group,
and then provide the following details about the group:

• For Operating system/Architecture, choose Windows Server 2019 Core.

• For EC2 instance type, choose t2.medium or t2.micro.

7. Choose Create.

Step 6: Create an Amazon ECS optimized Amazon EC2 instance

Create an Amazon ECS Windows container instance.

To create an Amazon ECS instance

1. Use the aws ssm get-parameters command to retrieve the AMI name for the Region that
hosts your VPC. For more information, see Retrieving Amazon ECS-Optimized AMI metadata.

2. Use the Amazon EC2 console to launch the instance.

a. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.

b. From the navigation bar, select the Region to use.

c. From the EC2 Dashboard, choose Launch instance.

d. For Name, enter a unique name.

Step 5: Create an Amazon ECS cluster 1268

https://console.aws.amazon.com/ecs/v2
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/retrieve-ecs-optimized_windows_AMI.html
https://console.aws.amazon.com/ec2/

Amazon Elastic Container Service Developer Guide

e. For Application and OS Images (Amazon Machine Image), in the search field, enter the
AMI name that you retrieved.

f. For Instance type, choose t2.medium or t2.micro.

g. For Key pair (login), choose a key pair. If you don't specify a key pair, you

h. Under Network settings, for VPC and Subnet, choose your VPC and a public subnet.

i. Under Network settings, for Security group, choose an existing security group, or create
a new one. Ensure that the security group you choose has the inbound and outbound rules
defined in Prerequisites for the tutorial

j. Under Network settings, for Auto-assign Public IP, select Enable.

k. Expand Advanced details, and then for Domain join directory, select the ID of the Active
Directory that you created. This option domain joins your AD when the EC2 instance is
launched.

l. Under Advanced details, for IAM instance profile , choose ecsInstanceRole.

m. Configure your Amazon ECS container instance with the following user data. Under
Advanced Details, paste the following script into the User data field, replacing
cluster_name with the name of your cluster.

<powershell>
Initialize-ECSAgent -Cluster windows-fsx-cluster -EnableTaskIAMRole
</powershell>

n. When you are ready, select the acknowledgment field, and then choose Launch Instances.

o. A confirmation page lets you know that your instance is launching. Choose View Instances
to close the confirmation page and return to the console.

3. Open the console at https://console.aws.amazon.com/ecs/v2.

4. In the navigation pane, choose Clusters, and then choose windows-fsx-cluster.

5. Choose the Infrastructure tab and verify that your instance has been registered in the
windows-fsx-cluster cluster.

Step 7: Register a Windows task definition

Before you can run Windows containers in your Amazon ECS cluster, you must register a task
definition. The following task definition example displays a simple web page. The task launches
two containers that have access to the FSx file system. The first container writes an HTML file to
Step 7: Register a Windows task definition 1269

https://console.aws.amazon.com/ecs/v2

Amazon Elastic Container Service Developer Guide

the file system. The second container downloads the HTML file from the file system and serves the
webpage.

1. Open the console at https://console.aws.amazon.com/ecs/v2.

2. In the navigation pane, choose Task definitions.

3. Choose Create new task definition, Create new task definition with JSON.

4. In the JSON editor box, replace the values for your task execution role and the details about
your FSx file system and then choose Save.

{
 "containerDefinitions": [
 {
 "entryPoint": [
 "powershell",
 "-Command"
],
 "portMappings": [],
 "command": ["New-Item -Path C:\\fsx-windows-dir\\index.html -ItemType
 file -Value '<html> <head> <title>Amazon ECS Sample App</title> <style>body
 {margin-top: 40px; background-color: #333;} </style> </head><body> <div
 style=color:white;text-align:center> <h1>Amazon ECS Sample App</h1> <h2>It
 Works!</h2> <p>You are using Amazon FSx for Windows File Server file system for
 persistent container storage.</p>' -Force"],
 "cpu": 512,
 "memory": 256,
 "image": "mcr.microsoft.com/windows/servercore/iis:windowsservercore-
ltsc2019",
 "essential": false,
 "name": "container1",
 "mountPoints": [
 {
 "sourceVolume": "fsx-windows-dir",
 "containerPath": "C:\\fsx-windows-dir",
 "readOnly": false
 }
]
 },
 {
 "entryPoint": [
 "powershell",
 "-Command"
],

Step 7: Register a Windows task definition 1270

https://console.aws.amazon.com/ecs/v2

Amazon Elastic Container Service Developer Guide

 "portMappings": [
 {
 "hostPort": 443,
 "protocol": "tcp",
 "containerPort": 80
 }
],
 "command": ["Remove-Item -Recurse C:\\inetpub\\wwwroot* -Force;
 Start-Sleep -Seconds 120; Move-Item -Path C:\\fsx-windows-dir\\index.html -
Destination C:\\inetpub\\wwwroot\\index.html -Force; C:\\ServiceMonitor.exe
 w3svc"],
 "mountPoints": [
 {
 "sourceVolume": "fsx-windows-dir",
 "containerPath": "C:\\fsx-windows-dir",
 "readOnly": false
 }
],
 "cpu": 512,
 "memory": 256,
 "image": "mcr.microsoft.com/windows/servercore/iis:windowsservercore-
ltsc2019",
 "essential": true,
 "name": "container2"
 }
],
 "family": "fsx-windows",
 "executionRoleArn": "arn:aws:iam::111122223333:role/ecsTaskExecutionRole",
 "volumes": [
 {
 "name": "fsx-windows-dir",
 "fsxWindowsFileServerVolumeConfiguration": {
 "fileSystemId": "fs-0eeb5730b2EXAMPLE",
 "authorizationConfig": {
 "domain": "example.com",
 "credentialsParameter": "arn:arn-1234"
 },
 "rootDirectory": "share"
 }
 }
]
}

Step 7: Register a Windows task definition 1271

Amazon Elastic Container Service Developer Guide

Step 8: Run a task and view the results

Before running the task, verify that the status of your FSx for Windows File Server file system is
Available. After it is available, you can run a task using the task definition that you created. The
task starts out by creating containers that shuffle an HTML file between them using the file system.
After the shuffle, a web server serves the simple HTML page.

Note

You might not be able to connect to the website from within a VPN.

Run a task and view the results with the Amazon ECS console.

1. Open the console at https://console.aws.amazon.com/ecs/v2.

2. In the navigation pane, choose Clusters, and then choose windows-fsx-cluster .

3. Choose the Tasks tab, and then choose Run new task.

4. For Launch Type, choose EC2.

5. Under Deployment configuration, for Task Definition, choose the fsx-windows, and then
choose Create.

6. When your task status is RUNNING, choose the task ID.

7. Under Containers, when the container1 status is STOPPED, select container2 to view the
container's details.

8. Under Container details for container2, select Network bindings and then click on the
external IP address that is associated with the container. Your browser will open and display
the following message.

Amazon ECS Sample App
It Works!
You are using Amazon FSx for Windows File Server file system for persistent
 container storage.

Note

It may take a few minutes for the message to be displayed. If you don't see this
message after a few minutes, check that you aren't running in a VPN and make sure

Step 8: Run a task and view the results 1272

https://console.aws.amazon.com/ecs/v2

Amazon Elastic Container Service Developer Guide

that the security group for your container instance allows inbound network HTTP
traffic on port 443.

Step 9: Clean up

Note

It takes 20 to 45 minutes to delete the FSx for Windows File Server file system or the AD.
You must wait until the FSx for Windows File Server file system delete operations are
complete before starting the AD delete operations.

Delete FSx for Windows File Server file system.

1. Open the Amazon FSx console

2. Choose the radio button to the left of the FSx for Windows File Server file system that you just
created.

3. Choose Actions.

4. Select Delete file system.

Delete AD.

1. Open the AWS Directory Service console.

2. Choose the radio button to the left of the AD you just created.

3. Choose Actions.

4. Select Delete directory.

Delete the cluster.

1. Open the console at https://console.aws.amazon.com/ecs/v2.

2. In the navigation pane, choose Clusters, and then choose fsx-windows-cluster .

3. Choose Delete cluster.

4. Enter the phrase and then choose Delete.

Step 9: Clean up 1273

https://console.aws.amazon.com/fsx/
https://console.aws.amazon.com/directoryservicev2/
https://console.aws.amazon.com/ecs/v2

Amazon Elastic Container Service Developer Guide

Terminate EC2 instance.

1. Open the Amazon EC2 console.

2. From the left-hand menu, select Instances.

3. Check the box to the left of the EC2 instance you created.

4. Click the Instance state, Terminate instance.

Delete secret.

1. Open the Secrets Manager console.

2. Select the secret you created for this walk through.

3. Click Actions.

4. Select Delete secret.

Deploying Fluent Bit on Amazon ECS for Windows containers

Fluent Bit is a fast and flexible log processor and router supported by various operating systems. It
can be used to route logs to various AWS destinations such as Amazon CloudWatch Logs, Firehose
Amazon S3, and Amazon OpenSearch Service. Fluent Bit supports common partner solutions such
as Datadog, Splunk, and custom HTTP servers. For more information about Fluent Bit, see the
Fluent Bit website.

The AWS for Fluent Bit image is available on Amazon ECR on both the Amazon ECR Public Gallery
and in an Amazon ECR repository in most Regions for high availability. For more information, see
aws-for-fluent-bit on the GitHub website.

This tutorial walks you through how to deploy Fluent Bit containers on their Windows instances
running in Amazon ECS to stream logs generated by the Windows tasks to Amazon CloudWatch for
centralized logging.

This tutorial uses the following approach:

• Fluent Bit runs as a service with the Daemon scheduling strategy. This strategy ensures that a
single instance of Fluent Bit always runs on the container instances in the cluster.

• Listens on port 24224 using the forward input plug-in.

• Expose port 24224 to the host so that the docker runtime can send logs to Fluent Bit using
this exposed port.

Deploying Fluent Bit on Amazon ECS for Windows containers 1274

https://console.aws.amazon.com/ec2/
https://console.aws.amazon.com/secretsmanager/
https://www.datadoghq.com/
https://www.splunk.com/
https://fluentbit.io/
https://github.com/aws/aws-for-fluent-bit
https://github.com/aws/aws-for-fluent-bit

Amazon Elastic Container Service Developer Guide

• Has a configuration which allows Fluent Bit to send the logs records to specified destinations.

• Launch all other Amazon ECS task containers using the fluentd logging driver. For more
information, see Fluentd logging driver on the Docker documentation website.

• Docker connects to the TCP socket 24224 on localhost inside the host namespace.

• The Amazon ECS agent adds labels to the containers which includes the cluster name, task
definition family name, task definition revision number, task ARN, and the container name.
The same information is added to the log record using the labels option of the fluentd docker
logging driver. For more information, see labels, labels-regex, env, and env-regex on the
Docker documentation website.

• Because the async option of the fluentd logging driver is set to true, when the Fluent Bit
container is restarted, docker buffers the logs until the Fluent Bit container is restarted. You
can increase the buffer limit by setting the fluentd-buffer-limit option. For more information,
see fluentd-buffer-limit on the Docker documentation website.

The work flow is as follows:

• The Fluent Bit container starts and listens on port 24224 which is exposed to the host.

• Fluent Bit uses the task IAM role credentials specified in its task definition.

• Other tasks launched on the same instance use the fluentd docker logging driver to connect to
the Fluent Bit container on port 24224.

• When the application containers generate logs, docker runtime tags those records, adds
additional metadata specified in labels, and then forwards them on port 24224 in the host
namespace.

• Fluent Bit receives the log record on port 24224 because it is exposed to the host namespace.

• Fluent Bit performs its internal processing and routes the logs as specified.

This tutorial uses the default CloudWatch Fluent Bit configuration which does the following:

• Creates a new log group for each cluster and task definition family.

• Creates a new log stream for each task container in above generated log group whenever a new
task is launched. Each stream will be marked with the task id to which the container belongs.

• Adds additional metadata including the cluster name, task ARN, task container name, task
definition family, and the task definition revision number in each log entry.

Deploying Fluent Bit on Amazon ECS for Windows containers 1275

https://docs.docker.com/config/containers/logging/fluentd/
https://docs.docker.com/config/containers/logging/fluentd/#labels-labels-regex-env-and-env-regex
https://docs.docker.com/config/containers/logging/fluentd/#fluentd-buffer-limit

Amazon Elastic Container Service Developer Guide

For example, if you have task_1 with container_1 and container_2 and task_2 with
container_3, then the following are the CloudWatch log streams:

• /aws/ecs/windows.ecs_task_1

task-out.TASK_ID.container_1

task-out.TASK_ID.container_2

• /aws/ecs/windows.ecs_task_2

task-out.TASK_ID.container_3

Steps

• Prerequisites

• Step 1: Create the IAM access roles

• Step 2: Create an Amazon ECS Windows container instance

• Step 3: Configure Fluent Bit

• Step 4: Register a Windows Fluent Bit task definition which routes the logs to CloudWatch

• Step 5: Run the ecs-windows-fluent-bit task definition as an Amazon ECS service using the
daemon scheduling strategy

• Step 6: Register a Windows task definition which generates the logs

• Step 7: Run the windows-app-task task definition

• Step 8: Verify the logs on CloudWatch

• Step 9: Clean up

Prerequisites

This tutorial assumes that the following prerequisites have been completed:

• The latest version of the AWS CLI is installed and configured. For more information, see Installing
the AWS Command Line Interface.

• The aws-for-fluent-bit container image is available for the following Windows operating
systems:

• Windows Server 2019 Core

Prerequisites 1276

https://docs.aws.amazon.com/cli/latest/userguide/install-cliv2.html
https://docs.aws.amazon.com/cli/latest/userguide/install-cliv2.html

Amazon Elastic Container Service Developer Guide

• Windows Server 2019 Full

• Windows Server 2022 Core

• Windows Server 2022 Full

• The steps in Set up to use Amazon ECS have been completed.

• You have a cluster. In this tutorial, the cluster name is FluentBit-cluster.

• You have a VPC with a public subnet where the EC2 instance will be launched. You can use your
default VPC. You can also use a private subnet that allows Amazon CloudWatch endpoints to
reach the subnet. For more information about Amazon CloudWatch endpoints, see Amazon
CloudWatch endpoints and quotas in the AWS General Reference. For information about how
to use the Amazon VPC wizard to create a VPC, see the section called “Create a virtual private
cloud”.

Step 1: Create the IAM access roles

Create the Amazon ECS IAM roles.

1. Create the Amazon ECS container instance role named "ecsInstanceRole". For more
information, see Amazon ECS container instance IAM role.

2. Create an IAM role for the Fluent Bit task named fluentTaskRole. For more information, see
the section called “Task IAM role”.

The IAM permissions granted in this IAM role are assumed by the task containers. In order to
allow Fluent Bit to send logs to CloudWatch, you need to attach the following permissions to
the task IAM role.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "logs:CreateLogStream",
 "logs:CreateLogGroup",
 "logs:DescribeLogStreams",
 "logs:PutLogEvents"
],
 "Resource": "*"
 }

Step 1: Create the IAM access roles 1277

https://docs.aws.amazon.com/general/latest/gr/cw_region.html
https://docs.aws.amazon.com/general/latest/gr/cw_region.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/instance_IAM_role.html

Amazon Elastic Container Service Developer Guide

]
}

3. Attach the policy to the role.

a. Save the above content in a file named fluent-bit-policy.json.

b. Run the following command to attach the inline policy to fluentTaskRole IAM role.

aws iam put-role-policy --role-name fluentTaskRole --policy-name
 fluentTaskPolicy --policy-document file://fluent-bit-policy.json

Step 2: Create an Amazon ECS Windows container instance

Create an Amazon ECS Windows container instance.

To create an Amazon ECS instance

1. Use the aws ssm get-parameters command to retrieve the AMI ID for the Region that
hosts your VPC. For more information, see Retrieving Amazon ECS-Optimized AMI metadata.

2. Use the Amazon EC2 console to launch the instance.

a. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.

b. From the navigation bar, select the Region to use.

c. From the EC2 Dashboard, choose Launch instance.

d. For Name, enter a unique name.

e. For Application and OS Images (Amazon Machine Image), choose the AMI that you
retrieved in the first step.

f. For Instance type, choose t3.xlarge.

g. For Key pair (login), choose a key pair.

h. Under Network settings, for Security group, choose an existing security group, or create
a new one.

i. Under Network settings, for Auto-assign Public IP, select Enable.

j. Under Advanced details, for IAM instance profile , choose ecsInstanceRole.

k. Configure your Amazon ECS container instance with the following user data. Under
Advanced Details, paste the following script into the User data field, replacing
cluster_name with the name of your cluster.

Step 2: Create an Amazon ECS Windows container instance 1278

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/retrieve-ecs-optimized_windows_AMI.html
https://console.aws.amazon.com/ec2/

Amazon Elastic Container Service Developer Guide

<powershell>
Import-Module ECSTools
Initialize-ECSAgent -Cluster cluster-name -EnableTaskENI -EnableTaskIAMRole -
LoggingDrivers '["awslogs","fluentd"]'
</powershell>

l. When you are ready, select the acknowledgment field, and then choose Launch Instances.

m. A confirmation page lets you know that your instance is launching. Choose View Instances
to close the confirmation page and return to the console.

Step 3: Configure Fluent Bit

You can use the following default configuration provided by AWS to get quickly started:

• Amazon CloudWatch which is based on the Fluent Bit plug-in for Amazon CloudWatch on the
Fluent Bit Official Manual.

Alternatively, you can use other default configurations provided by AWS. For more information,
see Overriding the entrypoint for the Windows image on the aws-for-fluent-bit the Github
website.

The default Amazon CloudWatch Fluent Bit configuration is shown below.

Replace the following variables:

• region with the Region where you want to send the Amazon CloudWatch logs.

[SERVICE]
 Flush 5
 Log_Level info
 Daemon off

[INPUT]
 Name forward
 Listen 0.0.0.0
 Port 24224
 Buffer_Chunk_Size 1M
 Buffer_Max_Size 6M
 Tag_Prefix ecs.

Step 3: Configure Fluent Bit 1279

https://github.com/aws/aws-for-fluent-bit/blob/mainline/ecs_windows_forward_daemon/cloudwatch.conf
https://docs.fluentbit.io/manual/v/1.9-pre/pipeline/outputs/cloudwatch
https://github.com/aws/aws-for-fluent-bit/tree/mainline/ecs_windows_forward_daemon#overriding-the-entrypoint-for-the-windows-image

Amazon Elastic Container Service Developer Guide

Amazon ECS agent adds the following log keys as labels to the docker container.
We would use fluentd logging driver to add these to log record while sending it to
 Fluent Bit.
[FILTER]
 Name modify
 Match ecs.*
 Rename com.amazonaws.ecs.cluster ecs_cluster
 Rename com.amazonaws.ecs.container-name ecs_container_name
 Rename com.amazonaws.ecs.task-arn ecs_task_arn
 Rename com.amazonaws.ecs.task-definition-family
 ecs_task_definition_family
 Rename com.amazonaws.ecs.task-definition-version
 ecs_task_definition_version

[FILTER]
 Name rewrite_tag
 Match ecs.*
 Rule $ecs_task_arn ^([a-z-:0-9]+)/([a-zA-Z0-9-_]+)/([a-z0-9]+)$
 out.$3.$ecs_container_name false
 Emitter_Name re_emitted

[OUTPUT]
 Name cloudwatch_logs
 Match out.*
 region region
 log_group_name fallback-group
 log_group_template /aws/ecs/$ecs_cluster.$ecs_task_definition_family
 log_stream_prefix task-
 auto_create_group On

Every log which gets into Fluent Bit has a tag which you specify, or is automatically generated
when you do not supply one. The tags can be used to route different logs to different destinations.
For additional information, see Tag in the Fluent Bit Official Manual.

The Fluent Bit configuration described above has the following properties:

• The forward input plug-in listens for incoming traffic on TCP port 24224.

• Each log entry received on that port has a tag which the forward input plug-in modifies to prefix
the record with ecs. string.

• The Fluent Bit internal pipeline routes the log entry to modify the filter using the Match regex.
This filter replaces the keys in the log record JSON to the format which Fluent Bit can consume.

Step 3: Configure Fluent Bit 1280

https://docs.fluentbit.io/manual/concepts/key-concepts#tag

Amazon Elastic Container Service Developer Guide

• The modified log entry is then consumed by the rewrite_tag filter. This filter changes the tag of
the log record to the format out.TASK_ID.CONTAINER_NAME.

• The new tag will be routed to output cloudwatch_logs plug-in which creates the log groups and
streams as described earlier by using the log_group_template and log_stream_prefix
options of the CloudWatch output plug-in. For additional information, see Configuration
parameters in the Fluent Bit Official Manual.

Step 4: Register a Windows Fluent Bit task definition which routes the
logs to CloudWatch

Register a Windows Fluent Bit task definition which routes the logs to CloudWatch.

Note

This task definition exposes Fluent Bit container port 24224 to the host port 24224. Verify
that this port is not open in your EC2 instance security group to prevent access from
outside.

To register a task definition

1. Create a file named fluent-bit.json with the following contents.

Replace the following variables:

• task-iam-role with the Amazon Resource Name (ARN) of your task IAM role

• region with the Region where your task runs

{
 "family": "ecs-windows-fluent-bit",
 "taskRoleArn": "task-iam-role",
 "containerDefinitions": [
 {
 "name": "fluent-bit",
 "image": "public.ecr.aws/aws-observability/aws-for-fluent-
bit:windowsservercore-latest",
 "cpu": 512,
 "portMappings": [

Step 4: Register a Windows Fluent Bit task definition which routes the logs to CloudWatch 1281

https://docs.fluentbit.io/manual/v/1.9-pre/pipeline/outputs/cloudwatch#configuration-parameters
https://docs.fluentbit.io/manual/v/1.9-pre/pipeline/outputs/cloudwatch#configuration-parameters

Amazon Elastic Container Service Developer Guide

 {
 "hostPort": 24224,
 "containerPort": 24224,
 "protocol": "tcp"
 }
],
 "entryPoint": [
 "Powershell",
 "-Command"
],
 "command": [
 "C:\\entrypoint.ps1 -ConfigFile C:\\ecs_windows_forward_daemon\
\cloudwatch.conf"
],
 "environment": [
 {
 "name": "AWS_REGION",
 "value": "region"
 }
],
 "memory": 512,
 "essential": true,
 "logConfiguration": {
 "logDriver": "awslogs",
 "options": {
 "awslogs-group": "/ecs/fluent-bit-logs",
 "awslogs-region": "region",
 "awslogs-stream-prefix": "flb",
 "awslogs-create-group": "true"
 }
 }
 }
],
 "memory": "512",
 "cpu": "512"
}

2. Run the following command to register the task definition.

aws ecs register-task-definition --cli-input-json file://fluent-bit.json --
region region

Step 4: Register a Windows Fluent Bit task definition which routes the logs to CloudWatch 1282

Amazon Elastic Container Service Developer Guide

You can list the task definitions for your account by running the list-task-definitions
command. The output of displays the family and revision values that you can use together
with run-task or start-task.

Step 5: Run the ecs-windows-fluent-bit task definition as an
Amazon ECS service using the daemon scheduling strategy

After you register a task definition for your account, you can run a task in the cluster. For this
tutorial, you run one instance of the ecs-windows-fluent-bit:1 task definition in your
FluentBit-cluster cluster. Run the task in a service which uses the daemon scheduling
strategy, which ensures that a single instance of Fluent Bit always runs on each of your container
instances.

To run a task

1. Run the following command to start the ecs-windows-fluent-bit:1 task definition
(registered in the previous step) as a service.

Note

This task definition uses the awslogs logging driver, your container instance need to
have the necessary permissions.

Replace the following variables:

• region with the Region where your service runs

aws ecs create-service \
 --cluster FluentBit-cluster \
 --service-name FluentBitForwardDaemonService \
 --task-definition ecs-windows-fluent-bit:1 \
 --launch-type EC2 \
 --scheduling-strategy DAEMON \
 --region region

2. Run the following command to list your tasks.

Step 5: Run the ecs-windows-fluent-bit task definition as an Amazon ECS service using the
daemon scheduling strategy

1283

Amazon Elastic Container Service Developer Guide

Replace the following variables:

• region with the Region where your service tasks run

aws ecs list-tasks --cluster FluentBit-cluster --region region

Step 6: Register a Windows task definition which generates the logs

Register a task definition which generates the logs. This task definition deploys Windows container
image which will write a incremental number to stdout every second.

The task definition uses the fluentd logging driver which connects to port 24224 which the Fluent
Bit plug-in listens to. The Amazon ECS agent labels each Amazon ECS container with tags including
the cluster name, task ARN, task definition family name, task definition revision number and the
task container name. These key-value labels are passed to Fluent Bit.

Note

This task uses the default network mode. However, you can also use the awsvpc network
mode with the task.

To register a task definition

1. Create a file named windows-app-task.json with the following contents.

{
 "family": "windows-app-task",
 "containerDefinitions": [
 {
 "name": "sample-container",
 "image": "mcr.microsoft.com/windows/servercore:ltsc2019",
 "cpu": 512,
 "memory": 512,
 "essential": true,
 "entryPoint": [
 "Powershell",
 "-Command"

Step 6: Register a Windows task definition which generates the logs 1284

Amazon Elastic Container Service Developer Guide

],
 "command": [
 "$count=1;while(1) { Write-Host $count; sleep 1; $count=$count+1;}"
],
 "logConfiguration": {
 "logDriver": "fluentd",
 "options": {
 "fluentd-address": "localhost:24224",
 "tag": "{{ index .ContainerLabels \"com.amazonaws.ecs.task-definition-
family\" }}",
 "fluentd-async": "true",
 "labels": "com.amazonaws.ecs.cluster,com.amazonaws.ecs.container-
name,com.amazonaws.ecs.task-arn,com.amazonaws.ecs.task-definition-
family,com.amazonaws.ecs.task-definition-version"
 }
 }
 }
],
 "memory": "512",
 "cpu": "512"
}

2. Run the following command to register the task definition.

Replace the following variables:

• region with the Region where your task runs

aws ecs register-task-definition --cli-input-json file://windows-app-task.json --
region region

You can list the task definitions for your account by running the list-task-definitions
command. The output of displays the family and revision values that you can use together
with run-task or start-task.

Step 7: Run the windows-app-task task definition

After you register the windows-app-task task definition, run it in your FluentBit-cluster
cluster.

Step 7: Run the windows-app-task task definition 1285

Amazon Elastic Container Service Developer Guide

To run a task

1. Run the windows-app-task:1 task definition you registered in the previous step.

Replace the following variables:

• region with the Region where your task runs

aws ecs run-task --cluster FluentBit-cluster --task-definition windows-app-task:1
 --count 2 --region region

2. Run the following command to list your tasks.

aws ecs list-tasks --cluster FluentBit-cluster

Step 8: Verify the logs on CloudWatch

In order to verify your Fluent Bit setup, check for the following log groups in the CloudWatch
console:

• /ecs/fluent-bit-logs - This is the log group which corresponds to the Fluent Bit daemon
container which is running on the container instance.

• /aws/ecs/FluentBit-cluster.windows-app-task - This is the log group which
corresponds to all the tasks launched for windows-app-task task definition family inside
FluentBit-cluster cluster.

task-out.FIRST_TASK_ID.sample-container - This log stream contains all the logs
generated by the first instance of the task in the sample-container task container.

task-out.SECOND_TASK_ID.sample-container - This log stream contains all the logs
generated by the second instance of the task in the sample-container task container.

The task-out.TASK_ID.sample-container log stream has fields similar to the following:

{
 "source": "stdout",
 "ecs_task_arn": "arn:aws:ecs:region:0123456789012:task/FluentBit-
cluster/13EXAMPLE",

Step 8: Verify the logs on CloudWatch 1286

Amazon Elastic Container Service Developer Guide

 "container_name": "/ecs-windows-app-task-1-sample-container-cEXAMPLE",
 "ecs_cluster": "FluentBit-cluster",
 "ecs_container_name": "sample-container",
 "ecs_task_definition_version": "1",
 "container_id": "61f5e6EXAMPLE",
 "log": "10",
 "ecs_task_definition_family": "windows-app-task"
}

To verify the Fluent Bit setup

1. Open the CloudWatch console at https://console.aws.amazon.com/cloudwatch/.

2. In the navigation pane, choose Log groups. Make sure that you're in the Region where you
deployed Fluent Bit to your containers.

In the list of log groups in the AWS Region, you should see the following:

• /ecs/fluent-bit-logs

• /aws/ecs/FluentBit-cluster.windows-app-task

If you see these log groups, the Fluent Bit setup is verified.

Step 9: Clean up

When you have finished this tutorial, clean up the resources associated with it to avoid incurring
charges for resources that you aren't using.

To clean up the tutorial resources

1. Stop the windows-simple-task task and the ecs-fluent-bit task. For more information,
see the section called “Stopping a standalone task”.

2. Run the following command to delete the /ecs/fluent-bit-logs log group. For more
information, about deleting log groups see delete-log-group in the AWS Command Line
Interface Reference.

aws logs delete-log-group --log-group-name /ecs/fluent-bit-logs
aws logs delete-log-group --log-group-name /aws/ecs/FluentBit-cluster.windows-app-
task

Step 9: Clean up 1287

https://console.aws.amazon.com/cloudwatch/
https://docs.aws.amazon.com/cli/latest/reference/logs/delete-log-group.html

Amazon Elastic Container Service Developer Guide

3. Run the following command to terminate the instance.

aws ec2 terminate-instances --instance-ids instance-id

4. Run the following commands to delete the IAM roles.

aws iam delete-role --role-name ecsInstanceRole
aws iam delete-role --role-name fluentTaskRole

5. Run the following command to delete the Amazon ECS cluster.

aws ecs delete-cluster --cluster FluentBit-cluster

Using gMSAs for Windows Containers on Amazon EC2

Amazon ECS supports Active Directory authentication for Windows containers through a special
kind of service account called a group Managed Service Account (gMSA).

Windows based network applications such as .NET applications often use Active Directory to
facilitate authentication and authorization management between users and services. Developers
commonly design their applications to integrate with Active Directory and run on domain-
joined servers for this purpose. Because Windows containers cannot be domain-joined, you must
configure a Windows container to run with gMSA.

A Windows container running with gMSA relies on its host Amazon EC2 instance to retrieve the
gMSA credentials from the Active Directory domain controller and provide them to the container
instance. For more information, see Create gMSAs for Windows containers.

Note

This feature is not supported on Windows containers on Fargate.

Topics

• Considerations

• Prerequisites

• Setting up gMSA for Windows Containers on Amazon ECS

Using gMSAs for Windows Containers on Amazon EC2 1288

https://docs.microsoft.com/en-us/virtualization/windowscontainers/manage-containers/manage-serviceaccounts

Amazon Elastic Container Service Developer Guide

Considerations

The following should be considered when using gMSAs for Windows containers:

• When using the Amazon ECS-optimized Windows Server 2016 Full AMI for your container
instances, the container hostname must be the same as the gMSA account name defined in
the credential spec file. To specify a hostname for a container, use the hostname container
definition parameter. For more information, see Network settings.

• You chose between domainless gMSA and joining each instance to a single domain. By using
domainless gMSA, the container instance isn't joined to the domain, other applications on the
instance can't use the credentials to access the domain, and tasks that join different domains can
run on the same instance.

Then, choose the data storage for the CredSpec and optionally, for the Active Directory user
credentials for domainless gMSA.

Amazon ECS uses an Active Directory credential specification file (CredSpec). This file contains
the gMSA metadata that's used to propagate the gMSA account context to the container.
You generate the CredSpec file and then store it in one of the CredSpec storage options in
the following table, specific to the Operating System of the container instances. To use the
domainless method, an optional section in the CredSpec file can specify credentials in one of
the domainless user credentials storage options in the following table, specific to the Operating
System of the container instances.

gMSA data storage options by Operating System

Storage location Linux Windows

Amazon Simple Storage
Service

CredSpec CredSpec

AWS Secrets Manager domainless user credentials domainless user credentials

Amazon EC2 Systems
Manager Parameter Store

CredSpec CredSpec, domainless user
credentials

Local file N/A CredSpec

Considerations 1289

Amazon Elastic Container Service Developer Guide

Prerequisites

Before you use the gMSA for Windows containers feature with Amazon ECS, make sure to complete
the following:

• You set up an Active Directory domain with the resources that you want your containers to
access. Amazon ECS supports the following setups:

• An AWS Directory Service Active Directory. AWS Directory Service is an AWS managed Active
Directory that's hosted on Amazon EC2. For more information, see Getting Started with AWS
Managed Microsoft AD in the AWS Directory Service Administration Guide.

• An on-premises Active Directory. You must ensure that the Amazon ECS Linux container
instance can join the domain. For more information, see AWS Direct Connect.

• You have an existing gMSA account in the Active Directory. For more information, see Create
gMSAs for Windows containers.

• You chose to use domainless gMSA or the Amazon ECS Windows container instance hosting
the Amazon ECS task must be domain joined to the Active Directory and be a member of the
Active Directory security group that has access to the gMSA account.

By using domainless gMSA, the container instance isn't joined to the domain, other applications
on the instance can't use the credentials to access the domain, and tasks that join different
domains can run on the same instance.

• You added the required IAM permissions. The permissions that are required depend on the
methods that you choose for the initial credentials and for storing the credential specification:

• If you use domainless gMSA for initial credentials, IAM permissions for AWS Secrets Manager
are required on the Amazon EC2 instance role.

• If you store the credential specification in SSM Parameter Store, IAM permissions for Amazon
EC2 Systems Manager Parameter Store are required on the task execution role.

• If you store the credential specification in Amazon S3, IAM permissions for Amazon Simple
Storage Service are required on the task execution role.

Setting up gMSA for Windows Containers on Amazon ECS

To set up gMSA for Windows Containers on Amazon ECS, you can follow the complete tutorial that
includes configuring the prerequisites Using Windows Containers with Domainless gMSA using the
AWS CLI.

Prerequisites 1290

https://docs.aws.amazon.com/directoryservice/latest/admin-guide/ms_ad_getting_started.html
https://docs.aws.amazon.com/directoryservice/latest/admin-guide/ms_ad_getting_started.html
https://docs.aws.amazon.com/whitepapers/latest/aws-vpc-connectivity-options/aws-direct-connect-network-to-amazon.html
https://docs.microsoft.com/en-us/virtualization/windowscontainers/manage-containers/manage-serviceaccounts
https://docs.microsoft.com/en-us/virtualization/windowscontainers/manage-containers/manage-serviceaccounts

Amazon Elastic Container Service Developer Guide

The following sections cover the CredSpec configuration in detail.

Topics

• Example CredSpec

• Domainless gMSA setup

• Referencing a Credential Spec File in a Task Definition

Example CredSpec

Amazon ECS uses a credential spec file that contains the gMSA metadata used to propagate the
gMSA account context to the Windows container. You can generate the credential spec file and
reference it in the credentialSpec field in your task definition. The credential spec file does not
contain any secrets.

The following is an example credential spec file:

{
 "CmsPlugins": [
 "ActiveDirectory"
],
 "DomainJoinConfig": {
 "Sid": "S-1-5-21-2554468230-2647958158-2204241789",
 "MachineAccountName": "WebApp01",
 "Guid": "8665abd4-e947-4dd0-9a51-f8254943c90b",
 "DnsTreeName": "contoso.com",
 "DnsName": "contoso.com",
 "NetBiosName": "contoso"
 },
 "ActiveDirectoryConfig": {
 "GroupManagedServiceAccounts": [
 {
 "Name": "WebApp01",
 "Scope": "contoso.com"
 }
]
 }
}

Setup 1291

Amazon Elastic Container Service Developer Guide

Domainless gMSA setup

We recommend domainless gMSA instead of joining the container instances to a single domain. By
using domainless gMSA, the container instance isn't joined to the domain, other applications on
the instance can't use the credentials to access the domain, and tasks that join different domains
can run on the same instance.

1. Before uploading the CredSpec to one of the storage options, add information to the CredSpec
with the ARN of the secret in Secrets Manager or SSM Parameter Store. For more information,
see Additional credential spec configuration for non-domain-joined container host use case on
the Microsoft Learn website.

Domainless gMSA credential format

The following is the JSON format for the domainless gMSA credentials for your Active
Directory. Store the credentials in Secrets Manager or SSM Parameter Store.

{
 "username":"WebApp01",
 "password":"Test123!",
 "domainName":"contoso.com"
}

2. Add the following information to the CredSpec file inside the ActiveDirectoryConfig.
Replace the ARN with the secret in Secrets Manager or SSM Parameter Store.

Note that the PluginGUID value must match the GUID in the following example snippet and
is required.

 "HostAccountConfig": {
 "PortableCcgVersion": "1",
 "PluginGUID": "{859E1386-BDB4-49E8-85C7-3070B13920E1}",
 "PluginInput": "{\"credentialArn\": \"arn:aws:secretsmanager:aws-
region:111122223333:secret:gmsa-plugin-input\"}"
 }

You can also use a secret in SSM Parameter Store by using the ARN in this format:
\"arn:aws:ssm:aws-region:111122223333:parameter/gmsa-plugin-input\".

3. After you modify the CredSpec file, it should look like the following example:

Setup 1292

https://learn.microsoft.com/en-us/virtualization/windowscontainers/manage-containers/manage-serviceaccounts#additional-credential-spec-configuration-for-non-domain-joined-container-host-use-case

Amazon Elastic Container Service Developer Guide

{
 "CmsPlugins": [
 "ActiveDirectory"
],
 "DomainJoinConfig": {
 "Sid": "S-1-5-21-4066351383-705263209-1606769140",
 "MachineAccountName": "WebApp01",
 "Guid": "ac822f13-583e-49f7-aa7b-284f9a8c97b6",
 "DnsTreeName": "contoso",
 "DnsName": "contoso",
 "NetBiosName": "contoso"
 },
 "ActiveDirectoryConfig": {
 "GroupManagedServiceAccounts": [
 {
 "Name": "WebApp01",
 "Scope": "contoso"
 },
 {
 "Name": "WebApp01",
 "Scope": "contoso"
 }
],
 "HostAccountConfig": {
 "PortableCcgVersion": "1",
 "PluginGUID": "{859E1386-BDB4-49E8-85C7-3070B13920E1}",
 "PluginInput": "{\"credentialArn\": \"arn:aws:secretsmanager:aws-
region:111122223333:secret:gmsa-plugin-input\"}"
 }
 }
}

Referencing a Credential Spec File in a Task Definition

Amazon ECS supports the following ways to reference the file path in the credentialSpecs
field of the task definition. For each of these options, you can provide credentialspec: or
domainlesscredentialspec:, depending on whether you are joining the container instances to
a single domain, or using domainless gMSA, respectively.

Setup 1293

Amazon Elastic Container Service Developer Guide

Amazon S3 Bucket

Add the credential spec to an Amazon S3 bucket and then reference the Amazon Resource Name
(ARN) of the Amazon S3 bucket in the credentialSpecs field of the task definition.

{
 "family": "",
 "executionRoleArn": "",
 "containerDefinitions": [
 {
 "name": "",
 ...
 "credentialSpecs": [
 "credentialspecdomainless:arn:aws:s3:::${BucketName}/${ObjectName}"
],
 ...
 }
],
 ...
}

You must also add the following permissions as an inline policy to the Amazon ECS task execution
IAM role to give your tasks access to the Amazon S3 bucket.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "VisualEditor",
 "Effect": "Allow",
 "Action": [
 "s3:Get*",
 "s3:List*"
],
 "Resource": [
 "arn:aws:s3:::{bucket_name}",
 "arn:aws:s3:::{bucket_name}/{object}"
]
 }
]
}

Setup 1294

Amazon Elastic Container Service Developer Guide

SSM Parameter Store parameter

Add the credential spec to an SSM Parameter Store parameter and then reference the Amazon
Resource Name (ARN) of the SSM Parameter Store parameter in the credentialSpecs field of
the task definition.

{
 "family": "",
 "executionRoleArn": "",
 "containerDefinitions": [
 {
 "name": "",
 ...
 "credentialSpecs": [

 "credentialspecdomainless:arn:aws:ssm:region:111122223333:parameter/parameter_name"
],
 ...
 }
],
 ...
}

You must also add the following permissions as an inline policy to the Amazon ECS task execution
IAM role to give your tasks access to the SSM Parameter Store parameter.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "ssm:GetParameters"
],
 "Resource": [
 "arn:aws:ssm:region:111122223333:parameter/parameter_name"
]
 }
]
}

Setup 1295

Amazon Elastic Container Service Developer Guide

Local File

With the credential spec details in a local file, reference the file path in the credentialSpecs
field of the task definition. The file path referenced must be relative to the C:\ProgramData
\Docker\CredentialSpecs directory and use the backslash ('\') as the file path separator.

{
 "family": "",
 "executionRoleArn": "",
 "containerDefinitions": [
 {
 "name": "",
 ...
 "credentialSpecs": [
 "credentialspec:file://CredentialSpecDir\CredentialSpecFile.json"
],
 ...
 }
],
 ...
}

Using Windows Containers with Domainless gMSA using the
AWS CLI

The following tutorial shows how to create an Amazon ECS task that runs a Windows container
that has credentials to access Active Directory with the AWS CLI. By using domainless gMSA,
the container instance isn't joined to the domain, other applications on the instance can't use
the credentials to access the domain, and tasks that join different domains can run on the same
instance.

Topics

• Prerequisites

• Step 1: Create and configure the gMSA account on Active Directory Domain Services (AD DS)

• Step 2: Upload Credentials to Secrets Manager

• Step 3: Modify your CredSpec JSON to include domainless gMSA information

• Step 4: Upload CredSpec to Amazon S3

Using Windows Containers with Domainless gMSA using the AWS CLI 1296

Amazon Elastic Container Service Developer Guide

• Step 5: (Optional) Create an Amazon ECS cluster

• Step 6: Create an IAM role for container instances

• Step 7: Create a custom task execution role

• Step 8: Create a task role for Amazon ECS Exec

• Step 9: Register a task definition that uses domainless gMSA

• Step 10: Register a Windows container instance to the cluster

• Step 11: Verify the container instance

• Step 12: Run a Windows task

• Step 13: Verify the container has gMSA credentials

• Step 14: Clean up

• Debugging Amazon ECS domainless gMSA for Windows containers

Prerequisites

This tutorial assumes that the following prerequisites have been completed:

• The steps in Set up to use Amazon ECS have been completed.

• Your AWS user has the required permissions specified in the AmazonECS_FullAccess IAM policy
example.

• The latest version of the AWS CLI is installed and configured. For more information about
installing or upgrading your AWS CLI, see Installing the AWS Command Line Interface.

• You set up an Active Directory domain with the resources that you want your containers to
access. Amazon ECS supports the following setups:

• An AWS Directory Service Active Directory. AWS Directory Service is an AWS managed Active
Directory that's hosted on Amazon EC2. For more information, see Getting Started with AWS
Managed Microsoft AD in the AWS Directory Service Administration Guide.

• An on-premises Active Directory. You must ensure that the Amazon ECS Linux container
instance can join the domain. For more information, see AWS Direct Connect.

• You have a VPC and subnets that can resolve the Active Directory domain name.

• You chose between domainless gMSA and joining each instance to a single domain. By using
domainless gMSA, the container instance isn't joined to the domain, other applications on the
instance can't use the credentials to access the domain, and tasks that join different domains can
run on the same instance.

Prerequisites 1297

https://docs.aws.amazon.com/cli/latest/userguide/getting-started-install.html
https://docs.aws.amazon.com/directoryservice/latest/admin-guide/ms_ad_getting_started.html
https://docs.aws.amazon.com/directoryservice/latest/admin-guide/ms_ad_getting_started.html
https://docs.aws.amazon.com/whitepapers/latest/aws-vpc-connectivity-options/aws-direct-connect-network-to-amazon.html

Amazon Elastic Container Service Developer Guide

Then, choose the data storage for the CredSpec and optionally, for the Active Directory user
credentials for domainless gMSA.

Amazon ECS uses an Active Directory credential specification file (CredSpec). This file contains
the gMSA metadata that's used to propagate the gMSA account context to the container.
You generate the CredSpec file and then store it in one of the CredSpec storage options in
the following table, specific to the Operating System of the container instances. To use the
domainless method, an optional section in the CredSpec file can specify credentials in one of
the domainless user credentials storage options in the following table, specific to the Operating
System of the container instances.

gMSA data storage options by Operating System

Storage location Linux Windows

Amazon Simple Storage
Service

CredSpec CredSpec

AWS Secrets Manager domainless user credentials domainless user credentials

Amazon EC2 Systems
Manager Parameter Store

CredSpec CredSpec, domainless user
credentials

Local file N/A CredSpec

• (Optional) AWS CloudShell is a tool that gives customers a command line without needing to
create their own EC2 instance. For more information, see What is AWS CloudShell? in the AWS
CloudShell User Guide.

Step 1: Create and configure the gMSA account on Active Directory
Domain Services (AD DS)

Create and configure a gMSA account on the Active Directory domain.

Step 1: Create and configure the gMSA account on Active Directory Domain Services (AD DS) 1298

https://docs.aws.amazon.com/cloudshell/latest/userguide/welcome.html

Amazon Elastic Container Service Developer Guide

1. Generate a Key Distribution Service root key

Note

If you are using AWS Directory Service, then you can skip this step.

The KDS root key and gMSA permissions are configured with your AWS managed Microsoft AD.

If you have not already created a gMSA Service Account in your domain, you’ll need to first
generate a Key Distribution Service (KDS) root key. The KDS is responsible for creating,
rotating, and releasing the gMSA password to authorized hosts. When the ccg.exe needs to
retrieve gMSA credentials, it contact KDS to retrieve the current password.

To check if the KDS root key has already been created, run the following PowerShell
cmdlet with domain admin privileges on a domain controller using the ActiveDirectory
PowerShell module. For more information about the module, see ActiveDirectory Module on
the Microsoft Learn website.

PS C:\> Get-KdsRootKey

If the command returns a key ID, you can skip the rest of this step. Otherwise, create the KDS
root key by running the following command:

PS C:\> Add-KdsRootKey -EffectiveImmediately

Although the argument EffectiveImmediately to the command implies the key is effective
immediately, you need to wait 10 hours before the KDS root key is replicated and available for
use on all domain controllers.

2. Create the gMSA account

To create the gMSA account and allow the ccg.exe to retrieve the gMSA password, run the
following PowerShell commands from a Windows Server or client with access to the domain.
Replace ExampleAccount with the name that you want for your gMSA account.

a. PS C:\> Install-WindowsFeature RSAT-AD-PowerShell

Step 1: Create and configure the gMSA account on Active Directory Domain Services (AD DS) 1299

https://learn.microsoft.com/en-us/powershell/module/activedirectory/?view=windowsserver2022-ps

Amazon Elastic Container Service Developer Guide

b. PS C:\> New-ADGroup -Name "ExampleAccount Authorized Hosts" -SamAccountName
 "ExampleAccountHosts" -GroupScope DomainLocal

c. PS C:\> New-ADServiceAccount -Name "ExampleAccount" -DnsHostName
 "contoso" -ServicePrincipalNames "host/ExampleAccount", "host/contoso" -
PrincipalsAllowedToRetrieveManagedPassword "ExampleAccountHosts"

d. Create a user with a permanent password that doesn't expire. These credentials are stored
in AWS Secrets Manager and used by each task to join the domain.

PS C:\> New-ADUser -Name "ExampleAccount" -AccountPassword (ConvertTo-
SecureString -AsPlainText "Test123" -Force) -Enabled 1 -PasswordNeverExpires 1

e. PS C:\> Add-ADGroupMember -Identity "ExampleAccountHosts" -Members
 "ExampleAccount"

f. Install the PowerShell module for creating CredSpec objects in Active Directory and
output the CredSpec JSON.

PS C:\> Install-PackageProvider -Name NuGet -Force

PS C:\> Install-Module CredentialSpec

g. PS C:\> New-CredentialSpec -AccountName ExampleAccount

3. Copy the JSON output from the previous command into a file called gmsa-cred-spec.json.
This is the CredSpec file. It is used in Step 3, Step 3: Modify your CredSpec JSON to include
domainless gMSA information.

Step 2: Upload Credentials to Secrets Manager

Copy the Active Directory credentials into a secure credential storage system, so that each task
retrieves it. This is the domainless gMSA method. By using domainless gMSA, the container
instance isn't joined to the domain, other applications on the instance can't use the credentials to
access the domain, and tasks that join different domains can run on the same instance.

This step uses the AWS CLI. You can run these commands in AWS CloudShell in the default shell,
which is bash.

Step 2: Upload Credentials to Secrets Manager 1300

Amazon Elastic Container Service Developer Guide

• Run the following AWS CLI command and replace the username, password, and domain name
to match your environment. Keep the ARN of the secret to use in the next step, Step 3: Modify
your CredSpec JSON to include domainless gMSA information

The following command uses backslash continuation characters that are used by sh and
compatible shells. This command isn't compatible with PowerShell. You must modify the
command to use it with PowerShell.

$ aws secretsmanager create-secret \
--name gmsa-plugin-input \
--description "Amazon ECS - gMSA Portable Identity." \
--secret-string "{\"username\":\"ExampleAccount\",\"password\":\"Test123\",
\"domainName\":\"contoso.com\"}"

Step 3: Modify your CredSpec JSON to include domainless gMSA
information

Before uploading the CredSpec to one of the storage options, add information to the CredSpec
with the ARN of the secret in Secrets Manager from the previous step. For more information, see
Additional credential spec configuration for non-domain-joined container host use case on the
Microsoft Learn website.

1. Add the following information to the CredSpec file inside the ActiveDirectoryConfig.
Replace the ARN with the secret in Secrets Manager from the previous step.

Note that the PluginGUID value must match the GUID in the following example snippet and
is required.

"HostAccountConfig": {
 "PortableCcgVersion": "1",
 "PluginGUID": "{859E1386-BDB4-49E8-85C7-3070B13920E1}",
 "PluginInput": "{\"credentialArn\": \"arn:aws:secretsmanager:aws-
region:111122223333:secret:gmsa-plugin-input\"}"
 }

You can also use a secret in SSM Parameter Store by using the ARN in this format:
\"arn:aws:ssm:aws-region:111122223333:parameter/gmsa-plugin-input\".

2. After you modify the CredSpec file, it should look like the following example:

Step 3: Modify your CredSpec JSON to include domainless gMSA information 1301

https://learn.microsoft.com/en-us/virtualization/windowscontainers/manage-containers/manage-serviceaccounts#additional-credential-spec-configuration-for-non-domain-joined-container-host-use-case

Amazon Elastic Container Service Developer Guide

{
 "CmsPlugins": [
 "ActiveDirectory"
],
 "DomainJoinConfig": {
 "Sid": "S-1-5-21-4066351383-705263209-1606769140",
 "MachineAccountName": "ExampleAccount",
 "Guid": "ac822f13-583e-49f7-aa7b-284f9a8c97b6",
 "DnsTreeName": "contoso",
 "DnsName": "contoso",
 "NetBiosName": "contoso"
 },
 "ActiveDirectoryConfig": {
 "GroupManagedServiceAccounts": [
 {
 "Name": "ExampleAccount",
 "Scope": "contoso"
 },
 {
 "Name": "ExampleAccount",
 "Scope": "contoso"
 }
],
 "HostAccountConfig": {
 "PortableCcgVersion": "1",
 "PluginGUID": "{859E1386-BDB4-49E8-85C7-3070B13920E1}",
 "PluginInput": "{\"credentialArn\": \"arn:aws:secretsmanager:aws-
region:111122223333:secret:gmsa-plugin-input\"}"
 }
 }
}

Step 4: Upload CredSpec to Amazon S3

This step uses the AWS CLI. You can run these commands in AWS CloudShell in the default shell,
which is bash.

1. Copy the CredSpec file to the computer or environment that you are running AWS CLI
commands in.

Step 4: Upload CredSpec to Amazon S3 1302

Amazon Elastic Container Service Developer Guide

2. Run the following AWS CLI command to upload the CredSpec to Amazon S3. Replace
MyBucket with the name of your Amazon S3 bucket. You can store the file as an object in any
bucket and location, but you must allow access to that bucket and location in the policy that
you attach to the task execution role.

The following command uses backslash continuation characters that are used by sh and
compatible shells. This command isn't compatible with PowerShell. You must modify the
command to use it with PowerShell.

$ aws s3 cp gmsa-cred-spec.json \
s3://MyBucket/ecs-domainless-gmsa-credspec

Step 5: (Optional) Create an Amazon ECS cluster

By default, your account has an Amazon ECS cluster named default. This cluster is used by
default in the AWS CLI, SDKs, and AWS CloudFormation. You can use additional clusters to group
and organize tasks and infrastructure, and assign defaults for some configuration.

You can create a cluster from the AWS Management Console, AWS CLI, SDKs, or AWS
CloudFormation. The settings and configuration in the cluster don't affect gMSA.

This step uses the AWS CLI. You can run these commands in AWS CloudShell in the default shell,
which is bash.

$ aws ecs create-cluster --cluster-name windows-domainless-gmsa-cluster

Important

If you choose to create your own cluster, you must specify --cluster clusterName for
each command that you intend to use with that cluster.

Step 6: Create an IAM role for container instances

A container instance is a host computer to run containers in ECS tasks, for example Amazon EC2
instances. Each container instance registers to an Amazon ECS cluster. Before you launch Amazon
EC2 instances and register them to a cluster, you must create an IAM role for your container
instances to use.

Step 5: (Optional) Create an Amazon ECS cluster 1303

Amazon Elastic Container Service Developer Guide

To create the container instance role, see Amazon ECS container instance IAM role. The default
ecsInstanceRole has sufficient permissions to complete this tutorial.

Step 7: Create a custom task execution role

Amazon ECS can use a different IAM role for the permissions needed to start each task, instead
of the container instance role. This role is the task execution role. We recommend creating a task
execution role with only the permissions required for ECS to run the task, also known as least-
privilege permissions. For more information about the principle of least privilege, see SEC03-BP02
Grant least privilege access in the AWS Well-Architected Framework.

1. To create a task execution role, see Creating the task execution (ecsTaskExecutionRole)
role. The default permissions allow the container instance to pull container images from
Amazon Elastic Container Registry and stdout and stderr from your applications to be
logged to Amazon CloudWatch Logs.

Because the role needs custom permissions for this tutorial, you can give the role a different
name than ecsTaskExecutionRole. This tutorial uses ecsTaskExecutionRole in further
steps.

2. Add the following permissions by creating a custom policy, either an inline policy that only
exists in for this role, or a policy that you can reuse. Replace the ARN for the Resource in the
first statement with the Amazon S3 bucket and location, and the second Resource with the
ARN of the secret in Secrets Manager.

If you encrypt the secret in Secrets Manager with a custom key, you must also allow
kms:Decrypt for the key.

If you use SSM Parameter Store instead of Secrets Manager, you must allow
ssm:GetParameter for the parameter, instead of secretsmanager:GetSecretValue.

{
"Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "s3:GetObject"
],
 "Resource": "arn:aws:s3:::MyBucket/ecs-domainless-gmsa-credspec/gmsa-cred-
spec.json"

Step 7: Create a custom task execution role 1304

https://docs.aws.amazon.com/wellarchitected/latest/framework/sec_permissions_least_privileges.html
https://docs.aws.amazon.com/wellarchitected/latest/framework/sec_permissions_least_privileges.html

Amazon Elastic Container Service Developer Guide

 },
 {
 "Effect": "Allow",
 "Action": [
 "secretsmanager:GetSecretValue"
],
 "Resource": "arn:aws:secretsmanager:aws-region:111122223333:secret:gmsa-
plugin-input"
 }
]
}

Step 8: Create a task role for Amazon ECS Exec

This tutorial uses Amazon ECS Exec to verify functionality by running a command inside a running
task. To use ECS Exec, the service or task must turn on ECS Exec and the task role (but not the
task execution role) must have ssmmessages permissions. For the required IAM policy, see IAM
permissions required for ECS Exec.

