
User Guide

Amazon ElastiCache for Redis

API Version 2015-02-02

Copyright © 2024 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon ElastiCache for Redis User Guide

Amazon ElastiCache for Redis: User Guide

Copyright © 2024 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon's trademarks and trade dress may not be used in connection with any product or service
that is not Amazon's, in any manner that is likely to cause confusion among customers, or in any
manner that disparages or discredits Amazon. All other trademarks not owned by Amazon are
the property of their respective owners, who may or may not be affiliated with, connected to, or
sponsored by Amazon.

Amazon ElastiCache for Redis User Guide

Table of Contents

What is ElastiCache for Redis? .. 1
Serverless caching .. 1
Self designed clusters .. 2
Related services .. 2
How it works ... 3

Cache and caching engines ... 3
Choosing deployment .. 8

Comparing features .. 10
ElastiCache resources .. 14
AWS Regions and Availability Zones .. 16
Use Cases ... 17

In-Memory Data Store ... 17
Gaming Leaderboards (Redis Sorted Sets) .. 19
Messaging (Redis Pub/Sub) .. 20
Recommendation Data (Redis Hashes) ... 23
Other Redis Uses ... 24
ElastiCache Customer Testimonials ... 24

Getting started with ElastiCache for Redis .. 25
Setting up .. 25

Sign up for an AWS account .. 25
Create an administrative user .. 26
Grant programmatic access .. 27
Set up permissions ... 29
Set up EC2 .. 29
Grant network access ... 30
Set up redis-cli .. 31

Create a cache .. 31
Read and write data .. 33
Clean up ... 34
Next Steps ... 35
Getting Started with ElastiCache and AWS SDKs ... 36

Python and ElastiCache ... 36
Tutorial: Configuring a Lambda function to access Amazon ElastiCache in an Amazon VPC 53

Step 1: Create a serverless cache .. 54

API Version 2015-02-02 iii

Amazon ElastiCache for Redis User Guide

Step 2: Create a Lambda function .. 57
Step 3: Test the Lambda function .. 61
Step 4: Clean up (Optional) .. 61

Designing your own ElastiCache cluster .. 63
Components and features .. 63

Nodes ... 64
ElastiCache for Redis shards ... 64
ElastiCache for Redis clusters ... 65
ElastiCache for Redis replication ... 67
AWS Regions and availability zones ... 70
ElastiCache for Redis endpoints .. 71
Parameter groups ... 71
ElastiCache for Redis security .. 72
Subnet groups ... 72
ElastiCache for Redis backups .. 73
Events .. 73

ElastiCache for Redis terminology .. 74
Designing your own cluster ... 77

Setting up ... 77
Step 1: Create a subnet group ... 77
Step 2: Create a cluster ... 80
Step 3: Authorize access to the cluster .. 86
Step 4: Connect to the cluster's node .. 89
Step 5: Deleting a cluster ... 96
Tutorials and videos ... 98
Where do I go from here? .. 104

Managing nodes ... 104
Viewing ElastiCache Node Status ... 105
Redis nodes and shards .. 110
Connecting to nodes .. 113
Supported node types ... 116
Rebooting nodes (cluster mode disabled only) .. 126
Replacing nodes .. 128
Reserved nodes ... 134
Migrating previous generation nodes .. 145

Managing clusters .. 148

API Version 2015-02-02 iv

Amazon ElastiCache for Redis User Guide

Choosing a network type ... 150
Data tiering .. 154
Preparing a cluster ... 160
Creating a cluster ... 167
Viewing a cluster's details .. 177
Modifying a cluster .. 189
Adding nodes to a cluster .. 194
Removing nodes from a cluster .. 202
Canceling pending add or delete node operations ... 210
Deleting a cluster ... 211
Accessing your cluster or replication group .. 214
Finding connection endpoints ... 220
Shards .. 231

Comparing Memcached and Redis self-designed caches .. 236
Online Migration to ElastiCache ... 241

Overview ... 242
Migration steps ... 242
Preparing your source and target Redis nodes for migration ... 243
Testing the data migration ... 244
Starting migration .. 245
Verifying the data migration progress ... 246
Completing the data migration ... 247
Performing online data migration using the Console .. 247

Choosing regions and availability zones ... 249
Locating your nodes .. 251
Supported regions & endpoints .. 251
Using Local zones ... 256
Using Outposts ... 258

Working with ElastiCache ... 262
Snapshot and restore .. 262

Constraints ... 263
Performance impact of backups of self-designed clusters .. 264
Scheduling automatic backups .. 265
Taking manual backups ... 266
Creating a final backup ... 272
Describing backups ... 275

API Version 2015-02-02 v

Amazon ElastiCache for Redis User Guide

Copying backups ... 277
Exporting a backup .. 279
Restoring from a backup .. 287
Deleting a backup .. 289
Tagging backups ... 290
Seeding a self-designed cluster with a backup .. 291

Engine versions and upgrading .. 300
Engine versions and upgrading ... 301
Supported Redis versions ... 306
Redis versions end of life schedule .. 319
How to upgrade engine versions .. 304
Resolving blocked engine upgrades ... 304
Major version behavior and compatibility differences .. 322

Best practices and caching strategies .. 326
Working with Redis .. 326
Best practices with Redis clients ... 365
Best practices when working with self-designed clusters .. 392
Redis best practices ... 404
Caching strategies .. 405

Managing your self-designed cluster ... 410
Auto Scaling ElastiCache for Redis clusters .. 411
Modifying cluster mode .. 456
Replication across AWS Regions using global datastores .. 459
High availability using replication groups ... 485
Managing maintenance ... 570
Configuring engine parameters using parameter groups .. 572

Scaling ElastiCache for Redis .. 669
Scaling ElastiCache Serverless ... 669
Scaling ElastiCache for Redis self-designed clusters ... 671

Getting started with JSON in ElastiCache for Redis ... 739
Redis JSON data type overview .. 739
JSON commands ... 751

Tagging your ElastiCache resources ... 792
Monitoring costs with tags ... 803
Managing tags using the AWS CLI .. 805
Managing tags using the ElastiCache API ... 808

API Version 2015-02-02 vi

Amazon ElastiCache for Redis User Guide

Amazon ElastiCache Well-Architected Lens ... 810
Operational Excellence Pillar ... 811
Security Pillar .. 820
Reliability Pillar ... 826
Performance Efficiency Pillar ... 831
Cost Optimization Pillar .. 842

Troubleshooting ... 848
Connection issues ... 848
Redis client errors ... 849
Troubleshooting high latency in ElastiCache Serverless .. 849
Troubleshooting throttling issues in ElastiCache Serverless ... 851
Related Topics ... 851

Additional troubleshooting steps ... 852
Security groups ... 852
Network ACLs .. 853
Route tables ... 854
DNS resolution .. 855
Identifying issues with server-side diagnostics .. 855
Network connectivity validation ... 861
Network-related limits ... 863
CPU Usage .. 864
Connections being terminated from the server side .. 867
Client-side troubleshooting for Amazon EC2 instances ... 869
Dissecting the time taken to complete a single request .. 870

Security .. 873
Data protection .. 874

Data security in Amazon ElastiCache ... 874
Internetwork traffic privacy ... 944

Amazon VPCs and ElastiCache security ... 944
Amazon ElastiCache API and interface VPC endpoints (AWS PrivateLink) 968
Subnets and subnet groups ... 971

Identity and Access Management .. 979
Audience ... 979
Authenticating with identities ... 980
Managing access using policies ... 983
How Amazon ElastiCache works with IAM .. 986

API Version 2015-02-02 vii

Amazon ElastiCache for Redis User Guide

Identity-based policy examples ... 993
Troubleshooting .. 996
Access control .. 997
Overview of managing access ... 999

Compliance validation .. 1040
More information ... 1041

Resilience ... 1042
Mitigating Failures .. 1042

Infrastructure security .. 1046
Service updates .. 1046

Managing service updates .. 1046
Logging and monitoring ... 1051

Serverless metrics and events .. 1051
Serverless metrics .. 1051
Serverless events .. 1060

Self-designed clusters metrics and events ... 1072
Self-designed cluster metrics .. 1072
Self-designed cluster events .. 1073
Log delivery ... 1081
Monitoring use .. 1094
Amazon SNS event monitoring ... 1124

Logging Amazon ElastiCache API calls with AWS CloudTrail ... 1141
Amazon ElastiCache information in CloudTrail .. 1141
Understanding Amazon ElastiCache log file entries ... 1142

Quotas .. 1146
Reference .. 1147

Using the ElastiCache API .. 1147
Using the query API .. 1147
Available libraries ... 1151
Troubleshooting applications .. 1151

Set up the AWS CLI for ElastiCache .. 1152
Prerequisites .. 1153
Getting the command line tools ... 1154
Setting up the tools .. 1155
Providing credentials for the tools ... 1156
Environmental variables ... 1157

API Version 2015-02-02 viii

Amazon ElastiCache for Redis User Guide

Error messages ... 1158
Notifications .. 1159

General ElastiCache notifications ... 1160
ElastiCache for Redis specific notifications ... 1160

ElastiCache for Redis Documentation history ... 1161
AWS Glossary ... 1191

API Version 2015-02-02 ix

Amazon ElastiCache for Redis User Guide

What is Amazon ElastiCache for Redis?

Welcome to the Amazon ElastiCache for Redis User Guide. Amazon ElastiCache is a web service
that makes it easy to set up, manage, and scale a distributed in-memory data store or cache
environment in the cloud. It provides a high-performance, scalable, and cost-effective caching
solution. At the same time, it helps remove the complexity associated with deploying and
managing a distributed cache environment.

You can operate Amazon ElastiCache in two formats. You can get started with a serverless cache or
choose to design your own cache cluster.

Note

Amazon ElastiCache works with both the Redis and Memcached engines. Use the guide
for the engine that you're interested in. If you're unsure which engine you want to use, see
Comparing Memcached and Redis self-designed caches in this guide.

Serverless caching

ElastiCache for Redis offers serverless caching, which simplifies adding and operating a Redis-
based cache for your application. ElastiCache for Redis Serverless enables you to create a highly
available cache in under a minute, and eliminates the need to provision instances or configure
nodes or clusters. Developers can create a Serverless cache by specifying the cache name using the
ElastiCache console, SDK or CLI.

ElastiCache for Redis Serverless also removes the need to plan and manage caching capacity.
ElastiCache for Redis constantly monitors the cache’s memory, compute, and network bandwidth
used by your application, and scales to meet the needs of your application. ElastiCache for
Redis offers a simple endpoint experience for developers, by abstracting the underlying cache
infrastructure and cluster design. ElastiCache for Redis manages hardware provisioning,
monitoring, node replacements, and software patching automatically and transparently, so that
you can focus on application development, rather than operating the cache.

ElastiCache for Redis Serverless is compatible with Redis 7.1 and above.

Serverless caching API Version 2015-02-02 1

Amazon ElastiCache for Redis User Guide

Designing your own ElastiCache for Redis cluster

If you need fine-grained control over your ElastiCache for Redis cluster, you can choose to design
your own Redis cluster with ElastiCache. ElastiCache enables you to design your cluster, by
choosing the node-type, number of nodes, and node placement across AWS Availability Zones
for your cluster. Since ElastiCache is a fully-managed service, it automatically manages hardware
provisioning, monitoring, node replacements, and software patching for your cluster.

Designing your own ElastiCache for Redis cluster offers greater flexibility and control over your
clusters. For example, you can choose to operate a cluster with single-AZ availability or multi-AZ
availability depending on your needs. You can also choose to run Redis in cluster mode enabling
horizontal scaling, or without cluster mode for just scaling vertically. When designing your own
clusters, you are responsible for choosing the type and number of nodes correctly to ensure that
your cache has enough capacity as required by your application. You can also choose when to apply
new software patches to your Redis cluster.

When designing your own ElastiCache for Redis cluster, you can choose to run Redis 3.0 and above.

Related services

Amazon MemoryDB for Redis

When deciding whether to use ElastiCache for Redis or Amazon MemoryDB for Redis consider the
following comparisons:

• ElastiCache for Redis is a service that is commonly used to cache data from other databases
and data stores using Redis. You should consider ElastiCache for Redis for caching workloads
where you want to accelerate data access with your existing primary database or data store
(microsecond read and write performance). You should also consider ElastiCache for Redis for
use cases where you want to use the Redis data structures and APIs to access data stored in a
primary database or data store.

• Amazon MemoryDB for Redis is a durable, in-memory database for workloads that require an
ultra-fast, primary database. You should consider using MemoryDB if your workload requires
a durable database that provides ultra-fast performance (microsecond read and single-digit
millisecond write latency). MemoryDB may also be a good fit for your use case if you want to
build an application using Redis data structures and APIs with a primary, durable database.
Finally, you should consider using MemoryDB to simplify your application architecture and lower
costs by replacing usage of a database with a cache for durability and performance.

Self designed clusters API Version 2015-02-02 2

https://docs.aws.amazon.com/memorydb/latest/devguide/what-is-memorydb-for-redis.html

Amazon ElastiCache for Redis User Guide

Amazon RDS

ElastiCache for Redis can help you save database costs by storing frequently accessed data in a
cache. If your application has high read throughput requirements, you can achieve high scale,
fast performance, and lowered data storage costs by using ElastiCache, instead of scaling your
underlying database.

How it works

Here you can find an overview of the major components of an ElastiCache for Redis deployment.

Cache and caching engines

A cache is an in-memory data store that you can use to store cached data. Typically, your
application will cache frequently accessed data in a cache to optimize response times. ElastiCache
for Redis offers two deployment options: Serverless and self-designed clusters. See Choosing
between deployment options

Note

Amazon ElastiCache works with both the Redis and Memcached engines. Use the guide
for the engine that you're interested in. If you're unsure which engine you want to use, see
Comparing Memcached and Redis self-designed caches in this guide.

Topics

• How ElastiCache for Redis works

• Pricing dimensions

• ElastiCache for Redis backups

How ElastiCache for Redis works

ElastiCache for Redis Serverless

ElastiCache for Redis Serverless enables you to create a cache without worrying about capacity
planning, hardware management, or cluster design. You simply provide a name for your cache and

How it works API Version 2015-02-02 3

https://docs.aws.amazon.com/rds/

Amazon ElastiCache for Redis User Guide

you receive a single endpoint that you can configure in your Redis client to begin accessing your
cache.

Note

ElastiCache for Redis Serverless runs Redis in cluster mode and is only compatible with
Redis clients that support both TLS and the Redis cluster protocol.

Key Benefits

• No capacity planning: ElastiCache Serverless removes the need for you to plan for capacity.
ElastiCache Serverless continuously monitors the memory, compute, and network bandwidth
utilization of your cache and scales both vertically and horizontally. It allows a cache node to
grow in size, while in parallel initiating a scale-out operation to ensure that the cache can scale
to meet your application requirements at all times.

• Pay-per-use: With ElastiCache Serverless, you pay for the data stored and compute utilized by
your workload on the cache. See Pricing dimensions.

• High-availability: ElastiCache Serverless automatically replicates your data across multiple
Availability Zones (AZ) for high-availability. It automatically monitors the underlying cache nodes
and replaces them in case of failures. It offers a 99.99% availability SLA for every cache.

• Automatic software upgrades: ElastiCache Serverless automatically upgrades your cache to
the latest minor and patch software version without any availability impact to your application.
When a new Redis major version is available, ElastiCache will send you a notification.

• Security: Serverless always encrypts data in transit and at rest. You can use a service managed
key or use your own Customer Managed Key to encrypt data at rest.

The following diagram illustrates how ElastiCache Serverless works.

Cache and caching engines API Version 2015-02-02 4

Amazon ElastiCache for Redis User Guide

When you create a new serverless cache, ElastiCache creates a Virtual Private Cloud (VPC) Endpoint
in the subnets of your choice in your VPC. Your application can connect to the cache through these
VPC Endpoints.

With ElastiCache Serverless you receive a single DNS endpoint that your application connects to.
When you request a new connection to the endpoint, ElastiCache Serverless handles all cache
connections through a proxy layer. The proxy layer helps reduce complex client configuration,
because the client does not need to rediscover cluster topology in case of changes to the
underlying cluster. The proxy layer is a set of proxy nodes that handle connections using a network
load balancer. When your application creates a new cache connection, the request is sent to a proxy
node by the network load balancer. When your application executes cache commands, the proxy
node that is connected to your application executes the requests on a cache node in your cache.
The proxy layer abstracts the cache cluster topology and nodes from your client. This enables
ElastiCache to intelligently load balance, scale out and add new cache nodes, replace cache nodes
when they fail, and update software on the cache nodes, all without availability impact to your
application or having to reset connections.

Self-designed ElastiCache clusters

You can choose to design your own ElastiCache clusters by choosing an cache node family, size, and
number of nodes for your cluster. Designing your own cluster gives you finer grained control and
enables you to choose the number of shards in your cache and the number of nodes (primary and

Cache and caching engines API Version 2015-02-02 5

Amazon ElastiCache for Redis User Guide

replica) in each shard. You can choose to operate Redis in cluster mode by creating a cluster with
multiple shards, or in non-cluster mode with a single shard.

Key Benefits

• Design your own cluster: With ElastiCache, you can design your own cluster and choose where
you want to place your cache nodes. For example, if you have an application that wants to trade-
off high-availability for low latency, you can choose to deploy your cache nodes in a single
AZ. Alternatively, you can design your cluster with nodes across multiple AZs to achieve high-
availability.

• Fine-grained control: When designing our own cluster, you have more control over fine-tuning
the settings on your cache. For example, you can use Redis-specific parameters to configure the
cache engine.

• Scale vertically and horizontally: You can choose to manually scale your cluster by increasing
or decreasing the cache node size when needed. You can also scale horizontally by adding new
shards or adding more replicas to your shards. You can also use the Auto-Scaling feature to
configure scaling based on a schedule or scaling based on metrics like CPU and Memory usage on
the cache.

The following diagram illustrates how ElastiCache self-designed clusters work.

Cache and caching engines API Version 2015-02-02 6

Amazon ElastiCache for Redis User Guide

Pricing dimensions

You can deploy ElastiCache in two deployment options. When deploying ElastiCache Serverless,
you pay for usage for data stored in GB-hours and compute in ElastiCache Processing Units (ECPU).
When choosing to design your own ElastiCache for Redis clusters, you pay per hour of the cache
node usage. See pricing details here.

Data storage

You pay for data stored in ElastiCache Serverless billed in gigabyte-hours (GB-hrs). ElastiCache
Serverless continuously monitors the data stored in your cache, sampling multiple times per
minute, and calculates an hourly average to determine the cache’s data storage usage in GB-hrs.
Each ElastiCache Serverless cache is metered for a minimum of 1 GB of data stored.

ElastiCache Processing Units (ECPUs)

Cache and caching engines API Version 2015-02-02 7

https://aws.amazon.com/elasticache/pricing/

Amazon ElastiCache for Redis User Guide

You pay for the Redis requests your application executes on ElastiCache Serverless in ElastiCache
Processing Units (ECPUs), a unit that includes both vCPU time and data transferred.

• Simple reads and writes require 1 ECPU for each kilobyte (KB) of data transferred. For example, a
GET command that transfers up to 1 KB of data consumes 1 ECPU. A SET request that transfers
3.2 KB of data will consume 3.2 ECPUs.

• Commands that require additional vCPU time will consume proportionally more ECPUs. For
example, if your application uses the Redis HMGET command, and consumes 3 times the vCPU
time as a simple SET/GET command, then it will consume 3 ECPUs.

• Commands that consume more vCPU time and transfer more data consume ECPUs based on
the higher of the two dimensions. For example, if your application uses the HMGET command,
consumes 3 times the vCPU time as a simple SET/GET command, and transfers 3.2 KB of data, it
will consume 3.2 ECPU. Alternatively, if it transfers only 2 KB of data, it will consume 3 ECPUs.

ElastiCache Serverless emits a new metric called ElastiCacheProcessingUnits that helps you
understand the ECPUs consumed by your workload.

Node hours

You can choose to design your own Redis cache cluster by choosing the EC2 node family, size,
number of nodes, and placement across Availability Zones. When self-designing your cluster, you
pay per hour for each cache node.

ElastiCache for Redis backups

A backup is a point-in-time copy of a Redis cache. ElastiCache enables you to take a backup of your
data at any time or setup automatic backups. Backups can be used to restore an existing cache
or to seed a new cache. Backups consist of all the data in a cache plus some metadata. For more
information see Snapshot and restore.

Choosing between deployment options

Amazon ElastiCache has two deployment options:

• Serverless caching

• Self-designed clusters

For a list of supported commands for both, see Supported and restricted Redis commands.

Choosing deployment API Version 2015-02-02 8

https://redis.io/commands/hmget/

Amazon ElastiCache for Redis User Guide

Serverless caching

Amazon ElastiCache Serverless simplifies cache creation and instantly scales to support customers'
most demanding applications. With ElastiCache Serverless, you can create a highly-available and
scalable cache in less than a minute, eliminating the need to provision, plan for, and manage
cache cluster capacity. ElastiCache Serverless automatically stores data redundantly across three
Availability Zones and provides a 99.99% availability Service Level Agreement (SLA). Backups are
cross-compatible, and can be exported to and restored from Self-designed clusters.

Self-designed clusters

If you need fine-grained control over your ElastiCache for Redis cluster, you can choose to design
your own Redis cluster with ElastiCache. ElastiCache enables you to operate a node-based cluster,
by choosing the node-type, number of nodes, and node placement across AWS Availability
Zones for your cluster. Since ElastiCache is a fully-managed service, it helps manage hardware
provisioning, monitoring, node replacements, and software patching for your cluster. Self-designed
clusters can be designed to provide an up to 99.99% availibility SLA. Backups are cross-compatible,
and can be exported to and restored from Serveless caches.

Choosing between deployment options

Choose serverless caching if:

• You are creating a cache for workloads that are either new or difficult to predict.

• You have unpredictable application traffic.

• You want the easiest way to get started with a cache.

Choose to design your own ElastiCache cluster if:

• You are already running ElastiCache Serverless and want finer grained control over the type of
node running Redis, number of nodes, and placement of nodes.

• You expect your application traffic to be relatively predictable, and you want fine-grained control
over performance, availability, and cost.

• You can forecast your capacity requirements to control costs.

Choosing deployment API Version 2015-02-02 9

Amazon ElastiCache for Redis User Guide

Comparing serverless caching and self-designed clusters

Feature Serverless caching Self-designed clusters

Cache setup Create a cache with just a
name in under a minute

Provides fine-grained control
over cache cluster design.
User can choose node-
type, number of nodes,
and placement across AWS
availability zones

Supported ElastiCache for
Redis version

ElastiCache for Redis version
7.1 and higher

ElastiCache for Redis version
4.0 and higher

Cluster Mode Operates Redis in cluster
mode enabled only.
Redis clients must support
cluster mode enabled
to connect to ElastiCache
Serverless.

Can be configured to operate
in cluster mode enabled or
cluster mode disabled.

Scaling Automatically scales both
vertically and horizonta
lly without any capacity
management.

Provides control over scaling,
while also requiring monitorin
g to make sure current
capacity is adequately
meeting demand.

You can choose to scale
vertically, by increasing or
decreasing the cache node
size when needed. You can
also scale horizontally, by
adding new shards or adding
more replicas to your shards.

With the Auto-Scaling feature
you can also configure scaling
based on a schedule, or scale

Comparing features API Version 2015-02-02 10

Amazon ElastiCache for Redis User Guide

Feature Serverless caching Self-designed clusters

based on metrics like CPU and
Memory usage on the cache.

Client connection Clients connect to a single
endpoint. This enables the
underlying cache node
topology (scaling, replaceme
nts, and upgrades) to change
without disconnecting the
client.

Clients connect to each
individual cache node. If a
node is replaced, the client
rediscovers cluster topology
and re-establishes connectio
ns.

Configurability No fine-grained configura
tion available. Customers
can configure basic settings
including subnets which can
access the cache, whether
automatic backups are turned
on or off, and maximum cache
usage limits.

Self-designed clusters provide
fine-grained configuration
options. Customers can use
parameter groups for fine-
grained control. For a table
of these parameter values by
node type, see Redis node-
type specific parameters.

Multi-AZ Data is replicated asynchron
ously across multiple Availabil
ity Zones for higher availabil
ity and improved read latency.

Provides an option to
design the cluster in a single
Availability Zone or across
multiple Availability Zones
(AZs). For Multi-AZ clusters,
data is replicated asynchron
ously across multiple Availabil
ity Zones for higher availabil
ity and improved read latency.

Encryption at rest Always enabled. Customers
can use an AWS managed key
or a customer managed key in
AWS KMS.

Option to enable or disable
encryption at rest. When
enabled, customers can use
an AWS managed key or a
customer managed key in
AWS KMS.

Comparing features API Version 2015-02-02 11

Amazon ElastiCache for Redis User Guide

Feature Serverless caching Self-designed clusters

Encryption in transit (TLS) Always enabled. Clients must
support TLS connectivity.

Option to enable or disable.

Backups Supports automatic and
manual backups of caches
with no performance impact.

Backups are cross-compatible,
and can be restored into an
ElastiCache Serverless cache
or a self-designed cluster.

Supports automatic and
manual backups. Clusters may
see some performance impact
depending on the available
reserved memory. For more
information, see Managing
Reserved Memory.

Backups are cross-compatible,
and can be restored into an
ElastiCache Serverless cache
or a self-designed cluster.

Monitoring Support cache level metrics
including cache hit rate,
cache miss rate, data size, and
ECPUs consumed.

ElastiCache Serverless sends
events using EventBridge
when significant events
happen on your cache.
You can choose to monitor,
ingest, transform, and act
on ElastiCache events using
Amazon EventBridge. For
more information, see
Serverless cache events.

ElastiCache self-designed
clusters emit metrics at each
node level, including both
host-level metrics and cache
metrics.

Self-designed clusters emit
SNS notifications for significa
nt events. See Metrics for
Redis.

Comparing features API Version 2015-02-02 12

Amazon ElastiCache for Redis User Guide

Feature Serverless caching Self-designed clusters

Availability 99.99% availability Service
Level Agreement (SLA)

Self-designed clusters can
be designed to achieve up to
99.99% availability Service
Level Agreement (SLA),
depending on the configura
tion.

Software upgrades and
patching

Automatically upgrades
cache software to the
latest minor and patch
version, without application
impact. Customers receive a
notification for major version
upgrades, and customers can
upgrade to the latest major
version when they want.

Self-designed clusters offer
customer-enabled self-serv
ice for minor and patching
version upgrades, as well
as major version upgrades.
 Managed updates are
automatically applied during
customer defined maintenan
ce windows. Customers can
also choose to apply a minor
or patch version upgrade on-
demand.

Global Data Store Not supported Supports Global Data Store,
which enables cross region
replication with single region
writes and multi-region reads

Comparing features API Version 2015-02-02 13

https://aws.amazon.com/elasticache/sla/
https://aws.amazon.com/elasticache/sla/
https://aws.amazon.com/elasticache/sla/
https://aws.amazon.com/elasticache/sla/

Amazon ElastiCache for Redis User Guide

Feature Serverless caching Self-designed clusters

Data Tiering Not supported Clusters that are designed
using nodes from the r6gd
family have their data tiered
between memory and local
SSD (solid state drives)
storage. Data tiering provides
a price-performance option
for Redis workloads by
utilizing lower-cost solid state
drives (SSDs) in each cluster
node, in addition to storing
data in memory.

Pricing model Pay-per-use, based on data
stored in GB-hours and
requests in ElastiCache
Processing Units (ECPU). See
pricing details here.

Pay-per-hour, based on cache
node usage. See pricing
details here.

Related topics:

• Designing and managing your own ElastiCache cluster

Amazon ElastiCache resources

We recommend that you begin by reading the following sections, and refer to them as you need
them:

• Service highlights and pricing – The product detail page provides a general product overview of
ElastiCache, service highlights, and pricing.

• ElastiCache videos – The ElastiCache Videos section has videos that introduce you to Amazon
ElastiCache. The videos cover common use cases for ElastiCache and demo how to use
ElastiCache to reduce latency and improve throughput for your applications.

ElastiCache resources API Version 2015-02-02 14

https://aws.amazon.com/elasticache/pricing/
https://aws.amazon.com/elasticache/pricing/
https://aws.amazon.com/elasticache/

Amazon ElastiCache for Redis User Guide

• Getting started – The Getting started with Amazon ElastiCache for Redis section includes
information on creating a cache cluster. It also includes how to authorize access to the cache
cluster, connect to a cache node, and delete the cache cluster.

• Performance at scale – The Performance at scale with Amazon ElastiCache whitepaper
addresses caching strategies that help your application to perform well at scale.

If you want to use the AWS Command Line Interface (AWS CLI), you can use these documents to
help you get started:

• AWS Command Line Interface documentation

This section provides information on downloading the AWS CLI, getting the AWS CLI working on
your system, and providing your AWS credentials.

• AWS CLI documentation for ElastiCache

This separate document covers all of the AWS CLI for ElastiCache commands, including syntax
and examples.

You can write application programs to use the ElastiCache API with a variety of popular
programming languages. Here are some resources:

• Tools for Amazon Web Services

Amazon Web Services provides a number of software development kits (SDKs) with support
for ElastiCache. You can code for ElastiCache using Java, .NET, PHP, Ruby, and other languages.
These SDKs can greatly simplify your application development by formatting your requests to
ElastiCache, parsing responses, and providing retry logic and error handling.

• Using the ElastiCache API

If you don't want to use the AWS SDKs, you can interact with ElastiCache directly using the
Query API. You can find troubleshooting tips and information on creating and authenticating
requests and handling responses in this section.

• Amazon ElastiCache API Reference

This separate document covers all of the ElastiCache API operations, including syntax and
examples.

ElastiCache resources API Version 2015-02-02 15

https://d0.awsstatic.com/whitepapers/performance-at-scale-with-amazon-elasticache.pdf
https://docs.aws.amazon.com/cli/
https://docs.aws.amazon.com/cli/latest/reference/elasticache/index.html
https://aws.amazon.com/tools/
https://docs.aws.amazon.com/AmazonElastiCache/latest/APIReference/

Amazon ElastiCache for Redis User Guide

AWS Regions and Availability Zones

Amazon cloud computing resources are housed in highly available data center facilities in different
areas of the world (for example, North America, Europe, or Asia). Each data center location is called
an AWS Region.

Each AWS Region contains multiple distinct locations called Availability Zones, or AZs. Each
Availability Zone is engineered to be isolated from failures in other Availability Zones. Each is
engineered to provide inexpensive, low-latency network connectivity to other Availability Zones in
the same AWS Region. By launching instances in separate Availability Zones, you can protect your
applications from the failure of a single location. For more information, see Choosing regions and
availability zones.

You can create your cluster in several Availability Zones, an option called a Multi-AZ deployment.
When you choose this option, Amazon automatically provisions and maintains a secondary standby
node instance in a different Availability Zone. Your primary node instance is asynchronously
replicated across Availability Zones to the secondary instance. This approach helps provide data
redundancy and failover support, eliminate I/O freezes, and minimize latency spikes during system
backups. For more information, see Minimizing downtime in ElastiCache for Redis with Multi-AZ.

AWS Regions and Availability Zones API Version 2015-02-02 16

https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/RegionsAndAZs.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/RegionsAndAZs.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/AutoFailover.html

Amazon ElastiCache for Redis User Guide

Common ElastiCache Use Cases and How ElastiCache Can Help

Whether serving the latest news, a top-10 leaderboard, a product catalog, or selling tickets to an
event, speed is the name of the game. The success of your website and business is greatly affected
by the speed at which you deliver content.

In "For Impatient Web Users, an Eye Blink Is Just Too Long to Wait," the New York Times noted
that users can register a 250-millisecond (1/4 second) difference between competing sites. Users
tend to opt out of the slower site in favor of the faster site. Tests done at Amazon, cited in How
Webpage Load Time Is Related to Visitor Loss, revealed that for every 100-ms (1/10 second)
increase in load time, sales decrease 1 percent.

If someone wants data, you can deliver that data much faster if it's cached. That's true whether it's
for a webpage or a report that drives business decisions. Can your business afford to not cache your
webpages so as to deliver them with the shortest latency possible?

It might seem intuitively obvious that you want to cache your most heavily requested items. But
why not cache your less frequently requested items? Even the most optimized database query or
remote API call is noticeably slower than retrieving a flat key from an in-memory cache. Noticeably
slower tends to send customers elsewhere.

The following examples illustrate some of the ways using ElastiCache can improve overall
performance of your application.

Topics

• In-Memory Data Store

• Gaming Leaderboards (Redis Sorted Sets)

• Messaging (Redis Pub/Sub)

• Recommendation Data (Redis Hashes)

• Other Redis Uses

• ElastiCache Customer Testimonials

In-Memory Data Store

The primary purpose of an in-memory key-value store is to provide ultrafast (submillisecond
latency) and inexpensive access to copies of data. Most data stores have areas of data that are

Use Cases API Version 2015-02-02 17

http://www.nytimes.com/2012/03/01/technology/impatient-web-users-flee-slow-loading-sites.html?pagewanted=all&_r=0
http://pearanalytics.com/blog/2009/how-webpage-load-time-related-to-visitor-loss/
http://pearanalytics.com/blog/2009/how-webpage-load-time-related-to-visitor-loss/

Amazon ElastiCache for Redis User Guide

frequently accessed but seldom updated. Additionally, querying a database is always slower and
more expensive than locating a key in a key-value pair cache. Some database queries are especially
expensive to perform. An example is queries that involve joins across multiple tables or queries
with intensive calculations. By caching such query results, you pay the price of the query only once.
Then you can quickly retrieve the data multiple times without having to re-execute the query.

What Should I Cache?

When deciding what data to cache, consider these factors:

Speed and expense – It's always slower and more expensive to get data from a database than
from a cache. Some database queries are inherently slower and more expensive than others. For
example, queries that perform joins on multiple tables are much slower and more expensive than
simple, single table queries. If the interesting data requires a slow and expensive query to get, it's a
candidate for caching. If getting the data requires a relatively quick and simple query, it might still
be a candidate for caching, depending on other factors.

Data and access pattern – Determining what to cache also involves understanding the data itself
and its access patterns. For example, it doesn't make sense to cache data that changes quickly or
is seldom accessed. For caching to provide a real benefit, the data should be relatively static and
frequently accessed. An example is a personal profile on a social media site. On the other hand,
you don't want to cache data if caching it provides no speed or cost advantage. For example, it
doesn't make sense to cache webpages that return search results because the queries and results
are usually unique.

Staleness – By definition, cached data is stale data. Even if in certain circumstances it isn't stale,
it should always be considered and treated as stale. To tell whether your data is a candidate for
caching, determine your application's tolerance for stale data.

Your application might be able to tolerate stale data in one context, but not another. For example,
suppose that your site serves a publicly traded stock price. Your customers might accept some
staleness with a disclaimer that prices might be n minutes delayed. But if you serve that stock price
to a broker making a sale or purchase, you want real-time data.

Consider caching your data if the following is true:

• Your data is slow or expensive to get when compared to cache retrieval.

• Users access your data often.

• Your data stays relatively the same, or if it changes quickly staleness is not a large issue.

In-Memory Data Store API Version 2015-02-02 18

Amazon ElastiCache for Redis User Guide

For more information, see the following:

• Caching Strategies in the ElastiCache for Redis User Guide

Gaming Leaderboards (Redis Sorted Sets)

Redis sorted sets move the computational complexity of leaderboards from your application to
your Redis cluster.

Leaderboards, such as the top 10 scores for a game, are computationally complex. This is especially
true when there is a large number of concurrent players and continually changing scores. Redis
sorted sets guarantee both uniqueness and element ordering. Using Redis sorted sets, each time
a new element is added to the sorted set it's reranked in real time. It's then added to the set in its
correct numeric order.

In the following diagram, you can see how an ElastiCache for Redis gaming leaderboard works.

Example - Redis Leaderboard

In this example, four gamers and their scores are entered into a sorted list using ZADD. The
command ZREVRANGEBYSCORE lists the players by their score, high to low. Next, ZADD is used to
update June's score by overwriting the existing entry. Finally, ZREVRANGEBYSCORE lists the players
by their score, high to low. The list shows that June has moved up in the rankings.

Gaming Leaderboards (Redis Sorted Sets) API Version 2015-02-02 19

https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/Strategies.html

Amazon ElastiCache for Redis User Guide

ZADD leaderboard 132 Robert
ZADD leaderboard 231 Sandra
ZADD leaderboard 32 June
ZADD leaderboard 381 Adam

ZREVRANGEBYSCORE leaderboard +inf -inf
1) Adam
2) Sandra
3) Robert
4) June

ZADD leaderboard 232 June

ZREVRANGEBYSCORE leaderboard +inf -inf
1) Adam
2) June
3) Sandra
4) Robert

The following command tells June where she ranks among all the players. Because ranking is zero-
based, ZREVRANK returns a 1 for June, who is in second position.

ZREVRANK leaderboard June
1

For more information, see the Redis documentation about sorted sets.

Messaging (Redis Pub/Sub)

When you send an email message, you send it to one or more specified recipients. In the pub/
sub paradigm, you send a message to a specific channel not knowing who, if anyone, receives
it. The people who get the message are those who are subscribed to the channel. For example,
suppose that you subscribe to the news.sports.golf channel. You and all others subscribed to the
news.sports.golf channel get any messages published to news.sports.golf.

Redis pub/sub functionality has no relation to any key space. Therefore, it doesn't interfere on any
level. In the following diagram, you can find an illustration of ElastiCache for Redis messaging.

Messaging (Redis Pub/Sub) API Version 2015-02-02 20

http://redis.io/commands#sorted_set

Amazon ElastiCache for Redis User Guide

Subscribing

To receive messages on a channel, you subscribe to the channel. You can subscribe to a single
channel, multiple specified channels, or all channels that match a pattern. To cancel a subscription,
you unsubscribe from the channel specified when you subscribed to it. Or, if you subscribed using
pattern matching, you unsubscribe using the same pattern that you used before.

Example - Subscription to a Single Channel

To subscribe to a single channel, use the SUBSCRIBE command specifying the channel you want to
subscribe to. In the following example, a client subscribes to the news.sports.golf channel.

SUBSCRIBE news.sports.golf

After a while, the client cancels their subscription to the channel using the UNSUBSCRIBE
command specifying the channel to unsubscribe from.

UNSUBSCRIBE news.sports.golf

Messaging (Redis Pub/Sub) API Version 2015-02-02 21

Amazon ElastiCache for Redis User Guide

Example - Subscriptions to Multiple Specified Channels

To subscribe to multiple specific channels, list the channels with the SUBSCRIBE command.
In the following example, a client subscribes to the news.sports.golf, news.sports.soccer, and
news.sports.skiing channels.

SUBSCRIBE news.sports.golf news.sports.soccer news.sports.skiing

To cancel a subscription to a specific channel, use the UNSUBSCRIBE command and specify the
channel to unsubscribe from.

UNSUBSCRIBE news.sports.golf

To cancel subscriptions to multiple channels, use the UNSUBSCRIBE command and specify the
channels to unsubscribe from.

UNSUBSCRIBE news.sports.golf news.sports.soccer

To cancel all subscriptions, use UNSUBSCRIBE and specify each channel. Or use UNSUBSCRIBE and
don't specify a channel.

UNSUBSCRIBE news.sports.golf news.sports.soccer news.sports.skiing

or

UNSUBSCRIBE

Example - Subscriptions Using Pattern Matching

Clients can subscribe to all channels that match a pattern by using the PSUBSCRIBE command.

In the following example, a client subscribes to all sports channels. You don't list all the sports
channels individually, as you do using SUBSCRIBE. Instead, with the PSUBSCRIBE command you
use pattern matching.

PSUBSCRIBE news.sports.*

Example Canceling Subscriptions

To cancel subscriptions to these channels, use the PUNSUBSCRIBE command.

Messaging (Redis Pub/Sub) API Version 2015-02-02 22

Amazon ElastiCache for Redis User Guide

PUNSUBSCRIBE news.sports.*

Important

The channel string sent to a [P]SUBSCRIBE command and to the [P]UNSUBSCRIBE
command must match. You can't PSUBSCRIBE to news.* and PUNSUBSCRIBE from
news.sports.* or UNSUBSCRIBE from news.sports.golf.

Publishing

To send a message to all subscribers to a channel, use the PUBLISH command, specifying the
channel and the message. The following example publishes the message, "It’s Saturday and sunny.
I’m headed to the links." to the news.sports.golf channel.

PUBLISH news.sports.golf "It's Saturday and sunny. I'm headed to the links."

A client can't publish to a channel that it's subscribed to.

For more information, see Pub/Sub in the Redis documentation.

Recommendation Data (Redis Hashes)

Using INCR or DECR in Redis makes compiling recommendations simple. Each time a user "likes" a
product, you increment an item:productID:like counter. Each time a user "dislikes" a product, you
increment an item:productID:dislike counter. Using Redis hashes, you can also maintain a list of
everyone who has liked or disliked a product.

Example - Likes and Dislikes

INCR item:38923:likes
HSET item:38923:ratings Susan 1
INCR item:38923:dislikes
HSET item:38923:ratings Tommy -1

Recommendation Data (Redis Hashes) API Version 2015-02-02 23

http://redis.io/topics/pubsub

Amazon ElastiCache for Redis User Guide

Other Redis Uses

The blog post How to take advantage of Redis just adding it to your stack by Salvatore Sanfilippo
discusses a number of common database concerns and how they can be easily solved using Redis.
This approach removes load from your database and improves performance.

ElastiCache Customer Testimonials

To learn about how businesses like Airbnb, PBS, Esri, and others use Amazon ElastiCache to grow
their businesses with improved customer experience, see How Others Use Amazon ElastiCache.

You can also watch the Tutorial videos for additional ElastiCache customer use cases.

Other Redis Uses API Version 2015-02-02 24

http://oldblog.antirez.com/post/take-advantage-of-redis-adding-it-to-your-stack.html
https://aws.amazon.com/elasticache/testimonials/

Amazon ElastiCache for Redis User Guide

Getting started with Amazon ElastiCache for Redis

Use the hands-on tutorial in this section to help you get started and learn more about ElastiCache
for Redis.

Topics

• Setting up

• Step 1: Create a cache

• Step 2: Read and write data to the cache

• Step 3: (Optional) Clean up

• Next Steps

• Getting Started with ElastiCache and AWS SDKs

• Tutorial: Configuring a Lambda function to access Amazon ElastiCache in an Amazon VPC

Setting up

To set up ElastiCache:

Topics

• Sign up for an AWS account

• Create an administrative user

• Grant programmatic access

• Set up your permissions (new ElastiCache users only)

• Set up EC2

• Grant network access from an Amazon VPC security group to your cache

• Download and set up redis-cli

Sign up for an AWS account

If you do not have an AWS account, complete the following steps to create one.

To sign up for an AWS account

1. Open https://portal.aws.amazon.com/billing/signup.

Setting up API Version 2015-02-02 25

https://portal.aws.amazon.com/billing/signup

Amazon ElastiCache for Redis User Guide

2. Follow the online instructions.

Part of the sign-up procedure involves receiving a phone call and entering a verification code
on the phone keypad.

When you sign up for an AWS account, an AWS account root user is created. The root user
has access to all AWS services and resources in the account. As a security best practice, assign
administrative access to an administrative user, and use only the root user to perform tasks
that require root user access.

AWS sends you a confirmation email after the sign-up process is complete. At any time, you can
view your current account activity and manage your account by going to https://aws.amazon.com/
and choosing My Account.

Create an administrative user

After you sign up for an AWS account, secure your AWS account root user, enable AWS IAM Identity
Center, and create an administrative user so that you don't use the root user for everyday tasks.

Secure your AWS account root user

1. Sign in to the AWS Management Console as the account owner by choosing Root user and
entering your AWS account email address. On the next page, enter your password.

For help signing in by using root user, see Signing in as the root user in the AWS Sign-In User
Guide.

2. Turn on multi-factor authentication (MFA) for your root user.

For instructions, see Enable a virtual MFA device for your AWS account root user (console) in
the IAM User Guide.

Create an administrative user

1. Enable IAM Identity Center.

For instructions, see Enabling AWS IAM Identity Center in the AWS IAM Identity Center User
Guide.

2. In IAM Identity Center, grant administrative access to an administrative user.

Create an administrative user API Version 2015-02-02 26

https://docs.aws.amazon.com/singlesignon/latest/userguide/getting-started.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/getting-started.html
https://docs.aws.amazon.com/accounts/latest/reference/root-user-tasks.html
https://docs.aws.amazon.com/accounts/latest/reference/root-user-tasks.html
https://aws.amazon.com/
https://console.aws.amazon.com/
https://docs.aws.amazon.com/signin/latest/userguide/console-sign-in-tutorials.html#introduction-to-root-user-sign-in-tutorial
https://docs.aws.amazon.com/IAM/latest/UserGuide/enable-virt-mfa-for-root.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/get-set-up-for-idc.html

Amazon ElastiCache for Redis User Guide

For a tutorial about using the IAM Identity Center directory as your identity source, see
Configure user access with the default IAM Identity Center directory in the AWS IAM Identity
Center User Guide.

Sign in as the administrative user

• To sign in with your IAM Identity Center user, use the sign-in URL that was sent to your email
address when you created the IAM Identity Center user.

For help signing in using an IAM Identity Center user, see Signing in to the AWS access portal in
the AWS Sign-In User Guide.

Grant programmatic access

Users need programmatic access if they want to interact with AWS outside of the AWS
Management Console. The way to grant programmatic access depends on the type of user that's
accessing AWS.

To grant users programmatic access, choose one of the following options.

Which user needs
programmatic access?

To By

Workforce identity

(Users managed in IAM
Identity Center)

Use temporary credentials to
sign programmatic requests
to the AWS CLI, AWS SDKs, or
AWS APIs.

Following the instructions for
the interface that you want to
use.

• For the AWS CLI, see
Configuring the AWS
CLI to use AWS IAM
Identity Center in the AWS
Command Line Interface
User Guide.

• For AWS SDKs, tools, and
AWS APIs, see IAM Identity
Center authentication in

Grant programmatic access API Version 2015-02-02 27

https://docs.aws.amazon.com/singlesignon/latest/userguide/quick-start-default-idc.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/quick-start-default-idc.html
https://docs.aws.amazon.com/signin/latest/userguide/iam-id-center-sign-in-tutorial.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-sso.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-sso.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-sso.html
https://docs.aws.amazon.com/sdkref/latest/guide/access-sso.html
https://docs.aws.amazon.com/sdkref/latest/guide/access-sso.html

Amazon ElastiCache for Redis User Guide

Which user needs
programmatic access?

To By

the AWS SDKs and Tools
Reference Guide.

IAM Use temporary credentials to
sign programmatic requests
to the AWS CLI, AWS SDKs, or
AWS APIs.

Following the instructions in
Using temporary credentia
ls with AWS resources in the
IAM User Guide.

IAM (Not recommended)
Use long-term credentials to
sign programmatic requests
to the AWS CLI, AWS SDKs, or
AWS APIs.

Following the instructions for
the interface that you want to
use.

• For the AWS CLI, see
Authenticating using IAM
user credentials in the AWS
Command Line Interface
User Guide.

• For AWS SDKs and tools,
see Authenticate using
long-term credentials in
the AWS SDKs and Tools
Reference Guide.

• For AWS APIs, see
Managing access keys for
IAM users in the IAM User
Guide.

Related topics:

• What is IAM in the IAM User Guide.

• AWS Security Credentials in AWS General Reference.

Grant programmatic access API Version 2015-02-02 28

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_use-resources.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_use-resources.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-authentication-user.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-authentication-user.html
https://docs.aws.amazon.com/sdkref/latest/guide/access-iam-users.html
https://docs.aws.amazon.com/sdkref/latest/guide/access-iam-users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_access-keys.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_access-keys.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/introduction.html
https://docs.aws.amazon.com/general/latest/gr/aws-security-credentials.html

Amazon ElastiCache for Redis User Guide

Set up your permissions (new ElastiCache users only)

To provide access, add permissions to your users, groups, or roles:

• Users and groups in AWS IAM Identity Center:

Create a permission set. Follow the instructions in Create a permission set in the AWS IAM
Identity Center User Guide.

• Users managed in IAM through an identity provider:

Create a role for identity federation. Follow the instructions in Creating a role for a third-party
identity provider (federation) in the IAM User Guide.

• IAM users:

• Create a role that your user can assume. Follow the instructions in Creating a role for an IAM
user in the IAM User Guide.

• (Not recommended) Attach a policy directly to a user or add a user to a user group. Follow the
instructions in Adding permissions to a user (console) in the IAM User Guide.

Amazon ElastiCache creates and uses service-linked roles to provision resources and access other
AWS resources and services on your behalf. For ElastiCache to create a service-linked role for
you, use the AWS-managed policy named AmazonElastiCacheFullAccess. This role comes
preprovisioned with permission that the service requires to create a service-linked role on your
behalf.

You might decide not to use the default policy and instead to use a custom-managed policy. In this
case, make sure that you have either permissions to call iam:createServiceLinkedRole or that
you have created the ElastiCache service-linked role.

For more information, see the following:

• Creating a New Policy (IAM)

• AWS managed policies for Amazon ElastiCache

• Using Service-Linked Roles for Amazon ElastiCache

Set up EC2

You will need to setup an EC2 instance from which you will connect to your cache.

Set up permissions API Version 2015-02-02 29

https://docs.aws.amazon.com/singlesignon/latest/userguide/howtocreatepermissionset.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-idp.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-idp.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-user.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-user.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_change-permissions.html#users_change_permissions-add-console
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create.html

Amazon ElastiCache for Redis User Guide

• If you don’t already have an EC2 instance, learn how to setup an EC2 instance here: Getting
started with EC2.

• Your EC2 instance must be in the same VPC and have the same security group settings as your
cache. By default, Amazon ElastiCache creates a cache in your default VPC and uses the default
security group. To follow this tutorial, ensure that your EC2 instance is in the default VPC and has
the default security group.

Grant network access from an Amazon VPC security group to your
cache

ElastiCache self-designed clusters use port 6379 for Redis commands, and ElastiCache serverless
uses both port 6379 and port 6380. In order to successfully connect and execute Redis commands
from your EC2 instance, your security group must allow access to these ports as needed.

1. Sign in to the AWS Command Line Interface and open the Amazon EC2 console.

2. In the navigation pane, under Network & Security, choose Security Groups.

3. From the list of security groups, choose the security group for your Amazon VPC. Unless you
created a security group for ElastiCache use, this security group will be named default.

4. Choose the Inbound tab, and then:

a. Choose Edit.

b. Choose Add rule.

c. In the Type column, choose Custom TCP rule.

d. In the Port range box, type 6379.

e. In the Source box, choose Anywhere which has the port range (0.0.0.0/0) so that any
Amazon EC2 instance that you launch within your Amazon VPC can connect to your cache.

f. If you are using ElastiCache serverless, add another rule by choosing Add rule.

g. In the Type column, choose Custom TCP rule.

h. In the Port rangebox, type 6380.

i. In the Source box, choose Anywhere which has the port range (0.0.0.0/0) so that any
Amazon EC2 instance that you launch within your Amazon VPC can connect to your cache.

j. Choose Save

Grant network access API Version 2015-02-02 30

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EC2_GetStarted.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EC2_GetStarted.html
https://docs.aws.amazon.com/https://console.aws.amazon.com/ec2/

Amazon ElastiCache for Redis User Guide

Download and set up redis-cli

1. Connect to your Amazon EC2 instance using the connection utility of your choice. For
instructions on how to connect to an Amazon EC2 instance, see the Amazon EC2 Getting
Started Guide.

2. Download and install redis-cli utility by running the appropriate command for your setup.

Amazon Linux 2023

sudo yum install redis6 -y

Amazon Linux 2

sudo amazon-linux-extras install epel -y
sudo yum install gcc jemalloc-devel openssl-devel tcl tcl-devel -y
sudo wget http://download.redis.io/redis-stable.tar.gz
sudo tar xvzf redis-stable.tar.gz
cd redis-stable
sudo make BUILD_TLS=yes

Note

• When you install the redis6 package, it installs redis6-cli with default encryption support.

• It is important to have build support for TLS when installing redis-cli. ElastiCache
Serverless is only accessible when TLS is enabled.

• If you are connecting to a cluster that isn't encrypted, you don't need the
Build_TLS=yes option.

Step 1: Create a cache

In this step, you create a new cache in Amazon ElastiCache.

AWS Management Console

To create a new cache using the ElastiCache console:

Set up redis-cli API Version 2015-02-02 31

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EC2_GetStarted.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EC2_GetStarted.html

Amazon ElastiCache for Redis User Guide

1. Sign in to the AWS Management Console and open the https://console.aws.amazon.com/
connect/.

2. In the navigation pane on the left side of the console, choose Redis caches.

3. On the right side of the console, choose Create Redis cache

4. In the Cache settings enter a Name. You can optionally enter a description for the cache.

5. Leave the default settings selected.

6. Click Create to create the cache.

7. Once the cache is in "ACTIVE" status, you can begin writing and reading data to the cache. .

AWS CLI

The following AWS CLI example creates a new cache using create-serverless-cache.

Linux

aws elasticache create-serverless-cache \
 --serverless-cache-name CacheName \
 --engine redis

Windows

aws elasticache create-serverless-cache ^
 --serverless-cache-name CacheName ^
 --engine redis

Note that the value of the Status field is set to CREATING.

To verify that ElastiCache has finished creating the cache, use the describe-serverless-
caches command.

Linux

aws elasticache describe-serverless-caches --serverless-cache-name CacheName

Windows

aws elasticache describe-serverless-caches --serverless-cache-name CacheName

After creating the new cache, proceed to Step 2: Read and write data to the cache.

Create a cache API Version 2015-02-02 32

https://console.aws.amazon.com/connect/
https://console.aws.amazon.com/connect/

Amazon ElastiCache for Redis User Guide

Step 2: Read and write data to the cache

This section assumes that you've created an Amazon EC2 instance and can connect to it. For
instructions on how to do this, see the Amazon EC2 Getting Started Guide.

This section also assumes that you have setup VPC access and security group settings for the EC2
instance from where you are connecting to your cache, and setup redis-cli on your EC2 instance. For
more information on that step see Setting up.

Find your cache endpoint

AWS Management Console

To find your cache’s endpoint using the ElastiCache console:

1. Sign in to the AWS Management Console and open the Amazon ElastiCache console at https://
console.aws.amazon.com/elasticache/.

2. In the navigation pane on the left side of the console, choose Redis caches.

3. On the right side of the console, click on the name of the cache that you just created.

4. In the Cache details, locate and copy the cache endpoint.

AWS CLI

The following AWS CLI example shows to find the endpoint for your new cache using the describe-
serverless-caches command. Once you have run the command, look for the "Endpoint" field.

Linux

aws elasticache describe-serverless-caches \
 --serverless-cache-name CacheName

Windows

aws elasticache describe-serverless-caches ^
 --serverless-cache-name CacheName

Connect to your Redis Cache (Linux)

Now that you have the endpoint you need, you can log in to your EC2 instance and connect to the
cache. In the following example, you use the redis-cli utility to connect to a cluster. The following

Read and write data API Version 2015-02-02 33

https://docs.aws.amazon.com/https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EC2_GetStarted.html
https://console.aws.amazon.com/elasticache/
https://console.aws.amazon.com/elasticache/

Amazon ElastiCache for Redis User Guide

command connects to a cache (note: replace cache-endpoint with the endpoint you retrieved in the
previous step).

src/redis-cli -h cache-endpoint --tls -p 6379
set a "hello" // Set key "a" with a string value and no expiration
OK
get a // Get value for key "a"
"hello"

Connect to your Redis Cache (Windows)

Now that you have the endpoint you need, you can log in to your EC2 instance and connect to the
cache. In the following example, you use the redis-cli utility to connect to a cluster. The following
command connects to a cache. Open the Command Prompt and change to the Redis directory and
run the command (note: replace Cache_Endpoint with the endpoint you retrieved in the previous
step).

c:\Redis>redis-cli -h Redis_Cluster_Endpoint --tls -p 6379
set a "hello" // Set key "a" with a string value and no expiration
OK
get a // Get value for key "a"
"hello"

You may now proceed to Step 3: (Optional) Clean up.

Step 3: (Optional) Clean up

If you no longer need the Amazon ElastiCache cache that you created, you can delete it. This
step helps ensure that you are not charged for resources that you are not using. You can use the
ElastiCache console, the AWS CLI, or the ElastiCache API to delete your cache.

AWS Management Console

To delete your cache using the console:

1. Sign in to the AWS Management Console and open the Amazon ElastiCache console at https://
console.aws.amazon.com/elasticache/.

2. In the navigation pane on the left side of the console, choose Redis Caches.

Clean up API Version 2015-02-02 34

https://console.aws.amazon.com/elasticache/
https://console.aws.amazon.com/elasticache/

Amazon ElastiCache for Redis User Guide

3. Choose the radio button next to the cache you want to delete.

4. Select Actions on the top right, and select Delete.

5. You can optionally choose to take a final snapshot before you delete your cache.

6. In the Delete confirmation screen, re-enter the cache name and choose Delete to delete the
cluster, or choose Cancel to keep the cluster.

As soon as your cache moves in to the DELETING status, you stop incurring charges for it.

AWS CLI

The following AWS CLI example deletes a cache using the delete-serverless-cache command.

Linux

aws elasticache delete-serverless-cache \
 --serverless-cache-name CacheName

Windows

aws elasticache delete-serverless-cache ^
 --serverless-cache-name CacheName

Note that the value of the Status field is set to DELETING.

You may now proceed to Next Steps.

Next Steps

For more information about ElastiCache see the following pages:

• Working with ElastiCache

• Scaling ElastiCache for Redis

• Logging and monitoring in Amazon ElastiCache

• ElastiCache best practices and caching strategies

• Snapshot and restore

• Amazon SNS monitoring of ElastiCache events

Next Steps API Version 2015-02-02 35

Amazon ElastiCache for Redis User Guide

Getting Started with ElastiCache and AWS SDKs

This section contains hands-on tutorials to help you learn about Amazon ElastiCache. We
encourage you to work through one of the language-specific tutorials.

Note

AWS SDKs are available for a wide variety of languages. For a complete list, see Tools for
Amazon Web Services.

Python and ElastiCache

In this tutorial, you use the AWS SDK for Python (Boto3) to write simple programs to perform the
following ElastiCache operations:

• Create ElastiCache clusters (cluster mode enabled and cluster mode disabled)

• Check if users or user groups exist, otherwise create them (Redis 6.0 onwards only)

• Connect to ElastiCache

• Perform operations such as setting and getting strings, reading from and writing to steams and
publishing and subscribing from Pub/Sub channel.

As you work through this tutorial, you can refer to the AWS SDK for Python (Boto) documentation.
The following section is specific to ElastiCache: ElastiCache low-level client

Tutorial Prerequisites

• Set up an AWS access key to use the AWS SDKs. For more information, see Setting up.

• Install Python 3.0 or later. For more information, see https://www.python.org/downloads. For
instructions, see Quickstart in the Boto 3 documentation.

Creating ElastiCache clusters and users

The following examples use the boto3 SDK for ElastiCache management operations (cluster or user
creation) and redis-py/redis-py-cluster for data handling.

Topics

Getting Started with ElastiCache and AWS SDKs API Version 2015-02-02 36

https://aws.amazon.com/tools/
https://aws.amazon.com/tools/
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/elasticache.html
https://www.python.org/downloads
https://boto3.amazonaws.com/v1/documentation/api/latest/guide/quickstart.html

Amazon ElastiCache for Redis User Guide

• Create a cluster mode disabled cluster

• Create a cluster mode disabled cluster with TLS and RBAC

• Create a cluster mode enabled cluster

• Create a cluster mode enabled cluster with TLS and RBAC

• Check if users/usergroup exists, otherwise create them

Create a cluster mode disabled cluster

Copy the following program and paste it into a file named CreateClusterModeDisabledCluster.py.

import boto3
import logging

logging.basicConfig(level=logging.INFO)
client = boto3.client('elasticache')

def
 create_cluster_mode_disabled(CacheNodeType='cache.t3.small',EngineVersion='6.0',NumCacheClusters=2,ReplicationGroupDescription='Sample
 cache cluster',ReplicationGroupId=None):
 """Creates an ElastiCache Cluster with cluster mode disabled

 Returns a dictionary with the API response

 :param CacheNodeType: Node type used on the cluster. If not specified,
 cache.t3.small will be used
 Refer to https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/
CacheNodes.SupportedTypes.html for supported node types
 :param EngineVersion: Engine version to be used. If not specified, latest will be
 used.
 :param NumCacheClusters: Number of nodes in the cluster. Minimum 1 (just a primary
 node) and maximun 6 (1 primary and 5 replicas).
 If not specified, cluster will be created with 1 primary and 1 replica.
 :param ReplicationGroupDescription: Description for the cluster.
 :param ReplicationGroupId: Name for the cluster
 :return: dictionary with the API results

 """
 if not ReplicationGroupId:
 return 'ReplicationGroupId parameter is required'

 response = client.create_replication_group(

Python and ElastiCache API Version 2015-02-02 37

Amazon ElastiCache for Redis User Guide

 AutomaticFailoverEnabled=True,
 CacheNodeType=CacheNodeType,
 Engine='redis',
 EngineVersion=EngineVersion,
 NumCacheClusters=NumCacheClusters,
 ReplicationGroupDescription=ReplicationGroupDescription,
 ReplicationGroupId=ReplicationGroupId,
 SnapshotRetentionLimit=30,
)
 return response

if __name__ == '__main__':

 # Creates an ElastiCache Cluster mode disabled cluster, based on cache.m6g.large
 nodes, Redis 6, one primary and two replicas
 elasticacheResponse = create_cluster_mode_disabled(
 #CacheNodeType='cache.m6g.large',
 EngineVersion='6.0',
 NumCacheClusters=3,
 ReplicationGroupDescription='Redis cluster mode disabled with replicas',
 ReplicationGroupId='redis202104053'
)

 logging.info(elasticacheResponse)

To run the program, enter the following command:

python CreateClusterModeDisabledCluster.py

For more information, see Managing clusters.

Create a cluster mode disabled cluster with TLS and RBAC

To ensure security, you can use Transport Layer Security (TLS) and Role-Based Access Control
(RBAC) when creating a cluster mode disabled cluster. Unlike Redis AUTH, where all authenticated
clients have full replication group access if their token is authenticated, RBAC enables you to
control cluster access through user groups. These user groups are designed as a way to organize
access to replication groups. For more information, see Role-Based Access Control (RBAC).

Copy the following program and paste it into a file named ClusterModeDisabledWithRBAC.py.

import boto3

Python and ElastiCache API Version 2015-02-02 38

Amazon ElastiCache for Redis User Guide

import logging

logging.basicConfig(level=logging.INFO)
client = boto3.client('elasticache')

def
 create_cluster_mode_disabled_rbac(CacheNodeType='cache.t3.small',EngineVersion='6.0',NumCacheClusters=2,ReplicationGroupDescription='Sample
 cache cluster',ReplicationGroupId=None, UserGroupIds=None,
 SecurityGroupIds=None,CacheSubnetGroupName=None):
 """Creates an ElastiCache Cluster with cluster mode disabled and RBAC

 Returns a dictionary with the API response

 :param CacheNodeType: Node type used on the cluster. If not specified,
 cache.t3.small will be used
 Refer to https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/
CacheNodes.SupportedTypes.html for supported node types
 :param EngineVersion: Engine version to be used. If not specified, latest will be
 used.
 :param NumCacheClusters: Number of nodes in the cluster. Minimum 1 (just a primary
 node) and maximun 6 (1 primary and 5 replicas).
 If not specified, cluster will be created with 1 primary and 1 replica.
 :param ReplicationGroupDescription: Description for the cluster.
 :param ReplicationGroupId: Mandatory name for the cluster.
 :param UserGroupIds: The ID of the user group to be assigned to the cluster.
 :param SecurityGroupIds: List of security groups to be assigned. If not defined,
 default will be used
 :param CacheSubnetGroupName: subnet group where the cluster will be placed. If not
 defined, default will be used.
 :return: dictionary with the API results

 """
 if not ReplicationGroupId:
 return {'Error': 'ReplicationGroupId parameter is required'}
 elif not isinstance(UserGroupIds,(list)):
 return {'Error': 'UserGroupIds parameter is required and must be a list'}

 params={'AutomaticFailoverEnabled': True,
 'CacheNodeType': CacheNodeType,
 'Engine': 'redis',
 'EngineVersion': EngineVersion,
 'NumCacheClusters': NumCacheClusters,
 'ReplicationGroupDescription': ReplicationGroupDescription,
 'ReplicationGroupId': ReplicationGroupId,

Python and ElastiCache API Version 2015-02-02 39

Amazon ElastiCache for Redis User Guide

 'SnapshotRetentionLimit': 30,
 'TransitEncryptionEnabled': True,
 'UserGroupIds':UserGroupIds
 }

 # defaults will be used if CacheSubnetGroupName or SecurityGroups are not explicit.
 if isinstance(SecurityGroupIds,(list)):
 params.update({'SecurityGroupIds':SecurityGroupIds})
 if CacheSubnetGroupName:
 params.update({'CacheSubnetGroupName':CacheSubnetGroupName})

 response = client.create_replication_group(**params)
 return response

if __name__ == '__main__':

 # Creates an ElastiCache Cluster mode disabled cluster, based on cache.m6g.large
 nodes, Redis 6, one primary and two replicas.
 # Assigns the existent user group "mygroup" for RBAC authentication

 response=create_cluster_mode_disabled_rbac(
 CacheNodeType='cache.m6g.large',
 EngineVersion='6.0',
 NumCacheClusters=3,
 ReplicationGroupDescription='Redis cluster mode disabled with replicas',
 ReplicationGroupId='redis202104',
 UserGroupIds=[
 'mygroup'
],
 SecurityGroupIds=[
 'sg-7cc73803'
],
 CacheSubnetGroupName='default'
)

 logging.info(response)

To run the program, enter the following command:

python ClusterModeDisabledWithRBAC.py

For more information, see Managing clusters.

Python and ElastiCache API Version 2015-02-02 40

Amazon ElastiCache for Redis User Guide

Create a cluster mode enabled cluster

Copy the following program and paste it into a file named ClusterModeEnabled.py.

import boto3
import logging

logging.basicConfig(level=logging.INFO)
client = boto3.client('elasticache')

def
 create_cluster_mode_enabled(CacheNodeType='cache.t3.small',EngineVersion='6.0',NumNodeGroups=1,ReplicasPerNodeGroup=1,
 ReplicationGroupDescription='Sample cache with cluster mode
 enabled',ReplicationGroupId=None):
 """Creates an ElastiCache Cluster with cluster mode enabled

 Returns a dictionary with the API response

 :param CacheNodeType: Node type used on the cluster. If not specified,
 cache.t3.small will be used
 Refer to https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/
CacheNodes.SupportedTypes.html for supported node types
 :param EngineVersion: Engine version to be used. If not specified, latest will be
 used.
 :param NumNodeGroups: Number of shards in the cluster. Minimum 1 and maximun 90.
 If not specified, cluster will be created with 1 shard.
 :param ReplicasPerNodeGroup: Number of replicas per shard. If not specified 1
 replica per shard will be created.
 :param ReplicationGroupDescription: Description for the cluster.
 :param ReplicationGroupId: Name for the cluster
 :return: dictionary with the API results

 """
 if not ReplicationGroupId:
 return 'ReplicationGroupId parameter is required'

 response = client.create_replication_group(
 AutomaticFailoverEnabled=True,
 CacheNodeType=CacheNodeType,
 Engine='redis',
 EngineVersion=EngineVersion,
 ReplicationGroupDescription=ReplicationGroupDescription,
 ReplicationGroupId=ReplicationGroupId,

Python and ElastiCache API Version 2015-02-02 41

Amazon ElastiCache for Redis User Guide

 # Creates a cluster mode enabled cluster with 1 shard(NumNodeGroups), 1 primary
 node (implicit) and 2 replicas (replicasPerNodeGroup)
 NumNodeGroups=NumNodeGroups,
 ReplicasPerNodeGroup=ReplicasPerNodeGroup,
 CacheParameterGroupName='default.redis6.0.cluster.on'
)

 return response

Creates a cluster mode enabled
response = create_cluster_mode_enabled(
 CacheNodeType='cache.m6g.large',
 EngineVersion='6.0',
 ReplicationGroupDescription='Redis cluster mode enabled with replicas',
 ReplicationGroupId='redis20210',
Creates a cluster mode enabled cluster with 1 shard(NumNodeGroups), 1 primary
 (implicit) and 2 replicas (replicasPerNodeGroup)
 NumNodeGroups=2,
 ReplicasPerNodeGroup=1,
)

logging.info(response)

To run the program, enter the following command:

python ClusterModeEnabled.py

For more information, see Managing clusters.

Create a cluster mode enabled cluster with TLS and RBAC

To ensure security, you can use Transport Layer Security (TLS) and Role-Based Access Control
(RBAC) when creating a cluster mode enabled cluster. Unlike Redis AUTH, where all authenticated
clients have full replication group access if their token is authenticated, RBAC enables you to
control cluster access through user groups. These user groups are designed as a way to organize
access to replication groups. For more information, see Role-Based Access Control (RBAC).

Copy the following program and paste it into a file named ClusterModeEnabledWithRBAC.py.

import boto3
import logging

Python and ElastiCache API Version 2015-02-02 42

Amazon ElastiCache for Redis User Guide

logging.basicConfig(level=logging.INFO)
client = boto3.client('elasticache')

def
 create_cluster_mode_enabled(CacheNodeType='cache.t3.small',EngineVersion='6.0',NumNodeGroups=1,ReplicasPerNodeGroup=1,
 ReplicationGroupDescription='Sample cache with cluster
 mode enabled',ReplicationGroupId=None,UserGroupIds=None,
 SecurityGroupIds=None,CacheSubnetGroupName=None,CacheParameterGroupName='default.redis6.0.cluster.on'):
 """Creates an ElastiCache Cluster with cluster mode enabled and RBAC

 Returns a dictionary with the API response

 :param CacheNodeType: Node type used on the cluster. If not specified,
 cache.t3.small will be used
 Refer to https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/
CacheNodes.SupportedTypes.html for supported node types
 :param EngineVersion: Engine version to be used. If not specified, latest will be
 used.
 :param NumNodeGroups: Number of shards in the cluster. Minimum 1 and maximun 90.
 If not specified, cluster will be created with 1 shard.
 :param ReplicasPerNodeGroup: Number of replicas per shard. If not specified 1
 replica per shard will be created.
 :param ReplicationGroupDescription: Description for the cluster.
 :param ReplicationGroupId: Name for the cluster.
 :param CacheParameterGroupName: Parameter group to be used. Must be compatible with
 the engine version and cluster mode enabled.
 :return: dictionary with the API results

 """
 if not ReplicationGroupId:
 return 'ReplicationGroupId parameter is required'
 elif not isinstance(UserGroupIds,(list)):
 return {'Error': 'UserGroupIds parameter is required and must be a list'}

 params={'AutomaticFailoverEnabled': True,
 'CacheNodeType': CacheNodeType,
 'Engine': 'redis',
 'EngineVersion': EngineVersion,
 'ReplicationGroupDescription': ReplicationGroupDescription,
 'ReplicationGroupId': ReplicationGroupId,
 'SnapshotRetentionLimit': 30,
 'TransitEncryptionEnabled': True,
 'UserGroupIds':UserGroupIds,
 'NumNodeGroups': NumNodeGroups,

Python and ElastiCache API Version 2015-02-02 43

Amazon ElastiCache for Redis User Guide

 'ReplicasPerNodeGroup': ReplicasPerNodeGroup,
 'CacheParameterGroupName': CacheParameterGroupName
 }

 # defaults will be used if CacheSubnetGroupName or SecurityGroups are not explicit.
 if isinstance(SecurityGroupIds,(list)):
 params.update({'SecurityGroupIds':SecurityGroupIds})
 if CacheSubnetGroupName:
 params.update({'CacheSubnetGroupName':CacheSubnetGroupName})

 response = client.create_replication_group(**params)
 return response

if __name__ == '__main__':
 # Creates a cluster mode enabled cluster
 response = create_cluster_mode_enabled(
 CacheNodeType='cache.m6g.large',
 EngineVersion='6.0',
 ReplicationGroupDescription='Redis cluster mode enabled with replicas',
 ReplicationGroupId='redis2021',
 # Creates a cluster mode enabled cluster with 1 shard(NumNodeGroups), 1 primary
 (implicit) and 2 replicas (replicasPerNodeGroup)
 NumNodeGroups=2,
 ReplicasPerNodeGroup=1,
 UserGroupIds=[
 'mygroup'
],
 SecurityGroupIds=[
 'sg-7cc73803'
],
 CacheSubnetGroupName='default'

)

 logging.info(response)

To run the program, enter the following command:

python ClusterModeEnabledWithRBAC.py

For more information, see Managing clusters.

Python and ElastiCache API Version 2015-02-02 44

Amazon ElastiCache for Redis User Guide

Check if users/usergroup exists, otherwise create them

With RBAC, you create users and assign them specific permissions by using an access string. You
assign the users to user groups aligned with a specific role (administrators, human resources) that
are then deployed to one or more ElastiCache for Redis replication groups. By doing this, you can
establish security boundaries between clients using the same Redis replication group or groups
and prevent clients from accessing each other’s data. For more information, see Role-Based Access
Control (RBAC).

Copy the following program and paste it into a file named UserAndUserGroups.py. Update the
mechanism for supplying credentials. Credentials in this example are shown as replaceable and
assigned an undeclared item. Avoid hard-coding credentials.

import boto3
import logging

logging.basicConfig(level=logging.INFO)
client = boto3.client('elasticache')

def check_user_exists(UserId):
 """Checks if UserId exists

 Returns True if UserId exists, otherwise False
 :param UserId: ElastiCache User ID
 :return: True|False
 """
 try:
 response = client.describe_users(
 UserId=UserId,
)
 if response['Users'][0]['UserId'].lower() == UserId.lower():
 return True
 except Exception as e:
 if e.response['Error']['Code'] == 'UserNotFound':
 logging.info(e.response['Error'])
 return False
 else:
 raise

def check_group_exists(UserGroupId):
 """Checks if UserGroupID exists

Python and ElastiCache API Version 2015-02-02 45

Amazon ElastiCache for Redis User Guide

 Returns True if Group ID exists, otherwise False
 :param UserGroupId: ElastiCache User ID
 :return: True|False
 """

 try:
 response = client.describe_user_groups(
 UserGroupId=UserGroupId
)
 if response['UserGroups'][0]['UserGroupId'].lower() == UserGroupId.lower():
 return True
 except Exception as e:
 if e.response['Error']['Code'] == 'UserGroupNotFound':
 logging.info(e.response['Error'])
 return False
 else:
 raise

def create_user(UserId=None,UserName=None,Password=None,AccessString=None):
 """Creates a new user

 Returns the ARN for the newly created user or the error message
 :param UserId: ElastiCache user ID. User IDs must be unique
 :param UserName: ElastiCache user name. ElastiCache allows multiple users with the
 same name as long as the associated user ID is unique.
 :param Password: Password for user. Must have at least 16 chars.
 :param AccessString: Access string with the permissions for the user. For
 details refer to https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/
Clusters.RBAC.html#Access-string
 :return: user ARN
 """
 try:
 response = client.create_user(
 UserId=UserId,
 UserName=UserName,
 Engine='Redis',
 Passwords=[Password],
 AccessString=AccessString,
 NoPasswordRequired=False
)
 return response['ARN']
 except Exception as e:
 logging.info(e.response['Error'])
 return e.response['Error']

Python and ElastiCache API Version 2015-02-02 46

Amazon ElastiCache for Redis User Guide

def create_group(UserGroupId=None, UserIds=None):
 """Creates a new group.
 A default user is required (mandatory) and should be specified in the UserIds list

 Return: Group ARN
 :param UserIds: List with user IDs to be associated with the new group. A default
 user is required
 :param UserGroupId: The ID (name) for the group
 :return: Group ARN
 """
 try:
 response = client.create_user_group(
 UserGroupId=UserGroupId,
 Engine='Redis',
 UserIds=UserIds
)
 return response['ARN']
 except Exception as e:
 logging.info(e.response['Error'])

if __name__ == '__main__':

 groupName='mygroup2'
 userName = 'myuser2'
 userId=groupName+'-'+userName

 # Creates a new user if the user ID does not exist.
 for tmpUserId,tmpUserName in [(userId,userName), (groupName+'-
default','default')]:
 if not check_user_exists(tmpUserId):
 response=create_user(UserId=tmpUserId,
 UserName=EXAMPLE,Password=EXAMPLE,AccessString='on ~* +@all')
 logging.info(response)
 # assigns the new user ID to the user group
 if not check_group_exists(groupName):
 UserIds = [userId , groupName+'-default']
 response=create_group(UserGroupId=groupName,UserIds=UserIds)
 logging.info(response)

To run the program, enter the following command:

Python and ElastiCache API Version 2015-02-02 47

Amazon ElastiCache for Redis User Guide

python UserAndUserGroups.py

Connecting to ElastiCache

The following examples use the Redis client to connect to ElastiCache.

Topics

• Connecting to a cluster mode disabled cluster

• Connecting to a cluster mode enabled cluster

Connecting to a cluster mode disabled cluster

Copy the following program and paste it into a file named ConnectClusterModeDisabled.py. Update
the mechanism for supplying credentials. Credentials in this example are shown as replaceable and
assigned an undeclared item. Avoid hard-coding credentials.

from redis import Redis
import logging

logging.basicConfig(level=logging.INFO)
redis = Redis(host='primary.xxx.yyyyyy.zzz1.cache.amazonaws.com', port=6379,
 decode_responses=True, ssl=True, username=example, password=EXAMPLE)

if redis.ping():
 logging.info("Connected to Redis")

To run the program, enter the following command:

python ConnectClusterModeDisabled.py

Connecting to a cluster mode enabled cluster

Copy the following program and paste it into a file named ConnectClusterModeEnabled.py.

from rediscluster import RedisCluster
import logging

logging.basicConfig(level=logging.INFO)
redis = RedisCluster(startup_nodes=[{"host":
 "xxx.yyy.clustercfg.zzz1.cache.amazonaws.com","port": "6379"}],
 decode_responses=True,skip_full_coverage_check=True)

Python and ElastiCache API Version 2015-02-02 48

Amazon ElastiCache for Redis User Guide

if redis.ping():
 logging.info("Connected to Redis")

To run the program, enter the following command:

python ConnectClusterModeEnabled.py

Usage examples

The following examples use the boto3 SDK for ElastiCache to work with ElastiCache.

Topics

• Set and Get strings

• Set and Get a hash with multiple items

• Publish (write) and subscribe (read) from a Pub/Sub channel

• Write and read from a stream

Set and Get strings

Copy the following program and paste it into a file named SetAndGetStrings.py.

import time
import logging
logging.basicConfig(level=logging.INFO,format='%(asctime)s: %(message)s')

keyName='mykey'
currTime=time.ctime(time.time())

Set the key 'mykey' with the current date and time as value.
The Key will expire and removed from cache in 60 seconds.
redis.set(keyName, currTime, ex=60)

Sleep just for better illustration of TTL (expiration) value
time.sleep(5)

Retrieve the key value and current TTL
keyValue=redis.get(keyName)
keyTTL=redis.ttl(keyName)

logging.info("Key {} was set at {} and has {} seconds until expired".format(keyName,
 keyValue, keyTTL))

Python and ElastiCache API Version 2015-02-02 49

Amazon ElastiCache for Redis User Guide

To run the program, enter the following command:

python SetAndGetStrings.py

Set and Get a hash with multiple items

Copy the following program and paste it into a file named SetAndGetHash.py.

import logging
import time

logging.basicConfig(level=logging.INFO,format='%(asctime)s: %(message)s')

keyName='mykey'
keyValues={'datetime': time.ctime(time.time()), 'epochtime': time.time()}

Set the hash 'mykey' with the current date and time in human readable format
 (datetime field) and epoch number (epochtime field).
redis.hset(keyName, mapping=keyValues)

Set the key to expire and removed from cache in 60 seconds.
redis.expire(keyName, 60)

Sleep just for better illustration of TTL (expiration) value
time.sleep(5)

Retrieves all the fields and current TTL
keyValues=redis.hgetall(keyName)
keyTTL=redis.ttl(keyName)

logging.info("Key {} was set at {} and has {} seconds until expired".format(keyName,
 keyValues, keyTTL))

To run the program, enter the following command:

python SetAndGetHash.py

Publish (write) and subscribe (read) from a Pub/Sub channel

Copy the following program and paste it into a file named PubAndSub.py.

import logging
import time

Python and ElastiCache API Version 2015-02-02 50

Amazon ElastiCache for Redis User Guide

def handlerFunction(message):
 """Prints message got from PubSub channel to the log output

 Return None
 :param message: message to log
 """
 logging.info(message)

logging.basicConfig(level=logging.INFO)
redis = Redis(host="redis202104053.tihewd.ng.0001.use1.cache.amazonaws.com", port=6379,
 decode_responses=True)

Creates the subscriber connection on "mychannel"
subscriber = redis.pubsub()
subscriber.subscribe(**{'mychannel': handlerFunction})

Creates a new thread to watch for messages while the main process continues with its
 routines
thread = subscriber.run_in_thread(sleep_time=0.01)

Creates publisher connection on "mychannel"
redis.publish('mychannel', 'My message')

Publishes several messages. Subscriber thread will read and print on log.
while True:
 redis.publish('mychannel',time.ctime(time.time()))
 time.sleep(1)

To run the program, enter the following command:

python PubAndSub.py

Write and read from a stream

Copy the following program and paste it into a file named ReadWriteStream.py.

from redis import Redis
import redis.exceptions as exceptions
import logging
import time
import threading

logging.basicConfig(level=logging.INFO)

Python and ElastiCache API Version 2015-02-02 51

Amazon ElastiCache for Redis User Guide

def writeMessage(streamName):
 """Starts a loop writting the current time and thread name to 'streamName'

 :param streamName: Stream (key) name to write messages.
 """
 fieldsDict={'writerId':threading.currentThread().getName(),'myvalue':None}
 while True:
 fieldsDict['myvalue'] = time.ctime(time.time())
 redis.xadd(streamName,fieldsDict)
 time.sleep(1)

def readMessage(groupName=None,streamName=None):
 """Starts a loop reading from 'streamName'
 Multiple threads will read from the same stream consumer group. Consumer group is
 used to coordinate data distribution.
 Once a thread acknowleges the message, it won't be provided again. If message
 wasn't acknowledged, it can be served to another thread.

 :param groupName: stream group were multiple threads will read.
 :param streamName: Stream (key) name where messages will be read.
 """

 readerID=threading.currentThread().getName()
 while True:
 try:
 # Check if the stream has any message
 if redis.xlen(streamName)>0:
 # Check if if the messages are new (not acknowledged) or not (already
 processed)
 streamData=redis.xreadgroup(groupName,readerID,
{streamName:'>'},count=1)
 if len(streamData) > 0:
 msgId,message = streamData[0][1][0]
 logging.info("{}: Got {} from ID
 {}".format(readerID,message,msgId))
 #Do some processing here. If the message has been processed
 sucessfuly, acknowledge it and (optional) delete the message.
 redis.xack(streamName,groupName,msgId)
 logging.info("Stream message ID {} read and processed successfuly
 by {}".format(msgId,readerID))
 redis.xdel(streamName,msgId)
 else:
 pass

Python and ElastiCache API Version 2015-02-02 52

Amazon ElastiCache for Redis User Guide

 except:
 raise

 time.sleep(0.5)

Creates the stream 'mystream' and consumer group 'myworkergroup' where multiple
 threads will write/read.
try:
 redis.xgroup_create('mystream','myworkergroup',mkstream=True)
except exceptions.ResponseError as e:
 logging.info("Consumer group already exists. Will continue despite the error:
 {}".format(e))
except:
 raise

Starts 5 writer threads.
for writer_no in range(5):
 writerThread = threading.Thread(target=writeMessage, name='writer-'+str(writer_no),
 args=('mystream',),daemon=True)
 writerThread.start()

Starts 10 reader threads
for reader_no in range(10):
 readerThread = threading.Thread(target=readMessage, name='reader-'+str(reader_no),
 args=('myworkergroup','mystream',),daemon=True)
 readerThread.daemon = True
 readerThread.start()

Keep the code running for 30 seconds
time.sleep(30)

To run the program, enter the following command:

python ReadWriteStream.py

Tutorial: Configuring a Lambda function to access Amazon
ElastiCache in an Amazon VPC

In this tutorial you can learn how to create an ElastiCache serverless cache, create a Lambda
function, then test the Lambda function, and optionally clean up after.

Topics

Tutorial: Configuring a Lambda function to access Amazon ElastiCache in an Amazon VPC API Version 2015-02-02 53

Amazon ElastiCache for Redis User Guide

• Step 1: Create a serverless cache

• Step 2: Create a Lambda function

• Step 3: Test the Lambda function

• Step 4: Clean up (Optional)

Step 1: Create a serverless cache

To create a serverless cache, follow these steps.

Topics

• Step 1.1: Create a serverless cache

• Step 1.2: Copy serverless cache endpoint

• Step 1.3: Create IAM Role

• Step 1.4: Create a serverless cache

Step 1.1: Create a serverless cache

In this step, you create a serverless cache in the default Amazon VPC in the us-east-1 region in your
account using the AWS Command Line Interface (CLI). For information on creating serverless cache
using the ElastiCache console or API, see Step 1: Create a cache.

aws elasticache create-serverless-cache \
 --serverless-cache-name cache-01 \
--description "ElastiCache IAM auth application" \
--engine redis

Note that the value of the Status field is set to CREATING. It can take a minute for ElastiCache to
finish creating your cache.

Step 1.2: Copy serverless cache endpoint

Verify that ElastiCache for Redis has finished creating the cache with the describe-serverless-
caches command.

aws elasticache describe-serverless-caches \

Step 1: Create a serverless cache API Version 2015-02-02 54

Amazon ElastiCache for Redis User Guide

--serverless-cache-name cache-01

Copy the Endpoint Address shown in the output. You'll need this address when you create the
deployment package for your Lambda function.

Step 1.3: Create IAM Role

1. Create an IAM trust policy document, as shown below, for your role that allows your account to
assume the new role. Save the policy to a file named trust-policy.json.

{
"Version": "2012-10-17",
 "Statement": [{
"Effect": "Allow",
 "Principal": { "AWS": "arn:aws:iam::123456789012:root" },
 "Action": "sts:AssumeRole"
 },
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "lambda.amazonaws.com"
 },
 "Action": "sts:AssumeRole"
 }]
}

2. Create an IAM policy document, as shown below. Save the policy to a file named policy.json.

{
"Version": "2012-10-17",
 "Statement": [
 {
"Effect" : "Allow",
 "Action" : [
 "elasticache:Connect"
],
 "Resource" : [
 "arn:aws:elasticache:us-east-1:123456789012:serverlesscache:cache-01",
 "arn:aws:elasticache:us-east-1:123456789012:user:iam-user-01"
]
 }
]

Step 1: Create a serverless cache API Version 2015-02-02 55

Amazon ElastiCache for Redis User Guide

}

3. Create an IAM role.

aws iam create-role \
--role-name "elasticache-iam-auth-app" \
--assume-role-policy-document file://trust-policy.json

4. Create the IAM policy.

aws iam create-policy \
 --policy-name "elasticache-allow-all" \
 --policy-document file://policy.json

5. Attach the IAM policy to the role.

aws iam attach-role-policy \
 --role-name "elasticache-iam-auth-app" \
 --policy-arn "arn:aws:iam::123456789012:policy/elasticache-allow-all"

Step 1.4: Create a serverless cache

1. Create a new default user.

aws elasticache create-user \
 --user-name default \
--user-id default-user-disabled \
--engine redis \
--authentication-mode Type=no-password-required \
--access-string "off +get ~keys*"

2. Create a new IAM-enabled user.

aws elasticache create-user \
 --user-name iam-user-01 \
--user-id iam-user-01 \
--authentication-mode Type=iam \
--engine redis \
--access-string "on ~* +@all"

3. Create a user group and attach the user.

Step 1: Create a serverless cache API Version 2015-02-02 56

Amazon ElastiCache for Redis User Guide

aws elasticache create-user-group \
 --user-group-id iam-user-group-01 \
--engine redis \
--user-ids default-user-disabled iam-user-01

aws elasticache modify-serverless-cache \
 --serverless-cache-name cache-01 \
--user-group-id iam-user-group-01

Step 2: Create a Lambda function

To create a Lambda function, take these steps.

Topics

• Step 2.1: Create a Lambda function

• Step 2.2: Create the IAM role (execution role)

• Step 2.3: Upload the deployment package (create the Lambda function)

Step 2.1: Create a Lambda function

In this tutorial, we provide example code in Python for your Lambda function.

Python

The following example Python code reads and writes an item to your ElastiCache cache. Copy the
code and save it into a file named app.py. Be sure to replace the elasticache_endpoint value
in the code with the endpoint address you copied in step 1.2.

from typing import Tuple, Union
from urllib.parse import ParseResult, urlencode, urlunparse

import botocore.session
import redis
from botocore.model import ServiceId
from botocore.signers import RequestSigner
from cachetools import TTLCache, cached
import uuid

class ElastiCacheIAMProvider(redis.CredentialProvider):

Step 2: Create a Lambda function API Version 2015-02-02 57

Amazon ElastiCache for Redis User Guide

 def __init__(self, user, cache_name, is_serverless=False, region="us-east-1"):
 self.user = user
 self.cache_name = cache_name
 self.is_serverless = is_serverless
 self.region = region

 session = botocore.session.get_session()
 self.request_signer = RequestSigner(
 ServiceId("elasticache"),
 self.region,
 "elasticache",
 "v4",
 session.get_credentials(),
 session.get_component("event_emitter"),
)

 # Generated IAM tokens are valid for 15 minutes
 @cached(cache=TTLCache(maxsize=128, ttl=900))
 def get_credentials(self) -> Union[Tuple[str], Tuple[str, str]]:
 query_params = {"Action": "connect", "User": self.user}
 if self.is_serverless:
 query_params["ResourceType"] = "ServerlessCache"
 url = urlunparse(
 ParseResult(
 scheme="https",
 netloc=self.cache_name,
 path="/",
 query=urlencode(query_params),
 params="",
 fragment="",
)
)
 signed_url = self.request_signer.generate_presigned_url(
 {"method": "GET", "url": url, "body": {}, "headers": {}, "context": {}},
 operation_name="connect",
 expires_in=900,
 region_name=self.region,
)
 # RequestSigner only seems to work if the URL has a protocol, but
 # Elasticache only accepts the URL without a protocol
 # So strip it off the signed URL before returning
 return (self.user, signed_url.removeprefix("https://"))

def lambda_handler(event, context):

Step 2: Create a Lambda function API Version 2015-02-02 58

Amazon ElastiCache for Redis User Guide

 username = "iam-user-01" # replace with your user id
 cache_name = "cache-01" # replace with your cache name
 elasticache_endpoint = "cache-01-xxxxx.serverless.use1.cache.amazonaws.com" #
 replace with your cache endpoint
 creds_provider = ElastiCacheIAMProvider(user=username, cache_name=cache_name,
 is_serverless=True)
 redis_client = redis.Redis(host=elasticache_endpoint, port=6379,
 credential_provider=creds_provider, ssl=True, ssl_cert_reqs="none")

 key='uuid'
 # create a random UUID - this will be the sample element we add to the cache
 uuid_in = uuid.uuid4().hex
 redis_client.set(key, uuid_in)
 result = redis_client.get(key)
 decoded_result = result.decode("utf-8")
 # check the retrieved item matches the item added to the cache and print
 # the results
 if decoded_result == uuid_in:
 print(f"Success: Inserted {uuid_in}. Fetched {decoded_result} from Redis.")
 else:
 raise Exception(f"Bad value retrieved. Expected {uuid_in}, got
 {decoded_result}")

 return "Fetched value from Redis"

This code uses the Python redis-py library to put items into your cache and retrieve them. This code
uses cachetools to cache generated IAM Auth tokens for 15 mins. To create a deployment package
containing redis-py and cachetools, carry out the following steps.

In your project directory containing the app.py source code file, create a folder package to install
the redis-py and cachetools libraries into.

mkdir package

Install redis-py, cachetools using pip.

pip install --target ./package redis
pip install --target ./package cachetools

Create a .zip file containing the redis-py and cachetools libraries. In Linux and macOS, run the
following command. In Windows, use your preferred zip utility to create a .zip file with the redis-py
and cachetools libraries at the root.

Step 2: Create a Lambda function API Version 2015-02-02 59

Amazon ElastiCache for Redis User Guide

cd package
zip -r ../my_deployment_package.zip .

Add your function code to the .zip file. In Linux and macOS, run the following command. In
Windows, use your preferred zip utility to add app.py to the root of your .zip file.

cd ..
zip my_deployment_package.zip app.py

Step 2.2: Create the IAM role (execution role)

Attach the AWS managed policy named AWSLambdaVPCAccessExecutionRole to the role.

aws iam attach-role-policy \
 --role-name "elasticache-iam-auth-app" \
 --policy-arn "arn:aws:iam::aws:policy/service-role/AWSLambdaVPCAccessExecutionRole"

Step 2.3: Upload the deployment package (create the Lambda function)

In this step, you create the Lambda function (AccessRedis) using the create-function AWS CLI
command.

From the project directory that contains your deployment package .zip file, run the following
Lambda CLI create-function command.

For the role option, use the ARN of the execution role you created in step 2.2. For the vpc-config
enter comma separated lists of your default VPC's subnets and your default VPC's security group
ID. You can find these values in the Amazon VPC console. To find your default VPC's subnets,
choose Your VPCs, then choose your AWS account's default VPC. To find the security group for
this VPC, go to Security and choose Security groups. Ensure that you have the us-east-1 region
selected.

aws lambda create-function \
--function-name AccessRedis \
--region us-east-1 \
--zip-file fileb://my_deployment_package.zip \
--role arn:aws:iam::123456789012:role/elasticache-iam-auth-app \
--handler app.lambda_handler \

Step 2: Create a Lambda function API Version 2015-02-02 60

Amazon ElastiCache for Redis User Guide

--runtime python3.12 \
--timeout 30 \
--vpc-config SubnetIds=comma-separated-vpc-subnet-ids,SecurityGroupIds=default-
security-group-id

Step 3: Test the Lambda function

In this step, you invoke the Lambda function manually using the invoke command. When the
Lambda function executes, it generates a UUID and writes it to the ElastiCache cache that you
specified in your Lambda code. The Lambda function then retrieves the item from the cache.

1. Invoke the Lambda function (AccessRedis) using the AWS Lambda invoke command.

aws lambda invoke \
--function-name AccessRedis \
--region us-east-1 \
output.txt

2. Verify that the Lambda function executed successfully as follows:

• Review the output.txt file.

• Verify the results in CloudWatch Logs by opening the CloudWatch console and choosing
the log group for your function (/aws/lambda/AccessRedis). The log stream should contain
output similar to the following:

Success: Inserted 826e70c5f4d2478c8c18027125a3e01e. Fetched
 826e70c5f4d2478c8c18027125a3e01e from Redis.

• Review the results in the AWS Lambda console.

Step 4: Clean up (Optional)

To clean up, take these steps.

Topics

• Step 4.1: Delete Lambda function

• Step 4.2: Delete Serverless cache

• Step 4.3: Remove IAM Role and policies

Step 3: Test the Lambda function API Version 2015-02-02 61

Amazon ElastiCache for Redis User Guide

Step 4.1: Delete Lambda function

aws lambda delete-function \
 --function-name AccessRedis

Step 4.2: Delete Serverless cache

Delete the cache.

aws elasticache delete-serverless-cache \
 --serverless-cache-name cache-01

Remove users and user group.

aws elasticache delete-user \
 --user-id default-user-disabled

aws elasticache delete-user \
 --user-id iam-user-01

aws elasticache delete-user-group \
 --user-group-id iam-user-group-01

Step 4.3: Remove IAM Role and policies

aws iam detach-role-policy \
 --role-name "elasticache-iam-auth-app" \
 --policy-arn "arn:aws:iam::123456789012:policy/elasticache-allow-all"

aws iam detach-role-policy \
--role-name "elasticache-iam-auth-app" \
--policy-arn "arn:aws:iam::aws:policy/service-role/AWSLambdaVPCAccessExecutionRole"

aws iam delete-role \
 --role-name "elasticache-iam-auth-app"

 aws iam delete-policy \
 --policy-arn "arn:aws:iam::123456789012:policy/elasticache-allow-all"

Step 4: Clean up (Optional) API Version 2015-02-02 62

Amazon ElastiCache for Redis User Guide

Designing and managing your own ElastiCache cluster

If you need fine-grained control over your ElastiCache cluster, you can choose to design your
own cluster. ElastiCache enables you to operate a node-based cluster by choosing the node-
type, number of nodes, and node placement across AWS Availability Zones for your cluster.
Since ElastiCache is a fully-managed service, it automatically manages hardware provisioning,
monitoring, node replacements, and software patching for your cluster.

For information on setting up see Setting up. For details on managing, updating or deleting
nodes or clusters, see Managing nodes. For an overview of the major components of an Amazon
ElastiCache deployment when you design your own ElastiCache cluster, see these key concepts.

Topics

• ElastiCache for Redis components and features

• ElastiCache for Redis terminology

• Designing your own cluster

• Managing nodes

• Managing clusters

• Comparing Memcached and Redis self-designed caches

• Online migration to ElastiCache

• Choosing regions and availability zones

ElastiCache for Redis components and features

Following, you can find an overview of the major components of an Amazon ElastiCache
deployment.

Topics

• ElastiCache nodes

• ElastiCache for Redis shards

• ElastiCache for Redis clusters

• ElastiCache for Redis replication

• AWS Regions and availability zones

• ElastiCache for Redis endpoints

Components and features API Version 2015-02-02 63

Amazon ElastiCache for Redis User Guide

• ElastiCache parameter groups

• ElastiCache for Redis security

• ElastiCache subnet groups

• ElastiCache for Redis backups

• ElastiCache events

ElastiCache nodes

A node is the smallest building block of an ElastiCache deployment. A node can exist in isolation
from or in some relationship to other nodes.

A node is a fixed-size chunk of secure, network-attached RAM. Each node runs an instance of the
engine and version that was chosen when you created your cluster. If necessary, you can scale
the nodes in a cluster up or down to a different instance type. For more information, see Scaling
ElastiCache for Redis .

Every node within a cluster is the same instance type and runs the same cache engine. Each cache
node has its own Domain Name Service (DNS) name and port. Multiple types of cache nodes are
supported, each with varying amounts of associated memory. For a list of supported node instance
types, see Supported node types.

You can purchase nodes on a pay-as-you-go basis, where you only pay for your use of a node.
Or you can purchase reserved nodes at a much-reduced hourly rate. If your usage rate is high,
purchasing reserved nodes can save you money. Suppose that your cluster is almost always in use,
and you occasionally add nodes to handle use spikes. In this case, you can purchase a number of
reserved nodes to run most of the time. You can then purchase pay-as-you-go nodes for the times
you occasionally need to add nodes. For more information on reserved nodes, see ElastiCache
reserved nodes.

For more information on nodes, see Managing nodes.

ElastiCache for Redis shards

A Redis shard (called a node group in the API and CLI) is a grouping of one to six related nodes. A
Redis (cluster mode disabled) cluster always has at least one shard.

Sharding is a method of database partitioning that separates large databases into smaller, faster,
and more easily managed parts called data shards. This can increase database efficiency by

Nodes API Version 2015-02-02 64

Amazon ElastiCache for Redis User Guide

distributing operations across multiple separate sections. Using shards can offer many benefits
including improved performance, scalability, and cost efficiency.

Redis (cluster mode enabled) clusters can have up to 500 shards, with your data partitioned across
the shards. The node or shard limit can be increased to a maximum of 500 per cluster if the Redis
engine version is 5.0.6 or higher. For example, you can choose to configure a 500 node cluster that
ranges between 83 shards (one primary and 5 replicas per shard) and 500 shards (single primary
and no replicas). Make sure there are enough available IP addresses to accommodate the increase.
Common pitfalls include the subnets in the subnet group have too small a CIDR range or the
subnets are shared and heavily used by other clusters. For more information, see Creating a subnet
group. For versions below 5.0.6, the limit is 250 per cluster.

To request a limit increase, see AWS Service Limits and choose the limit type Nodes per cluster per
instance type.

A multiple node shard implements replication by having one read/write primary node and 1–5
replica nodes. For more information, see High availability using replication groups.

For more information on shards, see Working with shards.

ElastiCache for Redis clusters

A Redis cluster is a logical grouping of one or more ElastiCache for Redis shards. Data is partitioned
across the shards in a Redis (cluster mode enabled) cluster.

Many ElastiCache operations are targeted at clusters:

• Creating a cluster

• Modifying a cluster

• Taking snapshots of a cluster (all versions of Redis)

• Deleting a cluster

• Viewing the elements in a cluster

• Adding or removing cost allocation tags to and from a cluster

For more detailed information, see the following related topics:

• Managing clusters and Managing nodes

Information about clusters, nodes, and related operations.

ElastiCache for Redis clusters API Version 2015-02-02 65

https://docs.aws.amazon.com/general/latest/gr/aws_service_limits.html

Amazon ElastiCache for Redis User Guide

• AWS service limits: Amazon ElastiCache

Information about ElastiCache limits, such as the maximum number of nodes or clusters. To
exceed certain of these limits, you can make a request using the Amazon ElastiCache cache node
request form.

• Mitigating Failures

Information about improving the fault tolerance of your clusters and replication groups.

Typical cluster configurations

Following are typical cluster configurations.

Redis clusters

Redis (cluster mode enabled) clusters can have up to 500 shards, with your data partitioned across
the shards. The node or shard limit can be increased to a maximum of 500 per cluster if the Redis
engine version is 5.0.6 or higher. For example, you can choose to configure a 500 node cluster that
ranges between 83 shards (one primary and 5 replicas per shard) and 500 shards (single primary
and no replicas). Make sure there are enough available IP addresses to accommodate the increase.
Common pitfalls include the subnets in the subnet group have too small a CIDR range or the
subnets are shared and heavily used by other clusters. For more information, see Creating a subnet
group. For versions below 5.0.6, the limit is 250 per cluster.

To request a limit increase, see AWS Service Limits and choose the limit type Nodes per cluster per
instance type.

Redis (cluster mode disabled) clusters always contain just one shard (in the API and CLI, one node
group). A Redis shard contains one to six nodes. If there is more than one node in a shard, the shard
supports replication. In this case, one node is the read/write primary node and the others are read-
only replica nodes.

For improved fault tolerance, we recommend having at least two nodes in a Redis cluster and
enabling Multi-AZ. For more information, see Mitigating Failures.

As demand upon your Redis (cluster mode disabled) cluster changes, you can scale up or down.
To do this, you move your cluster to a different node instance type. If your application is read
intensive, we recommend adding read-only replicas Redis (cluster mode disabled) cluster. By doing
this, you can spread the reads across a more appropriate number of nodes.

ElastiCache for Redis clusters API Version 2015-02-02 66

https://docs.aws.amazon.com/general/latest/gr/aws_service_limits.html#limits_elasticache
https://aws.amazon.com/contact-us/elasticache-node-limit-request/
https://aws.amazon.com/contact-us/elasticache-node-limit-request/
https://docs.aws.amazon.com/general/latest/gr/aws_service_limits.html

Amazon ElastiCache for Redis User Guide

You can also use data-tiering. More frequently accessed data is stored in memory and less
frequently accessed data is stored on disk. The advantage of using data tiering is that it decreases
memory needs. For more information, see Data tiering.

ElastiCache supports changing a Redis (cluster mode disabled) cluster's node type to a larger node
type dynamically. For information on scaling up or down, see Scaling single-node clusters for Redis
(Cluster Mode Disabled) or Scaling Redis (Cluster Mode Disabled) clusters with replica nodes.

ElastiCache for Redis replication

Replication is implemented by grouping from two to six nodes in a shard (in the API and CLI, called
a node group). One of these nodes is the read/write primary node. All the other nodes are read-
only replica nodes.

Each replica node maintains a copy of the data from the primary node. Replica nodes use
asynchronous replication mechanisms to keep synchronized with the primary node. Applications
can read from any node in the cluster but can write only to primary nodes. Read replicas enhance
scalability by spreading reads across multiple endpoints. Read replicas also improve fault tolerance
by maintaining multiple copies of the data. Locating read replicas in multiple Availability Zones
further improves fault tolerance. For more information on fault tolerance, see Mitigating Failures.

Redis (cluster mode disabled) clusters support one shard (in the API and CLI, called a node group).

Redis (cluster mode enabled) clusters can have up to 500 shards, with your data partitioned across
the shards. The node or shard limit can be increased to a maximum of 500 per cluster if the Redis
engine version is 5.0.6 or higher. For example, you can choose to configure a 500 node cluster that
ranges between 83 shards (one primary and 5 replicas per shard) and 500 shards (single primary
and no replicas). Make sure there are enough available IP addresses to accommodate the increase.
Common pitfalls include the subnets in the subnet group have too small a CIDR range or the
subnets are shared and heavily used by other clusters. For more information, see Creating a subnet
group. For versions below 5.0.6, the limit is 250 per cluster.

To request a limit increase, see AWS Service Limits and choose the limit type Nodes per cluster per
instance type.

Replication from the API and CLI perspective uses different terminology to maintain compatibility
with previous versions, but the results are the same. The following table shows the API and CLI
terms for implementing replication.

Comparing Replication: Redis (cluster mode disabled) and Redis (cluster mode enabled)

ElastiCache for Redis replication API Version 2015-02-02 67

https://docs.aws.amazon.com/general/latest/gr/aws_service_limits.html

Amazon ElastiCache for Redis User Guide

In the following table, you can find a comparison of the features of Redis (cluster mode disabled)
and Redis (cluster mode enabled) replication groups.

 Redis (cluster mode
disabled)

Redis (cluster mode enabled)

Shards (node groups) 1 1–500

Redis (cluster mode enabled)
clusters can have up to

500 shards, with your data
partitioned across the shards.
The node or shard limit can
be increased to a maximum

of 500 per cluster if the Redis
engine version is 5.0.6 or
higher. For example, you
can choose to configure a

500 node cluster that ranges
between 83 shards (one

primary and 5 replicas per
shard) and 500 shards (single

primary and no replicas).
Make sure there are enough

available IP addresses to
accommodate the increase.
Common pitfalls include the
subnets in the subnet group
have too small a CIDR range

or the subnets are shared and
heavily used by other clusters.

For more information, see
Creating a subnet group.
For versions below 5.0.6,

the limit is 250 per cluster.

ElastiCache for Redis replication API Version 2015-02-02 68

Amazon ElastiCache for Redis User Guide

 Redis (cluster mode
disabled)

Redis (cluster mode enabled)

To request a limit increase,
see AWS Service Limits and
choose the limit type Nodes

per cluster per instance type.

Replicas for each shard (node
group)

0–5 0–5

Data partitioning No Yes

Add/Delete replicas Yes Yes

Add/Delete node groups No Yes

Supports scale up Yes Yes

Supports engine upgrades Yes Yes

Promote replica to primary Yes Automatic

Multi-AZ Optional Required

Backup/Restore Yes Yes

Notes:

If any primary has no replicas and the primary fails, you lose all that primary's data.

You can use backup and restore to migrate to Redis (cluster mode enabled).

You can use backup and restore to resize your Redis (cluster mode enabled) cluster.

All of the shards (in the API and CLI, node groups) and nodes must reside in the same AWS Region.
However, you can provision the individual nodes in multiple Availability Zones within that AWS
Region.

ElastiCache for Redis replication API Version 2015-02-02 69

https://docs.aws.amazon.com/general/latest/gr/aws_service_limits.html

Amazon ElastiCache for Redis User Guide

Read replicas guard against potential data loss because your data is replicated over two or more
nodes—the primary and one or more read replicas. For greater reliability and faster recovery, we
recommend that you create one or more read replicas in different Availability Zones.

You can also leverage Global datastores. By using the Global Datastore for Redis feature, you can
work with fully managed, fast, reliable, and secure replication across AWS Regions. Using this
feature, you can create cross-Region read replica clusters for ElastiCache for Redis to enable low-
latency reads and disaster recovery across AWS Regions. For more information, see Replication
across AWS Regions using global datastores.

Replication: Limits and exclusions

• Multi-AZ is not supported on node types T1.

AWS Regions and availability zones

Amazon ElastiCache is available in multiple AWS Regions around the world. Thus, you can launch
ElastiCache clusters in the locations that meet your business requirements. For example, you can
launch in the AWS Region closest to your customers or to meet certain legal requirements.

By default, the AWS SDKs, AWS CLI, ElastiCache API, and ElastiCache console reference the US West
(Oregon) Region. As ElastiCache expands availability to new AWS Regions, new endpoints for these
AWS Regions are also available. You can use these in your HTTP requests, the AWS SDKs, AWS CLI,
and ElastiCache console.

Each AWS Region is designed to be completely isolated from the other AWS Regions. Within
each are multiple Availability Zones. By launching your nodes in different Availability Zones, you
can achieve the greatest possible fault tolerance. For more information about AWS Regions and
Availability Zones, see Choosing regions and availability zones. In the following diagram, you can
see a high-level view of how AWS Regions and Availability Zones work.

AWS Regions and availability zones API Version 2015-02-02 70

https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/Redis-Global-Datastore.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/Redis-Global-Datastore.html

Amazon ElastiCache for Redis User Guide

For information on AWS Regions supported by ElastiCache and their endpoints, see Supported
regions & endpoints.

ElastiCache for Redis endpoints

An endpoint is the unique address your application uses to connect to an ElastiCache node or
cluster.

Single node endpoints for Redis (Cluster Mode Disabled)

The endpoint for a single node Redis cluster is used to connect to the cluster for both reads and
writes.

Multi-node endpoints for Redis (Cluster Mode Disabled)

A multiple node Redis (cluster mode disabled) cluster has two types of endpoints. The primary
endpoint always connects to the primary node in the cluster, even if the specific node in the
primary role changes. Use the primary endpoint for all writes to the cluster.

Use the Reader Endpoint to evenly split incoming connections to the endpoint between all read
replicas. Use the individual Node Endpoints for read operations (In the API/CLI these are referred to
as Read Endpoints).

Redis (Cluster Mode Enabled) endpoints

A Redis (cluster mode enabled) cluster has a single configuration endpoint. By connecting to the
configuration endpoint, your application is able to discover the primary and read endpoints for
each shard in the cluster.

For more information, see Finding connection endpoints.

ElastiCache parameter groups

Cache parameter groups are an easy way to manage runtime settings for supported engine
software. Parameters are used to control memory usage, eviction policies, item sizes, and more.
An ElastiCache parameter group is a named collection of engine-specific parameters that you can
apply to a cluster. By doing this, you make sure that all of the nodes in that cluster are configured
in exactly the same way.

For a list of supported parameters, their default values, and which ones can be modified, see
DescribeEngineDefaultParameters (CLI: describe-engine-default-parameters).

ElastiCache for Redis endpoints API Version 2015-02-02 71

https://docs.aws.amazon.com/AmazonElastiCache/latest/APIReference/API_DescribeEngineDefaultParameters.html
https://docs.aws.amazon.com/cli/latest/reference/elasticache/describe-engine-default-parameters.html

Amazon ElastiCache for Redis User Guide

For more detailed information on ElastiCache parameter groups, see Configuring engine
parameters using parameter groups.

ElastiCache for Redis security

For enhanced security, ElastiCache for Redis node access is restricted to applications running on the
Amazon EC2 instances that you allow. You can control the Amazon EC2 instances that can access
your cluster using security groups.

By default, all new ElastiCache for Redis clusters are launched in an Amazon Virtual Private Cloud
(Amazon VPC) environment. You can use subnet groups to grant cluster access from Amazon EC2
instances running on specific subnets.

In addition to restricting node access, ElastiCache for Redis supports TLS and in-place encryption
for nodes running specified versions of ElastiCache for Redis. For more information, see the
following:

• Data security in Amazon ElastiCache

• Authenticating with the Redis AUTH command

ElastiCache subnet groups

A subnet group is a collection of subnets (typically private) that you can designate for your clusters
running in an Amazon VPC environment.

If you create a cluster in an Amazon VPC, then you must specify a cache subnet group. ElastiCache
uses that cache subnet group to choose a subnet and IP addresses within that subnet to associate
with your cache nodes.

For more information about cache subnet group usage in an Amazon VPC environment, see the
following:

• Amazon VPCs and ElastiCache security

• Step 3: Authorize access to the cluster

• Subnets and subnet groups

ElastiCache for Redis security API Version 2015-02-02 72

Amazon ElastiCache for Redis User Guide

ElastiCache for Redis backups

A backup is a point-in-time copy of a Redis cluster. Backups can be used to restore an existing
cluster or to seed a new cluster. Backups consist of all the data in a cluster plus some metadata.

Depending upon the version of Redis running on your cluster, the backup process requires differing
amounts of reserved memory to succeed. For more information, see the following:

• Snapshot and restore

• How synchronization and backup are implemented

• Performance impact of backups of self-designed clusters

• Ensuring that you have enough memory to create a Redis snapshot

ElastiCache events

When important events happen on a cache cluster, ElastiCache sends notification to a specific
Amazon SNS topic. These events can include such things as failure or success in adding a node, a
security group modification, and others. By monitoring for key events, you can know the current
state of your clusters and in many cases take corrective action.

For more information on ElastiCache events, see Amazon SNS monitoring of ElastiCache events.

ElastiCache for Redis backups API Version 2015-02-02 73

Amazon ElastiCache for Redis User Guide

ElastiCache for Redis terminology

In October 2016, Amazon ElastiCache launched support for Redis 3.2. At that point, we added
support for partitioning your data across up to 500 shards (called node groups in the ElastiCache
API and AWS CLI). To preserve compatibility with previous versions, we extended API version
2015-02-02 operations to include the new Redis functionality.

At the same time, we began using terminology in the ElastiCache console that is used in this new
functionality and common across the industry. These changes mean that at some points, the
terminology used in the API and CLI might be different from the terminology used in the console.
The following list identifies terms that might differ between the API and CLI and the console.

Cache cluster or node vs. node

There is a one-to-one relationship between a node and a cache cluster when there are no
replica nodes. Thus, the ElastiCache console often used the terms interchangeably. The console
now uses the term node throughout. The one exception is the Create Cluster button, which
launches the process to create a cluster with or without replica nodes.

The ElastiCache API and AWS CLI continue to use the terms as they have in the past.

Cluster vs. replication group

The console now uses the term cluster for all ElastiCache for Redis clusters. The console uses the
term cluster in all these circumstances:

• When the cluster is a single node Redis cluster.

• When the cluster is a Redis (cluster mode disabled) cluster that supports replication within a
single shard (in the API and CLI, called a node group).

• When the cluster is a Redis (cluster mode enabled) cluster that supports replication within
1-90 shards or up to 500 with a limit increase request. To request a limit increase, see AWS
service limits and choose the limit type Nodes per cluster per instance type.

For more information on replication groups, see High availability using replication groups.

The following diagram illustrates the various topologies of ElastiCache for Redis clusters from
the console's perspective.

ElastiCache for Redis terminology API Version 2015-02-02 74

https://docs.aws.amazon.com/general/latest/gr/aws_service_limits.html
https://docs.aws.amazon.com/general/latest/gr/aws_service_limits.html

Amazon ElastiCache for Redis User Guide

The ElastiCache API and AWS CLI operations still distinguish single node ElastiCache for Redis
clusters from multi-node replication groups. The following diagram illustrates the various
ElastiCache for Redis topologies from the ElastiCache API and AWS CLI perspective.

Replication group vs. global datastore

A global datastore is a collection of one or more clusters that replicate to one another across
Regions, whereas a replication group replicates data across a cluster mode enabled cluster with
multiple shards. A global datastore consists of the following:

• Primary (active) cluster – A primary cluster accepts writes that are replicated to all clusters
within the global datastore. A primary cluster also accepts read requests.

• Secondary (passive) cluster – A secondary cluster only accepts read requests and replicates
data updates from a primary cluster. A secondary cluster needs to be in a different AWS
Region than the primary cluster.

ElastiCache for Redis terminology API Version 2015-02-02 75

Amazon ElastiCache for Redis User Guide

For information on global datastores, see Replication across AWS Regions using global
datastores.

ElastiCache for Redis terminology API Version 2015-02-02 76

Amazon ElastiCache for Redis User Guide

Designing your own cluster

Following are the one-time actions you must take to start designing your ElastiCache cluster.

Topics

• Setting up

• Step 1: Create a subnet group

• Step 2: Create a cluster

• Step 3: Authorize access to the cluster

• Step 4: Connect to the cluster's node

• Step 5: Deleting a cluster

• ElastiCache tutorials and videos

• Where do I go from here?

Setting up

Before you create a cluster, you first create a subnet group. A cache subnet group is a collection of
subnets that you may want to designate for your cache clusters in a VPC. When launching a cache
cluster in a VPC, you need to select a cache subnet group. Then ElastiCache uses that cache subnet
group to assign IP addresses within that subnet to each cache node in the cluster.

When you create a new subnet group, note the number of available IP addresses. If the subnet has
very few free IP addresses, you might be constrained as to how many more nodes you can add to
the cluster. To resolve this issue, you can assign one or more subnets to a subnet group so that you
have a sufficient number of IP addresses in your cluster's Availability Zone. After that, you can add
more nodes to your cluster.

For further information on setting up ElastiCache see Setting up.

Step 1: Create a subnet group

The following procedures show you how to create a subnet group called mysubnetgroup (console)
and the AWS CLI.

Creating a subnet group (Console)

The following procedure shows how to create a subnet group (console).

Designing your own cluster API Version 2015-02-02 77

Amazon ElastiCache for Redis User Guide

To create a subnet group (Console)

1. Sign in to the AWS Management Console, and open the ElastiCache console at https://
console.aws.amazon.com/elasticache/.

2. In the navigation list, choose Subnet Groups.

3. Choose Create Subnet Group.

4. In the Create Subnet Group wizard, do the following. When all the settings are as you want
them, choose Yes, Create.

a. In the Name box, type a name for your subnet group.

b. In the Description box, type a description for your subnet group.

c. In the VPC ID box, choose the Amazon VPC that you created.

d. In the Availability Zone and Subnet ID lists, choose the Availability Zone or Local Zone
and ID of your private subnet, and then choose Add.

Step 1: Create a subnet group API Version 2015-02-02 78

https://console.aws.amazon.com/elasticache/
https://console.aws.amazon.com/elasticache/
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/Local_zones.html

Amazon ElastiCache for Redis User Guide

5. In the confirmation message that appears, choose Close.

Your new subnet group appears in the Subnet Groups list of the ElastiCache console. At the
bottom of the window you can choose the subnet group to see details, such as all of the subnets
associated with this group.

Create a subnet group (AWS CLI)

At a command prompt, use the command create-cache-subnet-group to create a subnet
group.

For Linux, macOS, or Unix:

aws elasticache create-cache-subnet-group \
 --cache-subnet-group-name mysubnetgroup \
 --cache-subnet-group-description "Testing" \
 --subnet-ids subnet-53df9c3a

For Windows:

aws elasticache create-cache-subnet-group ^
 --cache-subnet-group-name mysubnetgroup ^
 --cache-subnet-group-description "Testing" ^
 --subnet-ids subnet-53df9c3a

This command should produce output similar to the following:

{
 "CacheSubnetGroup": {
 "VpcId": "vpc-37c3cd17",
 "CacheSubnetGroupDescription": "Testing",
 "Subnets": [
 {
 "SubnetIdentifier": "subnet-53df9c3a",
 "SubnetAvailabilityZone": {
 "Name": "us-west-2a"
 }
 }
],
 "CacheSubnetGroupName": "mysubnetgroup"
 }

Step 1: Create a subnet group API Version 2015-02-02 79

Amazon ElastiCache for Redis User Guide

}

For more information, see the AWS CLI topic create-cache-subnet-group.

Step 2: Create a cluster

Before creating a cluster for production use, you obviously need to consider how you will configure
the cluster to meet your business needs. Those issues are addressed in the Preparing a cluster
section. For the purposes of this Getting Started exercise, you will create a cluster with cluster
mode disabled and you can accept the default configuration values where they apply.

The cluster you create will be live, and not running in a sandbox. You will incur the standard
ElastiCache usage fees for the instance until you delete it. The total charges will be minimal
(typically less than a dollar) if you complete the exercise described here in one sitting and delete
your cluster when you are finished. For more information about ElastiCache usage rates, see
Amazon ElastiCache.

Your cluster is launched in a virtual private cloud (VPC) based on the Amazon VPC service.

Creating a Redis (cluster mode disabled) cluster (Console)

To create a Redis (cluster mode disabled) cluster using the ElastiCache console

1. Sign in to the AWS Management Console and open the Amazon ElastiCache console at https://
console.aws.amazon.com/elasticache/.

2. From the list in the upper-right corner, choose the AWS Region that you want to launch this
cluster in.

3. Choose Get started from the navigation pane.

4. Choose Create VPC and follow the steps outlined at Creating a Virtual Private Cloud (VPC).

5. On the ElastiCache dashboard page, choose Redis cache and then choose Create Redis cache.

6. Under Cluster settings, do the following:

a. Choose Configure and create a new cluster.

b. For Cluster mode, choose Disabled.

c. For Cluster info enter a value for Name.

d. (Optional) Enter a value for Description.

7. Under Location:

Step 2: Create a cluster API Version 2015-02-02 80

https://docs.aws.amazon.com/cli/latest/reference/elasticache/create-cache-subnet-group.html
https://aws.amazon.com/elasticache/
https://console.aws.amazon.com/elasticache/
https://console.aws.amazon.com/elasticache/
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/VPCs.CreatingVPC.html

Amazon ElastiCache for Redis User Guide

AWS Cloud

1. For AWS Cloud, we recommend you accept the default settings for Multi-AZ and Auto-
failover. For more information, see Minimizing downtime in ElastiCache for Redis with
Multi-AZ.

2. Under Cluster settings

a. For Engine version, choose an available version.

b. For Port, use the default port, 6379. If you have a reason to use a different port,
enter the port number.

c. For Parameter group, choose a parameter group or create a new one. Parameter
groups control the runtime parameters of your cluster. For more information on
parameter groups, see Redis-specific parameters and Creating a parameter group.

Note

When you select a parameter group to set the engine configuration values,
that parameter group is applied to all clusters in the global datastore.
On the Parameter Groups page, the yes/no Global attribute indicates
whether a parameter group is part of a global datastore.

d. For Node type, choose the down arrow
().
In the Change node type dialog box, choose a value for Instance family for the
node type that you want. Then choose the node type that you want to use for this
cluster, and then choose Save.

For more information, see Choosing your node size.

If you choose an r6gd node type, data-tiering is automatically enabled. For more
information, see Data tiering.

e. For Number of replicas, choose the number of read replicas you want. If you
enabled Multi-AZ, the number must be between 1-5.

3. Under Connectivity

a. For Network type, choose the IP version(s) this cluster will support.

Step 2: Create a cluster API Version 2015-02-02 81

https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/AutoFailover.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/AutoFailover.html

Amazon ElastiCache for Redis User Guide

b. For Subnet groups, choose the subnet that you want to apply to this cluster.
ElastiCache uses that subnet group to choose a subnet and IP addresses within
that subnet to associate with your nodes. ElastiCache clusters require a dual-stack
subnet with both IPv4 and IPv6 addresses assigned to them to operate in dual-
stack mode and an IPv6-only subnet to operate as IPv6-only.

When creating a new subnet group, enter the VPC ID to which it belongs.

For more information, see:

• Choosing a network type.

• Create a subnet in your VPC.

If you are Using local zones with ElastiCache , you must create or choose a subnet
that is in the local zone.

For more information, see Subnets and subnet groups.

4. For Availability zone placements, you have two options:

• No preference – ElastiCache chooses the Availability Zone.

• Specify availability zones – You specify the Availability Zone for each cluster.

If you chose to specify the Availability Zones, for each cluster in each shard, choose
the Availability Zone from the list.

For more information, see Choosing regions and availability zones.

5. Choose Next

6. Under Advanced Redis settings

• For Security:

i. To encrypt your data, you have the following options:

• Encryption at rest – Enables encryption of data stored on disk. For more
information, see Encryption at Rest.

Step 2: Create a cluster API Version 2015-02-02 82

https://docs.aws.amazon.com/vpc/latest/userguide/working-with-vpcs.html#AddaSubnet
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/at-rest-encryption.html

Amazon ElastiCache for Redis User Guide

Note

You have the option to supply a different encryption key by
choosing Customer Managed AWS KMS key and choosing the key.
For more information, see Using customer managed keys from AWS
KMS.

• Encryption in-transit – Enables encryption of data on the wire. For more
information, see encryption in transit. For Redis engine version 6.0 and
above, if you enable Encryption in-transit you will be prompted to specify
one of the following Access Control options:

• No Access Control – This is the default setting. This indicates no
restrictions on user access to the cluster.

• User Group Access Control List – Select a user group with a defined set
of users that can access the cluster. For more information, see Managing
User Groups with the Console and CLI.

• Redis AUTH Default User – An authentication mechanism for Redis
server. For more information, see Redis AUTH.

• Redis AUTH – An authentication mechanism for Redis server. For more
information, see Redis AUTH.

Note

For Redis versions between 3.2.6 onward, excluding version 3.2.10,
Redis AUTH is the sole option.

ii. For Security groups, choose the security groups that you want for this cluster.
A security group acts as a firewall to control network access to your cluster.
You can use the default security group for your VPC or create a new one.

For more information on security groups, see Security groups for your VPC in
the Amazon VPC User Guide.

7. For regularly scheduled automatic backups, select Enable automatic backups and then
enter the number of days that you want each automatic backup retained before it is
automatically deleted. If you don't want regularly scheduled automatic backups, clear

Step 2: Create a cluster API Version 2015-02-02 83

https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/at-rest-encryption.html#using-customer-managed-keys-for-elasticache-security
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/at-rest-encryption.html#using-customer-managed-keys-for-elasticache-security
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/in-transit-encryption.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/auth.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/auth.html
https://docs.aws.amazon.com/vpc/latest/userguide/VPC_SecurityGroups.html

Amazon ElastiCache for Redis User Guide

the Enable automatic backups check box. In either case, you always have the option to
create manual backups.

For more information on Redis backup and restore, see Snapshot and restore.

8. (Optional) Specify a maintenance window. The maintenance window is the time,
generally an hour in length, each week when ElastiCache schedules system
maintenance for your cluster. You can allow ElastiCache to choose the day and time
for your maintenance window (No preference), or you can choose the day, time, and
duration yourself (Specify maintenance window). If you choose Specify maintenance
window from the lists, choose the Start day, Start time, and Duration (in hours) for your
maintenance window. All times are UCT times.

For more information, see Managing maintenance.

9. (Optional) For Logs:

• Under Log format, choose either Text or JSON.

• Under Destination Type, choose either CloudWatch Logs or Kinesis Firehose.

• Under Log destination, choose either Create new and enter either your CloudWatch
Logs log group name or your Firehose stream name, or choose Select existing and
then choose either your CloudWatch Logs log group name or your Firehose stream
name,

10. For Tags, to help you manage your clusters and other ElastiCache resources, you can
assign your own metadata to each resource in the form of tags. For mor information,
see Tagging your ElastiCache resources.

11. Choose Next.

12. Review all your entries and choices, then make any needed corrections. When you're
ready, choose Create.

On premises

1. For On premises, we recommend you leave Auto-failover enabled. For more
information, see Minimizing downtime in ElastiCache for Redis with Multi-AZ

2. To finish creating the cluster, follow the steps at Using Outposts.

Step 2: Create a cluster API Version 2015-02-02 84

https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/AutoFailover.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/ElastiCache-Outposts.html

Amazon ElastiCache for Redis User Guide

As soon as your cluster's status is available, you can grant Amazon EC2 access to it, connect to it,
and begin using it. For more information, see Step 3: Authorize access to the cluster and Step 4:
Connect to the cluster's node.

Important

Once your cluster is available, you're billed for each hour or partial hour that the cluster
is active, even if you're not actively using it. To stop incurring charges for this cluster, you
must delete it. See Deleting a cluster.

Creating a Redis (cluster mode disabled) cluster (AWS CLI)

Example

The following CLI code creates a Redis (cluster mode disabled) cache cluster with no replicas.

For Linux, macOS, or Unix:

aws elasticache create-cache-cluster \
--cache-cluster-id my-cluster \
--cache-node-type cache.r4.large \
--engine redis \
--num-cache-nodes 1 \
--snapshot-arns arn:aws:s3:::my_bucket/snapshot.rdb

For Windows:

aws elasticache create-cache-cluster ^
--cache-cluster-id my-cluster ^
--cache-node-type cache.r4.large ^
--engine redis ^
--num-cache-nodes 1 ^
--snapshot-arns arn:aws:s3:::my_bucket/snapshot.rdb

To work with cluster mode enabled, see the following topics:

• To use the console, see Creating a Redis (cluster mode enabled) cluster (Console).

• To use the AWS CLI, see Creating a Redis (cluster mode enabled) cluster (AWS CLI).

Step 2: Create a cluster API Version 2015-02-02 85

Amazon ElastiCache for Redis User Guide

Step 3: Authorize access to the cluster

This section assumes that you are familiar with launching and connecting to Amazon EC2 instances.
For more information, see the Amazon EC2 Getting Started Guide.

All ElastiCache clusters are designed to be accessed from an Amazon EC2 instance. The most
common scenario is to access an ElastiCache cluster from an Amazon EC2 instance in the same
Amazon Virtual Private Cloud (Amazon VPC), which will be the case for this exercise.

By default, network access to your cluster is limited to the account that was used to create it.
Before you can connect to a cluster from an EC2 instance, you must authorize the EC2 instance to
access the cluster. The steps required depend upon whether you launched your cluster into EC2-
VPC or EC2-Classic.

The most common use case is when an application deployed on an EC2 instance needs to connect
to a cluster in the same VPC. The simplest way to manage access between EC2 instances and
clusters in the same VPC is to do the following:

1. Create a VPC security group for your cluster. This security group can be used to restrict access
to the cluster instances. For example, you can create a custom rule for this security group that
allows TCP access using the port you assigned to the cluster when you created it and an IP
address you will use to access the cluster.

The default port for Redis clusters and replication groups is 6379.

Important

Amazon ElastiCache security groups are only applicable to clusters that are not
running in an Amazon Virtual Private Cloud environment (VPC). If you are running
in an Amazon Virtual Private Cloud, Security Groups is not available in the console
navigation pane.
If you are running your ElastiCache nodes in an Amazon VPC, you control access to
your clusters with Amazon VPC security groups, which are different from ElastiCache
security groups. For more information about using ElastiCache in an Amazon VPC, see
Amazon VPCs and ElastiCache security

2. Create a VPC security group for your EC2 instances (web and application servers). This security
group can, if needed, allow access to the EC2 instance from the Internet via the VPC's routing

Step 3: Authorize access to the cluster API Version 2015-02-02 86

https://docs.aws.amazon.com/AWSEC2/latest/GettingStartedGuide/

Amazon ElastiCache for Redis User Guide

table. For example, you can set rules on this security group to allow TCP access to the EC2
instance over port 22.

3. Create custom rules in the security group for your Cluster that allow connections from the
security group you created for your EC2 instances. This would allow any member of the
security group to access the clusters.

Note

If you are planning to use Local Zones, ensure that you have enabled them. When you
create a subnet group in that local zone, your VPC is extended to that Local Zone and your
VPC will treat the subnet as any subnet in any other Availability Zone. All relevant gateways
and route tables will be automatically adjusted.

To create a rule in a VPC security group that allows connections from another security group

1. Sign in to the AWS Management Console and open the Amazon VPC console at https://
console.aws.amazon.com/vpc.

2. In the navigation pane, choose Security Groups.

3. Select or create a security group that you will use for your Cluster instances. Under Inbound
Rules, select Edit Inbound Rules and then select Add Rule. This security group will allow
access to members of another security group.

4. From Type choose Custom TCP Rule.

a. For Port Range, specify the port you used when you created your cluster.

The default port for Redis clusters and replication groups is 6379.

b. In the Source box, start typing the ID of the security group. From the list select the
security group you will use for your Amazon EC2 instances.

5. Choose Save when you finish.

Step 3: Authorize access to the cluster API Version 2015-02-02 87

https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/Local_zones.html
https://console.aws.amazon.com/vpc
https://console.aws.amazon.com/vpc

Amazon ElastiCache for Redis User Guide

Once you have enabled access, you are now ready to connect to the node, as discussed in the next
section.

For information on accessing your ElastiCache cluster from a different Amazon VPC, a different
AWS Region, or even your corporate network, see the following:

• Access Patterns for Accessing an ElastiCache Cache in an Amazon VPC

• Accessing ElastiCache resources from outside AWS

Step 3: Authorize access to the cluster API Version 2015-02-02 88

Amazon ElastiCache for Redis User Guide

Step 4: Connect to the cluster's node

Before you continue, complete Step 3: Authorize access to the cluster.

This section assumes that you've created an Amazon EC2 instance and can connect to it. For
instructions on how to do this, see the Amazon EC2 Getting Started Guide.

An Amazon EC2 instance can connect to a cluster node only if you have authorized it to do so.

Find your node endpoints

When your cluster is in the available state and you've authorized access to it, you can log in to an
Amazon EC2 instance and connect to the cluster. To do so, you must first determine the endpoint.

Finding a Redis (Cluster Mode Disabled) Cluster's Endpoints (Console)

If a Redis (cluster mode disabled) cluster has only one node, the node's endpoint is used for both
reads and writes. If the cluster has multiple nodes, there are three types of endpoints; the primary
endpoint, the reader endpoint and the node endpoints.

The primary endpoint is a DNS name that always resolves to the primary node in the cluster. The
primary endpoint is immune to changes to your cluster, such as promoting a read replica to the
primary role. For write activity, we recommend that your applications connect to the primary
endpoint.

A reader endpoint will evenly split incoming connections to the endpoint between all read replicas
in a ElastiCache for Redis cluster. Additional factors such as when the application creates the
connections or how the application (re)-uses the connections will determine the traffic distribution.
Reader endpoints keep up with cluster changes in real-time as replicas are added or removed. You
can place your ElastiCache for Redis cluster’s multiple read replicas in different AWS Availability
Zones (AZ) to ensure high availability of reader endpoints.

Note

A reader endpoint is not a load balancer. It is a DNS record that will resolve to an IP address
of one of the replica nodes in a round robin fashion.

For read activity, applications can also connect to any node in the cluster. Unlike the primary
endpoint, node endpoints resolve to specific endpoints. If you make a change in your cluster, such
as adding or deleting a replica, you must update the node endpoints in your application.

Step 4: Connect to the cluster's node API Version 2015-02-02 89

https://docs.aws.amazon.com/AWSEC2/latest/GettingStartedGuide/

Amazon ElastiCache for Redis User Guide

To find a Redis (cluster mode disabled) cluster's endpoints

1. Sign in to the AWS Management Console and open the ElastiCache console at https://
console.aws.amazon.com/elasticache/.

2. From the navigation pane, choose Redis caches.

The clusters screen will appear with a list that will include any existing Redis serverless caches,
Redis (cluster mode disabled) and Redis (cluster mode enabled) clusters. Choose the cluster
you created in the Creating a Redis (cluster mode disabled) cluster (Console) section.

3. To find the cluster's Primary and/or Reader endpoints, choose the cluster's name (not the radio
button).

Primary and Reader endpoints for a Redis (cluster mode disabled) cluster

If there is only one node in the cluster, there is no primary endpoint and you can continue at
the next step.

4. If the Redis (cluster mode disabled) cluster has replica nodes, you can find the cluster's replica
node endpoints by choosing the cluster's name and then choosing the Nodes tab.

The nodes screen appears with each node in the cluster, primary and replicas, listed with its
endpoint.

Step 4: Connect to the cluster's node API Version 2015-02-02 90

https://console.aws.amazon.com/elasticache/
https://console.aws.amazon.com/elasticache/

Amazon ElastiCache for Redis User Guide

Node endpoints for a Redis (cluster mode disabled) cluster

5. To copy an endpoint to your clipboard:

a. One endpoint at a time, find the endpoint you want to copy.

b. Choose the copy icon directly in front of the endpoint.

The endpoint is now copied to your clipboard. For information on using the endpoint to
connect to a node, see Connecting to nodes.

A Redis (cluster mode disabled) primary endpoint looks something like the following. There is a
difference depending upon whether or not In-Transit encryption is enabled.

In-transit encryption not enabled

clusterName.xxxxxx.nodeId.regionAndAz.cache.amazonaws.com:port

redis-01.7abc2d.0001.usw2.cache.amazonaws.com:6379

In-transit encryption enabled

master.clusterName.xxxxxx.regionAndAz.cache.amazonaws.com:port

master.ncit.ameaqx.use1.cache.amazonaws.com:6379

To further explore how to find your endpoints, see the relevant topics for the engine and cluster
type you're running.

• Finding connection endpoints

• Finding Endpoints for a Redis (Cluster Mode Enabled) Cluster (Console)—You need the cluster's
Configuration endpoint.

• Finding Endpoints (AWS CLI)

• Finding Endpoints (ElastiCache API)

Connect to a Redis cluster or replication group (Linux)

Now that you have the endpoint you need, you can log in to an EC2 instance and connect to the
cluster or replication group. In the following example, you use the redis-cli utility to connect

Step 4: Connect to the cluster's node API Version 2015-02-02 91

Amazon ElastiCache for Redis User Guide

to a cluster. The latest version of redis-cli also supports SSL/TLS for connecting encryption/
authentication enabled clusters.

The following example uses Amazon EC2 instances running Amazon Linux and Amazon Linux 2. For
details on installing and compiling redis-cli with other Linux distributions, see the documentation
for your specific operating system..

Note

This process covers testing a connection using redis-cli utility for unplanned use only. For
a list of supported Redis clients, see the Redis documentation. For examples of using the
AWS SDKs with ElastiCache, see Getting Started with ElastiCache and AWS SDKs.

Connecting to a cluster mode disabled unencrypted-cluster

1. Run the following command to connect to the cluster and replace primary-endpoint and
port number with the endpoint of your cluster and your port number. (The default port for
Redis is 6379.)

src/redis-cli -h primary-endpoint -p port number

The result in a Redis command prompt looks similar to the following:

primary-endpoint:port number

2. You can now run Redis commands.

set x Hello
OK

get x
"Hello"

Connecting to a cluster mode enabled unencrypted-cluster

1. Run the following command to connect to the cluster and replace configuration-
endpoint and port number with the endpoint of your cluster and your port number. (The
default port for Redis is 6379.)

Step 4: Connect to the cluster's node API Version 2015-02-02 92

https://redis.io/

Amazon ElastiCache for Redis User Guide

src/redis-cli -h configuration-endpoint -c -p port number

Note

In the preceding command, option -c enables cluster mode following -ASK and -
MOVED redirections.

The result in a Redis command prompt looks similar to the following:

configuration-endpoint:port number

2. You can now run Redis commands. Note that redirection occurs because you enabled it using
the -c option. If redirection isn't enabled, the command returns the MOVED error. For more
information on the MOVED error, see Redis cluster specification.

set x Hi
-> Redirected to slot [16287] located at 172.31.28.122:6379
OK
set y Hello
OK
get y
"Hello"
set z Bye
-> Redirected to slot [8157] located at 172.31.9.201:6379
OK
get z
"Bye"
get x
-> Redirected to slot [16287] located at 172.31.28.122:6379
"Hi"

Connecting to an Encryption/Authentication enabled cluster

By default, redis-cli uses an unencrypted TCP connection when connecting to Redis. The option
BUILD_TLS=yes enables SSL/TLS at the time of redis-cli compilation as shown in the preceding
Download and set up redis-cli section. Enabling AUTH is optional. However, you must enable

Step 4: Connect to the cluster's node API Version 2015-02-02 93

https://redis.io/topics/cluster-spec
https://redis.io/topics/cluster-spec
https://redis.io/topics/cluster-spec

Amazon ElastiCache for Redis User Guide

encryption in-transit in order to enable AUTH. For more details on ElastiCache encryption and
authentication, see ElastiCache in-transit encryption (TLS).

Note

You can use the option --tls with redis-cli to connect to both cluster mode enabled and
disabled encrypted clusters. If a cluster has an AUTH token set, then you can use the option
-a to provide an AUTH password.

In the following examples, be sure to replace cluster-endpoint and port number with the
endpoint of your cluster and your port number. (The default port for Redis is 6379.)

Connect to cluster mode disabled encrypted clusters

The following example connects to an encryption and authentication enabled cluster:

src/redis-cli -h cluster-endpoint --tls -a your-password -p port number

The following example connects to a cluster that has only encryption enabled:

src/redis-cli -h cluster-endpoint --tls -p port number

Connect to cluster mode enabled encrypted clusters

The following example connects to an encryption and authentication enabled cluster:

src/redis-cli -c -h cluster-endpoint --tls -a your-password -p port number

The following example connects to a cluster that has only encryption enabled:

src/redis-cli -c -h cluster-endpoint --tls -p port number

After you connect to the cluster, you can run the Redis commands as shown in the preceding
examples for unencrypted clusters.

Redis-cli alternative

If the cluster isn't cluster mode enabled and you need to make a connection to the cluster for a
short test but without going through the redis-cli compilation, you can use telnet or openssl. In the

Step 4: Connect to the cluster's node API Version 2015-02-02 94

Amazon ElastiCache for Redis User Guide

following example commands, be sure to replace cluster-endpoint and port number with the
endpoint of your cluster and your port number. (The default port for Redis is 6379.)

The following example connects to an encryption and/or authentication enabled cluster mode
disabled cluster:

openssl s_client -connect cluster-endpoint:port number

If the cluster has a password set, first connect to the cluster. After connecting, authenticate the
cluster using the following command, then press the Enter key. In the following example, replace
your-password with the password for your cluster.

Auth your-password

The following example connects to a cluster mode disabled cluster that doesn't have encryption or
authentication enabled:

telnet cluster-endpoint port number

Connect to a Redis cluster or replication group (Windows)

In order to connect to the Redis Cluster from an EC2 Windows instance using the Redis CLI, you
must download the redis-cli package and use redis-cli.exe to connect to the Redis Cluster from an
EC2 Windows instance.

In the following example, you use the redis-cli utility to connect to a cluster that is not encryption
enabled and running Redis. For more information about Redis and available Redis commands, see
Redis commands on the Redis website.

To connect to a Redis cluster that is not encryption-enabled using redis-cli

1. Connect to your Amazon EC2 instance using the connection utility of your choice. For
instructions on how to connect to an Amazon EC2 instance, see the Amazon EC2 Getting
Started Guide.

2. Copy and paste the link https://github.com/microsoftarchive/redis/releases/download/
win-3.0.504/Redis-x64-3.0.504.zip in an Internet browser to download the zip file for the
Redis client from the available release at GitHub https://github.com/microsoftarchive/redis/
releases/tag/win-3.0.504

Step 4: Connect to the cluster's node API Version 2015-02-02 95

http://redis.io/commands
https://docs.aws.amazon.com/AWSEC2/latest/GettingStartedGuide/
https://docs.aws.amazon.com/AWSEC2/latest/GettingStartedGuide/
https://github.com/microsoftarchive/redis/releases/download/win-3.0.504/Redis-x64-3.0.504.zip
https://github.com/microsoftarchive/redis/releases/download/win-3.0.504/Redis-x64-3.0.504.zip
https://github.com/microsoftarchive/redis/releases/tag/win-3.0.504
https://github.com/microsoftarchive/redis/releases/tag/win-3.0.504

Amazon ElastiCache for Redis User Guide

Extract the zip file to you desired folder/path.

Open the Command Prompt and change to the Redis directory and run the command c:
\Redis>redis-cli -h Redis_Cluster_Endpoint -p 6379.

For example:

c:\Redis>redis-cli -h cmd.xxxxxxx.ng.0001.usw2.cache.amazonaws.com -p 6379

3. Run Redis commands.

You are now connected to the cluster and can run Redis commands like the following.

set a "hello" // Set key "a" with a string value and no expiration
OK
get a // Get value for key "a"
"hello"
get b // Get value for key "b" results in miss
(nil)
set b "Good-bye" EX 5 // Set key "b" with a string value and a 5 second expiration
"Good-bye"
get b // Get value for key "b"
"Good-bye"
 // wait >= 5 seconds
get b
(nil) // key has expired, nothing returned
quit // Exit from redis-cli

Step 5: Deleting a cluster

As long as a cluster is in the available state, you are being charged for it, whether or not you are
actively using it. To stop incurring charges, delete the cluster.

Warning

When you delete an ElastiCache for Redis cluster, your manual snapshots are retained. You
can also create a final snapshot before the cluster is deleted. Automatic cache snapshots
are not retained. For more information, see Snapshot and restore.

Step 5: Deleting a cluster API Version 2015-02-02 96

Amazon ElastiCache for Redis User Guide

Using the AWS Management Console

The following procedure deletes a single cluster from your deployment. To delete multiple clusters,
repeat the procedure for each cluster that you want to delete. You do not need to wait for one
cluster to finish deleting before starting the procedure to delete another cluster.

To delete a cluster

1. Sign in to the AWS Management Console and open the Amazon ElastiCache console at https://
console.aws.amazon.com/elasticache/.

2. In the ElastiCache console dashboard, choose Redis.

A list of all caches running Redis appears.

3. To choose the cluster to delete, choose the cluster's name from the list of clusters. In this case,
the name of the cluster you created at Step 2: Create a cluster.

Important

You can only delete one cluster at a time from the ElastiCache console. Choosing
multiple clusters disables the delete operation.

4. For Actions, choose Delete.

5. In the Delete Cluster confirmation screen, type the name of the cluster and choose Final
Backup. Then choose Delete to delete the cluster, or choose Cancel to keep the cluster.

If you chose Delete, the status of the cluster changes to deleting.

As soon as your cluster is no longer listed in the list of clusters, you stop incurring charges for it.

Using the AWS CLI

The following code deletes the cache cluster my-cluster. In this case, substitute my-cluster
with the name of the cluster you created at Step 2: Create a cluster.

aws elasticache delete-cache-cluster --cache-cluster-id my-cluster

The delete-cache-cluster CLI action only deletes one cache cluster. To delete multiple cache
clusters, call delete-cache-cluster for each cache cluster that you want to delete. You do not
need to wait for one cache cluster to finish deleting before deleting another.

Step 5: Deleting a cluster API Version 2015-02-02 97

https://console.aws.amazon.com/elasticache/
https://console.aws.amazon.com/elasticache/

Amazon ElastiCache for Redis User Guide

For Linux, macOS, or Unix:

aws elasticache delete-cache-cluster \
 --cache-cluster-id my-cluster \
 --region us-east-2

For Windows:

aws elasticache delete-cache-cluster ^
 --cache-cluster-id my-cluster ^
 --region us-east-2

For more information, see the AWS CLI for ElastiCache topic delete-cache-cluster.

ElastiCache tutorials and videos

The following tutorials address tasks of interest to the Amazon ElastiCache user.

• ElastiCache Videos

• Tutorial: Configuring a Lambda Function to Access Amazon ElastiCache in an Amazon VPC

Tutorials and videos API Version 2015-02-02 98

https://docs.aws.amazon.com/cli/latest/reference/elasticache/delete-cache-cluster.html
https://docs.aws.amazon.com/lambda/latest/dg/vpc-ec.html

Amazon ElastiCache for Redis User Guide

ElastiCache Videos

Following, you can find videos to help you learn basic and advanced Amazon ElastiCache concepts.
For information about AWS Training, see AWS Training & Certification.

Topics

• Introductory Videos

• Advanced Videos

Introductory Videos

The following videos introduce you to Amazon ElastiCache.

Topics

• AWS re:Invent 2020: What’s new in Amazon ElastiCache

• AWS re:Invent 2019: What’s new in Amazon ElastiCache

• AWS re:Invent 2017: What’s new in Amazon ElastiCache

• DAT204—Building Scalable Applications on AWS NoSQL Services (re:Invent 2015)

• DAT207—Accelerating Application Performance with Amazon ElastiCache (AWS re:Invent 2013)

AWS re:Invent 2020: What’s new in Amazon ElastiCache

AWS re:Invent 2020: What’s new in Amazon ElastiCache

AWS re:Invent 2019: What’s new in Amazon ElastiCache

AWS re:Invent 2019: What’s new in Amazon ElastiCache

AWS re:Invent 2017: What’s new in Amazon ElastiCache

AWS re:Invent 2017: What’s new in Amazon ElastiCache

DAT204—Building Scalable Applications on AWS NoSQL Services (re:Invent 2015)

In this session, we discuss the benefits of NoSQL databases and take a tour of the main NoSQL
services offered by AWS—Amazon DynamoDB and Amazon ElastiCache. Then, we hear from two
leading customers, Expedia and Mapbox, about their use cases and architectural challenges, and

Tutorials and videos API Version 2015-02-02 99

https://aws.amazon.com/training/
https://www.youtube.com/embed/O9mqbIYJXWE
https://www.youtube.com/embed/SaGW_Bln3qA
https://www.youtube.com/embed/wkGn1TzCgnk

Amazon ElastiCache for Redis User Guide

how they addressed them using AWS NoSQL services, including design patterns and best practices.
You should come out of this session having a better understanding of NoSQL and its powerful
capabilities, ready to tackle your database challenges with confidence.

DAT204—Building Scalable Applications on AWS NoSQL Services (re:Invent 2015)

DAT207—Accelerating Application Performance with Amazon ElastiCache (AWS re:Invent 2013)

In this video, learn how you can use Amazon ElastiCache to easily deploy an in-memory caching
system to speed up your application performance. We show you how to use Amazon ElastiCache
to improve your application latency and reduce the load on your database servers. We'll also show
you how to build a caching layer that is easy to manage and scale as your application grows. During
this session, we go over various scenarios and use cases that can benefit by enabling caching, and
discuss the features provided by Amazon ElastiCache.

DAT207 - Accelerating Application Performance with Amazon ElastiCache (re:Invent 2013)

Advanced Videos

The following videos cover more advanced Amazon ElastiCache topics.

Topics

• Design for success with Amazon ElastiCache best practices (re:Invent 2020)

• Supercharge your real-time apps with Amazon ElastiCache (re:Invent 2019)

• Best practices: migrating Redis clusters from Amazon EC2 to ElastiCache (re:Invent 2019)

• Scaling a Fantasy Sports Platform with Amazon ElastiCache & Amazon Aurora STP11 (re:Invent
2018)

• Reliable & Scalable Redis in the Cloud with Amazon ElastiCache (re:Invent 2018)

• ElastiCache Deep Dive: Design Patterns for In-Memory Data Stores (re:Invent 2018)

• DAT305—Amazon ElastiCache Deep Dive (re:Invent 2017)

• DAT306—Amazon ElastiCache Deep Dive (re:Invent 2016)

• DAT317—How IFTTT uses ElastiCache for Redis to Predict Events (re:Invent 2016)

• DAT407—Amazon ElastiCache Deep Dive (re:Invent 2015)

• SDD402—Amazon ElastiCache Deep Dive (re:Invent 2014)

• DAT307—Deep Dive into Amazon ElastiCache Architecture and Design Patterns (re:Invent 2013)

Tutorials and videos API Version 2015-02-02 100

https://www.youtube.com/embed/ie4dWGT76LM
https://www.youtube.com/embed/odMmdPBV8hM

Amazon ElastiCache for Redis User Guide

Design for success with Amazon ElastiCache best practices (re:Invent 2020)

With the explosive growth of business-critical, real-time applications built on Redis, availability,
scalability, and security have become top considerations. Learn best practices for setting up
Amazon ElastiCache for success with online scaling, high availability across Multi-AZ deployments,
and security configurations.

Design for success with Amazon ElastiCache best practices (re:Invent 2020)

Supercharge your real-time apps with Amazon ElastiCache (re:Invent 2019)

With the rapid growth in cloud adoption and the new scenarios that it empowers, applications
need microsecond latency and high throughput to support millions of requests per second.
Developers have traditionally relied on specialized hardware and workarounds, such as disk-based
databases combined with data reduction techniques, to manage data for real-time applications.
These approaches can be expensive and not scalable. Learn how you can boost the performance
of real-time applications by using the fully managed, in-memory Amazon ElastiCache for extreme
performance, high scalability, availability, and security.

Supercharge your real-time apps with Amazon ElastiCache (re:Invent 2019:)

Best practices: migrating Redis clusters from Amazon EC2 to ElastiCache (re:Invent 2019)

Managing Redis clusters on your own can be hard. You have to provision hardware, patch software,
back up data, and monitor workloads constantly. With the newly released Online Migration feature
for Amazon ElastiCache, you can now easily move your data from self-hosted Redis on Amazon EC2
to fully managed Amazon ElastiCache, with cluster mode disabled. In this session, you learn about
the new Online Migration tool, see a demo, and, more importantly, learn hands-on best practices
for a smooth migration to Amazon ElastiCache.

Best practices: migrating Redis clusters from Amazon EC2 to ElastiCache (re:Invent 2019)

Scaling a Fantasy Sports Platform with Amazon ElastiCache & Amazon Aurora STP11 (re:Invent
2018)

Dream11 is India’s leading sports-tech startup. It has a growing base of 40 million+ users playing
multiple sports, including fantasy cricket, football, and basketball, and it currently serves one
million concurrent users, who produce three million requests per minute under a 50-millisecond
response time. In this talk, Dream11 CTO Amit Sharma explains how the company uses Amazon

Tutorials and videos API Version 2015-02-02 101

https://www.youtube.com/embed/_4SkEy6r-C4
https://www.youtube.com/embed/v0GfpL5jfns
https://www.youtube.com/embed/Rpni5uPe0uI

Amazon ElastiCache for Redis User Guide

Aurora and Amazon ElastiCache to handle flash traffic, which can triple within a 30-second
response window. Sharma also talks about scaling transactions without locking, and he shares
the steps for handling flash traffic—thereby serving five million daily active users. Complete Title:
AWS re:Invent 2018: Scaling a Fantasy Sports Platform with Amazon ElastiCache & Amazon Aurora
(STP11)

Scaling a Fantasy Sports Platform with Amazon ElastiCache & Amazon Aurora STP11 (re:Invent
2018)

Reliable & Scalable Redis in the Cloud with Amazon ElastiCache (re:Invent 2018)

This session covers the features and enhancements in our Redis-compatible service, Amazon
ElastiCache for Redis. We cover key features, such as Redis 5, scalability and performance
improvements, security and compliance, and much more. We also discuss upcoming features and
customer case studies.

Reliable & Scalable Redis in the Cloud with Amazon ElastiCache (re:Invent 2018)

ElastiCache Deep Dive: Design Patterns for In-Memory Data Stores (re:Invent 2018)

In this session, we provide a behind the scenes peek to learn about the design and architecture of
Amazon ElastiCache. See common design patterns with our Redis and Memcached offerings and
how customers use them for in-memory data processing to reduce latency and improve application
throughput. We review ElastiCache best practices, design patterns, and anti-patterns.

ElastiCache Deep Dive: Design Patterns for In-Memory Data Stores (re:Invent 2018)

DAT305—Amazon ElastiCache Deep Dive (re:Invent 2017)

Look behind the scenes to learn about Amazon ElastiCache's design and architecture. See common
design patterns with our Memcached and Redis offerings and how customers have used them for
in-memory operations to reduce latency and improve application throughput. During this video, we
review ElastiCache best practices, design patterns, and anti-patterns.

The video introduces the following:

• ElastiCache for Redis online resharding

• ElastiCache security and encryption

• ElastiCache for Redis version 3.2.10

Tutorials and videos API Version 2015-02-02 102

https://www.youtube.com/embed/hIPOLeEjVQY
https://www.youtube.com/embed/hIPOLeEjVQY
https://www.youtube.com/embed/pgXEnAcTNPI
https://www.youtube.com/embed/QxcB53mL_oA

Amazon ElastiCache for Redis User Guide

DAT305—Amazon ElastiCache Deep Dive (re:Invent 2017)

DAT306—Amazon ElastiCache Deep Dive (re:Invent 2016)

Look behind the scenes to learn about Amazon ElastiCache's design and architecture. See common
design patterns with our Memcached and Redis offerings and how customers have used them for
in-memory operations to reduce latency and improve application throughput. During this session,
we review ElastiCache best practices, design patterns, and anti-patterns.

DAT306—Amazon ElastiCache Deep Dive (re:Invent 2016)

DAT317—How IFTTT uses ElastiCache for Redis to Predict Events (re:Invent 2016)

IFTTT is a free service that empowers people to do more with the services they love, from
automating simple tasks to transforming how someone interacts with and controls their home.
IFTTT uses ElastiCache for Redis to store transaction run history and schedule predictions as well
as indexes for log documents on Amazon S3. View this session to learn how the scripting power of
Lua and the data types of Redis allowed people to accomplish something they wouldn't have been
able to elsewhere.

DAT317—How IFTTT uses ElastiCache for Redis to Predict Events (re:Invent 2016)

DAT407—Amazon ElastiCache Deep Dive (re:Invent 2015)

Peek behind the scenes to learn about Amazon ElastiCache's design and architecture. See common
design patterns of our Memcached and Redis offerings and how customers have used them for
in-memory operations and achieved improved latency and throughput for applications. During
this session, we review best practices, design patterns, and anti-patterns related to Amazon
ElastiCache.

DAT407—Amazon ElastiCache Deep Dive (re:Invent 2015)

SDD402—Amazon ElastiCache Deep Dive (re:Invent 2014)

In this video, we examine common caching use cases, the Memcached and Redis engines, patterns
that help you determine which engine is better for your needs, consistent hashing, and more as
means to building fast, scalable applications. Frank Wiebe, Principal Scientist at Adobe, details how
Adobe uses Amazon ElastiCache to improve customer experience and scale their business.

DAT402—Amazon ElastiCache Deep Dive (re:Invent 2014)

Tutorials and videos API Version 2015-02-02 103

https://www.youtube.com/embed/_YYBdsuUq2M
https://www.youtube.com/embed/e9sN15a7utI
https://www.youtube.com/embed/eQbsXN0kcc0
https://www.youtube.com/embed/4VfIINg9DYI
https://www.youtube.com/embed/cEkHBqhQnog

Amazon ElastiCache for Redis User Guide

DAT307—Deep Dive into Amazon ElastiCache Architecture and Design Patterns (re:Invent 2013)

In this video, we examine caching, caching strategies, scaling out, monitoring. We also compare
the Memcached and Redis engines. During this session, also we review best practices and design
patterns related to Amazon ElastiCache.

DAT307 - Deep Dive into Amazon ElastiCache Architecture and Design Patterns (AWS re:Invent
2013).

Where do I go from here?

Now that you have tried the Getting Started exercise, you can explore the following sections to
learn more about ElastiCache and available tools:

• Getting started with AWS

• Tools for Amazon Web Services

• AWS Command Line Interface

• Amazon ElastiCache API reference

After you complete the Getting Started exercise, you can read these sections to learn more about
ElastiCache administration:

• Choosing your node size

You want your cache to be large enough to accommodate all the data you want to cache. At
the same time, you don't want to pay for more cache than you need. Use this topic to help you
choose the best node size.

• ElastiCache best practices and caching strategies

Identify and address issues that can affect the efficiency of your cluster.

Managing nodes

A node is the smallest building block of an Amazon ElastiCache deployment. It is a fixed-size chunk
of secure, network-attached RAM. Each node runs the engine that was chosen when the cluster or
replication group was created or last modified. Each node has its own Domain Name Service (DNS)
name and port. Multiple types of ElastiCache nodes are supported, each with varying amounts of
associated memory and computational power.

Where do I go from here? API Version 2015-02-02 104

https://www.youtube.com/embed/me0Tw13O1H4
https://www.youtube.com/embed/me0Tw13O1H4
https://aws.amazon.com/getting-started/
https://aws.amazon.com/tools/
https://aws.amazon.com/cli/
https://docs.aws.amazon.com/AmazonElastiCache/latest/APIReference/Welcome.html

Amazon ElastiCache for Redis User Guide

Generally speaking, due to its support for sharding, Redis (cluster mode enabled) deployments
have a number of smaller nodes. In contrast, Redis (cluster mode disabled) deployments have
fewer, larger nodes in a cluster. For a more detailed discussion of which node size to use, see
Choosing your node size.

Topics

• Viewing ElastiCache Node Status

• Redis nodes and shards

• Connecting to nodes

• Supported node types

• Rebooting nodes (cluster mode disabled only)

• Replacing nodes

• ElastiCache reserved nodes

• Migrating previous generation nodes

Some important operations involving nodes are the following:

• Adding nodes to a cluster

• Removing nodes from a cluster

• Scaling ElastiCache for Redis

• Finding connection endpoints

Viewing ElastiCache Node Status

Using the ElastiCache console, you can quickly access the status of your ElastiCache node.
The status of an ElastiCache node indicates the health of the node. You can use the following
procedures to view the ElastiCache node status in the Amazon ElastiCache console, the AWS CLI
command, or the API operation.

The possible status values for ElastiCache nodes are in the following table. This table also shows if
you will be billed for the ElastiCache node.

Viewing ElastiCache Node Status API Version 2015-02-02 105

https://console.aws.amazon.com/elasticache/

Amazon ElastiCache for Redis User Guide

Type Billed Description

available Billed The ElastiCache node is
healthy and available.

creating Not billed The ElastiCache node is being
created. The Node is inaccessi
ble while it is being created.

deleting Not billed The ElastiCache node is being
deleted.

modifying Billed The ElastiCache node is
being modified because of a
customer request to modify
the node.

updating Billed An Updating state indicates
one or more of the following
is true of the Amazon
ElastiCache node:

• The ElastiCache node is
being patched as part of
the service udpate. For
more information on the
service updates, refer to
the Amazon ElastiCache
Managed Maintenance and
Service Updates Help Page.

• The VPC security groups are
updating for the ElastiCac
he Cluster.

• The ElastiCache cluster is
being scaled up or scaled
down.

Viewing ElastiCache Node Status API Version 2015-02-02 106

https://aws.amazon.com/elasticache/elasticache-maintenance/
https://aws.amazon.com/elasticache/elasticache-maintenance/
https://aws.amazon.com/elasticache/elasticache-maintenance/
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/scaling-redis-classic.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/scaling-redis-classic.html

Amazon ElastiCache for Redis User Guide

Type Billed Description

• The log delivery configura
tions are being modified for
the ElastiCache Cluster.

• A delete operation for
the ElastiCache node is
pending.

• The ElastiCache for Redis
password is being updated/
rotated using AWS Secrets
Manager.

rebooting cache
cluster nodes

Billed The ElastiCache node is
being rebooted because of
a customer request or an
Amazon ElastiCache process
that requires the rebooting of
the node.

incompatible_param
eters

Not billed Amazon ElastiCache can't
start the node because the
parameters specified in the
node's parameter group aren't
compatible with the node.
Either revert the parameter
changes or make them
compatible with the node to
regain access to your node.
For more information about
the incompatible parameter
s, check the Events list for the
ElastiCache node.

Viewing ElastiCache Node Status API Version 2015-02-02 107

https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/Log_Delivery.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/Log_Delivery.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/User-Secrets-Manager.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/User-Secrets-Manager.html
https://us-east-1.console.aws.amazon.com/elasticache/home?region=us-east-1#/events

Amazon ElastiCache for Redis User Guide

Type Billed Description

incompatible_network Not billed An incompatible-network
state indicates one or more
of the following is true of the
Amazon ElastiCache node:

• There are no available IP
addresses in the subnet
that the ElastiCache node
was launched into.

• The subnet mentioned in
the ElastiCache subnet
group no longer exists in
the Amazon Virtual Private
Cloud (Amazon VPC).

Viewing ElastiCache Node Status API Version 2015-02-02 108

Amazon ElastiCache for Redis User Guide

Type Billed Description

restore_failed Not billed A restore-failed state
indicates one of the following
is true of the Amazon
ElastiCache node:

• Replacements of node
failed due to Insufficient
instance capacity repeatedl
y. This typically happens
when running previous
generation nodes that are
end-of-life. However, it
could also happen with
replacement of current
generation nodes when
AWS does not have enough
on-demand capacity to
fulfill your request in the
 specified Availability Zone.
For more information on
fixing or removing these
nodes, see Migrating
previous generation nodes.

• The specified RDB snapshot
failed to restore.

• The AWS account for the
ElastiCache cluster has
been suspended.

• The node failed and could
not be recovered.

snapshotting Billed ElastiCache is creating a
snapshot of the ElastiCache
for Redis node.

Viewing ElastiCache Node Status API Version 2015-02-02 109

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/troubleshooting-launch.html#troubleshooting-launch-capacity
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/troubleshooting-launch.html#troubleshooting-launch-capacity

Amazon ElastiCache for Redis User Guide

Viewing ElastiCache Node Status with the console

To view the status of an ElastiCache Node with the console:

1. Sign in to the AWS Management Console and open the Amazon ElastiCache console at https://
console.aws.amazon.com/elasticache/.

2. In the navigation pane, choose Redis Clusters or Memcached Clusters. The Caches page
appears with the list of ElastiCache Nodes. For each node, the status value is displayed.

3. You can then navigate to the Service Updates tab for the cache to display the list of service
Updates applicable to the cache.

Viewing ElastiCache Node Status with the AWS CLI

To view ElastiCache node and its status information by using the AWS CLI, use the describe-
cache-cluster command. For example, the following AWS CLI command displays each
ElastiCache node.

aws elasticache describe-cache-clusters

Viewing ElastiCache Node Status through the API

To view the status of the ElastiCache node using the Amazon ElastiCache API, call the
DescribeCacheClusteroperation with the ShowCacheNodeInfo flag to retrieve information
about the individual cache nodes.

Redis nodes and shards

A shard (in the API and CLI, a node group) is a hierarchical arrangement of nodes, each wrapped in
a cluster. Shards support replication. Within a shard, one node functions as the read/write primary
node. All the other nodes in a shard function as read-only replicas of the primary node. Redis
version 3.2 and later support multiple shards within a cluster (in the API and CLI, a replication
group). This support enables partitioning your data in a Redis (cluster mode enabled) cluster.

The following diagram illustrates the differences between a Redis (cluster mode disabled) cluster
and a Redis (cluster mode enabled) cluster.

Redis nodes and shards API Version 2015-02-02 110

https://console.aws.amazon.com/elasticache/
https://console.aws.amazon.com/elasticache/

Amazon ElastiCache for Redis User Guide

Redis (cluster mode enabled) clusters support replication via shards. The API operation
DescribeReplicationGroups (CLI: describe-replication-groups) lists the node groups with the
member nodes, the node's role within the node group, and also other information.

When you create a Redis cluster, you specify whether you want to create a cluster with clustering
enabled. Redis (cluster mode disabled) clusters never have more than one shard, which can be
scaled horizontally by adding (up to a total of five) or deleting read replica nodes. For more
information, see High availability using replication groups, Adding a read replica, for Redis (Cluster
Mode Disabled) replication groups or Deleting a read replica, for Redis (Cluster Mode Disabled)
replication groups . Redis (cluster mode disabled) clusters can also scale vertically by changing
node types. For more information, see Scaling Redis (Cluster Mode Disabled) clusters with replica
nodes.

The node or shard limit can be increased to a maximum of 500 per cluster if the Redis engine
version is 5.0.6 or higher. For example, you can choose to configure a 500 node cluster that ranges
between 83 shards (one primary and 5 replicas per shard) and 500 shards (single primary and
no replicas). Make sure there are enough available IP addresses to accommodate the increase.
Common pitfalls include the subnets in the subnet group have too small a CIDR range or the
subnets are shared and heavily used by other clusters. For more information, see Creating a subnet
group.

For versions below 5.0.6, the limit is 250 per cluster.

Redis nodes and shards API Version 2015-02-02 111

https://docs.aws.amazon.com/AmazonElastiCache/latest/APIReference/API_DescribeReplicationGroups.html
https://docs.aws.amazon.com/cli/latest/reference/elasticache/describe-replication-groups.html

Amazon ElastiCache for Redis User Guide

To request a limit increase, see AWS Service Limits and choose the limit type Nodes per cluster per
instance type.

After a Redis (cluster mode enabled) cluster is created, it can be altered (scaled in or out). For more
information, see Scaling ElastiCache for Redis and Replacing nodes.

When you create a new cluster, you can seed it with data from the old cluster so it doesn't start
out empty. This approach works only if the cluster group has the same number of shards as the old
cluster. Doing this can be helpful if you need change your node type or engine version. For more
information, see Taking manual backups and Restoring from a backup into a new cache.

Redis nodes and shards API Version 2015-02-02 112

https://docs.aws.amazon.com/general/latest/gr/aws_service_limits.html

Amazon ElastiCache for Redis User Guide

Connecting to nodes

Before attempting to connect to the nodes in your Redis cluster, you must have the endpoints for
the nodes. To find the endpoints, see the following:

• Finding a Redis (Cluster Mode Disabled) Cluster's Endpoints (Console)

• Finding Endpoints for a Redis (Cluster Mode Enabled) Cluster (Console)

• Finding Endpoints (AWS CLI)

• Finding Endpoints (ElastiCache API)

In the following example, you use the redis-cli utility to connect to a cluster that is running Redis.

Note

For more information about Redis and available Redis commands, see the http://redis.io/
commands webpage.

To connect to a Redis cluster using the redis-cli

1. Connect to your Amazon EC2 instance using the connection utility of your choice.

Note

For instructions on how to connect to an Amazon EC2 instance, see the Amazon EC2
Getting Started Guide.

2. To build redis-cli, download and install the GNU Compiler Collection (gcc). At the
command prompt of your EC2 instance, enter the following command and enter y at the
confirmation prompt.

sudo yum install gcc

Output similar to the following appears.

Loaded plugins: priorities, security, update-motd, upgrade-helper
Setting up Install Process
Resolving Dependencies

Connecting to nodes API Version 2015-02-02 113

http://redis.io/commands
http://redis.io/commands
https://docs.aws.amazon.com/AWSEC2/latest/GettingStartedGuide/
https://docs.aws.amazon.com/AWSEC2/latest/GettingStartedGuide/

Amazon ElastiCache for Redis User Guide

--> Running transaction check

...(output omitted)...

Total download size: 27 M
Installed size: 53 M
Is this ok [y/N]: y
Downloading Packages:
(1/11): binutils-2.22.52.0.1-10.36.amzn1.x86_64.rpm | 5.2 MB 00:00
(2/11): cpp46-4.6.3-2.67.amzn1.x86_64.rpm | 4.8 MB 00:00
(3/11): gcc-4.6.3-3.10.amzn1.noarch.rpm | 2.8 kB 00:00

...(output omitted)...

Complete!

3. Download and compile the redis-cli utility. This utility is included in the Redis software
distribution. At the command prompt of your EC2 instance, type the following commands:

Note

For Ubuntu systems, before running make, run make distclean.

wget http://download.redis.io/redis-stable.tar.gz
tar xvzf redis-stable.tar.gz
cd redis-stable
make distclean # ubuntu systems only
make

4. At the command prompt of your EC2 instance, type the following command.

src/redis-cli -c -h mycachecluster.eaogs8.0001.usw2.cache.amazonaws.com -p 6379

A Redis command prompt similar to the following appears.

redis mycachecluster.eaogs8.0001.usw2.cache.amazonaws.com 6379>

5. Test the connection by running Redis commands.

Connecting to nodes API Version 2015-02-02 114

Amazon ElastiCache for Redis User Guide

You are now connected to the cluster and can run Redis commands. The following are some
example commands with their Redis responses.

set a "hello" // Set key "a" with a string value and no expiration
OK
get a // Get value for key "a"
"hello"
get b // Get value for key "b" results in miss
(nil)
set b "Good-bye" EX 5 // Set key "b" with a string value and a 5 second expiration
get b
"Good-bye"
 // wait 5 seconds
get b
(nil) // key has expired, nothing returned
quit // Exit from redis-cli

For connecting to nodes or clusters which have Secure Sockets Layer (SSL) encryption (in-transit
enabled), see ElastiCache in-transit encryption (TLS).

Connecting to nodes API Version 2015-02-02 115

Amazon ElastiCache for Redis User Guide

Supported node types

ElastiCache supports the following node types. Generally speaking, the current generation types
provide more memory and computational power at lower cost when compared to their equivalent
previous generation counterparts.

For more information on performance details for each node type, see Amazon EC2 Instance Types.

For information on which node size to use, see Choosing your node size.

Current Generation

For more information on Previous Generation, please refer to Previous Generation Nodes.

Note

Instance types with burstable network performance use a network I/O credit mechanism to
burst beyond their baseline bandwidth on a best-effort basis.

General

Instance type Minimum
supported

Redis version

Enhanced I/O
(Redis 5.0.6+)

TLS Offloadin
g (Redis 6.2.5+)

Enhanced
I/O

Multiplex
ing

(Redis
7.0.4+)

Baseline
bandwidth

(Gbps)

Burst
bandwidth

(Gbps)

cache.m7g.large 6.2 N N N 0.937 12.5

cache.m7g
.xlarge

6.2 Y Y Y 1.876 12.5

cache.m7g
.2xlarge

6.2 Y Y Y 3.75 15

cache.m7g
.4xlarge

6.2 Y Y Y 7.5 15

Supported node types API Version 2015-02-02 116

https://aws.amazon.com/ec2/instance-types/
https://aws.amazon.com/elasticache/previous-generation/

Amazon ElastiCache for Redis User Guide

Instance type Minimum
supported

Redis version

Enhanced I/O
(Redis 5.0.6+)

TLS Offloadin
g (Redis 6.2.5+)

Enhanced
I/O

Multiplex
ing

(Redis
7.0.4+)

Baseline
bandwidth

(Gbps)

Burst
bandwidth

(Gbps)

cache.m7g
.8xlarge

6.2 Y Y Y 15 N/
A

cache.m7g
.12xlarge

6.2 Y Y Y 22.5 N/
A

cache.m7g
.16xlarge

6.2 Y Y Y 30 N/
A

cache.m6g.large 5.0.6 N N N 0.75 10.0

cache.m6g
.xlarge

5.0.6 Y Y Y 1.25 10.0

cache.m6g
.2xlarge

5.0.6 Y Y Y 2.5 10.0

cache.m6g
.4xlarge

5.0.6 Y Y Y 5.0 10.0

cache.m6g
.8xlarge

5.0.6 Y Y Y 12 N/
A

cache.m6g
.12xlarge

5.0.6 Y Y Y 20 N/
A

cache.m6g
.16xlarge

5.0.6 Y Y Y 25 N/
A

cache.m5.large 3.2.4 N N N 0.75 10.0

cache.m5.xlarge 3.2.4 Y N N 1.25 10.0

Supported node types API Version 2015-02-02 117

Amazon ElastiCache for Redis User Guide

Instance type Minimum
supported

Redis version

Enhanced I/O
(Redis 5.0.6+)

TLS Offloadin
g (Redis 6.2.5+)

Enhanced
I/O

Multiplex
ing

(Redis
7.0.4+)

Baseline
bandwidth

(Gbps)

Burst
bandwidth

(Gbps)

cache.m5.
2xlarge

3.2.4 Y Y Y 2.5 10.0

cache.m5.
4xlarge

3.2.4 Y Y Y 5.0 10.0

cache.m5.
12xlarge

3.2.4 Y Y Y 12 N/
A

cache.m5.
24xlarge

3.2.4 Y Y Y 25 N/
A

cache.m4.large 3.2.4 N N N 0.45 1.2

cache.m4.xlarge 3.2.4 Y N N 0.75 2.8

cache.m4.
2xlarge

3.2.4 Y Y Y 1.0 10.0

cache.m4.
4xlarge

3.2.4 Y Y Y 2.0 10.0

cache.m4.
10xlarge

3.2.4 Y Y Y 5.0 10.0

cache.t4g.micro 3.2.4 N N N 0.064 5.0

cache.t4g.small 5.0.6 N N N 0.128 5.0

cache.t4g
.medium

5.0.6 N N N 0.256 5.0

cache.t3.micro 3.2.4 N N N 0.064 5.0

Supported node types API Version 2015-02-02 118

Amazon ElastiCache for Redis User Guide

Instance type Minimum
supported

Redis version

Enhanced I/O
(Redis 5.0.6+)

TLS Offloadin
g (Redis 6.2.5+)

Enhanced
I/O

Multiplex
ing

(Redis
7.0.4+)

Baseline
bandwidth

(Gbps)

Burst
bandwidth

(Gbps)

cache.t3.small 3.2.4 N N N 0.128 5.0

cache.t3.
medium

3.2.4 N N N 0.256 5.0

cache.t2.micro 3.2.4 N N N 0.064 1.024

cache.t2.small 3.2.4 N N N 0.128 1.024

cache.t2.
medium

3.2.4 N N N 0.256 1.024

Memory optimized

Instance type Minimum
supported

Redis version

Enhanced I/O
(Redis 5.0.6+)

TLS Offloadin
g (Redis 6.2.5+)

Enhanced
I/O

Multiplex
ing

(Redis
7.0.4+)

Baseline
bandwidth

(Gbps)

Burst
bandwidth

(Gbps)

cache.r7g.large 6.2 N N N 0.937 12.5

cache.r7g.xlarge 6.2 Y Y Y 1.876 12.5

cache.r7g
.2xlarge

6.2 Y Y Y 3.75 15

cache.r7g
.4xlarge

6.2 Y Y Y 7.5 15

Supported node types API Version 2015-02-02 119

Amazon ElastiCache for Redis User Guide

Instance type Minimum
supported

Redis version

Enhanced I/O
(Redis 5.0.6+)

TLS Offloadin
g (Redis 6.2.5+)

Enhanced
I/O

Multiplex
ing

(Redis
7.0.4+)

Baseline
bandwidth

(Gbps)

Burst
bandwidth

(Gbps)

cache.r7g
.8xlarge

6.2 Y Y Y 15 N/
A

cache.r7g
.12xlarge

6.2 Y Y Y 22.5 N/
A

cache.r7g
.16xlarge

6.2 Y Y Y 30 N/
A

cache.r6g.large 5.0.6 N N N 0.75 10.0

cache.r6g.xlarge 5.0.6 Y Y Y 1.25 10.0

cache.r6g
.2xlarge

5.0.6 Y Y Y 2.5 10.0

cache.r6g
.4xlarge

5.0.6 Y Y Y 5.0 10.0

cache.r6g
.8xlarge

5.0.6 Y Y Y 12 N/
A

cache.r6g
.12xlarge

5.0.6 Y Y Y 20 N/
A

cache.r6g
.16xlarge

5.0.6 Y Y Y 25 N/
A

cache.r5.large 3.2.4 N N N 0.75 10.0

cache.r5.xlarge 3.2.4 Y N N 1.25 10.0

cache.r5.2xlarge 3.2.4 Y Y Y 2.5 10.0

Supported node types API Version 2015-02-02 120

Amazon ElastiCache for Redis User Guide

Instance type Minimum
supported

Redis version

Enhanced I/O
(Redis 5.0.6+)

TLS Offloadin
g (Redis 6.2.5+)

Enhanced
I/O

Multiplex
ing

(Redis
7.0.4+)

Baseline
bandwidth

(Gbps)

Burst
bandwidth

(Gbps)

cache.r5.4xlarge 3.2.4 Y Y Y 5.0 10.0

cache.r5.
12xlarge

3.2.4 Y Y Y 12 N/
A

cache.r5.
24xlarge

3.2.4 Y Y Y 25 N/
A

cache.r4.large 3.2.4 N N N 0.75 10.0

cache.r4.xlarge 3.2.4 Y N N 1.25 10.0

cache.r4.2xlarge 3.2.4 Y Y Y 2.5 10.0

cache.r4.4xlarge 3.2.4 Y Y Y 5.0 10.0

cache.r4.8xlarge 3.2.4 Y Y Y 12 N/
A

cache.r4.
16xlarge

3.2.4 Y Y Y 25 N/
A

Memory optimized with data tiering

Supported node types API Version 2015-02-02 121

Amazon ElastiCache for Redis User Guide

Instance type Minimum
supported

Redis version

Enhanced I/O
(Redis 5.0.6+)

TLS Offloadin
g (Redis 6.2.5+)

Enhanced
I/O

Multiplex
ing

(Redis
7.0.4+)

Baseline
bandwidth

(Gbps)

Burst
bandwidth

(Gbps)

cache.r6g
d.xlarge

6.2.0 Y N N 1.25 10

cache.r6g
d.2xlarge

6.2.0 Y Y Y 2.5 10

cache.r6g
d.4xlarge

6.2.0 Y Y Y 5.0 10

cache.r6g
d.8xlarge

6.2.0 Y Y Y 12 N/
A

cache.r6g
d.12xlarge

6.2.0 Y Y Y 20 N/
A

cache.r6g
d.16xlarge

6.2.0 Y Y Y 25 N/
A

Network optimized

Instance type Minimum
supported

Redis version

Enhanced I/O
(Redis 5.0.6+)

TLS Offloadin
g (Redis 6.2.5+)

Enhanced
I/O

Multiplex
ing

(Redis
7.0.4+)

Baseline
bandwidth

(Gbps)

Burst
bandwidth

(Gbps)

cache.c7gn.large 6.2 N N N 6.25 30

Supported node types API Version 2015-02-02 122

Amazon ElastiCache for Redis User Guide

Instance type Minimum
supported

Redis version

Enhanced I/O
(Redis 5.0.6+)

TLS Offloadin
g (Redis 6.2.5+)

Enhanced
I/O

Multiplex
ing

(Redis
7.0.4+)

Baseline
bandwidth

(Gbps)

Burst
bandwidth

(Gbps)

cache.c7g
n.xlarge

6.2 Y Y Y 12.5 40

cache.c7g
n.2xlarge

6.2 Y Y Y 25 50

cache.c7g
n.4xlarge

6.2 Y Y Y 50 N/
A

cache.c7g
n.8xlarge

6.2 Y Y Y 100 N/
A

cache.c7g
n.12xlarge

6.2 Y Y Y 150 N/
A

cache.c7g
n.16xlarge

6.2 Y Y Y 200 N/
A

Supported node types by AWS Region

Supported node types may vary between AWS Regions. For more details, see Amazon ElastiCache
pricing.

Burstable Performance Instances

You can launch general-purpose burstable T4g, T3-Standard and T2-Standard cache nodes in
Amazon ElastiCache. These nodes provide a baseline level of CPU performance with the ability
to burst CPU usage at any time until the accrued credits are exhausted. A CPU credit provides the
performance of a full CPU core for one minute.

Amazon ElastiCache's T4g, T3 and T2 nodes are configured as standard and suited for workloads
with an average CPU utilization that is consistently below the baseline performance of the

Supported node types API Version 2015-02-02 123

https://aws.amazon.com/elasticache/pricing/
https://aws.amazon.com/elasticache/pricing/

Amazon ElastiCache for Redis User Guide

instance. To burst above the baseline, the node spends credits that it has accrued in its CPU credit
balance. If the node is running low on accrued credits, performance is gradually lowered to the
baseline performance level. This gradual lowering ensures the node doesn't experience a sharp
performance drop-off when its accrued CPU credit balance is depleted. For more information, see
CPU Credits and Baseline Performance for Burstable Performance Instances in the Amazon EC2
User Guide.

The following table lists the burstable performance node types, the rate at which CPU credits
are earned per hour. It also shows the maximum number of earned CPU credits that a node can
accrue and the number of vCPUs per node. In addition, it gives the baseline performance level as a
percentage of a full core performance (using a single vCPU).

Node
type
CPU credits earned per
hour

Maximum
earned
credits

that
can be

 accrued*

vCPUs Baseline
performan

ce per
vCPU

Memory
(GiB)

Network
performan

ce

t4g.micro12 288 2 10% 0.5 Up to 5
Gigabit

t4g.small24 576 2 20% 1.37 Up to 5
Gigabit

t4g.mediu
m
24 576 2 20% 3.09 Up to 5

Gigabit

t3.micro12 288 2 10% 0.5 Up to 5
Gigabit

t3.small24 576 2 20% 1.37 Up to 5
Gigabit

t3.medium24 576 2 20% 3.09 Up to 5
Gigabit

t2.micro6 144 1 10% 0.5 Low to
moderate

Supported node types API Version 2015-02-02 124

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/burstable-credits-baseline-concepts.html

Amazon ElastiCache for Redis User Guide

Node
type
CPU credits earned per
hour

Maximum
earned
credits

that
can be

 accrued*

vCPUs Baseline
performan

ce per
vCPU

Memory
(GiB)

Network
performan

ce

t2.small12 288 1 20% 1.55 Low to
moderate

t2.medium24 576 2 20% 3.22 Low to
moderate

* The number of credits that can be accrued is equivalent to the number of credits that can be
earned in a 24-hour period.

** The baseline performance in the table is per vCPU. Some node sizes that have more than one
vCPU. For these, calculate the baseline CPU utilization for the node by multiplying the vCPU
percentage by the number of vCPUs.

The following CPU credit metrics are available for T3 and T4g burstable performance instances:

Note

These metrics are not available for T2 burstable performance instances.

• CPUCreditUsage

• CPUCreditBalance

For more information on these metrics, see CPU Credit Metrics.

In addition, be aware of these details:

• All current generation node types are created in a virtual private cloud (VPC) based on Amazon
VPC by default.

• Redis append-only files (AOF) aren't supported for T2 instances. Redis configuration variables
appendonly and appendfsync aren't supported on Redis version 2.8.22 and later.