This step uses the AWS CLI. You can run these commands in AWS CloudShell in the default shell,
which is bash.

To create a task role using the AWS CLI, follow these steps.

1. Create a file called ecs-tasks-trust-policy.json with the following contents:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "ecs-tasks.amazonaws.com"
 },
 "Action": "sts:AssumeRole"
 }
]
}

2. Create an IAM role. You can replace the name ecs-exec-demo-task-role but keep the
name for following steps.

Step 8: Create a task role for Amazon ECS Exec 1305

Amazon Elastic Container Service Developer Guide

The following command uses backslash continuation characters that are used by sh and
compatible shells. This command isn't compatible with PowerShell. You must modify the
command to use it with PowerShell.

$ aws iam create-role --role-name ecs-exec-demo-task-role \
--assume-role-policy-document file://ecs-tasks-trust-policy.json

You can delete the file ecs-tasks-trust-policy.json.

3. Create a file called ecs-exec-demo-task-role-policy.json with the following contents:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "ssmmessages:CreateControlChannel",
 "ssmmessages:CreateDataChannel",
 "ssmmessages:OpenControlChannel",
 "ssmmessages:OpenDataChannel"
],
 "Resource": "*"
 }
]
}

4. Create an IAM policy and attach it to the role from the previous step.

The following command uses backslash continuation characters that are used by sh and
compatible shells. This command isn't compatible with PowerShell. You must modify the
command to use it with PowerShell.

$ aws iam put-role-policy \
 --role-name ecs-exec-demo-task-role \
 --policy-name ecs-exec-demo-task-role-policy \
 --policy-document file://ecs-exec-demo-task-role-policy.json

You can delete the file ecs-exec-demo-task-role-policy.json.

Step 8: Create a task role for Amazon ECS Exec 1306

Amazon Elastic Container Service Developer Guide

Step 9: Register a task definition that uses domainless gMSA

This step uses the AWS CLI. You can run these commands in AWS CloudShell in the default shell,
which is bash.

1. Create a file called windows-gmsa-domainless-task-def.json with the following
contents:

{
 "family": "windows-gmsa-domainless-task",
 "containerDefinitions": [
 {
 "name": "windows_sample_app",
 "image": "mcr.microsoft.com/windows/servercore/iis",
 "cpu": 1024,
 "memory": 1024,
 "essential": true,
 "credentialSpecs": [
 "credentialspecdomainless:arn:aws:s3:::ecs-domainless-gmsa-
credspec/gmsa-cred-spec.json"
],
 "entryPoint": [
 "powershell",
 "-Command"
],
 "command": [
 "New-Item -Path C:\\inetpub\\wwwroot\\index.html -ItemType file -Value
 '<html> <head> <title>Amazon ECS Sample App</title> <style>body {margin-top:
 40px; background-color: #333;} </style> </head><body> <div style=color:white;text-
align:center> <h1>Amazon ECS Sample App</h1> <h2>Congratulations!</h2> <p>Your
 application is now running on a container in Amazon ECS.</p>' -Force ; C:\
\ServiceMonitor.exe w3svc"
],
 "portMappings": [
 {
 "protocol": "tcp",
 "containerPort": 80,
 "hostPort": 8080
 }
]
 }
],

Step 9: Register a task definition 1307

Amazon Elastic Container Service Developer Guide

 "taskRoleArn": "arn:aws:iam::111122223333:role/ecs-exec-demo-task-role",
 "executionRoleArn": "arn:aws:iam::111122223333:role/ecsTaskExecutionRole"
}

2. Register the task definition by running the following command:

The following command uses backslash continuation characters that are used by sh and
compatible shells. This command isn't compatible with PowerShell. You must modify the
command to use it with PowerShell.

$ aws ecs register-task-definition \
--cli-input-json file://windows-gmsa-domainless-task-def.json

Step 10: Register a Windows container instance to the cluster

Launch an Amazon EC2 Windows instance and run the ECS container agent to register it as a
container instance in the cluster. ECS runs tasks on the container instances that are registered to
the cluster that the tasks are started in.

1. To launch an Amazon EC2 Windows instance that is configured for Amazon ECS in the AWS
Management Console, see Launching an Amazon ECS Windows container instance. Stop at the
step for user data.

2. For gMSA, the user data must set the environment variable ECS_GMSA_SUPPORTED before
starting the ECS container agent.

For ECS Exec, the agent must start with the argument -EnableTaskIAMRole.

To secure the instance IAM role by preventing tasks from reaching the EC2 IMDS web service to
retrieve the role credentials, add the argument -AwsvpcBlockIMDS. This only applies to tasks
that use the awsvpc network mode.

<powershell>
[Environment]::SetEnvironmentVariable("ECS_GMSA_SUPPORTED", $TRUE, "Machine")
Import-Module ECSTools
Initialize-ECSAgent -Cluster windows-domainless-gmsa-cluster -EnableTaskIAMRole -
AwsvpcBlockIMDS
</powershell>

Step 10: Register a Windows container instance 1308

Amazon Elastic Container Service Developer Guide

3. Review a summary of your instance configuration in the Summary panel, and when you're
ready, choose Launch instance.

Step 11: Verify the container instance

You can verify that there is a container instance in the cluster using the AWS Management Console.
However, gMSA needs additional features that are indicated as attributes. These attributes aren't
visible in the AWS Management Console, so this tutorial uses the AWS CLI.

This step uses the AWS CLI. You can run these commands in AWS CloudShell in the default shell,
which is bash.

1. List the container instances in the cluster. Container instances have an ID that is different from
the ID of the EC2 instance.

$ aws ecs list-container-instances

Output:

{
 "containerInstanceArns": [
 "arn:aws:ecs:aws-region:111122223333:container-
instance/default/MyContainerInstanceID"
]
}

For example, 526bd5d0ced448a788768334e79010fd is a valid container instance ID.

2. Use the container instance ID from the previous step to get the details for the container
instance. Replace MyContainerInstanceID with the ID.

The following command uses backslash continuation characters that are used by sh and
compatible shells. This command isn't compatible with PowerShell. You must modify the
command to use it with PowerShell.

$ aws ecs describe-container-instances \
 ----container-instances MyContainerInstanceID

Note that the output is very long.
Step 11: Verify the container instance 1309

Amazon Elastic Container Service Developer Guide

3. Verify that the attributes list has an object with the key called name and a value
ecs.capability.gmsa-domainless. The following is an example of the object.

Output:

{
 "name": "ecs.capability.gmsa-domainless"
}

Step 12: Run a Windows task

Run an Amazon ECS task. If there is only 1 container instance in the cluster, you can use run-
task. If there are many different container instances, it might be easier to use start-task and
specify the container instance ID to run the task on, than to add placement constraints to the task
definition to control what type of container instance to run this task on.

This step uses the AWS CLI. You can run these commands in AWS CloudShell in the default shell,
which is bash.

1.
The following command uses backslash continuation characters that are used by sh and
compatible shells. This command isn't compatible with PowerShell. You must modify the
command to use it with PowerShell.

aws ecs run-task --task-definition windows-gmsa-domainless-task \
 --enable-execute-command --cluster windows-domainless-gmsa-cluster

Note the task ID that is returned by the command.

2. Run the following command to verify that the task has started. This command waits and
doesn't return the shell prompt until the task starts. Replace MyTaskID with the task ID from
the previous step.

$ aws ecs wait tasks-running --task MyTaskID

Step 13: Verify the container has gMSA credentials

Verify that the container in the task has a Kerberos token. gMSA

Step 12: Run a Windows task 1310

Amazon Elastic Container Service Developer Guide

This step uses the AWS CLI. You can run these commands in AWS CloudShell in the default shell,
which is bash.

1.
The following command uses backslash continuation characters that are used by sh and
compatible shells. This command isn't compatible with PowerShell. You must modify the
command to use it with PowerShell.

$ aws ecs execute-command \
--task MyTaskID \
--container windows_sample_app \
--interactive \
--command powershell.exe

The output will be a PowerShell prompt.

2. Run the following command in the PowerShell terminal inside the container.

PS C:\> klist get ExampleAccount$

In the output, note the Principal is the one that you created previously.

Step 14: Clean up

When you are finished with this tutorial, you should clean up the associated resources to avoid
incurring charges for unused resources.

This step uses the AWS CLI. You can run these commands in AWS CloudShell in the default shell,
which is bash.

1. Stop the task. Replace MyTaskID with the task ID from step 12, Step 12: Run a Windows task.

$ aws ecs stop-task --task MyTaskID

2. Terminate the Amazon EC2 instance. Afterwards, the container instance in the cluster will be
deleted automatically after one hour. For more information, see Capacity management.

You can find and terminate the instance by using the Amazon EC2 console. Or, you can run the
following command. To run the command, find the EC2 instance ID in the output of the aws

Step 14: Clean up 1311

Amazon Elastic Container Service Developer Guide

ecs describe-container-instances command from step 1, Step 11: Verify the container
instance. i-10a64379 is an example of an EC2 instance ID.

$ aws ec2 terminate-instances --instance-ids MyInstanceID

3. Delete the CredSpec file in Amazon S3. Replace MyBucket with the name of your Amazon S3
bucket.

$ aws s3api delete-object --bucket MyBucket --key ecs-domainless-gmsa-credspec/
gmsa-cred-spec.json

4. Delete the secret from Secrets Manager. If you used SSM Parameter Store instead, delete the
parameter.

The following command uses backslash continuation characters that are used by sh and
compatible shells. This command isn't compatible with PowerShell. You must modify the
command to use it with PowerShell.

$ aws secretsmanager delete-secret --secret-id gmsa-plugin-input \
 --force-delete-without-recovery

5. Deregister and delete the task definition. By deregistering the task definition, you mark it as
inactive so it can't be used to start new tasks. Then, you can delete the task definition.

a. Deregister the task definition by specifying the version. ECS automatically makes versions
of task definitions, that are numbered starting from 1. You refer to the versions in the
same format as the labels on container images, such as :1.

$ aws ecs deregister-task-definition --task-definition windows-gmsa-domainless-
task:1

b. Delete the task definition.

$ aws ecs delete-task-definitions --task-definition windows-gmsa-domainless-
task:1

6. (Optional) Delete the ECS cluster, if you created a cluster.

$ aws ecs delete-cluster --cluster windows-domainless-gmsa-cluster

Step 14: Clean up 1312

Amazon Elastic Container Service Developer Guide

Debugging Amazon ECS domainless gMSA for Windows containers

Amazon ECS task status

ECS tries to start a task exactly once. Any task that has an issue is stopped, and set to the status
STOPPED. There are two common types of issues with tasks. First, tasks that couldn't be started.
Second, tasks where the application has stopped inside one of the containers. In the AWS
Management Console, look at the Stopped reason field of the task for the reason why the task
was stopped. In the AWS CLI, describe the task and look at the stoppedReason. For steps in
the AWS Management Console and AWS CLI, see Checking stopped tasks for errors.

Windows Events

Windows Events for gMSA in containers are logged in the Microsoft-Windows-
Containers-CCG log file and can be found in the Event Viewer in the section Applications and
Services in Logs\Microsoft\Windows\Containers-CCG\Admin. For more debugging tips,
see Troubleshoot gMSAs for Windows containers on the Microsoft Learn website.

ECS agent gMSA plugin

Logging for gMSA plugin for the ECS agent on the Windows container instance is in the
following directory, C:/ProgramData/Amazon/gmsa-plugin/. Look in this log to see if
the domainless user credentials were downloaded from the storage location, such as Secrets
Manager, and that the credential format was read correctly.

Using gMSA for Linux Containers on Amazon EC2

Amazon ECS supports Active Directory authentication for Linux containers through a special kind
of service account called a group Managed Service Account (gMSA).

Linux based network applications, such as .NET Core applications, can use Active Directory to
facilitate authentication and authorization management between users and services. You can use
this feature by designing applications that integrate with Active Directory and run on domain-
joined servers. But, because Linux containers can't be domain-joined, you need to configure a Linux
container to run with gMSA.

A Linux container that runs with gMSA relies on the credentials-fetcher daemon that runs
on the container's host Amazon EC2 instance. That is, the daemon retrieves the gMSA credentials

Debugging 1313

https://learn.microsoft.com/en-us/virtualization/windowscontainers/manage-containers/gmsa-troubleshooting#non-domain-joined-container-hosts-use-event-logs-to-identify-configuration-issues

Amazon Elastic Container Service Developer Guide

from the Active Directory domain controller and then transfers these credentials to the container
instance. For more information about service accounts, see Create gMSAs for Windows containers
on the Microsoft Learn website.

Topics

• Considerations

• Prerequisites

• Setting up gMSA-capable Linux Containers on Amazon ECS

• Credential specification file

Considerations

Consider the following before you use gMSA for Linux containers:

• If your containers run on EC2, you can use gMSA for Windows containers and Linux containers.
Fargate isn't supported.

• You might need a Windows computer that's joined to the domain to complete the prerequisites.
For example, you might need a Windows computer that's joined to the domain to create the
gMSA in Active Directory with PowerShell. The RSAT Active Director PowerShell tools are only
available for Windows. For more information, see Installing the Active Directory administration
tools.

• You chose between domainless gMSA and joining each instance to a single domain. By using
domainless gMSA, the container instance isn't joined to the domain, other applications on the
instance can't use the credentials to access the domain, and tasks that join different domains can
run on the same instance.

Then, choose the data storage for the CredSpec and optionally, for the Active Directory user
credentials for domainless gMSA.

Amazon ECS uses an Active Directory credential specification file (CredSpec). This file contains
the gMSA metadata that's used to propagate the gMSA account context to the container.
You generate the CredSpec file and then store it in one of the CredSpec storage options in
the following table, specific to the Operating System of the container instances. To use the
domainless method, an optional section in the CredSpec file can specify credentials in one of
the domainless user credentials storage options in the following table, specific to the Operating
System of the container instances.

Considerations 1314

https://docs.microsoft.com/en-us/virtualization/windowscontainers/manage-containers/manage-serviceaccounts
https://docs.aws.amazon.com/directoryservice/latest/admin-guide/ms_ad_install_ad_tools.html
https://docs.aws.amazon.com/directoryservice/latest/admin-guide/ms_ad_install_ad_tools.html

Amazon Elastic Container Service Developer Guide

gMSA data storage options by Operating System

Storage location Linux Windows

Amazon Simple Storage
Service

CredSpec CredSpec

AWS Secrets Manager domainless user credentials domainless user credentials

Amazon EC2 Systems
Manager Parameter Store

CredSpec CredSpec, domainless user
credentials

Local file N/A CredSpec

Prerequisites

Before you use the gMSA for Linux containers feature with Amazon ECS, make sure to complete the
following:

• You set up an Active Directory domain with the resources that you want your containers to
access. Amazon ECS supports the following setups:

• An AWS Directory Service Active Directory. AWS Directory Service is an AWS managed Active
Directory that's hosted on Amazon EC2. For more information, see Getting Started with AWS
Managed Microsoft AD in the AWS Directory Service Administration Guide.

• An on-premises Active Directory. You must ensure that the Amazon ECS Linux container
instance can join the domain. For more information, see AWS Direct Connect.

• You have an existing gMSA account in the Active Directory. For more information, see Using
gMSA for Linux Containers on Amazon EC2.

• You installed and are running the credentials-fetcher daemon on an Amazon ECS Linux
container instance. You also added an initial set of credentials to the credentials-fetcher
daemon to authenticate with the Active Directory.

Prerequisites 1315

https://docs.aws.amazon.com/directoryservice/latest/admin-guide/ms_ad_getting_started.html
https://docs.aws.amazon.com/directoryservice/latest/admin-guide/ms_ad_getting_started.html
https://docs.aws.amazon.com/whitepapers/latest/aws-vpc-connectivity-options/aws-direct-connect-network-to-amazon.html

Amazon Elastic Container Service Developer Guide

Note

The credentials-fetcher daemon is only available for Amazon Linux 2023
and Fedora 37 and later. The daemon isn't available for Amazon Linux 2. For more
information, see aws/credentials-fetcher on GitHub.

• You set up the credentials for the credentials-fetcher daemon to authenticate with the
Active Directory. The credentials must be a member of the Active Directory security group that
has access to the gMSA account. There are multiple options in Decide if you want to join the
instances to the domain, or use domainless gMSA..

• You added the required IAM permissions. The permissions that are required depend on the
methods that you choose for the initial credentials and for storing the credential specification:

• If you use domainless gMSA for initial credentials, IAM permissions for AWS Secrets Manager
are required on the task execution role.

• If you store the credential specification in SSM Parameter Store, IAM permissions for Amazon
EC2 Systems Manager Parameter Store are required on the task execution role.

• If you store the credential specification in Amazon S3, IAM permissions for Amazon Simple
Storage Service are required on the task execution role.

Setting up gMSA-capable Linux Containers on Amazon ECS

Prepare the infrastructure

The following steps are considerations and setup that are performed once. After you complete
these steps, you can automate creating container instances to reuse this configuration.

Decide how the initial credentials are provided and configure the EC2 user data in a reusable EC2
launch template to install the credentials-fetcher daemon.

1. Decide if you want to join the instances to the domain, or use domainless gMSA.

• Join EC2 instances to the Active Directory domain

Setup 1316

https://github.com/aws/credentials-fetcher

Amazon Elastic Container Service Developer Guide

• Join the instances by user data

Add the steps to join the Active Directory domain to your EC2 user data in an EC2
launch template. Multiple Amazon EC2 Auto Scaling groups can use the same launch
template.

You can use these steps Joining an Active Directory or FreeIPA domain in the Fedora
Docs.

• Make an Active Directory user for domainless gMSA

The credentials-fetcher daemon has a feature that's called domainless gMSA. This
feature requires a domain, but the EC2 instance doesn't need to be joined to the domain.
By using domainless gMSA, the container instance isn't joined to the domain, other
applications on the instance can't use the credentials to access the domain, and tasks that
join different domains can run on the same instance. Instead, you provide the name of a
secret in AWS Secrets Manager in the CredSpec file. The secret must contain a username,
password, and the domain to log in to.

This feature is supported and can be used with Linux and Windows containers.

This feature is similar to the gMSA support for non-domain-joined container hosts
feature. For more information about the Windows feature, see gMSA architecture and
improvements on the Microsoft Learn website.

a. Make a user in your Active Directory domain. The user in Active Directory must have
permission to access the gMSA service accounts that you use in the tasks.

b. Create a secret in AWS Secrets Manager, after you made the user in Active Directory.
For more information, see Create an AWS Secrets Manager secret.

c. Enter the user's username, password, and the domain into JSON key-value pairs called
username, password and domainName, respectively.

{"username":"username","password":"passw0rd", "domainName":"example.com"}

d. Add configuration to the CredSpec file for the service account. The additional
HostAccountConfig contains the Amazon Resource Name (ARN) of the secret in
Secrets Manager.

Setup 1317

https://docs.fedoraproject.org/en-US/quick-docs/join-active-directory-freeipa/
https://learn.microsoft.com/en-us/virtualization/windowscontainers/manage-containers/manage-serviceaccounts#gmsa-architecture-and-improvements
https://learn.microsoft.com/en-us/virtualization/windowscontainers/manage-containers/manage-serviceaccounts#gmsa-architecture-and-improvements
https://docs.aws.amazon.com/secretsmanager/latest/userguide/create_secret.html

Amazon Elastic Container Service Developer Guide

On Windows, the PluginGUID must match the GUID in the following example
snippet. On Linux, the PluginGUID is ignored. Replace MySecret with example with
the Amazon Resource Name (ARN) of your secret.

 "ActiveDirectoryConfig": {
 "HostAccountConfig": {
 "PortableCcgVersion": "1",
 "PluginGUID": "{859E1386-BDB4-49E8-85C7-3070B13920E1}",
 "PluginInput": {
 "CredentialArn": "arn:aws:secretsmanager:aws-
region:111122223333:secret:MySecret"
 }
 }

e. The domainless gMSA feature needs additional permissions in the task execution role.
Follow the step (Optional) domainless gMSA secret.

2. Configure instances and install credentials-fetcher daemon

You can install the credentials-fetcher daemon with a user data script in your EC2
Launch Template. The following examples demonstrate two types of user data, cloud-
config YAML or bash script. These examples are for Amazon Linux 2023 (AL2023). Replace
MyCluster with the name of the Amazon ECS cluster that you want these instances to join.

• cloud-config YAML

Content-Type: text/cloud-config
package_reboot_if_required: true
packages:
 # prerequisites
 - dotnet
 - realmd
 - oddjob
 - oddjob-mkhomedir
 - sssd
 - adcli
 - krb5-workstation
 - samba-common-tools
 # https://github.com/aws/credentials-fetcher gMSA credentials management for
 containers
 - credentials-fetcher
write_files:

Setup 1318

Amazon Elastic Container Service Developer Guide

configure the ECS Agent to join your cluster.
replace MyCluster with the name of your cluster.
- path: /etc/ecs/ecs.config
 owner: root:root
 permissions: '0644'
 content: |
 ECS_CLUSTER=MyCluster
 ECS_GMSA_SUPPORTED=true
runcmd:
start the credentials-fetcher daemon and if it succeeded, make it start after
 every reboot
- "systemctl start credentials-fetcher"
- "systemctl is-active credentials-fetch && systemctl enable credentials-
fetcher"

• bash script

If you're more comfortable with bash scripts and have multiple variables to write to /
etc/ecs/ecs.config, use the following heredoc format. This format writes everything
between the lines beginning with cat and EOF to the configuration file.

#!/usr/bin/env bash
set -euxo pipefail

prerequisites
timeout 30 dnf install -y dotnet realmd oddjob oddjob-mkhomedir sssd adcli
 krb5-workstation samba-common-tools
install https://github.com/aws/credentials-fetcher gMSA credentials
 management for containers
timeout 30 dnf install -y credentials-fetcher

start credentials-fetcher
systemctl start credentials-fetcher
systemctl is-active credentials-fetch && systemctl enable credentials-fetcher

cat <<'EOF' >> /etc/ecs/ecs.config
ECS_CLUSTER=MyCluster
ECS_GMSA_SUPPORTED=true
EOF

Setup 1319

Amazon Elastic Container Service Developer Guide

There are optional configuration variables for the credentials-fetcher daemon that you
can set in /etc/ecs/ecs.config. We recommend that you set the variables in the user data
in the YAML block or heredoc similar to the previous examples. Doing so prevents issues with
partial configuration that can happen with editing a file multiple times. For more information
about the ECS agent configuration, see Amazon ECS Container Agent on GitHub.

• Optionally, you can use the variable CREDENTIALS_FETCHER_HOST if you change the
credentials-fetcher daemon configuration to move the socket to another location.

Setting up permissions and secrets

Do the following steps once for each application and each task definition. We recommend that you
use the best practice of granting the least privilege and narrow the permissions used in the policy.
This way, each task can only read the secrets that it needs.

1. (Optional) domainless gMSA secret

If you use the domainless method where the instance isn't joined to the domain, follow this
step.

You must add the following permissions as an inline policy to the task execution IAM role.
Doing so gives the credentials-fetcher daemon access to the Secrets Manager secret.
Replace the MySecret example with the Amazon Resource Name (ARN) of your secret in the
Resource list.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "secretsmanager:GetSecretValue"
],
 "Resource": [
 "arn:aws:ssm:aws-region:111122223333:secret:MySecret"
]
 }
]
}

Setup 1320

https://github.com/aws/amazon-ecs-agent/blob/master/README.md#environment-variables

Amazon Elastic Container Service Developer Guide

Note

If you use your own KMS key to encrypt your secret, you must add the necessary
permissions to this role and add this role to the AWS KMS key policy.

2. Decide if you're using SSM Parameter Store or S3 to store the CredSpec

Amazon ECS supports the following ways to reference the file path in the credentialSpecs
field of the task definition.

If you join the instances to a single domain, use the prefix credentialspec: at the start of
the ARN in the string. If you use domainless gMSA, then use credentialspecdomainless:.

For more information about the CredSpec, see Credential specification file.

• Amazon S3 Bucket

Add the credential spec to an Amazon S3 bucket. Then, reference the Amazon Resource
Name (ARN) of the Amazon S3 bucket in the credentialSpecs field of the task
definition.

{
 "family": "",
 "executionRoleArn": "",
 "containerDefinitions": [
 {
 "name": "",
 ...
 "credentialSpecs": [
 "credentialspecdomainless:arn:aws:s3:::${BucketName}/
${ObjectName}"
],
 ...
 }
],
 ...
}

To give your tasks access to the S3 bucket, add the following permissions as an inline
policy to the Amazon ECS task execution IAM role.

Setup 1321

Amazon Elastic Container Service Developer Guide

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "VisualEditor",
 "Effect": "Allow",
 "Action": [
 "s3:Get*",
 "s3:List*"
],
 "Resource": [
 "arn:aws:s3:::{bucket_name}",
 "arn:aws:s3:::{bucket_name}/{object}"
]
 }
]
}

• SSM Parameter Store parameter

Add the credential spec to an SSM Parameter Store parameter. Then, reference
the Amazon Resource Name (ARN) of the SSM Parameter Store parameter in the
credentialSpecs field of the task definition.

{
 "family": "",
 "executionRoleArn": "",
 "containerDefinitions": [
 {
 "name": "",
 ...
 "credentialSpecs": [
 "credentialspecdomainless:arn:aws:ssm:aws-
region:111122223333:parameter/parameter_name"
],
 ...
 }
],
 ...
}

Setup 1322

Amazon Elastic Container Service Developer Guide

To give your tasks access to the SSM Parameter Store parameter, add the following
permissions as an inline policy to the Amazon ECS task execution IAM role.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "ssm:GetParameters"
],
 "Resource": [
 "arn:aws:ssm:aws-region:111122223333:parameter/parameter_name"
]
 }
]
}

Credential specification file

Amazon ECS uses an Active Directory credential specification file (CredSpec). This file contains the
gMSA metadata that's used to propagate the gMSA account context to the Linux container. You
generate the CredSpec and reference it in the credentialSpecs field in your task definition. The
CredSpec file doesn't contain any secrets.

The following is an example CredSpec file.

{
 "CmsPlugins": [
 "ActiveDirectory"
],
 "DomainJoinConfig": {
 "Sid": "S-1-5-21-2554468230-2647958158-2204241789",
 "MachineAccountName": "WebApp01",
 "Guid": "8665abd4-e947-4dd0-9a51-f8254943c90b",
 "DnsTreeName": "example.com",
 "DnsName": "example.com",
 "NetBiosName": "example"
 },
 "ActiveDirectoryConfig": {

CredSpec file 1323

Amazon Elastic Container Service Developer Guide

 "GroupManagedServiceAccounts": [
 {
 "Name": "WebApp01",
 "Scope": "example.com"
 }
],
 "HostAccountConfig": {
 "PortableCcgVersion": "1",
 "PluginGUID": "{859E1386-BDB4-49E8-85C7-3070B13920E1}",
 "PluginInput": {
 "CredentialArn": "arn:aws:secretsmanager:aws-
region:111122223333:secret:MySecret"
 }
 }
 }
}

Creating a CredSpec

You create a CredSpec by using the CredSpec PowerShell module on a Windows computer that's
joined to the domain. Follow the steps in Create a credential spec on the Microsoft Learn website.

Using gMSA for Linux containers on Fargate

Amazon ECS supports Active Directory authentication for Linux containers on Fargate through a
special kind of service account called a group Managed Service Account (gMSA).

Linux based network applications, such as .NET Core applications, can use Active Directory to
facilitate authentication and authorization management between users and services. You can use
this feature by designing applications that integrate with Active Directory and run on domain-
joined servers. But, because Linux containers can't be domain-joined, you need to configure a Linux
container to run with gMSA.

Considerations

Consider the following before you use gMSA for Linux containers on Fargate:

• You must be running Platform Version 1.4 or later.

• You might need a Windows computer that's joined to the domain to complete the prerequisites.
For example, you might need a Windows computer that's joined to the domain to create the
gMSA in Active Directory with PowerShell. The RSAT Active Director PowerShell tools are only

Using gMSA for Linux containers on Fargate 1324

https://learn.microsoft.com/en-us/virtualization/windowscontainers/manage-containers/manage-serviceaccounts#create-a-credential-spec

Amazon Elastic Container Service Developer Guide

available for Windows. For more information, see Installing the Active Directory administration
tools.

• You must use domainless gMSA.

Amazon ECS uses an Active Directory credential specification file (CredSpec). This file contains
the gMSA metadata that's used to propagate the gMSA account context to the container. You
generate the CredSpec file, and then store it in an Amazon S3 bucket.

• A task can only support one Active Directory.

Prerequisites

Before you use the gMSA for Linux containers feature with Amazon ECS, make sure to complete the
following:

• You set up an Active Directory domain with the resources that you want your containers to
access. Amazon ECS supports the following setups:

• An AWS Directory Service Active Directory. AWS Directory Service is an AWS managed Active
Directory that's hosted on Amazon EC2. For more information, see Getting Started with AWS
Managed Microsoft AD in the AWS Directory Service Administration Guide.

• An on-premises Active Directory. You must ensure that the Amazon ECS Linux container
instance can join the domain. For more information, see AWS Direct Connect.

• You have an existing gMSA account in the Active Directory and a user that has permission to
access the gMSA service account. For more information, see Make an Active Directory user for
domainless gMSA.

• You have an Amazon S3 bucket. For more information, see Creating a bucket in the Amazon S3
User Guide.

Setting up gMSA-capable Linux Containers on Amazon ECS

Prepare the infrastructure

The following steps are considerations and setup that are performed once.

• Make an Active Directory user for domainless gMSA

When you use domainless gMSA, the container isn't joined to the domain. Other applications
that run on the container can't use the credentials to access the domain. Tasks that use a

Prerequisites 1325

https://docs.aws.amazon.com/directoryservice/latest/admin-guide/ms_ad_install_ad_tools.html
https://docs.aws.amazon.com/directoryservice/latest/admin-guide/ms_ad_install_ad_tools.html
https://docs.aws.amazon.com/directoryservice/latest/admin-guide/ms_ad_getting_started.html
https://docs.aws.amazon.com/directoryservice/latest/admin-guide/ms_ad_getting_started.html
https://docs.aws.amazon.com/whitepapers/latest/aws-vpc-connectivity-options/aws-direct-connect-network-to-amazon.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/create-bucket-overview.html

Amazon Elastic Container Service Developer Guide

different domain can run on the same container. You provide the name of a secret in AWS
Secrets Manager in the CredSpec file. The secret must contain a username, password, and the
domain to log in to.

This feature is similar to the gMSA support for non-domain-joined container hosts feature. For
more information about the Windows feature, see gMSA architecture and improvements on
the Microsoft Learn website.

a. Configure a user in your Active Directory domain. The user in the Active Directory must
have permission to access the gMSA service account that you use in the tasks.

b. You have a VPC and subnets that can resolve the Active Directory domain name. Configure
the VPC with DHCP options with the domain name that points to the Active Directory
service name. For information about how to configure DHCP options for a VPC, see Work
with DHCP option sets in the Amazon Virtual Private Cloud User Guide.

c. Create a secret in AWS Secrets Manager.

d. Create the credential specification file.

Setting up permissions and secrets

Do the following steps one time for each application and each task definition. We recommend that
you use the best practice of granting the least privilege and narrow the permissions used in the
policy. This way, each task can only read the secrets that it needs.

1. Make a user in your Active Directory domain. The user in Active Directory must have
permission to access the gMSA service accounts that you use in the tasks.

2. After you make the Active Directory user, Fargate a secret in AWS Secrets Manager. For more
information, see Create an AWS Secrets Manager secret.

3. Enter the user's username, password, and the domain into JSON key-value pairs called
username, password and domainName, respectively.

{"username":"username","password":"passw0rd", "domainName":"example.com"}

4. You must add the following permissions as an inline policy to the task execution IAM role.
Doing so gives the credentials-fetcher daemon access to the Secrets Manager secret.
Replace the MySecret example with the Amazon Resource Name (ARN) of your secret in the
Resource list.

Setup 1326

https://learn.microsoft.com/en-us/virtualization/windowscontainers/manage-containers/manage-serviceaccounts#gmsa-architecture-and-improvements
https://docs.aws.amazon.com/vpc/latest/userguide/DHCPOptionSet.html
https://docs.aws.amazon.com/vpc/latest/userguide/DHCPOptionSet.html
https://docs.aws.amazon.com/secretsmanager/latest/userguide/create_secret.html

Amazon Elastic Container Service Developer Guide

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "secretsmanager:GetSecretValue"
],
 "Resource": [
 "arn:aws:secretsmanager:aws-region:111122223333:secret:MySecret"
]
 }
]
}

Note

If you use your own KMS key to encrypt your secret, you must add the necessary
permissions to this role and add this role to the AWS KMS key policy.

5. Add the credential spec to an Amazon S3 bucket. Then, reference the Amazon Resource Name
(ARN) of the Amazon S3 bucket in the credentialSpecs field of the task definition.

{
 "family": "",
 "executionRoleArn": "",
 "containerDefinitions": [
 {
 "name": "",
 ...
 "credentialSpecs": [
 "credentialspecdomainless:arn:aws:s3:::${BucketName}/${ObjectName}"
],
 ...
 }
],
 ...
}

Setup 1327

Amazon Elastic Container Service Developer Guide

To give your tasks access to the S3 bucket, add the following permissions as an inline policy to
the Amazon ECS task execution IAM role.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "VisualEditor",
 "Effect": "Allow",
 "Action": [
 "s3:GetObject",
 "s3:ListObject"
],
 "Resource": [
 "arn:aws:s3:::{bucket_name}",
 "arn:aws:s3:::{bucket_name}/{object}"
]
 }
]
}

Credential specification file

Amazon ECS uses an Active Directory credential specification file (CredSpec). This file contains the
gMSA metadata that's used to propagate the gMSA account context to the Linux container. You
generate the CredSpec and reference it in the credentialSpecs field in your task definition. The
CredSpec file doesn't contain any secrets.

The following is an example CredSpec file.

{
 "CmsPlugins": [
 "ActiveDirectory"
],
 "DomainJoinConfig": {
 "Sid": "S-1-5-21-2554468230-2647958158-2204241789",
 "MachineAccountName": "WebApp01",
 "Guid": "8665abd4-e947-4dd0-9a51-f8254943c90b",
 "DnsTreeName": "example.com",
 "DnsName": "example.com",

CredSpec file 1328

Amazon Elastic Container Service Developer Guide

 "NetBiosName": "example"
 },
 "ActiveDirectoryConfig": {
 "GroupManagedServiceAccounts": [
 {
 "Name": "WebApp01",
 "Scope": "example.com"
 }
],
 "HostAccountConfig": {
 "PortableCcgVersion": "1",
 "PluginGUID": "{859E1386-BDB4-49E8-85C7-3070B13920E1}",
 "PluginInput": {
 "CredentialArn": "arn:aws:secretsmanager:aws-
region:111122223333:secret:MySecret"
 }
 }
 }
}

Creating a CredSpec and uploading it to an Amazon S3

You create a CredSpec by using the CredSpec PowerShell module on a Windows computer that's
joined to the domain. Follow the steps in Create a credential spec on the Microsoft Learn website.

After you create the credential specification file, upload it to an Amazon S3 bucket. Copy the
CredSpec file to the computer or environment that you are running AWS CLI commands in.

Run the following AWS CLI command to upload the CredSpec to Amazon S3. Replace MyBucket
with the name of your Amazon S3 bucket. You can store the file as an object in any bucket and
location, but you must allow access to that bucket and location in the policy that you attach to the
task execution role.

For PowerShell, use the following command:

$ Write-S3Object -BucketName "MyBucket" -Key "ecs-domainless-gmsa-credspec" -File
 "gmsa-cred-spec.json"

The following AWS CLI command uses backslash continuation characters that are used by sh and
compatible shells.

$ aws s3 cp gmsa-cred-spec.json \

CredSpec file 1329

https://learn.microsoft.com/en-us/virtualization/windowscontainers/manage-containers/manage-serviceaccounts#create-a-credential-spec

Amazon Elastic Container Service Developer Guide

s3://MyBucket/ecs-domainless-gmsa-credspec

Using EC2 Image Builder to build customized Amazon ECS-
optimized AMIs

AWS recommends the you use the Amazon ECS-optimized AMIs because they are preconfigured
with the requirements and recommendations to run your container workloads. There might
be times when you need to customize your AMI to add additional software. You can use EC2
Image Builder for the creation, management, and deployment of your server images. You retain
ownership of the customized images created in your account. You can use EC2 Image Builder
pipelines to automate updates and system patching for your images, or use a stand-alone
command to create an image with your defined configuration resources.

You create a recipe for your image. The recipe includes a parent image, and any additional
components. You also create a pipeline which distributes your customized AMI.

You create a recipe for your image. An Image Builder image recipe is a document that defines
the base image and the components that are applied to the base image to produce the desired
configuration for the output AMI image. You also create a pipeline which distributes your
customized AMI. For more information, see How EC2 Image Builder works in the EC2 Image Builder
User Guide.

We recommend that you use one of the following Amazon ECS-optimized AMIs as your "Parent
image" in EC2 Image Builder:

• Linux

• Amazon ECS-optimized AL2023 x86

• Amazon ECS-optimized Amazon Linux 2023 (arm64) AMI

• Amazon ECS-optimized Amazon Linux 2 kernel 5 AMI

• Amazon ECS-optimized Amazon Linux 2 x86 AMI

• Windows

• Amazon ECS-optimized Windows 2022 Full x86

• Amazon ECS-optimized Windows 2022 Core x86

• Amazon ECS-optimized Windows 2019 Full x86

• Amazon ECS-optimized Windows 2019 Core x86

• Amazon ECS-optimized Windows 2016 Full x86

Using EC2 Image Builder to build customized Amazon ECS-optimized AMIs 1330

https://docs.aws.amazon.com/imagebuilder/latest/userguide/how-image-builder-works.html

Amazon Elastic Container Service Developer Guide

We also recommend that you select "Use latest available OS version". The pipeline will use
semantic versioning for the parent image, which helps detect the dependency updates in
automatically scheduled jobs. For more information, see Semantic versioning in the EC2 Image
Builder User Guide.

AWS regularly updates Amazon ECS-optimized AMI images with security patches and the new
container agent version. When you use an AMI ID as your parent image in your image recipe,
you need to regularly check for updates to the parent image. If there are updates, you must
create a new version of your recipe with the updated AMI. This ensures that your custom images
incorporate the latest version of the parent image. For information about how to create a workflow
to automatically update your EC2 instances in your Amazon ECS cluster with the newly created
AMIs, see How to create an AMI hardening pipeline and automate updates to your ECS instance
fleet.

You can also specify the Amazon Resource Name (ARN) of a parent image that's published through
a managed EC2 Image Builder pipeline. Amazon routinely publishes Amazon ECS-optimized AMI
images through managed pipelines. These images are publicly accessible. You must have the
correct permissions to access the image. When you use an image ARN instead of an AMI in your
Image Builder recipe, your pipeline automatically uses the most recent version of the parent image
each time it runs. This approach eliminates the need to manually create new recipe versions for
each update.

Using the image ARN with infrastructure as code (IaC)

You can configure the recipe using the EC2 Image Builder console, or infrastructure as code
(for example, AWS CloudFormation), or the AWS SDK. When you specify a parent image in your
recipe, you can specify an EC2 AMI ID, Image Builder image ARN, AWS Marketplace product ID,
or container image. AWS publishes both AMI IDs and Image Builder image ARNs of Amazon ECS-
Optimized AMIs publicly. The following is the ARN format for the image:

arn:${Partition}:imagebuilder:${Region}:${Account}:image/${ImageName}/${ImageVersion}

The ImageVersion has the following format. Replace major, minor and patch with the latest
values.

<major>.<minor>.<patch>

You can replace major, minor and patch to specific values or you can use Versionless ARN
of an image, so your pipeline remains up-to-date with the latest version of the parent image.

Using the image ARN with infrastructure as code (IaC) 1331

https://docs.aws.amazon.com/imagebuilder/latest/userguide/ibhow-semantic-versioning.html
https://aws.amazon.com/blogs/security/how-to-create-an-ami-hardening-pipeline-and-automate-updates-to-your-ecs-instance-fleet/
https://aws.amazon.com/blogs/security/how-to-create-an-ami-hardening-pipeline-and-automate-updates-to-your-ecs-instance-fleet/

Amazon Elastic Container Service Developer Guide

A versionless ARN uses wildcard format ‘x.x.x’ to represent the image version. This approach
allows the Image Builder service to automatically resolve to the most recent version of the image.
Using versionless ARN ensures that your reference always point to the latest image available,
streamlining the process of maintaining up to date images in your deployment. When you create a
recipe with the console, EC2 Image Builder automatically identifies the ARN for your parent image.
When you use IaC to create the recipe, you must identify the ARN and select the desired image
version or use versionless arn to indicate latest available image. We recommend that you create
an automated script to filter and only display images that align with your criteria. The following
Python script shows how to retrieve a list of Amazon ECS-optimized AMIs.

The script accepts two optional arguments: owner and platform, with default values of
“Amazon”, and “Windows” respectively. The valid values for the owner argument are: Self,
Shared, Amazon, and ThirdParty. The valid values for the platform argument are Windows
and Linux. For example, if you run the script with the owner argument set to Amazon and the
platform set to Linux, the script generates a list of images published by Amazon including
Amazon ECS-Optimized images.

import boto3
import argparse

def list_images(owner, platform):
 # Create a Boto3 session
 session = boto3.Session()

 # Create an EC2 Image Builder client
 client = session.client('imagebuilder')

 # Define the initial request parameters
 request_params = {
 'owner': owner,
 'filters': [
 {
 'name': 'platform',
 'values': [platform]
 }
]
 }

 # Initialize the results list
 all_images = []

Using the image ARN with infrastructure as code (IaC) 1332

Amazon Elastic Container Service Developer Guide

 # Get the initial response with the first page of results
 response = client.list_images(**request_params)

 # Extract images from the response
 all_images.extend(response['imageVersionList'])

 # While 'nextToken' is present, continue paginating
 while 'nextToken' in response and response['nextToken']:
 # Update the token for the next request
 request_params['nextToken'] = response['nextToken']

 # Get the next page of results
 response = client.list_images(**request_params)

 # Extract images from the response
 all_images.extend(response['imageVersionList'])

 return all_images

def main():
 # Initialize the parser
 parser = argparse.ArgumentParser(description="List AWS images based on owner and
 platform")

 # Add the parameters/arguments
 parser.add_argument("--owner", default="Amazon", help="The owner of the images.
 Default is 'Amazon'.")
 parser.add_argument("--platform", default="Windows", help="The platform type of the
 images. Default is 'Windows'.")

 # Parse the arguments
 args = parser.parse_args()

 # Retrieve all images based on the provided owner and platform
 images = list_images(args.owner, args.platform)

 # Print the details of the images
 for image in images:
 print(f"Name: {image['name']}, Version: {image['version']}, ARN:
 {image['arn']}")

if __name__ == "__main__":
 main()

Using the image ARN with infrastructure as code (IaC) 1333

Amazon Elastic Container Service Developer Guide

Using the image ARN with AWS CloudFormation

An Image Builder image recipe is a blueprint that specifies the parent image and
components required to achieve the intended configuration of the output image. You use
the AWS::ImageBuilder::ImageRecipe resource. Set the ParentImage value to the
image ARN. Use the versionless ARN of your desired image to ensure your pipeline always
uses the most recent version of the image. For example, arn:aws:imagebuilder:us-
east-1:aws:image/amazon-linux-2023-ecs-optimized-x86/x.x.x. The following
AWS::ImageBuilder::ImageRecipe resource definition uses an Amazon managed image ARN:

ECSRecipe:
 Type: AWS::ImageBuilder::ImageRecipe
 Properties:
 Name: MyRecipe
 Version: '1.0.0'
 Components:
 - ComponentArn: [<The component arns of the image recipe>]
 ParentImage: "arn:aws:imagebuilder:us-east-1:aws:image/amazon-linux-2023-ecs-
optimized-x86/x.x.x"

For more information about the AWS::ImageBuilder::ImageRecipe resource see in the AWS
CloudFormation User Guide.

You can automate the creation of new images in your pipeline by setting the Schedule property
of the AWS::ImageBuilder::ImagePipeline resource. The schedule includes a start condition
and cron expression. For more information, see AWS::ImageBuilder::ImagePipeline in the
AWS CloudFormation User Guide.

The following of AWS::ImageBuilder::ImagePipeline example has the pipeline run a build at
10:00AM Coordinated Universal Time (UTC) every day. Set the following Schedule values:

• Set PipelineExecutionStartCondition to
EXPRESSION_MATCH_AND_DEPENDENCY_UPDATES_AVAILABLE. The build initiates only if
dependent resources like the parent image or components, which use the wildcard ‘x’ in their
semantic versions, are updated. This ensures the build incorporates the latest updates of those
resources.

• Set ScheduleExpression to the cron expression (0 10 * * ? *).

Using the image ARN with AWS CloudFormation 1334

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-imagebuilder-imagerecipe.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-imagebuilder-imagepipeline.html

Amazon Elastic Container Service Developer Guide

ECSPipeline:
 Type: AWS::ImageBuilder::ImagePipeline
 Properties:
 Name: my-pipeline
 ImageRecipeArn: <arn of the recipe you created in previous step>
 InfrastructureConfigurationArn: <ARN of the infrastructure configuration
 associated with this image pipeline>
 Schedule:
 PipelineExecutionStartCondition:
 EXPRESSION_MATCH_AND_DEPENDENCY_UPDATES_AVAILABLE
 ScheduleExpression: 'cron(0 10 * * ? *)'

Using the image ARN with Terraform

The approach for specifying your pipeline's parent image and schedule in Terraform aligns with
that in AWS CloudFormation. You use the aws_imagebuilder_image_recipe resource. Set
the parent_image value to the image ARN. Use the versionless ARN of your desired image to
ensure your pipeline always uses the most recent version of the image.. For more information, see
aws_imagebuilder_image_recipein the Terraform documentation.

In the schedule configuration block of the aws_imagebuilder_image_pipeline resource,
set the schedule_expression argument value to a cron expression of your choice to specify
how often the pipeline runs, and set the pipeline_execution_start_condition to
EXPRESSION_MATCH_AND_DEPENDENCY_UPDATES_AVAILABLE. For more information, see
aws_imagebuilder_image_pipelinein the Terraform documentation.

Using the image ARN with Terraform 1335

https://registry.terraform.io/providers/hashicorp/aws/latest/docs/resources/imagebuilder_image_recipe#argument-reference
https://registry.terraform.io/providers/hashicorp/aws/latest/docs/resources/imagebuilder_image_pipeline#argument-reference

Amazon Elastic Container Service Developer Guide

Amazon ECS troubleshooting

You might need to troubleshoot issues with your load balancers, tasks, services, or container
instances. This chapter helps you find diagnostic information from the Amazon ECS container
agent, the Docker daemon on the container instance, and the service event log in the Amazon ECS
console.

Topics

• Troubleshooting issues with ECS Exec

• Troubleshooting Amazon ECS Anywhere issues

• Checking stopped tasks for errors

• Stopped tasks error codes

• CannotPullContainer task errors

• Service event messages

• Invalid CPU or memory value specified

• CannotCreateContainerError: API error (500): devmapper

• Troubleshooting service load balancers

• Troubleshooting Amazon EBS volume attachment

• Troubleshooting service auto scaling

• Using Docker debug output

• Amazon ECS log file locations

• Amazon ECS logs collector

• Agent introspection diagnostics

• Docker diagnostics

• AWS Fargate throttling quotas

• API failure reasons

Troubleshooting issues with ECS Exec

The following are troubleshooting notes to help diagnose why you may be getting an error when
using ECS Exec.

Troubleshooting issues with ECS Exec 1336

Amazon Elastic Container Service Developer Guide

Verify using the Amazon ECS Exec Checker

The ECS Exec Checker script provides a way to verify and validate that your Amazon ECS cluster
and task have met the prerequisites for using the ECS Exec feature. The ECS Exec Checker script
verifies both your AWS CLI environment and cluster and tasks are ready for ECS Exec, by calling
various APIs on your behalf. The tool requires the latest version of the AWS CLI and that the jq is
available. For more information, see ECS Exec Checker on GitHub.

Error when calling execute-command

If a The execute command failed error occurs, the following are possible causes.

• The task does not have the required permissions. Verify that the task definition used to launch
your task has a task IAM role defined and that the role has the required permissions. For more
information, see IAM permissions required for ECS Exec.

• The SSM agent isn't installed or isn't running.

• There is an interface Amazon VPC endpoint for Amazon ECS, but there isn't one for Systems
Manager Session Manager.

Troubleshooting Amazon ECS Anywhere issues

Amazon ECS Anywhere provides support for registering an external instance such as an on-
premises server or virtual machine (VM) to your Amazon ECS cluster. The following are common
issues that you might encounter and general troubleshooting recommendations for them.

Topics

• External instance registration issues

• External instance network issues

• Issues running tasks on your external instance

External instance registration issues

When registering an external instance with your Amazon ECS cluster, the following requirements
must be met:

• An AWS Systems Manager activation, which consists of an activation ID and activation code,
must be retrieved. You use it to register the external instance as a Systems Manager managed

Verify using the Amazon ECS Exec Checker 1337

https://github.com/aws-containers/amazon-ecs-exec-checker

Amazon Elastic Container Service Developer Guide

instance. When a Systems Manager activation is requested, specify a registration limit and
expiration date. The registration limit specifies the maximum number of instances that can
be registered using the activation. The default value for registration limit is 1 instance. The
expiration date specifies when the activation expires. The default value is 24 hours. If the
Systems Manager activation that you're using to register your external instance isn't valid,
request a new one. For more information, see Registering an external instance to a cluster.

• An IAM policy is used to provide your external instance the permissions that it needs to
communicate with AWS API operations. If this managed policy isn't created properly and doesn't
contain the required permissions, external instance registration fails. For more information, see
ECS Anywhere IAM role.

• Amazon ECS provides an installation script that installs Docker, the Amazon ECS container agent,
and the Systems Manager Agent on your external instance. If the installation script fails, it's
likely that the script can't be run again on the same instance without an error occurring. If this
happens, follow the cleanup process to clear AWS resources from the instance so you can run the
installation script again. For more information, see Deregistering an external instance.

Note

Be aware that, if the installation script successfully requested and used the Systems
Manager activation, running the installation script a second time uses the Systems
Manager activation again. This might in turn cause you to reach the registration limit for
that activation. If this limit is reached, you must create a new activation.

• When running the installation script on an external instance for GPU workloads, if the NVIDIA
driver is not detected or configured properly, an error will occur. The installation script uses the
nvidia-smi command to confirm the existence of the NVIDIA driver.

External instance network issues

To communicate any changes, your external instance requires a network connection to AWS. If your
external instance loses its network connection to AWS, tasks that are running on your instances
continue to run anyway unless stopped manually. After the connection to AWS is restored, the AWS
credentials that are used by the Amazon ECS container agent and Systems Manager Agent on the
external instance renew automatically. For more information about the AWS domains that are used
for communication between your external instance and AWS, see Networking with ECS Anywhere.

External instance network issues 1338

Amazon Elastic Container Service Developer Guide

Issues running tasks on your external instance

If your tasks or containers fail to run on your external instance, the most common causes are either
network or permission related. If your containers are pulling their images from Amazon ECR or are
configured to send container logs to CloudWatch Logs, your task definition must specify a valid
task execution IAM role. Without a valid task execution IAM role, your containers will fail to start.
For more information about network related issues, see External instance network issues.

Important

Amazon ECS provides the Amazon ECS logs collection tool. You can use it to collect logs
from your external instances for troubleshooting purposes. For more information, see
Amazon ECS logs collector.

Checking stopped tasks for errors

If you have trouble starting a task, your task might be stopping because of application or
configuration errors. For example, you run the task and the task displays a PENDING status and
then disappears. You can view stopped task errors like this in the Amazon ECS console by viewing
the stopped task and inspecting it for error messages.

If your task definition uses the awslogs log driver, the application logs that are written to Amazon
CloudWatch Logs are displayed on the Logs tab in the Amazon ECS console for as long as the
stopped task appears.

If your task was created by an Amazon ECS service, the actions that Amazon ECS takes to maintain
the service are published in the service events. You can view the events in the AWS Management
Console, AWS CLI, AWS SDKs, the Amazon ECS API, or tools that use the SDKs and API. These
events include Amazon ECS stopping and replaces a task because the containers in the task have
stopped running, or have failed too many health checks from Elastic Load Balancing. For more
information, see Service event messages.

If your task ran on a container instance on Amazon EC2 or external computers, you can also look at
the logs of the container runtime and the Amazon ECS Agent. These logs are on the host Amazon
EC2 instance or external computer. For more information, see Amazon ECS log file locations.

Issues running tasks 1339

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/stopped-task-error-codes.html

Amazon Elastic Container Service Developer Guide

Important

Stopped tasks only appear in the Amazon ECS console, AWS CLI, and AWS SDKs for at least
1 hour after the task stops. After that, the details of the stopped task expire and aren't
available in Amazon ECS.
Amazon ECS also sends task state change events to Amazon EventBridge. You can't view
events in EventBridge. Instead, you create rules to send the events to other persistent
storage such as Amazon CloudWatch Logs. You can use the storage to view your
stopped task details after it has expired from view in the Amazon ECS console. For more
information, see Amazon ECS task state change events.
For a sample EventBridge configuration to archive Amazon ECS events to Amazon
CloudWatch Logs, see ECS Stopped Tasks in CloudWatch Logs on the GitHub website.

Follow these steps to check stopped tasks for errors.

Console

AWS Management Console

The following steps can be used to check stopped tasks for errors using the new AWS
Management Console.

1. Open the console at https://console.aws.amazon.com/ecs/v2.

2. In the navigation pane, choose Clusters.

3. On the Clusters page, choose the cluster.

4. On the Cluster : name page, choose the Tasks tab.

5. Configure the filter to display stopped tasks. For Filter desired status, choose Stopped or
Any desired status.

The Stopped option displays your stopped tasks and Any desired status displays all of your
tasks.

6. Choose the stopped task to inspect.

7. In the row for your stopped task, in the Last Status column, choose Stopped.

A pop-up window displays the stopped reason.

Checking stopped tasks for errors 1340

https://github.com/aws-samples/amazon-ecs-stopped-tasks-cwlogs#ecs-stopped-tasks-in-cloudwatch-logs
https://console.aws.amazon.com/ecs/v2

Amazon Elastic Container Service Developer Guide

AWS CLI

1. List the stopped tasks in a cluster. The output contains the Amazon Resource Name (ARN)
of the task, which you need to describe the task.

aws ecs list-tasks \
 --cluster cluster_name \
 --desired-status STOPPED \
 --region us-west-2

2. Describe the stopped task to retrieve the stoppedReason in the response.

aws ecs describe-tasks \
 --cluster cluster_name \
 --tasks arn:aws:ecs:us-west-2:account_id:task/cluster_name/task_ID \
 --region us-west-2

Additional resources

The following pages provide additional information about error codes:

• Why is my Amazon ECS task stopped

• Stopped tasks error codes

Stopped tasks error codes

The following are the possible error messages you may receive when your Fargate task is stopped
unexpectedly. The error messages are returned by the container agent and the prefix is dependent
on the platform version the task is using.

To check your stopped tasks for an error message using the AWS Management Console, see
Checking stopped tasks for errors.

ContainerRuntimeTimeoutError, DockerTimeoutError (Linux platform version 1.3.0 or
earlier)

This error occurs when a container can't transition to either a RUNNING or STOPPED state within
the timeout period. The reason and timeout value is provided in the error message.

Additional resources 1341

https://aws.amazon.com/premiumsupport/knowledge-center/ecs-task-stopped/
https://docs.aws.amazon.com/AmazonECS/latest/userguide/stopped-task-error-codes.html

Amazon Elastic Container Service Developer Guide

Example: ContainerRuntimeTimeoutError: Could not transition to running;
timed out after waiting 1m: <reason>

CannotStartContainerError

This error occurs when a container can't be started.

Example: CannotStartContainerError: failed to get container status:
<reason>

CannotStopContainerError

This error occurs when a container can’t be stopped.

Example: CannotStopContainerError: failed sending SIGTERM to container:
<reason>

CannotInspectContainerError

This error occurs when the container agent can't describe the container through the container
runtime.

When using platform version 1.3 or prior, the Amazon ECS agent returns the reason from
Docker.

When using platform version 1.4 or later 1.4.0 or later (Linux) or 1.0.0 or later (Windows),
the Fargate agent returns the reason from containerd.

Example: CannotInspectContainerError: <reason>

ResourceInitializationError

This error occurs when the container agent for your Fargate task fails to create or bootstrap the
resources required to start the container or the task it belongs to.

A common cause for this error is using a VPC that doesn't have DNS resolution enabled.

This error only occurs if you use platform version 1.4.0 or later (Linux) or 1.0.0 or later
(Windows).

Example: ResourceInitializationError: failed to initialize logging driver:
<reason>

Stopped tasks error codes 1342

Amazon Elastic Container Service Developer Guide

CannotPullContainerError

This error occurs when the agent is unable to pull the container image specified in the task
definition. For more information, see CannotPullContainer task errors.

Example: CannotPullContainerError: <reason>

CannotCreateVolumeError

This error occurs when the agent can't create the volume mount specified in the task definition.

This error only occurs if you use platform version 1.4.0 or later (Linux) or 1.0.0 or later
(Windows).

Example: CannotCreateVolumeError: <reason>

ContainerRuntimeError

This error occurs when the agent receives an unexpected error from containerd for a
runtime-specific operation. This error is usually caused by an internal failure in the agent or the
containerd runtime.

This error only occurs if you use platform version 1.4.0 or later (Linux) or 1.0.0 or later
(Windows).

Example: ContainerRuntimeError: failed to create container IO set:
<reason>

OutOfMemoryError

This error occurs when a container exits due to processes in the container consuming more
memory than was allocated in the task definition.

Example: OutOfMemoryError: container killed due to memory usage

InternalError

This error occurs when the agent encounters an unexpected, non-runtime related internal error.

This error only occurs if using platform version 1.4 or later.

Example: InternalError: <reason>

TaskFailedToStart

This error occurs when an ENI attachment is requested. Amazon EC2 asynchronously handles
the provisioning of the ENI. The provisioning process takes time. Amazon ECS has a timeout

Stopped tasks error codes 1343

Amazon Elastic Container Service Developer Guide

in case there are long wait times or unreported failures. There are times when the ENI is
provisioned, but the report comes to Amazon ECS after the failure timeout. In this case, Amazon
ECS sees the reported task failure with an in-use ENI.

Example: InternalError: <reason>

SpotInterruption

This error occurs when there is no Fargate Spot capacity or when Fargate takes back Spot
capacity.

Example: SpotInterruption: Your Spot Task was interrupted

Example: InternalError: <reason>

TaskFailedToStart

This error occurs when the subnet that hosts the instances does not have enough IP addresses.
The number of available IP addresses is available on the subnet details page, or by using
describe-subnets. For more information, see View your subnet in the Amazon VPC User
Guide.

Example: Unexpected EC2 error while attempting to Create Network
Interface with public IP assignment enabled in subnet 'subnet-id':
InsufficientFreeAddressesInSubnet

TaskFailedToStart

This error occurs when you chose a task definition with a launch type that does not match the
cluster capacity type. For more information, see Amazon ECS launch types.

Example: The selected task definition is not compatible with the selected
compute strategy

CannotPullContainer task errors

The following errors indicate that, when creating a task, the container image specified can't be
retrieved.

Note

The 1.4 Fargate platform version truncates long error messages.

CannotPullContainer task errors 1344

https://docs.aws.amazon.com/cli/latest/reference/ec2/describe-subnets.html
https://docs.aws.amazon.com/vpc/latest/userguide/working-with-vpcs.html#view-subnet

Amazon Elastic Container Service Developer Guide

Connection timed out

When a Fargate task is launched, its elastic network interface requires a route to the internet to
pull container images. If you receive an error similar to the following when launching a task, it's
because a route to the internet doesn't exist:

CannotPullContainerError: API error (500): Get https://111122223333.dkr.ecr.us-
east-1.amazonaws.com/v2/: net/http: request canceled while waiting for connection"

To resolve this issue, you can:

• For tasks in public subnets, specify ENABLED for Auto-assign public IP when launching the
task. For more information, see Creating a standalone task.

• For tasks in private subnets, specify DISABLED for Auto-assign public IP when launching the
task, and configure a NAT gateway in your VPC to route requests to the internet. For more
information, see NAT Gateways in the Amazon VPC User Guide.

Context canceled

The common cause for this error is because the VPC your task is using doesn't have a route to
pull the container image from Amazon ECR.

Image not found

When you specify an Amazon ECR image in your container definition, you must use the full URI
of your Amazon ECR repository along with the image name in that repository. If the repository
or image can't be found, you receive the following error:

CannotPullContainerError: API error (404): repository 111122223333.dkr.ecr.us-
east-1.amazonaws.com/<repo>/<image> not found

To resolve this issue, verify the repository URI and the image name. Also make sure that you
have set up the proper access using the task execution IAM role. For more information about the
task execution role, see Amazon ECS task execution IAM role.

Amazon ECR endpoint connection issue

If you are trying to pull an Amazon ECR image and you don't have the correct permissions for
the Amazon ECR endpoint, you see an error similar to the following:

CannotPullContainerError: API error

CannotPullContainer task errors 1345

https://docs.aws.amazon.com/vpc/latest/userguide/vpc-nat-gateway.html

Amazon Elastic Container Service Developer Guide

To resolve this issue, Amazon ECS must communicate with the Amazon ECR endpoint. For
information about how to resolve this issues, see How can I resolve the Amazon ECR error
"CannotPullContainerError: API error" in Amazon ECS on the AWS Support website.

Insufficient disk space

If the root volume of your container instance has insufficient disk space when pulling the
container image, you see an error similar to the following:

CannotPullContainerError: write /var/lib/docker/tmp/GetImageBlob111111111: no space
 left on device

To resolve this issue, free up disk space.

If you are using the Amazon ECS-optimized AMI, you can use the following command to retrieve
the 20 largest files on your file system:

du -Sh / | sort -rh | head -20

Example output:

5.7G /var/lib/docker/
containers/50501b5f4cbf90b406e0ca60bf4e6d4ec8f773a6c1d2b451ed8e0195418ad0d2
1.2G /var/log/ecs
594M /var/lib/docker/devicemapper/mnt/
c8e3010e36ce4c089bf286a623699f5233097ca126ebd5a700af023a5127633d/rootfs/data/logs
...

In some cases, similar to the preceding example, the root volume might be filled out by a
running container. If the container is using the default json-file log driver without a max-
size limit, it may be that the log file is responsible for most of that space used. You can use
the docker ps command to verify which container is using the space by mapping the directory
name from the output above to the container ID. For example:

CONTAINER ID IMAGE COMMAND CREATED
 STATUS PORTS NAMES
50501b5f4cbf amazon/amazon-ecs-agent:latest "/agent" 4 days ago
 Up 4 days ecs-agent

By default, when using the json-file log driver, Docker captures the standard output (and
standard error) of all of your containers and writes them in files using the JSON format. You can

CannotPullContainer task errors 1346

https://aws.amazon.com/premiumsupport/knowledge-center/ecs-pull-container-api-error-ecr/
https://aws.amazon.com/premiumsupport/knowledge-center/ecs-pull-container-api-error-ecr/

Amazon Elastic Container Service Developer Guide

set the max-size as a log driver option, which prevents the log file from taking up too much
space. For more information, see Configure logging drivers in the Docker documentation.

The following is a container definition snippet showing how to use this option:

{
 "log-driver": "json-file",
 "log-opts": {
 "max-size": "256m"
 }
}

An alternative, if your container logs are taking up too much disk space, is to use the awslogs
log driver. The awslogs log driver sends the logs to CloudWatch, which frees up the disk space
that would otherwise be used for your container logs on the container instance. For more
information, see Using the awslogs log driver.

Docker Hub rate limiting

If you receive one of the following errors, you're likely hitting the Docker Hub rate limits:

ERROR: toomanyrequests: Too Many Requests.

You have reached your pull rate limit. You may increase the limit by authenticating
 and upgrading: https://www.docker.com/increase-rate-limits.

For more information about the Docker Hub rate limits, see Understanding Docker Hub rate
limiting.

If you have increased the Docker Hub rate limit and you need to authenticate your Docker pulls
for your container instances, see Private registry authentication for container instances in the
Amazon Elastic Container Service Developer Guide.

Fail to copy image

If you receive an error similar to the following when launching a task, it's because there is no
access to the image:

CannotPullContainerError: ref pull has been retried 1 time(s): failed to copy:
 httpReaderSeeker: failed open: unexpected status code

To resolve this issue, you can:

CannotPullContainer task errors 1347

https://docs.docker.com/config/containers/logging/json-file/
https://www.docker.com/increase-rate-limits
https://www.docker.com/increase-rate-limits
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/private-auth-container-instances.html

Amazon Elastic Container Service Developer Guide

• For Fargate tasks, see How do I resolve the "cannotpullcontainererror" error for my Amazon
ECS tasks on Fargate.

• For other tasks, see How do I resolve the "cannotpullcontainererror" error for my Amazon ECS
tasks.

Pull access denied

If you receive an error similar to the following when launching a task, it's because there is no
access to the image:

CannotPullContainerError: pull access denied

To resolve this issue, you might need to authenticate your Docker client with Amazon ECR For
more information, see Private registry authentication in the Amazon ECR User Guide.

Invalid memory address or nil pointer dereference

If you receive an error similar to the following when launching a task, it's because there is no
access to the image:

CannotPullContainerError: containerd: pull command failed: panic: runtime error:
 invalid memory address or nil pointer dereference

To resolve this issue:

• Check that you have the security group rules to reach Amazon S3.

• When you use gateway endpoints, you must add a route in the route table to access the
endpoint.

Error pulling image configuration

If you receive an error similar to the following when launching a task, it's because of a rate limit
reached or network error:

CannotPullContainerError: error pulling image conf/error pulling image configuration

To resolve this issue, see How can I resolve the "CannotPullContainerError" error in my Amazon
ECS EC2 Launch Type Task.

For additional information about STOPPED errors, see Stopped tasks error codes in the Amazon
Elastic Container Service User Guide for AWS Fargate.

CannotPullContainer task errors 1348

https://aws.amazon.com/premiumsupport/knowledge-center/ecs-fargate-pull-container-error/
https://aws.amazon.com/premiumsupport/knowledge-center/ecs-fargate-pull-container-error/
https://aws.amazon.com/premiumsupport/knowledge-center/ecs-pull-container-error/
https://aws.amazon.com/premiumsupport/knowledge-center/ecs-pull-container-error/
https://docs.aws.amazon.com/AmazonECR/latest/userguide/registry_auth.html
https://repost.aws/knowledge-center/ecs-pull-container-error
https://repost.aws/knowledge-center/ecs-pull-container-error
https://docs.aws.amazon.com/AmazonECS/latest/userguide/stopped-task-error-codes.html

Amazon Elastic Container Service Developer Guide

Service event messages

When troubleshooting a problem with a service, the first place you should check for diagnostic
information is the service event log. You can view service events using the DescribeServices
API, the AWS CLI, or by using the AWS Management Console.

When viewing service event messages using the Amazon ECS API, only the events from the service
scheduler are returned. These include the most recent task placement and instance health events.
However, the Amazon ECS console displays service events from the following sources.

• Task placement and instance health events from the Amazon ECS service scheduler. These events
have a prefix of service (service-name). To ensure that this event view is helpful, we only
show the 100 most recent events and duplicate event messages are omitted until either the
cause is resolved or six hours passes. If the cause is not resolved within six hours, you receive
another service event message for that cause.

• Service Auto Scaling events. These events have a prefix of Message. The 10 most recent scaling
events are shown. These events only occur when a service is configured with an Application Auto
Scaling scaling policy.

Use the following steps to view your current service event messages.

Console

1. Open the console at https://console.aws.amazon.com/ecs/v2.

2. In the navigation pane, choose Clusters.

3. On the Clusters page, choose the cluster.

4. Choose the service to inspect.

5. Choose Deployments and events, under Events, view the messages.

AWS CLI

Use the describe-services command to view the service event messages for a specified service.

The following AWS CLI example describes the service-name service in the default cluster,
which will provide the latest service event messages.

aws ecs describe-services \

Service event messages 1349

https://console.aws.amazon.com/ecs/v2
https://docs.aws.amazon.com/cli/latest/reference/ecs/describe-services.html

Amazon Elastic Container Service Developer Guide

 --cluster default \
 --services service-name \
 --region us-west-2

Service event messages

The following are examples of service event messages you may see in the Amazon ECS console.

service (service-name) has reached a steady state.

The service scheduler sends a service (service-name) has reached a steady state.
service event when the service is healthy and at the desired number of tasks, thus reaching a
steady state.

The service scheduler reports the status periodically, so you might receive this message multiple
times.

service (service-name) was unable to place a task because no container instance met all of its
requirements.

The service scheduler sends this event message when it couldn't find the available resources to add
another task. The possible causes for this are:

No container instances were found in your cluster

If no container instances are registered in the cluster you attempt to run a task in, you receive
this error. You should add container instances to your cluster. For more information, see
Launching an Amazon ECS Linux container instance.

Not enough ports

If your task uses fixed host port mapping (for example, your task uses port 80 on the host for a
web server), you must have at least one container instance per task, because only one container
can use a single host port at a time. You should add container instances to your cluster or
reduce your number of desired tasks.

Too many ports registered

The closest matching container instance for task placement can't exceed the maximum allowed
reserved port limit of 100 host ports per container instance. Using dynamic host port mapping
may remediate the issue.

Service event messages 1350

Amazon Elastic Container Service Developer Guide

Port already in-use

The task definition of this task uses the same port in its port mapping as a task already running
on the container instance that was chosen. The service event message would have the chosen
container instance ID as part of the message below.

The closest matching container-instance is already using a port required by your
 task.

Not enough memory

If your task definition specifies 1000 MiB of memory, and the container instances in your cluster
each have 1024 MiB of memory, you can only run one copy of this task per container instance.
You can experiment with less memory in your task definition so that you could launch more
than one task per container instance, or launch more container instances into your cluster.

Note

If you're trying to maximize your resource utilization by providing your tasks as much
memory as possible for a particular instance type, see Container instance memory
management.

Not enough CPU

A container instance has 1,024 CPU units for every CPU core. If your task definition specifies
1,000 CPU units, and the container instances in your cluster each have 1,024 CPU units, you can
only run one copy of this task per container instance. You can experiment with fewer CPU units
in your task definition so that you could launch more than one task per container instance, or
launch more container instances into your cluster.

Not enough available ENI attachment points

Tasks that use the awsvpc network mode each receive their own elastic network interface (ENI),
which is attached to the container instance that hosts it. Amazon EC2 instances have a limit to
the number of ENIs that can be attached to them and there are no container instances in the
cluster that have ENI capacity available.

The ENI limit for individual container instances depends on the following conditions:

Service event messages 1351

Amazon Elastic Container Service Developer Guide

• If you have not opted in to the awsvpcTrunking account setting, the ENI limit for each
container instance depends on the instance type. For more information, see IP Addresses Per
Network Interface Per Instance Type in the Amazon EC2 User Guide for Linux Instances.

• If you have opted in to the awsvpcTrunking account setting but you have not launched
new container instances using a supported instance type after opting in, the ENI limit for each
container instance is still at the default value. For more information, see IP Addresses Per
Network Interface Per Instance Type in the Amazon EC2 User Guide for Linux Instances.

• If you have opted in to the awsvpcTrunking account setting and you have launched new
container instances using a supported instance type after opting in, additional ENIs are
available. For more information, see Supported Amazon EC2 instance types.

For more information about opting in to the awsvpcTrunking account setting, see Elastic
network interface trunking.

You can add container instances to your cluster to provide more available network adapters.

Container instance missing required attribute

Some task definition parameters require a specific Docker remote API version to be installed
on the container instance. Others, such as the logging driver options, require the container
instances to register those log drivers with the ECS_AVAILABLE_LOGGING_DRIVERS agent
configuration variable. If your task definition contains a parameter that requires a specific
container instance attribute, and you don't have any available container instances that can
satisfy this requirement, the task can't be placed.

A common cause of this error is if your service is using tasks that use the awsvpc network mode
and the EC2 launch type. The cluster you specified doesn't have a container instance registered
to it in the same subnet that was specified in the awsvpcConfiguration when the service
was created.

For more information on which attributes are required for specific task definition parameters
and agent configuration variables, see Task definition parameters and Amazon ECS container
agent configuration.

Service event messages 1352

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-eni.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-eni.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-eni.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-eni.html

Amazon Elastic Container Service Developer Guide

service (service-name) was unable to place a task because no container instance met all
of its requirements. The closest matching container-instance container-instance-id has
insufficient CPU units available.

The closest matching container instance for task placement doesn't contain enough CPU units to
meet the requirements in the task definition. Review the CPU requirements in both the task size
and container definition parameters of the task definition.

service (service-name) was unable to place a task because no container instance met all of its
requirements. The closest matching container-instance container-instance-id encountered
error "AGENT".

The Amazon ECS container agent on the closest matching container instance for task placement
is disconnected. If you can connect to the container instance with SSH, you can examine the agent
logs; for more information, see Amazon ECS Container Agent log. You should also verify that the
agent is running on the instance. If you are using the Amazon ECS-optimized AMI, you can try
stopping and restarting the agent with the following command.

• For the Amazon ECS-optimized Amazon Linux 2 AMI and Amazon ECS-optimized Amazon Linux
2023 AMI

sudo systemctl restart ecs

• For the Amazon ECS-optimized Amazon Linux AMI

sudo stop ecs && sudo start ecs

service (service-name) (instance instance-id) is unhealthy in (elb elb-name) due to (reason
Instance has failed at least the UnhealthyThreshold number of health checks consecutively.)

This service is registered with a load balancer and the load balancer health checks are failing. For
more information, see Troubleshooting service load balancers.

service (service-name) is unable to consistently start tasks successfully.

This service contains tasks that have failed to start after consecutive attempts. At this point,
the service scheduler begins to incrementally increase the time between retries. You should
troubleshoot why your tasks are failing to launch. For more information, see Amazon ECS service
throttle logic.

Service event messages 1353

Amazon Elastic Container Service Developer Guide

After the service is updated, for example with an updated task definition, the service scheduler
resumes normal behavior.

service (service-name) operations are being throttled. Will try again later.

This service is unable to launch more tasks due to API throttling limits. Once the service scheduler
is able to launch more tasks, it will resume.

To request an API rate limit quota increase, open the AWS Support Center page, sign in if
necessary, and choose Create case. Choose Service limit increase. Complete and submit the form.

service (service-name) was unable to stop or start tasks during a deployment because of the
service deployment configuration. Update the minimumHealthyPercent or maximumPercent
value and try again.

This service is unable to stop or start tasks during a service deployment due to the deployment
configuration. The deployment configuration consists of the minimumHealthyPercent and
maximumPercent values, which are defined when the service is created. Those values can also be
updated on an existing service.

The minimumHealthyPercent represents the lower limit on the number of tasks that should be
running for a service during a deployment or when a container instance is draining. It's a percent of
the desired number of tasks for the service. This value is rounded up. For example, if the minimum
healthy percent is 50 and the desired task count is four, then the scheduler can stop two existing
tasks before starting two new tasks. Likewise, if the minimum healthy percent is 75% and the
desired task count is two, then the scheduler can't stop any tasks due to the resulting value also
being two.

The maximumPercent represents the upper limit on the number of tasks that should be running
for a service during a deployment or when a container instance is draining. It's a percent of the
desired number of tasks for a service. This value is rounded down. For example, if the maximum
percent is 200 and the desired task count is four, then the scheduler can start four new tasks
before stopping four existing tasks. Likewise, if the maximum percent is 125 and the desired task
count is three, the scheduler can't start any tasks due to the resulting value also being three.

When setting a minimum healthy percent or a maximum percent, you should ensure that the
scheduler can stop or start at least one task when a deployment is triggered.

Service event messages 1354

https://console.aws.amazon.com/support/home#/

Amazon Elastic Container Service Developer Guide

service (service-name) was unable to place a task. Reason: You've reached the limit on the
number of tasks you can run concurrently

You can request a quota increase for the resource that caused the error. For more information, see
Service quotas. To request a quota increase, see Requesting a quota increase in the Service Quotas
User Guide.

service (service-name) was unable to place a task. Reason: Internal error.

The following are the possible reasons for this error:

• The service is unable to start a task due to a subnet being in an unsupported Availability Zone.

For information about the supported Fargate Regions and Availability Zones, see the section
called “AWS Fargate Regions”.

For information about how to view the subnet Availability Zone, see View your subnet in the
Amazon VPC User Guide.

• You are trying to run a task definition that uses the ARM architecture on Fargate Spot.

service (service-name) was unable to place a task. Reason: The requested CPU configuration
is above your limit.

You can request a quota increase for the resource that caused the error. For more information, see
Service quotas. To request a quota increase, see Requesting a quota increase in the Service Quotas
User Guide.

service (service-name) was unable to place a task. Reason: The requested MEMORY
configuration is above your limit.

You can request a quota increase for the resource that caused the error. For more information, see
Service quotas. To request a quota increase, see Requesting a quota increase in the Service Quotas
User Guide.

service (service-name) was unable to place a task. Reason: You’ve reached the limit on the
number of vCPUs you can run concurrently

AWS Fargate is transitioning from task count-based quotas to vCPU-based quotas.

Service event messages 1355

https://docs.aws.amazon.com/servicequotas/latest/userguide/request-quota-increase.html
https://docs.aws.amazon.com/vpc/latest/userguide/working-with-vpcs.html#view-subnet
https://docs.aws.amazon.com/servicequotas/latest/userguide/request-quota-increase.html
https://docs.aws.amazon.com/servicequotas/latest/userguide/request-quota-increase.html

Amazon Elastic Container Service Developer Guide

You can request a quota increase for the Fargate vCPU-based quota. For more information, see
Service quotas. To request a Fargate quota increase, see Requesting a quota increase in the Service
Quotas User Guide.

service (service-name) was unable to reach steady state because task set (taskSet-ID) was
unable to scale in. Reason: The number of protected tasks are more than the desired count of
tasks.

The service has more protected tasks than the desired count of tasks. You can do one the
following:

• Wait until the protection on the current tasks expire, enabling them to be terminated.

• Determine which tasks can be stopped and use the UpdateTaskProtection API with the
protectionEnabled option set to false to unset protection for these tasks.

• Increase the desired task count of the service to more than the number of protected tasks.

service (service-name) was unable to reach steady state. Reason: No Container Instances were
found in your capacity provider.

The service scheduler sends this event message when it couldn't find the available resources to add
another task. The possible causes for this are:

No container instances were found in your cluster

If no container instances are registered in the cluster you attempt to run a task in, you receive
this error. You should add container instances to your cluster. For more information, see
Launching an Amazon ECS Linux container instance.

Not enough ports

If your task uses fixed host port mapping (for example, your task uses port 80 on the host for a
web server), you must have at least one container instance per task. Only one container can use
a single host port at a time. You should add container instances to your cluster or reduce your
number of desired tasks.

Too many ports registered

The closest matching container instance for task placement can't exceed the maximum allowed
reserved port limit of 100 host ports per container instance. Using dynamic host port mapping
may remediate the issue.

Service event messages 1356

https://docs.aws.amazon.com/servicequotas/latest/userguide/request-quota-increase.html

Amazon Elastic Container Service Developer Guide

Port already in-use

The task definition of this task uses the same port in its port mapping as a task already running
on the container instance that was chosen. The service event message would have the chosen
container instance ID as part of the message below.

The closest matching container-instance is already using a port required by your
 task.

Not enough memory

If your task definition specifies 1000 MiB of memory, and the container instances in your cluster
each have 1024 MiB of memory, you can only run one copy of this task per container instance.
You can experiment with less memory in your task definition so that you could launch more
than one task per container instance, or launch more container instances into your cluster.

Note

If you are trying to maximize your resource utilization by providing your tasks as much
memory as possible for a particular instance type, see Container instance memory
management.

Not enough available ENI attachment points

Tasks that use the awsvpc network mode each receive their own elastic network interface (ENI),
which is attached to the container instance that hosts it. Amazon EC2 instances have a limit to
the number of ENIs that can be attached to them, and there are no container instances in the
cluster that have ENI capacity available.

The ENI limit for individual container instances depends on the following conditions:

• If you have not opted in to the awsvpcTrunking account setting, the ENI limit for each
container instance depends on the instance type. For more information, see IP Addresses Per
Network Interface Per Instance Type in the Amazon EC2 User Guide for Linux Instances.

• If you have opted in to the awsvpcTrunking account setting but you have not launched
new container instances using a supported instance type after opting in, the ENI limit for each
container instance is still at the default value. For more information, see IP Addresses Per
Network Interface Per Instance Type in the Amazon EC2 User Guide for Linux Instances.

Service event messages 1357

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-eni.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-eni.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-eni.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-eni.html

Amazon Elastic Container Service Developer Guide

• If you have opted in to the awsvpcTrunking account setting and you have launched new
container instances using a supported instance type after opting in, additional ENIs are
available. For more information, see Supported Amazon EC2 instance types.

For more information about opting in to the awsvpcTrunking account setting, see Elastic
network interface trunking.

You can add container instances to your cluster to provide more available network adapters.

Container instance missing required attribute

Some task definition parameters require a specific Docker remote API version to be installed
on the container instance. Others, such as the logging driver options, require the container
instances to register those log drivers with the ECS_AVAILABLE_LOGGING_DRIVERS agent
configuration variable. If your task definition contains a parameter that requires a specific
container instance attribute, and you don't have any available container instances that can
satisfy this requirement, the task cannot be placed.

A common cause of this error is if your service is using tasks that use the awsvpc network
mode and the EC2 launch type and the cluster you specified doesn't have a container instance
registered to it in the same subnet that was specified in the awsvpcConfiguration when the
service was created.

For more information on which attributes are required for specific task definition parameters
and agent configuration variables, see Task definition parameters and Amazon ECS container
agent configuration.

service (service-name) was unable to place a task. Reason: Capacity is unavailable at this
time. Please try again later or in a different availability zone.

There is currently no available capacity to run your service on.

You can do one the following:

• Wait until the Fargate capacity or EC2 container instances become available.

• Relaunch the service and specify additional subnets.

service (service-name) deployment failed: tasks failed to start.

The tasks in your service failed to start.

Service event messages 1358

Amazon Elastic Container Service Developer Guide

For information about how to debug stopped tasks. see Stopped tasks error codes.

service (service-name) Timed out waiting for Amazon ECS Agent to start. Please check logs
at /var/log/ecs/ecs-agent.log".

The Amazon ECS container agent on the closest matching container instance for task placement
is disconnected. If you can connect to the container instance with SSH, you can examine the agent
logs. For more information, see Amazon ECS Container Agent log. You should also verify that the
agent is running on the instance. If you are using the Amazon ECS-optimized AMI, you can try
stopping and restarting the agent with the following command.

• For the Amazon ECS-optimized Amazon Linux 2 AMI

sudo systemctl restart ecs

• For the Amazon ECS-optimized Amazon Linux AMI

sudo stop ecs && sudo start ecs

Invalid CPU or memory value specified

When registering a task definition using the Amazon ECS API or AWS CLI, if you specify an invalid
cpu or memory value, the following error is returned.

An error occurred (ClientException) when calling the RegisterTaskDefinition operation:
 Invalid 'cpu' setting for task. For more information, see the Troubleshooting section
 of the Amazon ECS Developer Guide.

Note

When using Terraform, the following error might be returned.

Error: ClientException: No Fargate configuration exists for given values.

To resolve this issue, you must specify a supported value for the task CPU and memory in your task
definition. The cpu value can be expressed in CPU units or vCPUs in a task definition. It's converted
to an integer indicating the CPU units when the task definition is registered. The memory value can

Invalid CPU or memory value specified 1359

Amazon Elastic Container Service Developer Guide

be expressed in MiB or GB in a task definition. It'ss converted to an integer indicating the MiB when
the task definition is registered.

For task definitions that only specify EC2 for the requiresCompatibilities parameter, the
supported CPU values are between 256 CPU units (0.25 vCPUs) and 16384 CPU units (16 vCPUs).
The memory value must be an integer, and the limit is dependent upon the amount of available
memory on the underlying Amazon EC2 instance you use.

For task definitions that specify FARGATE for the requiresCompatibilities parameter (even
if EC2 is also specified), you must use one of the values in the following table. These values
determines your range of supported values for the CPU and memory parameter.

For tasks hosted on Fargate, the following table shows the valid CPU and memory combinations.
The memory values in the JSON file are specified in MiB. You can convert the GB value to MiB by
multiplying the value by 1024. For example 1 GB = 1024 MiB.

CPU value Memory value Operating systems
supported for AWS Fargate

256 (.25 vCPU) 512 MiB, 1 GB, 2 GB Linux

512 (.5 vCPU) 1 GB, 2 GB, 3 GB, 4 GB Linux

1024 (1 vCPU) 2 GB, 3 GB, 4 GB, 5 GB, 6 GB,
7 GB, 8 GB

Linux, Windows

2048 (2 vCPU) Between 4 GB and 16 GB in 1
GB increments

Linux, Windows

4096 (4 vCPU) Between 8 GB and 30 GB in 1
GB increments

Linux, Windows

8192 (8 vCPU)

Note

This option requires
Linux platform 1.4.0
or later.

Between 16 GB and 60 GB in
4 GB increments

Linux

Invalid CPU or memory value specified 1360

Amazon Elastic Container Service Developer Guide

CPU value Memory value Operating systems
supported for AWS Fargate

16384 (16vCPU)

Note

This option requires
Linux platform 1.4.0
or later.

Between 32 GB and 120 GB in
8 GB increments

Linux

For tasks hosted on Amazon EC2, supported task CPU values are between 0.25 vCPUs and 192
vCPUs.

Note

Task-level CPU and memory parameters are ignored for Windows containers.

CannotCreateContainerError: API error (500):
devmapper

The following Docker error indicates that the thin pool storage on your container instance is full,
and that the Docker daemon cannot create new containers:

CannotCreateContainerError: API error (500): devmapper: Thin Pool has 4350 free data
 blocks which is less than minimum required 4454 free data blocks. Create more free
 space in thin pool or use dm.min_free_space option to change behavior

By default, Amazon ECS-optimized Amazon Linux AMIs from version 2015.09.d and later launch
with an 8-GiB volume for the operating system that's attached at /dev/xvda and mounted as the
root of the file system. There's an additional 22-GiB volume that's attached at /dev/xvdcz that
Docker uses for image and metadata storage. If this storage space is filled up, the Docker daemon
cannot create new containers.

CannotCreateContainerError: API error (500): devmapper 1361

Amazon Elastic Container Service Developer Guide

The easiest way to add storage to your container instances is to terminate the existing instances
and launch new ones with larger data storage volumes. However, if you can't do this, you can
add storage to the volume group that Docker uses and extend its logical volume by following the
procedures in Amazon ECS-optimized AMI.

If your container instance storage is filling up too quickly, there are a few actions that you can take
to reduce this effect:

• To view the thin poll information, run the following command on your container instance:

docker info

• (Amazon ECS container agent 1.8.0 and later) You can reduce the amount of
time that stopped or exited containers remain on your container instances. The
ECS_ENGINE_TASK_CLEANUP_WAIT_DURATION agent configuration variable sets the time
duration to wait from when a task is stopped until the Docker container is removed (by default,
this value is 3 hours). This removes the Docker container data. If this value is set too low, you
might not be able to inspect your stopped containers or view the logs before they are removed.
For more information, see Amazon ECS container agent configuration.

• You can remove non-running containers and unused images from your container instances. You
can use the following example commands to manually remove stopped containers and unused
images. Deleted containers can't be inspected later, and deleted images must be pulled again
before starting new containers from them.

To remove non-running containers, run the following command on your container instance:

docker rm $(docker ps -aq)

To remove unused images, run the following command on your container instance:

docker rmi $(docker images -q)

• You can remove unused data blocks within containers. You can use the following command
to run fstrim on any running container and discard any data blocks that are unused by the
container file system.

sudo sh -c "docker ps -q | xargs docker inspect --format='{{ .State.Pid }}' | xargs -
IZ fstrim /proc/Z/root/"

CannotCreateContainerError: API error (500): devmapper 1362

Amazon Elastic Container Service Developer Guide

Troubleshooting service load balancers

Amazon ECS services can register tasks with an Elastic Load Balancing load balancer. Load balancer
configuration errors are common causes for stopped tasks. If your stopped tasks were started by
services that use a load balancer, consider the following possible causes.

Amazon ECS service-linked role doesn't exist

The Amazon ECS service-linked role allows Amazon ECS services to register container instances
with Elastic Load Balancing load balancers. The service-linked role must be created in your
account. For more information, see Using service-linked roles for Amazon ECS.

Container instance security group

If your container is mapped to port 80 on your container instance, your container instance
security group must allow inbound traffic on port 80 for the load balancer health checks to
pass.

Elastic Load Balancing load balancer not configured for all Availability Zones

Your load balancer should be configured to use all of the Availability Zones in a Region, or at
least all of the Availability Zones where your container instances reside. If a service uses a load
balancer and starts a task on a container instance that resides in an Availability Zone that the
load balancer isn't configured to use, the task never passes the health check. This results in the
task being killed.

Elastic Load Balancing load balancer health check misconfigured

The load balancer health check parameters can be overly restrictive or point to resources that
don't exist. If a container instance is determined to be unhealthy, it's removed from the load
balancer. Be sure to verify that the following parameters are configured correctly for your
service load balancer.

Ping Port

The Ping Port value for a load balancer health check is the port on the container instances
that the load balancer checks to determine if it is healthy. If this port is misconfigured, the
load balancer likely deregisters your container instance from itself. This port should be
configured to use the hostPort value for the container in your service's task definition that
you're using with the health check.

Troubleshooting service load balancers 1363

Amazon Elastic Container Service Developer Guide

Ping Path

This value is often set to index.html, but if your service doesn't respond to that request,
then the health check fails. If your container doesn't have an index.html file, you can set
this to / to target the base URL for the container instance.

Response Timeout

This is the amount of time that your container has to return a response to the health check
ping. If this value is lower than the amount of time required for a response, the health check
fails.

Health Check Interval

This is the amount of time between health check pings. The shorter your health check
intervals are, the faster your container instance can reach the Unhealthy Threshold.

Unhealthy Threshold

This is the number of times your health check can fail before your container instance is
considered unhealthy. If you have an unhealthy threshold of 2, and a health check interval
of 30 seconds, then your task has 60 seconds to respond to the health check ping before it's
assumed unhealthy. You can raise the unhealthy threshold or the health check interval to
give your tasks more time to respond.

Unable to update the service servicename: Load balancer container name or port changed in
task definition

If your service uses a load balancer, you can use the AWS CLI or SDK to modify the load balancer
configuration. For information about how to modify the configuration, see UpdateService in the
Amazon Elastic Container Service API Reference. If you update the task definition for the service,
the container name and container port that are specified in the load balancer configuration
must remain in the task definition.

You've reached the limit on the number of tasks that you can run concurrently.

For a new account, your quotas might be lower that the service quotas. The service quota for
your account can be viewed in the Service Quotas console. To request a quota increase, see
Requesting a quota increase in the Service Quotas User Guide.

Troubleshooting service load balancers 1364

https://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_UpdateService.html
https://docs.aws.amazon.com/servicequotas/latest/userguide/request-quota-increase.html

Amazon Elastic Container Service Developer Guide

Troubleshooting Amazon EBS volume attachment

Amazon EBS volumes can be configured for attachment to a standalone Amazon ECS task when
you run the task. They can also be configured for attachment to tasks launched via an Amazon
ECS service when you create or update the service. At most one volume can be attached per task.
If your task or service doesn't launch as planned, you can check for volume attachment failure
reasons using the AWS Management Console. You can then use the list of failure scenarios for next
steps. For more information about Amazon EBS volumes for Amazon ECS tasks, see Amazon EBS
volumes.

Checking for volume attachment failure reasons

To view a volume's attachment status and failure reason

1. Open the console at https://console.aws.amazon.com/ecs/v2.

2. On the Clusters page, choose the cluster that your task is running in. The cluster's details page
appears.

3. On the cluster's details page, choose the Tasks tab.

4. For Filter desired status, choose Stopped, and then choose the stopped task that you want to
troubleshoot.

5. On the task's details page, choose the Volumes tab. You will be able to see the attachment
status of the Amazon EBS volume under Attachment status.

6. Choose the attachment status to see the failure reason appear in a popover.

To further understand why the volume attachment failed, you can set up Amazon EventBridge to
send events to a target, such as Amazon CloudWatch groups. You can send Amazon EBS volume
events and Amazon ECS task state change events and use these events for diagnosing issues.
For more information, see How can I create a CloudWatch log group to use as a target for an
EventBridge rule? on AWS re:Post. For more information about Amazon ECS task state change
events, see Task state change events. For more information about Amazon EBS volume events, see
EventBridge for Amazon EBS in the Amazon EC2 User Guide.

Amazon EBS volume attachment failure scenarios

Use the following scenarios to help you diagnose and fix issues that you might encounter when you
configure Amazon EBS volumes for attachment to Amazon ECS tasks.

Troubleshooting Amazon EBS volume attachment 1365

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/ebs-volumes.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/ebs-volumes.html
https://console.aws.amazon.com/ecs/v2
https://repost.aws/knowledge-center/cloudwatch-log-group-eventbridge
https://repost.aws/knowledge-center/cloudwatch-log-group-eventbridge
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/ecs_cwe_events.html#ecs_task_events
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ebs-cloud-watch-events.html

Amazon Elastic Container Service Developer Guide

ECS infrastructure AWS Identity and Access Management (IAM) role

The following IAM role scenarios can result in Amazon EBS volume-attachment issues:

• You don't provide an IAM role Amazon Resource Name (ARN). To attach an Amazon
EBS volume to an Amazon ECS task, you must provide an ARN for an IAM role with the
permissions necessary for Amazon ECS to manage the Amazon EBS volume on your behalf.

• You provide an IAM role without the necessary trust policy attached. Amazon
ECS can't access the Amazon ECS infrastructure IAM role that you provide if
the role doesn't have the necessary trust policy. You see the following error
message: ECS was unable to assume the configured ECS Infrastructure Role
'arn:aws:iam::111122223333:role/ecsInfrastructureRole'. Please verify that the role
being passed has the proper trust relationship with Amazon ECS. The task can get stuck in the
DEPROVISIONING state. For more information about the necessary trust policy, see Amazon
ECS infrastructure IAM role.

Note

You may also see this error message due to a delay in role propagation. If retrying
to use the role after waiting for a few minutes doesn't fix the issue, you might have
misconfigured the trust policy for the role.

• Your IAM user doesn't have permission to pass the Amazon ECS infrastructure role to Amazon
ECS. The task can get stuck in the DEPROVISIONING state. To avoid this problem, you
can attach the PassRole permission to your user. For more information, see Amazon ECS
infrastructure IAM role.

• Your IAM role doesn't have the necessary permissions for Amazon EBS volume attachment.
The task can get stuck in the DEPROVISIONING state. For more information about the
specific permissions necessary for attaching Amazon EBS volumes to tasks, see Amazon ECS
infrastructure IAM role.

AWS Key Management Service (AWS KMS) key

The following AWS KMS key scenarios can lead to Amazon EBS volume-attachment issues:

• You specify a KMS key ARN, ID, or alias that isn't valid. In this scenario, the task might appear
to launch successfully, but the task eventually fails because AWS authenticates the KMS key
asynchronously. For more information, see Amazon EBS encryption in the Amazon EC2 User
Guide.

Amazon EBS volume attachment failure scenarios 1366

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EBSEncryption.html

Amazon Elastic Container Service Developer Guide

• You provide a customer managed key that lacks the permissions that allow the Amazon ECS
infrastructure IAM role to use the key for encryption. To avoid key-policy permission issues,
see the example AWS KMS key policy in Data encryption for Amazon EBS volumes.

In these scenarios, you may encounter the following status reason message in the Volumes view
of the stopped task in the AWS Management Console: IdempotentParameterMismatch"; "The
client token you have provided is associated with a resource that is already deleted. Please use a
different client token."

configuredAtLaunch task definition parameter

You can't attach an Amazon EBS volume to a task if you don't specify configuredAtLaunch
in your task definition, or if you set configuredAtLaunch to false. To avoid this issue, set
configuredAtLaunch to true in your task definition.

Volume name

The following volume-name scenarios can result in Amazon EBS volume attachment issues:

• You don't provide a volume name during volume configuration.

• The volume name that you provide during configuration doesn't match the volume name that
you specify in the task definition.

File system format

The following file system format scenarios can result in Amazon EBS volume attachment issues:

• The file system format that you specify during configuration isn't compatible with the task's
operating system.

• You configure an Amazon EBS volume to be created from a snapshot, and the snapshot's file
system format isn't compatible with the task's operating system. For volumes created from
a snapshot, you must specify the same filesystem type that the volume was using when the
snapshot was created. If there is a filesystem type mismatch, the task fails to start with the
following status reason in the Volumes view of the stopped task in the AWS Management
Console: ECS timed out while configuring the EBS volume attachment to your Task. To
understand the issue better, you can view the Amazon ECS container agent logs. For more
information, see Amazon ECS log file locations and Amazon ECS log collector.

Tags

The following tagging scenarios can cause the Amazon ECS task to fail to launch:

Amazon EBS volume attachment failure scenarios 1367

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/ebs-volumes.html#ebs-kms-encryption
https://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_RuntimePlatform.html
https://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_RuntimePlatform.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/logs.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/ecs-logs-collector.html

Amazon Elastic Container Service Developer Guide

• You attempt to propagate tags from a service to a volume that's configured for attachment
to a standalone task. To avoid this problem, set propagateTags to TASK_DEFINITION if
you're configuring a volume for attachment to a standalone task.

• You attempt to provide a tag resource type that isn't valid. The only supported tag resource
type for Amazon EBS volumes attached to tasks is volume.

• You attempt to provide a value for propagateTags that isn't valid. The valid values for
propagateTags are TASK_DEFINITION, SERVICE, and NONE.

• You provide a tag that isn't valid. For more information, see Tagging your Amazon ECS
resources.

• You provide too many tags. Amazon ECS adds the AmazonECSManaged and
AmazonECSCreated tags automatically to the volume. This means an additional 48 user-
defined and propagated tags can be added to a volume for a total of 50 tags maximum per
volume.

• You provide a reserved tag already used by Amazon ECS like AmazonECSManaged or
AmazonECSCreated.

Volume limits

If you're trying to configure an Amazon EBS volume for attachment to an EC2 launch type
Amazon ECS task, and if the Nitro-based container instances associated with the cluster are at
the volume limit, you can't run the task. A single Amazon EBS volume can be attached per task.
The volume limit of your container instance determines the number of tasks with Amazon EBS
volumes configured for attachment that can be launched on an instance. For more information
about volume limits, see Instance volume limits in the Amazon EC2 User Guide.

Container instance type

You can't attach an Amazon EBS volume to an EC2 launch type task that's launched on a
container instance based on the Xen System. You encounter the following error message:service
(service-name) was unable to place a task because no container instance met all of its
requirements. The closest matching (container-instance instance-id) is missing an attribute
required by your task.

Amazon EBS volume type

You can't attach an Amazon EBS volume to a task if you configure a magnetic (standard)
Amazon EBS volume for attachment to a Fargate task.

Amazon EBS volume attachment failure scenarios 1368

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/ecs-using-tags.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/ecs-using-tags.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/volume_limits.html

Amazon Elastic Container Service Developer Guide

Amazon EBS throughput and IOPS

You won't be able to attach an Amazon EBS volume to a task if you configure throughput or
IOPS for a volume type that doesn't support these parameters. You can configure IOPS only for
Provisioned IOPS SSD (io1 and io2) and General Purpose SSD (gp2 and gp3) volumes. You can
configure throughput only for Throughput Optimized HDD (st1), Cold HDD (sc1), and General
Purpose SSD (gp3) volumes.

Mount points

To use data volumes with your Amazon ECS tasks, you must configure mount points in your task
definition. To avoid failures, make sure that you specify a mount point in your task definition
and refer to the source volume specified in the task definition during volume configuration.

AWS Regions and Availability Zones

You can't attach Amazon EBS volumes to tasks if you try to configure an Amazon EBS volume
at deployment in an AWS Region or Availability Zone that doesn't support Amazon EBS
volume attachment. For AWS Region and Availability Zone information, see AWS Regions and
Availability Zones for Amazon EBS volumes.

AMI for Amazon ECS tasks on Amazon EC2

If the host container instances for your Amazon ECS tasks in your cluster don't have an Amazon
ECS-optimized AMI, or if they have an Amazon ECS-optimized AMI that doesn't support
Amazon EBS volume attachment, volume attachment fails. Amazon EBS volume attachment is
supported on Amazon ECS-optimized AMIs 20231219 and later.

Container agent

You won't be able to attach an Amazon EBS volume to an EC2 launch type Amazon ECS task if
the container agent running on the container instance is not 1.79.0 or later. You encounter the
following error message:service (service-name) was unable to place a task because no container
instance met all of its requirements. The closest matching (container-instance instance-id) is
missing an attribute required by your task.

Fargate platform version

You won't be able to attach an Amazon EBS volume to a Fargate launch type Amazon ECS task
if the Linux Fargate platform version is not 1.4.0 or later.

Amazon EBS volume attachment failure scenarios 1369

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/ebs-volumes.html#ebs-volume-regions
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/ebs-volumes.html#ebs-volume-regions

Amazon Elastic Container Service Developer Guide

Service and task failures

You might encounter service or task failures unrelated to volume attachment that can affect
volume attachment. For more information about troubleshooting problems with services, see
Service event messages. For more information about troubleshooting problems with tasks, see
Stopped task error codes. For API failure reasons, see API failure reasons.

Troubleshooting service auto scaling

Application Auto Scaling turns off scale-in processes while Amazon ECS deployments are in
progress, and they resume once the deployment has completed. However, scale-out processes
continue to occur, unless suspended, during a deployment. For more information, see Suspending
and resuming scaling for Application Auto Scaling.

Using Docker debug output

If you're having trouble with Docker containers or images, you can turn on debug mode on your
Docker daemon. Enabling debugging provides more verbose output from the daemon, and you can
use this information to find out more about why your containers or images are having issues.

Enabling Docker debug mode can be especially useful in retrieving error messages that are sent
from container registries, such as Amazon ECR, and, in many circumstances, enabling debug mode
is the only way to see these error messages.

Important

This procedure is written for the Amazon ECS-optimized Amazon Linux AMI. For other
operating systems, see Enable debugging and Control and configure Docker with systemd
in the Docker documentation.

To enable Docker daemon debug mode on the Amazon ECS-optimized Amazon Linux AMI

1. Connect to your container instance.

2. Open the Docker options file with a text editor, such as vi. For the Amazon ECS-optimized
Amazon Linux AMI, the Docker options file is at /etc/sysconfig/docker.

3. Find the Docker options statement and add the -D option to the string, inside the quotes.

Troubleshooting service auto scaling 1370

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/service-event-messages.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/stopped-task-error-codes.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/api_failures_messages.html
https://docs.aws.amazon.com/autoscaling/application/userguide/application-auto-scaling-suspend-resume-scaling.html
https://docs.aws.amazon.com/autoscaling/application/userguide/application-auto-scaling-suspend-resume-scaling.html
https://docs.docker.com/engine/admin/#enable-debugging

Amazon Elastic Container Service Developer Guide

Note

If the Docker options statement begins with a #, remove that character to uncomment
the statement and enable the options.

For the Amazon ECS-optimized Amazon Linux AMI, the Docker options statement is called
OPTIONS. For example:

Additional startup options for the Docker daemon, for example:
OPTIONS="--ip-forward=true --iptables=true"
By default we limit the number of open files per container
OPTIONS="-D --default-ulimit nofile=1024:4096"

4. Save the file and exit your text editor.

5. Restart the Docker daemon.

sudo service docker restart

The output is as follows:

Stopping docker: [OK]
Starting docker: . [OK]

6. Restart the Amazon ECS agent.

sudo service ecs restart

Your Docker logs should now show more verbose output.

time="2015-12-30T21:48:21.907640838Z" level=debug msg="Unexpected response from
 server: \"{\\\"errors\\\":[{\\\"code\\\":\\\"DENIED\\\",\\\"message\\\":\\\"User:
 arn:aws:sts::1111:assumed-role/ecrReadOnly/i-abcdefg is not authorized to perform:
 ecr:InitiateLayerUpload on resource: arn:aws:ecr:us-east-1:1111:repository/nginx_test
\\\"}]}\\n\" http.Header{\"Connection\":[]string{\"keep-alive\"}, \"Content-Type\":
[]string{\"application/json; charset=utf-8\"}, \"Date\":[]string{\"Wed, 30 Dec 2015
 21:48:21 GMT\"}, \"Docker-Distribution-Api-Version\":[]string{\"registry/2.0\"},
 \"Content-Length\":[]string{\"235\"}}"

Using Docker debug output 1371

Amazon Elastic Container Service Developer Guide

Amazon ECS log file locations

Amazon ECS stores logs in the /var/log/ecs folder of your container instances. There are logs
available from the Amazon ECS container agent and from the ecs-init service that controls the
state of the agent (start/stop) on the container instance. You can view these log files by connecting
to a container instance using SSH.

Note

If you are not sure how to collect all of the logs on your container instances, you can use
the Amazon ECS logs collector. For more information, see Amazon ECS logs collector.

Amazon ECS Container Agent log

The Amazon ECS container agent stores logs on your container instances.

For container agent version 1.36.0 and later, by default the logs are located at /var/log/
ecs/ecs-agent.log on Linux instances and at C:\ProgramData\Amazon\ECS\log\ecs-
agent.log on Windows instances.

For container agent version 1.35.0 and earlier, by default the logs are located at /var/log/ecs/
ecs-agent.log.timestamp on Linux instances and at C:\ProgramData\Amazon\ECS\log
\ecs-agent.log.timestamp on Windows instances.

By default, the agent logs are rotated hourly with a maximum of 24 logs being stored.

The following are the container agent configuration variables that can be used to change
the default agent logging behavior. For more information, see Amazon ECS container agent
configuration.

ECS_LOGFILE

Example values: /ecs-agent.log

Default value on Linux: Null

Default value on Windows: Null

Amazon ECS log file locations 1372

Amazon Elastic Container Service Developer Guide

The location where agent logs should be written. If you are running the agent via ecs-init,
which is the default method when using the Amazon ECS-optimized AMI, the in-container path
is /log, and ecs-init mounts that out to /var/log/ecs/ on the host.

ECS_LOGLEVEL

Example values: crit, error, warn, info, debug

Default value on Linux: info

Default value on Windows: info

The level of detail to log.

ECS_LOGLEVEL_ON_INSTANCE

Example values: none, crit, error, warn, info, debug

Default value on Linux: none, if ECS_LOG_DRIVER is explicitly set to a non-empty value;
otherwise the same value as ECS_LOGLEVEL

Default value on Windows: none, if ECS_LOG_DRIVER is explicitly set to a non-empty value;
otherwise the same value as ECS_LOGLEVEL

Can be used to override ECS_LOGLEVEL and set a level of detail that should be logged in the
on-instance log file, separate from the level that is logged in the logging driver. If a logging
driver is explicitly set, on-instance logs are turned off by default. They can be turned back on
with this variable.

ECS_LOG_DRIVER

Example values: awslogs, fluentd, gelf, json-file, journald, logentries syslog,
splunk

Default value on Linux: json-file

Default value on Windows: Not applicable

Determines the logging driver the agent container uses.

ECS_LOG_ROLLOVER_TYPE

Example values: size, hourly

Amazon ECS Container Agent log 1373

Amazon Elastic Container Service Developer Guide

Default value on Linux: hourly

Default value on Windows: hourly

Determines whether the container agent log file is rotated hourly or based on size. By default,
the agent log file is rotated each hour.

ECS_LOG_OUTPUT_FORMAT

Example values: logfmt, json

Default value on Linux: logfmt

Default value on Windows: logfmt

Determines the log output format. When the json format is used, each line in the log is a
structured JSON map.

ECS_LOG_MAX_FILE_SIZE_MB

Example values: 10

Default value on Linux: 10

Default value on Windows: 10

When the ECS_LOG_ROLLOVER_TYPE variable is set to size, this variable determines the
maximum size (in MB) of the log file before it's rotated. If the rollover type is set to hourly,
then this variable is ignored.

ECS_LOG_MAX_ROLL_COUNT

Example values: 24

Default value on Linux: 24

Default value on Windows: 24

Determines the number of rotated log files to keep. Older log files are deleted after this limit is
reached.

For container agent version 1.36.0 and later, the following is an example log file when the logfmt
format is used.

Amazon ECS Container Agent log 1374

Amazon Elastic Container Service Developer Guide

level=info time=2019-12-12T23:43:29Z msg="Loading configuration" module=agent.go
level=info time=2019-12-12T23:43:29Z msg="Image excluded from cleanup: amazon/amazon-
ecs-agent:latest" module=parse.go
level=info time=2019-12-12T23:43:29Z msg="Image excluded from cleanup: amazon/amazon-
ecs-pause:0.1.0" module=parse.go
level=info time=2019-12-12T23:43:29Z msg="Amazon ECS agent Version: 1.36.0, Commit:
 ca640387" module=agent.go
level=info time=2019-12-12T23:43:29Z msg="Creating root ecs cgroup: /ecs"
 module=init_linux.go
level=info time=2019-12-12T23:43:29Z msg="Creating cgroup /ecs"
 module=cgroup_controller_linux.go
level=info time=2019-12-12T23:43:29Z msg="Loading state!" module=statemanager.go
level=info time=2019-12-12T23:43:29Z msg="Event stream ContainerChange start
 listening..." module=eventstream.go
level=info time=2019-12-12T23:43:29Z msg="Restored cluster 'auto-robc'" module=agent.go
level=info time=2019-12-12T23:43:29Z msg="Restored from checkpoint file. I
 am running as 'arn:aws:ecs:us-west-2:0123456789:container-instance/auto-
robc/3330a8a91d15464ea30662d5840164cd' in cluster 'auto-robc'" module=agent.go

The following is an example log file when the JSON format is used.

{"time": "2019-11-07T22:52:02Z", "level": "info", "msg": "Starting Amazon Elastic
 Container Service Agent", "module": "engine.go"}

For container agent versions 1.35.0 and earlier, the following is the format of the log file.