Supported node types API Version 2015-02-02 125

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/viewing_metrics_with_cloudwatch.html#cpu-credit-metrics

Amazon ElastiCache for Redis User Guide

Related Information

• Amazon ElastiCache Product Features and Details

• Redis-specific parameters

• In Transit Encryption (TLS)

Rebooting nodes (cluster mode disabled only)

Some changes require that cluster nodes be rebooted for the changes to be applied. For example,
for some parameters, changing the parameter value in a parameter group is only applied after a
reboot.

For Redis (cluster mode disabled) clusters, those parameters are:

• activerehashing

• databases

You are able to reboot a node using only the ElastiCache console. You can only reboot a single
node at a time. To reboot multiple nodes you must repeat the process for each node.

Redis (Cluster Mode Enabled) parameter changes

If you make changes to the following parameters on a Redis (cluster mode enabled) cluster,
follow the ensuing steps.

• activerehashing

• databases

1. Create a manual backup of your cluster. See Taking manual backups.

2. Delete the Redis (cluster mode enabled) cluster. See Deleting a cluster.

3. Restore the cluster using the altered parameter group and backup to seed the new
cluster. See Restoring from a backup into a new cache.

Changes to other parameters do not require this.

Rebooting nodes (cluster mode disabled only) API Version 2015-02-02 126

https://aws.amazon.com/elasticache/details
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/in-transit-encryption.html

Amazon ElastiCache for Redis User Guide

Using the AWS Management Console

You can reboot a node using the ElastiCache console.

To reboot a node (console)

1. Sign in to the AWS Management Console and open the ElastiCache console at https://
console.aws.amazon.com/elasticache/.

2. From the list in the upper-right corner, choose the AWS Region that applies.

3. In the left navigation pane, choose Redis.

A list of clusters running Redis appears.

4. Choose the cluster under Cluster Name.

5. Under Node name, choose the radio button next to the node you want to reboot.

6. Choose Actions, and then choose Reboot node.

To reboot multiple nodes, repeat steps 2 through 5 for each node that you want to reboot. You do
not need to wait for one node to finish rebooting to reboot another.

Rebooting nodes (cluster mode disabled only) API Version 2015-02-02 127

https://console.aws.amazon.com/elasticache/
https://console.aws.amazon.com/elasticache/

Amazon ElastiCache for Redis User Guide

Replacing nodes

Amazon ElastiCache for Redis frequently upgrades its fleet with patches and upgrades being
applied to instances seamlessly. However, from time to time we need to relaunch your ElastiCache
for Redis nodes to apply mandatory OS updates to the underlying host. These replacements are
required to apply upgrades that strengthen security, reliability, and operational performance.

You have the option to manage these replacements yourself at any time before the scheduled node
replacement window. When you manage a replacement yourself, your instance receives the OS
update when you relaunch the node and your scheduled node replacement is canceled. You might
continue to receive alerts indicating that the node replacement is to take place. If you've already
manually mitigated the need for the maintenance, you can ignore these alerts.

Note

Replacement cache nodes automatically generated by Amazon ElastiCache may have
different IP addresses. You are responsible for reviewing your application configuration to
ensure that your cache nodes are associated with the appropriate IP addresses.

The following list identifies actions you can take when ElastiCache schedules one of your Redis
nodes for replacement. To expedite finding the information you need for your situation, choose
from the following menu.

• Do nothing – Let Amazon ElastiCache replace the node as scheduled.

• Change your maintenance window – Change your maintenance window to a better time.

• Redis (cluster mode enabled) Configurations

• Replace the only node in any Redis cluster – A procedure to replace a node in a Redis cluster
using backup and restore.

• Replace a replica node in any Redis cluster – A procedure to replace a read-replica in any Redis
cluster by increasing and decreasing the replica count with no cluster downtime.

• Replace any node in a Redis (cluster mode enabled) shard – A dynamic procedure with no
cluster downtime to replace a node in a Redis (cluster mode enabled) cluster by scaling out
and scaling in.

• Redis (cluster mode disabled) Configurations

• Replace the only node in any Redis cluster – Procedure to replace any node in a Redis cluster
using backup and restore.

Replacing nodes API Version 2015-02-02 128

Amazon ElastiCache for Redis User Guide

• Replace a replica node in any Redis cluster – A procedure to replace a read-replica in any Redis
cluster by increasing and decreasing the replica count with no cluster downtime.

• Replace a node in a Redis (cluster mode disabled) cluster – Procedure to replace a node in a
Redis (cluster mode disabled) cluster using replication.

• Replace a Redis (cluster mode disabled) read-replica – A procedure to manually replace a read-
replica in a Redis (cluster mode disabled) replication group.

• Replace a Redis (cluster mode disabled) primary node – A procedure to manually replace the
primary node in a Redis (cluster mode disabled) replication group.

Redis node replacement options

• Do nothing – If you do nothing, ElastiCache replaces the node as scheduled.

For non-Cluster configurations with autofailover enabled, clusters on Redis 5.0.6 and above
complete replacement while the cluster continues to stay online and serve incoming write
requests. For auto failover enabled clusters on Redis 4.0.10 or below, you might notice a brief
write interruption of up to a few seconds associated with DNS updates.

If the node is a member of an auto failover enabled cluster, ElastiCache for Redis provides
improved availability during patching, updates, and other maintenance-related node
replacements.

For ElastiCache for Redis Cluster configurations that are set up to use ElastiCache for Redis
Cluster clients, replacement now completes while the cluster serves incoming write requests.

For non-Cluster configurations with autofailover enabled, clusters on Redis 5.0.6 and above
complete replacement while the cluster continues to stay online and serve incoming write
requests. For auto failover enabled clusters on Redis 4.0.10 or below, you might notice a brief
write interruption of up to a few seconds associated with DNS updates.

Replacing nodes API Version 2015-02-02 129

Amazon ElastiCache for Redis User Guide

If the node is standalone, Amazon ElastiCache first launches a replacement node and then syncs
from the existing node. The existing node isn't available for service requests during this time.
Once the sync is complete, the existing node is terminated and the new node takes its place.
ElastiCache makes a best effort to retain your data during this operation.

• Change your maintenance window – For scheduled maintenance events, you receive an email
or a notification event from ElastiCache. In these cases, if you change your maintenance window
before the scheduled replacement time, your node now is replaced at the new time. For more
information, see the following:

• Modifying an ElastiCache cluster

• Modifying a replication group

Note

The ability to change your replacement window by moving your maintenance window
is only available when the ElastiCache notification includes a maintenance window.
If the notification does not include a maintenance window, you cannot change your
replacement window.

For example, let's say it's Thursday, November 9, at 15:00 and the next maintenance window is
Friday, November 10, at 17:00. Following are three scenarios with their outcomes:

• You change your maintenance window to Fridays at 16:00, after the current date and time and
before the next scheduled maintenance window. The node is replaced on Friday, November 10,
at 16:00.

• You change your maintenance window to Saturday at 16:00, after the current date and
time and after the next scheduled maintenance window. The node is replaced on Saturday,
November 11, at 16:00.

• You change your maintenance window to Wednesday at 16:00, earlier in the week than the
current date and time). The node is replaced next Wednesday, November 15, at 16:00.

For instructions, see Managing maintenance.

Replacing nodes API Version 2015-02-02 130

Amazon ElastiCache for Redis User Guide

• Replace the only node in any Redis cluster – If the cluster does not have any read replicas, you
can use the following procedure to replace the node.

To replace the only node using backup and restore

1. Create a snapshot of the node's cluster. For instructions, see Taking manual backups.

2. Create a new cluster seeding it from the snapshot. For instructions, see Restoring from a
backup into a new cache.

3. Delete the cluster with the node scheduled for replacement. For instructions, see Deleting a
cluster.

4. In your application, replace the old node's endpoint with the new node's endpoint.

• Replace a replica node in any Redis cluster – To replace a replica cluster, increase your replica
count. To do this, add a replica then decrease the replica count by removing the replica that you
want to replace. This process is dynamic and doesn't have any cluster downtime.

Note

If your shard or replication group already has five replicas, reverse steps 1 and 2.

To replace a replica in any Redis cluster

1. Increase the replica count by adding a replica to the shard or replication group. For more
information, see Increasing the number of replicas in a shard.

2. Delete the replica you want to replace. For more information, see Decreasing the number of
replicas in a shard.

3. Update the endpoints in your application.

• Replace any node in a Redis (cluster mode enabled) shard – To replace the node in a cluster
with no downtime, use online resharding. First add a shard by scaling out, and then delete the
shard with the node to be replaced by scaling in.

Replacing nodes API Version 2015-02-02 131

Amazon ElastiCache for Redis User Guide

To replace any node in a Redis (cluster mode enabled) cluster

1. Scale out: Add an additional shard with the same configuration as the existing shard with
the node to be replaced. For more information, see Adding shards with online resharding.

2. Scale in: Delete the shard with the node to be replaced. For more information, see Removing
shards with online resharding.

3. Update the endpoints in your application.

• Replace a node in a Redis (cluster mode disabled) cluster – If the cluster is a Redis (cluster
mode disabled) cluster without any read replicas, use the following procedure to replace the
node.

To replace the node using replication (cluster mode disabled only)

1. Add replication to the cluster with the node scheduled for replacement as the primary. Do
not enable Multi-AZ on this cluster. For instructions, see To add replication to a Redis cluster
with no shards.

2. Add a read-replica to the cluster. For instructions, see To add nodes to a cluster (console).

3. Promote the newly created read-replica to primary. For instructions, see Promoting a read
replica to primary, for Redis (cluster mode disabled) replication groups.

4. Delete the node scheduled for replacement. For instructions, see Removing nodes from a
cluster.

5. In your application, replace the old node's endpoint with the new node's endpoint.

• Replace a Redis (cluster mode disabled) read-replica – If the node is a read-replica, replace the
node.

If your cluster has only one replica node and Multi-AZ is enabled, you must disable Multi-AZ
before you can delete the replica. For instructions, see Modifying a replication group.

To replace a Redis (cluster mode disabled) read replica

1. Delete the replica that is scheduled for replacement. For instructions, see the following:

Replacing nodes API Version 2015-02-02 132

Amazon ElastiCache for Redis User Guide

• Decreasing the number of replicas in a shard

• Removing nodes from a cluster

2. Add a new replica to replace the one that is scheduled for replacement. If you use the same
name as the replica you just deleted, you can skip step 3. For instructions, see the following:

• Increasing the number of replicas in a shard

• Adding a read replica, for Redis (Cluster Mode Disabled) replication groups

3. In your application, replace the old replica's endpoint with the new replica's endpoint.

4. If you disabled Multi-AZ at the start, re-enable it now. For instructions, see Enabling Multi-
AZ .

• Replace a Redis (cluster mode disabled) primary node – If the node is the primary node, first
promote a read-replica to primary. Then delete the replica that used to be the primary node.

If your cluster has only one replica and Multi-AZ is enabled, you must disable Multi-AZ before
you can delete the replica in step 2. For instructions, see Modifying a replication group.

To replace a Redis (cluster mode disabled) primary node

1. Promote a read-replica to primary. For instructions, see Promoting a read replica to primary,
for Redis (cluster mode disabled) replication groups.

2. Delete the node that is scheduled for replacement (the old primary). For instructions, see
Removing nodes from a cluster.

3. Add a new replica to replace the one scheduled for replacement. If you use the same name
as the node you just deleted, you can skip changing endpoints in your application.

For instructions, see Adding a read replica, for Redis (Cluster Mode Disabled) replication
groups.

4. In your application, replace the old node's endpoint with the new node's endpoint.

5. If you disabled Multi-AZ at the start, re-enable it now. For instructions, see Enabling Multi-
AZ .

Replacing nodes API Version 2015-02-02 133

Amazon ElastiCache for Redis User Guide

ElastiCache reserved nodes

Reserving one or more nodes might be a way for you to reduce costs. Reserved nodes are charged
an up front fee that depends upon the node type and the length of reservation— one or three
years.

To see if reserved nodes are a cost savings for your use cases, first determine the node size and
number of nodes you need. Then estimate the usage of the node, and compare the total cost to
you of using On-Demand nodes versus reserved nodes. You can mix and match reserved and On-
Demand node usage in your clusters. For pricing information, see Amazon ElastiCache Pricing.

Note

Reserved nodes are not flexible; they only apply to the exact instance type that you reserve.

Managing costs with reserved nodes

Reserving one or more nodes may be a way for you to reduce costs. Reserved nodes are charged an
up front fee that depends upon the node type and the length of reservation—one or three years.
This charge is much less than the hourly usage charge that you incur with On-Demand nodes.

To see if reserved nodes are a cost savings for your use cases, first determine the node size and
number of nodes you need. Then estimate the usage of the node, and compare the total cost to
you using On-Demand nodes versus reserved nodes. You can mix and match reserved and On-
Demand node usage in your clusters. For pricing information, see Amazon ElastiCache Pricing.

AWS Region, node type and term length must be chosen at purchase, and cannot be changed later.

You can use the AWS Management Console, the AWS CLI, or the ElastiCache API to list and
purchase available reserved node offerings.

For more information on reserved nodes, see Amazon ElastiCache Reserved Nodes.

Topics

• Standard reserved node offerings

• Legacy reserved node offerings

• Getting info about reserved node offerings

Reserved nodes API Version 2015-02-02 134

https://aws.amazon.com/elasticache/pricing/
https://aws.amazon.com/elasticache/pricing/
https://aws.amazon.com/elasticache/reserved-cache-nodes/

Amazon ElastiCache for Redis User Guide

• Purchasing a reserved node

• Getting info about your reserved nodes

Standard reserved node offerings

When you purchase a standard reserved node instance (RI) in Amazon ElastiCache, you purchase a
commitment to getting a discounted rate on a specific node instance type and AWS Region for the
duration of the reserved node instance. To use an Amazon ElastiCache reserved node instance, you
create a new ElastiCache node instance, just as you would for an on-demand instance.

The new node instance that you create must exactly match the specifications of the reserved node
instance. If the specifications of the new node instance match an existing reserved node instance
for your account, you are billed at the discounted rate offered for the reserved node instance.
Otherwise, the node instance is billed at an on-demand rate. These standard RIs are available from
R5 and M5 instance families onwards.

Note

All three offering types discussed next are available in one-year and three-year terms.

Offering Types

No Upfront RI provides access to a reserved ElastiCache instance without requiring an upfront
payment. Your No Upfront reserved ElastiCache instance bills a discounted hourly rate for every
hour within the term, regardless of usage.

Partial Upfront RI requires a part of the reserved ElasticCache instance to be paid upfront. The
remaining hours in the term are billed at a discounted hourly rate, regardless of usage. This option
is the replacement for the legacy Heavy Utilization option, which is explained in the next section.

All Upfront RI requires full payment to be made at the start of the RI term. You incur no other
costs for the remainder of the term, regardless of the number of hours used.

Legacy reserved node offerings

There are three levels of legacy node reservations—Heavy Utilization, Medium Utilization, and
Light Utilization. Nodes can be reserved at any utilization level for either one or three years. The
node type, utilization level, and reservation term affect your total costs. Verify the savings that

Reserved nodes API Version 2015-02-02 135

Amazon ElastiCache for Redis User Guide

reserved nodes can provide your business by comparing various models before you purchase
reserved nodes.

Nodes purchased at one utilization level or term cannot be converted to a different utilization level
or term.

Utilization Levels

Heavy Utilization reserved nodes enable workloads that have a consistent baseline of capacity or
run steady-state workloads. Heavy Utilization reserved nodes require a high up-front commitment,
but if you plan to run more than 79 percent of the reserved node term you can earn the largest
savings (up to 70 percent off of the On-Demand price). With Heavy Utilization reserved nodes,
you pay a one-time fee. This is then followed by a lower hourly fee for the duration of the term
regardless of whether your node is running.

Medium Utilization reserved nodes are the best option if you plan to use your reserved nodes a large
amount of the time and you want either a lower one-time fee or to stop paying for your node when
you shut it off. Medium Utilization reserved nodes are a more cost-effective option when you plan
to run more than 40 percent of the reserved nodes term. This option can save you up to 64 percent
off of the On-Demand price. With Medium Utilization reserved nodes, you pay a slightly higher
one-time fee than with Light Utilization reserved nodes, and you receive lower hourly usage rates
when you run a node.

Light Utilization reserved nodes are ideal for periodic workloads that run only a couple of hours
a day or a few days per week. Using Light Utilization reserved nodes, you pay a one-time fee
followed by a discounted hourly usage fee when your node is running. You can start saving when
your node is running more than 17 percent of the reserved node term. You can save up to 56
percent off of the On-Demand rates over the entire term of your reserved node.

Legacy reserved node offerings

Offering Up-front cost Usage fee Advantage

Heavy Utilization Highest Lowest hourly fee.
Applied to the whole
term whether or not
 you're using the
reserved node.

Lowest overall cost if
you plan to run your
reserved nodes more
than 79 percent of a
three-year term.

Reserved nodes API Version 2015-02-02 136

Amazon ElastiCache for Redis User Guide

Offering Up-front cost Usage fee Advantage

Medium Utilization Medium Hourly usage fee
charged for each
hour the node is
running. No hourly
charge when the
node is not running.

Suitable for elastic
workloads or when
you expect moderate
 usage, more than 40
percent of a three-
year term.

Light Utilization Lowest Hourly usage fee
charged for each
hour the node is
running. No hourly
charge when the
node is not running.
Highest hourly fees
 of all the offering
types, but fees
apply only when the
reserved node is
running.

Highest overall cost if
you plan to run all of
the time. However,
this is the lowest
overall cost if you
plan to use your rese
rved node infrequen
tly, more than about
15 percent of a
 three-year term.

On-Demand Use
 (No reserved nodes)

None Highest hourly fee.
Applied whenever the
node is running.

Highest hourly cost.

For more information, see Amazon ElastiCache Pricing.

Reserved nodes API Version 2015-02-02 137

https://aws.amazon.com/elasticache/pricing/

Amazon ElastiCache for Redis User Guide

Getting info about reserved node offerings

Before you purchase reserved nodes, you can get information about available reserved node
offerings.

The following examples show how to get pricing and information about available reserved node
offerings using the AWS Management Console, AWS CLI, and ElastiCache API.

Topics

• Getting info about reserved node offerings (Console)

• Getting info about reserved node offerings (AWS CLI)

• Getting info about reserved node offerings (ElastiCache API)

Getting info about reserved node offerings (Console)

To get pricing and other information about available reserved cluster offerings using the AWS
Management Console, use the following procedure.

To get information about available reserved node offerings

1. Sign in to the AWS Management Console and open the ElastiCache console at https://
console.aws.amazon.com/elasticache/.

2. In the navigation pane, choose Reserved Nodes.

3. Choose Purchase Reserved Node.

4. For Engine, choose Redis.

5. To determine the available offerings, make selections for the following options:

• Node Type

• Term

• Offering Type

After you make these selections, the cost per node and total cost of your selections is shown
under Reservation details.

6. Choose Cancel to avoid purchasing these nodes and incurring charges.

Reserved nodes API Version 2015-02-02 138

https://console.aws.amazon.com/elasticache/
https://console.aws.amazon.com/elasticache/

Amazon ElastiCache for Redis User Guide

Getting info about reserved node offerings (AWS CLI)

To get pricing and other information about available reserved node offerings, type the following
command at a command prompt:

aws elasticache describe-reserved-cache-nodes-offerings

This operation produces output similar to the following (JSON format):

 {
 "ReservedCacheNodesOfferingId": "0xxxxxxxx-xxeb-44ex-xx3c-xxxxxxxx072",
 "CacheNodeType": "cache.xxx.large",
 "Duration": 94608000,
 "FixedPrice": XXXX.X,
 "UsagePrice": X.X,
 "ProductDescription": "redis",
 "OfferingType": "All Upfront",
 "RecurringCharges": [
 {
 "RecurringChargeAmount": X.X,
 "RecurringChargeFrequency": "Hourly"
 }
]
 },
 {
 "ReservedCacheNodesOfferingId": "0xxxxxxxx-xxeb-44ex-xx3c-xxxxxxxx072",
 "CacheNodeType": "cache.xxx.xlarge",
 "Duration": 94608000,
 "FixedPrice": XXXX.X,
 "UsagePrice": X.X,
 "ProductDescription": "redis",
 "OfferingType": "Partial Upfront",
 "RecurringCharges": [
 {
 "RecurringChargeAmount": X.XXX,
 "RecurringChargeFrequency": "Hourly"
 }
]
 },
 {
 "ReservedCacheNodesOfferingId": "0xxxxxxxx-xxeb-44ex-xx3c-xxxxxxxx072",
 "CacheNodeType": "cache.xxx.large",
 "Duration": 31536000,

Reserved nodes API Version 2015-02-02 139

Amazon ElastiCache for Redis User Guide

 "FixedPrice": X.X,
 "UsagePrice": X.X,
 "ProductDescription": "redis",
 "OfferingType": "No Upfront",
 "RecurringCharges": [
 {
 "RecurringChargeAmount": X.XXX,
 "RecurringChargeFrequency": "Hourly"
 }
]
}

For more information, see describe-reserved-cache-nodes-offerings in the AWS CLI Reference.

Getting info about reserved node offerings (ElastiCache API)

To get pricing and information about available reserved node offerings, call the
DescribeReservedCacheNodesOfferings action.

Example

https://elasticache.us-west-2.amazonaws.com/
 ?Action=DescribeReservedCacheNodesOfferings
 &Version=2014-12-01
 &SignatureVersion=4
 &SignatureMethod=HmacSHA256
 &Timestamp=20141201T220302Z
 &X-Amz-Algorithm
 &X-Amz-SignedHeaders=Host
 &X-Amz-Expires=20141201T220302Z
 &X-Amz-Credential=<credential>
 &X-Amz-Signature=<signature>

For more information, see DescribeReservedCacheNodesOfferings in the ElastiCache API Reference.

Reserved nodes API Version 2015-02-02 140

https://docs.aws.amazon.com/cli/latest/reference/elasticache/describe-reserved-cache-nodes-offerings.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/APIReference/API_DescribeReservedCacheNodesOfferings.html

Amazon ElastiCache for Redis User Guide

Purchasing a reserved node

The following examples show how to purchase a reserved node offering using the AWS
Management Console, the AWS CLI, and the ElastiCache API.

Important

Following the examples in this section incurs charges on your AWS account that you can't
reverse.

Topics

• Purchasing a reserved node (Console)

• Purchasing a reserved node (AWS CLI)

• Purchasing a reserved node (ElastiCache API)

Purchasing a reserved node (Console)

This example shows purchasing a specific reserved node offering, 649fd0c8-cf6d-47a0-
bfa6-060f8e75e95f, with a reserved node ID of myreservationID.

The following procedure uses the AWS Management Console to purchase the reserved node
offering by offering id.

To purchase reserved nodes

1. Sign in to the AWS Management Console and open the ElastiCache console at https://
console.aws.amazon.com/elasticache/.

2. In the navigation list, choose the Reserved Nodes link.

3. Choose the Purchase reserved nodes button.

4. For Engine, choose Redis.

5. To determine the available offerings, make selections for the following options:

• Node Type

• Term

• Offering Type

• An optional Reserved node ID

Reserved nodes API Version 2015-02-02 141

https://console.aws.amazon.com/elasticache/
https://console.aws.amazon.com/elasticache/

Amazon ElastiCache for Redis User Guide

After you make these selections, the cost per node and total cost of your selections is shown
under Reservation details.

6. Choose Purchase.

Purchasing a reserved node (AWS CLI)

The following example shows purchasing the specific reserved cluster offering, 649fd0c8-
cf6d-47a0-bfa6-060f8e75e95f, with a reserved node ID of myreservationID.

Type the following command at a command prompt:

For Linux, macOS, or Unix:

aws elasticache purchase-reserved-cache-nodes-offering \
 --reserved-cache-nodes-offering-id 649fd0c8-cf6d-47a0-bfa6-060f8e75e95f \
 --reserved-cache-node-id myreservationID

For Windows:

aws elasticache purchase-reserved-cache-nodes-offering ^
 --reserved-cache-nodes-offering-id 649fd0c8-cf6d-47a0-bfa6-060f8e75e95f ^
 --reserved-cache-node-id myreservationID

The command returns output similar to the following:

RESERVATION ReservationId Class Start Time Duration
 Fixed Price Usage Price Count State Description Offering Type
RESERVATION myreservationid cache.xx.small 2013-12-19T00:30:23.247Z 1y
 XXX.XX USD X.XXX USD 1 payment-pending memcached Medium Utilization

For more information, see purchase-reserved-cache-nodes-offering in the AWS CLI Reference.

Purchasing a reserved node (ElastiCache API)

The following example shows purchasing the specific reserved node offering, 649fd0c8-cf6d-47a0-
bfa6-060f8e75e95f, with a reserved cluster ID of myreservationID.

Call the PurchaseReservedCacheNodesOffering operation with the following parameters:

Reserved nodes API Version 2015-02-02 142

https://docs.aws.amazon.com/cli/latest/reference/elasticache/purchase-reserved-cache-nodes-offering.html

Amazon ElastiCache for Redis User Guide

• ReservedCacheNodesOfferingId = 649fd0c8-cf6d-47a0-bfa6-060f8e75e95f

• ReservedCacheNodeID = myreservationID

• CacheNodeCount = 1

Example

https://elasticache.us-west-2.amazonaws.com/
 ?Action=PurchaseReservedCacheNodesOffering
 &ReservedCacheNodesOfferingId=649fd0c8-cf6d-47a0-bfa6-060f8e75e95f
 &ReservedCacheNodeID=myreservationID
 &CacheNodeCount=1
 &SignatureVersion=4
 &SignatureMethod=HmacSHA256
 &Timestamp=20141201T220302Z
 &X-Amz-Algorithm=&AWS;4-HMAC-SHA256
 &X-Amz-Date=20141201T220302Z
 &X-Amz-SignedHeaders=Host
 &X-Amz-Expires=20141201T220302Z
 &X-Amz-Credential=<credential>
 &X-Amz-Signature=<signature>

For more information, see PurchaseReservedCacheNodesOffering in the ElastiCache API Reference.

Reserved nodes API Version 2015-02-02 143

https://docs.aws.amazon.com/AmazonElastiCache/latest/APIReference/API_PurchaseReservedCacheNodesOffering.html

Amazon ElastiCache for Redis User Guide

Getting info about your reserved nodes

You can get information about the reserved nodes you've purchased using the AWS Management
Console, the AWS CLI, and the ElastiCache API.

Topics

• Getting info about your reserved nodes (Console)

• Getting info about your reserved nodes (AWS CLI)

• Getting info about your reserved nodes (ElastiCache API)

Getting info about your reserved nodes (Console)

The following procedure describes how to use the AWS Management Console to get information
about the reserved nodes you purchased.

To get information about your purchased reserved nodes

1. Sign in to the AWS Management Console and open the ElastiCache console at https://
console.aws.amazon.com/elasticache/.

2. In the navigation list, choose the Reserved nodes link.

The reserved nodes for your account appear in the Reserved nodes list. You can choose any of
the reserved nodes in the list to see detailed information about the reserved node in the detail
pane at the bottom of the console.

Getting info about your reserved nodes (AWS CLI)

To get information about reserved nodes for your AWS account, type the following command at a
command prompt:

aws elasticache describe-reserved-cache-nodes

This operation produces output similar to the following (JSON format):

{
 "ReservedCacheNodeId": "myreservationid",
 "ReservedCacheNodesOfferingId": "649fd0c8-cf6d-47a0-bfa6-060f8e75e95f",
 "CacheNodeType": "cache.xx.small",
 "DataTiering": "disabled",

Reserved nodes API Version 2015-02-02 144

https://console.aws.amazon.com/elasticache/
https://console.aws.amazon.com/elasticache/

Amazon ElastiCache for Redis User Guide

 "Duration": "31536000",
 "ProductDescription": "memcached",
 "OfferingType": "Medium Utilization",
 "MaxRecords": 0
}

For more information, see describe--reserved-cache-nodes in the AWS CLI Reference.

Getting info about your reserved nodes (ElastiCache API)

To get information about reserved nodes for your AWS account, call the
DescribeReservedCacheNodes operation.

Example

https://elasticache.us-west-2.amazonaws.com/
 ?Action=DescribeReservedCacheNodes
 &Version=2014-12-01
 &SignatureVersion=4
 &SignatureMethod=HmacSHA256
 &Timestamp=20141201T220302Z
 &X-Amz-Algorithm=&AWS;4-HMAC-SHA256
 &X-Amz-Date=20141201T220302Z
 &X-Amz-SignedHeaders=Host
 &X-Amz-Expires=20141201T220302Z
 &X-Amz-Credential=<credential>
 &X-Amz-Signature=<signature>

For more information, see DescribeReservedCacheNodes in the ElastiCache API Reference.

Migrating previous generation nodes

Previous generation nodes are node types that are being phased out. If you have no existing
clusters using a previous generation node type, ElastiCache does not support the creation of new
clusters with that node type.

Due to the limited amount of previous generation node types, we cannot guarantee a successful
replacement when a node becomes unhealthy in your cluster(s). In such a scenario, your cluster
availability may be negatively impacted.

We recommend that you migrate your cluster(s) to a new node type for better availability and
performance. For a recommended node type to migrate to, see Upgrade Paths. For a full list of

Migrating previous generation nodes API Version 2015-02-02 145

https://docs.aws.amazon.com/cli/latest/reference/elasticache/describe-reserved-cache-nodes.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/APIReference/API_DescribeReservedCacheNodes.html
https://aws.amazon.com/ec2/previous-generation/

Amazon ElastiCache for Redis User Guide

supported node types and previous generation node types in ElastiCache, see Supported node
types.

Migrating nodes on a Redis cluster

The following procedure describes how to migrate your Redis cluster node type using the
ElastiCache Console. During this process, your Redis cluster will continue to serve requests
with minimal downtime. Depending on your cluster configuration you may see the following
downtimes. The following are estimates and may differ based on your specific configurations:

• Cluster mode disabled (single node) may see approximately 60 seconds, primarily due to DNS
propagation.

• Cluster mode disabled (with replica node) may see approximately 1 second for clusters running
Redis 5.0.6 and above. All lower version can experience approximately 10 seconds.

• Cluster mode enabled may see approximately 1 second.

To modify a Redis cluster node type using the console:

1. Sign in to the Console and open the ElastiCache console at https://console.aws.amazon.com/
elasticache/.

2. From the navigation pane, choose Redis clusters.

3. From the list of clusters, choose the cluster you want to migrate.

4. Choose Actions and then choose Modify.

5. Choose the new node type from the node type list.

6. If you want to perform the migration process right away, choose Apply immediately. If Apply
immediately is not chosen, the migration process is performed during the cluster's next
maintenance window.

7. Choose Modify. If you chose Apply immediately in the previous step, the cluster's status
changes to modifying. When the status changes to available, the modification is complete
and you can begin using the new cluster.

To modify a Redis cluster node type using the AWS CLI:

Use the modify-replication-group API as shown following:

For Linux, macOS, or Unix:

Migrating previous generation nodes API Version 2015-02-02 146

https://console.aws.amazon.com/elasticache/home
https://console.aws.amazon.com/elasticache/home
https://docs.aws.amazon.com/cli/latest/reference/elasticache/modify-replication-group.html

Amazon ElastiCache for Redis User Guide

aws elasticache modify-replication-group /
 --replication-group-id my-replication-group /
 --cache-node-type new-node-type /
 --apply-immediately

For Windows:

aws elasticache modify-replication-group ^
 --replication-group-id my-replication-group ^
 --cache-node-type new-node-type ^
 --apply-immediately

In this scenario, the value of new-node-type is the node type you are migrating to. By passing the
--apply-immediately parameter, the update will be applied immediately when the replication
group transitions from modifying to available status. If Apply immediately is not chosen, the
migration process is performed during the cluster's next maintenance window.

Note

If you are unable to modify the cluster with an InvalidCacheClusterState error, you
need to remove a restore-failed node first.

Fixing or removing restore-failed-node(s)

The following procedure describes how to fix or remove restore-failed node(s) from your Redis
cluster. To learn more on how ElastiCache node(s) enter a restore-failed state, see Viewing
ElastiCache Node Status. We recommend first removing any nodes in a restore-failed state,
then migrating the remaining previous generation nodes in the ElastiCache cluster to a newer
generation node type, and finally adding back the required number of nodes.

To remove restore-failed node (console):

1. Sign in to the Console and open the ElastiCache console at https://console.aws.amazon.com/
elasticache/.

2. From the navigation pane, choose Redis clusters.

Migrating previous generation nodes API Version 2015-02-02 147

https://console.aws.amazon.com/elasticache/home
https://console.aws.amazon.com/elasticache/home

Amazon ElastiCache for Redis User Guide

3. From the list of clusters, choose the cluster you want to remove a node from.

4. From the list of shards, choose the shard you want to remove a node from. Skip this step if
cluster mode is disabled for the cluster.

5. From the list of nodes, choose the node with a status of restore-failed.

6. Choose Actions and then choose Delete node.

Once you remove the restore-failed node(s) from your ElastiCache cluster, you can now migrate to
a newer generation type. For more information, see above on Migrating nodes on a Redis cluster.

To add back nodes to your ElastiCache cluster, see Adding nodes to a cluster.

Managing clusters

A cluster is a collection of one or more cache nodes, all of which run an instance of the Redis cache
engine software. When you create a cluster, you specify the engine and version for all of the nodes
to use.

The following diagram illustrates a typical Redis cluster. Redis clusters can contain a single node or
up to six nodes inside a shard (API/CLI: node group), A single-node Redis (cluster mode disabled)
cluster has no shard, and a multi-node Redis (cluster mode disabled) cluster has a single shard.
Redis (cluster mode enabled) clusters can have up to 500 shards, with your data partitioned across
the shards. The node or shard limit can be increased to a maximum of 500 per cluster if the Redis
engine version is 5.0.6 or higher. For example, you can choose to configure a 500 node cluster that
ranges between 83 shards (one primary and 5 replicas per shard) and 500 shards (single primary
and no replicas). Make sure there are enough available IP addresses to accommodate the increase.
Common pitfalls include the subnets in the subnet group have too small a CIDR range or the
subnets are shared and heavily used by other clusters. For more information, see Creating a subnet
group. For versions below 5.0.6, the limit is 250 per cluster.

To request a limit increase, see AWS Service Limits and choose the limit type Nodes per cluster per
instance type.

When you have multiple nodes in a shard, one of the nodes is a read/write primary node. All other
nodes in the shard are read-only replicas.

Typical Redis clusters look as follows.

Managing clusters API Version 2015-02-02 148

https://docs.aws.amazon.com/general/latest/gr/aws_service_limits.html

Amazon ElastiCache for Redis User Guide

Most ElastiCache operations are performed at the cluster level. You can set up a cluster with a
specific number of nodes and a parameter group that controls the properties for each node. All
nodes within a cluster are designed to be of the same node type and have the same parameter and
security group settings.

Every cluster must have a cluster identifier. The cluster identifier is a customer-supplied name for
the cluster. This identifier specifies a particular cluster when interacting with the ElastiCache API
and AWS CLI commands. The cluster identifier must be unique for that customer in an AWS Region.

ElastiCache supports multiple engine versions. Unless you have specific reasons, we recommend
using the latest version.

ElastiCache clusters are designed to be accessed using an Amazon EC2 instance. If you launch your
cluster in a virtual private cloud (VPC) based on the Amazon VPC service, you can access it from
outside AWS. For more information, see Accessing ElastiCache resources from outside AWS.

For a list of supported Redis versions, see Supported ElastiCache for Redis versions.

Managing clusters API Version 2015-02-02 149

Amazon ElastiCache for Redis User Guide

Choosing a network type

ElastiCache supports the Internet Protocol versions 4 and 6 (IPv4 and IPv6), allowing you to
configure your cluster to accept:

• only IPv4 connections,

• only IPv6 connections,

• both IPv4 and IPv6 connections (dual-stack)

IPv6 is supported for workloads using Redis engine version 6.2 onward on all instances built on the
Nitro system. There are no additional charges for accessing ElastiCache over IPv6.

Note

Migration of clusters created prior to the availability of IPV6 / dual-stack is not supported.
Switching between network types on newly created clusters is also not supported.

Configuring subnets for network type

If you create a cluster in an Amazon VPC, you must specify a subnet group. ElastiCache uses that
subnet group to choose a subnet and IP addresses within that subnet to associate with your nodes.
ElastiCache clusters require a dual-stack subnet with both IPv4 and IPv6 addresses assigned to
them to operate in dual-stack mode and an IPv6-only subnet to operate as IPv6-only.

Using dual-stack

When using ElastiCache for Redis in cluster mode enabled, from an application's perspective,
connecting to all the cluster nodes through the configuration endpoint is no different than
connecting directly to an individual cache node. To achieve this, a cluster-aware client must engage
in a cluster discovery process and request the configuration information for all nodes. Redis'
discovery protocol supports only one IP per node.

To maintain backwards compatibility with all existing clients, IP discovery is introduced, which
allows you to select the IP type (i.e., IPv4 or IPv6) to advertise in the discovery protocol. While this
limits auto discovery to only one IP type, dual-stack is still beneficial for cluster mode enabled
workloads, as it enables migrations (or rollbacks) from an IPv4 to an IPv6 Discovery IP type with no
downtime.

Choosing a network type API Version 2015-02-02 150

https://aws.amazon.com/ec2/nitro/

Amazon ElastiCache for Redis User Guide

TLS enabled dual stack ElastiCache clusters

When TLS is enabled for ElastiCache clusters the cluster discovery functions (cluster slots,
cluster shards, and cluster nodes) return hostnames instead of IPs. The hostnames are
then used instead of IPs to connect to the ElastiCache cluster and perform a TLS handshake. This
means that clients won’t be affected by the IP Discovery parameter. For TLS enabled clusters the IP
Discovery parameter has no effect on the preferred IP protocol. Instead, the IP protocol used will be
determined by which IP protocol the client prefers when resolving DNS hostnames.

For examples on how to configure an IP protocol preference when resolving DNS hostnames, see
TLS enabled dual stack ElastiCache clusters.

Using the AWS Management Console

When creating a cluster using the AWS Management Console, under Connectivity, choose a
network type, either IPv4, IPv6 or Dual stack. If you are creating a Redis (cluster mode enabled)
cluster and choose dual stack, you then must select a Discovery IP type, either IPv6 or IPv4.

For more information, see Creating a Redis (cluster mode enabled) cluster (Console) or Creating a
Redis (cluster mode disabled) (Console).

When creating a replication group using the AWS Management Console, choose a network type,
either IPv4, IPv6 or Dual stack. If you choose dual stack, you then must select a Discovery IP type,
either IPv6 or IPv4.

For more information, see Creating a Redis (Cluster Mode Disabled) replication group from scratch
or Creating a replication group in Redis (Cluster Mode Enabled) from scratch.

Using the CLI

When creating a cache cluster using the CLI, you use the create-cache-cluster command and specify
the NetworkType and IPDiscovery parameters:

For Linux, macOS, or Unix:

aws elasticache create-cache-cluster \
 --cache-cluster-id "cluster-test" \
 --engine redis \
 --cache-node-type cache.m5.large \
 --num-cache-nodes 1 \
 --network-type dual_stack \
 --ip-discovery ipv4

Choosing a network type API Version 2015-02-02 151

https://docs.aws.amazon.com/cli/latest/reference/elasticache/create-cache-cluster.html

Amazon ElastiCache for Redis User Guide

For Windows:

aws elasticache create-cache-cluster ^
 --cache-cluster-id "cluster-test" ^
 --engine redis ^
 --cache-node-type cache.m5.large ^
 --num-cache-nodes 1 ^
 --network-type dual_stack ^
 --ip-discovery ipv4

When creating a replication group with cluster mode disabled using the CLI, you use the create-
replication-group command and specify the NetworkType and IPDiscovery parameters:

For Linux, macOS, or Unix:

aws elasticache create-replication-group \
 --replication-group-id sample-repl-group \
 --replication-group-description "demo cluster with replicas" \
 --num-cache-clusters 3 \
 --primary-cluster-id redis01 \
 --network-type dual_stack \
 --ip-discovery ipv4

For Windows:

aws elasticache create-replication-group ^
 --replication-group-id sample-repl-group ^
 --replication-group-description "demo cluster with replicas" ^
 --num-cache-clusters 3 ^
 --primary-cluster-id redis01 ^
 --network-type dual_stack ^
 --ip-discovery ipv4

When creating a replication group with cluster mode enabled and use IPv4 for IP discovery using
the CLI, you use the create-replication-group command and specify the NetworkType and
IPDiscovery parameters:

For Linux, macOS, or Unix:

Choosing a network type API Version 2015-02-02 152

https://docs.aws.amazon.com/cli/latest/reference/elasticache/create-replication-group.html
https://docs.aws.amazon.com/cli/latest/reference/elasticache/create-replication-group.html
https://docs.aws.amazon.com/cli/latest/reference/elasticache/create-replication-group.html

Amazon ElastiCache for Redis User Guide

aws elasticache create-replication-group \
 --replication-group-id demo-cluster \
 --replication-group-description "demo cluster" \
 --cache-node-type cache.m5.large \
 --num-node-groups 2 \
 --engine redis \
 --cache-subnet-group-name xyz \
 --network-type dual_stack \
 --ip-discovery ipv4 \
 --region us-east-1

For Windows:

aws elasticache create-replication-group ^
 --replication-group-id demo-cluster ^
 --replication-group-description "demo cluster" ^
 --cache-node-type cache.m5.large ^
 --num-node-groups 2 ^
 --engine redis ^
 --cache-subnet-group-name xyz ^
 --network-type dual_stack ^
 --ip-discovery ipv4 ^
 --region us-east-1

When creating a replication group with cluster mode enabled and use IPv6 for IP discovery using
the CLI, you use the create-replication-group command and specify the NetworkType and
IPDiscovery parameters:

For Linux, macOS, or Unix:

aws elasticache create-replication-group \
 --replication-group-id demo-cluster \
 --replication-group-description "demo cluster" \
 --cache-node-type cache.m5.large \
 --num-node-groups 2 \
 --engine redis \
 --cache-subnet-group-name xyz \
 --network-type dual_stack \
 --ip-discovery ipv6 \
 --region us-east-1

For Windows:

Choosing a network type API Version 2015-02-02 153

https://docs.aws.amazon.com/cli/latest/reference/elasticache/create-replication-group.html

Amazon ElastiCache for Redis User Guide

aws elasticache create-replication-group ^
 --replication-group-id demo-cluster ^
 --replication-group-description "demo cluster" ^
 --cache-node-type cache.m5.large ^
 --num-node-groups 2 ^
 --engine redis ^
 --cache-subnet-group-name xyz ^
 --network-type dual_stack ^
 --ip-discovery ipv6 ^
 --region us-east-1

Data tiering

Clusters that comprise a replication group and use a node type from the r6gd family have their
data tiered between memory and local SSD (solid state drives) storage. Data tiering provides a new
price-performance option for Redis workloads by utilizing lower-cost solid state drives (SSDs) in
each cluster node in addition to storing data in memory. It is ideal for workloads that access up
to 20 percent of their overall dataset regularly, and for applications that can tolerate additional
latency when accessing data on SSD.

On clusters with data tiering, ElastiCache monitors the last access time of every item it stores.
When available memory (DRAM) is fully consumed, ElastiCache uses a least-recently used (LRU)
algorithm to automatically move infrequently accessed items from memory to SSD. When data
on SSD is subsequently accessed, ElastiCache automatically and asynchronously moves it back to
memory before processing the request. If you have a workload that accesses only a subset of its
data regularly, data tiering is an optimal way to scale your capacity cost-effectively.

Note that when using data tiering, keys themselves always remain in memory, while the LRU
governs the placement of values on memory vs. disk. In general, we recommend that your key sizes
are smaller than your value sizes when using data tiering.

Data tiering is designed to have minimal performance impact to application workloads. For
example, assuming 500-byte String values, you can expect an additional 300 microseconds of
latency on average for requests to data stored on SSD compared to requests to data in memory.

With the largest data tiering node size (cache.r6gd.16xlarge), you can store up to 1 petabyte in
a single 500-node cluster (500 TB when using 1 read replica). Data tiering is compatible with all
Redis commands and data structures supported in ElastiCache. You don't need any client-side
changes to use this feature.

Data tiering API Version 2015-02-02 154

Amazon ElastiCache for Redis User Guide

Topics

• Best practices

• Limitations

• Pricing

• Monitoring

• Using data tiering

• Restoring data from backup into clusters with data tiering enabled

Best practices

We recommend the following best practices:

• Data tiering is ideal for workloads that access up to 20 percent of their overall dataset regularly,
and for applications that can tolerate additional latency when accessing data on SSD.

• When using SSD capacity available on data-tiered nodes, we recommend that value size be larger
than the key size. When items are moved between DRAM and SSD, keys will always remain in
memory and only the values are moved to the SSD tier.

Limitations

Data tiering has the following limitations:

• You can only use data tiering on clusters that are part of a replication group.

• The node type you use must be from the r6gd family, which is available in the following regions:
us-east-2, us-east-1, us-west-2, us-west-1, eu-west-1, eu-central-1, eu-north-1,
eu-west-3, ap-northeast-1, ap-southeast-1, ap-southeast-2, ap-south-1, ca-
central-1 and sa-east-1.

• You must use the Redis 6.2 or later engine.

• You cannot restore a backup of an r6gd cluster into another cluster unless it also uses r6gd.

• You cannot export a backup to Amazon S3 for data-tiering clusters.

• Online migration is not supported for clusters running on the r6gd node type.

• Scaling is not supported from a data tiering cluster (for example, a cluster using an r6gd node
type) to a cluster that does not use data tiering (for example, a cluster using an r6g node type).
For more information, see Scaling ElastiCache for Redis .

Data tiering API Version 2015-02-02 155

Amazon ElastiCache for Redis User Guide

• Auto scaling is supported on clusters using data tiering for Redis version 7.0.7 and later. For more
information, see Auto Scaling ElastiCache for Redis clusters

• Data tiering only supports volatile-lru, allkeys-lru, volatile-lfu, allkeys-lfu and
noeviction maxmemory policies.

• Forkless save is supported for Redis version 7.0.7 and later. For more information, see How
synchronization and backup are implemented.

• Items larger than 128 MiB are not moved to SSD.

Pricing

R6gd nodes have 4.8x more total capacity (memory + SSD) and can help you achieve over 60
percent savings when running at maximum utilization compared to R6g nodes (memory only). For
more information, see ElastiCache pricing.

Monitoring

ElastiCache for Redis offers metrics designed specifically to monitor the performance clusters
that use data tiering. To monitor the ratio of items in DRAM compared to SSD, you can use the
CurrItems metric at Metrics for Redis. You can calculate the percentage as: (CurrItems with
Dimension: Tier = Memory * 100) / (CurrItems with no dimension filter). When the percentage of
items in memory decreases below 5 percent, we recommend that you consider scale out for Cluster
Mode Enabled clusters or scale up for Cluster Mode disabled clusters . For more information, see
Metrics for Redis clusters that use data tiering at Metrics for Redis.

Using data tiering

Using data tiering using the AWS Management Console

When creating a cluster as part of a replication group, you use data tiering by selecting a node type
from the r6gd family, such as cache.r6gd.xlarge. Selecting that node type automatically enables
data tiering.

For more information on creating a cluster, see Creating a cluster.

Enabling data tiering using the AWS CLI

When creating a replication group using the AWS CLI, you use data tiering by selecting a node
type from the r6gd family, such as cache.r6gd.xlarge and setting the --data-tiering-enabled
parameter.

Data tiering API Version 2015-02-02 156

https://aws.amazon.com/elasticache/pricing/
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/CacheMetrics.Redis.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/scaling-redis-cluster-mode-enabled.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/scaling-redis-cluster-mode-enabled.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/scaling-redis-cluster-mode-enabled.html

Amazon ElastiCache for Redis User Guide

You cannot opt out of data tiering when selecting a node type from the r6gd family. If you set the
--no-data-tiering-enabled parameter, the operation will fail.

For Linux, macOS, or Unix:

aws elasticache create-replication-group \
 --replication-group-id redis-dt-cluster \
 --replication-group-description "Redis cluster with data tiering" \
 --num-node-groups 1 \
 --replicas-per-node-group 1 \
 --cache-node-type cache.r6gd.xlarge \
 --engine redis \
 --cache-subnet-group-name default \
 --automatic-failover-enabled \
 --data-tiering-enabled

For Windows:

aws elasticache create-replication-group ^
 --replication-group-id redis-dt-cluster ^
 --replication-group-description "Redis cluster with data tiering" ^
 --num-node-groups 1 ^
 --replicas-per-node-group 1 ^
 --cache-node-type cache.r6gd.xlarge ^
 --engine redis ^
 --cache-subnet-group-name default ^
 --automatic-failover-enabled ^
 --data-tiering-enabled

After running this operation, you will see a response similar to the following:

{
 "ReplicationGroup": {
 "ReplicationGroupId": "redis-dt-cluster",
 "Description": "Redis cluster with data tiering",
 "Status": "creating",
 "PendingModifiedValues": {},
 "MemberClusters": [
 "redis-dt-cluster"
],
 "AutomaticFailover": "enabled",
 "DataTiering": "enabled",
 "SnapshotRetentionLimit": 0,

Data tiering API Version 2015-02-02 157

Amazon ElastiCache for Redis User Guide

 "SnapshotWindow": "06:00-07:00",
 "ClusterEnabled": false,
 "CacheNodeType": "cache.r6gd.xlarge",
 "TransitEncryptionEnabled": false,
 "AtRestEncryptionEnabled": false
 }
}

Restoring data from backup into clusters with data tiering enabled

You can restore a backup to a new cluster with data tiering enabled using the (Console), (AWS CLI)
or (ElastiCache API). When you create a cluster using node types in the r6gd family, data tiering is
enabled.

Restoring data from backup into clusters with data tiering enabled (console)

To restore a backup to a new cluster with data tiering enabled (console)

1. Sign in to the AWS Management Console and open the ElastiCache console at https://
console.aws.amazon.com/elasticache/.

2. From the navigation pane, choose Backups.

3. In the list of backups, choose the box to the left of the backup name you want to restore from.

4. Choose Restore.

5. Complete the Restore Cluster dialog box. Be sure to complete all the Required fields and any
of the others you want to change from the defaults.

1. Cluster ID – Required. The name of the new cluster.

2. Cluster mode enabled (scale out) – Choose this for a Redis (cluster mode enabled) cluster.

3. Node Type – Specify cache.r6gd.xlarge or any other node type from the r6gd family.

4. Number of Shards – Choose the number of shards you want in the new cluster (API/CLI:
node groups).

5. Replicas per Shard – Choose the number of read replica nodes you want in each shard.

6. Slots and keyspaces – Choose how you want keys distributed among the shards. If you
choose to specify the key distributions complete the table specifying the key ranges for
each shard.

7. Availability zone(s) – Specify how you want the cluster's Availability Zones selected.

8. Port – Change this only if you want the new cluster to use a different port.

Data tiering API Version 2015-02-02 158

https://console.aws.amazon.com/elasticache/
https://console.aws.amazon.com/elasticache/

Amazon ElastiCache for Redis User Guide

9. Choose a VPC – Choose the VPC in which to create this cluster.

10.Parameter Group – Choose a parameter group that reserves sufficient memory for Redis
overhead for the node type you selected.

6. When the settings are as you want them, choose Create.

For more information on creating a cluster, see Creating a cluster.

Restoring data from backup into clusters with data tiering enabled (AWS CLI)

When creating a replication group using the AWS CLI, data tiering is by default used by selecting
a node type from the r6gd family, such as cache.r6gd.xlarge and setting the --data-tiering-
enabled parameter.

You cannot opt out of data tiering when selecting a node type from the r6gd family. If you set the
--no-data-tiering-enabled parameter, the operation will fail.

For Linux, macOS, or Unix:

aws elasticache create-replication-group \
 --replication-group-id redis-dt-cluster \
 --replication-group-description "Redis cluster with data tiering" \
 --num-node-groups 1 \
 --replicas-per-node-group 1 \
 --cache-node-type cache.r6gd.xlarge \
 --engine redis \
 --cache-subnet-group-name default \
 --automatic-failover-enabled \
 --data-tiering-enabled \
 --snapshot-name my-snapshot

For Linux, macOS, or Unix:

aws elasticache create-replication-group ^
 --replication-group-id redis-dt-cluster ^
 --replication-group-description "Redis cluster with data tiering" ^
 --num-node-groups 1 ^
 --replicas-per-node-group 1 ^
 --cache-node-type cache.r6gd.xlarge ^
 --engine redis ^
 --cache-subnet-group-name default ^

Data tiering API Version 2015-02-02 159

Amazon ElastiCache for Redis User Guide

 --automatic-failover-enabled ^
 --data-tiering-enabled ^
 --snapshot-name my-snapshot

After running this operation, you will see a response similar to the following:

{
 "ReplicationGroup": {
 "ReplicationGroupId": "redis-dt-cluster",
 "Description": "Redis cluster with data tiering",
 "Status": "creating",
 "PendingModifiedValues": {},
 "MemberClusters": [
 "redis-dt-cluster"
],
 "AutomaticFailover": "enabled",
 "DataTiering": "enabled",
 "SnapshotRetentionLimit": 0,
 "SnapshotWindow": "06:00-07:00",
 "ClusterEnabled": false,
 "CacheNodeType": "cache.r6gd.xlarge",
 "TransitEncryptionEnabled": false,
 "AtRestEncryptionEnabled": false
 }
}

Preparing a cluster

Following, you can find instructions on creating a cluster using the ElastiCache console, the AWS
CLI, or the ElastiCache API.

You can also create an ElastiCache cluster using AWS CloudFormation. For more information, see
AWS::ElastiCache::CacheCluster in the AWS Cloud Formation User Guide, which includes guidance on
how to implement that approach.

Whenever you create a cluster or replication group, it is a good idea to do some preparatory work
so you won't need to upgrade or make changes right away.

Topics

• Determining your requirements

• Choosing your node size

Preparing a cluster API Version 2015-02-02 160

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/Welcome.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-elasticache-cache-cluster.html

Amazon ElastiCache for Redis User Guide

Determining your requirements

Preparation

Knowing the answers to the following questions helps make creating your cluster go smoother:

• Which node instance type do you need?

For guidance on choosing an instance node type, see Choosing your node size.

• Will you launch your cluster in a virtual private cloud (VPC) based on Amazon VPC?

Important

If you're going to launch your cluster in a VPC, make sure to create a subnet group in
the same VPC before you start creating a cluster. For more information, see Subnets and
subnet groups.
ElastiCache is designed to be accessed from within AWS using Amazon EC2. However, if
you launch in a VPC based on Amazon VPC and your cluster is in an VPC, you can provide
access from outside AWS. For more information, see Accessing ElastiCache resources
from outside AWS.

• Do you need to customize any parameter values?

If you do, create a custom parameter group. For more information, see Creating a parameter
group.

If you're running Redis, consider setting reserved-memory or reserved-memory-percent.
For more information, see Managing Reserved Memory.

• Do you need to create your own VPC security group?

For more information, see Security in Your VPC.

• How do you intend to implement fault tolerance?

For more information, see Mitigating Failures.

Topics

• Memory and processor requirements

• Redis cluster configuration

Preparing a cluster API Version 2015-02-02 161

https://docs.aws.amazon.com/vpc/latest/userguide/VPC_Security.html

Amazon ElastiCache for Redis User Guide

• Scaling requirements

• Access requirements

• Region, Availability Zone and Local Zone requirements

Memory and processor requirements

The basic building block of Amazon ElastiCache is the node. Nodes are configured singularly or
in groupings to form clusters. When determining the node type to use for your cluster, take the
cluster’s node configuration and the amount of data you have to store into consideration.

Redis cluster configuration

ElastiCache for Redis clusters are comprised of from 0 to 500 shards (also called node groups).
The data in a Redis cluster is partitioned across the shards in the cluster. Your application connects
with a Redis cluster using a network address called an Endpoint. The nodes in a Redis shard fulfill
one of two roles: one read/write primary and all other nodes read-only secondaries (also called
read replicas). In addition to the node endpoints, the Redis cluster itself has an endpoint called the
configuration endpoint. Your application can use this endpoint to read from or write to the cluster,
leaving the determination of which node to read from or write to up to ElastiCache for Redis.

For more information, see Managing clusters.

Scaling requirements

All clusters can be scaled up by creating a new cluster with the new, larger node type. When you
scale up a Redis cluster, you can seed it from a backup and avoid having the new cluster start out
empty.

For more information, see Scaling ElastiCache for Redis in this guide.

Preparing a cluster API Version 2015-02-02 162

Amazon ElastiCache for Redis User Guide

Access requirements

By design, Amazon ElastiCache clusters are accessed from Amazon EC2 instances. Network access
to an ElastiCache cluster is limited to the account that created the cluster. Therefore, before you
can access a cluster from an Amazon EC2 instance, you must authorize the Amazon EC2 instance to
access the cluster. The steps to do this vary, depending upon whether you launched into EC2-VPC
or EC2-Classic.

If you launched your cluster into EC2-VPC you need to grant network ingress to the cluster. If
you launched your cluster into EC2-Classic you need to grant the Amazon Elastic Compute Cloud
security group associated with the instance access to your ElastiCache security group. For detailed
instructions, see Step 3: Authorize access to the cluster in this guide.

Region, Availability Zone and Local Zone requirements

Amazon ElastiCache supports all AWS regions. By locating your ElastiCache clusters in an AWS
Region close to your application you can reduce latency. If your cluster has multiple nodes, locating
your nodes in different Availability Zones or in Local Zones can reduce the impact of failures on
your cluster.

For more information, see the following:

• Choosing regions and availability zones

• Using local zones with ElastiCache

• Mitigating Failures

Choosing your node size

The node size you select for your cluster impacts costs, performance, and fault tolerance.

Choosing your node size

For information about the benefits of Graviton processors, see AWS Graviton Processor.

Answering the following questions can help you determine the minimum node type you need for
your Redis implementation:

• Do you expect throughput-bound workloads with multiple client connections?

If this is the case and you're running Redis version 5.0.6 or higher, you can get better throughput
and latency with our enhanced I/O feature, where available CPUs are used for offloading the

Preparing a cluster API Version 2015-02-02 163

https://aws.amazon.com/https://aws.amazon.com/pm/ec2-graviton/

Amazon ElastiCache for Redis User Guide

client connections, on behalf of the Redis engine. If you're running Redis version 7.0.4 or higher,
on top of enhanced I/O, you will get additional acceleration with enhanced I/O multiplexing,
where each dedicated network IO thread pipelines commands from multiple clients into the
Redis engine, taking advantage of Redis' ability to efficiently process commands in batches.
In ElastiCache for Redis v7.1 and above, we extended the enhanced I/O threads functionality
to also handle the presentation layer logic. By presentation layer, what we mean is that
Enhanced I/O threads are now not only reading client input, but also parsing the input into Redis
binary command format, which is then forwarded to the main thread for execution, providing
performance gain. Refer to the blog post and the supported versions page for additional details.

• Do you have workloads that access a small percentage of their data regularly?

If this is the case and you are running on Redis engine version 6.2 or later, you can leverage data
tiering by choosing the r6gd node type. With data tiering, least-recently used data is stored in
SSD. When it is retrieved there is a small latency cost, which is balanced by cost savings. For more
information, see Data tiering.

For more information, see Supported node types.

• How much total memory do you need for your data?

To get a general estimate, take the size of the items that you want to cache. Multiply this size by
the number of items that you want to keep in the cache at the same time. To get a reasonable
estimation of the item size, first serialize your cache items, then count the characters. Then
divide this over the number of shards in your cluster.

For more information, see Supported node types.

• What version of Redis are you running?

Redis versions before 2.8.22 require you to reserve more memory for failover, snapshot,
synchronizing, and promoting a replica to primary operations. This requirement occurs because
you must have sufficient memory available for all writes that occur during the process.

Redis version 2.8.22 and later use a forkless save process that requires less available memory
than the earlier process.

For more information, see the following:

• How synchronization and backup are implemented

• Ensuring that you have enough memory to create a Redis snapshot

• How write-heavy is your application?

Preparing a cluster API Version 2015-02-02 164

https://aws.amazon.com/blogs/database/achieve-over-500-million-requests-per-second-per-cluster-with-amazon-elasticache-for-redis-7-1/

Amazon ElastiCache for Redis User Guide

Write heavy applications can require significantly more available memory, memory not used by
data, when taking snapshots or failing over. Whenever the BGSAVE process is performed, you
must have sufficient memory that is unused by data to accommodate all the writes that transpire
during the BGSAVE process. Examples are when taking a snapshot, when syncing a primary
cluster with a replica in a cluster, and when enabling the append-only file (AOF) feature. Another
is when promoting a replica to primary (if you have Multi-AZ enabled). The worst case is when all
of your data is rewritten during the process. In this case, you need a node instance size with twice
as much memory as needed for data alone.

For more detailed information, see Ensuring that you have enough memory to create a Redis
snapshot.

• Will your implementation be a standalone Redis (cluster mode disabled) cluster or a Redis
(cluster mode enabled) cluster with multiple shards?

Redis (cluster mode disabled) cluster

If you're implementing a Redis (cluster mode disabled) cluster, your node type must be able to
accommodate all your data plus the necessary overhead as described in the previous bullet.

For example, suppose that you estimate that the total size of all your items is 12 GB. In this case,
you can use a cache.m3.xlarge node with 13.3 GB of memory or a cache.r3.large node
with 13.5 GB of memory. However, you might need more memory for BGSAVE operations. If your
application is write-heavy, double the memory requirements to at least 24 GB. Thus, use either a
cache.m3.2xlarge with 27.9 GB of memory or a cache.r3.xlarge with 30.5 GB of memory.

Redis (cluster mode enabled) with multiple shards

If you're implementing a Redis (cluster mode enabled) cluster with multiple shards, then the
node type must be able to accommodate bytes-for-data-and-overhead / number-of-
shards bytes of data.

For example, suppose that you estimate that the total size of all your items to be 12 GB and you
have two shards. In this case, you can use a cache.m3.large node with 6.05 GB of memory
(12 GB / 2). However, you might need more memory for BGSAVE operations. If your application
is write-heavy, double the memory requirements to at least 12 GB per shard. Thus, use either a
cache.m3.xlarge with 13.3 GB of memory or a cache.r3.large with 13.5 GB of memory.

• Are you using Local Zones?

Preparing a cluster API Version 2015-02-02 165

Amazon ElastiCache for Redis User Guide

Local Zones enable you to place resources such as an ElastiCache cluster in multiple locations
close to your users. But when you choose your node size, be aware that the available node sizes
are limited to the following at this time, regardless of capacity requirements:

• Current generation:

M5 node types: cache.m5.large, cache.m5.xlarge, cache.m5.2xlarge,
cache.m5.4xlarge, cache.m5.12xlarge, cache.m5.24xlarge

R5 node types: cache.r5.large, cache.r5.xlarge, cache.r5.2xlarge,
cache.r5.4xlarge, cache.r5.12xlarge, cache.r5.24xlarge

T3 node types: cache.t3.micro, cache.t3.small, cache.t3.medium

While your cluster is running, you can monitor the memory usage, processor utilization, cache hits,
and cache misses metrics that are published to CloudWatch. You might notice that your cluster
doesn't have the hit rate that you want or that keys are being evicted too often. In these cases, you
can choose a different node size with larger CPU and memory specifications.

When monitoring CPU usage, remember the Redis is single-threaded. Thus, multiply the reported
CPU usage by the number of CPU cores to get that actual usage. For example, a four-core CPU
reporting a 20-percent usage rate is actually the one core Redis is running at 80 percent utilization.

Preparing a cluster API Version 2015-02-02 166

https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/Local_zones.html

Amazon ElastiCache for Redis User Guide

Creating a cluster

The following examples show how to create a Redis cluster using the AWS Management Console,
AWS CLI and ElastiCache API.

Creating a Redis (cluster mode disabled) (Console)

ElastiCache supports replication when you use the Redis engine. To monitor the latency
between when data is written to a Redis read/write primary cluster and when it is
propagated to a read-only secondary cluster, ElastiCache adds to the cluster a special key,
ElastiCacheMasterReplicationTimestamp. This key is the current Universal Universal Time
(UTC) time. Because a Redis cluster might be added to a replication group at a later time, this key is
included in all Redis clusters, even if initially they are not members of a replication group. For more
information on replication groups, see High availability using replication groups.

To create a Redis (cluster mode disabled) cluster, follow the steps at Creating a Redis (cluster mode
disabled) cluster (Console).

As soon as your cluster's status is available, you can grant Amazon EC2 access to it, connect to it,
and begin using it. For more information, see Step 3: Authorize access to the cluster and Step 4:
Connect to the cluster's node.

Important

As soon as your cluster becomes available, you're billed for each hour or partial hour that
the cluster is active, even if you're not actively using it. To stop incurring charges for this
cluster, you must delete it. See Deleting a cluster.

Creating a Redis (cluster mode enabled) cluster (Console)

If you are running Redis 3.2.4 or later, you can create a Redis (cluster mode enabled) cluster. Redis
(cluster mode enabled) clusters support partitioning your data across 1 to 500 shards (API/CLI:
node groups) but with some limitations. For a comparison of Redis (cluster mode disabled) and
Redis (cluster mode enabled), see Supported ElastiCache for Redis versions.

To create a Redis (cluster mode enabled) cluster using the ElastiCache console

1. Sign in to the AWS Management Console and open the Amazon ElastiCache console at https://
console.aws.amazon.com/elasticache/.

Creating a cluster API Version 2015-02-02 167

https://console.aws.amazon.com/elasticache/
https://console.aws.amazon.com/elasticache/

Amazon ElastiCache for Redis User Guide

2. From the list in the upper-right corner, choose the AWS Region that you want to launch this
cluster in.

3. Choose Get started from the navigation pane.

4. Choose Create VPC and follow the steps outlined at Creating a Virtual Private Cloud (VPC).

5. On the ElastiCache dashboard page, choose Create cluster and then choose Create Redis
cluster.

6. Under Cluster settings, do the following:

a. Choose Configure and create a new cluster.

b. For Cluster mode, choose Enabled.

c. For Cluster info enter a value for Name.

d. (Optional) Enter a value for Description.

7. Under Location:

AWS Cloud

1. For AWS Cloud, we recommend you accept the default settings for Multi-AZ and Auto-
failover. For more information, see Minimizing downtime in ElastiCache for Redis with
Multi-AZ.

2. Under Cluster settings

a. For Engine version, choose an available version.

b. For Port, use the default port, 6379. If you have a reason to use a different port,
enter the port number.

c. For Parameter group, choose a parameter group or create a new one. Parameter
groups control the runtime parameters of your cluster. For more information on
parameter groups, see Redis-specific parameters and Creating a parameter group.

Note

When you select a parameter group to set the engine configuration values,
that parameter group is applied to all clusters in the global datastore.
On the Parameter Groups page, the yes/no Global attribute indicates
whether a parameter group is part of a global datastore.

Creating a cluster API Version 2015-02-02 168

https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/VPCs.CreatingVPC.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/AutoFailover.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/AutoFailover.html

Amazon ElastiCache for Redis User Guide

d. For Node type, choose the down arrow
().
In the Change node type dialog box, choose a value for Instance family for the
node type that you want. Then choose the node type that you want to use for this
cluster, and then choose Save.

For more information, see Choosing your node size.

If you choose an r6gd node type, data-tiering is automatically enabled. For more
information, see Data tiering.

e. For Number of shards, choose the number of shards (partitions/node groups) that
you want for this Redis (cluster mode enabled) cluster.

For some versions of Redis (cluster mode enabled), you can change the number of
shards in your cluster dynamically:

• Redis 3.2.10 and later – If your cluster is running Redis 3.2.10 or later versions,
you can change the number of shards in your cluster dynamically. For more
information, see Scaling clusters in Redis (Cluster Mode Enabled).

• Other Redis versions – If your cluster is running a version of Redis before
version 3.2.10, there's another approach. To change the number of shards in
your cluster in this case, create a new cluster with the new number of shards. For
more information, see Restoring from a backup into a new cache.

f. For Replicas per shard, choose the number of read replica nodes that you want in
each shard.

The following restrictions exist for Redis (cluster mode enabled).

• If you have Multi-AZ enabled, make sure that you have at least one replica per
shard.

• The number of replicas is the same for each shard when creating the cluster
using the console.

• The number of read replicas per shard is fixed and cannot be changed. If you
find you need more or fewer replicas per shard (API/CLI: node group), you must
create a new cluster with the new number of replicas. For more information, see
Seeding a new self-designed cluster with an externally created backup.

3. Under Connectivity

Creating a cluster API Version 2015-02-02 169

Amazon ElastiCache for Redis User Guide

a. For Network type, choose the IP version(s) this cluster will support.

b. For Subnet groups, choose the subnet that you want to apply to this cluster.
ElastiCache uses that subnet group to choose a subnet and IP addresses within
that subnet to associate with your nodes. ElastiCache clusters require a dual-stack
subnet with both IPv4 and IPv6 addresses assigned to them to operate in dual-
stack mode and an IPv6-only subnet to operate as IPv6-only.

When creating a new subnet group, enter the VPC ID to which it belongs.

Select a Discovery IP type. Only the IP adresses of your chosen protocol are
returned.

For more information, see:

• Choosing a network type.

• Create a subnet in your VPC.

If you are Using local zones with ElastiCache , you must create or choose a subnet
that is in the local zone.

For more information, see Subnets and subnet groups.

4. For Availability zone placements, you have two options:

• No preference – ElastiCache chooses the Availability Zone.

• Specify availability zones – You specify the Availability Zone for each cluster.

If you chose to specify the Availability Zones, for each cluster in each shard, choose
the Availability Zone from the list.

For more information, see Choosing regions and availability zones.

5. Choose Next

6. Under Advanced Redis settings

• For Security:

i. To encrypt your data, you have the following options:

Creating a cluster API Version 2015-02-02 170

https://docs.aws.amazon.com/vpc/latest/userguide/working-with-vpcs.html#AddaSubnet

Amazon ElastiCache for Redis User Guide

• Encryption at rest – Enables encryption of data stored on disk. For more
information, see Encryption at Rest.

Note

You have the option to supply a different encryption key by
choosing Customer Managed AWS KMS key and choosing the key.
For more information, see Using customer managed keys from AWS
KMS.

• Encryption in-transit – Enables encryption of data on the wire. For more
information, see encryption in transit. For Redis engine version 6.0 and
above, if you enable Encryption in-transit you will be prompted to specify
one of the following Access Control options:

• No Access Control – This is the default setting. This indicates no
restrictions on user access to the cluster.

• User Group Access Control List – Select a user group with a defined set
of users that can access the cluster. For more information, see Managing
User Groups with the Console and CLI.

• Redis AUTH Default User – An authentication mechanism for Redis
server. For more information, see Redis AUTH.

• Redis AUTH – An authentication mechanism for Redis server. For more
information, see Redis AUTH.

Note

For Redis versions between 3.2.6 onward, excluding version 3.2.10,
Redis AUTH is the sole option.

ii. For Security groups, choose the security groups that you want for this cluster.
A security group acts as a firewall to control network access to your cluster.
You can use the default security group for your VPC or create a new one.

For more information on security groups, see Security groups for your VPC in
the Amazon VPC User Guide.

Creating a cluster API Version 2015-02-02 171

https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/at-rest-encryption.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/at-rest-encryption.html#using-customer-managed-keys-for-elasticache-security
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/at-rest-encryption.html#using-customer-managed-keys-for-elasticache-security
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/in-transit-encryption.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/auth.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/auth.html
https://docs.aws.amazon.com/vpc/latest/userguide/VPC_SecurityGroups.html

Amazon ElastiCache for Redis User Guide

7. For regularly scheduled automatic backups, select Enable automatic backups and then
enter the number of days that you want each automatic backup retained before it is
automatically deleted. If you don't want regularly scheduled automatic backups, clear
the Enable automatic backups check box. In either case, you always have the option to
create manual backups.

For more information on Redis backup and restore, see Snapshot and restore.

8. (Optional) Specify a maintenance window. The maintenance window is the time,
generally an hour in length, each week when ElastiCache schedules system
maintenance for your cluster. You can allow ElastiCache to choose the day and time
for your maintenance window (No preference), or you can choose the day, time, and
duration yourself (Specify maintenance window). If you choose Specify maintenance
window from the lists, choose the Start day, Start time, and Duration (in hours) for your
maintenance window. All times are UCT times.

For more information, see Managing maintenance.

9. (Optional) For Logs:

• Under Log format, choose either Text or JSON.

• Under Destination Type, choose either CloudWatch Logs or Kinesis Firehose.

• Under Log destination, choose either Create new and enter either your CloudWatch
Logs log group name or your Firehose stream name, or choose Select existing and
then choose either your CloudWatch Logs log group name or your Firehose stream
name,

10. For Tags, to help you manage your clusters and other ElastiCache resources, you can
assign your own metadata to each resource in the form of tags. For mor information,
see Tagging your ElastiCache resources.

11. Choose Next.

12. Review all your entries and choices, then make any needed corrections. When you're
ready, choose Create.

On premises

1. For On premises, we recommend you leave Auto-failover enabled. For more
information, see Minimizing downtime in ElastiCache for Redis with Multi-AZ

2. Follow the steps at Using Outposts.
Creating a cluster API Version 2015-02-02 172

https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/AutoFailover.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/ElastiCache-Outposts.html

Amazon ElastiCache for Redis User Guide

To create the equivalent using the ElastiCache API or AWS CLI instead of the ElastiCache console,
see the following:

• API: CreateReplicationGroup

• CLI: create-replication-group

As soon as your cluster's status is available, you can grant EC2 access to it, connect to it, and begin
using it. For more information, see Step 3: Authorize access to the cluster and Step 4: Connect to
the cluster's node.

Important

As soon as your cluster becomes available, you're billed for each hour or partial hour that
the cluster is active, even if you're not actively using it. To stop incurring charges for this
cluster, you must delete it. See Deleting a cluster.

Creating a cluster API Version 2015-02-02 173

https://docs.aws.amazon.com/AmazonElastiCache/latest/APIReference/API_CreateReplicationGroup.html
https://docs.aws.amazon.com/cli/latest/reference/elasticache/create-replication-group.html

Amazon ElastiCache for Redis User Guide

Creating a cluster (AWS CLI)

To create a cluster using the AWS CLI, use the create-cache-cluster command.

Important

As soon as your cluster becomes available, you're billed for each hour or partial hour that
the cluster is active, even if you're not actively using it. To stop incurring charges for this
cluster, you must delete it. See Deleting a cluster.

Creating a Redis (cluster mode disabled) cluster (CLI)

Example – A Redis (cluster mode disabled) Cluster with no read replicas

The following CLI code creates a Redis (cluster mode disabled) cache cluster with no replicas.

Note

When creating cluster using a node type from the r6gd family, you must pass the data-
tiering-enabled parameter.

For Linux, macOS, or Unix:

aws elasticache create-cache-cluster \
--cache-cluster-id my-cluster \
--cache-node-type cache.r4.large \
--engine redis \
--num-cache-nodes 1 \
--cache-parameter-group default.redis6.x \
--snapshot-arns arn:aws:s3:::my_bucket/snapshot.rdb

For Windows:

aws elasticache create-cache-cluster ^
--cache-cluster-id my-cluster ^
--cache-node-type cache.r4.large ^
--engine redis ^
--num-cache-nodes 1 ^
--cache-parameter-group default.redis6.x ^

Creating a cluster API Version 2015-02-02 174

Amazon ElastiCache for Redis User Guide

--snapshot-arns arn:aws:s3:::my_bucket/snapshot.rdb

Creating a Redis (cluster mode enabled) cluster (AWS CLI)

Redis (cluster mode enabled) clusters (API/CLI: replication groups) cannot be created using the
create-cache-cluster operation. To create a Redis (cluster mode enabled) cluster (API/CLI:
replication group), see Creating a Redis (Cluster Mode Enabled) replication group from scratch
(AWS CLI).

For more information, see the AWS CLI for ElastiCache reference topic create-replication-
group.

Creating a cluster (ElastiCache API)

To create a cluster using the ElastiCache API, use the CreateCacheCluster action.

Important

As soon as your cluster becomes available, you're billed for each hour or partial hour that
the cluster is active, even if you're not using it. To stop incurring charges for this cluster, you
must delete it. See Deleting a cluster.

Topics

• Creating a Redis (cluster mode disabled) cache cluster (ElastiCache API)

• Creating a cache cluster in Redis (cluster mode enabled) (ElastiCache API)

Creating a Redis (cluster mode disabled) cache cluster (ElastiCache API)

The following code creates a Redis (cluster mode disabled) cache cluster (ElastiCache API).

Line breaks are added for ease of reading.

https://elasticache.us-west-2.amazonaws.com/
 ?Action=CreateCacheCluster
 &CacheClusterId=my-cluster
 &CacheNodeType=cache.r4.large
 &CacheParameterGroup=default.redis3.2
 &Engine=redis
 &EngineVersion=3.2.4

Creating a cluster API Version 2015-02-02 175

https://docs.aws.amazon.com/cli/latest/reference/elasticache/create-replication-group.html
https://docs.aws.amazon.com/cli/latest/reference/elasticache/create-replication-group.html

Amazon ElastiCache for Redis User Guide

 &NumCacheNodes=1
 &SignatureVersion=4
 &SignatureMethod=HmacSHA256
 &SnapshotArns.member.1=arn%3Aaws%3As3%3A%3A%3AmyS3Bucket%2Fdump.rdb
 &Timestamp=20150508T220302Z
 &Version=2015-02-02
 &X-Amz-Algorithm=&AWS;4-HMAC-SHA256
 &X-Amz-Credential=<credential>
 &X-Amz-Date=20150508T220302Z
 &X-Amz-Expires=20150508T220302Z
 &X-Amz-SignedHeaders=Host
 &X-Amz-Signature=<signature>

Creating a cache cluster in Redis (cluster mode enabled) (ElastiCache API)

Redis (cluster mode enabled) clusters (API/CLI: replication groups) cannot be created using the
CreateCacheCluster operation. To create a Redis (cluster mode enabled) cluster (API/CLI:
replication group), see Creating a replication group in Redis (Cluster Mode Enabled) from scratch
(ElastiCache API).

For more information, see the ElastiCache API reference topic CreateReplicationGroup.

Creating a cluster API Version 2015-02-02 176

https://docs.aws.amazon.com/AmazonElastiCache/latest/APIReference/API_CreateReplicationGroup.html

Amazon ElastiCache for Redis User Guide

Viewing a cluster's details

You can view detail information about one or more clusters using the ElastiCache console, AWS CLI,
or ElastiCache API.

Viewing details of a Redis (Cluster Mode Disabled) cluster (Console)

You can view the details of a Redis (cluster mode disabled) cluster using the ElastiCache console,
the AWS CLI for ElastiCache, or the ElastiCache API.

The following procedure details how to view the details of a Redis (cluster mode disabled) cluster
using the ElastiCache console.

To view a Redis (cluster mode disabled) cluster's details

1. Sign in to the AWS Management Console and open the Amazon ElastiCache console at https://
console.aws.amazon.com/elasticache/.

2. In the ElastiCache console dashboard, choose Redis to display a list of all your clusters that are
running any version of Redis.

3. To see details of a cluster, select the check box to the left of the cluster's name. Make sure that
you select a cluster running the Redis engine, not Clustered Redis. Doing this displays details
about the cluster, including the cluster's primary endpoint.

4. To view node information:

a. Choose the cluster's name.

b. Choose the Shards and nodes tab. Doing this displays details about each node, including
the node's endpoint which you need to use to read from the cluster.

5. To view metrics, choose the Metrics tab, which displays the relevant metrics for all nodes in
the cluster. For more information, see Monitoring use with CloudWatch Metrics

6. To view logs, choose the Logs tab, which indicates if the cluster is using Slow logs or Engine
logs and provides relevant details. For more information, see Log delivery.

7. Choose the Network and security tab to view details on the cluster's network connectivity and
subnet group configuration. For more information, see Subnets and subnet groups.

8. Choose the Maintenance tab to view details on the cluster's maintenance settings. For more
information, see Managing maintenance.

9. Choose the Service updates tab to view details on any available service updates along with
their recommended apply-by date. For more information, see Service updates in ElastiCache.

Viewing a cluster's details API Version 2015-02-02 177

https://console.aws.amazon.com/elasticache/
https://console.aws.amazon.com/elasticache/

Amazon ElastiCache for Redis User Guide

10. Choose the Tags tab to view details on any tags applied to cluster resources. For more
information, see Tagging your ElastiCache resources.

Viewing details for a Redis (Cluster Mode Enabled) cluster (Console)

You can view the details of a Redis (cluster mode enabled) cluster using the ElastiCache console,
the AWS CLI for ElastiCache, or the ElastiCache API.

The following procedure details how to view the details of a Redis (cluster mode enabled) cluster
using the ElastiCache console.

To view a Redis (cluster mode enabled) cluster's details

1. Sign in to the AWS Management Console and open the Amazon ElastiCache console at https://
console.aws.amazon.com/elasticache/.

2. From the list in the upper-right corner, choose the AWS Region you are interested in.

3. In the ElastiCache console dashboard, choose Redis to display a list of all your clusters that are
running any version of Redis.

4. To see details of a Redis (cluster mode enabled) cluster, choose the box to the left of the
cluster's name. Make sure you choose a cluster running the Clustered Redis engine, not just
Redis.

The screen expands below the cluster and display details about the cluster, including the
cluster's configuration endpoint.

5. To see a listing of the cluster's shards and the number of nodes in each shard, choose the
Shards and nodes tab.

6. To view specific information on a node:

• Choose the shard's ID.

Doing this displays information about each node, including each node's endpoint that you
need to use to read data from the cluster.

7. To view metrics, choose the Metrics tab, which displays the relevant metrics for all nodes in
the cluster. For more information, see Monitoring use with CloudWatch Metrics

8. To view logs, choose the Logs tab, which indicates if the cluster is using Slow logs or Engine
logs and provides relevant details. For more information, see Log delivery.

Viewing a cluster's details API Version 2015-02-02 178

https://console.aws.amazon.com/elasticache/
https://console.aws.amazon.com/elasticache/

Amazon ElastiCache for Redis User Guide

9. Choose the Network and security tab to view details on the cluster's network connectivity
and subnet group configuration, the VPC security group and what, if any, encryption method
is enabled on the cluster. For more information, see Subnets and subnet groups and Data
security in Amazon ElastiCache.

10. Choose the Maintenance tab to view details on the cluster's maintenance settings. For more
information, see Managing maintenance.

11. Choose the Service updates tab to view details on any available service updates along with
their recommended apply-by date. For more information, see Service updates in ElastiCache.

12. Choose the Tags tab to view details on any tags applied to cluster resources. For more
information, see Tagging your ElastiCache resources.

Viewing a cluster's details (AWS CLI)

The following code lists the details for my-cluster:

aws elasticache describe-cache-clusters --cache-cluster-id my-cluster

Replace my-cluster with the name of your cluster in a case where the cluster is created with 1
cache node and 0 shards using the create-cache-cluster command.

{
 "CacheClusters": [
 {
 "CacheClusterStatus": "available",
 "SecurityGroups": [
 {
 "Status": "active",
 "SecurityGroupId": "sg-dbe93fa2"
 }
],
 "ClientDownloadLandingPage": "https://console.aws.amazon.com/elasticache/
home#client-download:",
 "Engine": "redis",
 "PreferredMaintenanceWindow": "wed:12:00-wed:13:00",
 "CacheSubnetGroupName": "default",
 "SnapshotWindow": "08:30-09:30",
 "TransitEncryptionEnabled": false,
 "AtRestEncryptionEnabled": false,
 "CacheClusterId": "my-cluster1",

Viewing a cluster's details API Version 2015-02-02 179

Amazon ElastiCache for Redis User Guide

 "CacheClusterCreateTime": "2018-02-26T21:06:43.420Z",
 "PreferredAvailabilityZone": "us-west-2c",
 "AuthTokenEnabled": false,
 "PendingModifiedValues": {},
 "CacheNodeType": "cache.r4.large",
 "DataTiering": "disabled",
 "CacheParameterGroup": {
 "CacheNodeIdsToReboot": [],
 "ParameterApplyStatus": "in-sync",
 "CacheParameterGroupName": "default.redis3.2"
 },
 "SnapshotRetentionLimit": 0,
 "AutoMinorVersionUpgrade": true,
 "EngineVersion": "3.2.10",
 "CacheSecurityGroups": [],
 "NumCacheNodes": 1
 }

{
 "CacheClusters": [
 {
 "SecurityGroups": [
 {
 "Status": "active",
 "SecurityGroupId": "sg-dbe93fa2"
 }
],
 "ClientDownloadLandingPage": "https://console.aws.amazon.com/elasticache/
home#client-download:",
 "AuthTokenEnabled": false,
 "CacheSubnetGroupName": "default",
 "SnapshotWindow": "12:30-13:30",
 "AutoMinorVersionUpgrade": true,
 "CacheClusterCreateTime": "2018-02-26T21:13:24.250Z",
 "CacheClusterStatus": "available",
 "AtRestEncryptionEnabled": false,
 "PreferredAvailabilityZone": "us-west-2a",
 "TransitEncryptionEnabled": false,
 "ReplicationGroupId": "my-cluster2",
 "Engine": "redis",
 "PreferredMaintenanceWindow": "sun:08:30-sun:09:30",
 "CacheClusterId": "my-cluster2-001",
 "PendingModifiedValues": {},

Viewing a cluster's details API Version 2015-02-02 180

Amazon ElastiCache for Redis User Guide

 "CacheNodeType": "cache.r4.large",
 "DataTiering": "disabled",
 "CacheParameterGroup": {
 "CacheNodeIdsToReboot": [],
 "ParameterApplyStatus": "in-sync",
 "CacheParameterGroupName": "default.redis6.x"
 },
 "SnapshotRetentionLimit": 0,
 "EngineVersion": "6.0",
 "CacheSecurityGroups": [],
 "NumCacheNodes": 1
 },
 {
 "SecurityGroups": [
 {
 "Status": "active",
 "SecurityGroupId": "sg-dbe93fa2"
 }
],
 "ClientDownloadLandingPage": "https://console.aws.amazon.com/elasticache/
home#client-download:",
 "AuthTokenEnabled": false,
 "CacheSubnetGroupName": "default",
 "SnapshotWindow": "12:30-13:30",
 "AutoMinorVersionUpgrade": true,
 "CacheClusterCreateTime": "2018-02-26T21:13:24.250Z",
 "CacheClusterStatus": "available",
 "AtRestEncryptionEnabled": false,
 "PreferredAvailabilityZone": "us-west-2b",
 "TransitEncryptionEnabled": false,
 "ReplicationGroupId": "my-cluster2",
 "Engine": "redis",
 "PreferredMaintenanceWindow": "sun:08:30-sun:09:30",
 "CacheClusterId": "my-cluster2-002",
 "PendingModifiedValues": {},
 "CacheNodeType": "cache.r4.large",
 "DataTiering": "disabled",
 "CacheParameterGroup": {
 "CacheNodeIdsToReboot": [],
 "ParameterApplyStatus": "in-sync",
 "CacheParameterGroupName": "default.redis6.x"
 },
 "SnapshotRetentionLimit": 0,
 "EngineVersion": "6.0",

Viewing a cluster's details API Version 2015-02-02 181

Amazon ElastiCache for Redis User Guide

 "CacheSecurityGroups": [],
 "NumCacheNodes": 1
 },
 {
 "SecurityGroups": [
 {
 "Status": "active",
 "SecurityGroupId": "sg-dbe93fa2"
 }
],
 "ClientDownloadLandingPage": "https://console.aws.amazon.com/elasticache/
home#client-download:",
 "AuthTokenEnabled": false,
 "CacheSubnetGroupName": "default",
 "SnapshotWindow": "12:30-13:30",
 "AutoMinorVersionUpgrade": true,
 "CacheClusterCreateTime": "2018-02-26T21:13:24.250Z",
 "CacheClusterStatus": "available",
 "AtRestEncryptionEnabled": false,
 "PreferredAvailabilityZone": "us-west-2c",
 "TransitEncryptionEnabled": false,
 "ReplicationGroupId": "my-cluster2",
 "Engine": "redis",
 "PreferredMaintenanceWindow": "sun:08:30-sun:09:30",
 "CacheClusterId": "my-cluster2-003",
 "PendingModifiedValues": {},
 "CacheNodeType": "cache.r4.large",
 "DataTiering": "disabled",
 "CacheParameterGroup": {
 "CacheNodeIdsToReboot": [],
 "ParameterApplyStatus": "in-sync",
 "CacheParameterGroupName": "default.redis3.2"
 },
 "SnapshotRetentionLimit": 0,
 "EngineVersion": "3.2.10",
 "CacheSecurityGroups": [],
 "NumCacheNodes": 1
 }

{
 "CacheClusters": [
 {
 "SecurityGroups": [

Viewing a cluster's details API Version 2015-02-02 182

Amazon ElastiCache for Redis User Guide

 {
 "Status": "active",
 "SecurityGroupId": "sg-dbe93fa2"
 }
],
 "ClientDownloadLandingPage": "https://console.aws.amazon.com/elasticache/
home#client-download:",
 "AuthTokenEnabled": true,
 "CacheSubnetGroupName": "default",
 "SnapshotWindow": "12:30-13:30",
 "AutoMinorVersionUpgrade": true,
 "CacheClusterCreateTime": "2018-02-26T21:17:01.439Z",
 "CacheClusterStatus": "available",
 "AtRestEncryptionEnabled": true,
 "PreferredAvailabilityZone": "us-west-2a",
 "TransitEncryptionEnabled": true,
 "ReplicationGroupId": "my-cluster3",
 "Engine": "redis",
 "PreferredMaintenanceWindow": "thu:11:00-thu:12:00",
 "CacheClusterId": "my-cluster3-0001-001",
 "PendingModifiedValues": {},
 "CacheNodeType": "cache.r4.large",
 "DataTiering": "disabled",
 "CacheParameterGroup": {
 "CacheNodeIdsToReboot": [],
 "ParameterApplyStatus": "in-sync",
 "CacheParameterGroupName": "default.redis6.x.cluster.on"
 },
 "SnapshotRetentionLimit": 0,
 "EngineVersion": "6.0",
 "CacheSecurityGroups": [],
 "NumCacheNodes": 1
 },
 {
 "SecurityGroups": [
 {
 "Status": "active",
 "SecurityGroupId": "sg-dbe93fa2"
 }
],
 "ClientDownloadLandingPage": "https://console.aws.amazon.com/elasticache/
home#client-download:",
 "AuthTokenEnabled": true,
 "CacheSubnetGroupName": "default",

Viewing a cluster's details API Version 2015-02-02 183

Amazon ElastiCache for Redis User Guide

 "SnapshotWindow": "12:30-13:30",
 "AutoMinorVersionUpgrade": true,
 "CacheClusterCreateTime": "2018-02-26T21:17:01.439Z",
 "CacheClusterStatus": "available",
 "AtRestEncryptionEnabled": true,
 "PreferredAvailabilityZone": "us-west-2b",
 "TransitEncryptionEnabled": true,
 "ReplicationGroupId": "my-cluster3",
 "Engine": "redis",
 "PreferredMaintenanceWindow": "thu:11:00-thu:12:00",
 "CacheClusterId": "my-cluster3-0001-002",
 "PendingModifiedValues": {},
 "CacheNodeType": "cache.r4.large",
 "DataTiering": "disabled",
 "CacheParameterGroup": {
 "CacheNodeIdsToReboot": [],
 "ParameterApplyStatus": "in-sync",
 "CacheParameterGroupName": "default.redis3.2.cluster.on"
 },
 "SnapshotRetentionLimit": 0,
 "EngineVersion": "3.2.6",
 "CacheSecurityGroups": [],
 "NumCacheNodes": 1
 },
 {
 "SecurityGroups": [
 {
 "Status": "active",
 "SecurityGroupId": "sg-dbe93fa2"
 }
],
 "ClientDownloadLandingPage": "https://console.aws.amazon.com/elasticache/
home#client-download:",
 "AuthTokenEnabled": true,
 "CacheSubnetGroupName": "default",
 "SnapshotWindow": "12:30-13:30",
 "AutoMinorVersionUpgrade": true,
 "CacheClusterCreateTime": "2018-02-26T21:17:01.439Z",
 "CacheClusterStatus": "available",
 "AtRestEncryptionEnabled": true,
 "PreferredAvailabilityZone": "us-west-2c",
 "TransitEncryptionEnabled": true,
 "ReplicationGroupId": "my-cluster3",
 "Engine": "redis",

Viewing a cluster's details API Version 2015-02-02 184

Amazon ElastiCache for Redis User Guide

 "PreferredMaintenanceWindow": "thu:11:00-thu:12:00",
 "CacheClusterId": "my-cluster3-0001-003",
 "PendingModifiedValues": {},
 "CacheNodeType": "cache.r4.large",
 "DataTiering": "disabled",
 "CacheParameterGroup": {
 "CacheNodeIdsToReboot": [],
 "ParameterApplyStatus": "in-sync",
 "CacheParameterGroupName": "default.redis6.x.cluster.on"
 },
 "SnapshotRetentionLimit": 0,
 "EngineVersion": "6.0",
 "CacheSecurityGroups": [],
 "NumCacheNodes": 1
 },
 {
 "SecurityGroups": [
 {
 "Status": "active",
 "SecurityGroupId": "sg-dbe93fa2"
 }
],
 "ClientDownloadLandingPage": "https://console.aws.amazon.com/elasticache/
home#client-download:",
 "AuthTokenEnabled": true,
 "CacheSubnetGroupName": "default",
 "SnapshotWindow": "12:30-13:30",
 "AutoMinorVersionUpgrade": true,
 "CacheClusterCreateTime": "2018-02-26T21:17:01.439Z",
 "CacheClusterStatus": "available",
 "AtRestEncryptionEnabled": true,
 "PreferredAvailabilityZone": "us-west-2b",
 "TransitEncryptionEnabled": true,
 "ReplicationGroupId": "my-cluster3",
 "Engine": "redis",
 "PreferredMaintenanceWindow": "thu:11:00-thu:12:00",
 "CacheClusterId": "my-cluster3-0002-001",
 "PendingModifiedValues": {},
 "CacheNodeType": "cache.r4.large",
 "DataTiering": "disabled",
 "CacheParameterGroup": {
 "CacheNodeIdsToReboot": [],
 "ParameterApplyStatus": "in-sync",
 "CacheParameterGroupName": "default.redis6.x.cluster.on"

Viewing a cluster's details API Version 2015-02-02 185

Amazon ElastiCache for Redis User Guide

 },
 "SnapshotRetentionLimit": 0,
 "EngineVersion": "6.0",
 "CacheSecurityGroups": [],
 "NumCacheNodes": 1
 },
 {
 "SecurityGroups": [
 {
 "Status": "active",
 "SecurityGroupId": "sg-dbe93fa2"
 }
],
 "ClientDownloadLandingPage": "https://console.aws.amazon.com/elasticache/
home#client-download:",
 "AuthTokenEnabled": true,
 "CacheSubnetGroupName": "default",
 "SnapshotWindow": "12:30-13:30",
 "AutoMinorVersionUpgrade": true,
 "CacheClusterCreateTime": "2018-02-26T21:17:01.439Z",
 "CacheClusterStatus": "available",
 "AtRestEncryptionEnabled": true,
 "PreferredAvailabilityZone": "us-west-2c",
 "TransitEncryptionEnabled": true,
 "ReplicationGroupId": "my-cluster3",
 "Engine": "redis",
 "PreferredMaintenanceWindow": "thu:11:00-thu:12:00",
 "CacheClusterId": "my-cluster3-0002-002",
 "PendingModifiedValues": {},
 "CacheNodeType": "cache.r4.large",
 "DataTiering": "disabled",
 "CacheParameterGroup": {
 "CacheNodeIdsToReboot": [],
 "ParameterApplyStatus": "in-sync",
 "CacheParameterGroupName": "default.redis3.2.cluster.on"
 },
 "SnapshotRetentionLimit": 0,
 "EngineVersion": "3.2.6",
 "CacheSecurityGroups": [],
 "NumCacheNodes": 1
 },
 {
 "SecurityGroups": [
 {

Viewing a cluster's details API Version 2015-02-02 186

Amazon ElastiCache for Redis User Guide

 "Status": "active",
 "SecurityGroupId": "sg-dbe93fa2"
 }
],
 "ClientDownloadLandingPage": "https://console.aws.amazon.com/elasticache/
home#client-download:",
 "AuthTokenEnabled": true,
 "CacheSubnetGroupName": "default",
 "SnapshotWindow": "12:30-13:30",
 "AutoMinorVersionUpgrade": true,
 "CacheClusterCreateTime": "2018-02-26T21:17:01.439Z",
 "CacheClusterStatus": "available",
 "AtRestEncryptionEnabled": true,
 "PreferredAvailabilityZone": "us-west-2a",
 "TransitEncryptionEnabled": true,
 "ReplicationGroupId": "my-cluster3",
 "Engine": "redis",
 "PreferredMaintenanceWindow": "thu:11:00-thu:12:00",
 "CacheClusterId": "my-cluster3-0002-003",
 "PendingModifiedValues": {},
 "CacheNodeType": "cache.r4.large",
 "DataTiering": "disabled",
 "CacheParameterGroup": {
 "CacheNodeIdsToReboot": [],
 "ParameterApplyStatus": "in-sync",
 "CacheParameterGroupName": "default.redis6.x.cluster.on"
 },
 "SnapshotRetentionLimit": 0,
 "EngineVersion": "6.0",
 "CacheSecurityGroups": [],
 "NumCacheNodes": 1
 }
]
}

In a case where the cluster is created using the AWS Management Console (cluster node enabled
or disabled with 1 or more shards), use the following command to describe the cluster's details
(replace my-cluster with the name of the replication group (name of your cluster):

aws elasticache describe-replication-groups --replication-group-id my-cluster

For more information, see the AWS CLI for ElastiCache topic describe-cache-clusters.

Viewing a cluster's details API Version 2015-02-02 187

https://docs.aws.amazon.com/cli/latest/reference/elasticache/describe-cache-clusters.html

Amazon ElastiCache for Redis User Guide

Viewing a cluster's details (ElastiCache API)

You can view the details for a cluster using the ElastiCache API DescribeCacheClusters action.
If the CacheClusterId parameter is included, details for the specified cluster are returned. If the
CacheClusterId parameter is omitted, details for up to MaxRecords (default 100) clusters are
returned. The value for MaxRecords cannot be less than 20 or greater than 100.

The following code lists the details for my-cluster.

https://elasticache.us-west-2.amazonaws.com/
 ?Action=DescribeCacheClusters
 &CacheClusterId=my-cluster
 &Version=2015-02-02
 &SignatureVersion=4
 &SignatureMethod=HmacSHA256
 &Timestamp=20150202T192317Z
 &X-Amz-Credential=<credential>

The following code list the details for up to 25 clusters.

https://elasticache.us-west-2.amazonaws.com/
 ?Action=DescribeCacheClusters
 &MaxRecords=25
 &Version=2015-02-02
 &SignatureVersion=4
 &SignatureMethod=HmacSHA256
 &Timestamp=20150202T192317Z
 &X-Amz-Credential=<credential>

For more information, see the ElastiCache API reference topic DescribeCacheClusters.

Viewing a cluster's details API Version 2015-02-02 188

https://docs.aws.amazon.com/AmazonElastiCache/latest/APIReference/API_DescribeCacheClusters.html

Amazon ElastiCache for Redis User Guide

Modifying an ElastiCache cluster

In addition to adding or removing nodes from a cluster, there can be times where you need
to make other changes to an existing cluster, such as, adding a security group, changing the
maintenance window or a parameter group.

We recommend that you have your maintenance window fall at the time of lowest usage. Thus it
might need modification from time to time.

When you change a cluster's parameters, the change is applied to the cluster either immediately or
after the cluster is restarted. This is true whether you change the cluster's parameter group itself or
a parameter value within the cluster's parameter group. To determine when a particular parameter
change is applied, see the Changes Take Effect section of the Details column in the tables for
Redis-specific parameters.

Using the AWS Management Console

To modify a cluster

1. Sign in to the AWS Management Console and open the ElastiCache console at https://
console.aws.amazon.com/elasticache/.

2. From the list in the upper-right corner, choose the AWS Region where the cluster that you
want to modify is located.

3. In the navigation pane, choose the engine running on the cluster that you want to modify.

A list of the chosen engine's clusters appears.

4. In the list of clusters, for the cluster that you want to modify, choose its name.

5. Choose Actions and then choose Modify.

The Modify Cluster window appears.

6. In the Modify Cluster window, make the modifications that you want. Options include:

• Description

• Cluster mode - To modify cluster mode from Disabled to Enabled, you must first set the
cluster mode to Compatible.

Compatible mode allows your Redis clients to connect using both cluster mode enabled and
cluster mode disabled. After you migrate all Redis clients to use cluster mode enabled, you
can then complete cluster mode configuration and set the cluster mode to Enabled.

Modifying a cluster API Version 2015-02-02 189

https://console.aws.amazon.com/elasticache/
https://console.aws.amazon.com/elasticache/

Amazon ElastiCache for Redis User Guide

• Engine Version Compatibility

Important

You can upgrade to newer engine versions. If you upgrade major engine versions,
for example from 5.0.6 to 6.0, you need to select a parameter group family that
is compatible with the new engine version. For more information on doing so, see
Engine versions and upgrading . However, you can't downgrade to older engine
versions except by deleting the existing cluster and creating it again.

• VPC Security Group(s)

• Parameter Group

• Node Type

Note

If the cluster is using a node type from the r6gd family, you can only choose a
different node size from within that family. If you choose a node type from the r6gd
family, data tiering will automatically be enabled. For more information, see Data
tiering.

• Multi-AZ

• Auto failover (cluster mode disabled only)

• Enable Automatic Backups

• Backup Node Id

• Backup Retention Period

• Backup Window

• Topic for SNS Notification

The Apply Immediately box applies only to engine version modifications. To apply changes
immediately, choose the Apply Immediately check box. If this box is not chosen, node type
and engine version modifications are applied during the next maintenance window. Other
modifications, such as changing the maintenance window, are applied immediately.

7. Choose Modify.

Modifying a cluster API Version 2015-02-02 190

https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/data-tiering.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/data-tiering.html

Amazon ElastiCache for Redis User Guide

To enable/disable log delivery

1. From the list of clusters, choose the cluster you want to modify. Choose the Cluster name and
not the checkbox beside it.

2. On the Cluster details page, choose the Logs tab,

3. To enable/disable slow logs, choose either Enable or Disable.

If you choose enable:

a. Under Log format, choose either JSON or Text.

b. Under Log destination type, choose either CloudWatch Logs or Kinesis Firehose.

c. Under Log destination, choose either Create new and enter either your CloudWatchLogs
log group name or your Kinesis Data Firehose stream name. Or choose Select existing and
then choose either your CloudWatchLogs log group name or your Kinesis Data Firehose
stream name.

d. Choose Enable.

To change your configuration:

1. Choose Modify

2. Under Log format, choose either JSON or Text.

3. Under Destination Type, choose either CloudWatch Logs or Kinesis Firehose.

4. Under Log destination, choose either Create new and enter your CloudWatchLogs log group
name or your Kinesis Data Firehose stream name. Or choose Select existing and then choose
your CloudWatchLogs log group name or your Kinesis Data Firehose stream name.

Using the AWS CLI

You can modify an existing cluster using the AWS CLI modify-cache-cluster operation. To
modify a cluster's configuration value, specify the cluster's ID, the parameter to change and the
parameter's new value. The following example changes the maintenance window for a cluster
named my-cluster and applies the change immediately.

Modifying a cluster API Version 2015-02-02 191

Amazon ElastiCache for Redis User Guide

Important

You can upgrade to newer engine versions. If you upgrade major engine versions, for
example from 5.0.6 to 6.0, you need to select a parameter group family that is compatible
with the new engine version. For more information on doing so, see Engine versions and
upgrading . However, you can't downgrade to older engine versions except by deleting the
existing cluster and creating it again.

For Linux, macOS, or Unix:

aws elasticache modify-cache-cluster \
 --cache-cluster-id my-cluster \
 --preferred-maintenance-window sun:23:00-mon:02:00

For Windows:

aws elasticache modify-cache-cluster ^
 --cache-cluster-id my-cluster ^
 --preferred-maintenance-window sun:23:00-mon:02:00

The --apply-immediately parameter applies only to modifications in node type, engine
version, and changing the number of nodes in a cluster. If you want to apply any of these changes
immediately, use the --apply-immediately parameter. If you prefer postponing these changes
to your next maintenance window, use the --no-apply-immediately parameter. Other
modifications, such as changing the maintenance window, are applied immediately.

For more information, see the AWS CLI for ElastiCache topic modify-cache-cluster.

Using the ElastiCache API

You can modify an existing cluster using the ElastiCache API ModifyCacheCluster operation.
To modify a cluster's configuration value, specify the cluster's ID, the parameter to change and
the parameter's new value. The following example changes the maintenance window for a cluster
named my-cluster and applies the change immediately.

Important

You can upgrade to newer engine versions. If you upgrade major engine versions, for
example from 5.0.6 to 6.0, you need to select a parameter group family that is compatible

Modifying a cluster API Version 2015-02-02 192

https://docs.aws.amazon.com/cli/latest/reference/elasticache/modify-cache-cluster.html

Amazon ElastiCache for Redis User Guide

with the new engine version. For more information on doing so, see Engine versions and
upgrading . However, you can't downgrade to older engine versions except by deleting the
existing cluster and creating it again.

Line breaks are added for ease of reading.

https://elasticache.us-west-2.amazonaws.com/
 ?Action=ModifyCacheCluster
 &CacheClusterId=my-cluster
 &PreferredMaintenanceWindow=sun:23:00-mon:02:00
 &SignatureVersion=4
 &SignatureMethod=HmacSHA256
 &Timestamp=20150901T220302Z
 &X-Amz-Algorithm=&AWS;4-HMAC-SHA256
 &X-Amz-Date=20150202T220302Z
 &X-Amz-SignedHeaders=Host
 &X-Amz-Expires=20150901T220302Z
 &X-Amz-Credential=<credential>
 &X-Amz-Signature=<signature>

The ApplyImmediately parameter applies only to modifications in node type, engine version,
and changing the number of nodes in a cluster. If you want to apply any of these changes
immediately, set the ApplyImmediately parameter to true. If you prefer postponing these
changes to your next maintenance window, set the ApplyImmediately parameter to false.
Other modifications, such as changing the maintenance window, are applied immediately.

For more information, see the ElastiCache API reference topic ModifyCacheCluster.

Modifying a cluster API Version 2015-02-02 193

https://docs.aws.amazon.com/AmazonElastiCache/latest/APIReference/API_ModifyCacheCluster.html

Amazon ElastiCache for Redis User Guide

Adding nodes to a cluster

To reconfigure your Redis (cluster mode enabled) cluster, see Scaling clusters in Redis (Cluster Mode
Enabled)

You can use the ElastiCache Management Console, the AWS CLI or ElastiCache API to add nodes to
your cluster.

Using the AWS Management Console

If you want to add a node to a single-node Redis (cluster mode disabled) cluster (one without
replication enabled), it's a two-step process: first add replication, and then add a replica node.

Topics

• To add replication to a Redis cluster with no shards

• To add nodes to a cluster (console)

The following procedure adds replication to a single-node Redis that does not have replication
enabled. When you add replication, the existing node becomes the primary node in the replication-
enabled cluster. After replication is added, you can add up to 5 replica nodes to the cluster.

To add replication to a Redis cluster with no shards

1. Sign in to the AWS Management Console and open the ElastiCache console at https://
console.aws.amazon.com/elasticache/.

2. From the navigation pane, choose Redis clusters.

A list of clusters running the Redis engine is displayed.

3. Choose the name of a cluster, not the box to the left of the cluster's name, that you want to
add nodes to.

The following is true of a Redis cluster that does not have replication enabled:

• It is running Redis, not Clustered Redis.

• It has zero shards.

If the cluster has any shards, replication is already enabled on it and you can continue at To
add nodes to a cluster (console).

Adding nodes to a cluster API Version 2015-02-02 194

https://console.aws.amazon.com/elasticache/
https://console.aws.amazon.com/elasticache/

Amazon ElastiCache for Redis User Guide

4. Choose Add replication.

5. In Add Replication, enter a description for this replication-enabled cluster.

6. Choose Add.

As soon as the cluster's status returns to available you can continue at the next procedure and
add replicas to the cluster.

To add nodes to a cluster (console)

The following procedure can be used to add nodes to a cluster.

1. Sign in to the AWS Management Console and open the ElastiCache console at https://
console.aws.amazon.com/elasticache/.

2. In the navigation pane, choose the engine running on the cluster that you want to add nodes
to.

A list of clusters running the chosen engine appears.

3. From the list of clusters, for the cluster that you want to add a node to, choose its name.

If your cluster is a Redis (cluster mode enabled) cluster, see Scaling clusters in Redis (Cluster
Mode Enabled).

If your cluster is a Redis (cluster mode disabled) cluster with zero shards, first complete the
steps at To add replication to a Redis cluster with no shards.

4. Choose Add node.

5. Complete the information requested in the Add Node dialog box.

6. Choose the Apply Immediately - Yes button to add this node immediately, or choose No to
add this node during the cluster's next maintenance window.

Impact of New Add and Remove Requests on Pending Requests

Scenarios Pending
Operation

New
Request

Results

Scenario 1 Delete Delete The new delete request, pending or immediate,
replaces the pending delete request.

Adding nodes to a cluster API Version 2015-02-02 195

https://console.aws.amazon.com/elasticache/
https://console.aws.amazon.com/elasticache/

Amazon ElastiCache for Redis User Guide

Scenarios Pending
Operation

New
Request

Results

For example, if nodes 0001, 0003, and 0007 are
pending deletion and a new request to delete
nodes 0002 and 0004 is issued, only nodes 0002
and 0004 will be deleted. Nodes 0001, 0003, and
0007 will not be deleted.

Scenario 2 Delete Create The new create request, pending or immediate,
replaces the pending delete request.

For example, if nodes 0001, 0003, and 0007 are
pending deletion and a new request to create a
node is issued, a new node will be created and
nodes 0001, 0003, and 0007 will not be deleted.

Scenario 3 Create Delete The new delete request, pending or immediate,
replaces the pending create request.

For example, if there is a pending request to create
two nodes and a new request is issued to delete
node 0003, no new nodes will be created and node
0003 will be deleted.

Adding nodes to a cluster API Version 2015-02-02 196

Amazon ElastiCache for Redis User Guide

Scenarios Pending
Operation

New
Request

Results

Scenario 4 Create Create The new create request is added to the pending
create request.

For example, if there is a pending request to create
two nodes and a new request is issued to create
three nodes, the new requests is added to the
pending request and five nodes will be created.

Important

If the new create request is set to Apply
Immediately - Yes, all create requests are
performed immediately. If the new create
request is set to Apply Immediately - No,
all create requests are pending.

To determine what operations are pending, choose the Description tab and check to see how
many pending creations or deletions are shown. You cannot have both pending creations and
pending deletions.

7. Choose the Add button.

After a few moments, the new nodes should appear in the nodes list with a status of creating.
If they don't appear, refresh your browser page. When the node's status changes to available
the new node is able to be used.

Using the AWS CLI

If you want to add nodes to an existing Redis (cluster mode disabled) cluster that does not have
replication enabled, you must first create the replication group specifying the existing cluster as
the primary. For more information, see Creating a replication group using an available Redis cache
cluster (AWS CLI). After the replication group is available, you can continue with the following
process.

Adding nodes to a cluster API Version 2015-02-02 197

Amazon ElastiCache for Redis User Guide

To add nodes to a cluster using the AWS CLI, use the AWS CLI operation increase-replica-
count with the following parameters:

• --replication-group-id The ID of the replicationn group that you want to add nodes to.

• --new-replica-count specifies the number of nodes that you want in this replication group
after the modification is applied. To add nodes to this cluster, --new-replica-count must be
greater than the current number of nodes in this cluster.

• --apply-immediately or --no-apply-immediately which specifies whether to add these
nodes immediately or at the next maintenance window.

For Linux, macOS, or Unix:

aws elasticache increase-replica-count \
 --replication-group-id my-replication-group \
 --new-replica-count 4 \
 --apply-immediately

For Windows:

aws elasticache increase-replica-count ^
 --replication-group-id my-replication-group ^
 --new-replica-count 4 ^
 --apply-immediately

This operation produces output similar to the following (JSON format):

{
 "ReplicationGroup": {
 "ReplicationGroupId": "node-test",
 "Description": "node-test",
 "Status": "modifying",
 "PendingModifiedValues": {},
 "MemberClusters": [
 "node-test-001",
 "node-test-002",
 "node-test-003",
 "node-test-004",
 "node-test-005"
],
 "NodeGroups": [

Adding nodes to a cluster API Version 2015-02-02 198

Amazon ElastiCache for Redis User Guide

 {
 "NodeGroupId": "0001",
 "Status": "modifying",
 "PrimaryEndpoint": {
 "Address": "node-test.zzzzzz.ng.0001.usw2.cache.amazonaws.com",
 "Port": 6379
 },
 "ReaderEndpoint": {
 "Address": "node-test.zzzzzz.ng.0001.usw2.cache.amazonaws.com",
 "Port": 6379
 },
 "NodeGroupMembers": [
 {
 "CacheClusterId": "node-test-001",
 "CacheNodeId": "0001",
 "ReadEndpoint": {
 "Address": "node-
test-001.zzzzzz.0001.usw2.cache.amazonaws.com",
 "Port": 6379
 },
 "PreferredAvailabilityZone": "us-west-2a",
 "CurrentRole": "primary"
 },
 {
 "CacheClusterId": "node-test-002",
 "CacheNodeId": "0001",
 "ReadEndpoint": {
 "Address": "node-
test-002.zzzzzz.0001.usw2.cache.amazonaws.com",
 "Port": 6379
 },
 "PreferredAvailabilityZone": "us-west-2c",
 "CurrentRole": "replica"
 },
 {
 "CacheClusterId": "node-test-003",
 "CacheNodeId": "0001",
 "ReadEndpoint": {
 "Address": "node-
test-003.zzzzzz.0001.usw2.cache.amazonaws.com",
 "Port": 6379
 },
 "PreferredAvailabilityZone": "us-west-2b",
 "CurrentRole": "replica"

Adding nodes to a cluster API Version 2015-02-02 199

Amazon ElastiCache for Redis User Guide

 }
]
 }
],
 "SnapshottingClusterId": "node-test-002",
 "AutomaticFailover": "enabled",
 "MultiAZ": "enabled",
 "SnapshotRetentionLimit": 1,
 "SnapshotWindow": "07:30-08:30",
 "ClusterEnabled": false,
 "CacheNodeType": "cache.r5.large",
 "DataTiering": "disabled",
 "TransitEncryptionEnabled": false,
 "AtRestEncryptionEnabled": false,
 "ARN": "arn:aws:elasticache:us-west-2:123456789012:replicationgroup:node-test"
 }
}

For more information, see the AWS CLI topic increase-replica-count.

Using the ElastiCache API

If you want to add nodes to an existing Redis (cluster mode disabled) cluster that does not have
replication enabled, you must first create the replication group specifying the existing cluster
as the Primary. For more information, see Adding replicas to a standalone Redis (Cluster Mode
Disabled) cluster (ElastiCache API). After the replication group is available, you can continue with
the following process.

To add nodes to a cluster (ElastiCache API)

• Call the IncreaseReplicaCount API operation with the following parameters:

• ReplicationGroupId The ID of the cluster that you want to add nodes to.

• NewReplicaCount The NewReplicaCount parameter specifies the number of nodes
that you want in this cluster after the modification is applied. To add nodes to this cluster,
NewReplicaCount must be greater than the current number of nodes in this cluster. If this
value is less than the current number of nodes, use the DecreaseReplicaCount API with
the number of nodes to remove from the cluster.

• ApplyImmediately Specifies whether to add these nodes immediately or at the next
maintenance window.

• Region Specifies the AWS Region of the cluster that you want to add nodes to.

Adding nodes to a cluster API Version 2015-02-02 200

https://docs.aws.amazon.com/cli/latest/reference/elasticache/increase-replica-count.html

Amazon ElastiCache for Redis User Guide

The following example shows a call to add nodes to a cluster.

Example

https://elasticache.us-west-2.amazonaws.com/
 ?Action=IncreaseReplicaCount
 &ApplyImmediately=true
 &NumCacheNodes=4
 &ReplicationGroupId=my-replication-group
 &Region=us-east-2
 &Version=2014-12-01
 &SignatureVersion=4
 &SignatureMethod=HmacSHA256
 &Timestamp=20141201T220302Z
 &X-Amz-Algorithm=&AWS;4-HMAC-SHA256
 &X-Amz-Date=20141201T220302Z
 &X-Amz-SignedHeaders=Host
 &X-Amz-Expires=20141201T220302Z
 &X-Amz-Credential=<credential>
 &X-Amz-Signature=<signature>

For more information, see ElastiCache API topic IncreaseReplicaCount.

Adding nodes to a cluster API Version 2015-02-02 201

https://docs.aws.amazon.com/AmazonElastiCache/latest/APIReference/API_IncreaseReplicaCount.html

Amazon ElastiCache for Redis User Guide

Removing nodes from a cluster

You can delete a node from a cluster using the AWS Management Console, the AWS CLI, or the
ElastiCache API.

Using the AWS Management Console

To remove nodes from a cluster (console)

1. Sign in to the AWS Management Console and open the ElastiCache console at https://
console.aws.amazon.com/elasticache/.

2. From the list in the upper-right corner, choose the AWS Region of the cluster that you want to
remove nodes from.

3. In the navigation pane, choose the engine running on the cluster that you want to remove a
node.

A list of clusters running the chosen engine appears.

4. From the list of clusters, choose the cluster name from which you want to remove a node.

A list of the cluster's nodes appears.

5. Choose the box to the left of the node ID for the node that you want to remove. Using the
ElastiCache console, you can only delete one node at a time, so choosing multiple nodes
means that you can't use the Delete node button.

The Delete Node page appears.

6. To delete the node, complete the Delete Node page and choose Delete Node. To keep the
node, choose Cancel.

Important

If deleting the node results in the cluster no longer being Multi-AZ compliant, make
sure to first clear the Multi-AZ check box and then delete the node. If you clear the
Multi-AZ check box, you can choose to enable Auto failover.

Removing nodes from a cluster API Version 2015-02-02 202

https://console.aws.amazon.com/elasticache/
https://console.aws.amazon.com/elasticache/

Amazon ElastiCache for Redis User Guide

Impact of New Add and Remove Requests on Pending Requests

Scenarios Pending
Operation

New
Request

Results

Scenario 1 Delete Delete The new delete request, pending or immediate,
replaces the pending delete request.

For example, if nodes 0001, 0003, and 0007 are
pending deletion and a new request to delete nodes
0002 and 0004 is issued, only nodes 0002 and 0004
will be deleted. Nodes 0001, 0003, and 0007 will not
be deleted.

Scenario 2 Delete Create The new create request, pending or immediate,
replaces the pending delete request.

For example, if nodes 0001, 0003, and 0007 are
pending deletion and a new request to create a node
is issued, a new node will be created and nodes 0001,
0003, and 0007 will not be deleted.

Scenario 3 Create Delete The new delete request, pending or immediate,
replaces the pending create request.

For example, if there is a pending request to create
two nodes and a new request is issued to delete
node 0003, no new nodes will be created and node
0003 will be deleted.

Scenario 4 Create Create The new create request is added to the pending
create request.

For example, if there is a pending request to create
two nodes and a new request is issued to create three
nodes, the new requests is added to the pending
request and five nodes will be created.

Removing nodes from a cluster API Version 2015-02-02 203

Amazon ElastiCache for Redis User Guide

Scenarios Pending
Operation

New
Request

Results

Important

If the new create request is set to Apply
Immediately - Yes, all create requests are
performed immediately. If the new create
request is set to Apply Immediately - No, all
create requests are pending.

To determine what operations are pending, choose the Description tab and check to see how many
pending creations or deletions are shown. You cannot have both pending creations and pending
deletions.

Using the AWS CLI

1. Identify the IDs of the nodes that you want to remove. For more information, see Viewing a
cluster's details.

2. Use the decrease-replica-count CLI operation with a list of the nodes to remove, as in
the following example.

To remove nodes from a cluster using the command-line interface, use the command
decrease-replica-count with the following parameters:

• --replication-group-id The ID of the replication group that you want to remove nodes
from.

• --new-replica-count The --new-replica-count parameter specifies the number of
nodes that you want in this cluster after the modification is applied.

• --replicas-to-remove A list of node IDs that you want removed from this cluster.

• --apply-immediately or --no-apply-immediately Specifies whether to remove these
nodes immediately or at the next maintenance window.

• --region Specifies the AWS Region of the cluster that you want to remove nodes from.

Removing nodes from a cluster API Version 2015-02-02 204

Amazon ElastiCache for Redis User Guide

Note

You can pass only one of --replicas-to-remove or --new-replica-count
parameters when calling this operation.

For Linux, macOS, or Unix:

aws elasticache decrease-replica-count \
 --replication-group-id my-replication-group \
 --new-replica-count 2 \
 --region us-east-2 \
 --apply-immediately

For Windows:

aws elasticache decrease-replica-count ^
 --replication-group-id my-replication-group ^
 --new-replica-count 3 ^
 --region us-east-2 ^
 --apply-immediately

This operation produces output similar to the following (JSON format):

{
 "ReplicationGroup": {
 "ReplicationGroupId": "node-test",
 "Description": "node-test"
 },
 "Status": "modifying",
 "PendingModifiedValues": {},
 "MemberClusters": [
 "node-test-001",
 "node-test-002",
 "node-test-003",
 "node-test-004",
 "node-test-005",
 "node-test-006"
],

Removing nodes from a cluster API Version 2015-02-02 205

Amazon ElastiCache for Redis User Guide

 "NodeGroups": [
 {
 "NodeGroupId": "0001",
 "Status": "modifying",
 "PrimaryEndpoint": {
 "Address": "node-test.zzzzzz.ng.0001.usw2.cache.amazonaws.com",
 "Port": 6379
 },
 "ReaderEndpoint": {
 "Address": "node-test-
ro.zzzzzz.ng.0001.usw2.cache.amazonaws.com",
 "Port": 6379
 },
 "NodeGroupMembers": [
 {
 "CacheClusterId": "node-test-001",
 "CacheNodeId": "0001",
 "ReadEndpoint": {
 "Address": "node-
test-001.zzzzzz.0001.usw2.cache.amazonaws.com",
 "Port": 6379
 },
 "PreferredAvailabilityZone": "us-west-2a",
 "CurrentRole": "primary"
 },
 {
 "CacheClusterId": "node-test-002",
 "CacheNodeId": "0001",
 "ReadEndpoint": {
 "Address": "node-
test-002.zzzzzz.0001.usw2.cache.amazonaws.com",
 "Port": 6379
 },
 "PreferredAvailabilityZone": "us-west-2c",
 "CurrentRole": "replica"
 },
 {
 "CacheClusterId": "node-test-003",
 "CacheNodeId": "0001",
 "ReadEndpoint": {
 "Address": "node-
test-003.zzzzzz.0001.usw2.cache.amazonaws.com",
 "Port": 6379
 },

Removing nodes from a cluster API Version 2015-02-02 206

Amazon ElastiCache for Redis User Guide

 "PreferredAvailabilityZone": "us-west-2b",
 "CurrentRole": "replica"
 },
 {
 "CacheClusterId": "node-test-004",
 "CacheNodeId": "0001",
 "ReadEndpoint": {
 "Address": "node-
test-004.zzzzzz.0001.usw2.cache.amazonaws.com",
 "Port": 6379
 },
 "PreferredAvailabilityZone": "us-west-2c",
 "CurrentRole": "replica"
 },
 {
 "CacheClusterId": "node-test-005",
 "CacheNodeId": "0001",
 "ReadEndpoint": {
 "Address": "node-
test-005.zzzzzz.0001.usw2.cache.amazonaws.com",
 "Port": 6379
 },
 "PreferredAvailabilityZone": "us-west-2b",
 "CurrentRole": "replica"
 },
 {
 "CacheClusterId": "node-test-006",
 "CacheNodeId": "0001",
 "ReadEndpoint": {
 "Address": "node-
test-006.zzzzzz.0001.usw2.cache.amazonaws.com",
 "Port": 6379
 },
 "PreferredAvailabilityZone": "us-west-2b",
 "CurrentRole": "replica"
 }
]
 }
],
 "SnapshottingClusterId": "node-test-002",
 "AutomaticFailover": "enabled",
 "MultiAZ": "enabled",
 "SnapshotRetentionLimit": 1,
 "SnapshotWindow": "07:30-08:30",

Removing nodes from a cluster API Version 2015-02-02 207

Amazon ElastiCache for Redis User Guide

 "ClusterEnabled": false,
 "CacheNodeType": "cache.r5.large",
 "DataTiering": "disabled",
 "TransitEncryptionEnabled": false,
 "AtRestEncryptionEnabled": false,
 "ARN": "arn:aws:elasticache:us-west-2:123456789012:replicationgroup:node-
test"
 }
}

Alternatively, you could call decrease-replica-count and instead of passing in the --new-
replica-count parameter, you could pass the --replicas-to-remove parameter, as shown
following:

For Linux, macOS, or Unix:

aws elasticache decrease-replica-count \
 --replication-group-id my-replication-group \
 --replicas-to-remove node-test-003 \
 --region us-east-2 \
 --apply-immediately

For Windows:

aws elasticache decrease-replica-count ^
 --replication-group-id my-replication-group ^
 --replicas-to-remove node-test-003 ^
 --region us-east-2 ^
 --apply-immediately

For more information, see the AWS CLI topics decrease-replica-count.

Using the ElastiCache API

To remove nodes using the ElastiCache API, call the DecreaseReplicaCount API operation with
the replication group Id and a list of nodes to remove, as shown:

• ReplicationGroupId The ID of the replication group that you want to remove nodes from.

• ReplicasToRemove The ReplicasToRemove parameter specifies the number of nodes that
you want in this cluster after the modification is applied.

Removing nodes from a cluster API Version 2015-02-02 208

https://docs.aws.amazon.com/cli/latest/reference/elasticache/decrease-replica-count.html

Amazon ElastiCache for Redis User Guide

• ApplyImmediately Specifies whether to remove these nodes immediately or at the next
maintenance window.

• Region Specifies the AWS Region of the cluster that you want to remove a node from.

The following example immediately removes nodes 0004 and 0005 from the cluster my-cluster.

https://elasticache.us-west-2.amazonaws.com/
 ?Action=DecreaseReplicaCount
 &ReplicationGroupId=my-replication-group
 &ApplyImmediately=true
 &ReplicasToRemove=node-test-003
 &Region us-east-2
 &Version=2014-12-01
 &SignatureVersion=4
 &SignatureMethod=HmacSHA256
 &Timestamp=20141201T220302Z
 &X-Amz-Algorithm=&AWS;4-HMAC-SHA256
 &X-Amz-Date=20141201T220302Z
 &X-Amz-SignedHeaders=Host
 &X-Amz-Expires=20141201T220302Z
 &X-Amz-Credential=<credential>
 &X-Amz-Signature=<signature>

For more information, see ElastiCache API topic DecreaseReplicaCount.

Removing nodes from a cluster API Version 2015-02-02 209

https://docs.aws.amazon.com/AmazonElastiCache/latest/APIReference/API_DecreaseReplicaCount.html

Amazon ElastiCache for Redis User Guide

Canceling pending add or delete node operations

If you elected to not apply a change immediately, the operation has pending status until it is
performed at your next maintenance window. You can cancel any pending operation.

To cancel a pending operation

1. Sign in to the AWS Management Console and open the ElastiCache console at https://
console.aws.amazon.com/elasticache/.

2. From the list in the upper-right corner, choose the AWS Region that you want to cancel a
pending add or delete node operation in.

3. In the navigation pane, choose the engine running on the cluster that has pending operations
that you want to cancel. A list of clusters running the chosen engine appears.

4. In the list of clusters, choose the name of the cluster, not the box to the left of the cluster's
name, that has pending operations that you want to cancel.

5. To determine what operations are pending, choose the Description tab and check to see how
many pending creations or deletions are shown. You cannot have both pending creations and
pending deletions.

6. Choose the Nodes tab.

7. To cancel all pending operations, click Cancel Pending. The Cancel Pending dialog box
appears.

8. Confirm that you want to cancel all pending operations by choosing the Cancel Pending
button, or to keep the operations, choose Cancel.

Canceling pending add or delete node operations API Version 2015-02-02 210

https://console.aws.amazon.com/elasticache/
https://console.aws.amazon.com/elasticache/

Amazon ElastiCache for Redis User Guide

Deleting a cluster

As long as a cluster is in the available state, you are being charged for it, whether or not you are
actively using it. To stop incurring charges, delete the cluster.

Warning

When you delete an ElastiCache for Redis cluster, your manual snapshots are retained. You
can also create a final snapshot before the cluster is deleted. Automatic cache snapshots
are not retained.

Using the AWS Management Console

The following procedure deletes a single cluster from your deployment. To delete multiple clusters,
repeat the procedure for each cluster that you want to delete. You do not need to wait for one
cluster to finish deleting before starting the procedure to delete another cluster.

To delete a cluster

1. Sign in to the AWS Management Console and open the Amazon ElastiCache console at https://
console.aws.amazon.com/elasticache/.

2. In the ElastiCache console dashboard, choose the engine the cluster that you want to delete is
running.

A list of all clusters running that engine appears.

3. To choose the cluster to delete, choose the cluster's name from the list of clusters.

Important

You can only delete one cluster at a time from the ElastiCache console. Choosing
multiple clusters disables the delete operation.

4. For Actions, choose Delete.

5. In the Delete Cluster confirmation screen, choose Delete to delete the cluster, or choose
Cancel to keep the cluster.

If you chose Delete, the status of the cluster changes to deleting.

Deleting a cluster API Version 2015-02-02 211

https://console.aws.amazon.com/elasticache/
https://console.aws.amazon.com/elasticache/

Amazon ElastiCache for Redis User Guide

As soon as your cluster is no longer listed in the list of clusters, you stop incurring charges for it.

Using the AWS CLI

The following code deletes the cache cluster my-cluster.

aws elasticache delete-cache-cluster --cache-cluster-id my-cluster

The delete-cache-cluster CLI action only deletes one cache cluster. To delete multiple cache
clusters, call delete-cache-cluster for each cache cluster that you want to delete. You do not
need to wait for one cache cluster to finish deleting before deleting another.

For Linux, macOS, or Unix:

aws elasticache delete-cache-cluster \
 --cache-cluster-id my-cluster \
 --region us-east-2

For Windows:

aws elasticache delete-cache-cluster ^
 --cache-cluster-id my-cluster ^
 --region us-east-2

For more information, see the AWS CLI for ElastiCache topic delete-cache-cluster.

Using the ElastiCache API

The following code deletes the cluster my-cluster.

https://elasticache.us-west-2.amazonaws.com/
 ?Action=DeleteCacheCluster
 &CacheClusterId=my-cluster
 &Region us-east-2
 &SignatureVersion=4
 &SignatureMethod=HmacSHA256
 &Timestamp=20150202T220302Z
 &X-Amz-Algorithm=&AWS;4-HMAC-SHA256
 &X-Amz-Date=20150202T220302Z
 &X-Amz-SignedHeaders=Host
 &X-Amz-Expires=20150202T220302Z

Deleting a cluster API Version 2015-02-02 212

https://docs.aws.amazon.com/cli/latest/reference/elasticache/delete-cache-cluster.html

Amazon ElastiCache for Redis User Guide

 &X-Amz-Credential=<credential>
 &X-Amz-Signature=<signature>

The DeleteCacheCluster API operation only deletes one cache cluster. To delete multiple cache
clusters, call DeleteCacheCluster for each cache cluster that you want to delete. You do not
need to wait for one cache cluster to finish deleting before deleting another.

For more information, see the ElastiCache API reference topic DeleteCacheCluster.

Deleting a cluster API Version 2015-02-02 213

https://docs.aws.amazon.com/AmazonElastiCache/latest/APIReference/API_DeleteCacheCluster.html

Amazon ElastiCache for Redis User Guide

Accessing your cluster or replication group

Your Amazon ElastiCache instances are designed to be accessed through an Amazon EC2 instance.

If you launched your ElastiCache instance in an Amazon Virtual Private Cloud (Amazon VPC), you
can access your ElastiCache instance from an Amazon EC2 instance in the same Amazon VPC. Or,
by using VPC peering, you can access your ElastiCache instance from an Amazon EC2 in a different
Amazon VPC.

If you launched your ElastiCache instance in EC2 Classic, you allow the EC2 instance to access your
cluster by granting the Amazon EC2 security group associated with the instance access to your
cache security group. By default, access to a cluster is restricted to the account that launched the
cluster.

Topics

• Grant access to your cluster or replication group

Grant access to your cluster or replication group

You launched your cluster into EC2-VPC

If you launched your cluster into an Amazon Virtual Private Cloud (Amazon VPC), you can connect
to your ElastiCache cluster only from an Amazon EC2 instance that is running in the same Amazon
VPC. In this case, you will need to grant network ingress to the cluster.

Note

If your are using Local Zones, make sure you have enabled it. For more information, see
Enable Local Zones. By doing so, your VPC is extended to that Local Zone and your VPC will
treat the subnet as any subnet in any other Availability Zone and relevant gateways, route
tables and other security group considerations. will be automatically adjusted.

To grant network ingress from an Amazon VPC security group to a cluster

1. Sign in to the AWS Management Console and open the Amazon EC2 console at https://
console.aws.amazon.com/ec2/.

2. In the navigation pane, under Network & Security, choose Security Groups.

Accessing your cluster or replication group API Version 2015-02-02 214

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-regions-availability-zones.html#opt-in-local-zone
https://console.aws.amazon.com/ec2/
https://console.aws.amazon.com/ec2/

Amazon ElastiCache for Redis User Guide

3. From the list of security groups, choose the security group for your Amazon VPC. Unless you
created a security group for ElastiCache use, this security group will be named default.

4. Choose the Inbound tab, and then do the following:

a. Choose Edit.

b. Choose Add rule.

c. In the Type column, choose Custom TCP rule.

d. In the Port range box, type the port number for your cluster node. This number must be
the same one that you specified when you launched the cluster. The default port for Redis
is 6379.

e. In the Source box, choose Anywhere which has the port range (0.0.0.0/0) so that any
Amazon EC2 instance that you launch within your Amazon VPC can connect to your
ElastiCache nodes.

Important

Opening up the ElastiCache cluster to 0.0.0.0/0 does not expose the cluster to the
Internet because it has no public IP address and therefore cannot be accessed from
outside the VPC. However, the default security group may be applied to other
Amazon EC2 instances in the customer’s account, and those instances may have
a public IP address. If they happen to be running something on the default port,
then that service could be exposed unintentionally. Therefore, we recommend
creating a VPC Security Group that will be used exclusively by ElastiCache. For
more information, see Custom Security Groups.

f. Choose Save.

When you launch an Amazon EC2 instance into your Amazon VPC, that instance will be able to
connect to your ElastiCache cluster.

Accessing your cluster or replication group API Version 2015-02-02 215

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-network-security.html#creating-your-own-security-groups

Amazon ElastiCache for Redis User Guide

Accessing ElastiCache resources from outside AWS

Amazon ElastiCache is an AWS service that provides cloud-based in-memory key-value store.
The service is designed to be accessed exclusively from within AWS. However, if the ElastiCache
cluster is hosted inside a VPC, you can use a Network Address Translation (NAT) instance to provide
outside access.

Requirements

The following requirements must be met for you to access your ElastiCache resources from outside
AWS:

• The cluster must reside within a VPC and be accessed through a Network Address Translation
(NAT) instance. There are no exceptions to this requirement.

• The NAT instance must be launched in the same VPC as the cluster.

• The NAT instance must be launched in a public subnet separate from the cluster.

• An Elastic IP Address (EIP) must be associated with the NAT instance. The port forwarding
feature of iptables is used to forward a port on the NAT instance to the cache node port within
the VPC.

Considerations

The following considerations should be kept in mind when accessing your ElastiCache resources
from outside ElastiCache.

• Clients connect to the EIP and cache port of the NAT instance. Port forwarding on the NAT
instance forwards traffic to the appropriate cache cluster node.

• If a cluster node is added or replaced, the iptables rules need to be updated to reflect this
change.

Limitations

This approach should be used for testing and development purposes only. It is not recommended
for production use due to the following limitations:

• The NAT instance is acting as a proxy between clients and multiple clusters. The addition of a
proxy impacts the performance of the cache cluster. The impact increases with number of cache
clusters you are accessing through the NAT instance.

Accessing your cluster or replication group API Version 2015-02-02 216

Amazon ElastiCache for Redis User Guide

• The traffic from clients to the NAT instance is unencrypted. Therefore, you should avoid sending
sensitive data via the NAT instance.

• The NAT instance adds the overhead of maintaining another instance.

• The NAT instance serves as a single point of failure. For information about how to set up high
availability NAT on VPC, see High Availability for Amazon VPC NAT Instances: An Example.

How to access ElastiCache resources from outside AWS

The following procedure demonstrates how to connect to your ElastiCache resources using a NAT
instance.

These steps assume the following:

• iptables -t nat -A PREROUTING -i eth0 -p tcp --dport 6380 -j DNAT --to
10.0.1.231:6379

• iptables -t nat -A PREROUTING -i eth0 -p tcp --dport 6381 -j DNAT --to
10.0.1.232:6379

Next you need NAT in the opposite direction:

iptables -t nat -A POSTROUTING -o eth0 -j SNAT --to-source 10.0.0.55

You also need to enable IP forwarding, which is disabled by default:

sudo sed -i 's/net.ipv4.ip_forward=0/net.ipv4.ip_forward=1/g' /etc/
sysctl.conf sudo sysctl --system

• You are accessing a Redis cluster with:

• IP address – 10.0.1.230

• Default Redis port – 6379

• Security group – sg-bd56b7da

• AWS instance IP address – sg-bd56b7da

• Your trusted client has the IP address 198.51.100.27.

• Your NAT instance has the Elastic IP Address 203.0.113.73.

• Your NAT instance has security group sg-ce56b7a9.

Accessing your cluster or replication group API Version 2015-02-02 217

https://aws.amazon.com/articles/2781451301784570

Amazon ElastiCache for Redis User Guide

To connect to your ElastiCache resources using a NAT instance

1. Create a NAT instance in the same VPC as your cache cluster but in a public subnet.

By default, the VPC wizard will launch a cache.m1.small node type. You should select a node
size based on your needs. You must use EC2 NAT AMI to be able to access ElastiCache from
outside AWS.

For information about creating a NAT instance, see NAT Instances in the AWS VPC User Guide.

2. Create security group rules for the cache cluster and NAT instance.

The NAT instance security group and the cluster instance should have the following rules:

• Two inbound rules

• One to allow TCP connections from trusted clients to each cache port forwarded from the
NAT instance (6379 - 6381).

• A second to allow SSH access to trusted clients.

NAT instance security group - inbound rules

Type Protocol Port range Source

Custom TCP Rule TCP 6379-6380 198.51.100.27/32

SSH TCP 22 203.0.113.73/32

• An outbound rule to allow TCP connections to cache port (6379).

NAT instance security group - outbound rule

Type Protocol Port range Destination

Custom TCP Rule TCP 6379 sg-ce56b7a9
(Cluster instance Security Group)

• An inbound rule for the cluster's security group that allows TCP connections from the NAT
instance to the cache port (6379).

Accessing your cluster or replication group API Version 2015-02-02 218

https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/VPC_NAT_Instance.html

Amazon ElastiCache for Redis User Guide

Cluster instance security group - inbound rule

Type Protocol Port range Source

Custom TCP Rule TCP 6379 sg-bd56b7da
(Cluster Security Group)

3. Validate the rules.

• Confirm that the trusted client is able to SSH to the NAT instance.

• Confirm that the trusted client is able to connect to the cluster from the NAT instance.

4. Add an iptables rule to the NAT instance.

An iptables rule must be added to the NAT table for each node in the cluster to forward
the cache port from the NAT instance to the cluster node. An example might look like the
following:

iptables -t nat -A PREROUTING -i eth0 -p tcp --dport 6379 -j DNAT --to
 10.0.1.230:6379

The port number must be unique for each node in the cluster. For example, if working with a
three node Redis cluster using ports 6379 - 6381, the rules would look like the following:

iptables -t nat -A PREROUTING -i eth0 -p tcp --dport 6379 -j DNAT --to
 10.0.1.230:6379
iptables -t nat -A PREROUTING -i eth0 -p tcp --dport 6380 -j DNAT --to
 10.0.1.231:6379
iptables -t nat -A PREROUTING -i eth0 -p tcp --dport 6381 -j DNAT --to
 10.0.1.232:6379

5. Confirm that the trusted client is able to connect to the cluster.

The trusted client should connect to the EIP associated with the NAT instance and the cluster
port corresponding to the appropriate cluster node. For example, the connection string for
PHP might look like the following:

redis->connect('203.0.113.73', 6379);
redis->connect('203.0.113.73', 6380);
redis->connect('203.0.113.73', 6381);

Accessing your cluster or replication group API Version 2015-02-02 219

Amazon ElastiCache for Redis User Guide

A telnet client can also be used to verify the connection. For example:

telnet 203.0.113.73 6379
telnet 203.0.113.73 6380
telnet 203.0.113.73 6381

6. Save the iptables configuration.

Save the rules after you test and verify them. If you are using a Redhat-based Linux
distribution (like Amazon Linux), run the following command:

service iptables save

Related topics

The following topics may be of additional interest.

• Access Patterns for Accessing an ElastiCache Cache in an Amazon VPC

• Accessing an ElastiCache Cache from an Application Running in a Customer's Data Center

• NAT Instances

• Configuring ElastiCache Clients

• High Availability for Amazon VPC NAT Instances: An Example

Finding connection endpoints

Your application connects to your cluster using endpoints. An endpoint is a node or cluster's unique
address.

If you don't use Automatic Discovery, you must configure your client to use the individual node
endpoints for reads and writes. You must also keep track of them as you add and remove nodes.

Which endpoints to use

• Redis standalone node, use the node's endpoint for both read and write operations.

• Redis (cluster mode disabled) clusters, use the Primary Endpoint for all write operations. Use
the Reader Endpoint to evenly split incoming connections to the endpoint between all read

Finding connection endpoints API Version 2015-02-02 220

https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/VPC_NAT_Instance.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/mem-ug/ClientConfig.html
https://aws.amazon.com/articles/2781451301784570

Amazon ElastiCache for Redis User Guide

replicas. Use the individual Node Endpoints for read operations (In the API/CLI these are referred
to as Read Endpoints).

• Redis (cluster mode enabled) clusters, use the cluster's Configuration Endpoint for all operations
that support cluster mode enabled commands. You must use a client that supports Redis Cluster
(Redis 3.2). You can still read from individual node endpoints (In the API/CLI these are referred to
as Read Endpoints).

The following sections guide you through discovering the endpoints you'll need for the engine
you're running.

Finding connection endpoints API Version 2015-02-02 221

Amazon ElastiCache for Redis User Guide

Finding a Redis (Cluster Mode Disabled) Cluster's Endpoints (Console)

If a Redis (cluster mode disabled) cluster has only one node, the node's endpoint is used for both
reads and writes. If a Redis (cluster mode disabled) cluster has multiple nodes, there are three types
of endpoints; the primary endpoint, the reader endpoint and the node endpoints.

The primary endpoint is a DNS name that always resolves to the primary node in the cluster. The
primary endpoint is immune to changes to your cluster, such as promoting a read replica to the
primary role. For write activity, we recommend that your applications connect to the primary
endpoint.

A reader endpoint will evenly split incoming connections to the endpoint between all read replicas
in a ElastiCache for Redis cluster. Additional factors such as when the application creates the
connections or how the application (re)-uses the connections will determine the traffic distribution.
Reader endpoints keep up with cluster changes in real-time as replicas are added or removed. You
can place your ElastiCache for Redis cluster’s multiple read replicas in different AWS Availability
Zones (AZ) to ensure high availability of reader endpoints.

Note

A reader endpoint is not a load balancer. It is a DNS record that will resolve to an IP address
of one of the replica nodes in a round robin fashion.

For read activity, applications can also connect to any node in the cluster. Unlike the primary
endpoint, node endpoints resolve to specific endpoints. If you make a change in your cluster, such
as adding or deleting a replica, you must update the node endpoints in your application.

To find a Redis (cluster mode disabled) cluster's endpoints

1. Sign in to the AWS Management Console and open the ElastiCache console at https://
console.aws.amazon.com/elasticache/.

2. From the navigation pane, choose Redis clusters.

The clusters screen will appear with a list of Redis (cluster mode disabled) and Redis (cluster
mode enabled) clusters.

3. To find the cluster's Primary and/or Reader endpoints, choose the cluster's name (not the
button to its left).

Finding connection endpoints API Version 2015-02-02 222

https://console.aws.amazon.com/elasticache/
https://console.aws.amazon.com/elasticache/

Amazon ElastiCache for Redis User Guide

Primary and Reader endpoints for a Redis (cluster mode disabled) cluster

If there is only one node in the cluster, there is no primary endpoint and you can continue at
the next step.

4. If the Redis (cluster mode disabled) cluster has replica nodes, you can find the cluster's replica
node endpoints by choosing the cluster's name and then choosing the Nodes tab.

The nodes screen appears with each node in the cluster, primary and replicas, listed with its
endpoint.

Node endpoints for a Redis (cluster mode disabled) cluster

5. To copy an endpoint to your clipboard:

a. One endpoint at a time, find the endpoint you want to copy.

b. Choose the copy icon directly in front of the endpoint.

The endpoint is now copied to your clipboard. For information on using the endpoint to
connect to a node, see Connecting to nodes.

Finding connection endpoints API Version 2015-02-02 223

Amazon ElastiCache for Redis User Guide

A Redis (cluster mode disabled) primary endpoint looks something like the following. There is a
difference depending upon whether or not In-Transit encryption is enabled.

In-transit encryption not enabled

clusterName.xxxxxx.nodeId.regionAndAz.cache.amazonaws.com:port

redis-01.7abc2d.0001.usw2.cache.amazonaws.com:6379

In-transit encryption enabled

master.clusterName.xxxxxx.regionAndAz.cache.amazonaws.com:port

master.ncit.ameaqx.use1.cache.amazonaws.com:6379

Finding Endpoints for a Redis (Cluster Mode Enabled) Cluster (Console)

A Redis (cluster mode enabled) cluster has a single configuration endpoint. By connecting to the
configuration endpoint, your application is able to discover the primary and read endpoints for
each shard in the cluster.

To find a Redis (cluster mode enabled) cluster's endpoint

1. Sign in to the AWS Management Console and open the ElastiCache console at https://
console.aws.amazon.com/elasticache/.

2. From the navigation pane, choose Redis clusters.

The clusters screen will appear with a list of Redis (cluster mode disabled) and Redis (cluster
mode enabled) clusters. Choose the Redis (cluster mode enabled) cluster you wish to connect
to.

3. To find the cluster's Configuration endpoint, choose the cluster's name (not the radio button).

4. The Configuration endpoint is displayed under Cluster details. To copy it, choose the copy
icon to the left of the endpoint.

Finding connection endpoints API Version 2015-02-02 224

https://console.aws.amazon.com/elasticache/
https://console.aws.amazon.com/elasticache/

Amazon ElastiCache for Redis User Guide

Finding Endpoints (AWS CLI)

You can use the AWS CLI for Amazon ElastiCache to discover the endpoints for nodes, clusters, and
replication groups.

Topics

• Finding Endpoints for Nodes and Clusters (AWS CLI)

• Finding the Endpoints for Replication Groups (AWS CLI)

Finding Endpoints for Nodes and Clusters (AWS CLI)

You can use the AWS CLI to discover the endpoints for a cluster and its nodes with the describe-
cache-clusters command. For Redis clusters, the command returns the cluster endpoint. If you
include the optional parameter --show-cache-node-info, the command will also return the
endpoints of the individual nodes in the cluster.

Example

The following command retrieves the cluster information for the single-node Redis (cluster mode
disabled) cluster mycluster.

Important

The parameter --cache-cluster-id can be used with single-node Redis (cluster
mode disabled) cluster id or specific node ids in Redis replication groups. The --cache-
cluster-id of a Redis replication group is a 4-digit value such as 0001. If --cache-
cluster-id is the id of a cluster (node) in a Redis replication group, the replication-
group-id is included in the output.

For Linux, macOS, or Unix:

aws elasticache describe-cache-clusters \
 --cache-cluster-id redis-cluster \
 --show-cache-node-info

For Windows:

aws elasticache describe-cache-clusters ^

Finding connection endpoints API Version 2015-02-02 225

Amazon ElastiCache for Redis User Guide

 --cache-cluster-id redis-cluster ^
 --show-cache-node-info

Output from the above operation should look something like this (JSON format).

{
 "CacheClusters": [
 {
 "CacheClusterStatus": "available",
 "SecurityGroups": [
 {
 "SecurityGroupId": "sg-77186e0d",
 "Status": "active"
 }
],
 "CacheNodes": [
 {
 "CustomerAvailabilityZone": "us-east-1b",
 "CacheNodeCreateTime": "2018-04-25T18:19:28.241Z",
 "CacheNodeStatus": "available",
 "CacheNodeId": "0001",
 "Endpoint": {
 "Address": "redis-cluster.amazonaws.com",
 "Port": 6379
 },
 "ParameterGroupStatus": "in-sync"
 }
],
 "AtRestEncryptionEnabled": false,
 "CacheClusterId": "redis-cluster",
 "TransitEncryptionEnabled": false,
 "CacheParameterGroup": {
 "ParameterApplyStatus": "in-sync",
 "CacheNodeIdsToReboot": [],
 "CacheParameterGroupName": "default.redis3.2"
 },
 "NumCacheNodes": 1,
 "PreferredAvailabilityZone": "us-east-1b",
 "AutoMinorVersionUpgrade": true,
 "Engine": "redis",
 "AuthTokenEnabled": false,
 "PendingModifiedValues": {},
 "PreferredMaintenanceWindow": "tue:08:30-tue:09:30",

Finding connection endpoints API Version 2015-02-02 226

Amazon ElastiCache for Redis User Guide

 "CacheSecurityGroups": [],
 "CacheSubnetGroupName": "default",
 "CacheNodeType": "cache.t2.small",
 "DataTiering": "disabled"
 "EngineVersion": "3.2.10",
 "ClientDownloadLandingPage": "https://console.aws.amazon.com/elasticache/
home#client-download:",
 "CacheClusterCreateTime": "2018-04-25T18:19:28.241Z"
 }
]
}

For more information, see the topic describe-cache-clusters.

Finding the Endpoints for Replication Groups (AWS CLI)

You can use the AWS CLI to discover the endpoints for a replication group and its clusters with
the describe-replication-groups command. The command returns the replication group's
primary endpoint and a list of all the clusters (nodes) in the replication group with their endpoints,
along with the reader endpoint.

The following operation retrieves the primary endpoint and reader endpoint for the replication
group myreplgroup. Use the primary endpoint for all write operations.

aws elasticache describe-replication-groups \
 --replication-group-id myreplgroup

For Windows:

aws elasticache describe-replication-groups ^
 --replication-group-id myreplgroup

Output from this operation should look something like this (JSON format).

{
 "ReplicationGroups": [
 {
 "Status": "available",
 "Description": "test",
 "NodeGroups": [
 {
 "Status": "available",

Finding connection endpoints API Version 2015-02-02 227

https://docs.aws.amazon.com/cli/latest/reference/elasticache/describe-cache-clusters.html

Amazon ElastiCache for Redis User Guide

 "NodeGroupMembers": [
 {
 "CurrentRole": "primary",
 "PreferredAvailabilityZone": "us-west-2a",
 "CacheNodeId": "0001",
 "ReadEndpoint": {
 "Port": 6379,
 "Address": "myreplgroup-001.amazonaws.com"
 },
 "CacheClusterId": "myreplgroup-001"
 },
 {
 "CurrentRole": "replica",
 "PreferredAvailabilityZone": "us-west-2b",
 "CacheNodeId": "0001",
 "ReadEndpoint": {
 "Port": 6379,
 "Address": "myreplgroup-002.amazonaws.com"
 },
 "CacheClusterId": "myreplgroup-002"
 },
 {
 "CurrentRole": "replica",
 "PreferredAvailabilityZone": "us-west-2c",
 "CacheNodeId": "0001",
 "ReadEndpoint": {
 "Port": 6379,
 "Address": "myreplgroup-003.amazonaws.com"
 },
 "CacheClusterId": "myreplgroup-003"
 }
],
 "NodeGroupId": "0001",
 "PrimaryEndpoint": {
 "Port": 6379,
 "Address": "myreplgroup.amazonaws.com"
 },
 "ReaderEndpoint": {
 "Port": 6379,
 "Address": "myreplgroup-ro.amazonaws.com"
 }
 }
],
 "ReplicationGroupId": "myreplgroup",

Finding connection endpoints API Version 2015-02-02 228

Amazon ElastiCache for Redis User Guide

 "AutomaticFailover": "enabled",
 "SnapshottingClusterId": "myreplgroup-002",
 "MemberClusters": [
 "myreplgroup-001",
 "myreplgroup-002",
 "myreplgroup-003"
],
 "PendingModifiedValues": {}
 }
]
}

For more information, see describe-replication-groups in the AWS CLI Command Reference.

Finding connection endpoints API Version 2015-02-02 229

https://docs.aws.amazon.com/cli/latest/reference/elasticache/describe-replication-groups.html

Amazon ElastiCache for Redis User Guide

Finding Endpoints (ElastiCache API)

You can use the Amazon ElastiCache API to discover the endpoints for nodes, clusters, and
replication groups.

Topics

• Finding Endpoints for Nodes and Clusters (ElastiCache API)

• Finding Endpoints for Replication Groups (ElastiCache API)

Finding Endpoints for Nodes and Clusters (ElastiCache API)

You can use the ElastiCache API to discover the endpoints for a cluster and its nodes with the
DescribeCacheClusters action. For Redis clusters, the command returns the cluster endpoint.
If you include the optional parameter ShowCacheNodeInfo, the action also returns the endpoints
of the individual nodes in the cluster.

Example

https://elasticache.us-west-2.amazonaws.com/
 ?Action=DescribeCacheClusters
 &CacheClusterId=mycluster
 &ShowCacheNodeInfo=true
 &SignatureVersion=4
 &SignatureMethod=HmacSHA256
 &Timestamp=20150202T192317Z
 &Version=2015-02-02
 &X-Amz-Credential=<credential>

Finding Endpoints for Replication Groups (ElastiCache API)

You can use the ElastiCache API to discover the endpoints for a replication group and its clusters
with the DescribeReplicationGroups action. The action returns the replication group's
primary endpoint and a list of all the clusters in the replication group with their endpoints, along
with the reader endpoint.

The following operation retrieves the primary endpoint (PrimaryEndpoint), reader endpoint
(ReaderEndpoint) and individual node endpoints (ReadEndpoint) for the replication group
myreplgroup. Use the primary endpoint for all write operations.

https://elasticache.us-west-2.amazonaws.com/

Finding connection endpoints API Version 2015-02-02 230

Amazon ElastiCache for Redis User Guide

 ?Action=DescribeReplicationGroups
 &ReplicationGroupId=myreplgroup
 &SignatureVersion=4
 &SignatureMethod=HmacSHA256
 &Timestamp=20150202T192317Z
 &Version=2015-02-02
 &X-Amz-Credential=<credential>

For more information, see DescribeReplicationGroups.

Working with shards

A shard (API/CLI: node group) is a collection of one to six Redis nodes. A Redis (cluster mode
disabled) cluster will never have more than one shard. With shards, you can separate large
databases into smaller, faster, and more easily managed parts called data shards. This can increase
database efficiency by distributing operations across multiple separate sections. Using shards can
offer many benefits including improved performance, scalability, and cost efficiency.

You can create a cluster with higher number of shards and lower number of replicas totaling up
to 90 nodes per cluster. This cluster configuration can range from 90 shards and 0 replicas to
15 shards and 5 replicas, which is the maximum number of replicas allowed. The cluster's data
is partitioned across the cluster's shards. If there is more than one node in a shard, the shard
implements replication with one node being the read/write primary node and the other nodes
read-only replica nodes.

The node or shard limit can be increased to a maximum of 500 per cluster if the Redis engine
version is 5.0.6 or higher. For example, you can choose to configure a 500 node cluster that ranges
between 83 shards (one primary and 5 replicas per shard) and 500 shards (single primary and
no replicas). Make sure there are enough available IP addresses to accommodate the increase.
Common pitfalls include the subnets in the subnet group have too small a CIDR range or the
subnets are shared and heavily used by other clusters. For more information, see Creating a subnet
group.

For versions below 5.0.6, the limit is 250 per cluster.

To request a limit increase, see AWS service limits and choose the limit type Nodes per cluster per
instance type.

When you create a Redis (cluster mode enabled) cluster using the ElastiCache console, you specify
the number of shards in the cluster and the number of nodes in the shards. For more information,

Shards API Version 2015-02-02 231

https://docs.aws.amazon.com/AmazonElastiCache/latest/APIReference/API_DescribeReplicationGroups.html
https://docs.aws.amazon.com/general/latest/gr/aws_service_limits.html

Amazon ElastiCache for Redis User Guide

see Creating a Redis (cluster mode enabled) cluster (Console). If you use the ElastiCache API or AWS
CLI to create a cluster (called replication group in the API/CLI), you can configure the number of
nodes in a shard (API/CLI: node group) independently. For more information, see the following:

• API: CreateReplicationGroup

• CLI: create-replication-group

Each node in a shard has the same compute, storage and memory specifications. The ElastiCache
API lets you control shard-wide attributes, such as the number of nodes, security settings, and
system maintenance windows.

Redis shard configurations

For more information, see Offline resharding and shard rebalancing for Redis (cluster mode
enabled) and Online resharding and shard rebalancing for Redis (cluster mode enabled).

Finding a shard's ID

You can find a shard's ID using the AWS Management Console, the AWS CLI or the ElastiCache API.

Using the AWS Management Console

Topics

• For Redis (Cluster Mode Disabled)

• For Redis (Cluster Mode Enabled)

Shards API Version 2015-02-02 232

https://docs.aws.amazon.com/AmazonElastiCache/latest/APIReference/API_CreateReplicationGroup.html
https://docs.aws.amazon.com/cli/latest/reference/elasticache/create-replication-group.html

Amazon ElastiCache for Redis User Guide

For Redis (Cluster Mode Disabled)

Redis (cluster mode disabled) replication group shard IDs are always 0001.

For Redis (Cluster Mode Enabled)

The following procedure uses the AWS Management Console to find a Redis (cluster mode
enabled)'s replication group's shard ID.

To find the shard ID in a Redis (cluster mode enabled) replication group

1. Sign in to the AWS Management Console and open the ElastiCache console at https://
console.aws.amazon.com/elasticache/.

2. On the navigation pane, choose Redis, then choose the name of the Redis (cluster mode
enabled) replication group you want to find the shard IDs for.

3. In the Shard Name column, the shard ID is the last four digits of the shard name.

Using the AWS CLI

To find shard (node group) ids for either Redis (cluster mode disabled) or Redis (cluster mode
enabled) replication groups use the AWS CLI operation describe-replication-groups with
the following optional parameter.

• --replication-group-id—An optional parameter which when used limits the output to the
details of the specified replication group. If this parameter is omitted, the details of up to 100
replication groups is returned.

Example

This command returns the details for sample-repl-group.

For Linux, macOS, or Unix:

aws elasticache describe-replication-groups \
 --replication-group-id sample-repl-group

For Windows:

aws elasticache describe-replication-groups ^

Shards API Version 2015-02-02 233

https://console.aws.amazon.com/elasticache/
https://console.aws.amazon.com/elasticache/

Amazon ElastiCache for Redis User Guide

 --replication-group-id sample-repl-group

Output from this command looks something like this. The shard (node group) ids are
highlighted here to make finding them easier.

{
 "ReplicationGroups": [
 {
 "Status": "available",
 "Description": "2 shards, 2 nodes (1 + 1 replica)",
 "NodeGroups": [
 {
 "Status": "available",
 "Slots": "0-8191",
 "NodeGroupId": "0001",
 "NodeGroupMembers": [
 {
 "PreferredAvailabilityZone": "us-west-2c",
 "CacheNodeId": "0001",
 "CacheClusterId": "sample-repl-group-0001-001"
 },
 {
 "PreferredAvailabilityZone": "us-west-2a",
 "CacheNodeId": "0001",
 "CacheClusterId": "sample-repl-group-0001-002"
 }
]
 },
 {
 "Status": "available",
 "Slots": "8192-16383",
 "NodeGroupId": "0002",
 "NodeGroupMembers": [
 {
 "PreferredAvailabilityZone": "us-west-2b",
 "CacheNodeId": "0001",
 "CacheClusterId": "sample-repl-group-0002-001"
 },
 {
 "PreferredAvailabilityZone": "us-west-2a",
 "CacheNodeId": "0001",
 "CacheClusterId": "sample-repl-group-0002-002"
 }

Shards API Version 2015-02-02 234

Amazon ElastiCache for Redis User Guide

]
 }
],
 "ConfigurationEndpoint": {
 "Port": 6379,
 "Address": "sample-repl-
group.9dcv5r.clustercfg.usw2.cache.amazonaws.com"
 },
 "ClusterEnabled": true,
 "ReplicationGroupId": "sample-repl-group",
 "SnapshotRetentionLimit": 1,
 "AutomaticFailover": "enabled",
 "SnapshotWindow": "13:00-14:00",
 "MemberClusters": [
 "sample-repl-group-0001-001",
 "sample-repl-group-0001-002",
 "sample-repl-group-0002-001",
 "sample-repl-group-0002-002"
],
 "CacheNodeType": "cache.m3.medium",
 "DataTiering": "disabled",
 "PendingModifiedValues": {}
 }
]
}

Using the ElastiCache API

To find shard (node group) ids for either Redis (cluster mode disabled) or Redis (cluster mode
enabled) replication groups use the AWS CLI operation describe-replication-groups with
the following optional parameter.

• ReplicationGroupId—An optional parameter which when used limits the output to the
details of the specified replication group. If this parameter is omitted, the details of up to xxx
replication groups is returned.

Example

This command returns the details for sample-repl-group.

For Linux, macOS, or Unix:

Shards API Version 2015-02-02 235

Amazon ElastiCache for Redis User Guide

https://elasticache.us-west-2.amazonaws.com/
 ?Action=DescribeReplicationGroup
 &ReplicationGroupId=sample-repl-group
 &Version=2015-02-02
 &SignatureVersion=4
 &SignatureMethod=HmacSHA256
 &Timestamp=20150202T192317Z
 &X-Amz-Credential=<credential>

Comparing Memcached and Redis self-designed caches

Amazon ElastiCache supports the Memcached and Redis cache engines. Each engine provides some
advantages. Use the information in this topic to help you choose the engine and version that best
meets your requirements.

Important

After you create a cache cluster or replication group, you can upgrade to a newer engine
version, but you cannot downgrade to an older engine version. If you want to use an older
engine version, you must delete the existing cache cluster or replication group and create it
again with the earlier engine version.

On the surface, the engines look similar. Each of them is an in-memory key-value store. However,
in practice there are significant differences.

Choose Memcached if the following apply for you:

• You need the simplest model possible.

• You need to run large nodes with multiple cores or threads.

• You need the ability to scale out and in, adding and removing nodes as demand on your system
increases and decreases.

• You need to cache objects.

Choose Redis with a version of ElastiCache for Redis if the following apply for you:

• ElastiCache for Redis version 7.0 (Enhanced)

Comparing Memcached and Redis self-designed caches API Version 2015-02-02 236

Amazon ElastiCache for Redis User Guide

You want to use Redis Functions, Sharded Pub/Sub, or Redis ACL improvements. For more
information, see Redis Version 7.0 (Enhanced).

• ElastiCache for Redis version 6.2 (Enhanced)

You want the ability to tier data between memory and SSD using the r6gd node type. For more
information, see Data tiering.

• ElastiCache for Redis version 6.0 (Enhanced)

You want to authenticate users with role-based access control.

For more information, see Redis Version 6.0 (Enhanced).

• ElastiCache for Redis version 5.0.0 (Enhanced)

You want to use Redis streams, a log data structure that allows producers to append new
items in real time and also allows consumers to consume messages either in a blocking or non-
blocking fashion.

For more information, see Redis Version 5.0.0 (Enhanced).

• ElastiCache for Redis version 4.0.10 (Enhanced)

Supports both encryption and dynamically adding or removing shards from your Redis (cluster
mode enabled) cluster.

For more information, see Redis Version 4.0.10 (Enhanced).

The following versions are deprecated, have reached or soon to reach end of life.

• ElastiCache for Redis version 3.2.10 (Enhanced)

Supports the ability to dynamically add or remove shards from your Redis (cluster mode
enabled) cluster.

Important

Currently ElastiCache for Redis 3.2.10 doesn't support encryption.

For more information, see the following:

Comparing Memcached and Redis self-designed caches API Version 2015-02-02 237

https://redis.io/docs/manual/programmability/functions-intro/
https://redis.io/docs/manual/pubsub/#sharded-pubsub
https://redis.io/docs/management/security/acl/
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/supported-engine-versions.html#redis-version-7.0
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/data-tiering.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/supported-engine-versions.html#redis-version-6.0
https://redis.io/topics/streams-intro
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/supported-engine-versions.html#redis-version-5-0
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/supported-engine-versions.html#redis-version-4-0-10

Amazon ElastiCache for Redis User Guide

• Redis Version 3.2.10 (Enhanced)

• Online resharding best practices for Redis, For more information, see the following:

• Best Practices: Online Resharding

• Online Resharding and Shard Rebalancing for Redis (Cluster Mode Enabled)

• For more information on scaling Redis clusters, see Scaling.

• ElastiCache for Redis version 3.2.6 (Enhanced)

If you need the functionality of earlier Redis versions plus the following features, choose
ElastiCache for Redis 3.2.6:

• In-transit encryption. For more information, see Amazon ElastiCache for Redis In-Transit
Encryption.

• At-rest encryption. For more information, see Amazon ElastiCache for Redis At-Rest
Encryption.

• ElastiCache for Redis (Cluster mode enabled) version 3.2.4

If you need the functionality of Redis 2.8.x plus the following features, choose Redis 3.2.4
(clustered mode):

• You need to partition your data across two to 500 node groups (clustered mode only).

• You need geospatial indexing (clustered mode or non-clustered mode).

• You don't need to support multiple databases.

• ElastiCache for Redis (non-clustered mode) 2.8.x and 3.2.4 (Enhanced)

If the following apply for you, choose Redis 2.8.x or Redis 3.2.4 (non-clustered mode):

• You need complex data types, such as strings, hashes, lists, sets, sorted sets, and bitmaps.

• You need to sort or rank in-memory datasets.

• You need persistence of your key store.

• You need to replicate your data from the primary to one or more read replicas for read
intensive applications.

• You need automatic failover if your primary node fails.

• You need publish and subscribe (pub/sub) capabilities—to inform clients about events on the
server.

• You need backup and restore capabilities.

• You need to support multiple databases.

Comparing Memcached and Redis self-designed caches API Version 2015-02-02 238

https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/supported-engine-versions.html#redis-version-3-2-10
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/best-practices-online-resharding.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/redis-cluster-resharding-online.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/Scaling.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/in-transit-encryption.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/in-transit-encryption.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/at-rest-encryption.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/at-rest-encryption.html

Amazon ElastiCache for Redis User Guide

Comparing Memcached and Redis self-designed caches API Version 2015-02-02 239

Amazon ElastiCache for Redis User Guide

Comparison summary of Memcached, Redis (cluster mode disabled), and Redis (cluster mode
enabled)

Memcached Redis (cluster mode
disabled)

Redis (cluster mode
enabled)

Engine versions+ 1.4.5 and later 4.0.10 and later 4.0.10 and later

2.8.x - Complex *Data types Simple

Complex

3.2.x and later -
Complex

Data partitioning Yes No Yes

Cluster is modifiable Yes Yes 3.2.10 and later -
Limited

Online resharding No No 3.2.10 and later

Encryption in-transit 1.6.12 and
later

4.0.10 and later 4.0.10 and later

Data tiering No 6.2 and later 6.2 and later

Compliance certifications

Compliance Certifica
tion

 FedRAMP

 HIPAA

 PCI DSS

Yes - 1.6.12 and later

Yes - 1.6.12 and later

Yes

4.0.10 and later

4.0.10 and later

4.0.10 and later

4.0.10 and later

4.0.10 and later

4.0.10 and later

Multi-threaded Yes No No

Node type upgrade No Yes Yes

Engine upgrading Yes Yes Yes

Comparing Memcached and Redis self-designed caches API Version 2015-02-02 240

Amazon ElastiCache for Redis User Guide

Memcached Redis (cluster mode
disabled)

Redis (cluster mode
enabled)

High availability
(replication)

No Yes Yes

Automatic failover No Optional Required

Pub/Sub capabilities No Yes Yes

Sorted sets No Yes Yes

Backup and restore No Yes Yes

Geospatial indexing No 4.0.10 and later Yes

Notes:

 string, objects (like databases)

* string, sets, sorted sets, lists, hashes, bitmaps, hyperloglog

 string, sets, sorted sets, lists, hashes, bitmaps, hyperloglog, geospatial indexes

+ Excludes versions which are deprecated, have reached or soon to reach end of life.

After you choose the engine for your cluster, we recommend that you use the most recent version
of that engine. For more information, see Supported ElastiCache for Memcached Versions or
Supported ElastiCache for Redis Versions.

Online migration to ElastiCache

By using Online Migration, you can migrate your data from self-hosted open-source Redis on
Amazon EC2 to Amazon ElastiCache.

Note

Online migration is not supported to ElastiCache serverless caches or clusters running on
the r6gd node type.

Online Migration to ElastiCache API Version 2015-02-02 241

https://docs.aws.amazon.com/AmazonElastiCache/latest/mem-ug/CacheNodes.SupportedTypes.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/CacheNodes.SupportedTypes.html

Amazon ElastiCache for Redis User Guide

Overview

To migrate your data from open-source Redis running on Amazon EC2 to Amazon ElastiCache
requires an existing or newly created Amazon ElastiCache deployment. The deployment must have
a configuration that is ready for migration. It also should be in line with the configuration that you
want, including attributes such as instance type, number of shards, and number of replicas.

Online migration is designed for data migration from self-hosted open-source Redis on Amazon
EC2 to ElastiCache for Redis and not between ElastiCache for Redis clusters.

Important

We strongly recommend you read the following sections in their entirety before beginning
the online migration process.

The migration begins when you call the StartMigration API operation or AWS CLI command.
For Redis cluster-mode disabled, the migration process makes the primary node of the ElastiCache
for Redis cluster a replica of your source Redis primary. For Redis cluster-mode enabled, the
migration process makes the primary node of each ElastiCache shard a replica of your source
cluster's corresponding shard owning the same slots.

After the client-side changes are ready, call the CompleteMigration API operation. This API
operation promotes your ElastiCache deployment to your primary Redis deployment with primary
and replica nodes (as applicable). Now you can redirect your client application to start writing data
to ElastiCache. Throughout the migration, you can check the status of replication by running the
redis-cli INFO command on your Redis nodes and on the ElastiCache primary nodes.

Migration steps

The following topics outline the process for migrating your data:

• Preparing your source and target Redis nodes for migration

• Testing the data migration

• Starting migration

• Verifying the data migration progress

• Completing the data migration

Overview API Version 2015-02-02 242

https://redis.io/commands/info

Amazon ElastiCache for Redis User Guide

Preparing your source and target Redis nodes for migration

You must ensure that all four of the prerequisites mentioned following are satisfied before you
start the migration from ElastiCache console, API or AWS CLI.

To prepare your source and target Redis Nodes for migration

1. Identify the target ElastiCache deployment and make sure that you can migrate data to it.

An existing or newly created ElastiCache deployment should meet the following requirements
for migration:

• It is using Redis engine version 5.0.6 or higher.

• It doesn't have either encryption in-transit or encryption at-rest enabled.

• It has Multi-AZ enabled.

• It has sufficient memory available to fit the data from your Redis cluster. To configure the
right reserved memory settings, see Managing Reserved Memory.

• For cluster-mode disabled, you can migrate directly from Redis versions 2.8.21 onward to
Redis version 5.0.6 onward if are using the CLI or Redis versions 5.0.6 onward using the
CLI or console. For cluster mode enabled, you can migrate directly from any cluster-mode
enabled Redis version to Redis version 5.0.6 onward if are using the CLI or Redis versions
5.0.6 onward using the CLI or console.

• Number of shards in source and target match.

• It is not part of a global datastore.

• It has data tiering disabled.

2. Make sure that the configurations of your open-source Redis and the ElastiCache for Redis
deployment are compatible.

At a minimum, all the following in the target ElastiCache deployment should be compatible
with your Redis configuration for Redis replication:

• Your Redis cluster should not have Redis AUTH enabled.

• Redis config protected-mode should be set to no.

• If you have bind configuration in your Redis config, then it should be updated to allow
requests from ElastiCache nodes.

Preparing your source and target Redis nodes for migration API Version 2015-02-02 243

Amazon ElastiCache for Redis User Guide

• The number of logical databases should be the same on the ElastiCache node and your Redis
cluster. This value is set using databases in the Redis config.

• Redis commands that perform data modification should not be renamed to allow replication
of the data to succeed. for example sync, psync, info, config, command, and cluster.

• To replicate the data from your Redis cluster to ElastiCache, make sure that there is
sufficient CPU and memory to handle this additional load. This load comes from the RDB file
created by your Redis cluster and transferred over the network to ElastiCache node.

• All Redis instances in the source cluster should be running on the same port.

3. Make sure that your instances can connect with ElastiCache by doing the following:

• Ensure that each instance's IP address is private.

• Assign or create the ElastiCache deployment in the same virtual private cloud (VPC) as your
Redis on your instance (recommended).

• If the VPCs are different, set up VPC peering to allow access between the nodes. For more
information on VPC peering, see Access Patterns for Accessing an ElastiCache Cache in an
Amazon VPC.

• The security group attached to your Redis instances should allow inbound traffic from
ElastiCache nodes.

4. Make sure that your application can direct traffic to ElastiCache nodes after migration of data
is complete. For more information, see Access Patterns for Accessing an ElastiCache Cache in
an Amazon VPC.

Testing the data migration

After all prerequisites are complete, you can validate migration setup using the AWS Management
Console, ElastiCache API, or AWS CLI. The following example shows using the CLI.

Test migration by calling the test-migration command with the following parameters:

• --replication-group-id – The ID of the replication group to which data is to be migrated.

• --customer-node-endpoint-list – List of endpoints from which data should be migrated.
List should have only one element.

The following is an example using the CLI.

Testing the data migration API Version 2015-02-02 244

Amazon ElastiCache for Redis User Guide

aws elasticache test-migration --replication-group-id test-cluster --customer-node-
endpoint-list "Address='10.0.0.241',Port=6379"

ElastiCache will validate migration setup without any actual data migration.

Starting migration

After all prerequisites are complete, you can begin data migration using the AWS Management
Console, ElastiCache API, or AWS CLI. For cluster-mode enabled, if slot migration differs, a
resharding will be performed before live migration. The following example shows using the CLI.

Note

We recommended to use TestMigration API to validate migration setup. But this is
strictly optional.

Start migration by calling the start-migration command with the following parameters:

• --replication-group-id – Identifier of the target ElastiCache replication group

• --customer-node-endpoint-list – A list of endpoints with either DNS or IP addresses and
the port where your source Redis cluster is running. The list can only take one element for both
cluster-mode disabled and cluster-mode enabled. If you have enabled chained replication, the
endpoint can point to a replica instead of the primary node in your Redis cluster.

The following is an example using the CLI.

aws elasticache start-migration --replication-group-id test-cluster --customer-node-
endpoint-list "Address='10.0.0.241',Port=6379"

As you run this command, the ElastiCache primary node (in each shard) configures itself to become
a replica of your Redis instance (in corresponding shard owning same slots in cluster enabled redis).
The status of ElastiCache cluster changes to migrating and data starts migrating from your Redis
instance to the ElastiCache primary node. Depending on the size of the data and load on your Redis
instance, the migration can take a while to complete. You can check the progress of the migration
by running the redis-cli INFO command on your Redis instance and ElastiCache primary node.

Starting migration API Version 2015-02-02 245

https://redis.io/commands/info

Amazon ElastiCache for Redis User Guide

After successful replication, all writes to your Redis instances propagate to the ElastiCache cluster.
You can use ElastiCache nodes for reads. However, you can't write to the ElastiCache cluster. If an
ElastiCache primary node has other replica nodes connected to it, these replica nodes continue to
replicate from the ElastiCache primary node. This way, all the data from your Redis cluster gets
replicated to all the nodes in ElastiCache cluster.

If an ElastiCache primary node can't become a replica of your Redis instance, it retries several times
before eventually promoting itself back to primary. The status of ElastiCache cluster then changes
to available, and a replication group event about the failure to initiate the migration is sent. To
troubleshoot such a failure, check the following:

• Look at the replication group event. Use any specific information from the event to fix the
migration failure.

• If the event doesn’t provide any specific information, make sure that you have followed the
guidelines in Preparing your source and target Redis nodes for migration.

• Ensure that the routing configuration for your VPC and subnets allows traffic between
ElastiCache nodes and your Redis instances.

• Ensure the security group attached to your Redis instances allows input bound traffic from
ElastiCache nodes.

• Check Redis logs for your Redis instances for more information about failures specific to
replication.

Verifying the data migration progress

After the data migration has begun, you can do the following to track its progress:

• Verify that Redis master_link_status is up in the INFO command on ElastiCache primary
node(s). You can also find this information in the ElastiCache console. Select the cluster and
under CloudWatch metrics, observe Primary Link Health Status. After the value reaches 1, the
data is in sync.

• You can check that the ElastiCache replica has an online state by running the INFO command on
your Redis instances. Doing this also provides information about replication lag.

• Verify low client output buffer by using the CLIENT LIST Redis command on your Redis instances.

After the data migration is complete, the data is in sync with any new writes coming to the primary
node(s) of your Redis cluster.

Verifying the data migration progress API Version 2015-02-02 246

https://redis.io/commands/client-list

Amazon ElastiCache for Redis User Guide

Completing the data migration

When you are ready to cut over to the ElastiCache cluster, use the complete-migration CLI
command with the following parameters:

• --replication-group-id – The identifier for the replication group.

• --force – A value that forces the migration to stop without ensuring that data is in sync.

The following is an example.

aws elasticache complete-migration --replication-group-id test-cluster

As you run this command, the ElastiCache primary node (in each shard) stops replicating from your
Redis instance and promotes it to primary. This promotion typically completes within minutes.
To confirm the promotion to primary, check for the event Complete Migration successful
for test-cluster. At this point, you can direct your application to ElastiCache writes and reads.
ElastiCache cluster status should change from migrating to available.

If the promotion to primary fails, the ElastiCache primary node continues to replicate from your
Redis instance. The ElastiCache cluster continues to be in migrating status, and a replication group
event message about the failure is sent. To troubleshoot this failure, look at the following:

• Check the replication group event. Use specific information from the event to fix the failure.

• You might get an event message about data not in sync. If so, make sure that the ElastiCache
primary can replicate from your Redis instance and both are in sync. If you still want to stop the
migration, you can run the preceding command with the —force option.

• You might get an event message if one of the ElastiCache nodes is undergoing a replacement.
You can retry the complete the migration step after the replacement is complete.

Performing online data migration using the Console

You can use the AWS Management Console to migrate your data from your cluster to your Redis
cluster.

Completing the data migration API Version 2015-02-02 247

Amazon ElastiCache for Redis User Guide

To perform online data migration using the console

1. Sign in to the console and open the ElastiCache console at https://console.aws.amazon.com/
elasticache/.

2. Either create a new Redis cluster or choose an existing cluster. Make sure that the cluster meets
the following requirements:

• Your Redis engine version should be 5.0.6 or higher.

• Your Redis cluster should not have Redis AUTH enabled.

• Redis config protected-mode should be set to no.

• If you have bind configuration in your Redis config, then it should be updated to allow
requests from ElastiCache nodes.

• The number of databases should be the same between the ElastiCache node and your Redis
cluster. This value is set using databases in the Redis config.

• Redis commands that perform data modification should not be renamed to allow replication
of the data to succeed.

• To replicate the data from your Redis cluster to ElastiCache, make sure that there is
sufficient CPU and memory to handle this additional load. This load comes from the RDB file
created by your Redis cluster and transferred over the network to ElastiCache node.

• The cluster is in available status.

3. With your cluster selected, choose Migrate Data from Endpoint for Actions.

4. In the Migrate Data from Endpoint dialog box, enter the IP address, and the port where your
Redis cluster is available.

Important

The IP address must be exact. If you enter the address incorrectly, the migration fails.

5. Choose Start Migration.

As the cluster begins migration, it changes to Modifying and then Migrating status.

6. Monitor the migration progress by choosing Events on the navigation pane.

At any point during the migration process, you can stop migration. To do so, choose your cluster
and choose Stop Data Migration for Actions. The cluster then goes to Available status.
Performing online data migration using the Console API Version 2015-02-02 248

https://console.aws.amazon.com/elasticache/home/home
https://console.aws.amazon.com/elasticache/home/home

Amazon ElastiCache for Redis User Guide

If the migration succeeds, the cluster goes to Available status and the event log shows the
following:

Migration operation succeeded for replication group ElastiCacheClusterName.

If the migration fails, the cluster goes to Available status and the event log shows the following:

Migration operation failed for replication group ElastiCacheClusterName.

Choosing regions and availability zones

AWS Cloud computing resources are housed in highly available data center facilities. To provide
additional scalability and reliability, these data center facilities are located in different physical
locations. These locations are categorized by regions and Availability Zones.

AWS Regions are large and widely dispersed into separate geographic locations. Availability Zones
are distinct locations within an AWS Region that are engineered to be isolated from failures in
other Availability Zones. They provide inexpensive, low-latency network connectivity to other
Availability Zones in the same AWS Region.

Important

Each region is completely independent. Any ElastiCache activity you initiate (for example,
creating clusters) runs only in your current default region.

To create or work with a cluster in a specific region, use the corresponding regional service
endpoint. For service endpoints, see Supported regions & endpoints.

Regions and Availability Zones

Choosing regions and availability zones API Version 2015-02-02 249

Amazon ElastiCache for Redis User Guide

Topics

• Locating your nodes

• Supported regions & endpoints

• Using local zones with ElastiCache

• Using Outposts

Choosing regions and availability zones API Version 2015-02-02 250

Amazon ElastiCache for Redis User Guide

Locating your nodes

Amazon ElastiCache supports locating all of a cluster's nodes in a single or multiple Availability
Zones (AZs). Further, if you elect to locate your nodes in multiple AZs (recommended), ElastiCache
enables you to either choose the AZ for each node, or allow ElastiCache to choose them for you.

By locating the nodes in different AZs, you eliminate the chance that a failure, such as a power
outage, in one AZ will cause your entire system to fail. Testing has demonstrated that there is
no significant latency difference between locating all nodes in one AZ or spreading them across
multiple AZs.

You can specify an AZ for each node when you create a cluster or by adding nodes when you
modify an existing cluster. For more information, see the following:

• Creating a cluster

• Modifying an ElastiCache cluster

• Adding nodes to a cluster

Supported regions & endpoints

Amazon ElastiCache is available in multiple AWS Regions. This means that you can launch
ElastiCache clusters in locations that meet your requirements. For example, you can launch in the
AWS Region closest to your customers, or launch in a particular AWS Region to meet certain legal
requirements.

Each Region is designed to be completely isolated from the other Regions. Within each Region are
multiple Availability Zones (AZ). ElastiCache Serverless caches automatically replicate data across
multiple availability zones (except us-west-1, where data is replicated in two availability zones)
for high availability. When designing your own ElastiCache cluster, you can choose to launch your
nodes in different AZs to achieve fault tolerance. For more information on Regions and Availability
Zones, see Choosing regions and availability zones at the top of this topic.

Locating your nodes API Version 2015-02-02 251

Amazon ElastiCache for Redis User Guide

Regions where ElastiCache is supported

Region Name/Regi
on

Endpoint Protocol

US East (Ohio) Region

us-east-2

elasticache.us-
east-2.amazo
naws.com

HTTPS

US East (N. Virginia)
Region

us-east-1

elasticache.us-
east-1.amazo
naws.com

HTTPS

US West (N. Californi
a) Region

us-west-1

elasticache.us-
west-1.amazo
naws.com

HTTPS

US West (Oregon)
Region

us-west-2

elasticache.us-
west-2.amazo
naws.com

HTTPS

Canada (Central)
Region

ca-central-1

elasticache.ca-
central-1.am
azonaws.com

HTTPS

Canada (West) Region

ca-west-1

elasticache.ca-
west-1.amazo
naws.com

HTTPS

Asia Pacific (Jakarta)

ap-southeast-3

elasticache.ap-
southeast-3.
amazonaws.com

HTTPS

Asia Pacific (Mumbai)
Region

elasticache.ap-
south-1.amaz
onaws.com

HTTPS

Supported regions & endpoints API Version 2015-02-02 252

Amazon ElastiCache for Redis User Guide

Region Name/Regi
on

Endpoint Protocol

ap-south-1

Asia Pacific
(Hyderabad) Region

ap-south-2

elasticache.ap-
south-2.amaz
onaws.com

HTTPS

Asia Pacific (Tokyo)
Region

ap-northeast-1

elasticache.ap-
northeast-1.
amazonaws.com

HTTPS

Asia Pacific (Seoul)
Region

ap-northeast-2

elasticache.ap-
northeast-2.
amazonaws.com

HTTPS

Asia Pacific (Osaka)
Region

ap-northeast-3

elasticache.ap-
northeast-3.
amazonaws.com

HTTPS

Asia Pacific (Singapor
e) Region

ap-southeast-1

elasticache.ap-
southeast-1.
amazonaws.com

HTTPS

Asia Pacific (Sydney)
Region

ap-southeast-2

elasticache.ap-
southeast-2.
amazonaws.com

HTTPS

Europe (Frankfurt)
Region

eu-central-1

elasticache.eu-
central-1.am
azonaws.com

HTTPS

Supported regions & endpoints API Version 2015-02-02 253

Amazon ElastiCache for Redis User Guide

Region Name/Regi
on

Endpoint Protocol

Europe (Zurich)
Region

eu-central-2

elasticache.eu-
central-2.am
azonaws.com

HTTPS

Europe (Stockholm)
Region

eu-north-1

elasticache.eu-
north-1.amaz
onaws.com

HTTPS

Middle East (Bahrain)
Region

me-south-1

elasticache.me-
south-1.amaz
onaws.com

HTTPS

Middle East (UAE)
Region

me-central-1

elasticache.me-
central-1.am
azonaws.com

HTTPS

Europe (Ireland)
Region

eu-west-1

elasticache.eu-
west-1.amazo
naws.com

HTTPS

Europe (London)
Region

eu-west-2

elasticache.eu-
west-2.amazo
naws.com

HTTPS

EU (Paris) Region

eu-west-3

elasticache.eu-
west-3.amazo
naws.com

HTTPS

Supported regions & endpoints API Version 2015-02-02 254

Amazon ElastiCache for Redis User Guide

Region Name/Regi
on

Endpoint Protocol

Europe (Milan)
Region

eu-south-1

elasticache.eu-
south-1.amaz
onaws.com

HTTPS

Europe (Spain)
Region

eu-south-2

elasticache.eu-
south-2.amaz
onaws.com

HTTPS

South America (São
Paulo) Region

sa-east-1

elasticache.sa-
east-1.amazo
naws.com

HTTPS

China (Beijing) Region

cn-north-1

elasticache.cn-
north-1.amaz
onaws.com.cn

HTTPS

China (Ningxia)
Region

cn-northwest-1

elasticache.cn-
northwest-1.
amazonaws
.com.cn

HTTPS

Asia Pacific (Hong
Kong) Region

ap-east-1

elasticache.ap-
east-1.amazo
naws.com

HTTPS

Africa (Cape Town)
Region

af-south-1

elasticache.af-
south-1.amaz
onaws.com

HTTPS

Supported regions & endpoints API Version 2015-02-02 255

Amazon ElastiCache for Redis User Guide

Region Name/Regi
on

Endpoint Protocol

Israel (Tel Aviv)
Region

il-central-1

elasticache.il-
central-1.am
azonaws.com

HTTPS

AWS GovCloud (US-
West)

us-gov-west-1

elasticache.us-
gov-west-1.a
mazonaws.com

HTTPS

AWS GovCloud (US-
East)

us-gov-east-1

elasticache.us-
gov-east-1.a
mazonaws.com

HTTPS

For information on using the AWS GovCloud (US) with ElastiCache, see
 Services in the AWS GovCloud (US) region: ElastiCache.

Some regions support a subset of node types. For a table of supported node types by AWS Region,
see Supported node types by AWS Region.

For a table of AWS products and services by region, see Products and Services by Region.

Using local zones with ElastiCache

A Local Zone is an extension of an AWS Region that is geographically close to your users. You can
extend any virtual private cloud (VPC) from a parent AWS Region into a Local Zones by creating a
new subnet and assigning it to the Local Zone. When you create a subnet in a Local Zone, your VPC
is extended to that Local Zone. The subnet in the Local Zone operates the same as other subnets in
your VPC.

By using Local Zones, you can place resources such as an ElastiCache cluster in multiple locations
close to your users.

When you create an ElastiCache cluster, you can choose a subnet in a Local Zone. Local Zones have
their own connections to the internet and support AWS Direct Connect. Thus, resources created in a

Using Local zones API Version 2015-02-02 256

https://docs.aws.amazon.com/govcloud-us/latest/UserGuide/govcloud-elc.html
https://aws.amazon.com/about-aws/global-infrastructure/regional-product-services/

Amazon ElastiCache for Redis User Guide

Local Zone can serve local users with very low-latency communications. For more information, see
AWS Local Zones.

A Local Zone is represented by an AWS Region code followed by an identifier that indicates the
location, for example us-west-2-lax-1a.

At this time, the available Local Zones are us-west-2-lax-1a and us-west-2-lax-1b.

The following limitations apply to ElastiCache for Local Zones:

• Global datastores aren't supported.

• Online migration isn't supported.

• The following node types are supported by Local Zones at this time:

• Current generation:

M5 node types: cache.m5.large, cache.m5.xlarge, cache.m5.2xlarge,
cache.m5.4xlarge, cache.m5.12xlarge, cache.m5.24xlarge

R5 node types: cache.r5.large, cache.r5.xlarge, cache.r5.2xlarge,
cache.r5.4xlarge, cache.r5.12xlarge, cache.r5.24xlarge

T3 node types: cache.t3.micro, cache.t3.small, cache.t3.medium

Enabling a local zone

1. Enable the Local Zone in the Amazon EC2 console.

For more information, see Enabling Local Zones in the Amazon EC2 User Guide.

2. Create a subnet in the Local Zone.

For more information, see Creating a subnet in your VPC in the Amazon VPC User Guide.

3. Create an ElastiCache subnet group in the Local Zone.

When you create an ElastiCache subnet group, choose the Availability Zone group for the Local
Zone.

For more information, see Creating a subnet group in the ElastiCache User Guide.

4. Create an ElastiCache for Redis cluster that uses the ElastiCache subnet in the Local Zone. For
more information, see one of the following topics:

Using Local zones API Version 2015-02-02 257

https://aws.amazon.com/about-aws/global-infrastructure/localzones/
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-regions-availability-zones.html#enable-zone-group
https://docs.aws.amazon.com/vpc/latest/userguide/working-with-vpcs.html#AddaSubnet
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/SubnetGroups.Creating.html

Amazon ElastiCache for Redis User Guide

• Creating a Redis (cluster mode disabled) cluster (Console)

• Creating a Redis (cluster mode enabled) cluster (Console)

Using Outposts

AWS Outposts is a fully managed service that extends AWS infrastructure, services, APIs, and tools
to customer premises. By providing local access to AWS managed infrastructure, AWS Outposts
enables customers to build and run applications on premises using the same programming
interfaces as in AWS Regions, while using local compute and storage resources for lower latency
and local data processing needs. An Outpost is a pool of AWS compute and storage capacity
deployed at a customer site. AWS operates, monitors, and manages this capacity as part of an AWS
Region. You can create subnets on your Outpost and specify them when you create AWS resources
such as ElastiCache clusters.

Note

In this version, the following limitations apply:

• ElastiCache for Outposts only supports M5 and R5 node families.

• Live migration is not supported.

• Multi-AZ (cross Outpost replication is not supported).

• Local snapshots are not supported.

• ElastiCache for Outposts is not supported in the following regions: cn-north-1, cn-
northwest-1 and ap-northeast-3.

Using Outposts with the Redis console

1. Sign in to the AWS Management Console and open the ElastiCache console at https://
console.aws.amazon.com/elasticache/.

2. On the navigation pane, choose Redis.

3. In Cluster Engine, select Redis.

4. Under Location, select On-Premises - Create your ElastiCache instances on AWS Outposts.

Using Outposts API Version 2015-02-02 258

https://console.aws.amazon.com/elasticache/
https://console.aws.amazon.com/elasticache/

Amazon ElastiCache for Redis User Guide

Configure on-premises options

You can select either an available Outpost to add your cache cluster or, if there are no available
Outposts, create a new one using the following steps:

Under On-Premises options:

1. Under Redis settings:

a. Name: Enter a name for the Redis cluster

b. Description: Enter a description for the Redis cluster.

c. Engine version compatilbility: Engine version is based on the AWS Outpost region

d. Port: Accept the default port, 6379. If you have a reason to use a different port, type the
port number.

e. Parameter group: Use the drop-down to select a default or custom parameter group.

f. Node Type: Available instances are based on Outposts availability. Porting Assistant
for .NET for Outposts only supports M5 and R5 node families. From the drop down list,
select Outposts and then select an available node type you want to use for this cluster.
Then select Save.

g. Number of Replicas: Enter the number of read replicas you want created for this
replication group. You must have at least one and no more than five read replicas. The
default value is 2.

The autogenerated names of the read replicas follow the same pattern as that of the
primary cluster's name, with a dash and sequential three-digit number added to the end,
beginning with -002. For example, if your replication group is named MyGroup, then
the names of the secondaries would be MyGroup-002, MyGroup-003, MyGroup-004,
MyGroup-005, MyGroup-006.

2. Under Advanced Redis settings:

a. Subnet Group: From the list, select Create new.

• Name: Enter a name for the subnet group

• Description: Enter a description for the subnet group

• VPC ID: The VPC ID should match the Outpost VPC. If you select a VPC that has no
subnet IDs on the Outposts, the list will return empty.

• Availability Zone or Outpost: Select the Outpost you are using.
Using Outposts API Version 2015-02-02 259

Amazon ElastiCache for Redis User Guide

• Subnet ID: Select a subnet ID that is available for the Outpost. If there are no subnet IDs
available, you need to create them. For more information, see Create a Subnet.

b. Select Create.

Viewing Outpost cluster details

On the Redis list page, select a cluster that belongs to an AWS Outpost and note the following
when viewing the Cluster details:

• Availability Zone: This will represent the Outpost, using an ARN (Amazon Resource Name) and
the AWS Resource Number.

• Outpost name: The name of the AWS Outpost.

Using Outposts with the AWS CLI

You can use the AWS Command Line Interface (AWS CLI) to control multiple AWS services from the
command line and automate them through scripts. You can use the AWS CLI for ad hoc (one-time)
operations.

Downloading and configuring the AWS CLI

The AWS CLI runs on Windows, macOS, or Linux. Use the following procedure to download and
configure it.

To download, install, and configure the CLI

1. Download the AWS CLI on the AWS Command Line Interface webpage.

2. Follow the instructions for Installing the AWS CLI and Configuring the AWS CLI in the AWS
Command Line Interface User Guide.

Using the AWS CLI with Outposts

Use the following CLI operation to create a cache cluster that uses Outposts:

• create-cache-cluster – Using this operation, the outpost-mode parameter accepts a value
that specifies whether the nodes in the cache cluster are created in a single Outpost or across
multiple Outposts.

Using Outposts API Version 2015-02-02 260

https://docs.aws.amazon.com/outposts/latest/userguide/launch-instance.html#create-subnet
http://aws.amazon.com/cli
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-install.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-configure.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/CommandLineReference/CLIReference-cmd-CreateCacheCluster.html

Amazon ElastiCache for Redis User Guide

Note

At this time, only single-outpost mode is supported.

aws elasticache create-cache-cluster \
 --cache-cluster-id cache cluster id \
 --outpost-mode single-outpost \

Using Outposts API Version 2015-02-02 261

Amazon ElastiCache for Redis User Guide

Working with ElastiCache

In this section you can find details about how to manage the various components of your
ElastiCache implementation.

Topics

• Snapshot and restore

• Engine versions and upgrading

• ElastiCache best practices and caching strategies

• Managing your self-designed cluster

• Scaling ElastiCache for Redis

• Getting started with JSON in ElastiCache for Redis

• Tagging your ElastiCache resources

• Using the Amazon ElastiCache Well-Architected Lens

• Common troubleshooting steps and best practices

• Additional troubleshooting steps

Snapshot and restore

Amazon ElastiCache caches running Redis can back up their data by creating a snapshot. You
can use the backup to restore a cache or seed data to a new cache. The backup consists of the
cache’s metadata, along with all of the data in the cache. All backups are written to Amazon Simple
Storage Service (Amazon S3), which provides durable storage. At any time, you can restore your
data by creating a new Redis cache and populating it with data from a backup. With ElastiCache,
you can manage backups using the AWS Management Console, the AWS Command Line Interface
(AWS CLI), and the ElastiCache API.

If you plan to delete a cache and it's important to preserve the data, you can take an extra
precaution. To do this, create a manual backup first, verify that its status is available, and then
delete the cache. Doing this makes sure that if the backup fails, you still have the cache data
available. You can retry making a backup, following the best practices outlined preceding.

Topics

• Backup constraints

Snapshot and restore API Version 2015-02-02 262

Amazon ElastiCache for Redis User Guide

• Performance impact of backups of self-designed clusters

• Scheduling automatic backups

• Taking manual backups

• Creating a final backup

• Describing backups

• Copying backups

• Exporting a backup

• Restoring from a backup into a new cache

• Deleting a backup

• Tagging backups

• Seeding a new self-designed cluster with an externally created backup

Backup constraints

Consider the following constraints when planning or making backups:

• At this time, backup and restore are supported only for caches running on Redis.

• For Redis (cluster mode disabled) clusters, backup and restore aren't supported on
cache.t1.micro nodes. All other cache node types are supported.

• For Redis (cluster mode enabled) clusters, backup and restore are supported for all node types.

• During any contiguous 24-hour period, you can create no more than 20 manual backups per
node in the cluster.

• Redis (cluster mode enabled) only supports taking backups on the cluster level (for the API or
CLI, the replication group level). Redis (cluster mode enabled) doesn't support taking backups at
the shard level (for the API or CLI, the node group level).

• During the backup process, you can't run any other API or CLI operations on the cluster.

• If using clusters with data tiering, you cannot export a backup to Amazon S3.

• You can restore a backup of a cluster using the r6gd node type only to clusters using the r6gd
node type.

Constraints API Version 2015-02-02 263

Amazon ElastiCache for Redis User Guide

Performance impact of backups of self-designed clusters

Backups on serverless caches are transparent to the application with no performance impact.
However, when creating backups for self-designing clusters, there can be some performance
impact depending on the available reserved memory.

The following are guidelines for improving backup performance for self-designed clusters.

• Set the reserved-memory-percent parameter – To mitigate excessive paging, we recommend
that you set the reserved-memory-percent parameter. This parameter prevents Redis from
consuming all of the node's available memory, and can help reduce the amount of paging. You
might also see performance improvements by simply using a larger node. For more information
about the reserved-memory and reserved-memory-percent parameters, see Managing Reserved
Memory.

• Create backups from a read replica – If you are running Redis in a node group with more than
one node, you can take a backup from the primary node or one of the read replicas. Because
of the system resources required during BGSAVE, we recommend that you create backups from
one of the read replicas. While the backup is being created from the replica, the primary node
remains unaffected by BGSAVE resource requirements. The primary node can continue serving
requests without slowing down.

To do this, see Creating a manual backup (Console) and in the Cluster Name field in the Create
Backup window, choose a replica instead of the default primary node.

If you delete a replication group and request a final backup, ElastiCache always takes the backup
from the primary node. This ensures that you capture the very latest Redis data, before the
replication group is deleted.

Performance impact of backups of self-designed clusters API Version 2015-02-02 264

Amazon ElastiCache for Redis User Guide

Scheduling automatic backups

You can enable automatic backups for any ElastiCache for Redis cache. When automatic backups
are enabled, ElastiCache creates a backup of the cache on a daily basis. There is no impact on
the cache and the change is immediate. Automatic backups can help guard against data loss.
In the event of a failure, you can create a new cache, restoring your data from the most recent
backup. The result is a warm-started cache, preloaded with your data and ready for use. For more
information, see Restoring from a backup into a new cache.

When you schedule automatic backups, you should plan the following settings:

• Backup start time – A time of day when ElastiCache begins creating a backup. You can set the
backup window for any time when it's most convenient. If you don't specify a backup window,
ElastiCache assigns one automatically.

• Backup retention limit – The number of days the backup is retained in Amazon S3. For example,
if you set the retention limit to 5, then a backup taken today is retained for 5 days. When the
retention limit expires, the backup is automatically deleted.

The maximum backup retention limit is 35 days. If the backup retention limit is set to 0,
automatic backups are disabled for the cache.

You can enable or disable automatic backups when either creating a new cache or updating an
existing Redis cache, by using the ElastiCache console, the AWS CLI, or the ElastiCache API by
checking the Enable Automatic Backups box in the Advanced Redis Settings section.

Scheduling automatic backups API Version 2015-02-02 265

Amazon ElastiCache for Redis User Guide

Taking manual backups

In addition to automatic backups, you can create a manual backup at any time. Unlike automatic
backups, which are automatically deleted after a specified retention period, manual backups do not
have a retention period after which they are automatically deleted. Even if you delete the cache,
any manual backups from that cache are retained. If you no longer want to keep a manual backup,
you must explicitly delete it yourself.

In addition to directly creating a manual backup, you can create a manual backup in one of the
following ways:

• Copying backups. It does not matter whether the source backup was created automatically or
manually.

• Creating a final backup. Create a backup immediately before deleting a cluster or node.

You can create a manual backup of a cache using the AWS Management Console, the AWS CLI, or
the ElastiCache API.

Creating a manual backup (Console)

To create a backup of a cache (console)

1. Sign in to the AWS Management Console and open the Amazon EC2 console at https://
console.aws.amazon.com/ec2/.

2. From the navigation pane, choose Redis caches.

3. Choose the box to the left of the name of the Redis cluster you want to back up.

4. Choose Backup.

5. In the Create Backup dialog, type in a name for your backup in the Backup Name box. We
recommend that the name indicate which cluster was backed up and the date and time the
backup was made.

Cluster naming constraints are as follows:

• Must contain 1–40 alphanumeric characters or hyphens.

• Must begin with a letter.

• Can't contain two consecutive hyphens.

• Can't end with a hyphen.

Taking manual backups API Version 2015-02-02 266

https://console.aws.amazon.com/ec2/
https://console.aws.amazon.com/ec2/

Amazon ElastiCache for Redis User Guide

6. Choose Create Backup.

The status of the cluster changes to snapshotting.

Creating a manual backup (AWS CLI)

Manual backup of a serverless cache with the AWS CLI

To create a manual backup of a cache using the AWS CLI, use the create-serverless-
snapshot AWS CLI operation with the following parameters:

• --serverless-cache-name – The name of the serverless cache that you are backing up.

• --serverless-cache-snapshot-name – Name of the snapshot to be created.

For Linux, macOS, or Unix:

• aws elasticache create-serverless-snapshot \
 --serverless-cache-name CacheName \
 --serverless-cache-snapshot-name bkup-20231127

For Windows:

• aws elasticache create-serverless-snapshot ^
 --serverless-cache-name CacheName ^
 --serverless-cache-snapshot-name bkup-20231127

Manual backup of a self-designed cluster with the AWS CLI

To create a manual backup of a self-designed cluster using the AWS CLI, use the create-
snapshot AWS CLI operation with the following parameters:

• --cache-cluster-id

• If the cluster you're backing up has no replica nodes, --cache-cluster-id is the name of
the cluster you are backing up, for example mycluster.

• If the cluster you're backing up has one or more replica nodes, --cache-cluster-id is the
name of the node in the cluster that you want to use for the backup. For example, the name
might be mycluster-002.

Taking manual backups API Version 2015-02-02 267

Amazon ElastiCache for Redis User Guide

Use this parameter only when backing up a Redis (cluster mode disabled) cluster.

• --replication-group-id – Name of the Redis (cluster mode enabled) cluster (CLI/API: a
replication group) to use as the source for the backup. Use this parameter when backing up a
Redis (cluster mode enabled) cluster.

• --snapshot-name – Name of the snapshot to be created.

Cluster naming constraints are as follows:

• Must contain 1–40 alphanumeric characters or hyphens.

• Must begin with a letter.

• Can't contain two consecutive hyphens.

• Can't end with a hyphen.

Example 1: Backing up a Redis (Cluster Mode Disabled) cluster that has no replica nodes

The following AWS CLI operation creates the backup bkup-20150515 from the Redis (cluster
mode disabled) cluster myNonClusteredRedis that has no read replicas.

For Linux, macOS, or Unix:

aws elasticache create-snapshot \
 --cache-cluster-id myNonClusteredRedis \
 --snapshot-name bkup-20150515

For Windows:

aws elasticache create-snapshot ^
 --cache-cluster-id myNonClusteredRedis ^
 --snapshot-name bkup-20150515

Example 2: Backing up a Redis (Cluster Mode Disabled) cluster with replica nodes

The following AWS CLI operation creates the backup bkup-20150515 from the Redis (cluster
mode disabled) cluster myNonClusteredRedis. This backup has one or more read replicas.

Taking manual backups API Version 2015-02-02 268

Amazon ElastiCache for Redis User Guide

For Linux, macOS, or Unix:

aws elasticache create-snapshot \
 --cache-cluster-id myNonClusteredRedis-001 \
 --snapshot-name bkup-20150515

For Windows:

aws elasticache create-snapshot ^
 --cache-cluster-id myNonClusteredRedis-001 ^
 --snapshot-name bkup-20150515

Example Output: Backing Up a Redis (Cluster Mode Disabled) Cluster with Replica Nodes

Output from the operation looks something like the following.

{
 "Snapshot": {
 "Engine": "redis",
 "CacheParameterGroupName": "default.redis6.x",
 "VpcId": "vpc-91280df6",
 "CacheClusterId": "myNonClusteredRedis-001",
 "SnapshotRetentionLimit": 0,
 "NumCacheNodes": 1,
 "SnapshotName": "bkup-20150515",
 "CacheClusterCreateTime": "2017-01-12T18:59:48.048Z",
 "AutoMinorVersionUpgrade": true,
 "PreferredAvailabilityZone": "us-east-1c",
 "SnapshotStatus": "creating",
 "SnapshotSource": "manual",
 "SnapshotWindow": "08:30-09:30",
 "EngineVersion": "6.0",
 "NodeSnapshots": [
 {
 "CacheSize": "",
 "CacheNodeId": "0001",
 "CacheNodeCreateTime": "2017-01-12T18:59:48.048Z"
 }
],
 "CacheSubnetGroupName": "default",
 "Port": 6379,
 "PreferredMaintenanceWindow": "wed:07:30-wed:08:30",

Taking manual backups API Version 2015-02-02 269

Amazon ElastiCache for Redis User Guide

 "CacheNodeType": "cache.m3.2xlarge",
 "DataTiering": "disabled"
 }
}

Example 3: Backing up a cluster for Redis (Cluster Mode Enabled)

The following AWS CLI operation creates the backup bkup-20150515 from the Redis (cluster
mode enabled) cluster myClusteredRedis. Note the use of --replication-group-id instead
of --cache-cluster-id to identify the source.

For Linux, macOS, or Unix:

aws elasticache create-snapshot \
 --replication-group-id myClusteredRedis \
 --snapshot-name bkup-20150515

For Windows:

aws elasticache create-snapshot ^
 --replication-group-id myClusteredRedis ^
 --snapshot-name bkup-20150515

Example Output: Backing Up a Redis (Cluster Mode Enabled) Cluster

Output from this operation looks something like the following.

{
 "Snapshot": {
 "Engine": "redis",
 "CacheParameterGroupName": "default.redis6.x.cluster.on",
 "VpcId": "vpc-91280df6",
 "NodeSnapshots": [
 {
 "CacheSize": "",
 "NodeGroupId": "0001"
 },
 {
 "CacheSize": "",
 "NodeGroupId": "0002"
 }
],

Taking manual backups API Version 2015-02-02 270

Amazon ElastiCache for Redis User Guide

 "NumNodeGroups": 2,
 "SnapshotName": "bkup-20150515",
 "ReplicationGroupId": "myClusteredRedis",
 "AutoMinorVersionUpgrade": true,
 "SnapshotRetentionLimit": 1,
 "AutomaticFailover": "enabled",
 "SnapshotStatus": "creating",
 "SnapshotSource": "manual",
 "SnapshotWindow": "10:00-11:00",
 "EngineVersion": "6.0",
 "CacheSubnetGroupName": "default",
 "ReplicationGroupDescription": "2 shards 2 nodes each",
 "Port": 6379,
 "PreferredMaintenanceWindow": "sat:03:30-sat:04:30",
 "CacheNodeType": "cache.r3.large",
 "DataTiering": "disabled"
 }
}

Related topics

For more information, see create-snapshot in the AWS CLI Command Reference.

Taking manual backups API Version 2015-02-02 271

https://docs.aws.amazon.com/cli/latest/reference/elasticache/create-snapshot.html

Amazon ElastiCache for Redis User Guide

Creating a final backup

You can create a final backup using the ElastiCache console, the AWS CLI, or the ElastiCache API.

Creating a final backup (Console)

You can create a final backup when you delete a Redis cache using the ElastiCache console.

To create a final backup when deleting a Redis cache, on the delete dialog box choose Yes under
Create backup and give the backup a name.

Related topics

• Using the AWS Management Console

• Deleting a Replication Group (Console)

Creating a final backup (AWS CLI)

You can create a final backup when deleting a Redis cache using the AWS CLI.

Topics

• When deleting a Redis serverless cache

• When deleting a Redis cluster with no read replicas

• When deleting a Redis cluster with read replicas

When deleting a Redis serverless cache

To create a final backup, use the delete-serverless-cache AWS CLI operation with the
following parameters.

• --serverless-cache-name – Name of the cache being deleted.

• --final-snapshot-name – Name of the backup.

The following code creates the final backup bkup-20231127-final when deleting the cache
myserverlesscache.

For Linux, macOS, or Unix:

aws elasticache delete-serverless-cache \

Creating a final backup API Version 2015-02-02 272

Amazon ElastiCache for Redis User Guide

 --serverless-cache-name myserverlesscache \
 --final-snapshot-name bkup-20231127-final

For Windows:

aws elasticache delete-serverless-cache ^
 --serverless-cache-name myserverlesscache ^
 --final-snapshot-name bkup-20231127-final

For more information, see delete-serverless-cache in the AWS CLI Command Reference.

When deleting a Redis cluster with no read replicas

To create a final backup, use the delete-cache-cluster AWS CLI operation with the following
parameters.

• --cache-cluster-id – Name of the cluster being deleted.

• --final-snapshot-identifier – Name of the backup.

The following code creates the final backup bkup-20150515-final when deleting the cluster
myRedisCluster.

For Linux, macOS, or Unix:

aws elasticache delete-cache-cluster \
 --cache-cluster-id myRedisCluster \
 --final-snapshot-identifier bkup-20150515-final

For Windows:

aws elasticache delete-cache-cluster ^
 --cache-cluster-id myRedisCluster ^
 --final-snapshot-identifier bkup-20150515-final

For more information, see delete-cache-cluster in the AWS CLI Command Reference.

When deleting a Redis cluster with read replicas

To create a final backup when deleting a replication group, use the delete-replication-group
AWS CLI operation, with the following parameters:

Creating a final backup API Version 2015-02-02 273

https://docs.aws.amazon.com/cli/latest/reference/elasticache/delete-serverless-cache.html
https://docs.aws.amazon.com/cli/latest/reference/elasticache/delete-cache-cluster.html

Amazon ElastiCache for Redis User Guide

• --replication-group-id – Name of the replication group being deleted.

• --final-snapshot-identifier – Name of the final backup.

The following code takes the final backup bkup-20150515-final when deleting the replication
group myReplGroup.

For Linux, macOS, or Unix:

aws elasticache delete-replication-group \
 --replication-group-id myReplGroup \
 --final-snapshot-identifier bkup-20150515-final

For Windows:

aws elasticache delete-replication-group ^
 --replication-group-id myReplGroup ^
 --final-snapshot-identifier bkup-20150515-final

For more information, see delete-replication-group in the AWS CLI Command Reference.

Creating a final backup API Version 2015-02-02 274

https://docs.aws.amazon.com/cli/latest/reference/elasticache/delete-replication-group.html

Amazon ElastiCache for Redis User Guide

Describing backups

The following procedures show you how to display a list of your backups. If you desire, you can also
view the details of a particular backup.

Describing backups (Console)

To display backups using the AWS Management Console

1. Sign in to the AWS Management Console and open the ElastiCache console at https://
console.aws.amazon.com/elasticache/.

2. From the navigation pane, choose Backups.

3. To see the details of a particular backup, choose the box to the left of the backup's name.

Describing serverless backups (AWS CLI)

To display a list of serverless backups and optionally details about a specific backup, use the
describe-serverless-cache-snapshots CLI operation.

Examples

The following operation uses the parameter --max-records to list up to 20 backups associated
with your account. Omitting the parameter --max-records lists up to 50 backups.

aws elasticache describe-serverless-cache-snapshots --max-records 20

The following operation uses the parameter --serverless-cache-name to list only the backups
associated with the cache my-cache.

aws elasticache describe-serverless-cache-snapshots --serverless-cache-name my-cache

The following operation uses the parameter --serverless-cache-snapshot-name to display
the details of the backup my-backup.

aws elasticache describe-serverless-cache-snapshots --serverless-cache-snapshot-
name my-backup

For more information, see describe-serverless-cache-snapshots in the AWS CLI Command
Reference.

Describing backups API Version 2015-02-02 275

https://console.aws.amazon.com/elasticache/
https://console.aws.amazon.com/elasticache/
https://docs.aws.amazon.com/cli/latest/reference/elasticache/describe-serverless-cache-snapshots.html

Amazon ElastiCache for Redis User Guide

Describing self-designed cluster backups (AWS CLI)

To display a list of self-designed cluster backups and optionally details about a specific backup, use
the describe-snapshots CLI operation.

Examples

The following operation uses the parameter --max-records to list up to 20 backups associated
with your account. Omitting the parameter --max-records lists up to 50 backups.

aws elasticache describe-snapshots --max-records 20

The following operation uses the parameter --cache-cluster-id to list only the backups
associated with the cluster my-cluster.

aws elasticache describe-snapshots --cache-cluster-id my-cluster

The following operation uses the parameter --snapshot-name to display the details of the
backup my-backup.

aws elasticache describe-snapshots --snapshot-name my-backup

For more information, see describe-snapshots in the AWS CLI Command Reference.

Describing backups API Version 2015-02-02 276

https://docs.aws.amazon.com/cli/latest/reference/elasticache/describe-snapshots.html

Amazon ElastiCache for Redis User Guide

Copying backups

You can create a copy of any backup, whether it was created automatically or manually. You can
also export your backup so you can access it from outside ElastiCache. For guidance on exporting
your backup, see Exporting a backup.

The following steps show you how to copy a backup.

Copying backups (Console)

To copy a backup (console)

1. Sign in to the AWS Management Console and open the ElastiCache console at https://
console.aws.amazon.com/elasticache/.

2. To see a list of your backups, from the left navigation pane choose Backups.

3. From the list of backups, choose the box to the left of the name of the backup you want to
copy.

4. Choose Actions then Copy.

5. In the New backup name box, type a name for your new backup.

6. Choose Copy.

Copying a serverless backup (AWS CLI)

To copy a backup of a serverless cache, use the copy-serverless-cache-snapshot operation.

Parameters

• --source-serverless-cache-snapshot-name – Name of the backup to be copied.

• --target-serverless-cache-snapshot-name – Name of the backup's copy.

The following example makes a copy of an automatic backup.

For Linux, macOS, or Unix:

aws elasticache copy-serverless-cache-snapshot \
 --source-serverless-cache-snapshot-name automatic.my-cache-2023-11-27-03-15 \
 --target-serverless-cache-snapshot-name my-backup-copy

Copying backups API Version 2015-02-02 277

https://console.aws.amazon.com/elasticache/
https://console.aws.amazon.com/elasticache/

Amazon ElastiCache for Redis User Guide

For Windows:

aws elasticache copy-serverless-cache-snapshot ^
 --source-serverless-cache-snapshot-name automatic.my-cache-2023-11-27-03-15 ^
 --target-serverless-cache-snapshot-name my-backup-copy

For more information, see copy-serverless-cache-snapshot in the AWS CLI.

Copying a self designed cluster backup (AWS CLI)

To copy a backup of a self-designed cluster, use the copy-snapshot operation.

Parameters

• --source-snapshot-name – Name of the backup to be copied.

• --target-snapshot-name – Name of the backup's copy.

• --target-bucket – Reserved for exporting a backup. Do not use this parameter when making
a copy of a backup. For more information, see Exporting a backup.

The following example makes a copy of an automatic backup.

For Linux, macOS, or Unix:

aws elasticache copy-snapshot \
 --source-snapshot-name automatic.my-redis-primary-2014-03-27-03-15 \
 --target-snapshot-name my-backup-copy

For Windows:

aws elasticache copy-snapshot ^
 --source-snapshot-name automatic.my-redis-primary-2014-03-27-03-15 ^
 --target-snapshot-name my-backup-copy

For more information, see copy-snapshot in the AWS CLI.

Copying backups API Version 2015-02-02 278

https://docs.aws.amazon.com/cli/latest/reference/elasticache/copy-serverless-cache-snapshot.html
https://docs.aws.amazon.com/cli/latest/reference/elasticache/copy-snapshot.html

Amazon ElastiCache for Redis User Guide

Exporting a backup

Amazon ElastiCache supports exporting your ElastiCache backup to an Amazon Simple Storage
Service (Amazon S3) bucket, which gives you access to it from outside ElastiCache. You can export a
backup using the ElastiCache console, the AWS CLI, or the ElastiCache API.

Exporting a backup can be helpful if you need to launch a cluster in another AWS Region. You
can export your data in one AWS Region, copy the .rdb file to the new AWS Region, and then use
that .rdb file to seed the new cluster instead of waiting for the new cluster to populate through
use. For information about seeding a new cluster, see Seeding a new self-designed cluster with an
externally created backup. Another reason you might want to export your cluster's data is to use
the .rdb file for offline processing.

Important

• The ElastiCache backup and the Amazon S3 bucket that you want to copy it to must be in
the same AWS Region.

Though backups copied to an Amazon S3 bucket are encrypted, we strongly recommend
that you do not grant others access to the Amazon S3 bucket where you want to store
your backups.

• Exporting a backup to Amazon S3 is not supported for clusters using data tiering. For
more information, see Data tiering.

Before you can export a backup to an Amazon S3 bucket, you must have an Amazon S3 bucket in
the same AWS Region as the backup. Grant ElastiCache access to the bucket. The first two steps
show you how to do this.

Step 1: Create an Amazon S3 bucket

The following steps use the Amazon S3 console to create an Amazon S3 bucket where you export
and store your ElastiCache backup.

To create an Amazon S3 bucket

1. Sign in to the AWS Management Console and open the Amazon S3 console at https://
console.aws.amazon.com/s3/.

Exporting a backup API Version 2015-02-02 279

https://console.aws.amazon.com/s3/
https://console.aws.amazon.com/s3/

Amazon ElastiCache for Redis User Guide

2. Choose Create Bucket.

3. In Create a Bucket - Select a Bucket Name and Region, do the following:

a. In Bucket Name, type a name for your Amazon S3 bucket.

The name of your Amazon S3 bucket must be DNS-compliant. Otherwise, ElastiCache
can't access your backup file. The rules for DNS compliance are:

• Names must be at least 3 and no more than 63 characters long.

• Names must be a series of one or more labels separated by a period (.) where each label:

• Starts with a lowercase letter or a number.

• Ends with a lowercase letter or a number.

• Contains only lowercase letters, numbers, and dashes.

• Names can't be formatted as an IP address (for example, 192.0.2.0).

b. From the Region list, choose an AWS Region for your Amazon S3 bucket. This AWS Region
must be the same AWS Region as the ElastiCache backup you want to export.

c. Choose Create.

For more information about creating an Amazon S3 bucket, see Creating a bucket in the Amazon
Simple Storage Service User Guide.

Step 2: Grant ElastiCache access to your Amazon S3 bucket

For ElastiCache to be able to copy a snapshot to an Amazon S3 bucket, you must update your
bucket policy to grant ElastiCache access to the bucket.

Warning

Even though backups copied to an Amazon S3 bucket are encrypted, your data can
be accessed by anyone with access to your Amazon S3 bucket. Therefore, we strongly
recommend that you set up IAM policies to prevent unauthorized access to this Amazon S3
bucket. For more information, see Managing access in the Amazon S3 User Guide.

To create the proper permissions on an Amazon S3 bucket, take the steps described following.

Exporting a backup API Version 2015-02-02 280

https://docs.aws.amazon.com/AmazonS3/latest/user-guide/CreatingaBucket.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/s3-access-control.html

Amazon ElastiCache for Redis User Guide

To grant ElastiCache access to an S3 bucket

1. Sign in to the AWS Management Console and open the Amazon S3 console at https://
console.aws.amazon.com/s3/.

2. Choose the name of the Amazon S3 bucket that you want to copy the backup to. This should
be the S3 bucket that you created in Step 1: Create an Amazon S3 bucket.

3. Choose the Permissions tab and under Permissions, choose Access control list (ACL) and then
choose Edit.

4. Add grantee Canonical Id
540804c33a284a299d2547575ce1010f2312ef3da9b3a053c8bc45bf233e4353 with the
following options:

• Objects: List, Write

• Bucket ACL: Read, Write

Note

For GovCloud Regions, the Canonical Id is
40fa568277ad703bd160f66ae4f83fc9dfdfd06c2f1b5060ca22442ac3ef8be6.

5. Choose Save.

Step 3: Export an ElastiCache backup

Now you've created your S3 bucket and granted ElastiCache permissions to access it. Next, you
can use the ElastiCache console, the AWS CLI, or the ElastiCache API to export your snapshot to it.
The following examples assume that the IAM identity of the caller has the following additional S3
specific IAM permissions.

{
 "Version": "2012-10-17",
 "Statement": [{
 "Effect": "Allow",
 "Action": [
 "s3:GetBucketLocation",
 "s3:ListAllMyBuckets",
 "s3:PutObject",
 "s3:GetObject",

Exporting a backup API Version 2015-02-02 281

https://console.aws.amazon.com/s3/
https://console.aws.amazon.com/s3/

Amazon ElastiCache for Redis User Guide

 "s3:DeleteObject",
 "s3:ListBucket"
],
 "Resource": "arn:aws:s3:::*"
 }]
}

For opt-in Regions, the following is an example of what the updated policy for the S3 bucket might
look like. (This examples uses the Asia Pacific (Hong Kong) Region.)

{
 "Version": "2012-10-17",
 "Id": "Policy15397346",
 "Statement": [
 {
 "Sid": "Stmt15399483",
 "Effect": "Allow",
 "Principal": {
 "Service": "elasticache.amazonaws.com"
 },
 "Action": "s3:*",
 "Resource": [
 "arn:aws:s3:::hkg-elasticache-backup",
 "arn:aws:s3:::hkg-elasticache-backup/*"
]
 },
 {
 "Sid": "Stmt15399484",
 "Effect": "Allow",

 "Principal": {
 "Service": "ap-east-1.elasticache-snapshot.amazonaws.com"
 },
 "Action": "s3:*",
 "Resource": [
 "arn:aws:s3:::hkg-elasticache-backup",
 "arn:aws:s3:::hkg-elasticache-backup/*"
]
 }
]
}

Exporting a backup API Version 2015-02-02 282

Amazon ElastiCache for Redis User Guide

Exporting an ElastiCache backup (Console)

The following steps use the ElastiCache console to export a backup to an Amazon S3 bucket so
that you can access it from outside ElastiCache. The Amazon S3 bucket must be in the same AWS
Region as the ElastiCache backup.

To export an ElastiCache backup to an Amazon S3 bucket

1. Sign in to the AWS Management Console and open the ElastiCache console at https://
console.aws.amazon.com/elasticache/.

2. To see a list of your backups, from the left navigation pane choose Backups.

3. From the list of backups, choose the box to the left of the name of the backup you want to
export.

4. Choose Copy.

5. In Create a Copy of the Backup?, do the following:

a. In New backup name box, type a name for your new backup.

The name must be between 1 and 1,000 characters and able to be UTF-8 encoded.

ElastiCache adds an instance identifier and .rdb to the value that you enter here. For
example, if you enter my-exported-backup, ElastiCache creates my-exported-
backup-0001.rdb.

b. From the Target S3 Location list, choose the name of the Amazon S3 bucket that you
want to copy your backup to (the bucket that you created in Step 1: Create an Amazon S3
bucket).

The Target S3 Location must be an Amazon S3 bucket in the backup's AWS Region with
the following permissions for the export process to succeed.

• Object access – Read and Write.

• Permissions access – Read.

For more information, see Step 2: Grant ElastiCache access to your Amazon S3 bucket.

c. Choose Copy.

Exporting a backup API Version 2015-02-02 283

https://console.aws.amazon.com/elasticache/
https://console.aws.amazon.com/elasticache/

Amazon ElastiCache for Redis User Guide

Note

If your S3 bucket does not have the permissions needed for ElastiCache to export a backup
to it, you receive one of the following error messages. Return to Step 2: Grant ElastiCache
access to your Amazon S3 bucket to add the permissions specified and retry exporting your
backup.

• ElastiCache has not been granted READ permissions %s on the S3 Bucket.

Solution: Add Read permissions on the bucket.

• ElastiCache has not been granted WRITE permissions %s on the S3 Bucket.

Solution: Add Write permissions on the bucket.

• ElastiCache has not been granted READ_ACP permissions %s on the S3 Bucket.

Solution: Add Read for Permissions access on the bucket.

If you want to copy your backup to another AWS Region, use Amazon S3 to copy it. For more
information, see Copying an object in the Amazon Simple Storage Service User Guide.

Exporting an ElastiCache serverless backup (AWS CLI)

Exporting a backup of a serverless cache

Export the backup to an Amazon S3 bucket using the export-serverless-cache-snapshot
CLI operation with the following parameters:

Parameters

• --serverless-cache-snapshot-name – Name of the backup to be copied.

• --s3-bucket-name – Name of the Amazon S3 bucket where you want to export the backup. A
copy of the backup is made in the specified bucket.

The --s3-bucket-name must be an Amazon S3 bucket in the backup's AWS Region with the
following permissions for the export process to succeed.

• Object access – Read and Write.

• Permissions access – Read.

Exporting a backup API Version 2015-02-02 284

https://docs.aws.amazon.com/AmazonS3/latest/user-guide/MakingaCopyofanObject.html

Amazon ElastiCache for Redis User Guide

The following operation copies a backup to my-s3-bucket.

For Linux, macOS, or Unix:

aws elasticache export-serverless-cache-snapshot \
 --serverless-cache-snapshot-name automatic.my-redis-2023-11-27 \
 --s3-bucket-name my-s3-bucket

For Windows:

aws elasticache export-serverless-cache-snapshot ^
 --serverless-cache-snapshot-name automatic.my-redis-2023-11-27 ^
 --s3-bucket-name my-s3-bucket

Exporting a self-designed ElastiCache cluster backup (AWS CLI)

Exporting a backup of a self-designed cluster

Export the backup to an Amazon S3 bucket using the copy-snapshot CLI operation with the
following parameters:

Parameters

• --source-snapshot-name – Name of the backup to be copied.

• --target-snapshot-name – Name of the backup's copy.

The name must be between 1 and 1,000 characters and able to be UTF-8 encoded.

ElastiCache adds an instance identifier and .rdb to the value you enter here. For example, if you
enter my-exported-backup, ElastiCache creates my-exported-backup-0001.rdb.

• --target-bucket – Name of the Amazon S3 bucket where you want to export the backup. A
copy of the backup is made in the specified bucket.

The --target-bucket must be an Amazon S3 bucket in the backup's AWS Region with the
following permissions for the export process to succeed.

• Object access – Read and Write.

• Permissions access – Read.

For more information, see Step 2: Grant ElastiCache access to your Amazon S3 bucket.

Exporting a backup API Version 2015-02-02 285

Amazon ElastiCache for Redis User Guide

The following operation copies a backup to my-s3-bucket.

For Linux, macOS, or Unix:

aws elasticache copy-snapshot \
 --source-snapshot-name automatic.my-redis-primary-2016-06-27-03-15 \
 --target-snapshot-name my-exported-backup \
 --target-bucket my-s3-bucket

For Windows:

aws elasticache copy-snapshot ^
 --source-snapshot-name automatic.my-redis-primary-2016-06-27-03-15 ^
 --target-snapshot-name my-exported-backup ^
 --target-bucket my-s3-bucket

Exporting a backup API Version 2015-02-02 286

Amazon ElastiCache for Redis User Guide

Restoring from a backup into a new cache

You can restore an existing backup into a new Serverless cache or a self-designed cluster.

Restoring a backup into a serverless cache (Console)

Note

ElastiCache Serverless supports RDB files compatible with Redis versions between 5.0 and
the latest version available.

To restore a backup to a serverless cache (console)

1. Sign in to the AWS Management Console and open the ElastiCache console at https://
console.aws.amazon.com/elasticache/.

2. From the navigation pane, choose Backups.

3. In the list of backups, choose the box to the left of the backup name that you want to restore.

4. Choose Actions and then Restore.

5. Enter a name for the new serverless cache, and an optional description.

6. Click Create to create your new cache and import data from your backup.

Restoring a backup into a self-designed cluster (Console)

To restore a backup to a self-designed cluster (console)

1. Sign in to the AWS Management Console and open the ElastiCache console at https://
console.aws.amazon.com/elasticache/.

2. From the navigation pane, choose Backups.

3. In the list of backups, choose the box to the left of the backup name you want to restore from.

4. Choose Actions and then Restore.

5. Choose Design your own cache and customize the cluster settings, such as node type, sizes,
number of shards, replicas, AZ placement, and security settings.

6. Choose Create to create your new self-designed cache and import data from your backup.

Restoring from a backup API Version 2015-02-02 287

https://console.aws.amazon.com/elasticache/
https://console.aws.amazon.com/elasticache/
https://console.aws.amazon.com/elasticache/
https://console.aws.amazon.com/elasticache/

Amazon ElastiCache for Redis User Guide

Restoring a backup into a serverless cache (AWS CLI)

Note

ElastiCache Serverless supports RDB files compatible with Redis versions between 5.0 and
the latest version available.

To restore a backup to a new serverless cache (AWS CLI)

The following AWS CLI example creates a new cache using create-serverless-cache and
imports data from a backup.

For Linux, macOS, or Unix:

aws elasticache create-serverless-cache \
 --serverless-cache-name CacheName \
 --engine redis
 --snapshot-arns-to-restore Snapshot-ARN

For Windows:

aws elasticache create-serverless-cache ^
 --serverless-cache-name CacheName ^
 --engine redis ^
 --snapshot-arns-to-restore Snapshot-ARN

Restoring a backup into a self-designed cluster (AWS CLI)

To restore a backup to a self-designed cluster (AWS CLI)

You can restore a Redis (cluster mode disabled) backup in two ways.

• You can restore to a single-node Redis (cluster mode disabled) cluster using the AWS CLI
operation create-cache-cluster.

• You can restore to a Redis cluster with read replicas (a replication group). To do this, you can use
either Redis (cluster mode disabled) or Redis (cluster mode enabled) with the AWS CLI operation
create-replication-group. In this case, you seed the restore with a Redis .rdb file. For more
information on seeding a new self-designed cluster, see Seeding a new self-designed cluster with
an externally created backup.

Restoring from a backup API Version 2015-02-02 288

Amazon ElastiCache for Redis User Guide

When using either the create-cache-cluster or create-replication-group operation, be
sure to include the parameter --snapshot-name or --snapshot-arns to seed the new cluster or
replication group with the data from the backup.

Deleting a backup

An automatic backup is automatically deleted when its retention limit expires. If you delete a
cluster, all of its automatic backups are also deleted. If you delete a replication group, all of the
automatic backups from the clusters in that group are also deleted.

ElastiCache provides a deletion API operation that lets you delete a backup at any time, regardless
of whether the backup was created automatically or manually. Because manual backups don't have
a retention limit, manual deletion is the only way to remove them.

You can delete a backup using the ElastiCache console, the AWS CLI, or the ElastiCache API.

Deleting a backup (Console)

The following procedure deletes a backup using the ElastiCache console.

To delete a backup

1. Sign in to the AWS Management Console and open the ElastiCache console at https://
console.aws.amazon.com/elasticache/.

2. In the navigation pane, choose Backups.

The Backups screen appears with a list of your backups.

3. Choose the box to the left of the name of the backup you want to delete.

4. Choose Delete.

5. If you want to delete this backup, choose Delete on the Delete Backup confirmation screen.
The status changes to deleting.

Deleting a serverless backup (AWS CLI)

Use the delete-snapshot AWS CLI operation with the following parameter to delete a serverless
backup.

• --serverless-cache-snapshot-name – Name of the backup to be deleted.

Deleting a backup API Version 2015-02-02 289

https://console.aws.amazon.com/elasticache/
https://console.aws.amazon.com/elasticache/

Amazon ElastiCache for Redis User Guide

The following code deletes the backup myBackup.

aws elasticache delete-serverless-cache-snapshot --serverless-cache-snapshot-
name myBackup

For more information, see delete-serverless-cache-snapshot in the AWS CLI Command Reference.

Deleting a self-designed cluster backup (AWS CLI)

Use the delete-snapshot AWS CLI operation with the following parameter to delete a self-designed
cluster backup.

• --snapshot-name – Name of the backup to be deleted.

The following code deletes the backup myBackup.

aws elasticache delete-snapshot --snapshot-name myBackup

For more information, see delete-snapshot in the AWS CLI Command Reference.

Tagging backups

You can assign your own metadata to each backup in the form of tags. Tags enable you to
categorize your backups in different ways, for example, by purpose, owner, or environment. This
is useful when you have many resources of the same type—you can quickly identify a specific
resource based on the tags that you've assigned to it. For more information, see Resources you can
tag.

Cost allocation tags are a means of tracking your costs across multiple AWS services by grouping
your expenses on invoices by tag values. To learn more about cost allocation tags, see Use cost
allocation tags.

Using the ElastiCache console, the AWS CLI, or ElastiCache API you can add, list, modify, remove,
or copy cost allocation tags on your backups. For more information, see Monitoring costs with cost
allocation tags.

Tagging backups API Version 2015-02-02 290

https://docs.aws.amazon.com/cli/latest/reference/elasticache/delete-serverless-cache-snapshot.html
https://docs.aws.amazon.com/cli/latest/reference/elasticache/delete-snapshot.html
https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/cost-alloc-tags.html
https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/cost-alloc-tags.html

Amazon ElastiCache for Redis User Guide

Seeding a new self-designed cluster with an externally created backup

When you create a new Redis self-designed cluster, you can seed it with data from a Redis .rdb
backup file. Seeding the cluster is useful if you currently manage a Redis instance outside of
ElastiCache and want to populate your new ElastiCache for Redis self-designed cluster with your
existing Redis data.

To seed a new Redis self-designed cluster from a Redis backup created within Amazon ElastiCache,
see Restoring from a backup into a new cache.

When you use a Redis .rdb file to seed a new Redis self-designed cluster, you can do the following:

• Upgrade from a nonpartitioned cluster to a Redis (cluster mode enabled) self-designed cluster
running Redis version 3.2.4.

• Specify a number of shards (called node groups in the API and CLI) in the new self-designed
cluster. This number can be different from the number of shards in the self-designed cluster that
was used to create the backup file.

• Specify a different node type for the new self-designed cluster—larger or smaller than that used
in the cluster that made the backup. If you scale to a smaller node type, be sure that the new
node type has sufficient memory for your data and Redis overhead. For more information, see
Ensuring that you have enough memory to create a Redis snapshot.

• Distribute your keys in the slots of the new Redis (cluster mode enabled) cluster differently than
in the cluster that was used to create the backup file.

Note

You can't seed a Redis (cluster mode disabled) cluster from an .rdb file created from a Redis
(cluster mode enabled) cluster.

Important

• You must ensure that your Redis backup data doesn't exceed the resources of the node.
For example, you can't upload an .rdb file with 5 GB of Redis data to a cache.m3.medium
node that has 2.9 GB of memory.

Seeding a self-designed cluster with a backup API Version 2015-02-02 291

Amazon ElastiCache for Redis User Guide

If the backup is too large, the resulting cluster has a status of restore-failed. If this
happens, you must delete the cluster and start over.

For a complete listing of node types and specifications, see Redis node-type specific
parameters and Amazon ElastiCache product features and details.

• You can encrypt a Redis .rdb file with Amazon S3 server-side encryption (SSE-S3) only.
For more information, see Protecting data using server-side encryption.

Following, you can find topics that walk you through migrating your Redis cluster from outside
ElastiCache for Redis to ElastiCache for Redis.

Migrating to ElastiCache for Redis

• Step 1: Create a Redis backup

• Step 2: Create an Amazon S3 bucket and folder

• Step 3: Upload your backup to Amazon S3

• Step 4: Grant ElastiCache read access to the .rdb file

Step 1: Create a Redis backup

To create the Redis backup to seed your ElastiCache for Redis instance

1. Connect to your existing Redis instance.

2. Run either the Redis BGSAVE or SAVE operation to create a backup. Note where your .rdb file is
located.

BGSAVE is asynchronous and does not block other clients while processing. For more
information, see BGSAVE at the Redis website.

SAVE is synchronous and blocks other processes until finished. For more information, see SAVE
at the Redis website.

For additional information on creating a backup, see Redis persistence at the Redis website.

Seeding a self-designed cluster with a backup API Version 2015-02-02 292

https://aws.amazon.com/elasticache/details/
https://docs.aws.amazon.com/AmazonS3/latest/dev/serv-side-encryption.html
http://redis.io/commands/bgsave
http://redis.io/commands/save
http://redis.io/topics/persistence

Amazon ElastiCache for Redis User Guide

Step 2: Create an Amazon S3 bucket and folder

When you have created the backup file, you need to upload it to a folder within an Amazon S3
bucket. To do that, you must first have an Amazon S3 bucket and folder within that bucket. If you
already have an Amazon S3 bucket and folder with the appropriate permissions, you can skip to
Step 3: Upload your backup to Amazon S3.

To create an Amazon S3 bucket

1. Sign in to the AWS Management Console and open the Amazon S3 console at https://
console.aws.amazon.com/s3/.

2. Follow the instructions for creating an Amazon S3 bucket in Creating a bucket in the Amazon
Simple Storage Service User Guide.

The name of your Amazon S3 bucket must be DNS-compliant. Otherwise, ElastiCache can't
access your backup file. The rules for DNS compliance are:

• Names must be at least 3 and no more than 63 characters long.

• Names must be a series of one or more labels separated by a period (.) where each label:

• Starts with a lowercase letter or a number.

• Ends with a lowercase letter or a number.

• Contains only lowercase letters, numbers, and dashes.

• Names can't be formatted as an IP address (for example, 192.0.2.0).

You must create your Amazon S3 bucket in the same AWS Region as your new ElastiCache for
Redis cluster. This approach makes sure that the highest data transfer speed when ElastiCache
reads your .rdb file from Amazon S3.

Note

To keep your data as secure as possible, make the permissions on your Amazon S3
bucket as restrictive as you can. At the same time, the permissions still need to allow
the bucket and its contents to be used to seed your new Redis cluster.

Seeding a self-designed cluster with a backup API Version 2015-02-02 293

https://console.aws.amazon.com/s3/
https://console.aws.amazon.com/s3/
https://docs.aws.amazon.com/AmazonS3/latest/user-guide/create-bucket.html

Amazon ElastiCache for Redis User Guide

To add a folder to an Amazon S3 bucket

1. Sign in to the AWS Management Console and open the Amazon S3 console at https://
console.aws.amazon.com/s3/.

2. Choose the name of the bucket to upload your .rdb file to.

3. Choose Create folder.

4. Enter a name for your new folder.

5. Choose Save.

Make note of both the bucket name and the folder name.

Step 3: Upload your backup to Amazon S3

Now, upload the .rdb file that you created in Step 1: Create a Redis backup. You upload it to the
Amazon S3 bucket and folder that you created in Step 2: Create an Amazon S3 bucket and folder.
For more information on this task, see Add an object to a bucket. Between steps 2 and 3, choose
the name of the folder you created .

To upload your .rdb file to an Amazon S3 folder

1. Sign in to the AWS Management Console and open the Amazon S3 console at https://
console.aws.amazon.com/s3/.

2. Choose the name of the Amazon S3 bucket you created in Step 2.

3. Choose the name of the folder you created in Step 2.

4. Choose Upload.

5. Choose Add files.

6. Browse to find the file or files you want to upload, then choose the file or files. To choose
multiple files, hold down the Ctrl key while choosing each file name.

7. Choose Open.

8. Confirm the correct file or files are listed in the Upload dialog box, and then choose Upload.

Note the path to your .rdb file. For example, if your bucket name is myBucket and the path is
myFolder/redis.rdb, enter myBucket/myFolder/redis.rdb. You need this path to seed the
new cluster with the data in this backup.

Seeding a self-designed cluster with a backup API Version 2015-02-02 294

https://console.aws.amazon.com/s3/
https://console.aws.amazon.com/s3/
https://docs.aws.amazon.com/AmazonS3/latest/user-guide/upload-objects.html
https://console.aws.amazon.com/s3/
https://console.aws.amazon.com/s3/

Amazon ElastiCache for Redis User Guide

For additional information, see Bucket restrictions and limitations in the Amazon Simple Storage
Service User Guide.

Step 4: Grant ElastiCache read access to the .rdb file

Now, grant ElastiCache read access to your .rdb backup file. You grant ElastiCache access to your
backup file in a different way depending if your bucket is in a default AWS Region or an opt-in AWS
Region.

AWS Regions introduced before March 20, 2019, are enabled by default. You can begin working
in these AWS Regions immediately. Regions introduced after March 20, 2019, such as Asia Pacific
(Hong Kong) and Middle East (Bahrain), are disabled by default. You must enable, or opt in, to
these Regions before you can use them, as described in Managing AWS regions in AWS General
Reference.

Choose your approach depending on your AWS Region:

• For a default Region, use the procedure in Grant ElastiCache read access to the .rdb file in a
default Region.

• For an opt-in Region, use the procedure in Grant ElastiCache read access to the .rdb file in an
opt-in Region.

Grant ElastiCache read access to the .rdb file in a default Region

AWS Regions introduced before March 20, 2019, are enabled by default. You can begin working
in these AWS Regions immediately. Regions introduced after March 20, 2019, such as Asia Pacific
(Hong Kong) and Middle East (Bahrain), are disabled by default. You must enable, or opt in, to
these Regions before you can use them, as described in Managing AWS regions in AWS General
Reference.

To grant ElastiCache read access to the backup file in an AWS Region enabled by default

1. Sign in to the AWS Management Console and open the Amazon S3 console at https://
console.aws.amazon.com/s3/.

2. Choose the name of the S3 bucket that contains your .rdb file.

3. Choose the name of the folder that contains your .rdb file.

4. Choose the name of your .rdb backup file. The name of the selected file appears above the
tabs at the top of the page.

Seeding a self-designed cluster with a backup API Version 2015-02-02 295

https://docs.aws.amazon.com/AmazonS3/latest/dev/BucketRestrictions.html
https://docs.aws.amazon.com/general/latest/gr/rande-manage.html
https://docs.aws.amazon.com/general/latest/gr/rande-manage.html
https://console.aws.amazon.com/s3/
https://console.aws.amazon.com/s3/

Amazon ElastiCache for Redis User Guide

5. Choose Permissions.

6. If aws-scs-s3-readonly or one of the canonical IDs in the following list is not listed as a user,
do the following:

a. Under Access for other AWS accounts, choose Add grantee.

b. In the box, add the AWS Region's canonical ID as shown following:

• AWS GovCloud (US-West) Region:

40fa568277ad703bd160f66ae4f83fc9dfdfd06c2f1b5060ca22442ac3ef8be6

Important

The backup must be located in an S3 bucket in AWS GovCloud (US) for you to
download it to a Redis cluster in AWS GovCloud (US).

• AWS Regions enabled by default:

540804c33a284a299d2547575ce1010f2312ef3da9b3a053c8bc45bf233e4353

c. Set the permissions on the bucket by choosing Yes for the following:

• List/write object

• Read/write object ACL permissions

d. Choose Save.

7. Choose Overview, and then choose Download.

Grant ElastiCache read access to the .rdb file in an opt-in Region

AWS Regions introduced before March 20, 2019, are enabled by default. You can begin working
in these AWS Regions immediately. Regions introduced after March 20, 2019, such as Asia Pacific
(Hong Kong) and Middle East (Bahrain), are disabled by default. You must enable, or opt in, to
these Regions before you can use them, as described in Managing AWS regions in AWS General
Reference.

Now, grant ElastiCache read access to your .rdb backup file.

Seeding a self-designed cluster with a backup API Version 2015-02-02 296

https://docs.aws.amazon.com/general/latest/gr/rande-manage.html

Amazon ElastiCache for Redis User Guide

To grant ElastiCache read access to the backup file

1. Sign in to the AWS Management Console and open the Amazon S3 console at https://
console.aws.amazon.com/s3/.

2. Choose the name of the S3 bucket that contains your .rdb file.

3. Choose the name of the folder that contains your .rdb file.

4. Choose the name of your .rdb backup file. The name of the selected file appears above the
tabs at the top of the page.

5. Choose the Permissions tab.

6. Under Permissions, choose Bucket policy and then choose Edit.

7. Update the policy to grant ElastiCache required permissions to perform operations:

• Add ["Service" : "region-full-name.elasticache-
snapshot.amazonaws.com"] to Principal.

• Add the following permissions required for exporting a snapshot to the Amazon S3 bucket:

• "s3:GetObject"

• "s3:ListBucket"

• "s3:GetBucketAcl"

The following is an example of what the updated policy might look like.

{
 "Version": "2012-10-17",
 "Id": "Policy15397346",
 "Statement": [
 {
 "Sid": "Stmt15399483",
 "Effect": "Allow",
 "Principal": {
 "Service": "ap-east-1.elasticache-snapshot.amazonaws.com"
 },
 "Action": [
 "s3:GetObject",
 "s3:ListBucket",
 "s3:GetBucketAcl"
],
 "Resource": [
 "arn:aws:s3:::example-bucket",

Seeding a self-designed cluster with a backup API Version 2015-02-02 297

https://console.aws.amazon.com/s3/
https://console.aws.amazon.com/s3/

Amazon ElastiCache for Redis User Guide

 "arn:aws:s3:::example-bucket/backup1.rdb",
 "arn:aws:s3:::example-bucket/backup2.rdb"
]
 }
]
}

8. Choose Save changes.

Step 5: Seed the ElastiCache cluster with the .rdb file data

Now you are ready to create an ElastiCache cluster and seed it with the data from the .rdb file. To
create the cluster, follow the directions at Creating a cluster or Creating a Redis replication group
from scratch. Be sure to choose Redis as your cluster engine.

The method you use to tell ElastiCache where to find the Redis backup you uploaded to Amazon S3
depends on the method you use to create the cluster:

Seed the ElastiCache for Redis cluster or replication group with the .rdb file data

• Using the ElastiCache console

When selecting Cluster settings, choose Restore from backups as your cluster creation method,
then choose Other backups as your Source in the Backup source section. In the Seed RDB file
S3 location box, type in the Amazon S3 path for the files(s). If you have multiple .rdb files, type
in the path for each file in a comma separated list. The Amazon S3 path looks something like
myBucket/myFolder/myBackupFilename.rdb.

• Using the AWS CLI

If you use the create-cache-cluster or the create-replication-group operation, use
the parameter --snapshot-arns to specify a fully qualified ARN for each .rdb file. For example,
arn:aws:s3:::myBucket/myFolder/myBackupFilename.rdb. The ARN must resolve to
the backup files you stored in Amazon S3.

• Using the ElastiCache API

If you use the CreateCacheCluster or the CreateReplicationGroup ElastiCache API
operation, use the parameter SnapshotArns to specify a fully qualified ARN for each .rdb file.
For example, arn:aws:s3:::myBucket/myFolder/myBackupFilename.rdb. The ARN must
resolve to the backup files you stored in Amazon S3.

Seeding a self-designed cluster with a backup API Version 2015-02-02 298

Amazon ElastiCache for Redis User Guide

Important

When seeding a Redis (cluster mode enabled) cluster, you must configure each node
group (shard) in the new cluster or replication group. Use the parameter --node-group-
configuration (API: NodeGroupConfiguration) to do this. For more information, see
the following:

• CLI: create-replication-group in the AWS CLI Reference

• API: CreateReplicationGroup in the ElastiCache API Reference

During the process of creating your cluster, the data in your Redis backup is written to the cluster.
You can monitor the progress by viewing the ElastiCache event messages. To do this, see the
ElastiCache console and choose Cache Events. You can also use the AWS ElastiCache command
line interface or ElastiCache API to obtain event messages. For more information, see Viewing
ElastiCache events.

Seeding a self-designed cluster with a backup API Version 2015-02-02 299

https://docs.aws.amazon.com/cli/latest/reference/elasticache/create-replication-group.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/APIReference/API_CreateReplicationGroup.html

Amazon ElastiCache for Redis User Guide

Engine versions and upgrading

This section covers the supported Redis engine versions and how to upgrade.

Topics

• Engine versions and upgrading

• Supported ElastiCache for Redis versions

• Redis versions end of life schedule

• How to upgrade engine versions

• Resolving blocked Redis engine upgrades

• Major version behavior and compatibility differences

Engine versions and upgrading API Version 2015-02-02 300

Amazon ElastiCache for Redis User Guide

Engine versions and upgrading

ElastiCache for Redis versions are identified with a semantic version which comprise a MAJOR
and MINOR component. For example, in Redis 6.2, the major version is 6, and the minor version 2.
When operating self-designed clusters, ElastiCache for Redis also exposes the PATCH component,
e.g. Redis 6.2.1, and the patch version is 1.

MAJOR versions are for API incompatible changes and MINOR versions are for new functionality
added in a backwards-compatible way. PATCH versions are for backwards-compatible bug fixes and
non-functional changes.

Version management for ElastiCache Serverless

ElastiCache Serverless automatically applies the latest MINOR and PATCH software version to your
cache, without any impact or downtime to your application. No action is required on your end.

When a new MAJOR version is available, ElastiCache Serverless will send you a notification in the
console and an event in EventBridge. You can choose to upgrade your cache to the latest major
version by modifying your cache using the Console, CLI, or API and selecting the latest engine
version.

Version management for self-designed ElastiCache clusters

When working with self-designed ElastiCache clusters, you can control when the software
powering your cache cluster is upgraded to new versions that are supported by ElastiCache .
You can control when to upgrade your cache to the latest available MAJOR, MINOR, and PATCH
versions. You initiate engine version upgrades to your cluster or replication group by modifying it
and specifying a new engine version.

You can control if and when the protocol-compliant software powering your cache cluster is
upgraded to new versions that are supported by ElastiCache. This level of control enables you
to maintain compatibility with specific versions, test new versions with your application before
deploying in production, and perform version upgrades on your own terms and timelines.

Because version upgrades might involve some compatibility risk, they don't occur automatically.
You must initiate them.

You initiate engine version upgrades to your cluster or replication group by modifying it and
specifying a new engine version. For more information, see the following:

Engine versions and upgrading API Version 2015-02-02 301

Amazon ElastiCache for Redis User Guide

• Modifying clusters

• Modifying a replication group

Upgrade considerations when working with self-designed clusters

Note

The following considerations only apply when upgrading self-designed clusters. They do
not apply to ElastiCache Serverless.

When upgrading a self-designed cluster, consider the follwing

• Engine version management is designed so that you can have as much control as possible over
how patching occurs. However, ElastiCache reserves the right to patch your cluster on your
behalf in the unlikely event of a critical security vulnerability in the system or cache software.

• Beginning with Redis 6.0, ElastiCache for Redis will offer a single version for each Redis OSS
minor release, rather than offering multiple patch versions.

• Starting with Redis engine version 5.0.6, you can upgrade your cluster version with minimal
downtime. The cluster is available for reads during the entire upgrade and is available for writes
for most of the upgrade duration, except during the failover operation which lasts a few seconds.

• You can also upgrade your ElastiCache clusters with versions earlier than 5.0.6. The process
involved is the same but may incur longer failover time during DNS propagation (30s-1m).

• Beginning with Redis 7, ElastiCache for Redis supports switching between Redis (cluster mode
disabled) and Redis (cluster mode enabled).

• The Amazon ElastiCache for Redis engine upgrade process is designed to make a best effort to
retain your existing data and requires successful Redis replication.

• When upgrading the engine, ElastiCache for Redis will terminate existing client connections. To
minimize downtime during engine upgrades, we recommend you implement best practices for
Redis clients with error retries and exponential backoff and the best practices for minimizing
downtime during maintenance.

• You can't upgrade directly from Redis (cluster mode disabled) to Redis (cluster mode enabled)
when you upgrade your engine. The following procedure shows you how to upgrade from Redis
(cluster mode disabled) to Redis (cluster mode enabled).

Engine versions and upgrading API Version 2015-02-02 302

Clusters.html#Modify
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/BestPractices.Clients.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/BestPractices.Clients.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/BestPractices.MinimizeDowntime.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/BestPractices.MinimizeDowntime.html

Amazon ElastiCache for Redis User Guide

To upgrade from a Redis (cluster mode disabled) to Redis (cluster mode enabled) engine
version

1. Make a backup of your Redis (cluster mode disabled) cluster or replication group. For more
information, see Taking manual backups.

2. Use the backup to create and seed a Redis (cluster mode enabled) cluster with one shard
(node group). Specify the new engine version and enable cluster mode when creating the
cluster or replication group. For more information, see Seeding a new self-designed cluster
with an externally created backup.

3. Delete the old Redis (cluster mode disabled) cluster or replication group. For more
information, see Deleting a cluster or Deleting a replication group.

4. Scale the new Redis (cluster mode enabled) cluster or replication group to the number of
shards (node groups) that you need. For more information, see Scaling clusters in Redis
(Cluster Mode Enabled)

• When upgrading major engine versions, for example from 5.0.6 to 6.0, you need to also choose a
new parameter group that is compatible with the new engine version.

• For single Redis clusters and clusters with Multi-AZ disabled, we recommend that sufficient
memory be made available to Redis as described in Ensuring that you have enough memory to
create a Redis snapshot. In these cases, the primary is unavailable to service requests during the
upgrade process.

• For Redis clusters with Multi-AZ enabled, we also recommend that you schedule engine upgrades
during periods of low incoming write traffic. When upgrading to Redis 5.0.6 or above, the
primary cluster continues to be available to service requests during the upgrade process.

Clusters and replication groups with multiple shards are processed and patched as follows:

• All shards are processed in parallel. Only one upgrade operation is performed on a shard at
any time.

• In each shard, all replicas are processed before the primary is processed. If there are fewer
replicas in a shard, the primary in that shard might be processed before the replicas in other
shards are finished processing.

• Across all the shards, primary nodes are processed in series. Only one primary node is
upgraded at a time.

• If encryption is enabled on your current cluster or replication group, you cannot upgrade to an
engine version that does not support encryption, such as from 3.2.6 to 3.2.10.

Engine versions and upgrading API Version 2015-02-02 303

Amazon ElastiCache for Redis User Guide

How to upgrade engine versions

You initiate version upgrades to your cluster or replication group by modifying it using the
ElastiCache console, the AWS CLI, or the ElastiCache API and specifying a newer engine version. For
more information, see the following topics.

How to modify clusters and replication groups

Clusters Replication groups

Using the AWS Management Console Using the AWS Management Console

Using the AWS CLI Using the AWS CLI

Using the ElastiCache API Using the ElastiCache API

Resolving blocked Redis engine upgrades

As shown in the following table, your Redis engine upgrade operation is blocked if you have a
pending scale up operation.

Pending operations Blocked operations

Scale up Immediate engine upgrade

Engine upgrade Immediate scale up

Immediate scale up
Scale up and engine upgrade

Immediate engine upgrade

To resolve a blocked Redis engine upgrade

• Do one of the following:

• Schedule your Redis engine upgrade operation for the next maintenance window by clearing
the Apply immediately check box.

Engine versions and upgrading API Version 2015-02-02 304

Amazon ElastiCache for Redis User Guide

With the CLI, use --no-apply-immediately. With the API, use
ApplyImmediately=false.

• Wait until your next maintenance window (or after) to perform your Redis engine upgrade
operation.

• Add the Redis scale up operation to this cluster modification with the Apply Immediately
check box chosen.

With the CLI, use --apply-immediately. With the API, use ApplyImmediately=true.

This approach effectively cancels the engine upgrade during the next maintenance window
by performing it immediately.

Engine versions and upgrading API Version 2015-02-02 305

Amazon ElastiCache for Redis User Guide

Supported ElastiCache for Redis versions

ElastiCache Serverless caches support the following Redis versions:

• ElastiCache for Redis version 7.1 (enhanced)

Self-designed ElastiCache clusters support the following Redis versions:

• ElastiCache for Redis version 7.1 (enhanced)

• ElastiCache for Redis version 7.0 (enhanced)

• ElastiCache for Redis version 6.2 (enhanced)

• ElastiCache for Redis version 6.0 (enhanced)

• ElastiCache for Redis version 5.0.6 (enhanced)

• ElastiCache for Redis version 5.0.5 (deprecated, use version 5.0.6)

• ElastiCache for Redis version 5.0.4 (deprecated, use version 5.0.6)

• ElastiCache for Redis version 5.0.3 (deprecated, use version 5.0.6)

• ElastiCache for Redis version 5.0.0 (deprecated, use version 5.0.6)

• ElastiCache for Redis version 4.0.10 (enhanced)

• Past End of Life (EOL) versions (3.x)

• Past End of Life (EOL) versions (2.x)

ElastiCache for Redis version 7.1 (enhanced)

This release contains performance improvements which enable workloads to drive higher
throughput and lower operation latencies. ElastiCache 7.1 introduces two main enhancements :

We extended the enhanced I/O threads functionality to also handle the presentation layer logic.
By presentation layer, we mean the Enhanced I/O threads which are now not only reading client
input, but also parsing the input into Redis binary command format. This is then forwarded to
the main thread for execution which provides performance gain. Improved Redis memory access
pattern. Execution steps from many data structure operations are interleaved, to ensure parallel
memory access and reduced memory access latency. When running ElastiCache on Graviton3-
based R7g.4xlarge or larger, customers can achieve over 1 million requests per second per node.
With the performance improvements to ElastiCache for Redis v7.1, customers can achieve up to
100% more throughput and 50% lower P99 latency relative to ElastiCache for Redis v7.0. These

Supported Redis versions API Version 2015-02-02 306

https://aws.amazon.com/blogs/database/achieve-over-500-million-requests-per-second-per-cluster-with-amazon-elasticache-for-redis-7-1/

Amazon ElastiCache for Redis User Guide

enhancements are enabled on node sizes with at least 8 physical cores (2xlarge on Graviton, and
4xlarge on x86), regardless of the CPU type and require no client changes.

Note

ElastiCache v7.1 is compatible with OSS Redis v7.0.

ElastiCache for Redis version 7.0 (enhanced)

ElastiCache for Redis 7.0 adds a number of improvements and support for new functionality:

• Redis Functions: ElastiCache for Redis 7 adds support for Redis Functions, and provides a
managed experience enabling developers to execute LUA scripts with application logic stored on
the ElastiCache cluster, without requiring clients to re-send the scripts to the server with every
connection.

• ACL improvements: ElastiCache for Redis 7 adds support for the next version of Redis Access
Control Lists (ACLs). With ElastiCache for Redis 7, clients can now specify multiple sets of
permissions on specific keys or keyspaces in Redis.

• Sharded Pub/Sub: ElastiCache for Redis 7 adds support to run Redis Pub/Sub functionality
in a sharded way when running ElastiCache in Cluster Mode Enabled (CME). Redis Pub/Sub
capabilities enable publishers to issue messages to any number of subscribers on a channel.
With Amazon ElastiCache for Redis 7, channels are bound to a shard in the ElastiCache cluster,
eliminating the need to propagate channel information across shards resulting in improved
scalability.

• Enhanced I/O multiplexing: ElastiCache for Redis version 7 introduces enhanced I/O
multiplexing, which delivers increased throughput and reduced latency for high-throughput
workloads that have many concurrent client connections to an ElastiCache cluster. For example,
when using a cluster of r6g.xlarge nodes and running 5200 concurrent clients, you can achieve
up to 72% increased throughput (read and write operations per second) and up to 71%
decreaseed P99 latency, compared with ElastiCache for Redis version 6.

For more information on the Redis 7.0 release, see Redis 7.0 Release Notes at Redis on GitHub.

ElastiCache for Redis version 6.2 (enhanced)

ElastiCache for Redis 6.2 includes performance improvements for TLS-enabled clusters using
x86 node types with 8 vCPUs or more or Graviton2 node types with 4 vCPUs or more. These

Supported Redis versions API Version 2015-02-02 307

https://redis.io/docs/manual/programmability/functions-intro/
https://redis.io/docs/manual/programmability/eval-intro/
https://redis.io/docs/management/security/acl/
https://redis.io/docs/manual/pubsub/#sharded-pubsub
https://raw.githubusercontent.com/antirez/redis/7.0/00-RELEASENOTES

Amazon ElastiCache for Redis User Guide

enhancements improve throughput and reduce client connection establishment time by offloading
encryption to other vCPUs. With Redis 6.2, you can also manage access to Pub/Sub channels with
Access Control List (ACL) rules.

With this version, we also introduce support for data tiering on cluster nodes containing locally
attached NVMe SSD. For more information, see Data tiering.

Redis engine version 6.2.6 also introduces support for native JavaScript Object Notation (JSON)
format, a simple, schemaless way to encode complex datasets inside Redis clusters. With JSON
support, you can leverage the performance and Redis APIs for applications that operate over
JSON. For more information, see Getting started with JSON. Also included are JSON-related
metrics, JsonBasedCmds and JsonBasedCmdsLatency, that are incorporated into CloudWatch
to monitor the usage of this datatype. For more information, see Metrics for Redis.

You specify the engine version by using 6.2. ElastiCache for Redis will automatically invoke the
preferred patch version of Redis 6.2 that is available. For example, when you create/modify a cache
cluster, you set the --engine-version parameter to 6.2. The cluster will be launched with the
current available preferred patch version of Redis 6.2 at the creation/modification time. Specifying
engine version 6.x in the API will result in the latest minor version of Redis 6.

For existing 6.0 clusters, you can opt-in to the next auto minor version upgrade by setting
the AutoMinorVersionUpgrade parameter to yes in the CreateCacheCluster,
ModifyCacheCluster, CreateReplicationGroup or ModifyReplicationGroup APIs.
ElastiCache for Redis will upgrade the minor version of your existing 6.0 clusters to 6.2 using self-
service updates. For more information, see Self-service updates in Amazon ElastiCache.

When calling the DescribeCacheEngineVersions API, the EngineVersion parameter value
will be set to 6.2 and the actual engine version with the patch version will be returned in the
CacheEngineVersionDescription field.

For more information on the Redis 6.2 release, see Redis 6.2 Release Notes at Redis on GitHub.

ElastiCache for Redis version 6.0 (enhanced)

Amazon ElastiCache for Redis introduces the next version of the Redis engine, which includes
Authenticating Users with Role Based Access Control, client-side caching and significant
operational improvements.

Beginning with Redis 6.0, ElastiCache for Redis will offer a single version for each Redis OSS minor
release, rather than offering multiple patch versions. ElastiCache for Redis will automatically

Supported Redis versions API Version 2015-02-02 308

https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/json-gs.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/Self-Service-Updates.html
https://raw.githubusercontent.com/antirez/redis/6.2/00-RELEASENOTES
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/Clusters.RBAC.html

Amazon ElastiCache for Redis User Guide

manage the patch version of your running cache clusters, ensuring improved performance and
enhanced security.

You can also opt-in to the next auto minor version upgrade by setting the
AutoMinorVersionUpgrade parameter to yes and ElastiCache for Redis will manage the minor
version upgrade, through self-service updates. For more information, see Service updates in
ElastiCache.

You specify the engine version by using 6.0. ElastiCache for Redis will automatically invoke the
preferred patch version of Redis 6.0 that is available. For example, when you create/modify a
cache cluster, you set the --engine-version parameter to 6.0. The cluster will be launched with
the current available preferred patch version of Redis 6.0 at the creation/modification time. Any
request with a specific patch version value will be rejected, an exception will be thrown and the
process will fail.

When calling the DescribeCacheEngineVersions API, the EngineVersion parameter value
will be set to 6.0 and the actual engine version with the patch version will be returned in the
CacheEngineVersionDescription field.

For more information on the Redis 6.0 release, see Redis 6.0 Release Notes at Redis on GitHub.

ElastiCache for Redis version 5.0.6 (enhanced)

Amazon ElastiCache for Redis introduces the next version of the Redis engine, which includes bug
fixes and the following cumulative updates:

• Engine stability guarantee in special conditions.

• Improved Hyperloglog error handling.

• Enhanced handshake commands for reliable replication.

• Consistent message delivery tracking via XCLAIM command.

• Improved LFU field management in objects.

• Enhanced transaction management when using ZPOP.

• Ability to rename commands: A parameter called rename-commands that allows you to rename
potentially dangerous or expensive Redis commands that might cause accidental data loss, such
as FLUSHALL or FLUSHDB. This is similar to the rename-command configuration in open source
Redis. However, ElastiCache has improved the experience by providing a fully managed workflow.
The command name changes are applied immediately, and automatically propagated across all

Supported Redis versions API Version 2015-02-02 309

https://raw.githubusercontent.com/antirez/redis/6.0/00-RELEASENOTES

Amazon ElastiCache for Redis User Guide

nodes in the cluster that contain the command list. There is no intervention required on your
part, such as rebooting nodes.

The following examples demonstrate how to modify existing parameter groups. They include
the rename-commands parameter, which is a space-separated list of commands you want to
rename:

aws elasticache modify-cache-parameter-group --cache-parameter-group-
name custom_param_group
--parameter-name-values "ParameterName=rename-commands, ParameterValue='flushall
 restrictedflushall'" --region region

In this example, the rename-commands parameter is used to rename the flushall command to
restrictedflushall.

To rename multiple commands, use the following:

aws elasticache modify-cache-parameter-group --cache-parameter-group-
name custom_param_group
--parameter-name-values "ParameterName=rename-commands, ParameterValue='flushall
 restrictedflushall flushdb restrictedflushdb''" --region region

To revert any change, re-run the command and exclude any renamed values from the
ParameterValue list that you want to retain, as shown following:

aws elasticache modify-cache-parameter-group --cache-parameter-group-
name custom_param_group
--parameter-name-values "ParameterName=rename-commands, ParameterValue='flushall
 restrictedflushall'" --region region

In this case, the flushall command is renamed to restrictedflushall and any other
renamed commands revert to their original command names.

Note

When renaming commands, you are restricted to the following limitations:

• All renamed commands should be alphanumeric.

• The maximum length of new command names is 20 alphanumeric characters.

Supported Redis versions API Version 2015-02-02 310

Amazon ElastiCache for Redis User Guide

• When renaming commands, ensure that you update the parameter group associated
with your cluster.

• To prevent a command's use entirely, use the keyword blocked, as shown following:

aws elasticache modify-cache-parameter-group --cache-parameter-group-
name custom_param_group
--parameter-name-values "ParameterName=rename-commands,
 ParameterValue='flushall blocked'" --region region

For more information on the parameter changes and a list of what commands are eligible for
renaming, see Redis 5.0.3 parameter changes.

• Redis Streams: This models a log data structure that allows producers to append new items in
real time. It also allows consumers to consume messages either in a blocking or nonblocking
fashion. Streams also allow consumer groups, which represent a group of clients to cooperatively
consume different portions of the same stream of messages, similar to Apache Kafka. For more
information, see Introduction to Redis Streams.

• Support for a family of stream commands, such as XADD, XRANGE and XREAD. For more
information, see Redis Streams Commands.

• A number of new and renamed parameters. For more information, see Redis 5.0.0 parameter
changes.

• A new Redis metric, StreamBasedCmds.

• Slightly faster snapshot time for Redis nodes.

Important

Amazon ElastiCache for Redis has back-ported two critical bug fixes from Redis open source
version 5.0.1. They are listed following:

• RESTORE mismatch reply when certain keys have already expired.

• The XCLAIM command can potentially return a wrong entry or desynchronize the
protocol.

Supported Redis versions API Version 2015-02-02 311

https://kafka.apache.org/documentation/
https://redis.io/topics/streams-intro
https://redis.io/commands#stream
https://raw.githubusercontent.com/antirez/redis/5.0/00-RELEASENOTES
https://raw.githubusercontent.com/antirez/redis/5.0/00-RELEASENOTES

Amazon ElastiCache for Redis User Guide

Both of these bug fixes are included in ElastiCache for Redis support for Redis engine
version 5.0.0 and are consumed in future version updates.

For more information, see Redis 5.0.6 Release Notes at Redis on GitHub.

ElastiCache for Redis version 5.0.5 (deprecated, use version 5.0.6)

Amazon ElastiCache for Redis introduces the next version of the Redis engine;. It includes online
configuration changes for ElastiCache for Redis of auto-failover clusters during all planned
operations. You can now scale your cluster, upgrade the Redis engine version and apply patches
and maintenance updates while the cluster stays online and continues serving incoming requests. It
also includes bug fixes.

For more information, see Redis 5.0.5 Release Notes at Redis on GitHub.

ElastiCache for Redis version 5.0.4 (deprecated, use version 5.0.6)

Amazon ElastiCache for Redis introduces the next version of the Redis engine supported by
Amazon ElastiCache. It includes the following enhancements:

• Engine stability guarantee in special conditions.

• Improved Hyperloglog error handling.

• Enhanced handshake commands for reliable replication.

• Consistent message delivery tracking via XCLAIM command.

• Improved LFU field management in objects.

• Enhanced transaction management when using ZPOP.

For more information, see Redis 5.0.4 Release Notes at Redis on GitHub.

ElastiCache for Redis version 5.0.3 (deprecated, use version 5.0.6)

Amazon ElastiCache for Redis introduces the next version of the Redis engine supported by
Amazon ElastiCache which includes bug fixes.

Supported Redis versions API Version 2015-02-02 312

https://raw.githubusercontent.com/antirez/redis/5.0/00-RELEASENOTES
https://raw.githubusercontent.com/antirez/redis/5.0/00-RELEASENOTES
https://raw.githubusercontent.com/antirez/redis/5.0/00-RELEASENOTES

Amazon ElastiCache for Redis User Guide

ElastiCache for Redis version 5.0.0 (deprecated, use version 5.0.6)

Amazon ElastiCache for Redis introduces the next major version of the Redis engine supported by
Amazon ElastiCache. ElastiCache for Redis 5.0.0 brings support for the following improvements:

• Redis Streams: This models a log data structure that allows producers to append new items in
real time. It also allows consumers to consume messages either in a blocking or nonblocking
fashion. Streams also allow consumer groups, which represent a group of clients to cooperatively
consume different portions of the same stream of messages, similar to Apache Kafka. For more
information, see Introduction to Redis Streams.

• Support for a family of stream commands, such as XADD, XRANGE and XREAD. For more
information, see Redis Streams Commands.

• A number of new and renamed parameters. For more information, see Redis 5.0.0 parameter
changes.

• A new Redis metric, StreamBasedCmds.

• Slightly faster snapshot time for Redis nodes.

ElastiCache for Redis version 4.0.10 (enhanced)

Amazon ElastiCache for Redis introduces the next major version of the Redis engine supported by
Amazon ElastiCache. ElastiCache for Redis 4.0.10 brings support the following improvements:

• Both online cluster resizing and encryption in a single ElastiCache for Redis version. For more
information, see the following:

• Scaling clusters in Redis (Cluster Mode Enabled)

• Online resharding and shard rebalancing for Redis (cluster mode enabled)

• Data security in Amazon ElastiCache

• A number of new parameters. For more information, see Redis 4.0.10 parameter changes.

• Support for family of memory commands, such as MEMORY. For more information, see Redis
Commands (search on MEMO).

• Support for memory defragmentation while online thus allowing more efficient memory
utilization and more memory available for your data.

• Support for asynchronous flushes and deletes. ElastiCache for Redis supports commands like
UNLINK, FLUSHDB and FLUSHALL to run in a different thread from the main thread. Doing

Supported Redis versions API Version 2015-02-02 313

https://kafka.apache.org/documentation/
https://redis.io/topics/streams-intro
https://redis.io/commands#stream
https://redis.io/commands#
https://redis.io/commands#

Amazon ElastiCache for Redis User Guide

this helps improve performance and response times for your applications by freeing memory
asynchronously.

• A new Redis metric, ActiveDefragHits. For more information, see Metrics for Redis.

Redis (cluster mode disabled) users running Redis version 3.2.10 can use the console to upgrade
their clusters via online upgrade.

Comparing ElastiCache for Redis cluster resizing and encryption support

Feature 3.2.6 3.2.10 4.0.10 and later

Online cluster resizing * No Yes Yes

In-transit encryption ** Yes No Yes

At rest encryption ** Yes No Yes

* Adding, removing, and rebalancing shards.

** Required for FedRAMP, HIPAA, and PCI DSS compliant applications. For more information, see
Compliance validation for Amazon ElastiCache.

Past End of Life (EOL) versions (3.x)

ElastiCache for Redis version 3.2.10 (enhanced)

Amazon ElastiCache for Redis introduces the next major version of the Redis engine supported
by Amazon ElastiCache. ElastiCache for Redis 3.2.10 introduces online cluster resizing to add or
remove shards from the cluster while it continues to serve incoming I/O requests. ElastiCache for
Redis 3.2.10 users have all the functionality of earlier Redis versions except the ability to encrypt
their data. This ability is currently available only in version 3.2.6.

Comparing ElastiCache for Redis versions 3.2.6 and 3.2.10

Feature 3.2.6 3.2.10

Online cluster resizing * No Yes

In-transit encryption ** Yes No

Supported Redis versions API Version 2015-02-02 314

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/CacheMetrics.Redis.html

Amazon ElastiCache for Redis User Guide

Feature 3.2.6 3.2.10

At rest encryption ** Yes No

* Adding, removing, and rebalancing shards.

** Required for FedRAMP, HIPAA, and PCI DSS compliant applications. For more information, see
Compliance validation for Amazon ElastiCache.

For more information, see the following:

• Online resharding and shard rebalancing for Redis (cluster mode enabled)

• Online cluster resizing

ElastiCache for Redis version 3.2.6 (enhanced)

Amazon ElastiCache for Redis introduces the next major version of the Redis engine supported by
Amazon ElastiCache. ElastiCache for Redis 3.2.6 users have all the functionality of earlier Redis
versions plus the option to encrypt their data. For more information, see the following:

• ElastiCache in-transit encryption (TLS)

• At-Rest Encryption in ElastiCache

• Compliance validation for Amazon ElastiCache

ElastiCache for Redis version 3.2.4 (enhanced)

Amazon ElastiCache for Redis version 3.2.4 introduces the next major version of the Redis engine
supported by Amazon ElastiCache. ElastiCache for Redis 3.2.4 users have all the functionality of
earlier Redis versions available to them plus the option to run in cluster mode or non-cluster mode.
The following table summarizes .

Comparing Redis 3.2.4 non-cluster mode and cluster mode

Feature Non-cluster mode Cluster mode

Data partitioning No Yes

Geospatial indexing Yes Yes

Supported Redis versions API Version 2015-02-02 315

Amazon ElastiCache for Redis User Guide

Feature Non-cluster mode Cluster mode

Change node type Yes Yes *

Replica scaling Yes Yes *

Scale out No Yes *

Database support Multiple Single

Parameter group default.redis3.2 ** default.redis3.2.c
luster.on **

* See Restoring from a backup into a new cache

** Or one derived from it.

Notes:

• Partitioning – the ability to split your data across 2 to 500 node groups (shards) with replication
support for each node group.

• Geospatial indexing – Redis 3.2.4 introduces support for geospatial indexing via six GEO
commands. For more information, see the Redis GEO* command documentation Redis
Commands: GEO on the Redis Commands page (filtered for GEO).

For information about additional Redis 3 features, see Redis 3.2 release notes and Redis 3.0 release
notes.

Currently ElastiCache managed Redis (cluster mode enabled) does not support the following Redis
3.2 features:

• Replica migration

• Cluster rebalancing

• Lua debugger

ElastiCache disables the following Redis 3.2 management commands:

Supported Redis versions API Version 2015-02-02 316

http://redis.io/commands#geo
http://redis.io/commands#geo
https://raw.githubusercontent.com/antirez/redis/3.2/00-RELEASENOTES
https://raw.githubusercontent.com/antirez/redis/3.0/00-RELEASENOTES
https://raw.githubusercontent.com/antirez/redis/3.0/00-RELEASENOTES

Amazon ElastiCache for Redis User Guide

• cluster meet

• cluster replicate

• cluster flushslots

• cluster addslots

• cluster delslots

• cluster setslot

• cluster saveconfig

• cluster forget

• cluster failover

• cluster bumpepoch

• cluster set-config-epoch

• cluster reset

For information about Redis 3.2.4 parameters, see Redis 3.2.4 parameter changes.

Past End of Life (EOL) versions (2.x)

ElastiCache for Redis version 2.8.24 (enhanced)

Redis improvements added since version 2.8.23 include bug fixes and logging of bad memory
access addresses. For more information, see Redis 2.8 release notes.

ElastiCache for Redis version 2.8.23 (enhanced)

Redis improvements added since version 2.8.22 include bug fixes. For more information, see Redis
2.8 release notes. This release also includes support for the new parameter close-on-slave-
write which, if enabled, disconnects clients who attempt to write to a read-only replica.

For more information on Redis 2.8.23 parameters, see Redis 2.8.23 (enhanced) added parameters
in the ElastiCache User Guide.

ElastiCache for Redis version 2.8.22 (enhanced)

Redis improvements added since version 2.8.21 include the following:

• Support for forkless backups and synchronizations, which allows you to allocate less memory for
backup overhead and more for your application. For more information, see How synchronization
and backup are implemented. The forkless process can impact both latency and throughput.

Supported Redis versions API Version 2015-02-02 317

https://raw.githubusercontent.com/antirez/redis/2.8/00-RELEASENOTES
https://raw.githubusercontent.com/antirez/redis/2.8/00-RELEASENOTES
https://raw.githubusercontent.com/antirez/redis/2.8/00-RELEASENOTES

Amazon ElastiCache for Redis User Guide

When there is high write throughput, when a replica re-syncs, it can be unreachable for the
entire time it is syncing.

• If there is a failover, replication groups now recover faster because replicas perform partial syncs
with the primary rather than full syncs whenever possible. Additionally, both the primary and
replicas no longer use the disk during syncs, providing further speed gains.

• Support for two new CloudWatch metrics.

• ReplicationBytes – The number of bytes a replication group's primary cluster is sending to
the read replicas.

• SaveInProgress – A binary value that indicates whether or not there is a background save
process running.

For more information, see Monitoring use with CloudWatch Metrics.

• A number of critical bug fixes in replication PSYNC behavior. For more information, see Redis 2.8
release notes.

• To maintain enhanced replication performance in Multi-AZ replication groups and for increased
cluster stability, non-ElastiCache replicas are no longer supported.

• To improve data consistency between the primary cluster and replicas in a replication group, the
replicas no longer evict keys independent of the primary cluster.

• Redis configuration variables appendonly and appendfsync are not supported on Redis
version 2.8.22 and later.

• In low-memory situations, clients with a large output buffer might be disconnected from a
replica cluster. If disconnected, the client needs to reconnect. Such situations are most likely to
occur for PUBSUB clients.

ElastiCache for Redis version 2.8.21

Redis improvements added since version 2.8.19 include a number of bug fixes. For more
information, see Redis 2.8 release notes.

ElastiCache for Redis version 2.8.19

Redis improvements added since version 2.8.6 include the following:

• Support for HyperLogLog. For more information, see Redis new data structure: HyperLogLog.

• The sorted set data type now has support for lexicographic range queries with the new
commands ZRANGEBYLEX, ZLEXCOUNT, and ZREMRANGEBYLEX.

Supported Redis versions API Version 2015-02-02 318

https://raw.githubusercontent.com/antirez/redis/2.8/00-RELEASENOTES
https://raw.githubusercontent.com/antirez/redis/2.8/00-RELEASENOTES
https://raw.githubusercontent.com/antirez/redis/2.8/00-RELEASENOTES
http://antirez.com/news/75

Amazon ElastiCache for Redis User Guide

• To prevent a primary node from sending stale data to replica nodes, the master SYNC fails if a
background save (bgsave) child process is aborted.

• Support for the HyperLogLogBasedCommands CloudWatch metric. For more information, see
Metrics for Redis.

ElastiCache for Redis version 2.8.6

Redis improvements added since version 2.6.13 include the following:

• Improved resiliency and fault tolerance for read replicas.

• Support for partial resynchronization.

• Support for user-defined minimum number of read replicas that must be available at all times.

• Full support for pub/sub—notifying clients of events on the server.

• Automatic detection of a primary node failure and failover of your primary node to a secondary
node.

ElastiCache for Redis version 2.6.13

Redis version 2.6.13 was the initial version of Redis supported by Amazon ElastiCache for Redis.
Multi-AZ is not supported on Redis 2.6.13.

Redis versions end of life schedule

This section defines end of life (EOL) dates for older major versions as they are announced. This
allows you to make version and upgrade decisions for the future.

Note

ElastiCache for Redis patch versions from 5.0.0 to 5.0.5 are deprecated. Use versions 5.0.6
or greater.

The following table summarizes each version and its announced EOL date, as well as the
recommended upgrade target version.

Past EOL

Redis versions end of life schedule API Version 2015-02-02 319

Amazon ElastiCache for Redis User Guide

Source
Major
Version

Source Minor Versions Recommended Upgrade
Target

EOL Date

Version
3

3.2.4, 3.2.6 and 3.2.10 Version 6.2 or higher

Note

For US-ISO-EAST-1,
US-ISO-WEST-1,
and US-ISOB-E
AST-1 Regions, we
recommend 5.0.6 or
higher.

July 31, 2023

Version
2

2.8.24, 2.8.23, 2.8.22, 2.8.21,
2.8.19, 2.8.12, 2.8.6, 2.6.13

Version 6.2 or higher

Note

For US-ISO-EAST-1,
US-ISO-WEST-1,
and US-ISOB-E
AST-1 Regions, we
recommend 5.0.6 or
higher.

January 13, 2023

Redis versions end of life schedule API Version 2015-02-02 320

Amazon ElastiCache for Redis User Guide

How to upgrade engine versions

You initiate version upgrades to your cluster or replication group by modifying it using the
ElastiCache console, the AWS CLI, or the ElastiCache API and specifying a newer engine version. For
more information, see the following topics.

How to modify clusters and replication groups

Clusters Replication groups

Using the AWS Management Console Using the AWS Management Console

Using the AWS CLI Using the AWS CLI

Using the ElastiCache API Using the ElastiCache API

Resolving blocked Redis engine upgrades

As shown in the following table, your Redis engine upgrade operation is blocked if you have a
pending scale up operation.

Pending operations Blocked operations

Scale up Immediate engine upgrade

Engine upgrade Immediate scale up

Immediate scale up
Scale up and engine upgrade

Immediate engine upgrade

To resolve a blocked Redis engine upgrade

• Do one of the following:

• Schedule your Redis engine upgrade operation for the next maintenance window by clearing
the Apply immediately check box.

How to upgrade engine versions API Version 2015-02-02 321

Amazon ElastiCache for Redis User Guide

With the CLI, use --no-apply-immediately. With the API, use
ApplyImmediately=false.

• Wait until your next maintenance window (or after) to perform your Redis engine upgrade
operation.

• Add the Redis scale up operation to this cluster modification with the Apply Immediately
check box chosen.

With the CLI, use --apply-immediately. With the API, use ApplyImmediately=true.

This approach effectively cancels the engine upgrade during the next maintenance window
by performing it immediately.

Major version behavior and compatibility differences

Important

The following page is structured to signify all incompability differences between versions
and inform you of any considerations you should make when upgrading to newer versions.
This list is inclusive of any version incompability issues you may encounter when upgrading.
You can upgrade directly from your current Redis version to the latest Redis version
available, without the need for sequential upgrades. For example, you can upgrade directly
from Redis version 3.0 to version 7.0.

Redis versions are identified with a semantic version which comprise a MAJOR, MINOR, and PATCH
component. For example, in Redis 4.0.10, the major version is 4, the minor version 0, and the patch
version is 10. These values are generally incremented based off the following conventions:

• MAJOR versions are for API incompatible changes

• MINOR versions are for new functionality added in a backwards-compatible way

• PATCH versions are for backwards-compatible bug fixes and non-functional changes

We recommend always staying on the latest patch version within a given MAJOR.MINOR version
in order to have the latest performance and stability improvements. Beginning with Redis 6.0,
ElastiCache for Redis will offer a single version for each Redis OSS minor release, rather than

Major version behavior and compatibility differences API Version 2015-02-02 322

Amazon ElastiCache for Redis User Guide

offering multiple patch versions. ElastiCache for Redis will automatically manage the patch version
of your running cache clusters, ensuring improved performance and enhanced security.

We also recommend periodically upgrading to the latest major version, since most major
improvements are not back ported to older versions. As ElastiCache expands availability to a new
AWS region, ElastiCache for Redis supports the two most recent MAJOR.MINOR versions at that
time for the new region. For example, if a new AWS region launches and the latest MAJOR.MINOR
ElastiCache for Redis versions are 7.0 and 6.2, ElastiCache for Redis will support versions 7.0 and
6.2 in the new AWS region. As newer MAJOR.MINOR versions of ElastiCache for Redis are released,
ElastiCache will continue to add support for the newly released ElastiCache for Redis Versions. To
learn more about choosing regions for ElastiCache, see Choosing regions and availability zones.

When doing an upgrade that spans major or minor versions, please consider the following list
which includes behavior and backwards incompatible changes released with Redis over time.

Redis 7.0 behavior and backwards incompatible changes

For a full list of changes, see Redis 7.0 release notes.

• SCRIPT LOAD and SCRIPT FLUSH are no longer propagated to replicas. If you need to have
some durability for scripts, we recommend you consider using Redis functions.

• Pubsub channels are now blocked by default for new ACL users.

• STRALGO command was replaced with the LCS command.

• The format for ACL GETUSER has changed so that all fields show the standard access string
pattern. If you had automation using ACL GETUSER, you should verify that it will handle either
format.

• The ACL categories for SELECT, WAIT, ROLE, LASTSAVE, READONLY, READWRITE, and ASKING
have changed.

• The INFO command now shows command stats per sub-command instead of in the top level
container commands.

• The return values of LPOP, RPOP, ZPOPMIN and ZPOPMAX commands have changed under certain
edge cases. If you use these commands, you should check the release notes and evaluate if you
are impacted.

• The SORT and SORT_RO commands now require access to the entire keyspace in order to use the
GET and BY arguments.

Major version behavior and compatibility differences API Version 2015-02-02 323

https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/RegionsAndAZs.html#SupportedRegions
https://raw.githubusercontent.com/redis/redis/7.0/00-RELEASENOTES
https://redis.io/docs/manual/programmability/functions-intro/

Amazon ElastiCache for Redis User Guide

Redis 6.2 behavior and backwards incompatible changes

For a full list of changes, see Redis 6.2 release notes.

• The ACL flags of the TIME, ECHO, ROLE, and LASTSAVE commands were changed. This may cause
commands that were previously allowed to be rejected and vice versa.

Note

None of these commands modify or give access to data.

• When upgrading from Redis 6.0, the ordering of key/value pairs returned from a map response
to a lua script are changed. If your scripts use redis.setresp() or return a map (new in Redis
6.0), consider the implications that the script may break on upgrades.

Redis 6.0 behavior and backwards incompatible changes

For a full list of changes, see Redis 6.0 release notes.

• The maximum number of allowed databases has been decreased from 1.2 million to 10
thousand. The default value is 16, and we discourage using values much larger than this as we’ve
found performance and memory concerns.

• Set AutoMinorVersionUpgrade parameter to yes, and ElastiCache for Redis will manage the
minor version upgrade through self-service updates. This will be handled through standard
customer-notification channels via a self-service update campaign. For more information, see
Self-service updates in ElastiCache.

Redis 5.0 behavior and backwards incompatible changes

For a full list of changes, see Redis 5.0 release notes.

• Scripts are by replicated by effects instead of re-executing the script on the replica. This
generally improves performance but may increase the amount of data replicated between
primaries and replicas. There is an option to revert back to the previous behavior that is only
available in ElastiCache for Redis 5.0.

• If you are upgrading from Redis 4.0, some commands in LUA scripts will return arguments in a
different order than they did in earlier versions. In Redis 4.0, Redis would order some responses

Major version behavior and compatibility differences API Version 2015-02-02 324

https://raw.githubusercontent.com/redis/redis/6.2/00-RELEASENOTES
https://raw.githubusercontent.com/redis/redis/6.0/00-RELEASENOTES
AmazonElastiCache/latest/red-ug/Self-Service-Updates.html
https://raw.githubusercontent.com/redis/redis/5.0/00-RELEASENOTES

Amazon ElastiCache for Redis User Guide

lexographically in order to make the responses deterministic, this ordering is not applied when
scripts are replicated by effects.

• Inn Redis 5.0.3 and above, ElastiCache for Redis will offload some IO work to background cores
on instance types with more than 4 VCPUs. This may change the performance characteristics
Redis and change the values of some metrics. For more information, see Which Metrics Should I
Monitor? to understand if you need to change which metrics you watch.

Redis 4.0 behavior and backwards incompatible changes

For a full list of changes, see Redis 4.0 release notes.

• Slow log now logs an additional two arguments, the client name and address. This change
should be backwards compatible unless you are explicitly relying on each slow log entry
containing 3 values.

• The CLUSTER NODES command now returns a slight different format, which is not backwards
compatible. We recommend that clients don’t use this command for learning about the nodes
present in a cluster, and instead they should use CLUSTER SLOTS.

Past EOL

Redis 3.2 behavior and backwards incompatible changes

For a full list of changes, see Redis 3.2 release notes.

• There are no compatibility changes to call out for this version.

For more information, see Redis versions end of life schedule.

Redis 2.8 behavior and backwards incompatible changes

For a full list of changes, see Redis 2.8 release notes.

• Starting in Redis 2.8.22, Redis AOF is no longer supported in ElastiCache for Redis. We
recommend using MemoryDB when data needs to be persisted durably.

• Starting in Redis 2.8.22, ElastiCache for Redis no longer supports attaching replicas to primaries
hosted within ElastiCache. While upgrading, external replicas will be disconnected and they will
be unable to reconnect. We recommend using client-side caching, made available in Redis 6.0 as
an alternative to external replicas.

Major version behavior and compatibility differences API Version 2015-02-02 325

https://raw.githubusercontent.com/redis/redis/4.0/00-RELEASENOTES
https://raw.githubusercontent.com/redis/redis/3.2/00-RELEASENOTES
https://raw.githubusercontent.com/redis/redis/2.8/00-RELEASENOTES

Amazon ElastiCache for Redis User Guide

• The TTL and PTTL commands now return -2 if the key does not exist and -1 if it exists but has no
associated expire. Redis 2.6 and previous versions used to return -1 for both the conditions.

• SORT with ALPHA now sorts according to local collation locale if no STORE option is used.

For more information, see Redis versions end of life schedule.

ElastiCache best practices and caching strategies

Below you can find recommended best practices for Amazon ElastiCache. Following these improves
your cache's performance and reliability.

Topics

• Working with Redis

• Best practices with Redis clients

• Best practices when working with self-designed clusters

• Redis best practices

• Caching strategies

Working with Redis

Below you can find information about the Redis interface within ElastiCache.

Topics

• Supported and restricted Redis commands

• Redis configuration and limits

Supported and restricted Redis commands

Supported Redis commands

Supported Redis commands

The following Redis commands are supported by serverless caches. In addition to these commands,
these Supported Redis JSON commands are also supported.

Bitmap Commands

Best practices and caching strategies API Version 2015-02-02 326

Amazon ElastiCache for Redis User Guide

• BITCOUNT

Counts the number of set bits (population counting) in a string.

Learn more

• BITFIELD

Performs arbitrary bitfield integer operations on strings.

Learn more

• BITFIELD_RO

Performs arbitrary read-only bitfield integer operations on strings.

Learn more

• BITOP

Performs bitwise operations on multiple strings, and stores the result.

Learn more

• BITPOS

Finds the first set (1) or clear (0) bit in a string.

Learn more

• GETBIT

Returns a bit value by offset.

Learn more

• SETBIT

Sets or clears the bit at offset of the string value. Creates the key if it doesn't exist.

Learn more

Cluster Management Commands

• CLUSTER COUNTKEYSINSLOT
Working with Redis API Version 2015-02-02 327

https://redis.io/commands/bitcount/
https://redis.io/commands/bitfield/
https://redis.io/commands/bitfield_ro/
https://redis.io/commands/bitop/
https://redis.io/commands/bitpos/
https://redis.io/commands/getbit/
https://redis.io/commands/setbit/

Amazon ElastiCache for Redis User Guide

Returns the number of keys in a hash slot.

Learn more

• CLUSTER GETKEYSINSLOT

Returns the key names in a hash slot.

Learn more

• CLUSTER INFO

Returns information about the state of a node. In a serverless cache, returns state about the
single virtual “shard” exposed to the client.

Learn more

• CLUSTER KEYSLOT

Returns the hash slot for a key.

Learn more

• CLUSTER MYID

Returns the ID of a node. In a serverless cache, returns state about the single virtual “shard”
exposed to the client.

Learn more

• CLUSTER NODES

Returns the cluster configuration for a node. In a serverless cache, returns state about the single
virtual “shard” exposed to the client.

Learn more

• CLUSTER REPLICAS

Lists the replica nodes of a master node. In a serverless cache, returns state about the single
virtual “shard” exposed to the client.

Learn more

• CLUSTER SHARDS
Working with Redis API Version 2015-02-02 328

https://redis.io/commands/cluster-countkeysinslot/
https://redis.io/commands/cluster-getkeysinslot/
https://redis.io/commands/cluster-info/
https://redis.io/commands/cluster-keyslot/
https://redis.io/commands/cluster-myid/
https://redis.io/commands/cluster-nodes/
https://redis.io/commands/cluster-replicas/

Amazon ElastiCache for Redis User Guide

Returns the mapping of cluster slots to shards. In a serverless cache, returns state about the
single virtual “shard” exposed to the client.

Learn more

• CLUSTER SLOTS

Returns the mapping of cluster slots to nodes. In a serverless cache, returns state about the
single virtual “shard” exposed to the client.

Learn more

• READONLY

Enables read-only queries for a connection to a Redis Cluster replica node.

Learn more

• READWRITE

Enables read-write queries for a connection to a Redis Cluster replica node.

Learn more

Connection Management Commands

• AUTH

Authenticates the connection.

Learn more

• CLIENT GETNAME

Returns the name of the connection.

Learn more

• CLIENT REPLY

Instructs the server whether to reply to commands.

Learn more

• CLIENT SETNAME

Working with Redis API Version 2015-02-02 329

https://redis.io/commands/cluster-shards/
https://redis.io/commands/cluster-slots/
https://redis.io/commands/readonly/
https://redis.io/commands/readwrite/
https://redis.io/commands/auth/
https://redis.io/commands/client-getname/
https://redis.io/commands/client-reply/

Amazon ElastiCache for Redis User Guide

Sets the connection name.

Learn more

• ECHO

Returns the given string.

Learn more

• HELLO

Handshakes with the Redis server.

Learn more

• PING

Returns the server's liveliness response.

Learn more

• QUIT

Closes the connection.

Learn more

• RESET

Resets the connection.

Learn more

• SELECT

Changes the selected database.

Learn more

Generic Commands

• COPY

Copies the value of a key to a new key.
Working with Redis API Version 2015-02-02 330

https://redis.io/commands/client-setname/
https://redis.io/commands/echo/
https://redis.io/commands/hello/
https://redis.io/commands/ping/
https://redis.io/commands/quit/
https://redis.io/commands/reset/
https://redis.io/commands/select/

Amazon ElastiCache for Redis User Guide

Learn more

• DEL

Deletes one or more keys.

Learn more

• DUMP

Returns a serialized representation of the value stored at a key.

Learn more

• EXISTS

Determines whether one or more keys exist.

Learn more

• EXPIRE

Sets the expiration time of a key in seconds.

Learn more

• EXPIREAT

Sets the expiration time of a key to a Unix timestamp.

Learn more

• EXPIRETIME

Returns the expiration time of a key as a Unix timestamp.

Learn more

• PERSIST

Removes the expiration time of a key.

Learn more

• PEXPIRE

Sets the expiration time of a key in milliseconds.

Working with Redis API Version 2015-02-02 331

https://redis.io/commands/copy/
https://redis.io/commands/el/
https://redis.io/commands/dump/
https://redis.io/commands/exists/
https://redis.io/commands/expire/
https://redis.io/commands/expireat/
https://redis.io/commands/expiretime/
https://redis.io/commands/persist/

Amazon ElastiCache for Redis User Guide

Learn more

• PEXPIREAT

Sets the expiration time of a key to a Unix milliseconds timestamp.

Learn more

• PEXPIRETIME

Returns the expiration time of a key as a Unix milliseconds timestamp.

Learn more

• PTTL

Returns the expiration time in milliseconds of a key.

Learn more

• RANDOMKEY

Returns a random key name from the database.

Learn more

• RENAME

Renames a key and overwrites the destination.

Learn more

• RENAMENX

Renames a key only when the target key name doesn't exist.

Learn more

• RESTORE

Creates a key from the serialized representation of a value.

Learn more

• SCAN

Iterates over the key names in the database.

Working with Redis API Version 2015-02-02 332

https://redis.io/commands/pexpire/
https://redis.io/commands/pexpireat/
https://redis.io/commands/pexpiretime/
https://redis.io/commands/ottl/
https://redis.io/commands/randomkey/
https://redis.io/commands/rename/
https://redis.io/commands/renamenx/
https://redis.io/commands/restore/

Amazon ElastiCache for Redis User Guide

Learn more

• SORT

Sorts the elements in a list, a set, or a sorted set, optionally storing the result.

Learn more

• SORT_RO

Returns the sorted elements of a list, a set, or a sorted set.

Learn more

• TOUCH

Returns the number of existing keys out of those specified after updating the time they were last
accessed.

Learn more

• TTL

Returns the expiration time in seconds of a key.

Learn more

• TYPE

Determines the type of value stored at a key.

Learn more

• UNLINK

Asynchronously deletes one or more keys.

Learn more

Geospatial Commands

• GEOADD

Adds one or more members to a geospatial index. The key is created if it doesn't exist.

Working with Redis API Version 2015-02-02 333

https://redis.io/commands/scan/
https://redis.io/commands/sort/
https://redis.io/commands/sort_ro/
https://redis.io/commands/touch/
https://redis.io/commands/ttl/
https://redis.io/commands/type/
https://redis.io/commands/unlink/

Amazon ElastiCache for Redis User Guide

Learn more

• GEODIST

Returns the distance between two members of a geospatial index.

Learn more

• GEOHASH

Returns members from a geospatial index as geohash strings.

Learn more

• GEOPOS

Returns the longitude and latitude of members from a geospatial index.

Learn more

• GEORADIUS

Queries a geospatial index for members within a distance from a coordinate, optionally stores
the result.

Learn more

• GEORADIUS_RO

Returns members from a geospatial index that are within a distance from a coordinate.

Learn more

• GEORADIUSBYMEMBER

Queries a geospatial index for members within a distance from a member, optionally stores the
result.

Learn more

• GEORADIUSBYMEMBER_RO

Returns members from a geospatial index that are within a distance from a member.

Learn more

• GEOSEARCH

Working with Redis API Version 2015-02-02 334

https://redis.io/commands/geoadd/
https://redis.io/commands/geodist/
https://redis.io/commands/geohash/
https://redis.io/commands/geopos/
https://redis.io/commands/georadius/
https://redis.io/commands/georadius_ro/
https://redis.io/commands/georadiusbymember/
https://redis.io/commands/georadiusbymember_ro/

Amazon ElastiCache for Redis User Guide

Queries a geospatial index for members inside an area of a box or a circle.

Learn more

• GEOSEARCHSTORE

Queries a geospatial index for members inside an area of a box or a circle, optionally stores the
result.

Learn more

Hash Commands

• HDEL

Deletes one or more fields and their values from a hash. Deletes the hash if no fields remain.

Learn more

• HEXISTS

Determines whether a field exists in a hash.

Learn more

• HGET

Returns the value of a field in a hash.

Learn more

• HGETALL

Returns all fields and values in a hash.

Learn more

• HINCRBY

Increments the integer value of a field in a hash by a number. Uses 0 as initial value if the field
doesn't exist.

Learn more

• HINCRBYFLOAT

Working with Redis API Version 2015-02-02 335

https://redis.io/commands/geosearch/
https://redis.io/commands/geosearchstore/
https://redis.io/commands/HDEL/
https://redis.io/commands/HEXISTS/
https://redis.io/commands/HGET/
https://redis.io/commands/HGETALL/
https://redis.io/commands/HINCRBY/

Amazon ElastiCache for Redis User Guide

Increments the floating point value of a field by a number. Uses 0 as initial value if the field
doesn't exist.

Learn more

• HKEYS

Returns all fields in a hash.

Learn more

• HLEN

Returns the number of fields in a hash.

Learn more

• HMGET

Returns the values of all fields in a hash.

Learn more

• HMSET

Sets the values of multiple fields.

Learn more

• HRANDFIELD

Returns one or more random fields from a hash.

Learn more

• HSCAN

Iterates over fields and values of a hash.

Learn more

• HSET

Creates or modifies the value of a field in a hash.

Learn more
Working with Redis API Version 2015-02-02 336

https://redis.io/commands/HINCRBYFLOAT/
https://redis.io/commands/HKEYS/
https://redis.io/commands/HLEN/
https://redis.io/commands/hmget/
https://redis.io/commands/hmset/
https://redis.io/commands/HRANDFIELD/
https://redis.io/commands/HSCAN/
https://redis.io/commands/HSET/

Amazon ElastiCache for Redis User Guide

• HSETNX

Sets the value of a field in a hash only when the field doesn't exist.

Learn more

• HSTRLEN

Returns the length of the value of a field.

Learn more

• HVALS

Returns all values in a hash.

Learn more

HyperLogLog Commands

• PFADD

Adds elements to a HyperLogLog key. Creates the key if it doesn't exist.

Learn more

• PFCOUNT

Returns the approximated cardinality of the set(s) observed by the HyperLogLog key(s).

Learn more

• PFMERGE

Merges one or more HyperLogLog values into a single key.

Learn more

List Commands

• BLMOVE

Pops an element from a list, pushes it to another list and returns it. Blocks until an element is
available otherwise. Deletes the list if the last element was moved.

Working with Redis API Version 2015-02-02 337

https://redis.io/commands/HSETNX/
https://redis.io/commands/HSTRLEN/
https://redis.io/commands/HVALS/
https://redis.io/commands/PFADD/
https://redis.io/commands/PFCOUNT/
https://redis.io/commands/PFMERGE/

Amazon ElastiCache for Redis User Guide

Learn more

• BLMPOP

Pops the first element from one of multiple lists. Blocks until an element is available otherwise.
Deletes the list if the last element was popped.

Learn more

• BLPOP

Removes and returns the first element in a list. Blocks until an element is available otherwise.
Deletes the list if the last element was popped.

Learn more

• BRPOP

Removes and returns the last element in a list. Blocks until an element is available otherwise.
Deletes the list if the last element was popped.

Learn more

• BRPOPLPUSH

Pops an element from a list, pushes it to another list and returns it. Block until an element is
available otherwise. Deletes the list if the last element was popped.

Learn more

• LINDEX

Returns an element from a list by its index.

Learn more

• LINSERT

Inserts an element before or after another element in a list.

Learn more

• LLEN

Returns the length of a list.
Working with Redis API Version 2015-02-02 338

https://redis.io/commands/BLMOVE/
https://redis.io/commands/BLMPOP/
https://redis.io/commands/BLPOP/
https://redis.io/commands/BRPOP/
https://redis.io/commands/BRPOPLPUSH/
https://redis.io/commands/LINDEX/
https://redis.io/commands/LINSERT/

Amazon ElastiCache for Redis User Guide

Learn more

• LMOVE

Returns an element after popping it from one list and pushing it to another. Deletes the list if the
last element was moved.

Learn more

• LMPOP

Returns multiple elements from a list after removing them. Deletes the list if the last element
was popped.

Learn more

• LPOP

Returns the first elements in a list after removing it. Deletes the list if the last element was
popped.

Learn more

• LPOS

Returns the index of matching elements in a list.

Learn more

• LPUSH

Prepends one or more elements to a list. Creates the key if it doesn't exist.

Learn more

• LPUSHX

Prepends one or more elements to a list only when the list exists.

Learn more

• LRANGE

Returns a range of elements from a list.

Learn more

Working with Redis API Version 2015-02-02 339

https://redis.io/commands/LLEN/
https://redis.io/commands/LMOVE/
https://redis.io/commands/LMPOP/
https://redis.io/commands/LPOP/
https://redis.io/commands/LPOS/
https://redis.io/commands/LPUSH/
https://redis.io/commands/LPUSHX/
https://redis.io/commands/LRANGE/

Amazon ElastiCache for Redis User Guide

• LREM

Removes elements from a list. Deletes the list if the last element was removed.

Learn more

• LSET

Sets the value of an element in a list by its index.

Learn more

• LTRIM

Removes elements from both ends a list. Deletes the list if all elements were trimmed.

Learn more

• RPOP

Returns and removes the last elements of a list. Deletes the list if the last element was popped.

Learn more

• RPOPLPUSH

Returns the last element of a list after removing and pushing it to another list. Deletes the list if
the last element was popped.

Learn more

• RPUSH

Appends one or more elements to a list. Creates the key if it doesn't exist.

Learn more

• RPUSHX

Appends an element to a list only when the list exists.

Learn more

Pub/Sub Commands

Working with Redis API Version 2015-02-02 340

https://redis.io/commands/LREM/
https://redis.io/commands/LSET/
https://redis.io/commands/LTRIM/
https://redis.io/commands/RPOP/
https://redis.io/commands/RPOPLPUSH/
https://redis.io/commands/RPUSH/
https://redis.io/commands/RPUSHX/

Amazon ElastiCache for Redis User Guide

Note

PUBSUB commands internally use sharded PUBSUB, so channel names will be mixed.

• PUBLISH

Posts a message to a channel.

Learn more

• PUBSUB CHANNELS

Returns the active channels.

Learn more

• PUBSUB NUMSUB

Returns a count of subscribers to channels.

Learn more

• PUBSUB SHARDCHANNELS

Returns the active shard channels.

PUBSUB-SHARDCHANNELS

• PUBSUB SHARDNUMSUB

Returns the count of subscribers of shard channels.

PUBSUB-SHARDNUMSUB

• SPUBLISH

Post a message to a shard channel

Learn more

• SSUBSCRIBE

Listens for messages published to shard channels.

Learn more

Working with Redis API Version 2015-02-02 341

https://redis.io/commands/PUBLISH/
https://redis.io/commands/PUBSUB-CHANNELS/
https://redis.io/commands/PUBSUB-NUMSUB/
https://redis.io/commands/bitop/
https://redis.io/commands/bitpos/
https://redis.io/commands/SPUBLISH/
https://redis.io/commands/SSUBSCRIBE/

Amazon ElastiCache for Redis User Guide

• SUBSCRIBE

Listens for messages published to channels.

Learn more

• SUNSUBSCRIBE

Stops listening to messages posted to shard channels.

Learn more

• UNSUBSCRIBE

Stops listening to messages posted to channels.

Learn more

Scripting Commands

• EVAL

Executes a server-side Lua script.

Learn more

• EVAL_RO

Executes a read-only server-side Lua script.

Learn more

• EVALSHA

Executes a server-side Lua script by SHA1 digest.

Learn more

• EVALSHA_RO

Executes a read-only server-side Lua script by SHA1 digest.

Learn more

• SCRIPT EXISTS
Working with Redis API Version 2015-02-02 342

https://redis.io/commands/SUBSCRIBE/
https://redis.io/commands/SUNSUBSCRIBE/
https://redis.io/commands/UNSUBSCRIBE/
https://redis.io/commands/EVAL/
https://redis.io/commands/EVAL_RO/
https://redis.io/commands/EVALSHA/
https://redis.io/commands/EVALSHA_RO/

Amazon ElastiCache for Redis User Guide

Determines whether server-side Lua scripts exist in the script cache.

Learn more

• SCRIPT FLUSH

Currently a no-op, script cache is managed by the service.

Learn more

• SCRIPT LOAD

Loads a server-side Lua script to the script cache.

Learn more

Server Management Commands

• ACL CAT

Lists the ACL categories, or the commands inside a category.

Learn more

• ACL GENPASS

Generates a pseudorandom, secure password that can be used to identify ACL users.

Learn more

• ACL GETUSER

Lists the ACL rules of a user.

Learn more

• ACL LIST

Dumps the effective rules in ACL file format.

Learn more

• ACL USERS

Lists all ACL users.
Working with Redis API Version 2015-02-02 343

https://redis.io/commands/SCRIPT-EXISTS/
https://redis.io/commands/SCRIPT-FLUSH/
https://redis.io/commands/SCRIPT-LOAD/
https://redis.io/commands/ACL-CAT/
https://redis.io/commands/ACL-GENPASS/
https://redis.io/commands/ACL-GETUSER/
https://redis.io/commands/ACL-LIST/

Amazon ElastiCache for Redis User Guide

Learn more

• ACL WHOAMI

Returns the authenticated username of the current connection.

Learn more

• DBSIZE

Return the number of keys in the currently-selected database. This operation is not guaranteed
to be atomic across all slots.

Learn more

• COMMAND

Returns detailed information about all commands.

Learn more

• COMMAND COUNT

Returns a count of commands.

Learn more

• COMMAND DOCS

Returns documentary information about one, multiple or all commands.

Learn more

• COMMAND GETKEYS

Extracts the key names from an arbitrary command.

Learn more

• COMMAND GETKEYSANDFLAGS

Extracts the key names and access flags for an arbitrary command.

Learn more

• COMMAND INFO
Working with Redis API Version 2015-02-02 344

https://redis.io/commands/ACL-USERS/
https://redis.io/commands/ACL-WHOAMI/
https://redis.io/commands/DBSIZE/
https://redis.io/commands/COMMAND/
https://redis.io/commands/COMMAND-COUNT/
https://redis.io/commands/COMMAND-DOCS/
https://redis.io/commands/COMMAND-GETKEYS/
https://redis.io/commands/COMMAND-GETKEYSANDFLAGS/

Amazon ElastiCache for Redis User Guide

Returns information about one, multiple or all commands.

Learn more

• COMMAND LIST

Returns a list of command names.

Learn more

• FLUSHALL

Removes all keys from all databases. This operation is not guaranteed to be atomic across all
slots.

Learn more

• FLUSHDB

Remove all keys from the current database. This operation is not guaranteed to be atomic across
all slots.

Learn more

• INFO

Returns information and statistics about the server.

Learn more

• LOLWUT

Displays computer art and the Redis version.

Learn more

• ROLE

Returns the replication role.

Learn more

• TIME

Returns the server time.

Working with Redis API Version 2015-02-02 345

https://redis.io/commands/COMMAND-INFO/
https://redis.io/commands/COMMAND-LIST/
https://redis.io/commands/FLUSHALL/
https://redis.io/commands/FLUSHDB/
https://redis.io/commands/INFO/
https://redis.io/commands/LOLWUT/
https://redis.io/commands/ROLE/

Amazon ElastiCache for Redis User Guide

Learn more

Set Commands

• SADD

Adds one or more members to a set. Creates the key if it doesn't exist.

Learn more

• SCARDT

Returns the number of members in a set.

Learn more

• SDIFF

Returns the difference of multiple sets.

Learn more

• SDIFFSTORE

Stores the difference of multiple sets in a key.

Learn more

• SINTER

Returns the intersect of multiple sets.

Learn more

• SINTERCARD

Returns the number of members of the intersect of multiple sets.

Learn more

• SINTERSTORE

Stores the intersect of multiple sets in a key.

Learn more
Working with Redis API Version 2015-02-02 346

https://redis.io/commands/TIME/
https://redis.io/commands/SADD/
https://redis.io/commands/SCARDT/
https://redis.io/commands/SDIFF/
https://redis.io/commands/SDIFFSTORE/
https://redis.io/commands/SINTER/
https://redis.io/commands/SINTERCARD/
https://redis.io/commands/SINTERSTORE/

Amazon ElastiCache for Redis User Guide

• SISMEMBER

Determines whether a member belongs to a set.

Learn more

• SMEMBERS

Returns all members of a set.

Learn more

• SMISMEMBER

Determines whether multiple members belong to a set.

Learn more

• SMOVE

Moves a member from one set to another.

Learn more

• SPOP

Returns one or more random members from a set after removing them. Deletes the set if the last
member was popped.

Learn more

• SRANDMEMBER

Get one or multiple random members from a set

Learn more

• SREM

Removes one or more members from a set. Deletes the set if the last member was removed.

Learn more

• SSCAN

Iterates over members of a set.
Working with Redis API Version 2015-02-02 347

https://redis.io/commands/SISMEMBER/
https://redis.io/commands/SMEMBERS/
https://redis.io/commands/SMISMEMBER/
https://redis.io/commands/SMOVE/
https://redis.io/commands/SPOP/
https://redis.io/commands/SRANDMEMBER/
https://redis.io/commands/SREM/

Amazon ElastiCache for Redis User Guide

Learn more

• SUNION

Returns the union of multiple sets.

Learn more

• SUNIONSTORE

Stores the union of multiple sets in a key.

Learn more

Sorted Set Commands

• BZMPOP

Removes and returns a member by score from one or more sorted sets. Blocks until a member is
available otherwise. Deletes the sorted set if the last element was popped.

Learn more

• BZPOPMAX

Removes and returns the member with the highest score from one or more sorted sets. Blocks
until a member available otherwise. Deletes the sorted set if the last element was popped.

Learn more

• BZPOPMIN

Removes and returns the member with the lowest score from one or more sorted sets. Blocks
until a member is available otherwise. Deletes the sorted set if the last element was popped.

Learn more

• ZADD

Adds one or more members to a sorted set, or updates their scores. Creates the key if it doesn't
exist.

Learn more

• ZCARD

Working with Redis API Version 2015-02-02 348

https://redis.io/commands/SSCAN/
https://redis.io/commands/SUNION/
https://redis.io/commands/SUNIONSTORE/
https://redis.io/commands/BZMPOP/
https://redis.io/commands/BZPOPMAX/
https://redis.io/commands/BZPOPMIN/
https://redis.io/commands/ZADD/

Amazon ElastiCache for Redis User Guide

Returns the number of members in a sorted set.

Learn more

• ZCOUNT

Returns the count of members in a sorted set that have scores within a range.

Learn more

• ZDIFF

Returns the difference between multiple sorted sets.

Learn more

• ZDIFFSTORE

Stores the difference of multiple sorted sets in a key.

Learn more

• ZINCRBY

Increments the score of a member in a sorted set.

Learn more

• ZINTER

Returns the intersect of multiple sorted sets.

Learn more

• ZINTERCARD

Returns the number of members of the intersect of multiple sorted sets.

Learn more

• ZINTERSTORE

Stores the intersect of multiple sorted sets in a key.

Learn more

• ZLEXCOUNT

Working with Redis API Version 2015-02-02 349

https://redis.io/commands/ZCARD/
https://redis.io/commands/ZCOUNT/
https://redis.io/commands/ZDIFF/
https://redis.io/commands/ZDIFFSTORE/
https://redis.io/commands/ZINCRBY/
https://redis.io/commands/ZINTER/
https://redis.io/commands/ZINTERCARD/
https://redis.io/commands/ZINTERSTORE/

Amazon ElastiCache for Redis User Guide

Returns the number of members in a sorted set within a lexicographical range.

Learn more

• ZMPOP

Returns the highest- or lowest-scoring members from one or more sorted sets after removing
them. Deletes the sorted set if the last member was popped.

Learn more

• ZMSCORE

Returns the score of one or more members in a sorted set.

Learn more

• ZPOPMAX

Returns the highest-scoring members from a sorted set after removing them. Deletes the sorted
set if the last member was popped.

Learn more

• ZPOPMIN

Returns the lowest-scoring members from a sorted set after removing them. Deletes the sorted
set if the last member was popped.

Learn more

• ZRANDMEMBER

Returns one or more random members from a sorted set.

Learn more

• ZRANGE

Returns members in a sorted set within a range of indexes.

Learn more

• ZRANGEBYLEX

Returns members in a sorted set within a lexicographical range.

Working with Redis API Version 2015-02-02 350

https://redis.io/commands/ZLEXCOUNT/
https://redis.io/commands/ZMPOP/
https://redis.io/commands/ZMSCORE/
https://redis.io/commands/ZPOPMAX/
https://redis.io/commands/ZPOPMIN/
https://redis.io/commands/ZRANDMEMBER/
https://redis.io/commands/ZRANGE/

Amazon ElastiCache for Redis User Guide

Learn more

• ZRANGEBYSCORE

Returns members in a sorted set within a range of scores.

Learn more

• ZRANGESTORE

Stores a range of members from sorted set in a key.

Learn more

• ZRANK

Returns the index of a member in a sorted set ordered by ascending scores.

Learn more

• ZREM

Removes one or more members from a sorted set. Deletes the sorted set if all members were
removed.

Learn more

• ZREMRANGEBYLEX

Removes members in a sorted set within a lexicographical range. Deletes the sorted set if all
members were removed.

Learn more

• ZREMRANGEBYRANK

Removes members in a sorted set within a range of indexes. Deletes the sorted set if all
members were removed.

Learn more

• ZREMRANGEBYSCORE

Removes members in a sorted set within a range of scores. Deletes the sorted set if all members
were removed.

Working with Redis API Version 2015-02-02 351

https://redis.io/commands/ZRANGEBYLEX/
https://redis.io/commands/ZRANGEBYSCORE/
https://redis.io/commands/ZRANGESTORE/
https://redis.io/commands/ZRANK/
https://redis.io/commands/ZREM/
https://redis.io/commands/ZREMRANGEBYLEX/
https://redis.io/commands/ZREMRANGEBYRANK/

Amazon ElastiCache for Redis User Guide

Learn more

• ZREVRANGE

Returns members in a sorted set within a range of indexes in reverse order.

Learn more

• ZREVRANGEBYLEX

Returns members in a sorted set within a lexicographical range in reverse order.

Learn more

• ZREVRANGEBYSCORE

Returns members in a sorted set within a range of scores in reverse order.

Learn more

• ZREVRANK

Returns the index of a member in a sorted set ordered by descending scores.

Learn more

• ZSCAN

Iterates over members and scores of a sorted set.

Learn more

• ZSCORE

Returns the score of a member in a sorted set.

Learn more

• ZUNION

Returns the union of multiple sorted sets.

Learn more

• ZUNIONSTORE

Stores the union of multiple sorted sets in a key.

Working with Redis API Version 2015-02-02 352

https://redis.io/commands/ZREMRANGEBYSCORE/
https://redis.io/commands/ZREVRANGE/
https://redis.io/commands/ZREVRANGEBYLEX/
https://redis.io/commands/ZREVRANGEBYSCORE/
https://redis.io/commands/ZREVRANK/
https://redis.io/commands/ZSCAN/
https://redis.io/commands/ZSCORE/
https://redis.io/commands/ZUNION/

Amazon ElastiCache for Redis User Guide

Learn more

Stream Commands

• XACK

Returns the number of messages that were successfully acknowledged by the consumer group
member of a stream.

Learn more

• XADD

Appends a new message to a stream. Creates the key if it doesn't exist.

Learn more

• XAUTOCLAIM

Changes, or acquires, ownership of messages in a consumer group, as if the messages were
delivered to as consumer group member.

Learn more

• XCLAIM

Changes, or acquires, ownership of a message in a consumer group, as if the message was
delivered a consumer group member.

Learn more

• XDEL

Returns the number of messages after removing them from a stream.

Learn more

• XGROUP CREATE

Creates a consumer group.

Learn more

• XGROUP CREATECONSUMER

Working with Redis API Version 2015-02-02 353

https://redis.io/commands/ZUNIONSTORE/
https://redis.io/commands/XACK/
https://redis.io/commands/XADD/
https://redis.io/commands/XAUTOCLAIM/
https://redis.io/commands/XCLAIM/
https://redis.io/commands/XDEL/
https://redis.io/commands/XGROUP-CREATE/

Amazon ElastiCache for Redis User Guide

Creates a consumer in a consumer group.

Learn more

• XGROUP DELCONSUMER

Deletes a consumer from a consumer group.

Learn more

• XGROUP DESTROY

Destroys a consumer group.

Learn more

• XGROUP SETID

Sets the last-delivered ID of a consumer group.

Learn more

• XINFO CONSUMERS

Returns a list of the consumers in a consumer group.

Learn more

• XINFO GROUPS

Returns a list of the consumer groups of a stream.

Learn more

• XINFO STREAM

Returns information about a stream.

Learn more

• XLEN

Return the number of messages in a stream.

Learn more

• XPENDING

Working with Redis API Version 2015-02-02 354

https://redis.io/commands/XGROUP-CREATECONSUMER/
https://redis.io/commands/XGROUP-DELCONSUMER/
https://redis.io/commands/XGROUP-DESTROY/
https://redis.io/commands/XGROUP-SETID/
https://redis.io/commands/XINFO-CONSUMERS/
https://redis.io/commands/XINFO-GROUPS/
https://redis.io/commands/XINFO-STREAM/
https://redis.io/commands/XLEN/

Amazon ElastiCache for Redis User Guide

Returns the information and entries from a stream consumer group's pending entries list.

Learn more

• XRANGE

Returns the messages from a stream within a range of IDs.

Learn more

• XREAD

Returns messages from multiple streams with IDs greater than the ones requested. Blocks until a
message is available otherwise.

Learn more

• XREADGROUP

Returns new or historical messages from a stream for a consumer in a group. Blocks until a
message is available otherwise.

Learn more

• XREVRANGE

Returns the messages from a stream within a range of IDs in reverse order.

Learn more

• XTRIM

Deletes messages from the beginning of a stream.

Learn more

String Commands

• APPEND

Appends a string to the value of a key. Creates the key if it doesn't exist.

Learn more

• DECR

Working with Redis API Version 2015-02-02 355

https://redis.io/commands/XPENDING/
https://redis.io/commands/XRANGE/
https://redis.io/commands/XREAD/
https://redis.io/commands/XREADGROUP/
https://redis.io/commands/XREVRANGE/
https://redis.io/commands/XTRIM/
https://redis.io/commands/APPEND/

Amazon ElastiCache for Redis User Guide

Decrements the integer value of a key by one. Uses 0 as initial value if the key doesn't exist.

Learn more

• DECRBY

Decrements a number from the integer value of a key. Uses 0 as initial value if the key doesn't
exist.

Learn more

• GET

Returns the string value of a key.

Learn more

• GETDEL

Returns the string value of a key after deleting the key.

Learn more

• GETEX

Returns the string value of a key after setting its expiration time.

Learn more

• GETRANGE

Returns a substring of the string stored at a key.

Learn more

• GETSET

Returns the previous string value of a key after setting it to a new value.

Learn more

• INCR

Increments the integer value of a key by one. Uses 0 as initial value if the key doesn't exist.

Learn more
Working with Redis API Version 2015-02-02 356

https://redis.io/commands/DECR/
https://redis.io/commands/DECRBY/
https://redis.io/commands/GET/
https://redis.io/commands/GETDEL/
https://redis.io/commands/GETEX/
https://redis.io/commands/GETRANGE/
https://redis.io/commands/GETSET/
https://redis.io/commands/INCR/

Amazon ElastiCache for Redis User Guide

• INCRBY

Increments the integer value of a key by a number. Uses 0 as initial value if the key doesn't exist.

Learn more

• INCRBYFLOAT

Increment the floating point value of a key by a number. Uses 0 as initial value if the key doesn't
exist.

Learn more

• LCS

Finds the longest common substring.

Learn more

• MGET

Atomically returns the string values of one or more keys.

Learn more

• MSET

Atomically creates or modifies the string values of one or more keys.

Learn more

• MSETNX

Atomically modifies the string values of one or more keys only when all keys don't exist.

Learn more

• PSETEX

Sets both string value and expiration time in milliseconds of a key. The key is created if it doesn't
exist.

Learn more

• SET

Sets the string value of a key, ignoring its type. The key is created if it doesn't exist.
Working with Redis API Version 2015-02-02 357

https://redis.io/commands/INCRBY/
https://redis.io/commands/INCRBYFLOAT/
https://redis.io/commands/LCS/
https://redis.io/commands/MGET/
https://redis.io/commands/MSET/
https://redis.io/commands/MSETNX/
https://redis.io/commands/PSETEX/

Amazon ElastiCache for Redis User Guide

Learn more

• SETEX

Sets the string value and expiration time of a key. Creates the key if it doesn't exist.

Learn more

• SETNX

Set the string value of a key only when the key doesn't exist.

Learn more

• SETRANGE

Overwrites a part of a string value with another by an offset. Creates the key if it doesn't exist.

Learn more

• STRLEN

Returns the length of a string value.

Learn more

• SUBSTR

Returns a substring from a string value.

Learn more

Transaction Commands

• DISCARD

Discards a transaction.

Learn more

• EXEC

Executes all commands in a transaction.

Learn more
Working with Redis API Version 2015-02-02 358

https://redis.io/commands/SET/
https://redis.io/commands/SETEX/
https://redis.io/commands/SETNX/
https://redis.io/commands/SETRANGE/
https://redis.io/commands/STRLEN/
https://redis.io/commands/SUBSTR/
https://redis.io/commands/DISCARD/
https://redis.io/commands/EXEC/

Amazon ElastiCache for Redis User Guide

• MULTI

Starts a transaction.

Learn more

Restricted Redis commands

To deliver a managed service experience, ElastiCache restricts access to certain cache engine-
specific commands that require advanced privileges. For caches running Redis, the following
commands are unavailable:

• acl setuser

• acl load

• acl save

• acl deluser

• bgrewriteaof

• bgsave

• cluster addslot

• cluster addslotsrange

• cluster bumpepoch

• cluster delslot

• cluster delslotsrange

• cluster failover

• cluster flushslots

• cluster forget

• cluster links

• cluster meet

• cluster setslot

• config

• debug

• migrate

• psync

Working with Redis API Version 2015-02-02 359

https://redis.io/commands/MULTI/

Amazon ElastiCache for Redis User Guide

• replicaof

• save

• slaveof

• shutdown

• sync

In addition, the following commands are unavailable for serverless caches:

• acl log

• client caching

• client getredir

• client id

• client info

• client kill

• client list

• client no-evict

• client pause

• client tracking

• client trackinginfo

• client unblock

• client unpause

• cluster count-failure-reports

• fcall

• fcall_ro

• function

• function delete

• function dump

• function flush

• function help

• function kill

• function list

Working with Redis API Version 2015-02-02 360

Amazon ElastiCache for Redis User Guide

• function load

• function restore

• function stats

• keys

• lastsave

• latency

• latency doctor

• latency graph

• latency help

• latency histogram

• latency history

• latency latest

• latency reset

• memory

• memory doctor

• memory help

• memory malloc-stats

• memory purge

• memory stats

• memory usage

• monitor

• move

• object

• object encoding

• object freq

• object help

• object idletime

• object refcount

• pfdebug

• pfselftest

Working with Redis API Version 2015-02-02 361

Amazon ElastiCache for Redis User Guide

• psubscribe

• pubsub numpat

• punsubscribe

• script kill

• slowlog

• slowlog get

• slowlog help

• slowlog len

• slowlog reset

• swapdb

• unwatch

• wait

• watch

Redis configuration and limits

The Redis engine provides a number of configuration parameters, some of which are modifiable
in ElastiCache for Redis and some of which are not modifiable to provide stable performance and
reliability.

Serverless caches

For serverless caches, parameter groups are not used and all Redis configuration is not modifiable.
The following Redis parameters are in place:

Name Details Description

acl-pubsu
b-default

allchannels Default pubsub channel permissions for ACL
users on the cache.

client-ou
tput-buff
er-limit

normal 0 0 0

pubsub 32mb 8mb 60

Normal clients have no buffer limit. PUB/SUB
clients will be disconnected if they breach
32MiB backlog, or breach 8MiB backlog for
60s.

Working with Redis API Version 2015-02-02 362

Amazon ElastiCache for Redis User Guide

Name Details Description

client-qu
ery-buffe
r-limit

1 GiB The maximum size of a single client query
buffer. Additionally, clients cannot issue a
request with more than 4,000 arguments.

cluster-a
llow-pubs
ubshard-w
hen-down

yes This allows the cache to serve pubsub traffic
while the cache is partially down.

cluster-a
llow-read
s-when-do
wn

yes This allows the cache to serve read traffic
while the cache is partially down.

cluster-e
nabled

yes All serverless caches are cluster mode enabled,
which allows them to transparently partition
their data across multiple backend shards. All
slots are surfaced to clients as being owned by
a single virtual node.

cluster-r
equire-fu
ll-covera
ge

no When the keyspace is partially down (i.e. at
least one hash slot is inaccessible), the cache
will continue accepting queries for the part of
the keyspace that is still covered. The entire
keyspace will always be "covered" by a single
virtual node in cluster slots.

Working with Redis API Version 2015-02-02 363

Amazon ElastiCache for Redis User Guide

Name Details Description

lua-time-
limit

5000 The maximum execution time for a Lua script,
in milliseconds, before ElastiCache takes
action to stop the script.

If lua-time-limit is exceeded, all Redis
commands may return an error of the
form ____-BUSY. Since this state can cause
interference with many essential Redis
operations, ElastiCache will first issue a
SCRIPT KILL command. If this is unsuccessful,
ElastiCache will forcibly restart Redis.

maxclient
s

65000 The maximum number of clients that can be
connected to the cache at one time. Further
connections established may or may not
succeed.

maxmemory
-policy

volatile-lru Items with a TTL set are evicted following
least-recently-used (LRU) estimation when a
cache's memory limit is reached.

notify-ke
yspace-ev
ents

(an empty string) Keyspace events are currently not supported
on serverless caches.

port Primary port: 6379

Read port: 6380

Serverless caches advertise two ports with
the same hostname. The primary port allows
writes and reads, whereas the read port allows
lower-latency eventually-consistent reads
using the READONLY command.

proto-max
-bulk-len

512 MiB The maximum size of a single element
request.

Working with Redis API Version 2015-02-02 364

Amazon ElastiCache for Redis User Guide

Name Details Description

timeout 0 Clients are not forcibly disconnected at a
specific idle time, but they may be disconnec
ted during steady-state for load balancing
purposes.

Additionally, the following limits are in place:

Name Details Description

Key name
length

4 KiB The maximum size for a single Redis key or
channel name. Clients referencing keys larger
than this will receive an error.

Lua script
size

4 MiB The maximum size of a single Redis Lua script.
Attempts to load a Lua script larger than this
will receive an error.

Slot size 32 GiB The maximum size of a single Redis hash slot.
Clients trying to set more data than this on
a single Redis slot will trigger the eviction
policy on the slot, and if no keys are evictable,
will receive an out of memory (OOM) error.

Self-designed clusters

For self-designed clusters, see Redis-specific parameters for the default values of configuration
parameters and which are configurable. The default values are generally recommended unless you
have a specific use case requiring them to be overridden.

Best practices with Redis clients

Learn best practices for common scenarios and follow along with code examples of some of the
most popular open source Redis client libraries (redis-py, PHPRedis, and Lettuce).

Topics

Best practices with Redis clients API Version 2015-02-02 365

Amazon ElastiCache for Redis User Guide

• Large number of connections

• Redis cluster client discovery and exponential backoff

• Configure a client-side timeout

• Configure a server-side idle timeout

• Redis Lua scripts

• Storing large composite items

• Lettuce client configuration

• IPv6 client examples

Large number of connections

Serverless caches and individual ElastiCache for Redis nodes support up to 65,000 concurrent
client connections. However, to optimize for performance, we advise that client applications do
not constantly operate at that level of connections. Redis is a single-threaded process based on an
event loop where incoming client requests are handled sequentially. That means the response time
of a given client becomes longer as the number of connected clients increases.

You can take the following set of actions to avoid hitting a connection bottleneck on the Redis
server:

• Perform read operations from read replicas. This can be done by using the ElastiCache reader
endpoints in cluster mode disabled or by using replicas for reads in cluster mode enabled,
including a serverless cache.

• Distribute write traffic across multiple primary nodes. You can do this in two ways. You can use
a multi-sharded Redis cluster with a Redis cluster mode capable client. You could also write
to multiple primary nodes in cluster mode disabled with client-side sharding. This is done
automatically in a serverless cache.

• Use a connection pool when available in your client library.

In general, creating a TCP connection is a computationally expensive operation compared to
typical Redis commands. For example, handling a SET/GET request is an order of magnitude faster
when reusing an existing connection. Using a client connection pool with a finite size reduces
the overhead of connection management. It also bounds the number of concurrent incoming
connections from the client application.

Best practices with Redis clients API Version 2015-02-02 366

Amazon ElastiCache for Redis User Guide

The following code example of PHPRedis shows that a new connection is created for each new user
request:

$redis = new Redis();
if ($redis->connect($HOST, $PORT) != TRUE) {
 //ERROR: connection failed
 return;
}
$redis->set($key, $value);
unset($redis);
$redis = NULL;

We benchmarked this code in a loop on an Amazon Elastic Compute Cloud (Amazon EC2) instance
connected to a Graviton2 (m6g.2xlarge) ElastiCache for Redis node. We placed both the client
and server at the same Availability Zone. The average latency of the entire operation was 2.82
milliseconds.

When we updated the code and used persistent connections and a connection pool, the average
latency of the entire operation was 0.21 milliseconds:

$redis = new Redis();
if ($redis->pconnect($HOST, $PORT) != TRUE) {
 // ERROR: connection failed
 return;
}
$redis->set($key, $value);
unset($redis);
$redis = NULL;

Required redis.ini configurations:

• redis.pconnect.pooling_enabled=1

• redis.pconnect.connection_limit=10

The following code is an example of a Redis-py connection pool:

conn = Redis(connection_pool=redis.BlockingConnectionPool(host=HOST,
 max_connections=10))
conn.set(key, value)

Best practices with Redis clients API Version 2015-02-02 367

https://redis-py.readthedocs.io/en/stable/

Amazon ElastiCache for Redis User Guide

The following code is an example of a Lettuce connection pool:

RedisClient client = RedisClient.create(RedisURI.create(HOST, PORT));
GenericObjectPool<StatefulRedisConnection> pool =
 ConnectionPoolSupport.createGenericObjectPool(() -> client.connect(), new
 GenericObjectPoolConfig());
pool.setMaxTotal(10); // Configure max connections to 10
try (StatefulRedisConnection connection = pool.borrowObject()) {
 RedisCommands syncCommands = connection.sync();
 syncCommands.set(key, value);
}

Redis cluster client discovery and exponential backoff

When connecting to an ElastiCache for Redis cluster in cluster mode enabled, the corresponding
Redis client library must be cluster aware. The clients must obtain a map of hash slots to the
corresponding nodes in the cluster in order to send requests to the right nodes and avoid the
performance overhead of handing cluster redirections. As a result, the client must discover a
complete list of slots and the mapped nodes in two different situations:

• The client is initialized and must populate the initial slots configuration

• A MOVED redirection is received from the server, such as in the situation of a failover when all
slots served by the former primary node are taken over by the replica, or re-sharding when slots
are being moved from the source primary to the target primary node

Client discovery is usually done via issuing a CLUSTER SLOT or CLUSTER NODE command to the
Redis server. We recommend the CLUSTER SLOT method because it returns the set of slot ranges
and the associated primary and replica nodes back to the client. This doesn't require additional
parsing from the client and is more efficient.

Depending on the cluster topology, the size of the response for the CLUSTER SLOT command can
vary based on the cluster size. Larger clusters with more nodes produce a larger response. As a
result, it's important to ensure that the number of clients doing the cluster topology discovery
doesn't grow unbounded. For example, when the client application starts up or loses connection
from the server and must perform cluster discovery, one common mistake is that the client
application fires several reconnection and discovery requests without adding exponential backoff
upon retry. This can render the Redis server unresponsive for a prolonged period of time, with the
CPU utilization at 100%. The outage is prolonged if each CLUSTER SLOT command must process
a large number of nodes in the cluster bus. We have observed multiple client outages in the past

Best practices with Redis clients API Version 2015-02-02 368

https://lettuce.io/core/release/reference/#_connection_pooling

Amazon ElastiCache for Redis User Guide

due to this behavior across a number of different languages including Python (redis-py-cluster) and
Java (Lettuce and Redisson).

In a serverless cache, many of the problems are automatically mitigated because the advertised
cluster topology is static and consists of two entries: a write endpoint and a read endpoint. Cluster
discovery is also automatically spread over multiple nodes when using the cache endpoint. The
following recommendations are still useful, however.

To mitigate the impact caused by a sudden influx of connection and discovery requests, we
recommend the following:

• Implement a client connection pool with a finite size to bound the number of concurrent
incoming connections from the client application.

• When the client disconnects from the server due to timeout, retry with exponential backoff with
jitter. This helps to avoid multiple clients overwhelming the server at the same time.

• Use the guide at Finding connection endpoints to find the cluster endpoint to perform cluster
discovery. In doing so, you spread the discovery load across all nodes in the cluster (up to 90)
instead of hitting a few hardcoded seed nodes in the cluster.

The following are some code examples for exponential backoff retry logic in redis-py, PHPRedis,
and Lettuce.

Backoff logic sample 1: redis-py

redis-py has a built-in retry mechanism that retries one time immediately after a failure. This
mechanism can be enabled through the retry_on_timeout argument supplied when creating a
Redis object. Here we demonstrate a custom retry mechanism with exponential backoff and jitter.
We've submitted a pull request to natively implement exponential backoff in redis-py (#1494). In
the future it may not be necessary to implement manually.

def run_with_backoff(function, retries=5):
base_backoff = 0.1 # base 100ms backoff
max_backoff = 10 # sleep for maximum 10 seconds
tries = 0
while True:
try:
 return function()
except (ConnectionError, TimeoutError):
 if tries >= retries:

Best practices with Redis clients API Version 2015-02-02 369

https://redis-py.readthedocs.io/en/stable/#redis.Redis
https://github.com/andymccurdy/redis-py/pull/1494

Amazon ElastiCache for Redis User Guide

 raise
 backoff = min(max_backoff, base_backoff * (pow(2, tries) + random.random()))
 print(f"sleeping for {backoff:.2f}s")
 sleep(backoff)
 tries += 1

You can then use the following code to set a value:

client = redis.Redis(connection_pool=redis.BlockingConnectionPool(host=HOST,
 max_connections=10))
res = run_with_backoff(lambda: client.set("key", "value"))
print(res)

Depending on your workload, you might want to change the base backoff value from 1 second to a
few tens or hundreds of milliseconds for latency-sensitive workloads.

Backoff logic sample 2: PHPRedis

PHPRedis has a built-in retry mechanism that retries a (non-configurable) maximum of 10 times.
There is a configurable delay between tries (with a jitter from the second retry onwards). For more
information, see the following sample code. We've submitted a pull request to natively implement
exponential backoff in PHPredis (#1986) that has since been merged and documented. For those
on the latest release of PHPRedis, it won't be necessary to implement manually but we've included
the reference here for those on previous versions. For now, the following is a code example that
configures the delay of the retry mechanism:

$timeout = 0.1; // 100 millisecond connection timeout
$retry_interval = 100; // 100 millisecond retry interval
$client = new Redis();
if($client->pconnect($HOST, $PORT, $timeout, NULL, $retry_interval) != TRUE) {
 return; // ERROR: connection failed
}
$client->set($key, $value);

Backoff logic sample 3: Lettuce

Lettuce has built-in retry mechanisms based on the exponential backoff strategies described in
the post Exponential Backoff and Jitter. The following is a code excerpt showing the full jitter
approach:

public static void main(String[] args)

Best practices with Redis clients API Version 2015-02-02 370

https://github.com/phpredis/phpredis/blob/b0b9dd78ef7c15af936144c1b17df1a9273d72ab/library.c#L335-L368
https://github.com/phpredis/phpredis/pull/1986
https://github.com/phpredis/phpredis/blob/develop/README.markdown#retry-and-backoff
https://aws.amazon.com/blogs/https://aws.amazon.com/blogs/architecture/exponential-backoff-and-jitter/

Amazon ElastiCache for Redis User Guide

{
 ClientResources resources = null;
 RedisClient client = null;

 try {
 resources = DefaultClientResources.builder()
 .reconnectDelay(Delay.fullJitter(
 Duration.ofMillis(100), // minimum 100 millisecond delay
 Duration.ofSeconds(5), // maximum 5 second delay
 100, TimeUnit.MILLISECONDS) // 100 millisecond base
).build();

 client = RedisClient.create(resources, RedisURI.create(HOST, PORT));
 client.setOptions(ClientOptions.builder()
 .socketOptions(SocketOptions.builder().connectTimeout(Duration.ofMillis(100)).build()) //
 100 millisecond connection timeout
 .timeoutOptions(TimeoutOptions.builder().fixedTimeout(Duration.ofSeconds(5)).build()) //
 5 second command timeout
 .build());

 // use the connection pool from above example
 } finally {
 if (connection != null) {
 connection.close();
 }

 if (client != null){
 client.shutdown();
 }

 if (resources != null){
 resources.shutdown();
 }

 }
}

Configure a client-side timeout

Configure the client-side timeout appropriately to allow the server sufficient time to process the
request and generate the response. This also allows it to fail fast if the connection to the server
can't be established. Certain Redis commands can be more computationally expensive than others.
For example, Lua scripts or MULTI/EXEC transactions that contain multiple commands that must be

Best practices with Redis clients API Version 2015-02-02 371

Amazon ElastiCache for Redis User Guide

run atomically. In general, a higher client-side timeout is recommended to avoid a time out of the
client before the response is received from the server, including the following:

• Running commands across multiple keys

• Running MULTI/EXEC transactions or Lua scripts that consist of multiple individual Redis
commands

• Reading large values

• Performing blocking operations such as BLPOP

In case of a blocking operation such as BLPOP, the best practice is to set the command timeout to a
number lower than the socket timeout.

The following are code examples for implementing a client-side timeout in redis-py, PHPRedis, and
Lettuce.

Timeout configuration sample 1: redis-py

The following is a code example with redis-py:

connect to Redis server with a 100 millisecond timeout
give every Redis command a 2 second timeout
client = redis.Redis(connection_pool=redis.BlockingConnectionPool(host=HOST,
 max_connections=10,socket_connect_timeout=0.1,socket_timeout=2))

res = client.set("key", "value") # will timeout after 2 seconds
print(res) # if there is a connection error

res = client.blpop("list", timeout=1) # will timeout after 1 second
 # less than the 2 second socket timeout
print(res)

Timeout config sample 2: PHPRedis

The following is a code example with PHPRedis:

// connect to Redis server with a 100ms timeout
// give every Redis command a 2s timeout
$client = new Redis();
$timeout = 0.1; // 100 millisecond connection timeout
$retry_interval = 100; // 100 millisecond retry interval
$client = new Redis();

Best practices with Redis clients API Version 2015-02-02 372

Amazon ElastiCache for Redis User Guide

if($client->pconnect($HOST, $PORT, 0.1, NULL, 100, $read_timeout=2) != TRUE){
 return; // ERROR: connection failed
}
$client->set($key, $value);

$res = $client->set("key", "value"); // will timeout after 2 seconds
print "$res\n"; // if there is a connection error

$res = $client->blpop("list", 1); // will timeout after 1 second
print "$res\n"; // less than the 2 second socket timeout

Timeout config sample 3: Lettuce

The following is a code example with Lettuce:

// connect to Redis server and give every command a 2 second timeout
public static void main(String[] args)
{
 RedisClient client = null;
 StatefulRedisConnection<String, String> connection = null;
 try {
 client = RedisClient.create(RedisURI.create(HOST, PORT));
 client.setOptions(ClientOptions.builder()
 .socketOptions(SocketOptions.builder().connectTimeout(Duration.ofMillis(100)).build()) //
 100 millisecond connection timeout
 .timeoutOptions(TimeoutOptions.builder().fixedTimeout(Duration.ofSeconds(2)).build()) //
 2 second command timeout
 .build());

 // use the connection pool from above example

 commands.set("key", "value"); // will timeout after 2 seconds
 commands.blpop(1, "list"); // BLPOP with 1 second timeout
 } finally {
 if (connection != null) {
 connection.close();
 }

 if (client != null){
 client.shutdown();
 }
 }
}

Best practices with Redis clients API Version 2015-02-02 373

Amazon ElastiCache for Redis User Guide

Configure a server-side idle timeout

We have observed cases when a customer's application has a high number of idle clients
connected, but isn't actively sending commands. In such scenarios, you can exhaust all 65,000
connections with a high number of idle clients. To avoid such scenarios, configure the timeout
setting appropriately on the server via Redis-specific parameters. This ensures that the server
actively disconnects idle clients to avoid an increase in the number of connections. This setting is
not available on serverless caches.

Redis Lua scripts

Redis supports more than 200 commands, including those to run Lua scripts. However, when it
comes to Lua scripts, there are several pitfalls that can affect memory and availability of Redis.

Unparameterized Lua scripts

Each Lua script is cached on the Redis server before it runs. Unparameterized Lua scripts are
unique, which can lead to the Redis server storing a large number of Lua scripts and consuming
more memory. To mitigate this, ensure that all Lua scripts are parameterized and regularly perform
SCRIPT FLUSH to clean up cached Lua scripts if needed.

The following example shows how to use parameterized scripts. First, we have an example
of an unparameterized approach that results in three different cached Lua scripts and is not
recommended:

eval "return redis.call('set','key1','1')" 0
eval "return redis.call('set','key2','2')" 0
eval "return redis.call('set','key3','3')" 0

Instead, use the following pattern to create a single script that can accept passed parameters:

eval "return redis.call('set',KEYS[1],ARGV[1])" 1 key1 1
eval "return redis.call('set',KEYS[1],ARGV[1])" 1 key2 2
eval "return redis.call('set',KEYS[1],ARGV[1])" 1 key3 3

Long-running Lua scripts

Lua scripts can run multiple commands atomically, so it can take longer to complete than a regular
Redis command. If the Lua script only runs read-only operations, you can stop it in the middle.

Best practices with Redis clients API Version 2015-02-02 374

Amazon ElastiCache for Redis User Guide

However, as soon as the Lua script performs a write operation, it becomes unkillable and must
run to completion. A long-running Lua script that is mutating can cause the Redis server to be
unresponsive for a long time. To mitigate this issue, avoid long-running Lua scripts and test the
script out in a pre-production environment.

Lua script with stealth writes

There are a few ways a Lua script can continue to write new data into Redis even when Redis is over
maxmemory:

• The script starts when the Redis server is below maxmemory, and contains multiple write
operations inside

• The script's first write command isn't consuming memory (such as DEL), followed by more write
operations that consume memory

• You can mitigate this problem by configuring a proper eviction policy in Redis server other than
noeviction. This allows Redis to evict items and free up memory in between Lua scripts.

Storing large composite items

In some scenarios, an application may store large composite items in Redis (such as a multi-GB
hash dataset). This is not a recommended practice because it often leads to performance problems
in Redis. For example, the client can do a HGETALL command to retrieve the entire multi GB
hash collection. This can generate significant memory pressure to the Redis server buffering the
large item in the client output buffer. Also, for slot migration in cluster mode, ElastiCache doesn't
migrate slots that contain items with serialized size that is larger than 256 MB.

To solve the large item problems, we have the following recommendations:

• Break up the large composite item into multiple smaller items. For example, break up a large
hash collection into individual key-value fields with a key name scheme that appropriately
reflects the collection, such as using a common prefix in the key name to identify the collection
of items. If you must access multiple fields in the same collection atomically, you can use the
MGET command to retrieve multiple key-values in the same command.

• If you evaluated all options and still can't break up the large collection dataset, try to use
commands that operate on a subset of the data in the collection instead of the entire collection.
Avoid having a use case that requires you to atomically retrieve the entire multi-GB collection in
the same command. One example is using HGET or HMGET commands instead of HGETALL on
hash collections.

Best practices with Redis clients API Version 2015-02-02 375

Amazon ElastiCache for Redis User Guide

Lettuce client configuration

This section describes the recommended Java and Lettuce configuration options, and how they
apply to ElastiCache clusters.

The recommendations in this section were tested with Lettuce version 6.2.2.

Topics

• Example: Lettuce configuration for cluster mode and TLS enabled

• Example: Lettuce configuration for cluster mode disabled and TLS enabled

Java DNS cache TTL

The Java virtual machine (JVM) caches DNS name lookups. When the JVM resolves a hostname
to an IP address, it caches the IP address for a specified period of time, known as the time-to-live
(TTL).

The choice of TTL value is a trade-off between latency and responsiveness to change. With shorter
TTLs, DNS resolvers notice updates in the cluster's DNS faster. This can make your application
respond faster to replacements or other workflows that your cluster undergoes. However, if the
TTL is too low, it increases the query volume, which can increase the latency of your application.
While there is no correct TTL value, it's worth considering the length of time that you can afford to
wait for a change to take effect when setting your TTL value.

Because ElastiCache nodes use DNS name entries that might change, we recommend that
you configure your JVM with a low TTL of 5 to 10 seconds. This ensures that when a node's IP
address changes, your application will be able to receive and use the resource's new IP address by
requerying the DNS entry.

On some Java configurations, the JVM default TTL is set so that it will never refresh DNS entries
until the JVM is restarted.

For details on how to set your JVM TTL, see How to set the JVM TTL.

Lettuce version

We recommend using Lettuce version 6.2.2 or later.

Endpoints

Best practices with Redis clients API Version 2015-02-02 376

https://docs.aws.amazon.com/sdk-for-java/v1/developer-guide/java-dg-jvm-ttl.html#how-to-set-the-jvm-ttl

Amazon ElastiCache for Redis User Guide

When you're using cluster mode enabled clusters, set the redisUri to the cluster configuration
endpoint. The DNS lookup for this URI returns a list of all available nodes in the cluster, and is
randomly resolved to one of them during the cluster initialization. For more details about how
topology refresh works, see dynamicRefreshResources later in this topic.

SocketOption

Enable KeepAlive. Enabling this option reduces the need to handle failed connections during
command runtime.

Ensure that you set the Connection timeout based on your application requirements and workload.
For more information, see the Timeouts section later in this topic.

ClusterClientOption: Cluster Mode Enabled client options

Enable AutoReconnect when connection is lost.

Set CommandTimeout. For more details, see the Timeouts section later in this topic.

Set nodeFilter to filter out failed nodes from the topology. Lettuce saves all nodes that are found
in the 'cluster nodes' output (including nodes with PFAIL/FAIL status) in the client's 'partitions' (also
known as shards). During the process of creating the cluster topology, it attempts to connect to all
the partition nodes. This Lettuce behavior of adding failed nodes can cause connection errors (or
warnings) when nodes are getting replaced for any reason.

For example, after a failover is finished and the cluster starts the recovery process, while the
clusterTopology is getting refreshed, the cluster bus nodes map has a short period of time that
the down node is listed as a FAIL node, before it's completely removed from the topology. During
this period, the Lettuce Redis client considers it a healthy node and continually connects to it. This
causes a failure after retrying is exhausted.

For example:

final ClusterClientOptions clusterClientOptions =
 ClusterClientOptions.builder()
 ... // other options
 .nodeFilter(it ->
 ! (it.is(RedisClusterNode.NodeFlag.FAIL)
 || it.is(RedisClusterNode.NodeFlag.EVENTUAL_FAIL)
 || it.is(RedisClusterNode.NodeFlag.HANDSHAKE)

Best practices with Redis clients API Version 2015-02-02 377

https://lettuce.io/core/release/api/io/lettuce/core/SocketOptions.KeepAliveOptions.html
https://lettuce.io/core/release/api/io/lettuce/core/SocketOptions.Builder.html#connectTimeout-java.time.Duration-
https://lettuce.io/core/release/api/io/lettuce/core/cluster/ClusterClientOptions.Builder.html#autoReconnect-boolean-
https://lettuce.io/core/release/api/io/lettuPrce/core/RedisURI.html#getTimeout--
https://lettuce.io/core/release/api/io/lettuce/core/cluster/ClusterClientOptions.Builder.html#nodeFilter-java.util.function.Predicate-

Amazon ElastiCache for Redis User Guide

 || it.is(RedisClusterNode.NodeFlag.NOADDR)))
 .validateClusterNodeMembership(false)
 .build();
redisClusterClient.setOptions(clusterClientOptions);

Note

Node filtering is best used with DynamicRefreshSources set to true. Otherwise, if the
topology view is taken from a single problematic seed node, that sees a primary node
of some shard as failing, it will filter out this primary node, which will result in slots not
being covered. Having multiple seed nodes (when DynamicRefreshSources is true) reduces
the likelihood of this issue, since at least some of the seed nodes should have an updated
topology view after a failover with the newly promoted primary.

ClusterTopologyRefreshOptions: Options to control the cluster topology refreshing of the
Cluster Mode Enabled client

Note

Cluster mode disabled clusters don't support the cluster discovery commands and aren't
compatible with all clients dynamic topology discovery functionality.
Cluster mode disabled with ElastiCache isn't compatible with Lettuce's
MasterSlaveTopologyRefresh. Instead, for cluster mode disabled you can configure
a StaticMasterReplicaTopologyProvider and provide the cluster read and write
endpoints.
For more information on connecting to cluster mode disabled clusters, see Finding a Redis
(Cluster Mode Disabled) Cluster's Endpoints (Console).
If you wish to use Lettuce's dynamic topology discovery functionality, then you can create
a cluster mode enabled cluster with the same shard configuration as your existing cluster.
However, for cluster mode enabled clusters we recommend configuring at least 3 shards
with at least one 1 replica to support fast failover.

Enable enablePeriodicRefresh. This enables periodic cluster topology updates so that the client
updates the cluster topology in the intervals of the refreshPeriod (default: 60 seconds). When it's
disabled, the client updates the cluster topology only when errors occur when it attempts to run
commands against the cluster.

Best practices with Redis clients API Version 2015-02-02 378

https://lettuce.io/core/release/api/io/lettuce/core/cluster/ClusterTopologyRefreshOptions.Builder.html#enablePeriodicRefresh-java.time.Duration-

Amazon ElastiCache for Redis User Guide

With this option enabled, you can reduce the latency that's associated with refreshing the cluster
topology by adding this job to a background task. While topology refreshment is performed in a
background job, it can be somewhat slow for clusters with many nodes. This is because all nodes
are being queried for their views to get the most updated cluster view. If you run a large cluster,
you might want to increase the period.

Enable enableAllAdaptiveRefreshTriggers. This enables adaptive topology refreshing that uses
all triggers: MOVED_REDIRECT, ASK_REDIRECT, PERSISTENT_RECONNECTS, UNCOVERED_SLOT,
UNKNOWN_NODE. Adaptive refresh triggers initiate topology view updates based on events that
happen during Redis cluster operations. Enabling this option leads to an immediate topology
refresh when one of the preceding triggers occur. Adaptive triggered refreshes are rate-limited
using a timeout because events can happen on a large scale (default timeout between updates: 30).

Enable closeStaleConnections. This enables closing stale connections when refreshing the cluster
topology. It only comes into effect if ClusterTopologyRefreshOptions.isPeriodicRefreshEnabled()
is true. When it's enabled, the client can close stale connections and create new ones in the
background. This reduces the need to handle failed connections during command runtime.

Enable dynamicRefreshResources. We recommend enabling dynamicRefreshResources for small
clusters, and disabling it for large clusters. dynamicRefreshResources enables discovering cluster
nodes from the provided seed node (for example, cluster configuration endpoint). It uses all the
discovered nodes as sources for refreshing the cluster topology.

Using dynamic refresh queries all discovered nodes for the cluster topology and attempts to
choose the most accurate cluster view. If it's set to false, only the initial seed nodes are used as
sources for topology discovery, and the number of clients are obtained only for the initial seed
nodes. When it's disabled, if the cluster configuration endpoint is resolved to a failed node, trying
to refresh the cluster view fails and leads to exceptions. This scenario can happen because it
takes some time until a failed node's entry is removed from the cluster configuration endpoint.
Therefore, the configuration endpoint can still be randomly resolved to a failed node for a short
period of time.

When it's enabled, however, we use all of the cluster nodes that are received from the cluster view
to query for their current view. Because we filter out failed nodes from that view, the topology
refresh will be successful. However, when dynamicRefreshSources is true, Lettuce queries all nodes
to get the cluster view, and then compares the results. So it can be expensive for clusters with a lot
of nodes. We suggest that you turn off this feature for clusters with many nodes.

final ClusterTopologyRefreshOptions topologyOptions =

Best practices with Redis clients API Version 2015-02-02 379

https://lettuce.io/core/release/api/io/lettuce/core/cluster/ClusterTopologyRefreshOptions.Builder.html#enableAllAdaptiveRefreshTriggers--
https://lettuce.io/core/6.1.6.RELEASE/api/io/lettuce/core/cluster/ClusterTopologyRefreshOptions.RefreshTrigger.html
https://lettuce.io/core/release/api/io/lettuce/core/cluster/ClusterTopologyRefreshOptions.Builder.html#closeStaleConnections-boolean-
https://lettuce.io/core/release/api/io/lettuce/core/cluster/ClusterTopologyRefreshOptions.html#isPeriodicRefreshEnabled--
https://lettuce.io/core/release/api/io/lettuce/core/cluster/ClusterTopologyRefreshOptions.Builder.html#dynamicRefreshSources-boolean-

Amazon ElastiCache for Redis User Guide

 ClusterTopologyRefreshOptions.builder()
 .enableAllAdaptiveRefreshTriggers()
 .enablePeriodicRefresh()
 .dynamicRefreshSources(true)
 .build();

ClientResources

Configure DnsResolver with DirContextDnsResolver. The DNS resolver is based on Java's
com.sun.jndi.dns.DnsContextFactory.

Configure reconnectDelay with exponential backoff and full jitter. Lettuce has built-in retry
mechanisms based on the exponential backoff strategies.. For details, see Exponential Backoff
and Jitter on the AWS Architecture Blog. For more information about the importance of having a
retry backoff strategy, see the backoff logic sections of the Best practices blog post on the AWS
Database Blog.

ClientResources clientResources = DefaultClientResources.builder()
 .dnsResolver(new DirContextDnsResolver())
 .reconnectDelay(
 Delay.fullJitter(
 Duration.ofMillis(100), // minimum 100 millisecond delay
 Duration.ofSeconds(10), // maximum 10 second delay
 100, TimeUnit.MILLISECONDS)) // 100 millisecond base
 .build();

Timeouts

Use a lower connect timeout value than your command timeout. Lettuce uses lazy connection
establishment. So if the connect timeout is higher than the command timeout, you can have a
period of persistent failure after a topology refresh if Lettuce tries to connect to an unhealthy node
and the command timeout is always exceeded.

Use a dynamic command timeout for different commands. We recommend that you set the
command timeout based on the command expected duration. For example, use a longer timeout
for commands that iterate over several keys, such as FLUSHDB, FLUSHALL, KEYS, SMEMBERS, or
Lua scripts. Use shorter timeouts for single key commands, such as SET, GET, and HSET.

Best practices with Redis clients API Version 2015-02-02 380

https://lettuce.io/core/release/api/io/lettuce/core/resource/DefaultClientResources.Builder.html#dnsResolver-io.lettuce.core.resource.DnsResolver-
https://lettuce.io/core/release/api/io/lettuce/core/resource/DirContextDnsResolver.html
https://lettuce.io/core/release/api/io/lettuce/core/resource/DefaultClientResources.Builder.html#reconnectDelay-io.lettuce.core.resource.Delay-
https://aws.amazon.com/blogs/architecture/exponential-backoff-and-jitter
https://aws.amazon.com/blogs/architecture/exponential-backoff-and-jitter
https://aws.amazon.com/blogs/database/best-practices-redis-clients-and-amazon-elasticache-for-redis/

Amazon ElastiCache for Redis User Guide

Note

Timeouts that are configured in the following example are for tests that ran SET/GET
commands with keys and values up to 20 bytes long. The processing time can be longer
when the commands are complex or the keys and values are larger. You should set the
timeouts based on the use case of your application.

private static final Duration META_COMMAND_TIMEOUT = Duration.ofMillis(1000);
private static final Duration DEFAULT_COMMAND_TIMEOUT = Duration.ofMillis(250);
// Socket connect timeout should be lower than command timeout for Lettuce
private static final Duration CONNECT_TIMEOUT = Duration.ofMillis(100);

SocketOptions socketOptions = SocketOptions.builder()
 .connectTimeout(CONNECT_TIMEOUT)
 .build();

class DynamicClusterTimeout extends TimeoutSource {
 private static final Set<ProtocolKeyword> META_COMMAND_TYPES =
 ImmutableSet.<ProtocolKeyword>builder()
 .add(CommandType.FLUSHDB)
 .add(CommandType.FLUSHALL)
 .add(CommandType.CLUSTER)
 .add(CommandType.INFO)
 .add(CommandType.KEYS)
 .build();

 private final Duration defaultCommandTimeout;
 private final Duration metaCommandTimeout;

 DynamicClusterTimeout(Duration defaultTimeout, Duration metaTimeout)
 {
 defaultCommandTimeout = defaultTimeout;
 metaCommandTimeout = metaTimeout;
 }

 @Override
 public long getTimeout(RedisCommand<?, ?, ?> command) {
 if (META_COMMAND_TYPES.contains(command.getType())) {
 return metaCommandTimeout.toMillis();
 }

Best practices with Redis clients API Version 2015-02-02 381

Amazon ElastiCache for Redis User Guide

 return defaultCommandTimeout.toMillis();
 }
}

// Use a dynamic timeout for commands, to avoid timeouts during
// cluster management and slow operations.
TimeoutOptions timeoutOptions = TimeoutOptions.builder()
.timeoutSource(
 new DynamicClusterTimeout(DEFAULT_COMMAND_TIMEOUT, META_COMMAND_TIMEOUT))
.build();

Example: Lettuce configuration for cluster mode and TLS enabled

Note

Timeouts in the following example are for tests that ran SET/GET commands with keys and
values up to 20 bytes long. The processing time can be longer when the commands are
complex or the keys and values are larger. You should set the timeouts based on the use
case of your application.

// Set DNS cache TTL
public void setJVMProperties() {
 java.security.Security.setProperty("networkaddress.cache.ttl", "10");
}

private static final Duration META_COMMAND_TIMEOUT = Duration.ofMillis(1000);
private static final Duration DEFAULT_COMMAND_TIMEOUT = Duration.ofMillis(250);
// Socket connect timeout should be lower than command timeout for Lettuce
private static final Duration CONNECT_TIMEOUT = Duration.ofMillis(100);

// Create RedisURI from the cluster configuration endpoint
clusterConfigurationEndpoint = <cluster-configuration-endpoint> // TODO: add your
 cluster configuration endpoint
final RedisURI redisUriCluster =
 RedisURI.Builder.redis(clusterConfigurationEndpoint)
 .withPort(6379)
 .withSsl(true)
 .build();

// Configure the client's resources
ClientResources clientResources = DefaultClientResources.builder()

Best practices with Redis clients API Version 2015-02-02 382

Amazon ElastiCache for Redis User Guide

 .reconnectDelay(
 Delay.fullJitter(
 Duration.ofMillis(100), // minimum 100 millisecond delay
 Duration.ofSeconds(10), // maximum 10 second delay
 100, TimeUnit.MILLISECONDS)) // 100 millisecond base
 .dnsResolver(new DirContextDnsResolver())
 .build();

// Create a cluster client instance with the URI and resources
RedisClusterClient redisClusterClient =
 RedisClusterClient.create(clientResources, redisUriCluster);

// Use a dynamic timeout for commands, to avoid timeouts during
// cluster management and slow operations.
class DynamicClusterTimeout extends TimeoutSource {
 private static final Set<ProtocolKeyword> META_COMMAND_TYPES =
 ImmutableSet.<ProtocolKeyword>builder()
 .add(CommandType.FLUSHDB)
 .add(CommandType.FLUSHALL)
 .add(CommandType.CLUSTER)
 .add(CommandType.INFO)
 .add(CommandType.KEYS)
 .build();

 private final Duration metaCommandTimeout;
 private final Duration defaultCommandTimeout;

 DynamicClusterTimeout(Duration defaultTimeout, Duration metaTimeout)
 {
 defaultCommandTimeout = defaultTimeout;
 metaCommandTimeout = metaTimeout;
 }

 @Override
 public long getTimeout(RedisCommand<?, ?, ?> command) {
 if (META_COMMAND_TYPES.contains(command.getType())) {
 return metaCommandTimeout.toMillis();
 }
 return defaultCommandTimeout.toMillis();
 }
}

TimeoutOptions timeoutOptions = TimeoutOptions.builder()

Best practices with Redis clients API Version 2015-02-02 383

Amazon ElastiCache for Redis User Guide

 .timeoutSource(new DynamicClusterTimeout(DEFAULT_COMMAND_TIMEOUT,
 META_COMMAND_TIMEOUT))
 .build();

// Configure the topology refreshment optionts
final ClusterTopologyRefreshOptions topologyOptions =
 ClusterTopologyRefreshOptions.builder()
 .enableAllAdaptiveRefreshTriggers()
 .enablePeriodicRefresh()
 .dynamicRefreshSources(true)
 .build();

// Configure the socket options
final SocketOptions socketOptions =
 SocketOptions.builder()
 .connectTimeout(CONNECT_TIMEOUT)
 .keepAlive(true)
 .build();

// Configure the client's options
final ClusterClientOptions clusterClientOptions =
 ClusterClientOptions.builder()
 .topologyRefreshOptions(topologyOptions)
 .socketOptions(socketOptions)
 .autoReconnect(true)
 .timeoutOptions(timeoutOptions)
 .nodeFilter(it ->
 ! (it.is(RedisClusterNode.NodeFlag.FAIL)
 || it.is(RedisClusterNode.NodeFlag.EVENTUAL_FAIL)
 || it.is(RedisClusterNode.NodeFlag.NOADDR)))
 .validateClusterNodeMembership(false)
 .build();

redisClusterClient.setOptions(clusterClientOptions);

// Get a connection
final StatefulRedisClusterConnection<String, String> connection =
 redisClusterClient.connect();

// Get cluster sync/async commands
RedisAdvancedClusterCommands<String, String> sync = connection.sync();
RedisAdvancedClusterAsyncCommands<String, String> async = connection.async();

Best practices with Redis clients API Version 2015-02-02 384

Amazon ElastiCache for Redis User Guide

Example: Lettuce configuration for cluster mode disabled and TLS enabled

Note

Timeouts in the following example are for tests that ran SET/GET commands with keys and
values up to 20 bytes long. The processing time can be longer when the commands are
complex or the keys and values are larger. You should set the timeouts based on the use
case of your application.

// Set DNS cache TTL
public void setJVMProperties() {
 java.security.Security.setProperty("networkaddress.cache.ttl", "10");
}

private static final Duration META_COMMAND_TIMEOUT = Duration.ofMillis(1000);
private static final Duration DEFAULT_COMMAND_TIMEOUT = Duration.ofMillis(250);
// Socket connect timeout should be lower than command timeout for Lettuce
private static final Duration CONNECT_TIMEOUT = Duration.ofMillis(100);

// Create RedisURI from the primary/reader endpoint
clusterEndpoint = <primary/reader-endpoint> // TODO: add your node endpoint
RedisURI redisUriStandalone =

 RedisURI.Builder.redis(clusterEndpoint).withPort(6379).withSsl(true).withDatabase(0).build();

ClientResources clientResources =
 DefaultClientResources.builder()
 .dnsResolver(new DirContextDnsResolver())
 .reconnectDelay(
 Delay.fullJitter(
 Duration.ofMillis(100), // minimum 100 millisecond delay
 Duration.ofSeconds(10), // maximum 10 second delay
 100,
 TimeUnit.MILLISECONDS)) // 100 millisecond base
 .build();

// Use a dynamic timeout for commands, to avoid timeouts during
// slow operations.
class DynamicTimeout extends TimeoutSource {
 private static final Set<ProtocolKeyword> META_COMMAND_TYPES =
 ImmutableSet.<ProtocolKeyword>builder()

Best practices with Redis clients API Version 2015-02-02 385

Amazon ElastiCache for Redis User Guide

 .add(CommandType.FLUSHDB)
 .add(CommandType.FLUSHALL)
 .add(CommandType.INFO)
 .add(CommandType.KEYS)
 .build();

 private final Duration metaCommandTimeout;
 private final Duration defaultCommandTimeout;

 DynamicTimeout(Duration defaultTimeout, Duration metaTimeout)
 {
 defaultCommandTimeout = defaultTimeout;
 metaCommandTimeout = metaTimeout;
 }

 @Override
 public long getTimeout(RedisCommand<?, ?, ?> command) {
 if (META_COMMAND_TYPES.contains(command.getType())) {
 return metaCommandTimeout.toMillis();
 }
 return defaultCommandTimeout.toMillis();
 }
}

TimeoutOptions timeoutOptions = TimeoutOptions.builder()
 .timeoutSource(new DynamicTimeout(DEFAULT_COMMAND_TIMEOUT, META_COMMAND_TIMEOUT))
 .build();

final SocketOptions socketOptions =
 SocketOptions.builder().connectTimeout(CONNECT_TIMEOUT).keepAlive(true).build();

ClientOptions clientOptions =

 ClientOptions.builder().timeoutOptions(timeoutOptions).socketOptions(socketOptions).build();

RedisClient redisClient = RedisClient.create(clientResources, redisUriStandalone);
redisClient.setOptions(clientOptions);

IPv6 client examples

Following are best practices for interacting with IPv6 enabled ElastiCache resources with commonly
used open-source client libraries. You can view existing best practices for interacting with

Best practices with Redis clients API Version 2015-02-02 386

https://aws.amazon.com/blogs/database/best-practices-redis-clients-and-amazon-elasticache-for-redis/

Amazon ElastiCache for Redis User Guide

ElastiCache for recommendations on configuring clients for ElastiCache resources. However, there
are some caveats worth noting when interacting with IPv6 enabled resources.