2016-08-15T15:54:41Z [INFO] Starting Agent: Amazon ECS Agent - v1.12.0 (895f3c1)
2016-08-15T15:54:41Z [INFO] Loading configuration
2016-08-15T15:54:41Z [WARN] Invalid value for task cleanup duration, will be overridden
 to 3h0m0s, parsed value 0, minimum threshold 1m0s
2016-08-15T15:54:41Z [INFO] Checkpointing is enabled. Attempting to load state
2016-08-15T15:54:41Z [INFO] Loading state! module="statemanager"
2016-08-15T15:54:41Z [INFO] Detected Docker versions [1.17 1.18 1.19 1.20 1.21 1.22]
2016-08-15T15:54:41Z [INFO] Registering Instance with ECS
2016-08-15T15:54:41Z [INFO] Registered! module="api client"

Amazon ECS ecs-init Log

The ecs-init process stores logs at /var/log/ecs/ecs-init.log.

You can use the following command to view the log files.

Amazon ECS ecs-init Log 1375

Amazon Elastic Container Service Developer Guide

cat /var/log/ecs/ecs-init.log

Output:

2018-02-16T18:13:54Z [INFO] pre-start
2018-02-16T18:13:56Z [INFO] start
2018-02-16T18:13:56Z [INFO] No existing agent container to remove.
2018-02-16T18:13:56Z [INFO] Starting Amazon Elastic Container Service Agent

IAM Roles for Tasks Credential Audit Log

When the credential provider for the IAM role is used to provide credentials to tasks, these
requests are saved in an audit log. The audit log inherits the same log rotation settings as the
container agent log. The ECS_LOG_ROLLOVER_TYPE, ECS_LOG_MAX_FILE_SIZE_MB, and
ECS_LOG_MAX_ROLL_COUNT container agent configuration variables can be set to affect the
behavior of the audit log. For more information, see Amazon ECS Container Agent log.

For container agent version 1.36.0 and later, the audit log is located at /var/log/ecs/
audit.log. When the log is rotated, a timestamp in YYYY-MM-DD-HH format is added to the end
of the log file name.

For container agent version 1.35.0 and earlier, the audit log is located at /var/log/ecs/
audit.log.YYYY-MM-DD-HH.

The log entry format is as follows:

• Timestamp

• HTTP response code

• IP address and port number of request origin

• Relative URI of the credential provider

• The user agent that made the request

• The ARN of the task to which the requesting container belongs

• The GetCredentials API name and version number

• The name of the Amazon ECS cluster to which the container instance is registered

• The container instance ARN

An example log entry is shown below.

IAM Roles for Tasks Credential Audit Log 1376

Amazon Elastic Container Service Developer Guide

You can use the following command to view the log files.

cat /var/log/ecs/audit.log.2016-07-13-16

Output:

2016-07-13T16:11:53Z 200 172.17.0.5:52444 "/v1/credentials" "python-requests/2.7.0
 CPython/2.7.6 Linux/4.4.14-24.50.amzn1.x86_64" TASK_ARN GetCredentials
 1 CLUSTER_NAME CONTAINER_INSTANCE_ARN

Amazon ECS logs collector

If you are unsure how to collect all of the various logs on your container instances, you can use the
Amazon ECS logs collector. It is available on GitHub for both Linux and Windows. The script collects
general operating system logs as well as Docker and Amazon ECS container agent logs, which can
be helpful for troubleshooting AWS Support cases. It then compresses and archives the collected
information into a single file that can easily be shared for diagnostic purposes. It also supports
enabling debug mode for the Docker daemon and the Amazon ECS container agent on Amazon
Linux variants, such as the Amazon ECS-optimized AMI. Currently, the Amazon ECS logs collector
supports the following operating systems:

• Amazon Linux

• Red Hat Enterprise Linux 7

• Debian 8

• Ubuntu 14.04

• Ubuntu 16.04

• Ubuntu 18.04

• Windows Server 2016

Note

The source code for the Amazon ECS logs collector is available on GitHub for both Linux
and Windows. We encourage you to submit pull requests for changes that you would like to
have included. However, Amazon Web Services doesn't currently support running modified
copies of this software.

Amazon ECS logs collector 1377

https://github.com/awslabs/ecs-logs-collector
https://github.com/awslabs/aws-ecs-logs-collector-for-windows
https://github.com/awslabs/ecs-logs-collector
https://github.com/awslabs/aws-ecs-logs-collector-for-windows

Amazon Elastic Container Service Developer Guide

To download and run the Amazon ECS logs collector for Linux

1. Connect to your container instance.

2. Download the Amazon ECS logs collector script.

curl -O https://raw.githubusercontent.com/awslabs/ecs-logs-collector/master/ecs-
logs-collector.sh

3. Run the script to collect the logs and create the archive.

Note

To enable the debug mode for the Docker daemon and the Amazon ECS container
agent, add the --mode=enable-debug option to the following command. This might
restart the Docker daemon, which kills all containers that are running on the instance.
Consider draining the container instance and moving any important tasks to other
container instances before enabling debug mode. For more information, see Container
instance draining.

[ec2-user ~]$ sudo bash ./ecs-logs-collector.sh

After you have run the script, you can examine the collected logs in the collect folder that the
script created. The collect.tgz file is a compressed archive of all of the logs, which you can
share with AWS Support for diagnostic help.

To download and run the Amazon ECS logs collector for Windows

1. Connect to your container instance. For more information, see Connecting to Your Windows
Instance in the Amazon EC2 User Guide for Windows Instances.

2. Download the Amazon ECS logs collector script using PowerShell.

Invoke-WebRequest -OutFile ecs-logs-collector.ps1 https://
raw.githubusercontent.com/awslabs/aws-ecs-logs-collector-for-windows/master/ecs-
logs-collector.ps1

3. Run the script to collect the logs and create the archive.

Amazon ECS logs collector 1378

https://docs.aws.amazon.com/AWSEC2/latest/WindowsGuide/connecting_to_windows_instance.html
https://docs.aws.amazon.com/AWSEC2/latest/WindowsGuide/connecting_to_windows_instance.html

Amazon Elastic Container Service Developer Guide

Note

To enable the debug mode for the Docker daemon and the Amazon ECS container
agent, add the -RunMode debug option to the following command. This restarts the
Docker daemon, which kills all containers that are running on the instance. Consider
draining the container instance and moving any important tasks to other container
instances before enabling debug mode. For more information, see Container instance
draining.

.\ecs-logs-collector.ps1

After you have run the script, you can examine the collected logs in the collect folder that the
script created. The collect.tgz file is a compressed archive of all of the logs, which you can
share with AWS Support for diagnostic help.

Agent introspection diagnostics

The Amazon ECS agent introspection API can provide helpful diagnostic information. For example,
you can use the agent introspection API to get the Docker ID for a container in your task. You can
use the agent introspection API by connecting to a container instance using SSH.

Important

Your container instance must have an IAM role that allows access to Amazon ECS in order
to reach the introspection API. For more information, see Amazon ECS container instance
IAM role.

The following example shows two tasks, one that is currently running and one that was stopped.

Note

The following command is piped through the python -mjson.tool for greater readability.

Agent introspection diagnostics 1379

Amazon Elastic Container Service Developer Guide

curl http://localhost:51678/v1/tasks | python -mjson.tool

Output:

 % Total % Received % Xferd Average Speed Time Time Time Current
 Dload Upload Total Spent Left Speed
100 1095 100 1095 0 0 117k 0 --:--:-- --:--:-- --:--:-- 133k
{
 "Tasks": [
 {
 "Arn": "arn:aws:ecs:us-west-2:aws_account_id:task/090eff9b-1ce3-4db6-848a-
a8d14064fd24",
 "Containers": [
 {
 "DockerId":
 "189a8ff4b5f04affe40e5160a5ffadca395136eb5faf4950c57963c06f82c76d",
 "DockerName": "ecs-console-sample-app-static-6-simple-
app-86caf9bcabe3e9c61600",
 "Name": "simple-app"
 },
 {
 "DockerId":
 "f7f1f8a7a245c5da83aa92729bd28c6bcb004d1f6a35409e4207e1d34030e966",
 "DockerName": "ecs-console-sample-app-static-6-busybox-
ce83ce978a87a890ab01",
 "Name": "busybox"
 }
],
 "Family": "console-sample-app-static",
 "KnownStatus": "STOPPED",
 "Version": "6"
 },
 {
 "Arn": "arn:aws:ecs:us-west-2:aws_account_id:task/1810e302-eaea-4da9-
a638-097bea534740",
 "Containers": [
 {
 "DockerId":
 "dc7240fe892ab233dbbcee5044d95e1456c120dba9a6b56ec513da45c38e3aeb",
 "DockerName": "ecs-console-sample-app-static-6-simple-app-
f0e5859699a7aecfb101",
 "Name": "simple-app"
 },

Agent introspection diagnostics 1380

Amazon Elastic Container Service Developer Guide

 {
 "DockerId":
 "096d685fb85a1ff3e021c8254672ab8497e3c13986b9cf005cbae9460b7b901e",
 "DockerName": "ecs-console-sample-app-static-6-
busybox-92e4b8d0ecd0cce69a01",
 "Name": "busybox"
 }
],
 "DesiredStatus": "RUNNING",
 "Family": "console-sample-app-static",
 "KnownStatus": "RUNNING",
 "Version": "6"
 }
]
}

In the preceding example, the stopped task (090eff9b-1ce3-4db6-848a-a8d14064fd24) has
two containers. You can use docker inspect container-ID to view detailed information on each
container. For more information, see Container introspection.

Docker diagnostics

Docker provides several diagnostic tools that help you troubleshoot problems with your containers
and tasks. For more information about all of the available Docker command line utilities, see the
Docker Command Line topic in the Docker documentation. You can access the Docker command
line utilities by connecting to a container instance using SSH.

The exit codes that Docker containers report can also provide some diagnostic information
(for example, exit code 137 means that the container received a SIGKILL signal). For more
information, see Exit Status in the Docker documentation.

List Docker containers

You can use the docker ps command on your container instance to list the running containers. In
the following example, only the Amazon ECS container agent is running. For more information, see
docker ps in the Docker documentation.

docker ps

Output:

Docker diagnostics 1381

https://docs.docker.com/engine/reference/commandline/cli/
https://docs.docker.com/engine/reference/run/#exit-status
https://docs.docker.com/engine/reference/commandline/cli/#ps

Amazon Elastic Container Service Developer Guide

CONTAINER ID IMAGE COMMAND CREATED
 STATUS PORTS NAMES
cee0d6986de0 amazon/amazon-ecs-agent:latest "/agent" 22 hours ago
 Up 22 hours 127.0.0.1:51678->51678/tcp ecs-agent

You can use the docker ps -a command to see all containers (even stopped or killed containers).
This is helpful for listing containers that are unexpectedly stopping. In the following example,
container f7f1f8a7a245 exited 9 seconds ago, so it doesn't show up in a docker ps output
without the -a flag.

docker ps -a

Output:

CONTAINER ID IMAGE COMMAND
 CREATED STATUS PORTS NAMES
db4d48e411b1 amazon/ecs-emptyvolume-base:autogenerated "not-applicable"
 19 seconds ago ecs-
console-sample-app-static-6-internalecs-emptyvolume-source-c09288a6b0cba8a53700
f7f1f8a7a245 busybox:buildroot-2014.02 "\"sh -c '/bin/sh -c
 22 hours ago Exited (137) 9 seconds ago ecs-
console-sample-app-static-6-busybox-ce83ce978a87a890ab01
189a8ff4b5f0 httpd:2 "httpd-foreground"
 22 hours ago Exited (137) 40 seconds ago ecs-
console-sample-app-static-6-simple-app-86caf9bcabe3e9c61600
0c7dca9321e3 amazon/ecs-emptyvolume-base:autogenerated "not-applicable"
 22 hours ago ecs-
console-sample-app-static-6-internalecs-emptyvolume-source-90fefaa68498a8a80700
cee0d6986de0 amazon/amazon-ecs-agent:latest "/agent"
 22 hours ago Up 22 hours 127.0.0.1:51678->51678/tcp ecs-
agent

View Docker Logs

You can view the STDOUT and STDERR streams for a container with the docker logs command. In
this example, the logs are displayed for the dc7240fe892a container and piped through the head
command for brevity. For more information, go to docker logs in the Docker documentation.

View Docker Logs 1382

https://docs.docker.com/engine/reference/commandline/cli/#logs

Amazon Elastic Container Service Developer Guide

Note

Docker logs are only available on the container instance if you are using the default json
log driver. If you have configured your tasks to use the awslogs log driver, then your
container logs are available in CloudWatch Logs. For more information, see Using the
awslogs log driver.

docker logs dc7240fe892a | head

Output:

AH00558: httpd: Could not reliably determine the server's fully qualified domain name,
 using 172.17.0.11. Set the 'ServerName' directive globally to suppress this message
AH00558: httpd: Could not reliably determine the server's fully qualified domain name,
 using 172.17.0.11. Set the 'ServerName' directive globally to suppress this message
[Thu Apr 23 19:48:36.956682 2015] [mpm_event:notice] [pid 1:tid 140327115417472]
 AH00489: Apache/2.4.12 (Unix) configured -- resuming normal operations
[Thu Apr 23 19:48:36.956827 2015] [core:notice] [pid 1:tid 140327115417472] AH00094:
 Command line: 'httpd -D FOREGROUND'
10.0.1.86 - - [23/Apr/2015:19:48:59 +0000] "GET / HTTP/1.1" 200 348
10.0.0.154 - - [23/Apr/2015:19:48:59 +0000] "GET / HTTP/1.1" 200 348
10.0.1.86 - - [23/Apr/2015:19:49:28 +0000] "GET / HTTP/1.1" 200 348
10.0.0.154 - - [23/Apr/2015:19:49:29 +0000] "GET / HTTP/1.1" 200 348
10.0.1.86 - - [23/Apr/2015:19:49:50 +0000] "-" 408 -
10.0.0.154 - - [23/Apr/2015:19:49:50 +0000] "-" 408 -
10.0.1.86 - - [23/Apr/2015:19:49:58 +0000] "GET / HTTP/1.1" 200 348
10.0.0.154 - - [23/Apr/2015:19:49:59 +0000] "GET / HTTP/1.1" 200 348
10.0.1.86 - - [23/Apr/2015:19:50:28 +0000] "GET / HTTP/1.1" 200 348
10.0.0.154 - - [23/Apr/2015:19:50:29 +0000] "GET / HTTP/1.1" 200 348
time="2015-04-23T20:11:20Z" level="fatal" msg="write /dev/stdout: broken pipe"

Inspect Docker Containers

If you have the Docker ID of a container, you can inspect it with the docker inspect command.
Inspecting containers provides the most detailed view of the environment in which a container was
launched. For more information, see docker inspect in the Docker documentation.

docker inspect dc7240fe892a

Inspect Docker Containers 1383

https://docs.docker.com/engine/reference/commandline/cli/#inspect

Amazon Elastic Container Service Developer Guide

Output:

[{
 "AppArmorProfile": "",
 "Args": [],
 "Config": {
 "AttachStderr": false,
 "AttachStdin": false,
 "AttachStdout": false,
 "Cmd": [
 "httpd-foreground"
],
 "CpuShares": 10,
 "Cpuset": "",
 "Domainname": "",
 "Entrypoint": null,
 "Env": [
 "PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/
local/apache2/bin",
 "HTTPD_PREFIX=/usr/local/apache2",
 "HTTPD_VERSION=2.4.12",
 "HTTPD_BZ2_URL=https://www.apache.org/dist/httpd/httpd-2.4.12.tar.bz2"
],
 "ExposedPorts": {
 "80/tcp": {}
 },
 "Hostname": "dc7240fe892a",
...

AWS Fargate throttling quotas

AWS Fargate limits Amazon ECS tasks and Amazon EKS pods launch rates to quotas (formerly
referred to as limits) using a token bucket algorithm for each AWS account on a per-Region basis.
With this algorithm, your account has a bucket that holds a specific number of tokens. The number
of tokens in the bucket represents your rate quota at any given second. Each customer account has
a tasks and pods token bucket that depletes based on the number of tasks and pods launched by
the customer account. This token bucket has a bucket maximum that allows you to periodically
make a higher number of requests, and a refill rate that allows you to sustain a steady rate of
requests for as long as needed.

AWS Fargate throttling quotas 1384

https://en.wikipedia.org/wiki/Token_bucket

Amazon Elastic Container Service Developer Guide

For example, the tasks and pods token bucket size for a Fargate customer account is 100 tokens,
and the refill rate is 20 tokens per second. Therefore, you can immediately launch up to 100
Amazon ECS tasks and Amazon EKS pods per customer account, with a sustained launch rate of 20
Amazon ECS tasks and Amazon EKS pods per second.

Actions Bucket maximum
capacity (or Burst
rate)

Bucket refill rate (or
Sustained rate)

Fargate Resource rate quota for On Demand

Amazon ECS tasks and Amazon EKS pods1

100 20

Fargate Resource rate quota for Spot Amazon
ECS tasks

100 20

1Accounts launching only Amazon EKS pods have a burst rate of 20 with a sustained pod launch
rate of 20 pod launches per second when using the platform versions called out in the Amazon EKS
platform versions.

Throttling the RunTask API

In addition, Fargate limits the request rate when launching tasks using the Amazon ECS RunTask
API using a separate quota. Fargate limits Amazon ECS RunTask API requests for each AWS
account on a per-Region basis. Each request that you make removes one token from the bucket. We
do this to help the performance of the service, and to ensure fair usage for all Fargate customers.
API calls are subject to the request quotas whether they originate from the Amazon Elastic
Container Service console, a command line tool, or a third-party application. The rate quota for
calls to the Amazon ECS RunTask API is 20 calls per second (burst and sustained). Each call to this
API can, however, launch up to 10 tasks. This means you can launch 100 tasks in one second by
making 10 calls to this API, requesting 10 tasks to be launched in each call. Similarly, you could
also make 20 calls to this API, requesting 5 tasks to be launched in each call. For more information
on API throttling for Amazon ECS RunTask API, see API request throttling in the Amazon ECS API
Reference.

In practice, task and pod launch rates are also dependent on other considerations such as container
images to be downloaded and unpacked, health checks and other integrations enabled, such as

Throttling the RunTask API 1385

https://docs.aws.amazon.com/eks/latest/userguide/platform-versions.html
https://docs.aws.amazon.com/eks/latest/userguide/platform-versions.html
https://docs.aws.amazon.com/AmazonECS/latest/APIReference/request-throttling.html

Amazon Elastic Container Service Developer Guide

registering tasks or pods into a load balancer. Customers see variations in task and pod launch
rates compared with the quotas represented earlier based on the features that customers enable.

Adjusting rate quotas

You can request an increase for Fargate rate throttling quotas for your AWS account. To request a
quota adjustment, contact the AWS Support Center.

API failure reasons

When an API action that you have triggered through the Amazon ECS API, console, or the AWS CLI
exits with a failures error message, the following might assist in troubleshooting the cause. The
failure returns a reason and the Amazon Resource Name (ARN) of the resource associated with the
failure.

Many resources are Region-specific, so when using the console ensure that you set the correct
Region for your resources. When using the AWS CLI, make sure that your AWS CLI commands are
being sent to the correct Region with the --region region parameter.

For more information about the structure of the Failure data type, see Failure in the Amazon
Elastic Container Service API Reference.

The following are examples of failure messages that you might receive when running API
commands.

API action Failure reason or Stopped
reason

Cause

DescribeClusters MISSING The specified cluster wasn't
found. Verify the spelling of
the cluster name.

DescribeInstances MISSING The specified container
instance wasn't found. Verify
that you specified the cluster
the container instance is
registered to and that both
the container instance ARN or
ID is correct.

Adjusting rate quotas 1386

https://console.aws.amazon.com/support/home#/
https://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_Failure.html

Amazon Elastic Container Service Developer Guide

API action Failure reason or Stopped
reason

Cause

DescribeServices MISSING The specified service wasn't
found. Verify that the correct
cluster or Region is specified
and that the service ARN or
name is valid.

DescribeTasks MISSING The specified task wasn't
found. Verify the correct
cluster or Region is specified
and that both the task ARN or
ID is valid.

API failure reasons 1387

Amazon Elastic Container Service Developer Guide

API action Failure reason or Stopped
reason

Cause

DescribeTasks TaskFailedToStart:
RESOURCE:*

For RESOURCE:CPU
errors, the number of CPUs
requested by the task are
unavailable on your container
instances. This generally
happens when the CPU unit
requirement in your task
definition is larger than the
CPU size of the Amazon EC2
instances defined in the Auto
Scaling group mapped to the
capacity provider. You need to
check your capacity provider
configuration. For informati
on about how to add, view,
and modify your capacity
providers, see the section
called “Capacity providers”.

For RESOURCE:MEMORY
errors, the amount of
memory requested by the
task are unavailable on your
container instances. This
generally happens when the
memory amount requireme
nt in your task definition is
larger than the supported
memory on the Amazon EC2
instances defined in the Auto
Scaling group mapped to the
capacity provider. You need to
check your capacity provider
configuration. For informati

API failure reasons 1388

Amazon Elastic Container Service Developer Guide

API action Failure reason or Stopped
reason

Cause

on about how to add, view,
and modify your capacity
providers, see the section
called “Capacity providers”.

TaskFailedToStart:
AGENT

The container instance that
you attempted to launch
a task onto has an agent
that's currently disconnec
ted. To prevent extended wait
times for task placement, the
request was rejected.

For information about how to
troubleshoot an agent that's
disconnected, see How do I
troubleshoot a disconnected
Amazon ECS agent.

TaskFailedToStart:
MemberOf placement
constraint unsatisfi
ed

There is no container instance
that meets the placement
 constraints defined in your
task definition.

API failure reasons 1389

https://aws.amazon.com/premiumsupport/knowledge-center/ecs-agent-disconnected-linux2-ami/
https://aws.amazon.com/premiumsupport/knowledge-center/ecs-agent-disconnected-linux2-ami/
https://aws.amazon.com/premiumsupport/knowledge-center/ecs-agent-disconnected-linux2-ami/

Amazon Elastic Container Service Developer Guide

API action Failure reason or Stopped
reason

Cause

TaskFailedToStart:
ATTRIBUTE

Your task definition contains
a parameter that requires a
specific container instance
attribute that isn't available
on your container instances.
For example, if your task uses
the awsvpc network mode,
but there are no instances in
your specified subnets with
the ecs.capability.tas
k-eni attribute. For more
information about which
attributes are required
for specific task definitio
n parameters and agent
configuration variables, see
Task definition parameters
and Amazon ECS container
agent configuration.

TaskFailedToStart: NO
ACTIVE INSTANCES

There are no active instances
in your capacity provider.
For information about how
to add, view, and modify
your capacity providers, see
the section called “Capacity
providers”. For information
about how to manage your
Auto Scaling groups, see Auto
Scaling groups in the Amazon
EC2 Auto Scaling User Guide.

API failure reasons 1390

https://docs.aws.amazon.com/autoscaling/ec2/userguide/auto-scaling-groups.html
https://docs.aws.amazon.com/autoscaling/ec2/userguide/auto-scaling-groups.html

Amazon Elastic Container Service Developer Guide

API action Failure reason or Stopped
reason

Cause

TaskFailedToStart:
EMPTY CAPACITY
PROVIDER

There are no instances in
your cluster. This is most
likely because of an empty
capacity provider, or because
the instances in the capacity
provider are not registered
to the cluster. For informati
on about how to manage
your capacity providers,
see Amazon ECS capacity
providers. For information
about how to manage your
Auto Scaling groups, see Auto
Scaling groups in the Amazon
EC2 Auto Scaling User Guide.

MISSING The specified task wasn't
found. Verify that the cluster
name or ARN and the task
ARN or ID are valid.

GetTaskProtection

TASK_NOT_VALID The specified task isn't part of
an Amazon ECS service. Only
Amazon ECS service-managed
tasks can be protected. Verify
the task ARN or ID and try
again.

API failure reasons 1391

https://docs.aws.amazon.com/autoscaling/ec2/userguide/auto-scaling-groups.html
https://docs.aws.amazon.com/autoscaling/ec2/userguide/auto-scaling-groups.html

Amazon Elastic Container Service Developer Guide

API action Failure reason or Stopped
reason

Cause

RunTask or StartTask RESOURCE:* The resource or resources that
are requested by the task are
unavailable on the container
instances in the cluster. If
the resource is CPU, memory,
ports, or elastic network
interfaces, you might need
to add additional container
instances to your cluster.

For RESOURCE:ENI errors,
your cluster doesn't have
any available elastic network
interface attachment points,
which are required for tasks
that use the awsvpc network
mode. Amazon EC2 instances
have a limit to the number
of network interfaces that
can be attached to them,
and the primary network
interface counts as one. For
more information about how
many network interfaces are
supported for each instance
type, see IP Addresses
Per Network Interface Per
Instance Type in the Amazon
EC2 User Guide for Linux
Instances.

For RESOURCE:GPU
errors, the number of GPUs
requested by the task are

API failure reasons 1392

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-eni.html#AvailableIpPerENI
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-eni.html#AvailableIpPerENI
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-eni.html#AvailableIpPerENI

Amazon Elastic Container Service Developer Guide

API action Failure reason or Stopped
reason

Cause

unavailable and you might
need to add GPU-enabled
container instances to your
cluster. For more informati
on, see Working with GPUs on
Amazon ECS.

AGENT The container instance that
you attempted to launch
a task onto has an agent
that's currently disconnec
ted. To prevent extended wait
times for task placement, the
request was rejected.

For information about how to
troubleshoot an agent that's
disconnected, see How do I
troubleshoot a disconnected
Amazon ECS agent.

LOCATION The container instance that
you attempted to launch a
task onto is in a different
Availability Zone than the
subnets that you specified in
your awsVpcConfiguratio
n .

API failure reasons 1393

https://aws.amazon.com/premiumsupport/knowledge-center/ecs-agent-disconnected-linux2-ami/
https://aws.amazon.com/premiumsupport/knowledge-center/ecs-agent-disconnected-linux2-ami/
https://aws.amazon.com/premiumsupport/knowledge-center/ecs-agent-disconnected-linux2-ami/

Amazon Elastic Container Service Developer Guide

API action Failure reason or Stopped
reason

Cause

ATTRIBUTE Your task definition contains
a parameter that requires a
specific container instance
attribute that isn't available
on your container instances.
For example, if your task uses
the awsvpc network mode,
but there are no instances in
your specified subnets with
the ecs.capability.tas
k-eni attribute. For more
information about which
attributes are required
for specific task definitio
n parameters and agent
configuration variables, see
Task definition parameters
and Amazon ECS container
agent configuration.

MISSING The container instance that
you attempted to launch the
task onto can't be found.
Check if the wrong cluster
or Region is specified, or the
container instance ARN or ID
is misspelled.

StartTask

INACTIVE The container instance that
you attempted to launch
a task onto was previously
deregistered with Amazon
ECS and can't be used.

API failure reasons 1394

Amazon Elastic Container Service Developer Guide

API action Failure reason or Stopped
reason

Cause

DEPLOYMENT_BLOCKED Can't set task protection as
one or more protected tasks
are preventing the service
deployment from reaching
a steady state. Unset task
protection on existing tasks
or wait until task protection
expires.

MISSING The specified task wasn't
found. Verify that the cluster
name or ARN and the task
ARN or ID are valid.

UpdateTaskProtection

TASK_NOT_VALID The specified task isn't part of
an Amazon ECS service. Only
Amazon ECS service-managed
tasks can be protected. Verify
the task ARN or ID and try
again.

Note

Besides the failure scenarios described here, API operations can also fail due to exceptions,
resulting in error responses. For a list of such exceptions, see Common Errors.

API failure reasons 1395

https://docs.aws.amazon.com/AmazonECS/latest/APIReference/CommonErrors.html

Amazon Elastic Container Service Developer Guide

Parameter references and resource templates

The following sections describe the task definition and service definition parameters.

Topics

• Task definition parameters

• Task definition template

• Service definition parameters

Task definition parameters

Task definitions are split into separate parts: the task family, the AWS Identity and Access
Management (IAM) task role, the network mode, container definitions, volumes, task placement
constraints, and launch types. The family and container definitions are required in a task definition.
In contrast, task role, network mode, volumes, task placement constraints, and launch type are
optional.

You can use these parameters in a JSON file to configure your task definition. For more
information, see the section called “Example logging option task definitions”.

The following are more detailed descriptions for each task definition parameter.

Family

family

Type: String

Required: Yes

When you register a task definition, you give it a family, which is similar to a name for multiple
versions of the task definition, specified with a revision number. The first task definition that's
registered into a particular family is given a revision of 1, and any task definitions registered
after that are given a sequential revision number.

Task definition parameters 1396

Amazon Elastic Container Service Developer Guide

Launch types

When you register a task definition, you can specify a launch type that Amazon ECS should validate
the task definition against. If the task definition doesn't validate against the compatibilities
specified, a client exception is returned. For more information, see Amazon ECS launch types.

The following parameter is allowed in a task definition.

requiresCompatibilities

Type: String array

Required: No

Valid Values: EC2 | FARGATE | EXTERNAL

The launch type to validate the task definition against. This initiates a check to ensure that all
of the parameters that are used in the task definition meet the requirements of the launch type.

Task role

taskRoleArn

Type: String

Required: No

When you register a task definition, you can provide a task role for an IAM role that allows the
containers in the task permission to call the AWS APIs that are specified in its associated policies
on your behalf. For more information, see Task IAM role.

When you launch the Amazon ECS-optimized Windows Server AMI, IAM roles for tasks on
Windows require that the -EnableTaskIAMRole option is set. Your containers must also run
some configuration code to use the feature. For more information, see Additional configuration
for Windows IAM roles for tasks.

Task execution role

executionRoleArn

Type: String

Launch types 1397

Amazon Elastic Container Service Developer Guide

Required: Conditional

The Amazon Resource Name (ARN) of the task execution role that grants the Amazon ECS
container agent permission to make AWS API calls on your behalf.

Note

The task execution IAM role is required depending on the requirements of your task. For
more information, see Amazon ECS task execution IAM role.

Network mode

networkMode

Type: String

Required: No

The Docker networking mode to use for the containers in the task. For Amazon ECS tasks that
are hosted on Amazon EC2 Linux instances, the valid values are none, bridge, awsvpc, and
host. If no network mode is specified, the default network mode is bridge. For Amazon ECS
tasks hosted on Amazon EC2 Windows instances, the valid values are default, and awsvpc.
If no network mode is specified, the default network mode is used. For Amazon ECS tasks
hosted on Fargate, the awsvpc network mode is required.

If the network mode is set to none, the task's containers don't have external connectivity and
port mappings can't be specified in the container definition.

If the network mode is bridge, the task uses Docker's built-in virtual network on Linux, which
runs inside each Amazon EC2 instance that hosts the task. The built-in virtual network on Linux
uses the bridge Docker network driver.

If the network mode is host, the task uses the host's network which bypasses Docker's built-
in virtual network by mapping container ports directly to the ENI of the Amazon EC2 instance
that hosts the task. Dynamic port mappings can’t be used in this network mode. A container in
a task definition that uses this mode must specify a specific hostPort number. A port number
on a host can’t be used by multiple tasks. As a result, you can’t run multiple tasks of the same
task definition on a single Amazon EC2 instance.

Network mode 1398

Amazon Elastic Container Service Developer Guide

Important

When running tasks that use the host network mode, do not run containers using the
root user (UID 0) for better security. As a security best practice, always use a non-root
user.

For the Amazon EC2 launch types, if the network mode is awsvpc, the task is allocated an
elastic network interface, and you must specify a NetworkConfiguration when you create
a service or run a task with the task definition. For more information, see Task networking for
tasks on Amazon EC2 instances.

If the network mode is default, the task uses Docker's built-in virtual network on Windows,
which runs inside each Amazon EC2 instance that hosts the task. The built-in virtual network on
Windows uses the nat Docker network driver.

For the Fargate launch types, when the network mode is awsvpc, the task is allocated an elastic
network interface, and you must specify a NetworkConfiguration when you create a service
or run a task with the task definition. For more information, see Fargate Task Networking. The
awsvpc network mode offers the highest networking performance for containers because
they use the Amazon EC2 network stack. Exposed container ports are mapped directly to
the attached elastic network interface port. Because of this, you can't use dynamic host port
mappings.

The host and awsvpc network modes offer the highest networking performance for containers
because they use the Amazon EC2 network stack. With the host and awsvpc network modes,
exposed container ports are mapped directly to the corresponding host port (for the host
network mode) or the attached elastic network interface port (for the awsvpc network mode).
Because of this, you can't use dynamic host port mappings.

If using the Fargate launch type, the awsvpc network mode is required. If using the EC2 launch
type, the allowable network mode depends on the underlying EC2 instance's operating system.
If Linux, any network mode can be used. If Windows, the default, and awsvpc modes can be
used.

Network mode 1399

https://docs.aws.amazon.com/AmazonECS/latest/userguide/fargate-task-networking.html

Amazon Elastic Container Service Developer Guide

Runtime platform

operatingSystemFamily

Type: String

Required: Conditional

Default: LINUX

This parameter is required for Amazon ECS tasks that are hosted on Fargate.

When you register a task definition, you specify the operating system family.

The valid values for Amazon ECS tasks that are hosted on Fargate are
LINUX, WINDOWS_SERVER_2019_FULL, WINDOWS_SERVER_2019_CORE,
WINDOWS_SERVER_2022_FULL, and WINDOWS_SERVER_2022_CORE.

The valid values for Amazon ECS tasks hosted on EC2 are LINUX,
WINDOWS_SERVER_2022_CORE, WINDOWS_SERVER_2022_FULL,
WINDOWS_SERVER_2019_FULL, and WINDOWS_SERVER_2019_CORE,
WINDOWS_SERVER_2016_FULL, WINDOWS_SERVER_2004_CORE, and
WINDOWS_SERVER_20H2_CORE.

All task definitions that are used in a service must have the same value for this parameter.

When a task definition is part of a service, this value must match the service platformFamily
value.

cpuArchitecture

Type: String

Required: Conditional

Default: X86_64

This parameter is required for Amazon ECS tasks hosted on Fargate. If the parameter is left
as null, the default value is automatically assigned upon the initiation of a task hosted on
Fargate.

When you register a task definition, you specify the CPU architecture. The valid values are
X86_64 and ARM64.

Runtime platform 1400

Amazon Elastic Container Service Developer Guide

All task definitions that are used in a service must have the same value for this parameter.

When you have Linux tasks for either the Fargate launch type, or the EC2 launch type, you can
set the value to ARM64. For more information, see the section called “Working with 64-bit ARM
workloads on Amazon ECS”.

Task size

When you register a task definition, you can specify the total CPU and memory used for the task.
This is separate from the cpu and memory values at the container definition level. For tasks that
are hosted on Amazon EC2 instances, these fields are optional. For tasks that are hosted on Fargate
(both Linux and Windows), these fields are required and there are specific values for both cpu and
memory that are supported.

Note

Task-level CPU and memory parameters are ignored for Windows containers. We
recommend specifying container-level resources for Windows containers.

The following parameter is allowed in a task definition:

cpu

Type: String

Required: Conditional

Note

This parameter is not supported for Windows containers.

The hard limit of CPU units to present for the task. It can be expressed using CPU units (for
example, 1024) or using vCPUs (for example, 1 vCPU or 1 vcpu) in a task definition. When the
task definition is registered, a vCPU value is converted to an integer indicating the CPU units.

For tasks that run on EC2 or external instances, this field is optional. If your cluster doesn't
have any registered container instances with the requested CPU units available, the task fails.

Task size 1401

Amazon Elastic Container Service Developer Guide

Supported values for tasks that run on EC2 or external instances are between 0.125 vCPUs and
10 vCPUs.

For tasks that run on Fargate (both Linux and Windows containers), this field is required and
you must use one of the following values, which determines your range of supported values for
the memory parameter. The table below shows the valid combinations of task-level CPU and
memory.

CPU value Memory value Operating systems
supported for AWS Fargate

256 (.25 vCPU) 512 MiB, 1 GB, 2 GB Linux

512 (.5 vCPU) 1 GB, 2 GB, 3 GB, 4 GB Linux

1024 (1 vCPU) 2 GB, 3 GB, 4 GB, 5 GB, 6 GB,
7 GB, 8 GB

Linux, Windows

2048 (2 vCPU) Between 4 GB and 16 GB in
1 GB increments

Linux, Windows

4096 (4 vCPU) Between 8 GB and 30 GB in
1 GB increments

Linux, Windows

8192 (8 vCPU)

Note

This option requires
Linux platform
1.4.0 or later.

Between 16 GB and 60 GB in
4 GB increments

Linux

16384 (16vCPU) Between 32 GB and 120 GB
in 8 GB increments

Linux

Task size 1402

Amazon Elastic Container Service Developer Guide

CPU value Memory value Operating systems
supported for AWS Fargate

Note

This option requires
Linux platform
1.4.0 or later.

memory

Type: String

Required: Conditional

Note

This parameter is not supported for Windows containers.

The hard limit of memory (in MiB) to present to the task. It can be expressed using MiB (for
example 1024) or using GB (for example 1GB or 1 GB) in a task definition. When the task
definition is registered, a GB value is converted to an integer indicating the MiB.

For tasks that are hosted on Amazon EC2 instances, this field is optional and any value can
be used. If a task-level memory value is specified, then the container-level memory value is
optional. If your cluster doesn't have any registered container instances with the requested
memory available, the task fails. You can maximize your resource utilization by providing your
tasks as much memory as possible for a particular instance type. For more information, see
Container instance memory management.

For tasks hosted on Fargate (both Linux and Windows containers), this field is required and you
must use one of the following values, which determines your range of supported values for the
cpu parameter:

Task size 1403

Amazon Elastic Container Service Developer Guide

Memory value (in MiB, with
approximate equivalent
value in GB)

CPU value Operating systems
supported for Fargate

512 (0.5 GB), 1024 (1 GB),
2048 (2 GB)

256 (.25 vCPU) Linux

1024 (1 GB), 2048 (2 GB),
3072 (3 GB), 4096 (4 GB)

512 (.5 vCPU) Linux

2048 (2 GB), 3072 (3 GB),
4096 (4GB), 5120 (5 GB),
6144 (6 GB), 7168 (7 GB),
8192 (8 GB)

1024 (1 vCPU) Linux, Windows

Between 4096 (4 GB) and
16384 (16 GB) in increments
of 1024 (1 GB)

2048 (2 vCPU) Linux, Windows

Between 8192 (8 GB) and
30720 (30 GB) in increments
of 1024 (1 GB)

4096 (4 vCPU) Linux, Windows

Between 16 GB and 60 GB in
4 GB increments

Note

This option requires
Linux platform
1.4.0 or later.

8192 (8 vCPU) Linux

Between 32 GB and 120 GB
in 8 GB increments

16384 (16vCPU) Linux

Task size 1404

Amazon Elastic Container Service Developer Guide

Memory value (in MiB, with
approximate equivalent
value in GB)

CPU value Operating systems
supported for Fargate

Note

This option requires
Linux platform
1.4.0 or later.

Container definitions

When you register a task definition, you must specify a list of container definitions that are passed
to the Docker daemon on a container instance. The following parameters are allowed in a container
definition.

Topics

• Standard container definition parameters

• Advanced container definition parameters

• Other container definition parameters

Standard container definition parameters

The following task definition parameters are either required or used in most container definitions.

Topics

• Name

• Image

• Memory

• Port mappings

• Private Repository Credentials

Container definitions 1405

Amazon Elastic Container Service Developer Guide

Name

name

Type: String

Required: No

The name of a container. Up to 255 letters (uppercase and lowercase), numbers, hyphens, and
underscores are allowed. If you're linking multiple containers in a task definition, the name
of one container can be entered in the links of another container. This is to connect the
containers.

Image

image

Type: String

Required: No

The image used to start a container. This string is passed directly to the Docker daemon. By
default, images in the Docker Hub registry are available. You can also specify other repositories
with either repository-url/image:tag or repository-url/image@digest. Up to 255
letters (uppercase and lowercase), numbers, hyphens, underscores, colons, periods, forward
slashes, and number signs are allowed. This parameter maps to Image in the Create a container
section of the Docker Remote API and the IMAGE parameter of docker run.

• When a new task starts, the Amazon ECS container agent pulls the latest version of the
specified image and tag for the container to use. However, subsequent updates to a
repository image aren't propagated to already running tasks.

• Images in private registries are supported. For more information, see Private registry
authentication for tasks.

• Images in Amazon ECR repositories can be specified by using either the full registry/
repository:tag or registry/repository@digest naming convention (for
example, aws_account_id.dkr.ecr.region.amazonaws.com/my-web-
app:latest or aws_account_id.dkr.ecr.region.amazonaws.com/my-web-
app@sha256:94afd1f2e64d908bc90dbca0035a5b567EXAMPLE).

• Images in official repositories on Docker Hub use a single name (for example, ubuntu or
mongo).

Container definitions 1406

https://docs.docker.com/engine/api/v1.38/#operation/ContainerCreate
https://docs.docker.com/engine/api/v1.38/
https://docs.docker.com/engine/reference/commandline/run/

Amazon Elastic Container Service Developer Guide

• Images in other repositories on Docker Hub are qualified with an organization name (for
example, amazon/amazon-ecs-agent).

• Images in other online repositories are qualified further by a domain name (for example,
quay.io/assemblyline/ubuntu).

Memory

memory

Type: Integer

Required: No

The amount (in MiB) of memory to present to the container. If your container attempts to
exceed the memory specified here, the container is killed. The total amount of memory
reserved for all containers within a task must be lower than the task memory value, if one is
specified. This parameter maps to Memory in the Create a container section of the Docker
Remote API and the --memory option to docker run.

If you're using the Fargate launch type, this parameter is optional.

If you're using the EC2 launch type, you must specify either a task-level memory value
or a container-level memory value. If you specify both a container-level memory and
memoryReservation value, the memory value must be greater than the memoryReservation
value. If you specify memoryReservation, then that value is subtracted from the available
memory resources for the container instance that the container is placed on. Otherwise, the
value of memory is used.

The Docker 20.10.0 or later daemon reserves a minimum of 6 MiB of memory for a container.
So, don't specify less than 6 MiB of memory for your containers.

The Docker 19.03.13-ce or earlier daemon reserves a minimum of 4 MiB of memory for a
container. So, don't specify less than 4 MiB of memory for your containers.

Note

If you're trying to maximize your resource utilization by providing your tasks as much
memory as possible for a particular instance type, see Container instance memory
management.

Container definitions 1407

https://docs.docker.com/engine/api/v1.38/#operation/ContainerCreate
https://docs.docker.com/engine/api/v1.38/
https://docs.docker.com/engine/api/v1.38/
https://docs.docker.com/engine/reference/commandline/run/

Amazon Elastic Container Service Developer Guide

memoryReservation

Type: Integer

Required: No

The soft limit (in MiB) of memory to reserve for the container. When system memory is under
contention, Docker attempts to keep the container memory to this soft limit. However, your
container can use more memory when needed. The container can use up to the hard limit
that's specified with the memory parameter (if applicable) or all of the available memory on the
container instance, whichever comes first. This parameter maps to MemoryReservation in the
Create a container section of the Docker Remote API and the --memory-reservation option
to docker run.

If a task-level memory value isn't specified, you must specify a non-zero integer for one or both
of memory or memoryReservation in a container definition. If you specify both, memory must
be greater than memoryReservation. If you specify memoryReservation, then that value is
subtracted from the available memory resources for the container instance that the container is
placed on. Otherwise, the value of memory is used.

For example, suppose that your container normally uses 128 MiB of memory, but occasionally
bursts to 256 MiB of memory for short periods of time. You can set a memoryReservation of
128 MiB, and a memory hard limit of 300 MiB. This configuration allows the container to only
reserve 128 MiB of memory from the remaining resources on the container instance. At the
same time, this configuration also allows the container to use more memory resources when
needed.

Note

This parameter isn't supported for Windows containers.

The Docker 20.10.0 or later daemon reserves a minimum of 6 MiB of memory for a container.
So, don't specify less than 6 MiB of memory for your containers.

The Docker 19.03.13-ce or earlier daemon reserves a minimum of 4 MiB of memory for a
container. So, don't specify less than 4 MiB of memory for your containers.

Container definitions 1408

https://docs.docker.com/engine/api/v1.38/#operation/ContainerCreate
https://docs.docker.com/engine/api/v1.38/
https://docs.docker.com/engine/reference/commandline/run/

Amazon Elastic Container Service Developer Guide

Note

If you're trying to maximize your resource utilization by providing your tasks as much
memory as possible for a particular instance type, see Container instance memory
management.

Port mappings

portMappings

Type: Object array

Required: No

Port mappings allow containers to access ports on the host container instance to send or
receive traffic.

For task definitions that use the awsvpc network mode, only specify the containerPort. The
hostPort can be kept blank or the same value as the containerPort.

Port mappings on Windows use the NetNAT gateway address rather than localhost. There's
no loopback for port mappings on Windows, so you can't access a container's mapped port from
the host itself.

Most fields of this parameter (including containerPort, hostPort, protocol) map to
PortBindings in the Create a container section of the Docker Remote API and the --publish
option to docker run. If the network mode of a task definition is set to host, host ports must
either be undefined or match the container port in the port mapping.

Note

After a task reaches the RUNNING status, manual and automatic host and container port
assignments are visible in the following locations:

• Console: The Network Bindings section of a container description for a selected task.

• AWS CLI: The networkBindings section of the describe-tasks command output.

• API: The DescribeTasks response.

• Metadata: The task metadata endpoint.

Container definitions 1409

https://docs.docker.com/engine/api/v1.38/#operation/ContainerCreate
https://docs.docker.com/engine/api/v1.38/
https://docs.docker.com/engine/reference/commandline/run/

Amazon Elastic Container Service Developer Guide

appProtocol

Type: String

Required: No

The application protocol that's used for the port mapping. This parameter only applies
to Service Connect. We recommend that you set this parameter to be consistent with the
protocol that your application uses. If you set this parameter, Amazon ECS adds protocol-
specific connection handling to the service connect proxy. If you set this parameter, Amazon
ECS adds protocol-specific telemetry in the Amazon ECS console and CloudWatch.

If you don't set a value for this parameter, then TCP is used. However, Amazon ECS doesn't
add protocol-specific telemetry for TCP.

For more information, see the section called “Service Connect”.

Valid protocol values: "HTTP" | "HTTP2" | "GRPC"

containerPort

Type: Integer

Required: Yes, when portMappings are used

The port number on the container that's bound to the user-specified or automatically
assigned host port.

If using containers in a task with the Fargate launch type, exposed ports must be specified
using containerPort.

For Windows containers on Fargate, you can't use port 3150 for the containerPort. This is
because it's reserved.

Suppose that you're using containers in a task with the EC2 launch type and you specify a
container port and not a host port. Then, your container automatically receives a host port
in the ephemeral port range. For more information, see hostPort. Port mappings that are
automatically assigned in this way don't count toward the 100 reserved ports quota of a
container instance.

containerPortRange

Type: String

Container definitions 1410

Amazon Elastic Container Service Developer Guide

Required: No

The port number range on the container that's bound to the dynamically mapped host port
range.

You can only set this parameter by using the register-task-definition API. The option
is available in the portMappings parameter. For more information, see register-task-
definition in the AWS Command Line Interface Reference.

The following rules apply when you specify a containerPortRange:

• You must use either the bridge network mode or the awsvpc network mode.

• This parameter is available for both the EC2 and AWS Fargate launch types.

• This parameter is available for both the Linux and Windows operating systems.

• The container instance must have at least version 1.67.0 of the container agent and at
least version 1.67.0-1 of the ecs-init package.

• You can specify a maximum of 100 port ranges for each container.

• You don't specify a hostPortRange. The value of the hostPortRange is set as follows:

• For containers in a task with the awsvpc network mode, the hostPort is set to the
same value as the containerPort. This is a static mapping strategy.

• For containers in a task with the bridge network mode, the Amazon ECS agent finds
open host ports from the default ephemeral range and passes it to docker to bind them
to the container ports.

• The containerPortRange valid values are between 1 and 65535.

• A port can only be included in one port mapping for each container.

• You can't specify overlapping port ranges.

• The first port in the range must be less than last port in the range.

• Docker recommends that you turn off the docker-proxy in the Docker daemon config file
when you have a large number of ports.

For more information, see Issue #11185 on GitHub.

For information about how to turn off the docker-proxy in the Docker daemon config file,
see Docker daemon in the Amazon ECS Developer Guide.

You can call DescribeTasks to view the hostPortRange, which are the host ports that
are bound to the container ports.

Container definitions 1411

https://docs.aws.amazon.com/cli/latest/reference/ecs/register-task-definition.html
https://docs.aws.amazon.com/cli/latest/reference/ecs/register-task-definition.html
https://github.com/moby/moby/issues/11185
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/bootstrap_container_instance.html#bootstrap_docker_daemon
https://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_DescribeTasks.html

Amazon Elastic Container Service Developer Guide

The port ranges aren't included in the Amazon ECS task events, which are sent to
EventBridge. For more information, see the section called “Automate responses to Amazon
ECS errors using EventBridge”.

hostPortRange

Type: String

Required: No

The port number range on the host that's used with the network binding. This is assigned by
Docker and delivered by the Amazon ECS agent.

hostPort

Type: Integer

Required: No

The port number on the container instance to reserve for your container.

If using containers in a task with the Fargate launch type, the hostPort can either be kept
blank or be the same value as containerPort.

Suppose that you're using containers in a task with the EC2 launch type. You can specify
a non-reserved host port for your container port mapping. This is referred to as static
host port mapping. Or, you can omit the hostPort (or set it to 0) while specifying a
containerPort. Your container automatically receives a port in the ephemeral port range
for your container instance operating system and Docker version. This is referred to as
dynamic host port mapping.

The default ephemeral port range Docker version 1.6.0 and later is listed on the instance
under /proc/sys/net/ipv4/ip_local_port_range. If this kernel parameter is
unavailable, the default ephemeral port range from 49153–65535 is used. Don't attempt
to specify a host port in the ephemeral port range. This is because these are reserved for
automatic assignment. In general, ports under 32768 are outside of the ephemeral port
range.

The default reserved ports are 22 for SSH, the Docker ports 2375 and 2376, and the
Amazon ECS container agent ports 51678-51680. Any host port that was previously user-
specified for a running task is also reserved while the task is running. After a task stops, the

Container definitions 1412

Amazon Elastic Container Service Developer Guide

host port is released. The current reserved ports are displayed in the remainingResources
of describe-container-instances output. A container instance might have up to 100 reserved
ports at a time, including the default reserved ports. Automatically assigned ports don't
count toward the 100 reserved ports quota.

name

Type: String

Required: No, required for Service Connect to be configured in a service

The name that's used for the port mapping. This parameter only applies to Service Connect.
This parameter is the name that you use in the Service Connect configuration of a service.

For more information, see Service Connect.

In the following example, both of the required fields for Service Connect are used.

"portMappings": [
 {
 "name": string,
 "containerPort": integer
 }
]

protocol

Type: String

Required: No

The protocol that's used for the port mapping. Valid values are tcp and udp. The default is
tcp.

Important

Only tcp is supported for Service Connect. Remember that tcp is implied if this
field isn't set.

Container definitions 1413

Amazon Elastic Container Service Developer Guide

Important

UDP support is only available on container instances that were launched with version
1.2.0 of the Amazon ECS container agent (such as the amzn-ami-2015.03.c-
amazon-ecs-optimized AMI) or later, or with container agents that have been
updated to version 1.3.0 or later. To update your container agent to the latest
version, see Updating the Amazon ECS container agent.

If you're specifying a host port, use the following syntax.

"portMappings": [
 {
 "containerPort": integer,
 "hostPort": integer
 }
 ...
]

If you want an automatically assigned host port, use the following syntax.

"portMappings": [
 {
 "containerPort": integer
 }
 ...
]

Private Repository Credentials

repositoryCredentials

Type: RepositoryCredentials object

Required: No

The repository credentials for private registry authentication.

For more information, see Private registry authentication for tasks.

Container definitions 1414

https://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_RepositoryCredentials.html

Amazon Elastic Container Service Developer Guide

credentialsParameter

Type: String

Required: Yes, when repositoryCredentials are used

The Amazon Resource Name (ARN) of the secret containing the private repository
credentials.

For more information, see Private registry authentication for tasks.

Note

When you use the Amazon ECS API, AWS CLI, or AWS SDKs, if the secret exists in the
same Region as the task that you're launching then you can use either the full ARN
or the name of the secret. When you use the AWS Management Console, you must
specify the full ARN of the secret.

The following is a snippet of a task definition that shows the required parameters:

"containerDefinitions": [
 {
 "image": "private-repo/private-image",
 "repositoryCredentials": {
 "credentialsParameter":
 "arn:aws:secretsmanager:region:aws_account_id:secret:secret_name"
 }
 }
]

Advanced container definition parameters

The following advanced container definition parameters provide extended capabilities to the
docker run command that's used to launch containers on your Amazon ECS container instances.

Topics

• Health check

Container definitions 1415

https://docs.docker.com/engine/reference/commandline/run/

Amazon Elastic Container Service Developer Guide

• Environment

• Network settings

• Storage and logging

• Security

• Resource limits

• Docker labels

Health check

healthCheck

The container health check command and the associated configuration parameters for the
container. This parameter maps to HealthCheck in the Create a container section of the
Docker Remote API and the HEALTHCHECK parameter of docker run.

Note

The Amazon ECS container agent only monitors and reports on the health checks that
are specified in the task definition. Amazon ECS doesn't monitor Docker health checks
that are embedded in a container image but aren't specified in the container definition.
Health check parameters that are specified in a container definition override any Docker
health checks that exist in the container image.

You can view the health status of both individual containers and a task by either one of two
methods. You can call the DescribeTasks API operation or view the task details in the
console.

The health check is designed to make sure that your containers survive agent restarts, upgrades,
or temporary unavailability.

The following describes the possible healthStatus values for a container:

• HEALTHY–The container health check has passed successfully.

• UNHEALTHY–The container health check has failed.

• UNKNOWN–The container health check is being evaluated, there's no container health check
defined, or Amazon ECS doesn't have the health status of the container.

Container definitions 1416

https://docs.docker.com/engine/api/v1.38/#operation/ContainerCreate
https://docs.docker.com/engine/api/v1.38/
https://docs.docker.com/engine/reference/run/

Amazon Elastic Container Service Developer Guide

The following describes the possible healthStatus values based on the container health
checker status of essential containers in the task with the following priority order (high to low):

• UNHEALTHY–One or more essential containers have failed their health check.

• UNKNOWN–Any essential container running within the task is in an UNKNOWN state and no other
essential containers have an UNHEALTHY state.

• HEALTHY–All essential containers within the task have passed their health checks.

If a task is run manually and not as part of a service, it continues its lifecycle regardless of its
health status. For tasks that are part of a service, if the task reports as unhealthy, a replacement
task is first started by the service scheduler. Once the replacement task has a healthStatus
value of HEALTHY or UNHEALTHY, the service scheduler can stop the unhealthy task. For more
information, see Service scheduler concepts.

The following are notes about container health check support:

• When the Amazon ECS agent cannot connect to the Amazon ECS service, the service reports
the container as UNHEALTHY.

• The health check statuses are the "last heard from" response from the Amazon ECS agent.
There are no assumptions made about the status of the container health checks.

• Container health checks require version 1.17.0 or later of the Amazon ECS container agent.
For more information, see Updating the Amazon ECS container agent.

• If you're using Linux platform version 1.1.0 or laterContainer, container health checks are
supported for Fargate tasks. For more information, see Fargate Linux platform versions.

command

A string array that represents the command that the container runs to determine if it's
healthy. The string array can start with CMD to run the command arguments directly, or CMD-
SHELL to run the command with the container's default shell. If neither is specified, CMD is
used.