Validated clients

ElastiCache is compatible with open-source Redis. This means that open source Redis clients that
support IPv6 connections should be able to connect to IPv6 enabled ElastiCache for Redis clusters.
In addition, several of the most popular Python and Java clients have been specifically tested and
validated to work with all supported network type configurations (IPv4 only, IPv6 only, and Dual
Stack)

Validated Clients:

• Redis Py () – 4.1.2

• Lettuce – Version: 6.1.6.RELEASE

• Jedis – Version: 3.6.0

Configuring a preferred protocol for dual stack clusters

For cluster mode enabled Redis clusters, you can control the protocol clients will use to connect to
the nodes in the cluster with the IP Discovery parameter. The IP Discovery parameter can be set to
either IPv4 or IPv6.

For Redis clusters, the IP discovery parameter sets the IP protocol used in the cluster slots (), cluster
shards (), and cluster nodes () output. These commands are used by clients to discover the cluster
topology. Clients use the IPs in theses commands to connect to the other nodes in the cluster.

Changing the IP Discovery will not result in any downtime for connected clients. However, the
changes will take some time to propagate. To determine when the changes have completely
propagated for a Redis Cluster, monitor the output of cluster slots. Once all of the nodes
returned by the cluster slots command report IPs with the new protocol the changes have finished
propagating.

Example with Redis-Py:

cluster = RedisCluster(host="xxxx", port=6379)
target_type = IPv6Address # Or IPv4Address if changing to IPv4

nodes = set()

Best practices with Redis clients API Version 2015-02-02 387

https://aws.amazon.com/blogs/database/best-practices-redis-clients-and-amazon-elasticache-for-redis/
https://github.com/redis/redis-py
https://github.com/redis/redis-py/tree/v4.1.2
https://lettuce.io/
https://github.com/lettuce-io/lettuce-core/tree/6.1.6.RELEASE
https://github.com/redis/jedis
https://github.com/redis/jedis/tree/jedis-3.6.0
https://redis.io/commands/cluster-slots/
https://redis.io/commands/cluster-shards/
https://redis.io/commands/cluster-shards/
https://redis.io/commands/cluster-nodes/

Amazon ElastiCache for Redis User Guide

while len(nodes) == 0 or not all((type(ip_address(host)) is target_type) for host in
 nodes):
 nodes = set()

 # This refreshes the cluster topology and will discovery any node updates.
 # Under the hood it calls cluster slots
 cluster.nodes_manager.initialize()
 for node in cluster.get_nodes():
 nodes.add(node.host)
 self.logger.info(nodes)

 time.sleep(1)

Example with Lettuce:

RedisClusterClient clusterClient = RedisClusterClient.create(RedisURI.create("xxxx",
 6379));

Class targetProtocolType = Inet6Address.class; // Or Inet4Address.class if you're
 switching to IPv4

Set<String> nodes;

do {
 // Check for any changes in the cluster topology.
 // Under the hood this calls cluster slots
 clusterClient.refreshPartitions();
 Set<String> nodes = new HashSet<>();

 for (RedisClusterNode node : clusterClient.getPartitions().getPartitions()) {
 nodes.add(node.getUri().getHost());
 }

 Thread.sleep(1000);
} while (!nodes.stream().allMatch(node -> {
 try {
 return finalTargetProtocolType.isInstance(InetAddress.getByName(node));
 } catch (UnknownHostException ignored) {}
 return false;
}));

Best practices with Redis clients API Version 2015-02-02 388

Amazon ElastiCache for Redis User Guide

TLS enabled dual stack ElastiCache clusters

When TLS is enabled for ElastiCache clusters the cluster discovery functions (cluster slots,
cluster shards, and cluster nodes) return hostnames instead of IPs. The hostnames are
then used instead of IPs to connect to the ElastiCache cluster and perform a TLS handshake. This
means that clients won't be affected by the IP Discovery parameter. For TLS enabled clusters the IP
Discovery parameter has no effect on the preferred IP protocol. Instead, the IP protocol used will
be determined by which IP protocol the client prefers when resolving DNS hostnames.

Java clients

When connecting from a Java environment that supports both IPv4 and IPv6, Java
will by default prefer IPv4 over IPv6 for backwards compatibility. However, the IP
protocol preference is configurable through the JVM arguments. To prefer IPv4,
the JVM accepts -Djava.net.preferIPv4Stack=true and to prefer IPv6 set -
Djava.net.preferIPv6Stack=true. Setting -Djava.net.preferIPv4Stack=true means
that the JVM will no longer make any IPv6 connections. Including those to other non Redis
applications.

Host Level Preferences

In general, if the client or client runtime don't provide configuration options for setting an IP
protocol preference, when performing DNS resolution, the IP protocol will depend on the host's
configuration. By default, most hosts prefer IPv6 over IPv4 but this preference can be configured
at the host level. This will affect all DNS requests from that host, not just those to ElastiCache
clusters.

Linux hosts

For Linux, an IP protocol preference can be configured by modifying the gai.conf file. The
gai.conf file can be found under /etc/gai.conf. If there is no gai.conf specified then an
example one should be available under /usr/share/doc/glibc-common-x.xx/gai.conf
which can be copied to /etc/gai.conf and then the default configuration should be un-
commented. To update the configuration to prefer IPv4 when connecting to an ElastiCache
cluster update the precedence for the CIDR range encompassing the cluster IPs to be above the
precedence for default IPv6 connections. By default IPv6 connections have a precedence of 40.
For example, assuming the cluster is located in a subnet with the CIDR 172.31.0.0:0/16, the
configuration below would cause clients to prefer IPv4 connections to that cluster.

label ::1/128 0

Best practices with Redis clients API Version 2015-02-02 389

Amazon ElastiCache for Redis User Guide

label ::/0 1
label 2002::/16 2
label ::/96 3
label ::ffff:0:0/96 4
label fec0::/10 5
label fc00::/7 6
label 2001:0::/32 7
label ::ffff:172.31.0.0/112 8
#
This default differs from the tables given in RFC 3484 by handling
(now obsolete) site-local IPv6 addresses and Unique Local Addresses.
The reason for this difference is that these addresses are never
NATed while IPv4 site-local addresses most probably are. Given
the precedence of IPv6 over IPv4 (see below) on machines having only
site-local IPv4 and IPv6 addresses a lookup for a global address would
see the IPv6 be preferred. The result is a long delay because the
site-local IPv6 addresses cannot be used while the IPv4 address is
(at least for the foreseeable future) NATed. We also treat Teredo
tunnels special.
#
precedence <mask> <value>
Add another rule to the RFC 3484 precedence table. See section 2.1
and 10.3 in RFC 3484. The default is:
#
precedence ::1/128 50
precedence ::/0 40
precedence 2002::/16 30
precedence ::/96 20
precedence ::ffff:0:0/96 10
precedence ::ffff:172.31.0.0/112 100

More details on gai.conf are available on the Linux main page

Windows hosts

The process for Windows hosts is similar. For Windows hosts you can run netsh interface
ipv6 set prefix CIDR_CONTAINING_CLUSTER_IPS PRECEDENCE LABEL. This has the same
effect as modifying the gai.conf file on Linux hosts.

This will update the preference policies to prefer IPv4 connections over IPv6
connections for the specified CIDR range. For example, assuming that the cluster is
in a subnet with the 172.31.0.0:0/16 CIDR executing netsh interface ipv6 set

Best practices with Redis clients API Version 2015-02-02 390

https://man7.org/linux/man-pages/man5/gai.conf.5.html

Amazon ElastiCache for Redis User Guide

prefix ::ffff:172.31.0.0:0/112 100 15 would result in the following precedence table
which would cause clients to prefer IPv4 when connecting to the cluster.

C:\Users\Administrator>netsh interface ipv6 show prefixpolicies
Querying active state...

Precedence Label Prefix
---------- ----- --------------------------------
100 15 ::ffff:172.31.0.0:0/112
20 4 ::ffff:0:0/96
50 0 ::1/128
40 1 ::/0
30 2 2002::/16
5 5 2001::/32
3 13 fc00::/7
1 11 fec0::/10
1 12 3ffe::/16
1 3 ::/96

Best practices with Redis clients API Version 2015-02-02 391

Amazon ElastiCache for Redis User Guide

Best practices when working with self-designed clusters

This section applies only when you choose to design your own Redis clusters. We recommend you
review and follow these best practices.

Topics

• Minimizing downtime with Multi-AZ

• Ensuring that you have enough memory to create a Redis snapshot

• Managing Reserved Memory

• Online cluster resizing

• Minimizing downtime during maintenance

Minimizing downtime with Multi-AZ

See Minimizing downtime in ElastiCache for Redis with Multi-AZ, to learn more about Multi-AZ and
minimizing downtime.

Ensuring that you have enough memory to create a Redis snapshot

Redis snapshots and synchronizations in version 2.8.22 and later

Redis 2.8.22 introduces a forkless save process that allows you to allocate more of your memory to
your application's use without incurring increased swap usage during synchronizations and saves.
For more information, see How synchronization and backup are implemented.

Redis snapshots and synchronizations before version 2.8.22

When you work with Redis ElastiCache, Redis calls a background write command in a number of
cases:

• When creating a snapshot for a backup.

• When synchronizing replicas with the primary in a replication group.

• When enabling the append-only file feature (AOF) for Redis.

• When promoting a replica to primary (which causes a primary/replica sync).

Whenever Redis executes a background write process, you must have sufficient available memory
to accommodate the process overhead. Failure to have sufficient memory available causes the

Best practices when working with self-designed clusters API Version 2015-02-02 392

https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/AutoFailover.html

Amazon ElastiCache for Redis User Guide

process to fail. Because of this, it is important to choose a node instance type that has sufficient
memory when creating your Redis cluster.

Background Write Process and Memory Usage

Whenever a background write process is called, Redis forks its process (remember, Redis is single
threaded). One fork persists your data to disk in a Redis .rdb snapshot file. The other fork services
all read and write operations. To ensure that your snapshot is a point-in-time snapshot, all data
updates and additions are written to an area of available memory separate from the data area.

As long as you have sufficient memory available to record all write operations while the data is
being persisted to disk, you should have no insufficient memory issues. You are likely to experience
insufficient memory issues if any of the following are true:

• Your application performs many write operations, thus requiring a large amount of available
memory to accept the new or updated data.

• You have very little memory available in which to write new or updated data.

• You have a large dataset that takes a long time to persist to disk, thus requiring a large number
of write operations.

The following diagram illustrates memory use when executing a background write process.

For information on the impact of doing a backup on performance, see Performance impact of
backups of self-designed clusters.

For more information on how Redis performs snapshots, see http://redis.io.

Best practices when working with self-designed clusters API Version 2015-02-02 393

http://redis.io

Amazon ElastiCache for Redis User Guide

For more information on regions and Availability Zones, see Choosing regions and availability
zones.

Avoiding running out of memory when executing a background write

Whenever a background write process such as BGSAVE or BGREWRITEAOF is called, to keep the
process from failing, you must have more memory available than will be consumed by write
operations during the process. The worst-case scenario is that during the background write
operation every Redis record is updated and some new records are added to the cache. Because
of this, we recommend that you set reserved-memory-percent to 50 (50 percent) for Redis
versions before 2.8.22 or 25 (25 percent) for Redis versions 2.8.22 and later.

The maxmemory value indicates the memory available to you for data and operational overhead.
Because you cannot modify the reserved-memory parameter in the default parameter group,
you must create a custom parameter group for the cluster. The default value for reserved-
memory is 0, which allows Redis to consume all of maxmemory with data, potentially leaving too
little memory for other uses, such as a background write process. For maxmemory values by node
instance type, see Redis node-type specific parameters.

You can also use reserved-memory parameter to reduce the amount of memory Redis uses on
the box.

For more information on Redis-specific parameters in ElastiCache, see Redis-specific parameters.

For information on creating and modifying parameter groups, see Creating a parameter group and
Modifying a parameter group.

Best practices when working with self-designed clusters API Version 2015-02-02 394

Amazon ElastiCache for Redis User Guide

Managing Reserved Memory

Reserved memory is memory set aside for nondata use. When performing a backup or failover,
Redis uses available memory to record write operations to your cluster while the cluster's data is
being written to the .rdb file. If you don't have sufficient memory available for all the writes, the
process fails. Following, you can find information on options for managing reserved memory for
ElastiCache for Redis and how to apply those options.

Topics

• How Much Reserved Memory Do You Need?

• Parameters to Manage Reserved Memory

• Specifying Your Reserved Memory Management Parameter

How Much Reserved Memory Do You Need?

If you are running a version of Redis before 2.8.22, reserve more memory for backups and failovers
than if you are running Redis 2.8.22 or later. This requirement is due to the different ways that
ElastiCache for Redis implements the backup process. The rule of thumb is to reserve half of a
node type's maxmemory value for Redis overhead for versions before 2.8.22, and one-fourth for
Redis versions 2.8.22 and later.

When using clusters with data tiering, we recommend increasing maxmemory to up to half your
node's available memory if your workload is write-heavy.

For more information, see the following:

• Ensuring that you have enough memory to create a Redis snapshot

• How synchronization and backup are implemented

• Data tiering

Parameters to Manage Reserved Memory

As of March 16, 2017, Amazon ElastiCache for Redis provides two mutually exclusive parameters
for managing your Redis memory, reserved-memory and reserved-memory-percent. Neither
of these parameters is part of the Redis distribution.

Best practices when working with self-designed clusters API Version 2015-02-02 395

Amazon ElastiCache for Redis User Guide

Depending upon when you became an ElastiCache customer, one or the other of these parameters
is the default memory management parameter. This parameter applies when you create a new
Redis cluster or replication group and use a default parameter group.

• For customers who started before March 16, 2017 – When you create a Redis cluster or
replication group using the default parameter group, your memory management parameter is
reserved-memory. In this case, zero (0) bytes of memory are reserved.

• For customers who started on or after March 16, 2017 – When you create a Redis cluster or
replication group using the default parameter group, your memory management parameter
is reserved-memory-percent. In this case, 25 percent of your node's maxmemory value is
reserved for nondata purposes.

After reading about the two Redis memory management parameters, you might prefer to use the
one that isn't your default or with nondefault values. If so, you can change to the other reserved
memory management parameter.

To change the value of that parameter, you can create a custom parameter group and modify it
to use your preferred memory management parameter and value. You can then use the custom
parameter group whenever you create a new Redis cluster or replication group. For existing clusters
or replication groups, you can modify them to use your custom parameter group.

For more information, see the following:

• Specifying Your Reserved Memory Management Parameter

• Creating a parameter group

• Modifying a parameter group

• Modifying an ElastiCache cluster

• Modifying a replication group

The reserved-memory Parameter

Before March 16, 2017, all ElastiCache for Redis reserved memory management was done using
the parameter reserved-memory. The default value of reserved-memory is 0. This default
reserves no memory for Redis overhead and allows Redis to consume all of a node's memory with
data.

Best practices when working with self-designed clusters API Version 2015-02-02 396

Amazon ElastiCache for Redis User Guide

Changing reserved-memory so you have sufficient memory available for backups and failovers
requires you to create a custom parameter group. In this custom parameter group, you set
reserved-memory to a value appropriate for the Redis version running on your cluster and
cluster's node type. For more information, see How Much Reserved Memory Do You Need?

The ElastiCache for Redis parameter reserved-memory is specific to ElastiCache for Redis and
isn't part of the Redis distribution.

The following procedure shows how to use reserved-memory to manage the memory on your
Redis cluster.

To reserve memory using reserved-memory

1. Create a custom parameter group specifying the parameter group family matching the engine
version you’re running—for example, specifying the redis2.8 parameter group family. For
more information, see Creating a parameter group.

aws elasticache create-cache-parameter-group \
 --cache-parameter-group-name redis6x-m3xl \
 --description "Redis 2.8.x for m3.xlarge node type" \
 --cache-parameter-group-family redis6.x

2. Calculate how many bytes of memory to reserve for Redis overhead. You can find the value of
maxmemory for your node type at Redis node-type specific parameters.

3. Modify the custom parameter group so that the parameter reserved-memory is the number
of bytes you calculated in the previous step. The following AWS CLI example assumes you’re
running a version of Redis before 2.8.22 and need to reserve half of the node’s maxmemory.
For more information, see Modifying a parameter group.

aws elasticache modify-cache-parameter-group \
 --cache-parameter-group-name redis28-m3xl \
 --parameter-name-values "ParameterName=reserved-memory,
 ParameterValue=7130316800"

You need a separate custom parameter group for each node type that you use, because each
node type has a different maxmemory value. Thus, each node type needs a different value for
reserved-memory.

4. Modify your Redis cluster or replication group to use your custom parameter group.

Best practices when working with self-designed clusters API Version 2015-02-02 397

Amazon ElastiCache for Redis User Guide

The following CLI example modifies the cluster my-redis-cluster to use the custom
parameter group redis28-m3xl beginning immediately. For more information, see Modifying
an ElastiCache cluster.

aws elasticache modify-cache-cluster \
 --cache-cluster-id my-redis-cluster \
 --cache-parameter-group-name redis28-m3xl \
 --apply-immediately

The following CLI example modifies the replication group my-redis-repl-grp to use the
custom parameter group redis28-m3xl beginning immediately. For more information,
Modifying a replication group.

aws elasticache modify-replication-group \
 --replication-group-id my-redis-repl-grp \
 --cache-parameter-group-name redis28-m3xl \
 --apply-immediately

The reserved-memory-percent parameter

On March 16, 2017, Amazon ElastiCache introduced the parameter reserved-memory-percent
and made it available on all versions of ElastiCache for Redis. The purpose of reserved-
memory-percent is to simplify reserved memory management across all your clusters. It does
so by enabling you to have a single parameter group for each parameter group family (such as
redis2.8) to manage your clusters' reserved memory, regardless of node type. The default value
for reserved-memory-percent is 25 (25 percent).

The ElastiCache for Redis parameter reserved-memory-percent is specific to ElastiCache for
Redis and isn't part of the Redis distribution.

If your cluster is using a node type from the r6gd family and your memory usage reaches 75
percent, data-tiering will automatically be triggered. For more information, see Data tiering.

To reserve memory using reserved-memory-percent

To use reserved-memory-percent to manage the memory on your ElastiCache for Redis cluster,
do one of the following:

Best practices when working with self-designed clusters API Version 2015-02-02 398

Amazon ElastiCache for Redis User Guide

• If you are running Redis 2.8.22 or later, assign the default parameter group to your cluster. The
default 25 percent should be adequate. If not, take the steps described following to change the
value.

• If you are running a version of Redis before 2.8.22, you probably need to reserve more memory
than reserved-memory-percent's default 25 percent. To do so, use the following procedure.

To change the percent value of reserved-memory-percent

1. Create a custom parameter group specifying the parameter group family matching the engine
version you’re running—for example, specifying the redis2.8 parameter group family. A
custom parameter group is necessary because you can't modify a default parameter group. For
more information, see Creating a parameter group.

aws elasticache create-cache-parameter-group \
 --cache-parameter-group-name redis28-50 \
 --description "Redis 2.8.x 50% reserved" \
 --cache-parameter-group-family redis2.8

Because reserved-memory-percent reserves memory as a percent of a node’s maxmemory,
you don't need a custom parameter group for each node type.

2. Modify the custom parameter group so that reserved-memory-percent is 50 (50 percent).
For more information, see Modifying a parameter group.

aws elasticache modify-cache-parameter-group \
 --cache-parameter-group-name redis28-50 \
 --parameter-name-values "ParameterName=reserved-memory-percent,
 ParameterValue=50"

3. Use this custom parameter group for any Redis clusters or replication groups running a version
of Redis older than 2.8.22.

The following CLI example modifies the Redis cluster my-redis-cluster to use the custom
parameter group redis28-50 beginning immediately. For more information, see Modifying
an ElastiCache cluster.

aws elasticache modify-cache-cluster \
 --cache-cluster-id my-redis-cluster \
 --cache-parameter-group-name redis28-50 \

Best practices when working with self-designed clusters API Version 2015-02-02 399

Amazon ElastiCache for Redis User Guide

 --apply-immediately

The following CLI example modifies the Redis replication group my-redis-repl-grp to use
the custom parameter group redis28-50 beginning immediately. For more information, see
Modifying a replication group.

aws elasticache modify-replication-group \
 --replication-group-id my-redis-repl-grp \
 --cache-parameter-group-name redis28-50 \
 --apply-immediately

Specifying Your Reserved Memory Management Parameter

If you were a current ElastiCache customer on March 16, 2017, your default reserved memory
management parameter is reserved-memory with zero (0) bytes of reserved memory. If
you became an ElastiCache customer after March 16, 2017, your default reserved memory
management parameter is reserved-memory-percent with 25 percent of the node's memory
reserved. This is true no matter when you created your ElastiCache for Redis cluster or replication
group. However, you can change your reserved memory management parameter using either the
AWS CLI or ElastiCache API.

The parameters reserved-memory and reserved-memory-percent are mutually exclusive. A
parameter group always has one but never both. You can change which parameter a parameter
group uses for reserved memory management by modifying the parameter group. The parameter
group must be a custom parameter group, because you can't modify default parameter groups. For
more information, see Creating a parameter group.

To specify reserved-memory-percent

To use reserved-memory-percent as your reserved memory management parameter, modify
a custom parameter group using the modify-cache-parameter-group command. Use the
parameter-name-values parameter to specify reserved-memory-percent and a value for it.

The following CLI example modifies the custom parameter group redis32-cluster-on so that
it uses reserved-memory-percent to manage reserved memory. A value must be assigned to
ParameterValue for the parameter group to use the ParameterName parameter for reserved
memory management. For more information, see Modifying a parameter group.

aws elasticache modify-cache-parameter-group \

Best practices when working with self-designed clusters API Version 2015-02-02 400

Amazon ElastiCache for Redis User Guide

 --cache-parameter-group-name redis32-cluster-on \
 --parameter-name-values "ParameterName=reserved-memory-percent, ParameterValue=25"

To specify reserved-memory

To use reserved-memory as your reserved memory management parameter, modify a custom
parameter group using the modify-cache-parameter-group command. Use the parameter-
name-values parameter to specify reserved-memory and a value for it.

The following CLI example modifies the custom parameter group redis32-m3xl so that it uses
reserved-memory to manage reserved memory. A value must be assigned to ParameterValue
for the parameter group to use the ParameterName parameter for reserved memory
management. Because the engine version is newer than 2.8.22, we set the value to 3565158400
which is 25 percent of a cache.m3.xlarge’s maxmemory. For more information, see Modifying a
parameter group.

aws elasticache modify-cache-parameter-group \
 --cache-parameter-group-name redis32-m3xl \
 --parameter-name-values "ParameterName=reserved-memory, ParameterValue=3565158400"

Online cluster resizing

Resharding involves adding and removing shards or nodes to your cluster and redistributing key
spaces. As a result, multiple things have an impact on the resharding operation, such as the load
on the cluster, memory utilization, and overall size of data. For the best experience, we recommend
that you follow overall cluster best practices for uniform workload pattern distribution. In addition,
we recommend taking the following steps.

Before initiating resharding, we recommend the following:

• Test your application – Test your application behavior during resharding in a staging
environment if possible.

• Get early notification for scaling issues – Resharding is a compute-intensive operation. Because
of this , we recommend keeping CPU utilization under 80 percent on multicore instances and less
than 50 percent on single core instances during resharding. Monitor ElastiCache for Redis metrics
and initiate resharding before your application starts observing scaling issues. Useful metrics
to track are CPUUtilization, NetworkBytesIn, NetworkBytesOut, CurrConnections,
NewConnections, FreeableMemory, SwapUsage, and BytesUsedForCacheItems.

Best practices when working with self-designed clusters API Version 2015-02-02 401

Amazon ElastiCache for Redis User Guide

• Ensure sufficient free memory is available before scaling in – If you're scaling in, ensure that
free memory available on the shards to be retained is at least 1.5 times the memory used on the
shards you plan to remove.

• Initiate resharding during off-peak hours – This practice helps to reduce the latency and
throughput impact on the client during the resharding operation. It also helps to complete
resharding faster as more resources can be used for slot redistribution.

• Review client timeout behavior – Some clients might observe higher latency during online
cluster resizing. Configuring your client library with a higher timeout can help by giving the
system time to connect even under higher load conditions on server. In some cases, you might
open a large number of connections to the server. In these cases, consider adding exponential
backoff to reconnect logic. Doing this can help prevent a burst of new connections hitting the
server at the same time.

• Load your Functions on every shard – When scaling out your cluster, ElastiCache will
automatically replicate the Functions loaded in one of the existing nodes (selected at random) to
the new node(s). If your cluster has Redis 7.0 or above and your application uses Redis Functions,
we recommend loading all of your functions to all the shards before scaling out so that your
cluster does not end up with different functions on different shards.

After resharding, note the following:

• Scale-in might be partially successful if insufficient memory is available on target shards. If such
a result occurs, review available memory and retry the operation, if necessary. The data on the
target shards will not be deleted.

• Slots with large items are not migrated. In particular, slots with items larger than 256 MB post-
serialization are not migrated.

• FLUSHALL and FLUSHDB commands are not supported inside Lua scripts during a resharding
operation. Prior to Redis 6, the BRPOPLPUSH command is not supported if it operates on the slot
being migrated.

Minimizing downtime during maintenance

Cluster mode configuration has the best availability during managed or unmanaged operations.
We recommend that you use a cluster mode supported client that connects to the cluster discovery
endpoint. For cluster mode disabled, we recommend that you use the primary endpoint for all
write operations.

Best practices when working with self-designed clusters API Version 2015-02-02 402

https://redis.io/docs/manual/programmability/functions-intro/

Amazon ElastiCache for Redis User Guide

For read activity, applications can also connect to any node in the cluster. Unlike the primary
endpoint, node endpoints resolve to specific endpoints. If you make a change in your cluster, such
as adding or deleting a replica, you must update the node endpoints in your application. This is
why for cluster mode disabled, we recommend that you use the reader endpoint for read activity.

If AutoFailover is enabled in the cluster, the primary node might change. Therefore, the application
should confirm the role of the node and update all the read endpoints. Doing this helps ensure
that you aren't causing a major load on the primary. With AutoFailover disabled, the role of the
node doesn't change. However, the downtime in managed or unmanaged operations is higher as
compared to clusters with AutoFailover enabled.

Avoid directing read requests to a single read replica node, as its unavailability could lead to a
read outage. Either fallback to reading from the primary, or ensure that you have at least two read
replicas to avoid any read interruption during maintenance.

Best practices when working with self-designed clusters API Version 2015-02-02 403

Amazon ElastiCache for Redis User Guide

Redis best practices

The following are best practices when using Redis to improve performance and reliability:

• Use cluster-mode enabled configurations – Cluster-mode enabled allows the cache to
scale horizontally to achieve higher storage and throughput than a cluster-mode disabled
configuration. ElastiCache serverless is only available in a cluster-mode enabled configuration.

• Use long-lived connections – Creating a new connection is expensive, and takes time and CPU
resources from the cache. Reuse connections when possible (e.g. with connection pooling) to
amortize this cost over many commands.

• Read from replicas – If you are using ElastiCache serverless or have provisioned read replicas
(self-designed clusters), direct reads to replicas to achieve better scalability and/or lower latency.
Reads from replicas are eventually consistent with the primary.

In a self-designed cluster, avoid directing read requests to a single read replica since reads may
not be available temporarily if the node fails. Either configure your client to direct read requests
to at least two read replicas, or direct reads to a single replica and the primary.

In ElastiCache serverless, reading from the replica port (6380) will direct reads to the client's
local availability zone when possible, reducing retrieval latency. It will automatically fall back to
the other nodes during failures.

• Avoid expensive commands – Avoid running any computationally and I/O intensive operations,
such as the KEYS and SMEMBERS commands. We suggest this approach because these operations
increase the load on the cluster and have an impact on the performance of the cluster. Instead,
use the SCAN and SSCAN commands.

• Follow Lua best practices – Avoid long running Lua scripts, and always declare keys used in Lua
scripts up front. We recommend this approach to determine that the Lua script is not using cross
slot commands. Ensure that the keys used in Lua scripts belong to the same slot.

• Use sharded pub/sub – When using Redis to support pub/sub workloads with high throughput,
we recommend you use sharded pub/sub (available with Redis 7 or later). Traditional pub/sub
in cluster-mode enabled clusters broadcasts messages to all nodes in the cluster, which can
result in high EngineCPUUtilization. Note that in ElastiCache serverless, traditional pub/sub
commands internally use sharded pub/sub commands.

Redis best practices API Version 2015-02-02 404

https://redis.io/docs/manual/pubsub/#sharded-pubsub

Amazon ElastiCache for Redis User Guide

Caching strategies

In the following topic, you can find strategies for populating and maintaining your cache.

What strategies to implement for populating and maintaining your cache depend upon what
data you cache and the access patterns to that data. For example, you likely don't want to use the
same strategy for both a top-10 leaderboard on a gaming site and trending news stories. In the
rest of this section, we discuss common cache maintenance strategies and their advantages and
disadvantages.

Topics

• Lazy loading

• Write-through

• Adding TTL

• Related topics

Lazy loading

As the name implies, lazy loading is a caching strategy that loads data into the cache only when
necessary. It works as described following.

Amazon ElastiCache is an in-memory key-value store that sits between your application and the
data store (database) that it accesses. Whenever your application requests data, it first makes the
request to the ElastiCache cache. If the data exists in the cache and is current, ElastiCache returns
the data to your application. If the data doesn't exist in the cache or has expired, your application
requests the data from your data store. Your data store then returns the data to your application.
Your application next writes the data received from the store to the cache. This way, it can be more
quickly retrieved the next time it's requested.

A cache hit occurs when data is in the cache and isn't expired:

1. Your application requests data from the cache.

2. The cache returns the data to the application.

A cache miss occurs when data isn't in the cache or is expired:

1. Your application requests data from the cache.

Caching strategies API Version 2015-02-02 405

Amazon ElastiCache for Redis User Guide

2. The cache doesn't have the requested data, so returns a null.

3. Your application requests and receives the data from the database.

4. Your application updates the cache with the new data.

Advantages and disadvantages of lazy loading

The advantages of lazy loading are as follows:

• Only requested data is cached.

Because most data is never requested, lazy loading avoids filling up the cache with data that isn't
requested.

• Node failures aren't fatal for your application.

When a node fails and is replaced by a new, empty node, your application continues to function,
though with increased latency. As requests are made to the new node, each cache miss results
in a query of the database. At the same time, the data copy is added to the cache so that
subsequent requests are retrieved from the cache.

The disadvantages of lazy loading are as follows:

• There is a cache miss penalty. Each cache miss results in three trips:

1. Initial request for data from the cache

2. Query of the database for the data

3. Writing the data to the cache

These misses can cause a noticeable delay in data getting to the application.

• Stale data.

If data is written to the cache only when there is a cache miss, data in the cache can become
stale. This result occurs because there are no updates to the cache when data is changed in the
database. To address this issue, you can use the Write-through and Adding TTL strategies.

Lazy loading pseudocode example

The following is a pseudocode example of lazy loading logic.

Caching strategies API Version 2015-02-02 406

Amazon ElastiCache for Redis User Guide

// ***
// function that returns a customer's record.
// Attempts to retrieve the record from the cache.
// If it is retrieved, the record is returned to the application.
// If the record is not retrieved from the cache, it is
// retrieved from the database,
// added to the cache, and
// returned to the application
// ***
get_customer(customer_id)

 customer_record = cache.get(customer_id)
 if (customer_record == null)

 customer_record = db.query("SELECT * FROM Customers WHERE id = {0}",
 customer_id)
 cache.set(customer_id, customer_record)

 return customer_record

For this example, the application code that gets the data is the following.

customer_record = get_customer(12345)

Write-through

The write-through strategy adds data or updates data in the cache whenever data is written to the
database.

Advantages and disadvantages of write-through

The advantages of write-through are as follows:

• Data in the cache is never stale.

Because the data in the cache is updated every time it's written to the database, the data in the
cache is always current.

• Write penalty vs. read penalty.

Every write involves two trips:

1. A write to the cache

Caching strategies API Version 2015-02-02 407

Amazon ElastiCache for Redis User Guide

2. A write to the database

Which adds latency to the process. That said, end users are generally more tolerant of latency
when updating data than when retrieving data. There is an inherent sense that updates are more
work and thus take longer.

The disadvantages of write-through are as follows:

• Missing data.

If you spin up a new node, whether due to a node failure or scaling out, there is missing data.
This data continues to be missing until it's added or updated on the database. You can minimize
this by implementing lazy loading with write-through.

• Cache churn.

Most data is never read, which is a waste of resources. By adding a time to live (TTL) value, you
can minimize wasted space.

Write-through pseudocode example

The following is a pseudocode example of write-through logic.

// ***
// function that saves a customer's record.
// ***
save_customer(customer_id, values)

 customer_record = db.query("UPDATE Customers WHERE id = {0}", customer_id, values)
 cache.set(customer_id, customer_record)
 return success

For this example, the application code that gets the data is the following.

save_customer(12345,{"address":"123 Main"})

Adding TTL

Lazy loading allows for stale data but doesn't fail with empty nodes. Write-through ensures that
data is always fresh, but can fail with empty nodes and can populate the cache with superfluous

Caching strategies API Version 2015-02-02 408

Amazon ElastiCache for Redis User Guide

data. By adding a time to live (TTL) value to each write, you can have the advantages of each
strategy. At the same time, you can and largely avoid cluttering up the cache with extra data.

Time to live (TTL) is an integer value that specifies the number of seconds until the key expires.
Redis can specify seconds or milliseconds for this value. When an application attempts to read an
expired key, it is treated as though the key is not found. The database is queried for the key and the
cache is updated. This approach doesn't guarantee that a value isn't stale. However, it keeps data
from getting too stale and requires that values in the cache are occasionally refreshed from the
database.

For more information, see the Redis set command .

TTL pseudocode examples

The following is a pseudocode example of write-through logic with TTL.

// ***
// function that saves a customer's record.
// The TTL value of 300 means that the record expires
// 300 seconds (5 minutes) after the set command
// and future reads will have to query the database.
// ***
save_customer(customer_id, values)

 customer_record = db.query("UPDATE Customers WHERE id = {0}", customer_id, values)
 cache.set(customer_id, customer_record, 300)

 return success

The following is a pseudocode example of lazy loading logic with TTL.

// ***
// function that returns a customer's record.
// Attempts to retrieve the record from the cache.
// If it is retrieved, the record is returned to the application.
// If the record is not retrieved from the cache, it is
// retrieved from the database,
// added to the cache, and
// returned to the application.
// The TTL value of 300 means that the record expires
// 300 seconds (5 minutes) after the set command

Caching strategies API Version 2015-02-02 409

http://redis.io/commands/set

Amazon ElastiCache for Redis User Guide

// and subsequent reads will have to query the database.
// ***
get_customer(customer_id)

 customer_record = cache.get(customer_id)

 if (customer_record != null)
 if (customer_record.TTL < 300)
 return customer_record // return the record and exit function

 // do this only if the record did not exist in the cache OR
 // the TTL was >= 300, i.e., the record in the cache had expired.
 customer_record = db.query("SELECT * FROM Customers WHERE id = {0}", customer_id)
 cache.set(customer_id, customer_record, 300) // update the cache
 return customer_record // return the newly retrieved record and exit
 function

For this example, the application code that gets the data is the following.

save_customer(12345,{"address":"123 Main"})

customer_record = get_customer(12345)

Related topics

• In-Memory Data Store

• Choosing an engine and version

• Scaling ElastiCache for Redis

Managing your self-designed cluster

This section contains topics that help you manage your self-designed clusters.

Note

These topics do not apply to ElastiCache Serverless.

Topics

Managing your self-designed cluster API Version 2015-02-02 410

Amazon ElastiCache for Redis User Guide

• Auto Scaling ElastiCache for Redis clusters

• Modifying cluster mode

• Replication across AWS Regions using global datastores

• High availability using replication groups

• Managing maintenance

• Configuring engine parameters using parameter groups

Auto Scaling ElastiCache for Redis clusters

Prerequisites

ElastiCache for Redis Auto Scaling is limited to the following:

• Redis (cluster mode enabled) clusters running Redis engine version 6.0 onwards

• Data tiering (cluster mode enabled) clusters running Redis engine version 7.0.7 onwards

• Instance sizes - Large, XLarge, 2XLarge

• Instance type families - R7g, R6g, R6gd, R5, M7g, M6g, M5, C7gn

• Auto Scaling in ElastiCache for Redis is not supported for clusters running in Global datastores,
Outposts or Local Zones.

Managing Capacity Automatically with ElastiCache for Redis Auto Scaling

ElastiCache for Redis auto scaling is the ability to increase or decrease the desired shards or replicas
in your ElastiCache for Redis service automatically. ElastiCache for Redis leverages the Application
Auto Scaling service to provide this functionality. For more information, see Application Auto
Scaling. To use automatic scaling, you define and apply a scaling policy that uses CloudWatch
metrics and target values that you assign. ElastiCache for Redis auto scaling uses the policy to
increase or decrease the number of instances in response to actual workloads.

You can use the AWS Management Console to apply a scaling policy based on a predefined metric.
A predefined metric is defined in an enumeration so that you can specify it by name in code
or use it in the AWS Management Console. Custom metrics are not available for selection using the
AWS Management Console. Alternatively, you can use either the AWS CLI or the Application Auto
Scaling API to apply a scaling policy based on a predefined or custom metric.

Auto Scaling ElastiCache for Redis clusters API Version 2015-02-02 411

https://docs.aws.amazon.com/autoscaling/application/userguide/what-is-application-auto-scaling.html
https://docs.aws.amazon.com/autoscaling/application/userguide/what-is-application-auto-scaling.html

Amazon ElastiCache for Redis User Guide

ElastiCache for Redis supports scaling for the following dimensions:

• Shards – Automatically add/remove shards in the cluster similar to manual online resharding. In
this case, ElastiCache for Redis auto scaling triggers scaling on your behalf.

• Replicas – Automatically add/remove replicas in the cluster similar to manual Increase/Decrease
replica operations. ElastiCache for Redis auto scaling adds/removes replicas uniformly across all
shards in the cluster.

ElastiCache for Redis supports the following types of automatic scaling policies:

• Target tracking scaling policies – Increase or decrease the number of shards/replicas that
your service runs based on a target value for a specific metric. This is similar to the way that
your thermostat maintains the temperature of your home. You select a temperature and the
thermostat does the rest.

• Scheduled scaling for Application ElastiCache for Redis auto scaling – Increase or decrease the
number of shards/replicas that your service runs based on the date and time.

Auto Scaling ElastiCache for Redis clusters API Version 2015-02-02 412

https://docs.aws.amazon.com/autoscaling/application/userguide/application-auto-scaling-scheduled-scaling.html

Amazon ElastiCache for Redis User Guide

The following steps summarize the ElastiCache for Redis auto scaling process as shown in the
previous diagram:

1. You create an ElastiCache for Redis auto scaling policy for your ElastiCache for Redis
Replication Group.

2. ElastiCache for Redis auto scaling creates a pair of CloudWatch alarms on your behalf. Each
pair represents your upper and lower boundaries for metrics. These CloudWatch alarms are
triggered when the cluster's actual utilization deviates from your target utilization for a
sustained period of time. You can view the alarms in the console.

3. If the configured metric value exceeds your target utilization (or falls below the target) for a
specific length of time, CloudWatch triggers an alarm that invokes ElastiCache for Redis auto
scaling to evaluate your scaling policy.

4. ElastiCache for Redis auto scaling issues a Modify request to adjust your cluster capacity.

Auto Scaling ElastiCache for Redis clusters API Version 2015-02-02 413

Amazon ElastiCache for Redis User Guide

5. ElastiCache for Redis processes the Modify request, dynamically increasing (or decreasing) the
cluster Shards/Replicas capacity so that it approaches your target utilization.

To understand how ElastiCache for Redis Auto Scaling works, suppose that you have a cluster
named UsersCluster. By monitoring the CloudWatch metrics for UsersCluster, you determine
the Max shards that the cluster requires when traffic is at its peak and Min Shards when traffic is at
its lowest point. You also decide a target value for CPU utilization for the UsersCluster cluster.
ElastiCache for Redis auto scaling uses its target tracking algorithm to ensure that the provisioned
shards of UsersCluster is adjusted as required so that utilization remains at or near to the target
value.

Note

Scaling may take noticeable time and will require extra cluster resources for shards to
rebalance. ElastiCache for Redis Auto Scaling modifies resource settings only when the
actual workload stays elevated (or depressed) for a sustained period of several minutes.
The ElastiCache for Redis auto scaling target-tracking algorithm seeks to keep the target
utilization at or near your chosen value over the long term.

Auto Scaling policies

A scaling policy has the following components:

• A target metric – The CloudWatch metric that ElastiCache for Redis Auto Scaling uses to
determine when and how much to scale.

• Minimum and maximum capacity – The minimum and maximum number of shards or replicas to
use for scaling.

Important

While creating Auto scaling policy , if current capacity is higher than max capacity
configured, we scaleIn to the MaxCapacity during policy creation. Similarly if current
capacity is lower than min capacity configured, we scaleOut to the MinCapacity.

• A cooldown period – The amount of time, in seconds, after a scale-in or scale-out activity
completes before another scale-out activity can start.

Auto Scaling ElastiCache for Redis clusters API Version 2015-02-02 414

Amazon ElastiCache for Redis User Guide

• A service-linked role – An AWS Identity and Access Management (IAM) role that is linked to a
specific AWS service. A service-linked role includes all of the permissions that the service requires
to call other AWS services on your behalf. ElastiCache for Redis Auto Scaling automatically
generates this role, AWSServiceRoleForApplicationAutoScaling_ElastiCacheRG, for
you.

• Enable or disable scale-in activities - Ability to enable or disable scale-in activities for a policy.

Topics

• Target metric for Auto Scaling

• Minimum and maximum capacity

• Cool down period

• Enable or disable scale-in activities

Target metric for Auto Scaling

In this type of policy, a predefined or custom metric and a target value for the metric is specified
in a target-tracking scaling policy configuration. ElastiCache for Redis Auto Scaling creates and
manages CloudWatch alarms that trigger the scaling policy and calculates the scaling adjustment
based on the metric and target value. The scaling policy adds or removes shards/replicas as
required to keep the metric at, or close to, the specified target value. In addition to keeping the
metric close to the target value, a target-tracking scaling policy also adjusts to fluctuations in the
metric due to a changing workload. Such a policy also minimizes rapid fluctuations in the number
of available shards/replicas for your cluster.

For example, consider a scaling policy that uses the predefined average
ElastiCachePrimaryEngineCPUUtilization metric. Such a policy can keep CPU utilization
at, or close to, a specified percentage of utilization, such as 70 percent.

Note

For each cluster, you can create only one Auto Scaling policy for each target metric.

Minimum and maximum capacity

Shards

Auto Scaling ElastiCache for Redis clusters API Version 2015-02-02 415

Amazon ElastiCache for Redis User Guide

You can specify the maximum number of shards that can be scaled to by ElastiCache for Redis auto
scaling. This value must be less than or equal to 250 with a minimum of 1. You can also specify the
minimum number of shards to be managed by ElastiCache for Redis auto scaling. This value must
be at least 1, and equal to or less than the value specified for the maximum shards 250.

Replicas

You can specify the maximum number of replicas to be managed by ElastiCache for Redis auto
scaling. This value must be less than or equal to 5. You can also specify the minimum number of
replicas to be managed by ElastiCache for Redis auto scaling. This value must be at least 1, and
equal to or less than the value specified for the maximum replicas 5.

To determine the minimum and maximum number of shards/replicas that you need for typical
traffic, test your Auto Scaling configuration with the expected rate of traffic to your model.

Note

ElastiCache for Redis auto scaling policies increase cluster capacity until it reaches your
defined maximum size or until service limits apply. To request a limit increase, see AWS
Service Limits and choose the limit type Nodes per cluster per instance type.

Important

Scaling-in occurs when there is no traffic. If a variant’s traffic becomes zero, ElastiCache for
Redis automatically scales in to the minimum number of instances specified.

Cool down period

You can tune the responsiveness of a target-tracking scaling policy by adding cooldown periods
that affect scaling your cluster. A cooldown period blocks subsequent scale-in or scale-out requests
until the period expires. This slows the deletions of shards/replicas in your ElastiCache for Redis
cluster for scale-in requests, and the creation of shards/replicas for scale-out requests. You can
specify the following cooldown periods:

• A scale-in activity reduces the number of shards/replicas in your ElastiCache for Redis cluster.
A scale-in cooldown period specifies the amount of time, in seconds, after a scale-in activity
completes before another scale-in activity can start.

Auto Scaling ElastiCache for Redis clusters API Version 2015-02-02 416

https://docs.aws.amazon.com/general/latest/gr/aws_service_limits.html
https://docs.aws.amazon.com/general/latest/gr/aws_service_limits.html

Amazon ElastiCache for Redis User Guide

• A scale-out activity increases the number of shards/replicas in your ElastiCache for Redis cluster.
A scale-out cooldown period specifies the amount of time, in seconds, after a scale-out activity
completes before another scale-out activity can start.

When a scale-in or a scale-out cooldown period is not specified, the default for scale-out is 600
seconds and for scale-in 900 seconds.

Enable or disable scale-in activities

You can enable or disable scale-in activities for a policy. Enabling scale-in activities allows the
scaling policy to delete shards/replicas. When scale-in activities are enabled, the scale-in cooldown
period in the scaling policy applies to scale-in activities. Disabling scale-in activities prevents the
scaling policy from deleting shards/replicas.

Note

Scale-out activities are always enabled so that the scaling policy can create ElastiCache for
Redis shards/replicas as needed.

IAM Permissions Required for ElastiCache for Redis Auto Scaling

ElastiCache for Redis Auto Scaling is made possible by a combination of the ElastiCache for Redis,
CloudWatch, and Application Auto Scaling APIs. Clusters are created and updated with ElastiCache
for Redis, alarms are created with CloudWatch, and scaling policies are created with Application
Auto Scaling. In addition to the standard IAM permissions for creating and updating clusters, the
IAM user that accesses ElastiCache for Redis Auto Scaling settings must have the appropriate
permissions for the services that support dynamic scaling. IAM users must have permissions to use
the actions shown in the following example policy:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "application-autoscaling:*",
 "elasticache:DescribeReplicationGroups",
 "elasticache:ModifyReplicationGroupShardConfiguration",

Auto Scaling ElastiCache for Redis clusters API Version 2015-02-02 417

Amazon ElastiCache for Redis User Guide

 "elasticache:IncreaseReplicaCount",
 "elasticache:DecreaseReplicaCount",
 "elasticache:DescribeCacheClusters",
 "elasticache:DescribeCacheParameters",
 "cloudwatch:DeleteAlarms",
 "cloudwatch:DescribeAlarmHistory",
 "cloudwatch:DescribeAlarms",
 "cloudwatch:DescribeAlarmsForMetric",
 "cloudwatch:GetMetricStatistics",
 "cloudwatch:ListMetrics",
 "cloudwatch:PutMetricAlarm",
 "cloudwatch:DisableAlarmActions",
 "cloudwatch:EnableAlarmActions",
 "iam:CreateServiceLinkedRole",
 "sns:CreateTopic",
 "sns:Subscribe",
 "sns:Get*",
 "sns:List*"
],
 "Resource": "arn:aws:iam::123456789012:role/autoscaling-roles-for-cluster"
 }
]
}

Service-linked role

The ElastiCache for Redis auto scaling service also needs permission to describe your clusters and
CloudWatch alarms, and permissions to modify your ElastiCache for Redis target capacity on your
behalf. If you enable Auto Scaling for your ElastiCache for Redis cluster, it creates a service-linked
role named AWSServiceRoleForApplicationAutoScaling_ElastiCacheRG. This service-
linked role grants ElastiCache for Redis auto scaling permission to describe the alarms for your
policies, to monitor the current capacity of the fleet, and to modify the capacity of the fleet. The
service-linked role is the default role for ElastiCache for Redis auto scaling. For more information,
see Service-linked roles for ElastiCache for Redis auto scaling in the Application Auto Scaling User
Guide.

Auto Scaling Best Practices

Before registering to Auto Scaling, we recommend the following:

1. Use just one tracking metric – Identify if your cluster has CPU or data intensive workloads and
use a corresponding predefined metric to define Scaling Policy.

Auto Scaling ElastiCache for Redis clusters API Version 2015-02-02 418

https://docs.aws.amazon.com/autoscaling/application/userguide/application-auto-scaling-service-linked-roles.html

Amazon ElastiCache for Redis User Guide

• Engine CPU: ElastiCachePrimaryEngineCPUUtilization (shard dimension) or
ElastiCacheReplicaEngineCPUUtilization (replica dimension)

• Database usage: ElastiCacheDatabaseCapacityUsageCountedForEvictPercentage
This scaling policy works best with maxmemory-policy set to noeviction on the cluster.

We recommend you avoid multiple policies per dimension on the cluster. ElastiCache for Redis
Auto scaling will scale out the scalable target if any target tracking policies are ready for scale
out, but will scale in only if all target tracking policies (with the scale-in portion enabled) are
ready to scale in. If multiple policies instruct the scalable target to scale out or in at the same
time, it scales based on the policy that provides the largest capacity for both scale in and scale
out.

2. Customized Metrics for Target Tracking – Be cautious when using customized metrics for
Target Tracking as Auto scaling is best suited to scale-out/in proportional to changes in metrics
chosen for the policy. If those metrics don't change proportionally to the scaling actions used
for policy creation, it might lead to continuous scale-out or scale-in actions which might affect
availability or cost.

For data-tiering clusters (r6gd family instance types), avoid using memory-based metrics for
scaling.

3. Scheduled Scaling – If you identify that your workload is deterministic (reaches high/low at
a specific time), we recommend using Scheduled Scaling and configure your target capacity
according to the need. Target Tracking is best suitable for non-deterministic workloads and
for the cluster to operate at the required target metric by scaling out when you need more
resources and scaling in when you need less.

4. Disable Scale-In – Auto scaling on Target Tracking is best suited for clusters with gradual
increase/decrease of workloads as spikes/dip in metrics can trigger consecutive scale-out/in
oscillations. In order to avoid such oscillations, you can start with scale-in disabled and later you
can always manually scale-in to your need.

5. Test your application – We recommend you test your application with your estimated Min/Max
workloads to determine absolute Min,Max shards/replicas required for the cluster while creating
Scaling policies to avoid availability issues. Auto scaling can scale out to the Max and scale-in to
the Min threshold configured for the target.

6. Defining Target Value – You can analyze corresponding CloudWatch metrics for cluster
utilization over a four-week period to determine the target value threshold. If you are still not
sure of of what value to choose, we recommend starting with a minimum supported predefined
metric value.

Auto Scaling ElastiCache for Redis clusters API Version 2015-02-02 419

Amazon ElastiCache for Redis User Guide

7. AutoScaling on Target Tracking is best suited for clusters with uniform distribution of workloads
across shards/replicas dimension. Having non-uniform distribution can lead to:

• Scaling when not required due to workload spike/dip on a few hot shards/replicas.

• Not scaling when required due to overall avg close to target even though having hot shards/
replicas.

Note

When scaling out your cluster, ElastiCache will automatically replicate the Functions loaded
in one of the existing nodes (selected at random) to the new node(s). If your cluster has
Redis 7.0 or above and your application uses Redis Functions, we recommend loading all of
your functions to all the shards before scaling out so that your cluster does not end up with
different functions on different shards.

After registering to AutoScaling, note the following:

• There are limitations on Auto scaling Supported Configurations, so we recommend you not
change configuration of a replication group that is registered for Auto scaling. The following are
examples:

• Manually modifying instance type to unsupported types.

• Associating the replication group to a Global datastore.

• Changing ReservedMemoryPercent parameter.

• Manually increasing/decreasing shards/replicas beyond the Min/Max capacity configured
during policy creation.

Using Auto Scaling with shards

The following provides details on target tracking and scheduled policies and how to apply them
using the AWS Management Console AWS CLI and APIs.

Target tracking scaling policies

With target tracking scaling policies, you select a metric and set a target value. ElastiCache for
Redis Auto Scaling creates and manages the CloudWatch alarms that trigger the scaling policy
and calculates the scaling adjustment based on the metric and the target value. The scaling policy

Auto Scaling ElastiCache for Redis clusters API Version 2015-02-02 420

https://redis.io/docs/manual/programmability/functions-intro/

Amazon ElastiCache for Redis User Guide

adds or removes shards as required to keep the metric at, or close to, the specified target value. In
addition to keeping the metric close to the target value, a target tracking scaling policy also adjusts
to the fluctuations in the metric due to a fluctuating load pattern and minimizes rapid fluctuations
in the capacity of the fleet.

For example, consider a scaling policy that uses the predefined average
ElastiCachePrimaryEngineCPUUtilization metric with configured target value. Such a
policy can keep CPU utilization at, or close to the specified target value.

Predefined metrics

A predefined metric is a structure that refers to a specific name, dimension, and statistic (average)
of a given CloudWatch metric. Your Auto Scaling policy defines one of the below predefined
metrics for your cluster:

Predefine
d Metric
Name

CloudWatch Metric Name CloudWatc
h Metric
Dimension

Ineligible
Instance Types

ElastiCac
hePrimary
EngineCPU
Utilizati
on

EngineCPUUtilization Replicati
onGroupId, Role
= Primary

None

ElastiCac
heDatabas
eCapacity
UsageCoun
tedForEvi
ctPercent
age

DatabaseCapacityUsageCounte
dForEvictPercentage

Redis Replication
Group Metrics

None

ElastiCac
heDatabas
eMemoryUs
ageCounte
dForEvict

DatabaseMemoryUsageCountedF
orEvictPercentage

Redis Replication
Group Metrics

R6gd

Auto Scaling ElastiCache for Redis clusters API Version 2015-02-02 421

Amazon ElastiCache for Redis User Guide

Predefine
d Metric
Name

CloudWatch Metric Name CloudWatc
h Metric
Dimension

Ineligible
Instance Types

Percentag
e

Data-tiered instance types cannot use
ElastiCacheDatabaseMemoryUsageCountedForEvictPercentage, as these instance types
store data in both memory and SSD. The expected use case for data-tiered instances is to have 100
percent memory usage and fill up SSD as needed.

Auto Scaling criteria for shards

When the service detects that your predefined metric is equal to or greater than the Target setting,
it will increase your shards capacity automatically. ElastiCache for Redis scales out your cluster
shards by a count equal to the larger of two numbers: Percent variation from Target and 20 percent
of current shards. For scale-in, ElastiCache for Redis won't auto scale-in unless the overall metric
value is below 75 percent of your defined Target.

For a scale out example, if you have 50 shards and

• if your Target breaches by 30 percent, ElastiCache for Redis scales out by 30 percent, which
results in 65 shards per cluster.

• if your Target breaches by 10 percent, ElastiCache for Redis scales out by default Minimum of 20
percent, which results in 60 shards per cluster.

For a scale-in example, if you have selected a Target value of 60 percent, ElastiCache for Redis
won't auto scale-in until the metric is less than or equal to 45 percent (25 percent below the Target
60 percent).

Auto Scaling considerations

Keep the following considerations in mind:

• A target tracking scaling policy assumes that it should perform scale out when the specified
metric is above the target value. You cannot use a target tracking scaling policy to scale out
when the specified metric is below the target value. ElastiCache for Redis scales out shards by a
minimum of 20 percent deviation of target of existing shards in the cluster.

Auto Scaling ElastiCache for Redis clusters API Version 2015-02-02 422

Amazon ElastiCache for Redis User Guide

• A target tracking scaling policy does not perform scaling when the specified metric has
insufficient data. It does not perform scale-in because it does not interpret insufficient data as
low utilization.

• You may see gaps between the target value and the actual metric data points. This is because
ElastiCache for Redis Auto Scaling always acts conservatively by rounding up or down when
it determines how much capacity to add or remove. This prevents it from adding insufficient
capacity or removing too much capacity.

• To ensure application availability, the service scales out proportionally to the metric as fast as it
can, but scales in more conservatively.

• You can have multiple target tracking scaling policies for an ElastiCache for Redis cluster,
provided that each of them uses a different metric. The intention of ElastiCache for Redis Auto
Scaling is to always prioritize availability, so its behavior differs depending on whether the target
tracking policies are ready for scale out or scale in. It will scale out the service if any of the target
tracking policies are ready for scale out, but will scale in only if all of the target tracking policies
(with the scale-in portion enabled) are ready to scale in.

• Do not edit or delete the CloudWatch alarms that ElastiCache for Redis Auto Scaling manages
for a target tracking scaling policy. ElastiCache for Redis Auto Scaling deletes the alarms
automatically when you delete the scaling policy.

• ElastiCache for Redis Auto Scaling doesn't prevent you from manually modifying cluster shards.
These manual adjustments don't affect any existing CloudWatch alarms that are attached to the
scaling policy but can impact metrics that may trigger these CloudWatch alarms.

• These CloudWatch alarms managed by Auto Scaling are defined over the AVG metric across all
the shards in the cluster. So, having hot shards can result in either scenario of:

• scaling when not required due to load on a few hot shards triggering a CloudWatch alarm

• not scaling when required due to aggregated AVG across all shards affecting alarm not to
breach.

• ElastiCache for Redis default limits on Nodes per cluster still applies. So, when opting for Auto
Scaling and if you expect maximum nodes to be more than default limit, request a limit increase
at AWS Service Limits and choose the limit type Nodes per cluster per instance type.

• Ensure that you have enough ENIs (Elastic Network Interfaces) available in your VPC, which are
required during scale-out. For more information, see Elastic network interfaces.

• If there is not enough capacity available from EC2, ElastiCache for Redis Auto Scaling would not
scale and be delayed til the capacity is available.

Auto Scaling ElastiCache for Redis clusters API Version 2015-02-02 423

https://docs.aws.amazon.com/general/latest/gr/aws_service_limits.html
https://docs.aws.amazon.com/vpc/latest/userguide/VPC_ElasticNetworkInterfaces.html

Amazon ElastiCache for Redis User Guide

• ElastiCache for Redis Auto Scaling during scale-in will not remove shards with slots having an
item size larger than 256 MB post-serialization.

• During scale-in it will not remove shards if insufficient memory available on resultant shard
configuration.

Adding a scaling policy

You can add a scaling policy using the AWS Management Console.

To add an Auto Scaling policy to an ElastiCache for Redis cluster

1. Sign in to the AWS Management Console and open the Amazon ElastiCache console at https://
console.aws.amazon.com/elasticache/.

2. In the navigation pane, choose Redis.

3. Choose the cluster that you want to add a policy to (choose the cluster name and not the
button to its left).

4. Choose the Auto Scaling policies tab.

5. Choose add dynamic scaling.

6. For Policy name enter a policy name.

7. For Scalable Dimension choose shards.

8. For the target metric, choose one of the following:

• Primary CPU Utilization to create a policy based on the average CPU utilization.

• Memory to create a policy based on the average database memory.

• Capacity to create a policy based on average database capacity usage. The Capacity metric
includes memory and SSD utilization for data-tiered instances, and memory utilization for
all other instance types.

9. For the target value, choose a value greater than or equal to 35 and less than or equal to 70.
Auto scaling will maintain this value for the selected target metric across your ElastiCache
shards:

• Primary CPU Utilization: maintains target value for EngineCPUUtilization metric on
primary nodes.

• Memory: maintains target value for
DatabaseMemoryUsageCountedForEvictPercentage metric

Auto Scaling ElastiCache for Redis clusters API Version 2015-02-02 424

https://console.aws.amazon.com/elasticache/
https://console.aws.amazon.com/elasticache/

Amazon ElastiCache for Redis User Guide

• Capacity maintains target value for
DatabaseCapacityUsageCountedForEvictPercentage metric,

Cluster shards are added or removed to keep the metric close to the specified value.

10. (Optional) Scale-in or scale-out cooldown periods are not supported from the console. Use the
AWS CLI to modify the cooldown values.

11. For Minimum capacity, type the minimum number of shards that the ElastiCache for Redis
Auto Scaling policy is required to maintain.

12. For Maximum capacity, type the maximum number of shards that the ElastiCache for Redis
Auto Scaling policy is required to maintain. This value must be less than or equal to 250.

13. Choose Create.

Registering a Scalable Target

Before you can use Auto Scaling with an ElastiCache for Redis cluster, you register your cluster
with ElastiCache for Redis auto scaling. You do so to define the scaling dimension and limits to be
applied to that cluster. ElastiCache for Redis auto scaling dynamically scales the ElastiCache for
Redis cluster along the elasticache:replication-group:NodeGroups scalable dimension,
which represents the number of cluster shards.

Using the AWS CLI

To register your ElastiCache for Redis cluster, use the register-scalable-target command with the
following parameters:

• --service-namespace – Set this value to elasticache

• --resource-id – The resource identifier for the ElastiCache for Redis cluster. For this
parameter, the resource type is ReplicationGroup and the unique identifier is the name of the
ElastiCache for Redis cluster, for example replication-group/myscalablecluster.

• --scalable-dimension – Set this value to elasticache:replication-
group:NodeGroups.

• --max-capacity – The maximum number of shards to be managed by ElastiCache for Redis
auto scaling. For information about the relationship between --min-capacity, --max-
capacity, and the number of shards in your cluster, see Minimum and maximum capacity.

Auto Scaling ElastiCache for Redis clusters API Version 2015-02-02 425

https://docs.aws.amazon.com/cli/latest/reference/application-autoscaling/register-scalable-target.html

Amazon ElastiCache for Redis User Guide

• --min-capacity – The minimum number of shards to be managed by ElastiCache for Redis
auto scaling. For information about the relationship between --min-capacity, --max-
capacity, and the number of shards in your cluster, see Minimum and maximum capacity.

Example

In the following example, you register an ElastiCache for Redis cluster named
myscalablecluster. The registration indicates that the cluster should be dynamically scaled to
have from one to ten shards.

For Linux, macOS, or Unix:

aws application-autoscaling register-scalable-target \
 --service-namespace elasticache \
 --resource-id replication-group/myscalablecluster \
 --scalable-dimension elasticache:replication-group:NodeGroups \
 --min-capacity 1 \
 --max-capacity 10 \

For Windows:

aws application-autoscaling register-scalable-target ^
 --service-namespace elasticache ^
 --resource-id replication-group/myscalablecluster ^
 --scalable-dimension elasticache:replication-group:NodeGroups ^
 --min-capacity 1 ^
 --max-capacity 10 ^

Using the API

To register your ElastiCache cluster, use the register-scalable-target command with the following
parameters:

• ServiceNamespace – Set this value to elasticache.

• ResourceID – The resource identifier for the ElastiCache cluster. For this parameter, the resource
type is ReplicationGroup and the unique identifier is the name of the ElastiCache for Redis
cluster, for example replication-group/myscalablecluster.

• ScalableDimension – Set this value to elasticache:replication-group:NodeGroups.

Auto Scaling ElastiCache for Redis clusters API Version 2015-02-02 426

https://docs.aws.amazon.com/cli/latest/reference/application-autoscaling/register-scalable-target.html

Amazon ElastiCache for Redis User Guide

• MinCapacity – The minimum number of shards to be managed by ElastiCache for Redis auto
scaling. For information about the relationship between --min-capacity, --max-capacity, and the
number of replicas in your cluster, see Minimum and maximum capacity.

• MaxCapacity – The maximum number of shards to be managed by ElastiCache for Redis auto
scaling. For information about the relationship between --min-capacity, --max-capacity, and the
number of replicas in your cluster, see Minimum and maximum capacity.

Example

In the following example, you register an ElastiCache for Redis cluster named
myscalablecluster with the Application Auto Scaling API. This registration indicates that the
cluster should be dynamically scaled to have from one to 5 replicas.

POST / HTTP/1.1
Host: autoscaling.us-east-2.amazonaws.com
Accept-Encoding: identity
Content-Length: 219
X-Amz-Target: AnyScaleFrontendService.RegisterScalableTarget
X-Amz-Date: 20160506T182145Z
User-Agent: aws-cli/1.10.23 Python/2.7.11 Darwin/15.4.0 botocore/1.4.8
Content-Type: application/x-amz-json-1.1
Authorization: AUTHPARAMS
{
 "ServiceNamespace": "elasticache",
 "ResourceId": "replication-group/myscalablecluster",
 "ScalableDimension": "elasticache:replication-group:NodeGroups",
 "MinCapacity": 1,
 "MaxCapacity": 5
}

Defining a scaling policy

A target-tracking scaling policy configuration is represented by a JSON block that the metrics and
target values are defined in. You can save a scaling policy configuration as a JSON block in a text
file. You use that text file when invoking the AWS CLI or the Application Auto Scaling API. For more
information about policy configuration syntax, see TargetTrackingScalingPolicyConfiguration in the
Application Auto Scaling API Reference.

The following options are available for defining a target-tracking scaling policy configuration:

Auto Scaling ElastiCache for Redis clusters API Version 2015-02-02 427

https://docs.aws.amazon.com/autoscaling/application/APIReference/API_TargetTrackingScalingPolicyConfiguration.html

Amazon ElastiCache for Redis User Guide

Topics

• Using a predefined metric

• Using a custom metric

• Using cooldown periods

• Disabling scale-in activity

• Applying a scaling policy

Using a predefined metric

By using predefined metrics, you can quickly define a target-tracking scaling policy for an
ElastiCache for Redis cluster that works with target tracking in ElastiCache for Redis Auto Scaling.

Currently, ElastiCache for Redis supports the following predefined metrics in ElastiCache for Redis
NodeGroup Auto Scaling:

• ElastiCachePrimaryEngineCPUUtilization – The average value of the EngineCPUUtilization
metric in CloudWatch across all primary nodes in the ElastiCache for Redis cluster.

• ElastiCacheDatabaseMemoryUsageCountedForEvictPercentage – The average value of the
DatabaseMemoryUsageCountedForEvictPercentage metric in CloudWatch across all
primary nodes in the ElastiCache for Redis cluster.

• ElastiCacheDatabaseCapacityUsageCountedForEvictPercentage – The average value of
the ElastiCacheDatabaseCapacityUsageCountedForEvictPercentage metric in
CloudWatch across all primary nodes in the ElastiCache for Redis cluster.

For more information about the EngineCPUUtilization,
DatabaseMemoryUsageCountedForEvictPercentage and
DatabaseCapacityUsageCountedForEvictPercentage metrics, see Monitoring use
with CloudWatch Metrics. To use a predefined metric in your scaling policy, you create a
target tracking configuration for your scaling policy. This configuration must include a
PredefinedMetricSpecification for the predefined metric and a TargetValue for the target
value of that metric.

Example

The following example describes a typical policy configuration for target-
tracking scaling for an ElastiCache for Redis cluster. In this configuration, the

Auto Scaling ElastiCache for Redis clusters API Version 2015-02-02 428

Amazon ElastiCache for Redis User Guide

ElastiCachePrimaryEngineCPUUtilization predefined metric is used to adjust the
ElastiCache for Redis cluster based on an average CPU utilization of 40 percent across all primary
nodes in the cluster.

{
 "TargetValue": 40.0,
 "PredefinedMetricSpecification":
 {
 "PredefinedMetricType": "ElastiCachePrimaryEngineCPUUtilization"
 }
}

Using a custom metric

By using custom metrics, you can define a target-tracking scaling policy that meets your custom
requirements. You can define a custom metric based on any ElastiCache metric that changes in
proportion to scaling. Not all ElastiCache metrics work for target tracking. The metric must be a
valid utilization metric and describe how busy an instance is. The value of the metric must increase
or decrease in proportion to the number of Shards in the cluster. This proportional increase or
decrease is necessary to use the metric data to proportionally scale out or in the number of shards.

Example

The following example describes a target-tracking configuration for a scaling policy. In this
configuration, a custom metric adjusts an ElastiCache for Redis cluster based on an average CPU
utilization of 50 percent across all shards in an cluster named my-db-cluster.

{
 "TargetValue": 50,
 "CustomizedMetricSpecification":
 {
 "MetricName": "EngineCPUUtilization",
 "Namespace": "AWS/ElastiCache",
 "Dimensions": [
 {
 "Name": "RelicationGroup","Value": "my-db-cluster"
 },
 {
 "Name": "Role","Value": "PRIMARY"
 }
],
 "Statistic": "Average",

Auto Scaling ElastiCache for Redis clusters API Version 2015-02-02 429

Amazon ElastiCache for Redis User Guide

 "Unit": "Percent"
 }
}

Using cooldown periods

You can specify a value, in seconds, for ScaleOutCooldown to add a cooldown period for
scaling out your cluster. Similarly, you can add a value, in seconds, for ScaleInCooldown
to add a cooldown period for scaling in your cluster. For more information, see
TargetTrackingScalingPolicyConfiguration in the Application Auto Scaling API Reference.

The following example describes a target-tracking configuration for a scaling policy. In this
configuration, the ElastiCachePrimaryEngineCPUUtilization predefined metric is used to
adjust an ElastiCache for Redis cluster based on an average CPU utilization of 40 percent across all
primary nodes in that cluster. The configuration provides a scale-in cooldown period of 10 minutes
and a scale-out cooldown period of 5 minutes.

{
 "TargetValue": 40.0,
 "PredefinedMetricSpecification":
 {
 "PredefinedMetricType": "ElastiCachePrimaryEngineCPUUtilization"
 },
 "ScaleInCooldown": 600,
 "ScaleOutCooldown": 300
}

Disabling scale-in activity

You can prevent the target-tracking scaling policy configuration from scaling in your ElastiCache
for Redis cluster by disabling scale-in activity. Disabling scale-in activity prevents the scaling policy
from deleting shards, while still allowing the scaling policy to create them as needed.

You can specify a Boolean value for DisableScaleIn to enable or disable scale in activity for your
cluster. For more information, see TargetTrackingScalingPolicyConfiguration in the Application
Auto Scaling API Reference.

The following example describes a target-tracking configuration for a scaling policy. In this
configuration, the ElastiCachePrimaryEngineCPUUtilization predefined metric adjusts an
ElastiCache for Redis cluster based on an average CPU utilization of 40 percent across all primary
nodes in that cluster. The configuration disables scale-in activity for the scaling policy.

Auto Scaling ElastiCache for Redis clusters API Version 2015-02-02 430

https://docs.aws.amazon.com/autoscaling/application/APIReference/API_TargetTrackingScalingPolicyConfiguration.html
https://docs.aws.amazon.com/autoscaling/application/APIReference/API_TargetTrackingScalingPolicyConfiguration.html

Amazon ElastiCache for Redis User Guide

{
 "TargetValue": 40.0,
 "PredefinedMetricSpecification":
 {
 "PredefinedMetricType": "ElastiCachePrimaryEngineCPUUtilization"
 },
 "DisableScaleIn": true
}

Applying a scaling policy

After registering your cluster with ElastiCache for Redis auto scaling and defining a scaling policy,
you apply the scaling policy to the registered cluster. To apply a scaling policy to an ElastiCache for
Redis cluster, you can use the AWS CLI or the Application Auto Scaling API.

Applying a scaling policy using the AWS CLI

To apply a scaling policy to your ElastiCache for Redis cluster, use the put-scaling-policy command
with the following parameters:

• --policy-name – The name of the scaling policy.

• --policy-type – Set this value to TargetTrackingScaling.

• --resource-id – The resource identifier for the ElastiCache for Redis. For this parameter, the
resource type is ReplicationGroup and the unique identifier is the name of the ElastiCache for
Redis cluster, for example replication-group/myscalablecluster.

• --service-namespace – Set this value to elasticache.

• --scalable-dimension – Set this value to elasticache:replication-group:NodeGroups.

• --target-tracking-scaling-policy-configuration – The target-tracking scaling policy
configuration to use for the ElastiCache for Redis cluster.

In the following example, you apply a target-tracking scaling policy named myscalablepolicy
to an ElastiCache for Redis cluster named myscalablecluster with ElastiCache for Redis auto
scaling. To do so, you use a policy configuration saved in a file named config.json.

For Linux, macOS, or Unix:

aws application-autoscaling put-scaling-policy \
 --policy-name myscalablepolicy \

Auto Scaling ElastiCache for Redis clusters API Version 2015-02-02 431

https://docs.aws.amazon.com/cli/latest/reference/application-autoscaling/put-scaling-policy.html

Amazon ElastiCache for Redis User Guide

 --policy-type TargetTrackingScaling \
 --resource-id replication-group/myscalablecluster \
 --service-namespace elasticache \
 --scalable-dimension elasticache:replication-group:NodeGroups \
 --target-tracking-scaling-policy-configuration file://config.json

For Windows:

aws application-autoscaling put-scaling-policy ^
 --policy-name myscalablepolicy ^
 --policy-type TargetTrackingScaling ^
 --resource-id replication-group/myscalablecluster ^
 --service-namespace elasticache ^
 --scalable-dimension elasticache:replication-group:NodeGroups ^
 --target-tracking-scaling-policy-configuration file://config.json

Applying a scaling policy using the API

To apply a scaling policy to your ElastiCache for Redis cluster, use the PutScalingPolicy AWS CLI
command with the following parameters:

• --policy-name – The name of the scaling policy.

• --resource-id – The resource identifier for the ElastiCache for Redis. For this parameter, the
resource type is ReplicationGroup and the unique identifier is the name of the ElastiCache for
Redis cluster, for example replication-group/myscalablecluster.

• --service-namespace – Set this value to elasticache.

• --scalable-dimension – Set this value to elasticache:replication-group:NodeGroups.

• --target-tracking-scaling-policy-configuration – The target-tracking scaling policy
configuration to use for the ElastiCache for Redis cluster.

In the following example, you apply a target-tracking scaling policy named
myscalablepolicy to an ElastiCache for Redis cluster named myscalablecluster
with ElastiCache for Redis auto scaling. You use a policy configuration based on the
ElastiCachePrimaryEngineCPUUtilization predefined metric.

POST / HTTP/1.1
Host: autoscaling.us-east-2.amazonaws.com
Accept-Encoding: identity

Auto Scaling ElastiCache for Redis clusters API Version 2015-02-02 432

https://docs.aws.amazon.com/cli/latest/reference/application-autoscaling/put-scaling-policy.html

Amazon ElastiCache for Redis User Guide

Content-Length: 219
X-Amz-Target: AnyScaleFrontendService.PutScalingPolicy
X-Amz-Date: 20160506T182145Z
User-Agent: aws-cli/1.10.23 Python/2.7.11 Darwin/15.4.0 botocore/1.4.8
Content-Type: application/x-amz-json-1.1
Authorization: AUTHPARAMS
{
 "PolicyName": "myscalablepolicy",
 "ServiceNamespace": "elasticache",
 "ResourceId": "replication-group/myscalablecluster",
 "ScalableDimension": "elasticache:replication-group:NodeGroups",
 "PolicyType": "TargetTrackingScaling",
 "TargetTrackingScalingPolicyConfiguration": {
 "TargetValue": 40.0,
 "PredefinedMetricSpecification":
 {
 "PredefinedMetricType": "ElastiCachePrimaryEngineCPUUtilization"
 }
 }
}

Editing a scaling policy

You can edit a scaling policy using the AWS Management Console, the AWS CLI, or the Application
Auto Scaling API.

Editing a scaling policy using the AWS Management Console

To edit an Auto Scaling policy for an ElastiCache for Redis cluster

1. Sign in to the AWS Management Console and open the Amazon ElastiCache console at https://
console.aws.amazon.com/elasticache/.

2. In the navigation pane, choose Redis.

3. Choose the cluster that you want to add a policy to (choose the cluster name and not the
button to its left).

4. Choose the Auto Scaling policies tab.

5. Under Scaling policies, choose the button to the left of the Auto Scaling policy you wish to
change, and then choose Modify.

6. Make the requisite changes to the policy.

7. Choose Modify.

Auto Scaling ElastiCache for Redis clusters API Version 2015-02-02 433

https://console.aws.amazon.com/elasticache/
https://console.aws.amazon.com/elasticache/

Amazon ElastiCache for Redis User Guide

Editing a scaling policy using the AWS CLI and API

You can use the AWS CLI or the Application Auto Scaling API to edit a scaling policy in the same
way that you apply a scaling policy:

• When using the AWS CLI, specify the name of the policy you want to edit in the --policy-name
parameter. Specify new values for the parameters you want to change.

• When using the Application Auto Scaling API, specify the name of the policy you want to edit in
the PolicyName parameter. Specify new values for the parameters you want to change.

For more information, see Applying a scaling policy.

Deleting a scaling policy

You can delete a scaling policy using the AWS Management Console, the AWS CLI, or the
Application Auto Scaling API.

Deleting a scaling policy using the AWS Management Console

To delete an Auto Scaling policy for an ElastiCache for Redis cluster

1. Sign in to the AWS Management Console and open the Amazon ElastiCache console at https://
console.aws.amazon.com/elasticache/.

2. In the navigation pane, choose Redis.

3. Choose the cluster whose Auto Scaling policy you want to edit (choose the cluster name, not
the button to its left).

4. Choose the Auto Scaling policies tab.

5. Under Scaling policies, choose the Auto Scaling policy, and then choose Delete.

Deleting a scaling policy using the AWS CLI

To delete a scaling policy to your ElastiCache for Redis cluster, use the delete-scaling-policy AWS
CLI command with the following parameters:

• --policy-name – The name of the scaling policy.

• --resource-id – The resource identifier for the ElastiCache for Redis. For this parameter, the
resource type is ReplicationGroup and the unique identifier is the name of the ElastiCache for
Redis cluster, for example replication-group/myscalablecluster.

Auto Scaling ElastiCache for Redis clusters API Version 2015-02-02 434

https://console.aws.amazon.com/elasticache/
https://console.aws.amazon.com/elasticache/
https://docs.aws.amazon.com/cli/latest/reference/autoscaling/delete-scaling-policy.html

Amazon ElastiCache for Redis User Guide

• --service-namespace – Set this value to elasticache.

• --scalable-dimension – Set this value to elasticache:replication-group:NodeGroups.

In the following example, you delete a target-tracking scaling policy named myscalablepolicy
from an ElastiCache for Redis cluster named myscalablecluster.

For Linux, macOS, or Unix:

aws application-autoscaling delete-scaling-policy \
 --policy-name myscalablepolicy \
 --resource-id replication-group/myscalablecluster \
 --service-namespace elasticache \
 --scalable-dimension elasticache:replication-group:NodeGroups

For Windows:

aws application-autoscaling delete-scaling-policy ^
 --policy-name myscalablepolicy ^
 --resource-id replication-group/myscalablecluster ^
 --service-namespace elasticache ^
 --scalable-dimension elasticache:replication-group:NodeGroups

Deleting a scaling policy using the API

To delete a scaling policy to your ElastiCache for Redis cluster, use the DeleteScalingPolicy AWS CLI
command with the following parameters:

• --policy-name – The name of the scaling policy.

• --resource-id – The resource identifier for the ElastiCache for Redis. For this parameter, the
resource type is ReplicationGroup and the unique identifier is the name of the ElastiCache for
Redis cluster, for example replication-group/myscalablecluster.

• --service-namespace – Set this value to elasticache.

• --scalable-dimension – Set this value to elasticache:replication-group:NodeGroups.

In the following example, you delete a target-tracking scaling policy named myscalablepolicy
from an ElastiCache for Redis cluster named myscalablecluster.

POST / HTTP/1.1

Auto Scaling ElastiCache for Redis clusters API Version 2015-02-02 435

https://docs.aws.amazon.com/cli/latest/reference/autoscaling/delete-scaling-policy.html

Amazon ElastiCache for Redis User Guide

Host: autoscaling.us-east-2.amazonaws.com
Accept-Encoding: identity
Content-Length: 219
X-Amz-Target: AnyScaleFrontendService.DeleteScalingPolicy
X-Amz-Date: 20160506T182145Z
User-Agent: aws-cli/1.10.23 Python/2.7.11 Darwin/15.4.0 botocore/1.4.8
Content-Type: application/x-amz-json-1.1
Authorization: AUTHPARAMS
{
 "PolicyName": "myscalablepolicy",
 "ServiceNamespace": "elasticache",
 "ResourceId": "replication-group/myscalablecluster",
 "ScalableDimension": "elasticache:replication-group:NodeGroups"
}

Use AWS CloudFormation for Auto Scaling policies

This snippet shows how to create a target tracking policy and apply it to an
AWS::ElastiCache::ReplicationGroup resource using the
AWS::ApplicationAutoScaling::ScalableTarget resource. It uses the Fn::Join and Ref
intrinsic functions to construct the ResourceId property with the logical name of the
AWS::ElastiCache::ReplicationGroup resource that is specified in the same template.

ScalingTarget:
 Type: 'AWS::ApplicationAutoScaling::ScalableTarget'
 Properties:
 MaxCapacity: 3
 MinCapacity: 1
 ResourceId: !Sub replication-group/${logicalName}
 ScalableDimension: 'elasticache:replication-group:NodeGroups'
 ServiceNamespace: elasticache
 RoleARN: !Sub "arn:aws:iam::${AWS::AccountId}:role/aws-
service-role/elasticache.application-autoscaling.amazonaws.com/
AWSServiceRoleForApplicationAutoScaling_ElastiCacheRG"

 ScalingPolicy:
 Type: "AWS::ApplicationAutoScaling::ScalingPolicy"
 Properties:
 ScalingTargetId: !Ref ScalingTarget
 ServiceNamespace: elasticache
 PolicyName: testpolicy
 PolicyType: TargetTrackingScaling
 ScalableDimension: 'elasticache:replication-group:NodeGroups'

Auto Scaling ElastiCache for Redis clusters API Version 2015-02-02 436

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-elasticache-replicationgroup.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-applicationautoscaling-scalabletarget.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/intrinsic-function-reference-join.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/intrinsic-function-reference-ref.html

Amazon ElastiCache for Redis User Guide

 TargetTrackingScalingPolicyConfiguration:
 PredefinedMetricSpecification:
 PredefinedMetricType: ElastiCachePrimaryEngineCPUUtilization
 TargetValue: 40

Scheduled scaling

Scaling based on a schedule enables you to scale your application in response to predictable
changes in demand. To use scheduled scaling, you create scheduled actions, which tell ElastiCache
for Redis to perform scaling activities at specific times. When you create a scheduled action, you
specify an existing ElastiCache for Redis cluster, when the scaling activity should occur, minimum
capacity, and maximum capacity. You can create scheduled actions that scale one time only or that
scale on a recurring schedule.

You can only create a scheduled action for ElastiCache for Redis clusters that already exist. You
can't create a scheduled action at the same time that you create a cluster.

For more information on terminology for scheduled action creation, management, and deletion,
see Commonly used commands for scheduled action creation, management, and deletion

To create on a recurring schedule:

1. Sign in to the AWS Management Console and open the Amazon ElastiCache console at https://
console.aws.amazon.com/elasticache/.

2. In the navigation pane, choose Redis.

3. Choose the cluster that you want to add a policy for.

4. Choose the Manage Auto Scaling policie from the Actions dropdown.

5. Choose the Auto Scaling policies tab.

6. In the Auto scaling policies section, the Add Scaling policy dialog box appears. Choose
Scheduled scaling.

7. For Policy Name, enter the policy name.

8. For Scalable Dimension, choose Shards.

9. For Target Shards, choose the value.

10. For Recurrence, choose Recurring.

11. For Frequency, choose the respective value.

12. For Start Date and Start time, choose the time from when the policy will go into effect.

13. Choose Add Policy.

Auto Scaling ElastiCache for Redis clusters API Version 2015-02-02 437

https://docs.aws.amazon.com/autoscaling/application/userguide/application-auto-scaling-scheduled-scaling.html#scheduled-scaling-commonly-used-commands
https://console.aws.amazon.com/elasticache/
https://console.aws.amazon.com/elasticache/

Amazon ElastiCache for Redis User Guide

To create a one-time scheduled action:

1. Sign in to the AWS Management Console and open the Amazon ElastiCache console at https://
console.aws.amazon.com/elasticache/.

2. In the navigation pane, choose Redis.

3. Choose the cluster that you want to add a policy for.

4. Choose the Manage Auto Scaling policie from the Actions dropdown.

5. Choose the Auto Scaling policies tab.

6. In the Auto scaling policies section, the Add Scaling policy dialog box appears. Choose
Scheduled scaling.

7. For Policy Name, enter the policy name.

8. For Scalable Dimension, choose Shards.

9. For Target Shards, choose the value.

10. For Recurrence, choose One Time.

11. For Start Date and Start time, choose the time from when the policy will go into effect.

12. For End Date choose the date until when the policy would be in effect.

13. Choose Add Policy.

To delete a scheduled action

1. Sign in to the AWS Management Console and open the Amazon ElastiCache console at https://
console.aws.amazon.com/elasticache/.

2. In the navigation pane, choose Redis.

3. Choose the cluster that you want to add a policy for.

4. Choose the Manage Auto Scaling policie from the Actions dropdown.

5. Choose the Auto Scaling policies tab.

6. In the Auto scaling policies section, choose the auto scaling policy, and then choose Delete
from the Actions dialog.

To manage scheduled scaling using the AWS CLI

Use the following application-autoscaling APIs:

• put-scheduled-action

Auto Scaling ElastiCache for Redis clusters API Version 2015-02-02 438

https://console.aws.amazon.com/elasticache/
https://console.aws.amazon.com/elasticache/
https://console.aws.amazon.com/elasticache/
https://console.aws.amazon.com/elasticache/
https://docs.aws.amazon.com/cli/latest/reference/autoscaling/put-scheduled-action.html

Amazon ElastiCache for Redis User Guide

• describe-scheduled-actions

• delete-scheduled-action

Use AWS CloudFormation to create a scheduled action

This snippet shows how to create a target tracking policy and apply it to an
AWS::ElastiCache::ReplicationGroup resource using the
AWS::ApplicationAutoScaling::ScalableTarget resource. It uses the Fn::Join and Ref
intrinsic functions to construct the ResourceId property with the logical name of the
AWS::ElastiCache::ReplicationGroup resource that is specified in the same template.

ScalingTarget:
 Type: 'AWS::ApplicationAutoScaling::ScalableTarget'
 Properties:
 MaxCapacity: 3
 MinCapacity: 1
 ResourceId: !Sub replication-group/${logicalName}
 ScalableDimension: 'elasticache:replication-group:NodeGroups'
 ServiceNamespace: elasticache
 RoleARN: !Sub "arn:aws:iam::${AWS::AccountId}:role/aws-
service-role/elasticache.application-autoscaling.amazonaws.com/
AWSServiceRoleForApplicationAutoScaling_ElastiCacheRG"
 ScheduledActions:
 - EndTime: '2020-12-31T12:00:00.000Z'
 ScalableTargetAction:
 MaxCapacity: '5'
 MinCapacity: '2'
 ScheduledActionName: First
 Schedule: 'cron(0 18 * * ? *)'

Using Auto Scaling with replicas

The following provides details on target tracking and scheduled policies and how to apply them
using the AWS Management Console AWS CLI and APIs.

Target tracking scaling policies

With target tracking scaling policies, you select a metric and set a target value. ElastiCache for
Redis AutoScaling creates and manages the CloudWatch alarms that trigger the scaling policy and
calculates the scaling adjustment based on the metric and the target value. The scaling policy adds

Auto Scaling ElastiCache for Redis clusters API Version 2015-02-02 439

https://docs.aws.amazon.com/cli/latest/reference/autoscaling/describe-scheduled-actions.html
https://docs.aws.amazon.com/cli/latest/reference/autoscaling/delete-scheduled-action.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-elasticache-replicationgroup.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-applicationautoscaling-scalabletarget.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/intrinsic-function-reference-join.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/intrinsic-function-reference-ref.html

Amazon ElastiCache for Redis User Guide

or removes replicas uniformly across all shards as required to keep the metric at, or close to, the
specified target value. In addition to keeping the metric close to the target value, a target tracking
scaling policy also adjusts to the fluctuations in the metric due to a fluctuating load pattern and
minimizes rapid fluctuations in the capacity of the fleet.

Auto Scaling criteria for replicas

Your Auto Scaling policy defines the following predefined metric for your cluster:

ElastiCacheReplicaEngineCPUUtilization: The AVG EngineCPU utilization threshold
aggregated across all replicas that ElastiCache for Redis uses to trigger an auto-scaling operation.
You can set the utilization target between 35 percent and 70 percent.

When the service detects that your ElastiCacheReplicaEngineCPUUtilization metric
is equal to or greater than the Target setting, it will increase replicas across your shards
automatically. ElastiCache for Redis scales out your cluster replicas by a count equal to the larger
of two numbers: Percent variation from Target and one replica. For scale-in, ElastiCache for Redis
won't auto scale-in unless the overall metric value is below 75 percent of your defined Target.

For a scale-out example, if you have 5 shards and 1 replica each:

If your Target breaches by 30 percent, ElastiCache for Redis scales out by 1 replica (max(0.3, default
1)) across all shards. which results in 5 shards with 2 replicas each,

For a scale-in example, if you have selected Target value of 60 percent, ElastiCache for Redis won't
auto scale-in until the metric is less than or equal to 45 percent (25 percent below the Target 60
percent).

Auto Scaling considerations

Keep the following considerations in mind:

• A target tracking scaling policy assumes that it should perform scale out when the specified
metric is above the target value. You cannot use a target tracking scaling policy to scale out
when the specified metric is below the target value. ElastiCache for Redis scales out replicas
by maximum of (% deviation rounded off from Target, default 1) of existing replicas across all
shards in the cluster.

• A target tracking scaling policy does not perform scaling when the specified metric has
insufficient data. It does not perform scale in because it does not interpret insufficient data as
low utilization.

Auto Scaling ElastiCache for Redis clusters API Version 2015-02-02 440

Amazon ElastiCache for Redis User Guide

• You may see gaps between the target value and the actual metric data points. This is because
ElastiCache for Redis Auto Scaling always acts conservatively by rounding up or down when
it determines how much capacity to add or remove. This prevents it from adding insufficient
capacity or removing too much capacity.

• To ensure application availability, the service scales out proportionally to the metric as fast as it
can, but scales in more gradually with max scale in of 1 replica across the shards in the cluster.

• You can have multiple target tracking scaling policies for an ElastiCache for Redis cluster,
provided that each of them uses a different metric. The intention of ElastiCache for Redis Auto
Scaling is to always prioritize availability, so its behavior differs depending on whether the target
tracking policies are ready for scale out or scale in. It will scale out the service if any of the target
tracking policies are ready for scale out, but will scale in only if all of the target tracking policies
(with the scale-in portion enabled) are ready to scale in.

• Do not edit or delete the CloudWatch alarms that ElastiCache for Redis Auto Scaling manages
for a target tracking scaling policy. ElastiCache for Redis Auto Scaling deletes the alarms
automatically when you delete the scaling policy or deleting the cluster.

• ElastiCache for Redis Auto Scaling doesn't prevent you from manually modifying replicas across
shards. These manual adjustments don't affect any existing CloudWatch alarms that are attached
to the scaling policy but can impact metrics that may trigger these CloudWatch alarms.

• These CloudWatch alarms managed by Auto Scaling are defined over the AVG metric across all
the shards in the cluster. So, having hot shards can result in either scenario of:

• scaling when not required due to load on a few hot shards triggering a CloudWatch alarm

• not scaling when required due to aggregated AVG across all shards affecting alarm not to
breach.

• ElastiCache for Redis default limits on Nodes per cluster still applies. So, when opting for Auto
Scaling and if you expect maximum nodes to be more than default limit, request a limit increase
at AWS Service Limits and choose the limit type Nodes per cluster per instance type.

• Ensure that you have enough ENIs (Elastic Network Interfaces) available in your VPC, which are
required during scale-out. For more information, see Elastic network interfaces.

• If there is not enough capacity available from EC2, ElastiCache for Redis Auto Scaling would
not scale out until the capacity is available or if you manually modify the cluster to the instance
types that have enough capacity.

• ElastiCache for Redis Auto Scaling doesn't support scaling of replicas with a cluster having
ReservedMemoryPercent less than 25 percent. For more information, see Managing Reserved
Memory.

Auto Scaling ElastiCache for Redis clusters API Version 2015-02-02 441

https://docs.aws.amazon.com/general/latest/gr/aws_service_limits.html
https://docs.aws.amazon.com/vpc/latest/userguide/VPC_ElasticNetworkInterfaces.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/redis-memory-management.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/redis-memory-management.html

Amazon ElastiCache for Redis User Guide

Adding a scaling policy

You can add a scaling policy using the AWS Management Console.

Adding a scaling policy using the AWS Management Console

To add an auto scaling policy to an ElastiCache for Redis

1. Sign in to the AWS Management Console and open the Amazon ElastiCache console at https://
console.aws.amazon.com/elasticache/.

2. In the navigation pane, choose Redis.

3. Choose the cluster that you want to add a policy to (choose the cluster name and not the
button to its left).

4. Choose the Auto Scaling policies tab.

5. Choose add dynamic scaling.

6. Under Scaling policies, choose Add dynamic scaling.

7. For Policy Name, enter the policy name.

8. For Scalable Dimension, select Replicas from dialog box.

9. For the target value, type the Avg percentage of CPU utilization that you want to maintain on
ElastiCache Replicas. This value must be >=35 and <=70. Cluster replicas are added or removed
to keep the metric close to the specified value.

10. (Optional) scale-in or scale-out cooldown periods are not supported from the Console. Use the
AWS CLI to modify the cool down values.

11. For Minimum capacity, type the minimum number of replicas that the ElastiCache for Redis
Auto Scaling policy is required to maintain.

12. For Maximum capacity, type the maximum number of replicas the ElastiCache for Redis Auto
Scaling policy is required to maintain. This value must be >=5.

13. Choose Create.

Registering a Scalable Target

You can apply a scaling policy based on either a predefined or custom metric. To do so, you can use
the AWS CLI or the Application Auto Scaling API. The first step is to register your ElastiCache for
Redis replication group with ElastiCache for Redis auto scaling.

Auto Scaling ElastiCache for Redis clusters API Version 2015-02-02 442

https://console.aws.amazon.com/elasticache/
https://console.aws.amazon.com/elasticache/

Amazon ElastiCache for Redis User Guide

Before you can use ElastiCache for Redis auto scaling with an ElastiCache for Redis cluster,
you register your cluster with ElastiCache for Redis auto scaling. You do so to define the
scaling dimension and limits to be applied to that cluster. ElastiCache for Redis auto scaling
dynamically scales the ElastiCache for Redis cluster along the elasticache:replication-
group:Replicas scalable dimension, which represents the number of cluster replicas per shard.

Using the CLI

To register your ElastiCache cluster, use the register-scalable-target command with the following
parameters:

• --service-namespace – Set this value to elasticache.

• --resource-id – The resource identifier for the ElastiCache cluster. For this parameter, the resource
type is ReplicationGroup and the unique identifier is the name of the ElastiCache for Redis
cluster, for example replication-group/myscalablecluster.

• --scalable-dimension – Set this value to elasticache:replication-group:Replicas.

• --min-capacity – The minimum number of replicas to be managed by ElastiCache for Redis auto
scaling. For information about the relationship between --min-capacity, --max-capacity, and the
number of replicas in your cluster, see Minimum and maximum capacity.

• --max-capacity – The maximum number of replicas to be managed by ElastiCache for Redis auto
scaling. For information about the relationship between --min-capacity, --max-capacity, and the
number of replicas in your cluster, see Minimum and maximum capacity.

Example

In the following example, you register an ElastiCache for Redis cluster named
myscalablecluster. The registration indicates that the cluster should be dynamically scaled to
have from one to 5 replicas.

For Linux, macOS, or Unix:

aws application-autoscaling register-scalable-target \
 --service-namespace elasticache \
 --resource-id replication-group/myscalablecluster \
 --scalable-dimension elasticache:replication-group:Replicas \
 --min-capacity 1 \
 --max-capacity 5 \

For Windows:

Auto Scaling ElastiCache for Redis clusters API Version 2015-02-02 443

https://docs.aws.amazon.com/cli/latest/reference/application-autoscaling/register-scalable-target.html

Amazon ElastiCache for Redis User Guide

aws application-autoscaling register-scalable-target ^
 --service-namespace elasticache ^
 --resource-id replication-group/myscalablecluster ^
 --scalable-dimension elasticache:replication-group:Replicas ^
 --min-capacity 1 ^
 --max-capacity 5 ^

Using the API

To register your ElastiCache cluster, use the register-scalable-target command with the following
parameters:

• ServiceNamespace – Set this value to elasticache.

• ResourceID – The resource identifier for the ElastiCache cluster. For this parameter, the resource
type is ReplicationGroup and the unique identifier is the name of the ElastiCache for Redis
cluster, for example replication-group/myscalablecluster.

• ScalableDimension – Set this value to elasticache:replication-group:Replicas.

• MinCapacity – The minimum number of replicas to be managed by ElastiCache for Redis auto
scaling. For information about the relationship between --min-capacity, --max-capacity, and the
number of replicas in your cluster, see Minimum and maximum capacity.

• MaxCapacity – The maximum number of replicas to be managed by ElastiCache for Redis auto
scaling. For information about the relationship between --min-capacity, --max-capacity, and the
number of replicas in your cluster, see Minimum and maximum capacity.

Example

In the following example, you register an ElastiCache for Redis cluster named
myscalablecluster with the Application Auto Scaling API. This registration indicates that the
cluster should be dynamically scaled to have from one to 5 replicas.

POST / HTTP/1.1
Host: autoscaling.us-east-2.amazonaws.com
Accept-Encoding: identity
Content-Length: 219
X-Amz-Target: AnyScaleFrontendService.RegisterScalableTarget
X-Amz-Date: 20160506T182145Z
User-Agent: aws-cli/1.10.23 Python/2.7.11 Darwin/15.4.0 botocore/1.4.8
Content-Type: application/x-amz-json-1.1
Authorization: AUTHPARAMS

Auto Scaling ElastiCache for Redis clusters API Version 2015-02-02 444

https://docs.aws.amazon.com/cli/latest/reference/application-autoscaling/register-scalable-target.html

Amazon ElastiCache for Redis User Guide

{
 "ServiceNamespace": "elasticache",
 "ResourceId": "replication-group/myscalablecluster",
 "ScalableDimension": "elasticache:replication-group:Replicas",
 "MinCapacity": 1,
 "MaxCapacity": 5
}

Defining a scaling policy

A target-tracking scaling policy configuration is represented by a JSON block that the metrics and
target values are defined in. You can save a scaling policy configuration as a JSON block in a text
file. You use that text file when invoking the AWS CLI or the Application Auto Scaling API. For more
information about policy configuration syntax, see TargetTrackingScalingPolicyConfiguration in the
Application Auto Scaling API Reference.

The following options are available for defining a target-tracking scaling policy configuration:

Topics

• Using a predefined metric

• Editing a scaling policy

• Deleting a scaling policy

• Use AWS CloudFormation for Auto Scaling policies

• Scheduled scaling

Using a predefined metric

A target-tracking scaling policy configuration is represented by a JSON block that the metrics and
target values are defined in. You can save a scaling policy configuration as a JSON block in a text
file. You use that text file when invoking the AWS CLI or the Application Auto Scaling API. For more
information about policy configuration syntax, see TargetTrackingScalingPolicyConfiguration in the
Application Auto Scaling API Reference.

The following options are available for defining a target-tracking scaling policy configuration:

Topics

• Using a predefined metric

• Using a custom metric

Auto Scaling ElastiCache for Redis clusters API Version 2015-02-02 445

https://docs.aws.amazon.com/ApplicationAutoScaling/latest/APIReference/API_TargetTrackingScalingPolicyConfiguration.html
https://docs.aws.amazon.com/ApplicationAutoScaling/latest/APIReference/API_TargetTrackingScalingPolicyConfiguration.html

Amazon ElastiCache for Redis User Guide

• Using cooldown periods

• Disabling scale-in activity

• Applying a scaling policy to an ElastiCache for Redis cluster

Using a predefined metric

By using predefined metrics, you can quickly define a target-tracking scaling policy for an
ElastiCache for Redis cluster that works with target tracking in ElastiCache for Redis Auto Scaling.
Currently, ElastiCache for Redis supports the following predefined metric in ElastiCache Replicas
Auto Scaling:

ElastiCacheReplicaEngineCPUUtilization – The average value of the EngineCPUUtilization
metric in CloudWatch across all replicas in the ElastiCache for Redis cluster. The average value
of the EngineCPUUtilization metric in CloudWatch across all replicas in the ElastiCache for
Redis cluster. You can find the aggregated metric value in CloudWatch under ElastiCache for Redis
ReplicationGroupId, Role for required ReplicationGroupId and Role Replica.

To use a predefined metric in your scaling policy, you create a target tracking configuration for
your scaling policy. This configuration must include a PredefinedMetricSpecification for the
predefined metric and a TargetValue for the target value of that metric.

Using a custom metric

By using custom metrics, you can define a target-tracking scaling policy that meets your custom
requirements. You can define a custom metric based on any ElastiCache for Redis metric that
changes in proportion to scaling. Not all ElastiCache for Redis metrics work for target tracking.
The metric must be a valid utilization metric and describe how busy an instance is. The value of
the metric must increase or decrease in proportion to the number of replicas in the cluster. This
proportional increase or decrease is necessary to use the metric data to proportionally increase or
decrease the number of replicas.

Example

The following example describes a target-tracking configuration for a scaling policy. In this
configuration, a custom metric adjusts an ElastiCache for Redis cluster based on an average CPU
utilization of 50 percent across all replicas in an cluster named my-db-cluster.

{"TargetValue": 50,
 "CustomizedMetricSpecification":
 {"MetricName": "EngineCPUUtilization",

Auto Scaling ElastiCache for Redis clusters API Version 2015-02-02 446

Amazon ElastiCache for Redis User Guide

 "Namespace": "AWS/ElastiCache",
 "Dimensions": [
 {"Name": "RelicationGroup","Value": "my-db-cluster"},
 {"Name": "Role","Value": "REPLICA"}
],
 "Statistic": "Average",
 "Unit": "Percent"
 }
}

Using cooldown periods

You can specify a value, in seconds, for ScaleOutCooldown to add a cooldown period for scaling
out your cluster. Similarly, you can add a value, in seconds, for ScaleInCooldown to add a
cooldown period for scaling in your cluster. For more information about ScaleInCooldown and
ScaleOutCooldown, see TargetTrackingScalingPolicyConfiguration in the Application Auto Scaling
API Reference. The following example describes a target-tracking configuration for a scaling policy.
In this configuration, the ElastiCacheReplicaEngineCPUUtilizationpredefined metric is
used to adjust an ElastiCache for Redis cluster based on an average CPU utilization of 40 percent
across all replicas in that cluster. The configuration provides a scale-in cooldown period of 10
minutes and a scale-out cooldown period of 5 minutes.

{"TargetValue": 40.0,
 "PredefinedMetricSpecification":
 {"PredefinedMetricType": "ElastiCacheReplicaEngineCPUUtilization"
 },
 "ScaleInCooldown": 600,
 "ScaleOutCooldown": 300
}

Disabling scale-in activity

You can prevent the target-tracking scaling policy configuration from scaling in your ElastiCache
for Redis cluster by disabling scale-in activity. Disabling scale-in activity prevents the scaling policy
from deleting replicas, while still allowing the scaling policy to add them as needed.

You can specify a Boolean value for DisableScaleIn to enable or disable scale
in activity for your cluster. For more information about DisableScaleIn, see
TargetTrackingScalingPolicyConfiguration in the Application Auto Scaling API Reference.

Auto Scaling ElastiCache for Redis clusters API Version 2015-02-02 447

https://docs.aws.amazon.com/ApplicationAutoScaling/latest/APIReference/API_TargetTrackingScalingPolicyConfiguration.html
https://docs.aws.amazon.com/ApplicationAutoScaling/latest/APIReference/API_TargetTrackingScalingPolicyConfiguration.html

Amazon ElastiCache for Redis User Guide

Example

The following example describes a target-tracking configuration for a scaling policy. In this
configuration, the ElastiCacheReplicaEngineCPUUtilization predefined metric adjusts an
ElastiCache for Redis cluster based on an average CPU utilization of 40 percent across all replicas in
that cluster. The configuration disables scale-in activity for the scaling policy.

{"TargetValue": 40.0,
 "PredefinedMetricSpecification":
 {"PredefinedMetricType": "ElastiCacheReplicaEngineCPUUtilization"
 },
 "DisableScaleIn": true
}

Applying a scaling policy to an ElastiCache for Redis cluster

After registering your cluster with ElastiCache for Redis auto scaling and defining a scaling policy,
you apply the scaling policy to the registered cluster. To apply a scaling policy to an ElastiCache for
Redis cluster, you can use the AWS CLI or the Application Auto Scaling API.

Using the AWS CLI

To apply a scaling policy to your ElastiCache for Redis cluster, use the put-scaling-policy command
with the following parameters:

• --policy-name – The name of the scaling policy.

• --policy-type – Set this value to TargetTrackingScaling.

• --resource-id – The resource identifier for the ElastiCache for Redis cluster. For this parameter,
the resource type is ReplicationGroup and the unique identifier is the name of the ElastiCache for
Redis cluster, for example replication-group/myscalablecluster.

• --service-namespace – Set this value to elasticache.

• --scalable-dimension – Set this value to elasticache:replication-group:Replicas.

• --target-tracking-scaling-policy-configuration – The target-tracking scaling policy configuration
to use for the ElastiCache for Redis cluster.

Auto Scaling ElastiCache for Redis clusters API Version 2015-02-02 448

https://docs.aws.amazon.com/cli/latest/reference/autoscaling/put-scaling-policy.html

Amazon ElastiCache for Redis User Guide

Example

In the following example, you apply a target-tracking scaling policy named myscalablepolicy
to an ElastiCache for Redis cluster named myscalablecluster with ElastiCache for Redis auto
scaling. To do so, you use a policy configuration saved in a file named config.json.

For Linux, macOS, or Unix:

aws application-autoscaling put-scaling-policy \
 --policy-name myscalablepolicy \
 --policy-type TargetTrackingScaling \
 --resource-id replication-group/myscalablecluster \
 --service-namespace elasticache \
 --scalable-dimension elasticache:replication-group:Replicas \
 --target-tracking-scaling-policy-configuration file://config.json

{"TargetValue": 40.0,
 "PredefinedMetricSpecification":
 {"PredefinedMetricType": "ElastiCacheReplicaEngineCPUUtilization"
 },
 "DisableScaleIn": true
}

For Windows:

aws application-autoscaling put-scaling-policy ^
 --policy-name myscalablepolicy ^
 --policy-type TargetTrackingScaling ^
 --resource-id replication-group/myscalablecluster ^
 --service-namespace elasticache ^
 --scalable-dimension elasticache:replication-group:Replicas ^
 --target-tracking-scaling-policy-configuration file://config.json

Using the API

To apply a scaling policy to your ElastiCache for Redis cluster with the Application Auto Scaling API,
use the PutScalingPolicy Application Auto Scaling API operation with the following parameters:

• PolicyName – The name of the scaling policy.

Auto Scaling ElastiCache for Redis clusters API Version 2015-02-02 449

https://docs.aws.amazon.com/autoscaling/application/APIReference/API_PutScalingPolicy.html

Amazon ElastiCache for Redis User Guide

• PolicyType – Set this value to TargetTrackingScaling.

• ResourceID – The resource identifier for the ElastiCache for Redis cluster. For this parameter, the
resource type is ReplicationGroup and the unique identifier is the name of the ElastiCache for
Redis cluster, for example replication-group/myscalablecluster.

• ServiceNamespace – Set this value to elasticache.

• ScalableDimension – Set this value to elasticache:replication-group:Replicas.

• TargetTrackingScalingPolicyConfiguration – The target-tracking scaling policy configuration to
use for the ElastiCache for Redis cluster.

Example

In the following example, you apply a target-tracking scaling policy named
scalablepolicy to an ElastiCache for Redis cluster named myscalablecluster
with ElastiCache for Redis auto scaling. You use a policy configuration based on the
ElastiCacheReplicaEngineCPUUtilization predefined metric.

POST / HTTP/1.1
Host: autoscaling.us-east-2.amazonaws.com
Accept-Encoding: identity
Content-Length: 219
X-Amz-Target: AnyScaleFrontendService.PutScalingPolicy
X-Amz-Date: 20160506T182145Z
User-Agent: aws-cli/1.10.23 Python/2.7.11 Darwin/15.4.0 botocore/1.4.8
Content-Type: application/x-amz-json-1.1
Authorization: AUTHPARAMS
{
 "PolicyName": "myscalablepolicy",
 "ServiceNamespace": "elasticache",
 "ResourceId": "replication-group/myscalablecluster",
 "ScalableDimension": "elasticache:replication-group:Replicas",
 "PolicyType": "TargetTrackingScaling",
 "TargetTrackingScalingPolicyConfiguration": {
 "TargetValue": 40.0,
 "PredefinedMetricSpecification":
 {
 "PredefinedMetricType": "ElastiCacheReplicaEngineCPUUtilization"
 }
 }

Auto Scaling ElastiCache for Redis clusters API Version 2015-02-02 450

Amazon ElastiCache for Redis User Guide

}

Editing a scaling policy

You can edit a scaling policy using the AWS Management Console, the AWS CLI, or the Application
Auto Scaling API.

Editing a scaling policy using the AWS Management Console

You can only edit policies with type Predefined metrics by using the AWS Management Console

1. Sign in to the AWS Management Console and open the Amazon ElastiCache console at https://
console.aws.amazon.com/elasticache/.

2. In the navigation pane, choose Redis

3. Choose the cluster that you want to add a policy to (choose the cluster name and not the
button to its left).

4. Choose the Auto Scaling policies tab.

5. Under Scaling policies, choose the button to the left of the Auto Scaling policy you wish to
change, and then choose Modify.

6. Make the requisite changes to the policy.

7. Choose Modify.

8. Make changes to the policy.

9. Choose Modify.

Editing a scaling policy using the AWS CLI or the Application Auto Scaling API

You can use the AWS CLI or the Application Auto Scaling API to edit a scaling policy in the same
way that you apply a scaling policy:

• When using the Application Auto Scaling API, specify the name of the policy you want to edit in
the PolicyName parameter. Specify new values for the parameters you want to change.

For more information, see Applying a scaling policy to an ElastiCache for Redis cluster.

Deleting a scaling policy

You can delete a scaling policy using the AWS Management Console, the AWS CLI or the
Application Auto Scaling API

Auto Scaling ElastiCache for Redis clusters API Version 2015-02-02 451

https://console.aws.amazon.com/elasticache/
https://console.aws.amazon.com/elasticache/

Amazon ElastiCache for Redis User Guide

Deleting a scaling policy using the AWS Management Console

You can only edit policies with type Predefined metrics by using the AWS Management Console

1. Sign in to the AWS Management Console and open the Amazon ElastiCache console at https://
console.aws.amazon.com/elasticache/.

2. In the navigation pane, choose Redis

3. Choose the cluster whose auto scaling policy you want to delete.

4. Choose the Auto Scaling policies tab.

5. Under Scaling policies, choose the auto scaling policy, and then choose Delete.

Deleting a scaling policy using the AWS CLI or the Application Auto Scaling API

You can use the AWS CLI or the Application Auto Scaling API to delete a scaling policy from an
ElastiCache cluster.

CLI

To delete a scaling policy from your ElastiCache for Redis cluster, use the delete-scaling-policy
command with the following parameters:

• --policy-name – The name of the scaling policy.

• --resource-id – The resource identifier for the ElastiCache for Redis cluster. For this parameter,
the resource type is ReplicationGroup and the unique identifier is the name of the ElastiCache
cluster, for example replication-group/myscalablecluster.

• --service-namespace – Set this value to elasticache.

• --scalable-dimension – Set this value to elasticache:replication-group:Replicas.

Example

In the following example, you delete a target-tracking scaling policy named myscalablepolicy
from an ELC; cluster named myscalablecluster.

For Linux, macOS, or Unix:

aws application-autoscaling delete-scaling-policy \
 --policy-name myscalablepolicy \
 --resource-id replication-group/myscalablecluster \

Auto Scaling ElastiCache for Redis clusters API Version 2015-02-02 452

https://console.aws.amazon.com/elasticache/
https://console.aws.amazon.com/elasticache/
https://docs.aws.amazon.com/cli/latest/reference/application-autoscaling/delete-scaling-policy.html

Amazon ElastiCache for Redis User Guide

 --service-namespace elasticache \
 --scalable-dimension elasticache:replication-group:Replicas \

For Windows:

aws application-autoscaling delete-scaling-policy ^
 --policy-name myscalablepolicy ^
 --resource-id replication-group/myscalablecluster ^
 --service-namespace elasticache ^
 --scalable-dimension elasticache:replication-group:Replicas ^

API

To delete a scaling policy from your ElastiCache for Redis cluster, use the DeleteScalingPolicy
Application Auto Scaling API operation with the following parameters:

• PolicyName – The name of the scaling policy.

• ResourceID – The resource identifier for the ElastiCache for Redis cluster. For this parameter,
the resource type is ReplicationGroup and the unique identifier is the name of the ElastiCache
cluster, for example replication-group/myscalablecluster.

• ServiceNamespace – Set this value to elasticache.

• ScalableDimension – Set this value to elasticache:replication-group:Replicas.

In the following example, you delete a target-tracking scaling policy named myscalablepolicy
from an ElastiCache for Redis cluster named myscalablecluster with the Application Auto
Scaling API.

POST / HTTP/1.1
>>>>>>> mainline
Host: autoscaling.us-east-2.amazonaws.com
Accept-Encoding: identity
Content-Length: 219
X-Amz-Target: AnyScaleFrontendService.DeleteScalingPolicy
X-Amz-Date: 20160506T182145Z
User-Agent: aws-cli/1.10.23 Python/2.7.11 Darwin/15.4.0 botocore/1.4.8
Content-Type: application/x-amz-json-1.1
Authorization: AUTHPARAMS
{
 "PolicyName": "myscalablepolicy",

Auto Scaling ElastiCache for Redis clusters API Version 2015-02-02 453

https://docs.aws.amazon.com/ApplicationAutoScaling/latest/APIReference/API_DeleteScalingPolicy.html

Amazon ElastiCache for Redis User Guide

 "ServiceNamespace": "elasticache",
 "ResourceId": "replication-group/myscalablecluster",
 "ScalableDimension": "elasticache:replication-group:Replicas"
}

Use AWS CloudFormation for Auto Scaling policies

This snippet shows how to create a scheduled action and apply it to an
AWS::ElastiCache::ReplicationGroup resource using the
AWS::ApplicationAutoScaling::ScalableTarget resource. It uses the Fn::Join and Ref
intrinsic functions to construct the ResourceId property with the logical name of the
AWS::ElastiCache::ReplicationGroup resource that is specified in the same template.

ScalingTarget:
 Type: 'AWS::ApplicationAutoScaling::ScalableTarget'
 Properties:
 MaxCapacity: 0
 MinCapacity: 0
 ResourceId: !Sub replication-group/${logicalName}
 ScalableDimension: 'elasticache:replication-group:Replicas'
 ServiceNamespace: elasticache
 RoleARN: !Sub "arn:aws:iam::${AWS::AccountId}:role/aws-
service-role/elasticache.application-autoscaling.amazonaws.com/
AWSServiceRoleForApplicationAutoScaling_ElastiCacheRG"

 ScalingPolicy:
 Type: "AWS::ApplicationAutoScaling::ScalingPolicy"
 Properties:
 ScalingTargetId: !Ref ScalingTarget
 ServiceNamespace: elasticache
 PolicyName: testpolicy
 PolicyType: TargetTrackingScaling
 ScalableDimension: 'elasticache:replication-group:Replicas'
 TargetTrackingScalingPolicyConfiguration:
 PredefinedMetricSpecification:
 PredefinedMetricType: ElastiCacheReplicaEngineCPUUtilization
 TargetValue: 40

Scheduled scaling

Scaling based on a schedule enables you to scale your application in response to predictable
changes in demand. To use scheduled scaling, you create scheduled actions, which tell ElastiCache

Auto Scaling ElastiCache for Redis clusters API Version 2015-02-02 454

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-elasticache-replicationgroup.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-applicationautoscaling-scalabletarget.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/intrinsic-function-reference-join.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/intrinsic-function-reference-ref.html

Amazon ElastiCache for Redis User Guide

for Redis to perform scaling activities at specific times. When you create a scheduled action, you
specify an existing ElastiCache for Redis cluster, when the scaling activity should occur, minimum
capacity, and maximum capacity. You can create scheduled actions that scale one time only or that
scale on a recurring schedule.

You can only create a scheduled action for ElastiCache for Redis clusters that already exist. You
can't create a scheduled action at the same time that you create a cluster.

For more information on terminology for scheduled action creation, management, and deletion,
see Commonly used commands for scheduled action creation, management, and deletion

To create a one-time scheduled action:

Similar to Shard dimension. See Scheduled scaling .

To delete a scheduled action

Similar to Shard dimension. See Scheduled scaling .

To manage scheduled scaling using the AWS CLI

Use the following application-autoscaling APIs:

• put-scheduled-action

• describe-scheduled-actions

• delete-scheduled-action

Use AWS CloudFormation to create Auto Scaling policies

This snippet shows how to create a scheduled action and apply it to an
AWS::ElastiCache::ReplicationGroup resource using the
AWS::ApplicationAutoScaling::ScalableTarget resource. It uses the Fn::Join and Ref
intrinsic functions to construct the ResourceId property with the logical name of the
AWS::ElastiCache::ReplicationGroup resource that is specified in the same template.

ScalingTarget:
 Type: 'AWS::ApplicationAutoScaling::ScalableTarget'
 Properties:
 MaxCapacity: 0
 MinCapacity: 0

Auto Scaling ElastiCache for Redis clusters API Version 2015-02-02 455

https://docs.aws.amazon.com/autoscaling/application/userguide/application-auto-scaling-scheduled-scaling.html#scheduled-scaling-commonly-used-commands
https://docs.aws.amazon.com/cli/latest/reference/application-autoscaling/put-scheduled-action.html
https://docs.aws.amazon.com/cli/latest/reference/application-autoscaling/describe-scheduled-actions.html
https://docs.aws.amazon.com/cli/latest/reference/application-autoscaling/delete-scheduled-action.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-elasticache-replicationgroup.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-applicationautoscaling-scalabletarget.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/intrinsic-function-reference-join.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/intrinsic-function-reference-ref.html

Amazon ElastiCache for Redis User Guide

 ResourceId: !Sub replication-group/${logicalName}
 ScalableDimension: 'elasticache:replication-group:Replicas'
 ServiceNamespace: elasticache
 RoleARN: !Sub "arn:aws:iam::${AWS::AccountId}:role/aws-
service-role/elasticache.application-autoscaling.amazonaws.com/
AWSServiceRoleForApplicationAutoScaling_ElastiCacheRG"
 ScheduledActions:
 - EndTime: '2020-12-31T12:00:00.000Z'
 ScalableTargetAction:
 MaxCapacity: '5'
 MinCapacity: '2'
 ScheduledActionName: First
 Schedule: 'cron(0 18 * * ? *)'

Modifying cluster mode

Redis is a distributed in-memory database that supports sharding and replication. ElastiCache for
Redis clusters are the distributed implementation of Redis that allows data to be partitioned across
multiple Redis nodes. An ElastiCache for Redis cluster has two modes of operation, Cluster mode
enabled (CME) and cluster mode disabled (CMD). In CME, Redis works as a distributed database
with multiple shards and nodes, while in CMD, Redis works as a single node.

Before migrating from CMD to CME, the following conditions must be met:

Important

Cluster mode configuration can only be changed from cluster mode disabled to cluster
mode enabled. Reverting this configuration is not possible.

• The cluster may only have keys in database 0 only.

• Applications must use a Redis client that is capable of using Cluster protocol and use a
configuration endpoint.

• Auto-failover must be enabled on the cluster with a minimum of 1 replica.

• The minimum Redis engine version required for migration is 7.0.

To migrate from CMD to CME, the cluster mode configuration must be changed from cluster mode
disabled to cluster mode enabled. This is a two-step procedure that ensures cluster availability
during the migration process.

Modifying cluster mode API Version 2015-02-02 456

Amazon ElastiCache for Redis User Guide

Note

You need to provide a parameter group with cluster-enabled configuration, that is, the
cluster-enabled parameter is set as yes. If you are using a default parameter group,
ElastiCache for Redis will automatically pick the corresponding default parameter group
with a cluster-enabled configuration. The cluster-enabled parameter value is set to no for a
CMD cluster. As the cluster moves to the compatible mode, the cluster-enabled parameter
value is updated to yes as part of the modification action.
For more information, see Configuring engine parameters using parameter groups

1. Prepare – Create a test CME cluster and make sure your stack is ready to work with it.
ElastiCache for Redis has no way to verify your readiness. For more information, see Creating a
cluster.

2. Modify existing CMD Cluster Configuration to cluster mode compatible – In this mode, there
will be a single shard deployed, and ElastiCache for Redis will work as a single node but also as
a single shard cluster. Compatible mode means the client application can use either protocol to
communicate with the cluster. In this mode, applications must be reconfigured to start using
Redis Cluster protocol and configuration endpoint. To change the Redis cluster mode to cluster
mode compatible, follow the steps below:

Note

In compatible mode, other modification operations such as scaling and engine
version are not allowed for the cluster. Additionally, parameters (excluding
cacheParameterGroupName) cannot be modified when defining cluster-mode
parameter within the ModifyReplicationGroup request.

a. Using the AWS Management Console, see Modifying a replication group and set the
cluster mode to Compatible

b. Using the API, see ModifyReplicationGroup and update the ClusterMode parameter to
compatible.

c. Using the AWS CLI, see modify-replication-group and update the cluster-mode
parameter to compatible.

Modifying cluster mode API Version 2015-02-02 457

https://docs.aws.amazon.com/AmazonElastiCache/latest/APIReference/API_ModifyReplicationGroup.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/APIReference/API_ModifyReplicationGroup.html
https://docs.aws.amazon.com/cli/latest/reference/elasticache/modify-replication-group.html

Amazon ElastiCache for Redis User Guide

After changing the Redis cluster mode to cluster mode compatible, the
DescribeReplicationGroups API will return the ElastiCache for Redis cluster configuration
endpoint. The cluster configuration endpoint is a single endpoint that can be used by
applications to connect to the cluster. For more information, see Finding connection endpoints.

3. Modify Cluster Configuration to cluster mode enabled – Once the cluster mode is set to
cluster mode compatible, the second step is to modify the cluster configuration to cluster
mode enabled. In this mode, a single shard is running, and customers can now scale their
clusters or modify other cluster configurations.

To change the cluster mode to enabled, follow the steps below:

Before you begin, make sure your Redis clients have migrated to using cluster protocol and
that the cluster's configuration endpoint is not in use.

a. Using the AWS Management Console, see Modifying a replication group and set the
cluster mode to Enabled.

b. Using the API, see ModifyReplicationGroup and update the ClusterMode parameter to
enabled.

c. Using the AWS CLI, see modify-replication-group and update the cluster-mode
parameter to enabled.

After changing the cluster mode to enabled, the endpoints will be configured as per the
Redis cluster specification. The DescribeReplicationGroups API will return the cluster mode
parameter as enabled and the cluster endpoints that are now available to be used by
applications to connect to the cluster.

Note that the cluster endpoints will change once the cluster mode is changed to enabled.
Make sure to update your applications with the new endpoints.

You can also choose to revert back to cluster mode disabled (CMD) from cluster mode compatible
and preserve the original configurations.

Modify Cluster Configuration to cluster mode disabled from cluster mode compatible

1. Using the AWS Management Console, see Modifying a replication group and set the cluster
mode to Disabled

Modifying cluster mode API Version 2015-02-02 458

https://docs.aws.amazon.com/AmazonElastiCache/latest/APIReference/API_DescribeReplicationGroups.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/APIReference/API_ModifyReplicationGroup.html
https://docs.aws.amazon.com/cli/latest/reference/elasticache/modify-replication-group.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/APIReference/API_DescribeReplicationGroups.html

Amazon ElastiCache for Redis User Guide

2. Using the API, see ModifyReplicationGroup and update the ClusterMode parameter to
disabled.

3. Using the AWS CLI, see modify-replication-group and update the cluster-mode parameter to
disabled.

After changing the cluster mode to disabled, the DescribeReplicationGroups API will return the
cluster mode parameter as disabled.

Replication across AWS Regions using global datastores

Note

Global Datastore is currently available for self-designed clusters only.

By using the Global Datastore for Redis feature, you can work with fully managed, fast, reliable,
and secure replication across AWS Regions. Using this feature, you can create cross-Region read
replica clusters for ElastiCache for Redis to enable low-latency reads and disaster recovery across
AWS Regions.

In the following sections, you can find a description of how to work with global datastores.

Topics

• Overview

• Prerequisites and limitations

• Using global datastores (console)

• Using global datastores (CLI)

Overview

Each global datastore is a collection of one or more clusters that replicate to one another.

A global datastore consists of the following:

• Primary (active) cluster – A primary cluster accepts writes that are replicated to all clusters
within the global datastore. A primary cluster also accepts read requests.

Replication across AWS Regions using global datastores API Version 2015-02-02 459

https://docs.aws.amazon.com/AmazonElastiCache/latest/APIReference/API_ModifyReplicationGroup.html
https://docs.aws.amazon.com/cli/latest/reference/elasticache/modify-replication-group.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/APIReference/API_DescribeReplicationGroups.html

Amazon ElastiCache for Redis User Guide

• Secondary (passive) cluster – A secondary cluster only accepts read requests and replicates data
updates from a primary cluster. A secondary cluster needs to be in a different AWS Region than
the primary cluster.

When you create a global datastore in ElastiCache, ElastiCache for Redis automatically replicates
your data from the primary cluster to the secondary cluster. You choose the AWS Region where
the Redis data should be replicated and then create a secondary cluster in that AWS Region.
ElastiCache then sets up and manages automatic, asynchronous replication of data between the
two clusters.

Using a global datastore for Redis provides the following advantages:

• Geolocal performance – By setting up remote replica clusters in additional AWS Regions and
synchronizing your data between them, you can reduce latency of data access in that AWS
Region. A global datastore can help increase the responsiveness of your application by serving
low-latency, geolocal reads across AWS Regions.

• Disaster recovery – If your primary cluster in a global datastore experiences degradation, you
can promote a secondary cluster as your new primary cluster. You can do so by connecting to any
AWS Region that contains a secondary cluster.

The following diagram shows how global datastores can work.

Replication across AWS Regions using global datastores API Version 2015-02-02 460

Amazon ElastiCache for Redis User Guide

Prerequisites and limitations

Before getting started with global datastores, be aware of the following:

• Global datastores are supported in the following AWS Regions: Asia Pacific (Seoul, Tokyo,
Singapore, Sydney, Mumbai, and Osaka), Europe (Frankfurt, Paris, London, Ireland, and
Stockholm), US East (N. Virginia and Ohio), US West (N. California and Oregon), South America
(São Paulo), AWS GovCloud (US-West and US-East), Canada (Central) Region, China (Beijing and
Ningxia)

• All clusters—primary and secondary—in your global datastore should have the same number
of primary nodes, node type, engine version, and number of shards (in case of cluster-mode
enabled). Each cluster in your global datastore can have a different number of read replicas to
accommodate the read traffic local to that cluster.

Replication must be enabled if you plan to use an existing single-node cluster.

• You can set up replication for a primary cluster from one AWS Region to a secondary cluster in
up to two other AWS Regions.

Note

The exception to this are China (Beijing) Region and China (Ningxia) regions, where
replication can only occur between the two regions.

• You can work with global datastores only in VPC clusters. For more information, see Access
Patterns for Accessing an ElastiCache Cache in an Amazon VPC. Global datastores aren't
supported when you use EC2-Classic. For more information, see EC2-Classic in the Amazon EC2
User Guide for Linux Instances.

Note

At this time, you can't use global datastores in Using local zones with ElastiCache .

• ElastiCache doesn't support autofailover from one AWS Region to another. When needed, you
can promote a secondary cluster manually. For an example, see Promoting the secondary cluster
to primary.

• To bootstrap from existing data, use an existing cluster as primary to create a global datastore.
We don't support adding an existing cluster as secondary. The process of adding the cluster as
secondary wipes data, which may result in data loss.

Replication across AWS Regions using global datastores API Version 2015-02-02 461

https://docs.aws.amazon.com//AWSEC2/latest/UserGuide/ec2-classic-platform.html

Amazon ElastiCache for Redis User Guide

• Parameter updates are applied to all clusters when you modify a local parameter group of a
cluster belonging to a global datastore.

• You can scale regional clusters both vertically (scaling up and down) and horizontally (scaling in
and out). You can scale the clusters by modifying the global datastore. All the regional clusters
in the global datastore are then scaled without interruption. For more information, see Scaling
ElastiCache for Redis .

• Global datastores support encryption at rest, encryption in transit, and Redis AUTH.

• Global datastores support AWS KMS keys. For more information, see AWS key management
service concepts in the AWS Key Management Service Developer Guide.

Note

Global datastores support pub/sub messaging with the following stipulations:

• For cluster-mode disabled, pub/sub is fully supported. Events published on the primary
cluster of the primary AWS Region are propagated to secondary AWS Regions.

• For cluster mode enabled, the following applies:

• For published events that aren't in a keyspace, only subscribers in the same AWS
Region receive the events.

• For published keyspace events, subscribers in all AWS Regions receive the events.

Using global datastores (console)

To create a global datastore using the console, follow this two-step process:

1. Create a primary cluster, either by using an existing cluster or creating a new cluster. The engine
must be Redis 5.0.6 or later.

2. Add up to two secondary clusters in different AWS Regions, again using the Redis 5.0.6 engine or
later.

The following procedures guide you on how to create a global datastore for Redis and perform
other operations using the ElastiCache for Redis console.

Topics

• Creating a global datastore using an existing cluster

Replication across AWS Regions using global datastores API Version 2015-02-02 462

https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/at-rest-encryption.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/in-transit-encryption.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/auth.html
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#master_keys
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#master_keys
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/elasticache-use-cases.html#elasticache-for-redis-use-cases-messaging

Amazon ElastiCache for Redis User Guide

• Creating a new global datastore using a new primary cluster

• Viewing global datastore details

• Adding a Region to a global datastore

• Modifying a global datastore

• Promoting the secondary cluster to primary

• Removing a Region from a global datastore

• Deleting a global datastore

Creating a global datastore using an existing cluster

In this scenario, you use an existing cluster to serve as the primary of the new global datastore.
You then create a secondary, read-only cluster in a separate AWS Region. This secondary cluster
receives automatic and asynchronous updates from the primary cluster.

Important

The existing cluster must use the Redis 5.0.6 engine or later.

To create a global datastore using an existing cluster

1. Sign in to the AWS Management Console and open the ElastiCache console at https://
console.aws.amazon.com/elasticache/.

2. On the navigation pane, choose Redis and then choose a cluster.

3. For Actions, choose Setup Global Datastore.

4. On the Setup Global Datastore page, do the following:

• Enter a value for Global Datastore Name suffix: This suffix is used to generate a unique
name for the global datastore. You can search for the global datastore by using the suffix
that you specify here.

• (Optional) Enter a Description value.

5. Under Secondary cluster details, choose a different AWS Region where the cluster will be
stored.

6. Under Redis settings, enter a value for Name and, optionally, for Description for the cluster.

Replication across AWS Regions using global datastores API Version 2015-02-02 463

https://console.aws.amazon.com/elasticache/
https://console.aws.amazon.com/elasticache/

Amazon ElastiCache for Redis User Guide

7. Keep the following options as they are. They're prepopulated to match the primary cluster
configuration, you can't change them.

• Engine version

• Node type

• Parameter group

Note

ElastiCache autogenerates a new parameter group from values of the provided
parameter group and applies the new parameter group to the cluster. Use this new
parameter group to modify parameters on a global datastore. Each autogenerated
parameter group is associated with one and only one cluster and, therefore, only one
global datastore.

• Number of shards

• Encryption at rest – Enables encryption of data stored on disk. For more information, see
Encryption at rest.

Note

You can supply a different encryption key by choosing Customer Managed AWS
KMS key and choosing the key. For more information, see Using Customer Managed
AWS KMS keys.

• Encryption in-transit – Enables encryption of data on the wire. For more information, see
Encryption in transit. For Redis engine version 6.0 onwards, if you enable encryption in-
transit you are prompted to specify one of the following Access Control options:

• No Access Control – This is the default setting. This indicates no restrictions.

• User Group Access Control List – Choose a user group with a defined set of users and
permissions on available operations. For more information, see Managing User Groups
with the Console and CLI.

• Redis AUTH Default User – An authentication mechanism for Redis server. For more
information, see Redis AUTH.

Replication across AWS Regions using global datastores API Version 2015-02-02 464

https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/at-rest-encryption.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/at-rest-encryption.html#using-customer-managed-keys-for-elasticache-security
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/at-rest-encryption.html#using-customer-managed-keys-for-elasticache-security
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/in-transit-encryption.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/auth.html

Amazon ElastiCache for Redis User Guide

8. (Optional) As needed, update the remaining secondary cluster settings. These are
prepopulated with the same values as the primary cluster, but you can update them to meet
specific requirements for that cluster.

• Port

• Number of replicas

• Subnet group

• Preferred Availability Zone(s)

• Security groups

• Customer Managed (AWS KMS key)

• Redis AUTH Token

• Enable automatic backups

• Backup retention period

• Backup window

• Maintenance window

• Topic for SNS notification

9. Choose Create. Doing this sets the status of the global datastore to Creating. The status
transitions to Modifying after the primary cluster is associated to the global datastore and the
secondary cluster is in Associating status.

After the primary cluster and secondary clusters are associated with the global datastore, the
status changes to Available. At this point, you have a primary cluster that accepts reads and
writes and secondary clusters that accept reads replicated from the primary cluster.

The Redis page is updated to indicate whether a cluster is part of a global datastore, including:

• Global Datastore – The name of the global datastore to which the cluster belongs.

• Global Datastore Role – The role of the cluster, either primary or secondary.

You can add up to one additional secondary cluster in a different AWS Region. For more
information, see Adding a Region to a global datastore.

Creating a new global datastore using a new primary cluster

If you choose to create a global datastore with a new cluster, use the following procedure.
Replication across AWS Regions using global datastores API Version 2015-02-02 465

Amazon ElastiCache for Redis User Guide

1. Sign in to the AWS Management Console and open the ElastiCache console at https://
console.aws.amazon.com/elasticache/.

2. On the navigation pane, choose Global Datastore and then choose Create global datastore.

3. Under Primary cluster settings, do the following:

a. For Cluster mode, choose Enabled or Disabled.

b. For Global Datastore info enter a value for Name. ElastiCache uses the suffix to generate
a unique name for the global datastore. You can search for the global datastore by using
the suffix that you specify here.

c. (Optional) Enter a value for Global Datastore Description.

4. Under Regional cluster:

a. For Region, choose an available AWS Region.

b. Choose Create new regional cluster or Use existing regional cluster

c. If you choose Create new regional cluster, under Cluster info, enter a name and optional
description of the cluster.

d. Under Location, we recommend you accept the default settings for Multi-AZ and Auto-
failover.

5. Under Cluster settings

a. For Engine version, choose an available version, which is 5.0.6 or later.

b. For Port, use the default port, 6379. If you have a reason to use a different port, enter the
port number.

c. For Parameter group, choose a parameter group or create a new one. Parameter groups
control the runtime parameters of your cluster. For more information on parameter
groups, see Redis-specific parameters and Creating a parameter group.

Note

When you select a parameter group to set the engine configuration values,
that parameter group is applied to all clusters in the global datastore. On
the Parameter Groups page, the yes/no Global attribute indicates whether a
parameter group is part of a global datastore.

d. For Node type, choose the down arrow
().

Replication across AWS Regions using global datastores API Version 2015-02-02 466

https://console.aws.amazon.com/elasticache/
https://console.aws.amazon.com/elasticache/

Amazon ElastiCache for Redis User Guide

In the Change node type dialog box, choose a value for Instance family for the node type
that you want. Then choose the node type that you want to use for this cluster, and then
choose Save.

For more information, see Choosing your node size.

If you choose an r6gd node type, data-tiering is automatically enabled. For more
information, see Data tiering.

e. If you are creating a Redis (cluster mode disabled) cluster:

For Number of replicas, choose the number of replicas that you want for this cluster.

f. If you are creating a Redis (cluster mode enabled) cluster:

i. For Number of shards, choose the number of shards (partitions/node groups) that
you want for this Redis (cluster mode enabled) cluster.

For some versions of Redis (cluster mode enabled), you can change the number of
shards in your cluster dynamically:

• Redis 3.2.10 and later – If your cluster is running Redis 3.2.10 or later versions, you
can change the number of shards in your cluster dynamically. For more information,
see Scaling clusters in Redis (Cluster Mode Enabled).

• Other Redis versions – If your cluster is running a version of Redis before version
3.2.10, there's another approach. To change the number of shards in your cluster
in this case, create a new cluster with the new number of shards. For more
information, see Restoring from a backup into a new cache.

ii. For Replicas per shard, choose the number of read replica nodes that you want in
each shard.

The following restrictions exist for Redis (cluster mode enabled).

• If you have Multi-AZ enabled, make sure that you have at least one replica per
shard.

• The number of replicas is the same for each shard when creating the cluster using
the console.

• The number of read replicas per shard is fixed and cannot be changed. If you find
you need more or fewer replicas per shard (API/CLI: node group), you must create a

Replication across AWS Regions using global datastores API Version 2015-02-02 467

Amazon ElastiCache for Redis User Guide

new cluster with the new number of replicas. For more information, see Seeding a
new self-designed cluster with an externally created backup.

6. For Subnet group settings, choose the subnet that you want to apply to this cluster.
ElastiCache provides a default IPv4 subnet group or you can choose to create a new one. For
IPv6, you need to create a subnet group with an IPv6 CIDR block. If you choose dual stack, you
then must select a Discovery IP type, either IPv6 or IPv4.

For more information see, Create a subnet in your VPC.

7. For Availability zone placements, you have two options:

• No preference – ElastiCache chooses the Availability Zone.

• Specify availability zones – You specify the Availability Zone for each cluster.

If you chose to specify the Availability Zones, for each cluster in each shard, choose the
Availability Zone from the list.

For more information, see Choosing regions and availability zones.

Specifying Keyspaces and Availability Zones

8. Choose Next

9. Under Advanced Redis settings

• For Security:

Replication across AWS Regions using global datastores API Version 2015-02-02 468

https://docs.aws.amazon.com/vpc/latest/userguide/working-with-vpcs.html#AddaSubnet

Amazon ElastiCache for Redis User Guide

i. To encrypt your data, you have the following options:

• Encryption at rest – Enables encryption of data stored on disk. For more
information, see Encryption at Rest.

Note

You have the option to supply a different encryption key by choosing
Customer Managed AWS KMS key and choosing the key. For more
information, see Using customer managed keys from AWS KMS.

• Encryption in-transit – Enables encryption of data on the wire. For more
information, see encryption in transit. For Redis engine version 6.0 and above,
if you enable Encryption in-transit you will be prompted to specify one of the
following Access Control options:

• No Access Control – This is the default setting. This indicates no restrictions on
user access to the cluster.

• User Group Access Control List – Select a user group with a defined set of users
that can access the cluster. For more information, see Managing User Groups with
the Console and CLI.

• Redis AUTH Default User – An authentication mechanism for Redis server. For
more information, see Redis AUTH.

• Redis AUTH – An authentication mechanism for Redis server. For more information,
see Redis AUTH.

Note

For Redis versions between 3.2.6 onward, excluding version 3.2.10, Redis
AUTH is the sole option.

ii. For Security groups, choose the security groups that you want for this cluster. A
security group acts as a firewall to control network access to your cluster. You can use
the default security group for your VPC or create a new one.

For more information on security groups, see Security groups for your VPC in the
Amazon VPC User Guide.

Replication across AWS Regions using global datastores API Version 2015-02-02 469

https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/at-rest-encryption.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/at-rest-encryption.html#using-customer-managed-keys-for-elasticache-security
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/in-transit-encryption.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/auth.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/auth.html
https://docs.aws.amazon.com/vpc/latest/userguide/VPC_SecurityGroups.html

Amazon ElastiCache for Redis User Guide

10. For regularly scheduled automatic backups, select Enable automatic backups and then enter
the number of days that you want each automatic backup retained before it is automatically
deleted. If you don't want regularly scheduled automatic backups, clear the Enable automatic
backups check box. In either case, you always have the option to create manual backups.

For more information on Redis backup and restore, see Snapshot and restore.

11. (Optional) Specify a maintenance window. The maintenance window is the time, generally an
hour in length, each week when ElastiCache schedules system maintenance for your cluster.
You can allow ElastiCache to choose the day and time for your maintenance window (No
preference), or you can choose the day, time, and duration yourself (Specify maintenance
window). If you choose Specify maintenance window from the lists, choose the Start day, Start
time, and Duration (in hours) for your maintenance window. All times are UCT times.

For more information, see Managing maintenance.

12. (Optional) For Logs:

• Under Log format, choose either Text or JSON.

• Under Destination Type, choose either CloudWatch Logs or Kinesis Firehose.

• Under Log destination, choose either Create new and enter either your CloudWatch Logs
log group name or your Firehose stream name, or choose Select existing and then choose
either your CloudWatch Logs log group name or your Firehose stream name,

13. For Tags, to help you manage your clusters and other ElastiCache resources, you can assign
your own metadata to each resource in the form of tags. For mor information, see Tagging
your ElastiCache resources.

14. Review all your entries and choices, then make any needed corrections. When you're ready,
choose Next.

15. After you have configured the cluster in the previous steps, you now configure your secondary
cluster details..

16. Under Regional cluster, choose the AWS Region where th cluster is located.

17. Under Cluster info, enter a name and optional description of the cluster.

18. The following options are prepopulated to match the primary cluster configuration and cannot
be changed:

• Location

• Engine version

Replication across AWS Regions using global datastores API Version 2015-02-02 470

Amazon ElastiCache for Redis User Guide

• Instance type

• Node type

• Number of shards

• Parameter group

Note

ElastiCache autogenerates a new parameter group from values of the provided
parameter group and applies the new parameter group to the cluster. Use this new
parameter group to modify parameters on a global datastore. Each autogenerated
parameter group is associated with one and only one cluster and, therefore, only one
global datastore.

• Encryption at rest – Enables encryption of data stored on disk. For more information, see
Encryption at rest.

Note

You can supply a different encryption key by choosing Customer Managed AWS
KMS key and choosing the key. For more information, see Using Customer Managed
AWS KMS keys.

• Encryption in-transit – Enables encryption of data on the wire. For more information, see
Encryption in transit. For Redis engine version 6.4 and above, if you enable encryption in-
transit you are prompted to specify one of the following Access Control options:

• No Access Control – This is the default setting. This indicates no restrictions on user access
to the cluster.

• User Group Access Control List – Choose a user group with a defined set of users that can
access the cluster. For more information, see Managing User Groups with the Console and
CLI.

• Redis AUTH Default User – An authentication mechanism for Redis server. For more
information, see Redis AUTH.

Replication across AWS Regions using global datastores API Version 2015-02-02 471

https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/at-rest-encryption.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/at-rest-encryption.html#using-customer-managed-keys-for-elasticache-security
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/at-rest-encryption.html#using-customer-managed-keys-for-elasticache-security
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/in-transit-encryption.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/auth.html

Amazon ElastiCache for Redis User Guide

Note

For Redis versions between 4.0.2, when Encryption in-transit was first supported, and
6.0.4, Redis AUTH is the sole option.

The remaining secondary cluster settings are pre-populated with the same values as the
primary cluster, but the following can be updated to meet specific requirements for that
cluster:

• Port

• Number of replicas

• Subnet group

• Preferred Availability Zone(s)

• Security groups

• Customer Managed (AWS KMS key)

• Redis AUTH Token

• Enable automatic backups

• Backup retention period

• Backup window

• Maintenance window

• Topic for SNS notification

19. Choose Create. This sets the status of the global datastore to Creating. After the primary
cluster and secondary clusters are associated with the global datastore, the status changes to
Available. You have a primary cluster that accepts reads and writes and a secondary cluster
that accepts reads replicated from the primary cluster.

The Redis page is also updated to indicate whether a cluster is part of a global datastore,
including the following:

• Global Datastore – The name of the global datastore to which the cluster belongs.

• Global Datastore Role – The role of the cluster, either primary or secondary.

Replication across AWS Regions using global datastores API Version 2015-02-02 472

Amazon ElastiCache for Redis User Guide

You can add up to one additional secondary cluster in a different AWS Region. For more
information, see Adding a Region to a global datastore.

Viewing global datastore details

You can view the details of existing global datastores and also modify them on the Global
Datastore page.

To view global datastore details

1. Sign in to the AWS Management Console and open the ElastiCache console at https://
console.aws.amazon.com/elasticache/.

2. On the navigation pane, choose Global Datastore and then choose an available global
datastore.

You can then examine the following global datastore properties:

• Global Datastore Name: The name of the global datastore

• Description: A description of the global datastore

• Status: Options include:

• Creating

• Modifying

• Available

• Deleting

• Primary-Only - This status indicates the global datastore contains only a primary cluster. Either
all secondary clusters are deleted or not successfully created.

• Cluster Mode: Either enabled or disabled

• Redis Engine Version: The Redis engine version running the global datastore

• Instance Node Type: The node type used for the global datastore

• Encryption at-rest: Either enabled or disabled

• Encryption in-transit: Either enabled or disabled

• Redis AUTH: Either enabled or disabled

You can make the following changes to the global datastore:

Replication across AWS Regions using global datastores API Version 2015-02-02 473

https://console.aws.amazon.com/elasticache/
https://console.aws.amazon.com/elasticache/

Amazon ElastiCache for Redis User Guide

• Adding a Region to a global datastore

• Removing a Region from a global datastore

• Promoting the secondary cluster to primary

• Modifying a global datastore

The Global Datastore page also lists the individual clusters that make up the global datastore and
the following properties for each:

• Region - The AWS Region where the cluster is stored

• Role - Either primary or secondary

• Cluster name - The name of the cluster

• Status - Options include:

• Associating - The cluster is in the process of being associated to the global datastore

• Associated - The cluster is associated to the global datastore

• Disassociating - The process of removing a secondary cluster from the global datastore using
the global datastore name. After this, the secondary cluster no longer receives updates from
the primary cluster but it remains as a standalone cluster in that AWS Region.

• Disassociated - The secondary cluster has been removed from the global datastore and is now
a standalone cluster in its AWS Region.

• Global Datastore Replica lag – Shows one value per secondary AWS Region in the global
datastore. This is the lag between the secondary Region's primary node and the primary Region's
primary node. For cluster mode enabled Redis, the lag indicates the maximum delay, in seconds,
among the shards.

Adding a Region to a global datastore

You can add up to one additional AWS Region to an existing global datastore. In this scenario,
you are creating a read-only cluster in a separate AWS Region that receives automatic and
asynchronous updates from the primary cluster.

To add an AWS Region to a global datastore

1. Sign in to the AWS Management Console and open the ElastiCache console at https://
console.aws.amazon.com/elasticache/.

Replication across AWS Regions using global datastores API Version 2015-02-02 474

https://console.aws.amazon.com/elasticache/
https://console.aws.amazon.com/elasticache/

Amazon ElastiCache for Redis User Guide

2. On the navigation pane, choose Global Datastore, and then for Global Datastore Name
choose a global datastore.

3. Choose Add Region, and choose the AWS Region where the secondary cluster is to reside.

4. Under Redis settings, enter a value for Name and, optionally, for Description for the cluster.

5. Keep the following options as they are. They're prepopulated to match the primary cluster
configuration, and you can't change them.

• Engine version

• Instance type

• Node type

• Number of shards

• Parameter group

Note

ElastiCache autogenerates a new parameter group from values of the provided
parameter group and applies the new parameter group to the cluster. Use this new
parameter group to modify parameters on a global datastore. Each autogenerated
parameter group is associated with one and only one cluster and, therefore, only one
global datastore.

• Encryption at rest

Note

You can supply a different encryption key by choosing Customer Managed AWS
KMS key and choosing the key.

• Encryption in transit

• Redis AUTH

6. (Optional) Update the remaining secondary cluster settings. These are prepopulated with the
same values as the primary cluster, but you can update them to meet specific requirements for
that cluster:

• Port

• Number of replicas
Replication across AWS Regions using global datastores API Version 2015-02-02 475

Amazon ElastiCache for Redis User Guide

• Subnet group

• Preferred Availability Zone(s)

• Security groups

• Customer Managed AWS KMS key)

• Redis AUTH Token

• Enable automatic backups

• Backup retention period

• Backup window

• Maintenance window

• Topic for SNS notification

7. Choose Add.

Modifying a global datastore

You can modify properties of regional clusters. Only one modify operation can be in progress
on a global datastore, with the exception of promoting a secondary cluster to primary. For more
information, see Promoting the secondary cluster to primary.

To modify a global datastore

1. Sign in to the AWS Management Console and open the ElastiCache console at https://
console.aws.amazon.com/elasticache/.

2. On the navigation pane, choose Global Datastore, and then for Global Datastore Name,
choose a global datastore.

3. Choose Modify and choose among the following options:

• Modify description – Update the description of the global datastore

• Modify engine version – Only Redis engine version 5.0.6 or later is available.

• Modify node type – Scale regional clusters both vertically (scaling up and down) and
horizontally (scaling in and out). Options include the R5 and M5 node families. For more
information on node types, see Supported node types.

• Modify Automatic Failover – Enable or disable Automatic Failover. When you enable
failover and primary nodes in regional clusters shut down unexpectedly, ElastiCache fails
over to one of the regional replicas. For more information, see Auto failover.

Replication across AWS Regions using global datastores API Version 2015-02-02 476

https://console.aws.amazon.com/elasticache/
https://console.aws.amazon.com/elasticache/
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/AutoFailover.html

Amazon ElastiCache for Redis User Guide

For Redis clusters with cluster-mode enabled:

• Add shards – Enter the number of shards to add and optionally specify one or more
Availability Zones.

• Delete shards – Choose shards to be deleted in each AWS Region.

• Rebalance shards – Rebalance the slot distribution to ensure uniform distribution across
existing shards in the cluster.

To modify a global datastore's parameters, modify the parameter group of any member cluster for
the global datastore. ElastiCache applies this change to all clusters within that global datastore
automatically. To modify the parameter group of that cluster, use the Redis console or the
ModifyCacheCluster API operation. For more information, see Modifying a parameter group. When
you modify the parameter group of any cluster contained within a global datastore, it is applied to
all the clusters within that global datastore.

To reset an entire parameter group or specific parameters, use the ResetCacheParameterGroup API
operation.

Promoting the secondary cluster to primary

If the primary cluster or AWS Region becomes unavailable or is experiencing performance
issues, you can promote a secondary cluster to primary. Promotion is allowed anytime, even if
other modifications are in progress. You can also issue multiple promotions in parallel and the
global datastore resolves to one primary eventually. If you promote multiple secondary clusters
simultaneously, ElastiCache for Redis doesn't guarantee which one ultimately resolves to primary.

To promote a secondary cluster to primary

1. Sign in to the AWS Management Console and open the ElastiCache console at https://
console.aws.amazon.com/elasticache/.

2. On the navigation pane, choose Global Datastore under Redis.

3. Choose the global datastore name to view the details.

4. Choose the Secondary cluster.

5. Choose Promote to primary.

Replication across AWS Regions using global datastores API Version 2015-02-02 477

https://docs.aws.amazon.com/AmazonElastiCache/latest/APIReference/API_ModifyCacheCluster.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/APIReference/API_ResetCacheParameterGroup.html
https://console.aws.amazon.com/elasticache/
https://console.aws.amazon.com/elasticache/

Amazon ElastiCache for Redis User Guide

You're then prompted to confirm your decision with the following warning: Promoting
a region to primary will make the cluster in this region as read/
writable. Are you sure you want to promote the secondary cluster to
primary?

The current primary cluster in primary region will become secondary
and will stop accepting writes after this operation completes. Please
ensure you update your application stack to direct traffic to the new
primary region.

6. Choose Confirm if you want to continue the promotion or Cancel if you don't.

If you choose to confirm, your global datastore moves to a Modifying state and is unavailable until
the promotion is complete.

Removing a Region from a global datastore

You can remove an AWS Region from a global datastore by using the following procedure.

To remove an AWS Region from a global datastore

1. Sign in to the AWS Management Console and open the ElastiCache console at https://
console.aws.amazon.com/elasticache/.

2. On the navigation pane, choose Global Datastore under Redis.

3. Choose a global datastore.

4. Choose the Region you want to remove.

5. Choose Remove region.

Note

This option is only available for secondary clusters.

You're then be prompted to confirm your decision with the following warning: Removing
the region will remove your only available cross region replica for
the primary cluster. Your primary cluster will no longer be set up for
disaster recovery and improved read latency in remote region. Are you
sure you want to remove the selected region from the global datastore?

Replication across AWS Regions using global datastores API Version 2015-02-02 478

https://console.aws.amazon.com/elasticache/
https://console.aws.amazon.com/elasticache/

Amazon ElastiCache for Redis User Guide

6. Choose Confirm if you want to continue the promotion or Cancel if you don't.

If you choose confirm, the AWS Region is removed and the secondary cluster no longer receives
replication updates.

Deleting a global datastore

To delete a global datastore, first remove all secondary clusters. For more information, see
Removing a Region from a global datastore. Doing this leaves the global datastore in primary-only
status.

To delete a global datastore

1. Sign in to the AWS Management Console and open the ElastiCache console at https://
console.aws.amazon.com/elasticache/.

2. On the navigation pane, choose Global Datastore under Redis.

3. Under Global Datastore Name choose the global datastore you want to delete and then
choose Delete.

You're then be prompted to confirm your decision with the following warning: Are you sure
you want to delete this Global Datastore?

4. Choose Delete.

The global datastore transitions to Deleting status.

Using global datastores (CLI)

You can use the AWS Command Line Interface (AWS CLI) to control multiple AWS services from the
command line and automate them through scripts. You can use the AWS CLI for ad hoc (one-time)
operations.

Downloading and configuring the AWS CLI

The AWS CLI runs on Windows, macOS, or Linux. Use the following procedure to download and
configure it.

To download, install, and configure the CLI

1. Download the AWS CLI on the AWS command line interface webpage.

Replication across AWS Regions using global datastores API Version 2015-02-02 479

https://console.aws.amazon.com/elasticache/
https://console.aws.amazon.com/elasticache/
http://aws.amazon.com/cli

Amazon ElastiCache for Redis User Guide

2. Follow the instructions for Installing the AWS CLI and Configuring the AWS CLI in the AWS
Command Line Interface User Guide.

Using the AWS CLI with global datastores

Use the following CLI operations to work with global datastores:

• create-global-replication-group

aws elasticache create-global-replication-group \
 --global-replication-group-id-suffix my global datastore \
 --primary-replication-group-id sample-repl-group \
 --global-replication-group-description an optional description of the global
 datastore

Amazon ElastiCache automatically applies a prefix to the global datastore ID when it is created.
Each AWS Region has its own prefix. For instance, a global datastore ID created in the US West
(N. California) Region begins with "virxk" along with the suffix name that you provide. The suffix,
combined with the autogenerated prefix, guarantees uniqueness of the global datastore name
across multiple Regions.

The following table lists each AWS Region and its global datastore ID prefix.

Region Name/Region Prefix

US East (Ohio) Region

us-east-2

fpkhr

US East (N. Virginia) Region

us-east-1

ldgnf

US West (N. California) Region

us-west-1

virxk

US West (Oregon) Region sgaui

Replication across AWS Regions using global datastores API Version 2015-02-02 480

https://docs.aws.amazon.com/cli/latest/reference/elasticache/create-global-replication-group.html

Amazon ElastiCache for Redis User Guide

Region Name/Region Prefix

us-west-2

Canada (Central) Region

ca-central-1

bxodz

Asia Pacific (Mumbai) Region

ap-south-1

erpgt

Asia Pacific (Tokyo) Region

ap-northeast-1

quwsw

Asia Pacific (Seoul) Region

ap-northeast-2

lfqnh

Asia Pacific (Osaka) Region

ap-northeast-3

nlapn

Asia Pacific (Singapore) Region

ap-southeast-1

vlqxn

Asia Pacific (Sydney) Region

ap-southeast-2

vbgxd

Europe (Frankfurt) Region

eu-central-1

iudkw

Europe (Ireland) Region

eu-west-1

gxeiz

Replication across AWS Regions using global datastores API Version 2015-02-02 481

Amazon ElastiCache for Redis User Guide

Region Name/Region Prefix

Europe (London) Region

eu-west-2

okuqm

EU (Paris) Region

eu-west-3

fgjhi

South America (São Paulo) Region

sa-east-1

juxlw

China (Beijing) Region

cn-north-1

emvgo

China (Ningxia) Region

cn-northwest-1

ckbem

Asia Pacific (Hong Kong) Region

ap-east-1

knjmp

AWS GovCloud (US-West)

us-gov-west-1

sgwui

• create-replication-group – Use this operation to create secondary clusters for a global datastore
by supplying the name of the global datastore to the --global-replication-group-id
parameter.

aws elasticache create-replication-group \
 --replication-group-id secondary replication group name \
 --replication-group-description “Replication group description" \
 --global-replication-group-id global datastore name

Replication across AWS Regions using global datastores API Version 2015-02-02 482

https://docs.aws.amazon.com/cli/latest/reference/elasticache/create-replication-group.html

Amazon ElastiCache for Redis User Guide

When calling this operation and passing in a --global-replication-group-id value,
ElastiCache for Redis will infer the values from the primary replication group of the global
replication group for the following paramaeters. Do not pass in values for these parameters:

"PrimaryClusterId",

"AutomaticFailoverEnabled",

"NumNodeGroups",

"CacheParameterGroupName",

"CacheNodeType",

"Engine",

"EngineVersion",

"CacheSecurityGroupNames",

"EnableTransitEncryption",

"AtRestEncryptionEnabled",

"SnapshotArns",

"SnapshotName"

• describe-global-replication-groups

aws elasticache describe-global-replication-groups \
 --global-replication-group-id my global datastore \
 --show-member-info an optional parameter that returns a list of the primary and
 secondary clusters that make up the global datastore

• modify-global-replication-group

aws elasticache modify-global-replication-group \
 --global-replication-group-id my global datastore \
 --automatic-failover-enabled \
 --cache-node-type node type \
 --cache-parameter-group-name parameter group name \

Replication across AWS Regions using global datastores API Version 2015-02-02 483

https://docs.aws.amazon.com/cli/latest/reference/elasticache/describe-global-replication-groups.html
https://docs.aws.amazon.com/cli/latest/reference/elasticache/modify-global-replication-group.html

Amazon ElastiCache for Redis User Guide

 --engine-version engine version \
 -—apply-immediately \
 --global-replication-group-description description

• delete-global-replication-group

aws elasticache delete-global-replication-group \
 --global-replication-group-id my global datastore \
 --retain-primary-replication-group defaults to true

• disassociate-global-replication-group

aws elasticache disassociate-global-replication-group \
 --global-replication-group-id my global datastore \
 --replication-group-id my secondary cluster \
 --replication-group-region the AWS Region in which the secondary cluster resides

• failover-global-replication-group

aws elasticache failover-replication-group \
 --global-replication-group-id my global datastore \
 --primary-region The AWS Region of the primary cluster \
 --primary-replication-group-id The name of the global datastore, including the
 suffix.

• increase-node-groups-in-global-replication-group

aws elasticache increase-node-groups-in-global-replication-group \
 --apply-immediately yes \
 --global-replication-group-id global-replication-group-name \
 --node-group-count 3

• decrease-node-groups-in-global-replication-group

aws elasticache decrease-node-groups-in-global-replication-group \
 --apply-immediately yes \
 --global-replication-group-id global-replication-group-name \
 --node-group-count 3

• rebalance-shards-in-global-replication-group

aws elasticache rebalance-shards-in-global-replication-group \

Replication across AWS Regions using global datastores API Version 2015-02-02 484

https://docs.aws.amazon.com/cli/latest/reference/elasticache/delete-global-replication-group.html
https://docs.aws.amazon.com/cli/latest/reference/elasticache/disassociate-global-replication-group.html
https://docs.aws.amazon.com/cli/latest/reference/elasticache/failover-global-replication-group.html
https://docs.aws.amazon.com/cli/latest/reference/elasticache/increase-node-groups-in-global-replication-group.html
https://docs.aws.amazon.com/cli/latest/reference/elasticache/decrease-node-groups-in-global-replication-group.html
https://docs.aws.amazon.com/cli/latest/reference/elasticache/rebalance-slots-in-global-replication-group.html

Amazon ElastiCache for Redis User Guide

 --apply-immediately yes \
 --global-replication-group-id global-replication-group-name

Use help to list all available commands ElastiCache for Redis.

aws elasticache help

You can also use help to describe a specific command and learn more about its usage:

aws elasticache create-global-replication-group help

High availability using replication groups

Single-node Amazon ElastiCache Redis clusters are in-memory entities with limited data protection
services (AOF). If your cluster fails for any reason, you lose all the cluster's data. However, if you're
running the Redis engine, you can group 2 to 6 nodes into a cluster with replicas where 1 to 5 read-
only nodes contain replicate data of the group's single read/write primary node. In this scenario,
if one node fails for any reason, you do not lose all your data since it is replicated in one or more
other nodes. Due to replication latency, some data may be lost if it is the primary read/write node
that fails.

As seen in the following graphic, the replication structure is contained within a shard (called node
group in the API/CLI) which is contained within a Redis cluster. Redis (cluster mode disabled)
clusters always have one shard. Redis (cluster mode enabled) clusters can have up to 500 shards
with the cluster's data partitioned across the shards. You can create a cluster with higher number of
shards and lower number of replicas totaling up to 90 nodes per cluster. This cluster configuration
can range from 90 shards and 0 replicas to 15 shards and 5 replicas, which is the maximum number
of replicas allowed.

The node or shard limit can be increased to a maximum of 500 per cluster if the Redis engine
version is 5.0.6 or higher. For example, you can choose to configure a 500 node cluster that ranges
between 83 shards (one primary and 5 replicas per shard) and 500 shards (single primary and
no replicas). Make sure there are enough available IP addresses to accommodate the increase.
Common pitfalls include the subnets in the subnet group have too small a CIDR range or the
subnets are shared and heavily used by other clusters. For more information, see Creating a subnet
group.

High availability using replication groups API Version 2015-02-02 485

Amazon ElastiCache for Redis User Guide

For versions below 5.0.6, the limit is 250 per cluster.

To request a limit increase, see AWS Service Limits and choose the limit type Nodes per cluster per
instance type.

Redis (cluster mode disabled) cluster has one shard and 0 to 5 replica nodes

If the cluster with replicas has Multi-AZ enabled and the primary node fails, the primary fails over
to a read replica. Because the data is updated on the replica nodes asynchronously, there may be
some data loss due to latency in updating the replica nodes. For more information, see Mitigating
Failures when Running Redis.

Topics

• Understanding Redis replication

• Replication: Redis (Cluster Mode Disabled) vs. Redis (Cluster Mode Enabled)

• Minimizing downtime in ElastiCache for Redis with Multi-AZ

• How synchronization and backup are implemented

• Creating a Redis replication group

• Viewing a replication group's details

• Finding replication group endpoints

• Modifying a replication group

• Deleting a replication group

• Changing the number of replicas

• Promoting a read replica to primary, for Redis (cluster mode disabled) replication groups

High availability using replication groups API Version 2015-02-02 486

https://docs.aws.amazon.com/general/latest/gr/aws_service_limits.html

Amazon ElastiCache for Redis User Guide

Understanding Redis replication

Redis implements replication in two ways:

• With a single shard that contains all of the cluster's data in each node—Redis (cluster mode
disabled)

• With data partitioned across up to 500 shards—Redis (cluster mode enabled)

Each shard in a replication group has a single read/write primary node and up to 5 read-only
replica nodes. You can create a cluster with higher number of shards and lower number of replicas
totaling up to 90 nodes per cluster. This cluster configuration can range from 90 shards and 0
replicas to 15 shards and 5 replicas, which is the maximum number of replicas allowed.

The node or shard limit can be increased to a maximum of 500 per cluster if the Redis engine
version is 5.0.6 or higher. For example, you can choose to configure a 500 node cluster that ranges
between 83 shards (one primary and 5 replicas per shard) and 500 shards (single primary and
no replicas). Make sure there are enough available IP addresses to accommodate the increase.
Common pitfalls include the subnets in the subnet group have too small a CIDR range or the
subnets are shared and heavily used by other clusters. For more information, see Creating a subnet
group.

For versions below 5.0.6, the limit is 250 per cluster.

To request a limit increase, see AWS Service Limits and choose the limit type Nodes per cluster per
instance type.

Topics

• Redis (Cluster Mode Disabled)

• Redis (cluster mode enabled)

Redis (Cluster Mode Disabled)

A Redis (cluster mode disabled) cluster has a single shard, inside of which is a collection of Redis
nodes; one primary read/write node and up to five secondary, read-only replica nodes. Each read
replica maintains a copy of the data from the cluster's primary node. Asynchronous replication
mechanisms are used to keep the read replicas synchronized with the primary. Applications can
read from any node in the cluster. Applications can write only to the primary node. Read replicas
improve read throughput and guard against data loss in cases of a node failure.

High availability using replication groups API Version 2015-02-02 487

https://docs.aws.amazon.com/general/latest/gr/aws_service_limits.html

Amazon ElastiCache for Redis User Guide

Redis (cluster mode disabled) cluster with a single shard and replica nodes

You can use Redis (cluster mode disabled) clusters with replica nodes to scale your Redis solution
for ElastiCache to handle applications that are read-intensive or to support large numbers of
clients that simultaneously read from the same cluster.

All of the nodes in a Redis (cluster mode disabled) cluster must reside in the same region.

When you add a read replica to a cluster, all of the data from the primary is copied to the new
node. From that point on, whenever data is written to the primary, the changes are asynchronously
propagated to all the read replicas.

To improve fault tolerance and reduce write downtime, enable Multi-AZ with Automatic Failover
for your Redis (cluster mode disabled) cluster with replicas. For more information, see Minimizing
downtime in ElastiCache for Redis with Multi-AZ.

You can change the roles of the nodes within the Redis (cluster mode disabled) cluster, with the
primary and one of the replicas exchanging roles. You might decide to do this for performance
tuning reasons. For example, with a web application that has heavy write activity, you can choose
the node that has the lowest network latency. For more information, see Promoting a read replica
to primary, for Redis (cluster mode disabled) replication groups.

Redis (cluster mode enabled)

A Redis (cluster mode enabled) cluster is comprised of from 1 to 500 shards (API/CLI: node groups).
Each shard has a primary node and up to five read-only replica nodes. The configuration can
range from 90 shards and 0 replicas to 15 shards and 5 replicas, which is the maximum number of
replicas allowed.

The node or shard limit can be increased to a maximum of 500 per cluster if the Redis engine
version is 5.0.6 or higher. For example, you can choose to configure a 500 node cluster that ranges
between 83 shards (one primary and 5 replicas per shard) and 500 shards (single primary and

High availability using replication groups API Version 2015-02-02 488

Amazon ElastiCache for Redis User Guide

no replicas). Make sure there are enough available IP addresses to accommodate the increase.
Common pitfalls include the subnets in the subnet group have too small a CIDR range or the
subnets are shared and heavily used by other clusters. For more information, see Creating a subnet
group.

For versions below 5.0.6, the limit is 250 per cluster.

To request a limit increase, see AWS Service Limits and choose the limit type Nodes per cluster per
instance type.

Each read replica in a shard maintains a copy of the data from the shard's primary. Asynchronous
replication mechanisms are used to keep the read replicas synchronized with the primary.
Applications can read from any node in the cluster. Applications can write only to the primary
nodes. Read replicas enhance read scalability and guard against data loss. Data is partitioned across
the shards in a Redis (cluster mode enabled) cluster.

Applications use the Redis (cluster mode enabled) cluster's configuration endpoint to connect with
the nodes in the cluster. For more information, see Finding connection endpoints.

Redis (cluster mode enabled) cluster with multiple shards and replica nodes

All of the nodes in a Redis (cluster mode enabled) cluster must reside in the same region. To
improve fault tolerance, you can provision both primaries and read replicas in multiple Availability
Zones within that region.

Currently, in Redis (cluster mode enabled), there are some limitations.

• You cannot manually promote any of the replica nodes to primary.

High availability using replication groups API Version 2015-02-02 489

https://docs.aws.amazon.com/general/latest/gr/aws_service_limits.html

Amazon ElastiCache for Redis User Guide

Replication: Redis (Cluster Mode Disabled) vs. Redis (Cluster Mode Enabled)

Beginning with Redis version 3.2, you have the ability to create one of two distinct types of Redis
clusters (API/CLI: replication groups). A Redis (cluster mode disabled) cluster always has a single
shard (API/CLI: node group) with up to 5 read replica nodes. A Redis (cluster mode enabled) cluster
has up to 500 shards with 1 to 5 read replica nodes in each.

Redis (cluster mode disabled) and Redis (cluster mode enabled) clusters

The following table summarizes important differences between Redis (cluster mode disabled) and
Redis (cluster mode enabled) clusters.

Comparing Redis (Cluster Mode Disabled) and Redis (Cluster Mode Enabled) Clusters

Feature Redis (cluster mode
disabled)

Redis (cluster mode enabled)

Modifiable Yes. Supports adding and
deleting replica nodes, and
scaling up node type.

Limited. For more informati
on, see Engine versions
and upgrading and Scaling
clusters in Redis (Cluster
Mode Enabled).

Data Partitioning No Yes

Shards 1 1 to 500

High availability using replication groups API Version 2015-02-02 490

Amazon ElastiCache for Redis User Guide

Feature Redis (cluster mode
disabled)

Redis (cluster mode enabled)

Read replicas 0 to 5

Important

If you have no replicas
and the node fails,
you experience total
data loss.

0 to 5 per shard.

Important

If you have no replicas
and a node fails, you
experience loss of all
data in that shard.

Multi-AZ Yes, with at least 1 replica.

Optional. On by default.

Yes

Optional. On by default.

Snapshots (Backups) Yes, creating a single .rdb file. Yes, creating a unique .rdb file
for each shard.

Restore Yes, using a single .rdb file
from a Redis (cluster mode
disabled) cluster.

Yes, using .rdb files from
either a Redis (cluster mode
disabled) or a Redis (cluster
mode enabled) cluster.

Supported by All Redis versions Redis 3.2 and following

Engine upgradeable Yes, with some limits. For
more information, see Engine
versions and upgrading .

Yes, with some limits. For
more information, see Engine
versions and upgrading .

Encryption Versions 3.2.6 (scheduled for
EOL, see Redis versions end of
life schedule) and 4.0.10 and
later.

Versions 3.2.6 (scheduled for
EOL, see Redis versions end of
life schedule) and 4.0.10 and
later.

High availability using replication groups API Version 2015-02-02 491

https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/deprecated-engine-versions.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/deprecated-engine-versions.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/deprecated-engine-versions.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/deprecated-engine-versions.html

Amazon ElastiCache for Redis User Guide

Feature Redis (cluster mode
disabled)

Redis (cluster mode enabled)

HIPAA Eligible Versions 3.2.6 (scheduled for
EOL, see Redis versions end of
life schedule) and 4.0.10 and
later.

Versions 3.2.6 (scheduled for
EOL, see Redis versions end of
life schedule) and 4.0.10 and
later.

PCI DSS Compliant Versions 3.2.6 (scheduled for
EOL, see Redis versions end of
life schedule) and 4.0.10 and
later.

Versions 3.2.6 (scheduled for
EOL, see Redis versions end of
life schedule) and 4.0.10 and
later.

Online resharding N/A Version 3.2.10 (scheduled for
EOL, see Redis versions end of
life schedule) and later.

Which should I choose?

When choosing between Redis (cluster mode disabled) or Redis (cluster mode enabled), consider
the following factors:

• Scaling v. partitioning – Business needs change. You need to either provision for peak demand
or scale as demand changes. Redis (cluster mode disabled) supports scaling. You can scale read
capacity by adding or deleting replica nodes, or you can scale capacity by scaling up to a larger
node type. Both of these operations take time. For more information, see Scaling Redis (Cluster
Mode Disabled) clusters with replica nodes.

Redis (cluster mode enabled) supports partitioning your data across up to 500 node groups. You
can dynamically change the number of shards as your business needs change. One advantage
of partitioning is that you spread your load over a greater number of endpoints, which reduces
access bottlenecks during peak demand. Additionally, you can accommodate a larger data set
since the data can be spread across multiple servers. For information on scaling your partitions,
see Scaling clusters in Redis (Cluster Mode Enabled).

High availability using replication groups API Version 2015-02-02 492

https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/deprecated-engine-versions.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/deprecated-engine-versions.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/deprecated-engine-versions.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/deprecated-engine-versions.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/deprecated-engine-versions.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/deprecated-engine-versions.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/deprecated-engine-versions.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/deprecated-engine-versions.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/deprecated-engine-versions.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/deprecated-engine-versions.html

Amazon ElastiCache for Redis User Guide

• Node size v. number of nodes – Because a Redis (cluster mode disabled) cluster has only one
shard, the node type must be large enough to accommodate all the cluster's data plus necessary
overhead. On the other hand, because you can partition your data across several shards when
using a Redis (cluster mode enabled) cluster, the node types can be smaller, though you need
more of them. For more information, see Choosing your node size.

• Reads v. writes – If the primary load on your cluster is applications reading data, you can scale
a Redis (cluster mode disabled) cluster by adding and deleting read replicas. However, there is a
maximum of 5 read replicas. If the load on your cluster is write-heavy, you can benefit from the
additional write endpoints of a Redis (cluster mode enabled) cluster with multiple shards.

Whichever type of cluster you choose to implement, be sure to choose a node type that is
adequate for your current and future needs.

High availability using replication groups API Version 2015-02-02 493

Amazon ElastiCache for Redis User Guide

Minimizing downtime in ElastiCache for Redis with Multi-AZ

There are a number of instances where ElastiCache for Redis may need to replace a primary node;
these include certain types of planned maintenance and the unlikely event of a primary node or
Availability Zone failure.

This replacement results in some downtime for the cluster, but if Multi-AZ is enabled, the
downtime is minimized. The role of primary node will automatically fail over to one of the read
replicas. There is no need to create and provision a new primary node, because ElastiCache will
handle this transparently. This failover and replica promotion ensure that you can resume writing
to the new primary as soon as promotion is complete.

ElastiCache also propagates the Domain Name Service (DNS) name of the promoted replica. It
does so because then if your application is writing to the primary endpoint, no endpoint change
is required in your application. If you are reading from individual endpoints, make sure that you
change the read endpoint of the replica promoted to primary to the new replica's endpoint.

In case of planned node replacements initiated due to maintenance updates or self-service
updates, be aware of the following:

• For ElastiCache for Redis Cluster, the planned node replacements complete while the cluster
serves incoming write requests.

• For Redis Cluster mode disabled clusters with Multi-AZ enabled that run on the 5.0.6 or later
engine, the planned node replacements complete while the cluster serves incoming write
requests.

• For Redis Cluster mode disabled clusters with Multi-AZ enabled that run on the 4.0.10 or
earlier engine, you might notice a brief write interruption associated with DNS updates. This
interruption might take up to a few seconds. This process is much faster than recreating and
provisioning a new primary, which is what occurs if you don't enable Multi-AZ.

You can enable Multi-AZ using the ElastiCache Management Console, the AWS CLI, or the
ElastiCache API.

Enabling ElastiCache Multi-AZ on your Redis cluster (in the API and CLI, replication group) improves
your fault tolerance. This is true particularly in cases where your cluster's read/write primary cluster
becomes unreachable or fails for any reason. Multi-AZ is only supported on Redis clusters that have
more than one node in each shard.

High availability using replication groups API Version 2015-02-02 494

Amazon ElastiCache for Redis User Guide

Topics

• Enabling Multi-AZ

• Failure scenarios with Multi-AZ responses

• Testing automatic failover

• Limitations on Redis Multi-AZ

Enabling Multi-AZ

You can enable Multi-AZ when you create or modify a cluster (API or CLI, replication group) using
the ElastiCache console, AWS CLI, or the ElastiCache API.

You can enable Multi-AZ only on Redis (cluster mode disabled) clusters that have at least one
available read replica. Clusters without read replicas do not provide high availability or fault
tolerance. For information about creating a cluster with replication, see Creating a Redis replication
group. For information about adding a read replica to a cluster with replication, see Adding a read
replica, for Redis (Cluster Mode Disabled) replication groups.

Topics

• Enabling Multi-AZ (Console)

• Enabling Multi-AZ (AWS CLI)

• Enabling Multi-AZ (ElastiCache API)

Enabling Multi-AZ (Console)

You can enable Multi-AZ using the ElastiCache console when you create a new Redis cluster or by
modifying an existing Redis cluster with replication.

Multi-AZ is enabled by default on Redis (cluster mode enabled) clusters.

Important

ElastiCache will automatically enable Multi-AZ only if the cluster contains at least one
replica in a different Availability Zone from the primary in all shards.

High availability using replication groups API Version 2015-02-02 495

Amazon ElastiCache for Redis User Guide

Enabling Multi-AZ when creating a cluster using the ElastiCache console

For more information on this process, see Creating a Redis (cluster mode disabled) cluster
(Console). Be sure to have one or more replicas and enable Multi-AZ.

Enabling Multi-AZ on an existing cluster (Console)

For more information on this process, see Modifying a Cluster Using the AWS Management
Console.

Enabling Multi-AZ (AWS CLI)

The following code example uses the AWS CLI to enable Multi-AZ for the replication group
redis12.

Important

The replication group redis12 must already exist and have at least one available read
replica.

For Linux, macOS, or Unix:

aws elasticache modify-replication-group \
 --replication-group-id redis12 \
 --automatic-failover-enabled \
 --multi-az-enabled \
 --apply-immediately

For Windows:

aws elasticache modify-replication-group ^
 --replication-group-id redis12 ^
 --automatic-failover-enabled ^
 --multi-az-enabled ^
 --apply-immediately

The JSON output from this command should look something like the following.

{
 "ReplicationGroup": {
 "Status": "modifying",

High availability using replication groups API Version 2015-02-02 496

Amazon ElastiCache for Redis User Guide

 "Description": "One shard, two nodes",
 "NodeGroups": [
 {
 "Status": "modifying",
 "NodeGroupMembers": [
 {
 "CurrentRole": "primary",
 "PreferredAvailabilityZone": "us-west-2b",
 "CacheNodeId": "0001",
 "ReadEndpoint": {
 "Port": 6379,
 "Address":
 "redis12-001.v5r9dc.0001.usw2.cache.amazonaws.com"
 },
 "CacheClusterId": "redis12-001"
 },
 {
 "CurrentRole": "replica",
 "PreferredAvailabilityZone": "us-west-2a",
 "CacheNodeId": "0001",
 "ReadEndpoint": {
 "Port": 6379,
 "Address":
 "redis12-002.v5r9dc.0001.usw2.cache.amazonaws.com"
 },
 "CacheClusterId": "redis12-002"
 }
],
 "NodeGroupId": "0001",
 "PrimaryEndpoint": {
 "Port": 6379,
 "Address": "redis12.v5r9dc.ng.0001.usw2.cache.amazonaws.com"
 }
 }
],
 "ReplicationGroupId": "redis12",
 "SnapshotRetentionLimit": 1,
 "AutomaticFailover": "enabling",
 "MultiAZ": "enabled",
 "SnapshotWindow": "07:00-08:00",
 "SnapshottingClusterId": "redis12-002",
 "MemberClusters": [
 "redis12-001",
 "redis12-002"

High availability using replication groups API Version 2015-02-02 497

Amazon ElastiCache for Redis User Guide

],
 "PendingModifiedValues": {}
 }
}

For more information, see these topics in the AWS CLI Command Reference:

• create-cache-cluster

• create-replication-group

• modify-replication-group in the AWS CLI Command Reference.

Enabling Multi-AZ (ElastiCache API)

The following code example uses the ElastiCache API to enable Multi-AZ for the replication group
redis12.

Note

To use this example, the replication group redis12 must already exist and have at least
one available read replica.

https://elasticache.us-west-2.amazonaws.com/
 ?Action=ModifyReplicationGroup
 &ApplyImmediately=true
 &AutoFailover=true
 &MultiAZEnabled=true
 &ReplicationGroupId=redis12
 &Version=2015-02-02
 &SignatureVersion=4
 &SignatureMethod=HmacSHA256
 &Timestamp=20140401T192317Z
 &X-Amz-Credential=<credential>

For more information, see these topics in the ElastiCache API Reference:

• CreateCacheCluster

• CreateReplicationGroup

• ModifyReplicationGroup

High availability using replication groups API Version 2015-02-02 498

https://docs.aws.amazon.com/cli/latest/reference/elasticache/create-cache-cluster.html
https://docs.aws.amazon.com/cli/latest/reference/elasticache/create-replication-group.html
https://docs.aws.amazon.com/cli/latest/reference/elasticache/modify-replication-group.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/APIReference/API_CreateCacheCluster.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/APIReference/API_CreateReplicationGroup.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/APIReference/API_ModifyReplicationGroup.html

Amazon ElastiCache for Redis User Guide

High availability using replication groups API Version 2015-02-02 499

Amazon ElastiCache for Redis User Guide

Failure scenarios with Multi-AZ responses

Before the introduction of Multi-AZ, ElastiCache detected and replaced a cluster's failed nodes by
recreating and reprovisioning the failed node. If you enable Multi-AZ, a failed primary node fails
over to the replica with the least replication lag. The selected replica is automatically promoted to
primary, which is much faster than creating and reprovisioning a new primary node. This process
usually takes just a few seconds until you can write to the cluster again.

When Multi-AZ is enabled, ElastiCache continually monitors the state of the primary node. If the
primary node fails, one of the following actions is performed depending on the type of failure.

Topics

• Failure scenarios when only the primary node fails

• Failure scenarios when the primary node and some read replicas fail

• Failure scenarios when the entire cluster fails

Failure scenarios when only the primary node fails

If only the primary node fails, the read replica with the least replication lag is promoted to primary.
A replacement read replica is then created and provisioned in the same Availability Zone as the
failed primary.

When only the primary node fails, ElastiCache Multi-AZ does the following:

1. The failed primary node is taken offline.

2. The read replica with the least replication lag is promoted to primary.

Writes can resume as soon as the promotion process is complete, typically just a few seconds. If
your application is writing to the primary endpoint, you don't need to change the endpoint for
writes or reads. ElastiCache propagates the DNS name of the promoted replica.

3. A replacement read replica is launched and provisioned.

The replacement read replica is launched in the Availability Zone that the failed primary node
was in so that the distribution of nodes is maintained.

4. The replicas sync with the new primary node.

After the new replica is available, be aware of these effects:

High availability using replication groups API Version 2015-02-02 500

Amazon ElastiCache for Redis User Guide

• Primary endpoint – You don't need to make any changes to your application, because the DNS
name of the new primary node is propagated to the primary endpoint.

• Read endpoint – The reader endpoint is automatically updated to point to the new replica
nodes.

For information about finding the endpoints of a cluster, see the following topics:

• Finding a Redis (Cluster Mode Disabled) Cluster's Endpoints (Console)

• Finding the Endpoints for Replication Groups (AWS CLI)

• Finding Endpoints for Replication Groups (ElastiCache API)

Failure scenarios when the primary node and some read replicas fail

If the primary and at least one read replica fails, the available replica with the least replication lag
is promoted to primary cluster. New read replicas are also created and provisioned in the same
Availability Zones as the failed nodes and replica that was promoted to primary.

When the primary node and some read replicas fail, ElastiCache Multi-AZ does the following:

1. The failed primary node and failed read replicas are taken offline.

2. The available replica with the least replication lag is promoted to primary node.

Writes can resume as soon as the promotion process is complete, typically just a few seconds. If
your application is writing to the primary endpoint, there is no need to change the endpoint for
writes. ElastiCache propagates the DNS name of the promoted replica.

3. Replacement replicas are created and provisioned.

The replacement replicas are created in the Availability Zones of the failed nodes so that the
distribution of nodes is maintained.

4. All clusters sync with the new primary node.

Make the following changes to your application after the new nodes are available:

• Primary endpoint – Don't make any changes to your application. The DNS name of the new
primary node is propagated to the primary endpoint.

High availability using replication groups API Version 2015-02-02 501

Amazon ElastiCache for Redis User Guide

• Read endpoint – The read endpoint is automatically updated to point to the new replica nodes.

For information about finding the endpoints of a replication group, see the following topics:

• Finding a Redis (Cluster Mode Disabled) Cluster's Endpoints (Console)

• Finding the Endpoints for Replication Groups (AWS CLI)

• Finding Endpoints for Replication Groups (ElastiCache API)

Failure scenarios when the entire cluster fails

If everything fails, all the nodes are recreated and provisioned in the same Availability Zones as the
original nodes.

In this scenario, all the data in the cluster is lost due to the failure of every node in the cluster. This
occurrence is rare.

When the entire cluster fails, ElastiCache Multi-AZ does the following:

1. The failed primary node and read replicas are taken offline.

2. A replacement primary node is created and provisioned.

3. Replacement replicas are created and provisioned.

The replacements are created in the Availability Zones of the failed nodes so that the
distribution of nodes is maintained.

Because the entire cluster failed, data is lost and all the new nodes start cold.

Because each of the replacement nodes has the same endpoint as the node it's replacing, you don't
need to make any endpoint changes in your application.