When registering a task definition in the AWS Management Console, use a comma separated
list of commands. These commands are converted to a string after the task definition is
created. An example input for a health check is the following.

CMD-SHELL, curl -f http://localhost/ || exit 1

Container definitions 1417

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/ecs_services.html#service_scheduler

Amazon Elastic Container Service Developer Guide

When registering a task definition using the AWS Management Console JSON panel, the
AWS CLI, or the APIs, enclose the list of commands in brackets. An example input for a
health check is the following.

["CMD-SHELL", "curl -f http://localhost/ || exit 1"]

An exit code of 0, with no stderr output, indicates success, and a non-zero exit code
indicates failure. For more information, see HealthCheck in the Create a container section
of the Docker Remote API.

interval

The period of time (in seconds) between each health check. You can specify between 5 and
300 seconds. The default value is 30 seconds.

timeout

The period of time (in seconds) to wait for a health check to succeed before it's considered a
failure. You can specify between 2 and 60 seconds. The default value is 5 seconds.

retries

The number of times to retry a failed health check before the container is considered
unhealthy. You can specify between 1 and 10 retries. The default value is three retries.

startPeriod

The optional grace period to provide containers time to bootstrap in before failed health
checks count towards the maximum number of retries. You can specify between 0 and 300
seconds. By default, startPeriod is disabled.

Environment

cpu

Type: Integer

Required: No

The number of cpu units the Amazon ECS container agent reserves for the container. On Linux,
this parameter maps to CpuShares in the Create a container section of the Docker Remote API
and the --cpu-shares option to docker run.

Container definitions 1418

https://docs.docker.com/engine/api/v1.38/#operation/ContainerCreate
https://docs.docker.com/engine/api/v1.38/
https://docs.docker.com/engine/api/v1.38/#operation/ContainerCreate
https://docs.docker.com/engine/api/v1.38/
https://docs.docker.com/engine/reference/commandline/run/

Amazon Elastic Container Service Developer Guide

This field is optional for tasks that use the Fargate launch type. The total amount of CPU
reserved for all the containers that are within a task must be lower than the task-level cpu
value.

Note

You can determine the number of CPU units that are available to each Amazon EC2
instance type. To do this, multiply the number of vCPUs listed for that instance type on
the Amazon EC2 Instances detail page by 1,024.

Linux containers share unallocated CPU units with other containers on the container instance
with the same ratio as their allocated amount. For example, assume that you run a single-
container task on a single-core instance type with 512 CPU units specified for that container.
Moreover, that task is the only task running on the container instance. In this example, the
container can use the full 1,024 CPU unit share at any given time. However, assume then that
you launched another copy of the same task on that container instance. Each task is guaranteed
a minimum of 512 CPU units when needed. Similarly, if the other container isn't using the
remaining CPU, each container can float to higher CPU usage. However, if both tasks were
100% active all of the time, they are limited to 512 CPU units.

On Linux container instances, the Docker daemon on the container instance uses the CPU value
to calculate the relative CPU share ratios for running containers. For more information, see CPU
share constraint in the Docker documentation. The minimum valid CPU share value that the
Linux kernel allows is 2. However, the CPU parameter isn't required, and you can use CPU values
below two in your container definitions. For CPU values below two (including null), the behavior
varies based on your Amazon ECS container agent version:

• Agent versions <= 1.1.0: Null and zero CPU values are passed to Docker as 0. Docker then
converts this value to 1,024 CPU shares. CPU values of one are passed to Docker as one,
which the Linux kernel converts to two CPU shares.

• Agent versions >= 1.2.0: Null, zero, and CPU values of one are passed to Docker as two CPU
shares.

On Windows container instances, the CPU quota is enforced as an absolute quota. Windows
containers only have access to the specified amount of CPU that's defined in the task definition.
A null or zero CPU value is passed to Docker as 0. Windows then interprets this value as 1% of
one CPU.

Container definitions 1419

http://aws.amazon.com/ec2/instance-types/
https://docs.docker.com/engine/reference/run/#cpu-share-constraint
https://docs.docker.com/engine/reference/run/#cpu-share-constraint

Amazon Elastic Container Service Developer Guide

For more examples, see How Amazon ECS manages CPU and memory resources.

gpu

Type: ResourceRequirement object

Required: No

The number of physical GPUs that the Amazon ECS container agent reserves for the container.
The number of GPUs reserved for all containers in a task must not exceed the number of
available GPUs on the container instance the task is launched on. For more information, see
Working with GPUs on Amazon ECS.

Note

This parameter isn't supported for Windows containers or containers that are hosted on
Fargate.

Elastic Inference accelerator

Type: ResourceRequirement object

Required: No

For the InferenceAccelerator type, the value matches the deviceName for an
InferenceAccelerator specified in a task definition. For more information, see the section
called “Elastic Inference accelerator name”.

Note

Starting April 15, 2023, AWS will not onboard new customers to Amazon Elastic
Inference (EI), and will help current customers migrate their workloads to options that
offer better price and performance. After April 15, 2023, new customers will not be able
to launch instances with Amazon EI accelerators in Amazon SageMaker, Amazon ECS,
or Amazon EC2. However, customers who have used Amazon EI at least once during the
past 30-day period are considered current customers and will be able to continue using
the service.

Container definitions 1420

https://aws.amazon.com/blogs/containers/how-amazon-ecs-manages-cpu-and-memory-resources/
https://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_ResourceRequirement.html
https://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_ResourceRequirement.html

Amazon Elastic Container Service Developer Guide

Note

This parameter isn't supported for Windows containers or containers that are hosted on
Fargate.

essential

Type: Boolean

Required: No

Suppose that the essential parameter of a container is marked as true, and that container
fails or stops for any reason. Then, all other containers that are part of the task are stopped.
If the essential parameter of a container is marked as false, then its failure doesn't affect
the rest of the containers in a task. If this parameter is omitted, a container is assumed to be
essential.

All tasks must have at least one essential container. Suppose that you have an application that's
composed of multiple containers. Then, group containers that are used for a common purpose
into components, and separate the different components into multiple task definitions. For
more information, see Architecting your application.

"essential": true|false

entryPoint

Important

Early versions of the Amazon ECS container agent don't properly handle entryPoint
parameters. If you have problems using entryPoint, update your container agent or
enter your commands and arguments as command array items instead.

Type: String array

Required: No

The entry point that's passed to the container. This parameter maps to Entrypoint in the
Create a container section of the Docker Remote API and the --entrypoint option to

Container definitions 1421

https://docs.docker.com/engine/api/v1.38/#operation/ContainerCreate
https://docs.docker.com/engine/api/v1.38/

Amazon Elastic Container Service Developer Guide

docker run. For more information about the Docker ENTRYPOINT parameter, see https://
docs.docker.com/engine/reference/builder/#entrypoint.

"entryPoint": ["string", ...]

command

Type: String array

Required: No

The command that's passed to the container. This parameter maps to Cmd in the Create a
container section of the Docker Remote API and the COMMAND parameter to docker run. For
more information about the Docker CMD parameter, see https://docs.docker.com/engine/
reference/builder/#cmd. If there are multiple arguments, make sure that each argument is a
separated string in the array.

"command": ["string", ...]

workingDirectory

Type: String

Required: No

The working directory to run commands inside the container in. This parameter maps to
WorkingDir in the Create a container section of the Docker Remote API and the --workdir
option to docker run.

"workingDirectory": "string"

environmentFiles

Type: Object array

Required: No

A list of files containing the environment variables to pass to a container. This parameter maps
to the --env-file option to docker run.

This isn't available for Windows containers.

Container definitions 1422

https://docs.docker.com/engine/reference/commandline/run/
https://docs.docker.com/engine/reference/builder/#entrypoint
https://docs.docker.com/engine/reference/builder/#entrypoint
https://docs.docker.com/engine/api/v1.38/#operation/ContainerCreate
https://docs.docker.com/engine/api/v1.38/#operation/ContainerCreate
https://docs.docker.com/engine/api/v1.38/
https://docs.docker.com/engine/reference/commandline/run/
https://docs.docker.com/engine/reference/builder/#cmd
https://docs.docker.com/engine/reference/builder/#cmd
https://docs.docker.com/engine/api/v1.38/#operation/ContainerCreate
https://docs.docker.com/engine/api/v1.38/
https://docs.docker.com/engine/reference/commandline/run/
https://docs.docker.com/engine/reference/commandline/run/

Amazon Elastic Container Service Developer Guide

You can specify up to 10 environment files. The file must have a .env file extension. Each line
in an environment file contains an environment variable in VARIABLE=VALUE format. Lines
that start with # are treated as comments and are ignored. For more information about the
appropriate environment variable file syntax, see Declare default environment variables in file.

If there are individual environment variables specified in the container definition, they take
precedence over the variables contained within an environment file. If multiple environment
files are specified that contain the same variable, they're processed from the top down. We
recommend that you use unique variable names. For more information, see Use task definition
parameters to pass environment variables to a container.

value

Type: String

Required: Yes

The Amazon Resource Name (ARN) of the Amazon S3 object containing the environment
variable file.

type

Type: String

Required: Yes

The file type to use. The only supported value is s3.

environment

Type: Object array

Required: No

The environment variables to pass to a container. This parameter maps to Env in the Create a
container section of the Docker Remote API and the --env option to docker run.

Important

We do not recommend using plaintext environment variables for sensitive information,
such as credential data.

Container definitions 1423

https://docs.docker.com/compose/env-file/
https://docs.docker.com/engine/api/v1.38/#operation/ContainerCreate
https://docs.docker.com/engine/api/v1.38/#operation/ContainerCreate
https://docs.docker.com/engine/api/v1.38/
https://docs.docker.com/engine/reference/commandline/run/

Amazon Elastic Container Service Developer Guide

name

Type: String

Required: Yes, when environment is used

The name of the environment variable.

value

Type: String

Required: Yes, when environment is used

The value of the environment variable.

"environment" : [
 { "name" : "string", "value" : "string" },
 { "name" : "string", "value" : "string" }
]

secrets

Type: Object array

Required: No

An object that represents the secret to expose to your container. For more information, see
Passing sensitive data to a container.

name

Type: String

Required: Yes

The value to set as the environment variable on the container.

valueFrom

Type: String

Required: Yes

The secret to expose to the container. The supported values are either the full Amazon
Resource Name (ARN) of the AWS Secrets Manager secret or the full ARN of the parameter in
the AWS Systems Manager Parameter Store.

Container definitions 1424

Amazon Elastic Container Service Developer Guide

Note

If the Systems Manager Parameter Store parameter exists in the same AWS Region
as the task that you're launching, you can use either the full ARN or name of the
secret. If the parameter exists in a different Region, then the full ARN must be
specified.

"secrets": [
 {
 "name": "environment_variable_name",
 "valueFrom": "arn:aws:ssm:region:aws_account_id:parameter/parameter_name"
 }
]

Network settings

disableNetworking

Type: Boolean

Required: No

When this parameter is true, networking is off within the container. This parameter maps to
NetworkDisabled in the Create a container section of the Docker Remote API.

Note

This parameter isn't supported for Windows containers or tasks using the awsvpc
network mode.

The default is false.

"disableNetworking": true|false

links

Type: String array

Container definitions 1425

https://docs.docker.com/engine/api/v1.38/#operation/ContainerCreate
https://docs.docker.com/engine/api/v1.38/

Amazon Elastic Container Service Developer Guide

Required: No

The link parameter allows containers to communicate with each other without the need for
port mappings. This parameter is only supported if the network mode of a task definition is set
to bridge. The name:internalName construct is analogous to name:alias in Docker links.
Up to 255 letters (uppercase and lowercase), numbers, hyphens, and underscores are allowed.
For more information about linking Docker containers, see https://docs.docker.com/engine/
userguide/networking/default_network/dockerlinks/. This parameter maps to Links in the
Create a container section of the Docker Remote API and the --link option to docker run.

Note

This parameter isn't supported for Windows containers or tasks using the awsvpc
network mode.

Important

Containers that are collocated on the same container instance might communicate with
each other without requiring links or host port mappings. The network isolation on a
container instance is controlled by security groups and VPC settings.

"links": ["name:internalName", ...]

hostname

Type: String

Required: No

The hostname to use for your container. This parameter maps to Hostname in the Create a
container section of the Docker Remote API and the --hostname option to docker run.

Note

If you're using the awsvpc network mode, the hostname parameter isn't supported.

Container definitions 1426

https://docs.docker.com/engine/userguide/networking/default_network/dockerlinks/
https://docs.docker.com/engine/userguide/networking/default_network/dockerlinks/
https://docs.docker.com/engine/api/v1.38/#operation/ContainerCreate
https://docs.docker.com/engine/api/v1.38/
https://docs.docker.com/engine/reference/commandline/run/
https://docs.docker.com/engine/api/v1.38/#operation/ContainerCreate
https://docs.docker.com/engine/api/v1.38/#operation/ContainerCreate
https://docs.docker.com/engine/api/v1.38/
https://docs.docker.com/engine/reference/commandline/run/

Amazon Elastic Container Service Developer Guide

"hostname": "string"

dnsServers

Type: String array

Required: No

A list of DNS servers that are presented to the container. This parameter maps to Dns in the
Create a container section of the Docker Remote API and the --dns option to docker run.

Note

This parameter isn't supported for Windows containers or tasks using the awsvpc
network mode.

"dnsServers": ["string", ...]

dnsSearchDomains

Type: String array

Required: No

Pattern: ^[a-zA-Z0-9-.]{0,253}[a-zA-Z0-9]$

A list of DNS search domains that are presented to the container. This parameter maps to
DnsSearch in the Create a container section of the Docker Remote API and the --dns-search
option to docker run.

Note

This parameter isn't supported for Windows containers or tasks that use the awsvpc
network mode.

"dnsSearchDomains": ["string", ...]

Container definitions 1427

https://docs.docker.com/engine/api/v1.38/#operation/ContainerCreate
https://docs.docker.com/engine/api/v1.38/
https://docs.docker.com/engine/reference/commandline/run/
https://docs.docker.com/engine/api/v1.38/#operation/ContainerCreate
https://docs.docker.com/engine/api/v1.38/
https://docs.docker.com/engine/reference/commandline/run/

Amazon Elastic Container Service Developer Guide

extraHosts

Type: Object array

Required: No

A list of hostnames and IP address mappings to append to the /etc/hosts file on the
container.

This parameter maps to ExtraHosts in the Create a container section of the Docker Remote
API and the --add-host option to docker run.

Note

This parameter isn't supported for Windows containers or tasks that use the awsvpc
network mode.

"extraHosts": [
 {
 "hostname": "string",
 "ipAddress": "string"
 }
 ...
]

hostname

Type: String

Required: Yes, when extraHosts are used

The hostname to use in the /etc/hosts entry.

ipAddress

Type: String

Required: Yes, when extraHosts are used

The IP address to use in the /etc/hosts entry.

Container definitions 1428

https://docs.docker.com/engine/api/v1.38/#operation/ContainerCreate
https://docs.docker.com/engine/api/v1.38/
https://docs.docker.com/engine/api/v1.38/
https://docs.docker.com/engine/reference/commandline/run/

Amazon Elastic Container Service Developer Guide

Storage and logging

readonlyRootFilesystem

Type: Boolean

Required: No

When this parameter is true, the container is given read-only access to its root file system. This
parameter maps to ReadonlyRootfs in the Create a container section of the Docker Remote
API and the --read-only option to docker run.

Note

This parameter is not supported for Windows containers.

The default is false.

"readonlyRootFilesystem": true|false

mountPoints

Type: Object array

Required: No

The mount points for the data volumes in your container. This parameter maps to Volumes in
the Create a container section of the Docker Remote API and the --volume option to docker
run.

Windows containers can mount whole directories on the same drive as $env:ProgramData.
Windows containers cannot mount directories on a different drive, and mount points cannot be
used across drives.

sourceVolume

Type: String

Required: Yes, when mountPoints are used

The name of the volume to mount.

Container definitions 1429

https://docs.docker.com/engine/api/v1.38/#operation/ContainerCreate
https://docs.docker.com/engine/api/v1.38/
https://docs.docker.com/engine/api/v1.38/
https://docs.docker.com/engine/reference/commandline/run/
https://docs.docker.com/engine/api/v1.38/#operation/ContainerCreate
https://docs.docker.com/engine/api/v1.38/
https://docs.docker.com/engine/reference/commandline/run/
https://docs.docker.com/engine/reference/commandline/run/

Amazon Elastic Container Service Developer Guide

containerPath

Type: String

Required: Yes, when mountPoints are used

The path in the container where the volume will be mounted.

readOnly

Type: Boolean

Required: No

If this value is true, the container has read-only access to the volume. If this value is false,
then the container can write to the volume. The default value is false.

volumesFrom

Type: Object array

Required: No

Data volumes to mount from another container. This parameter maps to VolumesFrom in
the Create a container section of the Docker Remote API and the --volumes-from option to
docker run.

sourceContainer

Type: String

Required: Yes, when volumesFrom is used

The name of the container to mount volumes from.

readOnly

Type: Boolean

Required: No

If this value is true, the container has read-only access to the volume. If this value is false,
then the container can write to the volume. The default value is false.

"volumesFrom": [

Container definitions 1430

https://docs.docker.com/engine/api/v1.38/#operation/ContainerCreate
https://docs.docker.com/engine/api/v1.38/
https://docs.docker.com/engine/reference/commandline/run/

Amazon Elastic Container Service Developer Guide

 {
 "sourceContainer": "string",
 "readOnly": true|false
 }
]

logConfiguration

Type: LogConfiguration Object

Required: No

The log configuration specification for the container.

For example task definitions that use a log configuration, see Example task definitions.

This parameter maps to LogConfig in the Create a container section of the Docker Remote API
and the --log-driver option to docker run. By default, containers use the same logging
driver that the Docker daemon uses. However, the container might use a different logging
driver than the Docker daemon by specifying a log driver with this parameter in the container
definition. To use a different logging driver for a container, the log system must be configured
properly on the container instance (or on a different log server for remote logging options). For
more information about the options for different supported log drivers, see Configure logging
drivers in the Docker documentation.

Consider the following when specifying a log configuration for your containers:

• Amazon ECS supports a subset of the logging drivers that are available to the Docker
daemon. Additional log drivers might be available in future releases of the Amazon ECS
container agent.

• This parameter requires version 1.18 or later of the Docker Remote API on your container
instance.

• For tasks that use the EC2 launch type, the Amazon ECS container agent that runs on a
container instance must register the logging drivers that are available on that instance with
the ECS_AVAILABLE_LOGGING_DRIVERS environment variable before containers that are
placed on that instance can use these log configuration options. For more information, see
Amazon ECS container agent configuration.

• For tasks that use the Fargate launch type, because you don't have access to the underlying
infrastructure your tasks are hosted on, any additional software needed must be installed

Container definitions 1431

https://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_LogConfiguration.html
https://docs.docker.com/engine/api/v1.38/#operation/ContainerCreate
https://docs.docker.com/engine/api/v1.38/
https://docs.docker.com/engine/reference/commandline/run/
https://docs.docker.com/engine/admin/logging/overview/
https://docs.docker.com/engine/admin/logging/overview/

Amazon Elastic Container Service Developer Guide

outside of the task. For example, the Fluentd output aggregators or a remote host running
Logstash to send Gelf logs to.

"logConfiguration": {
 "logDriver": "awslogs","fluentd","gelf","json-
file","journald","logentries","splunk","syslog","awsfirelens",
 "options": {"string": "string"
 ...},
 "secretOptions": [{
 "name": "string",
 "valueFrom": "string"
 }]
}

logDriver

Type: String

Valid values: "awslogs","fluentd","gelf","json-
file","journald","logentries","splunk","syslog","awsfirelens"

Required: Yes, when logConfiguration is used

The log driver to use for the container. By default, the valid values that are listed earlier are
log drivers that the Amazon ECS container agent can communicate with.

For tasks that use the Fargate launch type, the supported log drivers are awslogs, splunk,
and awsfirelens.

For tasks that use the EC2 launch type, the supported log drivers are awslogs, fluentd,
gelf, json-file, journald, logentries,syslog, splunk, and awsfirelens.

For more information about how to use the awslogs log driver in task definitions to send
your container logs to CloudWatch Logs, see Using the awslogs log driver.

For more information about using the awsfirelens log driver, see Custom Log Routing.

Note

If you have a custom driver that isn't listed, you can fork the Amazon ECS container
agent project that's available on GitHub and customize it to work with that driver.

Container definitions 1432

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/using_firelens.html
https://github.com/aws/amazon-ecs-agent

Amazon Elastic Container Service Developer Guide

We encourage you to submit pull requests for changes that you want to have
included. However, we don't currently support running modified copies of this
software.

This parameter requires version 1.18 of the Docker Remote API or greater on your container
instance.

options

Type: String to string map

Required: No

The key/value map of configuration options to send to the log driver.

When you use FireLens to route logs to an AWS service or AWS Partner Network destination
for log storage and analytics, you can set the log-driver-buffer-limit option to limit
the number of events that are buffered in memory, before being sent to the log router
container. It can help to resolve potential log loss issue because high throughput might
result in memory running out for the buffer inside of Docker. For more information, see the
section called “Fluentd buffer limit”.

This parameter requires version 1.19 of the Docker Remote API or greater on your container
instance.

secretOptions

Type: Object array

Required: No

An object that represents the secret to pass to the log configuration. Secrets that are used
in log configuration can include an authentication token, certificate, or encryption key. For
more information, see Passing sensitive data to a container.

name

Type: String

Required: Yes

The value to set as the environment variable on the container.

Container definitions 1433

Amazon Elastic Container Service Developer Guide

valueFrom

Type: String

Required: Yes

The secret to expose to the log configuration of the container.

"logConfiguration": {
 "logDriver": "splunk",
 "options": {
 "splunk-url": "https://cloud.splunk.com:8080",
 "splunk-token": "...",
 "tag": "...",
 ...
 },
 "secretOptions": [{
 "name": "splunk-token",
 "valueFrom": "/ecs/logconfig/splunkcred"
 }]
}

firelensConfiguration

Type: FirelensConfiguration Object

Required: No

The FireLens configuration for the container. This is used to specify and configure a log router
for container logs. For more information, see Using custom log routing.

{
 "firelensConfiguration": {
 "type": "fluentd",
 "options": {
 "KeyName": ""
 }
 }
}

options

Type: String to string map

Container definitions 1434

https://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_FirelensConfiguration.html

Amazon Elastic Container Service Developer Guide

Required: No

The key/value map of options to use when configuring the log router. This field is
optional and can be used to specify a custom configuration file or to add additional
metadata, such as the task, task definition, cluster, and container instance details to
the log event. If specified, the syntax to use is "options":{"enable-ecs-log-
metadata":"true|false","config-file-type:"s3|file","config-file-
value":"arn:aws:s3:::mybucket/fluent.conf|filepath"}. For more information,
see Specifying a FireLens configuration in a task definition.

type

Type: String

Required: Yes

The log router to use. The valid values are fluentd or fluentbit.

Security

For more information about container security, see Task and container security in the Amazon ECS
Best Practices Guide.

credentialSpecs

Type: String array

Required: No

A list of ARNs in SSM or Amazon S3 to a credential spec (CredSpec) file that configures the
container for Active Directory authentication. We recommend that you use this parameter
instead of the dockerSecurityOptions. The maximum number of ARNs is 1.

There are two formats for each ARN.

credentialspecdomainless:MyARN

You use credentialspecdomainless:MyARN to provide a CredSpec with an additional
section for a secret in Secrets Manager. You provide the login credentials to the domain in
the secret.

Each task that runs on any container instance can join different domains.

Container definitions 1435

https://docs.aws.amazon.com/AmazonECS/latest/bestpracticesguide/security-tasks-containers.html

Amazon Elastic Container Service Developer Guide

You can use this format without joining the container instance to a domain.

credentialspec:MyARN

You use credentialspec:MyARN to provide a CredSpec for a single domain.

You must join the container instance to the domain before you start any tasks that use this
task definition.

In both formats, replace MyARN with the ARN in SSM or Amazon S3.

The credspec must provide a ARN in Secrets Manager for a secret containing the username,
password, and the domain to connect to. For better security, the instance isn't joined to
the domain for domainless authentication. Other applications on the instance can't use the
domainless credentials. You can use this parameter to run tasks on the same instance, even it
the tasks need to join different domains. For more information, see Using gMSAs for Windows
Containers and Using gMSAs for Linux Containers.

privileged

Type: Boolean

Required: No

When this parameter is true, the container is given elevated privileges on the host container
instance (similar to the root user). We recommend against running containers with
privileged. In most cases, you can specify the exact privileges that you need by using the
specific parameters instead of using privileged.

This parameter maps to Privileged in the Create a container section of the Docker Remote
API and the --privileged option to docker run.

Note

This parameter is not supported for Windows containers or tasks using the Fargate
launch type.

The default is false.

"privileged": true|false

Container definitions 1436

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/windows-gmsa.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/windows-gmsa.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/linux-gmsa.html
https://docs.docker.com/engine/api/v1.38/#operation/ContainerCreate
https://docs.docker.com/engine/api/v1.38/
https://docs.docker.com/engine/api/v1.38/
https://docs.docker.com/engine/reference/commandline/run/

Amazon Elastic Container Service Developer Guide

user

Type: String

Required: No

The user to use inside the container. This parameter maps to User in the Create a container
section of the Docker Remote API and the --user option to docker run.

Important

When running tasks that use the host network mode, don't run containers using the
root user (UID 0). As a security best practice, always use a non-root user.

You can specify the user using the following formats. If specifying a UID or GID, you must
specify it as a positive integer.

• user

• user:group

• uid

• uid:gid

• user:gid

• uid:group

Note

This parameter is not supported for Windows containers.

"user": "string"

dockerSecurityOptions

Type: String array

Valid values: "no-new-privileges" | "apparmor:PROFILE" | "label:value" |
"credentialspec:CredentialSpecFilePath"

Required: No

Container definitions 1437

https://docs.docker.com/engine/api/v1.38/#operation/ContainerCreate
https://docs.docker.com/engine/api/v1.38/
https://docs.docker.com/engine/reference/commandline/run/

Amazon Elastic Container Service Developer Guide

A list of strings to provide custom configuration for multiple security systems. For more
information about valid values, see Docker Run Security Configuration. This field isn't valid for
containers in tasks using the Fargate launch type.

For Linux tasks on EC2, this parameter can be used to reference custom labels for SELinux and
AppArmor multi-level security systems.

For any tasks on EC2, this parameter can be used to reference a credential spec file that
configures a container for Active Directory authentication. For more information, see Using
gMSAs for Windows Containers on Amazon EC2 and Using gMSA for Linux Containers on
Amazon EC2.

This parameter maps to SecurityOpt in the Create a container section of the Docker Remote
API and the --security-opt option to docker.

"dockerSecurityOptions": ["string", ...]

Note

The Amazon ECS container agent that run on a container instance must register with
the ECS_SELINUX_CAPABLE=true or ECS_APPARMOR_CAPABLE=true environment
variables before containers that are placed on that instance can use these security
options. For more information, see Amazon ECS container agent configuration.

Resource limits

ulimits

Type: Object array

Required: No

A list of ulimit values to define for a container. This value overwrites the default resource
quota setting for the operating system. This parameter maps to Ulimits in the Create a
container section of the Docker Remote API and the --ulimit option to docker run.

Amazon ECS tasks hosted on Fargate use the default resource limit values set by the operating
system with the exception of the nofile resource limit parameter. The nofile resource limit

Container definitions 1438

https://docs.docker.com/engine/reference/run/#security-configuration
https://docs.docker.com/engine/api/v1.38/#operation/ContainerCreate
https://docs.docker.com/engine/api/v1.38/
https://docs.docker.com/engine/api/v1.38/
https://docs.docker.com/engine/reference/run/#security-configuration
https://docs.docker.com/engine/api/v1.38/#operation/ContainerCreate
https://docs.docker.com/engine/api/v1.38/#operation/ContainerCreate
https://docs.docker.com/engine/api/v1.38/
https://docs.docker.com/engine/reference/commandline/run/

Amazon Elastic Container Service Developer Guide

sets a restriction on the number of open files that a container can use. On Fargate, the default
nofile soft limit is 1024 and hard limit is 65535. You can set the values of both limits up to
1048576. For more information, see Task resource limits.

This parameter requires version 1.18 of the Docker Remote API or greater on your container
instance.

Note

This parameter is not supported for Windows containers.

"ulimits": [
 {
 "name":
 "core"|"cpu"|"data"|"fsize"|"locks"|"memlock"|"msgqueue"|"nice"|"nofile"|"nproc"|"rss"|"rtprio"|"rttime"|"sigpending"|"stack",
 "softLimit": integer,
 "hardLimit": integer
 }
 ...
]

name

Type: String

Valid values: "core" | "cpu" | "data" | "fsize" | "locks" | "memlock" |
"msgqueue" | "nice" | "nofile" | "nproc" | "rss" | "rtprio" | "rttime"
| "sigpending" | "stack"

Required: Yes, when ulimits are used

The type of the ulimit.

hardLimit

Type: Integer

Required: Yes, when ulimits are used

The hard limit for the ulimit type.

Container definitions 1439

Amazon Elastic Container Service Developer Guide

softLimit

Type: Integer

Required: Yes, when ulimits are used

The soft limit for the ulimit type.

Docker labels

dockerLabels

Type: String to string map

Required: No

A key/value map of labels to add to the container. This parameter maps to Labels in the
Create a container section of the Docker Remote API and the --label option to docker run.

This parameter requires version 1.18 of the Docker Remote API or greater on your container
instance.

"dockerLabels": {"string": "string"
 ...}

Other container definition parameters

The following container definition parameters can be used when registering task definitions in the
Amazon ECS console by using the Configure via JSON option. For more information, see Creating a
task definition using the console.

Topics

• Linux parameters

• Container dependency

• Container timeouts

• System controls

• Interactive

• Pseudo terminal

Container definitions 1440

https://docs.docker.com/engine/api/v1.38/#operation/ContainerCreate
https://docs.docker.com/engine/api/v1.38/
https://docs.docker.com/engine/reference/commandline/run/

Amazon Elastic Container Service Developer Guide

Linux parameters

linuxParameters

Type: LinuxParameters object

Required: No

Linux-specific options that are applied to the container, such as KernelCapabilities.

Note

This parameter isn't supported for Windows containers.

"linuxParameters": {
 "capabilities": {
 "add": ["string", ...],
 "drop": ["string", ...]
 }
 }

capabilities

Type: KernelCapabilities object

Required: No

The Linux capabilities for the container that are added to or dropped from the default
configuration provided by Docker. For more information about the default capabilities and
the other available capabilities, see Runtime privilege and Linux capabilities in the Docker
run reference. For more information about these Linux capabilities, see the capabilities(7)
Linux manual page.

add

Type: String array

Valid values: "ALL" | "AUDIT_CONTROL" | "AUDIT_READ" | "AUDIT_WRITE" |
"BLOCK_SUSPEND" | "CHOWN" | "DAC_OVERRIDE" | "DAC_READ_SEARCH" |
"FOWNER" | "FSETID" | "IPC_LOCK" | "IPC_OWNER" | "KILL" | "LEASE"
| "LINUX_IMMUTABLE" | "MAC_ADMIN" | "MAC_OVERRIDE" | "MKNOD" |

Container definitions 1441

https://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_LinuxParameters.html
https://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_KernelCapabilities.html
https://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_KernelCapabilities.html
https://docs.docker.com/engine/reference/run/#runtime-privilege-and-linux-capabilities
http://man7.org/linux/man-pages/man7/capabilities.7.html

Amazon Elastic Container Service Developer Guide

"NET_ADMIN" | "NET_BIND_SERVICE" | "NET_BROADCAST" | "NET_RAW"
| "SETFCAP" | "SETGID" | "SETPCAP" | "SETUID" | "SYS_ADMIN" |
"SYS_BOOT" | "SYS_CHROOT" | "SYS_MODULE" | "SYS_NICE" | "SYS_PACCT"
| "SYS_PTRACE" | "SYS_RAWIO" | "SYS_RESOURCE" | "SYS_TIME" |
"SYS_TTY_CONFIG" | "SYSLOG" | "WAKE_ALARM"

Required: No

The Linux capabilities for the container to add to the default configuration provided by
Docker. This parameter maps to CapAdd in the Create a container section of the Docker
Remote API and the --cap-add option to docker run.

Note

Tasks that are launched on Fargate only support adding the SYS_PTRACE kernel
capability.

add

Type: String array

Valid values: "SYS_PTRACE"

Required: No

The Linux capabilities for the container to add to the default configuration that's
provided by Docker. This parameter maps to CapAdd in the Create a container section of
the Docker Remote API and the --cap-add option to docker run.

drop

Type: String array

Valid values: "ALL" | "AUDIT_CONTROL" | "AUDIT_WRITE" | "BLOCK_SUSPEND"
| "CHOWN" | "DAC_OVERRIDE" | "DAC_READ_SEARCH" | "FOWNER"
| "FSETID" | "IPC_LOCK" | "IPC_OWNER" | "KILL" | "LEASE" |
"LINUX_IMMUTABLE" | "MAC_ADMIN" | "MAC_OVERRIDE" | "MKNOD" |
"NET_ADMIN" | "NET_BIND_SERVICE" | "NET_BROADCAST" | "NET_RAW"
| "SETFCAP" | "SETGID" | "SETPCAP" | "SETUID" | "SYS_ADMIN" |
"SYS_BOOT" | "SYS_CHROOT" | "SYS_MODULE" | "SYS_NICE" | "SYS_PACCT"

Container definitions 1442

https://docs.docker.com/engine/api/v1.38/#operation/ContainerCreate
https://docs.docker.com/engine/api/v1.38/
https://docs.docker.com/engine/api/v1.38/
https://docs.docker.com/engine/reference/run/
https://docs.docker.com/engine/api/v1.38/#operation/ContainerCreate
https://docs.docker.com/engine/api/v1.38/
https://docs.docker.com/engine/reference/run/

Amazon Elastic Container Service Developer Guide

| "SYS_PTRACE" | "SYS_RAWIO" | "SYS_RESOURCE" | "SYS_TIME" |
"SYS_TTY_CONFIG" | "SYSLOG" | "WAKE_ALARM"

Required: No

The Linux capabilities for the container to remove from the default configuration that's
provided by Docker. This parameter maps to CapDrop in the Create a container section
of the Docker Remote API and the --cap-drop option to docker run.

devices

Any host devices to expose to the container. This parameter maps to Devices in the Create
a container section of the Docker Remote API and the --device option to docker run.

Note

The devices parameter isn't supported when you use the Fargate launch type, or
Windows containers.

Type: Array of Device objects

Required: No

hostPath

The path for the device on the host container instance.

Type: String

Required: Yes

containerPath

The path inside the container to expose the host device at.

Type: String

Required: No

permissions

The explicit permissions to provide to the container for the device. By default, the
container has permissions for read, write, and mknod on the device.

Container definitions 1443

https://docs.docker.com/engine/api/v1.38/#operation/ContainerCreate
https://docs.docker.com/engine/api/v1.38/
https://docs.docker.com/engine/reference/run/
https://docs.docker.com/engine/api/v1.38/#operation/ContainerCreate
https://docs.docker.com/engine/api/v1.38/#operation/ContainerCreate
https://docs.docker.com/engine/api/v1.38/
https://docs.docker.com/engine/reference/run/
https://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_Device.html

Amazon Elastic Container Service Developer Guide

Type: Array of strings

Valid Values: read | write | mknod

initProcessEnabled

Run an init process inside the container that forwards signals and reaps processes. This
parameter maps to the --init option to docker run.

This parameter requires version 1.25 of the Docker Remote API or greater on your container
instance.

maxSwap

The total amount of swap memory (in MiB) a container can use. This parameter is translated
to the --memory-swap option to docker run where the value is the sum of the container
memory plus the maxSwap value.

If a maxSwap value of 0 is specified, the container doesn't use swap. Accepted values are 0
or any positive integer. If the maxSwap parameter is omitted, the container uses the swap
configuration for the container instance that it's running on. A maxSwap value must be set
for the swappiness parameter to be used.

Note

If you're using tasks that use the Fargate launch type, the maxSwap parameter isn't
supported.

sharedMemorySize

The value for the size (in MiB) of the /dev/shm volume. This parameter maps to the --shm-
size option to docker run.

Note

If you're using tasks that use the Fargate launch type, the sharedMemorySize
parameter isn't supported.

Type: Integer

Container definitions 1444

https://docs.docker.com/engine/reference/run/
https://docs.docker.com/engine/reference/run/
https://docs.docker.com/engine/reference/run/

Amazon Elastic Container Service Developer Guide

swappiness

You can use this parameter to tune a container's memory swappiness behavior. A
swappiness value of 0 prevents swapping from happening unless required. A swappiness
value of 100 causes pages to be swapped frequently. Accepted values are whole numbers
between 0 and 100. If you don't specify a value, the default value of 60 is used. Moreover, if
you don't specify a value for maxSwap, then this parameter is ignored. This parameter maps
to the --memory-swappiness option to docker run.

Note

If you're using tasks that use the Fargate launch type, the swappiness parameter
isn't supported.
If you're using tasks on Amazon Linux 2023 the swappiness parameter isn't
supported.

tmpfs

The container path, mount options, and maximum size (in MiB) of the tmpfs mount. This
parameter maps to the --tmpfs option to docker run.

Note

If you're using tasks that use the Fargate launch type, the tmpfs parameter isn't
supported.

Type: Array of Tmpfs objects

Required: No

containerPath

The absolute file path where the tmpfs volume is to be mounted.

Type: String

Required: Yes

Container definitions 1445

https://docs.docker.com/engine/reference/run/
https://docs.docker.com/engine/reference/run/
https://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_Tmpfs.html

Amazon Elastic Container Service Developer Guide

mountOptions

The list of tmpfs volume mount options.

Type: Array of strings

Required: No

Valid Values: "defaults" | "ro" | "rw" | "suid" | "nosuid" | "dev"
| "nodev" | "exec" | "noexec" | "sync" | "async" | "dirsync" |
"remount" | "mand" | "nomand" | "atime" | "noatime" | "diratime"
| "nodiratime" | "bind" | "rbind" | "unbindable" | "runbindable" |
"private" | "rprivate" | "shared" | "rshared" | "slave" | "rslave"
| "relatime" | "norelatime" | "strictatime" | "nostrictatime" |
"mode" | "uid" | "gid" | "nr_inodes" | "nr_blocks" | "mpol"

size

The maximum size (in MiB) of the tmpfs volume.

Type: Integer

Required: Yes

Container dependency

dependsOn

Type: Array of ContainerDependency objects

Required: No

The dependencies defined for container startup and shutdown. A container can contain multiple
dependencies. When a dependency is defined for container startup, for container shutdown it is
reversed. For an example, see Container dependency.

Note

If a container doesn't meet a dependency constraint or times out before meeting the
constraint, Amazon ECS doesn't progress dependent containers to their next state.

Container definitions 1446

https://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_ContainerDependency.html

Amazon Elastic Container Service Developer Guide

For Amazon ECS tasks that are hosted on Amazon EC2 instances, the instances require at
least version 1.26.0 of the container agent to enable container dependencies. However, we
recommend using the latest container agent version. For information about checking your
agent version and updating to the latest version, see Updating the Amazon ECS container
agent. If you're using an Amazon ECS-optimized Amazon Linux AMI, your instance needs at least
version 1.26.0-1 of the ecs-init package. If your container instances are launched from
version 20190301 or later, they contain the required versions of the container agent and ecs-
init. For more information, see Amazon ECS-optimized AMI.

For Amazon ECS tasks that are hosted on Fargate, this parameter requires that the task or
service uses platform version 1.3.0 or later (Linux) or 1.0.0 (Windows).

"dependsOn": [
 {
 "containerName": "string",
 "condition": "string"
 }
]

containerName

Type: String

Required: Yes

The container name that must meet the specified condition.

condition

Type: String

Required: Yes

The dependency condition of the container. The following are the available conditions and
their behavior:

• START – This condition emulates the behavior of links and volumes today. The condition
validates that a dependent container is started before permitting other containers to
start.

• COMPLETE – This condition validates that a dependent container runs to completion (exits)
before permitting other containers to start. This can be useful for non-essential containers
that run a script and then exit. This condition can't be set on an essential container.

Container definitions 1447

Amazon Elastic Container Service Developer Guide

• SUCCESS – This condition is the same as COMPLETE, but it also requires that the container
exits with a zero status. This condition can't be set on an essential container.

• HEALTHY – This condition validates that the dependent container passes its container
health check before permitting other containers to start. This requires that the dependent
container has health checks configured in the task definition. This condition is confirmed
only at task startup.

Container timeouts

startTimeout

Type: Integer

Required: No

Example values: 120

Time duration (in seconds) to wait before giving up on resolving dependencies for a container.

For example, you specify two containers in a task definition with containerA having a
dependency on containerB reaching a COMPLETE, SUCCESS, or HEALTHY status. If a
startTimeout value is specified for containerB and it doesn't reach the desired status
within that time, then containerA doesn't start.

Note

If a container doesn't meet a dependency constraint or times out before meeting the
constraint, Amazon ECS doesn't progress dependent containers to their next state.

For Amazon ECS tasks that are hosted on Fargate, this parameter requires that the task or
service uses platform version 1.3.0 or later (Linux). The maximum value is 120 seconds.

stopTimeout

Type: Integer

Required: No

Example values: 120

Container definitions 1448

Amazon Elastic Container Service Developer Guide

Time duration (in seconds) to wait before the container is forcefully killed if it doesn't exit
normally on its own.

For Amazon ECS tasks that are hosted on Fargate, this parameter requires that the task or
service uses platform version 1.3.0 or later (Linux). If the parameter isn't specified, then the
default value of 30 seconds is used. The maximum value is 120 seconds.

For tasks that use the EC2 launch type, if the stopTimeout parameter isn't
specified, the value set for the Amazon ECS container agent configuration variable
ECS_CONTAINER_STOP_TIMEOUT is used. If neither the stopTimeout parameter or the
ECS_CONTAINER_STOP_TIMEOUT agent configuration variable is set, the default values of
30 seconds for Linux containers and 30 seconds on Windows containers are used. Container
instances require at least version 1.26.0 of the container agent to enable a container stop
timeout value. However, we recommend using the latest container agent version. For
information about how to check your agent version and update to the latest version, see
Updating the Amazon ECS container agent. If you're using an Amazon ECS-optimized Amazon
Linux AMI, your instance needs at least version 1.26.0-1 of the ecs-init package. If your
container instances are launched from version 20190301 or later, they contain the required
versions of the container agent and ecs-init. For more information, see Amazon ECS-
optimized AMI.

System controls

systemControls

Type: SystemControl object

Required: No

A list of namespace kernel parameters to set in the container. This parameter maps to Sysctls
in the Create a container section of the Docker Remote API and the --sysctl option to docker
run. For example, you can configure net.ipv4.tcp_keepalive_time setting to maintain
longer lived connections.

We don't recommend that you specify network-related systemControls parameters for
multiple containers in a single task that also uses either the awsvpc or host network mode.
Doing this has the following disadvantages:

• For tasks that use the awsvpc network mode including Fargate, if you set systemControls
for any container, it applies to all containers in the task. If you set different systemControls

Container definitions 1449

https://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_SystemControl.html
https://docs.docker.com/engine/api/v1.38/#operation/ContainerCreate
https://docs.docker.com/engine/api/v1.38/
https://docs.docker.com/engine/reference/commandline/run/
https://docs.docker.com/engine/reference/commandline/run/

Amazon Elastic Container Service Developer Guide

for multiple containers in a single task, the container that's started last determines which
systemControls take effect.

• For tasks that use the host network mode, the network namespace systemControls aren't
supported.

If you're setting an IPC resource namespace to use for the containers in the task, the following
conditions apply to your system controls. For more information, see IPC mode.

• For tasks that use the host IPC mode, IPC namespace systemControls aren't supported.

• For tasks that use the task IPC mode, IPC namespace systemControls values apply to all
containers within a task.

Note

This parameter is not supported for Windows containers.

Note

This parameter is only supported for tasks that are hosted on AWS Fargate if the tasks
are using platform version 1.4.0 or later (Linux). This isn't supported for Windows
containers on Fargate.

"systemControls": [
 {
 "namespace":"string",
 "value":"string"
 }
]

namespace

Type: String

Required: No

The namespace kernel parameter to set a value for.

Container definitions 1450

Amazon Elastic Container Service Developer Guide

Valid IPC namespace values: "kernel.msgmax" | "kernel.msgmnb" |
"kernel.msgmni" | "kernel.sem" | "kernel.shmall" | "kernel.shmmax"
| "kernel.shmmni" | "kernel.shm_rmid_forced", and Sysctls that start with
"fs.mqueue.*"

Valid network namespace values: Sysctls that start with "net.*"

All of these values are supported by Fargate.

value

Type: String

Required: No

The value for the namespace kernel parameter that's specified in namespace.

Interactive

interactive

Type: Boolean

Required: No

When this parameter is true, you can deploy containerized applications that require stdin or
a tty to be allocated. This parameter maps to OpenStdin in the Create a container section of
the Docker Remote API and the --interactive option to docker run.

The default is false.

Pseudo terminal

pseudoTerminal

Type: Boolean

Required: No

When this parameter is true, a TTY is allocated. This parameter maps to Tty in the Create a
container section of the Docker Remote API and the --tty option to docker run.

The default is false.

Container definitions 1451

https://docs.docker.com/engine/api/v1.38/#operation/ContainerCreate
https://docs.docker.com/engine/api/v1.38/
https://docs.docker.com/engine/reference/commandline/run/
https://docs.docker.com/engine/api/v1.38/#operation/ContainerCreate
https://docs.docker.com/engine/api/v1.38/#operation/ContainerCreate
https://docs.docker.com/engine/api/v1.38/
https://docs.docker.com/engine/reference/commandline/run/

Amazon Elastic Container Service Developer Guide

Elastic Inference accelerator name

Note

Starting April 15, 2023, AWS will not onboard new customers to Amazon Elastic Inference
(EI), and will help current customers migrate their workloads to options that offer better
price and performance. After April 15, 2023, new customers will not be able to launch
instances with Amazon EI accelerators in Amazon SageMaker, Amazon ECS, or Amazon EC2.
However, customers who have used Amazon EI at least once during the past 30-day period
are considered current customers and will be able to continue using the service.

The Elastic Inference accelerator resource requirement for your task definition. For more
information, see What Is Amazon Elastic Inference? in the Amazon Elastic Inference Developer
Guide.

The following parameters are allowed in a task definition:

deviceName

Type: String

Required: Yes

The Elastic Inference accelerator device name. The deviceName must also be referenced in a
container definition see Elastic Inference accelerator.

deviceType

Type: String

Required: Yes

The Elastic Inference accelerator to use.

Task placement constraints

When you register a task definition, you can provide task placement constraints that customize
how Amazon ECS places tasks.

Elastic Inference accelerator name 1452

https://docs.aws.amazon.com/elastic-inference/latest/developerguide/what-is-ei.html

Amazon Elastic Container Service Developer Guide

If you're using the Fargate launch type, task placement constraints aren't supported. By default
Fargate tasks are spread across Availability Zones.

For tasks that use the EC2 launch type, you can use constraints to place tasks based on Availability
Zone, instance type, or custom attributes. For more information, see Amazon ECS task placement
constraints.

The following parameters are allowed in a container definition:

expression

Type: String

Required: No

A cluster query language expression to apply to the constraint. For more information, see
Cluster query language.

type

Type: String

Required: Yes

The type of constraint. Use memberOf to restrict the selection to a group of valid candidates.

Proxy configuration

proxyConfiguration

Type: ProxyConfiguration object

Required: No

The configuration details for the App Mesh proxy.

For tasks that use the EC2 launch type, the container instances require at least version 1.26.0 of
the container agent and at least version 1.26.0-1 of the ecs-init package to enable a proxy
configuration. If your container instances are launched from the Amazon ECS-optimized AMI
version 20190301 or later, then they contain the required versions of the container agent and
ecs-init. For more information, see Amazon ECS-optimized AMI.

Proxy configuration 1453

https://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_ProxyConfiguration.html

Amazon Elastic Container Service Developer Guide

For tasks that use the Fargate launch type, this feature requires that the task or service uses
platform version 1.3.0 or later.

Note

This parameter is not supported for Windows containers.

"proxyConfiguration": {
 "type": "APPMESH",
 "containerName": "string",
 "properties": [
 {
 "name": "string",
 "value": "string"
 }
]
}

type

Type: String

Value values: APPMESH

Required: No

The proxy type. The only supported value is APPMESH.

containerName

Type: String

Required: Yes

The name of the container that serves as the App Mesh proxy.

properties

Type: Array of KeyValuePair objects

Required: No

The set of network configuration parameters to provide the Container Network Interface
(CNI) plugin, specified as key-value pairs.

Proxy configuration 1454

https://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_KeyValuePair.html

Amazon Elastic Container Service Developer Guide

• IgnoredUID – (Required) The user ID (UID) of the proxy container as defined by the user
parameter in a container definition. This is used to ensure the proxy ignores its own traffic.
If IgnoredGID is specified, this field can be empty.

• IgnoredGID – (Required) The group ID (GID) of the proxy container as defined by the
user parameter in a container definition. This is used to ensure the proxy ignores its own
traffic. If IgnoredUID is specified, this field can be empty.

• AppPorts – (Required) The list of ports that the application uses. Network traffic to these
ports is forwarded to the ProxyIngressPort and ProxyEgressPort.

• ProxyIngressPort – (Required) Specifies the port that incoming traffic to the
AppPorts is directed to.

• ProxyEgressPort – (Required) Specifies the port that outgoing traffic from the
AppPorts is directed to.

• EgressIgnoredPorts – (Required) The outbound traffic going to these specified ports is
ignored and not redirected to the ProxyEgressPort. It can be an empty list.

• EgressIgnoredIPs – (Required) The outbound traffic going to these specified IP
addresses is ignored and not redirected to the ProxyEgressPort. It can be an empty list.

name

Type: String

Required: No

The name of the key-value pair.

value

Type: String

Required: No

The value of the key-value pair.

Volumes

When you register a task definition, you can optionally specify a list of volumes to be passed to
the Docker daemon on a container instance, which then becomes available for access by other
containers on the same container instance.

Volumes 1455

Amazon Elastic Container Service Developer Guide

The following are the types of data volumes that can be used:

• Amazon EBS volumes — Provides cost-effective, durable, high-performance block storage for
data intensive containerized workloads. You can attach 1 Amazon EBS volume per Amazon
ECS task when running a standalone task, or when creating or updating a service. Amazon EBS
volumes are supported for Linux tasks hosted on Fargate or Amazon EC2 instances. For more
information, see Amazon EBS volumes.

• Amazon EFS volumes — Provides simple, scalable, and persistent file storage for use with
your Amazon ECS tasks. With Amazon EFS, storage capacity is elastic. It grows and shrinks
automatically as you add and remove files. Your applications can have the storage that they need
and when they need it. Amazon EFS volumes are supported for tasks that are hosted on Fargate
or Amazon EC2 instances. For more information, see Amazon EFS volumes.

• FSx for Windows File Server volumes — Provides fully managed Microsoft Windows file servers.
These file servers are backed by a Windows file system. When using FSx for Windows File Server
together with Amazon ECS, you can provision your Windows tasks with persistent, distributed,
shared, and static file storage. For more information, see FSx for Windows File Server volumes.

Windows containers on Fargate do not support this option.

• Docker volumes – A Docker-managed volume that is created under /var/lib/docker/
volumes on the host Amazon EC2 instance. Docker volume drivers (also referred to as plugins)
are used to integrate the volumes with external storage systems, such as Amazon EBS. The
built-in local volume driver or a third-party volume driver can be used. Docker volumes are
supported only when running tasks on Amazon EC2 instances. Windows containers support only
the use of the local driver. To use Docker volumes, specify a dockerVolumeConfiguration
in your task definition. For more information, see Using volumes.

• Bind mounts – A file or directory on the host machine that is mounted into a container. Bind
mount host volumes are supported when running tasks on either AWS Fargate or Amazon EC2
instances. To use bind mount host volumes, specify a host and optional sourcePath value in
your task definition. For more information, see Using bind mounts.

For more information, see Using data volumes in tasks.

The following parameters are allowed in a container definition.

name

Type: String

Volumes 1456

https://docs.docker.com/storage/volumes/
https://docs.docker.com/storage/bind-mounts/

Amazon Elastic Container Service Developer Guide

Required: No

The name of the volume. Up to 255 letters (uppercase and lowercase), numbers, hyphens (-),
and underscores (_) are allowed. This name is referenced in the sourceVolume parameter of
the container definition mountPoints object.

host

Required: No

The host parameter is used to tie the lifecycle of the bind mount to the host Amazon EC2
instance, rather than the task, and where it is stored. If the host parameter is empty, then the
Docker daemon assigns a host path for your data volume, but the data is not guaranteed to
persist after the containers associated with it stop running.

Windows containers can mount whole directories on the same drive as $env:ProgramData.

Note

The sourcePath parameter is supported only when using tasks that are hosted on
Amazon EC2 instances.

sourcePath

Type: String

Required: No

When the host parameter is used, specify a sourcePath to declare the path on the host
Amazon EC2 instance that is presented to the container. If this parameter is empty, then the
Docker daemon assigns a host path for you. If the host parameter contains a sourcePath
file location, then the data volume persists at the specified location on the host Amazon EC2
instance until you delete it manually. If the sourcePath value does not exist on the host
Amazon EC2 instance, the Docker daemon creates it. If the location does exist, the contents
of the source path folder are exported.

configuredAtLaunch

Type: Boolean

Required: No

Volumes 1457

Amazon Elastic Container Service Developer Guide

Specifies whether a volume is configurable at launch. When set to true, you can configure
the volume when running a standalone task, or when creating or updating a service. When
set to true, you won't be able to provide another volume configuration in the task definition.
This parameter must be set to true to configure an Amazon EBS volume for attachment to
a task. Setting configuredAtLaunch to true and deferring volume configuration to the
launch phase allows you to create task definitions that aren't constrained to a volume type
or to specific volume settings. Doing this makes your task definition reusable across different
execution environments. For more information, see Amazon EBS volumes.

dockerVolumeConfiguration

Type: DockerVolumeConfiguration Object

Required: No

This parameter is specified when using Docker volumes. Docker volumes are supported only
when running tasks on EC2 instances. Windows containers support only the use of the local
driver. To use bind mounts, specify a host instead.

scope

Type: String

Valid Values: task | shared

Required: No

The scope for the Docker volume, which determines its lifecycle. Docker volumes that are
scoped to a task are automatically provisioned when the task starts and destroyed when
the task stops. Docker volumes that are scoped as shared persist after the task stops.

autoprovision

Type: Boolean

Default value: false

Required: No

If this value is true, the Docker volume is created if it doesn't already exist. This field is
used only if the scope is shared. If the scope is task, then this parameter must either be
omitted or set to false.