For information about finding the endpoints of a replication group, see the following topics:

• Finding a Redis (Cluster Mode Disabled) Cluster's Endpoints (Console)

• Finding the Endpoints for Replication Groups (AWS CLI)

• Finding Endpoints for Replication Groups (ElastiCache API)

High availability using replication groups API Version 2015-02-02 502

Amazon ElastiCache for Redis User Guide

We recommend that you create the primary node and read replicas in different Availability Zones
to raise your fault tolerance level.

High availability using replication groups API Version 2015-02-02 503

Amazon ElastiCache for Redis User Guide

Testing automatic failover

After you enable automatic failover, you can test it using the ElastiCache console, the AWS CLI, and
the ElastiCache API.

When testing, note the following:

• You can use this operation to test automatic failover on up to five shards (called node groups in
the ElastiCache API and AWS CLI) in any rolling 24-hour period.

• If you call this operation on shards in different clusters (called replication groups in the API and
CLI), you can make the calls concurrently.

• In some cases, you might call this operation multiple times on different shards in the same
Redis (cluster mode enabled) replication group. In such cases, the first node replacement must
complete before a subsequent call can be made.

• To determine whether the node replacement is complete, check events using the Amazon
ElastiCache console, the AWS CLI, or the ElastiCache API. Look for the following events related to
automatic failover, listed here in order of likely occurrence:

1. Replication group message: Test Failover API called for node group <node-
group-id>

2. Cache cluster message: Failover from primary node <primary-node-id> to
replica node <node-id> completed

3. Replication group message: Failover from primary node <primary-node-id> to
replica node <node-id> completed

4. Cache cluster message: Recovering cache nodes <node-id>

5. Cache cluster message: Finished recovery for cache nodes <node-id>

For more information, see the following:

• Viewing ElastiCache events in the ElastiCache User Guide

• DescribeEvents in the ElastiCache API Reference

• describe-events in the AWS CLI Command Reference.

• This API is designed for testing the behavior of your application in case of ElastiCache failover.
It is not designed to be an operational tool for initiating a failover to address an issue with the
cluster. Moreover, in certain conditions such as large-scale operational events, AWS may block
this API.

High availability using replication groups API Version 2015-02-02 504

https://docs.aws.amazon.com/AmazonElastiCache/latest/APIReference/API_DescribeEvents.html
https://docs.aws.amazon.com/cli/latest/reference/elasticache/describe-events.html

Amazon ElastiCache for Redis User Guide

Topics

• Testing automatic failover using the AWS Management Console

• Testing automatic failover using the AWS CLI

• Testing automatic failover using the ElastiCache API

Testing automatic failover using the AWS Management Console

Use the following procedure to test automatic failover with the console.

To test automatic failover

1. Sign in to the AWS Management Console and open the ElastiCache console at https://
console.aws.amazon.com/elasticache/.

2. In the navigation pane, choose Redis.

3. From the list of Redis clusters, choose the box to the left of the cluster you want to test. This
cluster must have at least one read replica node.

4. In the Details area, confirm that this cluster is Multi-AZ enabled. If the cluster isn't Multi-AZ
enabled, either choose a different cluster or modify this cluster to enable Multi-AZ. For more
information, see Using the AWS Management Console.

5. For Redis (cluster mode disabled), choose the cluster's name.

For Redis (cluster mode enabled), do the following:

a. Choose the cluster's name.

High availability using replication groups API Version 2015-02-02 505

https://console.aws.amazon.com/elasticache/
https://console.aws.amazon.com/elasticache/

Amazon ElastiCache for Redis User Guide

b. On the Shards page, for the shard (called node group in the API and CLI) on which you
want to test failover, choose the shard's name.

6. On the Nodes page, choose Failover Primary.

7. Choose Continue to fail over the primary, or Cancel to cancel the operation and not fail over
the primary node.

During the failover process, the console continues to show the node's status as available. To
track the progress of your failover test, choose Events from the console navigation pane. On
the Events tab, watch for events that indicate your failover has started (Test Failover API
called) and completed (Recovery completed).

Testing automatic failover using the AWS CLI

You can test automatic failover on any Multi-AZ enabled cluster using the AWS CLI operation
test-failover.

Parameters

• --replication-group-id – Required. The replication group (on the console, cluster) that is to
be tested.

• --node-group-id – Required. The name of the node group you want to test automatic failover
on. You can test a maximum of five node groups in a rolling 24-hour period.

The following example uses the AWS CLI to test automatic failover on the node group
redis00-0003 in the Redis (cluster mode enabled) cluster redis00.

Example Test automatic failover

For Linux, macOS, or Unix:

aws elasticache test-failover \
 --replication-group-id redis00 \
 --node-group-id redis00-0003

For Windows:

aws elasticache test-failover ^

High availability using replication groups API Version 2015-02-02 506

Amazon ElastiCache for Redis User Guide

 --replication-group-id redis00 ^
 --node-group-id redis00-0003

Output from the preceding command looks something like the following.

{
 "ReplicationGroup": {
 "Status": "available",
 "Description": "1 shard, 3 nodes (1 + 2 replicas)",
 "NodeGroups": [
 {
 "Status": "available",
 "NodeGroupMembers": [
 {
 "CurrentRole": "primary",
 "PreferredAvailabilityZone": "us-west-2c",
 "CacheNodeId": "0001",
 "ReadEndpoint": {
 "Port": 6379,
 "Address":
 "redis1x3-001.7ekv3t.0001.usw2.cache.amazonaws.com"
 },
 "CacheClusterId": "redis1x3-001"
 },
 {
 "CurrentRole": "replica",
 "PreferredAvailabilityZone": "us-west-2a",
 "CacheNodeId": "0001",
 "ReadEndpoint": {
 "Port": 6379,
 "Address":
 "redis1x3-002.7ekv3t.0001.usw2.cache.amazonaws.com"
 },
 "CacheClusterId": "redis1x3-002"
 },
 {
 "CurrentRole": "replica",
 "PreferredAvailabilityZone": "us-west-2b",
 "CacheNodeId": "0001",
 "ReadEndpoint": {
 "Port": 6379,
 "Address":
 "redis1x3-003.7ekv3t.0001.usw2.cache.amazonaws.com"

High availability using replication groups API Version 2015-02-02 507

Amazon ElastiCache for Redis User Guide

 },
 "CacheClusterId": "redis1x3-003"
 }
],
 "NodeGroupId": "0001",
 "PrimaryEndpoint": {
 "Port": 6379,
 "Address": "redis1x3.7ekv3t.ng.0001.usw2.cache.amazonaws.com"
 }
 }
],
 "ClusterEnabled": false,
 "ReplicationGroupId": "redis1x3",
 "SnapshotRetentionLimit": 1,
 "AutomaticFailover": "enabled",
 "MultiAZ": "enabled",
 "SnapshotWindow": "11:30-12:30",
 "SnapshottingClusterId": "redis1x3-002",
 "MemberClusters": [
 "redis1x3-001",
 "redis1x3-002",
 "redis1x3-003"
],
 "CacheNodeType": "cache.m3.medium",
 "DataTiering": "disabled",
 "PendingModifiedValues": {}
 }
}

To track the progress of your failover, use the AWS CLI describe-events operation.

For more information, see the following:

• test-failover in the AWS CLI Command Reference.

• describe-events in the AWS CLI Command Reference.

Testing automatic failover using the ElastiCache API

You can test automatic failover on any cluster enabled with Multi-AZ using the ElastiCache API
operation TestFailover.

High availability using replication groups API Version 2015-02-02 508

https://docs.aws.amazon.com/cli/latest/reference/elasticache/test-failover.html
https://docs.aws.amazon.com/cli/latest/reference/elasticache/describe-events.html

Amazon ElastiCache for Redis User Guide

Parameters

• ReplicationGroupId – Required. The replication group (on the console, cluster) to be tested.

• NodeGroupId – Required. The name of the node group that you want to test automatic failover
on. You can test a maximum of five node groups in a rolling 24-hour period.

The following example tests automatic failover on the node group redis00-0003 in the
replication group (on the console, cluster) redis00.

Example Testing automatic failover

https://elasticache.us-west-2.amazonaws.com/
 ?Action=TestFailover
 &NodeGroupId=redis00-0003
 &ReplicationGroupId=redis00
 &Version=2015-02-02
 &SignatureVersion=4
 &SignatureMethod=HmacSHA256
 &Timestamp=20140401T192317Z
 &X-Amz-Credential=<credential>

To track the progress of your failover, use the ElastiCache DescribeEvents API operation.

For more information, see the following:

• TestFailover in the ElastiCache API Reference

• DescribeEvents in the ElastiCache API Reference

Limitations on Redis Multi-AZ

Be aware of the following limitations for Redis Multi-AZ:

• Multi-AZ is supported on Redis version 2.8.6 and later.

• Redis Multi-AZ isn't supported on T1 node types.

• Redis replication is asynchronous. Therefore, when a primary node fails over to a replica, a small
amount of data might be lost due to replication lag.

High availability using replication groups API Version 2015-02-02 509

https://docs.aws.amazon.com/AmazonElastiCache/latest/APIReference/API_TestFailover.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/APIReference/API_DescribeEvents.html

Amazon ElastiCache for Redis User Guide

When choosing the replica to promote to primary, ElastiCache for Redis chooses the replica with
the least replication lag. In other words, it chooses the replica that is most current. Doing so
helps minimize the amount of lost data. The replica with the least replication lag can be in the
same or different Availability Zone from the failed primary node.

• When you manually promote read replicas to primary on Redis (cluster mode disabled), you
can do so only when Multi-AZ and automatic failover are disabled. To promote a read replica to
primary, take the following steps:

1. Disable Multi-AZ on the cluster.

2. Disable automatic failover on the cluster. You can do this using the Redis console by clearing
the Auto failover check box for the replication group. You can do this using the AWS
CLI by setting the AutomaticFailoverEnabled property to false when calling the
ModifyReplicationGroup operation.

3. Promote the read replica to primary.

4. Re-enable Multi-AZ.

• ElastiCache for Redis Multi-AZ and append-only file (AOF) are mutually exclusive. If you enable
one, you can't enable the other.

• A node's failure can be caused by the rare event of an entire Availability Zone failing. In this case,
the replica replacing the failed primary is created only when the Availability Zone is back up. For
example, consider a replication group with the primary in AZ-a and replicas in AZ-b and AZ-c. If
the primary fails, the replica with the least replication lag is promoted to primary cluster. Then,
ElastiCache creates a new replica in AZ-a (where the failed primary was located) only when AZ-a
is back up and available.

• A customer-initiated reboot of a primary doesn't trigger automatic failover. Other reboots and
failures do trigger automatic failover.

• When the primary is rebooted, it's cleared of data when it comes back online. When the read
replicas see the cleared primary cluster, they clear their copy of the data, which causes data loss.

• After a read replica has been promoted, the other replicas sync with the new primary. After the
initial sync, the replicas' content is deleted and they sync the data from the new primary. This
sync process causes a brief interruption, during which the replicas are not accessible. The sync
process also causes a temporary load increase on the primary while syncing with the replicas.
This behavior is native to Redis and isn't unique to ElastiCache Multi-AZ. For details about this
Redis behavior, see Replication on the Redis website.

High availability using replication groups API Version 2015-02-02 510

http://redis.io/topics/replication

Amazon ElastiCache for Redis User Guide

Important

For Redis version 2.8.22 and later, you can't create external replicas.
For Redis versions before 2.8.22, we recommend that you don't connect an external Redis
replica to an ElastiCache for Redis cluster that is Multi-AZ enabled. This unsupported
configuration can create issues that prevent ElastiCache from properly performing failover
and recovery. To connect an external Redis replica to an ElastiCache cluster, make sure that
Multi-AZ isn't enabled before you make the connection.

High availability using replication groups API Version 2015-02-02 511

Amazon ElastiCache for Redis User Guide

How synchronization and backup are implemented

All supported versions of Redis support backup and synchronization between the primary and
replica nodes. However, the way that backup and synchronization is implemented varies depending
on the Redis version.

Redis Version 2.8.22 and Later

Redis replication, in versions 2.8.22 and later, choose between two methods. For more information,
see Redis Versions Before 2.8.22 and Snapshot and restore.

During the forkless process, if the write loads are heavy, writes to the cluster are delayed to ensure
that you don't accumulate too many changes and thus prevent a successful snapshot.

Redis Versions Before 2.8.22

Redis backup and synchronization in versions before 2.8.22 is a three-step process.

1. Fork, and in the background process, serialize the cluster data to disk. This creates a point-in-
time snapshot.

2. In the foreground, accumulate a change log in the client output buffer.

Important

If the change log exceeds the client output buffer size, the backup or synchronization
fails. For more information, see Ensuring that you have enough memory to create a
Redis snapshot.

3. Finally, transmit the cache data and then the change log to the replica node.

High availability using replication groups API Version 2015-02-02 512

Amazon ElastiCache for Redis User Guide

Creating a Redis replication group

You have the following options for creating a cluster with replica nodes. One applies when you
already have an available Redis (cluster mode disabled) cluster not associated with any cluster that
has replicas to use as the primary node. The other applies when you need to create a primary node
with the cluster and read replicas. Currently, a Redis (cluster mode enabled) cluster must be created
from scratch.

Option 1: Creating a Replication Group Using an Available Redis (Cluster Mode Disabled)
Cluster

Use this option to leverage an existing single-node Redis (cluster mode disabled) cluster. You
specify this existing node as the primary node in the new cluster, and then individually add 1
to 5 read replicas to the cluster. If the existing cluster is active, read replicas synchronize with
it as they are created. See Creating a Replication Group Using an Available Redis (Cluster Mode
Disabled) Cluster.

Important

You cannot create a Redis (cluster mode enabled) cluster using an existing cluster. To
create a Redis (cluster mode enabled) cluster (API/CLI: replication group) using the
ElastiCache console, see Creating a Redis (cluster mode enabled) cluster (Console).

Option 2: Creating a Redis replication group from scratch

Use this option if you don't already have an available Redis (cluster mode disabled) cluster
to use as the cluster's primary node, or if you want to create a Redis (cluster mode enabled)
cluster. See Creating a Redis replication group from scratch.

High availability using replication groups API Version 2015-02-02 513

Amazon ElastiCache for Redis User Guide

Creating a Replication Group Using an Available Redis (Cluster Mode Disabled) Cluster

An available cluster is an existing single-node Redis cluster. Currently, Redis (cluster mode enabled)
does not support creating a cluster with replicas using an available single-node cluster. If you
want to create a Redis (cluster mode enabled) cluster, see Creating a Redis (Cluster Mode Enabled)
cluster (Console).

The following procedure can only be used if you have a Redis (cluster mode disabled) single-node
cluster. This cluster's node becomes the primary node in the new cluster. If you do not have a Redis
(cluster mode disabled) cluster that you can use as the new cluster's primary, see Creating a Redis
replication group from scratch.

Creating a Replication Group Using an Available Redis Cluster (Console)

See the topic Using the AWS Management Console.

Creating a replication group using an available Redis cache cluster (AWS CLI)

There are two steps to creating a replication group with read replicas when using an available Redis
Cache Cluster for the primary when using the AWS CLI.

When using the AWS CLI you create a replication group specifying the available standalone node
as the cluster's primary node, --primary-cluster-id and the number of nodes you want in the
cluster using the CLI command, create-replication-group. Include the following parameters.

--replication-group-id

The name of the replication group you are creating. The value of this parameter is used as the
basis for the names of the added nodes with a sequential 3-digit number added to the end of
the --replication-group-id. For example, sample-repl-group-001.

Redis (cluster mode disabled) replication group naming constraints are as follows:

• Must contain 1–40 alphanumeric characters or hyphens.

• Must begin with a letter.

• Can't contain two consecutive hyphens.

• Can't end with a hyphen.

--replication-group-description

Description of the replication group.

High availability using replication groups API Version 2015-02-02 514

Amazon ElastiCache for Redis User Guide

--num-node-groups

The number of nodes you want in this cluster. This value includes the primary node. This
parameter has a maximum value of six.

--primary-cluster-id

The name of the available Redis (cluster mode disabled) cluster's node that you want to be the
primary node in this replication group.

The following command creates the replication group sample-repl-group using the available
Redis (cluster mode disabled) cluster redis01 as the replication group's primary node. It creates
2 new nodes which are read replicas. The settings of redis01 (that is, parameter group, security
group, node type, engine version, and so on.) will be applied to all nodes in the replication group.

For Linux, macOS, or Unix:

aws elasticache create-replication-group \
 --replication-group-id sample-repl-group \
 --replication-group-description "demo cluster with replicas" \
 --num-cache-clusters 3 \
 --primary-cluster-id redis01

For Windows:

aws elasticache create-replication-group ^
 --replication-group-id sample-repl-group ^
 --replication-group-description "demo cluster with replicas" ^
 --num-cache-clusters 3 ^
 --primary-cluster-id redis01

For additional information and parameters you might want to use, see the AWS CLI topic create-
replication-group.

Next, add read replicas to the replication group

After the replication group is created, add one to five read replicas to it using the create-cache-
cluster command, being sure to include the following parameters.

--cache-cluster-id

The name of the cluster you are adding to the replication group.

High availability using replication groups API Version 2015-02-02 515

https://docs.aws.amazon.com/cli/latest/reference/elasticache/create-replication-group.html
https://docs.aws.amazon.com/cli/latest/reference/elasticache/create-replication-group.html

Amazon ElastiCache for Redis User Guide

Cluster naming constraints are as follows:

• Must contain 1–40 alphanumeric characters or hyphens.

• Must begin with a letter.

• Can't contain two consecutive hyphens.

• Can't end with a hyphen.

--replication-group-id

The name of the replication group to which you are adding this cache cluster.

Repeat this command for each read replica you want to add to the replication group, changing only
the value of the --cache-cluster-id parameter.

Note

Remember, a replication group cannot have more than five read replicas. Attempting to
add a read replica to a replication group that already has five read replicas causes the
operation to fail.

The following code adds the read replica my-replica01 to the replication group sample-repl-
group. The settings of the primary cluster–parameter group, security group, node type, and so
on.–will be applied to nodes as they are added to the replication group.

For Linux, macOS, or Unix:

aws elasticache create-cache-cluster \
 --cache-cluster-id my-replica01 \
 --replication-group-id sample-repl-group

For Windows:

aws elasticache create-cache-cluster ^
 --cache-cluster-id my-replica01 ^
 --replication-group-id sample-repl-group

Output from this command will look something like this.

{

High availability using replication groups API Version 2015-02-02 516

Amazon ElastiCache for Redis User Guide

 "ReplicationGroup": {
 "Status": "creating",
 "Description": "demo cluster with replicas",
 "ClusterEnabled": false,
 "ReplicationGroupId": "sample-repl-group",
 "SnapshotRetentionLimit": 1,
 "AutomaticFailover": "disabled",
 "SnapshotWindow": "00:00-01:00",
 "SnapshottingClusterId": "redis01",
 "MemberClusters": [
 "sample-repl-group-001",
 "sample-repl-group-002",
 "redis01"
],
 "CacheNodeType": "cache.m4.large",
 "DataTiering": "disabled",
 "PendingModifiedValues": {}
 }
}

For additional information, see the AWS CLI topics:

• create-replication-group

• modify-replication-group

Adding replicas to a standalone Redis (Cluster Mode Disabled) cluster (ElastiCache API)

When using the ElastiCache API, you create a replication group specifying the available standalone
node as the cluster's primary node, PrimaryClusterId and the number of nodes you want in the
cluster using the CLI command, CreateReplicationGroup. Include the following parameters.

ReplicationGroupId

The name of the replication group you are creating. The value of this parameter is used as the
basis for the names of the added nodes with a sequential 3-digit number added to the end of
the ReplicationGroupId. For example, sample-repl-group-001.

Redis (cluster mode disabled) replication group naming constraints are as follows:

• Must contain 1–40 alphanumeric characters or hyphens.

• Must begin with a letter.

High availability using replication groups API Version 2015-02-02 517

https://docs.aws.amazon.com/cli/latest/reference/elasticache/create-replication-group.html
https://docs.aws.amazon.com/cli/latest/reference/elasticache/modify-replication-group.html

Amazon ElastiCache for Redis User Guide

• Can't contain two consecutive hyphens.

• Can't end with a hyphen.

ReplicationGroupDescription

Description of the cluster with replicas.

NumCacheClusters

The number of nodes you want in this cluster. This value includes the primary node. This
parameter has a maximum value of six.

PrimaryClusterId

The name of the available Redis (cluster mode disabled) cluster that you want to be the primary
node in this cluster.

The following command creates the cluster with replicas sample-repl-group using the available
Redis (cluster mode disabled) cluster redis01 as the replication group's primary node. It creates
2 new nodes which are read replicas. The settings of redis01 (that is, parameter group, security
group, node type, engine version, and so on.) will be applied to all nodes in the replication group.

https://elasticache.us-west-2.amazonaws.com/
 ?Action=CreateReplicationGroup
 &Engine=redis
 &EngineVersion=6.0
 &ReplicationGroupDescription=Demo%20cluster%20with%20replicas
 &ReplicationGroupId=sample-repl-group
 &PrimaryClusterId=redis01
 &Version=2015-02-02
 &SignatureVersion=4
 &SignatureMethod=HmacSHA256
 &Timestamp=20150202T192317Z
 &X-Amz-Credential=<credential>

For additional information, see the ElastiCache APL topics:

• CreateReplicationGroup

• ModifyReplicationGroup

Next, add read replicas to the replication group

High availability using replication groups API Version 2015-02-02 518

https://docs.aws.amazon.com/AmazonElastiCache/latest/APIReference/API_CreateReplicationGroup.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/APIReference/API_ModifyReplicationGroup.html

Amazon ElastiCache for Redis User Guide

After the replication group is created, add one to five read replicas to it using the
CreateCacheCluster operation, being sure to include the following parameters.

CacheClusterId

The name of the cluster you are adding to the replication group.

Cluster naming constraints are as follows:

• Must contain 1–40 alphanumeric characters or hyphens.

• Must begin with a letter.

• Can't contain two consecutive hyphens.

• Can't end with a hyphen.

ReplicationGroupId

The name of the replication group to which you are adding this cache cluster.

Repeat this operation for each read replica you want to add to the replication group, changing only
the value of the CacheClusterId parameter.

The following code adds the read replica myReplica01 to the replication group myReplGroup
The settings of the primary cluster–parameter group, security group, node type, and so on.–will be
applied to nodes as they are added to the replication group.

https://elasticache.us-west-2.amazonaws.com/
 ?Action=CreateCacheCluster
 &CacheClusterId=myReplica01
 &ReplicationGroupId=myReplGroup
 &SignatureMethod=HmacSHA256
 &SignatureVersion=4
 &Version=2015-02-02
 &X-Amz-Algorithm=&AWS;4-HMAC-SHA256
 &X-Amz-Credential=[your-access-key-id]/20150202/us-west-2/elasticache/aws4_request
 &X-Amz-Date=20150202T170651Z
 &X-Amz-SignedHeaders=content-type;host;user-agent;x-amz-content-sha256;x-amz-date
 &X-Amz-Signature=[signature-value]

For additional information and parameters you might want to use, see the ElastiCache API topic
CreateCacheCluster.

High availability using replication groups API Version 2015-02-02 519

https://docs.aws.amazon.com/AmazonElastiCache/latest/APIReference/API_CreateCacheCluster.html

Amazon ElastiCache for Redis User Guide

Creating a Redis replication group from scratch

Following, you can find how to create a Redis replication group without using an existing Redis
cluster as the primary. You can create a Redis (cluster mode disabled) or Redis (cluster mode
enabled) replication group from scratch using the ElastiCache console, the AWS CLI, or the
ElastiCache API.

Before you continue, decide whether you want to create a Redis (cluster mode disabled) or a Redis
(cluster mode enabled) replication group. For guidance in deciding, see Replication: Redis (Cluster
Mode Disabled) vs. Redis (Cluster Mode Enabled).

Topics

• Creating a Redis (Cluster Mode Disabled) replication group from scratch

• Creating a replication group in Redis (Cluster Mode Enabled) from scratch

High availability using replication groups API Version 2015-02-02 520

Amazon ElastiCache for Redis User Guide

Creating a Redis (Cluster Mode Disabled) replication group from scratch

You can create a Redis (cluster mode disabled) replication group from scratch using the ElastiCache
console, the AWS CLI, or the ElastiCache API. A Redis (cluster mode disabled) replication group
always has one node group, a primary cluster, and up to five read replicas. Redis (cluster mode
disabled) replication groups don't support partitioning your data.

Note

The node/shard limit can be increased to a maximum of 500 per cluster. To request a limit
increase, see AWS Service Limits and include the instance type in the request.

To create a Redis (cluster mode disabled) replication group from scratch, take one of the following
approaches:

Creating a Redis (Cluster Mode Disabled) replication group from scratch (AWS CLI)

The following procedure creates a Redis (cluster mode disabled) replication group using the AWS
CLI.

When you create a Redis (cluster mode disabled) replication group from scratch, you create the
replication group and all its nodes with a single call to the AWS CLI create-replication-group
command. Include the following parameters.

--replication-group-id

The name of the replication group you are creating.

Redis (cluster mode disabled) replication group naming constraints are as follows:

• Must contain 1–40 alphanumeric characters or hyphens.

• Must begin with a letter.

• Can't contain two consecutive hyphens.

• Can't end with a hyphen.

--replication-group-description

Description of the replication group.

High availability using replication groups API Version 2015-02-02 521

https://docs.aws.amazon.com/general/latest/gr/aws_service_limits.html

Amazon ElastiCache for Redis User Guide

--num-cache-clusters

The number of nodes you want created with this replication group, primary and read replicas
combined.

If you enable Multi-AZ (--automatic-failover-enabled), the value of --num-cache-
clusters must be at least 2.

--cache-node-type

The node type for each node in the replication group.

ElastiCache supports the following node types. Generally speaking, the current generation
types provide more memory and computational power at lower cost when compared to their
equivalent previous generation counterparts.

For more information on performance details for each node type, see Amazon EC2 Instance
Types.

--data-tiering-enabled

Set this parameter if you are using an r6gd node type. If you don't want data tiering, set --no-
data-tiering-enabled. For more information, see Data tiering.

--cache-parameter-group

Specify a parameter group that corresponds to your engine version. If you are running Redis
3.2.4 or later, specify the default.redis3.2 parameter group or a parameter group derived
from default.redis3.2 to create a Redis (cluster mode disabled) replication group. For more
information, see Redis-specific parameters.

--network-type

Either ipv4, ipv6 or dual-stack. If you choose dual-stack, you must set the --IpDiscovery
parameter to either ipv4 or ipv6.

--engine

redis

--engine-version

To have the richest set of features, choose the latest engine version.

High availability using replication groups API Version 2015-02-02 522

https://aws.amazon.com/ec2/instance-types/
https://aws.amazon.com/ec2/instance-types/

Amazon ElastiCache for Redis User Guide

The names of the nodes will be derived from the replication group name by postpending -00#
to the replication group name. For example, using the replication group name myReplGroup,
the name for the primary will be myReplGroup-001 and the read replicas myReplGroup-002
through myReplGroup-006.

If you want to enable in-transit or at-rest encryption on this replication group, add either or both
of the --transit-encryption-enabled or --at-rest-encryption-enabled parameters
and meet the following conditions.

• Your replication group must be running Redis version 3.2.6 or 4.0.10.

• The replication group must be created in an Amazon VPC.

• You must also include the parameter --cache-subnet-group.

• You must also include the parameter --auth-token with the customer specified string value
for your AUTH token (password) needed to perform operations on this replication group.

The following operation creates a Redis (cluster mode disabled) replication group sample-repl-
group with three nodes, a primary and two replicas.

For Linux, macOS, or Unix:

aws elasticache create-replication-group \
 --replication-group-id sample-repl-group \
 --replication-group-description "Demo cluster with replicas" \
 --num-cache-clusters 3 \
 --cache-node-type cache.m4.large \
 --engine redis

For Windows:

aws elasticache create-replication-group ^
 --replication-group-id sample-repl-group ^
 --replication-group-description "Demo cluster with replicas" ^
 --num-cache-clusters 3 ^
 --cache-node-type cache.m4.large ^
 --engine redis

Output from the this command is something like this.

{

High availability using replication groups API Version 2015-02-02 523

Amazon ElastiCache for Redis User Guide

 "ReplicationGroup": {
 "Status": "creating",
 "Description": "Demo cluster with replicas",
 "ClusterEnabled": false,
 "ReplicationGroupId": "sample-repl-group",
 "SnapshotRetentionLimit": 0,
 "AutomaticFailover": "disabled",
 "SnapshotWindow": "01:30-02:30",
 "MemberClusters": [
 "sample-repl-group-001",
 "sample-repl-group-002",
 "sample-repl-group-003"
],
 "CacheNodeType": "cache.m4.large",
 "DataTiering": "disabled",
 "PendingModifiedValues": {}
 }
}

For additional information and parameters you might want to use, see the AWS CLI topic create-
replication-group.

Creating a Redis (cluster mode disabled) replication group from scratch (ElastiCache API)

The following procedure creates a Redis (cluster mode disabled) replication group using the
ElastiCache API.

When you create a Redis (cluster mode disabled) replication group from scratch, you
create the replication group and all its nodes with a single call to the ElastiCache API
CreateReplicationGroup operation. Include the following parameters.

ReplicationGroupId

The name of the replication group you are creating.

Redis (cluster mode enabled) replication group naming constraints are as follows:

• Must contain 1–40 alphanumeric characters or hyphens.

• Must begin with a letter.

• Can't contain two consecutive hyphens.

• Can't end with a hyphen.

High availability using replication groups API Version 2015-02-02 524

https://docs.aws.amazon.com/cli/latest/reference/elasticache/create-replication-group.html
https://docs.aws.amazon.com/cli/latest/reference/elasticache/create-replication-group.html

Amazon ElastiCache for Redis User Guide

ReplicationGroupDescription

Your description of the replication group.

NumCacheClusters

The total number of nodes you want created with this replication group, primary and read
replicas combined.

If you enable Multi-AZ (AutomaticFailoverEnabled=true), the value of
NumCacheClusters must be at least 2.

CacheNodeType

The node type for each node in the replication group.

ElastiCache supports the following node types. Generally speaking, the current generation
types provide more memory and computational power at lower cost when compared to their
equivalent previous generation counterparts.

For more information on performance details for each node type, see Amazon EC2 Instance
Types.

--data-tiering-enabled

Set this parameter if you are using an r6gd node type. If you don't want data tiering, set --no-
data-tiering-enabled. For more information, see Data tiering.

CacheParameterGroup

Specify a parameter group that corresponds to your engine version. If you are running Redis
3.2.4 or later, specify the default.redis3.2 parameter group or a parameter group derived
from default.redis3.2 to create a Redis (cluster mode disabled) replication group. For more
information, see Redis-specific parameters.

--network-type

Either ipv4, ipv or dual-stack. If you choose dual-stack, you must set the --IpDiscovery
parameter to either ipv4 or ipv6.

Engine

redis

EngineVersion

6.0

High availability using replication groups API Version 2015-02-02 525

https://aws.amazon.com/ec2/instance-types/
https://aws.amazon.com/ec2/instance-types/

Amazon ElastiCache for Redis User Guide

The names of the nodes will be derived from the replication group name by postpending -00#
to the replication group name. For example, using the replication group name myReplGroup,
the name for the primary will be myReplGroup-001 and the read replicas myReplGroup-002
through myReplGroup-006.

If you want to enable in-transit or at-rest encryption on this replication group, add either or both
of the TransitEncryptionEnabled=true or AtRestEncryptionEnabled=true parameters
and meet the following conditions.

• Your replication group must be running Redis version 3.2.6 or 4.0.10.

• The replication group must be created in an Amazon VPC.

• You must also include the parameter CacheSubnetGroup.

• You must also include the parameter AuthToken with the customer specified string value for
your AUTH token (password) needed to perform operations on this replication group.

The following operation creates the Redis (cluster mode disabled) replication group myReplGroup
with three nodes, a primary and two replicas.

https://elasticache.us-west-2.amazonaws.com/
 ?Action=CreateReplicationGroup
 &CacheNodeType=cache.m4.large
 &CacheParameterGroup=default.redis6.x
 &Engine=redis
 &EngineVersion=6.0
 &NumCacheClusters=3
 &ReplicationGroupDescription=test%20group
 &ReplicationGroupId=myReplGroup
 &Version=2015-02-02
 &SignatureVersion=4
 &SignatureMethod=HmacSHA256
 &Timestamp=20150202T192317Z
 &X-Amz-Credential=<credential>

For additional information and parameters you might want to use, see the ElastiCache API topic
CreateReplicationGroup.

High availability using replication groups API Version 2015-02-02 526

https://docs.aws.amazon.com/AmazonElastiCache/latest/APIReference/API_CreateReplicationGroup.html

Amazon ElastiCache for Redis User Guide

Creating a replication group in Redis (Cluster Mode Enabled) from scratch

You can create a Redis (cluster mode enabled) cluster (API/CLI: replication group) using the
ElastiCache console, the AWS CLI, or the ElastiCache API. A Redis (cluster mode enabled) replication
group has from 1 to 500 shards (API/CLI: node groups), a primary node in each shard, and up to
5 read replicas in each shard. You can create a cluster with higher number of shards and lower
number of replicas totaling up to 90 nodes per cluster. This cluster configuration can range from
90 shards and 0 replicas to 15 shards and 5 replicas, which is the maximum number of replicas
allowed.

The node or shard limit can be increased to a maximum of 500 per cluster if the Redis engine
version is 5.0.6 or higher. For example, you can choose to configure a 500 node cluster that ranges
between 83 shards (one primary and 5 replicas per shard) and 500 shards (single primary and
no replicas). Make sure there are enough available IP addresses to accommodate the increase.
Common pitfalls include the subnets in the subnet group have too small a CIDR range or the
subnets are shared and heavily used by other clusters. For more information, see Creating a subnet
group.

For versions below 5.0.6, the limit is 250 per cluster.

To request a limit increase, see AWS Service Limits and choose the limit type Nodes per cluster per
instance type.

Creating a Cluster in Redis (Cluster Mode Enabled)

• Creating a Redis (Cluster Mode Enabled) cluster (Console)

• Creating a Redis (Cluster Mode Enabled) replication group from scratch (AWS CLI)

• Creating a replication group in Redis (Cluster Mode Enabled) from scratch (ElastiCache API)

Creating a Redis (Cluster Mode Enabled) cluster (Console)

To create a Redis (cluster mode enabled) cluster, see Creating a Redis (cluster mode enabled)
cluster (Console). Be sure to enable cluster mode, Cluster Mode enabled (Scale Out), and specify
at least two shards and one replica node in each.

Creating a Redis (Cluster Mode Enabled) replication group from scratch (AWS CLI)

The following procedure creates a Redis (cluster mode enabled) replication group using the AWS
CLI.

High availability using replication groups API Version 2015-02-02 527

https://docs.aws.amazon.com/general/latest/gr/aws_service_limits.html

Amazon ElastiCache for Redis User Guide

When you create a Redis (cluster mode enabled) replication group from scratch, you create the
replication group and all its nodes with a single call to the AWS CLI create-replication-group
command. Include the following parameters.

--replication-group-id

The name of the replication group you are creating.

Redis (cluster mode enabled) replication group naming constraints are as follows:

• Must contain 1–40 alphanumeric characters or hyphens.

• Must begin with a letter.

• Can't contain two consecutive hyphens.

• Can't end with a hyphen.

--replication-group-description

Description of the replication group.

--cache-node-type

The node type for each node in the replication group.

ElastiCache supports the following node types. Generally speaking, the current generation
types provide more memory and computational power at lower cost when compared to their
equivalent previous generation counterparts.

For more information on performance details for each node type, see Amazon EC2 Instance
Types.

--data-tiering-enabled

Set this parameter if you are using an r6gd node type. If you don't want data tiering, set --no-
data-tiering-enabled. For more information, see Data tiering.

--cache-parameter-group

Specify the default.redis6.x.cluster.on parameter group or a parameter group derived
from default.redis6.x.cluster.on to create a Redis (cluster mode enabled) replication
group. For more information, see Redis 6.x parameter changes.

--engine

redis

High availability using replication groups API Version 2015-02-02 528

https://aws.amazon.com/ec2/instance-types/
https://aws.amazon.com/ec2/instance-types/

Amazon ElastiCache for Redis User Guide

--engine-version

3.2.4

--num-node-groups

The number of node groups in this replication group. Valid values are 1 to 500.

Note

The node/shard limit can be increased to a maximum of 500 per cluster. To request
a limit increase, see AWS Service Limits and select limit type "Nodes per cluster per
instance type”.

--replicas-per-node-group

The number of replica nodes in each node group. Valid values are 0 to 5.

--network-type

Either ipv4, ipv or dual-stack. If you choose dual-stack, you must set the --IpDiscovery
parameter to either ipv4 or ipv6.

If you want to enable in-transit or at-rest encryption on this replication group, add either or both
of the --transit-encryption-enabled or --at-rest-encryption-enabled parameters
and meet the following conditions.

• Your replication group must be running Redis version 3.2.6 or 4.0.10.

• The replication group must be created in an Amazon VPC.

• You must also include the parameter --cache-subnet-group.

• You must also include the parameter --auth-token with the customer specified string value
for your AUTH token (password) needed to perform operations on this replication group.

The following operation creates the Redis (cluster mode enabled) replication group sample-repl-
group with three node groups/shards (--num-node-groups), each with three nodes, a primary and
two read replicas (--replicas-per-node-group).

For Linux, macOS, or Unix:

High availability using replication groups API Version 2015-02-02 529

https://docs.aws.amazon.com/general/latest/gr/aws_service_limits.html

Amazon ElastiCache for Redis User Guide

aws elasticache create-replication-group \
 --replication-group-id sample-repl-group \
 --replication-group-description "Demo cluster with replicas" \
 --num-node-groups 3 \
 --replicas-per-node-group 2 \
 --cache-node-type cache.m4.large \
 --engine redis \
 --security-group-ids SECURITY_GROUP_ID \
 --cache-subnet-group-name SUBNET_GROUP_NAME>

For Windows:

aws elasticache create-replication-group ^
 --replication-group-id sample-repl-group ^
 --replication-group-description "Demo cluster with replicas" ^
 --num-node-groups 3 ^
 --replicas-per-node-group 2 ^
 --cache-node-type cache.m4.large ^
 --engine redis ^
 --security-group-ids SECURITY_GROUP_ID ^
 --cache-subnet-group-name SUBNET_GROUP_NAME>

The preceding command generates the following output.

{
 "ReplicationGroup": {
 "Status": "creating",
 "Description": "Demo cluster with replicas",
 "ReplicationGroupId": "sample-repl-group",
 "SnapshotRetentionLimit": 0,
 "AutomaticFailover": "enabled",
 "SnapshotWindow": "05:30-06:30",
 "MemberClusters": [
 "sample-repl-group-0001-001",
 "sample-repl-group-0001-002",
 "sample-repl-group-0001-003",
 "sample-repl-group-0002-001",
 "sample-repl-group-0002-002",
 "sample-repl-group-0002-003",
 "sample-repl-group-0003-001",

High availability using replication groups API Version 2015-02-02 530

Amazon ElastiCache for Redis User Guide

 "sample-repl-group-0003-002",
 "sample-repl-group-0003-003"
],
 "PendingModifiedValues": {}
 }
}

When you create a Redis (cluster mode enabled) replication group from scratch, you are able to
configure each shard in the cluster using the --node-group-configuration parameter as
shown in the following example which configures two node groups (Console: shards). The first
shard has two nodes, a primary and one read replica. The second shard has three nodes, a primary
and two read replicas.

--node-group-configuration

The configuration for each node group. The --node-group-configuration parameter
consists of the following fields.

• PrimaryAvailabilityZone – The Availability Zone where the primary node of this node
group is located. If this parameter is omitted, ElastiCache chooses the Availability Zone for
the primary node.

Example: us-west-2a.

• ReplicaAvailabilityZones – A comma separated list of Availability Zones where the
read replicas are located. The number of Availability Zones in this list must match the value
of ReplicaCount. If this parameter is omitted, ElastiCache chooses the Availability Zones for
the replica nodes.

Example: "us-west-2a,us-west-2b,us-west-2c"

• ReplicaCount – The number of replica nodes in this node group.

• Slots – A string that specifies the keyspace for the node group. The string is in the format
startKey-endKey. If this parameter is omitted, ElastiCache allocates keys equally among
the node groups.

Example: "0-4999"

High availability using replication groups API Version 2015-02-02 531

Amazon ElastiCache for Redis User Guide

The following operation creates the Redis (cluster mode enabled) replication group new-group
with two node groups/shards (--num-node-groups). Unlike the preceding example, each node
group is configured differently from the other node group (--node-group-configuration).

For Linux, macOS, or Unix:

aws elasticache create-replication-group \
 --replication-group-id new-group \
 --replication-group-description "Sharded replication group" \
 --engine redis \
 --snapshot-retention-limit 8 \
 --cache-node-type cache.m4.medium \
 --num-node-groups 2 \
 --node-group-configuration \
 "ReplicaCount=1,Slots=0-8999,PrimaryAvailabilityZone='us-
east-1c',ReplicaAvailabilityZones='us-east-1b'" \
 "ReplicaCount=2,Slots=9000-16383,PrimaryAvailabilityZone='us-
east-1a',ReplicaAvailabilityZones='us-east-1a','us-east-1c'"

For Windows:

aws elasticache create-replication-group ^
 --replication-group-id new-group ^
 --replication-group-description "Sharded replication group" ^
 --engine redis ^
 --snapshot-retention-limit 8 ^
 --cache-node-type cache.m4.medium ^
 --num-node-groups 2 ^
 --node-group-configuration \
 "ReplicaCount=1,Slots=0-8999,PrimaryAvailabilityZone='us-
east-1c',ReplicaAvailabilityZones='us-east-1b'" \
 "ReplicaCount=2,Slots=9000-16383,PrimaryAvailabilityZone='us-
east-1a',ReplicaAvailabilityZones='us-east-1a','us-east-1c'"

The preceding operation generates the following output.

{
 "ReplicationGroup": {
 "Status": "creating",
 "Description": "Sharded replication group",
 "ReplicationGroupId": "rc-rg",
 "SnapshotRetentionLimit": 8,

High availability using replication groups API Version 2015-02-02 532

Amazon ElastiCache for Redis User Guide

 "AutomaticFailover": "enabled",
 "SnapshotWindow": "10:00-11:00",
 "MemberClusters": [
 "rc-rg-0001-001",
 "rc-rg-0001-002",
 "rc-rg-0002-001",
 "rc-rg-0002-002",
 "rc-rg-0002-003"
],
 "PendingModifiedValues": {}
 }
}

For additional information and parameters you might want to use, see the AWS CLI topic create-
replication-group.

Creating a replication group in Redis (Cluster Mode Enabled) from scratch (ElastiCache API)

The following procedure creates a Redis (cluster mode enabled) replication group using the
ElastiCache API.

When you create a Redis (cluster mode enabled) replication group from scratch, you
create the replication group and all its nodes with a single call to the ElastiCache API
CreateReplicationGroup operation. Include the following parameters.

ReplicationGroupId

The name of the replication group you are creating.

Redis (cluster mode enabled) replication group naming constraints are as follows:

• Must contain 1–40 alphanumeric characters or hyphens.

• Must begin with a letter.

• Can't contain two consecutive hyphens.

• Can't end with a hyphen.

ReplicationGroupDescription

Description of the replication group.

NumNodeGroups

The number of node groups you want created with this replication group. Valid values are 1 to
500.

High availability using replication groups API Version 2015-02-02 533

https://docs.aws.amazon.com/cli/latest/reference/elasticache/create-replication-group.html
https://docs.aws.amazon.com/cli/latest/reference/elasticache/create-replication-group.html

Amazon ElastiCache for Redis User Guide

ReplicasPerNodeGroup

The number of replica nodes in each node group. Valid values are 1 to 5.

NodeGroupConfiguration

The configuration for each node group. The NodeGroupConfiguration parameter consists of
the following fields.

• PrimaryAvailabilityZone – The Availability Zone where the primary node of this node
group is located. If this parameter is omitted, ElastiCache chooses the Availability Zone for
the primary node.

Example: us-west-2a.

• ReplicaAvailabilityZones – A list of Availability Zones where the read replicas are
located. The number of Availability Zones in this list must match the value of ReplicaCount.
If this parameter is omitted, ElastiCache chooses the Availability Zones for the replica nodes.

• ReplicaCount – The number of replica nodes in this node group.

• Slots – A string that specifies the keyspace for the node group. The string is in the format
startKey-endKey. If this parameter is omitted, ElastiCache allocates keys equally among
the node groups.

Example: "0-4999"

CacheNodeType

The node type for each node in the replication group.

ElastiCache supports the following node types. Generally speaking, the current generation
types provide more memory and computational power at lower cost when compared to their
equivalent previous generation counterparts.

For more information on performance details for each node type, see Amazon EC2 Instance
Types.

--data-tiering-enabled

Set this parameter if you are using an r6gd node type. If you don't want data tiering, set --no-
data-tiering-enabled. For more information, see Data tiering.

High availability using replication groups API Version 2015-02-02 534

https://aws.amazon.com/ec2/instance-types/
https://aws.amazon.com/ec2/instance-types/

Amazon ElastiCache for Redis User Guide

CacheParameterGroup

Specify the default.redis6.x.cluster.on parameter group or a parameter group derived
from default.redis6.x.cluster.on to create a Redis (cluster mode enabled) replication
group. For more information, see Redis 6.x parameter changes.

--network-type

Either ipv4, ipv or dual-stack. If you choose dual-stack, you must set the --IpDiscovery
parameter to either ipv4 or ipv6.

Engine

redis

EngineVersion

6.0

If you want to enable in-transit or at-rest encryption on this replication group, add either or both
of the TransitEncryptionEnabled=true or AtRestEncryptionEnabled=true parameters
and meet the following conditions.

• Your replication group must be running Redis version 3.2.6 or 4.0.10.

• The replication group must be created in an Amazon VPC.

• You must also include the parameter CacheSubnetGroup.

• You must also include the parameter AuthToken with the customer specified string value for
your AUTH token (password) needed to perform operations on this replication group.

Line breaks are added for ease of reading.

https://elasticache.us-west-2.amazonaws.com/
 ?Action=CreateReplicationGroup
 &CacheNodeType=cache.m4.large
 &CacheParemeterGroup=default.redis6.xcluster.on
 &Engine=redis
 &EngineVersion=6.0
 &NumNodeGroups=3
 &ReplicasPerNodeGroup=2
 &ReplicationGroupDescription=test%20group
 &ReplicationGroupId=myReplGroup

High availability using replication groups API Version 2015-02-02 535

Amazon ElastiCache for Redis User Guide

 &Version=2015-02-02
 &SignatureVersion=4
 &SignatureMethod=HmacSHA256
 &Timestamp=20150202T192317Z
 &X-Amz-Credential=<credential>

For additional information and parameters you might want to use, see the ElastiCache API topic
CreateReplicationGroup.

Viewing a replication group's details

There are times you may want to view the details of a replication group. You can use the
ElastiCache console, the AWS CLI for ElastiCache, or the ElastiCache API. The console process is
different for Redis (cluster mode disabled) and Redis (cluster mode enabled).

Viewing a Replication Group's Details

• Viewing details for a Redis (Cluster Mode Disabled) with replicas

• Viewing Details for a Redis (Cluster Mode Disabled) Replication Group (Console)

• Viewing details for a Redis (Cluster Mode Disabled) replication group (AWS CLI)

• Viewing Details for a Redis (Cluster Mode Disabled) Replication Group (ElastiCache API)

• Viewing a replication group's details: Redis (Cluster Mode Enabled)

• Viewing details for a Redis (Cluster Mode Enabled) cluster (Console)

• Viewing details for a Redis (Cluster Mode Enabled) cluster (AWS CLI)

• Viewing details for a Redis (Cluster Mode Enabled) Cluster (ElastiCache API)

• Viewing a replication group's details (AWS CLI)

• Viewing a replication group's details (ElastiCache API)

Viewing details for a Redis (Cluster Mode Disabled) with replicas

You can view the details of a Redis (cluster mode disabled) cluster with replicas (API/CLI: replication
group) using the ElastiCache console, the AWS CLI for ElastiCache, or the ElastiCache API.

Viewing a Redis (Cluster Mode Disabled) Cluster's Details

• Viewing Details for a Redis (Cluster Mode Disabled) Replication Group (Console)

• Viewing details for a Redis (Cluster Mode Disabled) replication group (AWS CLI)

• Viewing Details for a Redis (Cluster Mode Disabled) Replication Group (ElastiCache API)

High availability using replication groups API Version 2015-02-02 536

https://docs.aws.amazon.com/AmazonElastiCache/latest/APIReference/API_CreateReplicationGroup.html

Amazon ElastiCache for Redis User Guide

Viewing Details for a Redis (Cluster Mode Disabled) Replication Group (Console)

To view the details of a Redis (cluster mode disabled) cluster with replicas using the ElastiCache
console, see the topic Viewing details of a Redis (Cluster Mode Disabled) cluster (Console).

Viewing details for a Redis (Cluster Mode Disabled) replication group (AWS CLI)

For an AWS CLI example that displays a Redis (cluster mode disabled) replication group's details,
see Viewing a replication group's details (AWS CLI).

Viewing Details for a Redis (Cluster Mode Disabled) Replication Group (ElastiCache API)

For an ElastiCache API example that displays a Redis (cluster mode disabled) replication group's
details, see Viewing a replication group's details (ElastiCache API).

Viewing a replication group's details: Redis (Cluster Mode Enabled)

Viewing details for a Redis (Cluster Mode Enabled) cluster (Console)

To view the details of a Redis (cluster mode enabled) cluster using the ElastiCache console, see
Viewing details for a Redis (Cluster Mode Enabled) cluster (Console).

Viewing details for a Redis (Cluster Mode Enabled) cluster (AWS CLI)

For an ElastiCache CLI example that displays a Redis (cluster mode enabled) replication group's
details, see Viewing a replication group's details (AWS CLI).

Viewing details for a Redis (Cluster Mode Enabled) Cluster (ElastiCache API)

For an ElastiCache API example that displays a Redis (cluster mode enabled) replication group's
details, see Viewing a replication group's details (ElastiCache API).

Viewing a replication group's details (AWS CLI)

You can view the details for a replication group using the AWS CLI describe-replication-
groups command. Use the following optional parameters to refine the listing. Omitting the
parameters returns the details for up to 100 replication groups.

Optional Parameters

• --replication-group-id – Use this parameter to list the details of a specific replication
group. If the specified replication group has more than one node group, results are returned
grouped by node group.

High availability using replication groups API Version 2015-02-02 537

Amazon ElastiCache for Redis User Guide

• --max-items – Use this parameter to limit the number of replication groups listed. The value of
--max-items cannot be less than 20 or greater than 100.

Example

The following code lists the details for up to 100 replication groups.

aws elasticache describe-replication-groups

The following code lists the details for sample-repl-group.

aws elasticache describe-replication-groups --replication-group-id sample-repl-group

The following code lists the details for sample-repl-group.

aws elasticache describe-replication-groups --replication-group-id sample-repl-group

The following code list the details for up to 25 replication groups.

aws elasticache describe-replication-groups --max-items 25

Output from this operation should look something like this (JSON format).

{
 "ReplicationGroups": [
 {
 "Status": "available",
 "Description": "test",
 "NodeGroups": [
 {
 "Status": "available",
 "NodeGroupMembers": [
 {
 "CurrentRole": "primary",
 "PreferredAvailabilityZone": "us-west-2a",
 "CacheNodeId": "0001",
 "ReadEndpoint": {
 "Port": 6379,
 "Address": "rg-name-001.1abc4d.0001.usw2.cache.amazonaws.com"
 },
 "CacheClusterId": "rg-name-001"

High availability using replication groups API Version 2015-02-02 538

Amazon ElastiCache for Redis User Guide

 },
 {
 "CurrentRole": "replica",
 "PreferredAvailabilityZone": "us-west-2b",
 "CacheNodeId": "0001",
 "ReadEndpoint": {
 "Port": 6379,
 "Address": "rg-name-002.1abc4d.0001.usw2.cache.amazonaws.com"
 },
 "CacheClusterId": "rg-name-002"
 },
 {
 "CurrentRole": "replica",
 "PreferredAvailabilityZone": "us-west-2c",
 "CacheNodeId": "0001",
 "ReadEndpoint": {
 "Port": 6379,
 "Address": "rg-name-003.1abc4d.0001.usw2.cache.amazonaws.com"
 },
 "CacheClusterId": "rg-name-003"
 }
],
 "NodeGroupId": "0001",
 "PrimaryEndpoint": {
 "Port": 6379,
 "Address": "rg-name.1abc4d.ng.0001.usw2.cache.amazonaws.com"
 }
 }
],
 "ReplicationGroupId": "rg-name",
 "AutomaticFailover": "enabled",
 "SnapshottingClusterId": "rg-name-002",
 "MemberClusters": [
 "rg-name-001",
 "rg-name-002",
 "rg-name-003"
],
 "PendingModifiedValues": {}
 },
 {
 ... some output omitted for brevity
 }
]

High availability using replication groups API Version 2015-02-02 539

Amazon ElastiCache for Redis User Guide

}

For more information, see the AWS CLI for ElastiCache topic describe-replication-groups.

Viewing a replication group's details (ElastiCache API)

You can view the details for a replication using the AWS CLI DescribeReplicationGroups
operation. Use the following optional parameters to refine the listing. Omitting the parameters
returns the details for up to 100 replication groups.

Optional Parameters

• ReplicationGroupId – Use this parameter to list the details of a specific replication group. If
the specified replication group has more than one node group, results are returned grouped by
node group.

• MaxRecords – Use this parameter to limit the number of replication groups listed. The value of
MaxRecords cannot be less than 20 or greater than 100. The default is 100.

Example

The following code list the details for up to 100 replication groups.

https://elasticache.us-west-2.amazonaws.com/
 ?Action=DescribeReplicationGroups
 &Version=2015-02-02
 &SignatureVersion=4
 &SignatureMethod=HmacSHA256
 &Timestamp=20150202T192317Z
 &X-Amz-Credential=<credential>

The following code lists the details for myReplGroup.

https://elasticache.us-west-2.amazonaws.com/
 ?Action=DescribeReplicationGroups
 &ReplicationGroupId=myReplGroup
 &Version=2015-02-02
 &SignatureVersion=4
 &SignatureMethod=HmacSHA256
 &Timestamp=20150202T192317Z
 &X-Amz-Credential=<credential>

High availability using replication groups API Version 2015-02-02 540

https://docs.aws.amazon.com/cli/latest/reference/elasticache/describe-replication-groups.html

Amazon ElastiCache for Redis User Guide

The following code list the details for up to 25 clusters.

https://elasticache.us-west-2.amazonaws.com/
 ?Action=DescribeReplicationGroups
 &MaxRecords=25
 &Version=2015-02-02
 &SignatureVersion=4
 &SignatureMethod=HmacSHA256
 &Timestamp=20150202T192317Z
 &X-Amz-Credential=<credential>

For more information, see the ElastiCache API reference topic DescribeReplicationGroups.

High availability using replication groups API Version 2015-02-02 541

https://docs.aws.amazon.com/AmazonElastiCache/latest/APIReference/API_DescribeReplicationGroups.html

Amazon ElastiCache for Redis User Guide

Finding replication group endpoints

An application can connect to any node in a replication group, provided that it has the DNS
endpoint and port number for that node. Depending upon whether you are running a Redis (cluster
mode disabled) or a Redis (cluster mode enabled) replication group, you will be interested in
different endpoints.

Redis (Cluster Mode Disabled)

Redis (cluster mode disabled) clusters with replicas have three types of endpoints; the primary
endpoint, the reader endpoint and the node endpoints. The primary endpoint is a DNS name that
always resolves to the primary node in the cluster. The primary endpoint is immune to changes to
your cluster, such as promoting a read replica to the primary role. For write activity, we recommend
that your applications connect to the primary endpoint.

A reader endpoint will evenly split incoming connections to the endpoint between all read replicas
in an ElastiCache for Redis cluster. Additional factors such as when the application creates the
connections or how the application (re)-uses the connections will determine the traffic distribution.
Reader endpoints keep up with cluster changes in real-time as replicas are added or removed. You
can place your ElastiCache for Redis cluster’s multiple read replicas in different AWS Availability
Zones (AZ) to ensure high availability of reader endpoints.

Note

A reader endpoint is not a load balancer. It is a DNS record that will resolve to an IP address
of one of the replica nodes in a round robin fashion.

For read activity, applications can also connect to any node in the cluster. Unlike the primary
endpoint, node endpoints resolve to specific endpoints. If you make a change in your cluster, such
as adding or deleting a replica, you must update the node endpoints in your application.

Redis (Cluster Mode Enabled)

Redis (cluster mode enabled) clusters with replicas, because they have multiple shards (API/CLI:
node groups), which mean they also have multiple primary nodes, have a different endpoint
structure than Redis (cluster mode disabled) clusters. Redis (cluster mode enabled) has a
configuration endpoint which "knows" all the primary and node endpoints in the cluster. Your
application connects to the configuration endpoint. Whenever your application writes to or reads

High availability using replication groups API Version 2015-02-02 542

Amazon ElastiCache for Redis User Guide

from the cluster's configuration endpoint, Redis, behind the scenes, determines which shard
the key belongs to and which endpoint in that shard to use. It is all quite transparent to your
application.

You can find the endpoints for a cluster using the ElastiCache console, the AWS CLI, or the
ElastiCache API.

Finding Replication Group Endpoints

To find the endpoints for your replication group, see one of the following topics:

• Finding a Redis (Cluster Mode Disabled) Cluster's Endpoints (Console)

• Finding Endpoints for a Redis (Cluster Mode Enabled) Cluster (Console)

• Finding the Endpoints for Replication Groups (AWS CLI)

• Finding Endpoints for Replication Groups (ElastiCache API)

High availability using replication groups API Version 2015-02-02 543

Amazon ElastiCache for Redis User Guide

Modifying a replication group

Important Constraints

• Currently, ElastiCache supports limited modifications of a Redis (cluster mode enabled)
replication group, for example changing the engine version, using the API operation
ModifyReplicationGroup (CLI: modify-replication-group). You can modify
the number of shards (node groups) in a Redis (cluster mode enabled) cluster with the
API operation ModifyReplicationGroupShardConfiguration (CLI: modify-
replication-group-shard-configuration). For more information, see Scaling
clusters in Redis (Cluster Mode Enabled).

Other modifications to a Redis (cluster mode enabled) cluster require that you create a
cluster with the new cluster incorporating the changes.

• You can upgrade Redis (cluster mode disabled) and Redis (cluster mode enabled) clusters
and replication groups to newer engine versions. However, you can't downgrade to earlier
engine versions except by deleting the existing cluster or replication group and creating it
again. For more information, see Engine versions and upgrading .

• You can upgrade an existing ElastiCache for Redis cluster that uses cluster mode disabled
to use cluster mode enabled, using the console, ModifyReplicationGroup API or the
modify-replication-group CLI command, as shown in the example below. Or you can
follow the steps at Modifying cluster mode.

You can modify a Redis (cluster mode disabled) cluster's settings using the ElastiCache console, the
AWS CLI, or the ElastiCache API. Currently, ElastiCache supports a limited number of modifications
on a Redis (cluster mode enabled) replication group. Other modifications require you create a
backup of the current replication group then using that backup to seed a new Redis (cluster mode
enabled) replication group.

Topics

• Using the AWS Management Console

• Using the AWS CLI

• Using the ElastiCache API

High availability using replication groups API Version 2015-02-02 544

https://docs.aws.amazon.com/AmazonElastiCache/latest/APIReference/API_ModifyReplicationGroupShardConfiguration.html
https://docs.aws.amazon.com/cli/latest/reference/elasticache/modify-replication-group-shard-configuration.html
https://docs.aws.amazon.com/cli/latest/reference/elasticache/modify-replication-group-shard-configuration.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/APIReference/API_ModifyReplicationGroup.html
https://docs.aws.amazon.com/cli/latest/reference/elasticache/modify-replication-group.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/modify-cluster-mode.html

Amazon ElastiCache for Redis User Guide

Using the AWS Management Console

To modify a Redis (cluster mode disabled) cluster, see Modifying an ElastiCache cluster.

Using the AWS CLI

The following are AWS CLI examples of the modify-replication-group command. You can use
the same command to make other modifications to a replication group.

Enable Multi-AZ on an existing Redis replication group:

For Linux, macOS, or Unix:

aws elasticache modify-replication-group \
 --replication-group-id myReplGroup \
 --multi-az-enabled = true

For Windows:

aws elasticache modify-replication-group ^
 --replication-group-id myReplGroup ^
 --multi-az-enabled

Modify cluster mode from disabled to enabled:

To modify cluster mode from disabled to enabled, you must first set the cluster mode to
compatible. Compatible mode allows your Redis clients to connect using both cluster mode
enabled and cluster mode disabled. After you migrate all Redis clients to use cluster mode enabled,
you can then complete cluster mode configuration and set the cluster mode to enabled.

For Linux, macOS, or Unix:

Set to cluster mode to compatible.

aws elasticache modify-replication-group \
 --replication-group-id myReplGroup \
 --cache-parameter-group-name myParameterGroupName \
 --cluster-mode compatible

Set to cluster mode to enabled.

High availability using replication groups API Version 2015-02-02 545

Amazon ElastiCache for Redis User Guide

aws elasticache modify-replication-group \
 --replication-group-id myReplGroup \
 --cluster-mode enabled

For Windows:

Set to cluster mode to compatible.

aws elasticache modify-replication-group ^
 --replication-group-id myReplGroup ^
 --cache-parameter-group-name myParameterGroupName ^
 --cluster-mode compatible

Set to cluster mode to enabled.

aws elasticache modify-replication-group ^
 --replication-group-id myReplGroup ^
 --cluster-mode enabled

For more information on the AWS CLI modify-replication-group command, see modify-
replication-group or Modifying cluster mode in the ElastiCache for Redis User Guide.

Using the ElastiCache API

The following ElastiCache API operation enables Multi-AZ on an existing Redis replication group.
You can use the same operation to make other modifications to a replication group.

https://elasticache.us-west-2.amazonaws.com/
 ?Action=ModifyReplicationGroup
 &AutomaticFailoverEnabled=true
 &Mutli-AZEnabled=true
 &ReplicationGroupId=myReplGroup
 &SignatureVersion=4
 &SignatureMethod=HmacSHA256
 &Timestamp=20141201T220302Z
 &Version=2014-12-01
 &X-Amz-Algorithm=&AWS;4-HMAC-SHA256
 &X-Amz-Date=20141201T220302Z
 &X-Amz-SignedHeaders=Host
 &X-Amz-Expires=20141201T220302Z
 &X-Amz-Credential=<credential>

High availability using replication groups API Version 2015-02-02 546

https://docs.aws.amazon.com/cli/latest/reference/elasticache/modify-replication-group.html
https://docs.aws.amazon.com/cli/latest/reference/elasticache/modify-replication-group.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/modify-cluster-mode.html

Amazon ElastiCache for Redis User Guide

 &X-Amz-Signature=<signature>

For more information on the ElastiCache API ModifyReplicationGroup operation, see
ModifyReplicationGroup.

High availability using replication groups API Version 2015-02-02 547

https://docs.aws.amazon.com/AmazonElastiCache/latest/APIReference/API_ModifyReplicationGroup.html

Amazon ElastiCache for Redis User Guide

Deleting a replication group

If you no longer need one of your clusters with replicas (called replication groups in the API/CLI),
you can delete it. When you delete a replication group, ElastiCache deletes all of the nodes in that
group.

After you have begun this operation, it cannot be interrupted or canceled.

Warning

When you delete an ElastiCache for Redis cluster, your manual snapshots are retained. You
will also have an option to create a final snapshot before the cluster is deleted. Automatic
cache snapshots are not retained.

Deleting a Replication Group (Console)

To delete a cluster that has replicas, see Deleting a cluster.

Deleting a Replication Group (AWS CLI)

Use the command delete-replication-group to delete a replication group.

aws elasticache delete-replication-group --replication-group-id my-repgroup

A prompt asks you to confirm your decision. Enter y (yes) to start the operation immediately. After
the process starts, it is irreversible.

 After you begin deleting this replication group, all of its nodes will be deleted as
 well.
 Are you sure you want to delete this replication group? [Ny]y

REPLICATIONGROUP my-repgroup My replication group deleting

Deleting a replication group (ElastiCache API)

Call DeleteReplicationGroup with the ReplicationGroup parameter.

Example

https://elasticache.us-west-2.amazonaws.com/

High availability using replication groups API Version 2015-02-02 548

https://docs.aws.amazon.com/AmazonElastiCache/latest/CommandLineReference/CLIReference-cmd-DeleteReplicationGroup.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/APIReference/API_DeleteReplicationGroup.html

Amazon ElastiCache for Redis User Guide

 ?Action=DeleteReplicationGroup
 &ReplicationGroupId=my-repgroup
 &Version=2014-12-01
 &SignatureVersion=4
 &SignatureMethod=HmacSHA256
 &Timestamp=20141201T220302Z
 &X-Amz-Algorithm=&AWS;4-HMAC-SHA256
 &X-Amz-Date=20141201T220302Z
 &X-Amz-SignedHeaders=Host
 &X-Amz-Expires=20141201T220302Z
 &X-Amz-Credential=<credential>
 &X-Amz-Signature=<signature>

Note

If you set the RetainPrimaryCluster parameter to true, all of the read replicas will be
deleted, but the primary cluster will be retained.

High availability using replication groups API Version 2015-02-02 549

Amazon ElastiCache for Redis User Guide

Changing the number of replicas

You can dynamically increase or decrease the number of read replicas in your Redis replication
group using the AWS Management Console, the AWS CLI, or the ElastiCache API. If your replication
group is a Redis (cluster mode enabled) replication group, you can choose which shards (node
groups) to increase or decrease the number of replicas.

To dynamically change the number of replicas in your Redis replication group, choose the
operation from the following table that fits your situation.

To Do This For Redis (cluster mode
enabled)

For Redis (cluster mode
disabled)

Add replicas Increasing the number of
replicas in a shard

Increasing the number of
replicas in a shard

Adding a read replica, for
Redis (Cluster Mode Disabled)
 replication groups

Delete replicas Decreasing the number of
replicas in a shard

Decreasing the number of
replicas in a shard

Deleting a read replica, for
Redis (Cluster Mode Disabled)
replication groups

High availability using replication groups API Version 2015-02-02 550

Amazon ElastiCache for Redis User Guide

Increasing the number of replicas in a shard

You can increase the number of replicas in a Redis (cluster mode enabled) shard or Redis (cluster
mode disabled) replication group up to a maximum of five. You can do so using the AWS
Management Console, the AWS CLI, or the ElastiCache API.

Topics

• Using the AWS Management Console

• Using the AWS CLI

• Using the ElastiCache API

Using the AWS Management Console

The following procedure uses the console to increase the number of replicas in a Redis (cluster
mode enabled) replication group.

To increase the number of replicas in Redis shards

1. Sign in to the AWS Management Console and open the ElastiCache console at https://
console.aws.amazon.com/elasticache/.

2. In the navigation pane, choose Redis, and then choose the name of the replication group that
you want to add replicas to.

3. Choose the box for each shard that you want to add replicas to.

4. Choose Add replicas.

5. Complete the Add Replicas to Shards page:

• For New number of replicas/shard, enter the number of replicas that you want all of your
selected shards to have. This value must be greater than or equal to Current Number of
Replicas per shard and less than or equal to five. We recommend at least two replicas as a
working minimum.

• For Availability Zones, choose either No preference to have ElastiCache chose an
Availability Zone for each new replica, or Specify Availability Zones to choose an
Availability Zone for each new replica.

If you choose Specify Availability Zones, for each new replica specify an Availability Zone
using the list.

6. Choose Add to add the replicas or Cancel to cancel the operation.

High availability using replication groups API Version 2015-02-02 551

https://console.aws.amazon.com/elasticache/
https://console.aws.amazon.com/elasticache/

Amazon ElastiCache for Redis User Guide

Using the AWS CLI

To increase the number of replicas in a Redis shard, use the increase-replica-count command
with the following parameters:

• --replication-group-id – Required. Identifies which replication group you want to increase
the number of replicas in.

• --apply-immediately or --no-apply-immediately – Required. Specifies whether to
increase the replica count immediately (--apply-immediately) or at the next maintenance
window (--no-apply-immediately). Currently, --no-apply-immediately is not supported.

• --new-replica-count – Optional. Specifies the number of replica nodes you want when
finished, up to a maximum of five. Use this parameter for Redis (cluster mode disabled)
replication groups where there is only one node group or Redis (cluster mode enabled) group, or
where you want all node groups to have the same number of replicas. If this value is not larger
than the current number of replicas in the node group, the call fails with an exception.

• --replica-configuration – Optional. Allows you to set the number of replicas and
Availability Zones for each node group independently. Use this parameter for Redis (cluster mode
enabled) groups where you want to configure each node group independently.

--replica-configuration has three optional members:

• NodeGroupId – The four-digit ID for the node group that you are configuring. For Redis
(cluster mode disabled) replication groups, the shard ID is always 0001. To find a Redis (cluster
mode enabled) node group's (shard's) ID, see Finding a shard's ID.

• NewReplicaCount – The number of replicas that you want in this node group at the end of
this operation. The value must be more than the current number of replicas, up to a maximum
of five. If this value is not larger than the current number of replicas in the node group, the call
fails with an exception.

• PreferredAvailabilityZones – A list of PreferredAvailabilityZone strings that
specify which Availability Zones the replication group's nodes are to be in. The number of
PreferredAvailabilityZone values must equal the value of NewReplicaCount plus 1
to account for the primary node. If this member of --replica-configuration is omitted,
ElastiCache for Redis chooses the Availability Zone for each of the new replicas.

High availability using replication groups API Version 2015-02-02 552

Amazon ElastiCache for Redis User Guide

Important

You must include either the --new-replica-count or --replica-configuration
parameter, but not both, in your call.

Example

The following example increases the number of replicas in the replication group sample-repl-
group to three. When the example is finished, there are three replicas in each node group. This
number applies whether this is a Redis (cluster mode disabled) group with a single node group or a
Redis (cluster mode enabled) group with multiple node groups.

For Linux, macOS, or Unix:

aws elasticache increase-replica-count \
 --replication-group-id sample-repl-group \
 --new-replica-count 3 \
 --apply-immediately

For Windows:

aws elasticache increase-replica-count ^
 --replication-group-id sample-repl-group ^
 --new-replica-count 3 ^
 --apply-immediately

The following example increases the number of replicas in the replication group sample-repl-
group to the value specified for the two specified node groups. Given that there are multiple node
groups, this is a Redis (cluster mode enabled) replication group. When specifying the optional
PreferredAvailabilityZones, the number of Availability Zones listed must equal the value
of NewReplicaCount plus 1 more. This approach accounts for the primary node for the group
identified by NodeGroupId.

For Linux, macOS, or Unix:

aws elasticache increase-replica-count \
 --replication-group-id sample-repl-group \
 --replica-configuration \

High availability using replication groups API Version 2015-02-02 553

Amazon ElastiCache for Redis User Guide

 NodeGroupId=0001,NewReplicaCount=2,PreferredAvailabilityZones=us-east-1a,us-
east-1c,us-east-1b \
 NodeGroupId=0003,NewReplicaCount=3,PreferredAvailabilityZones=us-east-1a,us-
east-1b,us-east-1c,us-east-1c \
 --apply-immediately

For Windows:

aws elasticache increase-replica-count ^
 --replication-group-id sample-repl-group ^
 --replica-configuration ^
 NodeGroupId=0001,NewReplicaCount=2,PreferredAvailabilityZones=us-east-1a,us-
east-1c,us-east-1b ^
 NodeGroupId=0003,NewReplicaCount=3,PreferredAvailabilityZones=us-east-1a,us-
east-1b,us-east-1c,us-east-1c \
 --apply-immediately

For more information about increasing the number of replicas using the CLI, see increase-replica-
count in the Amazon ElastiCache Command Line Reference.

Using the ElastiCache API

To increase the number of replicas in a Redis shard, use the IncreaseReplicaCount action with
the following parameters:

• ReplicationGroupId – Required. Identifies which replication group you want to increase the
number of replicas in.

• ApplyImmediately – Required. Specifies whether to increase the replica count immediately
(ApplyImmediately=True) or at the next maintenance window (ApplyImmediately=False).
Currently, ApplyImmediately=False is not supported.

• NewReplicaCount – Optional. Specifies the number of replica nodes you want when finished,
up to a maximum of five. Use this parameter for Redis (cluster mode disabled) replication groups
where there is only one node group, or Redis (cluster mode enabled) groups where you want
all node groups to have the same number of replicas. If this value is not larger than the current
number of replicas in the node group, the call fails with an exception.

• ReplicaConfiguration – Optional. Allows you to set the number of replicas and Availability
Zones for each node group independently. Use this parameter for Redis (cluster mode enabled)
groups where you want to configure each node group independently.

ReplicaConfiguraion has three optional members:

High availability using replication groups API Version 2015-02-02 554

https://docs.aws.amazon.com/cli/latest/reference/elasticache/increase-replica-count.html
https://docs.aws.amazon.com/cli/latest/reference/elasticache/increase-replica-count.html

Amazon ElastiCache for Redis User Guide

• NodeGroupId – The four-digit ID for the node group you are configuring. For Redis (cluster
mode disabled) replication groups, the node group (shard) ID is always 0001. To find a Redis
(cluster mode enabled) node group's (shard's) ID, see Finding a shard's ID.

• NewReplicaCount – The number of replicas that you want in this node group at the end of
this operation. The value must be more than the current number of replicas and a maximum
of five. If this value is not larger than the current number of replicas in the node group, the call
fails with an exception.

• PreferredAvailabilityZones – A list of PreferredAvailabilityZone strings that
specify which Availability Zones the replication group's nodes are to be in. The number of
PreferredAvailabilityZone values must equal the value of NewReplicaCount plus
1 to account for the primary node. If this member of ReplicaConfiguration is omitted,
ElastiCache for Redis chooses the Availability Zone for each of the new replicas.

Important

You must include either the NewReplicaCount or ReplicaConfiguration parameter,
but not both, in your call.

Example

The following example increases the number of replicas in the replication group sample-repl-
group to three. When the example is finished, there are three replicas in each node group. This
number applies whether this is a Redis (cluster mode disabled) group with a single node group or a
Redis (cluster mode enabled) group with multiple node groups.

https://elasticache.us-west-2.amazonaws.com/
 ?Action=IncreaseReplicaCount
 &ApplyImmediately=True
 &NewReplicaCount=3
 &ReplicationGroupId=sample-repl-group
 &Version=2015-02-02
 &SignatureVersion=4
 &SignatureMethod=HmacSHA256
 &Timestamp=20150202T192317Z
 &X-Amz-Credential=<credential>

High availability using replication groups API Version 2015-02-02 555

Amazon ElastiCache for Redis User Guide

The following example increases the number of replicas in the replication group sample-repl-
group to the value specified for the two specified node groups. Given that there are multiple node
groups, this is a Redis (cluster mode enabled) replication group. When specifying the optional
PreferredAvailabilityZones, the number of Availability Zones listed must equal the value
of NewReplicaCount plus 1 more. This approach accounts for the primary node, for the group
identified by NodeGroupId.

https://elasticache.us-west-2.amazonaws.com/
 ?Action=IncreaseReplicaCount
 &ApplyImmediately=True
 &ReplicaConfiguration.ConfigureShard.1.NodeGroupId=0001
 &ReplicaConfiguration.ConfigureShard.1.NewReplicaCount=2

 &ReplicaConfiguration.ConfigureShard.1.PreferredAvailabilityZones.PreferredAvailabilityZone.1=us-
east-1a

 &ReplicaConfiguration.ConfigureShard.1.PreferredAvailabilityZones.PreferredAvailabilityZone.2=us-
east-1c

 &ReplicaConfiguration.ConfigureShard.1.PreferredAvailabilityZones.PreferredAvailabilityZone.3=us-
east-1b
 &ReplicaConfiguration.ConfigureShard.2.NodeGroupId=0003
 &ReplicaConfiguration.ConfigureShard.2.NewReplicaCount=3

 &ReplicaConfiguration.ConfigureShard.2.PreferredAvailabilityZones.PreferredAvailabilityZone.1=us-
east-1a

 &ReplicaConfiguration.ConfigureShard.2.PreferredAvailabilityZones.PreferredAvailabilityZone.2=us-
east-1b

 &ReplicaConfiguration.ConfigureShard.2.PreferredAvailabilityZones.PreferredAvailabilityZone.3=us-
east-1c

 &ReplicaConfiguration.ConfigureShard.2.PreferredAvailabilityZones.PreferredAvailabilityZone.4=us-
east-1c
 &ReplicationGroupId=sample-repl-group
 &Version=2015-02-02
 &SignatureVersion=4
 &SignatureMethod=HmacSHA256
 &Timestamp=20150202T192317Z
 &X-Amz-Credential=<credential>

High availability using replication groups API Version 2015-02-02 556

Amazon ElastiCache for Redis User Guide

For more information about increasing the number of replicas using the API, see
IncreaseReplicaCount in the Amazon ElastiCache API Reference.

High availability using replication groups API Version 2015-02-02 557

https://docs.aws.amazon.com/AmazonElastiCache/latest/APIReference/API_IncreaseReplicaCount.html

Amazon ElastiCache for Redis User Guide

Decreasing the number of replicas in a shard

You can decrease the number of replicas in a shard for Redis (cluster mode enabled), or in a
replication group for Redis (cluster mode disabled):

• For Redis (cluster mode disabled), you can decrease the number of replicas to one if Multi-AZ is
enabled, and to zero if it isn't enabled.

• For Redis (cluster mode enabled), you can decrease the number of replicas to zero. However, you
can't fail over to a replica if your primary node fails.

You can use the AWS Management Console, the AWS CLI or the ElastiCache API to decrease the
number of replicas in a node group (shard) or replication group.

Topics

• Using the AWS Management Console

• Using the AWS CLI

• Using the ElastiCache API

Using the AWS Management Console

The following procedure uses the console to decrease the number of replicas in a Redis (cluster
mode enabled) replication group.

To decrease the number of replicas in a Redis shard

1. Sign in to the AWS Management Console and open the ElastiCache console at https://
console.aws.amazon.com/elasticache/.

2. In the navigation pane, choose Redis, then choose the name of the replication group from
which you want to delete replicas.

3. Choose the box for each shard you want to remove a replica node from.

4. Choose Delete replicas.

5. Complete the Delete Replicas from Shards page:

a. For New number of replicas/shard, enter the number of replicas that you want the
selected shards to have. This number must be greater than or equal to 1. We recommend
at least two replicas per shard as a working minimum.

b. Choose Delete to delete the replicas or Cancel to cancel the operation.

High availability using replication groups API Version 2015-02-02 558

https://console.aws.amazon.com/elasticache/
https://console.aws.amazon.com/elasticache/

Amazon ElastiCache for Redis User Guide

Important

• If you don’t specify the replica nodes to be deleted, ElastiCache for Redis automatically
selects replica nodes for deletion. While doing so, ElastiCache for Redis attempts to
retain the Multi-AZ architecture for your replication group followed by retaining replicas
with minimum replication lag with the primary.

• You can't delete the primary or primary nodes in a replication group. If you specify a
primary node for deletion, the operation fails with an error event indicating that the
primary node was selected for deletion.

Using the AWS CLI

To decrease the number of replicas in a Redis shard, use the decrease-replica-count
command with the following parameters:

• --replication-group-id – Required. Identifies which replication group you want to decrease
the number of replicas in.

• --apply-immediately or --no-apply-immediately – Required. Specifies whether to
decrease the replica count immediately (--apply-immediately) or at the next maintenance
window (--no-apply-immediately). Currently, --no-apply-immediately is not supported.

• --new-replica-count – Optional. Specifies the number of replica nodes that you want. The
value of --new-replica-count must be a valid value less than the current number of replicas
in the node groups. For minimum permitted values, see Decreasing the number of replicas in a
shard. If the value of --new-replica-count doesn't meet this requirement, the call fails.

• --replicas-to-remove – Optional. Contains a list of node IDs specifying the replica nodes to
remove.

• --replica-configuration – Optional. Allows you to set the number of replicas and
Availability Zones for each node group independently. Use this parameter for Redis (cluster mode
enabled) groups where you want to configure each node group independently.

--replica-configuration has three optional members:

• NodeGroupId – The four-digit ID for the node group that you are configuring. For Redis
(cluster mode disabled) replication groups, the shard ID is always 0001. To find a Redis (cluster
mode enabled) node group's (shard's) ID, see Finding a shard's ID.

High availability using replication groups API Version 2015-02-02 559

Amazon ElastiCache for Redis User Guide

• NewReplicaCount – An optional parameter that specifies the number of replica nodes you
want. The value of NewReplicaCount must be a valid value less than the current number
of replicas in the node groups. For minimum permitted values, see Decreasing the number of
replicas in a shard. If the value of NewReplicaCount doesn't meet this requirement, the call
fails.

• PreferredAvailabilityZones – A list of PreferredAvailabilityZone strings
that specify which Availability Zones the replication group's nodes are in. The number of
PreferredAvailabilityZone values must equal the value of NewReplicaCount plus 1
to account for the primary node. If this member of --replica-configuration is omitted,
ElastiCache for Redis chooses the Availability Zone for each of the new replicas.

Important

You must include one and only one of the --new-replica-count, --replicas-to-
remove, or --replica-configuration parameters.

Example

The following example uses --new-replica-count to decrease the number of replicas in the
replication group sample-repl-group to one. When the example is finished, there is one replica
in each node group. This number applies whether this is a Redis (cluster mode disabled) group with
a single node group or a Redis (cluster mode enabled) group with multiple node groups.

For Linux, macOS, or Unix:

aws elasticache decrease-replica-count
 --replication-group-id sample-repl-group \
 --new-replica-count 1 \
 --apply-immediately

For Windows:

aws elasticache decrease-replica-count ^
 --replication-group-id sample-repl-group ^
 --new-replica-count 1 ^
 --apply-immediately

High availability using replication groups API Version 2015-02-02 560

Amazon ElastiCache for Redis User Guide

The following example decreases the number of replicas in the replication group sample-repl-
group by removing two specified replicas (0001 and 0003) from the node group.

For Linux, macOS, or Unix:

aws elasticache decrease-replica-count \
 --replication-group-id sample-repl-group \
 --replicas-to-remove 0001,0003 \
 --apply-immediately

For Windows:

aws elasticache decrease-replica-count ^
 --replication-group-id sample-repl-group ^
 --replicas-to-remove 0001,0003 \
 --apply-immediately

The following example uses --replica-configuration to decrease the number of replicas
in the replication group sample-repl-group to the value specified for the two specified node
groups. Given that there are multiple node groups, this is a Redis (cluster mode enabled) replication
group. When specifying the optional PreferredAvailabilityZones, the number of Availability
Zones listed must equal the value of NewReplicaCount plus 1 more. This approach accounts for
the primary node for the group identified by NodeGroupId.

For Linux, macOS, or Unix:

aws elasticache decrease-replica-count \
 --replication-group-id sample-repl-group \
 --replica-configuration \
 NodeGroupId=0001,NewReplicaCount=1,PreferredAvailabilityZones=us-east-1a,us-
east-1c \
 NodeGroupId=0003,NewReplicaCount=2,PreferredAvailabilityZones=us-east-1a,us-
east-1b,us-east-1c \
 --apply-immediately

For Windows:

aws elasticache decrease-replica-count ^
 --replication-group-id sample-repl-group ^
 --replica-configuration ^

High availability using replication groups API Version 2015-02-02 561

Amazon ElastiCache for Redis User Guide

 NodeGroupId=0001,NewReplicaCount=2,PreferredAvailabilityZones=us-east-1a,us-
east-1c ^
 NodeGroupId=0003,NewReplicaCount=3,PreferredAvailabilityZones=us-east-1a,us-
east-1b,us-east-1c \
 --apply-immediately

For more information about decreasing the number of replicas using the CLI, see decrease-replica-
count in the Amazon ElastiCache Command Line Reference.

Using the ElastiCache API

To decrease the number of replicas in a Redis shard, use the DecreaseReplicaCount action with
the following parameters:

• ReplicationGroupId – Required. Identifies which replication group you want to decrease the
number of replicas in.

• ApplyImmediately – Required. Specifies whether to decrease the replica count immediately
(ApplyImmediately=True) or at the next maintenance window (ApplyImmediately=False).
Currently, ApplyImmediately=False is not supported.

• NewReplicaCount – Optional. Specifies the number of replica nodes you want. The value of
NewReplicaCount must be a valid value less than the current number of replicas in the node
groups. For minimum permitted values, see Decreasing the number of replicas in a shard. If the
value of --new-replica-count doesn't meet this requirement, the call fails.

• ReplicasToRemove – Optional. Contains a list of node IDs specifying the replica nodes to
remove.

• ReplicaConfiguration – Optional. Contains a list of node groups that allows you to set
the number of replicas and Availability Zones for each node group independently. Use this
parameter for Redis (cluster mode enabled) groups where you want to configure each node
group independently.

ReplicaConfiguraion has three optional members:

• NodeGroupId – The four-digit ID for the node group you are configuring. For Redis (cluster
mode disabled) replication groups, the node group ID is always 0001. To find a Redis (cluster
mode enabled) node group's (shard's) ID, see Finding a shard's ID.

• NewReplicaCount – The number of replicas that you want in this node group at the end of
this operation. The value must be less than the current number of replicas down to a minimum
of 1 if Multi-AZ is enabled or 0 if Multi-AZ with Automatic Failover isn't enabled. If this value is
not less than the current number of replicas in the node group, the call fails with an exception.

High availability using replication groups API Version 2015-02-02 562

https://docs.aws.amazon.com/cli/latest/reference/elasticache/decrease-replica-count.html
https://docs.aws.amazon.com/cli/latest/reference/elasticache/decrease-replica-count.html

Amazon ElastiCache for Redis User Guide

• PreferredAvailabilityZones – A list of PreferredAvailabilityZone strings
that specify which Availability Zones the replication group's nodes are in. The number of
PreferredAvailabilityZone values must equal the value of NewReplicaCount plus
1 to account for the primary node. If this member of ReplicaConfiguration is omitted,
ElastiCache for Redis chooses the Availability Zone for each of the new replicas.

Important

You must include one and only one of the NewReplicaCount, ReplicasToRemove, or
ReplicaConfiguration parameters.

Example

The following example uses NewReplicaCount to decrease the number of replicas in the
replication group sample-repl-group to one. When the example is finished, there is one replica
in each node group. This number applies whether this is a Redis (cluster mode disabled) group with
a single node group or a Redis (cluster mode enabled) group with multiple node groups.

https://elasticache.us-west-2.amazonaws.com/
 ?Action=DecreaseReplicaCount
 &ApplyImmediately=True
 &NewReplicaCount=1
 &ReplicationGroupId=sample-repl-group
 &Version=2015-02-02
 &SignatureVersion=4
 &SignatureMethod=HmacSHA256
 &Timestamp=20150202T192317Z
 &X-Amz-Credential=<credential>

The following example decreases the number of replicas in the replication group sample-repl-
group by removing two specified replicas (0001 and 0003) from the node group.

https://elasticache.us-west-2.amazonaws.com/
 ?Action=DecreaseReplicaCount
 &ApplyImmediately=True
 &ReplicasToRemove.ReplicaToRemove.1=0001
 &ReplicasToRemove.ReplicaToRemove.2=0003
 &ReplicationGroupId=sample-repl-group

High availability using replication groups API Version 2015-02-02 563

Amazon ElastiCache for Redis User Guide

 &Version=2015-02-02
 &SignatureVersion=4
 &SignatureMethod=HmacSHA256
 &Timestamp=20150202T192317Z
 &X-Amz-Credential=<credential>

The following example uses ReplicaConfiguration to decrease the number of replicas in the
replication group sample-repl-group to the value specified for the two specified node groups.
Given that there are multiple node groups, this is a Redis (cluster mode enabled) replication group.
When specifying the optional PreferredAvailabilityZones, the number of Availability Zones
listed must equal the value of NewReplicaCount plus 1 more. This approach accounts for the
primary node for the group identified by NodeGroupId.

https://elasticache.us-west-2.amazonaws.com/
 ?Action=DecreaseReplicaCount
 &ApplyImmediately=True
 &ReplicaConfiguration.ConfigureShard.1.NodeGroupId=0001
 &ReplicaConfiguration.ConfigureShard.1.NewReplicaCount=1

 &ReplicaConfiguration.ConfigureShard.1.PreferredAvailabilityZones.PreferredAvailabilityZone.1=us-
east-1a

 &ReplicaConfiguration.ConfigureShard.1.PreferredAvailabilityZones.PreferredAvailabilityZone.2=us-
east-1c
 &ReplicaConfiguration.ConfigureShard.2.NodeGroupId=0003
 &ReplicaConfiguration.ConfigureShard.2.NewReplicaCount=2

 &ReplicaConfiguration.ConfigureShard.2.PreferredAvailabilityZones.PreferredAvailabilityZone.1=us-
east-1a

 &ReplicaConfiguration.ConfigureShard.2.PreferredAvailabilityZones.PreferredAvailabilityZone.2=us-
east-1b

 &ReplicaConfiguration.ConfigureShard.2.PreferredAvailabilityZones.PreferredAvailabilityZone.4=us-
east-1c
 &ReplicationGroupId=sample-repl-group
 &Version=2015-02-02
 &SignatureVersion=4
 &SignatureMethod=HmacSHA256
 &Timestamp=20150202T192317Z
 &X-Amz-Credential=<credential>

High availability using replication groups API Version 2015-02-02 564

Amazon ElastiCache for Redis User Guide

For more information about decreasing the number of replicas using the API, see
DecreaseReplicaCount in the Amazon ElastiCache API Reference.

Adding a read replica, for Redis (Cluster Mode Disabled) replication groups

Information in the following topic applies to Redis (cluster mode disabled) replication groups only.

As your read traffic increases, you might want to spread those reads across more nodes and reduce
the read pressure on any one node. In this topic, you can find how to add a read replica to a Redis
(cluster mode disabled) cluster.

A Redis (cluster mode disabled) replication group can have a maximum of five read replicas. If
you attempt to add a read replica to a replication group that already has five read replicas, the
operation fails.

For information about adding replicas to a Redis (cluster mode enabled) replication group, see the
following:

• Scaling clusters in Redis (Cluster Mode Enabled)

• Increasing the number of replicas in a shard

You can add a read replica to a Redis (cluster mode disabled) cluster using the ElastiCache Console,
the AWS CLI, or the ElastiCache API.

Related topics

• Adding nodes to a cluster

• Adding a read replica to a replication group (AWS CLI)

• Adding a read replica to a replication group using the API

Adding a read replica to a replication group (AWS CLI)

To add a read replica to a Redis (cluster mode disabled) replication group, use the AWS CLI
create-cache-cluster command, with the parameter --replication-group-id to specify
which replication group to add the cluster (node) to.

The following example creates the cluster my-read replica and adds it to the replication group
my-replication-group. The node types, parameter groups, security groups, maintenance

High availability using replication groups API Version 2015-02-02 565

https://docs.aws.amazon.com/AmazonElastiCache/latest/APIReference/API_DecreaseReplicaCount.html

Amazon ElastiCache for Redis User Guide

window, and other settings for the read replica are the same as for the other nodes in my-
replication-group.

For Linux, macOS, or Unix:

aws elasticache create-cache-cluster \
 --cache-cluster-id my-read-replica \
 --replication-group-id my-replication-group

For Windows:

aws elasticache create-cache-cluster ^
 --cache-cluster-id my-read-replica ^
 --replication-group-id my-replication-group

For more information on adding a read replica using the CLI, see create-cache-cluster in the
Amazon ElastiCache Command Line Reference.

Adding a read replica to a replication group using the API

To add a read replica to a Redis (cluster mode disabled) replication group, use the ElastiCache
CreateCacheCluster operation, with the parameter ReplicationGroupId to specify which
replication group to add the cluster (node) to.

The following example creates the cluster myReadReplica and adds it to the replication group
myReplicationGroup. The node types, parameter groups, security groups, maintenance window,
and other settings for the read replica are the same as for the other nodes myReplicationGroup.

https://elasticache.us-west-2.amazonaws.com/
 ?Action=CreateCacheCluster
 &CacheClusterId=myReadReplica
 &ReplicationGroupId=myReplicationGroup
 &Version=2015-02-02
 &SignatureVersion=4
 &SignatureMethod=HmacSHA256
 &Timestamp=20150202T192317Z
 &X-Amz-Credential=<credential>

For more information on adding a read replica using the API, see CreateCacheCluster in the Amazon
ElastiCache API Reference.

High availability using replication groups API Version 2015-02-02 566

https://docs.aws.amazon.com/cli/latest/reference/elasticache/create-cache-cluster.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/APIReference/API_CreateCacheCluster.html

Amazon ElastiCache for Redis User Guide

Deleting a read replica, for Redis (Cluster Mode Disabled) replication groups

Information in the following topic applies to Redis (cluster mode disabled) replication groups only.

As read traffic on your Redis replication group changes, you might want to add or remove read
replicas. Removing a node from a Redis (cluster mode disabled) replication group is the same as
just deleting a cluster, though there are restrictions:

• You cannot remove the primary from a replication group. If you want to delete the primary, do
the following:

1. Promote a read replica to primary. For more information on promoting a read replica
to primary, see Promoting a read replica to primary, for Redis (cluster mode disabled)
replication groups.

2. Delete the old primary. For a restriction on this method, see the next point.

• If Multi-AZ is enabled on a replication group, you can't remove the last read replica from the
replication group. In this case, do the following:

1. Modify the replication group by disabling Multi-AZ. For more information, see Modifying a
replication group.

2. Delete the read replica.

You can remove a read replica from a Redis (cluster mode disabled) replication group using the
ElastiCache console, the AWS CLI for ElastiCache, or the ElastiCache API.

For directions on deleting a cluster from a Redis replication group, see the following:

• Using the AWS Management Console

• Using the AWS CLI

• Using the ElastiCache API

• Scaling clusters in Redis (Cluster Mode Enabled)

• Decreasing the number of replicas in a shard

High availability using replication groups API Version 2015-02-02 567

Amazon ElastiCache for Redis User Guide

Promoting a read replica to primary, for Redis (cluster mode disabled) replication
groups

Information in the following topic applies to only Redis (cluster mode disabled) replication groups.

You can promote a Redis (cluster mode disabled) read replica to primary using the AWS
Management Console, the AWS CLI, or the ElastiCache API. You can't promote a read replica to
primary while Multi-AZ with Automatic Failover is enabled on the Redis (cluster mode disabled)
replication group. To promote a Redis (cluster mode disabled) replica to primary on a Multi-AZ
enabled replication group, do the following:

1. Modify the replication group to disable Multi-AZ (doing this doesn't require that all your
clusters be in the same Availability Zone). For more information, see Modifying a replication
group.

2. Promote the read replica to primary.

3. Modify the replication group to re-enable Multi-AZ.

Multi-AZ is not available on replication groups running Redis 2.6.13 or earlier.

Using the AWS Management Console

The following procedure uses the console to promote a replica node to primary.

To promote a read replica to primary (console)

1. Sign in to the AWS Management Console and open the ElastiCache console at https://
console.aws.amazon.com/elasticache/.

2. If the replica you want to promote is a member of a Redis (cluster mode disabled) replication
group where Multi-AZ is enabled, modify the replication group to disable Multi-AZ before you
proceed. For more information, see Modifying a replication group.

3. Choose Redis, then from the list of clusters, choose the replication group that you want to
modify. This replication group must be running the "Redis" engine, not the "Clustered Redis"
engine, and must have two or more nodes.

4. From the list of nodes, choose the replica node you want to promote to primary, then for
Actions, choose Promote.

5. In the Promote Read Replica dialog box, do the following:

High availability using replication groups API Version 2015-02-02 568

https://console.aws.amazon.com/elasticache/
https://console.aws.amazon.com/elasticache/

Amazon ElastiCache for Redis User Guide

a. For Apply Immediately, choose Yes to promote the read replica immediately, or No to
promote it at the cluster's next maintenance window.

b. Choose Promote to promote the read replica or Cancel to cancel the operation.

6. If the cluster was Multi-AZ enabled before you began the promotion process, wait until the
replication group's status is available, then modify the cluster to re-enable Multi-AZ. For more
information, see Modifying a replication group.

Using the AWS CLI

You can't promote a read replica to primary if the replication group is Multi-AZ enabled. In some
cases, the replica that you want to promote might be a member of a replication group where Multi-
AZ is enabled. In these cases, you must modify the replication group to disable Multi-AZ before you
proceed. Doing this doesn't require that all your clusters be in the same Availability Zone. For more
information on modifying a replication group, see Modifying a replication group.

The following AWS CLI command modifies the replication group sample-repl-group, making
the read replica my-replica-1 the primary in the replication group.

For Linux, macOS, or Unix:

aws elasticache modify-replication-group \
 --replication-group-id sample-repl-group \
 --primary-cluster-id my-replica-1

For Windows:

aws elasticache modify-replication-group ^
 --replication-group-id sample-repl-group ^
 --primary-cluster-id my-replica-1

For more information on modifying a replication group, see modify-replication-group in the
Amazon ElastiCache Command Line Reference.

Using the ElastiCache API

You can't promote a read replica to primary if the replication group is Multi-AZ enabled. In some
cases, the replica that you want to promote might be a member of a replication group where Multi-
AZ is enabled. In these cases, you must modify the replication group to disable Multi-AZ before you

High availability using replication groups API Version 2015-02-02 569

https://docs.aws.amazon.com/cli/latest/reference/elasticache/modify-replication-group.html

Amazon ElastiCache for Redis User Guide

proceed. Doing this doesn't require that all your clusters be in the same Availability Zone. For more
information on modifying a replication group, see Modifying a replication group.

The following ElastiCache API action modifies the replication group myReplGroup, making the
read replica myReplica-1 the primary in the replication group.

https://elasticache.us-west-2.amazonaws.com/
 ?Action=ModifyReplicationGroup
 &ReplicationGroupId=myReplGroup
 &PrimaryClusterId=myReplica-1
 &Version=2014-12-01
 &SignatureVersion=4
 &SignatureMethod=HmacSHA256
 &Timestamp=20141201T220302Z
 &X-Amz-Algorithm=&AWS;4-HMAC-SHA256
 &X-Amz-Date=20141201T220302Z
 &X-Amz-SignedHeaders=Host
 &X-Amz-Expires=20141201T220302Z
 &X-Amz-Credential=<credential>
 &X-Amz-Signature=<signature>

For more information on modifying a replication group, see ModifyReplicationGroup in the Amazon
ElastiCache API Reference.

Managing maintenance

Every cluster and replication group has a weekly maintenance window during which any system
changes are applied. If you don't specify a preferred maintenance window when you create or
modify a cluster or replication group, ElastiCache assigns a 60-minute maintenance window within
your region's maintenance window on a randomly chosen day of the week.

The 60-minute maintenance window is chosen at random from an 8-hour block of time per region.
The following table lists the time blocks for each region from which the default maintenance
windows are assigned. You may choose a preferred maintenance window outside the region's
maintenance window block.

Region Code Region Name Region Maintenance Window

ap-northeast-1 Asia Pacific (Tokyo) Region 13:00–21:00 UTC

ap-northeast-2 Asia Pacific (Seoul) Region 12:00–20:00 UTC

Managing maintenance API Version 2015-02-02 570

https://docs.aws.amazon.com/AmazonElastiCache/latest/APIReference/API_ModifyReplicationGroup.html

Amazon ElastiCache for Redis User Guide

Region Code Region Name Region Maintenance Window

ap-northeast-3 Asia Pacific (Osaka) Region 12:00–20:00 UTC

ap-southeast-3 Asia Pacific (Jakarta) Region 14:00–22:00 UTC

ap-south-1 Asia Pacific (Mumbai) Region 17:30–1:30 UTC

ap-southeast-1 Asia Pacific (Singapore) Region 14:00–22:00 UTC

cn-north-1 China (Beijing) Region 14:00–22:00 UTC

cn-northwest-1 China (Ningxia) Region 14:00–22:00 UTC

ap-east-1 Asia Pacific (Hong Kong) Region 13:00–21:00 UTC

ap-southeast-2 Asia Pacific (Sydney) Region 12:00–20:00 UTC

eu-west-3 EU (Paris) Region 23:59–07:29 UTC

af-south-1 Africa (Cape Town) Region 13:00–21:00 UTC

eu-central-1 Europe (Frankfurt) Region 23:00–07:00 UTC

eu-west-1 Europe (Ireland) Region 22:00–06:00 UTC

eu-west-2 Europe (London) Region 23:00–07:00 UTC

me-south-1 Middle East (Bahrain) Region 13:00–21:00 UTC

me-central-1 Middle East (UAE) Region 13:00–21:00 UTC

eu-south-1 Europe (Milan) Region 21:00–05:00 UTC

sa-east-1 South America (São Paulo) Region 01:00–09:00 UTC

us-east-1 US East (N. Virginia) Region 03:00–11:00 UTC

us-east-2 US East (Ohio) Region 04:00–12:00 UTC

us-gov-west-1 AWS GovCloud (US) region 06:00–14:00 UTC

Managing maintenance API Version 2015-02-02 571

Amazon ElastiCache for Redis User Guide

Region Code Region Name Region Maintenance Window

us-west-1 US West (N. California) Region 06:00–14:00 UTC

us-west-2 US West (Oregon) Region 06:00–14:00 UTC

Changing your Cluster's or Replication Group's Maintenance Window

The maintenance window should fall at the time of lowest usage and thus might need modification
from time to time. You can modify your cluster or replication group to specify a time range of up to
24 hours in duration during which any maintenance activities you have requested should occur. Any
deferred or pending cluster modifications you requested occur during this time.

Note

If you want to apply node type modifications and/or engine upgrades immediately using
the AWS Management Console select the Apply Immediately box. Otherwise these
modifications will be applied during your next scheduled maintenance window. To the use
the API, see modify-replication-group or modify-cache-cluster.

More information

For information on your maintenance window and node replacement, see the following:

• ElastiCache Maintenance—FAQ on maintenance and node replacement

• Replacing nodes—Managing node replacement

• Modifying a replication group—Changing a replication group's maintenance window

Configuring engine parameters using parameter groups

Amazon ElastiCache uses parameters to control the runtime properties of your nodes and clusters.
Generally, newer engine versions include additional parameters to support the newer functionality.
For tables of parameters, see Redis-specific parameters.

As you would expect, some parameter values, such as maxmemory, are determined by the engine
and node type. For a table of these parameter values by node type, see Redis node-type specific
parameters.

Configuring engine parameters using parameter groups API Version 2015-02-02 572

https://docs.aws.amazon.com/cli/latest/reference/elasticache/modify-replication-group.html
https://docs.aws.amazon.com/cli/latest/reference/elasticache/modify-cache-cluster.html
https://aws.amazon.com/elasticache/elasticache-maintenance/

Amazon ElastiCache for Redis User Guide

Topics

• Parameter management

• Cache parameter group tiers

• Creating a parameter group

• Listing parameter groups by name

• Listing a parameter group's values

• Modifying a parameter group

• Deleting a parameter group

• Memcached specific parameters

• Redis-specific parameters

Configuring engine parameters using parameter groups API Version 2015-02-02 573

Amazon ElastiCache for Redis User Guide

Parameter management

Parameters are grouped together into named parameter groups for easier parameter management.
A parameter group represents a combination of specific values for the parameters that are passed
to the engine software during startup. These values determine how the engine processes on each
node behave at runtime. The parameter values on a specific parameter group apply to all nodes
that are associated with the group, regardless of which cluster they belong to.

To fine-tune your cluster's performance, you can modify some parameter values or change the
cluster's parameter group.

• You cannot modify or delete the default parameter groups. If you need custom parameter
values, you must create a custom parameter group.

• The parameter group family and the cluster you're assigning it to must be compatible. For
example, if your cluster is running Redis version 3.2.10, you can only use parameter groups,
default or custom, from the Redis3.2 family.

• If you change a cluster's parameter group, the values for any conditionally modifiable parameter
must be the same in both the current and new parameter groups.

• When you change a cluster's parameters, the change is applied to the cluster either immediately
or, with the exceptions noted following, after the cluster nodes are rebooted. This is true
whether you change the cluster's parameter group itself or a parameter value within the cluster's
parameter group. To determine when a particular parameter change is applied, see the Changes
Take Effect column in the tables for Redis-specific parameters.

For more information, see Rebooting nodes.

Redis (Cluster Mode Enabled) parameter changes

If you make changes to the following parameters on a Redis (cluster mode enabled)
cluster, follow the ensuing steps.

• activerehashing

• databases

1. Create a manual backup of your cluster. See Taking manual backups.

2. Delete the Redis (cluster mode enabled) cluster. See Deleting clusters.

3. store the cluster using the altered parameter group and backup to seed the new
cluster. See Restoring from a backup into a new cache.

Configuring engine parameters using parameter groups API Version 2015-02-02 574

https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/nodes.rebooting.html
Clusters.html#Delete

Amazon ElastiCache for Redis User Guide

Changes to other parameters do not require this.

• You can associate parameter groups with Redis global datastores. Global datastores are a
collection of one or more clusters that span AWS Regions. In this case, the parameter group is
shared by all clusters that make up the global datastore. Any modifications to the parameter
group of the primary cluster are replicated to all remaining clusters in the global datastore. For
more information, see Replication across AWS Regions using global datastores.

You can check if a parameter group is part of a global datastore by looking in these locations:

• On the ElastiCache console on the Parameter Groups page, the yes/no Global attribute

• The yes/no IsGlobal property of the CacheParameterGroup API operation

Configuring engine parameters using parameter groups API Version 2015-02-02 575

https://docs.aws.amazon.com/AmazonElastiCache/latest/APIReference/API_CacheParameterGroup.html

Amazon ElastiCache for Redis User Guide

Cache parameter group tiers

Amazon ElastiCache has three tiers of cache parameter groups as shown following.

Amazon ElastiCache parameter group tiers

Global Default

The top-level root parameter group for all Amazon ElastiCache customers in the region.

The global default cache parameter group:

• Is reserved for ElastiCache and not available to the customer.

Customer Default

A copy of the Global Default cache parameter group which is created for the customer's use.

The Customer Default cache parameter group:

• Is created and owned by ElastiCache.

• Is available to the customer for use as a cache parameter group for any clusters running an
engine version supported by this cache parameter group.

• Cannot be edited by the customer.

Customer Owned

Configuring engine parameters using parameter groups API Version 2015-02-02 576

Amazon ElastiCache for Redis User Guide

A copy of the Customer Default cache parameter group. A Customer Owned cache parameter
group is created whenever the customer creates a cache parameter group.

The Customer Owned cache parameter group:

• Is created and owned by the customer.

• Can be assigned to any of the customer's compatible clusters.

• Can be modified by the customer to create a custom cache parameter group.

 Not all parameter values can be modified. For more information, see Redis-specific parameters.

Creating a parameter group

You need to create a new parameter group if there is one or more parameter values that you want
changed from the default values. You can create a parameter group using the ElastiCache console,
the AWS CLI, or the ElastiCache API.

Creating a parameter group (Console)

The following procedure shows how to create a parameter group using the ElastiCache console.

To create a parameter group using the ElastiCache console

1. Sign in to the AWS Management Console and open the ElastiCache console at https://
console.aws.amazon.com/elasticache/.

2. To see a list of all available parameter groups, in the left hand navigation pane choose
Parameter Groups.

3. To create a parameter group, choose Create Parameter Group.

The Create Parameter Group screen appears.

4. From the Family list, choose the parameter group family that will be the template for your
parameter group.

The parameter group family, such as redis3.2, defines the actual parameters in your parameter
group and their initial values. The parameter group family must coincide with the cluster's
engine and version.

5. In the Name box, type in a unique name for this parameter group.

Configuring engine parameters using parameter groups API Version 2015-02-02 577

https://console.aws.amazon.com/elasticache/
https://console.aws.amazon.com/elasticache/

Amazon ElastiCache for Redis User Guide

When creating a cluster or modifying a cluster's parameter group, you will choose the
parameter group by its name. Therefore, we recommend that the name be informative and
somehow identify the parameter group's family.

Parameter group naming constraints are as follows:

• Must begin with an ASCII letter.

• Can only contain ASCII letters, digits, and hyphens.

• Must be 1–255 characters long.

• Can't contain two consecutive hyphens.

• Can't end with a hyphen.

6. In the Description box, type in a description for the parameter group.

7. To create the parameter group, choose Create.

To terminate the process without creating the parameter group, choose Cancel.

8. When the parameter group is created, it will have the family's default values. To change the
default values you must modify the parameter group. For more information, see Modifying a
parameter group.

Creating a parameter group (AWS CLI)

To create a parameter group using the AWS CLI, use the command create-cache-parameter-
group with these parameters.

• --cache-parameter-group-name — The name of the parameter group.

Parameter group naming constraints are as follows:

• Must begin with an ASCII letter.

• Can only contain ASCII letters, digits, and hyphens.

• Must be 1–255 characters long.

• Can't contain two consecutive hyphens.

• Can't end with a hyphen.

• --cache-parameter-group-family — The engine and version family for the parameter
group.

• --description — A user supplied description for the parameter group.

Configuring engine parameters using parameter groups API Version 2015-02-02 578

Amazon ElastiCache for Redis User Guide

Example

The following example creates a parameter group named myRed28 using the redis2.8 family as the
template.

For Linux, macOS, or Unix:

aws elasticache create-cache-parameter-group \
 --cache-parameter-group-name myRed28 \
 --cache-parameter-group-family redis2.8 \
 --description "My first parameter group"

For Windows:

aws elasticache create-cache-parameter-group ^
 --cache-parameter-group-name myRed28 ^
 --cache-parameter-group-family redis2.8 ^
 --description "My first parameter group"

The output from this command should look something like this.

{
 "CacheParameterGroup": {
 "CacheParameterGroupName": "myRed28",
 "CacheParameterGroupFamily": "redis2.8",
 "Description": "My first parameter group"
 }
}

When the parameter group is created, it will have the family's default values. To change the default
values you must modify the parameter group. For more information, see Modifying a parameter
group.

For more information, see create-cache-parameter-group.

Creating a parameter group (ElastiCache API)

To create a parameter group using the ElastiCache API, use the CreateCacheParameterGroup
action with these parameters.

• ParameterGroupName — The name of the parameter group.

Configuring engine parameters using parameter groups API Version 2015-02-02 579

https://docs.aws.amazon.com/cli/latest/reference/elasticache/create-cache-parameter-group.html

Amazon ElastiCache for Redis User Guide

Parameter group naming constraints are as follows:

• Must begin with an ASCII letter.

• Can only contain ASCII letters, digits, and hyphens.

• Must be 1–255 characters long.

• Can't contain two consecutive hyphens.

• Can't end with a hyphen.

• CacheParameterGroupFamily — The engine and version family for the parameter group. For
example, redis2.8.

• Description — A user supplied description for the parameter group.

Example

The following example creates a parameter group named myRed28 using the redis2.8 family as the
template.

https://elasticache.us-west-2.amazonaws.com/
 ?Action=CreateCacheParameterGroup
 &CacheParameterGroupFamily=redis2.8
 &CacheParameterGroupName=myRed28
 &Description=My%20first%20parameter%20group
 &SignatureVersion=4
 &SignatureMethod=HmacSHA256
 &Timestamp=20150202T192317Z
 &Version=2015-02-02
 &X-Amz-Credential=<credential>

The response from this action should look something like this.

<CreateCacheParameterGroupResponse xmlns="http://elasticache.amazonaws.com/
doc/2013-06-15/">
 <CreateCacheParameterGroupResult>
 <CacheParameterGroup>
 <CacheParameterGroupName>myRed28</CacheParameterGroupName>
 <CacheParameterGroupFamily>redis2.8</CacheParameterGroupFamily>
 <Description>My first parameter group</Description>
 </CacheParameterGroup>
 </CreateCacheParameterGroupResult>
 <ResponseMetadata>

Configuring engine parameters using parameter groups API Version 2015-02-02 580

Amazon ElastiCache for Redis User Guide

 <RequestId>d8465952-af48-11e0-8d36-859edca6f4b8</RequestId>
 </ResponseMetadata>
</CreateCacheParameterGroupResponse>

When the parameter group is created, it will have the family's default values. To change the default
values you must modify the parameter group. For more information, see Modifying a parameter
group.

For more information, see CreateCacheParameterGroup.

Configuring engine parameters using parameter groups API Version 2015-02-02 581

https://docs.aws.amazon.com/AmazonElastiCache/latest/APIReference/API_CreateCacheParameterGroup.html

Amazon ElastiCache for Redis User Guide

Listing parameter groups by name

You can list the parameter groups using the ElastiCache console, the AWS CLI, or the ElastiCache
API.

Listing parameter groups by name (Console)

The following procedure shows how to view a list of the parameter groups using the ElastiCache
console.

To list parameter groups using the ElastiCache console

1. Sign in to the AWS Management Console and open the ElastiCache console at https://
console.aws.amazon.com/elasticache/.

2. To see a list of all available parameter groups, in the left hand navigation pane choose
Parameter Groups.

Listing parameter groups by name (AWS CLI)

To generate a list of parameter groups using the AWS CLI, use the command describe-cache-
parameter-groups. If you provide a parameter group's name, only that parameter group will be
listed. If you do not provide a parameter group's name, up to --max-records parameter groups
will be listed. In either case, the parameter group's name, family, and description are listed.

Example

The following sample code lists the parameter group myRed28.

For Linux, macOS, or Unix:

aws elasticache describe-cache-parameter-groups \
 --cache-parameter-group-name myRed28

For Windows:

aws elasticache describe-cache-parameter-groups ^
 --cache-parameter-group-name myRed28

The output of this command will look something like this, listing the name, family, and description
for the parameter group.

Configuring engine parameters using parameter groups API Version 2015-02-02 582

https://console.aws.amazon.com/elasticache/
https://console.aws.amazon.com/elasticache/

Amazon ElastiCache for Redis User Guide

{
 "CacheParameterGroups": [
 {
 "CacheParameterGroupName": "myRed28",
 "CacheParameterGroupFamily": "redis2.8",
 "Description": "My first parameter group"
 }
]
}

Example

The following sample code lists the parameter group myRed56 for parameter groups running on
Redis engine version 5.0.6 onwards. If the parameter group is part of a Replication across AWS
Regions using global datastores, the IsGlobal property value returned in the output will be Yes.

For Linux, macOS, or Unix:

aws elasticache describe-cache-parameter-groups \
 --cache-parameter-group-name myRed56

For Windows:

aws elasticache describe-cache-parameter-groups ^
 --cache-parameter-group-name myRed56

The output of this command will look something like this, listing the name, family, isGlobal and
description for the parameter group.

{
 "CacheParameterGroups": [
 {
 "CacheParameterGroupName": "myRed56",
 "CacheParameterGroupFamily": "redis5.0",
 "Description": "My first parameter group",
 "IsGlobal": "yes"
 }
]
}

Configuring engine parameters using parameter groups API Version 2015-02-02 583

Amazon ElastiCache for Redis User Guide

Example

The following sample code lists up to 10 parameter groups.

aws elasticache describe-cache-parameter-groups --max-records 10

The JSON output of this command will look something like this, listing the name, family,
description and, in the case of redis5.6 whether the parameter group is part of a global datastore
(isGlobal), for each parameter group.

{
 "CacheParameterGroups": [
 {
 "CacheParameterGroupName": "custom-redis32",
 "CacheParameterGroupFamily": "redis3.2",
 "Description": "custom parameter group with reserved-memory > 0"
 },
 {
 "CacheParameterGroupName": "default.memcached1.4",
 "CacheParameterGroupFamily": "memcached1.4",
 "Description": "Default parameter group for memcached1.4"
 },
 {
 "CacheParameterGroupName": "default.redis2.6",
 "CacheParameterGroupFamily": "redis2.6",
 "Description": "Default parameter group for redis2.6"
 },
 {
 "CacheParameterGroupName": "default.redis2.8",
 "CacheParameterGroupFamily": "redis2.8",
 "Description": "Default parameter group for redis2.8"
 },
 {
 "CacheParameterGroupName": "default.redis3.2",
 "CacheParameterGroupFamily": "redis3.2",
 "Description": "Default parameter group for redis3.2"
 },
 {
 "CacheParameterGroupName": "default.redis3.2.cluster.on",
 "CacheParameterGroupFamily": "redis3.2",
 "Description": "Customized default parameter group for redis3.2 with
 cluster mode on"
 },

Configuring engine parameters using parameter groups API Version 2015-02-02 584

Amazon ElastiCache for Redis User Guide

 {
 "CacheParameterGroupName": "default.redis5.6.cluster.on",
 "CacheParameterGroupFamily": "redis5.0",
 "Description": "Customized default parameter group for redis5.6 with
 cluster mode on",
 "isGlobal": "yes"
 },
]
}

For more information, see describe-cache-parameter-groups.

Listing parameter groups by name (ElastiCache API)

To generate a list of parameter groups using the ElastiCache API, use the
DescribeCacheParameterGroups action. If you provide a parameter group's name, only that
parameter group will be listed. If you do not provide a parameter group's name, up to MaxRecords
parameter groups will be listed. In either case, the parameter group's name, family, and description
are listed.

Example

The following sample code lists up to 10 parameter groups.

https://elasticache.us-west-2.amazonaws.com/
 ?Action=DescribeCacheParameterGroups
 &MaxRecords=10
 &SignatureVersion=4
 &SignatureMethod=HmacSHA256
 &Timestamp=20150202T192317Z
 &Version=2015-02-02
 &X-Amz-Credential=<credential>

The response from this action will look something like this, listing the name, family, description
and, in the case of redis5.6 if the parameter group belongs to a global datastore (isGlobal), for each
parameter group.

<DescribeCacheParameterGroupsResponse xmlns="http://elasticache.amazonaws.com/
doc/2013-06-15/">
 <DescribeCacheParameterGroupsResult>
 <CacheParameterGroups>

Configuring engine parameters using parameter groups API Version 2015-02-02 585

https://docs.aws.amazon.com/cli/latest/reference/elasticache/describe-cache-parameter-groups.html

Amazon ElastiCache for Redis User Guide

 <CacheParameterGroup>
 <CacheParameterGroupName>myRedis28</CacheParameterGroupName>
 <CacheParameterGroupFamily>redis2.8</CacheParameterGroupFamily>
 <Description>My custom Redis 2.8 parameter group</Description>
 </CacheParameterGroup>
 <CacheParameterGroup>
 <CacheParameterGroupName>myMem14</CacheParameterGroupName>
 <CacheParameterGroupFamily>memcached1.4</CacheParameterGroupFamily>
 <Description>My custom Memcached 1.4 parameter group</Description>
 </CacheParameterGroup>
 <CacheParameterGroup>
 <CacheParameterGroupName>myRedis56</CacheParameterGroupName>
 <CacheParameterGroupFamily>redis5.0</CacheParameterGroupFamily>
 <Description>My custom redis 5.6 parameter group</Description>
 <isGlobal>yes</isGlobal>
 </CacheParameterGroup>
 </CacheParameterGroups>
 </DescribeCacheParameterGroupsResult>
 <ResponseMetadata>
 <RequestId>3540cc3d-af48-11e0-97f9-279771c4477e</RequestId>
 </ResponseMetadata>
</DescribeCacheParameterGroupsResponse>

Example

The following sample code lists the parameter group myRed28.

https://elasticache.us-west-2.amazonaws.com/
 ?Action=DescribeCacheParameterGroups
 &CacheParameterGroupName=myRed28
 &SignatureVersion=4
 &SignatureMethod=HmacSHA256
 &Timestamp=20150202T192317Z
 &Version=2015-02-02
 &X-Amz-Credential=<credential>

The response from this action will look something like this, listing the name, family, and
description.

<DescribeCacheParameterGroupsResponse xmlns="http://elasticache.amazonaws.com/
doc/2013-06-15/">
 <DescribeCacheParameterGroupsResult>
 <CacheParameterGroups>

Configuring engine parameters using parameter groups API Version 2015-02-02 586

Amazon ElastiCache for Redis User Guide

 <CacheParameterGroup>
 <CacheParameterGroupName>myRed28</CacheParameterGroupName>
 <CacheParameterGroupFamily>redis2.8</CacheParameterGroupFamily>
 <Description>My custom Redis 2.8 parameter group</Description>
 </CacheParameterGroup>
 </CacheParameterGroups>
 </DescribeCacheParameterGroupsResult>
 <ResponseMetadata>
 <RequestId>3540cc3d-af48-11e0-97f9-279771c4477e</RequestId>
 </ResponseMetadata>
</DescribeCacheParameterGroupsResponse>

Example

The following sample code lists the parameter group myRed56.

https://elasticache.us-west-2.amazonaws.com/
 ?Action=DescribeCacheParameterGroups
 &CacheParameterGroupName=myRed56
 &SignatureVersion=4
 &SignatureMethod=HmacSHA256
 &Timestamp=20150202T192317Z
 &Version=2015-02-02
 &X-Amz-Credential=<credential>

The response from this action will look something like this, listing the name, family, description
and whether the parameter group is part of a global datastore (isGlobal).

<DescribeCacheParameterGroupsResponse xmlns="http://elasticache.amazonaws.com/
doc/2013-06-15/">
 <DescribeCacheParameterGroupsResult>
 <CacheParameterGroups>
 <CacheParameterGroup>
 <CacheParameterGroupName>myRed56</CacheParameterGroupName>
 <CacheParameterGroupFamily>redis5.0</CacheParameterGroupFamily>
 <Description>My custom Redis 5.6 parameter group</Description>
 <isGlobal>yes</isGlobal>
 </CacheParameterGroup>
 </CacheParameterGroups>
 </DescribeCacheParameterGroupsResult>
 <ResponseMetadata>
 <RequestId>3540cc3d-af48-11e0-97f9-279771c4477e</RequestId>
 </ResponseMetadata>

Configuring engine parameters using parameter groups API Version 2015-02-02 587

Amazon ElastiCache for Redis User Guide

</DescribeCacheParameterGroupsResponse>

For more information, see DescribeCacheParameterGroups.

Configuring engine parameters using parameter groups API Version 2015-02-02 588

https://docs.aws.amazon.com/AmazonElastiCache/latest/APIReference/API_DescribeCacheParameterGroups.html

Amazon ElastiCache for Redis User Guide

Listing a parameter group's values

You can list the parameters and their values for a parameter group using the ElastiCache console,
the AWS CLI, or the ElastiCache API.

Listing a parameter group's values (Console)

The following procedure shows how to list the parameters and their values for a parameter group
using the ElastiCache console.

To list a parameter group's parameters and their values using the ElastiCache console

1. Sign in to the AWS Management Console and open the ElastiCache console at https://
console.aws.amazon.com/elasticache/.

2. To see a list of all available parameter groups, in the left hand navigation pane choose
Parameter Groups.

3. Choose the parameter group for which you want to list the parameters and values by choosing
the box to the left of the parameter group's name.

The parameters and their values will be listed at the bottom of the screen. Due to the number
of parameters, you may have to scroll up and down to find the parameter you're interested in.

Listing a parameter group's values (AWS CLI)

To list a parameter group's parameters and their values using the AWS CLI, use the command
describe-cache-parameters.

Example

The following sample code list all the parameters and their values for the parameter group
myRedis28.

For Linux, macOS, or Unix:

aws elasticache describe-cache-parameters \
 --cache-parameter-group-name myRedis28

For Windows:

aws elasticache describe-cache-parameters ^

Configuring engine parameters using parameter groups API Version 2015-02-02 589

https://console.aws.amazon.com/elasticache/
https://console.aws.amazon.com/elasticache/

Amazon ElastiCache for Redis User Guide

 --cache-parameter-group-name myRed28

For more information, see describe-cache-parameters.

Listing a parameter group's values (ElastiCache API)

To list a parameter group's parameters and their values using the ElastiCache API, use the
DescribeCacheParameters action.

Example

The following sample code list all the parameters for the parameter group myRed28.

https://elasticache.us-west-2.amazonaws.com/
 ?Action=DescribeCacheParameters
 &CacheParameterGroupName=myRed28
 &SignatureVersion=4
 &SignatureMethod=HmacSHA256
 &Timestamp=20150202T192317Z
 &Version=2015-02-02
 &X-Amz-Credential=<credential>

The response from this action will look something like this. This response has been truncated.

<DescribeCacheParametersResponse xmlns="http://elasticache.amazonaws.com/
doc/2013-06-15/">
 <DescribeCacheParametersResult>
 <CacheClusterClassSpecificParameters>
 <CacheNodeTypeSpecificParameter>
 <DataType>integer</DataType>
 <Source>system</Source>
 <IsModifiable>false</IsModifiable>
 <Description>The maximum configurable amount of memory to use to store items,
 in megabytes.</Description>
 <CacheNodeTypeSpecificValues>
 <CacheNodeTypeSpecificValue>
 <Value>1000</Value>
 <CacheClusterClass>cache.c1.medium</CacheClusterClass>
 </CacheNodeTypeSpecificValue>
 <CacheNodeTypeSpecificValue>
 <Value>6000</Value>
 <CacheClusterClass>cache.c1.xlarge</CacheClusterClass>

Configuring engine parameters using parameter groups API Version 2015-02-02 590

https://docs.aws.amazon.com/cli/latest/reference/elasticache/describe-cache-parameters.html

Amazon ElastiCache for Redis User Guide

 </CacheNodeTypeSpecificValue>
 <CacheNodeTypeSpecificValue>
 <Value>7100</Value>
 <CacheClusterClass>cache.m1.large</CacheClusterClass>
 </CacheNodeTypeSpecificValue>
 <CacheNodeTypeSpecificValue>
 <Value>1300</Value>
 <CacheClusterClass>cache.m1.small</CacheClusterClass>
 </CacheNodeTypeSpecificValue>

...output omitted...

 </CacheClusterClassSpecificParameters>
 </DescribeCacheParametersResult>
 <ResponseMetadata>
 <RequestId>6d355589-af49-11e0-97f9-279771c4477e</RequestId>
 </ResponseMetadata>
</DescribeCacheParametersResponse>

For more information, see DescribeCacheParameters.

Modifying a parameter group

Important

You cannot modify any default parameter group.

You can modify some parameter values in a parameter group. These parameter values are applied
to clusters associated with the parameter group. For more information on when a parameter value
change is applied to a parameter group, see Redis-specific parameters.

Modifying a parameter group (Console)

The following procedure shows how to change the cluster-enabled parameter's value using the
ElastiCache console. You would use the same procedure to change the value of any parameter.

To change a parameter's value using the ElastiCache console

1. Sign in to the AWS Management Console and open the ElastiCache console at https://
console.aws.amazon.com/elasticache/.

Configuring engine parameters using parameter groups API Version 2015-02-02 591

https://docs.aws.amazon.com/AmazonElastiCache/latest/APIReference/API_DescribeCacheParameters.html
https://console.aws.amazon.com/elasticache/
https://console.aws.amazon.com/elasticache/

Amazon ElastiCache for Redis User Guide

2. To see a list of all available parameter groups, in the left hand navigation pane choose
Parameter Groups.

3. Choose the parameter group you want to modify by choosing the box to the left of the
parameter group's name.

The parameter group's parameters will be listed at the bottom of the screen. You may need to
page through the list to see all the parameters.

4. To modify one or more parameters, choose Edit Parameters.

5. Choose Save Changes.

6. To find the name of the parameter you changed, see Redis-specific parameters. If you have a
Redis (cluster mode disabled) cluster and make changes to the following parameters, you must
reboot the nodes in the cluster:

• activerehashing

• databases

For more information, see Rebooting nodes.

Redis (Cluster Mode Enabled) parameter changes

If you make changes to the following parameters on a Redis (cluster mode enabled)
cluster, follow the ensuing steps.

• activerehashing

• databases

1. Create a manual backup of your cluster. See Taking manual backups.

2. Delete the Redis (cluster mode enabled) cluster. See Deleting clusters.

3. Restore the cluster using the altered parameter group and backup to seed the new
cluster. See Restoring from a backup into a new cache.

Changes to other parameters do not require this.

Configuring engine parameters using parameter groups API Version 2015-02-02 592

https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/nodes.rebooting.html
Clusters.html#Delete

Amazon ElastiCache for Redis User Guide

Modifying a parameter group (AWS CLI)

To change a parameter's value using the AWS CLI, use the command modify-cache-parameter-
group.

Example

To find the name and permitted values of the parameter you want to change, see Redis-specific
parameters

The following sample code sets the value of two parameters, reserved-memory-percent and cluster-
enabled on the parameter group myredis32-on-30. We set reserved-memory-percent to 30 (30
percent) and cluster-enabled to yes so that the parameter group can be used with Redis (cluster
mode enabled) clusters (replication groups).

For Linux, macOS, or Unix:

aws elasticache modify-cache-parameter-group \
 --cache-parameter-group-name myredis32-on-30 \
 --parameter-name-values \
 ParameterName=reserved-memory-percent,ParameterValue=30 \
 ParameterName=cluster-enabled,ParameterValue=yes

For Windows:

aws elasticache modify-cache-parameter-group ^
 --cache-parameter-group-name myredis32-on-30 ^
 --parameter-name-values ^
 ParameterName=reserved-memory-percent,ParameterValue=30 ^
 ParameterName=cluster-enabled,ParameterValue=yes

Output from this command will look something like this.

{
 "CacheParameterGroupName": "my-redis32-on-30"
}

For more information, see modify-cache-parameter-group.

To find the name of the parameter you changed, see Redis-specific parameters.

Configuring engine parameters using parameter groups API Version 2015-02-02 593

https://docs.aws.amazon.com/cli/latest/reference/elasticache/modify-cache-parameter-group.html

Amazon ElastiCache for Redis User Guide

If you have a Redis (cluster mode disabled) cluster and make changes to the following parameters,
you must reboot the nodes in the cluster:

• activerehashing

• databases

For more information, see Rebooting nodes.

Redis (Cluster Mode Enabled) parameter changes

If you make changes to the following parameters on a Redis (cluster mode enabled) cluster,
follow the ensuing steps.

• activerehashing

• databases

1. Create a manual backup of your cluster. See Taking manual backups.

2. Delete the Redis (cluster mode enabled) cluster. See Deleting clusters.

3. Restore the cluster using the altered parameter group and backup to seed the new
cluster. See Restoring from a backup into a new cache.

Changes to other parameters do not require this.

Modifying a parameter group (ElastiCache API)

To change a parameter group's parameter values using the ElastiCache API, use the
ModifyCacheParameterGroup action.

Example

To find the name and permitted values of the parameter you want to change, see Redis-specific
parameters

The following sample code sets the value of two parameters, reserved-memory-percent and cluster-
enabled on the parameter group myredis32-on-30. We set reserved-memory-percent to 30 (30
percent) and cluster-enabled to yes so that the parameter group can be used with Redis (cluster
mode enabled) clusters (replication groups).

Configuring engine parameters using parameter groups API Version 2015-02-02 594

https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/nodes.rebooting.html
Clusters.html#Delete

Amazon ElastiCache for Redis User Guide

https://elasticache.us-west-2.amazonaws.com/
 ?Action=ModifyCacheParameterGroup
 &CacheParameterGroupName=myredis32-on-30
 &ParameterNameValues.member.1.ParameterName=reserved-memory-percent
 &ParameterNameValues.member.1.ParameterValue=30
 &ParameterNameValues.member.2.ParameterName=cluster-enabled
 &ParameterNameValues.member.2.ParameterValue=yes
 &SignatureVersion=4
 &SignatureMethod=HmacSHA256
 &Timestamp=20150202T192317Z
 &Version=2015-02-02
 &X-Amz-Credential=<credential>

For more information, see ModifyCacheParameterGroup.

If you have a Redis (cluster mode disabled) cluster and make changes to the following parameters,
you must reboot the nodes in the cluster:

• activerehashing

• databases

For more information, see Rebooting nodes.

Redis (Cluster Mode Enabled) parameter changes

If you make changes to the following parameters on a Redis (cluster mode enabled) cluster,
follow the ensuing steps.

• activerehashing

• databases

1. Create a manual backup of your cluster. See Taking manual backups.

2. Delete the Redis (cluster mode enabled) cluster. See Deleting a cluster.

3. Restore the cluster using the altered parameter group and backup to seed the new
cluster. See Restoring from a backup into a new cache.

Changes to other parameters do not require this.

Configuring engine parameters using parameter groups API Version 2015-02-02 595

https://docs.aws.amazon.com/AmazonElastiCache/latest/APIReference/API_ModifyCacheParameterGroup.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/nodes.rebooting.html

Amazon ElastiCache for Redis User Guide

Configuring engine parameters using parameter groups API Version 2015-02-02 596

Amazon ElastiCache for Redis User Guide

Deleting a parameter group

You can delete a custom parameter group using the ElastiCache console, the AWS CLI, or the
ElastiCache API.

You cannot delete a parameter group if it is associated with any clusters. Nor can you delete any of
the default parameter groups.

Deleting a parameter group (Console)

The following procedure shows how to delete a parameter group using the ElastiCache console.

To delete a parameter group using the ElastiCache console

1. Sign in to the AWS Management Console and open the ElastiCache console at https://
console.aws.amazon.com/elasticache/.

2. To see a list of all available parameter groups, in the left hand navigation pane choose
Parameter Groups.

3. Choose the parameter groups you want to delete by choosing the box to the left of the
parameter group's name.

The Delete button will become active.

4. Choose Delete.

The Delete Parameter Groups confirmation screen will appear.

5. To delete the parameter groups, on the Delete Parameter Groups confirmation screen, choose
Delete.

To keep the parameter groups, choose Cancel.

Deleting a parameter group (AWS CLI)

To delete a parameter group using the AWS CLI, use the command delete-cache-parameter-
group. For the parameter group to delete, the parameter group specified by --cache-
parameter-group-name cannot have any clusters associated with it, nor can it be a default
parameter group.

The following sample code deletes the myMem14 parameter group.

Configuring engine parameters using parameter groups API Version 2015-02-02 597

https://console.aws.amazon.com/elasticache/
https://console.aws.amazon.com/elasticache/

Amazon ElastiCache for Redis User Guide

Example

For Linux, macOS, or Unix:

aws elasticache delete-cache-parameter-group \
 --cache-parameter-group-name myRed28

For Windows:

aws elasticache delete-cache-parameter-group ^
 --cache-parameter-group-name myRed28

For more information, see delete-cache-parameter-group.

Deleting a parameter group (ElastiCache API)

To delete a parameter group using the ElastiCache API, use the DeleteCacheParameterGroup
action. For the parameter group to delete, the parameter group specified by
CacheParameterGroupName cannot have any clusters associated with it, nor can it be a default
parameter group.

Example

The following sample code deletes the myRed28 parameter group.

https://elasticache.us-west-2.amazonaws.com/
 ?Action=DeleteCacheParameterGroup
 &CacheParameterGroupName=myRed28
 &SignatureVersion=4
 &SignatureMethod=HmacSHA256
 &Timestamp=20150202T192317Z
 &Version=2015-02-02
 &X-Amz-Credential=<credential>

For more information, see DeleteCacheParameterGroup.

Configuring engine parameters using parameter groups API Version 2015-02-02 598

https://docs.aws.amazon.com/cli/latest/reference/elasticache/delete-cache-parameter-group.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/APIReference/API_DeleteCacheParameterGroup.html

Amazon ElastiCache for Redis User Guide

Memcached specific parameters

If you do not specify a parameter group for your Memcached cluster, then a default parameter
group appropriate to your engine version will be used. You can't change the values of any
parameters in a default parameter group. However, you can create a custom parameter group and
assign it to your cluster at any time. For more information, see Creating a parameter group.

Topics

• Memcached 1.6.17 changes

• Memcached 1.6.6 added parameters

• Memcached 1.5.10 parameter changes

• Memcached 1.4.34 added parameters

• Memcached 1.4.33 added parameters

• Memcached 1.4.24 added parameters

• Memcached 1.4.14 added parameters

• Memcached 1.4.5 supported parameters

• Memcached connection overhead

• Memcached node-type specific parameters

Memcached 1.6.17 changes

From Memcached 1.6.17, we no longer support these administrative commands: lru_crawler,
lru, and slabs. With these changes, you will not be able to enable/disable lru_crawler at
runtime via commands. Please enable/disable lru_crawler by modifying your custom parameter
group.

Memcached 1.6.6 added parameters

For Memcached 1.6.6, no additional parameters are supported.

Parameter group family: memcached1.6

Memcached 1.5.10 parameter changes

For Memcached 1.5.10, the following additional parameters are supported.

Parameter group family: memcached1.5

Configuring engine parameters using parameter groups API Version 2015-02-02 599

Amazon ElastiCache for Redis User Guide

Name Details Description

no_modern Default: 1

Type: boolean

Modifiable: Yes

Allowed_Values: 0,1

Changes Take Effect: At
launch

An alias for disabling slab_reas
sign , lru_maintainer_thr
ead , lru_segmented ,
andmaxconns_fast commands
.

When using Memcached 1.5 and
higher, no_modern also sets the
hash_algorithm to jenkins.

In addition, when using
Memcached 1.5.10, inline_as
cii_reponse is controlled
by the parameter parallelly .
This means that if no_modern

 is disabled then inline_as
cii_reponse is disabled.
From Memcached engine
1.5.16 onward the inline_as
cii_response parameter no
longer applies, so no_modern

 being abled or disabled
has no effect on inline_as
cii_reponse .

If no_modern is disabled, then
slab_reassign , lru_maint
ainer_thread , lru_segme
nted , and maxconns_
fast WILL be enabled.
Since slab_automove and

Configuring engine parameters using parameter groups API Version 2015-02-02 600

Amazon ElastiCache for Redis User Guide

Name Details Description

hash_algorithm parameters
are not SWITCH parameters, their
setting is based on the configura
tions in the parameter group.

If you want to disable no_modern
 and revert to modern, you must

configure a custom parameter
group to disable this parameter
and then reboot for these
changes to take effect.

Note

The default configuration
value for this parameter
has been changed from
0 to 1 as of August 20,
2021. The updated
default value will get
automatically picked up
by new ElastiCache users
for each regions after
August 20th, 2021. Ex
isting ElastiCache users
in the regions before
August 20th, 2021 need
to manually modify their
custom parameter groups
in order to pick up this
new change.

Configuring engine parameters using parameter groups API Version 2015-02-02 601

Amazon ElastiCache for Redis User Guide

Name Details Description

inline_ascii_resp Default: 0

Type: boolean

Modifiable: Yes

Allowed_Values: 0,1

Changes Take Effect: At
launch

Stores numbers from VALUE
response, inside an item, using up
to 24 bytes. Small slowdown for
ASCII get, faster sets.

For Memcached 1.5.10, the following parameters are removed.

Name Details Description

expirezero_does_no
t_evict

Default: 0

Type: boolean

Modifiable: Yes

Allowed_Values: 0,1

Changes Take Effect: At
launch

No longer supported in this
version.

modern Default: 1

Type: boolean

Modifiable: Yes
(requires re-launch if
set to no_modern)

Allowed_Values: 0,1

Changes Take Effect: At
launch

No longer supported in this
version. Starting with this vers
ion, no-modern is enabled by
default with every launch or re-
launch.

Configuring engine parameters using parameter groups API Version 2015-02-02 602

Amazon ElastiCache for Redis User Guide

Memcached 1.4.34 added parameters

For Memcached 1.4.34, no additional parameters are supported.

Parameter group family: memcached1.4

Memcached 1.4.33 added parameters

For Memcached 1.4.33, the following additional parameters are supported.

Parameter group family: memcached1.4

Name Details Description

modern Default: enabled

Type: boolean

Modifiable: Yes

Changes Take Effect: At
launch

An alias to multiple features.
Enabling modern is equivalent
to turning following commands
on and using a murmur3 h
ash algorithm: slab_reas
sign , slab_automove ,
lru_crawler , lru_maint
ainer , maxconns_fast , and
 hash_algorithm=murmur3 .

watch Default: enabled

Type: boolean

Modifiable: Yes

Changes Take Effect: Immediate
ly

Logs can get
dropped if user hits
their watcher_l
ogbuf_size
and worker_lo
gbuf_size limits.

Logs fetches, evictions or
mutations. When, for example,
user turns watch on, they can
see logs when get, set, delete,
or update occur.

Configuring engine parameters using parameter groups API Version 2015-02-02 603

Amazon ElastiCache for Redis User Guide

Name Details Description

idle_timeout Default: 0 (disabled)

Type: integer

Modifiable: Yes

Changes Take Effect: At Launch

The minimum number of seconds
a client will be allowed to idle
 before being asked to close.
Range of values: 0 to 86400.

track_sizes Default: disabled

Type: boolean

Modifiable: Yes

Changes Take Effect: At Launch

Shows the sizes each slab group
has consumed.

Enabling track_sizes lets you
run stats sizes without
the need to run stats si
zes_enable .

watcher_logbuf_size Default: 256 (KB)

Type: integer

Modifiable: Yes

Changes Take Effect: At Launch

The watch command turns on
stream logging for Memcached.
However watch can drop logs if
the rate of evictions, mutations
or fetches are high enough to
cause the logging buffer to
become full. In such situations,
users can increase the buffer size
to reduce the chance of log losse
s.

Configuring engine parameters using parameter groups API Version 2015-02-02 604

Amazon ElastiCache for Redis User Guide

Name Details Description

worker_logbuf_size Default: 64 (KB)

Type: integer

Modifiable: Yes

Changes Take Effect: At Launch

The watch command turns on
stream logging for Memcached.
However watch can drop logs if
the rate of evictions, mutations
or fetches are high enough to
cause logging buffer get full.
In such situations, users can
increase the buffer size to reduce
the chance of log losses.

slab_chunk_max Default: 524288
(bytes)

Type: integer

Modifiable: Yes

Changes Take Effect: At Launch

Specifies the maximum size of
a slab. Setting smaller slab size
uses memory more efficiently.
Items larger than slab_chun
k_max are split over multiple
slabs.

lru_crawler metadump
[all|1|2|3]

Default: disabled

Type: boolean

Modifiable: Yes

Changes Take Effect: Immediate
ly

if lru_crawler is enabled this
command dumps all keys.

all|1|2|3 - all slabs, or specify
a particular slab number

Memcached 1.4.24 added parameters

For Memcached 1.4.24, the following additional parameters are supported.

Parameter group family: memcached1.4

Name Details Description

disable_flush_all Default: 0 (disabled)

Configuring engine parameters using parameter groups API Version 2015-02-02 605

Amazon ElastiCache for Redis User Guide

Name Details Description

Type: boolean

Modifiable: Yes

Changes Take Effect: At
launch

Add parameter (-F) to disable
flush_all. Useful if you never
want to be able to run a full flush
on production instances.

Values: 0, 1 (user can do a
flush_all when the value is
0).

hash_algorithm Default: jenkins

Type: string

Modifiable: Yes

Changes Take Effect: At
launch

The hash algorithm to be used.
Permitted values: murmur3 and
 jenkins.

Configuring engine parameters using parameter groups API Version 2015-02-02 606

Amazon ElastiCache for Redis User Guide

Name Details Description

lru_crawler Default: 0 (disabled)

Type: boolean

Modifiable: Yes

Changes Take Effect: After restart

Note

You can
temporari
ly enable
lru_crawl
er at runti
me from the
command
line. For more
informati
on, see the
 Description
column.

Cleans slab classes of items
that have expired. This is a low
 impact process that runs in the
background. Currently requires
initiating a crawl using a manual
command.

To temporarily enable, run
lru_crawler enable at the
command line.

lru_crawler 1,3,5 crawls
slab classes 1, 3, and 5 looking
for expired items to add to the
freelist.

Values: 0,1

Note

Enabling lru_crawl
er at the command
line enables the crawler
until either disabled at
the command line or the
next reboot. To enable
permanently, you must
 modify the parameter
value. For more informati
on, see Modifying a
parameter group.

Configuring engine parameters using parameter groups API Version 2015-02-02 607

Amazon ElastiCache for Redis User Guide

Name Details Description

lru_maintainer Default: 0 (disabled)

Type: boolean

Modifiable: Yes

Changes Take Effect: At
launch

A background thread that shuffles
items between the LRUs as capaci
ties are reached. Values: 0, 1.

expirezero_does_no
t_evict

Default: 0 (disabled)

Type: boolean

Modifiable: Yes

Changes Take Effect: At
launch

When used with lru_maint
ainer , makes items with an
expiration time of 0 unevictable.

Warning

This can crowd out
memory available for
other evictable items.

Can be set to disregard
lru_maintainer .

Memcached 1.4.14 added parameters

For Memcached 1.4.14, the following additional parameters are supported.

Parameter group family: memcached1.4

Parameters added in Memcached 1.4.14

Name DetailsDescription

config_max Default:
16
The maximum number of ElastiCache configuration entries.

Configuring engine parameters using parameter groups API Version 2015-02-02 608

Amazon ElastiCache for Redis User Guide

Name DetailsDescription

Type:
integer

Modifiabl
e:
No

config_size_max Default:
65536

Type:
integer

Modifiabl
e:
No

The maximum size of the configuration entries, in bytes.

hashpower_init Default:
16

Type:
integer

Modifiabl
e:
No

The initial size of the ElastiCache hash table, expressed as a power of
 two. The default is 16 (2^16), or 65536 keys.

maxconns_fast Default:
0 (false)

Type:
Boolean

Modifiabl
e:
Yes

Changes Take Effect: After restart

Changes the way in which new connections requests are handled wh
en the maximum connection limit is reached. If this parameter is set
to 0 (zero), new connections are added to the backlog queue and will
wait until other connections are closed. If the parameter is set to 1,
ElastiCache sends an error to the client and immediately closes the
connection.

Configuring engine parameters using parameter groups API Version 2015-02-02 609

Amazon ElastiCache for Redis User Guide

Name DetailsDescription

slab_automove Default:
0

Type:
integer

Modifiabl
e:
Yes

Changes Take Effect: After restart

Adjusts the slab automove algorithm: If this parameter is set to 0
(zero), the automove algorithm is disabled. If it is set to 1, ElastiCache
takes a slow, conservative approach to automatically moving slabs. If it
is set to 2, ElastiCache aggressively moves slabs whenever there is an
eviction. (This mode is not recommended except for testing purposes.)

slab_reassign Default:
0 (false)

Type:
Boolean

Modifiabl
e:
Yes

Changes Take Effect: After restart

Enable or disable slab reassignment. If this parameter is set to 1, you
can use the "slabs reassign" command to manually reassign memory.

Memcached 1.4.5 supported parameters

Parameter group family: memcached1.4

For Memcached 1.4.5, the following parameters are supported.

Parameters added in Memcached 1.4.5

Name Details Description

backlog_q
ueue_limi
t

Default: 1024

Type: integer

The backlog queue limit.

Configuring engine parameters using parameter groups API Version 2015-02-02 610

Amazon ElastiCache for Redis User Guide

Name Details Description

Modifiable: No

binding_p
rotocol

Default: auto

Type: string

Modifiable: Yes

Changes Take Effect: After restart

The binding protocol.

Permissible values are: ascii and auto.

For guidance on modifying the value of
 binding_protocol , see Modifying a
parameter group.

cas_disab
led

Default: 0 (false)

Type: Boolean

Modifiable: Yes

Changes Take Effect: After restart

If 1 (true), check and set (CAS) operations will
be disabled, and items stored will consume 8
fewer bytes than with CAS enabled.

chunk_siz
e

Default: 48

Type: integer

Modifiable: Yes

Changes Take Effect: After restart

The minimum amount, in bytes, of space to
allocate for the smallest item's key, value, and
flags.

chunk_siz
e_growth_
factor

Default: 1.25

Type: float

Modifiable: Yes

Changes Take Effect: After restart

The growth factor that controls the size of
each successive Memcached chunk; each
chunk will be chunk_size_growth_
factor times larger than the previous
chunk.

error_on_
memory_ex
hausted

Default: 0 (false)

Type: Boolean

Modifiable: Yes

Changes Take Effect: After restart

If 1 (true), when there is no more memory to
store items, Memcached will return an error
rather than evicting items.

Configuring engine parameters using parameter groups API Version 2015-02-02 611

Amazon ElastiCache for Redis User Guide

Name Details Description

large_mem
ory_pages

Default: 0 (false)

Type: Boolean

Modifiable: No

If 1 (true), ElastiCache will try to use large
memory pages.

lock_down
_paged_me
mory

Default: 0 (false)

Type: Boolean

Modifiable: No

If 1 (true), ElastiCache will lock down all
paged memory.

max_item_
size

Default: 1048576

Type: integer

Modifiable: Yes

Changes Take Effect: After restart

The size, in bytes, of the largest item that can
be stored in the cluster.

max_simul
taneous_c
onnection
s

Default: 65000

Type: integer

Modifiable: No

The maximum number of simultaneous
connections.

maximize_
core_file
_limit

Default: 0 (false)

Type: Boolean

Modifiable:

Changes Take Effect: After restart

If 1 (true), ElastiCache will maximize the core
file limit.

memcached
_connecti
ons_overh
ead

Default: 100

Type: integer

Modifiable: Yes

Changes Take Effect: After restart

The amount of memory to be reserved for
Memcached connections and other miscellan
eous overhead. For information about this
parameter, see Memcached connection ov
erhead.

Configuring engine parameters using parameter groups API Version 2015-02-02 612

Amazon ElastiCache for Redis User Guide

Name Details Description

requests_
per_event

Default: 20

Type: integer

Modifiable: No

The maximum number of requests per event
for a given connection. This limit is required
to prevent resource starvation.

Memcached connection overhead

On each node, the memory made available for storing items is the total available memory on
that node (which is stored in the max_cache_memory parameter) minus the memory used for
connections and other overhead (which is stored in the memcached_connections_overhead
parameter). For example, a node of type cache.m1.small has a max_cache_memory of 1300MB.
With the default memcached_connections_overhead value of 100MB, the Memcached process
will have 1200MB available to store items.

The default values for the memcached_connections_overhead parameter satisfy most use
cases; however, the required amount of allocation for connection overhead can vary depending on
multiple factors, including request rate, payload size, and the number of connections.

You can change the value of the memcached_connections_overhead to
better suit the needs of your application. For example, increasing the value of the
memcached_connections_overhead parameter will reduce the amount of memory available
for storing items and provide a larger buffer for connection overhead. Decreasing the value of the
memcached_connections_overhead parameter will give you more memory to store items, but
can increase your risk of swap usage and degraded performance. If you observe swap usage and
degraded performance, try increasing the value of the memcached_connections_overhead
parameter.

Important

For the cache.t1.micro node type, the value for memcached_connections_overhead
is determined as follows:

• If you cluster is using the default parameter group, ElastiCache will set the value for
memcached_connections_overhead to 13MB.

Configuring engine parameters using parameter groups API Version 2015-02-02 613

Amazon ElastiCache for Redis User Guide

• If your cluster is using a parameter group that you have created yourself, you can set the
value of memcached_connections_overhead to a value of your choice.

Memcached node-type specific parameters

Although most parameters have a single value, some parameters have different values depending
on the node type used. The following table shows the default values for the max_cache_memory
and num_threads parameters for each node type. The values on these parameters cannot be
modified.

Node type max_cache_memory (in
megabytes)

num_threads

cache.t1.micro 213 1

cache.t2.micro 555 1

cache.t2.small 1588 1

cache.t2.medium 3301 2

cache.t3.micro 512 2

cache.t3.small 1402 2

cache.t3.medium 3364 2

cache.t4g.micro 512 2

cache.t4g.small 1402 2

cache.t4g.medium 3164 2

cache.m1.small 1301 1

cache.m1.medium 3350 1

cache.m1.large 7100 2

cache.m1.xlarge 14600 4

Configuring engine parameters using parameter groups API Version 2015-02-02 614

Amazon ElastiCache for Redis User Guide

Node type max_cache_memory (in
megabytes)

num_threads

cache.m2.xlarge 33800 2

cache.m2.2xlarge 30412 4

cache.m2.4xlarge 68000 16

cache.m3.medium 2850 1

cache.m3.large 6200 2

cache.m3.xlarge 13600 4

cache.m3.2xlarge 28600 8

cache.m4.large 6573 2

cache.m4.xlarge 11496 4

cache.m4.2xlarge 30412 8

cache.m4.4xlarge 62234 16

cache.m4.10xlarge 158355 40

cache.m5.large 6537 2

cache.m5.xlarge 13248 4

cache.m5.2xlarge 26671 8

cache.m5.4xlarge 53516 16

cache.m5.12xlarge 160900 48

cache.m5.24xlarge 321865 96

cache.m6g.large 6537 2

cache.m6g.xlarge 13248 4

Configuring engine parameters using parameter groups API Version 2015-02-02 615

Amazon ElastiCache for Redis User Guide

Node type max_cache_memory (in
megabytes)

num_threads

cache.m6g.2xlarge 26671 8

cache.m6g.4xlarge 53516 16

cache.m6g.8xlarge 107000 32

cache.m6g.12xlarge 160900 48

cache.m6g.16xlarge 214577 64

cache.c1.xlarge 6600 8

cache.r3.large 13800 2

cache.r3.xlarge 29100 4

cache.r3.2xlarge 59600 8

cache.r3.4xlarge 120600 16

cache.r3.8xlarge 120600 32

cache.r4.large 12590 2

cache.r4.xlarge 25652 4

cache.r4.2xlarge 51686 8

cache.r4.4xlarge 103815 16

cache.r4.8xlarge 208144 32

cache.r4.16xlarge 416776 64

cache.r5.large 13387 2

cache.r5.xlarge 26953 4

cache.r5.2xlarge 54084 8

Configuring engine parameters using parameter groups API Version 2015-02-02 616

Amazon ElastiCache for Redis User Guide

Node type max_cache_memory (in
megabytes)

num_threads

cache.r5.4xlarge 108347 16

cache.r5.12xlarge 325400 48

cache.r5.24xlarge 650869 96

cache.r6g.large 13387 2

cache.r6g.xlarge 26953 4

cache.r6g.2xlarge 54084 8

cache.r6g.4xlarge 108347 16

cache.r6g.8xlarge 214577 32

cache.r6g.12xlarge 325400 48

cache.r6g.16xlarge 429154 64

cache.c7gn.large 3164 2

cache.c7gn.xlarge 6537 4

cache.c7gn.2xlarge 13248 8

cache.c7gn.4xlarge 26671 16

cache.c7gn.8xlarge 53516 32

cache.c7gn.12xlarge 325400 48

cache.c7gn.16xlarge 108347 64

Note

All T2 instances are created in an Amazon Virtual Private Cloud (Amazon VPC).

Configuring engine parameters using parameter groups API Version 2015-02-02 617

Amazon ElastiCache for Redis User Guide

Configuring engine parameters using parameter groups API Version 2015-02-02 618

Amazon ElastiCache for Redis User Guide

Redis-specific parameters

If you do not specify a parameter group for your Redis cluster, then a default parameter group
appropriate to your engine version will be used. You can't change the values of any parameters in
the default parameter group. However, you can create a custom parameter group and assign it to
your cluster at any time as long as the values of conditionally modifiable parameters are the same
in both parameter groups. For more information, see Creating a parameter group.

Topics

• Redis 7 parameter changes

• Redis 6.x parameter changes

• Redis 5.0.3 parameter changes

• Redis 5.0.0 parameter changes

• Redis 4.0.10 parameter changes

• Redis 3.2.10 parameter changes

• Redis 3.2.6 parameter changes

• Redis 3.2.4 parameter changes

• Redis 2.8.24 (enhanced) added parameters

• Redis 2.8.23 (enhanced) added parameters

• Redis 2.8.22 (enhanced) added parameters

• Redis 2.8.21 added parameters

• Redis 2.8.19 added parameters

• Redis 2.8.6 added parameters

• Redis 2.6.13 parameters

• Redis node-type specific parameters

Redis 7 parameter changes

Parameter group family: redis7

Redis 7 default parameter groups are as follows:

• default.redis7 – Use this parameter group, or one derived from it, for Redis (cluster mode
disabled) clusters and replication groups.

Configuring engine parameters using parameter groups API Version 2015-02-02 619

Amazon ElastiCache for Redis User Guide

• default.redis7.cluster.on – Use this parameter group, or one derived from it, for Redis
(cluster mode enabled) clusters and replication groups.

Parameters added in Redis 7 are as follows.

Name Details Description

cluster-a
llow-pubs
ubshard-w
hen-down

Permitted values: yes, no

Default: yes

Type: string

Modifiable: Yes

Changes take effect:
Immediately across all nodes
in the cluster.

When set to the default of yes, allows nodes
to serve pubsub shard traffic while the cluster
is in a down state, as long as it believes it
owns the slots.

cluster-p
referred-
endpoint-
type

Permitted values: ip, tls-
dynamic

Default: tls-dynamic

Type: string

Modifiable: Yes

Changes take effect:
Immediately across all nodes
in the cluster.

This value controls what endpoint is returned
for MOVED/ASKING requests as well as the
endpoint field for CLUSTER SLOTS and
CLUSTER SHARDS. When the value is set
to ip, the node will advertise its ip address.
When the value is set to tls-dynamic, the node
will advertise a hostname when encryptio
n-in-transit is enabled and an ip address
otherwise.

latency-t
racking Permitted values: yes, no

Default: no

Type: string

When set to yes tracks the per command
latencies and enables exporting the percentil
e distribution via the INFO latency statistics
command, and cumulative latency distribut
ions (histograms) via the LATENCY command.

Configuring engine parameters using parameter groups API Version 2015-02-02 620

Amazon ElastiCache for Redis User Guide

Name Details Description

Modifiable: Yes

Changes take effect:
Immediately across all nodes
in the cluster.

hash-max-
listpack-
entries

Permitted values: 0+

Default: 512

Type: integer

Modifiable: Yes

Changes take effect:
Immediately across all nodes
in the cluster.

The maximum number of hash entries in order
for the dataset to be compressed.

hash-max-
listpack-
value

Permitted values: 0+

Default: 64

Type: integer

Modifiable: Yes

Changes take effect:
Immediately across all nodes
in the cluster.

The threshold of biggest hash entries in order
for the dataset to be compressed.

Configuring engine parameters using parameter groups API Version 2015-02-02 621

Amazon ElastiCache for Redis User Guide

Name Details Description

zset-max-
listpack-
entries

Permitted values: 0+

Default: 128

Type: integer

Modifiable: Yes

Changes take effect:
Immediately across all nodes
in the cluster.

The maximum number of sorted set entries in
order for the dataset to be compressed.

zset-max-
listpack-
value

Permitted values: 0+

Default: 64

Type: integer

Modifiable: Yes

Changes take effect:
Immediately across all nodes
in the cluster.

The threshold of biggest sorted set entries in
order for the dataset to be compressed.

Parameters changed in Redis 7 are as follows.

Name Details Description

activereh
ashing Modifiable: no. In Redis 7,

this parameter is hidden and
enabled by default. In order
to disable it, you need to
create a support case.

Modifiable was yes.

Configuring engine parameters using parameter groups API Version 2015-02-02 622

https://console.aws.amazon.com/support/home

Amazon ElastiCache for Redis User Guide

Parameters removed in Redis 7 are as follows.

Name Details Description

hash-max-
ziplist-e
ntries

Permitted values: 0+

Default: 512

Type: integer

Modifiable: Yes

Changes take effect:
Immediately across all nodes
in the cluster.

Use listpack instead of ziplist for
representing small hash encoding

hash-max-
ziplist-v
alue

Permitted values: 0+

Default: 64

Type: integer

Modifiable: Yes

Changes take effect:
Immediately across all nodes
in the cluster.

Use listpack instead of ziplist for
representing small hash encoding

zset-max-
ziplist-e
ntries

Permitted values: 0+

Default: 128

Type: integer

Modifiable: Yes

Changes take effect:
Immediately across all nodes
in the cluster.

Use listpack instead of ziplist for
representing small hash encoding.

Configuring engine parameters using parameter groups API Version 2015-02-02 623

Amazon ElastiCache for Redis User Guide

Name Details Description

zset-max-
ziplist-v
alue

Permitted values: 0+

Default: 64

Type: integer

Modifiable: Yes

Changes take effect:
Immediately across all nodes
in the cluster.

Use listpack instead of ziplist for
representing small hash encoding.

list-max-
ziplist-s
ize

Permitted values:

Default: -2

Type: integer

Modifiable: Yes

Changes take effect:
Immediately across all nodes
in the cluster.

The number of entries allowed per internal
list node.

Redis 6.x parameter changes

Parameter group family: redis6.x

Redis 6.x default parameter groups are as follows:

• default.redis6.x – Use this parameter group, or one derived from it, for Redis (cluster mode
disabled) clusters and replication groups.

• default.redis6.x.cluster.on – Use this parameter group, or one derived from it, for Redis
(cluster mode enabled) clusters and replication groups.

Configuring engine parameters using parameter groups API Version 2015-02-02 624

Amazon ElastiCache for Redis User Guide

Note

In Redis engine version 6.2, when the r6gd node family was introduced for use with Data
tiering, only noeviction, volatile-lru and allkeys-lru max-memory policies are supported with
r6gd node types.

For more information, see ElastiCache for Redis version 6.2 (enhanced) and ElastiCache for Redis
version 6.0 (enhanced).

Parameters added in Redis 6.x are as follows.

Name Details Description

acl-pubsu
b-default
(added in
6.2)

Permitted values: resetchan
nels , allchannels

Default: allchannels

Type: string

Modifiable: Yes

Changes take effect: The
existing Redis users associate
d to the cluster will continue
to have existing permissions.
Either update the users or
reboot the cluster to update
the existing Redis users.

Default pubsub channel permissions for ACL
users deployed to this cluster.

cluster-a
llow-read
s-when-do
wn (added
in 6.0)

Default: no

Type: string

Modifiable: Yes

When set to yes, a Redis (cluster mode
enabled) replication group continues to
process read commands even when a node is
not able to reach a quorum of primaries.

When set to the default of no, the replication
group rejects all commands. We recommend

Configuring engine parameters using parameter groups API Version 2015-02-02 625

Amazon ElastiCache for Redis User Guide

Name Details Description

Changes take effect:
Immediately across all nodes
in the cluster

setting this value to yes if you are using a
cluster with fewer than three node groups or
your application can safely handle stale reads.

tracking-
table-
max-keys
(added in
6.0)

Default: 1,000,000

Type: number

Modifiable: Yes

Changes take effect:
Immediately across all nodes
in the cluster

To assist client-side caching, Redis supports
tracking which clients have accessed which
keys.

When the tracked key is modified, invalidat
ion messages are sent to all clients to notify
them their cached values are no longer valid.
This value enables you to specify the upper
bound of this table. After this parameter
value is exceeded, clients are sent invalidation
randomly. This value should be tuned to limit
memory usage while still keeping track of
enough keys. Keys are also invalidated under
low memory conditions.

acllog-
max-len
(added in
6.0)

Default: 128

Type: number

Modifiable: Yes

Changes take effect:
Immediately across all nodes
in the cluster

This value corresponds to the max number of
entries in the ACL log.

Configuring engine parameters using parameter groups API Version 2015-02-02 626

Amazon ElastiCache for Redis User Guide

Name Details Description

active-ex
pire-effo
rt (added
in 6.0)

Default: 1

Type: number

Modifiable: Yes

Changes take effect:
Immediately across all nodes
in the cluster

Redis deletes keys that have exceeded their
time to live by two mechanisms. In one, a key
is accessed and is found to be expired. In the
other, a periodic job samples keys and causes
 those that have exceeded their time to live to
expire. This parameter defines the amount of
effort that Redis uses to expire items in the
periodic job.

The default value of 1 tries to avoid having
more than 10 percent of expired keys still
in memory. It also tries to avoid consuming
more than 25 percent of total memory and to
add latency to the system. You can increase
this value up to 10 to increase the amount
of effort spent on expiring keys. The tradeoff
is higher CPU and potentially higher latency.
We recommend a value of 1 unless you are
seeing high memory usage and can tolerate
an increase in CPU utilization.

lazyfree-
lazy-
user-del
(added in
6.0)

Default: no

Type: string

Modifiable: Yes

Changes take effect:
Immediately across all nodes
in the cluster

When the value is set to yes, the DEL
command acts the same as UNLINK.

Parameters removed in Redis 6.x are as follows.

Configuring engine parameters using parameter groups API Version 2015-02-02 627

Amazon ElastiCache for Redis User Guide

Name Details Description

lua-repli
cate-comm
ands

Permitted values: yes/no

Default: yes

Type: boolean

Modifiable: Yes

Changes take effect:
Immediately

Always enable Lua effect replication or not in
Lua scripts

Redis 5.0.3 parameter changes

Parameter group family: redis5.0

Redis 5.0 default parameter groups

• default.redis5.0 – Use this parameter group, or one derived from it, for Redis (cluster mode
disabled) clusters and replication groups.

• default.redis5.0.cluster.on – Use this parameter group, or one derived from it, for Redis
(cluster mode enabled) clusters and replication groups.

Parameters added in Redis 5.0.3

Name Details Description

rename-co
mmands Default: none

Type: string

Modifiable: Yes

Changes take effect:
Immediately across all nodes
in the cluster

A space-separated list of renamed Redis
commands. The following is a restricted list of
commands available for renaming:

 APPEND AUTH BITCOUNT BITFIELD
BITOP BITPOS BLPOP BRPOP BR
POPLPUSH BZPOPMIN BZPOPMAX CLIENT
CLUSTER COMMAND DBSIZE DECR
DECRBY DEL DISCARD DUMP ECHO EVAL
EVALSHA EXEC EXISTS EXPIRE

Configuring engine parameters using parameter groups API Version 2015-02-02 628

Amazon ElastiCache for Redis User Guide

Name Details Description

EXPIREAT FLUSHALL FLUSHDB GEOADD
GEOHASH GEOPOS GEODIST GEORADIUS
GEORADIUSBYMEMBER GET GETBIT
GETRANGE GETSET HDEL HEXISTS
HGET HGETALL HINCRBY HINCRBYFL
OAT HKEYS HLEN HMGET HMSET HSET
HSETNX HSTRLEN HVALS INCR INCRBY
 INCRBYFLOAT INFO KEYS LASTSAVE
LINDEX LINSERT LLEN LPOP LPU
SH LPUSHX LRANGE LREM LSET LTRIM
MEMORY MGET MONITOR MOVE MSET
MSETNX MULTI OBJECT PERSIST PEXPIRE
PEXPIREAT PFADD PFCOUNT PFMERGE
PING PSETEX PSUBSCRIBE PUBSUB PTTL
PUBLISH PUNSUBSCRIBE RANDOMKEY
READONLY READWRITE RENAME RENAMENX
 RESTORE ROLE RPOP RPOPLPUSH
RPUSH RPUSHX SADD SCARD SCRIPT
 SDIFF SDIFFSTORE SELECT SET
SETBIT SETEX SETNX SETRANGE
 SINTER SINTERSTORE SISMEMBER
SLOWLOG SMEMBERS SMOVE SORT SPOP
SRANDMEMBER SREM STRLEN SUBSCRIBE
SUNION SUNIONSTORE SWAPDB
TIME TOUCH TTL TYPE UNSUBSCRIBE
UNLINK UNWATCH WAIT WATCH ZADD
ZCARD ZCOUNT ZINCRBY ZINTERSTO
RE ZLEXCOUNT ZPOPMAX ZPOPMIN
ZRANGE ZRANGEBYLEX ZREVRANGE
BYLEX ZRANGEBYSCORE ZRANK ZREM
ZREMRANGEBYLEX ZREMRANGEBYRANK
 ZREMRANGEBYSCORE ZREVRANGE
ZREVRANGEBYSCORE ZREVRANK ZSCORE
 ZUNIONSTORE SCAN SSCAN HSCAN

Configuring engine parameters using parameter groups API Version 2015-02-02 629

Amazon ElastiCache for Redis User Guide

Name Details Description

ZSCAN XINFO XADD XTRIM XDEL XRA
NGE XREVRANGE XLEN XREAD XGROUP
XREADGROUP XACK XCLAIM XPENDING
GEORADIUS_RO GEORADIUSBYMEMBER_
RO LOLWUT XSETID SUBSTR

For more information, see ElastiCache for Redis version 5.0.6 (enhanced).

Redis 5.0.0 parameter changes

Parameter group family: redis5.0

Redis 5.0 default parameter groups

• default.redis5.0 – Use this parameter group, or one derived from it, for Redis (cluster mode
disabled) clusters and replication groups.

• default.redis5.0.cluster.on – Use this parameter group, or one derived from it, for Redis
(cluster mode enabled) clusters and replication groups.

Parameters added in Redis 5.0

Name Details Description

stream-no
de-max-by
tes

Permitted values: 0+

Default: 4096

Type: integer

Modifiable: Yes

Changes take effect:
Immediately

The stream data structure is a radix tree of
nodes that encode multiple items inside. Use
this configuration to specify the maximum si
ze of a single node in radix tree in Bytes. If set
to 0, the size of the tree node is unlimited.

stream-no
de-max-en
tries

Permitted values: 0+
The stream data structure is a radix tree of
nodes that encode multiple items inside. Use
this configuration to specify the maximum

Configuring engine parameters using parameter groups API Version 2015-02-02 630

Amazon ElastiCache for Redis User Guide

Name Details Description

Default: 100

Type: integer

Modifiable: Yes

Changes take effect:
Immediately

 number of items a single node can contain
before switching to a new node when
appending new stream entries. If set to 0, the
number of items in the tree node is unlimited

active-de
frag-max-
scan-fiel
ds

Permitted values: 1 to
1000000

Default: 1000

Type: integer

Modifiable: Yes

Changes take effect:
Immediately

Maximum number of set/hash/zset/list fields
that will be processed from the main dictionar
y scan

lua-repli
cate-comm
ands

Permitted values: yes/no

Default: yes

Type: boolean

Modifiable: Yes

Changes take effect:
Immediately

Always enable Lua effect replication or not in
Lua scripts

replica-i
gnore-max
memory

Default: yes

Type: boolean

Modifiable: No

Determines if replica ignores maxmemory
setting by not evicting items independent
from the primary

Configuring engine parameters using parameter groups API Version 2015-02-02 631

Amazon ElastiCache for Redis User Guide

Redis has renamed several parameters in engine version 5.0 in response to community feedback.
For more information, see What's New in Redis 5?. The following table lists the new names and
how they map to previous versions.

Parameters renamed in Redis 5.0

Name Details Description

replica-l
azy-flush Default: yes

Type: boolean

Modifiable: No

Former name: slave-lazy-flush

Performs an asynchronous flushDB during
replica sync.

client-ou
tput-buff
er-limit-
replica-h
ard-limit

Default: For values see Redis
node-type specific para
meters

Type: integer

Modifiable: No

Former name: client-output-
buffer-limit-slave-hard-limit

For Redis read replicas: If a client's output
buffer reaches the specified number of bytes,
the client will be disconnected.

client-ou
tput-buff
er-limit-
replica-s
oft-limit

Default: For values see Redis
node-type specific para
meters

Type: integer

Modifiable: No

Former name: client-output-
buffer-limit-slave-soft-limit

For Redis read replicas: If a client's output
buffer reaches the specified number of bytes,
the client will be disconnected, but only if
this condition persists for client-output-
buffer-limit-replica-soft-secon
ds .

client-ou
tput-buff
er-limit-

Default: 60

Type: integer

For Redis read replicas: If a client's output
buffer remains at client-output-buff
er-limit-replica-soft-limit

Configuring engine parameters using parameter groups API Version 2015-02-02 632

https://aws.amazon.com/redis/Whats_New_Redis5/

Amazon ElastiCache for Redis User Guide

Name Details Description

replica-s
oft-secon
ds

Modifiable: No

Former name: client-outpu
t-buffer-limit-slave-soft-s
econds

bytes for longer than this number of seconds,
the client will be disconnected.

replica-a
llow-chai
ning

Default: no

Type: string

Modifiable: No

Former name: slave-allow-
chaining

Determines whether a read replica in Redis can
have read replicas of its own.

min-repli
cas-to-wr
ite

Default: 0

Type: integer

Modifiable: Yes

Former name: min-slaves-to-
write

Changes Take Effect: Immediate
ly

The minimum number of read replicas which
must be available in order for the primary
node to accept writes from clients. If the
number of available replicas falls below this
number, then the primary node will no longer
accept write requests.

If either this parameter or min-replicas-max-
lag is 0, then the primary node will always
accept writes requests, even if no replicas are
available.

Configuring engine parameters using parameter groups API Version 2015-02-02 633

Amazon ElastiCache for Redis User Guide

Name Details Description

min-repli
cas-max-l
ag

Default: 10

Type: integer

Modifiable: Yes

Former name: min-slaves-
max-lag

Changes Take Effect: Immediate
ly

The number of seconds within which the
primary node must receive a ping request
from a read replica. If this amount of time
passes and the primary does not receive a
ping, then the replica is no longer considered
available. If the number of available replicas
drops below min-replicas-to-write, then the
 primary will stop accepting writes at that
point.

If either this parameter or min-replicas-to-
write is 0, then the primary node will always
accept write requests, even if no replicas are
available.

close-on-
replica-w
rite

Default: yes

Type: boolean

Modifiable: Yes

Former name: close-on-slave-
write

Changes Take Effect: Immediate
ly

If enabled, clients who attempt to write to a
read-only replica will be disconnected.

Parameters removed in Redis 5.0

Name Details Description

repl-time
out Default: 60

Modifiable: No

Parameter is not available in this version.

Configuring engine parameters using parameter groups API Version 2015-02-02 634

Amazon ElastiCache for Redis User Guide

Redis 4.0.10 parameter changes

Parameter group family: redis4.0

Redis 4.0.x default parameter groups

• default.redis4.0 – Use this parameter group, or one derived from it, for Redis (cluster mode
disabled) clusters and replication groups.

• default.redis4.0.cluster.on – Use this parameter group, or one derived from it, for Redis
(cluster mode enabled) clusters and replication groups.

Parameters changed in Redis 4.0.10

Name Details Description

maxmemory
-policy Permitted values: allkeys-

lru , volatile-
lru , allkeys-lfu ,
 volatile-lfu , allkeys-
random , volatile-
random , volatile-ttl ,
noeviction

Default: volatile-lru

Type: string

Modifiable: Yes

Changes take place:
immediately

maxmemory-policy was added in version
2.6.13. In version 4.0.10 two new permitted
values are added: allkeys-lfu , which
will evict any key using approximated LFU,
and volatile-lfu , which will evict usin
g approximated LFU among the keys with
an expire set. In version 6.2, when the r6gd
node family was introduced for use with data-
tiering, only noeviction , volatile-lru
and allkeys-lru max-memory policies are
supported with r6gd node types.

Parameters added in Redis 4.0.10

Name Details Description

Async deletion parameters

Configuring engine parameters using parameter groups API Version 2015-02-02 635

Amazon ElastiCache for Redis User Guide

Name Details Description

lazyfree-lazy-evic
tion Permitted values: yes/no

Default: no

Type: boolean

Modifiable: Yes

Changes take place:
immediately

Performs an asynchronous
delete on evictions.

lazyfree-lazy-expire
Permitted values: yes/no

Default: no

Type: boolean

Modifiable: Yes

Changes take place:
immediately

Performs an asynchronous
delete on expired keys.

lazyfree-lazy-serv
er-del Permitted values: yes/no

Default: no

Type: boolean

Modifiable: Yes

Changes take place:
immediately

Performs an asynchronous
delete for commands which
update values.

Configuring engine parameters using parameter groups API Version 2015-02-02 636

Amazon ElastiCache for Redis User Guide

Name Details Description

slave-lazy-flush
Permitted values: N/A

Default: no

Type: boolean

Modifiable: No

Changes take place: N/A

Performs an asynchronous
flushDB during slave sync.

LFU parameters

lfu-log-factor
Permitted values: any integer > 0

Default: 10

Type: integer

Modifiable: Yes

Changes take place:
immediately

Set the log factor, which
determines the number of
key hits to saturate the key
counter.

lfu-decay-time
Permitted values: any integer

Default: 1

Type: integer

Modifiable: Yes

Changes take place:
immediately

The amount of time in
minutes to decrement the
key counter.

Active defragmentation parameters

Configuring engine parameters using parameter groups API Version 2015-02-02 637

Amazon ElastiCache for Redis User Guide

Name Details Description

activedefrag
Permitted values: yes/no

Default: no

Type: boolean

Modifiable: Yes

Changes take place:
immediately

Enabled active defragmen
tation.

active-defrag-igno
re-bytes Permitted values: 10485760-

104857600

Default: 104857600

Type: integer

Modifiable: Yes

Changes take place:
immediately

Minimum amount of
fragmentation waste to start
active defrag.

active-defrag-thre
shold-lower Permitted values: 1-100

Default: 10

Type: integer

Modifiable: Yes

Changes take place:
immediately

Minimum percentage of
fragmentation to start active
 defrag.

Configuring engine parameters using parameter groups API Version 2015-02-02 638

Amazon ElastiCache for Redis User Guide

Name Details Description

active-defrag-thre
shold-upper Permitted values: 1-100

Default: 100

Type: integer

Modifiable: Yes

Changes take place:
immediately

Maximum percentage of
fragmentation at which we
use maximum effort.

active-defrag-cycle-
min Permitted values: 1-75

Default: 25

Type: integer

Modifiable: Yes

Changes take place:
immediately

Minimal effort for defrag in
CPU percentage.

active-defrag-cycle-
max Permitted values: 1-75

Default: 75

Type: integer

Modifiable: Yes

Changes take place:
immediately

Maximal effort for defrag in
CPU percentage.

Client output buffer parameters

Configuring engine parameters using parameter groups API Version 2015-02-02 639

Amazon ElastiCache for Redis User Guide

Name Details Description

client-query-buffer-
limit Permitted values: 1048576-1

073741824

Default: 1073741824

Type: integer

Modifiable: Yes

Changes take place:
immediately

Max size of a single client
query buffer.

proto-max-bulk-len
Permitted values: 1048576-5
36870912

Default: 536870912

Type: integer

Modifiable: Yes

Changes take place:
immediately

Max size of a single element
request.

Redis 3.2.10 parameter changes

Parameter group family: redis3.2

ElastiCache for Redis 3.2.10 there are no additional parameters supported.

Redis 3.2.6 parameter changes

Parameter group family: redis3.2

For Redis 3.2.6 there are no additional parameters supported.

Redis 3.2.4 parameter changes

Parameter group family: redis3.2

Configuring engine parameters using parameter groups API Version 2015-02-02 640

Amazon ElastiCache for Redis User Guide

Beginning with Redis 3.2.4 there are two default parameter groups.

• default.redis3.2 – When running Redis 3.2.4, specify this parameter group or one derived
from it, if you want to create a Redis (cluster mode disabled) replication group and still use the
additional features of Redis 3.2.4.

• default.redis3.2.cluster.on – Specify this parameter group or one derived from it, when
you want to create a Redis (cluster mode enabled) replication group.

Topics

• New parameters for Redis 3.2.4

• Parameters changed in Redis 3.2.4 (enhanced)

New parameters for Redis 3.2.4

Parameter group family: redis3.2

For Redis 3.2.4 the following additional parameters are supported.

Name Details Description

list-max-
ziplist-s
ize

Default: -2

Type: integer

Modifiable: No

Lists are encoded in a special way to save
space. The number of entries allowed per
internal list node can be specified as a fixed
maximum size or a maximum number of
elements. For a fixed maximum size, use -5
through -1, meaning:

•
-5: max size: 64 Kb - not recommended for
normal workloads

•
-4: max size: 32 Kb - not recommended

•
-3: max size: 16 Kb - not recommended

•
-2: max size: 8 Kb - recommended

•
-1: max size: 4 Kb - recommended

Configuring engine parameters using parameter groups API Version 2015-02-02 641

Amazon ElastiCache for Redis User Guide

Name Details Description

•
Positive numbers mean store up to exactly
that number of elements per list node.

list-comp
ress-dept
h

Default: 0

Type: integer

Modifiable: Yes

Changes Take Effect: Immediate
ly

Lists may also be compressed. Compress
depth is the number of quicklist ziplist nodes
from each side of the list to exclude from
compression. The head and tail of the list are
always uncompressed for fast push and pop
operations. Settings are:

•
0: Disable all compression.

•
1: Start compressing with the 1st node in
from the head and tail.

[head]->node->node->...->node->[tail]

All nodes except [head] and [tail] compress
.

•
2: Start compressing with the 2nd node in
from the head and tail.

[head]->[next]->node->node->...->node-
>[prev]->[tail]

[head], [next], [prev], [tail] do not compress.
 All other nodes compress.

•
Etc.

Configuring engine parameters using parameter groups API Version 2015-02-02 642

Amazon ElastiCache for Redis User Guide

Name Details Description

cluster-e
nabled Default: no/yes *

Type: string

Modifiable: No

Indicates whether this is a Redis (cluster
mode enabled) replication group in cluster
mode (yes) or a Redis (cluster mode enabled)
replication group in non-cluster mode (no).
Redis (cluster mode enabled) replication
groups in cluster mode can partition their data
across up to 500 node groups.

* Redis 3.2.x has two default parameter
groups.

•
default.redis3.2 – default value no.

•
default.redis3.2.cluster.on –
 default value yes.

.

cluster-r
equire-fu
ll-covera
ge

Default: no

Type: boolean

Modifiable: yes

Changes Take Effect: Immediate
ly

When set to yes, Redis (cluster mode enabled)
nodes in cluster mode stop accepting queries
if they detect there is at least one hash slot
uncovered (no available node is serving it).
This way if the cluster is partially down, the
 cluster becomes unavailable. It automatically
becomes available again as soon as all the
slots are covered again.

However, sometimes you want the subset of
the cluster which is working to continue to
accept queries for the part of the key space
that is still covered. To do so, just set the
cluster-require-full-coverage
option to no.

Configuring engine parameters using parameter groups API Version 2015-02-02 643

Amazon ElastiCache for Redis User Guide

Name Details Description

hll-spars
e-max-byt
es

Default: 3000

Type: integer

Modifiable: Yes

Changes Take Effect: Immediate
ly

HyperLogLog sparse representation bytes
limit. The limit includes the 16 byte header.
When a HyperLogLog using the sparse
representation crosses this limit, it is conve
rted into the dense representation.

A value greater than 16000 is not recommend
ed, because at that point the dense represent
ation is more memory efficient.

We recommend a value of about 3000 to have
the benefits of the space-efficient encoding
without slowing down PFADD too much,
which is O(N) with the sparse encoding. The
value can be raised to ~10000 when CPU is
not a concern, but space is, and the data set
is composed of many HyperLogLogs with car
dinality in the 0 - 15000 range.

reserved-
memory-pe
rcent

Default: 25

Type: integer

Modifiable: Yes

Changes Take Effect: Immediate
ly

The percent of a node's memory reserved
for nondata use. By default, the Redis data
footprint grows until it consumes all of the
node's memory. If this occurs, then node per
formance will likely suffer due to excessive
memory paging. By reserving memory, you
can set aside some of the available memory
for non-Redis purposes to help reduce the
 amount of paging.

This parameter is specific to ElastiCache, and is
not part of the standard Redis distribution.

For more information, see reserved-
memory and Managing Reserved Memory.

Configuring engine parameters using parameter groups API Version 2015-02-02 644

Amazon ElastiCache for Redis User Guide

Parameters changed in Redis 3.2.4 (enhanced)

Parameter group family: redis3.2

For Redis 3.2.4 the following parameters were changed.

Name Details Change

activereh
ashing

Modifiable: Yes if the
parameter group is not asso
ciated with any cache clusters.
Otherwise, no.

Modifiable was No.

databases Modifiable: Yes if the
parameter group is not asso
ciated with any cache clusters.
Otherwise, no.

Modifiable was No.

appendonl
y

Default: off

Modifiable: No

If you want to upgrade from an earlier Redis
version, you must first turn appendonly
 off.

appendfsy
nc

Default: off

Modifiable: No

If you want to upgrade from an earlier Redis
version, you must first turn appendfsync
 off.

repl-time
out

Default: 60

Modifiable: No

Is now unmodifiable with a default of 60.

tcp-keepa
live

Default: 300 Default was 0.

list-max-
ziplist-e
ntries

Parameter is no longer available.

list-max-
ziplist-v
alue

Parameter is no longer available.

Configuring engine parameters using parameter groups API Version 2015-02-02 645

Amazon ElastiCache for Redis User Guide

Redis 2.8.24 (enhanced) added parameters

Parameter group family: redis2.8

For Redis 2.8.24 there are no additional parameters supported.

Redis 2.8.23 (enhanced) added parameters

Parameter group family: redis2.8

For Redis 2.8.23 the following additional parameter is supported.

Name Details Description

close-on-
slave-wri
te

Default: yes

Type: string (yes/no)

Modifiable: Yes

Changes Take Effect: Immediate
ly

If enabled, clients who attempt to write to a
read-only replica will be disconnected.

How close-on-slave-write works

The close-on-slave-write parameter is introduced by Amazon ElastiCache to give you more
control over how your cluster responds when a primary node and a read replica node swap roles
due to promoting a read replica to primary.

Configuring engine parameters using parameter groups API Version 2015-02-02 646

Amazon ElastiCache for Redis User Guide

If the read-replica cluster is promoted to primary for any reason other than a Multi-AZ enabled
replication group failing over, the client will continue trying to write to endpoint A. Because
endpoint A is now the endpoint for a read-replica, these writes will fail. This is the behavior for
Redis before ElastiCache introducing close-on-replica-write and the behavior if you disable
close-on-replica-write.

With close-on-replica-write enabled, any time a client attempts to write to a read-
replica, the client connection to the cluster is closed. Your application logic should detect the
disconnection, check the DNS table, and reconnect to the primary endpoint, which now would be
endpoint B.

When you might disable close-on-replica-write

If disabling close-on-replica-write results in writes to the failing cluster, why disable close-
on-replica-write?

As previously mentioned, with close-on-replica-write enabled, any time a client attempts to
write to a read-replica the client connection to the cluster is closed. Establishing a new connection
to the node takes time. Thus, disconnecting and reconnecting as a result of a write request to the

Configuring engine parameters using parameter groups API Version 2015-02-02 647

Amazon ElastiCache for Redis User Guide

replica also affects the latency of read requests that are served through the same connection. This
effect remains in place until a new connection is established. If your application is especially read-
heavy or very latency-sensitive, you might keep your clients connected to avoid degrading read
performance.

Redis 2.8.22 (enhanced) added parameters

Parameter group family: redis2.8

For Redis 2.8.22 there are no additional parameters supported.

Important

• Beginning with Redis version 2.8.22, repl-backlog-size applies to the primary cluster
as well as to replica clusters.

• Beginning with Redis version 2.8.22, the repl-timeout parameter is not supported. If it
is changed, ElastiCache will overwrite with the default (60s), as we do with appendonly.

The following parameters are no longer supported.

• appendonly

• appendfsync

• repl-timeout

Redis 2.8.21 added parameters

Parameter group family: redis2.8

For Redis 2.8.21, there are no additional parameters supported.

Redis 2.8.19 added parameters

Parameter group family: redis2.8

For Redis 2.8.19 there are no additional parameters supported.

Redis 2.8.6 added parameters

Parameter group family: redis2.8

Configuring engine parameters using parameter groups API Version 2015-02-02 648

Amazon ElastiCache for Redis User Guide

For Redis 2.8.6 the following additional parameters are supported.

Name Details Description

min-slaves-max-lag Default: 10

Type: integer

Modifiable: Yes

Changes Take Effect: Immediate
ly

The number of seconds within
which the primary node must
receive a ping request from a read
replica. If this amount of time
passes and the primary does not
receive a ping, then the replica is
no longer considered available. If
the number of available replicas
drops below min-slaves-to-writ
e, then the primary will stop
accepting writes at that point.

If either this parameter or min-
slaves-to-write is 0, then the
 primary node will always accept
writes requests, even if no replic
as are available.

min-slaves-to-write Default: 0

Type: integer

Modifiable: Yes

Changes Take Effect: Immediate
ly

The minimum number of read
replicas which must be available
 in order for the primary node
to accept writes from clients. If
 the number of available replicas
falls below this number, then
 the primary node will no longer
accept write requests.

If either this parameter or min-
slaves-max-lag is 0, then the
 primary node will always accept
writes requests, even if no replic
as are available.

Configuring engine parameters using parameter groups API Version 2015-02-02 649

Amazon ElastiCache for Redis User Guide

Name Details Description

notify-keyspace-events Default: (an empty
string)

Type: string

Modifiable: Yes

Changes Take Effect: Immediate
ly

The types of keyspace events that
Redis can notify clients of. Each
event type is represented by a
single letter:

•
K — Keyspace events,
published with a prefix of
 __keyspace@<db>__

•
E — Key-event events,
published with a prefix of
 __keyevent@<db>__

•
g — Generic, non-specific
commands such as DEL,
 EXPIRE, RENAME, etc.

•
$ — String commands

•
l — List commands

•
s — Set commands

•
h — Hash commands

•
z — Sorted set commands

•
x — Expired events (events
generated every time a key exp
ires)

•
e — Evicted events (events
generated when a key is evicted
for maxmemory)

•

Configuring engine parameters using parameter groups API Version 2015-02-02 650

Amazon ElastiCache for Redis User Guide

Name Details Description

A — An alias for g$lshzxe

You can have any combination of
these event types. For example,
AKE means that Redis can publish
 notifications of all event types.

Do not use any characters other
than those listed above; at
tempts to do so will result in error
messages.

By default, this parameter is set
to an empty string, meaning t
hat keyspace event notification is
disabled.

Configuring engine parameters using parameter groups API Version 2015-02-02 651

Amazon ElastiCache for Redis User Guide

Name Details Description

repl-backlog-size Default: 1048576

Type: integer

Modifiable: Yes

Changes Take Effect: Immediate
ly

The size, in bytes, of the primary
node backlog buffer. The backlog
is used for recording updates to
data at the primary node. When
a read replica connects to the
primary, it attempts to perform
a partial sync (psync), where it
applies data from the backlog to
catch up with the primary node. If
the psync fails, then a full sync
is required.

The minimum value for this
parameter is 16384.

Note

Beginning with Redis
2.8.22, this parameter
applies to the primary
cluster as well as the read
replicas.

Configuring engine parameters using parameter groups API Version 2015-02-02 652

Amazon ElastiCache for Redis User Guide

Name Details Description

repl-backlog-ttl Default: 3600

Type: integer

Modifiable: Yes

Changes Take Effect: Immediate
ly

The number of seconds that the
primary node will retain the
 backlog buffer. Starting from
the time the last replica node
 disconnected, the data in the
backlog will remain intact until
 repl-backlog-ttl expires.
If the replica has not connected
to the primary within this time,
then the primary will release the
backlog buffer. When the replica
eventually reconnects, it will have
to perform a full sync with the
 primary.

If this parameter is set to 0, then
the backlog buffer will never be
released.

repl-timeout Default: 60

Type: integer

Modifiable: Yes

Changes Take Effect: Immediate
ly

Represents the timeout period, in
seconds, for:

•
Bulk data transfer during
synchronization, from the read
replica's perspective

•
Primary node timeout from the
replica's perspective

•
Replica timeout from the
primary node's perspective

Redis 2.6.13 parameters

Parameter group family: redis2.6

Configuring engine parameters using parameter groups API Version 2015-02-02 653

Amazon ElastiCache for Redis User Guide

Redis 2.6.13 was the first version of Redis supported by ElastiCache. The following table shows the
Redis 2.6.13 parameters that ElastiCache supports.

Name Details Description

activereh
ashing

Default: yes

Type: string (yes/no)

Modifiable: Yes

Changes take place:
At Creation

Determines whether to enable Redis' active
rehashing feature. The main hash table is
rehashed ten times per second; each rehash
operation consumes 1 millisecond of CPU
time.

This value is set when you create the
parameter group. When assigning a new
parameter group to a cluster, this value
must be the same in both the old and new
parameter groups.

appendonl
y

Default: no

Type: string

Modifiable: Yes

Changes Take Effect: Immediate
ly

Enables or disables Redis' append only file
feature (AOF). AOF captures any Redis
commands that change data in the cache, and
is used to recover from certain node failures.

The default value is no, meaning AOF is
turned off. Set this parameter to yes to enable
AOF.

For more information, see Mitigating Failures.

Note

Append Only Files (AOF) is not
supported for cache.t1.micro and
cache.t2.* nodes. For nodes of this
type, the appendonly parameter
value is ignored.

Configuring engine parameters using parameter groups API Version 2015-02-02 654

Amazon ElastiCache for Redis User Guide

Name Details Description

Note

For Multi-AZ replication groups, AOF is
not allowed.

appendfsy
nc

Default: everysec

Type: string

Modifiable: Yes

Changes Take Effect: Immediate
ly

When appendonly is set to yes, controls
how often the AOF output buffer is written to
disk:

•
no — the buffer is flushed to disk on an as-
needed basis.

•
everysec — the buffer is flushed once per
second. This is the default.

•
always — the buffer is flushed every time
that data in the cluster is modified.

•
Appendfsync is not supported for versions
2.8.22 and later.

client-ou
tput-buff
er-limit-
normal-ha
rd-limit

Default: 0

Type: integer

Modifiable: Yes

Changes Take Effect: Immediate
ly

If a client's output buffer reaches the specified
number of bytes, the client will be disconnec
ted. The default is zero (no hard limit).

Configuring engine parameters using parameter groups API Version 2015-02-02 655

Amazon ElastiCache for Redis User Guide

Name Details Description

client-ou
tput-buff
er-limit-
normal-so
ft-limit

Default: 0

Type: integer

Modifiable: Yes

Changes Take Effect: Immediate
ly

If a client's output buffer reaches the specified
number of bytes, the client will be disconnec
ted, but only if this condition persists for
 client-output-buffer-limit-
normal-soft-seconds . The default is
zero (no soft limit).

client-ou
tput-buff
er-limit-
normal-so
ft-second
s

Default: 0

Type: integer

Modifiable: Yes

Changes Take Effect: Immediate
ly

If a client's output buffer remains at client-
output-buffer-limit-normal-
soft-limit bytes for longer than this
number of seconds, the client will be disconn
ected. The default is zero (no time limit).

client-ou
tput-buff
er-limit-
pubsub-ha
rd-limit

Default: 33554432

Type: integer

Modifiable: Yes

Changes Take Effect: Immediate
ly

For Redis publish/subscribe clients: If a client's
output buffer reaches the specified number of
bytes, the client will be disconnected.

client-ou
tput-buff
er-limit-
pubsub-so
ft-limit

Default: 8388608

Type: integer

Modifiable: Yes

Changes Take Effect: Immediate
ly

For Redis publish/subscribe clients: If a client's
output buffer reaches the specified number
of bytes, the client will be disconnected, but
only if this condition persists for client-ou
tput-buffer-limit-pubsub-soft-
seconds .

Configuring engine parameters using parameter groups API Version 2015-02-02 656

Amazon ElastiCache for Redis User Guide

Name Details Description

client-ou
tput-buff
er-limit-
pubsub-so
ft-second
s

Default: 60

Type: integer

Modifiable: Yes

Changes Take Effect: Immediate
ly

For Redis publish/subscribe clients: If a client's
output buffer remains at client-output-
buffer-limit-pubsub-soft-limit
bytes for longer than this number of seconds,
the client will be disconnected.

client-ou
tput-buff
er-limit-
slave-har
d-limit

Default: For values see Redis
node-type specific para
meters

Type: integer

Modifiable: No

For Redis read replicas: If a client's output
buffer reaches the specified number of bytes,
the client will be disconnected.

client-ou
tput-buff
er-limit-
slave-sof
t-limit

Default: For values see Redis
node-type specific para
meters

Type: integer

Modifiable: No

For Redis read replicas: If a client's output
buffer reaches the specified number of bytes,
the client will be disconnected, but only if
this condition persists for client-output-
buffer-limit-slave-soft-seconds

.

client-ou
tput-buff
er-limit-
slave-sof
t-seconds

Default: 60

Type: integer

Modifiable: No

For Redis read replicas: If a client's output
buffer remains at client-output-buff
er-limit-slave-soft-limit bytes
 for longer than this number of seconds, the
client will be disconnected.

Configuring engine parameters using parameter groups API Version 2015-02-02 657

Amazon ElastiCache for Redis User Guide

Name Details Description

databases Default: 16

Type: integer

Modifiable: No

Changes take place:
At Creation

The number of logical partitions the databases
is split into. We recommend keeping this
value low.

This value is set when you create the
parameter group. When assigning a new
parameter group to a cluster, this value
must be the same in both the old and new
parameter groups.

hash-max-
ziplist-e
ntries

Default: 512

Type: integer

Modifiable: Yes

Changes Take Effect: Immediate
ly

Determines the amount of memory used for
hashes. Hashes with fewer than the specified
number of entries are stored using a special
encoding that saves space.

hash-max-
ziplist-v
alue

Default: 64

Type: integer

Modifiable: Yes

Changes Take Effect: Immediate
ly

Determines the amount of memory used for
hashes. Hashes with entries that are smaller
than the specified number of bytes are stored
using a special encoding that saves space.

list-max-
ziplist-e
ntries

Default: 512

Type: integer

Modifiable: Yes

Changes Take Effect: Immediate
ly

Determines the amount of memory used
for lists. Lists with fewer than the specified
number of entries are stored using a special
 encoding that saves space.

Configuring engine parameters using parameter groups API Version 2015-02-02 658

Amazon ElastiCache for Redis User Guide

Name Details Description

list-max-
ziplist-v
alue

Default: 64

Type: integer

Modifiable: Yes

Changes Take Effect: Immediate
ly

Determines the amount of memory used for
lists. Lists with entries that are smaller than
the specified number of bytes are stored
using a special encoding that saves space.

lua-time-
limit

Default: 5000

Type: integer

Modifiable: No

The maximum execution time for a Lua script,
in milliseconds, before ElastiCache takes
action to stop the script.

If lua-time-limit is exceeded, all
Redis commands will return an error of
the form ____-BUSY. Since this state can
cause interference with many essential
 Redis operations, ElastiCache will first issue a
SCRIPT KILL command. If this is unsuccessful,
ElastiCache will forcibly restart Redis.

Default: 65000

Type: integer

Modifiable: No

t2.medium Default: 20000

Type: integer

Modifiable: No

maxclient
s This value
applies to
all instan
ce types
except those
explicity
specified

t2.small Default: 20000

Type: integer

Modifiable: No

The maximum number of clients that can be
connected at one time.

Configuring engine parameters using parameter groups API Version 2015-02-02 659

Amazon ElastiCache for Redis User Guide

Name Details Description

t2.micro Default: 20000

Type: integer

Modifiable: No

t4g.micro Default: 20000

Type: integer

Modifiable: No

t3.medium Default: 65000

Type: integer

Modifiable: No

t3.small Default: 65000

Type: integer

Modifiable: No

t3.micro Default: 20000

Type: integer

Modifiable: No

maxmemory
-policy

Default: volatile-lru

Type: string

Modifiable: Yes

Changes Take Effect: Immediate
ly

The eviction policy for keys when maximum
memory usage is reached.

Valid values are: volatile-lru |
allkeys-lru | volatile-random |
allkeys-random | volatile-ttl |
noeviction

For more information, see Using Redis as an
 LRU cache.

Configuring engine parameters using parameter groups API Version 2015-02-02 660

https://redis.io/topics/lru-cache
https://redis.io/topics/lru-cache

Amazon ElastiCache for Redis User Guide

Name Details Description

maxmemory
-samples

Default: 3

Type: integer

Modifiable: Yes

Changes Take Effect: Immediate
ly

For least-recently-used (LRU) and time-to-live
(TTL) calculations, this parameter represents
the sample size of keys to check. By default,
Redis chooses 3 keys and uses the one that
was used least recently.

reserved-
memory

Default: 0

Type: integer

Modifiable: Yes

Changes Take Effect: Immediate
ly

The total memory, in bytes, reserved for non-
data usage. By default, the Redis node will
grow until it consumes the node's maxmemory

 (see Redis node-type specific parameters).
If this occurs, then node performance will
likely suffer due to excessive memory paging.
By reserving memory you can set aside som
e of the available memory for non-Redis
purposes to help reduce the amount of
paging.

This parameter is specific to ElastiCache, and is
not part of the standard Redis distribution.

For more information, see reserved-
memory-percent and Managing Reserved
Memory.

set-max-i
ntset-ent
ries

Default: 512

Type: integer

Modifiable: Yes

Changes Take Effect: Immediate
ly

Determines the amount of memory used for
certain kinds of sets (strings that are integers
in radix 10 in the range of 64 bit signed int
egers). Such sets with fewer than the specified
number of entries are stored using a special
encoding that saves space.

Configuring engine parameters using parameter groups API Version 2015-02-02 661

Amazon ElastiCache for Redis User Guide

Name Details Description

slave-all
ow-chaini
ng

Default: no

Type: string

Modifiable: No

Determines whether a read replica in Redis can
have read replicas of its own.

slowlog-l
og-slower
-than

Default: 10000

Type: integer

Modifiable: Yes

Changes Take Effect: Immediate
ly

The maximum execution time, in microseco
nds, for commands to be logged by the Redis
Slow Log feature.

slowlog-m
ax-len

Default: 128

Type: integer

Modifiable: Yes

Changes Take Effect: Immediate
ly

The maximum length of the Redis Slow Log.

tcp-keepa
live

Default: 0

Type: integer

Modifiable: Yes

Changes Take Effect: Immediate
ly

If this is set to a nonzero value (N), node
clients are polled every N seconds to ensure
that they are still connected. With the default
setting of 0, no such polling occurs.

Important

Some aspects of this parameter
changed in Redis version 3.2.4. See
Parameters changed in Redis 3.2.4
(enhanced).

Configuring engine parameters using parameter groups API Version 2015-02-02 662

Amazon ElastiCache for Redis User Guide

Name Details Description

timeout Default: 0

Type: integer

Modifiable: Yes

Changes Take Effect: Immediate
ly

The number of seconds a node waits before
timing out. Values are:

•
0 – never disconnect an idle client.

•
1-19 – invalid values.

•
>=20 – the number of seconds a node waits
before disconnecting an idle client.

zset-max-
ziplist-e
ntries

Default: 128

Type: integer

Modifiable: Yes

Changes Take Effect: Immediate
ly

Determines the amount of memory used for
sorted sets. Sorted sets with fewer than the
specified number of elements are stored using
a special encoding that saves space.

zset-max-
ziplist-v
alue

Default: 64

Type: integer

Modifiable: Yes

Changes Take Effect: Immediate
ly

Determines the amount of memory used for
sorted sets. Sorted sets with entries that are
smaller than the specified number of bytes
are stored using a special encoding that saves
space.

Note

If you do not specify a parameter group for your Redis 2.6.13 cluster, then a default
parameter group (default.redis2.6) will be used. You cannot change the values of
any parameters in the default parameter group; however, you can always create a custom
parameter group and assign it to your cluster at any time.

Configuring engine parameters using parameter groups API Version 2015-02-02 663

Amazon ElastiCache for Redis User Guide

Redis node-type specific parameters

Although most parameters have a single value, some parameters have different values depending
on the node type used. The following table shows the default values for the maxmemory, client-
output-buffer-limit-slave-hard-limit, and client-output-buffer-limit-slave-
soft-limit parameters for each node type. The value of maxmemory is the maximum number
of bytes available to you for use, data and other uses, on the node. For more information, see
Available memory.

Note

The maxmemory parameter cannot be modified.

Node type Maxmemory Client-output-buff
er-limit-slave-har
d-limit

Client-output-buff
er-limit-slave-sof
t-limit

cache.t1.micro 142606336 14260633 14260633

cache.t2.micro 581959680 58195968 58195968

cache.t2.small 1665138688 166513868 166513868

cache.t2.medium 3461349376 346134937 346134937

cache.t3.micro 536870912 53687091 53687091

cache.t3.small 1471026299 147102629 147102629

cache.t3.medium 3317862236 331786223 331786223

cache.t4g.micro 536870912 53687091 53687091

cache.t4g.small 1471026299 147102629 147102629

cache.t4g.medium 3317862236 331786223 331786223

cache.m1.small 943718400 94371840 94371840

Configuring engine parameters using parameter groups API Version 2015-02-02 664

https://aws.amazon.com/premiumsupport/knowledge-center/available-memory-elasticache-redis-node/

Amazon ElastiCache for Redis User Guide

Node type Maxmemory Client-output-buff
er-limit-slave-har
d-limit

Client-output-buff
er-limit-slave-sof
t-limit

cache.m1.medium 3093299200 309329920 309329920

cache.m1.large 7025459200 702545920 702545920

cache.m1.xlarge 14889779200 1488977920 1488977920

cache.m2.xlarge 17091788800 1709178880 1709178880

cache.m2.2xlarge 35022438400 3502243840 3502243840

cache.m2.4xlarge 70883737600 7088373760 7088373760

cache.m3.medium 2988441600 309329920 309329920

cache.m3.large 6501171200 650117120 650117120

cache.m3.xlarge 14260633600 1426063360 1426063360

cache.m3.2xlarge 29989273600 2998927360 2998927360

cache.m4.large 6892593152 689259315 689259315

cache.m4.xlarge 15328501760 1532850176 1532850176

cache.m4.2xlarge 31889126359 3188912636 3188912636

cache.m4.4xlarge 65257290629 6525729063 6525729063

cache.m4.10xlarge 166047614239 16604761424 16604761424

cache.m5.large 6854542746 685454275 685454275

cache.m5.xlarge 13891921715 1389192172 1389192172

cache.m5.2xlarge 27966669210 2796666921 2796666921

cache.m5.4xlarge 56116178125 5611617812 5611617812

Configuring engine parameters using parameter groups API Version 2015-02-02 665

Amazon ElastiCache for Redis User Guide

Node type Maxmemory Client-output-buff
er-limit-slave-har
d-limit

Client-output-buff
er-limit-slave-sof
t-limit

cache.m5.12xlarge 168715971994 16871597199 16871597199

cache.m5.24xlarge 337500562842 33750056284 33750056284

cache.m6g.large 6854542746 685454275 685454275

cache.m6g.xlarge 13891921715 1389192172 1389192172

cache.m6g.2xlarge 27966669210 2796666921 2796666921

cache.m6g.4xlarge 56116178125 5611617812 5611617812

cache.m6g.8xlarge 111325552312 11132555231 11132555231

cache.m6g.12xlarge 168715971994 16871597199 16871597199

cache.m6g.16xlarge 225000375228 22500037523 22500037523

cache.c1.xlarge 6501171200 650117120 650117120

cache.r3.large 14470348800 1468006400 1468006400

cache.r3.xlarge 30513561600 3040870400 3040870400

cache.r3.2xlarge 62495129600 6081740800 6081740800

cache.r3.4xlarge 126458265600 12268339200 12268339200

cache.r3.8xlarge 254384537600 24536678400 24536678400

cache.r4.large 13201781556 1320178155 1320178155

cache.r4.xlarge 26898228839 2689822883 2689822883

cache.r4.2xlarge 54197537997 5419753799 5419753799

cache.r4.4xlarge 108858546586 10885854658 10885854658

Configuring engine parameters using parameter groups API Version 2015-02-02 666

Amazon ElastiCache for Redis User Guide

Node type Maxmemory Client-output-buff
er-limit-slave-har
d-limit

Client-output-buff
er-limit-slave-sof
t-limit

cache.r4.8xlarge 218255432090 21825543209 21825543209

cache.r4.16xlarge 437021573120 43702157312 43702157312

cache.r5.large 14037181030 1403718103 1403718103

cache.r5.xlarge 28261849702 2826184970 2826184970

cache.r5.2xlarge 56711183565 5671118356 5671118356

cache.r5.4xlarge 113609865216 11360986522 11360986522

cache.r5.12xlarge 341206346547 34120634655 34120634655

cache.r5.24xlarge 682485973811 68248597381 68248597381

cache.r6g.large 14037181030 1403718103 1403718103

cache.r6g.xlarge 28261849702 2826184970 2826184970

cache.r6g.2xlarge 56711183565 5671118356 5671118356

cache.r6g.4xlarge 113609865216 11360986522 11360986522

cache.r6g.8xlarge 225000375228 22500037523 22500037523

cache.r6g.12xlarge 341206346547 34120634655 34120634655

cache.r6g.16xlarge 450000750456 45000075046 45000075046

cache.r6gd.xlarge 28261849702 2826184970 2826184970

cache.r6gd.2xlarge 56711183565 5671118356 5671118356

cache.r6gd.4xlarge 113609865216 11360986522 11360986522

cache.r6gd.8xlarge 225000375228 22500037523 22500037523

Configuring engine parameters using parameter groups API Version 2015-02-02 667

Amazon ElastiCache for Redis User Guide

Node type Maxmemory Client-output-buff
er-limit-slave-har
d-limit

Client-output-buff
er-limit-slave-sof
t-limit

cache.r6gd.12xlarge 341206346547 34120634655 34120634655

cache.r6gd.16xlarge 450000750456 45000075046 45000075046

cache.r7g.large 14037181030 1403718103 1403718103

cache.r7g.xlarge 28261849702 2826184970 2826184970

cache.r7g.2xlarge 56711183565 5671118356 5671118356

cache.r7g.4xlarge 113609865216 11360986522 11360986522

cache.r7g.8xlarge 225000375228 22500037523 22500037523

cache.r7g.12xlarge 341206346547 34120634655 34120634655

cache.r7g.16xlarge 450000750456 45000075046 45000075046

cache.m7g.large 6854542746 685454275 685454275

cache.m7g.xlarge 13891921715 1389192172 1389192172

cache.m7g.2xlarge 27966669210 2796666921 2796666921

cache.m7g.4xlarge 56116178125 5611617812 5611617812

cache.m7g.8xlarge 111325552312 11132555231 11132555231

cache.m7g.12xlarge 168715971994 16871597199 16871597199

cache.m7g.16xlarge 225000375228 22500037523 22500037523

cache.c7gn.large 3317862236 1403718103 1403718103

cache.c7gn.xlarge 6854542746 2826184970 2826184970

cache.c7gn.2xlarge 13891921715 5671118356 5671118356

Configuring engine parameters using parameter groups API Version 2015-02-02 668

Amazon ElastiCache for Redis User Guide

Node type Maxmemory Client-output-buff
er-limit-slave-har
d-limit

Client-output-buff
er-limit-slave-sof
t-limit

cache.c7gn.4xlarge 27966669210 11360986522 11360986522

cache.c7gn.8xlarge 56116178125 22500037523 22500037523

cache.c7gn.12xlarge 84357985997 34120634655 34120634655

cache.c7gn.16xlarge 113609865216 45000075046 45000075046

Note

All current generation instance types are created in an Amazon Virtual Private Cloud VPC
by default.
T1 instances do not support Multi-AZ.
T1 and T2 instances do not support Redis AOF.
Redis configuration variables appendonly and appendfsync are not supported on Redis
version 2.8.22 and later.

Scaling ElastiCache for Redis

Scaling ElastiCache Serverless

ElastiCache Serverless automatically accommodates your workload traffic as it ramps up or down.
For each ElastiCache Serverless cache, ElastiCache continuously tracks the utilization of resources
such as CPU, memory, and network. When any of these resources are constrained, ElastiCache
Serverless scales out by adding a new shard and redistributing data to the new shard, without
any downtime to your application. You can monitor the resources being consumed by your cache
in CloudWatch by monitoring the BytesUsedForCache metric for cache data storage and
ElastiCacheProcessingUnits (ECPU) for compute usage.

Setting scaling limits to manage costs

Scaling ElastiCache for Redis API Version 2015-02-02 669

Amazon ElastiCache for Redis User Guide

You can choose to configure a maximum usage on both cache data storage and ECPU/second for
your cache to control cache costs. Doing so will ensure that your cache usage never exceeds the
configured maximum.

If you set a scaling maximum, your application may experience decreased cache performance when
the cache hits the maximum. When you set a cache data storage maximum and your cache data
storage hits the maximum, ElastiCache will begin evicting data in your cache that has a Time-To-
Live (TTL) set, using the LRU logic. If there is no data that can be evicted, then requests to write
additional data will receive an Out Of Memory (OOM) error message. When you set an ECPU/
second maximum and the compute utilization of your workload exceeds this value, ElastiCache will
begin throttling Redis requests.

If you setup a maximum limit on BytesUsedForCache or ElastiCacheProcessingUnits, we
highly recommend setting up a CloudWatch alarm at a value lower than the maximum limit so
that you are notified when your cache is operating close to these limits. We recommend setting an
alarm at 75% of the maximum limit you set. See documentation about how to set up CloudWatch
alarms.

Setting scaling limits using the console

1. Sign in to the AWS Management Console and open the ElastiCache console at https://
console.aws.amazon.com/elasticache/.

2. In the navigation pane, choose the engine running on the cache that you want to modify.

3. A list of caches running the chosen engine appears.

4. Choose the cache to modify by choosing the radio button to the left of the cache’s name.

5. Choose Actions and then choose Modify.

6. Under Maximum usage limits, set appropriate Memory or Compute limits.

7. Click Preview changes and then Save changes.

Setting scaling limits using the AWS CLI

To change scaling limits using the CLI, use the modify-serverless-cache API.

Linux:

aws elasticache modify-serverless-cache --serverless-cache-name <cache name> \
--cache-usage-limits 'DataStorage={Maximum=100,Unit=GB},
 ECPUPerSecond={Maximum=100000}'

Scaling ElastiCache Serverless API Version 2015-02-02 670

https://console.aws.amazon.com/elasticache/
https://console.aws.amazon.com/elasticache/

Amazon ElastiCache for Redis User Guide

Windows:

aws elasticache modify-serverless-cache --serverless-cache-name <cache name> ^
--cache-usage-limits 'DataStorage={Maximum=100,Unit=GB},
 ECPUPerSecond={Maximum=100000}'

Removing scaling limits using the CLI

To remove scaling limits using the CLI, set the Maximum limit parameter to 0.

Linux:

aws elasticache modify-serverless-cache --serverless-cache-name <cache name> \
--cache-usage-limits 'DataStorage={Maximum=0,Unit=GB}, ECPUPerSecond={Maximum=0}'

Windows:

aws elasticache modify-serverless-cache --serverless-cache-name <cache name> ^
--cache-usage-limits 'DataStorage={Maximum=0,Unit=GB}, ECPUPerSecond={Maximum=0}'

Scaling ElastiCache for Redis self-designed clusters

The amount of data your application needs to process is seldom static. It increases and decreases
as your business grows or experiences normal fluctuations in demand. If you self-manage your
cache, you need to provision sufficient hardware for your demand peaks, which can be expensive.
By using Amazon ElastiCache you can scale to meet current demand, paying only for what you use.
ElastiCache enables you to scale your cache to match demand.

The following helps you find the correct topic for the scaling actions that you want to perform.

Scaling Redis clusters

Action Redis (cluster mode
disabled)

Redis (cluster mode enabled)

Scaling in Removing nodes from a
cluster

Scaling clusters in Redis
(Cluster Mode Enabled)

Scaling out Adding nodes to a cluster Online resharding and shard
rebalancing for Redis (cluster
mode enabled)

Scaling ElastiCache for Redis self-designed clusters API Version 2015-02-02 671

Clusters.html#AddNode

Amazon ElastiCache for Redis User Guide

Action Redis (cluster mode
disabled)

Redis (cluster mode enabled)

Changing node types To a larger node type:

•
Scaling up single-node
clusters for Redis (Cluster
Mode Disabled)

•
Scaling up Redis clusters
with replicas

To a smaller node type:

•
Scaling down single-node
Redis clusters

•
Scaling down Redis clusters
with replicas

Online vertical scaling by
modifying node type

Changing the number of node
groups

Not supported for Redis
(cluster mode disabled)
clusters

Scaling clusters in Redis
(Cluster Mode Enabled)

Topics

• Scaling clusters for Redis (Cluster Mode Disabled)

• Scaling clusters in Redis (Cluster Mode Enabled)

Scaling ElastiCache for Redis self-designed clusters API Version 2015-02-02 672

Amazon ElastiCache for Redis User Guide

Scaling clusters for Redis (Cluster Mode Disabled)

Redis (cluster mode disabled) clusters can be a single-node cluster with 0 shards or multi-node
clusters with 1 shard. Single-node clusters use the one node for both reads and writes. Multi-node
clusters always have 1 node as the read/write primary node with 0 to 5 read-only replica nodes.

Contents

• Scaling single-node clusters for Redis (Cluster Mode Disabled)

• Scaling up single-node clusters for Redis (Cluster Mode Disabled)

• Scaling up single-node clusters for Redis (Cluster Mode Disabled) (Console)

• Scaling up single-node Redis cache clusters (AWS CLI)

• Scaling up single-node Redis cache clusters (ElastiCache API)

• Scaling down single-node Redis clusters

• Scaling down a single-node Redis cluster (Console)

• Scaling down single-node Redis cache clusters (AWS CLI)

• Scaling down single-node Redis cache clusters (ElastiCache API)

• Scaling Redis (Cluster Mode Disabled) clusters with replica nodes

• Scaling up Redis clusters with replicas

• Scaling down Redis clusters with replicas

• Increasing read capacity

• Decreasing read capacity

Scaling single-node clusters for Redis (Cluster Mode Disabled)

Redis (cluster mode disabled) nodes must be large enough to contain all the cache's data plus Redis
overhead. To change the data capacity of your Redis (cluster mode disabled) cluster, you must scale
vertically; scaling up to a larger node type to increase data capacity, or scaling down to a smaller
node type to reduce data capacity.

The ElastiCache for Redis scaling up process is designed to make a best effort to retain your
existing data and requires successful Redis replication. For Redis (cluster mode disabled) clusters,
we recommend that sufficient memory be made available to Redis.

You cannot partition your data across multiple Redis (cluster mode disabled) clusters. However, if
you only need to increase or decrease your cluster's read capacity, you can create a Redis (cluster

Scaling ElastiCache for Redis self-designed clusters API Version 2015-02-02 673

Amazon ElastiCache for Redis User Guide

mode disabled) cluster with replica nodes and add or remove read replicas. To create a Redis
(cluster mode disabled) cluster with replica nodes using your single-node Redis cache cluster as the
primary cluster, see Creating a Redis (cluster mode disabled) cluster (Console).

After you create the cluster with replicas, you can increase read capacity by adding read
replicas. Later, if you need to, you can reduce read capacity by removing read replicas. For more
information, see Increasing read capacity or Decreasing read capacity.

In addition to being able to scale read capacity, Redis (cluster mode disabled) clusters with replicas
provide other business advantages. For more information, see High availability using replication
groups.

Important

If your parameter group uses reserved-memory to set aside memory for Redis overhead,
before you begin scaling be sure that you have a custom parameter group that reserves the
correct amount of memory for your new node type. Alternatively, you can modify a custom
parameter group so that it uses reserved-memory-percent and use that parameter
group for your new cluster.
If you're using reserved-memory-percent, doing this is not necessary.
For more information, see Managing Reserved Memory.

Topics

• Scaling up single-node clusters for Redis (Cluster Mode Disabled)

• Scaling down single-node Redis clusters

Scaling ElastiCache for Redis self-designed clusters API Version 2015-02-02 674

Amazon ElastiCache for Redis User Guide

Scaling up single-node clusters for Redis (Cluster Mode Disabled)

When you scale up a single-node Redis cluster, ElastiCache performs the following process,
whether you use the ElastiCache console, the AWS CLI, or the ElastiCache API.

1. A new cache cluster with the new node type is spun up in the same Availability Zone as the
existing cache cluster.

2. The cache data in the existing cache cluster is copied to the new cache cluster. How long this
process takes depends upon your node type and how much data is in the cache cluster.

3. Reads and writes are now served using the new cache cluster. Because the new cache cluster's
endpoints are the same as they were for the old cache cluster, you do not need to update the
endpoints in your application. You will notice a brief interruption (a few seconds) of reads and
writes from the primary node while the DNS entry is updated.

4. ElastiCache deletes the old cache cluster. You will notice a brief interruption (a few seconds)
of reads and writes from the old node because the connections to the old node will be
disconnected.

Note

For clusters running the r6gd node type, you can only scale to node sizes within the r6gd
node family.

As shown in the following table, your Redis scale-up operation is blocked if you have an engine
upgrade scheduled for the next maintenance window. For more information on Maintenance
Windows, see Managing maintenance.

Blocked Redis operations

Pending Operations Blocked Operations

Scale up Immediate engine upgrade

Engine upgrade Immediate scale up

Immediate scale upScale up and engine upgrade

Immediate engine upgrade

Scaling ElastiCache for Redis self-designed clusters API Version 2015-02-02 675

Amazon ElastiCache for Redis User Guide

If you have a pending operation that is blocking you, you can do one of the following.

• Schedule your Redis scale-up operation for the next maintenance window by clearing
the Apply immediately check box (CLI use: --no-apply-immediately, API use:
ApplyImmediately=false).

• Wait until your next maintenance window (or after) to perform your Redis scale up operation.

• Add the Redis engine upgrade to this cache cluster modification with the Apply Immediately
check box chosen (CLI use: --apply-immediately, API use: ApplyImmediately=true). This
unblocks your scale up operation by causing the engine upgrade to be performed immediately.

You can scale up a single-node Redis (cluster mode disabled) cluster using the ElastiCache console,
the AWS CLI, or ElastiCache API.

Important

If your parameter group uses reserved-memory to set aside memory for Redis overhead,
before you begin scaling be sure that you have a custom parameter group that reserves the
correct amount of memory for your new node type. Alternatively, you can modify a custom
parameter group so that it uses reserved-memory-percent and use that parameter
group for your new cluster.
If you're using reserved-memory-percent, doing this is not necessary.
For more information, see Managing Reserved Memory.

Scaling up single-node clusters for Redis (Cluster Mode Disabled) (Console)

The following procedure describes how to scale up a single-node Redis cluster using the
ElastiCache Management Console. During this process, your Redis cluster will continue to serve
requests with minimal downtime.

To scale up a single-node Redis cluster (console)

1. Sign in to the AWS Management Console and open the ElastiCache console at https://
console.aws.amazon.com/elasticache/.

2. From the navigation pane, choose Redis clusters.

3. From the list of clusters, choose the cluster you want to scale up (it must be running the Redis
engine, not the Clustered Redis engine).

Scaling ElastiCache for Redis self-designed clusters API Version 2015-02-02 676

https://console.aws.amazon.com/elasticache/
https://console.aws.amazon.com/elasticache/

Amazon ElastiCache for Redis User Guide

4. Choose Modify.

5. In the Modify Cluster wizard:

a. Choose the node type you want to scale to from the Node type list.

b. If you're using reserved-memory to manage your memory, from the Parameter Group
list, choose the custom parameter group that reserves the correct amount of memory for
your new node type.

6. If you want to perform the scale up process right away, choose the Apply immediately box.
If the Apply immediately box is not chosen, the scale-up process is performed during this
cluster's next maintenance window.

7. Choose Modify.

If you chose Apply immediately in the previous step, the cluster's status changes to modifying.
When the status changes to available, the modification is complete and you can begin using
the new cluster.

Scaling up single-node Redis cache clusters (AWS CLI)

The following procedure describes how to scale up a single-node Redis cache cluster using the AWS
CLI. During this process, your Redis cluster will continue to serve requests with minimal downtime.

To scale up a single-node Redis cache cluster (AWS CLI)

1. Determine the node types you can scale up to by running the AWS CLI list-allowed-node-
type-modifications command with the following parameter.

• --cache-cluster-id

For Linux, macOS, or Unix:

aws elasticache list-allowed-node-type-modifications \
 --cache-cluster-id my-cache-cluster-id

For Windows:

aws elasticache list-allowed-node-type-modifications ^
 --cache-cluster-id my-cache-cluster-id

Scaling ElastiCache for Redis self-designed clusters API Version 2015-02-02 677

Amazon ElastiCache for Redis User Guide

Output from the above command looks something like this (JSON format).

{
 "ScaleUpModifications": [
 "cache.m3.2xlarge",
 "cache.m3.large",
 "cache.m3.xlarge",
 "cache.m4.10xlarge",
 "cache.m4.2xlarge",
 "cache.m4.4xlarge",
 "cache.m4.large",
 "cache.m4.xlarge",
 "cache.r3.2xlarge",
 "cache.r3.4xlarge",
 "cache.r3.8xlarge",
 "cache.r3.large",
 "cache.r3.xlarge"
]
 "ScaleDownModifications": [
 "cache.t2.micro",
 "cache.t2.small ",
 "cache.t2.medium ",
 "cache.t1.small ",
],

 }

For more information, see list-allowed-node-type-modifications in the AWS CLI Reference.

2. Modify your existing cache cluster specifying the cache cluster to scale up and the new,
larger node type, using the AWS CLI modify-cache-cluster command and the following
parameters.

• --cache-cluster-id – The name of the cache cluster you are scaling up.

• --cache-node-type – The new node type you want to scale the cache cluster. This
value must be one of the node types returned by the list-allowed-node-type-
modifications command in step 1.

• --cache-parameter-group-name – [Optional] Use this parameter if you are using
reserved-memory to manage your cluster's reserved memory. Specify a custom cache

Scaling ElastiCache for Redis self-designed clusters API Version 2015-02-02 678

https://docs.aws.amazon.com/cli/latest/reference/elasticache/list-allowed-node-type-modifications.html

Amazon ElastiCache for Redis User Guide

parameter group that reserves the correct amount of memory for your new node type. If
you are using reserved-memory-percent you can omit this parameter.

• --apply-immediately – Causes the scale-up process to be applied immediately. To
postpone the scale-up process to the cluster's next maintenance window, use the --no-
apply-immediately parameter.

For Linux, macOS, or Unix:

aws elasticache modify-cache-cluster \
 --cache-cluster-id my-redis-cache-cluster \
 --cache-node-type cache.m3.xlarge \
 --cache-parameter-group-name redis32-m2-xl \
 --apply-immediately

For Windows:

aws elasticache modify-cache-cluster ^
 --cache-cluster-id my-redis-cache-cluster ^
 --cache-node-type cache.m3.xlarge ^
 --cache-parameter-group-name redis32-m2-xl ^
 --apply-immediately

Output from the above command looks something like this (JSON format).

{
 "CacheCluster": {
 "Engine": "redis",
 "CacheParameterGroup": {
 "CacheNodeIdsToReboot": [],
 "CacheParameterGroupName": "default.redis6.x",
 "ParameterApplyStatus": "in-sync"
 },
 "SnapshotRetentionLimit": 1,
 "CacheClusterId": "my-redis-cache-cluster",
 "CacheSecurityGroups": [],
 "NumCacheNodes": 1,
 "SnapshotWindow": "00:00-01:00",
 "CacheClusterCreateTime": "2017-02-21T22:34:09.645Z",
 "AutoMinorVersionUpgrade": true,
 "CacheClusterStatus": "modifying",

Scaling ElastiCache for Redis self-designed clusters API Version 2015-02-02 679

Amazon ElastiCache for Redis User Guide

 "PreferredAvailabilityZone": "us-west-2a",
 "ClientDownloadLandingPage": "https://console.aws.amazon.com/elasticache/
home#client-download:",
 "CacheSubnetGroupName": "default",
 "EngineVersion": "6.0",
 "PendingModifiedValues": {
 "CacheNodeType": "cache.m3.2xlarge"
 },
 "PreferredMaintenanceWindow": "tue:11:30-tue:12:30",
 "CacheNodeType": "cache.m3.medium",
 "DataTiering": "disabled"
 }
 }

For more information, see modify-cache-cluster in the AWS CLI Reference.

3. If you used the --apply-immediately, check the status of the new cache cluster using the
AWS CLI describe-cache-clusters command with the following parameter. When the
status changes to available, you can begin using the new, larger cache cluster.

• --cache-cache cluster-id – The name of your single-node Redis cache cluster. Use this
parameter to describe a particular cache cluster rather than all cache clusters.

aws elasticache describe-cache-clusters --cache-cluster-id my-redis-cache-cluster

For more information, see describe-cache-clusters in the AWS CLI Reference.

Scaling up single-node Redis cache clusters (ElastiCache API)

The following procedure describes how to scale up a single-node Redis cache cluster using the
ElastiCache API. During this process, your Redis cluster will continue to serve requests with minimal
downtime.

To scale up a single-node Redis cache cluster (ElastiCache API)

1. Determine the node types you can scale up to by running the ElastiCache API
ListAllowedNodeTypeModifications action with the following parameter.

• CacheClusterId – The name of the single-node Redis cache cluster you want to scale up.

Scaling ElastiCache for Redis self-designed clusters API Version 2015-02-02 680

https://docs.aws.amazon.com/cli/latest/reference/elasticache/modify-cache-cluster.html
https://docs.aws.amazon.com/cli/latest/reference/elasticache/describe-cache-clusters.html

Amazon ElastiCache for Redis User Guide

https://elasticache.us-west-2.amazonaws.com/
 ?Action=ListAllowedNodeTypeModifications
 &CacheClusterId=MyRedisCacheCluster
 &Version=2015-02-02
 &SignatureVersion=4
 &SignatureMethod=HmacSHA256
 &Timestamp=20150202T192317Z
 &X-Amz-Credential=<credential>

For more information, see ListAllowedNodeTypeModifications in the Amazon ElastiCache API
Reference.

2. Modify your existing cache cluster specifying the cache cluster to scale up and the new,
larger node type, using the ModifyCacheCluster ElastiCache API action and the following
parameters.

• CacheClusterId – The name of the cache cluster you are scaling up.

• CacheNodeType – The new, larger node type you want to scale the cache
cluster up to. This value must be one of the node types returned by the
ListAllowedNodeTypeModifications action in step 1.

• CacheParameterGroupName – [Optional] Use this parameter if you are using reserved-
memory to manage your cluster's reserved memory. Specify a custom cache parameter
group that reserves the correct amount of memory for your new node type. If you are using
reserved-memory-percent you can omit this parameter.

• ApplyImmediately – Set to true to cause the scale-up process to be performed
immediately. To postpone the scale-up process to the cluster's next maintenance window,
use ApplyImmediately=false.

https://elasticache.us-west-2.amazonaws.com/
 ?Action=ModifyCacheCluster
 &ApplyImmediately=true
 &CacheClusterId=MyRedisCacheCluster
 &CacheNodeType=cache.m3.xlarge
 &CacheParameterGroupName redis32-m2-xl
 &Version=2015-02-02
 &SignatureVersion=4
 &SignatureMethod=HmacSHA256

Scaling ElastiCache for Redis self-designed clusters API Version 2015-02-02 681

https://docs.aws.amazon.com/AmazonElastiCache/latest/APIReference/API_ListAllowedNodeTypeModifications.html

Amazon ElastiCache for Redis User Guide

 &Timestamp=20150202T192317Z
 &X-Amz-Credential=<credential>

For more information, see ModifyCacheCluster in the Amazon ElastiCache API Reference.

3. If you used ApplyImmediately=true, check the status of the new cache cluster using the
ElastiCache API DescribeCacheClusters action with the following parameter. When the
status changes to available, you can begin using the new, larger cache cluster.

• CacheClusterId – The name of your single-node Redis cache cluster. Use this parameter
to describe a particular cache cluster rather than all cache clusters.

https://elasticache.us-west-2.amazonaws.com/
 ?Action=DescribeCacheClusters
 &CacheClusterId=MyRedisCacheCluster
 &Version=2015-02-02
 &SignatureVersion=4
 &SignatureMethod=HmacSHA256
 &Timestamp=20150202T192317Z
 &X-Amz-Credential=<credential>

For more information, see DescribeCacheClusters in the Amazon ElastiCache API Reference.

Scaling ElastiCache for Redis self-designed clusters API Version 2015-02-02 682

https://docs.aws.amazon.com/AmazonElastiCache/latest/APIReference/API_ModifyCacheCluster.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/APIReference/API_DescribeCacheClusters.html

Amazon ElastiCache for Redis User Guide

Scaling down single-node Redis clusters

The following sections walk you through how to scale a single-node Redis cluster down to a
smaller node type. Ensuring that the new, smaller node type is large enough to accommodate all
the data and Redis overhead is important to the long-term success of your new Redis cluster. For
more information, see Ensuring that you have enough memory to create a Redis snapshot.

Note

For clusters running the r6gd node type, you can only scale to node sizes within the r6gd
node family.

Topics

• Scaling down a single-node Redis cluster (Console)

• Scaling down single-node Redis cache clusters (AWS CLI)

• Scaling down single-node Redis cache clusters (ElastiCache API)

Scaling down a single-node Redis cluster (Console)

The following procedure walks you through scaling your single-node Redis cluster down to a
smaller node type using the ElastiCache console.

Important

If your parameter group uses reserved-memory to set aside memory for Redis overhead,
before you begin scaling be sure that you have a custom parameter group that reserves the
correct amount of memory for your new node type. Alternatively, you can modify a custom
parameter group so that it uses reserved-memory-percent and use that parameter
group for your new cluster.
If you're using reserved-memory-percent, doing this is not necessary.
For more information, see Managing Reserved Memory.

To scale down your single-node Redis cluster (console)

1. Ensure that the smaller node type is adequate for your data and overhead needs.

Scaling ElastiCache for Redis self-designed clusters API Version 2015-02-02 683

Amazon ElastiCache for Redis User Guide

2. If your parameter group uses reserved-memory to set aside memory for Redis overhead,
ensure that you have a custom parameter group to set aside the correct amount of memory
for your new node type.

Alternatively, you can modify your custom parameter group to use reserved-memory-
percent. For more information, see Managing Reserved Memory.

3. Sign in to the AWS Management Console and open the ElastiCache console at https://
console.aws.amazon.com/elasticache/.

4. From the list of clusters, choose the cluster you want to scale down. This cluster must be
running the Redis engine and not the Clustered Redis engine.

5. Choose Modify.

6. In the Modify Cluster wizard:

a. Choose the node type you want to scale down to from the Node type list.

b. If you're using reserved-memory to manage your memory, from the Parameter Group
list, choose the custom parameter group that reserves the correct amount of memory for
your new node type.

7. If you want to perform the scale-down process right away, choose the Apply immediately
check box. If the Apply immediately check box is left not chosen, the scale-down process is
performed during this cluster's next maintenance window.

8. Choose Modify.

9. When the cluster’s status changes from modifying to available, your cluster has scaled to the
new node type. There is no need to update the endpoints in your application.

Scaling down single-node Redis cache clusters (AWS CLI)

The following procedure describes how to scale down a single-node Redis cache cluster using the
AWS CLI.

To scale down a single-node Redis cache cluster (AWS CLI)

1. Determine the node types you can scale down to by running the AWS CLI list-allowed-
node-type-modifications command with the following parameter.

• --cache-cluster-id

Scaling ElastiCache for Redis self-designed clusters API Version 2015-02-02 684

https://console.aws.amazon.com/elasticache/
https://console.aws.amazon.com/elasticache/

Amazon ElastiCache for Redis User Guide

For Linux, macOS, or Unix:

aws elasticache list-allowed-node-type-modifications \
 --cache-cluster-id my-cache-cluster-id

For Windows:

aws elasticache list-allowed-node-type-modifications ^
 --cache-cluster-id my-cache-cluster-id

Output from the above command looks something like this (JSON format).

{
 "ScaleUpModifications": [
 "cache.m3.2xlarge",
 "cache.m3.large",
 "cache.m3.xlarge",
 "cache.m4.10xlarge",
 "cache.m4.2xlarge",
 "cache.m4.4xlarge",
 "cache.m4.large",
 "cache.m4.xlarge",
 "cache.r3.2xlarge",
 "cache.r3.4xlarge",
 "cache.r3.8xlarge",
 "cache.r3.large",
 "cache.r3.xlarge"
]
 "ScaleDownModifications": [
 "cache.t2.micro",
 "cache.t2.small ",
 "cache.t2.medium ",
 "cache.t1.small ",
],

 }

For more information, see list-allowed-node-type-modifications in the AWS CLI Reference.

Scaling ElastiCache for Redis self-designed clusters API Version 2015-02-02 685

https://docs.aws.amazon.com/cli/latest/reference/elasticache/list-allowed-node-type-modifications.html

Amazon ElastiCache for Redis User Guide

2. Modify your existing cache cluster specifying the cache cluster to scale down and the new,
smaller node type, using the AWS CLI modify-cache-cluster command and the following
parameters.

• --cache-cluster-id – The name of the cache cluster you are scaling down.

• --cache-node-type – The new node type you want to scale the cache cluster. This
value must be one of the node types returned by the list-allowed-node-type-
modifications command in step 1.

• --cache-parameter-group-name – [Optional] Use this parameter if you are using
reserved-memory to manage your cluster's reserved memory. Specify a custom cache
parameter group that reserves the correct amount of memory for your new node type. If
you are using reserved-memory-percent you can omit this parameter.

• --apply-immediately – Causes the scale-down process to be applied immediately. To
postpone the scale-up process to the cluster's next maintenance window, use the --no-
apply-immediately parameter.

For Linux, macOS, or Unix:

aws elasticache modify-cache-cluster \
 --cache-cluster-id my-redis-cache-cluster \
 --cache-node-type cache.m3.xlarge \
 --cache-parameter-group-name redis32-m2-xl \
 --apply-immediately

For Windows:

aws elasticache modify-cache-cluster ^
 --cache-cluster-id my-redis-cache-cluster ^
 --cache-node-type cache.m3.xlarge ^
 --cache-parameter-group-name redis32-m2-xl ^
 --apply-immediately

Output from the above command looks something like this (JSON format).

{
 "CacheCluster": {
 "Engine": "redis",
 "CacheParameterGroup": {

Scaling ElastiCache for Redis self-designed clusters API Version 2015-02-02 686

Amazon ElastiCache for Redis User Guide

 "CacheNodeIdsToReboot": [],
 "CacheParameterGroupName": "default.redis6,x",
 "ParameterApplyStatus": "in-sync"
 },
 "SnapshotRetentionLimit": 1,
 "CacheClusterId": "my-redis-cache-cluster",
 "CacheSecurityGroups": [],
 "NumCacheNodes": 1,
 "SnapshotWindow": "00:00-01:00",
 "CacheClusterCreateTime": "2017-02-21T22:34:09.645Z",
 "AutoMinorVersionUpgrade": true,
 "CacheClusterStatus": "modifying",
 "PreferredAvailabilityZone": "us-west-2a",
 "ClientDownloadLandingPage": "https://console.aws.amazon.com/elasticache/
home#client-download:",
 "CacheSubnetGroupName": "default",
 "EngineVersion": "6.0",
 "PendingModifiedValues": {
 "CacheNodeType": "cache.m3.2xlarge"
 },
 "PreferredMaintenanceWindow": "tue:11:30-tue:12:30",
 "CacheNodeType": "cache.m3.medium",
 "DataTiering": "disabled"
 }
 }

For more information, see modify-cache-cluster in the AWS CLI Reference.

3. If you used the --apply-immediately, check the status of the new cache cluster using the
AWS CLI describe-cache-clusters command with the following parameter. When the
status changes to available, you can begin using the new, larger cache cluster.

• --cache-cache cluster-id – The name of your single-node Redis cache cluster. Use this
parameter to describe a particular cache cluster rather than all cache clusters.

aws elasticache describe-cache-clusters --cache-cluster-id my-redis-cache-cluster

For more information, see describe-cache-clusters in the AWS CLI Reference.

Scaling ElastiCache for Redis self-designed clusters API Version 2015-02-02 687

https://docs.aws.amazon.com/cli/latest/reference/elasticache/modify-cache-cluster.html
https://docs.aws.amazon.com/cli/latest/reference/elasticache/describe-cache-clusters.html

Amazon ElastiCache for Redis User Guide

Scaling down single-node Redis cache clusters (ElastiCache API)

The following procedure describes how to scale updown a single-node Redis cache cluster using
the ElastiCache API.

To scale down a single-node Redis cache cluster (ElastiCache API)

1. Determine the node types you can scale down to by running the ElastiCache API
ListAllowedNodeTypeModifications action with the following parameter.

• CacheClusterId – The name of the single-node Redis cache cluster you want to scale
down.

https://elasticache.us-west-2.amazonaws.com/
 ?Action=ListAllowedNodeTypeModifications
 &CacheClusterId=MyRedisCacheCluster
 &Version=2015-02-02
 &SignatureVersion=4
 &SignatureMethod=HmacSHA256
 &Timestamp=20150202T192317Z
 &X-Amz-Credential=<credential>

For more information, see ListAllowedNodeTypeModifications in the Amazon ElastiCache API
Reference.

2. Modify your existing cache cluster specifying the cache cluster to scale up and the new,
larger node type, using the ModifyCacheCluster ElastiCache API action and the following
parameters.

• CacheClusterId – The name of the cache cluster you are scaling down.

• CacheNodeType – The new, smaller node type you want to scale the cache
cluster down to. This value must be one of the node types returned by the
ListAllowedNodeTypeModifications action in step 1.

• CacheParameterGroupName – [Optional] Use this parameter if you are using reserved-
memory to manage your cluster's reserved memory. Specify a custom cache parameter
group that reserves the correct amount of memory for your new node type. If you are using
reserved-memory-percent you can omit this parameter.

Scaling ElastiCache for Redis self-designed clusters API Version 2015-02-02 688

https://docs.aws.amazon.com/AmazonElastiCache/latest/APIReference/API_ListAllowedNodeTypeModifications.html

Amazon ElastiCache for Redis User Guide

• ApplyImmediately – Set to true to cause the scale-down process to be performed
immediately. To postpone the scale-up process to the cluster's next maintenance window,
use ApplyImmediately=false.

https://elasticache.us-west-2.amazonaws.com/
 ?Action=ModifyCacheCluster
 &ApplyImmediately=true
 &CacheClusterId=MyRedisCacheCluster
 &CacheNodeType=cache.m3.xlarge
 &CacheParameterGroupName redis32-m2-xl
 &Version=2015-02-02
 &SignatureVersion=4
 &SignatureMethod=HmacSHA256
 &Timestamp=20150202T192317Z
 &X-Amz-Credential=<credential>

For more information, see ModifyCacheCluster in the Amazon ElastiCache API Reference.

3. If you used ApplyImmediately=true, check the status of the new cache cluster using the
ElastiCache API DescribeCacheClusters action with the following parameter. When the
status changes to available, you can begin using the new, smaller cache cluster.

• CacheClusterId – The name of your single-node Redis cache cluster. Use this parameter
to describe a particular cache cluster rather than all cache clusters.

https://elasticache.us-west-2.amazonaws.com/
 ?Action=DescribeCacheClusters
 &CacheClusterId=MyRedisCacheCluster
 &Version=2015-02-02
 &SignatureVersion=4
 &SignatureMethod=HmacSHA256
 &Timestamp=20150202T192317Z
 &X-Amz-Credential=<credential>

For more information, see DescribeCacheClusters in the Amazon ElastiCache API Reference.

Scaling ElastiCache for Redis self-designed clusters API Version 2015-02-02 689

https://docs.aws.amazon.com/AmazonElastiCache/latest/APIReference/API_ModifyCacheCluster.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/APIReference/API_DescribeCacheClusters.html

Amazon ElastiCache for Redis User Guide

Scaling Redis (Cluster Mode Disabled) clusters with replica nodes

A Redis cluster with replica nodes (called replication group in the API/CLI) provides high availability
via replication that has Multi-AZ with automatic failover enabled. A cluster with replica nodes is a
logical collection of up to six Redis nodes where one node, the Primary, is able to serve both read
and write requests. All the other nodes in the cluster are read-only replicas of the Primary. Data
written to the Primary is asynchronously replicated to all the read replicas in the cluster. Because
Redis (cluster mode disabled) does not support partitioning your data across multiple clusters, each
node in a Redis (cluster mode disabled) replication group contains the entire cache dataset. Redis
(cluster mode enabled) clusters support partitioning your data across up to 500 shards.

To change the data capacity of your cluster you must scale it up to a larger node type, or down to a
smaller node type.

To change the read capacity of your cluster, add more read replicas, up to a maximum of 5, or
remove read replicas.

The ElastiCache scaling up process is designed to make a best effort to retain your existing data
and requires successful Redis replication. For Redis clusters with replicas, we recommend that
sufficient memory be made available to Redis.

Related Topics

• High availability using replication groups

• Replication: Redis (Cluster Mode Disabled) vs. Redis (Cluster Mode Enabled)

• Minimizing downtime in ElastiCache for Redis with Multi-AZ

• Ensuring that you have enough memory to create a Redis snapshot

Topics

• Scaling up Redis clusters with replicas

• Scaling down Redis clusters with replicas

• Increasing read capacity

• Decreasing read capacity

Scaling ElastiCache for Redis self-designed clusters API Version 2015-02-02 690

Amazon ElastiCache for Redis User Guide

Scaling up Redis clusters with replicas

Amazon ElastiCache provides console, CLI, and API support for scaling your Redis (cluster mode
disabled) replication group up.

When the scale-up process is initiated, ElastiCache does the following:

1. Launches a replication group using the new node type.

2. Copies all the data from the current primary node to the new primary node.

3. Syncs the new read replicas with the new primary node.

4. Updates the DNS entries so they point to the new nodes. Because of this you don't have
to update the endpoints in your application. For Redis 5.0.5 and above, you can scale auto
failover enabled clusters while the cluster continues to stay online and serve incoming
requests. On version 4.0.10 and below, you may notice a brief interruption of reads and writes
on previous versions from the primary node while the DNS entry is updated.

5. Deletes the old nodes (CLI/API: replication group). You will notice a brief interruption (a few
seconds) of reads and writes from the old nodes because the connections to the old nodes will
be disconnected.

How long this process takes is dependent upon your node type and how much data is in your
cluster.

As shown in the following table, your Redis scale-up operation is blocked if you have an engine
upgrade scheduled for the cluster’s next maintenance window.

Blocked Redis operations

Pending Operations Blocked Operations

Scale up Immediate engine upgrade

Engine upgrade Immediate scale up

Immediate scale upScale up and engine upgrade

Immediate engine upgrade

If you have a pending operation that is blocking you, you can do one of the following.

Scaling ElastiCache for Redis self-designed clusters API Version 2015-02-02 691

Amazon ElastiCache for Redis User Guide

• Schedule your Redis scale-up operation for the next maintenance window by clearing
the Apply immediately check box (CLI use: --no-apply-immediately, API use:
ApplyImmediately=false).

• Wait until your next maintenance window (or after) to perform your Redis scale-up operation.

• Add the Redis engine upgrade to this cache cluster modification with the Apply Immediately
check box chosen (CLI use: --apply-immediately, API use: ApplyImmediately=true). This
unblocks your scale-up operation by causing the engine upgrade to be performed immediately.

The following sections describe how to scale your Redis cluster with replicas up using the
ElastiCache console, the AWS CLI, and the ElastiCache API.

Important

If your parameter group uses reserved-memory to set aside memory for Redis overhead,
before you begin scaling be sure that you have a custom parameter group that reserves the
correct amount of memory for your new node type. Alternatively, you can modify a custom
parameter group so that it uses reserved-memory-percent and use that parameter
group for your new cluster.
If you're using reserved-memory-percent, doing this is not necessary.
For more information, see Managing Reserved Memory.

Scaling up a Redis cluster with replicas (Console)

The amount of time it takes to scale up to a larger node type varies, depending upon the node type
and the amount of data in your current cluster.

The following process scales your cluster with replicas from its current node type to a new, larger
node type using the ElastiCache console. During this process, there may be a brief interruption of
reads and writes for other versions from the primary node while the DNS entry is updated. you
might see less than 1 second downtime for nodes running on 5.0.6 versions and above and a few
seconds for older versions.

To scale up Redis cluster with replicas (console)

1. Sign in to the AWS Management Console and open the ElastiCache console at https://
console.aws.amazon.com/elasticache/.

2. From the navigation pane, choose Redis clusters

Scaling ElastiCache for Redis self-designed clusters API Version 2015-02-02 692

https://console.aws.amazon.com/elasticache/
https://console.aws.amazon.com/elasticache/

Amazon ElastiCache for Redis User Guide

3. From the list of clusters, choose the cluster you want to scale up. This cluster must be running
the Redis engine and not the Clustered Redis engine.

4. Choose Modify.

5. In the Modify Cluster wizard:

a. Choose the node type you want to scale to from the Node type list. Note that not all node
types are available to scale down to.

b. If you're using reserved-memory to manage your memory, from the Parameter Group
list, choose the custom parameter group that reserves the correct amount of memory for
your new node type.

6. If you want to perform the scale-up process right away, choose the Apply immediately check
box. If the Apply immediately check box is left not chosen, the scale-up process is performed
during this cluster's next maintenance window.

7. Choose Modify.

8. When the cluster’s status changes from modifying to available, your cluster has scaled to the
new node type. There is no need to update the endpoints in your application.

Scaling up a Redis replication group (AWS CLI)

The following process scales your replication group from its current node type to a new, larger
node type using the AWS CLI. During this process, ElastiCache for Redis updates the DNS entries
so they point to the new nodes. Because of this you don't have to update the endpoints in your
application. For Redis 5.0.5 and above, you can scale auto failover enabled clusters while the
cluster continues to stay online and serve incoming requests. On version 4.0.10 and below, you
may notice a brief interruption of reads and writes on previous versions from the primary node
while the DNS entry is updated..

The amount of time it takes to scale up to a larger node type varies, depending upon your node
type and the amount of data in your current cache cluster.

To scale up a Redis Replication Group (AWS CLI)

1. Determine which node types you can scale up to by running the AWS CLI list-allowed-
node-type-modifications command with the following parameter.

• --replication-group-id – the name of the replication group. Use this parameter to
describe a particular replication group rather than all replication groups.

Scaling ElastiCache for Redis self-designed clusters API Version 2015-02-02 693

Amazon ElastiCache for Redis User Guide

For Linux, macOS, or Unix:

aws elasticache list-allowed-node-type-modifications \
 --replication-group-id my-repl-group

For Windows:

aws elasticache list-allowed-node-type-modifications ^
 --replication-group-id my-repl-group

Output from this operation looks something like this (JSON format).

{
 "ScaleUpModifications": [
 "cache.m3.2xlarge",
 "cache.m3.large",
 "cache.m3.xlarge",
 "cache.m4.10xlarge",
 "cache.m4.2xlarge",
 "cache.m4.4xlarge",
 "cache.m4.large",
 "cache.m4.xlarge",
 "cache.r3.2xlarge",
 "cache.r3.4xlarge",
 "cache.r3.8xlarge",
 "cache.r3.large",
 "cache.r3.xlarge"
]
 }

For more information, see list-allowed-node-type-modifications in the AWS CLI Reference.

2. Scale your current replication group up to the new node type using the AWS CLI modify-
replication-group command with the following parameters.

• --replication-group-id – the name of the replication group.

• --cache-node-type – the new, larger node type of the cache clusters in this replication
group. This value must be one of the instance types returned by the list-allowed-node-
type-modifications command in step 1.

Scaling ElastiCache for Redis self-designed clusters API Version 2015-02-02 694

https://docs.aws.amazon.com/cli/latest/reference/elasticache/list-allowed-node-type-modifications.html

Amazon ElastiCache for Redis User Guide

• --cache-parameter-group-name – [Optional] Use this parameter if you are using
reserved-memory to manage your cluster's reserved memory. Specify a custom cache
parameter group that reserves the correct amount of memory for your new node type. If
you are using reserved-memory-percent you can omit this parameter.

• --apply-immediately – Causes the scale-up process to be applied immediately. To
postpone the scale-up operation to the next maintenance window, use --no-apply-
immediately.

For Linux, macOS, or Unix:

aws elasticache modify-replication-group \
 --replication-group-id my-repl-group \
 --cache-node-type cache.m3.xlarge \
 --cache-parameter-group-name redis32-m3-2xl \
 --apply-immediately

For Windows:

aws elasticache modify-replication-group ^
 --replication-group-id my-repl-group ^
 --cache-node-type cache.m3.xlarge ^
 --cache-parameter-group-name redis32-m3-2xl \
 --apply-immediately

Output from this command looks something like this (JSON format).

{
 "ReplicationGroup": {
 "Status": "available",
 "Description": "Some description",
 "NodeGroups": [{
 "Status": "available",
 "NodeGroupMembers": [{
 "CurrentRole": "primary",
 "PreferredAvailabilityZone": "us-west-2b",
 "CacheNodeId": "0001",
 "ReadEndpoint": {
 "Port": 6379,

Scaling ElastiCache for Redis self-designed clusters API Version 2015-02-02 695

Amazon ElastiCache for Redis User Guide

 "Address": "my-repl-group-001.8fdx4s.0001.usw2.cache.amazonaws.com"
 },
 "CacheClusterId": "my-repl-group-001"
 },
 {
 "CurrentRole": "replica",
 "PreferredAvailabilityZone": "us-west-2c",
 "CacheNodeId": "0001",
 "ReadEndpoint": {
 "Port": 6379,
 "Address": "my-repl-group-002.8fdx4s.0001.usw2.cache.amazonaws.com"
 },
 "CacheClusterId": "my-repl-group-002"
 }
],
 "NodeGroupId": "0001",
 "PrimaryEndpoint": {
 "Port": 6379,
 "Address": "my-repl-group.8fdx4s.ng.0001.usw2.cache.amazonaws.com"
 }
 }],
 "ReplicationGroupId": "my-repl-group",
 "SnapshotRetentionLimit": 1,
 "AutomaticFailover": "disabled",
 "SnapshotWindow": "12:00-13:00",
 "SnapshottingClusterId": "my-repl-group-002",
 "MemberClusters": [
 "my-repl-group-001",
 "my-repl-group-002"
],
 "PendingModifiedValues": {}
 }
}

For more information, see modify-replication-group in the AWS CLI Reference.

3. If you used the --apply-immediately parameter, monitor the status of the replication
group using the AWS CLI describe-replication-group command with the following
parameter. While the status is still in modifying, you might see less than 1 second downtime
for nodes running on 5.0.6 versions and above and a brief interruption of reads and writes for
older versions from the primary node while the DNS entry is updated.

Scaling ElastiCache for Redis self-designed clusters API Version 2015-02-02 696

https://docs.aws.amazon.com/cli/latest/reference/elasticache/modify-replication-group.html

Amazon ElastiCache for Redis User Guide

• --replication-group-id – the name of the replication group. Use this parameter to
describe a particular replication group rather than all replication groups.

For Linux, macOS, or Unix:

aws elasticache describe-replication-groups \
 --replication-group-id my-replication-group

For Windows:

aws elasticache describe-replication-groups ^
 --replication-group-id my-replication-group

For more information, see describe-replication-groups in the AWS CLI Reference.

Scaling up a Redis replication group (ElastiCache API)

The following process scales your replication group from its current node type to a new, larger
node type using the ElastiCache API. For Redis 5.0.5 and above, you can scale auto failover enabled
clusters while the cluster continues to stay online and serve incoming requests. On version 4.0.10
and below, you may notice a brief interruption of reads and writes on previous versions from the
primary node while the DNS entry is updated.

The amount of time it takes to scale up to a larger node type varies, depending upon your node
type and the amount of data in your current cache cluster.

To scale up a Redis Replication Group (ElastiCache API)

1. Determine which node types you can scale up to using the ElastiCache API
ListAllowedNodeTypeModifications action with the following parameter.

• ReplicationGroupId – the name of the replication group. Use this parameter to describe
a specific replication group rather than all replication groups.

https://elasticache.us-west-2.amazonaws.com/
 ?Action=ListAllowedNodeTypeModifications
 &ReplicationGroupId=MyReplGroup

Scaling ElastiCache for Redis self-designed clusters API Version 2015-02-02 697

https://docs.aws.amazon.com/cli/latest/reference/elasticache/describe-replication-groups.html

Amazon ElastiCache for Redis User Guide

 &Version=2015-02-02
 &SignatureVersion=4
 &SignatureMethod=HmacSHA256
 &Timestamp=20150202T192317Z
 &X-Amz-Credential=<credential>

For more information, see ListAllowedNodeTypeModifications in the Amazon ElastiCache API
Reference.

2. Scale your current replication group up to the new node type using the
ModifyRedplicationGroup ElastiCache API action and with the following parameters.

• ReplicationGroupId – the name of the replication group.

• CacheNodeType – the new, larger node type of the cache clusters in this
replication group. This value must be one of the instance types returned by the
ListAllowedNodeTypeModifications action in step 1.

• CacheParameterGroupName – [Optional] Use this parameter if you are using reserved-
memory to manage your cluster's reserved memory. Specify a custom cache parameter
group that reserves the correct amount of memory for your new node type. If you are using
reserved-memory-percent you can omit this parameter.

• ApplyImmediately – Set to true to causes the scale-up process to be applied
immediately. To postpone the scale-up process to the next maintenance window, use
ApplyImmediately=false.

https://elasticache.us-west-2.amazonaws.com/
 ?Action=ModifyReplicationGroup
 &ApplyImmediately=true
 &CacheNodeType=cache.m3.2xlarge
 &CacheParameterGroupName=redis32-m3-2xl
 &ReplicationGroupId=myReplGroup
 &SignatureVersion=4
 &SignatureMethod=HmacSHA256
 &Timestamp=20141201T220302Z
 &Version=2014-12-01
 &X-Amz-Algorithm=&AWS;4-HMAC-SHA256
 &X-Amz-Date=20141201T220302Z
 &X-Amz-SignedHeaders=Host
 &X-Amz-Expires=20141201T220302Z
 &X-Amz-Credential=<credential>

Scaling ElastiCache for Redis self-designed clusters API Version 2015-02-02 698

https://docs.aws.amazon.com/AmazonElastiCache/latest/APIReference/API_ListAllowedNodeTypeModifications.html

Amazon ElastiCache for Redis User Guide

 &X-Amz-Signature=<signature>

For more information, see ModifyReplicationGroup in the Amazon ElastiCache API Reference.

3. If you used ApplyImmediately=true, monitor the status of the replication group using the
ElastiCache API DescribeReplicationGroups action with the following parameters. When
the status changes from modifying to available, you can begin writing to your new, scaled up
replication group.

• ReplicationGroupId – the name of the replication group. Use this parameter to describe
a particular replication group rather than all replication groups.

https://elasticache.us-west-2.amazonaws.com/
 ?Action=DescribeReplicationGroups
 &ReplicationGroupId=MyReplGroup
 &Version=2015-02-02
 &SignatureVersion=4
 &SignatureMethod=HmacSHA256
 &Timestamp=20150202T192317Z
 &X-Amz-Credential=<credential>

For more information, see DescribeReplicationGroups in the Amazon ElastiCache API Reference.

Scaling ElastiCache for Redis self-designed clusters API Version 2015-02-02 699

https://docs.aws.amazon.com/AmazonElastiCache/latest/APIReference/API_ModifyReplicationGroup.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/APIReference/API_DescribeReplicationGroups.html

Amazon ElastiCache for Redis User Guide

Scaling down Redis clusters with replicas

The following sections walk you through how to scale a Redis (cluster mode disabled) cache cluster
with replica nodes down to a smaller node type. Ensuring that the new, smaller node type is
large enough to accommodate all the data and overhead is very important to success. For more
information, see Ensuring that you have enough memory to create a Redis snapshot.

Note

For clusters running the r6gd node type, you can only scale to node sizes within the r6gd
node family.

Important

If your parameter group uses reserved-memory to set aside memory for Redis overhead,
before you begin scaling be sure that you have a custom parameter group that reserves the
correct amount of memory for your new node type. Alternatively, you can modify a custom
parameter group so that it uses reserved-memory-percent and use that parameter
group for your new cluster.
If you're using reserved-memory-percent, doing this is not necessary.
For more information, see Managing Reserved Memory.

Scaling down a Redis cluster with replicas (Console)

The following process scales your Redis cluster with replica nodes to a smaller node type using the
ElastiCache console.

To scale down a Redis cluster with replica nodes (console)

1. Ensure that the smaller node type is adequate for your data and overhead needs.

2. If your parameter group uses reserved-memory to set aside memory for Redis overhead,
ensure that you have a custom parameter group to set aside the correct amount of memory
for your new node type.

Alternatively, you can modify your custom parameter group to use reserved-memory-
percent. For more information, see Managing Reserved Memory.

Scaling ElastiCache for Redis self-designed clusters API Version 2015-02-02 700

Amazon ElastiCache for Redis User Guide

3. Sign in to the AWS Management Console and open the ElastiCache console at https://
console.aws.amazon.com/elasticache/.

4. From the list of clusters, choose the cluster you want to scale down. This cluster must be
running the Redis engine and not the Clustered Redis engine.

5. Choose Modify.

6. In the Modify Cluster wizard:

a. Choose the node type you want to scale down to from the Node type list.

b. If you're using reserved-memory to manage your memory, from the Parameter Group
list, choose the custom parameter group that reserves the correct amount of memory for
your new node type.

7. If you want to perform the scale-down process right away, choose the Apply immediately
check box. If the Apply immediately check box is left not chosen, the scale-down process is
performed during this cluster's next maintenance window.

8. Choose Modify.

9. When the cluster’s status changes from modifying to available, your cluster has scaled to the
new node type. There is no need to update the endpoints in your application.

Scaling down a Redis replication group (AWS CLI)

The following process scales your replication group from its current node type to a new, smaller
node type using the AWS CLI. During this process, ElastiCache for Redis updates the DNS entries
so they point to the new nodes. Because of this you don't have to update the endpoints in your
application. For Redis 5.0.5 and above, you can scale auto failover enabled clusters while the
cluster continues to stay online and serve incoming requests. On version 4.0.10 and below, you
may notice a brief interruption of reads and writes on previous versions from the primary node
while the DNS entry is updated..

However, reads from the read replica cache clusters continue uninterrupted.

The amount of time it takes to scale down to a smaller node type varies, depending upon your
node type and the amount of data in your current cache cluster.

To scale down a Redis Replication Group (AWS CLI)

1. Determine which node types you can scale down to by running the AWS CLI list-allowed-
node-type-modifications command with the following parameter.

Scaling ElastiCache for Redis self-designed clusters API Version 2015-02-02 701

https://console.aws.amazon.com/elasticache/
https://console.aws.amazon.com/elasticache/

Amazon ElastiCache for Redis User Guide

• --replication-group-id – the name of the replication group. Use this parameter to
describe a particular replication group rather than all replication groups.

For Linux, macOS, or Unix:

aws elasticache list-allowed-node-type-modifications \
 --replication-group-id my-repl-group

For Windows:

aws elasticache list-allowed-node-type-modifications ^
 --replication-group-id my-repl-group

Output from this operation looks something like this (JSON format).

{
 "ScaleDownModifications": [
 "cache.m3.2xlarge",
 "cache.m3.large",
 "cache.m3.xlarge",
 "cache.m4.10xlarge",
 "cache.m4.2xlarge",
 "cache.m4.4xlarge",
 "cache.m4.large",
 "cache.m4.xlarge",
 "cache.r3.2xlarge",
 "cache.r3.4xlarge",
 "cache.r3.8xlarge",
 "cache.r3.large",
 "cache.r3.xlarge"
]
 }

For more information, see list-allowed-node-type-modifications in the AWS CLI Reference.

2. Scale your current replication group up to the new node type using the AWS CLI modify-
replication-group command with the following parameters.

• --replication-group-id – the name of the replication group.

Scaling ElastiCache for Redis self-designed clusters API Version 2015-02-02 702

https://docs.aws.amazon.com/cli/latest/reference/elasticache/list-allowed-node-type-modifications.html

Amazon ElastiCache for Redis User Guide

• --cache-node-type – the new, smaller node type of the cache clusters in this replication
group. This value must be one of the instance types returned by the list-allowed-node-
type-modifications command in step 1.

• --cache-parameter-group-name – [Optional] Use this parameter if you are using
reserved-memory to manage your cluster's reserved memory. Specify a custom cache
parameter group that reserves the correct amount of memory for your new node type. If
you are using reserved-memory-percent you can omit this parameter.

• --apply-immediately – Causes the scale-up process to be applied immediately. To
postpone the scale-up operation to the next maintenance window, use --no-apply-
immediately.

For Linux, macOS, or Unix:

aws elasticache modify-replication-group \
 --replication-group-id my-repl-group \
 --cache-node-type cache.t2.small \
 --cache-parameter-group-name redis32-m3-2xl \
 --apply-immediately

For Windows:

aws elasticache modify-replication-group ^
 --replication-group-id my-repl-group ^
 --cache-node-type cache.t2.small ^
 --cache-parameter-group-name redis32-m3-2xl \
 --apply-immediately

Output from this command looks something like this (JSON format).

{"ReplicationGroup": {
 "Status": "available",
 "Description": "Some description",
 "NodeGroups": [
 {
 "Status": "available",
 "NodeGroupMembers": [
 {

Scaling ElastiCache for Redis self-designed clusters API Version 2015-02-02 703

Amazon ElastiCache for Redis User Guide

 "CurrentRole": "primary",
 "PreferredAvailabilityZone": "us-west-2b",
 "CacheNodeId": "0001",
 "ReadEndpoint": {
 "Port": 6379,
 "Address": "my-repl-
group-001.8fdx4s.0001.usw2.cache.amazonaws.com"
 },
 "CacheClusterId": "my-repl-group-001"
 },
 {
 "CurrentRole": "replica",
 "PreferredAvailabilityZone": "us-west-2c",
 "CacheNodeId": "0001",
 "ReadEndpoint": {
 "Port": 6379,
 "Address": "my-repl-
group-002.8fdx4s.0001.usw2.cache.amazonaws.com"
 },
 "CacheClusterId": "my-repl-group-002"
 }
],
 "NodeGroupId": "0001",
 "PrimaryEndpoint": {
 "Port": 6379,
 "Address": "my-repl-
group.8fdx4s.ng.0001.usw2.cache.amazonaws.com"
 }
 }
],
 "ReplicationGroupId": "my-repl-group",
 "SnapshotRetentionLimit": 1,
 "AutomaticFailover": "disabled",
 "SnapshotWindow": "12:00-13:00",
 "SnapshottingClusterId": "my-repl-group-002",
 "MemberClusters": [
 "my-repl-group-001",
 "my-repl-group-002",
],
 "PendingModifiedValues": {}
 }
 }

Scaling ElastiCache for Redis self-designed clusters API Version 2015-02-02 704

Amazon ElastiCache for Redis User Guide

For more information, see modify-replication-group in the AWS CLI Reference.

3. If you used the --apply-immediately parameter, monitor the status of the replication
group using the AWS CLI describe-replication-group command with the following
parameter. When the status changes from modifying to available, you can begin writing to
your new, scaled down replication group.

• --replication-group-id – the name of the replication group. Use this parameter to
describe a particular replication group rather than all replication groups.

For Linux, macOS, or Unix:

aws elasticache describe-replication-group \
 --replication-group-id my-replication-group

For Windows:

aws elasticache describe-replication-groups ^
 --replication-group-id my-replication-group

For more information, see describe-replication-groups in the AWS CLI Reference.

Scaling down a Redis replication group (ElastiCache API)

The following process scales your replication group from its current node type to a new, smaller
node type using the ElastiCache API. During this process, ElastiCache for Redis updates the DNS
entries so they point to the new nodes. Because of this you don't have to update the endpoints in
your application. For Redis 5.0.5 and above, you can scale auto failover enabled clusters while the
cluster continues to stay online and serve incoming requests. On version 4.0.10 and below, you
may notice a brief interruption of reads and writes on previous versions from the primary node
while the DNS entry is updated.. However, reads from the read replica cache clusters continue
uninterrupted.

The amount of time it takes to scale down to a smaller node type varies, depending upon your
node type and the amount of data in your current cache cluster.

Scaling ElastiCache for Redis self-designed clusters API Version 2015-02-02 705

https://docs.aws.amazon.com/cli/latest/reference/elasticache/modify-replication-group.html
https://docs.aws.amazon.com/cli/latest/reference/elasticache/describe-replication-groups.html

Amazon ElastiCache for Redis User Guide

To scale down a Redis Replication Group (ElastiCache API)

1. Determine which node types you can scale down to using the ElastiCache API
ListAllowedNodeTypeModifications action with the following parameter.

• ReplicationGroupId – the name of the replication group. Use this parameter to describe
a specific replication group rather than all replication groups.

https://elasticache.us-west-2.amazonaws.com/
 ?Action=ListAllowedNodeTypeModifications
 &ReplicationGroupId=MyReplGroup
 &Version=2015-02-02
 &SignatureVersion=4
 &SignatureMethod=HmacSHA256
 &Timestamp=20150202T192317Z
 &X-Amz-Credential=<credential>

For more information, see ListAllowedNodeTypeModifications in the Amazon ElastiCache API
Reference.

2. Scale your current replication group up to the new node type using the
ModifyRedplicationGroup ElastiCache API action and with the following parameters.

• ReplicationGroupId – the name of the replication group.

• CacheNodeType – the new, smaller node type of the cache clusters in this
replication group. This value must be one of the instance types returned by the
ListAllowedNodeTypeModifications action in step 1.

• CacheParameterGroupName – [Optional] Use this parameter if you are using reserved-
memory to manage your cluster's reserved memory. Specify a custom cache parameter
group that reserves the correct amount of memory for your new node type. If you are using
reserved-memory-percent you can omit this parameter.

• ApplyImmediately – Set to true to causes the scale-up process to be applied
immediately. To postpone the scale-down process to the next maintenance window, use
ApplyImmediately=false.

https://elasticache.us-west-2.amazonaws.com/
 ?Action=ModifyReplicationGroup
 &ApplyImmediately=true

Scaling ElastiCache for Redis self-designed clusters API Version 2015-02-02 706

https://docs.aws.amazon.com/AmazonElastiCache/latest/APIReference/API_ListAllowedNodeTypeModifications.html

Amazon ElastiCache for Redis User Guide

 &CacheNodeType=cache.m3.2xlarge
 &CacheParameterGroupName=redis32-m3-2xl
 &ReplicationGroupId=myReplGroup
 &SignatureVersion=4
 &SignatureMethod=HmacSHA256
 &Timestamp=20141201T220302Z
 &Version=2014-12-01
 &X-Amz-Algorithm=&AWS;4-HMAC-SHA256
 &X-Amz-Date=20141201T220302Z
 &X-Amz-SignedHeaders=Host
 &X-Amz-Expires=20141201T220302Z
 &X-Amz-Credential=<credential>
 &X-Amz-Signature=<signature>

For more information, see ModifyReplicationGroup in the Amazon ElastiCache API Reference.

3. If you used ApplyImmediately=true, monitor the status of the replication group using the
ElastiCache API DescribeReplicationGroups action with the following parameters. When
the status changes from modifying to available, you can begin writing to your new, scaled
down replication group.

• ReplicationGroupId – the name of the replication group. Use this parameter to describe
a particular replication group rather than all replication groups.

https://elasticache.us-west-2.amazonaws.com/
 ?Action=DescribeReplicationGroups
 &ReplicationGroupId=MyReplGroup
 &Version=2015-02-02
 &SignatureVersion=4
 &SignatureMethod=HmacSHA256
 &Timestamp=20150202T192317Z
 &X-Amz-Credential=<credential>

For more information, see DescribeReplicationGroups in the Amazon ElastiCache API Reference.

Scaling ElastiCache for Redis self-designed clusters API Version 2015-02-02 707

https://docs.aws.amazon.com/AmazonElastiCache/latest/APIReference/API_ModifyReplicationGroup.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/APIReference/API_DescribeReplicationGroups.html

Amazon ElastiCache for Redis User Guide

Increasing read capacity

To increase read capacity, add read replicas (up to a maximum of five) to your Redis replication
group.

You can scale your Redis cluster’s read capacity using the ElastiCache console, the AWS CLI, or the
ElastiCache API. For more information, see Adding a read replica, for Redis (Cluster Mode Disabled)
replication groups.

Scaling ElastiCache for Redis self-designed clusters API Version 2015-02-02 708

Amazon ElastiCache for Redis User Guide

Decreasing read capacity

To decrease read capacity, delete one or more read replicas from your Redis cluster with replicas
(called replication group in the API/CLI). If the cluster is Multi-AZ with automatic failover enabled,
you cannot delete the last read replica without first disabling Multi-AZ. For more information, see
Modifying a replication group.

For more information, see Deleting a read replica, for Redis (Cluster Mode Disabled) replication
groups .

Scaling ElastiCache for Redis self-designed clusters API Version 2015-02-02 709

Amazon ElastiCache for Redis User Guide

Scaling clusters in Redis (Cluster Mode Enabled)

As demand on your clusters changes, you might decide to improve performance or reduce costs
by changing the number of shards in your Redis (cluster mode enabled) cluster. We recommend
using online horizontal scaling to do so, because it allows your cluster to continue serving requests
during the scaling process.

Conditions under which you might decide to rescale your cluster include the following:

• Memory pressure:

If the nodes in your cluster are under memory pressure, you might decide to scale out so that
you have more resources to better store data and serve requests.

You can determine whether your nodes are under memory pressure by monitoring the following
metrics: FreeableMemory, SwapUsage, and BytesUseForCache.

• CPU or network bottleneck:

If latency/throughput issues are plaguing your cluster, you might need to scale out to resolve the
issues.

You can monitor your latency and throughput levels by monitoring the following metrics:
CPUUtilization, NetworkBytesIn, NetworkBytesOut, CurrConnections, and NewConnections.

• Your cluster is over-scaled:

Current demand on your cluster is such that scaling in doesn't hurt performance and reduces
your costs.

You can monitor your cluster's use to determine whether or not you can safely scale in
using the following metrics: FreeableMemory, SwapUsage, BytesUseForCache, CPUUtilization,
NetworkBytesIn, NetworkBytesOut, CurrConnections, and NewConnections.

Performance Impact of Scaling

When you scale using the offline process, your cluster is offline for a significant portion of the
process and thus unable to serve requests. When you scale using the online method, because
scaling is a compute-intensive operation, there is some degradation in performance, nevertheless,
your cluster continues to serve requests throughout the scaling operation. How much degradation
you experience depends upon your normal CPU utilization and your data.

Scaling ElastiCache for Redis self-designed clusters API Version 2015-02-02 710

Amazon ElastiCache for Redis User Guide

There are two ways to scale your Redis (cluster mode enabled) cluster; horizontal and vertical
scaling.

• Horizontal scaling allows you to change the number of node groups (shards) in the replication
group by adding or removing node groups (shards). The online resharding process allows scaling
in/out while the cluster continues serving incoming requests.

Configure the slots in your new cluster differently than they were in the old cluster. Offline
method only.

• Vertical Scaling - Change the node type to resize the cluster. The online vertical scaling allows
scaling up/down while the cluster continues serving incoming requests.

If you are reducing the size and memory capacity of the cluster, by either scaling in or scaling
down, ensure that the new configuration has sufficient memory for your data and Redis overhead.

For more information, see Select cache node size.

Contents

• Offline resharding and shard rebalancing for Redis (cluster mode enabled)

• Online resharding and shard rebalancing for Redis (cluster mode enabled)

• Adding shards with online resharding

• Removing shards with online resharding

• Removing shards (Console)

• Removing shards (AWS CLI)

• Removing shards (ElastiCache API)

• Online shard rebalancing

• Online Shard Rebalancing (Console)

• Online shard rebalancing (AWS CLI)

• Online shard rebalancing (ElastiCache API)

• Online vertical scaling by modifying node type

• Online scaling up

• Scaling up Redis cache clusters (Console)

• Scaling up Redis cache clusters (AWS CLI)

• Scaling up Redis cache clusters (ElastiCache API)Scaling ElastiCache for Redis self-designed clusters API Version 2015-02-02 711

../redis/CacheNodes.html#SelectSize

Amazon ElastiCache for Redis User Guide

• Online scaling down

• Scaling down Redis cache clusters (Console)

• Scaling down Redis cache clusters (AWS CLI)

• Scaling down Redis cache clusters (ElastiCache API)

Offline resharding and shard rebalancing for Redis (cluster mode enabled)

The main advantage you get from offline shard reconfiguration is that you can do more than
merely add or remove shards from your replication group. When you reshard offline, in addition to
changing the number of shards in your replication group, you can do the following:

Note

Offline resharding is not supported on Redis clusters with data tiering enabled. For more
information, see Data tiering.

• Change the node type of your replication group.

• Specify the Availability Zone for each node in the replication group.

• Upgrade to a newer engine version.

• Specify the number of replica nodes in each shard independently.

• Specify the keyspace for each shard.

The main disadvantage of offline shard reconfiguration is that your cluster is offline beginning
with the restore portion of the process and continuing until you update the endpoints in your
application. The length of time that your cluster is offline varies with the amount of data in your
cluster.

To reconfigure your shards Redis (cluster mode enabled) cluster offline

1. Create a manual backup of your existing Redis cluster. For more information, see Taking
manual backups.

2. Create a new cluster by restoring from the backup. For more information, see Restoring from a
backup into a new cache.

3. Update the endpoints in your application to the new cluster's endpoints. For more information,
see Finding connection endpoints.

Scaling ElastiCache for Redis self-designed clusters API Version 2015-02-02 712

Amazon ElastiCache for Redis User Guide

Online resharding and shard rebalancing for Redis (cluster mode enabled)

By using online resharding and shard rebalancing with Amazon ElastiCache for Redis version 3.2.10
or newer, you can scale your ElastiCache for Redis (cluster mode enabled) dynamically with no
downtime. This approach means that your cluster can continue to serve requests even while scaling
or rebalancing is in process.

You can do the following:

• Scale out – Increase read and write capacity by adding shards (node groups) to your Redis
(cluster mode enabled) cluster (replication group).

If you add one or more shards to your replication group, the number of nodes in each new shard
is the same as the number of nodes in the smallest of the existing shards.

• Scale in – Reduce read and write capacity, and thereby costs, by removing shards from your Redis
(cluster mode enabled) cluster.

• Rebalance – Move the keyspaces among the shards in your ElastiCache for Redis (cluster mode
enabled) cluster so they are as equally distributed among the shards as possible.

You can't do the following:

• Configure shards independently:

You can't specify the keyspace for shards independently. To do this, you must use the offline
process.

Currently, the following limitations apply to ElastiCache for Redis online resharding and
rebalancing:

• These processes require Redis engine version 3.2.10 or newer. For information on upgrading your
engine version, see Engine versions and upgrading .

• There are limitations with slots or keyspaces and large items:

If any of the keys in a shard contain a large item, that key isn't migrated to a new shard when
scaling out or rebalancing. This functionality can result in unbalanced shards.

Scaling ElastiCache for Redis self-designed clusters API Version 2015-02-02 713

Amazon ElastiCache for Redis User Guide

If any of the keys in a shard contain a large item (items greater than 256 MB after serialization),
that shard isn't deleted when scaling in. This functionality can result in some shards not being
deleted.

• When scaling out, the number of nodes in any new shards equals the number of nodes in the
smallest existing shard.

• When scaling out, any tags that are common to all existing shards are copied to the new shards.

• When scaling out a Global Data Store cluster, ElastiCache will not automatically replicate
Functions from one of the existing nodes to the new node(s). We recommend loading your
Functions in the new shard(s) after scaling out your cluster so that every shards have the same
functions.

Note

In ElastiCache for Redis version 7 and above: When scaling out your cluster, ElastiCache
will automatically replicate the Functions loaded in one of the existing nodes (selected
at random) to the new node(s). If your application uses Redis Functions, we recommend
loading all of your functions to all the shards before scaling out so that your ElastiCache for
Redis cluster does not end up with different function definitions on different shards.

For more information, see Online cluster resizing.

You can horizontally scale or rebalance your ElastiCache for Redis (cluster mode enabled) clusters
using the AWS Management Console, the AWS CLI, and the ElastiCache API.

Adding shards with online resharding

You can add shards to your Redis (cluster mode enabled) cluster using the AWS Management
Console, AWS CLI, or ElastiCache API. When you add shards to a Redis (cluster mode enabled)
cluster, any tags on the existing shards are copied over to the new shards.

Adding shards (Console)

You can use the AWS Management Console to add one or more shards to your Redis (cluster mode
enabled) cluster. The following procedure describes the process.

Scaling ElastiCache for Redis self-designed clusters API Version 2015-02-02 714

https://redis.io/docs/manual/programmability/functions-intro/

Amazon ElastiCache for Redis User Guide

To add shards to your Redis (cluster mode enabled) cluster

1. Open the ElastiCache console at https://console.aws.amazon.com/elasticache/.

2. From the navigation pane, choose Redis clusters.

3. Locate and choose the name, not the box to the left of the cluster's name, of the Redis (cluster
mode enabled) cluster that you want to add shards to.

Tip

Redis (cluster mode enabled) show Clustered Redis in the Mode column

4. Choose Add shard.

a. For Number of shards to be added, choose the number of shards you want added to this
cluster.

b. For Availability zone(s), choose either No preference or Specify availability zones.

c. If you chose Specify availability zones, for each node in each shard, select the node's
Availability Zone from the list of Availability Zones.

d. Choose Add.

Adding shards (AWS CLI)

The following process describes how to reconfigure the shards in your Redis (cluster mode enabled)
cluster by adding shards using the AWS CLI.

Use the following parameters with modify-replication-group-shard-configuration.

Parameters

• --apply-immediately – Required. Specifies the shard reconfiguration operation is to be
started immediately.

• --replication-group-id – Required. Specifies which replication group (cluster) the shard
reconfiguration operation is to be performed on.

• --node-group-count – Required. Specifies the number of shards (node groups) to exist when
the operation is completed. When adding shards, the value of --node-group-count must be
greater than the current number of shards.

Scaling ElastiCache for Redis self-designed clusters API Version 2015-02-02 715

https://console.aws.amazon.com/elasticache/

Amazon ElastiCache for Redis User Guide

Optionally, you can specify the Availability Zone for each node in the replication group using --
resharding-configuration.

• --resharding-configuration – Optional. A list of preferred Availability Zones for each node
in each shard in the replication group. Use this parameter only if the value of --node-group-
count is greater than the current number of shards. If this parameter is omitted when adding
shards, Amazon ElastiCache selects the Availability Zones for the new nodes.

The following example reconfigures the keyspaces over four shards in the Redis (cluster mode
enabled) cluster my-cluster. The example also specifies the Availability Zone for each node in
each shard. The operation begins immediately.

Example - Adding Shards

For Linux, macOS, or Unix:

aws elasticache modify-replication-group-shard-configuration \
 --replication-group-id my-cluster \
 --node-group-count 4 \
 --resharding-configuration \
 "PreferredAvailabilityZones=us-east-2a,us-east-2c" \
 "PreferredAvailabilityZones=us-east-2b,us-east-2a" \
 "PreferredAvailabilityZones=us-east-2c,us-east-2d" \
 "PreferredAvailabilityZones=us-east-2d,us-east-2c" \
 --apply-immediately

For Windows:

aws elasticache modify-replication-group-shard-configuration ^
 --replication-group-id my-cluster ^
 --node-group-count 4 ^
 --resharding-configuration ^
 "PreferredAvailabilityZones=us-east-2a,us-east-2c" ^
 "PreferredAvailabilityZones=us-east-2b,us-east-2a" ^
 "PreferredAvailabilityZones=us-east-2c,us-east-2d" ^
 "PreferredAvailabilityZones=us-east-2d,us-east-2c" ^
 --apply-immediately

For more information, see modify-replication-group-shard-configuration in the AWS CLI
documentation.

Scaling ElastiCache for Redis self-designed clusters API Version 2015-02-02 716

https://docs.aws.amazon.com/cli/latest/reference/elasticache/modify-replication-group-shard-configuration.html

Amazon ElastiCache for Redis User Guide

Adding shards (ElastiCache API)

You can use the ElastiCache API to reconfigure the shards in your Redis (cluster mode enabled)
cluster online by using the ModifyReplicationGroupShardConfiguration operation.

Use the following parameters with ModifyReplicationGroupShardConfiguration.

Parameters

• ApplyImmediately=true – Required. Specifies the shard reconfiguration operation is to be
started immediately.

• ReplicationGroupId – Required. Specifies which replication group (cluster) the shard
reconfiguration operation is to be performed on.

• NodeGroupCount – Required. Specifies the number of shards (node groups) to exist when the
operation is completed. When adding shards, the value of NodeGroupCount must be greater
than the current number of shards.

Optionally, you can specify the Availability Zone for each node in the replication group using
ReshardingConfiguration.

• ReshardingConfiguration – Optional. A list of preferred Availability Zones for each node in
each shard in the replication group. Use this parameter only if the value of NodeGroupCount
is greater than the current number of shards. If this parameter is omitted when adding shards,
Amazon ElastiCache selects the Availability Zones for the new nodes.

The following process describes how to reconfigure the shards in your Redis (cluster mode enabled)
cluster by adding shards using the ElastiCache API.

Example - Adding Shards

The following example adds node groups to the Redis (cluster mode enabled) cluster my-cluster,
so there are a total of four node groups when the operation completes. The example also specifies
the Availability Zone for each node in each shard. The operation begins immediately.

https://elasticache.us-east-2.amazonaws.com/
 ?Action=ModifyReplicationGroupShardConfiguration
 &ApplyImmediately=true
 &NodeGroupCount=4
 &ReplicationGroupId=my-cluster

Scaling ElastiCache for Redis self-designed clusters API Version 2015-02-02 717

Amazon ElastiCache for Redis User Guide

 &ReshardingConfiguration.ReshardingConfiguration.1.PreferredAvailabilityZones.AvailabilityZone.1=us-
east-2a

 &ReshardingConfiguration.ReshardingConfiguration.1.PreferredAvailabilityZones.AvailabilityZone.2=us-
east-2c

 &ReshardingConfiguration.ReshardingConfiguration.2.PreferredAvailabilityZones.AvailabilityZone.1=us-
east-2b

 &ReshardingConfiguration.ReshardingConfiguration.2.PreferredAvailabilityZones.AvailabilityZone.2=us-
east-2a

 &ReshardingConfiguration.ReshardingConfiguration.3.PreferredAvailabilityZones.AvailabilityZone.1=us-
east-2c

 &ReshardingConfiguration.ReshardingConfiguration.3.PreferredAvailabilityZones.AvailabilityZone.2=us-
east-2d

 &ReshardingConfiguration.ReshardingConfiguration.4.PreferredAvailabilityZones.AvailabilityZone.1=us-
east-2d

 &ReshardingConfiguration.ReshardingConfiguration.4.PreferredAvailabilityZones.AvailabilityZone.2=us-
east-2c
 &Version=2015-02-02
 &SignatureVersion=4
 &SignatureMethod=HmacSHA256
 &Timestamp=20171002T192317Z
 &X-Amz-Credential=<credential>

For more information, see ModifyReplicationGroupShardConfiguration in the ElastiCache API
Reference.

Removing shards with online resharding

You can remove shards from your Redis (cluster mode enabled) cluster using the AWS Management
Console, AWS CLI, or ElastiCache API.

Topics

• Removing shards (Console)

• Removing shards (AWS CLI)

• Removing shards (ElastiCache API)

Scaling ElastiCache for Redis self-designed clusters API Version 2015-02-02 718

https://docs.aws.amazon.com/AmazonElastiCache/latest/APIReference/API_ModifyReplicationGroupShardConfiguration.html

Amazon ElastiCache for Redis User Guide

Removing shards (Console)

The following process describes how to reconfigure the shards in your Redis (cluster mode enabled)
cluster by removing shards using the AWS Management Console.

Before removing node groups (shards) from your replication group, ElastiCache makes sure that all
your data will fit in the remaining shards. If the data will fit, the specified shards are deleted from
the replication group as requested. If the data won't fit in the remaining node groups, the process
is terminated and the replication group is left with the same node group configuration as before
the request was made.

You can use the AWS Management Console to remove one or more shards from your Redis (cluster
mode enabled) cluster. You cannot remove all the shards in a replication group. Instead, you must
delete the replication group. For more information, see Deleting a replication group. The following
procedure describes the process for deleting one or more shards.

To remove shards from your Redis (cluster mode enabled) cluster

1. Open the ElastiCache console at https://console.aws.amazon.com/elasticache/.

2. From the navigation pane, choose Redis clusters.

3. Locate and choose the name, not the box to the left of the cluster's name, of the Redis (cluster
mode enabled) cluster you want to remove shards from.

Tip

Redis (cluster mode enabled) clusters have a value of 1 or greater in the Shards
column.

4. From the list of shards, choose the box to the left of the name of each shard that you want to
delete.

5. Choose Delete shard.

Removing shards (AWS CLI)

The following process describes how to reconfigure the shards in your Redis (cluster mode enabled)
cluster by removing shards using the AWS CLI.

Scaling ElastiCache for Redis self-designed clusters API Version 2015-02-02 719

https://console.aws.amazon.com/elasticache/

Amazon ElastiCache for Redis User Guide

Important

Before removing node groups (shards) from your replication group, ElastiCache makes sure
that all your data will fit in the remaining shards. If the data will fit, the specified shards
(--node-groups-to-remove) are deleted from the replication group as requested and
their keyspaces mapped into the remaining shards. If the data will not fit in the remaining
node groups, the process is terminated and the replication group is left with the same node
group configuration as before the request was made.

You can use the AWS CLI to remove one or more shards from your Redis (cluster mode enabled)
cluster. You cannot remove all the shards in a replication group. Instead, you must delete the
replication group. For more information, see Deleting a replication group.

Use the following parameters with modify-replication-group-shard-configuration.

Parameters

• --apply-immediately – Required. Specifies the shard reconfiguration operation is to be
started immediately.

• --replication-group-id – Required. Specifies which replication group (cluster) the shard
reconfiguration operation is to be performed on.

• --node-group-count – Required. Specifies the number of shards (node groups) to exist when
the operation is completed. When removing shards, the value of --node-group-count must be
less than the current number of shards.

• --node-groups-to-remove – Required when --node-group-count is less than the current
number of node groups (shards). A list of shard (node group) IDs to remove from the replication
group.

The following procedure describes the process for deleting one or more shards.

Example - Removing Shards

The following example removes two node groups from the Redis (cluster mode enabled) cluster
my-cluster, so there are a total of two node groups when the operation completes. The
keyspaces from the removed shards are distributed evenly over the remaining shards.

Scaling ElastiCache for Redis self-designed clusters API Version 2015-02-02 720

Amazon ElastiCache for Redis User Guide

For Linux, macOS, or Unix:

aws elasticache modify-replication-group-shard-configuration \
 --replication-group-id my-cluster \
 --node-group-count 2 \
 --node-groups-to-remove "0002" "0003" \
 --apply-immediately

For Windows:

aws elasticache modify-replication-group-shard-configuration ^
 --replication-group-id my-cluster ^
 --node-group-count 2 ^
 --node-groups-to-remove "0002" "0003" ^
 --apply-immediately

Removing shards (ElastiCache API)

You can use the ElastiCache API to reconfigure the shards in your Redis (cluster mode enabled)
cluster online by using the ModifyReplicationGroupShardConfiguration operation.

The following process describes how to reconfigure the shards in your Redis (cluster mode enabled)
cluster by removing shards using the ElastiCache API.

Important

Before removing node groups (shards) from your replication group, ElastiCache makes sure
that all your data will fit in the remaining shards. If the data will fit, the specified shards
(NodeGroupsToRemove) are deleted from the replication group as requested and their
keyspaces mapped into the remaining shards. If the data will not fit in the remaining node
groups, the process is terminated and the replication group is left with the same node
group configuration as before the request was made.

You can use the ElastiCache API to remove one or more shards from your Redis (cluster mode
enabled) cluster. You cannot remove all the shards in a replication group. Instead, you must delete
the replication group. For more information, see Deleting a replication group.

Use the following parameters with ModifyReplicationGroupShardConfiguration.

Scaling ElastiCache for Redis self-designed clusters API Version 2015-02-02 721

Amazon ElastiCache for Redis User Guide

Parameters

• ApplyImmediately=true – Required. Specifies the shard reconfiguration operation is to be
started immediately.

• ReplicationGroupId – Required. Specifies which replication group (cluster) the shard
reconfiguration operation is to be performed on.

• NodeGroupCount – Required. Specifies the number of shards (node groups) to exist when the
operation is completed. When removing shards, the value of NodeGroupCount must be less
than the current number of shards.

• NodeGroupsToRemove – Required when --node-group-count is less than the current
number of node groups (shards). A list of shard (node group) IDs to remove from the replication
group.

The following procedure describes the process for deleting one or more shards.

Example - Removing Shards

The following example removes two node groups from the Redis (cluster mode enabled) cluster
my-cluster, so there are a total of two node groups when the operation completes. The
keyspaces from the removed shards are distributed evenly over the remaining shards.

https://elasticache.us-east-2.amazonaws.com/
 ?Action=ModifyReplicationGroupShardConfiguration
 &ApplyImmediately=true
 &NodeGroupCount=2
 &ReplicationGroupId=my-cluster
 &NodeGroupsToRemove.member.1=0002
 &NodeGroupsToRemove.member.2=0003
 &Version=2015-02-02
 &SignatureVersion=4
 &SignatureMethod=HmacSHA256
 &Timestamp=20171002T192317Z
 &X-Amz-Credential=<credential>

Online shard rebalancing

You can rebalance shards in your Redis (cluster mode enabled) cluster using the AWS Management
Console, AWS CLI, or ElastiCache API.

Topics

Scaling ElastiCache for Redis self-designed clusters API Version 2015-02-02 722

Amazon ElastiCache for Redis User Guide

• Online Shard Rebalancing (Console)

• Online shard rebalancing (AWS CLI)

• Online shard rebalancing (ElastiCache API)

Online Shard Rebalancing (Console)

The following process describes how to reconfigure the shards in your Redis (cluster mode enabled)
cluster by rebalancing shards using the AWS Management Console.

To rebalance the keyspaces among the shards on your Redis (cluster mode enabled) cluster

1. Open the ElastiCache console at https://console.aws.amazon.com/elasticache/.

2. From the navigation pane, choose Redis clusters.

3. Choose the name, not the box to the left of the name, of the Redis (cluster mode enabled)
cluster that you want to rebalance.

Tip

Redis (cluster mode enabled) clusters have a value of 1 or greater in the Shards
column.

4. Choose Rebalance.

5. When prompted, choose Rebalance. You might see a message similar to this one:
Slots in the replication group are uniformly distributed. Nothing
to do. (Service: AmazonElastiCache; Status Code: 400; Error Code:
InvalidReplicationGroupState; Request ID: 2246cebd-9721-11e7-8d5b-
e1b0f086c8cf). If you do, choose Cancel.

Online shard rebalancing (AWS CLI)

Use the following parameters with modify-replication-group-shard-configuration.

Parameters

• -apply-immediately – Required. Specifies the shard reconfiguration operation is to be started
immediately.

Scaling ElastiCache for Redis self-designed clusters API Version 2015-02-02 723

https://console.aws.amazon.com/elasticache/

Amazon ElastiCache for Redis User Guide

• --replication-group-id – Required. Specifies which replication group (cluster) the shard
reconfiguration operation is to be performed on.

• --node-group-count – Required. To rebalance the keyspaces across all shards in the cluster,
this value must be the same as the current number of shards.

The following process describes how to reconfigure the shards in your Redis (cluster mode enabled)
cluster by rebalancing shards using the AWS CLI.

Example - Rebalancing the Shards in a Cluster

The following example rebalances the slots in the Redis (cluster mode enabled) cluster my-
cluster so that the slots are distributed as equally as possible. The value of --node-group-
count (4) is the number of shards currently in the cluster.

For Linux, macOS, or Unix:

aws elasticache modify-replication-group-shard-configuration \
 --replication-group-id my-cluster \
 --node-group-count 4 \
 --apply-immediately

For Windows:

aws elasticache modify-replication-group-shard-configuration ^
 --replication-group-id my-cluster ^
 --node-group-count 4 ^
 --apply-immediately

Online shard rebalancing (ElastiCache API)

You can use the ElastiCache API to reconfigure the shards in your Redis (cluster mode enabled)
cluster online by using the ModifyReplicationGroupShardConfiguration operation.

Use the following parameters with ModifyReplicationGroupShardConfiguration.

Parameters

• ApplyImmediately=true – Required. Specifies the shard reconfiguration operation is to be
started immediately.

Scaling ElastiCache for Redis self-designed clusters API Version 2015-02-02 724

Amazon ElastiCache for Redis User Guide

• ReplicationGroupId – Required. Specifies which replication group (cluster) the shard
reconfiguration operation is to be performed on.

• NodeGroupCount – Required. To rebalance the keyspaces across all shards in the cluster, this
value must be the same as the current number of shards.

The following process describes how to reconfigure the shards in your Redis (cluster mode enabled)
cluster by rebalancing the shards using the ElastiCache API.

Example - Rebalancing a Cluster

The following example rebalances the slots in the Redis (cluster mode enabled) cluster my-
cluster so that the slots are distributed as equally as possible. The value of NodeGroupCount (4)
is the number of shards currently in the cluster.

https://elasticache.us-east-2.amazonaws.com/
 ?Action=ModifyReplicationGroupShardConfiguration
 &ApplyImmediately=true
 &NodeGroupCount=4
 &ReplicationGroupId=my-cluster
 &Version=2015-02-02
 &SignatureVersion=4
 &SignatureMethod=HmacSHA256
 &Timestamp=20171002T192317Z
 &X-Amz-Credential=<credential>

Online vertical scaling by modifying node type

By using online vertical scaling with Amazon ElastiCache for Redis version 3.2.10 or newer, you
can scale your Redis clusters dynamically with minimal downtime. This allows your Redis cluster to
serve requests even while scaling.

Note

Scaling is not supported between a data tiering cluster (for example, a cluster using an
r6gd node type) and a cluster that does not use data tiering (for example, a cluster using an
r6g node type). For more information, see Data tiering.

You can do the following:

Scaling ElastiCache for Redis self-designed clusters API Version 2015-02-02 725

Amazon ElastiCache for Redis User Guide

• Scale up – Increase read and write capacity by adjusting the node type of your Redis cluster to
use a larger node type.

ElastiCache dynamically resizes your cluster while remaining online and serving requests.

• Scale down – Reduce read and write capacity by adjusting the node type down to use a smaller
node. Again, ElastiCache dynamically resizes your cluster while remaining online and serving
requests. In this case, you reduce costs by downsizing the node.

Note

The scale up and scale down processes rely on creating clusters with newly selected node
types and synchronizing the new nodes with the previous ones. To ensure a smooth scale
up/down flow, do the following:

• Ensure you have sufficient ENI (Elastic Network Interface) capacity. If scaling down,
ensure the smaller node has sufficient memory to absorb expected traffic.

For best practices on memory management, see Managing Reserved Memory.

• While the vertical scaling process is designed to remain fully online, it does rely on
synchronizing data between the old node and the new node. We recommend that you
initiate scale up/down during hours when you expect data traffic to be at its minimum.

• Test your application behavior during scaling in a staging environment, if possible.

Contents

• Online scaling up

• Scaling up Redis cache clusters (Console)

• Scaling up Redis cache clusters (AWS CLI)

• Scaling up Redis cache clusters (ElastiCache API)

• Online scaling down

• Scaling down Redis cache clusters (Console)

• Scaling down Redis cache clusters (AWS CLI)

• Scaling down Redis cache clusters (ElastiCache API)

Scaling ElastiCache for Redis self-designed clusters API Version 2015-02-02 726

Amazon ElastiCache for Redis User Guide

Online scaling up

Topics

• Scaling up Redis cache clusters (Console)

• Scaling up Redis cache clusters (AWS CLI)

• Scaling up Redis cache clusters (ElastiCache API)

Scaling up Redis cache clusters (Console)

The following procedure describes how to scale up a Redis cluster using the ElastiCache
Management Console. During this process, your Redis cluster will continue to serve requests with
minimal downtime.

To scale up a Redis cluster (console)

1. Sign in to the AWS Management Console and open the ElastiCache console at https://
console.aws.amazon.com/elasticache/.

2. From the navigation pane, choose Redis clusters.

3. From the list of clusters, choose the cluster.

4. Choose Modify.

5. In the Modify Cluster wizard:

• Choose the node type you want to scale to from the Node type list. To scale up, select a
node type larger than your existing node.

6. If you want to perform the scale-up process right away, choose the Apply immediately box.
If the Apply immediately box is not chosen, the scale-up process is performed during this
cluster's next maintenance window.

7. Choose Modify.

If you chose Apply immediately in the previous step, the cluster's status changes to modifying.
When the status changes to available, the modification is complete and you can begin using
the new cluster.

Scaling up Redis cache clusters (AWS CLI)

The following procedure describes how to scale up a Redis cache cluster using the AWS CLI. During
this process, your Redis cluster will continue to serve requests with minimal downtime.

Scaling ElastiCache for Redis self-designed clusters API Version 2015-02-02 727

https://console.aws.amazon.com/elasticache/
https://console.aws.amazon.com/elasticache/

Amazon ElastiCache for Redis User Guide

To scale up a Redis cache cluster (AWS CLI)

1. Determine the node types you can scale up to by running the AWS CLI list-allowed-node-
type-modifications command with the following parameter.

For Linux, macOS, or Unix:

aws elasticache list-allowed-node-type-modifications \
 --replication-group-id my-replication-group-id

For Windows:

aws elasticache list-allowed-node-type-modifications ^
 --replication-group-id my-replication-group-id

Output from the above command looks something like this (JSON format).

{
 "ScaleUpModifications": [
 "cache.m3.2xlarge",
 "cache.m3.large",
 "cache.m3.xlarge",
 "cache.m4.10xlarge",
 "cache.m4.2xlarge",
 "cache.m4.4xlarge",
 "cache.m4.large",
 "cache.m4.xlarge",
 "cache.r3.2xlarge",
 "cache.r3.4xlarge",
 "cache.r3.8xlarge",
 "cache.r3.large",
 "cache.r3.xlarge"
]
 "ScaleDownModifications": [
 "cache.t2.micro",
 "cache.t2.small ",
 "cache.t2.medium",
 "cache.t1.small "
],
}

Scaling ElastiCache for Redis self-designed clusters API Version 2015-02-02 728

Amazon ElastiCache for Redis User Guide

For more information, see list-allowed-node-type-modifications in the AWS CLI Reference.

2. Modify your replication group to scale up to the new, larger node type, using the AWS CLI
modify-replication-group command and the following parameters.

• --replication-group-id – The name of the replication group you are scaling up to.

• --cache-node-type – The new node type you want to scale the cache cluster. This
value must be one of the node types returned by the list-allowed-node-type-
modifications command in step 1.

• --cache-parameter-group-name – [Optional] Use this parameter if you are using
reserved-memory to manage your cluster's reserved memory. Specify a custom cache
parameter group that reserves the correct amount of memory for your new node type. If
you are using reserved-memory-percent you can omit this parameter.

• --apply-immediately – Causes the scale-up process to be applied immediately. To
postpone the scale-up process to the cluster's next maintenance window, use the --no-
apply-immediately parameter.

For Linux, macOS, or Unix:

aws elasticache modify-replication-group \
 --replication-group-id my-redis-cluster \
 --cache-node-type cache.m3.xlarge \
 --apply-immediately

For Windows:

aws elasticache modify-replication-group ^
 --replication-group-id my-redis-cluster ^
 --cache-node-type cache.m3.xlarge ^
 --apply-immediately

Output from the above command looks something like this (JSON format).

{
 "ReplicationGroup": {
 "Status": "modifying",
 "Description": "my-redis-cluster",

Scaling ElastiCache for Redis self-designed clusters API Version 2015-02-02 729

https://docs.aws.amazon.com/cli/latest/reference/elasticache/list-allowed-node-type-modifications.html

Amazon ElastiCache for Redis User Guide

 "NodeGroups": [
 {
 "Status": "modifying",
 "Slots": "0-16383",
 "NodeGroupId": "0001",
 "NodeGroupMembers": [
 {
 "PreferredAvailabilityZone": "us-east-1f",
 "CacheNodeId": "0001",
 "CacheClusterId": "my-redis-cluster-0001-001"
 },
 {
 "PreferredAvailabilityZone": "us-east-1d",
 "CacheNodeId": "0001",
 "CacheClusterId": "my-redis-cluster-0001-002"
 }
]
 }
],
 "ConfigurationEndpoint": {
 "Port": 6379,
 "Address": "my-redis-
cluster.r7gdfi.clustercfg.use1.cache.amazonaws.com"
 },
 "ClusterEnabled": true,
 "ReplicationGroupId": "my-redis-cluster",
 "SnapshotRetentionLimit": 1,
 "AutomaticFailover": "enabled",
 "SnapshotWindow": "07:30-08:30",
 "MemberClusters": [
 "my-redis-cluster-0001-001",
 "my-redis-cluster-0001-002"
],
 "CacheNodeType": "cache.m3.xlarge",
 "DataTiering": "disabled"
 "PendingModifiedValues": {}
 }
}

For more information, see modify-replication-group in the AWS CLI Reference.

Scaling ElastiCache for Redis self-designed clusters API Version 2015-02-02 730

https://docs.aws.amazon.com/cli/latest/reference/elasticache/modify-replication-group.html

Amazon ElastiCache for Redis User Guide

3. If you used the --apply-immediately, check the status of the cache cluster using the AWS
CLI describe-cache-clusters command with the following parameter. When the status
changes to available, you can begin using the new, larger cache cluster node.

Scaling up Redis cache clusters (ElastiCache API)

The following process scales your cache cluster from its current node type to a new, larger node
type using the ElastiCache API. During this process, ElastiCache for Redis updates the DNS entries
so they point to the new nodes. Because of this you don't have to update the endpoints in your
application. For Redis 5.0.5 and above, you can scale auto failover enabled clusters while the
cluster continues to stay online and serve incoming requests. On version 4.0.10 and below, you
may notice a brief interruption of reads and writes on previous versions from the primary node
while the DNS entry is updated..

The amount of time it takes to scale up to a larger node type varies, depending upon your node
type and the amount of data in your current cache cluster.

To scale up a Redis Cache Cluster (ElastiCache API)

1. Determine which node types you can scale up to using the ElastiCache API
ListAllowedNodeTypeModifications action with the following parameter.

• ReplicationGroupId – the name of the replication group. Use this parameter to describe
a specific replication group rather than all replication groups.

https://elasticache.us-west-2.amazonaws.com/
 ?Action=ListAllowedNodeTypeModifications
 &ReplicationGroupId=MyReplGroup
 &Version=2015-02-02
 &SignatureVersion=4
 &SignatureMethod=HmacSHA256
 &Timestamp=20150202T192317Z
 &X-Amz-Credential=<credential>

For more information, see ListAllowedNodeTypeModifications in the Amazon ElastiCache API
Reference.

2. Scale your current replication group up to the new node type using the
ModifyReplicationGroup ElastiCache API action and with the following parameters.

Scaling ElastiCache for Redis self-designed clusters API Version 2015-02-02 731

https://docs.aws.amazon.com/AmazonElastiCache/latest/APIReference/API_ListAllowedNodeTypeModifications.html

Amazon ElastiCache for Redis User Guide

• ReplicationGroupId – the name of the replication group.

• CacheNodeType – the new, larger node type of the cache clusters in this
replication group. This value must be one of the instance types returned by the
ListAllowedNodeTypeModifications action in step 1.

• CacheParameterGroupName – [Optional] Use this parameter if you are using reserved-
memory to manage your cluster's reserved memory. Specify a custom cache parameter
group that reserves the correct amount of memory for your new node type. If you are using
reserved-memory-percent you can omit this parameter.

• ApplyImmediately – Set to true to causes the scale-up process to be applied
immediately. To postpone the scale-up process to the next maintenance window, use
ApplyImmediately=false.

https://elasticache.us-west-2.amazonaws.com/
 ?Action=ModifyReplicationGroup
 &ApplyImmediately=true
 &CacheNodeType=cache.m3.2xlarge
 &CacheParameterGroupName=redis32-m3-2xl
 &ReplicationGroupId=myReplGroup
 &SignatureVersion=4
 &SignatureMethod=HmacSHA256
 &Timestamp=20141201T220302Z
 &Version=2014-12-01
 &X-Amz-Algorithm=&AWS;4-HMAC-SHA256
 &X-Amz-Date=20141201T220302Z
 &X-Amz-SignedHeaders=Host
 &X-Amz-Expires=20141201T220302Z
 &X-Amz-Credential=<credential>
 &X-Amz-Signature=<signature>

For more information, see ModifyReplicationGroup in the Amazon ElastiCache API Reference.

3. If you used ApplyImmediately=true, monitor the status of the replication group using the
ElastiCache API DescribeReplicationGroups action with the following parameters. When
the status changes from modifying to available, you can begin writing to your new, scaled up
replication group.

• ReplicationGroupId – the name of the replication group. Use this parameter to describe
a particular replication group rather than all replication groups.

Scaling ElastiCache for Redis self-designed clusters API Version 2015-02-02 732

https://docs.aws.amazon.com/AmazonElastiCache/latest/APIReference/API_ModifyReplicationGroup.html

Amazon ElastiCache for Redis User Guide

https://elasticache.us-west-2.amazonaws.com/
 ?Action=DescribeReplicationGroups
 &ReplicationGroupId=MyReplGroup
 &Version=2015-02-02
 &SignatureVersion=4
 &SignatureMethod=HmacSHA256
 &Timestamp=20150202T192317Z
 &X-Amz-Credential=<credential>

For more information, see DescribeReplicationGroups in the Amazon ElastiCache API Reference.

Online scaling down

Topics

• Scaling down Redis cache clusters (Console)

• Scaling down Redis cache clusters (AWS CLI)

• Scaling down Redis cache clusters (ElastiCache API)

Scaling down Redis cache clusters (Console)

The following procedure describes how to scale down a Redis cluster using the ElastiCache
Management Console. During this process, your Redis cluster will continue to serve requests with
minimal downtime.

To scale Down a Redis cluster (console)

1. Sign in to the AWS Management Console and open the ElastiCache console at https://
console.aws.amazon.com/elasticache/.

2. From the navigation pane, choose Redis clusters.

3. From the list of clusters, choose your preferred cluster.

4. Choose Modify.

5. In the Modify Cluster wizard:

• Choose the node type you want to scale to from the Node type list. To scale down, select
a node type smaller than your existing node. Note that not all node types are available to
scale down to.

Scaling ElastiCache for Redis self-designed clusters API Version 2015-02-02 733

https://docs.aws.amazon.com/AmazonElastiCache/latest/APIReference/API_DescribeReplicationGroups.html
https://console.aws.amazon.com/elasticache/
https://console.aws.amazon.com/elasticache/

Amazon ElastiCache for Redis User Guide

6. If you want to perform the scale down process right away, choose the Apply immediately box.
If the Apply immediately box is not chosen, the scale-down process is performed during this
cluster's next maintenance window.

7. Choose Modify.

If you chose Apply immediately in the previous step, the cluster's status changes to modifying.
When the status changes to available, the modification is complete and you can begin using
the new cluster.

Scaling down Redis cache clusters (AWS CLI)

The following procedure describes how to scale down a Redis cache cluster using the AWS CLI.
During this process, your Redis cluster will continue to serve requests with minimal downtime.

To scale down a Redis cache cluster (AWS CLI)

1. Determine the node types you can scale down to by running the AWS CLI list-allowed-
node-type-modifications command with the following parameter.

For Linux, macOS, or Unix:

aws elasticache list-allowed-node-type-modifications \
 --replication-group-id my-replication-group-id

For Windows:

aws elasticache list-allowed-node-type-modifications ^
 --replication-group-id my-replication-group-id

Output from the above command looks something like this (JSON format).

{
 "ScaleUpModifications": [
 "cache.m3.2xlarge",
 "cache.m3.large",
 "cache.m3.xlarge",
 "cache.m4.10xlarge",
 "cache.m4.2xlarge",
 "cache.m4.4xlarge",
 "cache.m4.large",

Scaling ElastiCache for Redis self-designed clusters API Version 2015-02-02 734

Amazon ElastiCache for Redis User Guide

 "cache.m4.xlarge",
 "cache.r3.2xlarge",
 "cache.r3.4xlarge",
 "cache.r3.8xlarge",
 "cache.r3.large",
 "cache.r3.xlarge"
]

 "ScaleDownModifications": [
 "cache.t2.micro",
 "cache.t2.small ",
 "cache.t2.medium ",
 "cache.t1.small"
]
}

For more information, see list-allowed-node-type-modifications in the AWS CLI Reference.

2. Modify your replication group to scale down to the new, smaller node type, using the AWS CLI
modify-replication-group command and the following parameters.

• --replication-group-id – The name of the replication group you are scaling down to.

• --cache-node-type – The new node type you want to scale the cache cluster. This
value must be one of the node types returned by the list-allowed-node-type-
modifications command in step 1.

• --cache-parameter-group-name – [Optional] Use this parameter if you are using
reserved-memory to manage your cluster's reserved memory. Specify a custom cache
parameter group that reserves the correct amount of memory for your new node type. If
you are using reserved-memory-percent you can omit this parameter.

• --apply-immediately – Causes the scale-up process to be applied immediately. To
postpone the scale-down process to the cluster's next maintenance window, use the --no-
apply-immediately parameter.

For Linux, macOS, or Unix:

aws elasticache modify-replication-group \
 --replication-group-id my-redis-cluster \
 --cache-node-type cache.t2.micro \
 --apply-immediately

Scaling ElastiCache for Redis self-designed clusters API Version 2015-02-02 735

https://docs.aws.amazon.com/cli/latest/reference/elasticache/list-allowed-node-type-modifications.html

Amazon ElastiCache for Redis User Guide

For Windows:

aws elasticache modify-replication-group ^
 --replication-group-id my-redis-cluster ^
 --cache-node-type cache.t2.micro ^
 --apply-immediately

Output from the above command looks something like this (JSON format).

{
 "ReplicationGroup": {
 "Status": "modifying",
 "Description": "my-redis-cluster",
 "NodeGroups": [
 {
 "Status": "modifying",
 "Slots": "0-16383",
 "NodeGroupId": "0001",
 "NodeGroupMembers": [
 {
 "PreferredAvailabilityZone": "us-east-1f",
 "CacheNodeId": "0001",
 "CacheClusterId": "my-redis-cluster-0001-001"
 },
 {
 "PreferredAvailabilityZone": "us-east-1d",
 "CacheNodeId": "0001",
 "CacheClusterId": "my-redis-cluster-0001-002"
 }
]
 }
],
 "ConfigurationEndpoint": {
 "Port": 6379,
 "Address": "my-redis-
cluster.r7gdfi.clustercfg.use1.cache.amazonaws.com"
 },
 "ClusterEnabled": true,
 "ReplicationGroupId": "my-redis-cluster",
 "SnapshotRetentionLimit": 1,
 "AutomaticFailover": "enabled",

Scaling ElastiCache for Redis self-designed clusters API Version 2015-02-02 736

Amazon ElastiCache for Redis User Guide

 "SnapshotWindow": "07:30-08:30",
 "MemberClusters": [
 "my-redis-cluster-0001-001",
 "my-redis-cluster-0001-002"
],
 "CacheNodeType": "cache.t2.micro",
 "DataTiering": "disabled"
 "PendingModifiedValues": {}
 }
}

For more information, see modify-replication-group in the AWS CLI Reference.

3. If you used the --apply-immediately, check the status of the cache cluster using the AWS
CLI describe-cache-clusters command with the following parameter. When the status
changes to available, you can begin using the new, smaller cache cluster node.

Scaling down Redis cache clusters (ElastiCache API)

The following process scales your replication group from its current node type to a new, smaller
node type using the ElastiCache API. During this process, your Redis cluster will continue to serve
requests with minimal downtime.

The amount of time it takes to scale down to a smaller node type varies, depending upon your
node type and the amount of data in your current cache cluster.

Scaling down (ElastiCache API)

1. Determine which node types you can scale down to using the ElastiCache API
ListAllowedNodeTypeModifications action with the following parameter.

• ReplicationGroupId – the name of the replication group. Use this parameter to describe
a specific replication group rather than all replication groups.

https://elasticache.us-west-2.amazonaws.com/
 ?Action=ListAllowedNodeTypeModifications
 &ReplicationGroupId=MyReplGroup
 &Version=2015-02-02
 &SignatureVersion=4
 &SignatureMethod=HmacSHA256
 &Timestamp=20150202T192317Z

Scaling ElastiCache for Redis self-designed clusters API Version 2015-02-02 737

https://docs.aws.amazon.com/cli/latest/reference/elasticache/modify-replication-group.html

Amazon ElastiCache for Redis User Guide

 &X-Amz-Credential=<credential>

For more information, see ListAllowedNodeTypeModifications in the Amazon ElastiCache API
Reference.

2. Scale your current replication group down to the new node type using the
ModifyReplicationGroup ElastiCache API action and with the following parameters.

• ReplicationGroupId – the name of the replication group.

• CacheNodeType – the new, smaller node type of the cache clusters in this
replication group. This value must be one of the instance types returned by the
ListAllowedNodeTypeModifications action in step 1.

• CacheParameterGroupName – [Optional] Use this parameter if you are using reserved-
memory to manage your cluster's reserved memory. Specify a custom cache parameter
group that reserves the correct amount of memory for your new node type. If you are using
reserved-memory-percent you can omit this parameter.

• ApplyImmediately – Set to true to causes the scale-down process to be applied
immediately. To postpone the scale-down process to the next maintenance window, use
ApplyImmediately=false.

https://elasticache.us-west-2.amazonaws.com/
 ?Action=ModifyReplicationGroup
 &ApplyImmediately=true
 &CacheNodeType=cache.t2.micro
 &CacheParameterGroupName=redis32-m3-2xl
 &ReplicationGroupId=myReplGroup
 &SignatureVersion=4
 &SignatureMethod=HmacSHA256
 &Timestamp=20141201T220302Z
 &Version=2014-12-01
 &X-Amz-Algorithm=&AWS;4-HMAC-SHA256
 &X-Amz-Date=20141201T220302Z
 &X-Amz-SignedHeaders=Host
 &X-Amz-Expires=20141201T220302Z
 &X-Amz-Credential=<credential>
 &X-Amz-Signature=<signature>

For more information, see ModifyReplicationGroup in the Amazon ElastiCache API Reference.

Scaling ElastiCache for Redis self-designed clusters API Version 2015-02-02 738

https://docs.aws.amazon.com/AmazonElastiCache/latest/APIReference/API_ListAllowedNodeTypeModifications.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/APIReference/API_ModifyReplicationGroup.html

Amazon ElastiCache for Redis User Guide

Getting started with JSON in ElastiCache for Redis

ElastiCache for Redis supports the native JavaScript Object Notation (JSON) format, which is a
simple, schemaless way to encode complex datasets inside Redis clusters. You can natively store
and access data using the JavaScript Object Notation (JSON) format inside Redis clusters, and
update JSON data stored in those clusters—without needing to manage custom code to serialize
and deserialize it.

In addition to using Redis API operations for applications that operate over JSON, you can
now efficiently retrieve and update specific portions of a JSON document without needing to
manipulate the entire object. This can improve performance and reduce cost. You can also search
your JSON document contents using the Goessner-style JSONPath query.

After you create a cluster with a supported engine version, the JSON data type and associated
commands are automatically available. This is API compatible and RDB compatible with version 2
of the RedisJSON module, so you can easily migrate existing JSON-based Redis applications into
ElastiCache for Redis. For more information on the supported Redis commands, see Supported
Redis JSON commands.

The JSON-related metrics JsonBasedCmds and JsonBasedCmdsLatency are incorporated into
CloudWatch to monitor the usage of this data type. For more information, see Metrics for Redis.

Note

To use JSON, you must be running Redis engine version 6.2.6 or later.

Topics

• Redis JSON data type overview

• Supported Redis JSON commands

Redis JSON data type overview

ElastiCache for Redis supports a number of Redis commands for working with the JSON data type.
The following is an overview of the JSON data type and a detailed list of Redis commands that are
supported.

Getting started with JSON in ElastiCache for Redis API Version 2015-02-02 739

https://goessner.net/articles/JsonPath/
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/CacheMetrics.Redis.html

Amazon ElastiCache for Redis User Guide

Terminology

Term Description

JSON document Refers to the value of a Redis JSON key.

JSON value Refers to a subset of a JSON document,
including the root that represents the entire
document. A value could be a container or an
entry within a container.

JSON element Equivalent to JSON value.

Supported JSON standard

JSON format is compliant with RFC 7159 and ECMA-404 JSON data interchange standard. UTF-8
Unicode in JSON text is supported.

Root element

The root element can be of any JSON data type. Note that in earlier RFC 4627, only objects or
arrays were allowed as root values. Since the update to RFC 7159, the root of a JSON document
can be of any JSON data type.

Document size limit

JSON documents are stored internally in a format that's optimized for rapid access and
modification. This format typically results in consuming somewhat more memory than the
equivalent serialized representation of the same document.

The consumption of memory by a single JSON document is limited to 64 MB, which is the size
of the in-memory data structure, not the JSON string. You can check the amount of memory
consumed by a JSON document by using the JSON.DEBUG MEMORY command.

JSON ACLs

• Similar to the existing per-datatype categories (@string, @hash, etc.), a new category @json
is added to simplify managing access to JSON commands and data. No other existing Redis

Redis JSON data type overview API Version 2015-02-02 740

https://www.ietf.org/rfc/rfc7159.txt
https://www.ietf.org/rfc/rfc7159.txt
https://www.unicode.org/standard/WhatIsUnicode.html

Amazon ElastiCache for Redis User Guide

commands are members of the @json category. All JSON commands enforce any keyspace or
command restrictions and permissions.

• There are five existing Redis ACL categories that are updated to include the new JSON
commands: @read, @write, @fast, @slow and @admin. The following table indicates the
mapping of JSON commands to the appropriate categories.

ACL

JSON
command

@read @write @fast @slow @admin

JSON.ARRA
PPEND

y y

JSON.ARRI
NDEX

y y

JSON.ARRI
NSERT

y y

JSON.ARRL
EN

y y

JSON.ARRP
OP

y y

JSON.ARRT
RIM

y y

JSON.CLEAR y y

JSON.DEBUG y y y

JSON.DEL y y

JSON.FORG
ET

y y

JSON.GET y y

Redis JSON data type overview API Version 2015-02-02 741

Amazon ElastiCache for Redis User Guide

JSON
command

@read @write @fast @slow @admin

JSON.MGET y y

JSON.NUMI
NCRBY

y y

JSON.NUMM
ULTBY

y y

JSON.OBJK
EYS

y y

JSON.OBJL
EN

y y

JSON.RESP y y

JSON.SET y y

JSON.STRA
PPEND

y y

JSON.STRL
EN

y y

JSON.STRL
EN

y y

JSON.TOGG
LE

y y

JSON.TYPE y y

JSON.NUMI
NCRBY

y y

Redis JSON data type overview API Version 2015-02-02 742

Amazon ElastiCache for Redis User Guide

Nesting depth limit

When a JSON object or array has an element that is itself another JSON object or array, that inner
object or array is said to “nest” within the outer object or array. The maximum nesting depth limit
is 128. Any attempt to create a document that contains a nesting depth greater than 128 will be
rejected with an error.

Command syntax

Most commands require a Redis key name as the first argument. Some commands also have a path
argument. The path argument defaults to the root if it's optional and not provided.

Notation:

• Required arguments are enclosed in angle brackets. For example: <key>

• Optional arguments are enclosed in square brackets. For example: [path]

• Additional optional arguments are indicated by an ellipsis ("…"). For example: [json ...]

Path syntax

Redis JSON supports two kinds of path syntaxes:

• Enhanced syntax – Follows the JSONPath syntax described by Goessner, as shown in the
following table. We've reordered and modified the descriptions in the table for clarity.

• Restricted syntax – Has limited query capabilities.

Note

Results of some commands are sensitive to which type of path syntax is used.

If a query path starts with '$', it uses the enhanced syntax. Otherwise, the restricted syntax is used.

Enhanced syntax

Symbol/Expression Description

$ The root element.

Redis JSON data type overview API Version 2015-02-02 743

https://goessner.net/articles/JsonPath/

Amazon ElastiCache for Redis User Guide

Symbol/Expression Description

. or [] Child operator.

.. Recursive descent.

* Wildcard. All elements in an object or array.

[] Array subscript operator. Index is 0-based.

[,] Union operator.

[start:end:step] Array slice operator.

?() Applies a filter (script) expression to the
current array or object.

() Filter expression.

@ Used in filter expressions that refer to the
current node being processed.

== Equal to, used in filter expressions.

!= Not equal to, used in filter expressions.

> Greater than, used in filter expressions.

>= Greater than or equal to, used in filter
expressions.

< Less than, used in filter expressions.

<= Less than or equal to, used in filter expressio
ns.

&& Logical AND, used to combine multiple filter
expressions.

|| Logical OR, used to combine multiple filter
expressions.

Redis JSON data type overview API Version 2015-02-02 744

Amazon ElastiCache for Redis User Guide

Examples

The following examples are built on Goessner's example XML data, which we have modified by
adding additional fields.

{ "store": {
 "book": [
 { "category": "reference",
 "author": "Nigel Rees",
 "title": "Sayings of the Century",
 "price": 8.95,
 "in-stock": true,
 "sold": true
 },
 { "category": "fiction",
 "author": "Evelyn Waugh",
 "title": "Sword of Honour",
 "price": 12.99,
 "in-stock": false,
 "sold": true
 },
 { "category": "fiction",
 "author": "Herman Melville",
 "title": "Moby Dick",
 "isbn": "0-553-21311-3",
 "price": 8.99,
 "in-stock": true,
 "sold": false
 },
 { "category": "fiction",
 "author": "J. R. R. Tolkien",
 "title": "The Lord of the Rings",
 "isbn": "0-395-19395-8",
 "price": 22.99,
 "in-stock": false,
 "sold": false
 }
],
 "bicycle": {
 "color": "red",
 "price": 19.95,
 "in-stock": true,
 "sold": false
 }

Redis JSON data type overview API Version 2015-02-02 745

https://goessner.net/articles/JsonPath/

Amazon ElastiCache for Redis User Guide

 }
}

Path Description

$.store.book[*].author The authors of all books in the store.

$..author All authors.

$.store.* All members of the store.

$["store"].* All members of the store.

$.store..price The price of everything in the store.

$..* All recursive members of the JSON structure.

$..book[*] All books.

$..book[0] The first book.

$..book[-1] The last book.

$..book[0:2] The first two books.

$..book[0,1] The first two books.

$..book[0:4] Books from index 0 to 3 (ending index is not
inclusive).

$..book[0:4:2] Books at index 0, 2.

$..book[?(@.isbn)] All books with an ISBN number.

$..book[?(@.price<10)] All books cheaper than $10.

'$..book[?(@.price < 10)]' All books cheaper than $10. (The path must
be quoted if it contains white spaces.)

'$..book[?(@["price"] < 10)]' All books cheaper than $10.

Redis JSON data type overview API Version 2015-02-02 746

Amazon ElastiCache for Redis User Guide

Path Description

'$..book[?(@.["price"] < 10)]' All books cheaper than $10.

$..book[?(@.price>=10&&@.price<=100)] All books in the price range of $10 to $100,
inclusive.

'$..book[?(@.price>=10 && @.price<=100)]' All books in the price range of $10 to $100,
inclusive. (The path must be quoted if it
contains white spaces.)

$..book[?(@.sold==true||@.in-stock==false)] All books sold or out of stock.

'$..book[?(@.sold == true || @.in-stock ==
false)]'

All books sold or out of stock. (The path must
be quoted if it contains white spaces.)

'$.store.book[?(@.["category"] == "fiction")]' All books in the fiction category.

'$.store.book[?(@.["category"] != "fiction")]' All books in nonfiction categories.

Additional filter expression examples:

127.0.0.1:6379> JSON.SET k1 . '{"books": [{"price":5,"sold":true,"in-
stock":true,"title":"foo"}, {"price":15,"sold":false,"title":"abc"}]}'
OK
127.0.0.1:6379> JSON.GET k1 $.books[?(@.price>1&&@.price<20&&@.in-stock)]
"[{\"price\":5,\"sold\":true,\"in-stock\":true,\"title\":\"foo\"}]"
127.0.0.1:6379> JSON.GET k1 '$.books[?(@.price>1 && @.price<20 && @.in-stock)]'
"[{\"price\":5,\"sold\":true,\"in-stock\":true,\"title\":\"foo\"}]"
127.0.0.1:6379> JSON.GET k1 '$.books[?((@.price>1 && @.price<20) && (@.sold==false))]'
"[{\"price\":15,\"sold\":false,\"title\":\"abc\"}]"
127.0.0.1:6379> JSON.GET k1 '$.books[?(@.title == "abc")]'
[{"price":15,"sold":false,"title":"abc"}]

127.0.0.1:6379> JSON.SET k2 . '[1,2,3,4,5]'
127.0.0.1:6379> JSON.GET k2 $.*.[?(@>2)]
"[3,4,5]"
127.0.0.1:6379> JSON.GET k2 '$.*.[?(@ > 2)]'
"[3,4,5]"

127.0.0.1:6379> JSON.SET k3 . '[true,false,true,false,null,1,2,3,4]'

Redis JSON data type overview API Version 2015-02-02 747

Amazon ElastiCache for Redis User Guide

OK
127.0.0.1:6379> JSON.GET k3 $.*.[?(@==true)]
"[true,true]"
127.0.0.1:6379> JSON.GET k3 '$.*.[?(@ == true)]'
"[true,true]"
127.0.0.1:6379> JSON.GET k3 $.*.[?(@>1)]
"[2,3,4]"
127.0.0.1:6379> JSON.GET k3 '$.*.[?(@ > 1)]'
"[2,3,4]"

Restricted syntax

Symbol/Expression Description

. or [] Child operator.

[] Array subscript operator. Index is 0-based.

Examples

Path Description

.store.book[0].author The author of the first book.

.store.book[-1].author The author of the last book.

.address.city City name.

["store"]["book"][0]["title"] The title of the first book.

["store"]["book"][-1]["title"] The title of the last book.

Note

All Goessner content cited in this documentation is subject to the Creative Commons
License.

Redis JSON data type overview API Version 2015-02-02 748

https://goessner.net/articles/JsonPath/
https://creativecommons.org/licenses/by/2.5/
https://creativecommons.org/licenses/by/2.5/

Amazon ElastiCache for Redis User Guide

Common error prefixes

Each error message has a prefix. The following is a list of common error prefixes.

Prefix Description

ERR A general error.

LIMIT An error that occurs when the size limit is
exceeded. For example, the document size
limit or nesting depth limit was exceeded.

NONEXISTENT A key or path does not exist.

OUTOFBOUNDARIES Array index out of bounds.

SYNTAXERR Syntax error.

WRONGTYPE Wrong value type.

JSON-related metrics

The following JSON info metrics are provided:

Info Description

json_total_memory_bytes Total memory allocated to JSON objects.

json_num_documents Total number of documents in Redis.

To query core metrics, run the following Redis command:

info json_core_metrics

How ElastiCache for Redis interacts with JSON

The following section describes how ElastiCache for Redis interacts with the JSON data type.

Redis JSON data type overview API Version 2015-02-02 749

Amazon ElastiCache for Redis User Guide

Operator precedence

When evaluating conditional expressions for filtering, &&s take precedence first, and then ||s are
evaluated, as is common across most languages. Operations inside of parentheses are run first.

Maximum path nesting limit behavior

The maximum path nesting limit in ElastiCache for Redis is 128. So a value like $.a.b.c.d... can
only reach 128 levels.

Handling numeric values

JSON doesn't have separate data types for integers and floating point numbers. They are all called
numbers.

Numerical representations:

When a JSON number is received on input, it is converted into one of the two internal binary
representations: a 64-bit signed integer or a 64-bit IEEE double precision floating point. The
original string and all of its formatting are not retained. Thus, when a number is output as part of
a JSON response, it is converted from the internal binary representation to a printable string that
uses generic formatting rules. These rules might result in a different string being generated than
was received.

Arithmetic commands NUMINCRBY and NUMMULTBY:

• If both numbers are integers and the result is out of the range of int64, it automatically
becomes a 64-bit IEEE double precision floating point number.

• If at least one of the numbers is a floating point, the result is a 64-bit IEEE double precision
floating point number.

• If the result exceeds the range of 64-bit IEEE double, the command returns an OVERFLOW error.

For a detailed list of available commands, see Supported Redis JSON commands.

Direct array filtering

ElastiCache for Redis filters array objects directly.

For data like [0,1,2,3,4,5,6] and a path query like $[?(@<4)], or data like {"my_key":
[0,1,2,3,4,5,6]} and a path query like $.my_key[?(@<4)], ElastiCache for Redis would
return [1,2,3] in both circumstances.

Redis JSON data type overview API Version 2015-02-02 750

Amazon ElastiCache for Redis User Guide

Array indexing behavior

ElastiCache for Redis allows both positive and negative indexes for arrays. For an array of length
five, 0 would query the first element, 1 the second, and so on. Negative numbers start at the end of
the array, so -1 would query the fifth element, -2 the fourth element, and so on.

To ensure predictable behavior for customers, ElastiCache for Redis does not round array indexes
down or up, so if you have an array with a length of 5, calling index 5 or higher, or -6 or lower,
would not produce a result.

Strict syntax evaluation

MemoryDB does not allow JSON paths with invalid syntax, even if a subset of the path contains a
valid path. This is to maintain correct behavior for our customers.

Supported Redis JSON commands

ElastiCache for Redis supports the following Redis JSON commands:

Topics

• JSON.ARRAPPEND

• JSON.ARRINDEX

• JSON.ARRINSERT

• JSON.ARRLEN

• JSON.ARRPOP

• JSON.ARRTRIM

• JSON.CLEAR

• JSON.DEBUG

• JSON.DEL

• JSON.FORGET

• JSON.GET

• JSON.MGET

• JSON.NUMINCRBY

• JSON.NUMMULTBY

• JSON.OBJLEN

• JSON.OBJKEYS

JSON commands API Version 2015-02-02 751

Amazon ElastiCache for Redis User Guide

• JSON.RESP

• JSON.SET

• JSON.STRAPPEND

• JSON.STRLEN

• JSON.TOGGLE

• JSON.TYPE

JSON.ARRAPPEND

Appends one or more values to the array values at the path.

Syntax

JSON.ARRAPPEND <key> <path> <json> [json ...]

• key (required) – A Redis key of JSON document type.

• path (required) – A JSON path.

• json (required) – The JSON value to be appended to the array.

Return

If the path is enhanced syntax:

• Array of integers that represent the new length of the array at each path.

• If a value is not an array, its corresponding return value is null.

• SYNTAXERR error if one of the input json arguments is not a valid JSON string.

• NONEXISTENT error if the path does not exist.

If the path is restricted syntax:

• Integer, the array's new length.

• If multiple array values are selected, the command returns the new length of the last updated
array.

• WRONGTYPE error if the value at the path is not an array.

• SYNTAXERR error if one of the input json arguments is not a valid JSON string.

JSON commands API Version 2015-02-02 752

Amazon ElastiCache for Redis User Guide

• NONEXISTENT error if the path does not exist.

Examples

Enhanced path syntax:

127.0.0.1:6379> JSON.SET k1 . '[[], ["a"], ["a", "b"]]'
OK
127.0.0.1:6379> JSON.ARRAPPEND k1 $[*] '"c"'
1) (integer) 1
2) (integer) 2
3) (integer) 3
127.0.0.1:6379> JSON.GET k1
"[[\"c\"],[\"a\",\"c\"],[\"a\",\"b\",\"c\"]]"

Restricted path syntax:

127.0.0.1:6379> JSON.SET k1 . '[[], ["a"], ["a", "b"]]'
OK
127.0.0.1:6379> JSON.ARRAPPEND k1 [-1] '"c"'
(integer) 3
127.0.0.1:6379> JSON.GET k1
"[[],[\"a\"],[\"a\",\"b\",\"c\"]]"

JSON.ARRINDEX

Searches for the first occurrence of a scalar JSON value in the arrays at the path.

• Out of range errors are treated by rounding the index to the array's start and end.

• If start > end, return -1 (not found).

Syntax

JSON.ARRINDEX <key> <path> <json-scalar> [start [end]]

• key (required) – A Redis key of JSON document type.

• path (required) – A JSON path.

JSON commands API Version 2015-02-02 753

Amazon ElastiCache for Redis User Guide

• json-scalar (required) – The scalar value to search for. JSON scalar refers to values that are not
objects or arrays. That is, string, number, Boolean, and null are scalar values.

• start (optional) – The start index, inclusive. Defaults to 0 if not provided.

• end (optional) – The end index, exclusive. Defaults to 0 if not provided, which means that the last
element is included. 0 or -1 means the last element is included.

Return

If the path is enhanced syntax:

• Array of integers. Each value is the index of the matching element in the array at the path. The
value is -1 if not found.

• If a value is not an array, its corresponding return value is null.

If the path is restricted syntax:

• Integer, the index of matching element, or -1 if not found.

• WRONGTYPE error if the value at the path is not an array.

Examples

Enhanced path syntax:

127.0.0.1:6379> JSON.SET k1 . '[[], ["a"], ["a", "b"], ["a", "b", "c"]]'
OK
127.0.0.1:6379> JSON.ARRINDEX k1 $[*] '"b"'
1) (integer) -1
2) (integer) -1
3) (integer) 1
4) (integer) 1

Restricted path syntax:

127.0.0.1:6379> JSON.SET k1 . '{"children": ["John", "Jack", "Tom", "Bob", "Mike"]}'
OK
127.0.0.1:6379> JSON.ARRINDEX k1 .children '"Tom"'
(integer) 2

JSON commands API Version 2015-02-02 754

Amazon ElastiCache for Redis User Guide

JSON.ARRINSERT

Inserts one or more values into the array values at the path before the index.

Syntax

JSON.ARRINSERT <key> <path> <index> <json> [json ...]

• key (required) – A Redis key of JSON document type.

• path (required) – A JSON path.

• index (required) – An array index before which values are inserted.

• json (required) – The JSON value to be appended to the array.

Return

If the path is enhanced syntax:

• Array of integers that represent the new length of the array at each path.

• If a value is an empty array, its corresponding return value is null.

• If a value is not an array, its corresponding return value is null.

• OUTOFBOUNDARIES error if the index argument is out of bounds.

If the path is restricted syntax:

• Integer, the new length of the array.

• WRONGTYPE error if the value at the path is not an array.

• OUTOFBOUNDARIES error if the index argument is out of bounds.

Examples

Enhanced path syntax:

127.0.0.1:6379> JSON.SET k1 . '[[], ["a"], ["a", "b"]]'
OK
127.0.0.1:6379> JSON.ARRINSERT k1 $[*] 0 '"c"'

JSON commands API Version 2015-02-02 755

Amazon ElastiCache for Redis User Guide

1) (integer) 1
2) (integer) 2
3) (integer) 3
127.0.0.1:6379> JSON.GET k1
"[[\"c\"],[\"c\",\"a\"],[\"c\",\"a\",\"b\"]]"

Restricted path syntax:

127.0.0.1:6379> JSON.SET k1 . '[[], ["a"], ["a", "b"]]'
OK
127.0.0.1:6379> JSON.ARRINSERT k1 . 0 '"c"'
(integer) 4
127.0.0.1:6379> JSON.GET k1
"[\"c\",[],[\"a\"],[\"a\",\"b\"]]"

JSON.ARRLEN

Gets the length of the array values at the path.

Syntax

JSON.ARRLEN <key> [path]

• key (required) – A Redis key of JSON document type.

• path (optional) – A JSON path. Defaults to the root if not provided.

Return

If the path is enhanced syntax:

• Array of integers that represent the array length at each path.

• If a value is not an array, its corresponding return value is null.

• Null if the document key does not exist.

If the path is restricted syntax:

• Array of bulk strings. Each element is a key name in the object.

JSON commands API Version 2015-02-02 756

Amazon ElastiCache for Redis User Guide

• Integer, array length.

• If multiple objects are selected, the command returns the first array's length.

• WRONGTYPE error if the value at the path is not an array.

• WRONGTYPE error if the path does not exist.

• Null if the document key does not exist.

Examples

Enhanced path syntax:

127.0.0.1:6379> JSON.SET k1 . '[[], [\"a\"], [\"a\", \"b\"], [\"a\", \"b\", \"c\"]]'
(error) SYNTAXERR Failed to parse JSON string due to syntax error
127.0.0.1:6379> JSON.SET k1 . '[[], ["a"], ["a", "b"], ["a", "b", "c"]]'
OK
127.0.0.1:6379> JSON.ARRLEN k1 $[*]
1) (integer) 0
2) (integer) 1
3) (integer) 2
4) (integer) 3

127.0.0.1:6379> JSON.SET k2 . '[[], "a", ["a", "b"], ["a", "b", "c"], 4]'
OK
127.0.0.1:6379> JSON.ARRLEN k2 $[*]
1) (integer) 0
2) (nil)
3) (integer) 2
4) (integer) 3
5) (nil)

Restricted path syntax:

127.0.0.1:6379> JSON.SET k1 . '[[], ["a"], ["a", "b"], ["a", "b", "c"]]'
OK
127.0.0.1:6379> JSON.ARRLEN k1 [*]
(integer) 0
127.0.0.1:6379> JSON.ARRLEN k1 $[3]
1) (integer) 3

127.0.0.1:6379> JSON.SET k2 . '[[], "a", ["a", "b"], ["a", "b", "c"], 4]'

JSON commands API Version 2015-02-02 757

Amazon ElastiCache for Redis User Guide

OK
127.0.0.1:6379> JSON.ARRLEN k2 [*]
(integer) 0
127.0.0.1:6379> JSON.ARRLEN k2 $[1]
1) (nil)
127.0.0.1:6379> JSON.ARRLEN k2 $[2]
1) (integer) 2

JSON.ARRPOP

Removes and returns element at the index from the array. Popping an empty array returns null.

Syntax

JSON.ARRPOP <key> [path [index]]

• key (required) – A Redis key of JSON document type.

• path (optional) – A JSON path. Defaults to the root if not provided.

• index (optional) – The position in the array to start popping from.

• Defaults to -1 if not provided, which means the last element.

• Negative value means position from the last element.

• Out of boundary indexes are rounded to their respective array boundaries.

Return

If the path is enhanced syntax:

• Array of bulk strings that represent popped values at each path.

• If a value is an empty array, its corresponding return value is null.

• If a value is not an array, its corresponding return value is null.

If the path is restricted syntax:

• Bulk string, which represents the popped JSON value.

• Null if the array is empty.

• WRONGTYPE error if the value at the path is not an array.

JSON commands API Version 2015-02-02 758

Amazon ElastiCache for Redis User Guide

Examples

Enhanced path syntax:

127.0.0.1:6379> JSON.SET k1 . '[[], ["a"], ["a", "b"]]'
OK
127.0.0.1:6379> JSON.ARRPOP k1 $[*]
1) (nil)
2) "\"a\""
3) "\"b\""
127.0.0.1:6379> JSON.GET k1
"[[],[],[\"a\"]]"

Restricted path syntax:

127.0.0.1:6379> JSON.SET k1 . '[[], ["a"], ["a", "b"]]'
OK
127.0.0.1:6379> JSON.ARRPOP k1
"[\"a\",\"b\"]"
127.0.0.1:6379> JSON.GET k1
"[[],[\"a\"]]"

127.0.0.1:6379> JSON.SET k2 . '[[], ["a"], ["a", "b"]]'
OK
127.0.0.1:6379> JSON.ARRPOP k2 . 0
"[]"
127.0.0.1:6379> JSON.GET k2
"[[\"a\"],[\"a\",\"b\"]]"

JSON.ARRTRIM

Trims an arrays at the path so that it becomes a subarray [start, end], both inclusive.

• If the array is empty, do nothing, return 0.

• If start <0, treat it as 0.

• If end >= size (size of the array), treat it as size-1.

• If start >= size or start > end, empty the array and return 0.

Syntax

JSON commands API Version 2015-02-02 759

Amazon ElastiCache for Redis User Guide

JSON.ARRINSERT <key> <path> <start> <end>

• key (required) – A Redis key of JSON document type.

• path (required) – A JSON path.

• start (required) – The start index, inclusive.

• end (required) – The end index, inclusive.

Return

If the path is enhanced syntax:

• Array of integers that represent the new length of the array at each path.

• If a value is an empty array, its corresponding return value is null.

• If a value is not an array, its corresponding return value is null.

• OUTOFBOUNDARIES error if an index argument is out of bounds.

If the path is restricted syntax:

• Integer, the new length of the array.

• Null if the array is empty.

• WRONGTYPE error if the value at the path is not an array.

• OUTOFBOUNDARIES error if an index argument is out of bounds.

Examples

Enhanced path syntax:

127.0.0.1:6379> JSON.SET k1 . '[[], ["a"], ["a", "b"], ["a", "b", "c"]]'
OK
127.0.0.1:6379> JSON.ARRTRIM k1 $[*] 0 1
1) (integer) 0
2) (integer) 1
3) (integer) 2
4) (integer) 2
 127.0.0.1:6379> JSON.GET k1
 "[[],[\"a\"],[\"a\",\"b\"],[\"a\",\"b\"]]"

JSON commands API Version 2015-02-02 760

Amazon ElastiCache for Redis User Guide

Restricted path syntax:

127.0.0.1:6379> JSON.SET k1 . '{"children": ["John", "Jack", "Tom", "Bob", "Mike"]}'
OK
127.0.0.1:6379> JSON.ARRTRIM k1 .children 0 1
(integer) 2
127.0.0.1:6379> JSON.GET k1 .children
"[\"John\",\"Jack\"]"

JSON.CLEAR

Clears the arrays or an object at the path.

Syntax

JSON.CLEAR <key> [path]

• key (required) – A Redis key of JSON document type.

• path (optional) – A JSON path. Defaults to the root if not provided.

Return

• Integer, the number of containers cleared.

• Clearing an empty array or object accounts for 1 container cleared.

• Clearing a non-container value returns 0.

Examples

127.0.0.1:6379> JSON.SET k1 . '[[], [0], [0,1], [0,1,2], 1, true, null, "d"]'
OK
127.0.0.1:6379> JSON.CLEAR k1 $[*]
(integer) 7
127.0.0.1:6379> JSON.CLEAR k1 $[*]
(integer) 4
127.0.0.1:6379> JSON.SET k2 . '{"children": ["John", "Jack", "Tom", "Bob", "Mike"]}'
OK

JSON commands API Version 2015-02-02 761

Amazon ElastiCache for Redis User Guide

127.0.0.1:6379> JSON.CLEAR k2 .children
(integer) 1
127.0.0.1:6379> JSON.GET k2 .children
"[]"

JSON.DEBUG

Reports information. Supported subcommands are:

• MEMORY <key> [path] – Reports memory usage in bytes of a JSON value. Path defaults to the
root if not provided.

• FIELDS <key> [path] – Reports the number of fields at the specified document path. Path
defaults to the root if not provided. Each non-container JSON value counts as one field. Objects
and arrays recursively count one field for each of their containing JSON values. Each container
value, except the root container, counts as one additional field.

• HELP – Prints help messages of the command.

Syntax

JSON.DEBUG <subcommand & arguments>

Depends on the subcommand:

MEMORY

• If the path is enhanced syntax:

• Returns an array of integers that represent memory size (in bytes) of JSON value at each path.

• Returns an empty array if the Redis key does not exist.

• If the path is restricted syntax:

• Returns an integer, memory size, and the JSON value in bytes.

• Returns null if the Redis key does not exist.

FIELDS

• If the path is enhanced syntax:

• Returns an array of integers that represent the number of fields of JSON value at each path.

JSON commands API Version 2015-02-02 762

Amazon ElastiCache for Redis User Guide

• Returns an empty array if the Redis key does not exist.

• If the path is restricted syntax:

• Returns an integer, number of fields of the JSON value.

• Returns null if the Redis key does not exist.

HELP – Returns an array of help messages.

Examples

Enhanced path syntax:

127.0.0.1:6379> JSON.SET k1 . '[1, 2.3, "foo", true, null, {}, [], {"a":1, "b":2},
 [1,2,3]]'
OK
127.0.0.1:6379> JSON.DEBUG MEMORY k1 $[*]
1) (integer) 16
2) (integer) 16
3) (integer) 19
4) (integer) 16
5) (integer) 16
6) (integer) 16
7) (integer) 16
8) (integer) 50
9) (integer) 64
127.0.0.1:6379> JSON.DEBUG FIELDS k1 $[*]
1) (integer) 1
2) (integer) 1
3) (integer) 1
4) (integer) 1
5) (integer) 1
6) (integer) 0
7) (integer) 0
8) (integer) 2
9) (integer) 3

Restricted path syntax:

127.0.0.1:6379> JSON.SET k1 .
 '{"firstName":"John","lastName":"Smith","age":27,"weight":135.25,"isAlive":true,"address":
{"street":"21 2nd Street","city":"New

JSON commands API Version 2015-02-02 763

Amazon ElastiCache for Redis User Guide

 York","state":"NY","zipcode":"10021-3100"},"phoneNumbers":
[{"type":"home","number":"212 555-1234"},{"type":"office","number":"646
 555-4567"}],"children":[],"spouse":null}'
OK
127.0.0.1:6379> JSON.DEBUG MEMORY k1
(integer) 632
127.0.0.1:6379> JSON.DEBUG MEMORY k1 .phoneNumbers
(integer) 166

127.0.0.1:6379> JSON.DEBUG FIELDS k1
(integer) 19
127.0.0.1:6379> JSON.DEBUG FIELDS k1 .address
(integer) 4

127.0.0.1:6379> JSON.DEBUG HELP
1) JSON.DEBUG MEMORY <key> [path] - report memory size (bytes) of the JSON element.
 Path defaults to root if not provided.
2) JSON.DEBUG FIELDS <key> [path] - report number of fields in the JSON element. Path
 defaults to root if not provided.
3) JSON.DEBUG HELP - print help message.

JSON.DEL

Deletes the JSON values at the path in a document key. If the path is the root, it is equivalent to
deleting the key from Redis.

Syntax

JSON.DEL <key> [path]

• key (required) – A Redis key of JSON document type.

• path (optional) – A JSON path. Defaults to the root if not provided.

Return

• Number of elements deleted.

• 0 if the Redis key does not exist.

• 0 if the JSON path is invalid or does not exist.

JSON commands API Version 2015-02-02 764

Amazon ElastiCache for Redis User Guide

Examples

Enhanced path syntax:

127.0.0.1:6379> JSON.SET k1 . '{"a":{}, "b":{"a":1}, "c":{"a":1, "b":2}, "d":{"a":1,
 "b":2, "c":3}, "e": [1,2,3,4,5]}'
OK
127.0.0.1:6379> JSON.DEL k1 $.d.*
(integer) 3
127.0.0.1:6379> JSOn.GET k1
"{\"a\":{},\"b\":{\"a\":1},\"c\":{\"a\":1,\"b\":2},\"d\":{},\"e\":[1,2,3,4,5]}"
127.0.0.1:6379> JSON.DEL k1 $.e[*]
(integer) 5
127.0.0.1:6379> JSOn.GET k1
"{\"a\":{},\"b\":{\"a\":1},\"c\":{\"a\":1,\"b\":2},\"d\":{},\"e\":[]}"

Restricted path syntax:

127.0.0.1:6379> JSON.SET k1 . '{"a":{}, "b":{"a":1}, "c":{"a":1, "b":2}, "d":{"a":1,
 "b":2, "c":3}, "e": [1,2,3,4,5]}'
OK
127.0.0.1:6379> JSON.DEL k1 .d.*
(integer) 3
127.0.0.1:6379> JSON.GET k1
"{\"a\":{},\"b\":{\"a\":1},\"c\":{\"a\":1,\"b\":2},\"d\":{},\"e\":[1,2,3,4,5]}"
127.0.0.1:6379> JSON.DEL k1 .e[*]
(integer) 5
127.0.0.1:6379> JSON.GET k1
"{\"a\":{},\"b\":{\"a\":1},\"c\":{\"a\":1,\"b\":2},\"d\":{},\"e\":[]}"

JSON.FORGET

An alias of JSON.DEL.

JSON.GET

Returns the serialized JSON at one or multiple paths.

Syntax

JSON.GET <key>

JSON commands API Version 2015-02-02 765

Amazon ElastiCache for Redis User Guide

[INDENT indentation-string]
[NEWLINE newline-string]
[SPACE space-string]
[NOESCAPE]
[path ...]

• key (required) – A Redis key of JSON document type.

• INDENT/NEWLINE/SPACE (optional) – Controls the format of the returned JSON string, that is,
"pretty print". The default value of each one is an empty string. They can be overridden in any
combination. They can be specified in any order.

• NOESCAPE - Optional, allowed to be present for legacy compatibility and has no other effect.

• path (optional) – Zero or more JSON paths, defaults to the root if none is given. The path
arguments must be placed at the end.

Return

Enhanced path syntax:

If one path is given:

• Returns serialized string of an array of values.

• If no value is selected, the command returns an empty array.

If multiple paths are given:

• Returns a stringified JSON object, in which each path is a key.

• If there are mixed enhanced and restricted path syntax, the result conforms to the enhanced
syntax.

• If a path does not exist, its corresponding value is an empty array.

Examples

Enhanced path syntax:

127.0.0.1:6379> JSON.SET k1 .
 '{"firstName":"John","lastName":"Smith","age":27,"weight":135.25,"isAlive":true,"address":
{"street":"21 2nd Street","city":"New
 York","state":"NY","zipcode":"10021-3100"},"phoneNumbers":

JSON commands API Version 2015-02-02 766

Amazon ElastiCache for Redis User Guide

[{"type":"home","number":"212 555-1234"},{"type":"office","number":"646
 555-4567"}],"children":[],"spouse":null}'
OK
127.0.0.1:6379> JSON.GET k1 $.address.*
"[\"21 2nd Street\",\"New York\",\"NY\",\"10021-3100\"]"
127.0.0.1:6379> JSON.GET k1 indent "\t" space " " NEWLINE "\n" $.address.*
"[\n\t\"21 2nd Street\",\n\t\"New York\",\n\t\"NY\",\n\t\"10021-3100\"\n]"
127.0.0.1:6379> JSON.GET k1 $.firstName $.lastName $.age
"{\"$.firstName\":[\"John\"],\"$.lastName\":[\"Smith\"],\"$.age\":[27]}"
127.0.0.1:6379> JSON.SET k2 . '{"a":{}, "b":{"a":1}, "c":{"a":1, "b":2}}'
OK
127.0.0.1:6379> json.get k2 $..*
"[{},{\"a\":1},{\"a\":1,\"b\":2},1,1,2]"

Restricted path syntax:

 127.0.0.1:6379> JSON.SET k1 .
 '{"firstName":"John","lastName":"Smith","age":27,"weight":135.25,"isAlive":true,"address":
{"street":"21 2nd Street","city":"New
 York","state":"NY","zipcode":"10021-3100"},"phoneNumbers":
[{"type":"home","number":"212 555-1234"},{"type":"office","number":"646
 555-4567"}],"children":[],"spouse":null}'
OK
127.0.0.1:6379> JSON.GET k1 .address
"{\"street\":\"21 2nd Street\",\"city\":\"New York\",\"state\":\"NY\",\"zipcode\":
\"10021-3100\"}"
127.0.0.1:6379> JSON.GET k1 indent "\t" space " " NEWLINE "\n" .address
"{\n\t\"street\": \"21 2nd Street\",\n\t\"city\": \"New York\",\n\t\"state\": \"NY\",\n
\t\"zipcode\": \"10021-3100\"\n}"
127.0.0.1:6379> JSON.GET k1 .firstName .lastName .age
"{\".firstName\":\"John\",\".lastName\":\"Smith\",\".age\":27}"

JSON.MGET

Gets serialized JSONs at the path from multiple document keys. It returns null for a nonexistent
key or JSON path.

Syntax

JSON.MGET <key> [key ...] <path>

JSON commands API Version 2015-02-02 767

Amazon ElastiCache for Redis User Guide

• key (required) – One or more Redis keys of document type.

• path (required) – A JSON path.

Return

• Array of bulk strings. The size of the array is equal to the number of keys in the command. Each
element of the array is populated with either (a) the serialized JSON as located by the path or
(b) null if the key does not exist, the path does not exist in the document, or the path is invalid
(syntax error).

• If any of the specified keys exists and is not a JSON key, the command returns WRONGTYPE error.

Examples

Enhanced path syntax:

127.0.0.1:6379> JSON.SET k1 . '{"address":{"street":"21 2nd Street","city":"New
 York","state":"NY","zipcode":"10021"}}'
OK
127.0.0.1:6379> JSON.SET k2 . '{"address":{"street":"5 main
 Street","city":"Boston","state":"MA","zipcode":"02101"}}'
OK
127.0.0.1:6379> JSON.SET k3 . '{"address":{"street":"100 Park
 Ave","city":"Seattle","state":"WA","zipcode":"98102"}}'
OK
127.0.0.1:6379> JSON.MGET k1 k2 k3 $.address.city
1) "[\"New York\"]"
2) "[\"Boston\"]"
3) "[\"Seattle\"]"

Restricted path syntax:

127.0.0.1:6379> JSON.SET k1 . '{"address":{"street":"21 2nd Street","city":"New
 York","state":"NY","zipcode":"10021"}}'
OK
127.0.0.1:6379> JSON.SET k2 . '{"address":{"street":"5 main
 Street","city":"Boston","state":"MA","zipcode":"02101"}}'
OK
127.0.0.1:6379> JSON.SET k3 . '{"address":{"street":"100 Park
 Ave","city":"Seattle","state":"WA","zipcode":"98102"}}'

JSON commands API Version 2015-02-02 768

Amazon ElastiCache for Redis User Guide

OK

127.0.0.1:6379> JSON.MGET k1 k2 k3 .address.city
1) "\"New York\""
2) "\"Seattle\""
3) "\"Seattle\""

JSON.NUMINCRBY

Increments the number values at the path by a given number.

Syntax

JSON.NUMINCRBY <key> <path> <number>

• key (required) – A Redis key of JSON document type.

• path (required) – A JSON path.

• number (required) – A number.

Return

If the path is enhanced syntax:

• Array of bulk strings that represents the resulting value at each path.

• If a value is not a number, its corresponding return value is null.

• WRONGTYPE error if the number cannot be parsed.

• OVERFLOW error if the result is out of the range of 64-bit IEEE double.

• NONEXISTENT if the document key does not exist.

If the path is restricted syntax:

• Bulk string that represents the resulting value.

• If multiple values are selected, the command returns the result of the last updated value.

• WRONGTYPE error if the value at the path is not a number.

• WRONGTYPE error if the number cannot be parsed.

• OVERFLOW error if the result is out of the range of 64-bit IEEE double.

JSON commands API Version 2015-02-02 769

Amazon ElastiCache for Redis User Guide

• NONEXISTENT if the document key does not exist.

Examples

Enhanced path syntax:

127.0.0.1:6379> JSON.SET k1 . '{"a":[], "b":[1], "c":[1,2], "d":[1,2,3]}'
OK
127.0.0.1:6379> JSON.NUMINCRBY k1 $.d[*] 10
"[11,12,13]"
127.0.0.1:6379> JSON.GET k1
"{\"a\":[],\"b\":[1],\"c\":[1,2],\"d\":[11,12,13]}"

127.0.0.1:6379> JSON.SET k1 $ '{"a":[], "b":[1], "c":[1,2], "d":[1,2,3]}'
OK
127.0.0.1:6379> JSON.NUMINCRBY k1 $.a[*] 1
"[]"
127.0.0.1:6379> JSON.NUMINCRBY k1 $.b[*] 1
"[2]"
127.0.0.1:6379> JSON.NUMINCRBY k1 $.c[*] 1
"[2,3]"
127.0.0.1:6379> JSON.NUMINCRBY k1 $.d[*] 1
"[2,3,4]"
127.0.0.1:6379> JSON.GET k1
"{\"a\":[],\"b\":[2],\"c\":[2,3],\"d\":[2,3,4]}"

127.0.0.1:6379> JSON.SET k2 $ '{"a":{}, "b":{"a":1}, "c":{"a":1, "b":2}, "d":{"a":1,
 "b":2, "c":3}}'
OK
127.0.0.1:6379> JSON.NUMINCRBY k2 $.a.* 1
"[]"
127.0.0.1:6379> JSON.NUMINCRBY k2 $.b.* 1
"[2]"
127.0.0.1:6379> JSON.NUMINCRBY k2 $.c.* 1
"[2,3]"
127.0.0.1:6379> JSON.NUMINCRBY k2 $.d.* 1
"[2,3,4]"
127.0.0.1:6379> JSON.GET k2
"{\"a\":{},\"b\":{\"a\":2},\"c\":{\"a\":2,\"b\":3},\"d\":{\"a\":2,\"b\":3,\"c\":4}}"

127.0.0.1:6379> JSON.SET k3 $ '{"a":{"a":"a"}, "b":{"a":"a", "b":1}, "c":{"a":"a",
 "b":"b"}, "d":{"a":1, "b":"b", "c":3}}'
OK

JSON commands API Version 2015-02-02 770

Amazon ElastiCache for Redis User Guide

127.0.0.1:6379> JSON.NUMINCRBY k3 $.a.* 1
"[null]"
127.0.0.1:6379> JSON.NUMINCRBY k3 $.b.* 1
"[null,2]"
127.0.0.1:6379> JSON.NUMINCRBY k3 $.c.* 1
"[null,null]"
127.0.0.1:6379> JSON.NUMINCRBY k3 $.d.* 1
"[2,null,4]"
127.0.0.1:6379> JSON.GET k3
"{\"a\":{\"a\":\"a\"},\"b\":{\"a\":\"a\",\"b\":2},\"c\":{\"a\":\"a\",\"b\":\"b\"},\"d
\":{\"a\":2,\"b\":\"b\",\"c\":4}}"

Restricted path syntax:

127.0.0.1:6379> JSON.SET k1 . '{"a":[], "b":[1], "c":[1,2], "d":[1,2,3]}'
OK
127.0.0.1:6379> JSON.NUMINCRBY k1 .d[1] 10
"12"
127.0.0.1:6379> JSON.GET k1
"{\"a\":[],\"b\":[1],\"c\":[1,2],\"d\":[1,12,3]}"

127.0.0.1:6379> JSON.SET k1 . '{"a":[], "b":[1], "c":[1,2], "d":[1,2,3]}'
OK
127.0.0.1:6379> JSON.NUMINCRBY k1 .a[*] 1
(error) NONEXISTENT JSON path does not exist
127.0.0.1:6379> JSON.NUMINCRBY k1 .b[*] 1
"2"
127.0.0.1:6379> JSON.GET k1
"{\"a\":[],\"b\":[2],\"c\":[1,2],\"d\":[1,2,3]}"
127.0.0.1:6379> JSON.NUMINCRBY k1 .c[*] 1
"3"
127.0.0.1:6379> JSON.GET k1
"{\"a\":[],\"b\":[2],\"c\":[2,3],\"d\":[1,2,3]}"
127.0.0.1:6379> JSON.NUMINCRBY k1 .d[*] 1
"4"
127.0.0.1:6379> JSON.GET k1
"{\"a\":[],\"b\":[2],\"c\":[2,3],\"d\":[2,3,4]}"

127.0.0.1:6379> JSON.SET k2 . '{"a":{}, "b":{"a":1}, "c":{"a":1, "b":2}, "d":{"a":1,
 "b":2, "c":3}}'
OK
127.0.0.1:6379> JSON.NUMINCRBY k2 .a.* 1

JSON commands API Version 2015-02-02 771

Amazon ElastiCache for Redis User Guide

(error) NONEXISTENT JSON path does not exist
127.0.0.1:6379> JSON.NUMINCRBY k2 .b.* 1
"2"
127.0.0.1:6379> JSON.GET k2
"{\"a\":{},\"b\":{\"a\":2},\"c\":{\"a\":1,\"b\":2},\"d\":{\"a\":1,\"b\":2,\"c\":3}}"
127.0.0.1:6379> JSON.NUMINCRBY k2 .c.* 1
"3"
127.0.0.1:6379> JSON.GET k2
"{\"a\":{},\"b\":{\"a\":2},\"c\":{\"a\":2,\"b\":3},\"d\":{\"a\":1,\"b\":2,\"c\":3}}"
127.0.0.1:6379> JSON.NUMINCRBY k2 .d.* 1
"4"
127.0.0.1:6379> JSON.GET k2
"{\"a\":{},\"b\":{\"a\":2},\"c\":{\"a\":2,\"b\":3},\"d\":{\"a\":2,\"b\":3,\"c\":4}}"

127.0.0.1:6379> JSON.SET k3 . '{"a":{"a":"a"}, "b":{"a":"a", "b":1}, "c":{"a":"a",
 "b":"b"}, "d":{"a":1, "b":"b", "c":3}}'
OK
127.0.0.1:6379> JSON.NUMINCRBY k3 .a.* 1
(error) WRONGTYPE JSON element is not a number
127.0.0.1:6379> JSON.NUMINCRBY k3 .b.* 1
"2"
127.0.0.1:6379> JSON.NUMINCRBY k3 .c.* 1
(error) WRONGTYPE JSON element is not a number
127.0.0.1:6379> JSON.NUMINCRBY k3 .d.* 1
"4"

JSON.NUMMULTBY

Multiplies the number values at the path by a given number.

Syntax

JSON.NUMMULTBY <key> <path> <number>

• key (required) – A Redis key of JSON document type.

• path (required) – A JSON path.

• number (required) – A number.

Return

JSON commands API Version 2015-02-02 772

Amazon ElastiCache for Redis User Guide

If the path is enhanced syntax:

• Array of bulk strings that represent the resulting value at each path.

• If a value is not a number, its corresponding return value is null.

• WRONGTYPE error if the number cannot be parsed.

• OVERFLOW error if the result is out of the range of a 64-bit IEEE double precision floating point
number.

• NONEXISTENT if the document key does not exist.

If the path is restricted syntax:

• Bulk string that represents the resulting value.

• If multiple values are selected, the command returns the result of the last updated value.

• WRONGTYPE error if the value at the path is not a number.

• WRONGTYPE error if the number cannot be parsed.

• OVERFLOW error if the result is out of the range of a 64-bit IEEE double.

• NONEXISTENT if the document key does not exist.

Examples

Enhanced path syntax:

127.0.0.1:6379> JSON.SET k1 . '{"a":[], "b":[1], "c":[1,2], "d":[1,2,3]}'
OK
127.0.0.1:6379> JSON.NUMMULTBY k1 $.d[*] 2
"[2,4,6]"
127.0.0.1:6379> JSON.GET k1
"{\"a\":[],\"b\":[1],\"c\":[1,2],\"d\":[2,4,6]}"

127.0.0.1:6379> JSON.SET k1 $ '{"a":[], "b":[1], "c":[1,2], "d":[1,2,3]}'
OK
127.0.0.1:6379> JSON.NUMMULTBY k1 $.a[*] 2
"[]"
127.0.0.1:6379> JSON.NUMMULTBY k1 $.b[*] 2
"[2]"
127.0.0.1:6379> JSON.NUMMULTBY k1 $.c[*] 2
"[2,4]"
127.0.0.1:6379> JSON.NUMMULTBY k1 $.d[*] 2

JSON commands API Version 2015-02-02 773

Amazon ElastiCache for Redis User Guide

"[2,4,6]"

127.0.0.1:6379> JSON.SET k2 $ '{"a":{}, "b":{"a":1}, "c":{"a":1, "b":2}, "d":{"a":1,
 "b":2, "c":3}}'
OK
127.0.0.1:6379> JSON.NUMMULTBY k2 $.a.* 2
"[]"
127.0.0.1:6379> JSON.NUMMULTBY k2 $.b.* 2
"[2]"
127.0.0.1:6379> JSON.NUMMULTBY k2 $.c.* 2
"[2,4]"
127.0.0.1:6379> JSON.NUMMULTBY k2 $.d.* 2
"[2,4,6]"

127.0.0.1:6379> JSON.SET k3 $ '{"a":{"a":"a"}, "b":{"a":"a", "b":1}, "c":{"a":"a",
 "b":"b"}, "d":{"a":1, "b":"b", "c":3}}'
OK
127.0.0.1:6379> JSON.NUMMULTBY k3 $.a.* 2
"[null]"
127.0.0.1:6379> JSON.NUMMULTBY k3 $.b.* 2
"[null,2]"
127.0.0.1:6379> JSON.NUMMULTBY k3 $.c.* 2
"[null,null]"
127.0.0.1:6379> JSON.NUMMULTBY k3 $.d.* 2
"[2,null,6]"

Restricted path syntax:

127.0.0.1:6379> JSON.SET k1 . '{"a":[], "b":[1], "c":[1,2], "d":[1,2,3]}'
OK
127.0.0.1:6379> JSON.NUMMULTBY k1 .d[1] 2
"4"
127.0.0.1:6379> JSON.GET k1
"{\"a\":[],\"b\":[1],\"c\":[1,2],\"d\":[1,4,3]}"

127.0.0.1:6379> JSON.SET k1 . '{"a":[], "b":[1], "c":[1,2], "d":[1,2,3]}'
OK
127.0.0.1:6379> JSON.NUMMULTBY k1 .a[*] 2
(error) NONEXISTENT JSON path does not exist
127.0.0.1:6379> JSON.NUMMULTBY k1 .b[*] 2
"2"
127.0.0.1:6379> JSON.GET k1

JSON commands API Version 2015-02-02 774

Amazon ElastiCache for Redis User Guide

"{\"a\":[],\"b\":[2],\"c\":[1,2],\"d\":[1,2,3]}"
127.0.0.1:6379> JSON.NUMMULTBY k1 .c[*] 2
"4"
127.0.0.1:6379> JSON.GET k1
"{\"a\":[],\"b\":[2],\"c\":[2,4],\"d\":[1,2,3]}"
127.0.0.1:6379> JSON.NUMMULTBY k1 .d[*] 2
"6"
127.0.0.1:6379> JSON.GET k1
"{\"a\":[],\"b\":[2],\"c\":[2,4],\"d\":[2,4,6]}"

127.0.0.1:6379> JSON.SET k2 . '{"a":{}, "b":{"a":1}, "c":{"a":1, "b":2}, "d":{"a":1,
 "b":2, "c":3}}'
OK
127.0.0.1:6379> JSON.NUMMULTBY k2 .a.* 2
(error) NONEXISTENT JSON path does not exist
127.0.0.1:6379> JSON.NUMMULTBY k2 .b.* 2
"2"
127.0.0.1:6379> JSON.GET k2
"{\"a\":{},\"b\":{\"a\":2},\"c\":{\"a\":1,\"b\":2},\"d\":{\"a\":1,\"b\":2,\"c\":3}}"
127.0.0.1:6379> JSON.NUMMULTBY k2 .c.* 2
"4"
127.0.0.1:6379> JSON.GET k2
"{\"a\":{},\"b\":{\"a\":2},\"c\":{\"a\":2,\"b\":4},\"d\":{\"a\":1,\"b\":2,\"c\":3}}"
127.0.0.1:6379> JSON.NUMMULTBY k2 .d.* 2
"6"
127.0.0.1:6379> JSON.GET k2
"{\"a\":{},\"b\":{\"a\":2},\"c\":{\"a\":2,\"b\":4},\"d\":{\"a\":2,\"b\":4,\"c\":6}}"

127.0.0.1:6379> JSON.SET k3 . '{"a":{"a":"a"}, "b":{"a":"a", "b":1}, "c":{"a":"a",
 "b":"b"}, "d":{"a":1, "b":"b", "c":3}}'
OK
127.0.0.1:6379> JSON.NUMMULTBY k3 .a.* 2
(error) WRONGTYPE JSON element is not a number
127.0.0.1:6379> JSON.NUMMULTBY k3 .b.* 2
"2"
127.0.0.1:6379> JSON.GET k3
"{\"a\":{\"a\":\"a\"},\"b\":{\"a\":\"a\",\"b\":2},\"c\":{\"a\":\"a\",\"b\":\"b\"},\"d
\":{\"a\":1,\"b\":\"b\",\"c\":3}}"
127.0.0.1:6379> JSON.NUMMULTBY k3 .c.* 2
(error) WRONGTYPE JSON element is not a number
127.0.0.1:6379> JSON.NUMMULTBY k3 .d.* 2
"6"
127.0.0.1:6379> JSON.GET k3

JSON commands API Version 2015-02-02 775

Amazon ElastiCache for Redis User Guide

"{\"a\":{\"a\":\"a\"},\"b\":{\"a\":\"a\",\"b\":2},\"c\":{\"a\":\"a\",\"b\":\"b\"},\"d
\":{\"a\":2,\"b\":\"b\",\"c\":6}}"

JSON.OBJLEN

Gets the number of keys in the object values at the path.