Volumes 1458

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/ebs-volumes.html
https://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_DockerVolumeConfiguration.html

Amazon Elastic Container Service Developer Guide

driver

Type: String

Required: No

The Docker volume driver to use. The driver value must match the driver name provided by
Docker because this name is used for task placement. If the driver was installed by using
the Docker plugin CLI, use docker plugin ls to retrieve the driver name from your
container instance. If the driver was installed by using another method, use Docker plugin
discovery to retrieve the driver name. For more information, see Docker plugin discovery.
This parameter maps to Driver in the Create a volume section of the Docker Remote API
and the --driver option to docker volume create.

driverOpts

Type: String

Required: No

A map of Docker driver-specific options to pass through. This parameter maps to
DriverOpts in the Create a volume section of the Docker Remote API and the --opt
option to docker volume create.

labels

Type: String

Required: No

Custom metadata to add to your Docker volume. This parameter maps to Labels in the
Create a volume section of the Docker Remote API and the --label option to docker
volume create.

efsVolumeConfiguration

Type: EFSVolumeConfiguration Object

Required: No

This parameter is specified when using Amazon EFS volumes.

fileSystemId

Type: String

Volumes 1459

https://docs.docker.com/engine/extend/plugin_api/#plugin-discovery
https://docs.docker.com/engine/api/v1.38/#operation/VolumeCreate
https://docs.docker.com/engine/api/v1.38/
https://docs.docker.com/engine/reference/commandline/volume_create/
https://docs.docker.com/engine/api/v1.38/#operation/VolumeCreate
https://docs.docker.com/engine/api/v1.38/
https://docs.docker.com/engine/reference/commandline/volume_create/
https://docs.docker.com/engine/api/v1.38/#operation/VolumeCreate
https://docs.docker.com/engine/api/v1.38/
https://docs.docker.com/engine/reference/commandline/volume_create/
https://docs.docker.com/engine/reference/commandline/volume_create/
https://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_EFSVolumeConfiguration.html

Amazon Elastic Container Service Developer Guide

Required: Yes

The Amazon EFS file system ID to use.

rootDirectory

Type: String

Required: No

The directory within the Amazon EFS file system to mount as the root directory inside
the host. If this parameter is omitted, the root of the Amazon EFS volume will be used.
Specifying / has the same effect as omitting this parameter.

Important

If an EFS access point is specified in the authorizationConfig, the root directory
parameter must either be omitted or set to /, which will enforce the path set on the
EFS access point.

transitEncryption

Type: String

Valid values: ENABLED | DISABLED

Required: No

Specifies whether to enable encryption for Amazon EFS data in transit between the Amazon
ECS host and the Amazon EFS server. If Amazon EFS IAM authorization is used, transit
encryption must be enabled. If this parameter is omitted, the default value of DISABLED is
used. For more information, see Encrypting Data in Transit in the Amazon Elastic File System
User Guide.

transitEncryptionPort

Type: Integer

Required: No

The port to use when sending encrypted data between the Amazon ECS host and the
Amazon EFS server. If you don't specify a transit encryption port, the task will use the port

Volumes 1460

https://docs.aws.amazon.com/efs/latest/ug/encryption-in-transit.html

Amazon Elastic Container Service Developer Guide

selection strategy that the Amazon EFS mount helper uses. For more information, see EFS
Mount Helper in the Amazon Elastic File System User Guide.

authorizationConfig

Type: EFSAuthorizationConfiguration Object

Required: No

The authorization configuration details for the Amazon EFS file system.

accessPointId

Type: String

Required: No

The access point ID to use. If an access point is specified, the root directory value in the
efsVolumeConfiguration must either be omitted or set to /, which will enforce the
path set on the EFS access point. If an access point is used, transit encryption must be
enabled in the EFSVolumeConfiguration. For more information, see Working with
Amazon EFS Access Points in the Amazon Elastic File System User Guide.

iam

Type: String

Valid values: ENABLED | DISABLED

Required: No

Specifies whether to use the Amazon ECS task IAM role that's defined in a task definition
when mounting the Amazon EFS file system. If enabled, transit encryption must be
enabled in the EFSVolumeConfiguration. If this parameter is omitted, the default
value of DISABLED is used. For more information, see IAM Roles for Tasks.

FSxWindowsFileServerVolumeConfiguration

Type: FSxWindowsFileServerVolumeConfiguration Object

Required: Yes

This parameter is specified when you're using an Amazon FSx for Windows File Server file
system for task storage.

Volumes 1461

https://docs.aws.amazon.com/efs/latest/ug/efs-mount-helper.html
https://docs.aws.amazon.com/efs/latest/ug/efs-mount-helper.html
https://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_EFSAuthorizationConfiguration.html
https://docs.aws.amazon.com/efs/latest/ug/efs-access-points.html
https://docs.aws.amazon.com/efs/latest/ug/efs-access-points.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/task-iam-roles.html
https://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_FSxWindowsFileServerVolumeConfiguration.html
https://docs.aws.amazon.com/fsx/latest/WindowsGuide/what-is.html

Amazon Elastic Container Service Developer Guide

fileSystemId

Type: String

Required: Yes

The FSx for Windows File Server file system ID to use.

rootDirectory

Type: String

Required: Yes

The directory within the FSx for Windows File Server file system to mount as the root
directory inside the host.

authorizationConfig

credentialsParameter

Type: String

Required: Yes

The authorization credential options.

options:

• Amazon Resource Name (ARN) of an AWS Secrets Manager secret.

• ARN of an AWS Systems Manager parameter.

domain

Type: String

Required: Yes

A fully qualified domain name hosted by an AWS Directory Service for Microsoft Active
Directory (AWS Managed Microsoft AD) directory or a self-hosted EC2 Active Directory.

Tags

When you register a task definition, you can optionally specify metadata tags that are applied to
the task definition. Tags help you categorize and organize your task definition. Each tag consists

Tags 1462

https://docs.aws.amazon.com/secretsmanager/latest/userguide/intro.html
https://docs.aws.amazon.com/systems-manager/latest/userguide/integration-ps-secretsmanager.html
https://docs.aws.amazon.com/directoryservice/latest/admin-guide/directory_microsoft_ad.html
https://docs.aws.amazon.com/directoryservice/latest/admin-guide/directory_microsoft_ad.html

Amazon Elastic Container Service Developer Guide

of a key and an optional value. You define both of them. For more information, see Amazon ECS
resource tagging.

Important

Don't add personally identifiable information or other confidential or sensitive information
in tags. Tags are accessible to many AWS services, including billing. Tags aren't intended to
be used for private or sensitive data.

The following parameters are allowed in a tag object.

key

Type: String

Required: No

One part of a key-value pair that make up a tag. A key is a general label that acts like a category
for more specific tag values.

value

Type: String

Required: No

The optional part of a key-value pair that make up a tag. A value acts as a descriptor within a
tag category (key).

Other task definition parameters

The following task definition parameters can be used when registering task definitions in the
Amazon ECS console by using the Configure via JSON option. For more information, see Creating a
task definition using the console.

Topics

• Ephemeral storage

• IPC mode

Other task definition parameters 1463

Amazon Elastic Container Service Developer Guide

• PID mode

Ephemeral storage

ephemeralStorage

Type: EphemeralStorage object

Required: No

The amount of ephemeral storage (in GB) to allocate for the task. This parameter is used to
expand the total amount of ephemeral storage available, beyond the default amount, for tasks
that are hosted on AWS Fargate. For more information, see the section called “Bind mounts”.

Note

This parameter is only supported for tasks that are hosted on AWS Fargate using
platform version 1.4.0 or later (Linux) or 1.0.0 or later (Windows).

IPC mode

ipcMode

Type: String

Required: No

The IPC resource namespace to use for the containers in the task. The valid values are host,
task, or none. If host is specified, then all the containers that are within the tasks that
specified the host IPC mode on the same container instance share the same IPC resources
with the host Amazon EC2 instance. If task is specified, all the containers that are within the
specified task share the same IPC resources. If none is specified, then IPC resources within
the containers of a task are private and not shared with other containers in a task or on the
container instance. If no value is specified, then the IPC resource namespace sharing depends on
the Docker daemon setting on the container instance. For more information, see IPC settings in
the Docker run reference.

If the host IPC mode is used, there's a heightened risk of undesired IPC namespace exposure.
For more information, see Docker security.

Other task definition parameters 1464

https://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_EphemeralStorage.html
https://docs.docker.com/engine/reference/run/#ipc-settings---ipc
https://docs.docker.com/engine/security/security/

Amazon Elastic Container Service Developer Guide

If you're setting namespaced kernel parameters that use systemControls for the containers
in the task, the following applies to your IPC resource namespace. For more information, see
System controls.

• For tasks that use the host IPC mode, IPC namespace that's related systemControls aren't
supported.

• For tasks that use the task IPC mode, systemControls that relate to the IPC namespace
apply to all containers within a task.

Note

This parameter is not supported for Windows containers or tasks using the Fargate launch
type.

PID mode

pidMode

Type: String

Valid Values: host | task

Required: No

The process namespace to use for the containers in the task. The valid values are host or task.
On Fargate for Linux containers, the only valid value is task. For example, monitoring sidecars
might need pidMode to access information about other containers running in the same task.

If host is specified, all containers within the tasks that specified the host PID mode on the
same container instance share the same process namespace with the host Amazon EC2 instance.

If task is specified, all containers within the specified task share the same process namespace.

If no value is specified, the default is a private namespace for each container. For more
information, see PID settings in the Docker run reference.

If the host PID mode is used, there's a heightened risk of undesired process namespace
exposure. For more information, see Docker security.

Other task definition parameters 1465

https://docs.docker.com/engine/reference/run/#pid-settings---pid
https://docs.docker.com/engine/security/security/

Amazon Elastic Container Service Developer Guide

Note

This parameter is not supported for Windows containers.

Note

This parameter is only supported for tasks that are hosted on AWS Fargate if the tasks are
using platform version 1.4.0 or later (Linux). This isn't supported for Windows containers
on Fargate.

Task definition template

An empty task definition template is shown as follows. You can use this template to create your
task definition, which can then be pasted into the console JSON input area or saved to a file and
used with the AWS CLI --cli-input-json option. For more information, see Task definition
parameters.

Amazon EC2 launch type template

{
 "family": "",
 "taskRoleArn": "",
 "executionRoleArn": "",
 "networkMode": "none",
 "containerDefinitions": [
 {
 "name": "",
 "image": "",
 "repositoryCredentials": {
 "credentialsParameter": ""
 },
 "cpu": 0,
 "memory": 0,
 "memoryReservation": 0,
 "links": [
 ""
],
 "portMappings": [
 {

Task definition template 1466

Amazon Elastic Container Service Developer Guide

 "containerPort": 0,
 "hostPort": 0,
 "protocol": "tcp"
 }
],
 "essential": true,
 "entryPoint": [
 ""
],
 "command": [
 ""
],
 "environment": [
 {
 "name": "",
 "value": ""
 }
],
 "environmentFiles": [
 {
 "value": "",
 "type": "s3"
 }
],
 "mountPoints": [
 {
 "sourceVolume": "",
 "containerPath": "",
 "readOnly": true
 }
],
 "volumesFrom": [
 {
 "sourceContainer": "",
 "readOnly": true
 }
],
 "linuxParameters": {
 "capabilities": {
 "add": [
 ""
],
 "drop": [
 ""

Task definition template 1467

Amazon Elastic Container Service Developer Guide

]
 },
 "devices": [
 {
 "hostPath": "",
 "containerPath": "",
 "permissions": [
 "read"
]
 }
],
 "initProcessEnabled": true,
 "sharedMemorySize": 0,
 "tmpfs": [
 {
 "containerPath": "",
 "size": 0,
 "mountOptions": [
 ""
]
 }
],
 "maxSwap": 0,
 "swappiness": 0
 },
 "secrets": [
 {
 "name": "",
 "valueFrom": ""
 }
],
 "dependsOn": [
 {
 "containerName": "",
 "condition": "COMPLETE"
 }
],
 "startTimeout": 0,
 "stopTimeout": 0,
 "hostname": "",
 "user": "",
 "workingDirectory": "",
 "disableNetworking": true,
 "privileged": true,

Task definition template 1468

Amazon Elastic Container Service Developer Guide

 "readonlyRootFilesystem": true,
 "dnsServers": [
 ""
],
 "dnsSearchDomains": [
 ""
],
 "extraHosts": [
 {
 "hostname": "",
 "ipAddress": ""
 }
],
 "dockerSecurityOptions": [
 ""
],
 "interactive": true,
 "pseudoTerminal": true,
 "dockerLabels": {
 "KeyName": ""
 },
 "ulimits": [
 {
 "name": "nofile",
 "softLimit": 0,
 "hardLimit": 0
 }
],
 "logConfiguration": {
 "logDriver": "splunk",
 "options": {
 "KeyName": ""
 },
 "secretOptions": [
 {
 "name": "",
 "valueFrom": ""
 }
]
 },
 "healthCheck": {
 "command": [
 ""
],

Task definition template 1469

Amazon Elastic Container Service Developer Guide

 "interval": 0,
 "timeout": 0,
 "retries": 0,
 "startPeriod": 0
 },
 "systemControls": [
 {
 "namespace": "",
 "value": ""
 }
],
 "resourceRequirements": [
 {
 "value": "",
 "type": "InferenceAccelerator"
 }
],
 "firelensConfiguration": {
 "type": "fluentbit",
 "options": {
 "KeyName": ""
 }
 }
 }
],
 "volumes": [
 {
 "name": "",
 "host": {
 "sourcePath": ""
 },
 "configuredAtLaunch": true,
 "dockerVolumeConfiguration": {
 "scope": "shared",
 "autoprovision": true,
 "driver": "",
 "driverOpts": {
 "KeyName": ""
 },
 "labels": {
 "KeyName": ""
 }
 },
 "efsVolumeConfiguration": {

Task definition template 1470

Amazon Elastic Container Service Developer Guide

 "fileSystemId": "",
 "rootDirectory": "",
 "transitEncryption": "DISABLED",
 "transitEncryptionPort": 0,
 "authorizationConfig": {
 "accessPointId": "",
 "iam": "ENABLED"
 }
 },
 "fsxWindowsFileServerVolumeConfiguration": {
 "fileSystemId": "",
 "rootDirectory": "",
 "authorizationConfig": {
 "credentialsParameter": "",
 "domain": ""
 }
 }
 }
],
 "placementConstraints": [
 {
 "type": "memberOf",
 "expression": ""
 }
],
 "requiresCompatibilities": [
 "EC2"
],
 "cpu": "",
 "memory": "",
 "tags": [
 {
 "key": "",
 "value": ""
 }
],
 "pidMode": "task",
 "ipcMode": "task",
 "proxyConfiguration": {
 "type": "APPMESH",
 "containerName": "",
 "properties": [
 {
 "name": "",

Task definition template 1471

Amazon Elastic Container Service Developer Guide

 "value": ""
 }
]
 },
 "inferenceAccelerators": [
 {
 "deviceName": "",
 "deviceType": ""
 }
],
 "ephemeralStorage": {
 "sizeInGiB": 0
 },
 "runtimePlatform": {
 "cpuArchitecture": "X86_64",
 "operatingSystemFamily": "WINDOWS_SERVER_20H2_CORE"
 }
}

Fargate launch type template

Important

For the Fargate launch type, you must include the operatingSystemFamily parameter
with one of the following values:

• LINUX

• WINDOWS_SERVER_2019_FULL

• WINDOWS_SERVER_2019_CORE

• WINDOWS_SERVER_2022_FULL

• WINDOWS_SERVER_2022_CORE

{
 "family": "",
 "runtimePlatform": {"operatingSystemFamily": ""},
 "taskRoleArn": "",
 "executionRoleArn": "",
 "networkMode": "awsvpc",

Task definition template 1472

Amazon Elastic Container Service Developer Guide

 "platformFamily": "",
 "containerDefinitions": [
 {
 "name": "",
 "image": "",
 "repositoryCredentials": {"credentialsParameter": ""},
 "cpu": 0,
 "memory": 0,
 "memoryReservation": 0,
 "links": [""],
 "portMappings": [
 {
 "containerPort": 0,
 "hostPort": 0,
 "protocol": "tcp"
 }
],
 "essential": true,
 "entryPoint": [""],
 "command": [""],
 "environment": [
 {
 "name": "",
 "value": ""
 }
],
 "environmentFiles": [
 {
 "value": "",
 "type": "s3"
 }
],
 "mountPoints": [
 {
 "sourceVolume": "",
 "containerPath": "",
 "readOnly": true
 }
],
 "volumesFrom": [
 {
 "sourceContainer": "",
 "readOnly": true
 }

Task definition template 1473

Amazon Elastic Container Service Developer Guide

],
 "linuxParameters": {
 "capabilities": {
 "add": [""],
 "drop": [""]
 },
 "devices": [
 {
 "hostPath": "",
 "containerPath": "",
 "permissions": ["read"]
 }
],
 "initProcessEnabled": true,
 "sharedMemorySize": 0,
 "tmpfs": [
 {
 "containerPath": "",
 "size": 0,
 "mountOptions": [""]
 }
],
 "maxSwap": 0,
 "swappiness": 0
 },
 "secrets": [
 {
 "name": "",
 "valueFrom": ""
 }
],
 "dependsOn": [
 {
 "containerName": "",
 "condition": "HEALTHY"
 }
],
 "startTimeout": 0,
 "stopTimeout": 0,
 "hostname": "",
 "user": "",
 "workingDirectory": "",
 "disableNetworking": true,
 "privileged": true,

Task definition template 1474

Amazon Elastic Container Service Developer Guide

 "readonlyRootFilesystem": true,
 "dnsServers": [""],
 "dnsSearchDomains": [""],
 "extraHosts": [
 {
 "hostname": "",
 "ipAddress": ""
 }
],
 "dockerSecurityOptions": [""],
 "interactive": true,
 "pseudoTerminal": true,
 "dockerLabels": {"KeyName": ""},
 "ulimits": [
 {
 "name": "msgqueue",
 "softLimit": 0,
 "hardLimit": 0
 }
],
 "logConfiguration": {
 "logDriver": "awslogs",
 "options": {"KeyName": ""},
 "secretOptions": [
 {
 "name": "",
 "valueFrom": ""
 }
]
 },
 "healthCheck": {
 "command": [""],
 "interval": 0,
 "timeout": 0,
 "retries": 0,
 "startPeriod": 0
 },
 "systemControls": [
 {
 "namespace": "",
 "value": ""
 }
],
 "resourceRequirements": [

Task definition template 1475

Amazon Elastic Container Service Developer Guide

 {
 "value": "",
 "type": "GPU"
 }
],
 "firelensConfiguration": {
 "type": "fluentd",
 "options": {"KeyName": ""}
 }
 }
],
 "volumes": [
 {
 "name": "",
 "host": {"sourcePath": ""},
 "configuredAtLaunch":true,
 "dockerVolumeConfiguration": {
 "scope": "task",
 "autoprovision": true,
 "driver": "",
 "driverOpts": {"KeyName": ""},
 "labels": {"KeyName": ""}
 },
 "efsVolumeConfiguration": {
 "fileSystemId": "",
 "rootDirectory": "",
 "transitEncryption": "ENABLED",
 "transitEncryptionPort": 0,
 "authorizationConfig": {
 "accessPointId": "",
 "iam": "ENABLED"
 }
 }
 }
],
 "placementConstraints": [
 {
 "type": "memberOf",
 "expression": ""
 }
],
 "requiresCompatibilities": ["FARGATE"],
 "cpu": "",
 "memory": "",

Task definition template 1476

Amazon Elastic Container Service Developer Guide

 "tags": [
 {
 "key": "",
 "value": ""
 }
],
 "ephemeralStorage": {"sizeInGiB": 0},
 "pidMode": "task",
 "ipcMode": "none",
 "proxyConfiguration": {
 "type": "APPMESH",
 "containerName": "",
 "properties": [
 {
 "name": "",
 "value": ""
 }
]
 },
 "inferenceAccelerators": [
 {
 "deviceName": "",
 "deviceType": ""
 }
]
}

You can generate this task definition template using the following AWS CLI command.

aws ecs register-task-definition --generate-cli-skeleton

Service definition parameters

A service definition defines how to run your Amazon ECS service. The following parameters can be
specified in a service definition.

Launch type

launchType

Type: String

Service definition parameters 1477

Amazon Elastic Container Service Developer Guide

Valid values: EC2 | FARGATE | EXTERNAL

Required: No

The launch type on which to run your service. If a launch type is not specified, the default
capacityProviderStrategy is used by default. For more information, see Amazon ECS
launch types.

If a launchType is specified, the capacityProviderStrategy parameter must be omitted.

Capacity provider strategy

capacityProviderStrategy

Type: Array of objects

Required: No

The capacity provider strategy to use for the service.

A capacity provider strategy consists of one or more capacity providers along with the base
and weight to assign to them. A capacity provider must be associated with the cluster to be
used in a capacity provider strategy. The PutClusterCapacityProviders API is used to associate
a capacity provider with a cluster. Only capacity providers with an ACTIVE or UPDATING status
can be used.

If a capacityProviderStrategy is specified, the launchType parameter must
be omitted. If no capacityProviderStrategy or launchType is specified, the
defaultCapacityProviderStrategy for the cluster is used.

If you want to specify a capacity provider that uses an Auto Scaling group, the capacity
provider must already be created. New capacity providers can be created with the
CreateCapacityProvider API operation.

To use an AWS Fargate capacity provider, specify either the FARGATE or FARGATE_SPOT
capacity providers. The AWS Fargate capacity providers are available to all accounts and only
need to be associated with a cluster to be used.

The PutClusterCapacityProviders API operation is used to update the list of available capacity
providers for a cluster after the cluster is created.

Capacity provider strategy 1478

Amazon Elastic Container Service Developer Guide

capacityProvider

Type: String

Required: Yes

The short name or full Amazon Resource Name (ARN) of the capacity provider.

weight

Type: Integer

Valid range: Integers between 0 and 1,000.

Required: No

The weight value designates the relative percentage of the total number of tasks launched
that use the specified capacity provider.

For example, assume that you have a strategy that contains two capacity providers and
both have a weight of one. When the base is satisfied, the tasks split evenly across the
two capacity providers. Using that same logic, assume that you specify a weight of 1 for
capacityProviderA and a weight of 4 for capacityProviderB. Then, for every one task that is
run using capacityProviderA, four tasks use capacityProviderB.

base

Type: Integer

Valid range: Integers between 0 and 100,000.

Required: No

The base value designates how many tasks, at a minimum, to run on the specified capacity
provider. Only one capacity provider in a capacity provider strategy can have a base defined.

Task definition

taskDefinition

Type: String

Required: No

Task definition 1479

Amazon Elastic Container Service Developer Guide

The family and revision (family:revision) or full Amazon Resource Name (ARN) of the
task definition to run in your service. If a revision isn't specified, the latest ACTIVE revision of
the specified family is used.

A task definition must be specified when using the rolling update (ECS) deployment controller.

Platform operating system

platformFamily

Type: string

Required: Conditional

Default: Linux

This parameter is required for Amazon ECS services hosted on Fargate.

This parameter is ignored for Amazon ECS services hosted on Amazon EC2.

The operating system on the containers that runs the service. The valid values
are LINUX, WINDOWS_SERVER_2019_FULL, WINDOWS_SERVER_2019_CORE,
WINDOWS_SERVER_2022_FULL, and WINDOWS_SERVER_2022_CORE.

The platformFamily value for every task that you specify for the service must match
the service platformFamily value. For example, if you set the platformFamily to
WINDOWS_SERVER_2019_FULL, the platformFamily value for all the tasks must be
WINDOWS_SERVER_2019_FULL.

Platform version

platformVersion

Type: String

Required: No

The platform version on which your tasks in the service are running. A platform version is only
specified for tasks using the Fargate launch type. If one is not specified, the latest version
(LATEST) is used by default.

Platform operating system 1480

Amazon Elastic Container Service Developer Guide

AWS Fargate platform versions are used to refer to a specific runtime environment for the
Fargate task infrastructure. When specifying the LATEST platform version when running a task
or creating a service, you get the most current platform version available for your tasks. When
you scale up your service, those tasks receive the platform version that was specified on the
service's current deployment. For more information, see Fargate Linux platform versions.

Note

Platform versions are not specified for tasks using the EC2 launch type.

Cluster

cluster

Type: String

Required: No

The short name or full Amazon Resource Name (ARN) of the cluster on which to run your
service. If you do not specify a cluster, the default cluster is assumed.

Service name

serviceName

Type: String

Required: Yes

The name of your service. Up to 255 letters (uppercase and lowercase), numbers, hyphens,
and underscores are allowed. Service names must be unique within a cluster, but you can have
similarly named services in multiple clusters within a Region or across multiple Regions.

Scheduling strategy

schedulingStrategy

Type: String

Cluster 1481

Amazon Elastic Container Service Developer Guide

Valid values: REPLICA | DAEMON

Required: No

The scheduling strategy to use. If no scheduling strategy is specified, the REPLICA strategy is
used. For more information, see Service scheduler concepts.

There are two service scheduler strategies available:

• REPLICA—The replica scheduling strategy places and maintains the desired number of tasks
across your cluster. By default, the service scheduler spreads tasks across Availability Zones.
You can use task placement strategies and constraints to customize task placement decisions.
For more information, see Replica.

• DAEMON—The daemon scheduling strategy deploys exactly one task on each active container
instance that meets all of the task placement constraints that you specify in your cluster.
When using this strategy, there is no need to specify a desired number of tasks, a task
placement strategy, or use Service Auto Scaling policies. For more information, see Daemon.

Note

Fargate tasks do not support the DAEMON scheduling strategy.

Desired count

desiredCount

Type: Integer

Required: No

The number of instantiations of the specified task definition to place and keep running in your
service.

This parameter is required if the REPLICA scheduling strategy is used. If the service uses the
DAEMON scheduling strategy, this parameter is optional.

Desired count 1482

Amazon Elastic Container Service Developer Guide

Deployment configuration

deploymentConfiguration

Type: Object

Required: No

Optional deployment parameters that control how many tasks run during the deployment and
the ordering of stopping and starting tasks.

maximumPercent

Type: Integer

Required: No

If a service is using the rolling update (ECS) deployment type, the maximumPercent
parameter represents an upper limit on the number of your service's tasks that are allowed
in the RUNNING, STOPPING, or PENDING state during a deployment. It is expressed as a
percentage of the desiredCount that is rounded down to the nearest integer. You can use
this parameter to define the deployment batch size. For example, if your service is using the
REPLICA service scheduler and has a desiredCount of four tasks and a maximumPercent
value of 200%, the scheduler might start four new tasks before stopping the four older
tasks. This is provided that the cluster resources required to do this are available. The default
maximumPercent value for a service using the REPLICA service scheduler is 200%.

If your service is using the DAEMON service scheduler type, the maximumPercent should
remain at 100%. This is the default value.

The maximum number of tasks during a deployment is the desiredCount multiplied by the
maximumPercent/100, rounded down to the nearest integer value.

If a service is using either the blue/green (CODE_DEPLOY) or EXTERNAL deployment types
and tasks that use the EC2 launch type, the maximum percent value is set to the default
value and is used to define the upper limit on the number of the tasks in the service that
remain in the RUNNING state while the container instances are in the DRAINING state. If
the tasks in the service use the Fargate launch type, the maximum percent value isn't used,
although it's returned when describing your service.

minimumHealthyPercent

Type: Integer

Deployment configuration 1483

Amazon Elastic Container Service Developer Guide

Required: No

If a service is using the rolling update (ECS) deployment type, the
minimumHealthyPercent represents a lower limit on the number of your service's
tasks that must remain in the RUNNING state during a deployment. This is expressed as a
percentage of the desiredCount that is rounded up to the nearest integer. You can use this
parameter to deploy without using additional cluster capacity. For example, if your service
has a desiredCount of four tasks and a minimumHealthyPercent of 50%, the service
scheduler might stop two existing tasks to free up cluster capacity before starting two new
tasks.

For services that do not use a load balancer, consider the following:

• A service is considered healthy if all essential containers within the tasks in the service
pass their health checks.

• If a task has no essential containers with a health check defined, the service scheduler
waits for 40 seconds after a task reaches a RUNNING state before the task is counted
towards the minimum healthy percent total.

• If a task has one or more essential containers with a health check defined, the service
scheduler waits for the task to reach a healthy status before counting it towards the
minimum healthy percent total. A task is considered healthy when all essential containers
within the task have passed their health checks. The amount of time the service scheduler
can wait for is determined by the container health check settings. For more information,
see Health check.

For services that do use a load balancer, consider the following:

• If a task has no essential containers with a health check defined, the service scheduler
waits for the load balancer target group health check to return a healthy status before
counting the task towards the minimum healthy percent total.

• If a task has an essential container with a health check defined, the service scheduler waits
for both the task to reach a healthy status and the load balancer target group health
check to return a healthy status before counting the task towards the minimum healthy
percent total.

The default value for a replica service for minimumHealthyPercent is 100%. The default
minimumHealthyPercent value for a service using the DAEMON service schedule is 0% for
the AWS CLI, the AWS SDKs, and the APIs and 50% for the AWS Management Console.

Deployment configuration 1484

Amazon Elastic Container Service Developer Guide

The minimum number of healthy tasks during a deployment is the desiredCount
multiplied by the minimumHealthyPercent/100, rounded up to the nearest integer value.

If a service is using either the blue/green (CODE_DEPLOY) or EXTERNAL deployment types
and is running tasks that use the EC2 launch type, the minimum healthy percent value is
set to the default value and is used to define the lower limit on the number of the tasks
in the service that remain in the RUNNING state while the container instances are in the
DRAINING state. If a service is using either the blue/green (CODE_DEPLOY) or EXTERNAL
deployment types and is running tasks that use the Fargate launch type, the minimum
healthy percent value is not used, although it is returned when describing your service.

Deployment controller

deploymentController

Type: Object

Required: No

The deployment controller to use for the service. If no deployment controller is specified, the
ECS controller is used. For more information, see Amazon ECS Deployment types.

type

Type: String

Valid values: ECS | CODE_DEPLOY | EXTERNAL

Required: yes

The deployment controller type to use. There are three deployment controller types
available:

ECS

The rolling update (ECS) deployment type involves replacing the current running version
of the container with the latest version. The number of containers Amazon ECS adds or
removes from the service during a rolling update is controlled by adjusting the minimum
and maximum number of healthy tasks allowed during a service deployment, as specified
in the deploymentConfiguration.

Deployment controller 1485

Amazon Elastic Container Service Developer Guide

CODE_DEPLOY

The blue/green (CODE_DEPLOY) deployment type uses the blue/green deployment
model powered by CodeDeploy, which allows you to verify a new deployment of a service
before sending production traffic to it.

EXTERNAL

Use the external deployment type when you want to use any third-party deployment
controller for full control over the deployment process for an Amazon ECS service.

Task placement

placementConstraints

Type: Array of objects

Required: No

An array of placement constraint objects to use for tasks in your service. You can specify a
maximum of 10 constraints per task. This limit includes constraints in the task definition and
those specified at run time. If you use the Fargate launch type, task placement constraints aren't
supported.

type

Type: String

Required: No

The type of constraint. Use distinctInstance to ensure that each task in a particular
group is running on a different container instance. Use memberOf to restrict the selection
to a group of valid candidates. The value distinctInstance is not supported in task
definitions.

expression

Type: String

Required: No

A cluster query language expression to apply to the constraint. You can't specify an
expression if the constraint type is distinctInstance. For more information, see Cluster
query language.

Task placement 1486

Amazon Elastic Container Service Developer Guide

placementStrategy

Type: Array of objects

Required: No

The placement strategy objects to use for tasks in your service. You can specify a maximum of
four strategy rules per service.

type

Type: String

Valid values: random | spread | binpack

Required: No

The type of placement strategy. The random placement strategy randomly places tasks on
available candidates. The spread placement strategy spreads placement across available
candidates evenly based on the field parameter. The binpack strategy places tasks on
available candidates that have the least available amount of the resource that's specified
with the field parameter. For example, if you binpack on memory, a task is placed on the
instance with the least amount of remaining memory but still enough to run the task.

field

Type: String

Required: No

The field to apply the placement strategy against. For the spread placement strategy, valid
values are instanceId (or host, which has the same effect), or any platform or custom
attribute that's applied to a container instance, such as attribute:ecs.availability-
zone. For the binpack placement strategy, valid values are cpu and memory. For the
random placement strategy, this field is not used.

Tags

tags

Type: Array of objects

Tags 1487

Amazon Elastic Container Service Developer Guide

Required: No

The metadata that you apply to the service to help you categorize and organize them. Each tag
consists of a key and an optional value, both of which you define. When a service is deleted,
the tags are deleted as well. A maximum of 50 tags can be applied to the service. For more
information, see Amazon ECS resource tagging.

key

Type: String

Length Constraints: Minimum length of 1. Maximum length of 128.

Required: No

One part of a key-value pair that make up a tag. A key is a general label that acts like a
category for more specific tag values.

value

Type: String

Length Constraints: Minimum length of 0. Maximum length of 256.

Required: No

The optional part of a key-value pair that make up a tag. A value acts as a descriptor within
a tag category (key).

enableECSManagedTags

Type: Boolean

Valid values: true | false

Required: No

Specifies whether to use Amazon ECS managed tags for the tasks in the service. If no value
is specified, the default value is false. For more information, see Tagging your resources for
billing.

propagateTags

Type: String

Valid values: TASK_DEFINITION | SERVICE

Tags 1488

Amazon Elastic Container Service Developer Guide

Required: No

Specifies whether to copy the tags from the task definition or the service to the tasks in the
service. If no value is specified, the tags are not copied. Tags can only be copied to the tasks
within the service during service creation. To add tags to a task after service creation or task
creation, use the TagResource API action.

Network configuration

networkConfiguration

Type: Object

Required: No

The network configuration for the service. This parameter is required for task definitions that
use the awsvpc network mode to receive their own Elastic Network Interface, and it isn't
supported for other network modes. If using the Fargate launch type, the awsvpc network
mode is required. For more information about networking for the Amazon EC2 launch type, see
Task networking for tasks on Amazon EC2 instances. For more information about networking
for the Fargate launch type, see Fargate Task Networking.

awsvpcConfiguration

Type: Object

Required: No

An object representing the subnets and security groups for a task or service.

subnets

Type: Array of strings

Required: Yes

The subnets that are associated with the task or service. There is a limit of 16 subnets
that can be specified according to awsvpcConfiguration.

securityGroups

Type: Array of strings

Network configuration 1489

https://docs.aws.amazon.com/AmazonECS/latest/userguide/fargate-task-networking.html

Amazon Elastic Container Service Developer Guide

Required: No

The security groups associated with the task or service. If you don't specify a security
group, the default security group for the VPC is used. There's a limit of five security
groups that can be specified based on awsvpcConfiguration.

assignPublicIP

Type: String

Valid values: ENABLED | DISABLED

Required: No

Whether the task's elastic network interface receives a public IP address. If no value is
specified, the default value of DISABLED is used.

healthCheckGracePeriodSeconds

Type: Integer

Required: No

The period of time, in seconds, that the Amazon ECS service scheduler should ignore unhealthy
Elastic Load Balancing target health checks, container health checks, and Route 53 health
checks after a task enters a RUNNING state. This is only valid if your service is configured to
use a load balancer. If your service has a load balancer defined and you do not specify a health
check grace period value, the default value of 0 is used.

If your service's tasks take a while to start and respond to health checks, you can specify
a health check grace period of up to 2,147,483,647 seconds during which the ECS service
scheduler ignores the health check status. This grace period can prevent the ECS service
scheduler from marking tasks as unhealthy and stopping them before they have time to come
up.

If you do not use an Elastic Load Balancing, we recommend that you use the startPeriod in
the task definition health check parameters. For more information, see Health check.

loadBalancers

Type: Array of objects

Required: No

Network configuration 1490

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/task_definition_parameters.html#container_definition_healthcheck

Amazon Elastic Container Service Developer Guide

A load balancer object representing the load balancers to use with your service. For services
that use an Application Load Balancer or Network Load Balancer, there's a limit of five target
groups that you can attach to a service.

After you create a service, the load balancer configuration can't be changed from the AWS
Management Console. You can use the AWS Copilot, AWS CloudFormation, AWS CLI or SDK
to modify the load balancer configuration for the ECS rolling deployment controller only,
not AWS CodeDeploy blue/green or external. When you add, update, or remove a load
balancer configuration, Amazon ECS starts a new deployment with the updated Elastic Load
Balancing configuration. This causes tasks to register to and deregister from load balancers.
We recommend that you verify this on a test environment before you update the Elastic
Load Balancing configuration. For information about how to modify the configuration, see
UpdateService in the Amazon Elastic Container Service API Reference.

For Application Load Balancers and Network Load Balancers, this object must contain the load
balancer target group ARN, the container name (as it appears in a container definition), and the
container port to access from the load balancer. When a task from this service is placed on a
container instance, the container instance and port combination is registered as a target in the
target group specified.

targetGroupArn

Type: String

Required: No

The full Amazon Resource Name (ARN) of the Elastic Load Balancing target group that's
associated with a service.

A target group ARN is only specified when using an Application Load Balancer or Network
Load Balancer.

loadBalancerName

Type: String

Required: No

The name of the load balancer to associate with the service.

If you're using an Application Load Balancer or a Network Load Balancer, omit the load
balancer name parameter.

Network configuration 1491

https://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_UpdateService.html

Amazon Elastic Container Service Developer Guide

containerName

Type: String

Required: No

The name of the container (as it appears in a container definition) to associate with the load
balancer.

containerPort

Type: Integer

Required: No

The port on the container to associate with the load balancer. This port must correspond to
a containerPort in the task definition used by tasks in the service. For tasks that use the
EC2 launch type, the container instance must allow inbound traffic on the hostPort of the
port mapping.

role

Type: String

Required: No

The short name or full ARN of the IAM role that allows Amazon ECS to make calls to your load
balancer on your behalf. This parameter is only permitted if you are using a load balancer with a
single target group for your service, and your task definition does not use the awsvpc network
mode. If you specify the role parameter, you must also specify a load balancer object with the
loadBalancers parameter.

If your specified role has a path other than /, then you must either specify the full role ARN
(this is recommended) or prefix the role name with the path. For example, if a role with the
name bar has a path of /foo/ then you would specify /foo/bar as the role name. For more
information, see Friendly Names and Paths in the IAM User Guide.

Important

If your account has already created the Amazon ECS service-linked role, that role is
used by default for your service unless you specify a role here. The service-linked role is
required if your task definition uses the awsvpc network mode, in which case you should

Network configuration 1492

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_identifiers.html#identifiers-friendly-names

Amazon Elastic Container Service Developer Guide

not specify a role here. For more information, see Using service-linked roles for Amazon
ECS.

serviceConnectConfiguration

Type: Object

Required: No

The configuration for this service to discover and connect to services, and be discovered by, and
connected from, other services within a namespace.

For more information, see Service Connect.

enabled

Type: Boolean

Required: Yes

Specifies whether to use Service Connect with this service.

namespace

Type: String

Required: No

The short name or full Amazon Resource Name (ARN) of the AWS Cloud Map namespace
for use with Service Connect. The namespace must be in the same AWS Region as the
Amazon ECS service and cluster. The type of namespace doesn't affect Service Connect. For
more information about AWS Cloud Map, see Working with Services in the AWS Cloud Map
Developer Guide.

services

Type: Array of objects

Required: No

An array of Service Connect service objects. These are names and aliases (also known as
endpoints) that are used by other Amazon ECS services to connect to this service.

Network configuration 1493

https://docs.aws.amazon.com/cloud-map/latest/dg/working-with-services.html

Amazon Elastic Container Service Developer Guide

This field isn't required for a "client" Amazon ECS service that's a member of a namespace
only to connect to other services within the namespace. An example is frontend application
that accepts incoming requests from either a load balancer that's attached to the service or
by other means.

An object selects a port from the task definition, assigns a name for the AWS Cloud Map
service, and an array of aliases (also known as endpoints) and ports for client applications to
refer to this service.

portName

Type: String

Required: Yes

The portName must match the name of one of the portMappings from all of the
containers in the task definition of this Amazon ECS service.

discoveryName

Type: String

Required: No

The discoveryName is the name of the new AWS Cloud Map service that Amazon ECS
creates for this Amazon ECS service. This must be unique within the AWS Cloud Map
namespace.

If this field isn't specified, portName is used.

clientAliases

Type: Array of objects

Required: No

The list of client aliases for this service connect service. You use these to assign names
that can be used by client applications. The maximum number of client aliases that you
can have in this list is 1.

Each alias ("endpoint") is a DNS name and port number that other Amazon ECS services
("clients") can use to connect to this service.

Each name and port combination must be unique within the namespace.

Network configuration 1494

Amazon Elastic Container Service Developer Guide

These names are configured within each task of the client service, not in AWS Cloud Map.
DNS requests to resolve these names don't leave the task, and don't count toward the
quota of DNS requests per second per elastic network interface.

port

Type: Integer

Required: Yes

The listening port number for the service connect proxy. This port is available inside
of all of the tasks within the same namespace.

To avoid changing your applications in client Amazon ECS services, set this to the
same port that the client application uses by default.

dnsName

Type: String

Required: No

The dnsName is the name that you use in the applications of client tasks to connect to
this service. The name must be a valid DNS label.

The default value is the discoveryName.namespace if this field is not specified. If
the discoveryName isn't specified, the portName from the task definition is used.

To avoid changing your applications in client Amazon ECS services, set this to the
same name that the client application uses by default. For example, a few common
names are database, db, or the lowercase name of a database, such as mysql or
redis.

ingressPortOverride

Type: Integer

Required: No

(Optional) The port number for the Service Connect proxy to listen on.

Use the value of this field to bypass the proxy for traffic on the port number that's
specified in the named portMapping in the task definition of this application, and then

Network configuration 1495

Amazon Elastic Container Service Developer Guide

use it in your Amazon VPC security groups to allow traffic into the proxy for this Amazon
ECS service.

In awsvpc mode, the default value is the container port number that's specified in the
named portMapping in the task definition of this application. In bridge mode, the
default value is the dynamic ephemeral port of the Service Connect proxy.

logConfiguration

Type: LogConfiguration Object

Required: No

This defines where the Service Connect proxy logs are published. Use the logs for
debugging during unexpected events. This configuration sets the logConfiguration
parameter in the Service Connect proxy container in each task in this Amazon ECS
service. The proxy container isn't specified in the task definition.

We recommend that you use the same log configuration as the application containers of
the task definition for this Amazon ECS service. For FireLens, this is the log configuration
of the application container. It's not the FireLens log router container that uses the
fluent-bit or fluentd container image.

serviceRegistries

Type: Array of objects

Required: No

The details of the service discovery configuration for your service. For more information, see
Service discovery.

registryArn

Type: String

Required: No

The Amazon Resource Name (ARN)of the service registry. The currently supported service
registry is AWS Cloud Map. For more information, see Working with Services in the AWS
Cloud Map Developer Guide.

port

Type: Integer

Network configuration 1496

https://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_LogConfiguration.html
https://docs.aws.amazon.com/cloud-map/latest/dg/working-with-services.html

Amazon Elastic Container Service Developer Guide

Required: No

The port value that's used if your service discovery service specified an SRV record. This field
is required if both the awsvpc network mode and SRV records are used.

containerName

Type: String

Required: No

The container name value to be used for your service discovery service. This value is
specified in the task definition. If the task definition that your service task specifies uses the
bridge or host network mode, you must specify a containerName and containerPort
combination from the task definition. If the task definition that your service task specifies
uses the awsvpc network mode and a type SRV DNS record is used, you must specify either
a containerName and containerPort combination or a port value, but not both.

containerPort

Type: Integer

Required: No

The port value to be used for your service discovery service. This value is specified in the task
definition. If the task definition your service task specifies uses the bridge or host network
mode, you must specify a containerName and containerPort combination from the
task definition. If the task definition your service task specifies uses the awsvpc network
mode and a type SRV DNS record is used, you must specify either a containerName and
containerPort combination or a port value, but not both.

Client token

clientToken

Type: String

Required: No

The unique, case-sensitive identifier that you provide to ensure the idempotency of the request.
It can be up to 32 ASCII characters long.

Client token 1497

Amazon Elastic Container Service Developer Guide

Volume configurations

volumeConfigurations

Type: Object

Required: No

The configuration that will be used to create volumes for tasks that are managed by the
service. One volume is created for each task in the service. Only volumes that are marked as
configuredAtLaunch in the task definition can be configured by using this object. This object
is required for attaching Amazon EBS data volumes to tasks that are managed by a service. For
more information, see Amazon EBS volumes.

name

Type: String

Required: Yes

The name of a volume that's configured when creating or updating a service. Up to 255
letters (uppercase and lowercase), numbers, underscores (_), and hyphens (-) are allowed.
This value must match the volume name that's specified in the task definition.

managedEBSVolume

Type: Object

Required: No

The volume configuration for Amazon EBS volumes that are attached to tasks that are
managed by a service when a service is created or updated.

encrypted

Type: Boolean

Required: No

Valid values: true|false

Specifies whether the Amazon EBS volume that's attached to tasks managed by a
service will be encrypted. If you've turned on Amazon EBS encryption by default for

Volume configurations 1498

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/ebs-volumes.html

Amazon Elastic Container Service Developer Guide

your account, this setting will be overridden, and the volume will be encrypted. For more
information about EBS encryption by default, see Encryption by default in the Amazon
EC2 User Guide.

kmsKeyId

Type: String

Required: No

The identifier of the AWS Key Management Service (AWS KMS) key to use for Amazon
EBS encryption. If this parameter is not specified, your AWS KMS key for Amazon EBS is
used. If KmsKeyId is specified, the encrypted state must be true.

You can specify the KMS key by using any of the following:

• Key ID – For example, 1234abcd-12ab-34cd-56ef-1234567890ab.

• Key alias – For example, alias/ExampleAlias.

• Key ARN – For example, arn:aws:kms:us-
east-1:012345678910:key/1234abcd-12ab-34cd-56ef-1234567890ab.

• Alias ARN – For example, arn:aws:kms:us-east-1:012345678910:alias/
ExampleAlias.

Important

AWS authenticates the KMS key asynchronously. Therefore, if you specify an ID,
alias, or ARN that isn't valid, the action can appear to succeed, but it eventually
fails. For more information, see Troubleshooting Amazon EBS volume attachment
issues.

volumeType

Type: String

Required: No

Valid values: gp2|gp3|io1|io2|sc1|st1|standard

The EBS volume type. For more information about volume types, see Amazon EBS
volume types in the Amazon EC2 User Guide. The default volume type is gp3.

Volume configurations 1499

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EBSEncryption.html#encryption-by-default
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/troubleshoot-ebs-volumes.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/troubleshoot-ebs-volumes.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ebs-volume-types.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ebs-volume-types.html

Amazon Elastic Container Service Developer Guide

Note

The standard volume type is not supported for Amazon EBS volumes
configured for attachment to Fargate tasks.

sizeInGiB

Type: Integer

Required: No

Valid range: Integers between 1 and 16,384

The size of the EBS volume in gibibytes (GiB). If you do not provide a snapshot ID to
configure a volume for attachment, you must provide a size value. If you configure a
volume for attachment by using a snapshot, the default value is the snapshot size. You
can then specify a size greater than or equal to the snapshot size.

For gp2 and gp3 volume types, the valid range is 1-16,384.

For io1 and io2 volume types, the valid range is 4-16,384.

For st1 and sc1 volume types, the valid range is 125-16,384.

For the standard volume type, the valid range is 1-1,024.

snapshotId

Type: String

Required: No

The ID of the snapshot of an existing EBS volume that's used to create a new volume
that's attached to the ECS task.

iops

Type: Integer

Required: No

The number of I/O operations per second (IOPS). For gp3, io1, and io2 volumes, this
represents the number of IOPS that are provisioned for the volume. For gp2 volumes,
this value represents the baseline performance of the volume and the rate at which the

Volume configurations 1500

Amazon Elastic Container Service Developer Guide

volume accumulates I/O credits for bursting. This parameter is required for io1 and io2
volumes. This parameter is not supported for gp2, st1,sc1, or standard volumes.

For gp3 volumes, the valid range of values is 3,000 to 16,000.

For io1 volumes, the valid range of values is 100 to 64,000.

For io2 volumes, the valid range of values is 100 to 64,000.

throughput

Type: Integer

Required: No

The throughput to provision for volumes that are attached to tasks that are managed by
a service.

Important

This parameter is supported only for gp3 volumes.

roleArn

Type: String

Required: Yes

The Amazon Resource ARN (ARN) of the infrastructure AWS Identity and Access
Management (IAM) role that provides Amazon ECS permissions to manage Amazon EBS
resources for your tasks. For more information, see Amazon ECS infrastructure IAM role.

tagSpecifications

Type: Object

Required: No

The specification for tags to be applied to serivce managed Amazon EBS volumes.

resourceType

Type: String

Required: Yes

Volume configurations 1501

Amazon Elastic Container Service Developer Guide

Valid values: volume

The type of resource to tag on creation.

tags

Type: Array of objects

Required: No

The metadata that you apply to volumes to help you categorize and organize
them. Each tag consists of a key and an optional value, both of which you define.
AmazonECSCreated and AmazonECSManaged are reserved tags that added by
Amazon ECS on your behalf, so you can specify a maximum of 48 tags of your own.
When a volume is deleted, the tags are deleted as well. For more information, see
Amazon ECS resource tagging.

key

Type: String

Length Constraints: Minimum length of 1. Maximum length of 128.

Required: No

One part of a key-value pair that makes up a tag. A key is a general label that acts
like a category for more specific tag values.

value

Type: String

Length Constraints: Minimum length of 0. Maximum length of 256.

Required: No

The optional part of a key-value pair that makes up a tag. A value acts as a
descriptor within a tag category (key).

propagateTags

Type: String

Valid values: TASK_DEFINITION | SERVICE | NONE

Required: No

Volume configurations 1502

Amazon Elastic Container Service Developer Guide

Specifies whether to copy the tags from the task definition or the service to a volume.
If NONE is specified or no value is specified, the tags aren't copied.

fileSystemType

Type: String

Required: No

Valid values: xfs|ext3|ext4

The type of file system on a volume. The volume's file system type determines how data
is stored and retrieved in the volume. For volumes created from a snapshot, you must
specify the same filesystem type that the volume was using when the snapshot was
created. If there is a filesystem type mismatch, the task will fail to start. The default for
volumes that are attached to Linux tasks is XFS.

Service definition template

The following shows the JSON representation of an Amazon ECS service definition.

Amazon EC2 launch type

{
 "cluster": "",
 "serviceName": "",
 "taskDefinition": "",
 "loadBalancers": [
 {
 "targetGroupArn": "",
 "loadBalancerName": "",
 "containerName": "",
 "containerPort": 0
 }
],
 "serviceRegistries": [
 {
 "registryArn": "",
 "port": 0,
 "containerName": "",
 "containerPort": 0
 }
],

Service definition template 1503

Amazon Elastic Container Service Developer Guide

 "desiredCount": 0,
 "clientToken": "",
 "launchType": "FARGATE",
 "capacityProviderStrategy": [
 {
 "capacityProvider": "",
 "weight": 0,
 "base": 0
 }
],
 "platformVersion": "",
 "role": "",
 "deploymentConfiguration": {
 "deploymentCircuitBreaker": {
 "enable": true,
 "rollback": true
 },
 "maximumPercent": 0,
 "minimumHealthyPercent": 0,
 "alarms": {
 "alarmNames": [
 ""
],
 "enable": true,
 "rollback": true
 }
 },
 "placementConstraints": [
 {
 "type": "distinctInstance",
 "expression": ""
 }
],
 "placementStrategy": [
 {
 "type": "binpack",
 "field": ""
 }
],
 "networkConfiguration": {
 "awsvpcConfiguration": {
 "subnets": [
 ""
],

Service definition template 1504

Amazon Elastic Container Service Developer Guide

 "securityGroups": [
 ""
],
 "assignPublicIp": "DISABLED"
 }
 },
 "healthCheckGracePeriodSeconds": 0,
 "schedulingStrategy": "REPLICA",
 "deploymentController": {
 "type": "EXTERNAL"
 },
 "tags": [
 {
 "key": "",
 "value": ""
 }
],
 "enableECSManagedTags": true,
 "propagateTags": "TASK_DEFINITION",
 "enableExecuteCommand": true,
 "serviceConnectConfiguration": {
 "enabled": true,
 "namespace": "",
 "services": [
 {
 "portName": "",
 "discoveryName": "",
 "clientAliases": [
 {
 "port": 0,
 "dnsName": ""
 }
],
 "ingressPortOverride": 0
 }
],
 "logConfiguration": {
 "logDriver": "journald",
 "options": {
 "KeyName": ""
 },
 "secretOptions": [
 {
 "name": "",

Service definition template 1505

Amazon Elastic Container Service Developer Guide

 "valueFrom": ""
 }
]
 }
 },
 "volumeConfigurations": [
 {
 "name": "",
 "managedEBSVolume": {
 "encrypted": true,
 "kmsKeyId": "",
 "volumeType": "",
 "sizeInGiB": 0,
 "snapshotId": "",
 "iops": 0,
 "throughput": 0,
 "tagSpecifications": [
 {
 "resourceType": "volume",
 "tags": [
 {
 "key": "",
 "value": ""
 }
],
 "propagateTags": "NONE"
 }
],
 "roleArn": "",
 "filesystemType": ""
 }
 }
]
}

Fargate launch type

{
 "cluster": "",
 "serviceName": "",
 "taskDefinition": "",
 "loadBalancers": [
 {

Service definition template 1506

Amazon Elastic Container Service Developer Guide

 "targetGroupArn": "",
 "loadBalancerName": "",
 "containerName": "",
 "containerPort": 0
 }
],
 "serviceRegistries": [
 {
 "registryArn": "",
 "port": 0,
 "containerName": "",
 "containerPort": 0
 }
],
 "desiredCount": 0,
 "clientToken": "",
 "launchType": "FARGATE",
 "capacityProviderStrategy": [
 {
 "capacityProvider": "",
 "weight": 0,
 "base": 0
 }
],
 "platformVersion": "",
 "platformFamily": "",
 "role": "",
 "deploymentConfiguration": {
 "deploymentCircuitBreaker": {
 "enable": true,
 "rollback": true
 },
 "maximumPercent": 0,
 "minimumHealthyPercent": 0,
 "alarms": {
 "alarmNames": [
 ""
],
 "enable": true,
 "rollback": true
 }
 },
 "placementConstraints": [
 {

Service definition template 1507

Amazon Elastic Container Service Developer Guide

 "type": "distinctInstance",
 "expression": ""
 }
],
 "placementStrategy": [
 {
 "type": "binpack",
 "field": ""
 }
],
 "networkConfiguration": {
 "awsvpcConfiguration": {
 "subnets": [
 ""
],
 "securityGroups": [
 ""
],
 "assignPublicIp": "DISABLED"
 }
 },
 "healthCheckGracePeriodSeconds": 0,
 "schedulingStrategy": "REPLICA",
 "deploymentController": {
 "type": "EXTERNAL"
 },
 "tags": [
 {
 "key": "",
 "value": ""
 }
],
 "enableECSManagedTags": true,
 "propagateTags": "TASK_DEFINITION",
 "enableExecuteCommand": true,
 "serviceConnectConfiguration": {
 "enabled": true,
 "namespace": "",
 "services": [
 {
 "portName": "",
 "discoveryName": "",
 "clientAliases": [
 {

Service definition template 1508

Amazon Elastic Container Service Developer Guide

 "port": 0,
 "dnsName": ""
 }
],
 "ingressPortOverride": 0
 }
],
 "logConfiguration": {
 "logDriver": "journald",
 "options": {
 "KeyName": ""
 },
 "secretOptions": [
 {
 "name": "",
 "valueFrom": ""
 }
]
 }
 },
 "volumeConfigurations": [
 {
 "name": "",
 "managedEBSVolume": {
 "encrypted": true,
 "kmsKeyId": "",
 "volumeType": "",
 "sizeInGiB": 0,
 "snapshotId": "",
 "iops": 0,
 "throughput": 0,
 "tagSpecifications": [
 {
 "resourceType": "volume",
 "tags": [
 {
 "key": "",
 "value": ""
 }
],
 "propagateTags": "NONE"
 }
],
 "roleArn": "",

Service definition template 1509

Amazon Elastic Container Service Developer Guide

 "filesystemType": ""
 }
 }
]
}

You can create this service definition template using the following AWS CLI command.

aws ecs create-service --generate-cli-skeleton

Service definition template 1510

Amazon Elastic Container Service Developer Guide

Amazon ECS service quotas

The following tables provide the default service quotas, also referred to as limits, for Amazon ECS
for an AWS account. For more information about the service quotas for other AWS services that
you can use with Amazon ECS, such as Elastic Load Balancing and Auto Scaling, see AWS service
quotas in the Amazon Web Services General Reference. For information about API throttling in the
Amazon ECS API, see Request throttling for the Amazon ECS API.