Syntax

JSON.OBJLEN <key> [path]

• key (required) – A Redis key of JSON document type.

• path (optional) – A JSON path. Defaults to the root if not provided.

Return

If the path is enhanced syntax:

• Array of integers that represent the object length at each path.

• If a value is not an object, its corresponding return value is null.

• Null if the document key does not exist.

If the path is restricted syntax:

• Integer, number of keys in the object.

• If multiple objects are selected, the command returns the first object's length.

• WRONGTYPE error if the value at the path is not an object.

• WRONGTYPE error if the path does not exist.

• Null if the document key does not exist.

Examples

Enhanced path syntax:

127.0.0.1:6379> JSON.SET k1 $ '{"a":{}, "b":{"a":"a"}, "c":{"a":"a", "b":"bb"}, "d":
{"a":1, "b":"b", "c":{"a":3,"b":4}}, "e":1}'

JSON commands API Version 2015-02-02 776

Amazon ElastiCache for Redis User Guide

OK
127.0.0.1:6379> JSON.OBJLEN k1 $.a
1) (integer) 0
127.0.0.1:6379> JSON.OBJLEN k1 $.a.*
(empty array)
127.0.0.1:6379> JSON.OBJLEN k1 $.b
1) (integer) 1
127.0.0.1:6379> JSON.OBJLEN k1 $.b.*
1) (nil)
127.0.0.1:6379> JSON.OBJLEN k1 $.c
1) (integer) 2
127.0.0.1:6379> JSON.OBJLEN k1 $.c.*
1) (nil)
2) (nil)
127.0.0.1:6379> JSON.OBJLEN k1 $.d
1) (integer) 3
127.0.0.1:6379> JSON.OBJLEN k1 $.d.*
1) (nil)
2) (nil)
3) (integer) 2
127.0.0.1:6379> JSON.OBJLEN k1 $.*
1) (integer) 0
2) (integer) 1
3) (integer) 2
4) (integer) 3
5) (nil)

Restricted path syntax:

127.0.0.1:6379> JSON.SET k1 . '{"a":{}, "b":{"a":"a"}, "c":{"a":"a", "b":"bb"}, "d":
{"a":1, "b":"b", "c":{"a":3,"b":4}}, "e":1}'
OK
127.0.0.1:6379> JSON.OBJLEN k1 .a
(integer) 0
127.0.0.1:6379> JSON.OBJLEN k1 .a.*
(error) NONEXISTENT JSON path does not exist
127.0.0.1:6379> JSON.OBJLEN k1 .b
(integer) 1
127.0.0.1:6379> JSON.OBJLEN k1 .b.*
(error) WRONGTYPE JSON element is not an object
127.0.0.1:6379> JSON.OBJLEN k1 .c
(integer) 2

JSON commands API Version 2015-02-02 777

Amazon ElastiCache for Redis User Guide

127.0.0.1:6379> JSON.OBJLEN k1 .c.*
(error) WRONGTYPE JSON element is not an object
127.0.0.1:6379> JSON.OBJLEN k1 .d
(integer) 3
127.0.0.1:6379> JSON.OBJLEN k1 .d.*
(integer) 2
127.0.0.1:6379> JSON.OBJLEN k1 .*
(integer) 0

JSON.OBJKEYS

Gets key names in the object values at the path.

Syntax

JSON.OBJKEYS <key> [path]

• key (required) – A Redis key of JSON document type.

• path (optional) – A JSON path. Defaults to the root if not provided.

Return

If the path is enhanced syntax:

• Array of array of bulk strings. Each element is an array of keys in a matching object.

• If a value is not an object, its corresponding return value is empty value.

• Null if the document key does not exist.

If the path is restricted syntax:

• Array of bulk strings. Each element is a key name in the object.

• If multiple objects are selected, the command returns the keys of the first object.

• WRONGTYPE error if the value at the path is not an object.

• WRONGTYPE error if the path does not exist.

• Null if the document key does not exist.

Examples

JSON commands API Version 2015-02-02 778

Amazon ElastiCache for Redis User Guide

Enhanced path syntax:

127.0.0.1:6379> JSON.SET k1 $ '{"a":{}, "b":{"a":"a"}, "c":{"a":"a", "b":"bb"}, "d":
{"a":1, "b":"b", "c":{"a":3,"b":4}}, "e":1}'
OK
127.0.0.1:6379> JSON.OBJKEYS k1 $.*
1) (empty array)
2) 1) "a"
3) 1) "a"
 2) "b"
4) 1) "a"
 2) "b"
 3) "c"
5) (empty array)
127.0.0.1:6379> JSON.OBJKEYS k1 $.d
1) 1) "a"
 2) "b"
 3) "c"

Restricted path syntax:

127.0.0.1:6379> JSON.SET k1 $ '{"a":{}, "b":{"a":"a"}, "c":{"a":"a", "b":"bb"}, "d":
{"a":1, "b":"b", "c":{"a":3,"b":4}}, "e":1}'
OK
127.0.0.1:6379> JSON.OBJKEYS k1 .*
1) "a"
127.0.0.1:6379> JSON.OBJKEYS k1 .d
1) "a"
2) "b"
3) "c"

JSON.RESP

Returns the JSON value at the given path in Redis Serialization Protocol (RESP). If the value is
container, the response is a RESP array or nested array.

• JSON null is mapped to the RESP Null Bulk String.

• JSON Boolean values are mapped to the respective RESP Simple Strings.

• Integer numbers are mapped to RESP Integers.

JSON commands API Version 2015-02-02 779

Amazon ElastiCache for Redis User Guide

• 64-bit IEEE double floating point numbers are mapped to RESP Bulk Strings.

• JSON strings are mapped to RESP Bulk Strings.

• JSON arrays are represented as RESP Arrays, where the first element is the simple string [,
followed by the array's elements.

• JSON objects are represented as RESP Arrays, where the first element is the simple string {,
followed by key-value pairs, each of which is a RESP bulk string.

Syntax

JSON.RESP <key> [path]

• key (required) – A Redis key of JSON document type.

• path (optional) – A JSON path. Defaults to the root if not provided.

Return

If the path is enhanced syntax:

• Array of arrays. Each array element represents the RESP form of the value at one path.

• Empty array if the document key does not exist.

If the path is restricted syntax:

• Array that represents the RESP form of the value at the path.

• Null if the document key does not exist.

Examples

Enhanced path syntax:

127.0.0.1:6379> JSON.SET k1 .
 '{"firstName":"John","lastName":"Smith","age":27,"weight":135.25,"isAlive":true,"address":
{"street":"21 2nd Street","city":"New
 York","state":"NY","zipcode":"10021-3100"},"phoneNumbers":
[{"type":"home","number":"212 555-1234"},{"type":"office","number":"646
 555-4567"}],"children":[],"spouse":null}'
OK

JSON commands API Version 2015-02-02 780

Amazon ElastiCache for Redis User Guide

127.0.0.1:6379> JSON.RESP k1 $.address
1) 1) {
 2) 1) "street"
 2) "21 2nd Street"
 3) 1) "city"
 2) "New York"
 4) 1) "state"
 2) "NY"
 5) 1) "zipcode"
 2) "10021-3100"

127.0.0.1:6379> JSON.RESP k1 $.address.*
1) "21 2nd Street"
2) "New York"
3) "NY"
4) "10021-3100"

127.0.0.1:6379> JSON.RESP k1 $.phoneNumbers
1) 1) [
 2) 1) {
 2) 1) "type"
 2) "home"
 3) 1) "number"
 2) "555 555-1234"
 3) 1) {
 2) 1) "type"
 2) "office"
 3) 1) "number"
 2) "555 555-4567"

127.0.0.1:6379> JSON.RESP k1 $.phoneNumbers[*]
1) 1) {
 2) 1) "type"
 2) "home"
 3) 1) "number"
 2) "212 555-1234"
2) 1) {
 2) 1) "type"
 2) "office"
 3) 1) "number"
 2) "555 555-4567"

JSON commands API Version 2015-02-02 781

Amazon ElastiCache for Redis User Guide

Restricted path syntax:

127.0.0.1:6379> JSON.SET k1 .
 '{"firstName":"John","lastName":"Smith","age":27,"weight":135.25,"isAlive":true,"address":
{"street":"21 2nd Street","city":"New
 York","state":"NY","zipcode":"10021-3100"},"phoneNumbers":
[{"type":"home","number":"212 555-1234"},{"type":"office","number":"646
 555-4567"}],"children":[],"spouse":null}'
OK

127.0.0.1:6379> JSON.RESP k1 .address
1) {
2) 1) "street"
 2) "21 2nd Street"
3) 1) "city"
 2) "New York"
4) 1) "state"
 2) "NY"
5) 1) "zipcode"
 2) "10021-3100"

127.0.0.1:6379> JSON.RESP k1
 1) {
 2) 1) "firstName"
 2) "John"
 3) 1) "lastName"
 2) "Smith"
 4) 1) "age"
 2) (integer) 27
 5) 1) "weight"
 2) "135.25"
 6) 1) "isAlive"
 2) true
 7) 1) "address"
 2) 1) {
 2) 1) "street"
 2) "21 2nd Street"
 3) 1) "city"
 2) "New York"
 4) 1) "state"
 2) "NY"
 5) 1) "zipcode"
 2) "10021-3100"
 8) 1) "phoneNumbers"

JSON commands API Version 2015-02-02 782

Amazon ElastiCache for Redis User Guide

 2) 1) [
 2) 1) {
 2) 1) "type"
 2) "home"
 3) 1) "number"
 2) "212 555-1234"
 3) 1) {
 2) 1) "type"
 2) "office"
 3) 1) "number"
 2) "555 555-4567"
 9) 1) "children"
 2) 1) [
10) 1) "spouse"
 2) (nil)

JSON.SET

Sets JSON values at the path.

If the path calls for an object member:

• If the parent element does not exist, the command returns a NONEXISTENT error.

• If the parent element exists but is not an object, the command returns ERROR.

• If the parent element exists and is an object:

• If the member does not exist, a new member will be appended to the parent object if and
only if the parent object is the last child in the path. Otherwise, the command returns a
NONEXISTENT error.

• If the member exists, its value will be replaced by the JSON value.

If the path calls for an array index:

• If the parent element does not exist, the command returns a NONEXISTENT error.

• If the parent element exists but is not an array, the command returns ERROR.

• If the parent element exists but the index is out of bounds, the command returns an
OUTOFBOUNDARIES error.

• If the parent element exists and the index is valid, the element will be replaced by the new JSON
value.

JSON commands API Version 2015-02-02 783

Amazon ElastiCache for Redis User Guide

If the path calls for an object or array, the value (object or array) will be replaced by the new JSON
value.

Syntax

JSON.SET <key> <path> <json> [NX | XX]

[NX | XX] Where you can have 0 or 1 of [NX | XX] identifiers.

• key (required) – A Redis key of JSON document type.

• path (required) – A JSON path. For a new Redis key, the JSON path must be the root ".".

• NX (optional) – If the path is the root, set the value only if the Redis key does not exist. That is,
insert a new document. If the path is not the root, set the value only if the path does not exist.
That is, insert a value into the document.

• XX (optional) – If the path is the root, set the value only if the Redis key exists. That is, replace
the existing document. If the path is not the root, set the value only if the path exists. That is,
update the existing value.

Return

• Simple String 'OK' on success.

• Null if the NX or XX condition is not met.

Examples

Enhanced path syntax:

127.0.0.1:6379> JSON.SET k1 . '{"a":{"a":1, "b":2, "c":3}}'
OK
127.0.0.1:6379> JSON.SET k1 $.a.* '0'
OK
127.0.0.1:6379> JSON.GET k1
"{\"a\":{\"a\":0,\"b\":0,\"c\":0}}"

127.0.0.1:6379> JSON.SET k2 . '{"a": [1,2,3,4,5]}'
OK
127.0.0.1:6379> JSON.SET k2 $.a[*] '0'
OK
127.0.0.1:6379> JSON.GET k2

JSON commands API Version 2015-02-02 784

Amazon ElastiCache for Redis User Guide

"{\"a\":[0,0,0,0,0]}"

Restricted path syntax:

127.0.0.1:6379> JSON.SET k1 . '{"c":{"a":1, "b":2}, "e": [1,2,3,4,5]}'
OK
127.0.0.1:6379> JSON.SET k1 .c.a '0'
OK
127.0.0.1:6379> JSON.GET k1
"{\"c\":{\"a\":0,\"b\":2},\"e\":[1,2,3,4,5]}"
127.0.0.1:6379> JSON.SET k1 .e[-1] '0'
OK
127.0.0.1:6379> JSON.GET k1
"{\"c\":{\"a\":0,\"b\":2},\"e\":[1,2,3,4,0]}"
127.0.0.1:6379> JSON.SET k1 .e[5] '0'
(error) OUTOFBOUNDARIES Array index is out of bounds

JSON.STRAPPEND

Appends a string to the JSON strings at the path.

Syntax

JSON.STRAPPEND <key> [path] <json_string>

• key (required) – A Redis key of JSON document type.

• path (optional) – A JSON path. Defaults to the root if not provided.

• json_string (required) – The JSON representation of a string. Note that a JSON string must be
quoted. For example: '"string example"'.

Return

If the path is enhanced syntax:

• Array of integers that represent the new length of the string at each path.

• If a value at the path is not a string, its corresponding return value is null.

• SYNTAXERR error if the input json argument is not a valid JSON string.

JSON commands API Version 2015-02-02 785

Amazon ElastiCache for Redis User Guide

• NONEXISTENT error if the path does not exist.

If the path is restricted syntax:

• Integer, the string's new length.

• If multiple string values are selected, the command returns the new length of the last updated
string.

• WRONGTYPE error if the value at the path is not a string.

• WRONGTYPE error if the input json argument is not a valid JSON string.

• NONEXISTENT error if the path does not exist.

Examples

Enhanced path syntax:

127.0.0.1:6379> JSON.SET k1 $ '{"a":{"a":"a"}, "b":{"a":"a", "b":1}, "c":{"a":"a",
 "b":"bb"}, "d":{"a":1, "b":"b", "c":3}}'
OK
127.0.0.1:6379> JSON.STRAPPEND k1 $.a.a '"a"'
1) (integer) 2
127.0.0.1:6379> JSON.STRAPPEND k1 $.a.* '"a"'
1) (integer) 3
127.0.0.1:6379> JSON.STRAPPEND k1 $.b.* '"a"'
1) (integer) 2
2) (nil)
127.0.0.1:6379> JSON.STRAPPEND k1 $.c.* '"a"'
1) (integer) 2
2) (integer) 3
127.0.0.1:6379> JSON.STRAPPEND k1 $.c.b '"a"'
1) (integer) 4
127.0.0.1:6379> JSON.STRAPPEND k1 $.d.* '"a"'
1) (nil)
2) (integer) 2
3) (nil)

Restricted path syntax:

127.0.0.1:6379> JSON.SET k1 . '{"a":{"a":"a"}, "b":{"a":"a", "b":1}, "c":{"a":"a",
 "b":"bb"}, "d":{"a":1, "b":"b", "c":3}}'

JSON commands API Version 2015-02-02 786

Amazon ElastiCache for Redis User Guide

OK
127.0.0.1:6379> JSON.STRAPPEND k1 .a.a '"a"'
(integer) 2
127.0.0.1:6379> JSON.STRAPPEND k1 .a.* '"a"'
(integer) 3
127.0.0.1:6379> JSON.STRAPPEND k1 .b.* '"a"'
(integer) 2
127.0.0.1:6379> JSON.STRAPPEND k1 .c.* '"a"'
(integer) 3
127.0.0.1:6379> JSON.STRAPPEND k1 .c.b '"a"'
(integer) 4
127.0.0.1:6379> JSON.STRAPPEND k1 .d.* '"a"'
(integer) 2

JSON.STRLEN

Gets the lengths of the JSON string values at the path.

Syntax

JSON.STRLEN <key> [path]

• key (required) – A Redis key of JSON document type.

• path (optional) – A JSON path. Defaults to the root if not provided.

Return

If the path is enhanced syntax:

• Array of integers that represents the length of the string value at each path.

• If a value is not a string, its corresponding return value is null.

• Null if the document key does not exist.

If the path is restricted syntax:

• Integer, the string's length.

• If multiple string values are selected, the command returns the first string's length.

• WRONGTYPE error if the value at the path is not a string.

JSON commands API Version 2015-02-02 787

Amazon ElastiCache for Redis User Guide

• NONEXISTENT error if the path does not exist.

• Null if the document key does not exist.

Examples

Enhanced path syntax:

127.0.0.1:6379> JSON.SET k1 $ '{"a":{"a":"a"}, "b":{"a":"a", "b":1}, "c":{"a":"a",
 "b":"bb"}, "d":{"a":1, "b":"b", "c":3}}'
OK
127.0.0.1:6379> JSON.STRLEN k1 $.a.a
1) (integer) 1
127.0.0.1:6379> JSON.STRLEN k1 $.a.*
1) (integer) 1
127.0.0.1:6379> JSON.STRLEN k1 $.c.*
1) (integer) 1
2) (integer) 2
127.0.0.1:6379> JSON.STRLEN k1 $.c.b
1) (integer) 2
127.0.0.1:6379> JSON.STRLEN k1 $.d.*
1) (nil)
2) (integer) 1
3) (nil)

Restricted path syntax:

127.0.0.1:6379> JSON.SET k1 $ '{"a":{"a":"a"}, "b":{"a":"a", "b":1}, "c":{"a":"a",
 "b":"bb"}, "d":{"a":1, "b":"b", "c":3}}'
OK
127.0.0.1:6379> JSON.STRLEN k1 .a.a
(integer) 1
127.0.0.1:6379> JSON.STRLEN k1 .a.*
(integer) 1
127.0.0.1:6379> JSON.STRLEN k1 .c.*
(integer) 1
127.0.0.1:6379> JSON.STRLEN k1 .c.b
(integer) 2
127.0.0.1:6379> JSON.STRLEN k1 .d.*
(integer) 1

JSON commands API Version 2015-02-02 788

Amazon ElastiCache for Redis User Guide

JSON.TOGGLE

Toggles Boolean values between true and false at the path.

Syntax

JSON.TOGGLE <key> [path]

• key (required) – A Redis key of JSON document type.

• path (optional) – A JSON path. Defaults to the root if not provided.

Return

If the path is enhanced syntax:

• Array of integers (0 - false, 1 - true) that represent the resulting Boolean value at each path.

• If a value is a not a Boolean value, its corresponding return value is null.

• NONEXISTENT if the document key does not exist.

If the path is restricted syntax:

• String ("true"/"false") that represents the resulting Boolean value.

• NONEXISTENT if the document key does not exist.

• WRONGTYPE error if the value at the path is not a Boolean value.

Examples

Enhanced path syntax:

127.0.0.1:6379> JSON.SET k1 . '{"a":true, "b":false, "c":1, "d":null, "e":"foo", "f":
[], "g":{}}'
OK
127.0.0.1:6379> JSON.TOGGLE k1 $.*
1) (integer) 0
2) (integer) 1
3) (nil)
4) (nil)
5) (nil)

JSON commands API Version 2015-02-02 789

Amazon ElastiCache for Redis User Guide

6) (nil)
7) (nil)
127.0.0.1:6379> JSON.TOGGLE k1 $.*
1) (integer) 1
2) (integer) 0
3) (nil)
4) (nil)
5) (nil)
6) (nil)
7) (nil)

Restricted path syntax:

127.0.0.1:6379> JSON.SET k1 . true
OK
127.0.0.1:6379> JSON.TOGGLE k1
"false"
127.0.0.1:6379> JSON.TOGGLE k1
"true"

127.0.0.1:6379> JSON.SET k2 . '{"isAvailable": false}'
OK
127.0.0.1:6379> JSON.TOGGLE k2 .isAvailable
"true"
127.0.0.1:6379> JSON.TOGGLE k2 .isAvailable
"false"

JSON.TYPE

Reports the type of values at the given path.

Syntax

JSON.TYPE <key> [path]

• key (required) – A Redis key of JSON document type.

• path (optional) – A JSON path. Defaults to the root if not provided.

Return

JSON commands API Version 2015-02-02 790

Amazon ElastiCache for Redis User Guide

If the path is enhanced syntax:

• Array of strings that represent the type of value at each path. The type is one of {"null",
"boolean", "string", "number", "integer", "object" and "array"}.

• If a path does not exist, its corresponding return value is null.

• Empty array if the document key does not exist.

If the path is restricted syntax:

• String, type of the value

• Null if the document key does not exist.

• Null if the JSON path is invalid or does not exist.

Examples

Enhanced path syntax:

127.0.0.1:6379> JSON.SET k1 . '[1, 2.3, "foo", true, null, {}, []]'
OK
127.0.0.1:6379> JSON.TYPE k1 $[*]
1) integer
2) number
3) string
4) boolean
5) null
6) object
7) array

Restricted path syntax:

127.0.0.1:6379> JSON.SET k1 .
 '{"firstName":"John","lastName":"Smith","age":27,"weight":135.25,"isAlive":true,"address":
{"street":"21 2nd Street","city":"New
 York","state":"NY","zipcode":"10021-3100"},"phoneNumbers":
[{"type":"home","number":"212 555-1234"},{"type":"office","number":"646
 555-4567"}],"children":[],"spouse":null}'
OK
127.0.0.1:6379> JSON.TYPE k1

JSON commands API Version 2015-02-02 791

Amazon ElastiCache for Redis User Guide

object
127.0.0.1:6379> JSON.TYPE k1 .children
array
127.0.0.1:6379> JSON.TYPE k1 .firstName
string
127.0.0.1:6379> JSON.TYPE k1 .age
integer
127.0.0.1:6379> JSON.TYPE k1 .weight
number
127.0.0.1:6379> JSON.TYPE k1 .isAlive
boolean
127.0.0.1:6379> JSON.TYPE k1 .spouse
null

Tagging your ElastiCache resources

To help you manage your clusters and other ElastiCache resources, you can assign your own
metadata to each resource in the form of tags. Tags enable you to categorize your AWS resources
in different ways, for example, by purpose, owner, or environment. This is useful when you have
many resources of the same type—you can quickly identify a specific resource based on the tags
that you've assigned to it. This topic describes tags and shows you how to create them.

Warning

As a best practice, we recommend that you do not include sensitive data in your tags.

Tag basics

A tag is a label that you assign to an AWS resource. Each tag consists of a key and an optional
value, both of which you define. Tags enable you to categorize your AWS resources in different
ways, for example, by purpose or owner. For example, you could define a set of tags for your
account's ElastiCache clusters that helps you track each instance's owner and user group.

We recommend that you devise a set of tag keys that meets your needs for each resource type.
Using a consistent set of tag keys makes it easier for you to manage your resources. You can search
and filter the resources based on the tags you add. For more information about how to implement
an effective resource tagging strategy, see the AWS whitepaper Tagging Best Practices.

Tagging your ElastiCache resources API Version 2015-02-02 792

https://d1.awsstatic.com/whitepapers/aws-tagging-best-practices.pdf

Amazon ElastiCache for Redis User Guide

Tags don't have any semantic meaning to ElastiCache and are interpreted strictly as a string of
characters. Also, tags are not automatically assigned to your resources. You can edit tag keys and
values, and you can remove tags from a resource at any time. You can set the value of a tag to
null. If you add a tag that has the same key as an existing tag on that resource, the new value
overwrites the old value. If you delete a resource, any tags for the resource are also deleted.
Furthermore, if you add or delete tags on a replication group, all nodes in that replication group
will also have their tags added or removed.

You can work with tags using the AWS Management Console, the AWS CLI, and the ElastiCache API.

If you're using IAM, you can control which users in your AWS account have permission to create,
edit, or delete tags. For more information, see Resource-level permissions.

Resources you can tag

You can tag most ElastiCache resources that already exist in your account. The table below lists
the resources that support tagging. If you're using the AWS Management Console, you can apply
tags to resources by using the Tag Editor. Some resource screens enable you to specify tags for a
resource when you create the resource; for example, a tag with a key of Name and a value that you
specify. In most cases, the console applies the tags immediately after the resource is created (rather
than during resource creation). The console may organize resources according to the Name tag, but
this tag doesn't have any semantic meaning to the ElastiCache service.

Additionally, some resource-creating actions enable you to specify tags for a resource when the
resource is created. If tags cannot be applied during resource creation, we roll back the resource
creation process. This ensures that resources are either created with tags or not created at all, and
that no resources are left untagged at any time. By tagging resources at the time of creation, you
can eliminate the need to run custom tagging scripts after resource creation.

If you're using the Amazon ElastiCache API, the AWS CLI, or an AWS SDK, you can use the Tags
parameter on the relevant ElastiCache API action to apply tags. They are:

• CreateServerlessCache

• CreateCacheCluster

• CreateReplicationGroup

• CopyServerlessCacheSnapshot

• CopySnapshot

• CreateCacheParameterGroup

Tagging your ElastiCache resources API Version 2015-02-02 793

https://docs.aws.amazon.com/ARG/latest/userguide/tag-editor.html

Amazon ElastiCache for Redis User Guide

• CreateCacheSecurityGroup

• CreateCacheSubnetGroup

• CreateServerlessCacheSnapshot

• CreateSnapshot

• CreateUserGroup

• CreateUser

• PurchaseReservedCacheNodesOffering

The following table describes the ElastiCache resources that can be tagged, and the resources that
can be tagged on creation using the ElastiCache API, the AWS CLI, or an AWS SDK.

Tagging support for ElastiCache resources

ResourceSupports tags Supports tagging
on creation

serverles
scache
Yes Yes

parameter
group
Yes Yes

securityg
roup
Yes Yes

subnetgro
up
Yes Yes

replicati
ongroup
Yes Yes

clusterYes Yes

reserved-
instance
Yes Yes

Tagging your ElastiCache resources API Version 2015-02-02 794

Amazon ElastiCache for Redis User Guide

ResourceSupports tags Supports tagging
on creation

serverles
scachesna
pshot

Yes Yes

snapshotYes Yes

userYes Yes

usergroupYes Yes

Note

You cannot tag Global Datastores.

You can apply tag-based resource-level permissions in your IAM policies to the ElastiCache API
actions that support tagging on creation to implement granular control over the users and groups
that can tag resources on creation. Your resources are properly secured from creation—tags that
are applied immediately to your resources. Therefore any tag-based resource-level permissions
controlling the use of resources are immediately effective. Your resources can be tracked and
reported on more accurately. You can enforce the use of tagging on new resources, and control
which tag keys and values are set on your resources.

For more information, see Tagging resources examples.

For more information about tagging your resources for billing, see Monitoring costs with cost
allocation tags.

Tagging caches and snapshots

The following rules apply to tagging as part of request operations:

• CreateReplicationGroup:

• If the --primary-cluster-id and --tags parameters are included in the request, the
request tags will be added to the replication group and propagate to all cache clusters in the

Tagging your ElastiCache resources API Version 2015-02-02 795

Amazon ElastiCache for Redis User Guide

replication group. If the primary cache cluster has existing tags, these will be overwritten with
the request tags to have consistent tags across all nodes.

If there are no request tags, the primary cache cluster tags will be added to the replication
group and propagated to all cache clusters.

• If the --snapshot-name or --serverless-cache-snapshot-name is supplied:

If tags are included in the request, the replication group will be tagged only with those tags. If
no tags are included in the request, the snapshot tags will be added to the replication group.

• If the --global-replication-group-id is supplied:

If tags are included in the request, the request tags will be added to the replication group and
propagate to all cache clusters.

• CreateCacheCluster :

• If the --replication-group-id is supplied:

If tags are included in the request, the cache cluster will be tagged only with those tags. If
no tags are included in the request, the cache cluster will inherit the replication group tags
instead of the primary cache cluster's tags.

• If the --snapshot-name is supplied:

If tags are included in the request, the cache cluster will be tagged only with those tags. If no
tags are included in the request, the snapshot tags will be added to the cache cluster.

• CreateServerlessCache :

• If tags are included in the request, only the request tags will be added to the serverless cache.

• CreateSnapshot :

• If the --replication-group-id is supplied:

If tags are included in the request, only the request tags will be added to the snapshot. If no
tags are included in the request, the replication group tags will be added to the snapshot.

• If the --cache-cluster-id is supplied:

If tags are included in the request, only the request tags will be added to the snapshot. If no
tags are included in the request, the cache cluster tags will be added to the snapshot.

• For automatic snapshots:

Tags will propagate from the replication group tags.Tagging your ElastiCache resources API Version 2015-02-02 796

Amazon ElastiCache for Redis User Guide

• CreateServerlessCacheSnapshot :

• If tags are included in the request, only the request tags will be added to the serverless cache
snapshot.

• CopySnapshot :

• If tags are included in the request, only the request tags will be added to the snapshot. If
no tags are included in the request, the source snapshot tags will be added to the copied
snapshot.

• CopyServerlessCacheSnapshot :

• If tags are included in the request, only the request tags will be added to the serverless cache
snapshot.

• AddTagsToResource and RemoveTagsFromResource :

• Tags will be added/removed from the replication group and the action will be propagated to
all clusters in the replication group.

Note

AddTagsToResource and RemoveTagsFromResource cannot be used for default
parameter and security groups.

• IncreaseReplicaCount and ModifyReplicationGroupShardConfiguration:

• All new clusters added to the replication group will have the same tags applied as the
replication group.

Tag restrictions

The following basic restrictions apply to tags:

• Maximum number of tags per resource – 50

• For each resource, each tag key must be unique, and each tag key can have only one value.

• Maximum key length – 128 Unicode characters in UTF-8.

• Maximum value length – 256 Unicode characters in UTF-8.

• Although ElastiCache allows for any character in its tags, other services can be restrictive. The
allowed characters across services are: letters, numbers, and spaces representable in UTF-8, and
the following characters: + - = . _ : / @

• Tag keys and values are case-sensitive.

Tagging your ElastiCache resources API Version 2015-02-02 797

Amazon ElastiCache for Redis User Guide

• The aws: prefix is reserved for AWS use. If a tag has a tag key with this prefix, then you can't
edit or delete the tag's key or value. Tags with the aws: prefix do not count against your tags per
resource limit.

You can't terminate, stop, or delete a resource based solely on its tags; you must specify the
resource identifier. For example, to delete snapshots that you tagged with a tag key called
DeleteMe, you must use the DeleteSnapshot action with the resource identifiers of the
snapshots, such as snap-1234567890abcdef0.

For more information on ElastiCache resources you can tag, see Resources you can tag.

Tagging resources examples

• Creating a serverless cache using tags

aws elasticache create-serverless-cache \
 --serverless-cache-name CacheName \
 --engine redis
 --tags Key="Cost Center", Value="1110001" Key="project",Value="XYZ"

• Adding tags to a serverless cache

aws elasticache add-tags-to-resource \
--resource-name arn:aws:elasticache:us-east-1:111111222233:serverlesscache:my-cache \
--tags Key="project",Value="XYZ" Key="Elasticache",Value="Service"

• Adding tags to a Replication Group.

aws elasticache add-tags-to-resource \
--resource-name arn:aws:elasticache:us-east-1:111111222233:replicationgroup:my-rg \
--tags Key="project",Value="XYZ" Key="Elasticache",Value="Service"

• Creating a Cache Cluster using tags.

aws elasticache create-cache-cluster \
--cluster-id testing-tags \
--cluster-description cluster-test \
--cache-subnet-group-name test \
--cache-node-type cache.t2.micro \
--engine redis \
--tags Key="project",Value="XYZ" Key="Elasticache",Value="Service"

Tagging your ElastiCache resources API Version 2015-02-02 798

Amazon ElastiCache for Redis User Guide

• Creating a serverless snapshot with tags.

aws elasticache create-serverless-cache-snapshot \
--serverless-cache-name testing-tags \
--serverless-cache-snapshot-name bkp-testing-tags-scs \
--tags Key="work",Value="foo"

• Creating a Snapshot with tags.

For this case, if you add tags on request, even if the replication group contains tags, the snapshot
will receive only the request tags.

aws elasticache create-snapshot \
--replication-group-id testing-tags \
--snapshot-name bkp-testing-tags-rg \
--tags Key="work",Value="foo"

Tag-Based access control policy examples

1. Allowing AddTagsToResource action to a cluster only if the cluster has the tag Project=XYZ.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "elasticache:AddTagsToResource",
 "Resource": [
 "arn:aws:elasticache:*:*:cluster:*"
],
 "Condition": {
 "StringEquals": {
 "aws:ResourceTag/Project": "XYZ"
 }
 }
 }
]
}

Tagging your ElastiCache resources API Version 2015-02-02 799

Amazon ElastiCache for Redis User Guide

2. Allowing to RemoveTagsFromResource action from a replication group if it contains the tags
Project and Service and keys are different from Project and Service.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "elasticache:RemoveTagsFromResource",
 "Resource": [
 "arn:aws:elasticache:*:*:replicationgroup:*"
],
 "Condition": {
 "StringEquals": {
 "aws:ResourceTag/Service": "Elasticache",
 "aws:ResourceTag/Project": "XYZ"
 },
 "ForAnyValue:StringNotEqualsIgnoreCase": {
 "aws:TagKeys": [
 "Project",
 "Service"
]
 }
 }
 }
]
}

3. Allowing AddTagsToResource to any resource only if tags are different from Project and
Service.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "elasticache:AddTagsToResource",
 "Resource": [
 "arn:aws:elasticache:*:*:*:*"
],
 "Condition": {
 "ForAnyValue:StringNotEqualsIgnoreCase": {
 "aws:TagKeys": [

Tagging your ElastiCache resources API Version 2015-02-02 800

Amazon ElastiCache for Redis User Guide

 "Service",
 "Project"
]
 }
 }
 }
]
}

4. Denying CreateReplicationGroup action if request has Tag Project=Foo.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Deny",
 "Action": "elasticache:CreateReplicationGroup",
 "Resource": [
 "arn:aws:elasticache:*:*:replicationgroup:*"
],
 "Condition": {
 "StringEquals": {
 "aws:RequestTag/Project": "Foo"
 }
 }
 }
]
}

5. Denying CopySnapshot action if source snapshot has tag Project=XYZ and request tag is
Service=Elasticache.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Deny",
 "Action": "elasticache:CopySnapshot",
 "Resource": [
 "arn:aws:elasticache:*:*:snapshot:*"
],
 "Condition": {
 "StringEquals": {

Tagging your ElastiCache resources API Version 2015-02-02 801

Amazon ElastiCache for Redis User Guide

 "aws:ResourceTag/Project": "XYZ",
 "aws:RequestTag/Service": "Elasticache"
 }
 }
 }
]
}

6. Denying CreateCacheCluster action if the request tag Project is missing or is not equal to
Dev, QA or Prod.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "elasticache:CreateCacheCluster"
],
 "Resource": [
 "arn:aws:elasticache:*:*:parametergroup:*",
 "arn:aws:elasticache:*:*:subnetgroup:*",
 "arn:aws:elasticache:*:*:securitygroup:*",
 "arn:aws:elasticache:*:*:replicationgroup:*"
]
 },
 {
 "Effect": "Deny",
 "Action": [
 "elasticache:CreateCacheCluster"
],
 "Resource": [
 "arn:aws:elasticache:*:*:cluster:*"
],
 "Condition": {
 "Null": {
 "aws:RequestTag/Project": "true"
 }
 }
 },
 {
 "Effect": "Allow",
 "Action": [

Tagging your ElastiCache resources API Version 2015-02-02 802

Amazon ElastiCache for Redis User Guide

 "elasticache:CreateCacheCluster",
 "elasticache:AddTagsToResource"
],
 "Resource": "arn:aws:elasticache:*:*:cluster:*",
 "Condition": {
 "StringEquals": {
 "aws:RequestTag/Project": [
 "Dev",
 "Prod",
 "QA"
]
 }
 }
 }
]
}

For related information on condition keys, see Using condition keys.

Monitoring costs with cost allocation tags

When you add cost allocation tags to your resources in Amazon ElastiCache, you can track costs by
grouping expenses on your invoices by resource tag values.

An ElastiCache cost allocation tag is a key-value pair that you define and associate with an
ElastiCache resource. The key and value are case-sensitive. You can use a tag key to define a
category, and the tag value can be an item in that category. For example, you might define a tag
key of CostCenter and a tag value of 10010, indicating that the resource is assigned to the 10010
cost center. You can also use tags to designate resources as being used for test or production by
using a key such as Environment and values such as test or production. We recommend that
you use a consistent set of tag keys to make it easier to track costs associated with your resources.

Use cost allocation tags to organize your AWS bill to reflect your own cost structure. To do
this, sign up to get your AWS account bill with tag key values included. Then, to see the cost of
combined resources, organize your billing information according to resources with the same tag
key values. For example, you can tag several resources with a specific application name, and then
organize your billing information to see the total cost of that application across several services.

You can also combine tags to track costs at a greater level of detail. For example, to track your
service costs by region you might use the tag keys Service and Region. On one resource you

Monitoring costs with tags API Version 2015-02-02 803

Amazon ElastiCache for Redis User Guide

might have the values ElastiCache and Asia Pacific (Singapore), and on another
resource the values ElastiCache and Europe (Frankfurt). You can then see your total
ElastiCache costs broken out by region. For more information, see Use Cost Allocation Tags in the
AWS Billing User Guide.

You can add ElastiCache cost allocation tags to Redis nodes. When you add, list, modify, copy, or
remove a tag, the operation is applied only to the specified node.

Characteristics of ElastiCache cost allocation tags

• Cost allocation tags are applied to ElastiCache resources which are specified in CLI and API
operations as an ARN. The resource-type will be a "cluster".

Sample ARN: arn:aws:elasticache:<region>:<customer-id>:<resource-
type>:<resource-name>

Sample arn: arn:aws:elasticache:us-west-2:1234567890:cluster:my-cluster

• The tag key is the required name of the tag. The key's string value can be from 1 to 128 Unicode
characters long and cannot be prefixed with aws:. The string can contain only the set of Unicode
letters, digits, blank spaces, underscores (_), periods (.), colons (:), backslashes (\), equal signs
(=), plus signs (+), hyphens (-), or at signs (@).

• The tag value is the optional value of the tag. The value's string value can be from 1 to 256
Unicode characters in length and cannot be prefixed with aws:. The string can contain only the
set of Unicode letters, digits, blank spaces, underscores (_), periods (.), colons (:), backslashes
(\), equal signs (=), plus signs (+), hyphens (-), or at signs (@).

• An ElastiCache resource can have a maximum of 50 tags.

• Values do not have to be unique in a tag set. For example, you can have a tag set where the keys
Service and Application both have the value ElastiCache.

AWS does not apply any semantic meaning to your tags. Tags are interpreted strictly as character
strings. AWS does not automatically set any tags on any ElastiCache resource.

Monitoring costs with tags API Version 2015-02-02 804

https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/cost-alloc-tags.html

Amazon ElastiCache for Redis User Guide

Managing your cost allocation tags using the AWS CLI

You can use the AWS CLI to add, modify, or remove cost allocation tags.

Sample arn: arn:aws:elasticache:us-west-2:1234567890:cluster:my-cluster

Cost allocation tags are applied to ElastiCache for Redis nodes. The node to be tagged is specified
using an ARN (Amazon Resource Name).

Sample arn: arn:aws:elasticache:us-west-2:1234567890:cluster:my-cluster

Topics

• Listing tags using the AWS CLI

• Adding tags using the AWS CLI

• Modifying tags using the AWS CLI

• Removing tags using the AWS CLI

Listing tags using the AWS CLI

You can use the AWS CLI to list tags on an existing ElastiCache resource by using the list-tags-for-
resource operation.

The following code uses the AWS CLI to list the tags on the Redis node my-cluster-001 in the
my-cluster cluster in region us-west-2.

For Linux, macOS, or Unix:

aws elasticache list-tags-for-resource \
 --resource-name arn:aws:elasticache:us-west-2:0123456789:cluster:my-cluster-001

For Windows:

aws elasticache list-tags-for-resource ^
 --resource-name arn:aws:elasticache:us-west-2:0123456789:cluster:my-cluster-001

Output from this operation will look something like the following, a list of all the tags on the
resource.

{
 "TagList": [

Managing tags using the AWS CLI API Version 2015-02-02 805

https://docs.aws.amazon.com/cli/latest/reference/elasticache/list-tags-for-resource.html
https://docs.aws.amazon.com/cli/latest/reference/elasticache/list-tags-for-resource.html

Amazon ElastiCache for Redis User Guide

 {
 "Value": "10110",
 "Key": "CostCenter"
 },
 {
 "Value": "EC2",
 "Key": "Service"
 }
]
}

If there are no tags on the resource, the output will be an empty TagList.

{
 "TagList": []
}

For more information, see the AWS CLI for ElastiCache list-tags-for-resource.

Adding tags using the AWS CLI

You can use the AWS CLI to add tags to an existing ElastiCache resource by using the add-tags-to-
resource CLI operation. If the tag key does not exist on the resource, the key and value are added to
the resource. If the key already exists on the resource, the value associated with that key is updated
to the new value.

The following code uses the AWS CLI to add the keys Service and Region with the values
elasticache and us-west-2 respectively to the node my-cluster-001 in the cluster my-
cluster in region us-west-2.

For Linux, macOS, or Unix:

aws elasticache add-tags-to-resource \
 --resource-name arn:aws:elasticache:us-west-2:0123456789:cluster:my-cluster-001 \
 --tags Key=Service,Value=elasticache \
 Key=Region,Value=us-west-2

For Windows:

aws elasticache add-tags-to-resource ^
 --resource-name arn:aws:elasticache:us-west-2:0123456789:cluster:my-cluster-001 ^
 --tags Key=Service,Value=elasticache ^

Managing tags using the AWS CLI API Version 2015-02-02 806

https://docs.aws.amazon.com/cli/latest/reference/elasticache/list-tags-for-resource.html
https://docs.aws.amazon.com/cli/latest/reference/elasticache/add-tags-to-resource.html
https://docs.aws.amazon.com/cli/latest/reference/elasticache/add-tags-to-resource.html

Amazon ElastiCache for Redis User Guide

 Key=Region,Value=us-west-2

Output from this operation will look something like the following, a list of all the tags on the
resource following the operation.

{
 "TagList": [
 {
 "Value": "elasticache",
 "Key": "Service"
 },
 {
 "Value": "us-west-2",
 "Key": "Region"
 }
]
}

For more information, see the AWS CLI for ElastiCache add-tags-to-resource.

You can also use the AWS CLI to add tags to a cluster when you create a new cluster by using the
operation create-cache-cluster. You cannot add tags when creating a cluster using the ElastiCache
management console. After the cluster is created, you can then use the console to add tags to the
cluster.

Modifying tags using the AWS CLI

You can use the AWS CLI to modify the tags on a node in an ElastiCache for Redis cluster.

To modify tags:

• Use add-tags-to-resource to either add a new tag and value or to change the value associated
with an existing tag.

• Use remove-tags-from-resource to remove specified tags from the resource.

Output from either operation will be a list of tags and their values on the specified cluster.

Removing tags using the AWS CLI

You can use the AWS CLI to remove tags from an existing node in an ElastiCache for Redis cluster
by using the remove-tags-from-resource operation.

Managing tags using the AWS CLI API Version 2015-02-02 807

https://docs.aws.amazon.com/cli/latest/reference/elasticache/add-tags-to-resource.html
https://docs.aws.amazon.com/cli/latest/reference/elasticache/create-cache-cluster.html
https://docs.aws.amazon.com/cli/latest/reference/elasticache/add-tags-to-resource.html
https://docs.aws.amazon.com/cli/latest/reference/elasticache/remove-tags-from-resource.html
https://docs.aws.amazon.com/cli/latest/reference/elasticache/remove-tags-from-resource.html

Amazon ElastiCache for Redis User Guide

The following code uses the AWS CLI to remove the tags with the keys Service and Region from
the node my-cluster-001 in the cluster my-cluster in the us-west-2 region.

For Linux, macOS, or Unix:

aws elasticache remove-tags-from-resource \
 --resource-name arn:aws:elasticache:us-west-2:0123456789:cluster:my-cluster-001 \
 --tag-keys PM Service

For Windows:

aws elasticache remove-tags-from-resource ^
 --resource-name arn:aws:elasticache:us-west-2:0123456789:cluster:my-cluster-001 ^
 --tag-keys PM Service

Output from this operation will look something like the following, a list of all the tags on the
resource following the operation.

{
 "TagList": []
}

For more information, see the AWS CLI for ElastiCache remove-tags-from-resource.

Managing your cost allocation tags using the ElastiCache API

You can use the ElastiCache API to add, modify, or remove cost allocation tags.

Cost allocation tags are applied to ElastiCache for Memcached clusters. The cluster to be tagged is
specified using an ARN (Amazon Resource Name).

Sample arn: arn:aws:elasticache:us-west-2:1234567890:cluster:my-cluster

Topics

• Listing tags using the ElastiCache API

• Adding tags using the ElastiCache API

• Modifying tags using the ElastiCache API

• Removing tags using the ElastiCache API

Managing tags using the ElastiCache API API Version 2015-02-02 808

https://docs.aws.amazon.com/cli/latest/reference/elasticache/remove-tags-from-resource.html

Amazon ElastiCache for Redis User Guide

Listing tags using the ElastiCache API

You can use the ElastiCache API to list tags on an existing resource by using the
ListTagsForResource operation.

The following code uses the ElastiCache API to list the tags on the resource my-cluster-001 in
the us-west-2 region.

https://elasticache.us-west-2.amazonaws.com/
 ?Action=ListTagsForResource
 &ResourceName=arn:aws:elasticache:us-west-2:0123456789:cluster:my-cluster-001
 &SignatureVersion=4
 &SignatureMethod=HmacSHA256
 &Version=2015-02-02
 &Timestamp=20150202T192317Z
 &X-Amz-Credential=<credential>

Adding tags using the ElastiCache API

You can use the ElastiCache API to add tags to an existing ElastiCache cluster by using the
AddTagsToResource operation. If the tag key does not exist on the resource, the key and value are
added to the resource. If the key already exists on the resource, the value associated with that key
is updated to the new value.

The following code uses the ElastiCache API to add the keys Service and Region with the values
elasticache and us-west-2 respectively to the resource my-cluster-001 in the us-west-2
region.

https://elasticache.us-west-2.amazonaws.com/
 ?Action=AddTagsToResource
 &ResourceName=arn:aws:elasticache:us-west-2:0123456789:cluster:my-cluster-001
 &SignatureVersion=4
 &SignatureMethod=HmacSHA256
 &Tags.member.1.Key=Service
 &Tags.member.1.Value=elasticache
 &Tags.member.2.Key=Region
 &Tags.member.2.Value=us-west-2
 &Version=2015-02-02
 &Timestamp=20150202T192317Z
 &X-Amz-Credential=<credential>

For more information, see AddTagsToResource in the Amazon ElastiCache API Reference.

Managing tags using the ElastiCache API API Version 2015-02-02 809

https://docs.aws.amazon.com/AmazonElastiCache/latest/APIReference/API_ListTagsForResource.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/APIReference/API_AddTagsToResource.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/APIReference/API_AddTagsToResource.html

Amazon ElastiCache for Redis User Guide

Modifying tags using the ElastiCache API

You can use the ElastiCache API to modify the tags on an ElastiCache cluster.

To modify the value of a tag:

• Use AddTagsToResource operation to either add a new tag and value or to change the value of
an existing tag.

• Use RemoveTagsFromResource to remove tags from the resource.

Output from either operation will be a list of tags and their values on the specified resource.

Use RemoveTagsFromResource to remove tags from the resource.

Removing tags using the ElastiCache API

You can use the ElastiCache API to remove tags from an existing ElastiCache for Redis node by
using the RemoveTagsFromResource operation.

The following code uses the ElastiCache API to remove the tags with the keys Service and
Region from the node my-cluster-001 in the cluster my-cluster in region us-west-2.

https://elasticache.us-west-2.amazonaws.com/
 ?Action=RemoveTagsFromResource
 &ResourceName=arn:aws:elasticache:us-west-2:0123456789:cluster:my-cluster-001
 &SignatureVersion=4
 &SignatureMethod=HmacSHA256
 &TagKeys.member.1=Service
 &TagKeys.member.2=Region
 &Version=2015-02-02
 &Timestamp=20150202T192317Z
 &X-Amz-Credential=<credential>

Using the Amazon ElastiCache Well-Architected Lens

This section describes the Amazon ElastiCache Well-Architected Lens, a collection of design
principles and guidance for designing well-architected ElastiCache workloads.

• The ElastiCache Lens is additive to the AWS Well-Architected Framework.

• Each Pillar has a set of questions to help start the discussion around an ElastiCache Architecture.

Amazon ElastiCache Well-Architected Lens API Version 2015-02-02 810

https://docs.aws.amazon.com/AmazonElastiCache/latest/APIReference/API_AddTagsToResource.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/APIReference/API_RemoveTagsFromResource.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/APIReference/API_RemoveTagsFromResource.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/APIReference/API_RemoveTagsFromResource.html
https://docs.aws.amazon.com/wellarchitected/latest/framework/welcome.html

Amazon ElastiCache for Redis User Guide

• Each question has a number of leading practices along with their scores for reporting.

• Required - Necessary before going to prod (absent being a high risk)

• Best - Best possible state a customer could be

• Good - What we recommend customers to have (absent being a medium risk)

• Well-Architected terminology

• Component – Code, configuration and AWS Resources that together deliver against a
requirement. Components interact with other components, and often equate to a service in
microservice architectures.

• Workload A set of components that together deliver business value. Examples of workloads
are marketing websites, e-commerce websites, the back-ends for a mobile app, analytic
platforms, etc.

Topics

• Amazon ElastiCache Well-Architected Lens Operational Excellence Pillar

• Amazon ElastiCache Well-Architected Lens Security Pillar

• Amazon ElastiCache Well-Architected Lens Reliability Pillar

• Amazon ElastiCache Well-Architected Lens Performance Efficiency Pillar

• Amazon ElastiCache Well-Architected Lens Cost Optimization Pillar

Amazon ElastiCache Well-Architected Lens Operational Excellence
Pillar

The operational excellence pillar focuses on running and monitoring systems to deliver business
value, and continually improving processes and procedures. Key topics include automating
changes, responding to events, and defining standards to manage daily operations.

Topics

• OE 1: How do you understand and respond to alerts and events triggered by your ElastiCache
cluster?

• OE 2: When and how do you scale your existing ElastiCache clusters?

• OE 3: How do you manage your ElastiCache cluster resources and maintain your cluster up-to-
date?

• OE 4: How do you manage clients’ connections to your ElastiCache clusters?

Operational Excellence Pillar API Version 2015-02-02 811

https://wa.aws.amazon.com/wat.concept.component.en.html
https://wa.aws.amazon.com/wat.concept.workload.en.html

Amazon ElastiCache for Redis User Guide

• OE 5: How do you deploy ElastiCache Components for a Workload?

• OE 6: How do you plan for and mitigate failures?

• OE 7: How do you troubleshoot Redis engine events?

OE 1: How do you understand and respond to alerts and events triggered by your
ElastiCache cluster?

Question-level introduction: When you operate ElastiCache clusters you can optionally receive
notifications and alerts when specific events occur. ElastiCache, by default, logs events that
relate to your resources, such as a failover, node replacement, scaling operation, scheduled
maintenance, and more. Each event includes the date and time, the source name and source type,
and a description.

Question-level benefit: Being able to understand and manage the underlying reasons behind the
events that trigger alerts generated by your cluster enables you to operate more effectively and
respond to events appropriately.

• [Required] Review the events generated by ElastiCache on the ElastiCache console (after
selecting your region) or using the Amazon Command Line Interface (AWS CLI) describe-events
command and the ElastiCache API. Configure ElastiCache to send notifications for important
cluster events using Amazon Simple Notification Service (Amazon SNS). Using Amazon SNS with
your clusters allows you to programmatically take actions upon ElastiCache events.

• There are two large categories of events: current and scheduled events. The list of current
events includes: resource creation and deletion, scaling operations, failover, node reboot,
snapshot created, cluster’s parameter modification, CA certificate renewal, failure events
(cluster provisioning failure - VPC or ENI-, scaling failures - ENI-, and snapshot failures). The
list of scheduled events includes: node scheduled for replacement during the maintenance
window and node replacement rescheduled.

• Although you may not need to react immediately to some of these events, it is critical to first
look at all failure events:

• ElastiCache:AddCacheNodeFailed

• ElastiCache:CacheClusterProvisioningFailed

• ElastiCache:CacheClusterScalingFailed

• ElastiCache:CacheNodesRebooted

• ElastiCache:SnapshotFailed (Redis only)
Operational Excellence Pillar API Version 2015-02-02 812

https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/ECEvents.html
http://aws.amazon.com/cli
https://docs.aws.amazon.com/cli/latest/reference/elasticache/describe-events.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/APIReference/API_DescribeEvents.html

Amazon ElastiCache for Redis User Guide

• [Resources]:

• Managing ElastiCache Amazon SNS notifications

• Event Notifications and Amazon SNS

• [Best] To automate responses to events, leverage AWS products and services capabilities such as
SNS and Lambda Functions. Follow best practices by making small, frequent, reversible changes,
as code to evolve your operations over time. You should use Amazon CloudWatch metrics to
monitor your clusters.

[Resources]: Monitor Amazon ElastiCache for Redis (cluster mode disabled) read replica
endpoints using AWS Lambda, Amazon Route 53, and Amazon SNS for a use case that uses
Lambda and SNS.

OE 2: When and how do you scale your existing ElastiCache clusters?

Question-level introduction: Right-sizing your ElastiCache cluster is a balancing act that needs to
be evaluated every time there are changes to the underlying workload types. Your objective is to
operate with the right sized environment for your workload.

Question-level benefit: Over-utilization of your resources may result in elevated latency
and overall decreased performance. Under-utilization, on the other hand, may result in over-
provisioned resources at non-optimal cost optimization. By right-sizing your environments you can
strike a balance between performance efficiency and cost optimization. To remediate over or under
utilization of your resources, ElastiCache can scale in two dimensions. You can scale vertically by
increasing or decreasing node capacity. You can also scale horizontally by adding and removing
nodes.

• [Required] CPU and network over-utilization on primary nodes should be addressed by
offloading and redirecting the read operations to replica nodes. Use replica nodes for read
operations to reduce primary node utilization. This can be configured in your Redis client library
by connecting to the ElastiCache reader endpoint for cluster mode disabled, or by using the
Redis READONLY command for cluster mode enabled.

[Resources]:

• Finding connection endpoints

• Cluster Right-Sizing

• Redis READONLY Command

Operational Excellence Pillar API Version 2015-02-02 813

https://aws.amazon.com/blogs/database/monitor-amazon-elasticache-for-redis-cluster-mode-disabled-read-replica-endpoints-using-aws-lambda-amazon-route-53-and-amazon-sns/
https://aws.amazon.com/blogs/database/monitor-amazon-elasticache-for-redis-cluster-mode-disabled-read-replica-endpoints-using-aws-lambda-amazon-route-53-and-amazon-sns/
https://aws.amazon.com/blogs/database/five-workload-characteristics-to-consider-when-right-sizing-amazon-elasticache-redis-clusters/
https://redis.io/commands/readonly

Amazon ElastiCache for Redis User Guide

• [Required] Monitor the utilization of critical cluster resources such as CPU, memory, and
network. The utilization of these specific cluster resources needs to be tracked to inform your
decision to scale, and the type of scaling operation. For ElastiCache for Redis cluster mode
disabled, primary and replica nodes can scale vertically. Replica nodes can also scale horizontally
from 0 to 5 nodes. For cluster mode enabled, the same applies within each shard of your cluster.
In addition, you can increase or reduce the number of shards.

[Resources]:

• Monitoring best practices with Amazon ElastiCache for Redis using Amazon CloudWatch

• Scaling ElastiCache for Redis Clusters

• Scaling ElastiCache for Memcached Clusters

• [Best] Monitoring trends over time can help you detect workload changes that would remain
unnoticed if monitored at a particular point in time. To detect longer term trends, use
CloudWatch metrics to scan for longer time ranges. The learnings from observing extended
periods of CloudWatch metrics should inform your forecast around cluster resources utilization.
CloudWatch data points and metrics are available for up to 455 days.

[Resources]:

• Monitoring ElastiCache for Redis with CloudWatch Metrics

• Monitoring Memcached with CloudWatch Metrics

• Monitoring best practices with Amazon ElastiCache for Redis using Amazon CloudWatch

• [Best] If your ElastiCache resources are created with CloudFormation it is best practice to
perform changes using CloudFormation templates to preserve operational consistency and avoid
unmanaged configuration changes and stack drifts.

[Resources]:

• ElastiCache resource type reference for CloudFormation

• [Best] Automate your scaling operations using cluster operational data and define thresholds in
CloudWatch to setup alarms. Use CloudWatch Events and Simple Notification Service (SNS) to
trigger Lambda functions and execute an ElastiCache API to scale your clusters automatically.
An example would be to add a shard to your cluster when the EngineCPUUtilization
metric reaches 80% for an extended period of time. Another option would be to use
DatabaseMemoryUsedPercentages for a memory-based threshold.

[Resources]:

• Using Amazon CloudWatch Alarms

Operational Excellence Pillar API Version 2015-02-02 814

https://aws.amazon.com/blogs/database/monitoring-best-practices-with-amazon-elasticache-for-redis-using-amazon-cloudwatch/
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/Scaling.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/mem-ug/Scaling.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/CacheMetrics.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/mem-ug/CacheMetrics.html
https://aws.amazon.com/blogs/database/monitoring-best-practices-with-amazon-elasticache-for-redis-using-amazon-cloudwatch/
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/AWS_ElastiCache.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/AlarmThatSendsEmail.html

Amazon ElastiCache for Redis User Guide

• What are Amazon CloudWatch events?

• Using AWS Lambda with Amazon Simple Notification Service

• ElastiCache API Reference

OE 3: How do you manage your ElastiCache cluster resources and maintain your
cluster up-to-date?

Question-level introduction: When operating at scale, it is essential that you are able to pinpoint
and identify all your ElastiCache resources. When rolling out new application features you need
to create cluster version symmetry across all your ElastiCache environment types: dev, testing,
and production. Resource attributes allow you to separate environments for different operational
objectives, such as when rolling out new features and enabling new security mechanisms.

Question-level benefit: Separating your development, testing, and production environments is
best operational practice. It is also best practice that your clusters and nodes across environments
have the latest software patches applied using well understood and documented processes. Taking
advantage of native ElastiCache features enables your engineering team to focus on meeting
business objectives and not on ElastiCache maintenance.

• [Best] Run on the latest engine version available and apply the Self-Service Updates as quickly
as they become available. ElastiCache automatically updates its underlying infrastructure during
your specified maintenance window of the cluster. However, the nodes running in your clusters
are updated via Self-Service Updates. These updates can be of two types: security patches or
minor software updates. Ensure you understand the difference between types of patches and
when they are applied.

[Resources]:

• Self-Service Updates in Amazon ElastiCache

• Amazon ElastiCache Managed Maintenance and Service Updates Help Page

• [Best] Organize your ElastiCache resources using tags. Use tags on replication groups and not on
individual nodes. You can configure tags to be displayed when you query resources and you can
use tags to perform searches and apply filters. You should use Resource Groups to easily create
and maintain collections of resources that share common sets of tags.

[Resources]:

• Tagging Best Practices

Operational Excellence Pillar API Version 2015-02-02 815

https://docs.aws.amazon.com/AmazonCloudWatch/latest/events/WhatIsCloudWatchEvents.html
https://docs.aws.amazon.com/lambda/latest/dg/with-sns.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/APIReference/Welcome.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/Self-Service-Updates.html
https://aws.amazon.com/elasticache/elasticache-maintenance/
https://d1.awsstatic.com/whitepapers/aws-tagging-best-practices.pdf

Amazon ElastiCache for Redis User Guide

• ElastiCache resource type reference for CloudFormation

• Parameter Groups

OE 4: How do you manage clients’ connections to your ElastiCache clusters?

Question-level introduction: When operating at scale you need to understand how your clients
connect with the ElastiCache cluster to manage your application operational aspects (such as
response times).

Question-level benefit: Choosing the most appropriate connection mechanism ensures that your
application does not disconnect due to connectivity errors, such as time-outs.

• [Required] Separate read from write operations and connect to the replica nodes to execute
read operations. However, be aware when you separate the writes from the reads you will
lose the ability to read a key immediately after writing it due to the asynchronous nature of
Redis replication. The WAIT command can be leveraged to improve real world data safety and
force replicas to acknowledge writes before responding to clients, at an overall performance
cost. Using replica nodes for read operations can be configured in your ElastiCache for Redis
client library using the ElastiCache reader endpoint for cluster mode disabled. For cluster mode
enabled, use the ElastiCache for Redis READONLY command. For many of the ElastiCache
for Redis client libraries, ElastiCache for Redis READONLY is implemented by default or via a
configuration setting.

[Resources]:

• Finding connection endpoints

• READONLY

• [Required] Use connection pooling. Establishing a TCP connection has a cost in CPU time on
both client and server sides and pooling allows you to reuse the TCP connection.

To reduce connection overhead, you should use connection pooling. With a pool of connections
your application can re-use and release connections ‘at will’, without the cost of establishing the
connection. You can implement connection pooling via your ElastiCache for Redis client library
(if supported), with a Framework available for your application environment, or build it from the
ground up.

• [Best] Ensure that the socket timeout of the client is set to at least one second (vs. the typical
“none” default in several clients).

Operational Excellence Pillar API Version 2015-02-02 816

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/AWS_ElastiCache.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/ParameterGroups.Redis.html
https://redis.io/commands/readonly

Amazon ElastiCache for Redis User Guide

• Setting the timeout value too low can lead to possible timeouts when the server load is high.
Setting it too high can result in your application taking a long time to detect connection issues.

• Control the volume of new connections by implementing connection pooling in your client
application. This reduces latency and CPU utilization needed to open and close connections,
and perform a TLS handshake if TLS is enabled on the cluster.

[Resources]: Configure Amazon ElastiCache for Redis for higher availability

• [Good] Using pipelining (when your use cases allow it) can significantly boost the performance.

• With pipelining you reduce the Round-Trip Time (RTT) between your application clients and
the cluster and new requests can be processed even if the client has not yet read the previous
responses.

• With pipelining you can send multiple commands to the server without waiting for replies/ack.
The downside of pipelining is that when you eventually fetch all the responses in bulk there
may have been an error that you will not catch until the end.

• Implement methods to retry requests when an error is returned that omits the bad request.

[Resources]: Pipelining

OE 5: How do you deploy ElastiCache Components for a Workload?

Question-level introduction: ElastiCache environments can be deployed manually through
the AWS Console, or programmatically through APIs, CLI, toolkits, etc. Operational Excellence
best practices suggest automating deployments through code whenever possible. Additionally,
ElastiCache clusters can either be isolated by workload or combined for cost optimization purposes.

Question-level benefit: Choosing the most appropriate deployment mechanism for your
ElastiCache environments can improve Operation Excellence over time. It is recommended to
perform operations as code whenever possible to minimize human error and increase repeatability,
flexibility, and response time to events.

By understanding the workload isolation requirements, you can choose to have dedicated
ElastiCache environments per workload or combine multiple workloads into single clusters, or
combinations thereof. Understanding the tradeoffs can help strike a balance between Operational
Excellence and Cost Optimization

Operational Excellence Pillar API Version 2015-02-02 817

https://aws.amazon.com/blogs/database/configuring-amazon-elasticache-for-redis-for-higher-availability/
https://redis.io/docs/manual/pipelining/

Amazon ElastiCache for Redis User Guide

• [Required] Understand the deployment options available to ElastiCache, and automate these
procedures whenever possible. Possible avenues of automation include CloudFormation, AWS
CLI/SDK, and APIs.

[Resources]:

• Amazon ElastiCache resource type reference

• elasticache

• Amazon ElastiCache API Reference

• [Required] For all workloads determine the level of cluster isolation needed.

• [Best]: High Isolation – a 1:1 workload to cluster mapping. Allows for finest grained control
over access, sizing, scaling, and management of ElastiCache resources on a per workload basis.

• [Better]: Medium Isolation – M:1 isolated by purpose but perhaps shared across multiple
workloads (for example a cluster dedicated to caching workloads, and another dedicated for
messaging).

• [Good]: Low Isolation – M:1 all purpose, fully shared. Recommended for workloads where
shared access is acceptable.

OE 6: How do you plan for and mitigate failures?

Question-level introduction: Operational Excellence includes anticipating failures by performing
regular "pre-mortem" exercises to identify potential sources of failure so they can be removed
or mitigated. ElastiCache offers a Failover API that allows for simulated node failure events, for
testing purposes.

Question-level benefit: By testing failure scenarios ahead of time you can learn how they impact
your workload. This allows for safe testing of response procedures and their effectiveness, as well
as gets your team familiar with their execution.

[Required] Regularly perform failover testing in dev/test accounts. TestFailover

OE 7: How do you troubleshoot Redis engine events?

Question-level introduction: Operational Excellence requires the ability to investigate both
service-level and engine-level information to analyze the health and status of your clusters.
Amazon ElastiCache for Redis can emit Redis engine logs to both Amazon CloudWatch and Amazon
Kinesis Data Firehose.
Operational Excellence Pillar API Version 2015-02-02 818

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/AWS_ElastiCache.html
https://docs.aws.amazon.com/cli/latest/reference/elasticache/index.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/APIReference/Welcome.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/APIReference/API_TestFailover.html

Amazon ElastiCache for Redis User Guide

Question-level benefit: Enabling Redis engine logs on Amazon ElastiCache for Redis clusters
provides insight into events that impact the health and performance of clusters. Redis engine logs
provide data directly from the Redis engine that is not available through the ElastiCache events
mechanism. Through careful observation of both ElastiCache events (see preceding OE-1) and
Redis engine logs, it is possible to determine an order of events when troubleshooting from both
the ElastiCache service perspective and Redis engine perspective.

• [Required] Ensure that Redis engine logging functionality is enabled, which is available as
of ElastiCache for Redis 6.2 and newer. This can be performed during cluster creation or by
modifying the cluster after creation.

• Determine whether Amazon CloudWatch Logs or Amazon Kinesis Data Firehose is the
appropriate target for Redis engine logs.

• Select an appropriate target log within either CloudWatch or Kinesis Data Firehose to persist
the logs. If you have multiple clusters, consider a different target log for each cluster as this
will help isolate data when troubleshooting.

[Resources]:

• Log delivery: Log delivery

• Logging destinations: Amazon CloudWatch Logs

• Amazon CloudWatch Logs introduction: What is Amazon CloudWatch Logs?

• Amazon Kinesis Data Firehose introduction: What Is Amazon Kinesis Data Firehose?

• [Best] If using Amazon CloudWatch Logs, consider leveraging Amazon CloudWatch Logs Insights
to query Redis engine log for important information.

As an example, create a query against the CloudWatch Log group that contains the Redis engine
logs that will return events with a LogLevel of ‘WARNING’, such as:

fields @timestamp, LogLevel, Message
| sort @timestamp desc
| filter LogLevel = "WARNING"

[Resources]:Analyzing log data with CloudWatch Logs Insights

Operational Excellence Pillar API Version 2015-02-02 819

https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/Log_Delivery.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/Logging-destinations.html#Destination_Specs_CloudWatch_Logs
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/WhatIsCloudWatchLogs.html
https://docs.aws.amazon.com/firehose/latest/dev/what-is-this-service.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/AnalyzingLogData.html

Amazon ElastiCache for Redis User Guide

Amazon ElastiCache Well-Architected Lens Security Pillar

The security pillar focuses on protecting information and systems. Key topics include
confidentiality and integrity of data, identifying and managing who can do what with privilege-
based management, protecting systems, and establishing controls to detect security events.

Topics

• SEC 1: What steps are you taking in controlling authorized access to ElastiCache data?

• SEC 2: Do your applications require additional authorization to ElastiCache over and above
networking-based controls?

• SEC 3: Is there a risk that commands can be executed inadvertently, causing data loss or failure?

• SEC 4: How do you ensure data encryption at rest with ElastiCache

• SEC 5: How do you encrypt in-transit data with ElastiCache?

• SEC 6: How do you restrict access to control plane resources?

• SEC 7: How do you detect and respond to security events?

SEC 1: What steps are you taking in controlling authorized access to ElastiCache
data?

Question-level introduction: All ElastiCache clusters are designed to be accessed from Amazon
Elastic Compute Cloud instances in a VPC, serverless functions (AWS Lambda), or containers
(Amazon Elastic Container Service). The most encountered scenario is to access an ElastiCache
cluster from an Amazon Elastic Compute Cloud instance within the same Amazon Virtual Private
Cloud (Amazon Virtual Private Cloud). Before you can connect to a cluster from an Amazon
EC2 instance, you must authorize the Amazon EC2 instance to access the cluster. To access an
ElastiCache cluster running in a VPC, it is necessary to grant network ingress to the cluster.

Question-level benefit: Network ingress into the cluster is controlled via VPC security groups.
A security group acts as a virtual firewall for your Amazon EC2 instances to control incoming
and outgoing traffic. Inbound rules control the incoming traffic to your instance, and outbound
rules control the outgoing traffic from your instance. In the case of ElastiCache, when launching
a cluster, it requires associating a security group. This ensures that inbound and outbound traffic
rules are in place for all nodes that make up the cluster. Additionally, ElastiCache is configured to
deploy on private subnets exclusively such that they are only accessible from via the VPC’s private
networking.

Security Pillar API Version 2015-02-02 820

Amazon ElastiCache for Redis User Guide

• [Required] The security group associated with your cluster controls network ingress and access
to the cluster. By default, a security group will not have any inbound rules defined and, therefore,
no ingress path to ElastiCache. To enable this, configure an inbound rule on the security group
specifying source IP address/range, TCP type traffic and the port for your ElastiCache cluster
(default port 6379 for ElastiCache for Redis for example). While it is possible to allow a very
broad set of ingress sources, like all resources within a VPC (0.0.0.0/0), it is advised to be as
granular as possible in defining the inbound rules such as authorizing only inbound access to
Redis clients running on Amazon Amazon EC2 instances associated with a specific security group.

[Resources]:

• Subnets and subnet groups

• Accessing your cluster or replication group

• Control traffic to resources using security groups

• Amazon Elastic Compute Cloud security groups for Linux instances

• [Required] AWS Identity and Access Management policies can be assigned to AWS Lambda
functions allowing them to access ElastiCache data. To enable this feature, create an IAM
execution role with the AWSLambdaVPCAccessExecutionRole permission, then assign the role
to the AWS Lambda function.

[Resources]: Configuring a Lambda function to access Amazon ElastiCache in an Amazon VPC:
Tutorial: Configuring a Lambda function to access Amazon ElastiCache in an Amazon VPC

SEC 2: Do your applications require additional authorization to ElastiCache over
and above networking-based controls?

Question-level introduction: In scenarios where it is necessary to restrict or control access to
ElastiCache for Redis clusters at an individual client level, it is recommended to authenticate via the
ElastiCache for Redis AUTH command. ElastiCache for Redis authentication tokens, with optional
user and user group management, enable ElastiCache for Redis to require a password before
allowing clients to run commands and access keys, thereby improving data plane security.

Question-level benefit: To help keep your data secure, ElastiCache for Redis provides mechanisms
to safeguard against unauthorized access of your data. This includes enforcing Role-Based Access
Control (RBAC) AUTH, or AUTH token (password) be used by clients to connect to ElastiCache
before performing authorized commands.

Security Pillar API Version 2015-02-02 821

https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/SubnetGroups.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/accessing-elasticache.html
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-security-groups.html#DefaultSecurityGroupdefault%20security%20group
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-security-groups.html#creating-your-own-security-groups
https://docs.aws.amazon.com/lambda/latest/dg/services-elasticache-tutorial.html

Amazon ElastiCache for Redis User Guide

• [Best] For ElastiCache for Redis 6.x and higher, define authentication and authorization controls
by defining user groups, users, and access strings. Assign users to user groups, then assign user
groups to clusters. To utilize RBAC, it must be selected upon cluster creation, and in-transit
encryption must be enabled. Ensure you are using a Redis client that supports TLS to be able to
leverage RBAC.

[Resources]:

• Applying RBAC to a Replication Group for ElastiCache for Redis

• Specifying Permissions Using an Access String

• ACL

• Supported ElastiCache for Redis versions

• [Best] For ElastiCache for Redis versions prior to 6.x, in addition to setting strong token/
password and maintaining a strict password policy for ElastiCache for Redis AUTH, it is best
practice to rotate the password/token. ElastiCache can manage up to two (2) authentication
tokens at any given time. You can also modify the cluster to explicitly require the use of
authentication tokens.

[Resources]: Modifying the AUTH token on an existing ElastiCache for Redis cluster

SEC 3: Is there a risk that commands can be executed inadvertently, causing data
loss or failure?

Question-level introduction: There are a number of Redis commands that can have adverse
impacts on operations if executed by mistake or by malicious actors. These commands can have un-
intended consequences from a performance and data safety perspective. For example a developer
may routinely call the FLUSHALL command in a dev environment, and due to a mistake may
inadvertently attempt to call this command on a production system, resulting in accidental data
loss.

Question-level benefit: Beginning with ElastiCache for Redis 5.0.3 on ElastiCache, you have the
ability to rename certain commands that might be disruptive to your workload. Renaming the
commands can help prevent them from being inadvertently executed on the cluster.

• [Required]

[Resources]:

• ElastiCache for Redis version 5.0.3 (deprecated, use version 5.0.6)

Security Pillar API Version 2015-02-02 822

https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/Clusters.RBAC.html#rbac-using
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/Clusters.RBAC.html#Access-string
https://redis.io/docs/management/security/acl/
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/supported-engine-versions.html#ElastiCache%20for%20Redis-version-6.x
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/auth.html#auth-modifyng-token
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/supported-engine-versions.html#redis-version-5-0.3

Amazon ElastiCache for Redis User Guide

• Redis 5.0.3 parameter changes

• Redis security

SEC 4: How do you ensure data encryption at rest with ElastiCache

Question-level introduction: While ElastiCache for Redis is an in-memory data store, it is possible
to encrypt any data that may be persisted (on storage) as part of standard operations of the
cluster. This includes both scheduled and manual backups written to Amazon S3, as well as data
saved to disk storage as a result of sync and swap operations. Instance types in the M6g and R6g
families also feature always-on, in-memory encryption.

Question-level benefit: ElastiCache for Redis provides optional encryption at-rest to increase data
security.

• [Required] At-rest encryption can be enabled on an ElastiCache cluster (replication group) only
when it is created. An existing cluster cannot be modified to begin encrypting data at-rest. By
default, ElastiCache will provide and manage the keys used in at-rest encryption.

[Resources]:

• At-Rest Encryption Conditions

• Enabling At-Rest Encryption

• [Best] Leverage Amazon EC2 instance types that encrypt data while it is in memory (such as
M6g or R6g). Where possible, consider managing your own keys for at-rest encryption. For
more stringent data security environments, AWS Key Management Service (KMS) can be used
to self-manage Customer Master Keys (CMK). Through ElastiCache integration with AWS Key
Management Service, you are able to create, own, and manage the keys used for encryption of
data at rest for your ElastiCache for Redis cluster.

[Resources]:

• Using customer managed keys from AWS Key Management Service

• AWS Key Management Service

• AWS KMS concepts

Security Pillar API Version 2015-02-02 823

https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/ParameterGroups.Redis.html#ParameterGroups.Redis.5-0-3
https://redis.io/docs/management/security/
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/at-rest-encryption.html#at-rest-encryption-constraints
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/at-rest-encryption.html#at-rest-encryption-enable
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/at-rest-encryption.html#using-customer-managed-keys-for-elasticache-security
https://docs.aws.amazon.com/kms/latest/developerguide/overview.html
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#master_keys

Amazon ElastiCache for Redis User Guide

SEC 5: How do you encrypt in-transit data with ElastiCache?

Question-level introduction: It is a common requirement to mitigate against data being
compromised while in transit. This represents data within components of a distributed system,
as well as between application clients and cluster nodes. ElastiCache for Redis supports this
requirement by allowing for encrypting data in-transit between clients and cluster, and between
cluster nodes themselves. Instance types in the M6g and R6g families also feature always-on, in-
memory encryption.

Question-level benefit: Amazon ElastiCache in-transit encryption is an optional feature that allows
you to increase the security of your data at its most vulnerable points, when it is in-transit from
one location to another.

• [Required] In-transit encryption can only be enabled on an ElastiCache for Redis cluster
(replication group) upon creation. Please note that, due to the additional processing required for
encrypting/decrypting data, implementing in-transit encryption will have some performance
impact. To understand the impact, it is recommended to benchmark your workload before and
after enabling encryption-in-transit.

[Resources]:

• In-transit encryption overview

SEC 6: How do you restrict access to control plane resources?

Question-level introduction: IAM policies and ARN enable fine grained access controls for
ElastiCache for Redis, allowing for tighter control to manage the creation, modification and
deletion of ElastiCache for Redis clusters.

Question-level benefit: Management of Amazon ElastiCache resources, such as replication groups,
nodes, etc. can be constrained to AWS accounts that have specific permissions based on IAM
policies, improving security and reliability of resources.

• [Required] Manage access to Amazon ElastiCache resources by assigning specific AWS Identity
and Access Managementpolicies to AWS users, allowing finer control over which accounts can
perform what actions on clusters.

[Resources]:

• Overview of managing access permissions to your ElastiCache resources

Security Pillar API Version 2015-02-02 824

https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/in-transit-encryption.html#in-transit-encryption-overview
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/IAM.Overview.html

Amazon ElastiCache for Redis User Guide

• Using identity-based policies (IAM policies) for Amazon ElastiCache

SEC 7: How do you detect and respond to security events?

Question-level introduction: ElastiCache, when deployed with RBAC enabled, exports CloudWatch
metrics to notify users of security events. These metrics help identify failed attempts to
authenticate, access keys, or run commands that connecting RBAC users are not authorized for.

Additionally, AWS products and services resources help secure your overall workload by automating
deployments and logging all actions and modifications for later review/audit.

Question-level benefit: By monitoring events, you enable your organization to respond according
to your requirements, policies, and procedures. Automating the monitoring and responses to these
security events hardens your overall security posture.

• [Required] Familiarize yourself with the CloudWatch Metrics published that pertain to RBAC
authentication and authorization failures.

• AuthenticationFailures = Failed attempts to authenticate to Redis

• KeyAuthorizationFailures = Failed attempts by users to access keys without permission

• CommandAuthorizationFailures = Failed attempts by users to run commands without
permission

[Resources]:

• Metrics for Redis

• [Best] It is recommended to setup alerts and notifications on these metrics and respond as
necessary.

[Resources]:

• Using Amazon CloudWatch alarms

• [Best] Use the Redis ACL LOG command to gather further details

[Resources]:

• ACL LOG

• [Best] Familiarize yourself with the AWS products and services capabilities as it pertains to
monitoring, logging, and analyzing ElastiCache deployments and events

[Resources]:

Security Pillar API Version 2015-02-02 825

https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/IAM.IdentityBasedPolicies.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/CacheMetrics.Redis.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/AlarmThatSendsEmail.html
https://docs.aws.amazon.com/https://redis.io/commands/acl-log/

Amazon ElastiCache for Redis User Guide

• Logging Amazon ElastiCache API calls with AWS CloudTrail

• elasticache-redis-cluster-automatic-backup-check

• Monitoring use with CloudWatch Metrics

Amazon ElastiCache Well-Architected Lens Reliability Pillar

Topics

• REL 1: How are you supporting high availability (HA) architecture deployments?

• REL 2: How are you meeting your Recovery Point Objectives (RPOs) with ElastiCache?

• REL 3: How do you support disaster recovery (DR) requirements?

• REL 4: How do you effectively plan for failovers?

• REL 5: Are your ElastiCache components designed to scale?

REL 1: How are you supporting high availability (HA) architecture deployments?

Question-level introduction: Understanding the high availability architecture of Amazon
ElastiCache will enable you to operate in a resilient state during availability events.

Question-level benefit: Architecting your ElastiCache clusters to be resilient to failures ensures
higher availability for your ElastiCache deployments.

• [Required] Determine the level of reliability you require for your ElastiCache cluster. Different
workloads have different resiliency standards, from entirely ephemeral to mission critical
workloads. Define needs for each type of environment you operate such as dev, test, and
production.

Caching engine: Memcached vs ElastiCache for Redis

1. Memcached does not provide any replication mechanism and is used primarily for ephemeral
workloads.

2. ElastiCache for Redis offers HA features discussed below

• [Best] For workloads that require HA, use ElastiCache for Redis in cluster mode with a minimum
of two replicas per shard, even for small throughput requirement workloads that require only
one shard.

1. For cluster mode enabled, multi-AZ is enabled automatically.

Reliability Pillar API Version 2015-02-02 826

https://docs.aws.amazon.com/AmazonElastiCache/latest/mem-ug/logging-using-cloudtrail.html
https://docs.aws.amazon.com/config/latest/developerguide/elasticache-redis-cluster-automatic-backup-check.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/CacheMetrics.html

Amazon ElastiCache for Redis User Guide

Multi-AZ minimizes downtime by performing automatic failovers from primary node to
replicas, in case of any planned or unplanned maintenance as well as mitigating AZ failure.

2. For sharded workloads, a minimum of three shards provides faster recovery during failover
events as the Redis Cluster Protocol requires a majority of primary nodes be available to
achieve quorum.

3. Set up two or more replicas across Availability.

Having two replicas provides improved read scalability and also read availability in scenarios
where one replica is undergoing maintenance.

4. Use Graviton2-based node types (default nodes in most regions).

Amazon ElastiCache for Redis has added optimized performance on these nodes. As a result,
you get better replication and synchronization performance, resulting in overall improved
availability.

5. Monitor and right-size to deal with anticipated traffic peaks: under heavy load, the ElastiCache
for Redis engine may become unresponsive, which affects availability. BytesUsedForCache
and DatabaseMemoryUsagePercentage are good indicators of your memory usage,
whereas ReplicationLag is an indicator of your replication health based on your write rate.
You can use these metrics to trigger cluster scaling.

6. Ensure client-side resiliency by testing with the Failover API prior to a production failover
event.

[Resources]:

• Configure Amazon ElastiCache for Redis for higher availability

• High availability using replication groups

REL 2: How are you meeting your Recovery Point Objectives (RPOs) with
ElastiCache?

Question-level introduction: Understand workload RPO to inform decisions on ElastiCache backup
and recovery strategies.

Question-level benefit: Having an in-place RPO strategy can improve business continuity in
the event of a disaster recovery scenarios. Designing your backup and restore policies can help
you meet your Recovery Point Objectives (RPO) for your ElastiCache data. ElastiCache for Redis
offers snapshot capabilities which are stored in Amazon S3, along with a configurable retention

Reliability Pillar API Version 2015-02-02 827

https://docs.amazonaws.cn/en_us/AmazonElastiCache/latest/APIReference/API_TestFailover.html
https://docs.amazonaws.cn/en_us/AmazonElastiCache/latest/APIReference/API_TestFailover.html
https://aws.amazon.com/blogs/database/configuring-amazon-elasticache-for-redis-for-higher-availability/
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/Replication.html

Amazon ElastiCache for Redis User Guide

policy. These snapshots are taken during a defined backup window, and handled by the service
automatically. If your workload requires additional backup granularity, you have the option to
create up to 20 manual backups per day. Manually created backups do not have a service retention
policy and can be kept indefinitely.

• [Required] Understand and document the RPO of your ElastiCache deployments.

• Be aware that Memcached does not offer any backup processes.

• Review the capabilities of ElastiCache Backup and Restore features.

• [Best] Have a well-communicated process in place for backing up your cluster.

• Initiate manual backups on an as-needed basis.

• Review retention policies for automatic backups.

• Note that manual backups will be retained indefinitely.

• Schedule your automatic backups during periods of low usage.

• Perform backup operations against read-replicas to ensure you minimize the impact on cluster
performance.

• [Good] Leverage the scheduled backup feature of ElastiCache to regularly back up your data
during a defined window.

• Periodically test restores from your backups.

• [Resources]:

• Redis

• Backup and restore for ElastiCache for Redis

• Making manual backups

• Scheduling automatic backups

• Backup and Restore ElastiCache Redis Clusters

REL 3: How do you support disaster recovery (DR) requirements?

Question-level introduction: Disaster recovery is an important aspect of any workload planning.
ElastiCache for Redis offers several options to implement disaster recovery based on workload
resilience requirements. With Amazon ElastiCache for Redis Global Datastore, you can write to
your ElastiCache for Redis cluster in one region and have the data available to be read from two
other cross-region replica clusters, thereby enabling low-latency reads and disaster recovery across
regions.
Reliability Pillar API Version 2015-02-02 828

https://aws.amazon.com/elasticache/faqs/#Redis
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/backups.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/backups-manual.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/backups-automatic.html
https://aws.amazon.com/blogs/aws/backup-and-restore-elasticache-redis-nodes/

Amazon ElastiCache for Redis User Guide

Question-level benefit: Understanding and planning for a variety of disaster scenarios can ensure
business continuity. DR strategies must be balanced against cost, performance impact, and data
loss potential.

• [Required] Develop and document DR strategies for all your ElastiCache components based
upon workload requirements. ElastiCache is unique in that some use cases are entirely ephemeral
and don’t require any DR strategy, whereas others are on the opposite end of the spectrum and
require an extremely robust DR strategy. All options must be weighed against Cost Optimization
– greater resiliency requires larger amounts of instrastructure.

Understand the DR options available on a regional and multi-region level.

• Multi-AZ Deployments are recommended to guard against AZ failure. Be sure to deploy with
Cluster-Mode enabled in Multi-AZ architectures, with a minimum of 3 AZs available.

• Global Datastore is recommended to guard against regional failures.

• [Best] Enable Global Datastore for workloads that require region level resiliency.

• Have a plan to failover to secondary region in case of primary degradation.

• Test multi-region failover process prior to a failover over in production.

• Monitor ReplicationLag metric to understand potential impact of data loss during failover
events.

• [Resources]:

• Mitigating Failures

• Replication across AWS Regions using global datastores

• Restoring from a backup with optional cluster resizing

• Minimizing downtime in ElastiCache for Redis with Multi-AZ

REL 4: How do you effectively plan for failovers?

Question-level introduction: Enabling multi-AZ with automatic failovers is an ElastiCache best
practice. In certain cases, ElastiCache for Redis replaces primary nodes as part of service operations.
Examples include planned maintenance events and the unlikely case of a node failure or availability
zone issue. Successful failovers rely on both ElastiCache and your client library configuration.

Question-level benefit: Following best practices for ElastiCache failovers in conjunction with your
specific ElastiCache for Redis client library helps you minimize potential downtime during failover
events.
Reliability Pillar API Version 2015-02-02 829

https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/FaultTolerance.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/Redis-Global-Datastore.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/backups-restoring.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/AutoFailover.html

Amazon ElastiCache for Redis User Guide

• [Required] For cluster mode disabled, use timeouts so your clients detect if it needs to
disconnect from the old primary node and reconnect to the new primary node, using the
updated primary endpoint IP address. For cluster mode enabled, the client library is responsible
with detecting changes in the underlying cluster topology. This is accomplished most often
by configuration settings in the ElastiCache for Redis client library, which also allow you to
configure the frequency and the method of refresh. Each client library offers its own settings and
more details are available in their corresponding documentation.

[Resources]:

• Minimizing downtime in ElastiCache for Redis with Multi-AZ

• Review the best practices of your ElastiCache for Redis client library.

• [Required] Successful failovers depend on a healthy replication environment between the
primary and the replica nodes. Review and understand the asynchronous nature of Redis
replication, as well as the available CloudWatch metrics to report on the replication lag between
primary and replica nodes. For use cases that require greater data safety, leverage the Redis
WAIT command to force replicas to acknowledge writes before responding to connected clients.

[Resources]:

• Metrics for Redis

• Monitoring best practices with Amazon ElastiCache for Redis using Amazon CloudWatch

• [Best] Regularly validate the responsiveness of your application during failover using the
ElastiCache Test Failover API.

[Resources]:

• Testing Automatic Failover to a Read Replica on Amazon ElastiCache for Redis

• Testing automatic failover

REL 5: Are your ElastiCache components designed to scale?

Question-level introduction: By understanding the scaling capabilities and available deployment
topologies, your ElastiCache components can adjust over time to meet changing workload
requirements. ElastiCache offers 4-way scaling: in/out (horizontal) as well as up/down (vertical).

Question-level benefit: Following best practices for ElastiCache deployments provides the
greatest amount of scaling flexibility, as well as meeting the Well Architected principle of scaling
horizontally to minimize the impact of failures.
Reliability Pillar API Version 2015-02-02 830

https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/AutoFailover.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/CacheMetrics.Redis.html
https://aws.amazon.com/blogs/database/monitoring-best-practices-with-amazon-elasticache-for-redis-using-amazon-cloudwatch/
https://aws.amazon.com/blogs/database/testing-automatic-failover-to-a-read-replica-on-amazon-elasticache-for-redis/
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/AutoFailover.html#auto-failover-test

Amazon ElastiCache for Redis User Guide

• [Required] Understand the difference between Cluster-mode Enabled and Cluster-mode
Disabled topologies. In almost all cases it is recommended to deploy with Cluster-mode enabled
as it allow for greater scalability over time. Cluster-mode disabled components are limited in
their ability to horizontally scale by adding read replicas.

• [Required] Understand when and how to scale.

• For more READIOPS: add replicas

• For more WRITEOPS: add shards (scale out)

• For more network IO – use network optimized instances, scale up

• [Best] Deploy your ElastiCache components with Cluster-mode enabled, with a bias toward
more, smaller nodes rather than fewer, larger nodes. This effectively limits the blast radius of a
node failure.

• [Best] Include replicas in your clusters for enhanced responsiveness during scaling events

• [Good] For cluster-mode disabled, leverage read replicas to increase overall read capacity.
ElastiCache has support for up to 5 read replicas in cluster-mode disabled, as well as vertical
scaling.

• [Resources]:

• Scaling ElastiCache for Redis clusters

• Online scaling up

• Scaling ElastiCache for Memcached clusters

Amazon ElastiCache Well-Architected Lens Performance Efficiency
Pillar

The performance efficiency pillar focuses on using IT and computing resources efficiently. Key
topics include selecting the right resource types and sizes based on workload requirements,
monitoring performance, and making informed decisions to maintain efficiency as business needs
evolve.

Topics

• PE 1: How do you monitor the performance of your Amazon ElastiCache cluster?

• PE 2: How are you distributing work across your ElastiCache Cluster nodes?

• PE 3: For caching workloads, how do you track and report the effectiveness and performance of
your cache?

Performance Efficiency Pillar API Version 2015-02-02 831

https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/Scaling.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/redis-cluster-vertical-scaling-scaling-up.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/mem-ug/Scaling.html

Amazon ElastiCache for Redis User Guide

• PE 4: How does your workload optimize the use of networking resources and connections?

• PE 5: How do you manage key deletion and/or eviction?

• PE 6: How do you model and interact with data in ElastiCache?

• PE 7: How do you log slow running commands in your Amazon ElastiCache cluster?

• PE8: How does Auto Scaling help in increasing the performance of the ElastiCache cluster?

PE 1: How do you monitor the performance of your Amazon ElastiCache cluster?

Question-level introduction: By understanding the existing monitoring metrics, you can identify
current utilization. Proper monitoring can help identify potential bottlenecks impacting the
performance of your cluster.

Question-level benefit: Understanding the metrics associated with your cluster can help guide
optimization techniques that can lead to reduced latency and increased throughput.

• [Required] Baseline performance testing using a subset of your workload.

• You should monitor performance of the actual workload using mechanisms such as load
testing.

• Monitor the CloudWatch metrics while running these tests to gain an understanding of metrics
available, and to establish a performance baseline.

• [Best] For ElastiCache for Redis workloads, rename computationally expensive commands, such
as KEYS, to limit the ability of users to run blocking commands on production clusters.

• ElastiCache for Redis workloads running engine 6.x, can leverage role-based access control to
restrict certain commands. Access to the commands can be controlled by creating Users and
User Groups with the AWS Console or CLI, and associating the User Groups to an ElastiCache
for Redis cluster. In Redis 6, when RBAC is enabled, we can use "-@dangerous" and it will
disallow expensive commands like KEYS, MONITOR, SORT, etc. for that user.

• For engine version 5.x, rename commands using the rename-commands parameter on the
Amazon ElastiCache for Redis cluster parameter group.

• [Better] Analyze slow queries and look for optimization techniques.

• For ElastiCache for Redis workloads, learn more about your queries by analyzing the Slow Log.
For example, you can use the following command, redis-cli slowlog get 10 to show
last 10 commands which exceeded latency thresholds (10 seconds by default).

• Certain queries can be performed more efficiently using complex ElastiCache for Redis data
structures. As an example, for numerical style range lookups, an application can implement

Performance Efficiency Pillar API Version 2015-02-02 832

Amazon ElastiCache for Redis User Guide

simple numerical indexes with Sorted Sets. Managing these indexes can reduce scans
performed on the data set, and return data with greater performance efficiency.

• For ElastiCache for Redis workloads, redis-benchmark provides a simple interface for testing
the performance of different commands using user defined inputs like number of clients, and
size of data.

• Since Memcached only supports simple key level commands, consider building additional keys
as indexes to avoid iterating through the key space to serve client queries.

• [Resources]:

• Monitoring use with CloudWatch Metrics

• Monitoring use with CloudWatch Metrics

• Using Amazon CloudWatch alarms

• Redis-specific parameters

• SLOWLOG

• Redis benchmark

PE 2: How are you distributing work across your ElastiCache Cluster nodes?

Question-level introduction: The way your application connects to Amazon ElastiCache nodes can
impact the performance and scalability of the cluster.

Question-level benefit: Making proper use of the available nodes in the cluster will ensure
that work is distributed across the available resources. The following techniques help avoid idle
resources as well.

• [Required] Have clients connect to the proper ElastiCache endpoint.

• Amazon ElastiCache for Redis implements different endpoints based on the cluster mode in
use. For cluster mode enabled, ElastiCache will provide a configuration endpoint. For cluster
mode disabled, ElastiCache provides a primary endpoint, typically used for writes, and a reader
endpoint for balancing reads across replicas. Implementing these endpoints correctly will
results in better performance, and easier scaling operations. Avoid connecting to individual
node endpoints unless there is a specific requirement to do so.

• For multi-node Memcached clusters, ElastiCache provides a configuration endpoint which
enables Auto Discovery. It is recommended to use a hashing algorithm to distribute work
evenly across the cache nodes. Many Memcached client libraries implement consistent
hashing. Check the documentation for the library you are using to see if it supports consistent

Performance Efficiency Pillar API Version 2015-02-02 833

https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/CacheMetrics.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/CacheMetrics.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/AlarmThatSendsEmail.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/ParameterGroups.Redis.html
https://redis.io/commands/slowlog/
https://redis.io/docs/management/optimization/benchmarks/

Amazon ElastiCache for Redis User Guide

hashing and how to implement it. You can find more information on implementing these
features here.

• [Better] Take advantage of ElastiCache for Redis cluster mode enabled to improve scalability.

• ElastiCache for Redis (cluster mode enabled) clusters support online scaling operations (out/
in and up/down) to help distribute data dynamically across shards. Using the Configuration
Endpoint will ensure your cluster aware clients can adjust to changes in the cluster topology.

• You may also rebalance the cluster by moving hashslots between available shards in your
ElastiCache for Redis (cluster mode enabled) cluster. This helps distribute work more efficiently
across available shards.

• [Better] Implement a strategy for identifying and remediating hot keys in your workload.

• Consider the impact of multi-dimensional Redis data structures such a lists, streams, sets, etc.
These data structures are stored in single Redis Keys, which reside on a single node. A very
large multi-dimensional key has the potential to utilize more network capacity and memory
than other data types and can cause a disproportionate use of that node. If possible, design
your workload to spread out data access across many discrete Keys.

• Hot keys in the workload can impact performance of the node in use. For ElastiCache for Redis
workloads, you can detect hot keys using redis-cli --hotkeys if an LFU max-memory
policy is in place.

• Consider replicating hot keys across multiple nodes to distribute access to them more evenly.
This approach requires the client to write to multiple primary nodes (the Redis node itself will
not provide this functionality) and to maintain a list of key names to read from, in addition to
the original key name.

• ElastiCache for Redis version 6 supports server-assisted client-side caching. This enables
applications to wait for changes to a key before making network calls back to ElastiCache.

• [Resources]:

• Configure Amazon ElastiCache for Redis for higher availability

• Finding connection endpoints

• Load balancing best practices

• Online resharding and shard rebalancing for Redis (cluster mode enabled)

• Client-side caching in Redis

Performance Efficiency Pillar API Version 2015-02-02 834

https://docs.aws.amazon.com/AmazonElastiCache/latest/mem-ug/BestPractices.LoadBalancing.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/redis-cluster-resharding-online.html
https://redis.io/docs/manual/client-side-caching/
https://aws.amazon.com/blogs/database/configuring-amazon-elasticache-for-redis-for-higher-availability/
https://docs.aws.amazon.com/AmazonElastiCache/latest/mem-ug/BestPractices.LoadBalancing.html
https://redis.io/docs/manual/client-side-caching/

Amazon ElastiCache for Redis User Guide

PE 3: For caching workloads, how do you track and report the effectiveness and
performance of your cache?

Question-level introduction: Caching is a commonly encountered workload on ElastiCache and it
is important that you understand how to manage the effectiveness and performance of your cache.

Question-level benefit: Your application may show signs of sluggish performance. Your ability to
use cache specific metrics to inform your decision on how to increase app performance is critical
for your cache workload.

• [Required] Measure and track over time the cache-hits ratio. The efficiency of your cache is
determined by its ‘cache hits ratio’. The cache hits ratio is defined by the total of key hits divided
by the total hits and misses. The closer to 1 the ratio is, the more effective your cache is. A low
cache hits ratio is caused by the volume of cache misses. Cache misses occur when the requested
key is not found in the cache. A key is not in the cache because it either has been evicted or
deleted, has expired, or has never existed. Understand why keys are not in cache and develop
appropriate strategies to have them in cache.

[Resources]:

• Metrics for Redis

• [Required] Measure and collect your application cache performance in conjunction with latency
and CPU utilization values to understand whether you need to make adjustments to your time-
to-live or other application components. ElastiCache provides a set of CloudWatch metrics for
aggregated latencies for each data structure. These latency metrics are calculated using the
commandstats statistic from the ElastiCache for Redis INFO command and do not include the
network and I/O time. This is only the time consumed by ElastiCache for Redis to process the
operations.

[Resources]:

• Metrics for Redis

• Monitoring best practices with Amazon ElastiCache for Redis using Amazon CloudWatch

• [Best] Choose the right caching strategy for your needs. A low cache hits ratio is caused by the
volume of cache misses. If your workload is designed to have low volume of cache misses (such
as real time communication), it is best to conduct reviews of your caching strategies and apply
the most appropriate resolutions for your workload, such as query instrumentation to measure
memory and performance. The actual strategies you use to implement for populating and
maintaining your cache depend on what data your clients need to cache and the access patterns

Performance Efficiency Pillar API Version 2015-02-02 835

https://aws.amazon.com/blogs/database/monitoring-best-practices-with-amazon-elasticache-for-redis-using-amazon-cloudwatch/

Amazon ElastiCache for Redis User Guide

to that data. For example, it is unlikely that you will use the same strategy for both personalized
recommendations on a streaming application, and for trending news stories.

[Resources]:

• Caching strategies

• Caching Best Practices

• Performance at Scale with Amazon ElastiCache Whitepaper

PE 4: How does your workload optimize the use of networking resources and
connections?

Question-level introduction: ElastiCache for Redis and Memcached are supported by many
application clients, and implementations may vary. You need to understand the networking and
connection management in place to analyze potential performance impact.

Question-level benefit: Efficient use of networking resources can improve the performance
efficiency of your cluster. The following recommendations can reduce networking demands, and
improve cluster latency and throughput.

• [Required] Proactively manage connections to your ElastiCache cluster.

• Connection pooling in the application reduces the amount of overhead on the cluster created
by opening and closing connections. Monitor connection behavior in Amazon CloudWatch
using CurrConnections and NewConnections.

• Avoid connection leaking by properly closing client connections where appropriate.
Connection management strategies include properly closing connections that are not in use,
and setting connection time-outs.

• For Memcached workloads, there is a configurable amount of memory reserved for handling
connections called, memcached_connections_overhead.

• [Better] Compress large objects to reduce memory, and improve network throughput.

• Data compression can reduce the amount of network throughput required (Gbps), but
increases the amount of work on the application to compress and decompress data.

• Compression also reduces the amount of memory consumed by keys

• Based on your application needs, consider the trade-offs between compression ratio and
compression speed.

• [Resources]:
Performance Efficiency Pillar API Version 2015-02-02 836

https://aws.amazon.com/caching/best-practices/
https://d0.awsstatic.com/whitepapers/performance-at-scale-with-amazon-elasticache.pdf

Amazon ElastiCache for Redis User Guide

• Amazon ElastiCache for Redis - Global Datastore

• Memcached specific parameters

• Amazon ElastiCache for Redis 5.0.3 enhances I/O handling to boost performance

• Metrics for Redis

• Configure Amazon ElastiCache for Redis for higher availability

PE 5: How do you manage key deletion and/or eviction?

Question-level introduction: Workloads have different requirements, and expected behavior
when a cluster node is approaching memory consumption limits. Amazon ElastiCache for Redis has
different policies for handling these situations.

Question-level benefit: Proper management of available memory, and understanding of eviction
policies will help ensure awareness of cluster behavior when instance memory limits are exceeded.

• [Required] Instrument the data access to evaluate which policy to apply. Identify an appropriate
max-memory policy to control if and how evictions are performed on the cluster.

• Eviction occurs when the max-memory on the cluster is consumed and a policy is in place
to allow eviction. The behavior of the cluster in this situation depends on the eviction policy
specified. This policy can be managed using the maxmemory-policy on the ElastiCache for
Redis cluster parameter group.

• The default policy volatile-lru frees up memory by evicting keys with a set expiration time
(TTL value). Least frequently used (LFU) and least recently used (LRU) policies remove keys
based on usage.

• For Memcached workloads, there is a default LRU policy in place controlling evictions on each
node. The number of evictions on your Amazon ElastiCache cluster can be monitored using the
Evictions metric on Amazon CloudWatch.

• [Better] Standardize delete behavior to control performance impact on your cluster to avoid
unexpected performance bottlenecks.

• For ElastiCache for Redis workloads, when explicitly removing keys from the cluster, UNLINK
is like DEL: it removes the specified keys. However, the command performs the actual memory
reclaiming in a different thread, so it is not blocking, while DEL is. The actual removal will
happen later asynchronously.

• For ElastiCache for Redis 6.x workloads, the behavior of the DEL command can be modified in
the parameter group using lazyfree-lazy-user-del parameter.

Performance Efficiency Pillar API Version 2015-02-02 837

https://aws.amazon.com/elasticache/redis/global-datastore/
https://aws.amazon.com/about-aws/whats-new/2019/03/amazon-elasticache-for-redis-503-enhances-io-handling-to-boost-performance/
https://aws.amazon.com/blogs/database/configuring-amazon-elasticache-for-redis-for-higher-availability/

Amazon ElastiCache for Redis User Guide

• [Resources]:

• Configuring engine parameters using parameter groups

• UNLINK

• Cloud Financial Management with AWS

PE 6: How do you model and interact with data in ElastiCache?

Question-level introduction: ElastiCache is heavily application dependent on the data structures
and the data model used, but it also needs to consider the underlying data store (if present).
Understand the ElastiCache for Redis data structures available and ensure you are using the most
appropriate data structures for your needs.

Question-level benefit: Data modeling in ElastiCache has several layers, including application use
case, data types, and relationships between data elements. Additionally, each ElastiCache for Redis
data type and command have their own well documented performance signatures.

• [Best] A best practice is to reduce unintentional overwriting of data. Use a naming convention
that minimizes overlapping key names. Conventional naming of your data structures uses a
hierarchical method such as: APPNAME:CONTEXT:ID, such as ORDER-APP:CUSTOMER:123.

[Resources]:

• Key naming

• [Best] ElastiCache for Redis commands have a time complexity defined by the Big O notation.
This time complexity of a command is a algorithmic/mathematical representation of its impact.
When introducing a new data type in your application you need to carefully review the time
complexity of the related commands. Commands with a time complexity of O(1) are constant in
time and do not depend on the size of the input however commands with a time complexity of
O(N) are linear in time and are subject to the size of the input. Due to the single threaded design
of ElastiCache for Redis, large volume of high time complexity operations will result in lower
performance and potential operation timeouts.

[Resources]:

• Commands

• [Best] Use APIs to gain GUI visibility into the data model in your cluster.

[Resources]:

• Redis Commander

Performance Efficiency Pillar API Version 2015-02-02 838

https://redis.io/commands/unlink/
https://aws.amazon.com/aws-cost-management/
https://docs.gitlab.com/ee/development/redis.html#key-naming
https://redis.io/commands/
https://www.npmjs.com/package/ElastiCache%20for%20Redis-commander

Amazon ElastiCache for Redis User Guide

• Redis Browser

• Redsmin

PE 7: How do you log slow running commands in your Amazon ElastiCache
cluster?

Question-level introduction: Performance tuning benefits through the capture, aggregation, and
notification of long-running commands. By understanding how long it takes for commands to
execute, you can determine which commands result in poor performance as well as commands that
block the engine from performing optimally. Amazon ElastiCache for Redis also has the capability
to forward this information to Amazon CloudWatch or Amazon Kinesis Data Firehose.

Question-level benefit: Logging to a dedicated permanent location and providing notification
events for slow commands can help with detailed performance analysis and can be used to trigger
automated events.

• [Required] Amazon ElastiCache for Redis running engine version 6.0 or newer, properly
configured parameter group and SLOWLOG logging enabled on the cluster.

• The required parameters are only available when engine version compatibility is set to Redis
version 6.0 or higher.

• SLOWLOG logging occurs when the server execution time of a command takes longer than
a specified value. The behavior of the cluster depends on the associated Parameter Group
parameters which are slowlog-log-slower-than and slowlog-max-len.

• Changes take effect immediately.

• [Best] Take advantage of CloudWatch or Kinesis Data Firehose capabilities.

• Use the filtering and alarm capabilities of CloudWatch, CloudWatch Logs Insights and Amazon
Simple Notification Services to achieve performance monitoring and event notification.

• Use the streaming capabilities of Kinesis Data Firehose to archive SLOWLOG logs to permanent
storage or to trigger automated cluster parameter tuning.

• Determine if JSON or plain TEXT format suits your needs best.

• Provide IAM permissions to publish to CloudWatch or Kinesis Data Firehose.

• [Better] Configure slowlog-log-slower-than to a value other than the default.

• This parameter determines how long a command may execute for within the Redis engine
before it is logged as a slow running command. The default value is 10,000 microseconds (10
milliseconds). The default value may be too high for some workloads.

Performance Efficiency Pillar API Version 2015-02-02 839

https://github.com/humante/redis-browser
https://www.redsmin.com/

Amazon ElastiCache for Redis User Guide

• Determine a value that is more appropriate for your workload based on application needs and
testing results; however, a value that is too low may generate excessive data.

• [Better] Leave slowlog-max-len at the default value.

• This parameter determines the upper limit for how many slow-running commands are
captured in Redis memory at any given time. A value of 0 effectively disables the capture. The
higher the value, the more entries will be stored in memory, reducing the chance of important
information being evicted before it can be reviewed. The default value is 128.

• The default value is appropriate for most workloads. If there is a need to analyze data in an
expanded time window from the redis-cli via the SLOWLOG command, consider increasing this
value. This allows more commands to remain in Redis memory.

If you are emitting the SLOWLOG data to either CloudWatch Logs or Kinesis Data Firehose,
the data will be persisted and can be analyzed outside of the ElastiCache system, reducing the
need to store large numbers of slow running commands in Redis memory.

• [Resources]:

• How do I turn on Redis Slow log in an ElastiCache for Redis cache cluster?

• Log delivery

• Redis-specific parameters

• https://aws.amazon.com/cloudwatch/Amazon CloudWatch

• Amazon Kinesis Data Firehose

PE8: How does Auto Scaling help in increasing the performance of the ElastiCache
cluster?

Question-level introduction: By implementing the feature of Redis auto scaling, your ElastiCache
components can adjust over time to increase or decrease the desired shards or replicas
automatically. This can be done by implementing either the target tracking or scheduled scaling
policy.

Question-level benefit: Understanding and planning for the spikes in the workload can ensure
enhanced caching performance and business continuity. ElastiCache for Redis Auto Scaling
continually monitors your CPU/Memory utilization to make sure your cluster is operating at your
desired performance levels.

• [Required] When launching a cluster for ElastiCache for Redis:

Performance Efficiency Pillar API Version 2015-02-02 840

https://repost.aws/knowledge-center/elasticache-turn-on-slow-log
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/Log_Delivery.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/ParameterGroups.Redis.html
https://aws.amazon.com/cloudwatch/
https://aws.amazon.com/kinesis/data-firehose/

Amazon ElastiCache for Redis User Guide

1. Ensure that the Cluster mode is enabled

2. Make sure the instance belongs to a family of certain type and size that support auto scaling

3. Ensure the cluster is not running in Global datastores, Outposts or Local Zones

[Resources]:

• Scaling clusters in Redis (Cluster Mode Enabled)

• Using Auto Scaling with shards

• Using Auto Scaling with replicas

• [Best] Identify if your workload is read-heavy or write-heavy to define scaling policy. For best
performance, use just one tracking metric. It is recommended to avoid multiple policies for each
dimension, as auto scaling policies scale out when the target is hit, but scale in only when all
target tracking policies are ready to scale in.

[Resources]:

• Auto Scaling policies

• Defining a scaling policy

• [Best] Monitoring performance over time can help you detect workload changes that would
remain unnoticed if monitored at a particular point in time. You can analyze corresponding
CloudWatch metrics for cluster utilization over a four-week period to determine the target
value threshold. If you are still not sure of what value to choose, we recommend starting with a
minimum supported predefined metric value.

[Resources]:

• Monitoring use with CloudWatch Metrics

• [Better] We advise testing your application with expected minimum and maximum workloads, to
identify the exact number of shards/replicas required for the cluster to develop scaling policies
and mitigate availability issues.

[Resources]:

• Registering a Scalable Target

• Registering a Scalable Target

Performance Efficiency Pillar API Version 2015-02-02 841

https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/scaling-redis-cluster-mode-enabled.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/AutoScaling-Using-Shards.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/AutoScaling-Using-Replicas.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/AutoScaling-Policies.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/AutoScaling-Scaling-Defining-Policy-API.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/CacheMetrics.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/AutoScaling-Scaling-Registering-Policy-CLI.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/AutoScaling-Register-Policy.html

Amazon ElastiCache for Redis User Guide

Amazon ElastiCache Well-Architected Lens Cost Optimization Pillar

The cost optimization pillar focuses on avoiding unnecessary costs. Key topics include
understanding and controlling where money is being spent, selecting the most appropriate node
type (use instances that support data tiering based on workload needs), the right number of
resource types (how many read replicas) , analyzing spend over time, and scaling to meet business
needs without overspending.

Topics

• COST 1: How do you identify and track costs associated with your ElastiCache resources? How do
you develop mechanisms to enable users to create, manage, and dispose of created resources?

• COST 2: How do you use continuous monitoring tools to help you optimize the costs associated
with your ElastiCache resources?

• COST 3: Should you use an instance type that support data tiering? What are the advantages of a
data tiering? When not to use data tiering instances?

COST 1: How do you identify and track costs associated with your ElastiCache
resources? How do you develop mechanisms to enable users to create, manage,
and dispose of created resources?

Question-level introduction: Understanding cost metrics requires the participation of and
collaboration across multiple teams: software engineering, data management, product owners,
finance, and leadership. Identifying key cost drivers requires all involved parties understand service
usage control levers and cost management trade-offs and it is frequently the key difference
between successful and less successful cost optimization efforts. Ensuring you have processes and
tools in place to track resources created from development to production and retirement helps you
manage the costs associated with ElastiCache.

Question-level benefit: Continuous tracking of all costs associated with your workload requires
a deep understanding of the architecture that includes ElastiCache as one of its components.
Additionally, you should have a cost management plan in place to collect and compare usage
against your budget.

• [Required] Institute a Cloud Center of Excellence (CCoE) with one of its founding charters to own
defining, tracking, and taking action on metrics around your organizations’ ElastiCache usage.
If a CCoE exists and functions, ensure that it knows how to read and track costs associated with
ElastiCache. When resources are created, use IAM roles and policies to validate that only specific

Cost Optimization Pillar API Version 2015-02-02 842

Amazon ElastiCache for Redis User Guide

teams and groups can instantiate resources. This ensures that costs are associated with business
outcomes and a clear line of accountability is established, from a cost perspective.

1. CCoE should identify, define, and publish cost metrics that are updated on a regular -monthly-
basis around key ElastiCache usage across categorical data such as:

a. Types of nodes used and their attributes: standard vs. memory optimized, on-demand vs.
reserved instances, regions and availability zones

b. Types of environments: free, dev, testing, and production

c. Backup storage and retention strategies

d. Data transfer within and across regions

e. Instances running on Amazon Outposts

2. CCoE consists of a cross-functional team with non-exclusive representation from software
engineering, data management, product team, finance, and leadership teams in your
organization.

[Resources]:

• Create a Cloud Center of Excellence

• Amazon ElastiCache pricing

• [Required] Use cost allocation tags to track costs at a low level of granularity. Use AWS Cost
Management to visualize, understand, and manage your AWS costs and usage over time.

1. Use tags to organize your resources, and cost allocation tags to track your AWS costs on
a detailed level. After you activate cost allocation tags, AWS uses the cost allocation tags
to organize your resource costs on your cost allocation report, to make it easier for you to
categorize and track your AWS costs. AWS provides two types of cost allocation tags, an AWS
generated tags and user-defined tags. AWS defines, creates, and applies the AWS generated
tags for you, and you define, create, and apply user-defined tags. You must activate both
types of tags separately before they can appear in Cost Management or on a cost allocation
report.

2. Use cost allocation tags to organize your AWS bill to reflect your own cost structure. When
you add cost allocation tags to your resources in Amazon ElastiCache, you will be able to
track costs by grouping expenses on your invoices by resource tag values. You should consider
combining tags to track costs at a greater level of detail.

[Resources]:

• Using AWS cost allocation tags
Cost Optimization Pillar API Version 2015-02-02 843

https://docs.aws.amazon.com/whitepapers/latest/cost-optimization-laying-the-foundation/cloud-center-of-excellence.html
https://aws.amazon.com/elasticache/pricing/
https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/cost-alloc-tags.html

Amazon ElastiCache for Redis User Guide

• Monitoring costs with cost allocation tags

• AWS Cost Explorer

• [Best] Connect ElastiCache cost to metrics that reach across the organization.

1. Consider business metrics as well as operational metrics like latency - what concepts in your
business model are understandable across roles? The metrics need to be understandable by as
many roles as possible in the organization.

2. Examples - simultaneous served users, max and average latency per operation and user, user
engagement scores, user return rates/week, session length/user, abandonment rate, cache hit
rate, and keys tracked

[Resources]:

• Monitoring use with CloudWatch Metrics

• [Good] Maintain up-to-date architectural and operational visibility on metrics and costs across
the entire workload that uses ElastiCache.

1. Understand your entire solution ecosystem, ElastiCache tends to be part of a full ecosystem of
AWS services in their technology set, from clients to API Gateway, Redshift, and QuickSight for
reporting tools (for example).

2. Map components of your solution from clients, connections, security, in-memory operations,
storage, resource automation, data access and management, on your architecture diagram.
Each layer connects to the entire solution and has its own needs and capabilities that add to
and/or help you manage the overall cost.

3. Your diagram should include the use of compute, networking, storage, lifecycle policies,
metrics gathering as well as the operational and functional ElastiCache elements of your
application

4. The requirements of your workload are likely to evolve over time and it is essential that you
continue to maintain and document your understanding of the underlying components as
well as your primary functional objectives in order to remain proactive in your workload cost
management.

5. Executive support for visibility, accountability, prioritization, and resources is crucial to you
having an effective cost management strategy for your ElastiCache.

Cost Optimization Pillar API Version 2015-02-02 844

https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/Tagging.html
https://aws.amazon.com/aws-cost-management/aws-cost-explorer/
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/CacheMetrics.html

Amazon ElastiCache for Redis User Guide

COST 2: How do you use continuous monitoring tools to help you optimize the
costs associated with your ElastiCache resources?

Question-level introduction: You need to aim for a proper balance between your ElastiCache cost
and application performance metrics. Amazon CloudWatch provides visibility into key operational
metrics that can help you assess whether your ElastiCache resources are over or under utilized,
relative to your needs. From a cost optimization perspective, you need to understand when you
are overprovisioned and be able to develop appropriate mechanisms to resize your ElastiCache
resources while maintaining your operational, availability, resilience, and performance needs.

Question-level benefit: In an ideal state, you will have provisioned sufficient resources to meet
your workload operational needs and not have under-utilized resources that can lead to a sub-
optimal cost state. You need to be able to both identify and avoid operating oversized ElastiCache
resources for long periods of time.

• [Required] Use CloudWatch to monitor your ElastiCache clusters and analyze how these metrics
relate to your AWS Cost Explorer dashboards.

1. ElastiCache provides both host-level metrics (for example, CPU usage) and metrics that are
specific to the cache engine software (for example, cache gets and cache misses). These
metrics are measured and published for each cache node in 60-second intervals.

2. ElastiCache performance metrics (CPUUtilization, EngineUtilization, SwapUsage,
CurrConnections, and Evictions) may indicate that you need to scale up/down (use larger/
smaller cache node types) or in/out (add more/less shards). Understand the cost implications
of scaling decisions by creating a playbook matrix that estimates the additional cost and the
min and max lengths of time required to meet your application performance thresholds.

[Resources]:

• Monitoring use with CloudWatch Metrics

• Which Metrics Should I Monitor?

• Amazon ElastiCache pricing

• [Required] Understand and document your backup strategy and cost implications.

1. With ElastiCache, the backups are stored in Amazon S3, which provides durable storage. You
need to understand the cost implications in relation to your ability to recover from failures.

2. Enable automatic backups that will delete backup files that are past the retention limit.

[Resources]:
Cost Optimization Pillar API Version 2015-02-02 845

https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/CacheMetrics.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/CacheMetrics.WhichShouldIMonitor.html
https://aws.amazon.com/elasticache/pricing/

Amazon ElastiCache for Redis User Guide

• Scheduling automatic backups

• Amazon Simple Storage Service pricing

• [Best] Use Reserved Nodes for your instances as a deliberate strategy to manage costs for
workloads that are well understood and documented. Reserved nodes are charged an up front
fee that depends upon the node type and the length of reservation—one or three years. This
charge is much less than the hourly usage charge that you incur with On-Demand nodes.

1. You may need to operate your ElastiCache clusters using on-demand nodes until you have
gathered sufficient data to estimate the reserved instance requirements. Plan and document
the resources needed to meet your needs and compare expected costs across instance types
(on-demand vs. reserved)

2. Regularly evaluate new cache node types available and assess whether it makes sense, from
a cost and operational metrics perspective, to migrate your instance fleet to new cache node
types

COST 3: Should you use an instance type that support data tiering? What are the
advantages of a data tiering? When not to use data tiering instances?

Question-level introduction: Selecting the appropriate instance type can not only have
performance and service level impact but also financial impact. Instance types have different
cost associated with them. Selecting one or a few large instance types that can accommodate all
storage needs in memory might be a natural decision. However, this could have significant cost
impact as the project matures. Ensuring that the correct instance type is selected requires periodic
examination of ElastiCache object idle time.

Question-level benefit: You should have a clear understanding of how various instance types
impact your cost at the present and in the future. Marginal or periodic workload changes should
not cause disproportionate costs changes. If the workload permits it, instance types that support
data tiering offer a better price per storage available storage. Because of the per instance available
SSD storage data tiering instances support a much higher total data per instance capability.

• [Required] Understand limitations of data tiering instances

1. Only available for ElastiCache for Redis clusters.

2. Only limited instance types support data tiering.

3. Only ElastiCache for Redis version 6.2 and above is supported

4. Large items are not swapped out to SSD. Objects over 128 MiB are kept in memory.

Cost Optimization Pillar API Version 2015-02-02 846

https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/backups-automatic.html
https://aws.amazon.com/s3/pricing/

Amazon ElastiCache for Redis User Guide

[Resources]:

• Data tiering

• Amazon ElastiCache pricing

• [Required] Understand what percentage of your database is regularly accessed by your
workload.

1. Data tiering instances are ideal for workloads that often access a small portion of your overall
dataset but still requires fast access to the remaining data. In other words, the ration of hot to
warm data is about 20:80.

2. Develop cluster level tacking of object idle time.

3. Large implementations of over 500 Gb of data are good candidates

• [Required] Understand that data tiering instances are not optional for certain workloads.

1. There is a small performance cost for accessing less frequently used objects as those are
swapped out to local SSD. If your application is response time sensitive test the impact on
your workload.

2. Not suitable for caches that store mostly large objects over 128 MiB in size.

[Resources]:

• Limitations

• [Best] Reserved instance types support data tiering. This assures the lowest cost in terms of
amount of data storage per instance.

1. You may need to operate your ElastiCache clusters using non-data tiering instances until you
have a better understanding of your requirements.

2. Analyze your ElastiCache clusters data usage pattern.

3. Create an automated job that periodically collects object idle time.

4. If you notice that a large percentage (about 80%) of objects are idle for a period of time
deemed appropriate for your workload document the findings and suggest migrating the
cluster to instances that support data tiering.

5. Regularly evaluate new cache node types available and assess whether it makes sense, from
a cost and operational metrics perspective, to migrate your instance fleet to new cache node
types.

[Resources]:

• OBJECT IDLETIME
Cost Optimization Pillar API Version 2015-02-02 847

https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/data-tiering.html
https://aws.amazon.com/elasticache/pricing/
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/data-tiering.html#data-tiering-prerequisites
https://redis.io/commands/object-idletime/

Amazon ElastiCache for Redis User Guide

• Amazon ElastiCache pricing

Common troubleshooting steps and best practices

Topics

• Connection issues

• Redis client errors

• Troubleshooting high latency in ElastiCache Serverless

• Troubleshooting throttling issues in ElastiCache Serverless

• Related Topics

Connection issues

If you are unable to connect to your ElastiCache cache, consider one of the following:

1. Using TLS: If you are experiencing a hung connection when trying to connect to your
ElastiCache endpoint, you may not be using TLS in your client. If you are using ElastiCache
Serverless, encryption in transit is always enabled. Make sure that your client is using TLS to
connect to the cache. Learn more about connecting to a TLS enabled cache here.

2. VPC: ElastiCache caches are accessible only from within a VPC. Ensure that the EC2 instance
from which you are accessing the cache and the ElastiCache cache are created in the same VPC.
Alternatively, you must enable VPC peering between the VPC where your EC2 instance resides
and the VPC where you are creating your cache.

3. Security groups: ElastiCache uses security groups to control access to your cache. Consider the
following:

a. Make sure that the security group used by your ElastiCache cache allows inbound access to it
from your EC2 instance. See here to learn how to setup inbound rules in your security group
correctly.

b. Make sure that the security group used by your ElastiCache cache allows access to your
cache’s ports (6379 and 6380 for serverless, and 6379 by default for self-designed).
ElastiCache uses these ports to accept Redis commands. Learn more about how to setup port
access here.

Troubleshooting API Version 2015-02-02 848

https://aws.amazon.com/elasticache/pricing/
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/connect-tls.html
https://docs.aws.amazon.com/vpc/latest/peering/what-is-vpc-peering.html
https://docs.aws.amazon.com/vpc/latest/userguide/security-group-rules.html

Amazon ElastiCache for Redis User Guide

Redis client errors

ElastiCache Serverless is only accessible using Redis clients that support the Redis cluster mode
protocol. Self-designed clusters can be accessed from Redis clients in either mode, depending on
the cluster configuration.

If you are experiencing Redis errors in your client, consider the following:

1. Cluster mode: If you are experiencing CROSSLOT errors or errors with the SELECT Redis
command, you may be trying to access a Cluster Mode Enabled cache with a Redis client
that does not support the Redis Cluster protocol. ElastiCache Serverless only supports Redis
clients that support the Redis cluster protocol. If you want to use Redis in “Cluster Mode
Disabled” (CMD), then you must design your own cluster.

2. CROSSLOT errors: If you are experiencing the ERR CROSSLOT Keys in request don't
hash to the same slot error, you may be attempting to access keys that do not belong to
the same slot in a Cluster mode cache. As a reminder, ElastiCache Serverless always operates
in Cluster Mode. Multi-key operations, transactions, or Lua scripts involving multiple keys are
allowed only if all the keys involved are in the same hash slot.

For additional best practices around configuring Redis clients, please review this blog post.

Troubleshooting high latency in ElastiCache Serverless

If your workload appears to experience high latency, you can analyze the CloudWatch
SuccessfulReadRequestLatency and SuccessfulWriteRequestLatency metrics to check
if the latency is related to ElastiCache Serverless. These metrics measure latency which is internal
to ElastiCache Serverless - client side latency and network trip times between your client and the
ElastiCache Serverless endpoint are not included.

Some variability and occasional spikes should not be a cause for concern. However, if the Average
statistic shows a sharp increase and persists, you should check the AWS Health Dashboard and your
Personal Health Dashboard for more information. If necessary, consider opening a support case
with AWS Support.

Consider the following best practices and strategies to reduce latency:

• Enable Read from Replica: If your application allows it, we recommend enabling the “Read from
Replica” feature in your Redis client to scale reads and achieve lower latency. When enabled,

Redis client errors API Version 2015-02-02 849

https://redis.io/commands/select/
https://aws.amazon.com/blogs/database/best-practices-redis-clients-and-amazon-elasticache-for-redis/

Amazon ElastiCache for Redis User Guide

ElastiCache Serverless attempts to route your read requests to replica cache nodes that are in
the same Availability Zone (AZ) as your client, thus avoiding cross-AZ network latency. Note,
that enabling the Read from Replica feature in your client signifies that your application accepts
eventual consistency in data. Your application may receive older data for some time if you
attempt to read after writing to a key.

• Ensure your application is deployed in the same AZs as your cache: You may observe higher
client side latency if your application is not deployed in the same AZs as your cache. When you
create a serverless cache you can provide the subnets from where your application will access
the cache, and ElastiCache Serverless creates VPC Endpoints in those subnets. Ensure that your
application is deployed in the same AZs. Otherwise, your application may incur a cross-AZ hop
when accessing the cache resulting in higher client side latency.

• Reuse connections: ElastiCache Serverless requests are made via a TLS enabled TCP connection
using the RESP protocol. Initiating the connection (including authenticating the connection, if
configured) takes time so the latency of the first request is higher than typical. Requests over an
already initialized connection deliver ElastiCache’s consistent low latency. For this reason, you
should consider using connection pooling or reusing existing Redis connections.

• Scaling speed: ElastiCache Serverless automatically scales as your request rate grows. A sudden
large increase in request rate, faster than the speed at which ElastiCache Serverless scales,
may result in elevated latency for some time. ElastiCache Serverless can typically increase its
supported request rate quickly, taking up to 10-12 minutes to double the request rate.

• Inspect long running commands: Some Redis commands, including Lua scripts or commands
on large data structures, may run for a long time. To identify these commands, ElastiCache
publishes command level metrics. With ElastiCache Serverless you can use the BasedECPUs
metrics.

• Throttled Requests: When requests are throttled in ElastiCache Serverless, you may experience
an increase in client side latency in your application. When requests are throttled in ElastiCache
Serverless, you should see an increase in the ThrottledRequests ElastiCache Serverless
metric. Review the section below for troubleshooting throttled requests.

• Uniform distribution of keys and requests: In ElastiCache for Redis, an uneven distribution of
keys or requests per slot can result in a hot slot which can result in elevated latency. ElastiCache
Serverless supports up to 30,000 ECPUs/second (90,000 ECPUs/second when using Read from
Replica) on a single slot, in a workload that executes simple SET/GET commands. We recommend
evaluating your key and request distribution across slots and ensuring a uniform distribution if
your request rate exceeds this limit.

Troubleshooting high latency in ElastiCache Serverless API Version 2015-02-02 850

Amazon ElastiCache for Redis User Guide

Troubleshooting throttling issues in ElastiCache Serverless

In service-oriented architectures and distributed systems, limiting the rate at which API calls are
processed by various service components is called throttling. This smooths spikes, controls for
mismatches in component throughput, and allows for more predictable recoveries when there's an
unexpected operational event. ElastiCache Serverless is designed for these types of architectures,
and most Redis clients have retries built in for throttled requests. Some degree of throttling is not
necessarily a problem for your application, but persistent throttling of a latency-sensitive part of
your data workflow can negatively impact user experience and reduce the overall efficiency of the
system.

When requests are throttled in ElastiCache Serverless, you should see an increase in the
ThrottledRequests ElastiCache Serverless metric. If you are noticing a high number of throttled
requests, consider the following:

• Scaling speed: ElastiCache Serverless automatically scales as you ingest more data or grow
your request rate.If your application scales faster than the speed at which ElastiCache Serverless
scales, then your requests may get throttled while ElastiCache Serverless scales to accommodate
your workload. ElastiCache Serverless can typically increase the storage size quickly, taking up to
10-12 minutes to double the storage size in your cache.

• Uniform distribution of keys and requests: In ElastiCache for Redis, an uneven distribution of
keys or requests per slot can result in a hot slot. A hot slot can result in throttling of requests
if the request rate to a single slot exceeds 30,000 ECPUs/second, in a workload that executes
simple SET/GET commands.

• Read from Replica: If you application allows it, consider using the “Read from Replica“ feature.
Most Redis clients can be configured to ”scale reads“ to direct reads to replica nodes. This feature
enables you to scale read traffic. In addition ElastiCache Serverless automatically routes read
from replica requests to nodes in the same Availability Zone as your application resulting in
lower latency. When Read from Replica is enabled, you can achieve up to 90,000 ECPUs/second
on a single slot, for workloads with simple SET/GET commands.

Related Topics

• Additional troubleshooting steps

• the section called “Best practices and caching strategies”

Troubleshooting throttling issues in ElastiCache Serverless API Version 2015-02-02 851

Amazon ElastiCache for Redis User Guide

Additional troubleshooting steps

The following items must be verified while troubleshooting persistent connectivity issues with
ElastiCache:

Topics

• Security groups

• Network ACLs

• Route tables

• DNS resolution

• Identifying issues with server-side diagnostics

• Network connectivity validation

• Network-related limits

• CPU Usage

• Connections being terminated from the server side

• Client-side troubleshooting for Amazon EC2 instances

• Dissecting the time taken to complete a single request

Security groups

Security Groups are virtual firewalls protecting your ElastiCache client (EC2 instance, AWS Lambda
function, Amazon ECS container, etc.) and ElastiCache cache. Security groups are stateful, meaning
that after the incoming or outgoing traffic is allowed, the responses for that traffic will be
automatically authorized in the context of that specific security group.

The stateful feature requires the security group to keep track of all authorized connections, and
there is a limit for tracked connections. If the limit is reached, new connections will fail. Please refer
to the troubleshooting section for help on how to identify if the limits has been hit on the client or
ElastiCache side.

You can have a single security groups assigned at the same time to the client and ElastiCache
cluster, or individual security groups for each.

For both cases, you need to allow the TCP outbound traffic on the ElastiCache port from the source
and the inbound traffic on the same port to ElastiCache. The default port is 11211 for Memcached

Additional troubleshooting steps API Version 2015-02-02 852

Amazon ElastiCache for Redis User Guide

and 6379 for Redis. By default, security groups allow all outbound traffic. In this case, only the
inbound rule in the target security group is required.

For more information, see Access patterns for accessing an ElastiCache cluster in an Amazon VPC.

Network ACLs

Network Access Control Lists (ACLs) are stateless rules. The traffic must be allowed in both
directions (Inbound and Outbound) to succeed. Network ACLs are assigned to subnets, not specific
resources. It is possible to have the same ACL assigned to ElastiCache and the client resource,
especially if they are in the same subnet.

By default, network ACLs allow all trafic. However, it is possible to customize them to deny or allow
traffic. Additionally, the evaluation of ACL rules is sequential, meaning that the rule with the lowest
number matching the traffic will allow or deny it. The minimum configuration to allow the Redis
traffic is:

Client side Network ACL:

• Inbound Rules:

• Rule number: preferably lower than any deny rule;

• Type: Custom TCP Rule;

• Protocol: TCP

• Port Range: 1024-65535

• Source: 0.0.0.0/0 (or create individial rules for the ElastiCache cluster subnets)

• Allow/Deny: Allow

• Outbound Rules:

• Rule number: preferably lower than any deny rule;

• Type: Custom TCP Rule;

• Protocol: TCP

• Port Range: 6379

• Source: 0.0.0.0/0 (or the ElastiCache cluster subnets. Keep in mind that using specific IPs may
create issues in case of failover or scaling the cluster)

• Allow/Deny: Allow

Network ACLs API Version 2015-02-02 853

https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/elasticache-vpc-accessing.html

Amazon ElastiCache for Redis User Guide

ElastiCache Network ACL:

• Inbound Rules:

• Rule number: preferably lower than any deny rule;

• Type: Custom TCP Rule;

• Protocol: TCP

• Port Range: 6379

• Source: 0.0.0.0/0 (or create individial rules for the ElastiCache cluster subnets)

• Allow/Deny: Allow

• Outbound Rules:

• Rule number: preferably lower than any deny rule;

• Type: Custom TCP Rule;

• Protocol: TCP

• Port Range: 1024-65535

• Source: 0.0.0.0/0 (or the ElastiCache cluster subnets. Keep in mind that using specific IPs may
create issues in case of failover or scaling the cluster)

• Allow/Deny: Allow

For more information, see Network ACLs.

Route tables

Similarly to Network ACLs, each subnet can have different route tables. If clients and the
ElastiCache cluster are in different subnets, make sure that their route tables allow them to reach
each other.

More complex environments, involving multiple VPCs, dynamic routing, or network firewalls, may
become difficult to troubleshoot. See Network connectivity validation to confirm that your network
settings are appropriate.

Route tables API Version 2015-02-02 854

https://docs.aws.amazon.com/vpc/latest/userguide/vpc-network-acls.html

Amazon ElastiCache for Redis User Guide

DNS resolution

ElastiCache provides the service endpoints based on DNS names. The endpoints available are
Configuration, Primary, Reader, and Node endpoints. For more information, see Finding
Connection Endpoints.

In case of failover or cluster modification, the address associated to the endpoint name may
change and will be automatically updated.

Custom DNS settings (i.e., not using the VPC DNS service) may not be aware of the ElastiCache-
provided DNS names. Make sure that your system can successfully resolve the ElastiCache
endpoints using system tools like dig (as shown following) or nslookup.

$ dig +short example.xxxxxx.ng.0001.use1.cache.amazonaws.com
example-001.xxxxxx.0001.use1.cache.amazonaws.com.
1.2.3.4

You can also force the name resolution through the VPC DNS service:

$ dig +short example.xxxxxx.ng.0001.use1.cache.amazonaws.com @169.254.169.253
example-001.tihewd.0001.use1.cache.amazonaws.com.
1.2.3.4

Identifying issues with server-side diagnostics

CloudWatch metrics and run-time information from the ElastiCache engine are common sources
or information to identify potential sources of connection issues. A good analysis commonly starts
with the following items:

• CPU usage: Redis is a multi-threaded application. However, execution of each command happens
in a single (main) thread. For this reason, ElastiCache provides the metrics CPUUtilization and
EngineCPUUtilization. EngineCPUUtilization provides the CPU utilization dedicated
to the Redis process, and CPUUtilization the usage across all vCPUs. Nodes with more than
one vCPU usually have different values for CPUUtilization and EngineCPUUtilization,
the second being commonly higher. High EngineCPUUtilization can be caused by an
elevated number of requests or complex operations that take a significant amount of CPU time
to complete. You can identify both with the following:

• Elevated number of requests: Check for increases on other metrics matching the
EngineCPUUtilization pattern. Useful metrics are:

DNS resolution API Version 2015-02-02 855

https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/Endpoints.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/Endpoints.html

Amazon ElastiCache for Redis User Guide

• CacheHits and CacheMisses: the number of successful requests or requests that didn’t
find a valid item in the cache. If the ratio of misses compared to hits is high, the application
is wasting time and resources with unfruitful requests.

• SetTypeCmds and GetTypeCmds: These metrics correlated with EngineCPUUtilization
can help to understand if the load is significantly higher for write requests, measured by
SetTypeCmds, or reads, measured by GetTypeCmds. If the load is predominantly reads,
using multiple read-replicas can balance the requests across multiple nodes and spare
the primary for writes. In cluster mode-disabled clusters, the use of read-replicas can
be done by creating an additional connection configuration in the application using the
ElastiCache reader endpoint. For more information, see Finding Connection Endpoints. The
read operations must be submitted to this additional connection. Write operations will be
done through the regular primary endpoint. In cluster mode-enabled, it is advisable to use
a library that supports read replicas natively. With the right flags, the library will be able to
automatically discover the cluster topology, the replica nodes, enable the read operations
through the READONLY Redis command, and submit the read requests to the replicas.

• Elevated number of connections:

• CurrConnections and NewConnections: CurrConnection is the number of established
connections at the moment of the datapoint collection, while NewConnections shows how
many connections were created in the period.

Creating and handling connections implies significant CPU overhead. Additionally, the TCP
three-way handshake required to create new connections will negatively affect the overall
response times.

An ElastiCache node with thousands of NewConnections per minute indicates that a
connection is created and used by just a few commands, which is not optimal. Keeping
connections established and reusing them for new operations is a best practice. This is
possible when the client application supports and properly implements connection pooling
or persistent connections. With connection pooling, the number of currConnections
does not have big variations, and the NewConnections should be as low as possible.
Redis provides optimal performance with small number of currConnections. Keeping
currConnection in the order of tens or hundreds minimizes the usage of resources to support
individual connections like client buffers and CPU cycles to serve the connection.

• Network throughput:

• Determine the bandwidth: ElastiCache nodes have network bandwidth proportional to the
node size. Since applications have different characteristics, the results can vary according to

Identifying issues with server-side diagnostics API Version 2015-02-02 856

https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/Endpoints.html
https://redis.io/commands/readonly

Amazon ElastiCache for Redis User Guide

the workload. As examples, applications with high rate of small requests tend to affect more
the CPU usage than the network throughput while bigger keys will cause higher network
utilization. For that reason, it is advisable to test the nodes with the actual workload for a
better understanding of the limits.

Simulating the load from the application would provide more accurate results. However,
benchmark tools can give a good idea of the limits.

• For cases where the requests are predominantly reads, using replicas for read operations will
alleviate the load on the primary node. If the use-case is predominantly writes, the use of
many replicas will amplify the network usage. For every byte written to the primary node,
N bytes will be sent to the replicas,being N the number of replicas. The best practice for
write intensive workloads are using ElastiCache for Redis with cluster mode-enabled so the
writes can be balanced across multiple shards, or scale-up to a node type with more network
capabilities.

• The CloudWatchmetrics NetworkBytesIn and NetworkBytesOut provide the amount
of data coming into or leaving the node, respectively. ReplicationBytes is the traffic
dedicated to data replication.

For more information, see Network-related limits.

• Complex commands: Redis commands are served on a single thread, meaning that requests
are served sequentially. A single slow command can affect other requests and connections,
culminating in time-outs. The use of commands that act upon multiple values, keys, or data
types must be done carefully. Connections can be blocked or terminated depending on the
number of parameters, or size of its input or output values.

A notorious example is the KEYS command. It sweeps the entire keyspace searching for a given
pattern and blocks the execution of other commands during its execution. Redis uses the “Big
O” notation to describe its commands complexity.

Keys command has O(N) time complexity, N being the number of keys in the database.
Therefore, the larger the number of keys, the slower the command will be. KEYS can cause
trouble in different ways: If no search pattern is used, the command will return all key names
available. In databases with thousand or million of items, a huge output will be created and
flood the network buffers.

Identifying issues with server-side diagnostics API Version 2015-02-02 857

Amazon ElastiCache for Redis User Guide

If a search pattern is used, only the keys matching the pattern will return to the client.
However, the engine still sweeps the entire keyspace searching for it, and the time to complete
the command will be the same.

An alternative for KEYS is the SCAN command. It iterates over the keyspace and limits the
iterations in a specific number of items, avoiding prolonged blocks on the engine.

Scan has the COUNT parameter, used to set the size of the iteration blocks. The default value is
10 (10 items per iteration).

Depending on the number of items in the database, small COUNT values blocks will require
more iterations to complete a full scan, and bigger values will keep the engine busy for longer
at each iteration. While small count values will make SCAN slower on big databases, larger
values can cause the same issues mentioned for KEYS.

As an example, running the SCAN command with count value as 10 will requires 100,000
repetitions on a database with 1 million keys. If the average network round-trip time is 0.5
milliseconds, approximately 50,000 milliseconds (50 seconds) will be spent transferring
requests.

On the other hand, if the count value were 100,0000, a single iteration would be required and
only 0.5 ms would be spent transferring it. However, the engine would be entirely blocked for
other operations until the command finishes sweeping all the keyspace.

Besides KEYS, several other commands are potentially harmful if not used correctly. To see a
list of all commands and their respective time complexity, go to https://redis.io/commands.

Examples of potential issues:

• Lua scripts: Redis provides an embedded Lua interpreter, allowing the execution of scripts
on the server-side. Lua scripts on Redis are executed on engine level and are atomic by
definition, meaning that no other command or script will be allowed to run while a script
is in execution. Lua scripts provide the possibility of running multiple commands, decision-
making algorithms, data parsing, and others directly on the Redis engine. While the
atomicity of scripts and the chance of offloading the application are tempting, scripts must
be used with care and for small operations. On ElastiCache, the execution time of Lua scripts
is limited to 5 seconds. Scripts that haven’t written to the keyspace will be automatically
terminated after the 5 seconds period. To avoid data corruption and inconsistencies,
the node will failover if the script execution hasn’t completed in 5 seconds and had any

Identifying issues with server-side diagnostics API Version 2015-02-02 858

https://redis.io/commands

Amazon ElastiCache for Redis User Guide

write during its execution. Transactions are the alternative to guarantee consistency of
multiple related key modifications in Redis. A transaction allows the execution of a block
of commands, watching existing keys for modifications. If any of the watched keys changes
before the completion of the transaction, all modifications are discarded.

• Mass deletion of items: The DEL command accepts multiple parameters, which are the
key names to be deleted. Deletion operations are synchronous and will take significant
CPU time if the list of parameters is big, or contains a big list, set, sorted set, or hash (data
structures holding several sub-items). In other words, even the deletion of a single key can
take significant time if it has many elements. The alternative to DEL is UNLINK, which is
an asynchronous command available since Redis 4. UNLINK must be preferred over DEL
whenever possible. Starting on ElastiCache for Redis 6x, the lazyfree-lazy-user-
del parameter makes the DEL command behave like UNLINK when enabled. For more
information, see Redis 6.0 Parameter Changes.

• Commands acting upon multiple keys: DEL was mentioned before as a command that
accepts multiple arguments and its execution time will be directly proportional to that.
However, Redis provides many more commands that work similarly. As examples, MSET
and MGET allow the insertion or retrieval of multiple String keys at once. Their usage may
be beneficial to reduce the network latency inherent to multiple individual SET or GET
commands. However, an extensive list of parameters will affect CPU usage.

While CPU utilization alone is not the cause for connectivity issues, spending too much time
to process a single or few commands over multiple keys may cause failure of other requests
and increase overall CPU utilization.

The number of keys and their size will affect the command complexity and consequently
completion time.

Other examples of commands that can act upon multiple keys: HMGET, HMSET, MSETNX,
PFCOUNT, PFMERGE, SDIFF, SDIFFSTORE, SINTER, SINTERSTORE, SUNION, SUNIONSTORE,
TOUCH, ZDIFF, ZDIFFSTORE, ZINTER or ZINTERSTORE.

• Commands acting upon multiple data types: Redis also provides commands that act upon
one or multiple keys, regardless of their data type. ElastiCache for Redis provides the metric
KeyBasedCmds to monitor such commands. This metric sums the execution of the following
commands in the selected period:

• O(N) complexity:

• KEYS

Identifying issues with server-side diagnostics API Version 2015-02-02 859

https://redis.io/topics/transactions
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/ParameterGroups.Redis.html#ParameterGroups.Redis.6-0

Amazon ElastiCache for Redis User Guide

• O(1)

• EXISTS

• OBJECT

• PTTL

• RANDOMKEY

• TTL

• TYPE

• EXPIRE

• EXPIREAT

• MOVE

• PERSIST

• PEXPIRE

• PEXPIREAT

• UNLINK (O(N) to reclaim memory. However the memory-reclaiming task happens in a
separated thread and does not block the engine

• Different complexity times depending on the data type:

• DEL

• DUMP

• RENAME is considered a command with O(1) complexity, but executes DEL internally. The
execution time will vary depending on the size of the renamed key.

• RENAMENX

• RESTORE

• SORT

• Big hashes: Hash is a data type that allows a single key with multiple key-value sub-
items. Each hash can store 4.294.967.295 items and operations on big hashes can become
expensive. Similarly to KEYS, hashes have the HKEYS command with O(N) time complexity,
N being the number of items in the hash. HSCAN must be preferred over HKEYS to avoid
long running commands. HDEL, HGETALL, HMGET, HMSET and HVALS are commands that
should be used with caution on big hashes.

• Other big data-structures: Besides hashes, other data structures can be CPU intensive.
Sets, Lists, Sorted Sets, and Hyperloglogs can also take significant time to be manipulated Identifying issues with server-side diagnostics API Version 2015-02-02 860

Amazon ElastiCache for Redis User Guide

depending on their size and commands used. For more information on those commands, see
https://redis.io/commands.

Network connectivity validation

After reviewing the network configurations related to DNS resolution, security groups, network
ACLs, and route tables, the connectivity can be validated with the VPC Reachability Analyzer and
system tools.

Reachability Analyzer will test the network connectivity and confirm if all the requirements and
permissions are satisfied. For the tests below you will need the ENI ID (Elastic Network Interface
Identification) of one of the ElastiCache nodes available in your VPC. You can find it by doing the
following:

1. Go to https://console.aws.amazon.com/ec2/v2/home?#NIC:

2. Filter the interface list by your ElastiCache cluster name or the IP address got from the DNS
validations previously.

3. Write down or otherwise save the ENI ID. If multiple interfaces are shown, review the
description to confirm that they belong to the right ElastiCache cluster and choose one of
them.

4. Proceed to the next step.

5. Create an analyze path at https://console.aws.amazon.com/vpc/home?#ReachabilityAnalyzer
and choose the following options:

• Source Type: Choose instance if your ElastiCache client runs on an Amazon EC2 instance or
Network Interface if it uses another service, such as AWS Fargate Amazon ECS with awsvpc
network, AWS Lambda, etc), and the respective resource ID (EC2 instance or ENI ID);

• Destination Type: Choose Network Interface and select the Elasticache ENI from the list.

• Destination port: specify 6379 for ElastiCache for Redis or 11211 for ElastiCache for
Memcached. Those are the ports defined with the default configuration and this example
assumes that they are not changed.

• Protocol: TCP

Create the analyze path and wait a few moments for the result. If the status is unreachable, open
the analysis details and review the Analysis explorer for details where the requests were blocked.

Network connectivity validation API Version 2015-02-02 861

https://redis.io/commands
https://console.aws.amazon.com/ec2/v2/home?#NIC
https://console.aws.amazon.com/vpc/home?#ReachabilityAnalyzer

Amazon ElastiCache for Redis User Guide

If the reachability tests passed, proceed to the verification on the OS level.

To validate the TCP connectivity on the ElastiCache service port: On Amazon Linux, Nping is
available in the package nmap and can test the TCP connectivity on the ElastiCache port, as well as
providing the network round-trip time to establish the connection. Use this to validate the network
connectivity and the current latency to the ElastiCache cluster, as shown following:

$ sudo nping --tcp -p 6379 example.xxxxxx.ng.0001.use1.cache.amazonaws.com

Starting Nping 0.6.40 (http://nmap.org/nping) at 2020-12-30 16:48 UTC
SENT (0.0495s) TCP ...
(Output suppressed)

Max rtt: 0.937ms | Min rtt: 0.318ms | Avg rtt: 0.449ms
Raw packets sent: 5 (200B) | Rcvd: 5 (220B) | Lost: 0 (0.00%)
Nping done: 1 IP address pinged in 4.08 seconds

By default, nping sends 5 probes with a delay of 1 second between them. You can use the option
“-c” to increase the number of probes and “--delay“ to change the time to send a new test.

If the tests with nping fail and the VPC Reachability Analyzer tests passed, ask your system
administrator to review possible Host-based firewall rules, asymmetric routing rules, or any other
possible restriction on the operating system level.

On the ElastiCache console, check if Encryption in-transit is enabled in your ElastiCache cluster
details. If in-transit encryption is enabled, confirm if the TLS session can be established with the
following command:

openssl s_client -connect example.xxxxxx.use1.cache.amazonaws.com:6379

An extensive output is expected if the connection and TLS negotiation are successful. Check the
return code available in the last line, the value must be 0 (ok). If openssl returns something
different, check the reason for the error at https://www.openssl.org/docs/man1.0.2/man1/
verify.html#DIAGNOSTICS.

If all the infrastructure and operating system tests passed but your application is still unable to
connect to ElastiCache, check if the application configurations are compliant with the ElastiCache
settings. Common mistakes are:

Network connectivity validation API Version 2015-02-02 862

https://www.openssl.org/docs/man1.0.2/man1/verify.html#DIAGNOSTICS
https://www.openssl.org/docs/man1.0.2/man1/verify.html#DIAGNOSTICS

Amazon ElastiCache for Redis User Guide

• Your application does not support ElastiCache cluster mode, and ElastiCache has cluster-mode
enabled;

• Your application does not support TLS/SSL, and ElastiCache has in-transit encryption enabled;

• Application supports TLS/SSL but does not have the right configuration flags or trusted
certification authorities;

Network-related limits

• Maximum number of connections: There are hard limits for simultaneous connections. Each
ElastiCache node allows up to 65,000 simultaneous connections across all clients. This limit can
be monitored through the CurrConnections metrics on CloudWatch. However, clients also
have their limits for outbound connections.On Linux, check the allowed ephemeral port range
with the command:

sysctl net.ipv4.ip_local_port_range
net.ipv4.ip_local_port_range = 32768 60999

In the previous example, 28231 connections will be allowed from the same source, to the
same destination IP (ElastiCache node) and port. The following command shows how many
connections exist for a specific ElastiCache node (IP 1.2.3.4):

ss --numeric --tcp state connected "dst 1.2.3.4 and dport == 6379" | grep -vE
 '^State' | wc -l

If the number is too high, your system may become overloaded trying to process the connection
requests. It is advisable to consider implementing techniques like connection pooling or
persistent connections to better handle the connections. Whenever possible, configure the
connection pool to limit the maximum number of connections to a few hundred. Also, back-
off logic to handle time-outs or other connection exceptions would are advisable to avoid
connection churn in case of issues.

• Network traffic limits: Check the following CloudWatch metrics for Redis to identify possible
network limits being hit on the ElastiCache node:

• NetworkBandwidthInAllowanceExceeded /
NetworkBandwidthOutAllowanceExceeded: Network packets shaped because the
throughput exceeded the aggregated bandwidth limit.

Network-related limits API Version 2015-02-02 863

https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/CacheMetrics.Redis.html

Amazon ElastiCache for Redis User Guide

It is important to note that every byte written to the primary node will be replicated to N
replicas, N being the number of replicas. Clusters with small node types, multiple replicas,
and intensive write requests may not be able to cope with the replication backlog. For such
cases, it's a best practice to scale-up (change node type), scale-out (add shards in cluster-mode
enabled clusters), reduce the number of replicas, or minimize the number of writes.

• NetworkConntrackAllowanceExceeded: Packets shaped because the maximum number of
connections tracked across all security groups assigned to the node has been exceeded. New
connections will likely fail during this period.

• NetworkPackets PerSecondAllowanceExceeded: Maximum number of packets per
second exceeded. Workloads based on a high rate of very small requests may hit this limit
before the maximum bandwidth.

The metrics above are the ideal way to confirm nodes hitting their network limits. However,
limits are also identifiable by plateaus on network metrics.

If the plateaus are observed for extended periods, they will be likely followed by replication
lag, increase on bytes Used for cache, drop on freeable memory, high swap and CPU usage.
Amazon EC2 instances also have network limits that can tracked through ENA driver metrics.
Linux instances with enhanced networking support and ENA drivers 2.2.10 or newer can review
the limit counters with the command:

ethtool -S eth0 | grep "allowance_exceeded"

CPU Usage

The CPU usage metric is the starting point of investigation, and the following items can help to
narrow down possible issues on the ElastiCache side:

• Redis SlowLogs: The ElastiCache default configuration retains the last 128 commands that took
over 10 milliseconds to complete. The history of slow commands is kept during the engine
runtime and will be lost in case of failure or restart. If the list reaches 128 entries, old events will
be removed to open room for new ones. The size of the list of slow events and the execution
time considered slow can by modified via the parameters slowlog-max-len and slowlog-
log-slower-than in a custom parameter group. The slowlogs list can be retrieved by running
SLOWLOG GET 128 on the engine, 128 being the last 128 slow commands reported. Each entry
has the following fields:

CPU Usage API Version 2015-02-02 864

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/monitoring-network-performance-ena.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/ParameterGroups.html

Amazon ElastiCache for Redis User Guide

1) 1) (integer) 1 -----------> Sequential ID
 2) (integer) 1609010767 --> Timestamp (Unix epoch time)of the Event
 3) (integer) 4823378 -----> Time in microseconds to complete the command.
 4) 1) "keys" -------------> Command
 2) "*" ----------------> Arguments
 5) "1.2.3.4:57004"-> Source

The event above happened on December 26, at 19:26:07 UTC, took 4.8 seconds (4.823ms) to
complete and was caused by the KEYS command requested from the client 1.2.3.4.

On Linux, the timestamp can be converted with the command date:

$ date --date='@1609010767'
Sat Dec 26 19:26:07 UTC 2020

With Python:

>>> from datetime import datetime
>>> datetime.fromtimestamp(1609010767)
datetime.datetime(2020, 12, 26, 19, 26, 7)

Or on Windows with PowerShell:

PS D:\Users\user> [datetimeoffset]::FromUnixTimeSeconds('1609010767')
DateTime : 12/26/2020 7:26:07 PM
UtcDateTime
 : 12/26/2020 7:26:07 PM
LocalDateTime : 12/26/2020 2:26:07 PM
Date : 12/26/2020 12:00:00 AM
Day : 26
DayOfWeek
 : Saturday
DayOfYear : 361
Hour : 19
Millisecond : 0
Minute : 26
Month
 : 12
Offset : 00:00:00Ticks : 637446075670000000
UtcTicks

CPU Usage API Version 2015-02-02 865

Amazon ElastiCache for Redis User Guide

 : 637446075670000000
TimeOfDay : 19:26:07
Year : 2020

Many slow commands in a short period of time (same minute or less) is a reason for concern.
Review the nature of commands and how they can be optimized (see previous examples). If
commands with O(1) time complexity are frequently reported, check the other factors for high
CPU usage mentioned before.

• Latency metrics: ElastiCache for Redis provides CloudWatch metrics to monitor the average
latency for different classes of commands. The datapoint is calculated by dividing the total
number of executions of commands in the category by the total execution time in the period. It
is important to understand that latency metric results are an aggregate of multiple commands.
A single command can cause unexpected results, like timeouts, without significant impact on the
metrics. For such cases, the slowlog events would be a more accurate source of information. The
following list contains the latency metrics available and the respective commands that affect
them.

• EvalBasedCmdsLatency: related to Lua Script commands, eval, evalsha;

• GeoSpatialBasedCmdsLatency: geodist, geohash, geopos, georadius,
georadiusbymember, geoadd;

• GetTypeCmdsLatency: Read commands, regardless of data type;

• HashBasedCmdsLatency: hexists, hget, hgetall, hkeys, hlen, hmget, hvals, hstrlen,
hdel, hincrby, hincrbyfloat, hmset, hset, hsetnx;

• HyperLogLogBasedCmdsLatency: pfselftest, pfcount, pfdebug, pfadd, pfmerge;

• KeyBasedCmdsLatency: Commands that can act upon different data types: dump, exists,
keys, object, pttl, randomkey, ttl, type, del, expire, expireat, move, persist,
pexpire, pexpireat, rename, renamenx, restoreK, sort, unlink;

• ListBasedCmdsLatency: lindex, llen, lrange, blpop, brpop, brpoplpush, linsert, lpop, lpush,
lpushx, lrem, lset, ltrim, rpop, rpoplpush, rpush, rpushx;

• PubSubBasedCmdsLatency: psubscribe, publish, pubsub, punsubscribe, subscribe, unsubscribe;

• SetBasedCmdsLatency: scard, sdiff, sinter, sismember, smembers, srandmember,
sunion, sadd, sdiffstore, sinterstore, smove, spop, srem, sunionstore;

• SetTypeCmdsLatency: Write commands, regardless of data-type;

• SortedSetBasedCmdsLatency: zcard, zcount, zrange, zrangebyscore, zrank,
zrevrange, zrevrangebyscore, zrevrank, zscore, zrangebylex, zrevrangebylex,

CPU Usage API Version 2015-02-02 866

Amazon ElastiCache for Redis User Guide

zlexcount, zadd. zincrby, zinterstore, zrem, zremrangebyrank, zremrangebyscore,
zunionstore, zremrangebylex, zpopmax, zpopmin, bzpopmin, bzpopmax;

• StringBasedCmdsLatency: bitcount, get, getbit, getrange, mget, strlen, substr,
bitpos, append, bitop, bitfield, decr, decrby, getset, incr, incrby, incrbyfloat,
mset, msetnx, psetex, set, setbit, setex, setnx, setrange;

• StreamBasedCmdsLatency: xrange, xrevrange, xlen, xread, xpending, xinfo, xadd,
xgroup, readgroup, xack, xclaim, xdel, xtrim, xsetid;

• Redis runtime commands:

• info commandstats: Provides a list of commands executed since the Redis engine started,
their cumulative executions number, total execution time, and average execution time per
command;

• client list: Provides a list of currently connected clients and relevant information like buffers
usage, last command executed, etc;

• Backup and replication: ElastiCache for Redis versions earlier than 2.8.22 use a forked process
to create backups and process full syncs with the replicas. This method may incur in significant
memory overhead for write intensive use-cases.

Starting with ElastiCache Redis 2.8.22, AWS introduced a forkless backup and replication
method. The new method may delay writes in order to prevent failures. Both methods can cause
periods of higher CPU utilization, lead to higher response times and consequently lead to client
timeouts during their execution. Always check if the client failures happen during the backup
window or the SaveInProgress metric was 1 in the period. It is advisable to schedule the
backup window for periods of low utilization to minimize the possibility of issues with clients or
backup failures.

Connections being terminated from the server side

The default ElastiCache for Redis configuration keeps the client connections established
indefinitely. However, in some cases connection termination may be desirable. For example:

• Bugs in the client application may cause connections to be forgotten and kept established with
an idle state. This is called "connection leak“ and the consequence is a steady increase on the
number of established connections observed on the CurrConnections metric. This behavior
can result in saturation on the client or ElastiCache side. When an immediate fix is not possible
from the client side, some administrators set a ”timeout“ value in their ElastiCache parameter
group. The timeout is the time in seconds allowed for idle connections to persist. If the client

Connections being terminated from the server side API Version 2015-02-02 867

Amazon ElastiCache for Redis User Guide

doesn’t submit any request in the period, the Redis engine will terminate the connection as soon
as the connection reaches the timeout value. Small timeout values may result in unnecessary
disconnections and clients will need handle them properly and reconnect, causing delays.

• The memory used to store keys is shared with client buffers. Slow clients with big requests
or responses may demand a significant amount of memory to handle its buffers. The default
ElastiCache for Redis configurations does not restrict the size of regular client output buffers.
If the maxmemory limit is hit, the engine will try to evict items to fulfill the buffer usage. In
extreme low memory conditions, ElastiCache for Redis might choose to disconnect clients that
consume large client output buffers in order to free memory and retain the cluster’s health.

It is possible to limit the size of client buffers with custom configurations and clients hitting the
limit will be disconnected. However, clients should be able to handle unexpected disconnections.
The parameters to handle buffers size for regular clients are the following:

• client-query-buffer-limit: Maximum size of a single input request;

• client-output-buffer-limit-normal-soft-limit: Soft limit for client connections. The connection
will be terminated if stays above the soft limit for more than the time in seconds defined on
client-output-buffer-limit-normal-soft-seconds or if it hits the hard limit;

• client-output-buffer-limit-normal-soft-seconds: Time allowed for the connections exceeding
the client-output-buffer-limit-normal-soft-limit;

• client-output-buffer-limit-normal-hard-limit: A connection hitting this limit will be
immediatelly terminated.

Besides the regular client buffers, the following options control the buffer for replica nodes and
Pub/Sub (Publish/Subscribe) clients:

• client-output-buffer-limit-replica-hard-limit;

• client-output-buffer-limit-replica-soft-seconds;

• client-output-buffer-limit-replica-hard-limit;

• client-output-buffer-limit-pubsub-soft-limit;

• client-output-buffer-limit-pubsub-soft-seconds;

• client-output-buffer-limit-pubsub-hard-limit;

Connections being terminated from the server side API Version 2015-02-02 868

Amazon ElastiCache for Redis User Guide

Client-side troubleshooting for Amazon EC2 instances

The load and responsiveness on the client side can also affect the requests to ElastiCache.
EC2 instance and operating system limits need to be carefully reviewed while troubleshooting
intermittent connectivity or timeout issues. Some key points to observe:

• CPU:

• EC2 instance CPU usage: Make sure the CPU hasn’t been saturated or near to 100 percent.
Historical analysis can be done via CloudWatch, however keep in mind that data points
granularity is either 1 minute (with detailed monitoring enabled) or 5 minutes;

• If using burstable EC2 instances, make sure that their CPU credit balance hasn’t been depleted.
This information is available on the CPUCreditBalance CloudWatch metric.

• Short periods of high CPU usage can cause timeouts without reflecting on 100 percent
utilization on CloudWatch. Such cases require real-time monitoring with operating-system
tools like top, ps and mpstat.

• Network

• Check if the Network throughput is under acceptable values according to the instance
capabilities. For more information, see Amazon EC2 Instance Types

• On instances with the ena Enhanced Network driver, check the ena statistics for timeouts or
exceeded limits. The following statistics are useful to confirm network limits saturation:

• bw_in_allowance_exceeded / bw_out_allowance_exceeded: number of packets
shaped due to excessive inbound or outbound throughput;

• conntrack_allowance_exceeded: number of packets dropped due to security groups
connection tracking limits. New connections will fail when this limit is saturated;

• linklocal_allowance_exceeded: number of packets dropped due to excessive requests
to instance meta-data, NTP via VPC DNS. The limit is 1024 packets per second for all the
services;

• pps_allowance_exceeded: number of packets dropped due to excessive packets per
second ratio. The PPS limit can be hit when the network traffic consists on thousands or
millions of very small requests per second. ElastiCache traffic can be optimized to make
better use of network packets via pipelines or commands that do multiple operations at
once like MGET instead of GET.

Client-side troubleshooting for Amazon EC2 instances API Version 2015-02-02 869

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/burstable-performance-instances.html
https://aws.amazon.com/ec2/instance-types/
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/troubleshooting-ena.html#statistics-ena
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/security-group-connection-tracking.html#connection-tracking-throttling

Amazon ElastiCache for Redis User Guide

Dissecting the time taken to complete a single request

• On the network: Tcpdump and Wireshark (tshark on the command line) are handy tools to
understand how much time the request took to travel the network, hit the ElastiCache engine
and get a return. The following example highlights a single request created with the following
command:

$ echo ping | nc example.xxxxxx.ng.0001.use1.cache.amazonaws.com 6379
+PONG

In parallel to the command above, tcpdump was in execution and returned:

$ sudo tcpdump -i any -nn port 6379 -tt
tcpdump: verbose output suppressed, use -v or -vv for full protocol decode
listening on any, link-type LINUX_SLL (Linux cooked), capture size 262144 bytes
1609428918.917869 IP 172.31.11.142.40966
 > 172.31.11.247.6379: Flags [S], seq 177032944, win 26883, options [mss
 8961,sackOK,TS val 27819440 ecr 0,nop,wscale 7], length 0
1609428918.918071 IP 172.31.11.247.6379 > 172.31.11.142.40966: Flags [S.], seq
 53962565, ack 177032945, win
 28960, options [mss 1460,sackOK,TS val 3788576332 ecr 27819440,nop,wscale 7],
 length 0
1609428918.918091 IP 172.31.11.142.40966 > 172.31.11.247.6379: Flags [.], ack 1, win
 211, options [nop,nop,TS val 27819440 ecr 3788576332], length 0
1609428918.918122
 IP 172.31.11.142.40966 > 172.31.11.247.6379: Flags [P.], seq 1:6, ack 1, win 211,
 options [nop,nop,TS val 27819440 ecr 3788576332], length 5: RESP "ping"
1609428918.918132 IP 172.31.11.142.40966 > 172.31.11.247.6379: Flags [F.], seq 6, ack
 1, win 211, options [nop,nop,TS val 27819440 ecr 3788576332], length 0
1609428918.918240 IP 172.31.11.247.6379 > 172.31.11.142.40966: Flags [.], ack 6, win
 227, options [nop,nop,TS val 3788576332 ecr 27819440], length 0
1609428918.918295
 IP 172.31.11.247.6379 > 172.31.11.142.40966: Flags [P.], seq 1:8, ack 7, win 227,
 options [nop,nop,TS val 3788576332 ecr 27819440], length 7: RESP "PONG"
1609428918.918300 IP 172.31.11.142.40966 > 172.31.11.247.6379: Flags [.], ack 8, win
 211, options [nop,nop,TS val 27819441 ecr 3788576332], length 0
1609428918.918302 IP 172.31.11.247.6379 > 172.31.11.142.40966: Flags [F.], seq 8, ack
 7, win 227, options [nop,nop,TS val 3788576332 ecr 27819440], length 0
1609428918.918307
 IP 172.31.11.142.40966 > 172.31.11.247.6379: Flags [.], ack 9, win 211, options
 [nop,nop,TS val 27819441 ecr 3788576332], length 0
^C

Dissecting the time taken to complete a single request API Version 2015-02-02 870

Amazon ElastiCache for Redis User Guide

10 packets captured
10 packets received by filter
0 packets dropped by kernel

From the output above we can confirm that the TCP three-way handshake was completed in 222
microseconds (918091 - 917869) and the ping command was submitted and returned in 173
microseconds (918295 - 918122).

It took 438 microseconds (918307 - 917869) from requesting to closing the connection. Those
results would confirm that network and engine response times are good and the investigation
can focus on other components.

• On the operating system: Strace can help identifying time gaps on the OS level. The analysis
of actual applications would be way more extensive and specialized application profilers or
debuggers are advisable. The following example just shows if the base operating system
components are working as expected, otherwise further investigation may be required. Using the
same Redis PING command with strace we get:

$ echo ping | strace -f -tttt -r -e trace=execve,socket,open,recvfrom,sendto
 nc example.xxxxxx.ng.0001.use1.cache.amazonaws.com (http://
example.xxxxxx.ng.0001.use1.cache.amazonaws.com/)
 6379
1609430221.697712 (+ 0.000000) execve("/usr/bin/nc", ["nc",
 "example.xxxxxx.ng.0001.use"..., "6379"], 0x7fffede7cc38 /* 22 vars */) = 0
1609430221.708955 (+ 0.011231) socket(AF_UNIX, SOCK_STREAM|SOCK_CLOEXEC|
SOCK_NONBLOCK, 0) = 3
1609430221.709084
 (+ 0.000124) socket(AF_UNIX, SOCK_STREAM|SOCK_CLOEXEC|SOCK_NONBLOCK, 0) = 3
1609430221.709258 (+ 0.000173) open("/etc/nsswitch.conf", O_RDONLY|O_CLOEXEC) = 3
1609430221.709637 (+ 0.000378) open("/etc/host.conf", O_RDONLY|O_CLOEXEC) = 3
1609430221.709923
 (+ 0.000286) open("/etc/resolv.conf", O_RDONLY|O_CLOEXEC) = 3
1609430221.711365 (+ 0.001443) open("/etc/hosts", O_RDONLY|O_CLOEXEC) = 3
1609430221.713293 (+ 0.001928) socket(AF_INET, SOCK_DGRAM|SOCK_CLOEXEC|SOCK_NONBLOCK,
 IPPROTO_IP) = 3
1609430221.717419
 (+ 0.004126) recvfrom(3, "\362|
\201\200\0\1\0\2\0\0\0\0\rnotls20201224\6tihew"..., 2048, 0, {sa_family=AF_INET,
 sin_port=htons(53), sin_addr=inet_addr("172.31.0.2")}, [28->16]) = 155
1609430221.717890 (+ 0.000469) recvfrom(3,
 "\204\207\201\200\0\1\0\1\0\0\0\0\rnotls20201224\6tihew"...,

Dissecting the time taken to complete a single request API Version 2015-02-02 871

Amazon ElastiCache for Redis User Guide

 65536, 0, {sa_family=AF_INET, sin_port=htons(53),
 sin_addr=inet_addr("172.31.0.2")}, [28->16]) = 139
1609430221.745659 (+ 0.027772) socket(AF_INET, SOCK_STREAM, IPPROTO_TCP) = 3
1609430221.747548 (+ 0.001887) recvfrom(0, 0x7ffcf2f2ca50, 8192,
 0, 0x7ffcf2f2c9d0, [128]) = -1 ENOTSOCK (Socket operation on non-socket)
1609430221.747858 (+ 0.000308) sendto(3, "ping\n", 5, 0, NULL, 0) = 5
1609430221.748048 (+ 0.000188) recvfrom(0, 0x7ffcf2f2ca50, 8192, 0, 0x7ffcf2f2c9d0,
 [128]) = -1 ENOTSOCK
 (Socket operation on non-socket)
1609430221.748330 (+ 0.000282) recvfrom(3, "+PONG\r\n", 8192, 0, 0x7ffcf2f2c9d0,
 [128->0]) = 7
+PONG
1609430221.748543 (+ 0.000213) recvfrom(3, "", 8192, 0, 0x7ffcf2f2c9d0, [128->0]) = 0
1609430221.752110
 (+ 0.003569) +++ exited with 0 +++

In the example above, the command took a little more than 54 milliseconds to complete
(752110 - 697712 = 54398 microseconds).

A significant amount of time, approximately 20ms, was taken to instantiate nc and do the name
resolution (from 697712 to 717890), after that, 2ms were required to create the TCP socket
(745659 to 747858), and 0.4 ms (747858 to 748330) to submit and receive the response for the
request.

Dissecting the time taken to complete a single request API Version 2015-02-02 872

Amazon ElastiCache for Redis User Guide

Security in Amazon ElastiCache

Cloud security at AWS is the highest priority. As an AWS customer, you benefit from a data center
and network architecture that is built to meet the requirements of the most security-sensitive
organizations.

Security is a shared responsibility between AWS and you. The shared responsibility model describes
this as security of the cloud and security in the cloud:

• Security of the cloud – AWS is responsible for protecting the infrastructure that runs AWS
services in the AWS Cloud. AWS also provides you with services that you can use securely.
Third-party auditors regularly test and verify the effectiveness of our security as part of the
AWS compliance programs. To learn about the compliance programs that apply to Amazon
ElastiCache, see AWS Services in Scope by Compliance Program.

• Security in the cloud – Your responsibility is determined by the AWS service that you use. You
are also responsible for other factors including the sensitivity of your data, your company’s
requirements, and applicable laws and regulations.

This documentation helps you understand how to apply the shared responsibility model when
using Amazon ElastiCache. The following topics show you how to configure Amazon ElastiCache to
meet your security and compliance objectives. You also learn how to use other AWS services that
help you to monitor and secure your Amazon ElastiCache resources.

Topics

• Data protection in Amazon ElastiCache

• Internetwork traffic privacy

• Identity and Access Management for Amazon ElastiCache

• Compliance validation for Amazon ElastiCache

• Resilience in Amazon ElastiCache

• Infrastructure security in AWS ElastiCache

• Service updates in ElastiCache

API Version 2015-02-02 873

https://aws.amazon.com/compliance/shared-responsibility-model/
https://aws.amazon.com/compliance/programs/
https://aws.amazon.com/compliance/services-in-scope/

Amazon ElastiCache for Redis User Guide

Data protection in Amazon ElastiCache

The AWS shared responsibility model applies to data protection in AWS ElastiCache (ElastiCache).
As described in this model, AWS is responsible for protecting the global infrastructure that runs all
of the AWS Cloud. You are responsible for maintaining control over your content that is hosted on
this infrastructure. This content includes the security configuration and management tasks for the
AWS services that you use. For more information about data privacy, see the Data privacy FAQ.

For data protection purposes, we recommend that you protect AWS account credentials and set up
individual accounts with AWS Identity and Access Management (IAM). That way each user is given
only the permissions necessary to fulfill their job duties. We also recommend that you secure your
data in the following ways:

• Use multi-factor authentication (MFA) with each account.

• Use TLS to communicate with AWS resources.

• Set up API and user activity logging with AWS CloudTrail.

• Use AWS encryption solutions, along with all default security controls within AWS services.

• Use advanced managed security services such as Amazon Macie, which assists in discovering and
securing personal data that is stored in Amazon S3.

We strongly recommend that you never put sensitive identifying information, such as your
customers' account numbers, into free-form fields such as a Name field. This includes when
you work with ElastiCache or other AWS services using the console, API, AWS CLI, or AWS SDKs.
Any data that you enter into ElastiCache or other services might get picked up for inclusion
in diagnostic logs. When you provide a URL to an external server, don't include credentials
information in the URL to validate your request to that server.

Topics

• Data security in Amazon ElastiCache

Data security in Amazon ElastiCache

To help keep your data secure, Amazon ElastiCache and Amazon EC2 provide mechanisms to guard
against unauthorized access of your data on the server.

Amazon ElastiCache for Redis provides encryption features for data on caches running Redis
versions 3.2.6 (scheduled for EOL, see Redis versions end of life schedule), 4.0.10 or later:

Data protection API Version 2015-02-02 874

https://aws.amazon.com/compliance/shared-responsibility-model/
https://aws.amazon.com/compliance/data-privacy-faq
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/deprecated-engine-versions.html

Amazon ElastiCache for Redis User Guide

• In-transit encryption encrypts your data whenever it is moving from one place to another, such
as between nodes in your cluster or between your cache and your application.

• At-rest encryption encrypts your on-disk data during sync and backup operations.

Amazon ElastiCache for Redis also supports authenticating users with either IAM or Redis AUTH,
and authorizing user operations using Role-Based Access Control (RBAC).

ElastiCache for Redis Security Diagram

Topics

• ElastiCache in-transit encryption (TLS)

• At-Rest Encryption in ElastiCache

• Authentication and Authorization

ElastiCache in-transit encryption (TLS)

To help keep your data secure, Amazon ElastiCache and Amazon EC2 provide mechanisms to
guard against unauthorized access of your data on the server. By providing in-transit encryption
capability, ElastiCache gives you a tool you can use to help protect your data when it is moving
from one location to another.

All serverless caches have in-transit encryption enabled. For self-designed clusters,
you can enable in-transit encryption on a replication group by setting the parameter

Data security in Amazon ElastiCache API Version 2015-02-02 875

Amazon ElastiCache for Redis User Guide

TransitEncryptionEnabled to true (CLI: --transit-encryption-enabled) when you
create the replication group. You can do this whether you are creating the replication group using
the AWS Management Console, the AWS CLI, or the ElastiCache API.

Topics

• In-transit encryption overview

• In-transit encryption conditions

• In-transit encryption best practices

• See also

• Enabling in-transit encryption

• Connecting to Amazon ElastiCache for Redis with in-transit encryption using redis-cli

• Enabling in-transit encryption on a self-designed Redis Cluster using Python

• Best practices when enabling in-transit encryption

In-transit encryption overview

Amazon ElastiCache in-transit encryption is a feature that allows you to increase the security of
your data at its most vulnerable points—when it is in transit from one location to another. Because
there is some processing needed to encrypt and decrypt the data at the endpoints, enabling in-
transit encryption can have some performance impact. You should benchmark your data with and
without in-transit encryption to determine the performance impact for your use cases.

ElastiCache in-transit encryption implements the following features:

• Encrypted client connections—client connections to cache nodes are TLS encrypted.

• Encrypted server connections—data moving between nodes in a cluster is encrypted.

• Server authentication—clients can authenticate that they are connecting to the right server.

• Client authentication—using the Redis AUTH feature, the server can authenticate the clients.

In-transit encryption conditions

The following constraints on Amazon ElastiCache in-transit encryption should be kept in mind
when you plan your self-designed cluster implementation:

• In-transit encryption is supported on replication groups running Redis versions 3.2.6, 4.0.10 and
later.

Data security in Amazon ElastiCache API Version 2015-02-02 876

Amazon ElastiCache for Redis User Guide

• Modifying the in-transit encryption setting, for an existing cluster, is supported on replication
groups running Redis version 7 and later.

• In-transit encryption is supported only for replication groups running in an Amazon VPC.

• In-transit encryption is not supported for replication groups running the following node types:
M1, M2.

For more information, see Supported node types.

• In-transit encryption is enabled by explicitly setting the parameter
TransitEncryptionEnabled to true.

• Ensure that your caching client supports TLS connectivity and that you have enabled it in client
configuration.

In-transit encryption best practices

• Because of the processing required to encrypt and decrypt the data at the endpoints,
implementing in-transit encryption can reduce performance. Benchmark in-transit encryption
compared to no encryption on your own data to determine its impact on performance for your
implementation.

• Because creating new connections can be expensive, you can reduce the performance impact of
in-transit encryption by persisting your TLS connections.

See also

• At-Rest Encryption in ElastiCache

• Authenticating with the Redis AUTH command

• Authenticating Users with Role-Based Access Control (RBAC)

• Amazon VPCs and ElastiCache security

• Identity and Access Management for Amazon ElastiCache

Enabling in-transit encryption

All serverless caches have in-transit encryption enabled. On a self-designed cluster, you can enable
in-transit encryption using the AWS Management Console, the AWS CLI, or the ElastiCache API.

Data security in Amazon ElastiCache API Version 2015-02-02 877

https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/Clusters.RBAC.html

Amazon ElastiCache for Redis User Guide

Enabling in-transit encryption using the AWS Management Console

Enabling in-transit encryption for a new self-designed cluster using the AWS Management
Console

When designing your own cluster, 'Dev/Test' and 'Production' configurations with the 'Easy create'
method have in-transit encryption enabled. When choosing configuration yourself, make the
following selections:

• Choose engine version 3.2.6, 4.0.10 or later.

• Click the checkbox next to Enable for the Encryption in transit option.

For the step-by-step process, see the following:

• Creating a Redis (cluster mode disabled) cluster (Console)

• Creating a Redis (cluster mode enabled) cluster (Console)

Enabling in-transit encryption for an existing self-designed cluster using the AWS Management
Console

Enabling encryption in transit, is a two-step process, you must first set the transit encryption
mode to preferred. This mode allows your Redis clients to connect using both encrypted and
unencrypted connections. After you migrate all your Redis clients to use encrypted connections,
you can then modify your cluster configuration to set the transit encryption mode to required.
Setting the transit encryption mode to required will drop all unencrypted connections and will
allow encrypted connections only.

Step 1: Set your Transit encryption mode to Preferred

1. Sign in to the AWS Management Console and open the Amazon ElastiCache console at https://
console.aws.amazon.com/elasticache/.

2. Choose Redis caches from the ElastiCache Resources listed on the navigation pane, present on
the left hand.

3. Choose the Redis cache you want to update.

4. Choose the Actions dropdown, then choose Modify.

5. Choose Enable under Encryption in transit in the Security section.

6. Choose Preferred as the Transit encryption mode.

Data security in Amazon ElastiCache API Version 2015-02-02 878

https://console.aws.amazon.com/elasticache/
https://console.aws.amazon.com/elasticache/

Amazon ElastiCache for Redis User Guide

7. Choose Preview changes and save your changes.

After you migrate all your Redis clients to use encrypted connections:

Step 2: Set your Transit encryption mode to Required

1. Sign in to the AWS Management Console and open the Amazon ElastiCache console at https://
console.aws.amazon.com/elasticache/.

2. Choose Redis caches from the ElastiCache Resources listed on the navigation pane, present on
the left hand.

3. Choose the Redis cache you want to update.

4. Choose the Actions dropdown, then choose Modify.

5. Choose Required as the Transit encryption mode, in the Security section.

6. Choose Preview changes and save your changes.

Enabling in-transit encryption using the AWS CLI

To enable in-transit encryption when creating a Redis replication group using the AWS CLI, use the
parameter transit-encryption-enabled.

Enabling in-transit encryption on a new self-designed cluster for Redis (Cluster Mode Disabled)
(CLI)

Use the AWS CLI operation create-replication-group and the following parameters to create
a Redis replication group with replicas that has in-transit encryption enabled:

Key parameters:

• --engine—Must be redis.

• --engine-version—Must be 3.2.6, 4.0.10 or later.

• --transit-encryption-enabled—Required. If you enable in-transit encryption, you must
also provide a value for the --cache-subnet-group parameter.

• --num-cache-clusters—Must be at least 1. The maximum value for this parameter is six.

For more information, see the following:

• Creating a Redis (Cluster Mode Disabled) replication group from scratch (AWS CLI)

Data security in Amazon ElastiCache API Version 2015-02-02 879

https://console.aws.amazon.com/elasticache/
https://console.aws.amazon.com/elasticache/

Amazon ElastiCache for Redis User Guide

• create-replication-group

Enabling in-transit encryption on a new self-designed cluster for Redis (Cluster Mode Enabled)
(CLI)

Use the AWS CLI operation create-replication-group and the following parameters to create
a Redis (cluster mode enabled) replication group that has in-transit encryption enabled:

Key parameters:

• --engine—Must be redis.

• --engine-version—Must be 3.2.6, 4.0.10 or later.

• --transit-encryption-enabled—Required. If you enable in-transit encryption you must
also provide a value for the --cache-subnet-group parameter.

• Use one of the following parameter sets to specify the configuration of the replication group's
node groups:

• --num-node-groups—Specifies the number of shards (node groups) in this replication
group. The maximum value of this parameter is 500.

--replicas-per-node-group—Specifies the number of replica nodes in each node group.
The value specified here is applied to all shards in this replication group. The maximum value
of this parameter is 5.

• --node-group-configuration—Specifies the configuration of each shard independently.

For more information, see the following:

• Creating a Redis (Cluster Mode Enabled) replication group from scratch (AWS CLI)

• create-replication-group

Enabling in-transit encryption for an existing cluster using the AWS CLI

Enabling encryption in transit, is a two-step process, you must first set the transit encryption
mode to preferred. This mode allows your Redis clients to connect using both encrypted and
unencrypted connections. After you migrate all your Redis clients to use encrypted connections,
you can then modify your cluster configuration to set the transit encryption mode to required.
Setting the transit encryption mode to required will drop all unencrypted connections and will
allow encrypted connections only.

Data security in Amazon ElastiCache API Version 2015-02-02 880

https://docs.aws.amazon.com/cli/latest/reference/elasticache/create-replication-group.html
https://docs.aws.amazon.com/cli/latest/reference/elasticache/create-replication-group.html

Amazon ElastiCache for Redis User Guide

Use the AWS CLI operation modify-replication-group and the following parameters to
update a Redis (cluster mode enabled) replication group that has in-transit encryption disabled.

To enable in-transit encryption

1. Set transit-encryption-mode to preferred, using the following parameters

• --transit-encryption-enabled—Required.

• --transit-encryption-mode—Must be set to preferred.

2. Set transit-encryption-mode to required, using the following parameters:

• --transit-encryption-enabled—Required.

• --transit-encryption-mode—Must be set to required.

Connecting to Amazon ElastiCache for Redis with in-transit encryption using redis-cli

To access data from ElastiCache for Redis caches enabled with in-transit encryption, you use clients
that work with Secure Socket Layer (SSL). You can also use redis-cli with TLS/SSL on Amazon Linux
and Amazon Linux 2. If your client does not support TLS, you can use the stunnel command on
your client host to create an SSL tunnel to the Redis nodes.

Encrypted connection with Linux

To use redis-cli to connect to a Redis cluster enabled with in-transit encryption on Amazon Linux
2023, Amazon Linux 2, or Amazon Linux, follow these steps.