Amazon ECS service quotas

The following are Amazon ECS service quotas.

New AWS accounts might have initial lower quotas that can increase over time. Amazon ECS
constantly monitors the account usage within each Region, and then automatically increases the
quotas based on your usage. You can also request a quota increase for values that are shown as
adjustable, see Requesting a quota increase in the Service Quotas User Guide.

Name Default Adjustabl
e

Description

Capacity providers per cluster Each supported
Region: 20

No The maximum number of
capacity providers that
can be associated with a
cluster.

Classic Load Balancers per service Each supported
Region: 1

No The maximum number
of Classic Load Balancers
per service.

Clusters per account Each supported
Region: 10,000

Yes Number of clusters per
account

Container instances per cluster Each supported
Region: 5,000

No Number of container
instances per cluster

Container instances per start-task Each supported
Region: 10

No The maximum number
of container instances

Amazon ECS service quotas 1511

https://docs.aws.amazon.com/general/latest/gr/aws_service_limits.html
https://docs.aws.amazon.com/general/latest/gr/aws_service_limits.html
https://docs.aws.amazon.com/AmazonECS/latest/APIReference/request-throttling.html
https://docs.aws.amazon.com/servicequotas/latest/userguide/request-increase.html
https://console.aws.amazon.com/servicequotas/home/services/ecs/quotas/L-21C621EB

Amazon Elastic Container Service Developer Guide

Name Default Adjustabl
e

Description

specified in a StartTask
API action.

Containers per task definition Each supported
Region: 10

No The maximum number
of containers definitions
within a task definition.

ECS Exec sessions Each supported
Region: 1,000

No The maximum number
of ECS Exec sessions per
container.

Rate of tasks launched by a service on
AWS Fargate

Each supported
Region: 500

No The maximum number
of tasks that can be
provisioned per service
per minute on Fargate by
the Amazon ECS service
scheduler.

Rate of tasks launched by a service on
an Amazon EC2 or External instance

Each supported
Region: 500

No The maximum number
of tasks that can be
provisioned per service
per minute on an
Amazon EC2 or External
instance by the Amazon
ECS service scheduler.

Revisions per task definition family Each supported
Region: 1,000,000

No The maximum number
of revisions per task
definition family.
Deregistering or deleting
a task definition revision
does not exclude it from
being included in this
limit.

Amazon ECS service quotas 1512

Amazon Elastic Container Service Developer Guide

Name Default Adjustabl
e

Description

Security groups per awsvpcCon
figuration

Each supported
Region: 5

No The maximum number of
security groups specified
within an awsvpcCon
figuration.

Services per cluster Each supported
Region: 5,000

Yes The maximum number of
services per cluster

Services per namespace Each supported
Region: 100

Yes The maximum number
of services that can
be running within a
namespace.

Subnets per awsvpcConfiguration Each supported
Region: 16

No The maximum number of
subnets specified within
an awsvpcConfiguration.

Tags per resource Each supported
Region: 50

No The maximum number
of tags per resource. This
applies to task definitio
ns, clusters, tasks, and
services.

Target groups per service Each supported
Region: 5

No The maximum number of
target groups per service,
if using an Applicati
on Load Balancer or a
Network Load Balancer.

Task definition size Each supported
Region: 64
Kilobytes

No The maximum size, in
KiB, of a task definition.

Amazon ECS service quotas 1513

https://console.aws.amazon.com/servicequotas/home/services/ecs/quotas/L-9EF96962
https://console.aws.amazon.com/servicequotas/home/services/ecs/quotas/L-2D029656

Amazon Elastic Container Service Developer Guide

Name Default Adjustabl
e

Description

Tasks in PROVISIONING state per
cluster

Each supported
Region: 500

No The maximum number
of tasks waiting in the
PROVISIONING state
per cluster. This quota
only applies to tasks
launched using an EC2
Auto Scaling group
capacity provider.

Tasks launched per run-task Each supported
Region: 10

No The maximum number
of tasks that can be
launched per RunTask
API action.

Tasks per service Each supported
Region: 5,000

No The maximum number
of tasks per service (the
desired count).

Note

The default values are the initial quotas set by AWS, which are separate from the actual
applied quota value and maximum possible service quota. For more information, see
Terminology in Service Quotas in the Service Quotas User Guide.

Note

Services configured to use Amazon ECS service discovery have a limit of 1,000 tasks per
service. This is due to the AWS Cloud Map service quota for the number of instances per
service. For more information, see AWS Cloud Map service quotas in the Amazon Web
Services General Reference.

Amazon ECS service quotas 1514

https://docs.aws.amazon.com/servicequotas/latest/userguide/intro.html#intro_getting-started
https://docs.aws.amazon.com/general/latest/gr/cloud_map.html

Amazon Elastic Container Service Developer Guide

Note

In practice, task launch rates are also dependent on other considerations such as container
images to be downloaded and unpacked, health checks and other integrations enabled,
such as registering tasks with a load balancer. You might see variations in task launch rates
compared with the quotas that are represented here. These variations are causes by the
features that you have enabled for your Amazon ECS services. For more information, see
speeding up Amazon ECS deployments in the Amazon ECS Best Practices Guide.

Note

Services configured to use Amazon ECS Service Connect have a limit of 1,000 tasks per
service. This is due to the AWS Cloud Map service quota for the number of instances per
service. For more information, see AWS Cloud Map service quotas in the Amazon Web
Services General Reference.

AWS Fargate service quotas

The following are Amazon ECS on AWS Fargate service quotas and are listed under the AWS
Fargate service in the Service Quotas console.

New AWS accounts might have initial lower quotas that can increase over time. Fargate constantly
monitors the account usage within each Region, and then automatically increases the quotas based
on your usage. You can also request a quota increase for values that are shown as adjustable, see
Requesting a quota increase in the Service Quotas User Guide.

Name Default Adjustabl
e

Description

Fargate On-Demand vCPU resource
count

Each supported
Region: 6

Yes The number of Fargate
vCPUs running concurren
tly as Fargate On-
Demand in this account
in the current Region.

AWS Fargate service quotas 1515

https://docs.aws.amazon.com/AmazonECS/latest/bestpracticesguide/deployment.html
https://docs.aws.amazon.com/general/latest/gr/cloud_map.html
https://docs.aws.amazon.com/servicequotas/latest/userguide/request-increase.html
https://console.aws.amazon.com/servicequotas/home/services/fargate/quotas/L-3032A538

Amazon Elastic Container Service Developer Guide

Name Default Adjustabl
e

Description

Fargate Spot vCPU resource count Each supported
Region: 6

Yes The number of Fargate
vCPUs running concurren
tly as Fargate Spot in this
account in the current
Region.

Note

The default values are the initial quotas set by AWS, which are separate from the actual
applied quota value and maximum possible service quota. For more information, see
Terminology in Service Quotas in the Service Quotas User Guide.

Note

Fargate additionally enforces Amazon ECS tasks and Amazon EKS pods launch rate limits.
For more information, see Fargate throttling limits.

Managing your Amazon ECS and AWS Fargate service quotas in
the AWS Management Console

Amazon ECS has integrated with Service Quotas, an AWS service that enables you to view and
manage your quotas from a central location. For more information, see What Is Service Quotas? in
the Service Quotas User Guide.

Service Quotas makes it easy to look up the value of your Amazon ECS service quotas.

AWS Management Console

To view Amazon ECS and Fargate service quotas using the AWS Management Console

1. Open the Service Quotas console at https://console.aws.amazon.com/servicequotas/.

2. In the navigation pane, choose AWS services.

Managing your Amazon ECS and AWS Fargate service quotas in the AWS Management Console 1516

https://console.aws.amazon.com/servicequotas/home/services/fargate/quotas/L-36FBB829
https://docs.aws.amazon.com/servicequotas/latest/userguide/intro.html#intro_getting-started
https://docs.aws.amazon.com/AmazonECS/latest/userguide/throttling.html
https://docs.aws.amazon.com/servicequotas/latest/userguide/intro.html
https://console.aws.amazon.com/servicequotas/

Amazon Elastic Container Service Developer Guide

3. From the AWS services list, search for and select Amazon Elastic Container Service
(Amazon ECS) or AWS Fargate.

In the Service quotas list, you can see the service quota name, applied value (if it is
available), AWS default quota, and whether the quota value is adjustable.

4. To view additional information about a service quota, such as the description, choose the
quota name.

5. (Optional) To request a quota increase, select the quota that you want to increase, select
Request quota increase, enter or select the required information, and select Request.

To work more with service quotas using the AWS Management Console see the Service Quotas
User Guide. To request a quota increase, see Requesting a quota increase in the Service Quotas
User Guide.

AWS CLI

To view Amazon ECS and Fargate service quotas using the AWS CLI

Run the following command to view the default Amazon ECS quotas.

aws service-quotas list-aws-default-service-quotas \
 --query 'Quotas[*].
{Adjustable:Adjustable,Name:QuotaName,Value:Value,Code:QuotaCode}' \
 --service-code ecs \
 --output table

Run the following command to view the default Fargate quotas.

aws service-quotas list-aws-default-service-quotas \
 --query 'Quotas[*].
{Adjustable:Adjustable,Name:QuotaName,Value:Value,Code:QuotaCode}' \
 --service-code fargate \
 --output table

Run the following command to view your applied Fargate quotas.

aws service-quotas list-service-quotas \
 --service-code fargate

Managing your Amazon ECS and AWS Fargate service quotas in the AWS Management Console 1517

https://docs.aws.amazon.com/servicequotas/latest/userguide/intro.html
https://docs.aws.amazon.com/servicequotas/latest/userguide/intro.html
https://docs.aws.amazon.com/servicequotas/latest/userguide/request-quota-increase.html

Amazon Elastic Container Service Developer Guide

Note

Amazon ECS doesn't support applied quotas.

For more information about working with service quotas using the AWS CLI, see the Service
Quotas AWS CLI Command Reference. To request a quota increase, see the request-
service-quota-increase command in the AWS CLI Command Reference.

Managing your Amazon ECS and AWS Fargate service quotas in the AWS Management Console 1518

https://docs.aws.amazon.com/cli/latest/reference/service-quotas/index.html#cli-aws-service-quotas
https://docs.aws.amazon.com/cli/latest/reference/service-quotas/index.html#cli-aws-service-quotas
https://docs.aws.amazon.com/cli/latest/reference/service-quotas/request-service-quota-increase.html
https://docs.aws.amazon.com/cli/latest/reference/service-quotas/request-service-quota-increase.html
https://docs.aws.amazon.com/cli/latest/reference/service-quotas/index.html#cli-aws-service-quotas

Amazon Elastic Container Service Developer Guide

Amazon ECS API reference

In addition to the AWS Management Console and the AWS Command Line Interface (AWS CLI),
Amazon ECS also provides an API. You can use the API to automate tasks for managing Amazon
ECS resources.

• For a list of API operations by Amazon ECS resource, see Actions by Amazon ECS resource.

• For an alphabetical list of API operations, see Actions.

• For an alphabetical list of data types, see Data types.

• For a list of common query parameters, see Common parameters.

• For descriptions of the error codes, see Common errors.

For more information about the AWS CLI, see AWS Command Line Interface reference for Amazon
ECS.

1519

https://docs.aws.amazon.com/AmazonECS/latest/APIReference/OperationList-query.html
https://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_Operations.html
https://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_Types.html
https://docs.aws.amazon.com/AmazonECS/latest/APIReference/CommonParameters.html
https://docs.aws.amazon.com/AmazonECS/latest/APIReference/CommonErrors.html
https://docs.aws.amazon.com/cli/latest/reference/ecs/index.html
https://docs.aws.amazon.com/cli/latest/reference/ecs/index.html

Amazon Elastic Container Service Developer Guide

Document history

The following table describes the major updates and new features for the Amazon Elastic Container
Service Developer Guide. We also update the documentation frequently to address the feedback
that you send us.

Change Description Date

gMSA for Linux
Containers on Fargate
support

Amazon ECS supports Active Directory authentication
for Linux containers on Fargate through a special kind
of service account called a group Managed Service
Account (gMSA). For more information, see Using
gMSA for Linux containers on Fargate.

March 5,
2024

CloudWatch metrics
added for Amazon EBS
volumes attached to
tasks

Amazon ECS now publishes CloudWatch metrics for
the Amazon EBS storage utilization for tasks that
have an Amazon EBS volume attached. For more
information, see Amazon ECS CloudWatch metrics.

February 8,
2024

Service Connect TLS You can now use TLS with Service Connect. January
22, 2024

Service Connect TLS
managed policy

Added new AmazonECSInfrastructureRolePolicyFor
ServiceConnectTransportLayerSecurity policy.

January
22, 2024

Service Connect timeout
configuration update

Service Connect timeout configuration can now be
 updated and includes two optional parameters -
idleTimeout and perRequestTimeout .

January
22, 2024

Amazon ECS managed
instance draining

You can use Amazon ECS managed instance draining
to facilitate graceful termination of Amazon ECS
instances.

January
19, 2024

Ubuntu 22 support
added for ECS Anywhere

Support for the Ubuntu 22 operating system was
added to ECS Anywhere. For more information, see
Supported operating systems and system architect
ures.

January
16, 2024

1520

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/fargate-linux-gmsa.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/fargate-linux-gmsa.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/cloudwatch-metrics.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/service-connect-tls.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/security-iam-awsmanpol.html#security-iam-awsmanpol-AmazonECSInfrastructureRolePolicyForServiceConnectTransportLayerSecurity
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/security-iam-awsmanpol.html#security-iam-awsmanpol-AmazonECSInfrastructureRolePolicyForServiceConnectTransportLayerSecurity
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/service-connect-concepts.html#service-connect-concepts-proxy
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/managed-instance-draining.html

Amazon Elastic Container Service Developer Guide

Change Description Date

Add AmazonECS
Infrastru
ctureRole
PolicyForVolumes
IAM policy

The AmazonECSInfrastructureoleP
olicyForVolumes was added. The policy grants
the permissions that are needed by Amazon ECS to
 make AWS API calls to manage Amazon EBS volumes
associated with Amazon ECS workloads.

January
11, 2024

Amazon EBS data
volume for Amazon ECS
task

You can configure 1 Amazon EBS data volume per
task during deployment for attachment to standalo
ne Amazon ECS tasks or tasks managed by an ECS
service. Configuring a volume at deployment allows
you to create resuable task definitions not constra
ined to specific volume types or settings. Amazon
EBS volumes provide a highly available, cost-effe
ctive, durable, high-performance block storage for
data intensive containerized workloads.

January
11, 2024

Amazon ECS classic
console reached end of
life

The Amazon ECS console has reached the end of life. December
4, 2023

Updated policy The AmazonECSServiceRolePolicy managed IAM
policy was updated with new events permissions
and additional autoscaling and autoscaling-
plans permissions.

December
4, 2023

Runtime Monitoring
support

You can use Runtime Monitoring to monitor your
Amazon ECS workloads to identify malicious or
unauthorized behavior. For more information, see
Runtime Monitoring.

November
26, 2023

Updated policy The AmazonECSServiceRolePolicy managed
IAM policy was updated to allow access to the AWS
Cloud Map DiscoverInstancesRevision API.

October 4,
2023

1521

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/security-iam-awsmanpol.html#security-iam-awsmanpol-AmazonECSInfrastructureRolePolicyForVolumes
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/security-iam-awsmanpol.html#security-iam-awsmanpol-AmazonECSInfrastructureRolePolicyForVolumes
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/ebs-volumes.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/security-iam-awsmanpol.html#security-iam-awsmanpol-AmazonECSServiceRolePolicy
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/ecs-guard-duty-integration.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/security-iam-awsmanpol.html#security-iam-awsmanpol-AmazonECSServiceRolePolicy

Amazon Elastic Container Service Developer Guide

Change Description Date

AWS Fargate task
retirement configuration

You can configure the wait period before Fargate
tasks are retired For more information, see AWS
Fargate task maintenance.

September
5, 2023

Additional task definitio
n parameters in AWS
Fargate

AWS Fargate adds support for pidMode and
systemControls in Linux platform version 1.4.0.
For more information, see Task definitions.

August 9,
2023

Amazon ECS console task
definition page redesign

The task definition page in the Amazon ECS console
has been redesigned and contains additional options.
For more information, see Creating a task definition
using the console.

July 26,
2023

Fargate supports lazy
loading with Seekable
OCI indexes

AWS Fargate is introducing Seekable OCI (SOCI)
indexes. With SOCI, containers only spend a few
seconds on the image pull before they can start,
providing time for environment setup and applicati
on instantiation while the image is downloaded in
the background. For more information, see Lazy
loading container images using Seekable OCI (SOCI)
in the Amazon ECS User Guide for AWS Fargate.

July 17,
2023

Improved support for
gMSA on Linux and
Windows

The task definition has a new credentialSpecs
field for gMSA for Linux and Windows. A new
complete tutorial for domainless gMSA on Windows
has been added, see Tutorial: Using Windows
Containers with Domainless gMSA using the AWS
CLI. For more information, see Using gMSAs for
Linux Containers and Using gMSAs for Windows Co
ntainers.

July 14,
2023

1522

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/task-maintenance.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/task-maintenance.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/AWS_Fargate.html#fargate-task-defs
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/create-task-definition.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/create-task-definition.html
https://docs.aws.amazon.com/AmazonECS/latest/userguide/container-considerations.html#fargate-tasks-soci-images
https://docs.aws.amazon.com/AmazonECS/latest/userguide/container-considerations.html#fargate-tasks-soci-images
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/tutorial-gmsa-windows.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/tutorial-gmsa-windows.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/tutorial-gmsa-windows.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/linux-gmsa.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/linux-gmsa.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/windows-gmsa.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/windows-gmsa.html

Amazon Elastic Container Service Developer Guide

Change Description Date

Improved ECS Agent
versions documentation

The documentation for the Amazon ECS Agent
versions has been updated. We recommend that you
use the v20.10.13 version or newer of Docker
with the latest version of the Amazon ECS container
agent. The released versions and changes to the
agent are available on GitHub. For more information,
see Amazon ECS Linux container agent versions.

June 20,
2023

Updated Region availabil
ity for Fargate ARM64
support

The Region availability for Fargate ARM64 support
has been updated. For more information, see
Considerations.

June 19,
2023

Improve cluster auto
scaling documentation

The documentation for Amazon ECS scaling of
Amazon EC2 Auto Scaling has significant improvem
ents in accuracy and readability. For more informati
on, see Amazon ECS cluster auto scaling.

May 4,
2023

Tagging authorization
for resource creation.

Users must have permissions for actions that create
the resource, such as ecsCreateCluster . When
you create a resource and specify tags for that
resource, AWS performs additional authorization to
 verify that there are permissions to create tags. For
more information, see Tagging authorization and
Grant permission to tag resources on creation.

April 18,
2023

Support for gMSA for
Linux containers on EC2

You can use gMSA to authenticate to Active Directory
for Linux containers on EC2. For more information,
see Using gMSAs for Linux Containers.

April 14,
2023

Support for ephemeral
storage for Windows
containers on AWS
Fargate

You can use ephemeral storage for Windows
containers on AWS Fargate. For more information,
see Fargate task storage.

April 14,
2023

1523

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/ecs-agent-versions.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/cluster-auto-scaling.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/ecs-account-settings.html#tag-resources-setting
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/supported-iam-actions-tagging.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/linux-gmsa.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/fargate-task-storage.html

Amazon Elastic Container Service Developer Guide

Change Description Date

AWS Cost Managemen
t support for task-level
CUR data

You can turn on task-level cost and resource usage
in the Cost and Usage Reports. This adds Split Cost
Allocation Data for tasks that run on AWS Fargate
and EC2. For more information, see Task-level Cost
and Usage Reports.

April 12,
2023

Amazon Linux 2023
Amazon ECS-optimized
AMI

You can deploy workloads on the Amazon Linux 2023
Amazon ECS-optimized AMI. For more information,
see Amazon ECS-optimized AMI.

April 10,
2023

AWS Fargate Federal
Information Processing
Standard (FIPS) 140

You can deploy workloads on Amazon ECS on
AWS Fargate in a manner compliant with Federal
Information Processing Standard (FIPS) 140. For
more information, see AWS Fargate Federal Informati
on Processing Standard (FIPS-140).

April 10,
2023

Task definition deletion You can delete a task definition using the Amazon
ECS console, SDK, and AWS CLI. For more informati
on, see Deleting a task definition revision using the
console and Task definitions.

February
24, 2023

AWS Fargate service
recommendations in
Compute Optimizer

AWS Compute Optimizer generates task and
container size recommendations based on the
utilization of running tasks in Amazon ECS services
on AWS Fargate. For more information, see Viewing
recommendations for Amazon ECS services on
 Fargate.

January
27, 2023

Amazon ECS console The new Amazon ECS console is now the default
console. For more information, see New Amazon
ECS console.

January
19, 2023

Updated AmazonECS
_FullAccess IAM
policy

The AmazonECS_FullAccess IAM policy is
updated to include permissions to add tags to load
balancers during creation. For more information, see
AmazonECS_FullAccess.

January 4,
2023

1524

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/delete-task-definition-v2.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/delete-task-definition-v2.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/task_definitions.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/ecs-recommendations.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/ecs-recommendations.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/ecs-recommendations.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/new-console.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/new-console.html

Amazon Elastic Container Service Developer Guide

Change Description Date

Use CloudWatch alarms
to detect Amazon ECS
service deployment
failures

You can configure Amazon ECS to set the deploymen
t to failed when it detects that a specified CloudWatc
h alarm has gone into the ALARM state. For more
information, see the section called “Failure detection
methods”.

December
19, 2022

Support for container
port mapping

You can set a port number range on the container
that's bound to the dynamically mapped host port
range. For more information, see the section called
“Port mappings”.

December
15, 2022

General availability of
Amazon ECS Service
Connect

This feature adds service discovery and service mesh
that is controlled by Amazon ECS service deploymen
ts. For more information, see the section called
“Service Connect”.

November
27, 2022

The new Amazon ECS
console experience
for task definitions is
 updated

The new Amazon ECS console experience now
contains a JSON editor for task defintions. For more
information, see the section called “Creating a task
definition using the console”.

October
27, 2022

The new Amazon ECS
console experience
for task definitions is
 updated

The new Amazon ECS console experience now
contains a JSON editor for task defintions. For more
information, see the section called “Creating a task
definition using the console”.

October
27, 2022

The new Amazon ECS
console experience is
updated

The new Amazon ECS console experience has been
updated with additional service and task parameter
s. For more information, see the section called
“Creating a service” and the section called “Creating a
standalone task”.

October 7,
2022

New information in
task metadata endpoint
version 4

The task metadata endpoint version 4 now invludes
the VPC ID and the service name. For more informati
on, see the section called “Task metadata endpoint
version 4”.

October 7,
2022

1525

Amazon Elastic Container Service Developer Guide

Change Description Date

New task definition sizes Amazon ECS on Fargate now supports the 8 vCPU
and 16 vCPU task sizes. For more information, see
the section called “Task size”.

September
16, 2022

ECS CLI pages archived The ECS CLI documentation has been archived. We
recommend using AWS Copilot for your command
line tool needs. For more information, see Using the
AWS Copilot command line interface.

September
15, 2022

New Fargate quotas Fargate is transitioning from task count-based quotas
to vCPU-based quotas. For more information, see the
section called “AWS Fargate service quotas”.

September
8, 2022

Support for Amazon EC2
Auto Scaling warm pools.

You can now use Amazon EC2 Auto Scaling warm
pools to scale out your applications faster and save
costs. For more information, see Using a warm pool
for your Auto Scaling group.

March 23,
2022

Support for Windows
instances in ECS
Anywhere.

ECS Anywhere now supports Windows instances. For
more information, see External instances (Amazon
ECS Anywhere).

March 3,
2022

Added ECS Exec support
for external instances

ECS Exec is now supported for external instances
. For more information, see Monitor Amazon ECS
containers with ECS Exec.

January
24, 2022

The new Amazon ECS
console experience
updated

The new Amazon ECS console experience supports
creating and deleting a cluster, updating a task
definition, and deregistering a task definition. For
more information, see Creating a cluster for the
Fargate and External launch type using the console,
Deleting a cluster using the console, Updating a task
definition using the console, and Deregistering a task
definition revision using the console.

December
8, 2021

1526

Amazon Elastic Container Service Developer Guide

Change Description Date

The new Amazon ECS
console experience
updated

The new Amazon ECS console experience supports
creating a task definition. For more information, see
Creating a task definition using the console.

November
23, 2021

Amazon ECS supports
the 64-bit ARM architect
ure for Linux.

Amazon ECS supports the 64-bit ARM CPU architect
ure for the Linux operating system. For more
information, see the section called “Working with 64-
bit ARM workloads on Amazon ECS”.

November
23, 2021

Amazon ECS support for
the fluentd log-driver-
buffer-limit option

Amazon ECS supports the fluentd log-driver-
buffer-limit option. For more information, see
Using custom log routing.

November
22, 2021

Amazon ECS-optimized
Linux AMI build script

Amazon ECS has open-sourced the build scripts that
are used to build the Linux variants of the Amazon
ECS-optimized AMI. For more information, see
 Amazon ECS-optimized Linux AMI build script.

November
19, 2021

Container instance
health

Amazon ECS adds support for container instance
health monitoring. For more information, see
Monitor Amazon ECS container instance health.

November
10, 2021

Support for Windows
Amazon ECS Exec

Amazon ECS Exec supports Windows. For more
information, see Monitor Amazon ECS containers with
ECS Exec.

November
1, 2021

Support for Windows
containers on Fargate.

Amazon ECS supports Windows containers on
Fargate. For more information, see Fargate Windows
platform versions.

October
28, 2021

GPU support for external
instances on Amazon ECS
Anywhere

Amazon ECS supports specifying GPU requireme
nts in the task definition for tasks run on external
instances. For more information, see Working with
GPUs on Amazon ECS and Registering an external
instance to a cluster.

October 8,
2021

1527

Amazon Elastic Container Service Developer Guide

Change Description Date

Support of awsvpc
network mode on
Windows

Amazon ECS supports awsvpc network mode
on Windows. For more information, see awsvpc
network mode.

July 15,
2021

General availability of
Bottlerocket

Amazon ECS supports an Amazon ECS-optimized
AMI variant of the Bottlerocket operating system
is provided as an AMI. For more information, see
 Amazon ECS-optimized Bottlerocket AMIs.

June 30,
2021

Amazon ECS scheduled
tasks update

Amazon EventBridge added support for additional
parameters when creating rules that trigger Amazon
ECS scheduled tasks. For more information, see
Amazon ECS scheduled tasks.

June 25,
2021

AWS managed policies
for Amazon ECS

Amazon ECS added documentation of AWS managed
policies for service-linked roles. For more informati
on, see AWS managed policies for Amazon Elastic
Container Service.

June 8,
2021

Getting started with the
AWS CDK

Added a getting started guide for using the AWS CDK
with Amazon ECS. For more information, see Getting
started with Amazon ECS using the AWS CDK.

May 27,
2021

Amazon ECS Anywhere Amazon ECS has added support for registering an
on-premise server or virtual machine (VM) with your
cluster. For more information, see External instances
(Amazon ECS Anywhere).

May 25,
2021

Amazon ECS-optimized
Windows Server 20H2
Core AMI

Amazon ECS has added support for a new Windows
Amazon ECS-optimized AMI variant for Windows
Server 20H2 Core. For more information, see Amazon
ECS-optimized AMI.

April 19,
2021

Amazon ECS Exec Amazon ECS has released a new debugging tool
called ECS Exec. For more information, see Monitor
Amazon ECS containers with ECS Exec.

March 15,
2021

1528

Amazon Elastic Container Service Developer Guide

Change Description Date

VPC endpoint policy
support

Amazon ECS now supports VPC endpoint policies.
For more information, see Creating a VPC endpoint
policy for Amazon ECS.

January
11, 2021

New console experience Amazon ECS has released a new console experienc
e which supports creating or updating a service or
running a standalone task. For more information, see
Creating a service using the console and Creating a
standalone task.

December
28, 2020

Capacity provider update Amazon ECS added support for updating an existing
Auto Scaling group capacity provider.

November
23, 2020

ECS now supporting
Amazon FSx for Windows
File Server for Windows
 tasks

Amazon ECS added support for specifying Amazon
FSx for Windows File Server volumes in Windows
task definitions. For more information, see FSx for
Windows File Server volumes.

November
11, 2020

VPC dual-stack mode
support added

Amazon ECS added support for using a VPC in dual-
stack mode with tasks using the awsvpc network
mode, which provides support for IPv6 addresses.
For more information, see Using a VPC in dual-stack
mode.

November
5, 2020

Task metadata endpoint
v4 update

Amazon ECS added additional metadata to the task
metadata endpoint v4 output. For more information,
see Task metadata endpoint version 4.

November
5, 2020

Support for Local Zones
and Wavelength Zones

Amazon ECS added support for workloads in Local
Zones and Wavelength Zones. For more information,
see Amazon ECS applications in shared subnets, Local
Zones, and Wavelength Zones.

September
4, 2020

1529

Amazon Elastic Container Service Developer Guide

Change Description Date

Amazon ECS variant of
Bottlerocket AMI

Bottlerocket is a Linux-based open source operating
system that is purpose-built by AWS for running
containers. An Amazon ECS-optimized AMI variant
of the Bottlerocket operating system is provided
as an AMI you can use when launching Amazon
ECS container instances. For more information, see
Amazon ECS-optimized Bottlerocket AMIs.

August 31,
2020

Task metadata endpoint
version 4 updated for
network rate stats

The task metadata endpoint version 4 has been
updated to provide network rate stats for Amazon
ECS tasks that use the awsvpc or bridge network
modes hosted on Amazon EC2 instances running
 at least version 1.43.0 of the container agent.
For more information, see Task metadata endpoint
version 4.

August 10,
2020

Fargate usage metrics AWS Fargate provides CloudWatch usage metrics
which provide visibility into your accounts usage of
Fargate On-Demand and Fargate Spot resources. For
more information, see Usage metrics.

August 3,
2020

AWS Copilot version
0.1.0

The new AWS Copilot CLI launched, providing high-
level commands to simplify modeling, creating,
releasing, and managing containerized applications
 on Amazon ECS from a local development environme
nt. For more information, see Using the AWS Copilot
command line interface.

July 9,
2020

AWS Fargate platform
versions deprecation
schedule

The Fargate platform version deprecation schedule
has been added. For more information, see AWS
Fargate Linux platform version deprecation.

July 8,
2020

AWS Fargate Region
expansion

Amazon ECS on AWS Fargate has expanded to the
Europe (Milan) Region.

June 25,
2020

1530

Amazon Elastic Container Service Developer Guide

Change Description Date

Amazon ECS optimized
Amazon Linux 2 (Neuron)
AMI released

Amazon ECS released an Amazon ECS optimized
Amazon Linux 2 (Neuron) AMI for inferential
workloads.

For more information, see Amazon ECS-optimized
AMI.

June 24,
2020

Added support for
deleting capacity
providers

Amazon ECS added support for deleting Auto Scaling
group capacity providers.

June 11,
2020

AWS Fargate platform
version 1.4.0 update

Beginning on May 28, 2020, any new Fargate task
that is launched using platform version 1.4.0 will
have its 20 GB ephemeral storage encrypted with
an AES-256 encryption algorithm using an AWS
Fargate-managed encryption key. For more informati
on, see Fargate task ephemeral storage.

May 28,
2020

Environment variable file
support

Added support for specifying environment variable
files in a task definition, which enables you to bulk
add environment variables to your containers. For
more information, see Use task definition parameters
to pass environment variables to a container.

May 18,
2020

AWS Fargate Region
expansion

AWS Fargate with Amazon ECS has expanded to the
Africa (Cape Town) Region.

May 11,
2020

Service quota updated The following service quota was updated:

•
Clusters per account was raised from 2,000 to
 10,000.

For more information, see Amazon ECS service
quotas.

April 17,
2020

1531

Amazon Elastic Container Service Developer Guide

Change Description Date

AWS Fargate platform
version 1.4.0

AWS Fargate platform version 1.4.0 is released, which
contains the following features:

•
Added support for using Amazon EFS file system
volumes for persistent task storage. For more
information, see Amazon EFS volumes.

•
The ephemeral task storage has been increased
to 20 GB. For more information, see Fargate task
ephemeral storage.

•
The network traffic behavior to and from tasks has
been updated. Starting with platform version 1.4,
all Fargate tasks receive a single elastic network
interface (referred to as the task ENI) and all
network traffic flows through that ENI within yo
ur VPC and will be visible to you through your VPC
flow logs. For more information, see Fargate Task
Networking in the Amazon Elastic Container Service
User Guide for AWS Fargate.

•
Task ENIs add support for jumbo frames. Network
interfaces are configured with a maximum
transmission unit (MTU), which is the size of the
largest payload that fits within a single frame. The
 larger the MTU, the more application payload
can fit within a single frame, which reduces per-
frame overhead and increases efficiency. Supportin
g jumbo frames will reduce overhead when the
network path between your task and the destinati
on supports jumbo frames, such as all traffic that
remains within your VPC.

•
CloudWatch Container Insights will include network
performance metrics for Fargate tasks. For more

April 8,
2020

1532

https://docs.aws.amazon.com/AmazonECS/latest/userguide/fargate-task-networking.html
https://docs.aws.amazon.com/AmazonECS/latest/userguide/fargate-task-networking.html

Amazon Elastic Container Service Developer Guide

Change Description Date

information, see Monitor Amazon ECS containers
using Container Insights.

•
Added support for the task metadata endpoint v4
which provides additional information for your
Fargate tasks, including network stats for the task
and which Availability Zone the task is running in.
For more information, see Task metadata endpoint
version 4.

•
Added support for the SYS_PTRACE Linux
parameter in container definitions. For more
information, see Linux parameters.

•
The Fargate container agent replaces the use of the
Amazon ECS container agent for all Fargate tasks.
This change should not have an effect on how your
tasks run.

•
The container runtime is now using Containerd
instead of Docker. This change should not have
an effect on how your tasks run. You will notice
that some error messages that originate with the
container runtime will change from mentioning
Docker to more general errors.

For more information, see Fargate Linux platform
versions.

Amazon EFS file system
support for task volumes

Amazon EFS file systems can be used as data volumes
for both your Amazon ECS and Fargate tasks. For
more information, see Amazon EFS volumes.

April 8,
2020

1533

Amazon Elastic Container Service Developer Guide

Change Description Date

Amazon ECS Task
Metadata Endpoint
version 4

Beginning with Amazon ECS container agent
version 1.39.0 and Fargate platform version 1.4.0,
an environment variable named ECS_CONTA
INER_METADATA_URI_V4 is injected into
each container in a task. When you query the task
metadata version 4 endpoint, various task metadata
and Docker stats are available to tasks. For more
information, see Task metadata endpoint version 4.

April 8,
2020

Support for specific
versions of Secrets
Manager secrets to be
injected as environment
variables

Added support for specifying sensitive data using
specific versions of Secrets Manager secrets. For
more information, see Passing sensitive data to a con
tainer.

February
24, 2020

Added additional
CodeDeploy deployment
configuration options for
blue/green deployments

The CodeDeploy service added new canary and
linear deployment configurations for the Amazon
ECS deployment type. The ability to define cust
om deployment configurations is also available. For
more information, see Blue/Green deployment with
CodeDeploy.

February 6,
2020

Added the efsVolume
Configuration task
definition parameter

The efsVolumeConfiguration task definition
parameter is in public preview, which makes it easier
to use Amazon EFS file systems with your Amazon
ECS tasks. For more information, see Amazon EFS
volumes.

January
17, 2020

Amazon ECS container
agent logging behavior
updated

The Amazon ECS container agent logging locations
and rotation behavior has been updated. For more
information, see Amazon ECS Container Agent log.

January
13, 2020

Fargate Spot Amazon ECS added support for running tasks using
Fargate Spot. For more information, see AWS Fargate
capacity providers.

December
3, 2019

1534

https://docs.docker.com/engine/api/v1.30/#operation/ContainerStats

Amazon Elastic Container Service Developer Guide

Change Description Date

Cluster Auto Scaling Amazon ECS cluster auto scaling enables you to
have more control over how you scale tasks within
a cluster. For more information, see Amazon ECS
cluster auto scaling.

December
3, 2019

Cluster Capacity
Providers

Amazon ECS cluster capacity providers determine
the infrastructure to use for your tasks. For more
information, see Amazon ECS capacity providers.

December
3, 2019

Creating a cluster on an
AWS Outposts

Amazon ECS now supports creating clusters on an
AWS Outposts. For more information, see the section
called “Amazon Elastic Container Service on AWS
Outposts”.

December
3, 2019

Service Action Events Amazon ECS now sends events to Amazon EventBrid
ge when certain service actions occur. For more
information, see Amazon ECS service action events.

November
25, 2019

Amazon ECS GPU-optim
ized AMI Supports G4
Instances

Amazon ECS added support for the g4 instance type
family when using the Amazon ECS GPU-optimized
AMI. For more information, see Working with GPUs
on Amazon ECS.

October 8,
2019

FireLens for Amazon ECS FireLens for Amazon ECS is in general availability.
FireLens for Amazon ECS enables you to use task
definition parameters to route logs to an AWS
 service or partner destination for log storage and
analytics. For more information, see Using custom
log routing.

September
30, 2019

AWS Fargate region
expansion

AWS Fargate with Amazon ECS has expanded to the
Europe (Paris), Europe (Stockholm), and Middle East
(Bahrain) regions.

September
30, 2019

1535

Amazon Elastic Container Service Developer Guide

Change Description Date

Deep Learning Container
s with Elastic Inference
on Amazon ECS

Amazon ECS supports attaching Amazon Elastic
Inference accelerators to your containers to make
running deep learning inference workloads more
 efficient. For more information, see Deep Learning
Containers with Elastic Inference on Amazon ECS.

September
3, 2019

FireLens for Amazon ECS FireLens for Amazon ECS is in public preview. FireLens
for Amazon ECS enables you to use task definitio
n parameters to route logs to an AWS service or
partner destination for log storage and analytics. For
more information, see Using custom log routing.

August 30,
2019

CloudWatch Container
Insights

CloudWatch Container Insights is now generally
available. It enables you to collect, aggregate, and
summarize metrics and logs from your containerized
applications and microservices. For more information,
see Monitor Amazon ECS containers using Container
Insights.

August 30,
2019

Container Level Swap
Configuration

Amazon ECS added support for controlling the usage
of swap memory space on your Linux container
instances at the container level. Using a per-conta
iner swap configuration, each container within a task
 definition can have swap enabled or disabled, and
for those that have it enabled, the maximum amount
of swap space used can be limited. For more inform
ation, see Managing container swap space.

August 16,
2019

AWS Fargate region
expansion

AWS Fargate with Amazon ECS has expanded to the
Asia Pacific (Hong Kong) Region.

August 6,
2019

Elastic Network Interface
Trunking

Added additional supported Amazon EC2 instance
types for ENI trunking feature. For more information,
see Supported Amazon EC2 instance types.

August 1,
2019

1536

Amazon Elastic Container Service Developer Guide

Change Description Date

Registering Multiple
Target Groups with a
Service

Added support for specifying multiple target groups
in a service definition. For more information, see
Registering multiple target groups with a service.

July 30,
2019

Specifying Sensitive Data
Using Secrets Manager
Secrets

Added tutorial for specifying sensitive data using
Secrets Manager secrets. For more information, see
Specifying Sensitive Data Using Secrets Manager
Secrets.

July 20,
2019

CloudWatch Container
Insights

Amazon ECS has added support for CloudWatc
h Container Insights. For more information, see
Monitor Amazon ECS containers using Container
Insights.

July 9,
2019

Resource-level permissio
ns for Amazon ECS
services and tasksets

Amazon ECS has expanded resource-level permissio
ns support for Amazon ECS services and tasks. For
more information, see How Amazon Elastic Container
Service works with IAM.

June 27,
2019

New Amazon ECS-optim
ized AMI patched for
AWS-2019-005

Amazon ECS has updated the Amazon ECS-optim
ized AMI to address the vulnerabilities described in
AWS-2019-005.

June 17,
2019

Elastic Network Interface
Trunking

Amazon ECS introduces support for launching
container instances using supported Amazon EC2
instance types that have increased elastic network
 interface (ENI) density. Using these instance types
and opting in to the awsvpcTrunking account
setting provides increased ENI density on newly
launched container instances which allows you to
place more tasks on each container instance. For
more information, see Elastic network interface
trunking.

June 6,
2019

1537

https://aws.amazon.com/security/security-bulletins/AWS-2019-005/

Amazon Elastic Container Service Developer Guide

Change Description Date

AWS Fargate platform
version 1.3.0 update

Beginning on May 1, 2019, any new Fargate task
that is launched supports the splunk log driver
in addition to the awslogs log driver. For more
information, see Storage and logging.

May 1,
2019

AWS Fargate platform
version 1.3.0 update

Beginning on May 1, 2019, any new Fargate task
that is launched supports referencing sensitive data
in the log configuration of a container using the
secretOptions container definition parameter.
For more information, see Passing sensitive data to a
container.

May 1,
2019

AWS Fargate platform
version 1.3.0 update

Beginning on April 2, 2019, any new Fargate task
that is launched supports injecting sensitive data
into your containers by storing your sensitive data in
either AWS Secrets Manager secrets or AWS Systems
Manager Parameter Store parameters and then
referencing them in your container definition. For
more information, see Passing sensitive data to a con
tainer.

Apr 2,
2019

AWS Fargate platform
version 1.3.0 update

Beginning on March 27, 2019, any new Fargate task
launched can use additional task definition parameter
s that enable you to define a proxy configuration,
dependencies for container startup and shutdow
n as well as a per-container start and stop timeout
value. For more information, see Proxy configuration,
Container dependency, and Container timeouts.

March 27,
2019

Amazon ECS introduces
the external deployment
type

The external deployment type enables you to use
 any third-party deployment controller for full
control over the deployment process for an Amazon
ECS service. For more information, see External
deployment.

March 27,
2019

1538

Amazon Elastic Container Service Developer Guide

Change Description Date

AWS Deep Learning
Containers on Amazon
ECS

AWS Deep Learning Containers are a set of Docker
images for training and serving models in TensorFlo
w on Amazon Elastic Container Service (Amazon
ECS). Deep Learning Containers provide optimized e
nvironments with TensorFlow, Nvidia CUDA (for GPU
instances), and Intel MKL (for CPU instances) libraries
and are available in Amazon ECR. For more inform
ation, see AWS Deep Learning Containers on Amazon
ECS.

March 27,
2019

Amazon ECS introduce
s enhanced container
dependency managemen
t

Amazon ECS introduces additional task definition
parameters that enable you to define dependenc
ies for container startup and shutdown as well as a
per-container start and stop timeout value. For more
information, see Container dependency.

March 7,
2019

Amazon ECS introduce
s the PutAccoun
tSettingDefault
API

Amazon ECS introduces the PutAccountSettingD
efault API that allows a user to set the default
ARN/ID format opt in status for all the users and
roles on the account. Previously, setting the account's
 default opt in status required the use of the account
owner.

For more information, see Amazon Resource Names
(ARNs) and IDs.

February 8,
2019

Amazon ECS supports
GPU workloads

Amazon ECS introduces support for GPU workloads
by enabling you to create clusters with GPU-enabl
ed container instances. In a task definition you can
specify the number of required GPUs and the ECS
agent will pin the physical GPUs to the container.

For more information, see Working with GPUs on
Amazon ECS.

February 4,
2019

1539

Amazon Elastic Container Service Developer Guide

Change Description Date

Amazon ECS expanded
secrets support

Amazon ECS expanded support for using AWS Secrets
Manager secrets directly in your task definitions to
inject sensitive data into your containers.

For more information, see Passing sensitive data to a
container.

January
21, 2019

Interface VPC Endpoints
(AWS PrivateLink)

Added support for configuring interface VPC
endpoints powered by AWS PrivateLink. This allows
you to create a private connection between your VPC
and Amazon ECS without requiring access over the
Internet, through a NAT instance, a VPN connection,
or AWS Direct Connect.

For more information, see Interface VPC Endpoints
(AWS PrivateLink).

December
26, 2018

1540

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/vpc-endpoints.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/vpc-endpoints.html

Amazon Elastic Container Service Developer Guide

Change Description Date

AWS Fargate platform
version 1.3.0

New AWS Fargate platform version released, which
contains:

•
Added support for using AWS Systems Manager
Parameter Store parameters to inject sensitive
data into your containers.

For more information, see Passing sensitive data to
a container.

•
Added task recycling for Fargate tasks, which is
 the process of refreshing tasks that are a part of an
Amazon ECS service.

For more information, see Task maintenance in
the Amazon Elastic Container Service User Guide for
AWS Fargate.

For more information, see Fargate Linux platform
versions.

December
17, 2018

Service limits updated The following service limits were updated:

•
Number of clusters per Region, per account was
raised from 1000 to 2000.

•
Number of container instances per cluster was
raised from 1000 to 2000.

•
Number of services per cluster was raised from
 500 to 1000.

For more information, see Amazon ECS service
quotas.

December
14, 2018

1541

https://docs.aws.amazon.com/AmazonECS/latest/userguide/task-maintenance.html

Amazon Elastic Container Service Developer Guide

Change Description Date

AWS Fargate region
expansion

AWS Fargate with Amazon ECS has expanded to the
Asia Pacific (Mumbai) and Canada (Central) Regions.

For more information, see Supported Regions for
Amazon ECS on AWS Fargate.

December
7, 2018

Amazon ECS blue/green
deployments

Amazon ECS added support for blue/green
deployments using CodeDeploy. This deployment
type allows you to verify a new deployment of a
service before sending production traffic to it.

For more information, see Blue/Green deployment
with CodeDeploy.

November
27, 2018

Amazon ECS-optimized
Amazon Linux 2 (arm64)
AMI released

Amazon ECS released an Amazon ECS-optimized
Amazon Linux 2 AMIs for arm64 architecture.

For more information, see Amazon ECS-optimized
AMI.

November
26, 2018

Added support for
additional Docker flags in
task definitions

Amazon ECS introduced support for the following
Docker flags in task definitions:

•
IPC mode

•
PID mode

November
16, 2018

Amazon ECS secrets
support

Amazon ECS added support for using AWS Systems
Manager Parameter Store parameters to inject
sensitive data into your containers.

For more information, see Passing sensitive data to a
container.

November
15, 2018

1542

Amazon Elastic Container Service Developer Guide

Change Description Date

Resource tagging Amazon ECS added support for adding metadata tags
to your services, task definitions, tasks, clusters, and
container instances.

For more information, see Amazon ECS resource
tagging.

November
15, 2018

AWS Fargate Region
expansion

AWS Fargate with Amazon ECS has expanded to
the US West (N. California) and Asia Pacific (Seoul)
Regions.

For more information, see Amazon ECS on AWS
Fargate.

November
7, 2018

Service limits updated The following service limits were updated:

•
Number of tasks using the Fargate launch type, per
Region, per account was raised from 20 to 50.

•
Number of public IP addresses for tasks using the
 Fargate launch type was raised from 20 to 50.

For more information, see Amazon ECS service
quotas.

October
31, 2018

AWS Fargate Region
expansion

AWS Fargate with Amazon ECS has expanded to the
Europe (London) Region.

For more information, see Amazon ECS on AWS
Fargate.

October
26, 2018

1543

Amazon Elastic Container Service Developer Guide

Change Description Date

Amazon ECS-optimized
Amazon Linux 2 AMI
Released

Amazon ECS vends Linux AMIs that are optimized
for the service in two variants. The latest and
recommended version is based on x;. Amazon ECS
also vends AMIs that are based on the , but we
recommend that you migrate your workloads to the
Amazon Linux 2 variant, as support for the Amazon
Linux AMI will end no later than June 30, 2020.

For more information, see Amazon ECS-optimized
AMI.

October
18, 2018

Amazon ECS Task
Metadata Endpoint
version 3

Beginning with version 1.21.0 of the Amazon ECS
container agent, the agent injects an environment
variable called ECS_CONTAINER_METADATA_URI
into each container in a task. When you query the
task metadata version 3 endpoint, various task
 metadata and Docker stats are available to tasks that
use the awsvpc network mode at an HTTP endpoint
that is provided by the Amazon ECS container agent.
For more information, see Retrieve Amazon ECS
metadata.

October
18, 2018

Amazon ECS service
discovery Region
expansion

Amazon ECS service discovery has expanded support
to the Canada (Central), South America (São Paulo),
Asia Pacific (Seoul), Asia Pacific (Mumbai), and Europe
(Paris) Regions.

For more information, see Service discovery.

September
27, 2018

1544

https://docs.docker.com/engine/api/v1.30/#operation/ContainerStats

Amazon Elastic Container Service Developer Guide

Change Description Date

Added support for
additional Docker flags in
container definitions

Amazon ECS introduced support for the following
Docker flags in container definitions:

•
System controls

•
Interactive

•
Pseudo terminal

September
17, 2018

Private registry authentic
ation support for
Amazon ECS using AWS
Fargate tasks

Amazon ECS introduced support for Fargate tasks
using private registry authentication using AWS
Secrets Manager. This feature enables you to store
your credentials securely and then reference them in
your container definition, which allows your tasks to
use private images.

For more information, see Private registry authentic
ation for tasks.

September
10, 2018

Amazon ECS service
discovery Region
expansion

Amazon ECS service discovery has expanded support
to the Asia Pacific (Singapore), Asia Pacific (Sydney),
Asia Pacific (Tokyo), EU (Frankfurt), and Europe
(London) Regions.

For more information, see Service discovery.

August 30,
2018

Scheduled tasks with
Fargate tasks support

Amazon ECS introduced support for scheduled tasks
for the Fargate launch type.

For more information, see Amazon ECS scheduled
tasks.

August 28,
2018

1545

Amazon Elastic Container Service Developer Guide

Change Description Date

Private registry authentic
ation using AWS Secrets
Manager support

Amazon ECS introduced support for private registry
authentication using AWS Secrets Manager. This
feature enables you to store your credentials securely
 and then reference them in your container definition,
which allows your tasks to use private images.

For more information, see Private registry authentic
ation for tasks.

August 16,
2018

Docker volume support
added

Amazon ECS introduced support for Docker volumes.

For more information, see Using data volumes in
tasks.

August 9,
2018

AWS Fargate Region
expansion

AWS Fargate with Amazon ECS has expanded to the
Europe (Frankfurt), Asia Pacific (Singapore), and Asia
Pacific (Sydney) Regions.

For more information, see Amazon ECS on AWS
Fargate.

July 19,
2018

1546

Amazon Elastic Container Service Developer Guide

Change Description Date

Amazon ECS service
scheduler strategies
added

Amazon ECS introduced the concept of service
scheduler strategies.

There are two service scheduler strategies available:

• REPLICA—The replica scheduling strategy places
and maintains the desired number of tasks across
your cluster. By default, the service scheduler
spreads tasks across Availability Zones. You can
use task placement strategies and constraints to
customize task placement decisions. For more
information, see Replica.

• DAEMON—The daemon scheduling strategy deploys
exactly one task on each active container instance
that meets all of the task placement constrain
ts that you specify in your cluster. When using
this strategy, there is no need to specify a desired
number of tasks, a task placement strategy, or use
Service Auto Scaling policies. For more information,
see Daemon.

Note

Fargate tasks do not support the DAEMON
scheduling strategy.

For more information, see Service scheduler concepts.

June 12,
2018

1547

Amazon Elastic Container Service Developer Guide

Change Description Date

Amazon ECS container
agent v1.18.0

New version of the Amazon ECS container agent
released, which added the following functionality:

•
Added procedure to manually install the container
agent from a S3 URL on non-Amazon Linux EC2
instance, including a PGP signature method for
verifying the Amazon ECS container agent installat
ion file. For more information, see Installing the
Amazon ECS container agent.

•
Added procedure to manually install the container
agent from a S3 URL on a Windows EC2 instance,
including a PGP signature method for verifying the
Amazon ECS container agent installation file.

•
Added support for customizing the container
agent image pull behavior using the ECS_IMAGE
_PULL_BEHAVIOR parameter. For more
information, see Amazon ECS container agent
configuration.

For more information, see amazon-ecs-agent github.

May 24,
2018

Added Support for
bridge and host
Network Modes When
Configuring Service
Discovery

Added support for configuring service discovery for
Amazon ECS services using task definitions that
specify the bridge or host network modes. For
more information, see Service discovery.

May 22,
2018

1548

https://github.com/aws/amazon-ecs-agent/blob/master/CHANGELOG.md

Amazon Elastic Container Service Developer Guide

Change Description Date

Added support for
additional Amazon ECS-
optimized AMI metadata
 parameters

Added subparameters that allow you to programat
ically retrieve the Amazon ECS-optimized AMI ID,
image name, operating system, container agent versi
on, and runtime version. Query the metadata using
the Systems Manager Parameter Store API. For more
information, see Retrieving Amazon ECS-Optimized
AMI metadata.

May 9,
2018

AWS Fargate Region
expansion

AWS Fargate with Amazon ECS has expanded to
the US East (Ohio), US West (Oregon), and EU West
(Ireland) Regions.

For more information, see Amazon ECS on AWS
Fargate.

April 26,
2018

Amazon ECS-optimized
AMI Metadata Retrieval

Added ability to programatically retrieve Amazon
ECS-optimized AMI metadata using the Systems
Manager Parameter Store API. For more information,
see Retrieving Amazon ECS-Optimized AMI metadata.

April 10,
2018

AWS Fargate platform
version

New AWS Fargate platform version released, which
contains:

•
Added support for Retrieve Amazon ECS metadata.

•
Added support for Health check.

•
Added support for Service discovery

For more information, see Fargate Linux platform
versions.

March 26,
2018

Amazon ECS Service
Discovery

Added integration with Route 53 to support Amazon
ECS service discovery. For more information, see
Service discovery.

March 22,
2018

1549

Amazon Elastic Container Service Developer Guide

Change Description Date

Docker shm-size and
tmpfs support

Added support for the Docker shm-size and tmpfs
parameters in Amazon ECS task definitions.

For more information about the updated ECS CLI
syntax, see Linux parameters.

March 20,
2018

Container Health Checks Added support for Docker health checks in container
definitions. For more information, see Health check.

March 8,
2018

AWS Fargate Added overview for Amazon ECS with AWS Fargate.
For more information, see Amazon ECS on AWS
Fargate.

February
22, 2018

Amazon ECS Task
Metadata Endpoint

Beginning with version 1.17.0 of the Amazon ECS
container agent, various task metadata and Docker
stats are available to tasks that use the awsvpc
network mode at an HTTP endpoint that is provided
by the Amazon ECS container agent. For more
information, see Retrieve Amazon ECS metadata.

February 8,
2018

Amazon ECS Service
Auto Scaling using target
tracking policies

Added support for ECS Service Auto Scaling using
target tracking policies in the Amazon ECS console.
For more information, see Target tracking scaling
policies.

Removed the previous tutorial for step scaling in the
ECS first run wizard. This was replaced with the new
tutorial for target tracking.

February 8,
2018

Docker 17.09 support Added support for Docker 17.09. For more informati
on, see Amazon ECS-optimized AMI.

January
18, 2018

New service scheduler
behavior

Updated information about the behavior for service
tasks that fail to launch. Documented new service
event message that triggers when a service task has
consecutive failures. For more information about this
 updated behavior, see Additional service concepts.

January
11, 2018

1550

https://docs.docker.com/engine/api/v1.30/#operation/ContainerStats
https://docs.docker.com/engine/api/v1.30/#operation/ContainerStats

Amazon Elastic Container Service Developer Guide

Change Description Date

Elastic Load Balancing
health check initializ
ation wait period

Added ability to specify a wait period for health
checks.

December
27, 2017

Task-level CPU and
memory

Added support for specifying CPU and memory at the
task-level in task definitions. For more information,
see TaskDefinition.

December
12, 2017

Task execution role The Amazon ECS container agent makes calls to the
Amazon ECS API actions on your behalf, so it requires
an IAM policy and role for the service to know that
the agent belongs to you. The following actions are
covered by the task execution role:

•
Calls to Amazon ECR to pull the container image

•
Calls to CloudWatch to store container application
logs

For more information, see Amazon ECS task
execution IAM role.

December
7, 2017

Windows containers
support GA

Added support for Windows Server 2016 container
s. For more information, see Amazon ECS-optimized
AMI variants.

December
5, 2017

AWS Fargate GA Added support for launching Amazon ECS services
using the Fargate launch type. For more information,
see Amazon ECS launch types.

November
29, 2017

Amazon ECS name
change

Amazon Elastic Container Service is renamed
(previously Amazon EC2 Container Service).

November
21, 2017

1551

https://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_TaskDefinition.html

Amazon Elastic Container Service Developer Guide

Change Description Date

Task networking The task networking features provided by the awsvpc
network mode give Amazon ECS tasks the same
networking properties as Amazon EC2 instances.
When you use the awsvpc network mode in your
task definitions, every task that is launched from
that task definition gets its own elastic network int
erface, a primary private IP address, and an internal
DNS hostname. The task networking feature simplifie
s container networking and gives you more control
over how containerized applications communicate
with each other and other services within your VPCs.
For more information, see Task networking for tasks
on Amazon EC2 instances.

November
14, 2017

Amazon ECS container
metadata

Amazon ECS containers are now able to access
metadata such as their Docker container or image
ID, networking configuration, or Amazon ARNs.
For more information, see Amazon ECS container
metadata file.

November
2, 2017

Docker 17.06 support Added support for Docker 17.06. For more informati
on, see Amazon ECS-optimized AMI.

November
2, 2017

Support for Docker flags:
device and init

Added support for Docker's device and init features
in task definitions using the LinuxParameters
parameter (devices and initProcessEnabled).
For more information, see LinuxParameters.

November
2, 2017

Support for Docker flags:
cap-add and cap-drop

Added support for Docker's cap-add and cap-drop
features in task definitions using the LinuxPara
meters parameter (capabilities). For more
information, see LinuxParameters.

September
22, 2017

Network Load Balancer
support

Amazon ECS added support for Network Load
Balancers in the Amazon ECS console. For more
 information, see Creating a Network Load Balancer.

September
7, 2017

1552

https://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_LinuxParameters.html
https://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_LinuxParameters.html

Amazon Elastic Container Service Developer Guide

Change Description Date

RunTask overrides Added support for task definition overrides when
running a task. This allows you to run a task while
changing a task definition without the need to create
a new task definition revision. For more information,
see Creating a standalone task.

June 27,
2017

Amazon ECS scheduled
tasks

Added support for scheduling tasks using cron. For
more information, see Amazon ECS scheduled tasks.

June 7,
2017

Spot Instances in the
Amazon ECS console

Added support for creating Spot Fleet container
instances within the Amazon ECS console. For more
information, see Launching an Amazon ECS Linux
container instance.

June 6,
2017

Amazon SNS notificat
ion for new Amazon ECS-
optimized AMI releases

Added ability to subscribe to SNS notifications about
new Amazon ECS-optimized AMI releases.

March 23,
2017

Microservices and batch
jobs

Added documentation for two common use cases for
Amazon ECS: microservices and batch jobs. For more
information, see Related information.

February
2017

Container instance
draining

Added support for container instance draining, which
provides a method for removing container instances
from a cluster. For more information, see Container
instance draining.

January
24, 2017

Docker 1.12 support Added support for Docker 1.12. For more informati
on, see Amazon ECS-optimized AMI.

January
24, 2017

New task placement
strategies

Added support for task placement strategies:
attribute-based placement, bin pack, Availability
Zone spread, and one per host. For more informati
on, see Amazon ECS task placement strategies.

December
29, 2016

1553

Amazon Elastic Container Service Developer Guide

Change Description Date

Windows container
support in beta

Added support for Windows Server 2016 containers
(beta). For more information, see Amazon ECS-optim
ized AMI variants.

December
20, 2016

Blox OSS support Added support for Blox OSS, which allows for custom
task schedulers. For more information, see Schedulin
g your containers on Amazon ECS.

December
1, 2016

Amazon ECS event
stream for CloudWatch
Events

Amazon ECS now sends container instance and task
state changes to CloudWatch Events. For more
information, see Automate responses to Amazon ECS
errors using EventBridge.

November
21, 2016

Amazon ECS container
logging to CloudWatch
Logs

Added support for the awslogs driver to send
container log streams to CloudWatch Logs. For more
information, see Using the awslogs log driver.

September
12, 2016

Amazon ECS services
with Elastic Load
Balancing support for
dynamic ports

Added support for a load balancer to support
multiple instance:port combinations per listener,
which increases flexibility for containers. Now you
can let Docker dynamically define the container's host
port and the ECS scheduler registers the instance:
port with the load balancer. For more information,
see Service load balancing.

August 11,
2016

IAM roles for Amazon
ECS tasks

Added support for associating IAM roles with a task.
This provides finer-grained permissions to container
s as opposed to a single role for an entire container
instance. For more information, see Task IAM role.

July 13,
2016

Docker 1.11 support Added support for Docker 1.11. For more informati
on, see Amazon ECS-optimized AMI.

May 31,
2016

Task automatic scaling Amazon ECS added support for automatically scaling
your tasks run by a service. For more information, see
Service auto scaling.

May 18,
2016

1554

Amazon Elastic Container Service Developer Guide

Change Description Date

Task definition filtering
on task family

Added support for filtering a list of task definitio
n based on the task definition family. For more
information, see ListTaskDefinitions.

May 17,
2016

Docker container and
Amazon ECS agent
logging

Amazon ECS added ability to send ECS agent and
Docker container logs from container instances to
CloudWatch Logs to simplify troubleshooting issues.

May 5,
2016

ECS-optimized AMI now
supports Amazon Linux
2016.03.

The ECS-optimized AMI added support for Amazon
Linux 2016.03. For more information, see Amazon
ECS-optimized AMI.

April 5,
2016

Docker 1.9 support Added support for Docker 1.9. For more information,
see Amazon ECS-optimized AMI.

December
22, 2015

CloudWatch metrics for
cluster CPU and memory
reservation

Amazon ECS added custom CloudWatch metrics for
CPU and memory reservation.

December
22, 2015

New Amazon ECS first-
run experience

The Amazon ECS console first-run experience added
zero-click role creation.

November
23, 2015

Task placement across
Availability Zones

The Amazon ECS service scheduler added support for
task placement across Availability Zones.

October 8,
2015

CloudWatch metrics for
Amazon ECS clusters and
services

Amazon ECS added custom CloudWatch metrics
for CPU and memory utilization for each container
instance, service, and task definition family in a
cluster. These new metrics can be used to scale
container instances in a cluster using Auto Scaling
groups or to create custom CloudWatch alarms.

August 17,
2015

UDP port support Added support for UDP ports in task definitions. July 7,
2015

Environment variable
overrides

Added support for deregisterTaskDefinition and
environment variable overrides for runTask.

June 18,
2015

1555

https://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_ListTaskDefinitions.html

Amazon Elastic Container Service Developer Guide

Change Description Date

Automated Amazon ECS
agent updates

Added ability to see the ECS agent version that is
running on a container instance. Also able to update
the ECS agent from the AWS Management Console,
AWS CLI, and SDK.

June 11,
2015

Amazon ECS service
scheduler and Elastic
Load Balancing integrati
on

Added ability to define a service and associate that
service with an Elastic Load Balancing load balancer.

April 9,
2015

Amazon ECS GA Amazon ECS general availability in the US East (N.
Virginia), US West (Oregon), Asia Pacific (Tokyo), and
Europe (Ireland) Regions.

April 9,
2015

1556

Amazon Elastic Container Service Developer Guide

AWS Glossary

For the latest AWS terminology, see the AWS glossary in the AWS Glossary Reference.

1557

https://docs.aws.amazon.com/glossary/latest/reference/glos-chap.html

	Amazon Elastic Container Service
	Table of Contents
	What is Amazon Elastic Container Service?
	Amazon ECS terminology and components
	Amazon ECS capacity
	Amazon ECS controller
	Amazon ECS provisioning

	Application lifecycle
	Related information

	Getting started with Amazon ECS
	Set up to use Amazon ECS
	Sign up for an AWS account
	Create an administrative user
	Create a virtual private cloud
	Create a security group
	Create the credentials to connect to your EC2 instance
	Install the AWS CLI

	Creating a container image for use on Amazon ECS
	Prerequisites
	Installing Docker on AL2023

	Create a Docker image
	Push your image to Amazon Elastic Container Registry
	Clean up
	Next steps

	Getting started with Linux containers on AWS Fargate
	Prerequisites
	Step 1: Create the cluster
	Step 2: Create a task definition
	Step 3: Create the service
	Step 4: View your service
	Step 5: Clean up

	Getting started with Windows on Amazon EC2
	Prerequisites
	Step 1: Create a cluster
	Step 2: Register a task definition
	Step 3: Create a Service
	Step 4: View your Service
	Step 5: Clean Up

	Amazon ECS developer tools overview
	AWS Management Console
	AWS Command Line Interface
	AWS CloudFormation
	AWS Copilot CLI
	AWS CDK
	AWS App2Container
	Amazon ECS CLI
	Docker Desktop integration with Amazon ECS
	AWS SDKs
	Summary
	Using the AWS Copilot command line interface
	Installing the AWS Copilot CLI
	Installing the AWS Copilot CLI using Homebrew
	Manually installing the AWS Copilot CLI
	(Optional) Verify the manually installed AWS Copilot CLI using PGP signatures

	Next steps

	Getting started with Amazon ECS using AWS Copilot
	Prerequisites
	Deploy your application using one command
	Deploy your application step by step
	Step 1: Configure your credentials
	Step 2: Clone the demo app
	Step 3: Set up your application
	Step 4: Set up an ECS Service in your "demo" Application
	Step 5: Verify your application is running
	Step 6. Learn to create a CI/CD Pipeline
	Step 7: Clean up

	Getting started with Amazon ECS using the AWS CDK
	Step 1: Set up your AWS CDK project
	Step 2: Use the AWS CDK to define a containerized web server on Fargate
	Step 3: Test the web server
	Step 4: Clean up
	Next steps

	Creating Amazon ECS resources with AWS CloudFormation
	Amazon ECS and AWS CloudFormation templates
	Example templates
	Creating Amazon ECS resources using separate stacks
	Amazon ECS task definitions
	Amazon ECS clusters

	Creating multiple Amazon ECS resources in one stack

	Using the AWS CLI to create resources from templates
	Learn more about AWS CloudFormation

	Using the Amazon ECS command line interface
	Installing the Amazon ECS CLI
	Configuring the Amazon ECS CLI
	Using profiles
	Using cluster configurations
	Understanding the order of precedence

	Amazon ECS on AWS Fargate
	Fargate walkthroughs
	Capacity providers
	Task definitions
	Platform versions
	Service load balancing
	Usage metrics
	Fargate Linux platform versions
	Considerations
	1.4.0
	1.3.0
	Migrating to Linux platform version 1.4.0
	AWS Fargate Linux platform version deprecation
	Changelog for deprecated AWS Fargate Linux versions
	1.2.0
	1.1.0
	1.0.0

	Fargate Windows platform versions
	Platform version considerations
	1.0.0

	Windows containers on Fargate considerations
	AWS Fargate task maintenance FAQs
	What is Fargate task maintenance and retirement?
	What is in the task retirement notice?
	Can I change the task retirement wait time?
	Can I get task retirement notifications through other AWS services?
	Can I change a task retirement after it is scheduled?
	Can I control the timing of a task replacement?
	How does Amazon ECS handle tasks that are part of a service?
	Can Amazon ECS automatically handle standalone tasks?

	Supported Regions for Amazon ECS on AWS Fargate
	Linux containers on AWS Fargate
	Windows containers on AWS Fargate

	Architecting your solution for Amazon ECS
	Amazon ECS capacity
	Networking
	Accessing features
	Logging
	Amazon ECS launch types
	Fargate launch type
	EC2 launch type
	External launch type

	Amazon ECS applications in shared subnets, Local Zones, and Wavelength Zones
	Shared subnets
	Local Zones
	Wavelength Zones

	Amazon Elastic Container Service on AWS Outposts
	Prerequisites
	Limitations
	Network Connectivity Considerations
	Creating an Amazon ECS Cluster on an AWS Outposts

	Accessing Amazon ECS features through account settings
	Amazon Resource Names (ARNs) and IDs
	ARN and resource ID format timeline
	AWS Fargate Federal Information Processing Standard (FIPS-140) compliance
	Tagging authorization
	Tagging authorization timeline
	AWS Fargate task retirement wait time
	Runtime Monitoring (Amazon GuardDuty integration)
	Viewing account settings using the console
	Modifying account settings
	Reverting to the default Amazon ECS account settings
	Account setting management using the AWS CLI

	Amazon ECS task definitions
	Task definition states
	Amazon ECS resources that can block a deletion
	Task definition deletion after the blocked resource is removed

	Architecting your application
	Best practices for container images
	Task networking for tasks on Amazon EC2 instances
	awsvpc network mode
	Linux considerations
	Windows considerations
	Using a VPC in dual-stack mode

	Host mode
	Bridge mode

	Task networking for tasks on Fargate
	Fargate task networking considerations
	Using a VPC in dual-stack mode

	Fargate task ephemeral storage
	Fargate Linux container platform versions
	Version 1.4.0 or later
	Version 1.3.0 or earlier

	Fargate Windows container platform versions
	Version 1.0.0 or later

	Using data volumes in tasks
	Amazon EBS volumes
	AWS Regions and Availability Zones for Amazon EBS volumes
	Amazon EBS volume considerations
	Data encryption for Amazon EBS volumes
	Customer managed KMS key policy

	Configuring Amazon EBS volumes at deployment
	Configuring a volume for a standalone task
	Configuring a volume at service creation
	Configuring a volume at service update
	Amazon EBS volume termination policy
	Tagging Amazon EBS volumes

	Amazon EBS volume performance for Fargate on-demand tasks

	Amazon EFS volumes
	Amazon EFS volume considerations
	Using Amazon EFS access points
	Specifying an Amazon EFS file system in your task definition

	FSx for Windows File Server volumes
	FSx for Windows File Server volume considerations
	Specifying an FSx for Windows File Server file system in your task definition
	Credential storage methods

	Docker volumes
	Docker volume considerations
	Specifying a Docker volume in your task definition
	Docker volume examples

	Bind mounts
	Considerations when using bind mounts
	Specifying a bind mount in your task definition
	Bind mount examples

	Managing container swap space
	Container swap considerations

	Fargate considerations
	Task definition parameters
	Operating Systems and architectures
	Task CPU and memory
	Task networking
	Task resource limits
	Logging
	Event logging
	Task lifecycle logging
	Application logging

	Task storage
	Lazy loading container images using Seekable OCI (SOCI)

	EC2 Windows considerations

	Creating a task definition using the console
	JSON validation
	AWS CloudFormation stacks

	Updating a task definition using the console
	JSON validation

	Deregistering a task definition revision using the console
	AWS CloudFormation stacks

	Deleting a task definition revision using the console
	Amazon ECS resources that can block a deletion
	Task definition deletion after the blocked resource is removed

	Task definition use cases
	Working with GPUs on Amazon ECS
	Considerations
	Launch a GPU container instance
	Use a launch template
	Use the AWS CLI

	Specifying GPUs in your task definition
	What to do if you need a P2 instance

	Using video transcoding on Amazon ECS
	Considerations
	Using a VT1 AMI
	Task definition requirements

	Using AWS Neuron on Amazon Linux 2 on Amazon ECS
	Considerations
	Using the Amazon ECS optimized Amazon Linux 2 (Neuron) AMI
	Task definition requirements

	Using deep learning DL1 instances on Amazon ECS
	Considerations
	Using a DL1 AMI
	Task definition requirements

	Working with 64-bit ARM workloads on Amazon ECS
	Considerations
	Specifying the ARM architecture in your task definition
	Interfaces for configuring ARM

	Using the awslogs log driver
	Turning on the awslogs log driver for your containers
	Creating a log group
	Using the auto-configuration feature to create a log group

	Available awslogs log driver options
	Specifying a log configuration in your task definition

	Using custom log routing
	Considerations
	Required IAM permissions
	Fluentd buffer limit
	Using Fluent logger libraries or Log4j over TCP
	AWS for Fluent Bit image
	Amazon ECR Public Gallery
	Linux
	Windows

	Amazon ECR
	Linux
	Windows

	Specifying a FireLens configuration in a task definition
	Specifying a custom configuration file

	Filtering Fluentd and Fluent Bit logs
	Example logging option task definitions
	Forwarding logs to CloudWatch Logs
	Forwarding logs to an Amazon Data Firehose delivery stream
	Forwarding logs to an Amazon OpenSearch Service domain
	Parsing container logs that are serialized JSON
	Forwarding to an external Fluentd or Fluent Bit

	Private registry authentication for tasks
	Use task definition parameters to pass environment variables to a container
	Use a file to pass environment variables to a container
	Considerations
	Required IAM permissions
	Example

	Passing sensitive data to a container
	Retrieve Secrets Manager secrets programatically
	Considerations
	Required IAM permissions
	Create the Secrets Manager secret
	Update your application to programmatically retrieve Secrets Manager secrets

	Retrieve AWS Systems Manager Parameter Store parameters programatically
	Considerations
	Required IAM permissions
	Create the parameter
	Update your application to programmatically retrieve Systems Manager Parameter Store secrets

	Retrieve Secrets Manager secrets through environment variables
	Considerations
	IAM permissions
	Create the AWS Secrets Manager secret
	Add the environment variable to the container definition
	Example container definitions

	Create a task definition that references sensitive data

	Retrieving AWS Systems Manager parameters through environment variables
	Considerations
	IAM permissions
	Create the AWS Systems Manager parameter
	Add the environment variable to the container definition
	Create a task definition that references sensitive data

	Retrieve secrets for logging configuration
	Using Secrets Manager
	Using AWS Systems Manager

	Example task definitions
	Webserver
	splunk log driver
	fluentd log driver
	gelf log driver
	Workloads on external instances
	Amazon ECR image and task definition IAM role
	Entrypoint with command
	Container dependency
	Windows sample task definitions

	Amazon ECS clusters and capacity
	Capacity provider concepts
	Amazon ECS capacity providers
	Capacity provider types
	Capacity provider considerations
	AWS Fargate capacity providers
	Fargate capacity provider considerations
	Handling Fargate Spot termination notices

	Amazon EC2 Auto Scaling group capacity providers
	Auto Scaling group capacity providers considerations
	Using a warm pool for your Auto Scaling group

	Amazon ECS cluster auto scaling
	Considerations
	Cluster auto scaling overview
	Managed termination protection
	Managed scale-out behavior
	Scale-out considerations

	Managed scale-in behavior
	Scale-in considerations

	Update on the way Amazon ECS creates resources for cluster auto scaling
	Capacity providers created before May 27, 2022
	Capacity providers created on or after May 27, 2022

	Turn on cluster auto scaling
	Associate the capacity provider with the cluster
	Turn on managed scaling for the capacity provider

	Turn off cluster auto scaling
	Disassociate the capacity provider with the cluster
	Turn off managed scaling for the capacity provider

	Cluster management
	Creating a cluster for the Fargate and External launch type using the console
	Next steps

	Creating a cluster for the Amazon EC2 launch type using the console
	Auto Scaling group options
	Networking options
	Next steps

	Updating a cluster using the console
	Deleting a cluster using the console
	Creating a capacity provider for a cluster using the console
	Updating a capacity provider for a cluster using the console
	Deleting a capacity provider for a cluster using the console

	Capacity creation
	Spot Instances
	Linux Spot Instance draining
	Windows Spot Instance draining

	Linux instances
	Amazon ECS-optimized AMI
	Retrieving Amazon ECS-Optimized AMI metadata
	Systems Manager Parameter Store parameter format
	Examples
	Retrieving the metadata of the latest stable Amazon ECS-optimized AMI
	Retrieving the image ID of the latest recommended Amazon ECS-optimized Amazon Linux 2023 AMI
	Retrieving the metadata of a specific Amazon ECS-optimized Amazon Linux 2 AMI version
	Retrieving the Amazon ECS-optimized Amazon Linux 2 AMI metadata using the Systems Manager GetParametersByPath API
	Retrieving the image ID of the latest recommended Amazon ECS-optimized Amazon Linux 2 AMI
	Using the latest recommended Amazon ECS-optimized AMI in an AWS CloudFormation template

	Amazon ECS-optimized Linux AMI build script

	Amazon ECS-optimized Bottlerocket AMIs
	Considerations
	Retrieving an Amazon ECS-optimized Bottlerocket AMI
	Retrieving the aws-ecs-2 Bottlerocket AMI variant
	Retrieving the aws-ecs-2-nvidia Bottlerocket AMI variant
	Retrieving the aws-ecs-1 Bottlerocket AMI variant
	Retrieving the aws-ecs-1-nvidia Bottlerocket AMI variant
	Next steps

	Launching a Bottlerocket instance

	Installing the Amazon ECS container agent
	Installing the Amazon ECS container agent on an Amazon Linux 2 EC2 instance
	Installing the Amazon ECS container agent on an Amazon Linux EC2 instance
	Installing the Amazon ECS container agent on a non-Amazon Linux EC2 instance
	Running the Amazon ECS agent with host network mode

	Windows instances
	Amazon ECS-optimized AMI
	Amazon ECS-optimized AMI variants
	Windows container caveats

	Retrieving Amazon ECS-Optimized AMI metadata
	Systems Manager Parameter Store parameter format
	Examples
	Retrieving the metadata of the latest stable Amazon ECS-optimized AMI
	Using the latest recommended Amazon ECS-optimized AMI in an AWS CloudFormation template

	Subscribing to Amazon ECS-optimized AMI update notifications
	Amazon ECS-optimized AMI versions
	Windows Amazon ECS-optimized AMIs versions

	Building your own Amazon ECS-optimized Windows AMI
	Listing the ecs-optimized-ami-windows component versions

	External instances (Amazon ECS Anywhere)
	Supported operating systems and system architectures
	Considerations
	Networking with ECS Anywhere
	Amazon FSx for Windows File Server with ECS Anywhere
	gMSA with ECS Anywhere

	Registering an external instance to a cluster
	Deregistering an external instance
	Updating the AWS Systems Manager Agent and Amazon ECS container agent on an external instance
	Updating the SSM Agent on an external instance
	Updating the Amazon ECS agent on an external instance

	Capacity management
	Amazon ECS Linux container agent
	Lifecycle
	Amazon ECS-optimized AMI
	Using other Linux Operating Systems
	Additional information
	Amazon ECS container agent configuration
	Available Parameters
	Storing container instance configuration in Amazon S3

	Private registry authentication for container instances
	Authentication formats
	Turning on private registries

	Automated task and image cleanup
	Tunable parameters
	Cleanup workflow

	Linux container instance management
	Launching an Amazon ECS Linux container instance
	New Amazon EC2 launch instance wizard
	Initiate instance launch
	Name and tags
	Application and OS Images (Amazon Machine Image)
	Instance type
	Key pair (login)
	Network settings
	Configure storage
	Advanced details

	Old Amazon EC2 launch instance wizard
	Using Spot Instances
	Spot Instance draining

	Container instance draining
	Draining behavior for services
	Draining behavior for standalone tasks
	Draining container instances

	Bootstrapping container instances with Amazon EC2 user data
	Amazon ECS container agent
	Docker daemon

	Starting a task at container instance launch time
	Elastic network interface trunking
	Considerations
	Prerequisites
	Supported Amazon EC2 instance types
	General purpose
	Compute optimized
	Memory optimized
	Storage optimized
	Accelerated computing

	Container instance memory management
	Viewing container instance memory

	Manage container instances remotely using AWS Systems Manager
	Run Command IAM policy
	Using Run Command

	HTTP proxy configuration for Linux container instances
	Updating the Amazon ECS container agent
	Checking the Amazon ECS container agent version
	Updating the Amazon ECS container agent on an Amazon ECS-optimized AMI
	Updating the Amazon ECS container agent with the UpdateContainerAgent API operation

	Manually updating the Amazon ECS container agent (for non-Amazon ECS-Optimized AMIs)

	Windows container instance management
	Launching an Amazon ECS Windows container instance
	New Amazon EC2 launch instance wizard
	Initiate instance launch
	Name and tags
	Application and OS Images (Amazon Machine Image)
	Instance type
	Key pair (login)
	Network settings
	Configure storage
	Advanced details

	Old Amazon EC2 launch instance wizard
	Using Spot Instances
	Spot Instance draining

	Bootstrapping Windows container instances with Amazon EC2 user data
	Default Windows user data
	Windows agent installation user data
	Windows IAM roles for tasks

	Connect to your container Windows instance
	HTTP proxy configuration for Windows container instances
	Deregister an Amazon EC2 backed container instance

	Amazon ECS managed instance draining
	Amazon ECS managed instance draining troubleshooting
	Using Amazon ECS managed instance draining

	Scheduling your containers on Amazon ECS
	Service scheduler
	Standalone tasks
	Scheduled tasks
	Custom schedulers
	Task lifecycle
	Lifecycle states

	Amazon ECS task placement
	EC2 launch type
	Fargate launch type
	Task groups
	Amazon ECS task placement strategies
	Strategy types
	Example strategies
	Distribute tasks evenly across Availability Zones
	Distribute tasks evenly across all instances
	Bin pack tasks based on memory
	Place tasks randomly
	Distribute tasks evenly across Availability Zones and then distributes tasks evenly across the instances within each Availability Zone
	Distribute tasks evenly across Availability Zones and then bin pack tasks based on memory within each Availability Zone
	Distribute tasks evenly across instances and then bin pack tasks based on memory

	Amazon ECS task placement constraints
	Constraint types
	Attributes
	Built-in attributes
	Optional attributes
	Custom attributes

	Adding an attribute
	Filtering by attribute using the console
	Example constraints

	Cluster query language
	Expression syntax
	Example expressions

	Amazon ECS standalone tasks
	Creating a standalone task
	Stopping a standalone task

	Amazon ECS scheduled tasks
	EventBridge Scheduler scheduled tasks
	Create a scheduled task in the EventBridge Scheduler console
	Next steps

	Scheduled tasks using EventBridge rules
	Create a scheduled task using EventBridge rules in the Amazon ECS console
	View your EventBridge scheduled tasks in the console
	Edit an EventBridge scheduled task

	Amazon ECS services
	Service scheduler concepts
	Daemon
	Replica

	Additional service concepts
	Creating a service using the console
	Quickly create a service
	Create a service using defined parameters

	Updating a service using the console
	Updating a blue/green deployment configuration using the console
	Deleting a service using the console
	Amazon ECS Deployment types
	Rolling update
	Failure detection methods
	Deployment circuit breaker
	Failure threshold

	CloudWatch alarms
	Recommended alarms

	Blue/Green deployment with CodeDeploy
	Blue/Green Deployment Considerations
	Blue/green deployment required IAM permissions

	External deployment
	External deployment considerations
	External deployment workflow

	Service load balancing
	Load balancer types
	Application Load Balancer
	Network Load Balancer
	Application Load Balancer and Network Load Balancer considerations

	Creating a load balancer
	Creating an Application Load Balancer
	Configure a target group for routing
	Define your load balancer
	Create a security group rule for your container instances
	Create an Amazon ECS service

	Creating a Network Load Balancer
	Configure a target group for routing
	Define your load balancer
	Create an Amazon ECS service

	Registering multiple target groups with a service
	Multiple target group considerations
	Example service definitions
	Example: Having separate load balancers for internal and external traffic
	Example: Exposing multiple ports from the same container
	Example: Exposing ports from multiple containers

	Service auto scaling
	Considerations
	Service auto scaling and deployments
	Target tracking scaling policies
	Considerations

	Step scaling policies
	Scheduled scaling

	Interconnecting services
	Choosing an interconnection method
	Network mode compatibility table
	Service Connect
	Service Connect concepts
	
	Service Connect terminology
	Cluster configuration
	Service Connect service configuration
	Deployment order
	Networking
	Service Connect proxy

	Service Connect considerations
	Service Connect console experience
	Service Connect pricing
	TLS with Service Connect
	AWS Private Certificate Authority certificates and Service Connect
	Service Connect and AWS Key Management Service
	Enable TLS with Service Connect
	Verify TLS is enabled

	Service Connect parameters
	Using Service Connect in Fargate with the AWS CLI
	Prerequisites
	Step 1: Create the Amazon ECS cluster
	Step 2: Create the Amazon ECS service for the server
	Step 3: Verify that you can connect

	Service discovery
	Service Discovery concepts
	Service discovery considerations
	Service discovery pricing

	Task scale-in protection
	Task scale-in protection mechanisms
	Considerations
	IAM permissions required for task scale-in protection
	Amazon ECS task scale-in protection endpoint
	
	Task scale-in protection request parameters
	Task scale-in protection response parameters

	Amazon ECS service throttle logic

	Amazon ECS resource tagging
	How resources are tagged
	Tagging resources on creation
	Restrictions
	Amazon ECS-managed tags
	Tagging your resources for billing
	Working with tags using the console
	Adding tags on an individual resource during launch
	Managing individual resource tags

	Adding tags to an Amazon EC2 container instance
	Tagging an external container instance

	Working with tags using the CLI or API
	Amazon ECS usage reports
	Task-level Cost and Usage Reports
	Prerequisites
	Setting up Task-level Cost and Usage Reports

	Monitoring Amazon ECS
	Best practices for monitoring Amazon ECS
	Monitoring tools for Amazon ECS
	Automated monitoring tools
	Manual monitoring tools

	Monitor Amazon ECS using CloudWatch
	Considerations
	Available metrics and dimensions for Amazon ECS
	Amazon ECS metrics
	Dimensions for Amazon ECS metrics
	Cluster reservation metrics
	Cluster utilization
	Cluster level CPU and memory utilization
	Cluster level EBS filesystem utilization

	Service utilization
	Service level CPU and memory utilization
	Service level EBS filesystem utilization

	Service RUNNING task count
	Service RUNNING task count in Amazon ECS CloudWatch Container Insights

	AWS Fargate usage metrics
	Viewing Amazon ECS metrics
	Amazon ECS console
	CloudWatch console

	Automate responses to Amazon ECS errors using EventBridge
	Amazon ECS events
	Amazon ECS container instance state change events
	Amazon ECS task state change events
	Amazon ECS service action events
	Service action events with INFO event type
	Service action events with WARN event type
	Service action events with ERROR event type

	Amazon ECS service deployment state change events

	Handling Amazon ECS events
	Example: Handling events in an AWS Lambda function

	Monitor Amazon ECS containers using Container Insights
	Considerations
	Configuring CloudWatch Container Insights for Amazon ECS
	Required permissions for CloudWatch Container Insights to view Amazon ECS lifecycle events
	Permissions required to configure Container Insights to view Amazon ECS lifecycle events
	Permissions required to view Amazon ECS lifecycle events in Container Insights

	Monitor Amazon ECS container instance health
	Related topics

	Identify Amazon ECS optimization opportunities using application trace data
	Required IAM permissions for AWS Distro for OpenTelemetry integration with AWS X-Ray
	Specifying the AWS Distro for OpenTelemetry sidecar for AWS X-Ray integration in your task definition

	Correlate Amazon ECS application performance using application metrics
	Exporting application metrics to Amazon CloudWatch
	Considerations
	Required IAM permissions for AWS Distro for OpenTelemetry integration with Amazon CloudWatch
	Specifying the AWS Distro for OpenTelemetry sidecar in your task definition

	Exporting application metrics to Amazon Managed Service for Prometheus
	Considerations
	Required IAM permissions for AWS Distro for OpenTelemetry integration with Amazon Managed Service for Prometheus
	Specifying the AWS Distro for OpenTelemetry sidecar in your task definition

	Log Amazon ECS API calls using AWS CloudTrail
	Amazon ECS information in CloudTrail
	Understanding Amazon ECS log file entries

	Identify unauthorized behavior using Runtime Monitoring
	How Runtime Monitoring works with Amazon ECS
	Considerations
	Resource utilization
	GuardDuty agent management
	Prerequisites
	Enabling Runtime Monitoring
	Adding Runtime Monitoring to existing Fargate tasks
	Removing Runtime Monitoring from a cluster
	Removing Runtime Monitoring from an account

	Manual Runtime Monitoring management
	Prerequisites
	Enabling Runtime Monitoring
	Configuring Runtime Monitoring for clusters
	Adding Runtime Monitoring to a cluster
	Adding Runtime Monitoring to existing Fargate tasks
	Removing Runtime Monitoring from a cluster

	Updating the GuardDuty security agent on your EC2 container instances
	Removing Runtime Monitoring from an account

	Runtime Monitoring Troubleshooting FAQs
	How can I tell if Runtime Monitoring is active on my account?
	How can I tell if Runtime Monitoring is active on a cluster?
	How can I tell if the GuardDuty security agent is running on a Fargate task?
	How can I tell if the GuardDuty security agent is running on an EC2 container instance?
	What happens when there is no task execution role for a task running on the cluster?
	How can I tell if I have the correct permissions to tag clusters for Runtime Monitoring?
	What happens when there is no connection Amazon ECR?
	How do I address out of memory errors on my Fargate tasks after enabling Runtime Monitoring?

	Monitor Amazon ECS containers with ECS Exec
	Considerations for using ECS Exec
	Prerequisites for using ECS Exec
	Architecture
	Using ECS Exec
	Optional task definition changes
	Turning on ECS Exec for your tasks and services
	Running commands using ECS Exec

	Logging and Auditing using ECS Exec
	Turning on logging and auditing in your tasks and services
	IAM permissions required for Amazon CloudWatch Logs or Amazon S3 Logging
	IAM permissions required for encryption using your own AWS KMS key (KMS key)

	Using IAM policies to limit access to ECS Exec
	Limiting access to the Start Session action

	AWS Compute Optimizer recommendations for Amazon ECS
	Task and container size recommendations for Amazon ECS services on AWS Fargate

	Security in Amazon Elastic Container Service
	Identity and Access Management for Amazon Elastic Container Service
	Audience
	Authenticating with identities
	AWS account root user
	Federated identity
	IAM users and groups
	IAM roles

	Managing access using policies
	Identity-based policies
	Resource-based policies
	Access control lists (ACLs)
	Other policy types
	Multiple policy types

	How Amazon Elastic Container Service works with IAM
	Identity-based policies for Amazon ECS
	Identity-based policy examples for Amazon ECS

	Resource-based policies within Amazon ECS
	Policy actions for Amazon ECS
	Policy resources for Amazon ECS
	Policy condition keys for Amazon ECS
	Access control lists (ACLs) in Amazon ECS
	Attribute-based access control (ABAC) with Amazon ECS
	Using Temporary credentials with Amazon ECS
	Forward access sessions for Amazon ECS
	Service roles for Amazon ECS
	Service-linked roles for Amazon ECS

	Identity-based policy examples for Amazon Elastic Container Service
	Policy best practices
	Allow users to view their own permissions
	Cluster examples
	Container instance examples
	Task definition examples
	Run Task Example
	Start task example
	List and describe task examples
	Create service example
	Update service example
	Describing Amazon ECS services based on tags
	Deny Service Connect Namespace Override Example

	AWS managed policies for Amazon Elastic Container Service
	AmazonECS_FullAccess
	Permissions details

	AmazonECSInfrastructureRolePolicyForVolumes
	Permissions details

	AmazonEC2ContainerServiceforEC2Role
	Considerations
	Permissions details

	AmazonEC2ContainerServiceEventsRole
	AmazonECSTaskExecutionRolePolicy
	Permissions details

	AmazonECSServiceRolePolicy
	Permissions details

	AmazonECSInfrastructureRolePolicyForServiceConnectTransportLayerSecurity
	Permissions details

	AWSApplicationAutoscalingECSServicePolicy
	AWSCodeDeployRoleForECS
	AWSCodeDeployRoleForECSLimited
	Amazon ECS updates to AWS managed policies
	Phased out AWS managed IAM policies for Amazon Elastic Container Service
	AmazonEC2ContainerServiceFullAccess
	AmazonEC2ContainerServiceRole
	AmazonEC2ContainerServiceAutoscaleRole

	Migrating to the AmazonECS_FullAccess managed policy

	Using service-linked roles for Amazon ECS
	Service-linked role permissions for Amazon ECS
	Creating a service-linked role for Amazon ECS
	Editing a service-linked role for Amazon ECS
	Deleting a service-linked role for Amazon ECS
	Supported regions for Amazon ECS service-linked roles

	Permissions required for the Amazon ECS console
	IAM permissions required for creating a cluster
	IAM permissions required for creating a capacity provider
	IAM permissions required for creating a service
	Permissions for creating IAM roles
	IAM permissions required for registering an external instance to a cluster
	IAM permissions required for registering a task definition
	IAM permissions required for creating an EventBridge rule for scheduled tasks

	Amazon ECS task execution IAM role
	Creating the task execution (ecsTaskExecutionRole) role
	Required IAM permissions for private registry authentication
	Required IAM permissions for Amazon ECS secrets
	Optional IAM permissions for Fargate tasks pulling Amazon ECR images over interface endpoints

	Task IAM role
	Considerations for tasks hosted on Amazon EC2 instances
	Using task IAM roles on your Amazon EC2 or external instances
	Creating an IAM role and policy for your tasks
	IAM permissions required for ECS Exec
	Specifying an IAM role for your tasks

	Amazon ECS infrastructure IAM role
	Creating the ECS infrastructure role (ecsInfrastructureRole)
	Granting a user permission to pass the ECS infrastructure role to Amazon ECS

	Additional configuration for Windows IAM roles for tasks
	IAM roles for task container bootstrap script

	Amazon ECS container instance IAM role
	Creating the container instance (ecsInstanceRole) role
	Adding Amazon S3 read-only access to your container instance (ecsInstanceRole) role
	Required permissions for monitoring container instances

	ECS Anywhere IAM role
	Creating the ECS Anywhere (ecsAnywhereRole) role
	Conditional IAM permissions

	Amazon ECS CodeDeploy IAM Role
	Creating the CodeDeploy AWSCodeDeployRoleForECS role
	Adding permissions for blue/green deployments

	Amazon ECS EventBridge IAM Role
	Creating the Amazon ECS EventBridge (ecsEventsRole) role
	Attaching a policy to the ecsEventsRole role

	IAM permissions required for service auto scaling
	Grant permission to tag resources on creation
	Control access to specific tags
	Control access to Amazon ECS resources using resource tags
	Example policies
	Example: Allow users to delete a cluster based on tags

	Troubleshooting Amazon Elastic Container Service identity and access
	I am not authorized to perform an action in Amazon ECS
	I am not authorized to perform iam:PassRole
	I want to allow people outside of my AWS account to access my Amazon ECS resources

	Logging and Monitoring in Amazon Elastic Container Service
	Compliance validation for Amazon Elastic Container Service
	AWS Fargate Federal Information Processing Standard (FIPS-140)
	Considerations
	Use FIPS on Fargate
	Use CloudTrail for auditing

	Infrastructure Security in Amazon Elastic Container Service
	Amazon ECS interface VPC endpoints (AWS PrivateLink)
	Considerations for Amazon ECS VPC endpoints
	Considerations for Amazon ECS VPC endpoints for the Fargate launch type
	Considerations for Amazon ECS VPC endpoints for the EC2 launch type

	Creating the VPC Endpoints for Amazon ECS
	Creating a VPC endpoint policy for Amazon ECS

	Security Best Practices
	AWS Identity and Access Management
	Managing access to Amazon ECS
	Recommendations
	Follow the policy of least privileged access
	Let the cluster resource serve as the administrative boundary
	Isolate end-users from the Amazon ECS API by creating automated pipelines
	Use policy conditions for an added layer of security
	Periodically audit access to the Amazon ECS APIs

	Using IAM roles with Amazon ECS tasks
	Task execution role
	Amazon EC2 container instance role
	Service-linked roles
	Recommendations
	Block access to Amazon EC2 metadata
	Use awsvpc network mode
	Use IAM Access Advisor to refine roles
	Monitor AWS CloudTrail for suspicious activity

	Network security
	Encryption in transit
	Task networking
	Security groups for tasks

	AWS PrivateLink
	Amazon ECS container agent settings
	Recommendations
	Use network encryption where applicable
	Use awsvpc network mode and security groups when you need to control traffic between tasks or between tasks and other network resources
	Create clusters in separate Amazon VPCs when network traffic needs to be strictly isolated
	Configure AWS PrivateLink endpoints when warranted
	Use Amazon VPC Flow Logs to analyze the traffic to and from long-running tasks

	Secrets management
	Recommendations
	Use AWS Secrets Manager or Amazon EC2 Systems Manager Parameter Store for storing secret materials
	Retrieving data from an encrypted Amazon S3 bucket
	Mount the secret to a volume using a sidecar container

	Additional resources

	Using temporary security credentials with API operations
	Compliance and security
	Payment Card Industry Data Security Standards (PCI DSS)
	HIPAA (U.S. Health Insurance Portability and Accountability Act)
	AWS Security Hub
	Amazon GuardDuty Runtime Monitoring
	Recommendations

	Logging and monitoring
	Container logging with Fluent Bit
	Custom log routing - FireLens for Amazon ECS

	AWS Fargate security
	Use AWS KMS to encrypt ephemeral storage
	SYS_PTRACE capability for kernel syscall tracing
	Use Amazon GuardDuty Runtime Monitoring
	AWS Fargate security considerations

	EC2 container instance security considerations
	Task and container security
	Recommendations
	Create minimal or use distroless images
	Scan your images for vulnerabilities
	Remove special permissions from your images
	Create a set of curated images
	Scan application packages and libraries for vulnerabilities
	Perform static code analysis
	Run containers as a non-root user
	Use a read-only root file system
	Configure tasks with CPU and Memory limits (Amazon EC2)
	Use immutable tags with Amazon ECR
	Avoid running containers as privileged (Amazon EC2)
	Remove unnecessary Linux capabilities from the container
	Use a customer managed key (CMK) to encrypt images pushed to Amazon ECR

	Runtime security
	Recommendations
	Use Amazon GuardDuty Runtime Monitoring
	Use a third-party solution for runtime defense

	AMI best practices
	AWS Partners

	Retrieve Amazon ECS metadata
	Amazon ECS container metadata file
	Container metadata file locations
	Turning on container metadata
	Container metadata file format

	Task metadata available for tasks on EC2
	Task metadata endpoint version 4
	Task metadata endpoint version 4 paths
	Task metadata V4 JSON response
	Task metadata v4 examples
	Example container metadata response
	Example task metadata response
	Example task with tags metadata response
	Example task with tags with an error metadata response
	Example container stats response
	Example task stats response

	Task metadata endpoint version 3
	Task Metadata endpoint version 3 paths
	Task metadata v3 JSON response
	Task metadata v3 examples
	Example Container Metadata Response
	Example task metadata response

	Task metadata endpoint version 2
	Enabling task metadata
	Task metadata endpoint paths
	Task metadata JSON response
	Example task metadata response

	Task metadata available for tasks on Fargate
	Task metadata endpoint version 4 for tasks on Fargate
	Fargate task metadata endpoint version 4 paths
	Fargate task metadata v4 JSON response
	Fargate task metadata v4 examples
	Example container metadata response
	Example Fargate task metadata response
	Example task stats response

	Task metadata endpoint version 3 for tasks on Fargate
	Task metadata endpoint paths for tasks on Fargate
	Fargate task metadata v3 JSON response
	Fargate task metadata v3 examples

	Container introspection

	AWS services integrated with Amazon ECS
	Using Amazon ECR with Amazon ECS
	Using Amazon ECR Images with Amazon ECS

	AWS Deep Learning Containers on Amazon ECS
	Deep Learning Containers with Elastic Inference on Amazon ECS

	Using AWS User Notifications with Amazon ECS
	Example

	Tutorials for Amazon ECS
	Using Windows containers on AWS Fargate
	Prerequisites
	Step 1: Create a cluster
	Step 2: Register a Windows task definition
	Step 3: Create a service with your task definition
	Step 4: View your service
	Step 5: Clean Up

	Creating a cluster with a Fargate Linux task using the AWS CLI
	Prerequisites
	Step 1: Create a Cluster
	Step 2: Register a Linux Task Definition
	Step 3: List Task Definitions
	Step 4: Create a Service
	Step 5: List Services
	Step 6: Describe the Running Service
	Step 7: Test
	Testing task deployed using public subnet
	Testing task deployed using private subnet

	Step 8: Clean Up

	Creating a cluster with a Fargate Windows task using the AWS CLI
	Prerequisites
	Step 1: Create a Cluster
	Step 2: Register a Windows Task Definition
	Step 3: List task definitions
	Step 4: Create a service
	Step 5: List services
	Step 6: Describe the Running Service
	Step 7: Clean Up

	Creating a cluster with an EC2 task using the AWS CLI
	Prerequisites
	Step 1: Create a Cluster
	Step 2: Launch an Instance with the Amazon ECS AMI
	Step 3: List Container Instances
	Step 4: Describe your Container Instance
	Step 5: Register a Task Definition
	Step 6: List Task Definitions
	Step 7: Run a Task
	Step 8: List Tasks
	Step 9: Describe the Running Task

	Using cluster auto scaling with the AWS Management Console and the Amazon ECS console
	Prerequisites
	Step 1: Create an Amazon ECS cluster
	Step 2: Register a task definition
	Step 3: Run a task
	Step 4: Verify
	Step 5: Clean up

	Specifying Sensitive Data Using Secrets Manager Secrets
	Prerequisites
	Step 1: Create an Secrets Manager Secret
	Step 2: Update Your Task Execution IAM Role
	Step 3: Create an Amazon ECS Task Definition
	Step 4: Create an Amazon ECS Cluster
	Step 5: Run an Amazon ECS Task
	Step 6: Verify
	Step 7: Clean Up

	Creating a service using Service Discovery
	Prerequisites
	Step 1: Create the Service Discovery resources in AWS Cloud Map
	Step 2: Create the Amazon ECS resources
	Step 3: Verify Service Discovery in AWS Cloud Map
	Step 4: Clean up

	Creating a service using a blue/green deployment
	Prerequisites
	Step 1: Create an Application Load Balancer
	Step 2: Create an Amazon ECS cluster
	Step 3: Register a task definition
	Step 4: Create an Amazon ECS service
	Step 5: Create the AWS CodeDeploy resources
	Step 6: Create and monitor a CodeDeploy deployment
	Step 7: Clean up

	Listening for Amazon ECS CloudWatch Events
	Prerequisite: Set up a test cluster
	Step 1: Create the Lambda function
	Step 2: Register an event rule
	Step 3: Create a task definition
	Step 4: Test your rule

	Sending Amazon Simple Notification Service alerts for task stopped events
	Prerequisite: Set up a test cluster
	Prerequisite: Configure permissions for Amazon SNS
	Step 1: Create and subscribe to an Amazon SNS topic
	Step 2: Register an event rule
	Step 3: Test your rule

	Concatenate multiline or stack-trace log messages
	Required IAM permissions
	Determine when to use the multiline log setting
	Parse and concatenate options
	Example: Use a parser that you create
	Example: Use a Fluent Bit built-in parser

	Using Amazon EFS file systems with Amazon ECS using the console
	Step 1: Create an Amazon ECS cluster
	Step 2: Create a security group for Amazon EC2 instances and the Amazon EFS file system
	Step 3: Create an Amazon EFS file system
	Step 4: Add content to the Amazon EFS file system
	Step 5: Create a task definition
	Step 6: Run a task and view the results

	Using FSx for Windows File Server file systems with Amazon ECS
	Prerequisites for the tutorial
	Step 1: Create IAM access roles
	Step 2: Create Windows Active Directory (AD)
	Step 3: Verify and update your security group
	Step 4: Create an FSx for Windows File Server file system
	Step 5: Create an Amazon ECS cluster
	Step 6: Create an Amazon ECS optimized Amazon EC2 instance
	Step 7: Register a Windows task definition
	Step 8: Run a task and view the results
	Step 9: Clean up

	Deploying Fluent Bit on Amazon ECS for Windows containers
	Prerequisites
	Step 1: Create the IAM access roles
	Step 2: Create an Amazon ECS Windows container instance
	Step 3: Configure Fluent Bit
	Step 4: Register a Windows Fluent Bit task definition which routes the logs to CloudWatch
	Step 5: Run the ecs-windows-fluent-bit task definition as an Amazon ECS service using the daemon scheduling strategy
	Step 6: Register a Windows task definition which generates the logs
	Step 7: Run the windows-app-task task definition
	Step 8: Verify the logs on CloudWatch
	Step 9: Clean up

	Using gMSAs for Windows Containers on Amazon EC2
	Considerations
	Prerequisites
	Setting up gMSA for Windows Containers on Amazon ECS
	Example CredSpec
	Domainless gMSA setup
	Referencing a Credential Spec File in a Task Definition
	Amazon S3 Bucket
	SSM Parameter Store parameter
	Local File

	Using Windows Containers with Domainless gMSA using the AWS CLI
	Prerequisites
	Step 1: Create and configure the gMSA account on Active Directory Domain Services (AD DS)
	Step 2: Upload Credentials to Secrets Manager
	Step 3: Modify your CredSpec JSON to include domainless gMSA information
	Step 4: Upload CredSpec to Amazon S3
	Step 5: (Optional) Create an Amazon ECS cluster
	Step 6: Create an IAM role for container instances
	Step 7: Create a custom task execution role
	Step 8: Create a task role for Amazon ECS Exec
	Step 9: Register a task definition that uses domainless gMSA
	Step 10: Register a Windows container instance to the cluster
	Step 11: Verify the container instance
	Step 12: Run a Windows task
	Step 13: Verify the container has gMSA credentials
	Step 14: Clean up
	Debugging Amazon ECS domainless gMSA for Windows containers

	Using gMSA for Linux Containers on Amazon EC2
	Considerations
	Prerequisites
	Setting up gMSA-capable Linux Containers on Amazon ECS
	Credential specification file

	Using gMSA for Linux containers on Fargate
	Considerations
	Prerequisites
	Setting up gMSA-capable Linux Containers on Amazon ECS
	Credential specification file

	Using EC2 Image Builder to build customized Amazon ECS-optimized AMIs
	Using the image ARN with infrastructure as code (IaC)
	Using the image ARN with AWS CloudFormation
	Using the image ARN with Terraform

	Amazon ECS troubleshooting
	Troubleshooting issues with ECS Exec
	Verify using the Amazon ECS Exec Checker
	Error when calling execute-command

	Troubleshooting Amazon ECS Anywhere issues
	External instance registration issues
	External instance network issues
	Issues running tasks on your external instance

	Checking stopped tasks for errors
	Additional resources

	Stopped tasks error codes
	CannotPullContainer task errors
	Service event messages
	Service event messages
	service (service-name) has reached a steady state.
	service (service-name) was unable to place a task because no container instance met all of its requirements.
	service (service-name) was unable to place a task because no container instance met all of its requirements. The closest matching container-instance container-instance-id has insufficient CPU units available.
	service (service-name) was unable to place a task because no container instance met all of its requirements. The closest matching container-instance container-instance-id encountered error "AGENT".
	service (service-name) (instance instance-id) is unhealthy in (elb elb-name) due to (reason Instance has failed at least the UnhealthyThreshold number of health checks consecutively.)
	service (service-name) is unable to consistently start tasks successfully.
	service (service-name) operations are being throttled. Will try again later.
	service (service-name) was unable to stop or start tasks during a deployment because of the service deployment configuration. Update the minimumHealthyPercent or maximumPercent value and try again.
	service (service-name) was unable to place a task. Reason: You've reached the limit on the number of tasks you can run concurrently
	service (service-name) was unable to place a task. Reason: Internal error.
	service (service-name) was unable to place a task. Reason: The requested CPU configuration is above your limit.
	service (service-name) was unable to place a task. Reason: The requested MEMORY configuration is above your limit.
	service (service-name) was unable to place a task. Reason: You’ve reached the limit on the number of vCPUs you can run concurrently
	service (service-name) was unable to reach steady state because task set (taskSet-ID) was unable to scale in. Reason: The number of protected tasks are more than the desired count of tasks.
	service (service-name) was unable to reach steady state. Reason: No Container Instances were found in your capacity provider.
	service (service-name) was unable to place a task. Reason: Capacity is unavailable at this time. Please try again later or in a different availability zone.
	service (service-name) deployment failed: tasks failed to start.
	service (service-name) Timed out waiting for Amazon ECS Agent to start. Please check logs at /var/log/ecs/ecs-agent.log".

	Invalid CPU or memory value specified
	CannotCreateContainerError: API error (500): devmapper
	Troubleshooting service load balancers
	Troubleshooting Amazon EBS volume attachment
	Checking for volume attachment failure reasons
	Amazon EBS volume attachment failure scenarios

	Troubleshooting service auto scaling
	Using Docker debug output
	Amazon ECS log file locations
	Amazon ECS Container Agent log
	Amazon ECS ecs-init Log
	IAM Roles for Tasks Credential Audit Log

	Amazon ECS logs collector
	Agent introspection diagnostics
	Docker diagnostics
	List Docker containers
	View Docker Logs
	Inspect Docker Containers

	AWS Fargate throttling quotas
	Throttling the RunTask API
	Adjusting rate quotas

	API failure reasons

	Parameter references and resource templates
	Task definition parameters
	Family
	Launch types
	Task role
	Task execution role
	Network mode
	Runtime platform
	Task size
	Container definitions
	Standard container definition parameters
	Name
	Image
	Memory
	Port mappings
	Private Repository Credentials

	Advanced container definition parameters
	Health check
	Environment
	Network settings
	Storage and logging
	Security
	Resource limits
	Docker labels

	Other container definition parameters
	Linux parameters
	Container dependency
	Container timeouts
	System controls
	Interactive
	Pseudo terminal

	Elastic Inference accelerator name
	Task placement constraints
	Proxy configuration
	Volumes
	Tags
	Other task definition parameters
	Ephemeral storage
	IPC mode
	PID mode

	Task definition template
	Service definition parameters
	Launch type
	Capacity provider strategy
	Task definition
	Platform operating system
	Platform version
	Cluster
	Service name
	Scheduling strategy
	Desired count
	Deployment configuration
	Deployment controller
	Task placement
	Tags
	Network configuration
	Client token
	Volume configurations
	Service definition template

	Amazon ECS service quotas
	Amazon ECS service quotas
	AWS Fargate service quotas
	Managing your Amazon ECS and AWS Fargate service quotas in the AWS Management Console

	Amazon ECS API reference
	Document history
	AWS Glossary