1. Download and compile the redis-cli utility. This utility is included in the Redis software
distribution.

2. At the command prompt of your EC2 instance, type the appropriate commands for the version
of Linux you are using.

Amazon Linux 2023

If using Amazon Linux 2023, enter this:

sudo yum install redis6 -y

Then type the following command, substituting the endpoint of your cluster and port for what
is shown in this example.

Data security in Amazon ElastiCache API Version 2015-02-02 881

Amazon ElastiCache for Redis User Guide

redis-cli -h Primary or Configuration Endpoint --tls -p 6379

For more information on finding the endpoint, see Find your Node Endpoints.

Amazon Linux 2

If using Amazon Linux 2, enter this:

sudo yum -y install openssl-devel gcc
wget http://download.redis.io/redis-stable.tar.gz
tar xvzf redis-stable.tar.gz
cd redis-stable
make distclean
make redis-cli BUILD_TLS=yes
sudo install -m 755 src/redis-cli /usr/local/bin/

Amazon Linux

If using Amazon Linux, enter this:

sudo yum install gcc jemalloc-devel openssl-devel tcl tcl-devel clang wget
wget http://download.redis.io/redis-stable.tar.gz
tar xvzf redis-stable.tar.gz
cd redis-stable
make redis-cli CC=clang BUILD_TLS=yes
sudo install -m 755 src/redis-cli /usr/local/bin/

On Amazon Linux, you may also need to run the following additional steps:

sudo yum install clang
CC=clang make
sudo make install

3. After you have downloaded and installed the redis-cli utility, it is recommended that you run
the optional make-test command.

4. To connect to a cluster with encryption and authentication enabled, enter this command:

redis-cli -h Primary or Configuration Endpoint --tls -a 'your-password' -p 6379

Data security in Amazon ElastiCache API Version 2015-02-02 882

https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/GettingStarted.ConnectToCacheNode.html#GettingStarted.FindEndpoints

Amazon ElastiCache for Redis User Guide

Note

If you install redis6 on Amazon Linux 2023, you can now use the command redis6-
cli instead of redis-cli:

redis6-cli -h Primary or Configuration Endpoint --tls -p 6379

Encrypted connection with stunnel

To use redis-cli to connect to a Redis cluster enabled with in-transit encryption using stunnel,
follow these steps.

1. Use SSH to connect to your client and install stunnel.

sudo yum install stunnel

2. Run the following command to create and edit file '/etc/stunnel/redis-cli.conf'
simultaneously to add a ElastiCache for Redis cluster endpoint to one or more connection
parameters, using the provided output below as template.

vi /etc/stunnel/redis-cli.conf

fips = no
setuid = root
setgid = root
pid = /var/run/stunnel.pid
debug = 7
delay = yes
options = NO_SSLv2
options = NO_SSLv3
[redis-cli]
 client = yes
 accept = 127.0.0.1:6379
 connect = primary.ssltest.wif01h.use1.cache.amazonaws.com:6379
[redis-cli-replica]
 client = yes
 accept = 127.0.0.1:6380

Data security in Amazon ElastiCache API Version 2015-02-02 883

Amazon ElastiCache for Redis User Guide

 connect = ssltest-02.ssltest.wif01h.use1.cache.amazonaws.com:6379

In this example, the config file has two connections, the redis-cli and the redis-cli-
replica. The parameters are set as follows:

• client is set to yes to specify this stunnel instance is a client.

• accept is set to the client IP. In this example, the primary is set to the Redis default 127.0.0.1
on port 6379. The replica must call a different port and set to 6380. You can use ephemeral
ports 1024–65535. For more information, see Ephemeral ports in the Amazon VPC User
Guide.

• connect is set to the Redis server endpoint. For more information, see Finding connection
endpoints.

3. Start stunnel.

sudo stunnel /etc/stunnel/redis-cli.conf

Use the netstat command to confirm that the tunnels started.

sudo netstat -tulnp | grep -i stunnel

tcp 0 0 127.0.0.1:6379 0.0.0.0:* LISTEN
 3189/stunnel
tcp 0 0 127.0.0.1:6380 0.0.0.0:* LISTEN
 3189/stunnel

4. Connect to the encrypted Redis node using the local endpoint of the tunnel.

• If no AUTH password was used during ElastiCache for Redis cluster creation, this example
uses the redis-cli to connect to the ElastiCache for Redis server using complete path for
redis-cli, on Amazon Linux:

/home/ec2-user/redis-stable/src/redis-cli -h localhost -p 6379

If AUTH password was used during Redis cluster creation, this example uses redis-cli to
connect to the Redis server using complete path for redis-cli, on Amazon Linux:

 /home/ec2-user/redis-stable/src/redis-cli -h localhost -p 6379 -a my-secret-
password

Data security in Amazon ElastiCache API Version 2015-02-02 884

https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/VPC_ACLs.html#VPC_ACLs_Ephemeral_Ports

Amazon ElastiCache for Redis User Guide

OR

• Change directory to redis-stable and do the following:

If no AUTH password was used during ElastiCache for Redis cluster creation, this example
uses the redis-cli to connect to the ElastiCache for Redis server using complete path for
redis-cli, on Amazon Linux:

src/redis-cli -h localhost -p 6379

If AUTH password was used during Redis cluster creation, this example uses redis-cli to
connect to the Redis server using complete path for redis-cli, on Amazon Linux:

src/redis-cli -h localhost -p 6379 -a my-secret-password

This example uses Telnet to connect to the Redis server.

telnet localhost 6379

Trying 127.0.0.1...
Connected to localhost.
Escape character is '^]'.
auth MySecretPassword
+OK
get foo
$3
bar

5. To stop and close the SSL tunnels, pkill the stunnel process.

sudo pkill stunnel

Enabling in-transit encryption on a self-designed Redis Cluster using Python

The following guide will demonstrate how to enable in-transit encryption on a Redis 7.0 cluster
that was originally created with in-transit encryption disabled. TCP and TLS clients will continue
communicating with the cluster during this process without downtime.

Data security in Amazon ElastiCache API Version 2015-02-02 885

Amazon ElastiCache for Redis User Guide

Boto3 will get the credentials it needs (aws_access_key_id, aws_secret_access_key,
and aws_session_token) from the environment variables. Those credentials will be pasted in
advance in the same bash terminal where we will run python3 to process the Python code shown
in this guide. The code in the example below was process from an EC2 instance that was launched
in the same VPC that will be used to create the ElastiCache Redis Cluster in it.

Note

• The following examples use the boto3 SDK for ElastiCache management operations
(cluster or user creation) and redis-py/redis-py-cluster for data handling.

• You must use at least boto3 version (=~) 1.26.39 to use the online TLS migration with the
cluster modification API.

• ElastiCache supports online TLS migration only for Redis Clusters with version 7.0 or
above. So if you have a cluster running Redis version earlier than 7.0, you’ll need to
upgrade the Redis version of your cluster. For more information on version differences,
see Major version behavior and compatibility differences.

Topics

• Define the string constants that will launch the ElastiCache Redis Cluster

• Define the classes for the cluster configuration

• Define a class that will represent the cluster itself

• (Optional) Create a wrapper class to demo client connection to Redis cluster

• Create the main function that demos the process of changing in-transit encryption configuration

Define the string constants that will launch the ElastiCache Redis Cluster

First, let’s define some simple Python string constants that will hold the names of the AWS entities
required to create the ElastiCache cluster such as security-group, Cache Subnet group, and
a default parameter group. All of these AWS entities must be created in advance in your AWS
account in the Region you are willing to use.

#Constants definitions
SECURITY_GROUP = "sg-0492aa0a29c558427"
CLUSTER_DESCRIPTION = "This cluster has been launched as part of the online TLS
 migration user guide"

Data security in Amazon ElastiCache API Version 2015-02-02 886

Amazon ElastiCache for Redis User Guide

EC_SUBNET_GROUP = "client-testing"
DEFAULT_PARAMETER_GROUP_REDIS_7_CLUSTER_MODE_ENABLED = "default.redis7.cluster.on"

Define the classes for the cluster configuration

Now, let’s define some simple Python classes that will represent a configuration of a cluster, which
will hold metadata about the cluster such as the Redis version, the instance type, and whether in-
transit encryption (TLS) is enabled or disabled.

#Class definitions

class Config:
 def __init__(
 self,
 instance_type: str = "cache.t4g.small",
 version: str = "7.0",
 multi_az: bool = True,
 TLS: bool = True,
 name: str = None,
):
 self.instance_type = instance_type
 self.version = version
 self.multi_az = multi_az
 self.TLS = TLS
 self.name = name or f"tls-test"

 def create_base_launch_request(self):
 return {
 "ReplicationGroupId": self.name,
 "TransitEncryptionEnabled": self.TLS,
 "MultiAZEnabled": self.multi_az,
 "CacheNodeType": self.instance_type,
 "Engine": "redis",
 "EngineVersion": self.version,
 "CacheSubnetGroupName": EC_SUBNET_GROUP ,
 "CacheParameterGroupName":
 DEFAULT_PARAMETER_GROUP_REDIS_7_CLUSTER_MODE_ENABLED ,
 "ReplicationGroupDescription": CLUSTER_DESCRIPTION,
 "SecurityGroupIds": [SECURITY_GROUP],
 }

class ConfigCME(Config):
 def __init__(

Data security in Amazon ElastiCache API Version 2015-02-02 887

Amazon ElastiCache for Redis User Guide

 self,
 instance_type: str = "cache.t4g.small",
 version: str = "7.0",
 multi_az: bool = True,
 TLS: bool = True,
 name: str = None,
 num_shards: int = 2,
 num_replicas_per_shard: int = 1,
):
 super().__init__(instance_type, version, multi_az, TLS, name)
 self.num_shards = num_shards
 self.num_replicas_per_shard = num_replicas_per_shard

 def create_launch_request(self) -> dict:
 launch_request = self.create_base_launch_request()
 launch_request["NumNodeGroups"] = self.num_shards
 launch_request["ReplicasPerNodeGroup"] = self.num_replicas_per_shard
 return launch_request

Define a class that will represent the cluster itself

Now, let’s define some simple Python classes that will represent the ElastiCache Redis Cluster
itself. This class will have a client field which will hold a boto3 client for ElastiCache management
operations such as creating the cluster and querying the ElastiCache API.

import botocore.config
import boto3

Create boto3 client
def init_client(region: str = "us-east-1"):
 config = botocore.config.Config(retries={"max_attempts": 10, "mode": "standard"})
 init_request = dict()
 init_request["config"] = config
 init_request["service_name"] = "elasticache"
 init_request["region_name"] = region
 return boto3.client(**init_request)

class ElastiCacheClusterBase:
 def __init__(self, name: str):
 self.name = name
 self.elasticache_client = init_client()

Data security in Amazon ElastiCache API Version 2015-02-02 888

Amazon ElastiCache for Redis User Guide

 def get_first_replication_group(self):
 return self.elasticache_client.describe_replication_groups(
 ReplicationGroupId=self.name
)["ReplicationGroups"][0]

 def get_status(self) -> str:
 return self.get_first_replication_group()["Status"]

 def get_transit_encryption_enabled(self) -> bool:
 return self.get_first_replication_group()["TransitEncryptionEnabled"]

 def is_available(self) -> bool:
 return self.get_status() == "available"

 def is_modifying(self) -> bool:
 return self.get_status() == "modifying"

 def wait_for_available(self):
 while True:
 if self.is_available():
 break
 else:
 time.sleep(5)

 def wait_for_modifying(self):
 while True:
 if self.is_modifying():
 break
 else:
 time.sleep(5)

 def delete_cluster(self) -> bool:
 self.elasticache_client.delete_replication_group(
 ReplicationGroupId=self.name, RetainPrimaryCluster=False
)

 def modify_transit_encryption_mode(self, new_transit_encryption_mode: str):
 # generate api call to migrate the cluster to TLS preffered or to TLS required
 self.elasticache_client.modify_replication_group(
 ReplicationGroupId=self.name,
 TransitEncryptionMode=new_transit_encryption_mode,
 TransitEncryptionEnabled=True,
 ApplyImmediately=True,
)

Data security in Amazon ElastiCache API Version 2015-02-02 889

Amazon ElastiCache for Redis User Guide

 self.wait_for_modifying()

 class ElastiCacheClusterCME(ElastiCacheClusterBase):
 def __init__(self, name: str):
 super().__init__(name)

 @classmethod
 def launch(cls, config: ConfigCME = None) -> ElastiCacheClusterCME:
 config = config or ConfigCME()
 print(config)
 new_cluster = ElastiCacheClusterCME(config.name)
 launch_request = config.create_launch_request()
 new_cluster.elasticache_client.create_replication_group(**launch_request)
 new_cluster.wait_for_available()
 return new_cluster

 def get_configuration_endpoint(self) -> str:
 return self.get_first_replication_group()["ConfigurationEndpoint"]["Address"]

#Since the code can throw exceptions, we define this class to make the code more
 readable and
#so we won't forget to delete the cluster
class ElastiCacheCMEManager:
 def __init__(self, config: ConfigCME = None):
 self.config = config or ConfigCME()

 def __enter__(self) -> ElastiCacheClusterCME:
 self.cluster = ElastiCacheClusterCME.launch(self.config)
 return self.cluster

 def __exit__(self, exc_type, exc_val, exc_tb):
 self.cluster.delete_cluster()

(Optional) Create a wrapper class to demo client connection to Redis cluster

Now, let’s create a wrapper class for the redis-py-cluster client. This wrapper class will
support pre-filling the cluster with some keys and then doing random repeated get commands.

Note

This is an optional step but it simplifies the code of the main function that comes in a later
step.

Data security in Amazon ElastiCache API Version 2015-02-02 890

Amazon ElastiCache for Redis User Guide

import redis
improt random
from time import perf_counter_ns, time

class DowntimeTestClient:
 def __init__(self, client):
 self.client = client

 # num of keys prefilled
 self.prefilled = 0
 # percent of get above prefilled
 self.percent_get_above_prefilled = 10 # nil result expected when get hit above
 prefilled
 # total downtime in nano seconds
 self.downtime_ns = 0
 # num of success and fail operations
 self.success_ops = 0
 self.fail_ops = 0
 self.connection_errors = 0
 self.timeout_errors = 0

 def replace_client(self, client):
 self.client = client

 def prefill_data(self, timelimit_sec=60):
 end_time = time() + timelimit_sec
 while time() < end_time:
 self.client.set(self.prefilled, self.prefilled)
 self.prefilled += 1

 # unsuccesful operations throw exceptions
 def _exec(self, func):
 try:
 start_ns = perf_counter_ns()
 func()
 self.success_ops += 1
 elapsed_ms = (perf_counter_ns() - start_ns) // 10 ** 6
 # upon succesful execution of func
 # reset random_key to None so that the next command
 # will use a new random key
 self.random_key = None

Data security in Amazon ElastiCache API Version 2015-02-02 891

Amazon ElastiCache for Redis User Guide

 except Exception as e:
 elapsed_ns = perf_counter_ns() - start_ns
 self.downtime_ns += elapsed_ns
 # in case of failure- increment the relevant counters so that we will keep
 track
 # of how many connection issues we had while trying to communicate with
 # the cluster.
 self.fail_ops += 1
 if e.__class__ is redis.exceptions.ConnectionError:
 self.connection_errors += 1
 if e.__class__ is redis.exceptions.TimeoutError:
 self.timeout_errors += 1

 def _repeat_exec(self, func, seconds):
 end_time = time() + seconds
 while time() < end_time:
 self._exec(func)

 def _new_random_key_if_needed(self, percent_above_prefilled):
 if self.random_key is None:
 max = int((self.prefilled * (100 + percent_above_prefilled)) / 100)
 return random.randint(0, max)
 return self.random_key

 def _random_get(self):
 key = self._new_random_key_if_needed(self.percent_get_above_prefilled)
 result = self.client.get(key)
 # we know the key was set for sure only in the case key < self.prefilled
 if key < self.prefilled:
 assert result.decode("UTF-8") == str(key)

 def repeat_get(self, seconds=60):
 self._repeat_exec(self._random_get, seconds)

 def get_downtime_ms(self) -> int:
 return self.downtime_ns // 10 ** 6

 def do_get_until(self, cond_check):
 while not cond_check():
 self.repeat_get()
 # do one more get cycle once condition is met

Data security in Amazon ElastiCache API Version 2015-02-02 892

Amazon ElastiCache for Redis User Guide

 self.repeat_get()

Create the main function that demos the process of changing in-transit encryption
configuration

Now, let’s define the main function, which will do the following:

1. Create the cluster using boto3 ElastiCache client.

2. Initialize the redis-py-cluster client that will connect to the cluster with a clear TCP
connection without TLS.

3. The redis-py-cluster client prefills the cluster with some data.

4. The boto3 client will trigger TLS migration from no-TLS to TLS preferred.

5. While the cluster is being migrated to TLS Preferred, the redis-py-cluster TCP client will
send repeated get operations to the cluster until the migration is finished.

6. After the migration to TLS Preferred is finished, we will assert that the cluster supports in-
transit encryption. Afterwards, we will create a redis-py-cluster client that will connect to
the cluster with TLS.

7. We will send some get commands using the new TLS client and the old TCP client.

8. The boto3 client will trigger TLS migration from TLS Preferred to TLS required.

9. While the cluster is being migrated to TLS required, the redis-py-cluster TLS client will send
repeated get operations to the cluster until the migration is finished.

import redis

def init_cluster_client(
 cluster: ElastiCacheClusterCME, prefill_data: bool, TLS: bool = True) ->
 DowntimeTestClient:
 # we must use for the host name the cluster configuration endpoint.
 redis_client = redis.RedisCluster(
 host=cluster.get_configuration_endpoint(), ssl=TLS, socket_timeout=0.25,
 socket_connect_timeout=0.1
)
 test_client = DowntimeTestClient(redis_client)
 if prefill_data:
 test_client.prefill_data()
 return test_client

if __name__ == '__main__':

Data security in Amazon ElastiCache API Version 2015-02-02 893

Amazon ElastiCache for Redis User Guide

 config = ConfigCME(TLS=False, instance_type="cache.m5.large")

 with ElastiCacheCMEManager(config) as cluster:
 # create a client that will connect to the cluster with clear tcp connection
 test_client_tcp = init_cluster_client(cluster, prefill_data=True, TLS=False)

 # migrate the cluster to TLS Preferred
 cluster.modify_transit_encryption_mode(new_transit_encryption_mode="preferred")

 # do repeated get commands until the cluster finishes the migration to TLS
 Preferred
 test_client_tcp.do_get_until(cluster.is_available)

 # verify that in transit encryption is enabled so that clients will be able to
 connect to the cluster with TLS
 assert cluster.get_transit_encryption_enabled() == True

 # create a client that will connect to the cluster with TLS connection.
 # we must first make sure that the cluster indeed supports TLS
 test_client_tls = init_cluster_client(cluster, prefill_data=True, TLS=True)

 # by doing get commands with the tcp client for 60 more seconds
 # we can verify that the existing tcp connection to the cluster still works
 test_client_tcp.repeat_get(seconds=60)

 # do get commands with the new TLS client for 60 more seconds
 test_client_tcp.repeat_get(seconds=60)

 # migrate the cluster to TLS required
 cluster.modify_transit_encryption_mode(new_transit_encryption_mode="required")

 # from this point the tcp clients will be disconnected and we must not use them
 anymore.
 # do get commands with the TLS client until the cluster finishes migartion to
 TLS required mode.
 test_client_tls.do_get_until(cluster.is_available)

Data security in Amazon ElastiCache API Version 2015-02-02 894

Amazon ElastiCache for Redis User Guide

Best practices when enabling in-transit encryption

Before enabling in-transit encryption: make sure you have proper DNS records handling

Note

We are changing and deleting old endpoints during this process. Incorrect usage of the
endpoints can result in the Redis client using old and deleted endpoints that will prevent it
from connecting to the cluster.

While the cluster is being migrated from no-TLS to TLS-preferred, the old per-node DNS records
are kept and the new per-node DNS records are being generated in a different format. TLS-enabled
clusters use a different format of DNS records than non-TLS-enabled clusters. ElastiCache will keep
both DNS records when a cluster is configured in encryption mode: Preferred so that Applications
and other Redis Clients can switch between them. The following changes in the DNS records take
place during the TLS-migration process:

Description of the changes in the DNS records that take place when enabling in-transit
encryption

For CME clusters

When a cluster is set to ‘transit encryption mode: preferred’:

• The original cluster endpoints for non-TLS enabled cluster will remain active. There will be no
downtime when cluster is re-configured form TLS encryption mode ‘none’ to ‘preferred’.

• New TLS Redis endpoints will be generated when cluster is set to TLS-preferred mode. These
new endpoints will resolve to the same IPs as the old ones (non-TLS).

• The new TLS Redis configuration endpoint will be exposed in the ElastiCache Console and in the
response to describe-replication-group API.

When a cluster is set to ‘transit encryption mode: required’:

• Old non-TLS enabled endpoints will be deleted. There will be no downtime of TLS cluster
endpoints.

• You can retrieve a new cluster-configuration-endpoint from ElastiCache Console or from
the describe-replication-group API.

Data security in Amazon ElastiCache API Version 2015-02-02 895

Amazon ElastiCache for Redis User Guide

For CMD clusters with Automatic Failover enabled or Automatic Failover disabled

When replication group is set to ‘transit encryption mode: preferred’:

• The original primary endpoint and reader endpoint for non-TLS enabled cluster will remain
active.

• New TLS primary and reader endpoints will be generated when cluster is set to TLS Preferred
mode. This new endpoints will resolve to the same IP(s) as the old ones (non-TLS).

• The new primary endpoint and reader endpoint will be exposed in the ElastiCache Console and in
the response to the describe-replication-group API.

When replication group is set to ‘transit encryption mode: required’:

• Old non-TLS primary and reader endpoints will be deleted. There will be no downtime of TLS
cluster endpoints.

• You can retrieve new primary and reader endpoints from ElastiCache Console or from the
describe-replication-group API.

The suggested usage of the DNS records

For CME clusters

• Use the cluster configuration endpoint instead of per-node DNS records in your application’s
code. Using per-node DNS names directly is not recommended because they might change when
adding or removing shards.

• Don't hardcode cluster configuration endpoint in your application as it will change during this
process.

• Having the cluster configuration endpoint hardcoded in your application is a bad practice since
it can be changed during this process. After the in-transit encryption is completed, query the
cluster configuration endpoint with the describe-replication-group API (as demonstrated
above (in bold)) and use the DNS you get in response from this point on.

For CMD clusters with Automatic Failover enabled

• Use the primary endpoint and reader endpoint instead of the per-node DNS names in your
application’s code since the old per-node DNS names are deleted and new ones are generated
when migrating the cluster from no-TLS to TLS-preferred. Using per-node DNS names directly

Data security in Amazon ElastiCache API Version 2015-02-02 896

Amazon ElastiCache for Redis User Guide

is not recommended because you might add replicas to your cluster in the future. Also, when
Automatic Failover is enabled, the roles of the primary cluster and replicas are changed
automatically by the ElastiCache service, using the primary endpoint and reader endpoint is
suggested to help you keep track of those changes. Lastly, using the reader endpoint will help
you distribute your reads from the replicas equally between the replicas in the cluster.

• Having the primary endpoint and reader endpoint hardcoded in your application is a bad practice
since it can be changed during the TLS migration process. After the migration change to TLS-
preferred is completed, query the primary endpoint and reader endpoint endpoint with the
describe-replication-group API and use the DNS you get in response from this point on. This way
you will be able to keep track of changes in endpoints in a dynamic way.

For CMD cluster with Automatic Failover disabled

• Use the primary endpoint and reader endpoint instead of the per-node DNS names in your
application’s code. When Automatic Failover is disabled, scaling, patching, failover, and other
procedures that are managed automatically by the ElastiCache service when Automatic Failover
is enabled are done by you instead. This makes it easier for you to manually keep track of the
different endpoints. Since the old per-node DNS names are deleted and new ones are generated
when migrating the cluster from no-TLS to TLS-preferred, do not use the per-node DNS names
directly. This is mandatory so that clients will be able to connect to the cluster during the TLS-
migration. Also, you’ll benefit from evenly spreading the reads between the replicas when using
the reader endpoint and keep track of the DNS-records when adding or deleting replicas form
the cluster.

• Having the cluster configuration endpoint hardcoded in your application is a bad practice since it
can be changed during the TLS migration process.

During the in-transit encryption: pay attention to when the migration process finishes

Change of transit encryption mode is not immediate and can take some time. This is especially true
for large clusters. Only when the cluster finishes the migration to TLS-preferred is it able to accept
and serve both TCP and TLS connections. Therefore, you should not create clients that will try to
establish TLS connections to the cluster until the in-transit encryption is completed.

There are several ways to get notified when the in-transit encryption is completed successfully or
failed: (Not shown in the code example above):

• Using the SNS service to get a notification when the encryption is completed

Data security in Amazon ElastiCache API Version 2015-02-02 897

Amazon ElastiCache for Redis User Guide

• Using the describe-events API that will emit an event when the encryption is completed

• Seeing a message in the ElastiCache Console that the encryption is completed

You can also implement logic in your application to know if the encryption is completed. In the
example above, we saw several ways to ensure the cluster finishes the migration:

• Waiting until the migration process starts (the cluster status changes to “modifying“), and
waiting until the modification is finished (the cluster status changes back to “available“)

• Asserting that the cluster has transit_encryption_enabled set to True by querying the
describe-replication-group API.

After enabling in-transit encryption: make sure the clients you use are configured properly

While the cluster is in TLS-preferred mode, your application should open TLS connections to the
cluster and only use those connections. This way your application will not experience downtime
when enabling in-transit encryption. You can make sure that there are no clearer TCP connections
to the Redis engine using the Redis info command under the SSL section.

SSL
ssl_enabled:yes
ssl_current_certificate_not_before_date:Mar 20 23:27:07 2017 GMT
ssl_current_certificate_not_after_date:Feb 24 23:27:07 2117 GMT
ssl_current_certificate_serial:D8C7DEA91E684163
tls_mode_connected_tcp_clients:0 (should be zero)
tls_mode_connected_tls_clients:100

Data security in Amazon ElastiCache API Version 2015-02-02 898

Amazon ElastiCache for Redis User Guide

At-Rest Encryption in ElastiCache

To help keep your data secure, Amazon ElastiCache and Amazon S3 provide different ways to
restrict access to data in your cache. For more information, see Amazon VPCs and ElastiCache
security and Identity and Access Management for Amazon ElastiCache.

ElastiCache at-rest encryption is a feature to increase data security by encrypting on-disk data. It is
always enabled on a serverless cache. When enabled, it encrypts the following aspects:

• Disk during sync, backup and swap operations

• Backups stored in Amazon S3

Data stored on SSDs (solid-state drives) in data tiering enabled clusters is always encrypted.

ElastiCache offers default (service managed) encryption at rest, as well as ability to use your own
symmetric customer managed AWS KMS keys in AWS Key Management Service (KMS). When the
cache is backed up, under encryption options, choose whether to use the default encryption key or
a customer-managed key. For more information, see Enabling At-Rest Encryption.

Note

The default (service managed) encryption is the only option available in the GovCloud (US)
Regions.

Important

Enabling at-Rest Encryption on an existing self-designed Redis cluster involves deleting
your existing replication group, after running backup and restore on the replication group.

At-rest encryption can be enabled on a cache only when it is created. Because there is some
processing needed to encrypt and decrypt the data, enabling at-rest encryption can have a
performance impact during these operations. You should benchmark your data with and without
at-rest encryption to determine the performance impact for your use cases.

Topics

• At-Rest Encryption Conditions

Data security in Amazon ElastiCache API Version 2015-02-02 899

https://docs.aws.amazon.com/kms/latest/developerguide/overview.html

Amazon ElastiCache for Redis User Guide

• Using customer managed keys from AWS KMS

• Enabling At-Rest Encryption

• See Also

At-Rest Encryption Conditions

The following constraints on ElastiCache at-rest encryption should be kept in mind when you plan
your implementation of ElastiCache encryption at-rest:

• At-rest encryption is supported on replication groups running Redis versions (3.2.6 scheduled for
EOL, see Redis versions end of life schedule), 4.0.10 or later.

• At-rest encryption is supported only for replication groups running in an Amazon VPC.

• At-rest encryption is only supported for replication groups running the following node types.

• R6gd, R6g, R5, R4, R3

• M6g, M5, M4, M3

• T4g,T3, T2

For more information, see Supported node types

• At-rest encryption is enabled by explicitly setting the parameter AtRestEncryptionEnabled
to true.

• You can enable at-rest encryption on a replication group only when creating the replication
group. You cannot toggle at-rest encryption on and off by modifying a replication group. For
information on implementing at-rest encryption on an existing replication group, see Enabling
At-Rest Encryption.

• If a cluster is using a node type from the r6gd family, data stored on SSD is encrypted whether
at-rest encryption is enabled or not.

• The option to use customer managed key for encryption at rest is not available in AWS GovCloud
(us-gov-east-1 and us-gov-west-1) regions.

• If a cluster is using a node type from the r6gd family, data stored on SSD is encrypted with the
chosen customer managed AWS KMS key (or service-managed encryption in AWS GovCloud
Regions).

Implementing at-rest encryption can reduce performance during backup and node sync operations.
Benchmark at-rest encryption compared to no encryption on your own data to determine its
impact on performance for your implementation.

Data security in Amazon ElastiCache API Version 2015-02-02 900

https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/deprecated-engine-versions.html

Amazon ElastiCache for Redis User Guide

Using customer managed keys from AWS KMS

ElastiCache supports symmetric customer managed AWS KMS keys (KMS key) for encryption
at rest. Customer-managed KMS keys are encryption keys that you create, own and manage in
your AWS account. For more information, see AWS KMS keys in the AWS Key Management Service
Developer Guide. The keys must be created in AWS KMS before they can be used with ElastiCache.

To learn how to create AWS KMS root keys, see Creating Keys in the AWS Key Management Service
Developer Guide.

ElastiCache allows you to integrate with AWS KMS. For more information, see Using Grants in the
AWS Key Management Service Developer Guide. No customer action is needed to enable Amazon
ElastiCache integration with AWS KMS.

The kms:ViaService condition key limits use of an AWS KMS key (KMS key) to requests from
specified AWS services. To use kms:ViaService with ElastiCache, include both ViaService
names in the condition key value: elasticache.AWS_region.amazonaws.com and
dax.AWS_region.amazonaws.com. For more information, see kms:ViaService.

You can use AWS CloudTrail to track the requests that Amazon ElastiCache sends to AWS Key
Management Service on your behalf. All API calls to AWS Key Management Service related to
customer managed keys have corresponding CloudTrail logs. You can also see the grants that
ElastiCache creates by calling the ListGrants KMS API call.

Once a replication group is encrypted using customer managed key, all backups for the replication
group are encrypted as follows:

• Automatic daily backups are encrypted using the customer managed key associated with the
cluster.

• Final backup created when replication group is deleted, is also encrypted using the customer
managed key associated with the replication group.

• Manually created backups are encrypted by default to use the KMS key associated with the
replication group. You may override this by choosing another customer managed key.

• Copying a backup defaults to using a customer managed key associated with the source backup.
You may override this by choosing another customer managed key.

Data security in Amazon ElastiCache API Version 2015-02-02 901

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#root_keys
https://docs.aws.amazon.com/kms/latest/developerguide/create-keys.html
https://docs.aws.amazon.com/kms/latest/developerguide/grants.html
https://docs.aws.amazon.com/kms/latest/developerguide/policy-conditions.html#conditions-kms-via-service
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-user-guide.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_ListGrants.html

Amazon ElastiCache for Redis User Guide

Note

• Customer managed keys cannot be used when exporting backups to your selected
Amazon S3 bucket. However, all backups exported to Amazon S3 are encrypted using
Server side encryption. You may choose to copy the backup file to a new S3 object and
encrypt using a customer managed KMS key, copy the file to another S3 bucket that is
set up with default encryption using a KMS key or change an encryption option in the file
itself.

• You can also use customer managed keys to encrypt manually-created backups for
replication groups that do not use customer managed keys for encryption. With this
option, the backup file stored in Amazon S3 is encrypted using a KMS key, even though
the data is not encrypted on the original replication group.

Restoring from a backup allows you to choose from available encryption options, similar to
encryption choices available when creating a new replication group.

• If you delete the key or disable the key and revoke grants for the key that you used to encrypt a
cache, the cache becomes irrecoverable. In other words, it cannot be modified or recovered after
a hardware failure. AWS KMS deletes root keys only after a waiting period of at least seven days.
After the key is deleted, you can use a different customer managed key to create a backup for
archival purposes.

• Automatic key rotation preserves the properties of your AWS KMS root keys, so the rotation
has no effect on your ability to access your ElastiCache data. Encrypted Amazon ElastiCache
caches don't support manual key rotation, which involves creating a new root key and updating
any references to the old key. To learn more, see Rotating AWS KMS keys in the AWS Key
Management Service Developer Guide.

• Encrypting an ElastiCache cache using KMS key requires one grant per cache. This grant is used
throughout the lifespan of the cache. Additionally, one grant per backup is used during backup
creation. This grant is retired once the backup is created.

• For more information on AWS KMS grants and limits, see Limits in the AWS Key Management
Service Developer Guide.

Data security in Amazon ElastiCache API Version 2015-02-02 902

https://docs.aws.amazon.com/AmazonS3/latest/dev/UsingServerSideEncryption.html
https://docs.aws.amazon.com/kms/latest/developerguide/enabling-keys.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_RevokeGrant.html
https://docs.aws.amazon.com/kms/latest/developerguide/rotate-keys.html
https://docs.aws.amazon.com/kms/latest/developerguide/limits.html

Amazon ElastiCache for Redis User Guide

Enabling At-Rest Encryption

All serverless caches have at-rest encryption enabled.

When creating a self-designed cluster, you can enable at-rest encryption by setting the parameter
AtRestEncryptionEnabled to true. You can't enable at-rest encryption on existing replication
groups.

You can enable at-rest encryption when you create an ElastiCache cache. You can do so using the
AWS Management Console, the AWS CLI, or the ElastiCache API.

When creating a cache, you can pick one of the following options:

• Default – This option uses service managed encryption at rest.

• Customer managed key – This option allows you to provide the Key ID/ARN from AWS KMS for
encryption at rest.

To learn how to create AWS KMS root keys, see Create Keys in the AWS Key Management Service
Developer Guide

Contents

• Enabling At-Rest Encryption Using the AWS Management Console

• Enabling At-Rest Encryption Using the AWS CLI

Enabling At-Rest Encryption on an Existing Self-Designed Redis Cluster

You can only enable at-rest encryption when you create a Redis replication group. If you have an
existing replication group on which you want to enable at-rest encryption, do the following.

To enable at-rest encryption on an existing replication group

1. Create a manual backup of your existing replication group. For more information, see Taking
manual backups.

2. Create a new replication group by restoring from the backup. On the new replication group,
enable at-rest encryption. For more information, see Restoring from a backup into a new
cache.

3. Update the endpoints in your application to point to the new replication group.

Data security in Amazon ElastiCache API Version 2015-02-02 903

https://docs.aws.amazon.com/kms/latest/developerguide/create-keys.html

Amazon ElastiCache for Redis User Guide

4. Delete the old replication group. For more information, see Deleting a cluster or Deleting a
replication group.

Enabling At-Rest Encryption Using the AWS Management Console

Enabling At-Rest Encryption on a Serverless Cache (Console)

All serverless caches have at-rest encryption enabled. By default, an AWS-owned KMS key is used
to encrypt data. To choose your own AWS KMS key, make the following selections:

• Expand the Default settings section.

• Choose Customize default settings under Default settings section.

• Choose Customize your security settings under Security section.

• Choose Customer managed CMK under Encryption key setting.

• Select a key under AWS KMS key setting.

Enabling At-Rest Encryption on a Self-Designed Cluster (Console)

When designing your own cache, 'Dev/Test' and 'Production' configurations with the 'Easy create'
method have at-rest encryption enabled using the Default key. When choosing configuration
yourself, make the following selections:

• Choose version 3.2.6, 4.0.10 or later as your engine version.

• Click the checkbox next to Enable for the Encryption at rest option.

• Choose either a Default key or Customer managed CMK.

For the step-by-step procedure, see the following:

• Creating a Redis (cluster mode disabled) cluster (Console)

• Creating a Redis (cluster mode enabled) cluster (Console)

Enabling At-Rest Encryption Using the AWS CLI

To enable at-rest encryption when creating a Redis cluster using the AWS CLI, use the --at-rest-
encryption-enabled parameter when creating a replication group.

Data security in Amazon ElastiCache API Version 2015-02-02 904

Amazon ElastiCache for Redis User Guide

Enabling At-Rest Encryption on a Redis (Cluster Mode Disabled) Cluster (CLI)

The following operation creates the Redis (cluster mode disabled) replication group my-classic-
rg with three nodes (--num-cache-clusters), a primary and two read replicas. At-rest encryption is
enabled for this replication group (--at-rest-encryption-enabled).

The following parameters and their values are necessary to enable encryption on this replication
group:

Key Parameters

• --engine—Must be redis.

• --engine-version—Must be 3.2.6, 4.0.10 or later.

• --at-rest-encryption-enabled—Required to enable at-rest encryption.

Example 1: Redis (Cluster Mode Disabled) Cluster with Replicas

For Linux, macOS, or Unix:

aws elasticache create-replication-group \
 --replication-group-id my-classic-rg \
 --replication-group-description "3 node replication group" \
 --cache-node-type cache.m4.large \
 --engine redis \
 --at-rest-encryption-enabled \
 --num-cache-clusters 3

For Windows:

aws elasticache create-replication-group ^
 --replication-group-id my-classic-rg ^
 --replication-group-description "3 node replication group" ^
 --cache-node-type cache.m4.large ^
 --engine redis ^
 --at-rest-encryption-enabled ^
 --num-cache-clusters 3 ^

For additional information, see the following:

• Creating a Redis (Cluster Mode Disabled) replication group from scratch (AWS CLI)

• create-replication-group

Data security in Amazon ElastiCache API Version 2015-02-02 905

https://docs.aws.amazon.com/cli/latest/reference/elasticache/create-replication-group.html

Amazon ElastiCache for Redis User Guide

Enabling At-Rest Encryption on a Cluster for Redis (Cluster Mode Enabled) (CLI)

The following operation creates the Redis (cluster mode enabled) replication group my-
clustered-rg with three node groups or shards (--num-node-groups). Each has three nodes, a
primary and two read replicas (--replicas-per-node-group). At-rest encryption is enabled for this
replication group (--at-rest-encryption-enabled).

The following parameters and their values are necessary to enable encryption on this replication
group:

Key Parameters

• --engine—Must be redis.

• --engine-version—Must be 4.0.10 or later.

• --at-rest-encryption-enabled—Required to enable at-rest encryption.

• --cache-parameter-group—Must be default-redis4.0.cluster.on or one derived
from it to make this a cluster mode enabled replication group.

Example 2: A Redis (Cluster Mode Enabled) Cluster

For Linux, macOS, or Unix:

aws elasticache create-replication-group \
 --replication-group-id my-clustered-rg \
 --replication-group-description "redis clustered cluster" \
 --cache-node-type cache.m3.large \
 --num-node-groups 3 \
 --replicas-per-node-group 2 \
 --engine redis \
 --engine-version 6.2 \
 --at-rest-encryption-enabled \
 --cache-parameter-group default.redis6.x.cluster.on

For Windows:

aws elasticache create-replication-group ^
 --replication-group-id my-clustered-rg ^

Data security in Amazon ElastiCache API Version 2015-02-02 906

Amazon ElastiCache for Redis User Guide

 --replication-group-description "redis clustered cluster" ^
 --cache-node-type cache.m3.large ^
 --num-node-groups 3 ^
 --replicas-per-node-group 2 ^
 --engine redis ^
 --engine-version 6.2 ^
 --at-rest-encryption-enabled ^
 --cache-parameter-group default.redis6.x.cluster.on

For additional information, see the following:

• Creating a Redis (Cluster Mode Enabled) replication group from scratch (AWS CLI)

• create-replication-group

See Also

• Amazon VPCs and ElastiCache security

• Identity and Access Management for Amazon ElastiCache

Authentication and Authorization

ElastiCache supports authenticating users using IAM and the Redis AUTH command, and
authorizing user operations using Role-Based Access Control (RBAC).

Topics

• Role-Based Access Control (RBAC)

• Authenticating with the Redis AUTH command

• Disabling access control on an ElastiCache Redis cache

Role-Based Access Control (RBAC)

Instead of authenticating users with the Redis AUTH command as described in Authenticating with
the Redis AUTH command, in Redis 6.0 onward you can use a feature called Role-Based Access
Control (RBAC). RBAC is also the only way to control access to serverless caches.

Unlike Redis AUTH, where all authenticated clients have full cache access if their token is
authenticated, RBAC enables you to control cache access through user groups. These user groups
are designed as a way to organize access to caches.

Data security in Amazon ElastiCache API Version 2015-02-02 907

https://docs.aws.amazon.com/cli/latest/reference/elasticache/create-replication-group.html

Amazon ElastiCache for Redis User Guide

With RBAC, you create users and assign them specific permissions by using an access string,
as described following. You assign the users to user groups aligned with a specific role
(administrators, human resources) that are then deployed to one or more ElastiCache for Redis
caches. By doing this, you can establish security boundaries between clients using the same Redis
cache or caches and prevent clients from accessing each other’s data.

RBAC is designed to support the introduction of Redis ACL in Redis 6. When you use RBAC with
your ElastiCache for Redis cache, there are some limitations:

• You can't specify passwords in an access string. You set passwords with CreateUser or ModifyUser
calls.

• For user rights, you pass on and off as a part of the access string. If neither is specified in the
access string, the user is assigned off and doesn't have access rights to the cache.

• You can't use forbidden and renamed commands. If you specify a forbidden or a renamed
command, an exception will be thrown. If you want to use access control lists (ACLs) for a
renamed command, specify the original name of the command, in other words the name of the
command before it was renamed.

• You can't use the reset command as a part of an access string. You specify passwords with API
parameters, and ElastiCache for Redis manages passwords. Thus, you can't use reset because it
would remove all passwords for a user.

• Redis 6 introduces the ACL LIST command. This command returns a list of users along with the
ACL rules applied to each user. ElastiCache for Redis supports the ACL LIST command, but does
not include support for password hashes as Redis does. With ElastiCache for Redis, you can use
the describe-users operation to get similar information, including the rules contained within the
access string. However, describe-users doesn't retrieve a user password.

Other read-only commands supported by ElastiCache for Redis include ACL WHOAMI, ACL
USERS, and ACL CAT. ElastiCache for Redis doesn't support any other write-based ACL
commands.

• The following constraints apply:

Resource Maximum allowed

Users per user group 100

Number of users 1000

Data security in Amazon ElastiCache API Version 2015-02-02 908

https://redis.io/docs/manual/security/acl/
https://docs.aws.amazon.com/AmazonElastiCache/latest/APIReference/API_CreateUser.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/APIReference/API_ModifyUser.html
https://redis.io/commands/acl-list
https://docs.aws.amazon.com/cli/latest/reference/elasticache/describe-users.html
https://docs.aws.amazon.com/cli/latest/reference/elasticache/describe-users.html
https://redis.io/commands/acl-whoami
https://redis.io/commands/acl-users
https://redis.io/commands/acl-users
https://redis.io/commands/acl-cat

Amazon ElastiCache for Redis User Guide

Resource Maximum allowed

Number of user groups 100

Using RBAC with ElastiCache for Redis is described in more detail following.

Topics

• Specifying Permissions Using an Access String

• Applying RBAC to a Cache for ElastiCache for Redis

• Migrating from Redis AUTH to RBAC

• Migrating from RBAC to Redis AUTH

• Automatically rotating passwords for users

• Authenticating with IAM

Specifying Permissions Using an Access String

To specify permissions to an ElastiCache for Redis cache, you create an access string and assign it to
a user, using either the AWS CLI or AWS Management Console.

Access strings are defined as a list of space-delimited rules which are applied on the user. They
define which commands a user can execute and which keys a user can operate on. In order to
execute a command, a user must have access to the command being executed and all keys being
accessed by the command. Rules are applied from left to right cumulatively, and a simpler string
may be used instead of the one provided if there are redundancies in the string provided.

For information about the syntax of the ACL rules, see ACL.

In the following example, the access string represents an active user with access to all available
keys and commands.

on ~* +@all

The access string syntax is broken down as follows:

• on – The user is an active user.

• ~* – Access is given to all available keys.

• +@all – Access is given to all available commands.

Data security in Amazon ElastiCache API Version 2015-02-02 909

https://redis.io/topics/acl

Amazon ElastiCache for Redis User Guide

The preceding settings are the least restrictive. You can modify these settings to make them more
secure.

In the following example, the access string represents a user with access restricted to read access
on keys that start with “app::” keyspace

on ~app::* -@all +@read

You can refine these permissions further by listing commands the user has access to:

+command1 – The user's access to commands is limited to command1.

+@category – The user's access is limited to a category of commands.

For information on assigning an access string to a user, see Creating Users and User Groups with
the Console and CLI.

If you are migrating an existing workload to ElastiCache, you can retrieve the access string by
calling ACL LIST, excluding the user and any password hashes.

For Redis version 6.2 and above the following access string syntax is also supported:

• &* – Access is given to all available channels.

For Redis version 7.0 and above the following access string syntax is also supported:

• | – Can be used for blocking subcommands (e.g "-config|set").

• %R~<pattern> – Add the specified read key pattern. This behaves similar to the regular key
pattern but only grants permission to read from keys that match the given pattern. See key
permissions for more information.

• %W~<pattern> – Add the specified write key pattern. This behaves similar to the regular key
pattern but only grants permission to write to keys that match the given pattern. See key
permissions for more information.

• %RW~<pattern> – Alia for ~<pattern>.

• (<rule list>) – Create a new selector to match rules against. Selectors are evaluated after
the user permissions, and are evaluated according to the order they are defined. If a command
matches either the user permissions or any selector, it is allowed. See ACL selectors more
information.

Data security in Amazon ElastiCache API Version 2015-02-02 910

https://redis.io/docs/management/security/acl/#key-permission
https://redis.io/docs/management/security/acl/#key-permission
https://redis.io/docs/management/security/acl/#key-permission
https://redis.io/docs/management/security/acl/#key-permission
https://redis.io/docs/management/security/acl/#selectors

Amazon ElastiCache for Redis User Guide

• clearselectors – Delete all of the selectors attached to the user.

Applying RBAC to a Cache for ElastiCache for Redis

To use ElastiCache for Redis RBAC, you take the following steps:

1. Create one or more users.

2. Create a user group and add users to the group.

3. Assign the user group to a cache that has in-transit encryption enabled.

These steps are described in detail following.

Topics

• Creating Users and User Groups with the Console and CLI

• Managing User Groups with the Console and CLI

• Assigning User Groups to Serverless Caches

• Assigning User Groups to Replication Groups

Creating Users and User Groups with the Console and CLI

The user information for RBAC users is a user ID, user name, and optionally a password and an
access string. The access string provides the permission level on keys and commands. The user ID is
unique to the user, and the user name is what is passed to the engine.

Make sure that the user permissions you provide make sense with the intended purpose of the
user group. For example, if you create a user group called Administrators, any user you add to
that group should have its access string set to full access to keys and commands. For users in an e-
commerce user group, you might set their access strings to read-only access.

ElastiCache automatically configures a default user with user ID and user name "default"
and adds it to all user groups. You can't modify or delete this user. This user is intended for
compatibility with the default behavior of previous Redis versions and has an access string that
permits it to call all commands and access all keys.

To add proper access control to a cache, replace this default user with a new one that isn't enabled
or uses a strong password. To change the default user, create a new user with the user name set to
default. You can then swap it with the original default user.

Data security in Amazon ElastiCache API Version 2015-02-02 911

Amazon ElastiCache for Redis User Guide

The following procedures shows how to swap the original default user with another default
user that has a modified access string.

To modify the default user on the console

1. Sign in to the AWS Management Console and open the Amazon ElastiCache console at https://
console.aws.amazon.com/elasticache/.

2. Choose User group management from the navigation pane.

3. For User group ID, choose the ID that you want to modify. Make sure that you choose the link
and not the check box.

4. Choose Modify.

5. In the Modify window, choose Manage and for select the user that you want as the default
user with the User name as default.

6. Choose Choose.

7. Choose Modify. When you do this, any existing connections to a cache that the original default
user has are terminated.

To modify the default user with the AWS CLI

1. Create a new user with the user name default by using the following commands.

For Linux, macOS, or Unix:

aws elasticache create-user \
 --user-id "new-default-user" \
 --user-name "default" \
 --engine "REDIS" \
 --passwords "a-str0ng-pa))word" \
 --access-string "off +get ~keys*"

For Windows:

aws elasticache create-user ^
 --user-id "new-default-user" ^
 --user-name "default" ^
 --engine "REDIS" ^
 --passwords "a-str0ng-pa))word" ^
 --access-string "off +get ~keys*"

Data security in Amazon ElastiCache API Version 2015-02-02 912

https://console.aws.amazon.com/elasticache/
https://console.aws.amazon.com/elasticache/

Amazon ElastiCache for Redis User Guide

2. Create a user group and add the user that you created previously.

For Linux, macOS, or Unix:

aws elasticache create-user-group \
 --user-group-id "new-group-2" \
 --engine "REDIS" \
 --user-ids "new-default-user"

For Windows:

aws elasticache create-user-group ^
 --user-group-id "new-group-2" ^
 --engine "REDIS" ^
 --user-ids "new-default-user"

3. Swap the new default user with the original default user.

For Linux, macOS, or Unix:

aws elasticache modify-user-group \
 --user-group-id test-group \
 --user-ids-to-add "new-default-user" \
 --user-ids-to-remove "default"

For Windows:

aws elasticache modify-user-group ^
 --user-group-id test-group ^
 --user-ids-to-add "new-default-user" ^
 --user-ids-to-remove "default"

When this modify operation is called, any existing connections to a cache that the original
default user has are terminated.

When creating a user, you can set up to two passwords. When you modify a password, any existing
connections to caches are maintained.

In particular, be aware of these user password constraints when using RBAC for ElastiCache for
Redis:
Data security in Amazon ElastiCache API Version 2015-02-02 913

Amazon ElastiCache for Redis User Guide

• Passwords must be 16–128 printable characters.

• The following nonalphanumeric characters are not allowed: , "" / @.

Managing Users with the Console and CLI

Use the following procedure to manage users on the console.

To manage users on the console

1. Sign in to the AWS Management Console and open the Amazon ElastiCache console at https://
console.aws.amazon.com/elasticache/.

2. On the Amazon ElastiCache dashboard, choose User management. The following options are
available:

• Create user – When creating a user, you enter a user ID, user name, authentication mode,
and access string. The access string sets the permission level for what keys and commands
the user is allowed.

When creating a user, you can set up to two passwords. When you modify a password, any
existing connections to caches are maintained.

• Modify user – Enables you to update a user's authentication settings or change its access
string.

• Delete user – The account will be removed from any User Groups to which it belongs.

Use the following procedures to manage users with the AWS CLI.

To modify a user by using the CLI

• Use the modify-user command to update a user's password or passwords or change a user's
access permissions.

When a user is modified, the user groups associated with the user are updated, along with any
caches associated with the user group. All existing connections are maintained. The following
are examples.

For Linux, macOS, or Unix:

aws elasticache modify-user \

Data security in Amazon ElastiCache API Version 2015-02-02 914

https://console.aws.amazon.com/elasticache/
https://console.aws.amazon.com/elasticache/

Amazon ElastiCache for Redis User Guide

 --user-id user-id-1 \
 --access-string "~objects:* ~items:* ~public:*" \
 --no-password-required

For Windows:

aws elasticache modify-user ^
 --user-id user-id-1 ^
 --access-string "~objects:* ~items:* ~public:*" ^
 --no-password-required

Note

We don't recommend using the nopass option. If you do, we recommend setting the user's
permissions to read-only with access to a limited set of keys.

To delete a user by using the CLI

• Use the delete-user command to delete a user. The account is deleted and removed from
any user groups to which it belongs. The following is an example.

For Linux, macOS, or Unix:

aws elasticache delete-user \
 --user-id user-id-2

For Windows:

aws elasticache delete-user ^
 --user-id user-id-2

To see a list of users, call the describe-users operation.

aws elasticache describe-users

Data security in Amazon ElastiCache API Version 2015-02-02 915

https://docs.aws.amazon.com/cli/latest/reference/elasticache/describe-users.html

Amazon ElastiCache for Redis User Guide

Managing User Groups with the Console and CLI

You can create user groups to organize and control access of users to one or more caches, as shown
following.

Use the following procedure to manage user groups using the console.

To manage user groups using the console

1. Sign in to the AWS Management Console and open the Amazon ElastiCache console at https://
console.aws.amazon.com/elasticache/.

2. On the Amazon ElastiCache dashboard, choose User group management.

The following operations are available to create new user groups:

• Create – When you create a user group, you add users and then assign the user groups to
caches. For example, you can create an Admin user group for users who have administrative
roles on a cache.

Important

When you create a user group, you are required to include the default user.

• Add Users – Add users to the user group.

• Remove Users – Remove users from the user group. When users are removed from a user
group, any existing connections they have to a cache are terminated.

• Delete – Use this to delete a user group. Note that the user group itself, not the users
belonging to the group, will be deleted.

For existing user groups, you can do the following:

• Add Users – Add existing users to the user group.

• Delete Users – Removes existing users from the user group.

Note

Users are removed from the user group, but not deleted from the system.

Data security in Amazon ElastiCache API Version 2015-02-02 916

https://console.aws.amazon.com/elasticache/
https://console.aws.amazon.com/elasticache/

Amazon ElastiCache for Redis User Guide

Use the following procedures to manage user groups using the CLI.

To create a new user group and add a user by using the CLI

• Use the create-user-group command as shown following.

For Linux, macOS, or Unix:

aws elasticache create-user-group \
 --user-group-id "new-group-1" \
 --engine "REDIS" \
 --user-ids user-id-1, user-id-2

For Windows:

aws elasticache create-user-group ^
 --user-group-id "new-group-1" ^
 --engine "REDIS" ^
 --user-ids user-id-1, user-id-2

To modify a user group by adding new users or removing current members by using the CLI

• Use the modify-user-group command as shown following.

For Linux, macOS, or Unix:

aws elasticache modify-user-group --user-group-id new-group-1 \
--user-ids-to-add user-id-3 \
--user-ids-to-remove user-id-2

For Windows:

aws elasticache modify-user-group --user-group-id new-group-1 ^
--user-ids-to-add userid-3 ^
--user-ids-to-removere user-id-2

Data security in Amazon ElastiCache API Version 2015-02-02 917

Amazon ElastiCache for Redis User Guide

Note

Any open connections belonging to a user removed from a user group are ended by this
command.

To delete a user group by using the CLI

• Use the delete-user-group command as shown following. The user group itself, not the
users belonging to the group, is deleted.

For Linux, macOS, or Unix:

aws elasticache delete-user-group /
 --user-group-id

For Windows:

aws elasticache delete-user-group ^
 --user-group-id

To see a list of user groups, you can call the describe-user-groups operation.

aws elasticache describe-user-groups \
 --user-group-id test-group

Assigning User Groups to Serverless Caches

After you have created a user group and added users, the final step in implementing RBAC is
assigning the user group to a serverless cache.

Assigning User Groups to Serverless Caches Using the Console

To add a user group to a serverless cache using the AWS Management Console, do the following:

• For cluster mode disabled, see Creating a Redis (cluster mode disabled) cluster (Console)

• For cluster mode enabled, see Creating a Redis (cluster mode enabled) cluster (Console)

Data security in Amazon ElastiCache API Version 2015-02-02 918

https://docs.aws.amazon.com/cli/latest/reference/elasticache/describe-user-groups.html

Amazon ElastiCache for Redis User Guide

Assigning User Groups to Serverless Caches Using the AWS CLI

The following AWS CLI operation creates a serverless cache using the user-group-id parameter
with the value my-user-group-id. Replace the subnet group sng-test with a subnet group that
exists.

Key Parameters

• --engine – Must be redis.

• --user-group-id – This value provides the ID of the user group, comprised of users with
specified access permissions for the cache.

For Linux, macOS, or Unix:

aws elasticache create-serverless-cache \
 --serverless-cache-name "new-serverless-cache" \
 --description "new-serverless-cache" \
 --engine "redis" \
 --user-group-id "new-group-1"

For Windows:

aws elasticache create-serverless-cache ^
 --serverless-cache-name "new-serverless-cache" ^
 --description "new-serverless-cache" ^
 --engine "redis" ^
 --user-group-id "new-group-1"

The following AWS CLI operation modifies a serverless cache with the user-group-id parameter
with the value my-user-group-id.

For Linux, macOS, or Unix:

aws elasticache modify-serverless-cache \
 --serverless-cache-name serverless-cache-1 \
 --user-group-id "new-group-2"

For Windows:

aws elasticache modify-serverless-cache ^

Data security in Amazon ElastiCache API Version 2015-02-02 919

Amazon ElastiCache for Redis User Guide

 --serverless-cache-name serverless-cache-1 ^
 --user-group-id "new-group-2"

Note that any modifications made to a cache are updated asynchronously. You can monitor this
progress by viewing the events. For more information, see Viewing ElastiCache events.

Assigning User Groups to Replication Groups

After you have created a user group and added users, the final step in implementing RBAC is
assigning the user group to a replication group.

Assigning User Groups to Replication Groups Using the Console

To add a user group to a replication using the AWS Management Console, do the following:

• For cluster mode disabled, see Creating a Redis (cluster mode disabled) cluster (Console)

• For cluster mode enabled, see Creating a Redis (cluster mode enabled) cluster (Console)

Assigning User Groups to Replication Groups Using the AWS CLI

The following AWS CLI operation creates a replication group with encryption in transit (TLS)
enabled and the user-group-ids parameter with the value my-user-group-id. Replace the
subnet group sng-test with a subnet group that exists.

Key Parameters

• --engine – Must be redis.

• --engine-version – Must be 6.0 or later.

• --transit-encryption-enabled – Required for authentication and for associating a user
group.

• --user-group-ids – This value provides the ID of the user group, comprised of users with
specified access permissions for the cache.

• --cache-subnet-group – Required for associating a user group.

For Linux, macOS, or Unix:

aws elasticache create-replication-group \
 --replication-group-id "new-replication-group" \
 --replication-group-description "new-replication-group" \

Data security in Amazon ElastiCache API Version 2015-02-02 920

Amazon ElastiCache for Redis User Guide

 --engine "redis" \
 --cache-node-type cache.m5.large \
 --transit-encryption-enabled \
 --user-group-ids "new-group-1" \
 --cache-subnet-group "cache-subnet-group"

For Windows:

aws elasticache create-replication-group ^
 --replication-group-id "new-replication-group" ^
 --replication-group-description "new-replication-group" ^
 --engine "redis" ^
 --cache-node-type cache.m5.large ^
 --transit-encryption-enabled ^
 --user-group-ids "new-group-1" ^
 --cache-subnet-group "cache-subnet-group"

The following AWS CLI operation modifies a replication group with encryption in transit (TLS)
enabled and the user-group-ids parameter with the value my-user-group-id.

For Linux, macOS, or Unix:

aws elasticache modify-replication-group \
 --replication-group-id replication-group-1 \
 --user-group-ids-to-remove "new-group-1" \
 --user-group-ids-to-add "new-group-2"

For Windows:

aws elasticache modify-replication-group ^
 --replication-group-id replication-group-1 ^
 --user-group-ids-to-remove "new-group-1" ^
 --user-group-ids-to-add "new-group-2"

Note the PendingChanges in the response. Any modifications made to a cache are updated
asynchronously. You can monitor this progress by viewing the events. For more information, see
Viewing ElastiCache events.

Migrating from Redis AUTH to RBAC

If you are using Redis AUTH as described in Authenticating with the Redis AUTH command and
want to migrate to using RBAC, use the following procedures.

Data security in Amazon ElastiCache API Version 2015-02-02 921

Amazon ElastiCache for Redis User Guide

Use the following procedure to migrate from Redis AUTH to RBAC using the console.

To migrate from Redis AUTH to RBAC using the console

1. Sign in to the AWS Management Console and open the ElastiCache console at https://
console.aws.amazon.com/elasticache/.

2. From the list in the upper-right corner, choose the AWS Region where the cache that you want
to modify is located.

3. In the navigation pane, choose the engine running on the cache that you want to modify.

A list of the chosen engine's caches appears.

4. In the list of caches, for the cache that you want to modify, choose its name.

5. For Actions, choose Modify.

The Modify window appears.

6. For Access control, choose User group access control list.

7. For User group access control list, choose a user group.

8. Choose Preview changes and then on the next screen, Modify.

Use the following procedure to migrate from Redis AUTH to RBAC using the CLI.

To migrate from Redis AUTH to RBAC using the CLI

• Use the modify-replication-group command as shown following.

For Linux, macOS, or Unix:

aws elasticache modify-replication-group --replication-group-id test \
 --auth-token-update-strategy DELETE \
 --user-group-ids-to-add user-group-1

For Windows:

aws elasticache modify-replication-group --replication-group-id test ^
 --auth-token-update-strategy DELETE ^
 --user-group-ids-to-add user-group-1

Data security in Amazon ElastiCache API Version 2015-02-02 922

https://console.aws.amazon.com/elasticache/
https://console.aws.amazon.com/elasticache/

Amazon ElastiCache for Redis User Guide

Migrating from RBAC to Redis AUTH

If you are using RBAC and want to migrate to Redis AUTH , see Migrating from RBAC to Redis
AUTH.

Note

If you need to disable access control on an ElastiCache cache, you'll need to do it through
the AWS CLI. For more information, see the section called “Disabling access control on an
ElastiCache Redis cache”.

Automatically rotating passwords for users

With AWS Secrets Manager, you can replace hardcoded credentials in your code (including
passwords) with an API call to Secrets Manager to retrieve the secret programmatically. This helps
ensure that the secret can't be compromised by someone examining your code, because the secret
simply isn't there. Also, you can configure Secrets Manager to automatically rotate the secret for
you according to a schedule that you specify. This enables you to replace long-term secrets with
short-term ones, which helps to significantly reduce the risk of compromise.

Using Secrets Manager, you can automatically rotate your ElastiCache for Redis passwords (that is,
secrets) using an AWS Lambda function that Secrets Manager provides.

For more information about AWS Secrets Manager, see What is AWS Secrets Manager?

How ElastiCache uses secrets

With Redis 6, ElastiCache for Redis introduced Role-Based Access Control (RBAC) to secure the
Redis cluster. This feature allows certain connections to be limited in terms of the commands that
can be executed and the keys that can be accessed. With RBAC, while the customer creates a user
with passwords, the password values need to be manually entered in plaintext and is visible to the
operator.

With Secrets Manager, applications fetch the password from Secrets Manager rather than entering
them manually and storing them in the application's configuration. For information on how to do
this, see How ElastiCache users are associated with the secret.

There is a cost incurred for using secrets. For pricing information, see AWS Secrets Manager Pricing.

Data security in Amazon ElastiCache API Version 2015-02-02 923

https://docs.aws.amazon.com/secretsmanager/latest/userguide/intro.html
https://aws.amazon.com/secrets-manager/pricing/

Amazon ElastiCache for Redis User Guide

How ElastiCache users are associated with the secret

Secrets Manager will keep a reference for the associated user in the secret’s SecretString field.
There will be no reference to the secret from ElastiCache side.

{
 "password": "strongpassword",
 "username": "user1",
 "user_arn": "arn:aws:elasticache:us-east-1:xxxxxxxxxx918:user:user1" //this is the
 bond between the secret and the user
}

Lambda rotation function

To enable Secrets Manager automatic password rotation, you will create a Lambda function that
will interact with the modify-user API to update the user’s passwords.

For information on how this works, see How rotation works.

Note

For some AWS services, to avoid the confused deputy scenario, AWS recommends that you
use both the aws:SourceArn and aws:SourceAccount global condition keys. However,
if you include the aws:SourceArn condition in your rotation function policy, the rotation
function can only be used to rotate the secret specified by that ARN. We recommend that
you include only the context key aws:SourceAccount so that you can use the rotation
function for multiple secrets.

For any issues you may encounter, see Troubleshoot AWS Secrets Manager rotation.

How to create an ElastiCache user and associate it with Secrets Manager

The following steps illustrate how to create a user and associate it with Secrets Manager:

1. Create an inactive user

For Linux, macOS, or Unix:

aws elasticache create-user \
 --user-id user1 \

Data security in Amazon ElastiCache API Version 2015-02-02 924

https://docs.aws.amazon.com/cli/latest/reference/elasticache/modify-user.html
https://docs.aws.amazon.com/secretsmanager/latest/userguide/rotating-secrets.html#rotate-secrets_how
https://docs.aws.amazon.com/secretsmanager/latest/userguide/troubleshoot_rotation.html

Amazon ElastiCache for Redis User Guide

 --user-name user1 \
 --engine "REDIS" \
 --no-password \ // no authentication is required
 --access-string "*off* +get ~keys*" // this disables the user

For Windows:

aws elasticache create-user ^
 --user-id user1 ^
 --user-name user1 ^
 --engine "REDIS" ^
 --no-password ^ // no authentication is required
 --access-string "*off* +get ~keys*" // this disables the user

You will see a response similar to the following:

{
 "UserId": "user1",
 "UserName": "user1",
 "Status": "active",
 "Engine": "redis",
 "AccessString": "off ~keys* -@all +get",
 "UserGroupIds": [],
 "Authentication": {
 "Type": "no_password"
 },
 "ARN": "arn:aws:elasticache:us-east-1:xxxxxxxxxx918:user:user1"
}

2. Create a Secret

For Linux, macOS, or Unix:

aws secretsmanager create-secret \
--name production/ec/user1 \
--secret-string \
'{
 "user_arn": "arn:aws:elasticache:us-east-1:123456xxxx:user:user1",
 "username":"user1"
 }'

For Windows:

Data security in Amazon ElastiCache API Version 2015-02-02 925

Amazon ElastiCache for Redis User Guide

aws secretsmanager create-secret ^
--name production/ec/user1 ^
--secret-string ^
'{
 "user_arn": "arn:aws:elasticache:us-east-1:123456xxxx:user:user1",
 "username":"user1"
 }'

You will see a response similar to the following:

{
 "ARN": "arn:aws:secretsmanager:us-east-1:123456xxxx:secret:production/ec/user1-
eaFois",
 "Name": "production/ec/user1",
 "VersionId": "aae5b963-1e6b-4250-91c6-ebd6c47d0d95"
}

3. Configure a Lambda function to rotate your password

a. Sign in to the AWS Management Console and open the Lambda console at https://
console.aws.amazon.com/lambda/

b. Choose Functions on the navigation pane and then choose the function you created.
Choose the function name, not the checkbox to its left.

c. Choose the Configuration tab.

d. In General configuration, choose Edit and then set Timeout to at least 12 minutes.

e. Choose Save.

f. Choose Environment variables and then set the following:

i. SECRETS_MANAGER_ENDPOINT – https://secretsmanager.REGION.amazonaws.com

ii. SECRET_ARN – The Amazon Resource Name (ARN) of the secret you created in Step 2.

iii. USER_NAME – Username of the ElastiCache user,

iv. Choose Save.

g. Choose Permissions

h. Under Execution role, choose the name of the Lambda function role to view on the IAM
console.

Data security in Amazon ElastiCache API Version 2015-02-02 926

https://console.aws.amazon.com/elasticache/
https://console.aws.amazon.com/elasticache/

Amazon ElastiCache for Redis User Guide

i. The Lambda function will need the following permission to modify the users and set the
password:

ElastiCache

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "elasticache:DescribeUsers",
 "elasticache:ModifyUser"
],
 "Resource": "arn:aws:elasticache:us-east-1:xxxxxxxxxx918:user:user1"
 }
]
}

Secrets Manager

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "secretsmanager:GetSecretValue",
 "secretsmanager:DescribeSecret",
 "secretsmanager:PutSecretValue",
 "secretsmanager:UpdateSecretVersionStage"
],
 "Resource": "arn:aws:secretsmanager:us-
east-1:xxxxxxxxxxx:secret:XXXX"
 },
 {
 "Effect": "Allow",
 "Action": "secretsmanager:GetRandomPassword",
 "Resource": "*"
 }
]
}

Data security in Amazon ElastiCache API Version 2015-02-02 927

Amazon ElastiCache for Redis User Guide

4. Set up Secrets Manager secret rotation

a. Using the AWS Management Console, see Set up automatic rotation for AWS Secrets
Manager secrets using the console

For more information on setting up a rotation schedule, see Schedule expressions in
Secrets Manager rotation.

b. Using the AWS CLI, see Set up automatic rotation for AWS Secrets Manager using the
AWS Command Line Interface

Authenticating with IAM

Topics

• Overview

• Limitations

• Setup

• Connecting

Overview

With IAM Authentication you can authenticate a connection to ElastiCache for Redis using AWS
IAM identities, when your cache is configured to use Redis version 7 or above. This allows you
to strengthen your security model and simplify many administrative security tasks. You can also
use IAM Authentication to configure fine-grained access control for each individual ElastiCache
cache and ElastiCache user, following least-privilege permissions principles. IAM Authentication
for ElastiCache for Redis works by providing a short-lived IAM authentication token instead of a
long-lived ElastiCache user password in the Redis AUTH or HELLO command. For more information
about the IAM authentication token, refer to the Signature Version 4 signing process in the the
AWS General Reference Guide and the code example below.

You can use IAM identities and their associated policies to further restrict Redis access. You can also
grant access to users from their federated Identity providers directly to Redis caches.

To use AWS IAM with ElastiCache for Redis, you first need to create an ElastiCache user with
authentication mode set to IAM, then you can create or reuse an IAM identity. The IAM identity
needs an associated policy to grant the elasticache:Connect action to the ElastiCache cache
and ElastiCache user. Once configured, you can create an IAM authentication token using the AWS

Data security in Amazon ElastiCache API Version 2015-02-02 928

https://docs.aws.amazon.com/secretsmanager/latest/userguide/rotate-secrets_turn-on-for-other.html
https://docs.aws.amazon.com/secretsmanager/latest/userguide/rotate-secrets_turn-on-for-other.html
https://docs.aws.amazon.com/secretsmanager/latest/userguide/rotate-secrets_schedule.html
https://docs.aws.amazon.com/secretsmanager/latest/userguide/rotate-secrets_schedule.html
https://docs.aws.amazon.com/secretsmanager/latest/userguide/rotate-secrets-cli.html
https://docs.aws.amazon.com/secretsmanager/latest/userguide/rotate-secrets-cli.html
https://docs.aws.amazon.com/general/latest/gr/signature-version-4.html

Amazon ElastiCache for Redis User Guide

credentials of the IAM user or role. Finally you need to provide the short-lived IAM authentication
token as a password in your Redis Client when connecting to your Redis cache. A Redis client
with support for credentials provider can auto-generate the temporary credentials automatically
for each new connection. ElastiCache for Redis will perform IAM authentication for connection
requests of IAM-enabled ElastiCache users and will validate the connection requests with IAM.

Limitations

When using IAM authentication, the following limitations apply:

• IAM authentication is available when using ElastiCache for Redis version 7.0 or above.

• For IAM-enabled ElastiCache users the username and user id properties must be identical.

• The IAM authentication token is valid for 15 minutes. For long-lived connections, we recommend
using a Redis client that supports a credentials provider interface.

• An IAM authenticated connection to ElastiCache for Redis will automatically be disconnected
after 12 hours. The connection can be prolonged for 12 hours by sending an AUTH or HELLO
command with a new IAM authentication token.

• IAM authentication is not supported in MULTI EXEC commands.

• Currently, IAM authentication supports the following global condition context keys:

• When using IAM authentication with serverless caches, aws:VpcSourceIp, aws:SourceVpc,
aws:SourceVpce, aws:CurrentTime, aws:EpochTime, and aws:ResourceTag/%s (from
associated serverless caches and users) are supported.

• When using IAM authentication with replication groups, aws:SourceIp and
aws:ResourceTag/%s (from associated replication groups and users) are supported.

For more information about global condition context keys, see AWS global condition context
keys in the IAM User Guide.

Setup

To setup IAM authentication:

1. Create a cache

aws elasticache create-serverless-cache \
 --serverless-cache-name cache-01 \
 --description "ElastiCache IAM auth application" \

Data security in Amazon ElastiCache API Version 2015-02-02 929

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html

Amazon ElastiCache for Redis User Guide

 --engine redis

2. Create an IAM trust policy document, as shown below, for your role that allows your account to
assume the new role. Save the policy to a file named trust-policy.json.

{
 "Version": "2012-10-17",
 "Statement": {
 "Effect": "Allow",
 "Principal": { "AWS": "arn:aws:iam::123456789012:root" },
 "Action": "sts:AssumeRole"
 }
}

3. Create an IAM policy document, as shown below. Save the policy to a file named policy.json.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect" : "Allow",
 "Action" : [
 "elasticache:Connect"
],
 "Resource" : [
 "arn:aws:elasticache:us-east-1:123456789012:serverlesscache:cache-01",
 "arn:aws:elasticache:us-east-1:123456789012:user:iam-user-01"
]
 }
]
}

4. Create an IAM role.

aws iam create-role \
--role-name "elasticache-iam-auth-app" \
--assume-role-policy-document file://trust-policy.json

5. Create the IAM policy.

aws iam create-policy \
 --policy-name "elasticache-allow-all" \

Data security in Amazon ElastiCache API Version 2015-02-02 930

Amazon ElastiCache for Redis User Guide

 --policy-document file://policy.json

6. Attach the IAM policy to the role.

aws iam attach-role-policy \
 --role-name "elasticache-iam-auth-app" \
 --policy-arn "arn:aws:iam::123456789012:policy/elasticache-allow-all"

7. Create a new IAM-enabled user.

aws elasticache create-user \
 --user-name iam-user-01 \
 --user-id iam-user-01 \
 --authentication-mode Type=iam \
 --engine redis \
 --access-string "on ~* +@all"

8. Create a user group and attach the user.

aws elasticache create-user-group \
 --user-group-id iam-user-group-01 \
 --engine redis \
 --user-ids default iam-user-01

aws elasticache modify-serverless-cache \
 --serverless-cache-name cache-01 \
 --user-group-id iam-user-group-01

Connecting

Connect with token as password

You first need to generate the short-lived IAM authentication token using an AWS SigV4 pre-signed
request. After that you provide the IAM authentication token as a password when connecting to a
Redis cache, as shown in the example below.

String userId = "insert user id";
String cacheName = "insert cache name";
boolean isServerless = true;
String region = "insert region";

// Create a default AWS Credentials provider.

Data security in Amazon ElastiCache API Version 2015-02-02 931

https://docs.aws.amazon.com/general/latest/gr/sigv4-signed-request-examples.html
https://docs.aws.amazon.com/general/latest/gr/sigv4-signed-request-examples.html

Amazon ElastiCache for Redis User Guide

// This will look for AWS credentials defined in environment variables or system
 properties.
AWSCredentialsProvider awsCredentialsProvider = new
 DefaultAWSCredentialsProviderChain();

// Create an IAM authentication token request and signed it using the AWS credentials.
// The pre-signed request URL is used as an IAM authentication token for ElastiCache
 Redis.
IAMAuthTokenRequest iamAuthTokenRequest = new IAMAuthTokenRequest(userId, cacheName,
 region, isServerless);
String iamAuthToken =
 iamAuthTokenRequest.toSignedRequestUri(awsCredentialsProvider.getCredentials());

// Construct Redis URL with IAM Auth credentials provider
RedisURI redisURI = RedisURI.builder()
 .withHost(host)
 .withPort(port)
 .withSsl(ssl)
 .withAuthentication(userId, iamAuthToken)
 .build();

// Create a new Lettuce Redis client
RedisClient client = RedisClient.create(redisURI);
client.connect();

Below is the definition for IAMAuthTokenRequest.

public class IAMAuthTokenRequest {
 private static final HttpMethodName REQUEST_METHOD = HttpMethodName.GET;
 private static final String REQUEST_PROTOCOL = "http://";
 private static final String PARAM_ACTION = "Action";
 private static final String PARAM_USER = "User";
 private static final String PARAM_RESOURCE_TYPE = "ResourceType";
 private static final String RESOURCE_TYPE_SERVERLESS_CACHE = "ServerlessCache";
 private static final String ACTION_NAME = "connect";
 private static final String SERVICE_NAME = "elasticache";
 private static final long TOKEN_EXPIRY_SECONDS = 900;

 private final String userId;
 private final String cacheName;
 private final String region;
 private final boolean isServerless;

Data security in Amazon ElastiCache API Version 2015-02-02 932

Amazon ElastiCache for Redis User Guide

 public IAMAuthTokenRequest(String userId, String cacheName, String region, boolean
 isServerless) {
 this.userId = userId;
 this.cacheName = cacheName;
 this.region = region;
 this.isServerless = isServerless;
 }

 public String toSignedRequestUri(AWSCredentials credentials) throws
 URISyntaxException {
 Request<Void> request = getSignableRequest();
 sign(request, credentials);
 return new URIBuilder(request.getEndpoint())
 .addParameters(toNamedValuePair(request.getParameters()))
 .build()
 .toString()
 .replace(REQUEST_PROTOCOL, "");
 }

 private <T> Request<T> getSignableRequest() {
 Request<T> request = new DefaultRequest<>(SERVICE_NAME);
 request.setHttpMethod(REQUEST_METHOD);
 request.setEndpoint(getRequestUri());
 request.addParameters(PARAM_ACTION, Collections.singletonList(ACTION_NAME));
 request.addParameters(PARAM_USER, Collections.singletonList(userId));
 if (isServerless) {
 request.addParameters(PARAM_RESOURCE_TYPE,
 Collections.singletonList(RESOURCE_TYPE_SERVERLESS_CACHE));
 }
 return request;
 }

 private URI getRequestUri() {
 return URI.create(String.format("%s%s/", REQUEST_PROTOCOL, cacheName));
 }

 private <T> void sign(SignableRequest<T> request, AWSCredentials credentials) {
 AWS4Signer signer = new AWS4Signer();
 signer.setRegionName(region);
 signer.setServiceName(SERVICE_NAME);

 DateTime dateTime = DateTime.now();
 dateTime = dateTime.plus(Duration.standardSeconds(TOKEN_EXPIRY_SECONDS));

Data security in Amazon ElastiCache API Version 2015-02-02 933

Amazon ElastiCache for Redis User Guide

 signer.presignRequest(request, credentials, dateTime.toDate());
 }

 private static List<NameValuePair> toNamedValuePair(Map<String, List<String>> in) {
 return in.entrySet().stream()
 .map(e -> new BasicNameValuePair(e.getKey(), e.getValue().get(0)))
 .collect(Collectors.toList());
 }
}

Connect with credentials provider

The code below shows how to authenticate with ElastiCache for Redis using the IAM authentication
credentials provider.

String userId = "insert user id";
String cacheName = "insert cache name";
boolean isServerless = true;
String region = "insert region";

// Create a default AWS Credentials provider.
// This will look for AWS credentials defined in environment variables or system
 properties.
AWSCredentialsProvider awsCredentialsProvider = new
 DefaultAWSCredentialsProviderChain();

// Create an IAM authentication token request. Once this request is signed it can be
 used as an
// IAM authentication token for ElastiCache Redis.
IAMAuthTokenRequest iamAuthTokenRequest = new IAMAuthTokenRequest(userId, cacheName,
 region, isServerless);

// Create a Redis credentials provider using IAM credentials.
RedisCredentialsProvider redisCredentialsProvider = new
 RedisIAMAuthCredentialsProvider(
 userId, iamAuthTokenRequest, awsCredentialsProvider);

// Construct Redis URL with IAM Auth credentials provider
RedisURI redisURI = RedisURI.builder()
 .withHost(host)
 .withPort(port)
 .withSsl(ssl)
 .withAuthentication(redisCredentialsProvider)

Data security in Amazon ElastiCache API Version 2015-02-02 934

Amazon ElastiCache for Redis User Guide

 .build();

// Create a new Lettuce Redis client
RedisClient client = RedisClient.create(redisURI);
client.connect();

Below is an example of a Lettuce Redis client that wraps the IAMAuthTokenRequest in a credentials
provider to auto-generate temporary credentials when needed.

public class RedisIAMAuthCredentialsProvider implements RedisCredentialsProvider {
 private static final long TOKEN_EXPIRY_SECONDS = 900;

 private final AWSCredentialsProvider awsCredentialsProvider;
 private final String userId;
 private final IAMAuthTokenRequest iamAuthTokenRequest;
 private final Supplier<String> iamAuthTokenSupplier;

 public RedisIAMAuthCredentialsProvider(String userId,
 IAMAuthTokenRequest iamAuthTokenRequest,
 AWSCredentialsProvider awsCredentialsProvider) {
 this.userName = userName;
 this.awsCredentialsProvider = awsCredentialsProvider;
 this.iamAuthTokenRequest = iamAuthTokenRequest;
 this.iamAuthTokenSupplier =
 Suppliers.memoizeWithExpiration(this::getIamAuthToken, TOKEN_EXPIRY_SECONDS,
 TimeUnit.SECONDS);
 }

 @Override
 public Mono<RedisCredentials> resolveCredentials() {
 return Mono.just(RedisCredentials.just(userId, iamAuthTokenSupplier.get()));
 }

 private String getIamAuthToken() {
 return
 iamAuthTokenRequest.toSignedRequestUri(awsCredentialsProvider.getCredentials());
 }
}

Data security in Amazon ElastiCache API Version 2015-02-02 935

Amazon ElastiCache for Redis User Guide

Authenticating with the Redis AUTH command

Note

Redis AUTH has been superseded by the section called “Role-Based Access Control (RBAC)”.
All serverless caches must use RBAC for authentication.

Redis authentication tokens, or passwords, enable Redis to require a password before allowing
clients to run commands, thereby improving data security. Redis AUTH is available for self-
designed clusters only.

Topics

• Overview of AUTH in ElastiCache for Redis

• Applying authentication to an ElastiCache for Redis cluster

• Modifying the AUTH token on an existing ElastiCache for Redis cluster

• Migrating from RBAC to Redis AUTH

Overview of AUTH in ElastiCache for Redis

When you use Redis AUTH with your ElastiCache for Redis cluster, there are some refinements.

In particular, be aware of these AUTH token, or password, constraints when using AUTH with
ElastiCache for Redis:

• Tokens, or passwords, must be 16–128 printable characters.

• Nonalphanumeric characters are restricted to (!, &, #, $, ^, <, >, -).

• AUTH can only be enabled for encryption in-transit enabled ElastiCache for Redis clusters.

To set up a strong token, we recommend that you follow a strict password policy, such as requiring
the following:

• Tokens, or passwords, must include at least three of the following character types:

• Uppercase characters

• Lowercase characters

• Digits

Data security in Amazon ElastiCache API Version 2015-02-02 936

Amazon ElastiCache for Redis User Guide

• Nonalphanumeric characters (!, &, #, $, ^, <, >, -)

• Tokens, or passwords, must not contain a dictionary word or a slightly modified dictionary word.

• Tokens, or passwords, must not be the same as or similar to a recently used token.

Applying authentication to an ElastiCache for Redis cluster

You can require that users enter a token (password) on a token-protected Redis server. To do this,
include the parameter --auth-token (API: AuthToken) with the correct token when you create
your replication group or cluster. Also include it in all subsequent commands to the replication
group or cluster.

The following AWS CLI operation creates a replication group with encryption in transit (TLS)
enabled and the AUTH token This-is-a-sample-token. Replace the subnet group sng-test
with a subnet group that exists.

Key parameters

• --engine – Must be redis.

• --engine-version – Must be 3.2.6, 4.0.10, or later.

• --transit-encryption-enabled – Required for authentication and HIPAA eligibility.

• --auth-token – Required for HIPAA eligibility. This value must be the correct token for this
token-protected Redis server.

• --cache-subnet-group – Required for HIPAA eligibility.

For Linux, macOS, or Unix:

aws elasticache create-replication-group \
 --replication-group-id authtestgroup \
 --replication-group-description authtest \
 --engine redis \
 --cache-node-type cache.m4.large \
 --num-node-groups 1 \
 --replicas-per-node-group 2 \
 --transit-encryption-enabled \
 --auth-token This-is-a-sample-token \
 --cache-subnet-group sng-test

For Windows:

Data security in Amazon ElastiCache API Version 2015-02-02 937

Amazon ElastiCache for Redis User Guide

aws elasticache create-replication-group ^
 --replication-group-id authtestgroup ^
 --replication-group-description authtest ^
 --engine redis ^
 --cache-node-type cache.m4.large ^
 --num-node-groups 1 ^
 --replicas-per-node-group 2 ^
 --transit-encryption-enabled ^
 --auth-token This-is-a-sample-token ^
 --cache-subnet-group sng-test

Modifying the AUTH token on an existing ElastiCache for Redis cluster

To make it easier to update your authentication, you can modify the AUTH token used on an
ElastiCache for Redis cluster. You can make this modification if the engine version is 5.0.6 or higher
and if ElastiCache for Redis has encryption in transit enabled.

Modifying the auth token supports two strategies: ROTATE and SET. The ROTATE strategy adds an
additional AUTH token to the server while retaining the previous token. The SET strategy updates
the server to support just a single AUTH token. Make these modification calls with the --apply-
immediately parameter to apply changes immediately.

Rotating the AUTH token

To update a Redis server with a new AUTH token, call the ModifyReplicationGroup API
with the --auth-token parameter as the new auth token and the --auth-token-update-
strategy with the value ROTATE. After the modification is complete, the cluster will support the
previous AUTH token in addition to the one specified in the auth-token parameter.

Note

If you do not configure the AUTH token before, then once the modification is complete,
the cluster will support no AUTH token in addition to the one specified in the auth-token
parameter.

If this modification is performed on a server that already supports two AUTH tokens, the oldest
AUTH token will also be removed during this operation, allowing a server to support up to two
most recent AUTH tokens at a given time.

Data security in Amazon ElastiCache API Version 2015-02-02 938

Amazon ElastiCache for Redis User Guide

At this point, you can proceed by updating the client to use the latest AUTH token. After the clients
are updated, you can use the SET strategy for AUTH token rotation (explained in the following
section) to exclusively start using the new token.

The following AWS CLI operation modifies a replication group to rotate the AUTH token This-is-
the-rotated-token.

For Linux, macOS, or Unix:

aws elasticache modify-replication-group \
--replication-group-id authtestgroup \
--auth-token This-is-the-rotated-token \
--auth-token-update-strategy ROTATE \
--apply-immediately

For Windows:

aws elasticache modify-replication-group ^
--replication-group-id authtestgroup ^
--auth-token This-is-the-rotated-token ^
--auth-token-update-strategy ROTATE ^
--apply-immediately

Setting the AUTH token

To update a Redis server with two AUTH tokens to support a single AUTH token, call the
ModifyReplicationGroup API operation. Call ModifyReplicationGroup with the --auth-
token parameter as the new AUTH token and the --auth-token-update-strategy parameter
with the value SET. The auth-token parameter must be the same value as the last AUTH token
rotated. After the modification is complete, the Redis server supports only the AUTH token
specified in the auth-token parameter.

The following AWS CLI operation modifies a replication group to set the AUTH token to This-is-
the-set-token.

For Linux, macOS, or Unix:

aws elasticache modify-replication-group \
--replication-group-id authtestgroup \
--auth-token This-is-the-set-token \

Data security in Amazon ElastiCache API Version 2015-02-02 939

Amazon ElastiCache for Redis User Guide

--auth-token-update-strategy SET \
--apply-immediately

For Windows:

aws elasticache modify-replication-group ^
--replication-group-id authtestgroup ^
--auth-token This-is-the-set-token ^
--auth-token-update-strategy SET ^
--apply-immediately

Enabling authentication on an existing ElastiCache for Redis cluster

To enable authentication on an existing Redis server, call the ModifyReplicationGroup API
operation. Call ModifyReplicationGroup with the --auth-token parameter as the new token
and the --auth-token-update-strategy with the value ROTATE.

After the modification is complete, the cluster supports the AUTH token specified in the auth-
token parameter in addition to supporting connecting without authentication. Enabling
authentication is only supported on Redis servers with encryption in transit (TLS) enabled.

Migrating from RBAC to Redis AUTH

If you are authenticating users with Redis Role-Based Access Control (RBAC) as described in
Authenticating users with role-based access control (RBAC) and want to migrate to Redis AUTH, use
the following procedures. You can migrate using either console or CLI.

To migrate from RBAC to Redis AUTH using the console

1. Sign in to the AWS Management Console and open the ElastiCache console at https://
console.aws.amazon.com/elasticache/.

2. From the list in the upper-right corner, choose the AWS Region where the cluster that you
want to modify is located.

3. In the navigation pane, choose the engine running on the cluster that you want to modify.

A list of the chosen engine's clusters appears.

4. In the list of clusters, for the cluster that you want to modify, choose its name.

5. For Actions, choose Modify.

The Modify window appears.

Data security in Amazon ElastiCache API Version 2015-02-02 940

https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/Clusters.RBAC.html
https://console.aws.amazon.com/elasticache/
https://console.aws.amazon.com/elasticache/

Amazon ElastiCache for Redis User Guide

6. For Access control, choose Redis AUTH default user access.

7. Under Redis AUTH token, set a new token.

8. Choose Preview changes and then on the next screen, Modify.

To migrate from RBAC to Redis AUTH using the AWS CLI

• Use one of the following commands.

For Linux, macOS, or Unix:

aws elasticache modify-replication-group \
 --replication-group-id test \
 --remove-user-groups \
 --auth-token password \
 --auth-token-update-strategy SET \
 --apply-immediately

For Windows:

aws elasticache modify-replication-group ^
 --replication-group-id test ^
 --remove-user-groups ^
 --auth-token password ^
 --auth-token-update-strategy SET ^
 --apply-immediately

For more information on working with AUTH, see AUTH token on the redis.io website.

Note

If you need to disable access control on an ElastiCache Cluster, see the section called
“Disabling access control on an ElastiCache Redis cache”

Disabling access control on an ElastiCache Redis cache

Follow the instructions below to disable access control on a Redis TLS-enabled cache. Your Redis
cache will have one of two different types of configurations: Redis AUTH default user access or

Data security in Amazon ElastiCache API Version 2015-02-02 941

https://redis.io/commands/auth

Amazon ElastiCache for Redis User Guide

User group access control list (RBAC). If your cache was created with the AUTH configuration, you
have to change it to the RBAC configuration before you can disable the cache by removing the user
groups. If your cache was created with the RBAC configuration, you can go straight into disabling it.

To disable a Redis serverless cache configured with RBAC

1. Remove the user groups to disable the access control.

aws elasticache modify-serverless-cache --serverless-cache-name <serverless-cache>
 --remove-user-group

2. (Optional) Verify that no user groups are associated with the serverless cache.

aws elasticache describe-serverless-caches --serverless-cache-name <serverless-
cache>
{
 "..."
 "UserGroupId": ""
 "..."
}

To disable a Redis cache with configured with an AUTH token

1. Change the AUTH token to RBAC and specify a user group to add.

aws elasticache modify-replication-group --replication-group-id <replication-group-
id-value> --auth-token-update-strategy DELETE --user-group-ids-to-add <user-group-
value>

2. Verify that the AUTH token got disabled and that a user group was added.

aws elasticache describe-replication-groups --replication-group-id <replication-
group-id-value>
{
 "..."
 "AuthTokenEnabled": false,
 "UserGroupIds": [
 "<user-group-value>"
]
 "..."
}

Data security in Amazon ElastiCache API Version 2015-02-02 942

Amazon ElastiCache for Redis User Guide

3. Remove the user groups to disable the access control.

aws elasticache modify-replication-group --replication-group-id <replication-group-
value> --user-group-ids-to-remove <user-group-value>
{
 "..."
 "PendingModifiedValues": {
 "UserGroups": {
 "UserGroupIdsToAdd": [],
 "UserGroupIdsToRemove": [
 "<user-group-value>"
]
 }
 "..."
}

4. (Optional) Verify that no user groups are associated with the cluster. The AuthTokenEnabled
field should also read false.

aws elasticache describe-replication-groups --replication-group-id <replication-
group-value>
"AuthTokenEnabled": false

To disable a Redis cluster configured with RBAC

1. Remove the user groups to disable the access control.

aws elasticache modify-replication-group --replication-group-id <replication-group-
value> --user-group-ids-to-remove <user-group-value>
{
 "..."
 "PendingModifiedValues": {
 "UserGroups": {
 "UserGroupIdsToAdd": [],
 "UserGroupIdsToRemove": [
 "<user-group-value>"
]
 }
 "..."
}

Data security in Amazon ElastiCache API Version 2015-02-02 943

Amazon ElastiCache for Redis User Guide

2. (Optional) Verify that no user groups are associated with the cluster. The AuthTokenEnabled
field should also read false.

aws elasticache describe-replication-groups --replication-group-id <replication-
group-value>
"AuthTokenEnabled": false

Internetwork traffic privacy

Amazon ElastiCache uses the following techniques to secure your cache data and protect it from
unauthorized access:

• Amazon VPCs and ElastiCache security explains the type of security group you need for your
installation.

• Identity and Access Management for Amazon ElastiCache for granting and limiting actions of
users, groups, and roles.

Amazon VPCs and ElastiCache security

Because data security is important, ElastiCache provides means for you to control who has access
to your data. How you control access to your data is dependent upon whether or not you launched
your clusters in an Amazon Virtual Private Cloud (Amazon VPC) or Amazon EC2-Classic.

Important

We have deprecated the use of Amazon EC2-Classic for launching ElastiCache clusters. All
current generation nodes are launched in Amazon Virtual Private Cloud only.

The Amazon Virtual Private Cloud (Amazon VPC) service defines a virtual network that closely
resembles a traditional data center. When you configure your Amazon VPC you can select its IP
address range, create subnets, and configure route tables, network gateways, and security settings.
You can also add a cache cluster to the virtual network, and control access to the cache cluster by
using Amazon VPC security groups.

Internetwork traffic privacy API Version 2015-02-02 944

Amazon ElastiCache for Redis User Guide

This section explains how to manually configure an ElastiCache cluster in an Amazon VPC. This
information is intended for users who want a deeper understanding of how ElastiCache and
Amazon VPC work together.

Topics

• Understanding ElastiCache and Amazon VPCs

• Access Patterns for Accessing an ElastiCache Cache in an Amazon VPC

• Creating a Virtual Private Cloud (VPC)

• Connecting to a cache running in an Amazon VPC

Amazon VPCs and ElastiCache security API Version 2015-02-02 945

Amazon ElastiCache for Redis User Guide

Understanding ElastiCache and Amazon VPCs

ElastiCache is fully integrated with the Amazon Virtual Private Cloud (Amazon VPC). For
ElastiCache users, this means the following:

• If your AWS account supports only the EC2-VPC platform, ElastiCache always launches your
cluster in an Amazon VPC.

• If you're new to AWS, your clusters will be deployed into an Amazon VPC. A default VPC will be
created for you automatically.

• If you have a default VPC and don't specify a subnet when you launch a cluster, the cluster
launches into your default Amazon VPC.

For more information, see Detecting Your Supported Platforms and Whether You Have a Default
VPC.

With Amazon Virtual Private Cloud, you can create a virtual network in the AWS cloud that closely
resembles a traditional data center. You can configure your Amazon VPC, including selecting its
IP address range, creating subnets, and configuring route tables, network gateways, and security
settings.

The basic functionality of ElastiCache is the same in a virtual private cloud; ElastiCache manages
software upgrades, patching, failure detection and recovery whether your clusters are deployed
inside or outside an Amazon VPC.

ElastiCache cache nodes deployed outside an Amazon VPC are assigned an IP address to which
the endpoint/DNS name resolves. This provides connectivity from Amazon Elastic Compute Cloud
(Amazon EC2) instances. When you launch an ElastiCache cluster into an Amazon VPC private
subnet, every cache node is assigned a private IP address within that subnet.

Overview of ElastiCache in an Amazon VPC

The following diagram and table describe the Amazon VPC environment, along with ElastiCache
clusters and Amazon EC2 instances that are launched in the Amazon VPC.

Amazon VPCs and ElastiCache security API Version 2015-02-02 946

https://docs.aws.amazon.com/vpc/latest/userguide/default-vpc.html#detecting-platform
https://docs.aws.amazon.com/vpc/latest/userguide/default-vpc.html#detecting-platform

Amazon ElastiCache for Redis User Guide

The Amazon VPC is an isolated portion of the AWS Cloud that is assigned its own block of
IP addresses.

Amazon VPCs and ElastiCache security API Version 2015-02-02 947

Amazon ElastiCache for Redis User Guide

An Internet gateway connects your Amazon VPC directly to the Internet and provides
access to other AWS resources such as Amazon Simple Storage Service (Amazon S3) that
are running outside your Amazon VPC.

An Amazon VPC subnet is a segment of the IP address range of an Amazon VPC where
you can isolate AWS resources according to your security and operational needs.

A routing table in the Amazon VPC directs network traffic between the subnet and the
 Internet. The Amazon VPC has an implied router, which is symbolized in this diagram by
the circle with the R.

An Amazon VPC security group controls inbound and outbound traffic for your ElastiCac
he clusters and Amazon EC2 instances.

You can launch an ElastiCache cluster in the subnet. The cache nodes have private IP
addresses from the subnet's range of addresses.

You can also launch Amazon EC2 instances in the subnet. Each Amazon EC2 instance has
a private IP address from the subnet's range of addresses. The Amazon EC2 instance can
connect to any cache node in the same subnet.

For an Amazon EC2 instance in your Amazon VPC to be reachable from the Internet, you
need to assign a static, public address called an Elastic IP address to the instance.

Prerequisites

To create an ElastiCache cluster within an Amazon VPC, your Amazon VPC must meet the following
requirements:

• The Amazon VPC must allow nondedicated Amazon EC2 instances. You cannot use ElastiCache in
an Amazon VPC that is configured for dedicated instance tenancy.

• A cache subnet group must be defined for your Amazon VPC. ElastiCache uses that cache
subnet group to select a subnet and IP addresses within that subnet to associate with your VPC
endpoints or cache nodes.

Amazon VPCs and ElastiCache security API Version 2015-02-02 948

Amazon ElastiCache for Redis User Guide

• CIDR blocks for each subnet must be large enough to provide spare IP addresses for ElastiCache
to use during maintenance activities.

Routing and security

You can configure routing in your Amazon VPC to control where traffic flows (for example, to the
Internet gateway or virtual private gateway). With an Internet gateway, your Amazon VPC has
direct access to other AWS resources that are not running in your Amazon VPC. If you choose to
have only a virtual private gateway with a connection to your organization's local network, you
can route your Internet-bound traffic over the VPN and use local security policies and firewall
to control egress. In that case, you incur additional bandwidth charges when you access AWS
resources over the Internet.

You can use Amazon VPC security groups to help secure the ElastiCache clusters and Amazon EC2
instances in your Amazon VPC. Security groups act like a firewall at the instance level, not the
subnet level.

Note

We strongly recommend that you use DNS names to connect to your cache nodes, as the
underlying IP address can change.

Amazon VPC documentation

Amazon VPC has its own set of documentation to describe how to create and use your Amazon
VPC. The following table gives links to the Amazon VPC guides.

Description Documentation

How to get started using Amazon VPC Getting started with Amazon VPC

How to use Amazon VPC through the AWS
Management Console

Amazon VPC User Guide

Complete descriptions of all the Amazon VPC
commands

Amazon EC2 Command Line Reference (the
Amazon VPC commands are found in the
Amazon EC2 reference)

Amazon VPCs and ElastiCache security API Version 2015-02-02 949

https://docs.aws.amazon.com/vpc/latest/userguide/vpc-getting-started.html
https://docs.aws.amazon.com/vpc/latest/userguide/
https://docs.aws.amazon.com/AWSEC2/latest/CommandLineReference/

Amazon ElastiCache for Redis User Guide

Description Documentation

Complete descriptions of the Amazon VPC API
operations, data types, and errors

Amazon EC2 API Reference (the Amazon VPC
API operations are found in the Amazon EC2
reference)

Information for the network administrator
who needs to configure the gateway at your
end of an optional IPsec VPN connection

What is AWS Site-to-Site VPN?

For more detailed information about Amazon Virtual Private Cloud, see Amazon Virtual Private
Cloud.

Amazon VPCs and ElastiCache security API Version 2015-02-02 950

https://docs.aws.amazon.com/AWSEC2/latest/APIReference/
https://docs.aws.amazon.com/vpn/latest/s2svpn/VPC_VPN.html
https://aws.amazon.com/vpc/
https://aws.amazon.com/vpc/

Amazon ElastiCache for Redis User Guide

Access Patterns for Accessing an ElastiCache Cache in an Amazon VPC

Amazon ElastiCache supports the following scenarios for accessing a cache in an Amazon VPC:

Contents

• Accessing an ElastiCache Cache when it and the Amazon EC2 Instance are in the Same Amazon
VPC

• Accessing an ElastiCache Cache when it and the Amazon EC2 Instance are in Different Amazon
VPCs

• Accessing an ElastiCache Cache when it and the Amazon EC2 Instance are in Different Amazon
VPCs in the Same Region

• Using Transit Gateway

• Accessing an ElastiCache Cache when it and the Amazon EC2 Instance are in Different Amazon
VPCs in Different Regions

• Using Transit VPC

• Accessing an ElastiCache Cache from an Application Running in a Customer's Data Center

• Accessing an ElastiCache Cache from an Application Running in a Customer's Data Center
Using VPN Connectivity

• Accessing an ElastiCache Cache from an Application Running in a Customer's Data Center
Using Direct Connect

Accessing an ElastiCache Cache when it and the Amazon EC2 Instance are in the Same Amazon
VPC

The most common use case is when an application deployed on an EC2 instance needs to connect
to a cache in the same VPC.

The following diagram illustrates this scenario

Amazon VPCs and ElastiCache security API Version 2015-02-02 951

Amazon ElastiCache for Redis User Guide

The simplest way to manage access between EC2 instances and caches in the same VPC is to do the
following:

1. Create a VPC security group for your cache. This security group can be used to restrict access
to the cache. For example, you can create a custom rule for this security group that allows TCP
access using the port you assigned to the cache when you created it and an IP address you will
use to access the cache.

The default port for Redis caches is 6379.

2. Create a VPC security group for your EC2 instances (web and application servers). This security
group can, if needed, allow access to the EC2 instance from the Internet via the VPC's routing
table. For example, you can set rules on this security group to allow TCP access to the EC2
instance over port 22.

3. Create custom rules in the security group for your cache that allow connections from the
security group you created for your EC2 instances. This would allow any member of the
security group to access the caches.

Note

If you are planning to use Local Zones, ensure that you have enabled them. When you
create a subnet group in that local zone, your VPC is extended to that Local Zone and your
VPC will treat the subnet as any subnet in any other Availability Zone. All relevant gateways
and route tables will be automatically adjusted.

Amazon VPCs and ElastiCache security API Version 2015-02-02 952

https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/Local_zones.html

Amazon ElastiCache for Redis User Guide

To create a rule in a VPC security group that allows connections from another security group

1. Sign in to the AWS Management Console and open the Amazon VPC console at https://
console.aws.amazon.com/vpc.

2. In the navigation pane, choose Security Groups.

3. Select or create a security group that you will use for your cache. Under Inbound Rules,
select Edit Inbound Rules and then select Add Rule. This security group will allow access to
members of another security group.

4. From Type choose Custom TCP Rule.

a. For Port Range, specify the port you used when you created your cache.

The default port for Redis caches and replication groups is 6379.

b. In the Source box, start typing the ID of the security group. From the list select the
security group you will use for your Amazon EC2 instances.

5. Choose Save when you finish.

Accessing an ElastiCache Cache when it and the Amazon EC2 Instance are in Different Amazon
VPCs

When your cache is in a different VPC from the EC2 instance you are using to access it, there are
several ways to access the cache. If the cache and EC2 instance are in different VPCs but in the
same region, you can use VPC peering. If the cache and the EC2 instance are in different regions,
you can create VPN connectivity between regions.

Topics

• Accessing an ElastiCache Cache when it and the Amazon EC2 Instance are in Different Amazon
VPCs in the Same Region

• Accessing an ElastiCache Cache when it and the Amazon EC2 Instance are in Different Amazon
VPCs in Different Regions

Amazon VPCs and ElastiCache security API Version 2015-02-02 953

https://console.aws.amazon.com/vpc
https://console.aws.amazon.com/vpc

Amazon ElastiCache for Redis User Guide

Accessing an ElastiCache Cache when it and the Amazon EC2 Instance are in Different Amazon
VPCs in the Same Region

The following diagram illustrates accessing a cache by an Amazon EC2 instance in a different
Amazon VPC in the same region using an Amazon VPC peering connection.

Cache accessed by an Amazon EC2 instance in a different Amazon VPC within the same Region - VPC
Peering Connection

A VPC peering connection is a networking connection between two VPCs that enables you to
route traffic between them using private IP addresses. Instances in either VPC can communicate
with each other as if they are within the same network. You can create a VPC peering connection
between your own Amazon VPCs, or with an Amazon VPC in another AWS account within a single
region. To learn more about Amazon VPC peering, see the VPC documentation.

Note

DNS name resolution may fail for peered VPCs, depending on the configurations applied
to the ElastiCache VPC. To resolve this, both VPCs must be enabled for DNS hostnames
and DNS resolution. For more information, see Enable DNS resolution for a VPC peering
connection.

Amazon VPCs and ElastiCache security API Version 2015-02-02 954

http://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/vpc-peering.html
https://docs.aws.amazon.com/vpc/latest/peering/modify-peering-connections.html
https://docs.aws.amazon.com/vpc/latest/peering/modify-peering-connections.html

Amazon ElastiCache for Redis User Guide

To access a cache in a different Amazon VPC over peering

1. Make sure that the two VPCs do not have an overlapping IP range or you will not be able to
peer them.

2. Peer the two VPCs. For more information, see Creating and Accepting an Amazon VPC Peering
Connection.

3. Update your routing table. For more information, see Updating Your Route Tables for a VPC
Peering Connection

Following is what the route tables look like for the example in the preceeding diagram. Note
that pcx-a894f1c1 is the peering connection.

VPC Routing Table

4. Modify the Security Group of your ElastiCache cache to allow inbound connection from the
Application security group in the peered VPC. For more information, see Reference Peer VPC
Security Groups.

Accessing a cache over a peering connection will incur additional data transfer costs.

Using Transit Gateway

A transit gateway enables you to attach VPCs and VPN connections in the same AWS Region and
route traffic between them. A transit gateway works across AWS accounts, and you can use AWS
Resource Access Manager to share your transit gateway with other accounts. After you share a
transit gateway with another AWS account, the account owner can attach their VPCs to your transit
gateway. A user from either account can delete the attachment at any time.

You can enable multicast on a transit gateway, and then create a transit gateway multicast domain
that allows multicast traffic to be sent from your multicast source to multicast group members
over VPC attachments that you associate with the domain.

Amazon VPCs and ElastiCache security API Version 2015-02-02 955

https://docs.aws.amazon.com/AmazonVPC/latest/PeeringGuide/create-vpc-peering-connection.html
https://docs.aws.amazon.com/AmazonVPC/latest/PeeringGuide/create-vpc-peering-connection.html
https://docs.aws.amazon.com/AmazonVPC/latest/PeeringGuide/vpc-peering-routing.html
https://docs.aws.amazon.com/AmazonVPC/latest/PeeringGuide/vpc-peering-routing.html
https://docs.aws.amazon.com/AmazonVPC/latest/PeeringGuide/vpc-peering-security-groups.html
https://docs.aws.amazon.com/AmazonVPC/latest/PeeringGuide/vpc-peering-security-groups.html

Amazon ElastiCache for Redis User Guide

You can also create a peering connection attachment between transit gateways in different AWS
Regions. This enables you to route traffic between the transit gateways' attachments across
different Regions.

For more information, see Transit gateways.

Accessing an ElastiCache Cache when it and the Amazon EC2 Instance are in Different Amazon
VPCs in Different Regions

Using Transit VPC

An alternative to using VPC peering, another common strategy for connecting multiple,
geographically disperse VPCs and remote networks is to create a transit VPC that serves as a global
network transit center. A transit VPC simplifies network management and minimizes the number
of connections required to connect multiple VPCs and remote networks. This design can save time
and effort and also reduce costs, as it is implemented virtually without the traditional expense of
establishing a physical presence in a colocation transit hub or deploying physical network gear.

Connecting across different VPCs in different regions

Once the Transit Amazon VPC is established, an application deployed in a “spoke” VPC in one
region can connect to an ElastiCache cache in a “spoke” VPC within another region.

Amazon VPCs and ElastiCache security API Version 2015-02-02 956

https://docs.aws.amazon.com/vpc/latest/tgw/tgw-transit-gateways.html

Amazon ElastiCache for Redis User Guide

To access a cache in a different VPC within a different AWS Region

1. Deploy a Transit VPC Solution. For more information, see, AWS Transit Gateway.

2. Update the VPC routing tables in the App and Cache VPCs to route traffic through the VGW
(Virtual Private Gateway) and the VPN Appliance. In case of Dynamic Routing with Border
Gateway Protocol (BGP) your routes may be automatically propagated.

3. Modify the Security Group of your ElastiCache cache to allow inbound connection from the
Application instances IP range. Note that you will not be able to reference the application
server Security Group in this scenario.

Accessing a cache across regions will introduce networking latencies and additional cross-region
data transfer costs.

Accessing an ElastiCache Cache from an Application Running in a Customer's Data Center

Another possible scenario is a Hybrid architecture where clients or applications in the customer’s
data center may need to access an ElastiCache cache in the VPC. This scenario is also supported
providing there is connectivity between the customers’ VPC and the data center either through
VPN or Direct Connect.

Topics

• Accessing an ElastiCache Cache from an Application Running in a Customer's Data Center Using
VPN Connectivity

• Accessing an ElastiCache Cache from an Application Running in a Customer's Data Center Using
Direct Connect

Accessing an ElastiCache Cache from an Application Running in a Customer's Data Center Using
VPN Connectivity

The following diagram illustrates accessing an ElastiCache cache from an application running in
your corporate network using VPN connections.

Amazon VPCs and ElastiCache security API Version 2015-02-02 957

https://aws.amazon.com/transit-gateway/

Amazon ElastiCache for Redis User Guide

Connecting to ElastiCache from your data center via a VPN

To access a cache in a VPC from on-prem application over VPN connection

1. Establish VPN Connectivity by adding a hardware Virtual Private Gateway to your VPC. For
more information, see Adding a Hardware Virtual Private Gateway to Your VPC.

2. Update the VPC routing table for the subnet where your ElastiCache cache is deployed to allow
traffic from your on-premises application server. In case of Dynamic Routing with BGP your
routes may be automatically propagated.

3. Modify the Security Group of your ElastiCache cache to allow inbound connection from the on-
premises application servers.

Amazon VPCs and ElastiCache security API Version 2015-02-02 958

http://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/VPC_VPN.html

Amazon ElastiCache for Redis User Guide

Accessing a cache over a VPN connection will introduce networking latencies and additional data
transfer costs.

Accessing an ElastiCache Cache from an Application Running in a Customer's Data Center Using
Direct Connect

The following diagram illustrates accessing an ElastiCache cache from an application running on
your corporate network using Direct Connect.

Connecting to ElastiCache from your data center via Direct Connect

Amazon VPCs and ElastiCache security API Version 2015-02-02 959

Amazon ElastiCache for Redis User Guide

To access an ElastiCache cache from an application running in your network using Direct
Connect

1. Establish Direct Connect connectivity. For more information, see, Getting Started with AWS
Direct Connect.

2. Modify the Security Group of your ElastiCache cache to allow inbound connection from the on-
premises application servers.

Accessing a cache over DX connection may introduce networking latencies and additional data
transfer charges.

Amazon VPCs and ElastiCache security API Version 2015-02-02 960

http://docs.aws.amazon.com/directconnect/latest/UserGuide/getting_started.html
http://docs.aws.amazon.com/directconnect/latest/UserGuide/getting_started.html

Amazon ElastiCache for Redis User Guide

Creating a Virtual Private Cloud (VPC)

In this example, you create an Amazon VPC with a private subnet for each Availability Zone.

Creating an Amazon VPC (Console)

1. Sign in to the AWS Management Console, and open the Amazon VPC console at https://
console.aws.amazon.com/vpc/.

2. In the VPC dashboard, choose Create VPC.

3. Under Resources to create, choose VPC and more.

4. Under Number of Availability Zones (AZs), choose the number of Availability Zones you want
to launch your subnets in.

5. Under Number of public subnets, choose the number of public subnets you want to add to
your VPC.

6. Under Number of private subnets, choose the number of private subnets you want to add to
your VPC.

Tip

Make a note of your subnet identifiers, and which are public and private. You will need
this information later when you launch your clusters and add an Amazon EC2 instance
to your Amazon VPC.

7. Create an Amazon VPC security group. You will use this group for your cache cluster and your
Amazon EC2 instance.

a. In the navigation pane of the Amazon VPC Management console, choose Security Groups.

b. Choose Create Security Group.

c. Type a name and a description for your security group in the corresponding boxes. In the
VPC box, choose the identifier for your Amazon VPC.

Amazon VPCs and ElastiCache security API Version 2015-02-02 961

https://console.aws.amazon.com/vpc/
https://console.aws.amazon.com/vpc/

Amazon ElastiCache for Redis User Guide

d. When the settings are as you want them, choose Yes, Create.

8. Define a network ingress rule for your security group. This rule will allow you to connect to
your Amazon EC2 instance using Secure Shell (SSH).

a. In the navigation list, choose Security Groups.

b. Find your security group in the list, and then choose it.

c. Under Security Group, choose the Inbound tab. In the Create a new rule box, choose
SSH, and then choose Add Rule.

d. Set the following values for your new inbound rule to allow HTTP access:

• Type: HTTP

• Source: 0.0.0.0/0

Choose Apply Rule Changes.

Now you are ready to create a cache subnet group and launch a cache cluster in your Amazon VPC.

• Creating a subnet group

• Creating a Redis (cluster mode disabled) cluster (Console).

Amazon VPCs and ElastiCache security API Version 2015-02-02 962

Amazon ElastiCache for Redis User Guide

Connecting to a cache running in an Amazon VPC

This example shows how to launch an Amazon EC2 instance in your Amazon VPC. You can then log
in to this instance and access the ElastiCache cache that is running in the Amazon VPC.

Connecting to a cache running in an Amazon VPC (Console)

In this example, you create an Amazon EC2 instance in your Amazon VPC. You can use this Amazon
EC2 instance to connect to cache nodes running in the Amazon VPC.

Note

For information about using Amazon EC2, see the Amazon EC2 Getting Started Guide in
the Amazon EC2 documentation.

To create an Amazon EC2 instance in your Amazon VPC using the Amazon EC2 console

1. Sign in to the AWS Management Console and open the Amazon EC2 console at https://
console.aws.amazon.com/ec2/.

2. In the console, choose Launch Instance and follow these steps:

3. On the Choose an Amazon Machine Image (AMI) page, choose the 64-bit Amazon Linux AMI,
and then choose Select.

4. On the Choose an Instance Type page, choose 3. Configure Instance.

5. On the Configure Instance Details page, make the following selections:

a. In the Network list, choose your Amazon VPC.

b. In the Subnet list, choose your public subnet.

Amazon VPCs and ElastiCache security API Version 2015-02-02 963

https://docs.aws.amazon.com/AWSEC2/latest/GettingStartedGuide/
https://aws.amazon.com/documentation/ec2/
https://console.aws.amazon.com/ec2/
https://console.aws.amazon.com/ec2/

Amazon ElastiCache for Redis User Guide

When the settings are as you want them, choose 4. Add Storage.

6. On the Add Storage page, choose 5. Tag Instance.

7. On the Tag Instance page, type a name for your Amazon EC2 instance, and then choose 6.
Configure Security Group.

8. On the Configure Security Group page, choose Select an existing security group. For more
information on security groups, see Amazon EC2 security groups for Linux instances.

Choose the name of your Amazon VPC security group, and then choose Review and Launch.

9. On the Review Instance and Launch page, choose Launch.

10. In the Select an existing key pair or create a new key pair window, specify a key pair that you
want to use with this instance.

Note

For information about managing key pairs, see the Amazon EC2 Getting Started Guide.

11. When you are ready to launch your Amazon EC2 instance, choose Launch.

You can now assign an Elastic IP address to the Amazon EC2 instance that you just created. You
need to use this IP address to connect to the Amazon EC2 instance.

To assign an elastic IP address (Console)

1. Open the Amazon VPC console at https://console.aws.amazon.com/vpc/.

2. In the navigation list, choose Elastic IPs.

3. Choose Allocate Elastic IP address.

Amazon VPCs and ElastiCache security API Version 2015-02-02 964

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-security-groups.html
https://docs.aws.amazon.com/AWSEC2/latest/GettingStartedGuide/
https://console.aws.amazon.com/vpc/

Amazon ElastiCache for Redis User Guide

4. In the Allocate Elastic IP address dialog box, accept the default Network Border Group and
choose Allocate .

5. Choose the Elastic IP address that you just allocated from the list and choose Associate
Address.

6. In the Associate Address dialog box, in the Instance box, choose the ID of the Amazon EC2
instance that you launched.

In the Private IP address box, select the box to obtain the private IP address and then choose
Associate.

You can now use SSH to connect to the Amazon EC2 instance using the Elastic IP address that
you created.

To connect to your Amazon EC2 instance

• Open a command window. At the command prompt, issue the following command, replacing
mykeypair.pem with the name of your key pair file and 54.207.55.251 with your Elastic IP
address.

ssh -i mykeypair.pem ec2-user@54.207.55.251

Important

Do not log out of your Amazon EC2 instance yet.

You are now ready to interact with your ElastiCache cluster. Before you can do that, if you haven't
already done so, you need to install the telnet utility.

To install telnet and interact with your cache cluster (AWS CLI)

1. Open a command window. At the command prompt, issue the following command. At the
confirmation prompt, type y.

sudo yum install telnet
Loaded plugins: priorities, security, update-motd, upgrade-helper
Setting up Install Process
Resolving Dependencies

Amazon VPCs and ElastiCache security API Version 2015-02-02 965

Amazon ElastiCache for Redis User Guide

--> Running transaction check

...(output omitted)...

Total download size: 63 k
Installed size: 109 k
Is this ok [y/N]: y
Downloading Packages:
telnet-0.17-47.7.amzn1.x86_64.rpm | 63 kB 00:00

...(output omitted)...

Complete!

2. Use telnet to connect to your cache node endpoint over port 6379. Replace the hostname
shown below with the hostname of your cache node.

telnet my-cache-cluster.7wufxa.0001.use1.cache.amazonaws.com 6379

You are now connected to the cache engine and can issue commands. In this example, you add
a data item to the cache and then get it immediately afterward. Finally, you'll disconnect from
the cache node.

To store a key and a value, type the following two lines:

set mykey myvalue

The cache engine responds with the following:

OK

To retrieve the value for mykey, type the following:

get mykey

To disconnect from the cache engine, type the following:

quit

Amazon VPCs and ElastiCache security API Version 2015-02-02 966

Amazon ElastiCache for Redis User Guide

3. Go to the ElastiCache console at https://console.aws.amazon.com/elasticache/ and obtain the
endpoint for one of the nodes in your cache cluster. For more information, Finding connection
endpoints for Redis.

4. Use telnet to connect to your cache node endpoint over port 6379. Replace the hostname
shown below with the hostname of your cache node.

telnet my-cache-cluster.7wufxa.0001.use1.cache.amazonaws.com 6379

You are now connected to the cache engine and can issue commands. In this example, you add
a data item to the cache and then get it immediately afterward. Finally, you'll disconnect from
the cache node.

To store a key and a value, type the following:

set mykey myvalue

The cache engine responds with the following:

OK

To retrieve the value for mykey, type the following:

get mykey

The cache engine responds with the following:

get mykey
myvalue

To disconnect from the cache engine, type the following:

quit

Amazon VPCs and ElastiCache security API Version 2015-02-02 967

https://console.aws.amazon.com/elasticache/
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/Endpoints.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/Endpoints.html

Amazon ElastiCache for Redis User Guide

Important

To avoid incurring additional charges on your AWS account, be sure to delete any AWS
resources you no longer want after trying these examples.

Amazon ElastiCache API and interface VPC endpoints (AWS PrivateLink)

You can establish a private connection between your VPC and Amazon ElastiCache API endpoints
by creating an interface VPC endpoint. Interface endpoints are powered by AWS PrivateLink. AWS
PrivateLink allows you to privately access Amazon ElastiCache API operations without an internet
gateway, NAT device, VPN connection, or AWS Direct Connect connection.

Instances in your VPC don't need public IP addresses to communicate with Amazon ElastiCache
API endpoints. Your instances also don't need public IP addresses to use any of the available
ElastiCache API operations. Traffic between your VPC and Amazon ElastiCache doesn't leave the
Amazon network. Each interface endpoint is represented by one or more elastic network interfaces
in your subnets. For more information on elastic network interfaces, see Elastic network interfaces
in the Amazon EC2 User Guide.

• For more information about VPC endpoints, see Interface VPC endpoints (AWS PrivateLink) in the
Amazon VPC User Guide.

• For more information about ElastiCache API operations, see ElastiCache API operations.

After you create an interface VPC endpoint, if you enable private DNS hostnames for the endpoint,
the default ElastiCache endpoint (https://elasticache.Region.amazonaws.com) resolves to your
VPC endpoint. If you do not enable private DNS hostnames, Amazon VPC provides a DNS endpoint
name that you can use in the following format:

VPC_Endpoint_ID.elasticache.Region.vpce.amazonaws.com

For more information, see Interface VPC Endpoints (AWS PrivateLink) in the Amazon VPC User
Guide. ElastiCache supports making calls to all of its API Actions inside your VPC.

Amazon ElastiCache API and interface VPC endpoints (AWS PrivateLink) API Version 2015-02-02 968

https://aws.amazon.com/privatelink
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-eni.html
https://docs.aws.amazon.com/vpc/latest/userguide/vpce-interface.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/APIReference/Welcome.html
https://docs.aws.amazon.com/vpc/latest/userguide/vpce-interface.html#vpce-private-dns
https://docs.aws.amazon.com/vpc/latest/userguide/vpce-interface.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/APIReference/API_Operations.html

Amazon ElastiCache for Redis User Guide

Note

Private DNS hostnames can be enabled for only one VPC endpoint in the VPC. If you want
to create an additional VPC endpoint then private DNS hostname should be disabled for it.

Considerations for VPC endpoints

Before you set up an interface VPC endpoint for Amazon ElastiCache API endpoints, ensure
that you review Interface endpoint properties and limitations in the Amazon VPC User Guide. All
ElastiCache API operations relevant to managing Amazon ElastiCache resources are available from
your VPC using AWS PrivateLink.

VPC endpoint policies are supported for ElastiCache API endpoints. By default, full access to
ElastiCache API operations is allowed through the endpoint. For more information, see Controlling
access to services with VPC endpoints in the Amazon VPC User Guide.

Creating an interface VPC endpoint for the ElastiCache API

You can create a VPC endpoint for the Amazon ElastiCache API using either the Amazon VPC
console or the AWS CLI. For more information, see Creating an interface endpoint in the Amazon
VPC User Guide.

After you create an interface VPC endpoint, you can enable private DNS hostnames
for the endpoint. When you do, the default Amazon ElastiCache endpoint (https://
elasticache.Region.amazonaws.com) resolves to your VPC endpoint. For the China (Beijing)
and China (Ningxia) AWS Regions, you can make API requests with the VPC endpoint by using
elasticache.cn-north-1.amazonaws.com.cn for Beijing and elasticache.cn-
northwest-1.amazonaws.com.cn for Ningxia. For more information, see Accessing a service
through an interface endpoint in the Amazon VPC User Guide.

Creating a VPC endpoint policy for the Amazon ElastiCache API

You can attach an endpoint policy to your VPC endpoint that controls access to the ElastiCache API.
The policy specifies the following:

• The principal that can perform actions.

• The actions that can be performed.

• The resources on which actions can be performed.

Amazon ElastiCache API and interface VPC endpoints (AWS PrivateLink) API Version 2015-02-02 969

https://docs.aws.amazon.com/vpc/latest/privatelink/endpoint-services-overview.html
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-endpoints-access.html
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-endpoints-access.html
https://docs.aws.amazon.com/vpc/latest/privatelink/create-endpoint-service.html
https://docs.aws.amazon.com/vpc/latest/userguide/vpce-interface.html#access-service-though-endpoint
https://docs.aws.amazon.com/vpc/latest/userguide/vpce-interface.html#access-service-though-endpoint

Amazon ElastiCache for Redis User Guide

For more information, see Controlling access to services with VPC endpoints in the Amazon VPC
User Guide.

Example VPC endpoint policy for ElastiCache API actions

The following is an example of an endpoint policy for the ElastiCache API. When attached to an
endpoint, this policy grants access to the listed ElastiCache API actions for all principals on all
resources.

{
 "Statement": [{
 "Principal": "*",
 "Effect": "Allow",
 "Action": [
 "elasticache:CreateCacheCluster",
 "elasticache:ModifyCacheCluster",
 "elasticache:CreateSnapshot"
],
 "Resource": "*"
 }]
}

Example VPC endpoint policy that denies all access from a specified AWS account

The following VPC endpoint policy denies AWS account 123456789012 all access to resources
using the endpoint. The policy allows all actions from other accounts.

{
 "Statement": [{
 "Action": "*",
 "Effect": "Allow",
 "Resource": "*",
 "Principal": "*"
 },
 {
 "Action": "*",
 "Effect": "Deny",
 "Resource": "*",
 "Principal": {
 "AWS": [
 "123456789012"
]

Amazon ElastiCache API and interface VPC endpoints (AWS PrivateLink) API Version 2015-02-02 970

https://docs.aws.amazon.com/vpc/latest/userguide/vpc-endpoints-access.html

Amazon ElastiCache for Redis User Guide

 }
 }
]
}

Subnets and subnet groups

A subnet group is a collection of subnets (typically private) that you can designate for your self-
designed clusters running in an Amazon Virtual Private Cloud (VPC) environment.

If you create a self-designed cluster in an Amazon VPC, you must use a subnet group. ElastiCache
uses that subnet group to choose a subnet and IP addresses within that subnet to associate with
your nodes.

ElastiCache provides a default IPv4 subnet group or you can choose to create a new one. For IPv6,
you need to create a subnet group with an IPv6 CIDR block. If you choose dual stack, you then
must select a Discovery IP type, either IPv6 or IPv4.

ElastiCache Serverless does not use a subnet group resource, and instead takes a list of subnets
directly during creation.

This section covers how to create and leverage subnets and subnet groups to manage access to
your ElastiCache resources.

For more information about subnet group usage in an Amazon VPC environment, see Accessing
your cluster or replication group.

Topics

• Creating a subnet group

• Assigning a subnet group to a cache

• Modifying a subnet group

• Deleting a subnet group

Subnets and subnet groups API Version 2015-02-02 971

Amazon ElastiCache for Redis User Guide

Creating a subnet group

A cache subnet group is a collection of subnets that you may want to designate for your caches in a
VPC. When launching a cache in a VPC, you need to select a cache subnet group. Then ElastiCache
uses that cache subnet group to assign IP addresses within that subnet to each cache node in the
cache.

When you create a new subnet group, note the number of available IP addresses. If the subnet has
very few free IP addresses, you might be constrained as to how many more nodes you can add to
a cluster. To resolve this issue, you can assign one or more subnets to a subnet group so that you
have a sufficient number of IP addresses in your cluster's Availability Zone. After that, you can add
more nodes to your cluster.

If you choose IPV4 as your network type, a default subnet group will be available or you can choose
to create a new one. ElastiCache uses that subnet group to choose a subnet and IP addresses within
that subnet to associate with your nodes. If you choose dual-stack or IPV6, you will be directed to
create dual-stack or IPV6 subnets. For more information on network types, see Network type. For
more information, see Create a subnet in your VPC.

The following procedures show you how to create a subnet group called mysubnetgroup
(console), the AWS CLI, and the ElastiCache API.

Creating a subnet group (Console)

The following procedure shows how to create a subnet group (console).

To create a subnet group (Console)

1. Sign in to the AWS Management Console, and open the ElastiCache console at https://
console.aws.amazon.com/elasticache/.

2. In the navigation list, choose Subnet groups.

3. Choose Create subnet group.

4. In the Create subnet group wizard, do the following. When all the settings are as you want
them, choose Create.

a. In the Name box, type a name for your subnet group.

b. In the Description box, type a description for your subnet group.

c. In the VPC ID box, choose your Amazon VPC.

Subnets and subnet groups API Version 2015-02-02 972

https://docs.aws.amazon.com/https://docs.aws.amazon.com/AmazonElastiCache/latest/redis/network-type.html
https://docs.aws.amazon.com/vpc/latest/userguide/working-with-vpcs.html#AddaSubnet
https://console.aws.amazon.com/elasticache/
https://console.aws.amazon.com/elasticache/

Amazon ElastiCache for Redis User Guide

d. All subnets are chosen by default. In the Selected subnets panel, click Manage and select
the Availability Zones or Local Zones and IDs of your private subnets, and then choose
Choose.

5. In the confirmation message that appears, choose Close.

Your new subnet group appears in the Subnet Groups list of the ElastiCache console. At the
bottom of the window you can choose the subnet group to see details, such as all of the subnets
associated with this group.

Creating a subnet group (AWS CLI)

At a command prompt, use the command create-cache-subnet-group to create a subnet
group.

For Linux, macOS, or Unix:

aws elasticache create-cache-subnet-group \
 --cache-subnet-group-name mysubnetgroup \
 --cache-subnet-group-description "Testing" \
 --subnet-ids subnet-53df9c3a

For Windows:

aws elasticache create-cache-subnet-group ^
 --cache-subnet-group-name mysubnetgroup ^
 --cache-subnet-group-description "Testing" ^
 --subnet-ids subnet-53df9c3a

This command should produce output similar to the following:

{
 "CacheSubnetGroup": {
 "VpcId": "vpc-37c3cd17",
 "CacheSubnetGroupDescription": "Testing",
 "Subnets": [
 {
 "SubnetIdentifier": "subnet-53df9c3a",
 "SubnetAvailabilityZone": {
 "Name": "us-west-2a"
 }

Subnets and subnet groups API Version 2015-02-02 973

https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/Local_zones.html

Amazon ElastiCache for Redis User Guide

 }
],
 "CacheSubnetGroupName": "mysubnetgroup"
 }
}

For more information, see the AWS CLI topic create-cache-subnet-group.

Subnets and subnet groups API Version 2015-02-02 974

https://docs.aws.amazon.com/cli/latest/reference/elasticache/create-cache-subnet-group.html

Amazon ElastiCache for Redis User Guide

Assigning a subnet group to a cache

After you have created a subnet group, you can launch a cache in an Amazon VPC. For more
information, see the following.

• Standalone Redis cluster – To launch a single-node Redis cluster, see Creating a Redis (cluster
mode disabled) cluster (Console). In step 7.a (Advanced Redis Settings), choose a VPC subnet
group.

• Redis (cluster mode disabled) replication group – To launch a Redis (cluster mode disabled)
replication group in a VPC, see Creating a Redis (Cluster Mode Disabled) replication group from
scratch. In step 7.b (Advanced Redis Settings), choose a VPC subnet group.

• Redis (cluster mode enabled) replication group – Creating a Redis (Cluster Mode Enabled)
cluster (Console). In step 6.i (Advanced Redis Settings), choose a VPC subnet group.

Subnets and subnet groups API Version 2015-02-02 975

Amazon ElastiCache for Redis User Guide

Modifying a subnet group

You can modify a subnet group's description, or modify the list of subnet IDs associated with the
subnet group. You cannot delete a subnet ID from a subnet group if a cache is currently using that
subnet.

The following procedures show you how to modify a subnet group.

Modifying subnet groups (Console)

To modify a subnet group

1. Sign in to the AWS Management Console and open the ElastiCache console at https://
console.aws.amazon.com/elasticache/.

2. In the navigation pane, choose Subnet groups.

3. In the list of subnet groups, select the radio button of the one you want to modify and choose
Modify.

4. In the Selected subnets panel, choose Manage.

5. Make any changes to the selected subnets and click Choose.

6. Click Save changes to save your changes.

Modifying subnet groups (AWS CLI)

At a command prompt, use the command modify-cache-subnet-group to modify a subnet
group.

For Linux, macOS, or Unix:

aws elasticache modify-cache-subnet-group \
 --cache-subnet-group-name mysubnetgroup \
 --cache-subnet-group-description "New description" \
 --subnet-ids "subnet-42df9c3a" "subnet-48fc21a9"

For Windows:

aws elasticache modify-cache-subnet-group ^
 --cache-subnet-group-name mysubnetgroup ^
 --cache-subnet-group-description "New description" ^

Subnets and subnet groups API Version 2015-02-02 976

https://console.aws.amazon.com/elasticache/
https://console.aws.amazon.com/elasticache/

Amazon ElastiCache for Redis User Guide

 --subnet-ids "subnet-42df9c3a" "subnet-48fc21a9"

This command should produce output similar to the following:

{
 "CacheSubnetGroup": {
 "VpcId": "vpc-73cd3c17",
 "CacheSubnetGroupDescription": "New description",
 "Subnets": [
 {
 "SubnetIdentifier": "subnet-42dcf93a",
 "SubnetAvailabilityZone": {
 "Name": "us-west-2a"
 }
 },
 {
 "SubnetIdentifier": "subnet-48fc12a9",
 "SubnetAvailabilityZone": {
 "Name": "us-west-2a"
 }
 }
],
 "CacheSubnetGroupName": "mysubnetgroup"
 }
}

For more information, see the AWS CLI topic modify-cache-subnet-group.

Subnets and subnet groups API Version 2015-02-02 977

https://docs.aws.amazon.com/cli/latest/reference/elasticache/modify-cache-subnet-group.html

Amazon ElastiCache for Redis User Guide

Deleting a subnet group

If you decide that you no longer need your subnet group, you can delete it. You cannot delete a
subnet group if it is currently in use by a cache.

The following procedures show you how to delete a subnet group.

Deleting a subnet group (Console)

To delete a subnet group

1. Sign in to the AWS Management Console and open the ElastiCache console at https://
console.aws.amazon.com/elasticache/.

2. In the navigation pane, choose Subnet groups.

3. In the list of subnet groups, choose the one you want to delete and then choose Delete.

4. When you are asked to confirm this operation, type the name of the subnet group in the text
input field and choose Delete.

Deleting a subnet group (AWS CLI)

Using the AWS CLI, call the command delete-cache-subnet-group with the following parameter:

• --cache-subnet-group-name mysubnetgroup

For Linux, macOS, or Unix:

aws elasticache delete-cache-subnet-group \
 --cache-subnet-group-name mysubnetgroup

For Windows:

aws elasticache delete-cache-subnet-group ^
 --cache-subnet-group-name mysubnetgroup

This command produces no output.

For more information, see the AWS CLI topic delete-cache-subnet-group.

Subnets and subnet groups API Version 2015-02-02 978

https://console.aws.amazon.com/elasticache/
https://console.aws.amazon.com/elasticache/
https://docs.aws.amazon.com/cli/latest/reference/elasticache/delete-cache-subnet-group.html

Amazon ElastiCache for Redis User Guide

Identity and Access Management for Amazon ElastiCache

AWS Identity and Access Management (IAM) is an AWS service that helps an administrator securely
control access to AWS resources. IAM administrators control who can be authenticated (signed in)
and authorized (have permissions) to use ElastiCache resources. IAM is an AWS service that you can
use with no additional charge.

Topics

• Audience

• Authenticating with identities

• Managing access using policies

• How Amazon ElastiCache works with IAM

• Identity-based policy examples for Amazon ElastiCache

• Troubleshooting Amazon ElastiCache identity and access

• Access control

• Overview of managing access permissions to your ElastiCache resources

Audience

How you use AWS Identity and Access Management (IAM) differs, depending on the work that you
do in ElastiCache.

Service user – If you use the ElastiCache service to do your job, then your administrator provides
you with the credentials and permissions that you need. As you use more ElastiCache features to
do your work, you might need additional permissions. Understanding how access is managed can
help you request the right permissions from your administrator. If you cannot access a feature in
ElastiCache, see Troubleshooting Amazon ElastiCache identity and access.

Service administrator – If you're in charge of ElastiCache resources at your company, you probably
have full access to ElastiCache. It's your job to determine which ElastiCache features and resources
your service users should access. You must then submit requests to your IAM administrator to
change the permissions of your service users. Review the information on this page to understand
the basic concepts of IAM. To learn more about how your company can use IAM with ElastiCache,
see How Amazon ElastiCache works with IAM.

Identity and Access Management API Version 2015-02-02 979

Amazon ElastiCache for Redis User Guide

IAM administrator – If you're an IAM administrator, you might want to learn details about how you
can write policies to manage access to ElastiCache. To view example ElastiCache identity-based
policies that you can use in IAM, see Identity-based policy examples for Amazon ElastiCache.

Authenticating with identities

Authentication is how you sign in to AWS using your identity credentials. You must be
authenticated (signed in to AWS) as the AWS account root user, as an IAM user, or by assuming an
IAM role.

You can sign in to AWS as a federated identity by using credentials provided through an identity
source. AWS IAM Identity Center (IAM Identity Center) users, your company's single sign-on
authentication, and your Google or Facebook credentials are examples of federated identities.
When you sign in as a federated identity, your administrator previously set up identity federation
using IAM roles. When you access AWS by using federation, you are indirectly assuming a role.

Depending on the type of user you are, you can sign in to the AWS Management Console or the
AWS access portal. For more information about signing in to AWS, see How to sign in to your AWS
account in the AWS Sign-In User Guide.

If you access AWS programmatically, AWS provides a software development kit (SDK) and a
command line interface (CLI) to cryptographically sign your requests by using your credentials. If
you don't use AWS tools, you must sign requests yourself. For more information about using the
recommended method to sign requests yourself, see Signing AWS API requests in the IAM User
Guide.

Regardless of the authentication method that you use, you might be required to provide additional
security information. For example, AWS recommends that you use multi-factor authentication
(MFA) to increase the security of your account. To learn more, see Multi-factor authentication in the
AWS IAM Identity Center User Guide and Using multi-factor authentication (MFA) in AWS in the IAM
User Guide.

AWS account root user

When you create an AWS account, you begin with one sign-in identity that has complete access to
all AWS services and resources in the account. This identity is called the AWS account root user and
is accessed by signing in with the email address and password that you used to create the account.
We strongly recommend that you don't use the root user for your everyday tasks. Safeguard your
root user credentials and use them to perform the tasks that only the root user can perform. For

Authenticating with identities API Version 2015-02-02 980

https://docs.aws.amazon.com/signin/latest/userguide/how-to-sign-in.html
https://docs.aws.amazon.com/signin/latest/userguide/how-to-sign-in.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-signing.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/enable-mfa.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mfa.html

Amazon ElastiCache for Redis User Guide

the complete list of tasks that require you to sign in as the root user, see Tasks that require root
user credentials in the IAM User Guide.

Federated identity

As a best practice, require human users, including users that require administrator access, to use
federation with an identity provider to access AWS services by using temporary credentials.

A federated identity is a user from your enterprise user directory, a web identity provider, the AWS
Directory Service, the Identity Center directory, or any user that accesses AWS services by using
credentials provided through an identity source. When federated identities access AWS accounts,
they assume roles, and the roles provide temporary credentials.

For centralized access management, we recommend that you use AWS IAM Identity Center. You can
create users and groups in IAM Identity Center, or you can connect and synchronize to a set of users
and groups in your own identity source for use across all your AWS accounts and applications. For
information about IAM Identity Center, see What is IAM Identity Center? in the AWS IAM Identity
Center User Guide.

IAM users and groups

An IAM user is an identity within your AWS account that has specific permissions for a single person
or application. Where possible, we recommend relying on temporary credentials instead of creating
IAM users who have long-term credentials such as passwords and access keys. However, if you have
specific use cases that require long-term credentials with IAM users, we recommend that you rotate
access keys. For more information, see Rotate access keys regularly for use cases that require long-
term credentials in the IAM User Guide.

An IAM group is an identity that specifies a collection of IAM users. You can't sign in as a group. You
can use groups to specify permissions for multiple users at a time. Groups make permissions easier
to manage for large sets of users. For example, you could have a group named IAMAdmins and give
that group permissions to administer IAM resources.

Users are different from roles. A user is uniquely associated with one person or application, but
a role is intended to be assumable by anyone who needs it. Users have permanent long-term
credentials, but roles provide temporary credentials. To learn more, see When to create an IAM user
(instead of a role) in the IAM User Guide.

Authenticating with identities API Version 2015-02-02 981

https://docs.aws.amazon.com/IAM/latest/UserGuide/root-user-tasks.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/root-user-tasks.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/what-is.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#rotate-credentials
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#rotate-credentials
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_groups.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id.html#id_which-to-choose
https://docs.aws.amazon.com/IAM/latest/UserGuide/id.html#id_which-to-choose

Amazon ElastiCache for Redis User Guide

IAM roles

An IAM role is an identity within your AWS account that has specific permissions. It is similar to an
IAM user, but is not associated with a specific person. You can temporarily assume an IAM role in
the AWS Management Console by switching roles. You can assume a role by calling an AWS CLI or
AWS API operation or by using a custom URL. For more information about methods for using roles,
see Using IAM roles in the IAM User Guide.

IAM roles with temporary credentials are useful in the following situations:

• Federated user access – To assign permissions to a federated identity, you create a role
and define permissions for the role. When a federated identity authenticates, the identity
is associated with the role and is granted the permissions that are defined by the role. For
information about roles for federation, see Creating a role for a third-party Identity Provider
in the IAM User Guide. If you use IAM Identity Center, you configure a permission set. To control
what your identities can access after they authenticate, IAM Identity Center correlates the
permission set to a role in IAM. For information about permissions sets, see Permission sets in
the AWS IAM Identity Center User Guide.

• Temporary IAM user permissions – An IAM user or role can assume an IAM role to temporarily
take on different permissions for a specific task.

• Cross-account access – You can use an IAM role to allow someone (a trusted principal) in a
different account to access resources in your account. Roles are the primary way to grant cross-
account access. However, with some AWS services, you can attach a policy directly to a resource
(instead of using a role as a proxy). To learn the difference between roles and resource-based
policies for cross-account access, see How IAM roles differ from resource-based policies in the
IAM User Guide.

• Cross-service access – Some AWS services use features in other AWS services. For example, when
you make a call in a service, it's common for that service to run applications in Amazon EC2 or
store objects in Amazon S3. A service might do this using the calling principal's permissions,
using a service role, or using a service-linked role.

• Forward access sessions (FAS) – When you use an IAM user or role to perform actions in
AWS, you are considered a principal. When you use some services, you might perform an
action that then initiates another action in a different service. FAS uses the permissions of the
principal calling an AWS service, combined with the requesting AWS service to make requests
to downstream services. FAS requests are only made when a service receives a request that
requires interactions with other AWS services or resources to complete. In this case, you must

Authenticating with identities API Version 2015-02-02 982

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-console.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-idp.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/permissionsetsconcept.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_compare-resource-policies.html

Amazon ElastiCache for Redis User Guide

have permissions to perform both actions. For policy details when making FAS requests, see
Forward access sessions.

• Service role – A service role is an IAM role that a service assumes to perform actions on your
behalf. An IAM administrator can create, modify, and delete a service role from within IAM. For
more information, see Creating a role to delegate permissions to an AWS service in the IAM
User Guide.

• Service-linked role – A service-linked role is a type of service role that is linked to an AWS
service. The service can assume the role to perform an action on your behalf. Service-linked
roles appear in your AWS account and are owned by the service. An IAM administrator can
view, but not edit the permissions for service-linked roles.

• Applications running on Amazon EC2 – You can use an IAM role to manage temporary
credentials for applications that are running on an EC2 instance and making AWS CLI or AWS API
requests. This is preferable to storing access keys within the EC2 instance. To assign an AWS role
to an EC2 instance and make it available to all of its applications, you create an instance profile
that is attached to the instance. An instance profile contains the role and enables programs that
are running on the EC2 instance to get temporary credentials. For more information, see Using
an IAM role to grant permissions to applications running on Amazon EC2 instances in the IAM
User Guide.

To learn whether to use IAM roles or IAM users, see When to create an IAM role (instead of a user)
in the IAM User Guide.

Managing access using policies

You control access in AWS by creating policies and attaching them to AWS identities or resources.
A policy is an object in AWS that, when associated with an identity or resource, defines their
permissions. AWS evaluates these policies when a principal (user, root user, or role session) makes
a request. Permissions in the policies determine whether the request is allowed or denied. Most
policies are stored in AWS as JSON documents. For more information about the structure and
contents of JSON policy documents, see Overview of JSON policies in the IAM User Guide.

Administrators can use AWS JSON policies to specify who has access to what. That is, which
principal can perform actions on what resources, and under what conditions.

By default, users and roles have no permissions. To grant users permission to perform actions on
the resources that they need, an IAM administrator can create IAM policies. The administrator can
then add the IAM policies to roles, and users can assume the roles.

Managing access using policies API Version 2015-02-02 983

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_forward_access_sessions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-ec2.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-ec2.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id.html#id_which-to-choose_role
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html#access_policies-json

Amazon ElastiCache for Redis User Guide

IAM policies define permissions for an action regardless of the method that you use to perform the
operation. For example, suppose that you have a policy that allows the iam:GetRole action. A
user with that policy can get role information from the AWS Management Console, the AWS CLI, or
the AWS API.

Identity-based policies

Identity-based policies are JSON permissions policy documents that you can attach to an identity,
such as an IAM user, group of users, or role. These policies control what actions users and roles can
perform, on which resources, and under what conditions. To learn how to create an identity-based
policy, see Creating IAM policies in the IAM User Guide.

Identity-based policies can be further categorized as inline policies or managed policies. Inline
policies are embedded directly into a single user, group, or role. Managed policies are standalone
policies that you can attach to multiple users, groups, and roles in your AWS account. Managed
policies include AWS managed policies and customer managed policies. To learn how to choose
between a managed policy or an inline policy, see Choosing between managed policies and inline
policies in the IAM User Guide.

Resource-based policies

Resource-based policies are JSON policy documents that you attach to a resource. Examples of
resource-based policies are IAM role trust policies and Amazon S3 bucket policies. In services that
support resource-based policies, service administrators can use them to control access to a specific
resource. For the resource where the policy is attached, the policy defines what actions a specified
principal can perform on that resource and under what conditions. You must specify a principal
in a resource-based policy. Principals can include accounts, users, roles, federated users, or AWS
services.

Resource-based policies are inline policies that are located in that service. You can't use AWS
managed policies from IAM in a resource-based policy.

Access control lists (ACLs)

Access control lists (ACLs) control which principals (account members, users, or roles) have
permissions to access a resource. ACLs are similar to resource-based policies, although they do not
use the JSON policy document format.

Managing access using policies API Version 2015-02-02 984

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#choosing-managed-or-inline
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#choosing-managed-or-inline
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_principal.html

Amazon ElastiCache for Redis User Guide

Amazon S3, AWS WAF, and Amazon VPC are examples of services that support ACLs. To learn more
about ACLs, see Access control list (ACL) overview in the Amazon Simple Storage Service Developer
Guide.

Other policy types

AWS supports additional, less-common policy types. These policy types can set the maximum
permissions granted to you by the more common policy types.

• Permissions boundaries – A permissions boundary is an advanced feature in which you set
the maximum permissions that an identity-based policy can grant to an IAM entity (IAM user
or role). You can set a permissions boundary for an entity. The resulting permissions are the
intersection of an entity's identity-based policies and its permissions boundaries. Resource-based
policies that specify the user or role in the Principal field are not limited by the permissions
boundary. An explicit deny in any of these policies overrides the allow. For more information
about permissions boundaries, see Permissions boundaries for IAM entities in the IAM User Guide.

• Service control policies (SCPs) – SCPs are JSON policies that specify the maximum permissions
for an organization or organizational unit (OU) in AWS Organizations. AWS Organizations is a
service for grouping and centrally managing multiple AWS accounts that your business owns. If
you enable all features in an organization, then you can apply service control policies (SCPs) to
any or all of your accounts. The SCP limits permissions for entities in member accounts, including
each AWS account root user. For more information about Organizations and SCPs, see How SCPs
work in the AWS Organizations User Guide.

• Session policies – Session policies are advanced policies that you pass as a parameter when you
programmatically create a temporary session for a role or federated user. The resulting session's
permissions are the intersection of the user or role's identity-based policies and the session
policies. Permissions can also come from a resource-based policy. An explicit deny in any of these
policies overrides the allow. For more information, see Session policies in the IAM User Guide.

Multiple policy types

When multiple types of policies apply to a request, the resulting permissions are more complicated
to understand. To learn how AWS determines whether to allow a request when multiple policy
types are involved, see Policy evaluation logic in the IAM User Guide.

Managing access using policies API Version 2015-02-02 985

https://docs.aws.amazon.com/AmazonS3/latest/dev/acl-overview.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_boundaries.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_about-scps.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_about-scps.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html#policies_session
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_evaluation-logic.html

Amazon ElastiCache for Redis User Guide

How Amazon ElastiCache works with IAM

Before you use IAM to manage access to ElastiCache, learn what IAM features are available to use
with ElastiCache.

IAM features you can use with Amazon ElastiCache

IAM feature ElastiCache support

Identity-based policies Yes

Resource-based policies No

Policy actions Yes

Policy resources Yes

Policy condition keys Yes

ACLs Yes

ABAC (tags in policies) Yes

Temporary credentials Yes

Principal permissions Yes

Service roles Yes

Service-linked roles Yes

To get a high-level view of how ElastiCache and other AWS services work with most IAM features,
see AWS services that work with IAM in the IAM User Guide.

Identity-based policies for ElastiCache

Supports identity-based policies Yes

How Amazon ElastiCache works with IAM API Version 2015-02-02 986

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html

Amazon ElastiCache for Redis User Guide

Identity-based policies are JSON permissions policy documents that you can attach to an identity,
such as an IAM user, group of users, or role. These policies control what actions users and roles can
perform, on which resources, and under what conditions. To learn how to create an identity-based
policy, see Creating IAM policies in the IAM User Guide.

With IAM identity-based policies, you can specify allowed or denied actions and resources as well
as the conditions under which actions are allowed or denied. You can't specify the principal in an
identity-based policy because it applies to the user or role to which it is attached. To learn about all
of the elements that you can use in a JSON policy, see IAM JSON policy elements reference in the
IAM User Guide.

Identity-based policy examples for ElastiCache

To view examples of ElastiCache identity-based policies, see Identity-based policy examples for
Amazon ElastiCache.

Resource-based policies within ElastiCache

Supports resource-based policies No

Resource-based policies are JSON policy documents that you attach to a resource. Examples of
resource-based policies are IAM role trust policies and Amazon S3 bucket policies. In services that
support resource-based policies, service administrators can use them to control access to a specific
resource. For the resource where the policy is attached, the policy defines what actions a specified
principal can perform on that resource and under what conditions. You must specify a principal
in a resource-based policy. Principals can include accounts, users, roles, federated users, or AWS
services.

To enable cross-account access, you can specify an entire account or IAM entities in another
account as the principal in a resource-based policy. Adding a cross-account principal to a resource-
based policy is only half of establishing the trust relationship. When the principal and the resource
are in different AWS accounts, an IAM administrator in the trusted account must also grant
the principal entity (user or role) permission to access the resource. They grant permission by
attaching an identity-based policy to the entity. However, if a resource-based policy grants access
to a principal in the same account, no additional identity-based policy is required. For more
information, see How IAM roles differ from resource-based policies in the IAM User Guide.

How Amazon ElastiCache works with IAM API Version 2015-02-02 987

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_principal.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_compare-resource-policies.html

Amazon ElastiCache for Redis User Guide

Policy actions for ElastiCache

Supports policy actions Yes

Administrators can use AWS JSON policies to specify who has access to what. That is, which
principal can perform actions on what resources, and under what conditions.

The Action element of a JSON policy describes the actions that you can use to allow or deny
access in a policy. Policy actions usually have the same name as the associated AWS API operation.
There are some exceptions, such as permission-only actions that don't have a matching API
operation. There are also some operations that require multiple actions in a policy. These
additional actions are called dependent actions.

Include actions in a policy to grant permissions to perform the associated operation.

To see a list of ElastiCache actions, see Actions Defined by Amazon ElastiCache in the Service
Authorization Reference.

Policy actions in ElastiCache use the following prefix before the action:

elasticache

To specify multiple actions in a single statement, separate them with commas.

"Action": [
 "elasticache:action1",
 "elasticache:action2"
]

You can specify multiple actions using wildcards (*). For example, to specify all actions that begin
with the word Describe, include the following action:

"Action": "elasticache:Describe*"

To view examples of ElastiCache identity-based policies, see Identity-based policy examples for
Amazon ElastiCache.

How Amazon ElastiCache works with IAM API Version 2015-02-02 988

https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonelasticache.html#amazonelasticache-actions-as-permissions

Amazon ElastiCache for Redis User Guide

Policy resources for ElastiCache

Supports policy resources Yes

Administrators can use AWS JSON policies to specify who has access to what. That is, which
principal can perform actions on what resources, and under what conditions.

The Resource JSON policy element specifies the object or objects to which the action applies.
Statements must include either a Resource or a NotResource element. As a best practice,
specify a resource using its Amazon Resource Name (ARN). You can do this for actions that support
a specific resource type, known as resource-level permissions.

For actions that don't support resource-level permissions, such as listing operations, use a wildcard
(*) to indicate that the statement applies to all resources.

"Resource": "*"

To see a list of ElastiCache resource types and their ARNs, see Resources Defined by Amazon
ElastiCache in the Service Authorization Reference. To learn with which actions you can specify the
ARN of each resource, see Actions Defined by Amazon ElastiCache.

To view examples of ElastiCache identity-based policies, see Identity-based policy examples for
Amazon ElastiCache.

Policy condition keys for ElastiCache

Supports service-specific policy condition keys Yes

Administrators can use AWS JSON policies to specify who has access to what. That is, which
principal can perform actions on what resources, and under what conditions.

The Condition element (or Condition block) lets you specify conditions in which a statement
is in effect. The Condition element is optional. You can create conditional expressions that use
condition operators, such as equals or less than, to match the condition in the policy with values in
the request.

How Amazon ElastiCache works with IAM API Version 2015-02-02 989

https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonelasticache.html#amazonelasticache-resources-for-iam-policies
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonelasticache.html#amazonelasticache-resources-for-iam-policies
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonelasticache.html#amazonelasticache-actions-as-permissions
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition_operators.html

Amazon ElastiCache for Redis User Guide

If you specify multiple Condition elements in a statement, or multiple keys in a single
Condition element, AWS evaluates them using a logical AND operation. If you specify multiple
values for a single condition key, AWS evaluates the condition using a logical OR operation. All of
the conditions must be met before the statement's permissions are granted.

You can also use placeholder variables when you specify conditions. For example, you can grant
an IAM user permission to access a resource only if it is tagged with their IAM user name. For more
information, see IAM policy elements: variables and tags in the IAM User Guide.

AWS supports global condition keys and service-specific condition keys. To see all AWS global
condition keys, see AWS global condition context keys in the IAM User Guide.

To see a list of ElastiCache condition keys, see Condition Keys for Amazon ElastiCache in the Service
Authorization Reference. To learn with which actions and resources you can use a condition key, see
Actions Defined by Amazon ElastiCache.

To view examples of ElastiCache identity-based policies, see Identity-based policy examples for
Amazon ElastiCache.

Access control lists (ACLs) in ElastiCache

Supports ACLs Yes

Access control lists (ACLs) control which principals (account members, users, or roles) have
permissions to access a resource. ACLs are similar to resource-based policies, although they do not
use the JSON policy document format.

Attribute-based access control (ABAC) with ElastiCache

Supports ABAC (tags in policies) Yes

Attribute-based access control (ABAC) is an authorization strategy that defines permissions based
on attributes. In AWS, these attributes are called tags. You can attach tags to IAM entities (users or
roles) and to many AWS resources. Tagging entities and resources is the first step of ABAC. Then
you design ABAC policies to allow operations when the principal's tag matches the tag on the
resource that they are trying to access.

How Amazon ElastiCache works with IAM API Version 2015-02-02 990

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_variables.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonelasticache.html#amazonelasticache-policy-keys
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonelasticache.html#amazonelasticache-actions-as-permissions

Amazon ElastiCache for Redis User Guide

ABAC is helpful in environments that are growing rapidly and helps with situations where policy
management becomes cumbersome.

To control access based on tags, you provide tag information in the condition element of a policy
using the aws:ResourceTag/key-name, aws:RequestTag/key-name, or aws:TagKeys
condition keys.

If a service supports all three condition keys for every resource type, then the value is Yes for the
service. If a service supports all three condition keys for only some resource types, then the value is
Partial.

For more information about ABAC, see What is ABAC? in the IAM User Guide. To view a tutorial with
steps for setting up ABAC, see Use attribute-based access control (ABAC) in the IAM User Guide.

Using Temporary credentials with ElastiCache

Supports temporary credentials Yes

Some AWS services don't work when you sign in using temporary credentials. For additional
information, including which AWS services work with temporary credentials, see AWS services that
work with IAM in the IAM User Guide.

You are using temporary credentials if you sign in to the AWS Management Console using
any method except a user name and password. For example, when you access AWS using your
company's single sign-on (SSO) link, that process automatically creates temporary credentials. You
also automatically create temporary credentials when you sign in to the console as a user and then
switch roles. For more information about switching roles, see Switching to a role (console) in the
IAM User Guide.

You can manually create temporary credentials using the AWS CLI or AWS API. You can then use
those temporary credentials to access AWS. AWS recommends that you dynamically generate
temporary credentials instead of using long-term access keys. For more information, see
Temporary security credentials in IAM.

Cross-service principal permissions for ElastiCache

Supports forward access sessions (FAS) Yes

How Amazon ElastiCache works with IAM API Version 2015-02-02 991

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/introduction_attribute-based-access-control.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/tutorial_attribute-based-access-control.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-console.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp.html

Amazon ElastiCache for Redis User Guide

When you use an IAM user or role to perform actions in AWS, you are considered a principal.
When you use some services, you might perform an action that then initiates another action in a
different service. FAS uses the permissions of the principal calling an AWS service, combined with
the requesting AWS service to make requests to downstream services. FAS requests are only made
when a service receives a request that requires interactions with other AWS services or resources to
complete. In this case, you must have permissions to perform both actions. For policy details when
making FAS requests, see Forward access sessions.

Service roles for ElastiCache

Supports service roles Yes

A service role is an IAM role that a service assumes to perform actions on your behalf. An IAM
administrator can create, modify, and delete a service role from within IAM. For more information,
see Creating a role to delegate permissions to an AWS service in the IAM User Guide.

Warning

Changing the permissions for a service role might break ElastiCache functionality. Edit
service roles only when ElastiCache provides guidance to do so.

Service-linked roles for ElastiCache

Supports service-linked roles Yes

A service-linked role is a type of service role that is linked to an AWS service. The service can
assume the role to perform an action on your behalf. Service-linked roles appear in your AWS
account and are owned by the service. An IAM administrator can view, but not edit the permissions
for service-linked roles.

For details about creating or managing service-linked roles, see AWS services that work with IAM.
Find a service in the table that includes a Yes in the Service-linked role column. Choose the Yes
link to view the service-linked role documentation for that service.

How Amazon ElastiCache works with IAM API Version 2015-02-02 992

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_forward_access_sessions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html

Amazon ElastiCache for Redis User Guide

Identity-based policy examples for Amazon ElastiCache

By default, users and roles don't have permission to create or modify ElastiCache resources. They
also can't perform tasks by using the AWS Management Console, AWS Command Line Interface
(AWS CLI), or AWS API. To grant users permission to perform actions on the resources that they
need, an IAM administrator can create IAM policies. The administrator can then add the IAM
policies to roles, and users can assume the roles.

To learn how to create an IAM identity-based policy by using these example JSON policy
documents, see Creating IAM policies in the IAM User Guide.

For details about actions and resource types defined by ElastiCache, including the format of the
ARNs for each of the resource types, see Actions, Resources, and Condition Keys for Amazon
ElastiCache in the Service Authorization Reference.

Topics

• Policy best practices

• Using the ElastiCache console

• Allow users to view their own permissions

Policy best practices

Identity-based policies determine whether someone can create, access, or delete ElastiCache
resources in your account. These actions can incur costs for your AWS account. When you create or
edit identity-based policies, follow these guidelines and recommendations:

• Get started with AWS managed policies and move toward least-privilege permissions – To
get started granting permissions to your users and workloads, use the AWS managed policies
that grant permissions for many common use cases. They are available in your AWS account. We
recommend that you reduce permissions further by defining AWS customer managed policies
that are specific to your use cases. For more information, see AWS managed policies or AWS
managed policies for job functions in the IAM User Guide.

• Apply least-privilege permissions – When you set permissions with IAM policies, grant only the
permissions required to perform a task. You do this by defining the actions that can be taken on
specific resources under specific conditions, also known as least-privilege permissions. For more
information about using IAM to apply permissions, see Policies and permissions in IAM in the
IAM User Guide.

Identity-based policy examples API Version 2015-02-02 993

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create-console.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonelasticache.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonelasticache.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#aws-managed-policies
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_job-functions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_job-functions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html

Amazon ElastiCache for Redis User Guide

• Use conditions in IAM policies to further restrict access – You can add a condition to your
policies to limit access to actions and resources. For example, you can write a policy condition to
specify that all requests must be sent using SSL. You can also use conditions to grant access to
service actions if they are used through a specific AWS service, such as AWS CloudFormation. For
more information, see IAM JSON policy elements: Condition in the IAM User Guide.

• Use IAM Access Analyzer to validate your IAM policies to ensure secure and functional
permissions – IAM Access Analyzer validates new and existing policies so that the policies
adhere to the IAM policy language (JSON) and IAM best practices. IAM Access Analyzer provides
more than 100 policy checks and actionable recommendations to help you author secure and
functional policies. For more information, see IAM Access Analyzer policy validation in the IAM
User Guide.

• Require multi-factor authentication (MFA) – If you have a scenario that requires IAM users
or a root user in your AWS account, turn on MFA for additional security. To require MFA when
API operations are called, add MFA conditions to your policies. For more information, see
Configuring MFA-protected API access in the IAM User Guide.

For more information about best practices in IAM, see Security best practices in IAM in the IAM User
Guide.

Using the ElastiCache console

To access the Amazon ElastiCache console, you must have a minimum set of permissions. These
permissions must allow you to list and view details about the ElastiCache resources in your AWS
account. If you create an identity-based policy that is more restrictive than the minimum required
permissions, the console won't function as intended for entities (users or roles) with that policy.

You don't need to allow minimum console permissions for users that are making calls only to the
AWS CLI or the AWS API. Instead, allow access to only the actions that match the API operation
that they're trying to perform.

To ensure that users and roles can still use the ElastiCache console, also attach the ElastiCache
ConsoleAccess or ReadOnly AWS managed policy to the entities. For more information, see
Adding permissions to a user in the IAM User Guide.

Identity-based policy examples API Version 2015-02-02 994

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access-analyzer-policy-validation.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mfa_configure-api-require.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mfa_configure-api-require.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_change-permissions.html#users_change_permissions-add-console

Amazon ElastiCache for Redis User Guide

Allow users to view their own permissions

This example shows how you might create a policy that allows IAM users to view the inline and
managed policies that are attached to their user identity. This policy includes permissions to
complete this action on the console or programmatically using the AWS CLI or AWS API.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "ViewOwnUserInfo",
 "Effect": "Allow",
 "Action": [
 "iam:GetUserPolicy",
 "iam:ListGroupsForUser",
 "iam:ListAttachedUserPolicies",
 "iam:ListUserPolicies",
 "iam:GetUser"
],
 "Resource": ["arn:aws:iam::*:user/${aws:username}"]
 },
 {
 "Sid": "NavigateInConsole",
 "Effect": "Allow",
 "Action": [
 "iam:GetGroupPolicy",
 "iam:GetPolicyVersion",
 "iam:GetPolicy",
 "iam:ListAttachedGroupPolicies",
 "iam:ListGroupPolicies",
 "iam:ListPolicyVersions",
 "iam:ListPolicies",
 "iam:ListUsers"
],
 "Resource": "*"
 }
]
}

Identity-based policy examples API Version 2015-02-02 995

Amazon ElastiCache for Redis User Guide

Troubleshooting Amazon ElastiCache identity and access

Use the following information to help you diagnose and fix common issues that you might
encounter when working with ElastiCache and IAM.

Topics

• I am not authorized to perform an action in ElastiCache

• I am not authorized to perform iam:PassRole

• I want to allow people outside of my AWS account to access my ElastiCache resources

I am not authorized to perform an action in ElastiCache

If the AWS Management Console tells you that you're not authorized to perform an action, then
you must contact your administrator for assistance. Your administrator is the person that provided
you with your user name and password.

The following example error occurs when the mateojackson user tries to use the console to
view details about a fictional my-example-widget resource but does not have the fictional
elasticache:GetWidget permissions.

User: arn:aws:iam::123456789012:user/mateojackson is not authorized to perform:
 elasticache:GetWidget on resource: my-example-widget

In this case, Mateo asks his administrator to update his policies to allow him to access the my-
example-widget resource using the elasticache:GetWidget action.

I am not authorized to perform iam:PassRole

If you receive an error that you're not authorized to perform the iam:PassRole action, your
policies must be updated to allow you to pass a role to ElastiCache.

Some AWS services allow you to pass an existing role to that service instead of creating a new
service role or service-linked role. To do this, you must have permissions to pass the role to the
service.

The following example error occurs when an IAM user named marymajor tries to use the console
to perform an action in ElastiCache. However, the action requires the service to have permissions
that are granted by a service role. Mary does not have permissions to pass the role to the service.

Troubleshooting API Version 2015-02-02 996

Amazon ElastiCache for Redis User Guide

User: arn:aws:iam::123456789012:user/marymajor is not authorized to perform:
 iam:PassRole

In this case, Mary's policies must be updated to allow her to perform the iam:PassRole action.

If you need help, contact your AWS administrator. Your administrator is the person who provided
you with your sign-in credentials.

I want to allow people outside of my AWS account to access my ElastiCache
resources

You can create a role that users in other accounts or people outside of your organization can use to
access your resources. You can specify who is trusted to assume the role. For services that support
resource-based policies or access control lists (ACLs), you can use those policies to grant people
access to your resources.

To learn more, consult the following:

• To learn whether ElastiCache supports these features, see How Amazon ElastiCache works with
IAM.

• To learn how to provide access to your resources across AWS accounts that you own, see
Providing access to an IAM user in another AWS account that you own in the IAM User Guide.

• To learn how to provide access to your resources to third-party AWS accounts, see Providing
access to AWS accounts owned by third parties in the IAM User Guide.

• To learn how to provide access through identity federation, see Providing access to externally
authenticated users (identity federation) in the IAM User Guide.

• To learn the difference between using roles and resource-based policies for cross-account access,
see How IAM roles differ from resource-based policies in the IAM User Guide.

Access control

You can have valid credentials to authenticate your requests, but unless you have permissions you
cannot create or access ElastiCache resources. For example, you must have permissions to create an
ElastiCache cluster.

The following sections describe how to manage permissions for ElastiCache. We recommend that
you read the overview first.

Access control API Version 2015-02-02 997

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_aws-accounts.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_third-party.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_third-party.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_federated-users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_federated-users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_compare-resource-policies.html

Amazon ElastiCache for Redis User Guide

• Overview of managing access permissions to your ElastiCache resources

• Using identity-based policies (IAM policies) for Amazon ElastiCache

Access control API Version 2015-02-02 998

Amazon ElastiCache for Redis User Guide

Overview of managing access permissions to your ElastiCache resources

Every AWS resource is owned by an AWS account, and permissions to create or access a resource
are governed by permissions policies. An account administrator can attach permissions policies
to IAM identities (that is, users, groups, and roles). In addition, Amazon ElastiCache also supports
attaching permissions policies to resources.

Note

An account administrator (or administrator user) is a user with administrator privileges. For
more information, see IAM Best Practices in the IAM User Guide.

To provide access, add permissions to your users, groups, or roles:

• Users and groups in AWS IAM Identity Center:

Create a permission set. Follow the instructions in Create a permission set in the AWS IAM
Identity Center User Guide.

• Users managed in IAM through an identity provider:

Create a role for identity federation. Follow the instructions in Creating a role for a third-party
identity provider (federation) in the IAM User Guide.

• IAM users:

• Create a role that your user can assume. Follow the instructions in Creating a role for an IAM
user in the IAM User Guide.

• (Not recommended) Attach a policy directly to a user or add a user to a user group. Follow the
instructions in Adding permissions to a user (console) in the IAM User Guide.

Topics

• Amazon ElastiCache resources and operations

• Understanding resource ownership

• Managing access to resources

• AWS managed policies for Amazon ElastiCache

• Using identity-based policies (IAM policies) for Amazon ElastiCache

Overview of managing access API Version 2015-02-02 999

https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/howtocreatepermissionset.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-idp.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-idp.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-user.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-user.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_change-permissions.html#users_change_permissions-add-console

Amazon ElastiCache for Redis User Guide

• Resource-level permissions

• Using condition keys

• Using Service-Linked Roles for Amazon ElastiCache

• ElastiCache API permissions: Actions, resources, and conditions reference

Amazon ElastiCache resources and operations

To see a list of ElastiCache resource types and their ARNs, see Resources Defined by Amazon
ElastiCache in the Service Authorization Reference. To learn with which actions you can specify the
ARN of each resource, see Actions Defined by Amazon ElastiCache.

Understanding resource ownership

A resource owner is the AWS account that created the resource. That is, the resource owner is the
AWS account of the principal entity that authenticates the request that creates the resource. A
principal entity can be the root account, an IAM user, or an IAM role). The following examples
illustrate how this works:

• Suppose that you use the root account credentials of your AWS account to create a cache cluster.
In this case, your AWS account is the owner of the resource. In ElastiCache, the resource is the
cache cluster.

• Suppose that you create an IAM user in your AWS account and grant permissions to create a
cache cluster to that user. In this case, the user can create a cache cluster. However, your AWS
account, to which the user belongs, owns the cache cluster resource.

• Suppose that you create an IAM role in your AWS account with permissions to create a cache
cluster. In this case, anyone who can assume the role can create a cache cluster. Your AWS
account, to which the role belongs, owns the cache cluster resource.

Managing access to resources

A permissions policy describes who has access to what. The following section explains the available
options for creating permissions policies.

Note

This section discusses using IAM in the context of Amazon ElastiCache. It doesn't provide
detailed information about the IAM service. For complete IAM documentation, see What Is

Overview of managing access API Version 2015-02-02 1000

https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonelasticache.html#amazonelasticache-resources-for-iam-policies
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonelasticache.html#amazonelasticache-resources-for-iam-policies
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonelasticache.html#amazonelasticache-actions-as-permissions
https://docs.aws.amazon.com/IAM/latest/UserGuide/introduction.html

Amazon ElastiCache for Redis User Guide

IAM? in the IAM User Guide. For information about IAM policy syntax and descriptions, see
AWS IAM Policy Reference in the IAM User Guide.

Policies attached to an IAM identity are referred to as identity-based policies (IAM policies). Policies
attached to a resource are referred to as resource-based policies.

Topics

• Identity-based policies (IAM policies)

• Specifying policy elements: Actions, effects, resources, and principals

• Specifying conditions in a policy

Identity-based policies (IAM policies)

You can attach policies to IAM identities. For example, you can do the following:

• Attach a permissions policy to a user or a group in your account – An account administrator
can use a permissions policy that is associated with a particular user to grant permissions. In this
case, the permissions are for that user to create an ElastiCache resource, such as a cache cluster,
parameter group, or security group.

• Attach a permissions policy to a role (grant cross-account permissions) – You can attach
an identity-based permissions policy to an IAM role to grant cross-account permissions. For
example, the administrator in Account A can create a role to grant cross-account permissions to
another AWS account (for example, Account B) or an AWS service as follows:

1. Account A administrator creates an IAM role and attaches a permissions policy to the role that
grants permissions on resources in Account A.

2. Account A administrator attaches a trust policy to the role identifying Account B as the
principal who can assume the role.

3. Account B administrator can then delegate permissions to assume the role to any users in
Account B. Doing this allows users in Account B to create or access resources in Account A.
In some cases, you might want to grant an AWS service permissions to assume the role. To
support this approach, the principal in the trust policy can also be an AWS service principal.

For more information about using IAM to delegate permissions, see Access Management in the
IAM User Guide.

Overview of managing access API Version 2015-02-02 1001

https://docs.aws.amazon.com/IAM/latest/UserGuide/introduction.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access.html

Amazon ElastiCache for Redis User Guide

The following is an example policy that allows a user to perform the DescribeCacheClusters
action for your AWS account. ElastiCache also supports identifying specific resources using the
resource ARNs for API actions. (This approach is also referred to as resource-level permissions).

{
 "Version": "2012-10-17",
 "Statement": [{
 "Sid": "DescribeCacheClusters",
 "Effect": "Allow",
 "Action": [
 "elasticache:DescribeCacheClusters"],
 "Resource": resource-arn
 }
]
}

For more information about using identity-based policies with ElastiCache, see Using identity-
based policies (IAM policies) for Amazon ElastiCache. For more information about users, groups,
roles, and permissions, see Identities (Users, Groups, and Roles in the IAM User Guide.

Specifying policy elements: Actions, effects, resources, and principals

For each Amazon ElastiCache resource (see Amazon ElastiCache resources and operations),
the service defines a set of API operations (see Actions). To grant permissions for these API
operations, ElastiCache defines a set of actions that you can specify in a policy. For example,
for the ElastiCache cluster resource, the following actions are defined: CreateCacheCluster,
DeleteCacheCluster, and DescribeCacheCluster. Performing an API operation can require
permissions for more than one action.

The following are the most basic policy elements:

• Resource – In a policy, you use an Amazon Resource Name (ARN) to identify the resource
to which the policy applies. For more information, see Amazon ElastiCache resources and
operations.

• Action – You use action keywords to identify resource operations that you want to allow or deny.
For example, depending on the specified Effect, the elasticache:CreateCacheCluster
permission allows or denies the user permissions to perform the Amazon ElastiCache
CreateCacheCluster operation.

• Effect – You specify the effect when the user requests the specific action—this can be either
allow or deny. If you don't explicitly grant access to (allow) a resource, access is implicitly denied.

Overview of managing access API Version 2015-02-02 1002

https://docs.aws.amazon.com/IAM/latest/UserGuide/id.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/APIReference/API_Operations.html

Amazon ElastiCache for Redis User Guide

You can also explicitly deny access to a resource. For example, you might do this to make sure
that a user can't access a resource, even if a different policy grants access.

• Principal – In identity-based policies (IAM policies), the user that the policy is attached to is the
implicit principal. For resource-based policies, you specify the user, account, service, or other
entity that you want to receive permissions (applies to resource-based policies only).

To learn more about IAM policy syntax and descriptions, see AWS IAM Policy Reference in the IAM
User Guide.

For a table showing all of the Amazon ElastiCache API actions, see ElastiCache API permissions:
Actions, resources, and conditions reference.

Specifying conditions in a policy

When you grant permissions, you can use the IAM policy language to specify the conditions when
a policy should take effect. For example, you might want a policy to be applied only after a specific
date. For more information about specifying conditions in a policy language, see Condition in the
IAM User Guide.

To express conditions, you use predefined condition keys. To use ElastiCache-specific condition
keys, see Using condition keys. There are AWS-wide condition keys that you can use as appropriate.
For a complete list of AWS-wide keys, see Available Keys for Conditions in the IAM User Guide.

Overview of managing access API Version 2015-02-02 1003

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements.html#Condition
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements.html#AvailableKeys

Amazon ElastiCache for Redis User Guide

AWS managed policies for Amazon ElastiCache

An AWS managed policy is a standalone policy that is created and administered by AWS. AWS
managed policies are designed to provide permissions for many common use cases so that you can
start assigning permissions to users, groups, and roles.

Keep in mind that AWS managed policies might not grant least-privilege permissions for your
specific use cases because they're available for all AWS customers to use. We recommend that you
reduce permissions further by defining customer managed policies that are specific to your use
cases.

You cannot change the permissions defined in AWS managed policies. If AWS updates the
permissions defined in an AWS managed policy, the update affects all principal identities (users,
groups, and roles) that the policy is attached to. AWS is most likely to update an AWS managed
policy when a new AWS service is launched or new API operations become available for existing
services.

For more information, see AWS managed policies in the IAM User Guide.

AWS managed policy: ElastiCacheServiceRolePolicy

You can't attach ElastiCacheServiceRolePolicy to your IAM entities. This policy is attached to a
service-linked role that allows ElastiCache to perform actions on your behalf.

This policy allows ElastiCache to manage AWS resources on your behalf as necessary for managing
your cache:

• ec2 – Manage EC2 networking resources to attach to cache nodes, including VPC endpoints (for
serverless caches), Elastic Network Interfaces (ENIs) (for self-designed clusters), and security
groups.

• cloudwatch – Emit metric data from the service into CloudWatch.

• outposts – Allow creation of cache nodes on AWS Outposts.

Overview of managing access API Version 2015-02-02 1004

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#customer-managed-policies
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#aws-managed-policies

Amazon ElastiCache for Redis User Guide

You can find the ElastiCacheServiceRolePolicy policy on the IAM console and
ElastiCacheServiceRolePolicy in the AWS Managed Policy Reference Guide.

AWS managed policy: AmazonElastiCacheFullAccess

You can attach the AmazonElastiCacheFullAccess policy to your IAM identities.

This policy allows principals full access to ElastiCache using the AWS Management Console:

• elasticache — Access all APIs.

• iam — Create service-linked role necessary for service operation.

• ec2 — Describe dependent EC2 resources necessary for cache creation (VPC, subnet, security
group) and allow creation of VPC endpoints (for serverless caches).

• kms — Allow usage of customer-managed CMKs for encryption-at-rest.

• cloudwatch — Allow access to metrics to display ElastiCache metrics in the console.

• application-autoscaling — Allow access to describe autoscaling policies for caches.

• logs — Used to populate log streams for log delivery functionality in the console.

• firehose — Used to populate delivery streams for log delivery functionality in the console.

• s3 — Used to populate S3 buckets for snapshot restore functionality in the console.

• outposts — Used to populate AWS Outposts for cache creation in the console.

• sns — Used to populate SNS topics for notification functionality in the console.

You can find the AmazonElastiCacheFullAccess policy on the IAM console and
AmazonElastiCacheFullAccess in the AWS Managed Policy Reference Guide.

AWS managed policy: AmazonElastiCacheReadOnlyAccess

You can attach the AmazonElastiCacheReadOnlyAccess policy to your IAM identities.

This policy allows principals read-only access to ElastiCache using the AWS Management Console:

• elasticache — Access read-only Describe APIs.

You can find the AmazonElastiCacheReadOnlyAccess policy on the IAM console and
AmazonElastiCacheReadOnlyAccess in the AWS Managed Policy Reference Guide.

Overview of managing access API Version 2015-02-02 1005

https://console.aws.amazon.com/iam/home#policies/arn:aws:iam::aws:policy/ElastiCacheServiceRolePolicy
https://docs.aws.amazon.com/aws-managed-policy/latest/reference/ElastiCacheServiceRolePolicy.html
https://console.aws.amazon.com/iam/home#policies/arn:aws:iam::aws:policy/AmazonElastiCacheFullAccess
https://docs.aws.amazon.com/aws-managed-policy/latest/reference/AmazonElastiCacheFullAccess.html
https://console.aws.amazon.com/iam/home#policies/arn:aws:iam::aws:policy/AmazonElastiCacheReadOnlyAccess
https://docs.aws.amazon.com/aws-managed-policy/latest/reference/AmazonElastiCacheReadOnlyAccess.html

Amazon ElastiCache for Redis User Guide

ElastiCache updates to AWS managed policies

View details about updates to AWS managed policies for ElastiCache since this service began
tracking these changes. For automatic alerts about changes to this page, subscribe to the RSS feed
on the ElastiCache Document history page.

Change Description Date

AmazonElastiCacheFullAccess
 – Update to an existing policy

ElastiCache added new
permissions to allow
management of serverless
caches, and to enable usage
of all service features via the
console.

November 27, 2023

ElastiCacheServiceRolePolicy
– Update to an existing policy

ElastiCache added new
permissions to allow
management of VPC
endpoints for serverless cache
resources.

November 27, 2023

ElastiCache started tracking
changes

ElastiCache started tracking
changes for its AWS managed
policies.

February 07, 2020

Using identity-based policies (IAM policies) for Amazon ElastiCache

This topic provides examples of identity-based policies in which an account administrator can
attach permissions policies to IAM identities (that is, users, groups, and roles).

Important

We recommend that you first read the topics that explain the basic concepts and options
to manage access to Amazon ElastiCache resources. For more information, see Overview of
managing access permissions to your ElastiCache resources.

Overview of managing access API Version 2015-02-02 1006

Amazon ElastiCache for Redis User Guide

The sections in this topic cover the following:

• AWS managed policies for Amazon ElastiCache

• Customer-managed policy examples

The following shows an example of a permissions policy.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "AllowClusterPermissions",
 "Effect": "Allow",
 "Action": [
 "elasticache:CreateServerlessCache",
 "elasticache:CreateCacheCluster",
 "elasticache:DescribeServerlessCaches",
 "elasticache:DescribeReplicationGroups",
 "elasticache:DescribeCacheClusters",
 "elasticache:ModifyServerlessCache",
 "elasticache:ModifyReplicationGroup",
 "elasticache:ModifyCacheCluster"
],
 "Resource": "*"
 },
 {
 "Sid": "AllowUserToPassRole",
 "Effect": "Allow",
 "Action": ["iam:PassRole"],
 "Resource": "arn:aws:iam::123456789012:role/EC2-roles-for-cluster"
 }
]
}

The policy has two statements:

• The first statement grants permissions for the Amazon ElastiCache actions
(elasticache:Create*, elasticache:Describe*, elasticache:Modify*)

• The second statement grants permissions for the IAM action (iam:PassRole) on the IAM role
name specified at the end of the Resource value.

Overview of managing access API Version 2015-02-02 1007

Amazon ElastiCache for Redis User Guide

The policy doesn't specify the Principal element because in an identity-based policy you don't
specify the principal who gets the permission. When you attach policy to a user, the user is the
implicit principal. When you attach a permissions policy to an IAM role, the principal identified in
the role's trust policy gets the permissions.

For a table showing all of the Amazon ElastiCache API actions and the resources that they apply to,
see ElastiCache API permissions: Actions, resources, and conditions reference.

Customer-managed policy examples

If you are not using a default policy and choose to use a custom-managed policy, ensure one of
two things. Either you should have permissions to call iam:createServiceLinkedRole (for
more information, see Example 4: Allow a user to call IAM CreateServiceLinkedRole API). Or you
should have created an ElastiCache service-linked role.

When combined with the minimum permissions needed to use the Amazon ElastiCache console,
the example policies in this section grant additional permissions. The examples are also relevant to
the AWS SDKs and the AWS CLI.

For instructions on setting up IAM users and groups, see Creating Your First IAM User and
Administrators Group in the IAM User Guide.

Important

Always test your IAM policies thoroughly before using them in production. Some
ElastiCache actions that appear simple can require other actions to support them when you
are using the ElastiCache console. For example, elasticache:CreateCacheCluster
grants permissions to create ElastiCache cache clusters. However, to perform this
operation, the ElastiCache console uses a number of Describe and List actions to
populate console lists.

Examples

• Example 1: Allow a user read-only access to ElastiCache resources

• Example 2: Allow a user to perform common ElastiCache system administrator tasks

• Example 3: Allow a user to access all ElastiCache API actions

• Example 4: Allow a user to call IAM CreateServiceLinkedRole API

Overview of managing access API Version 2015-02-02 1008

https://docs.aws.amazon.com/IAM/latest/UserGuide/getting-started_create-admin-group.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/getting-started_create-admin-group.html

Amazon ElastiCache for Redis User Guide

• Example 5: Allow a user to connect to serverless cache using IAM authentication

Example 1: Allow a user read-only access to ElastiCache resources

The following policy grants permissions ElastiCache actions that allow a user to list resources.
Typically, you attach this type of permissions policy to a managers group.

{
 "Version": "2012-10-17",
 "Statement":[{
 "Sid": "ECReadOnly",
 "Effect":"Allow",
 "Action": [
 "elasticache:Describe*",
 "elasticache:List*"],
 "Resource":"*"
 }
]
}

Example 2: Allow a user to perform common ElastiCache system administrator tasks

Common system administrator tasks include modifying resources. A system administrator may
also want to get information about the ElastiCache events. The following policy grants a user
permissions to perform ElastiCache actions for these common system administrator tasks.
Typically, you attach this type of permissions policy to the system administrators group.

{
 "Version": "2012-10-17",
 "Statement":[{
 "Sid": "ECAllowMutations",
 "Effect":"Allow",
 "Action":[
 "elasticache:Modify*",
 "elasticache:Describe*",
 "elasticache:ResetCacheParameterGroup"
],
 "Resource":"*"
 }
]
}

Overview of managing access API Version 2015-02-02 1009

Amazon ElastiCache for Redis User Guide

Example 3: Allow a user to access all ElastiCache API actions

The following policy allows a user to access all ElastiCache actions. We recommend that you grant
this type of permissions policy only to an administrator user.

{
 "Version": "2012-10-17",
 "Statement":[{
 "Sid": "ECAllowAll",
 "Effect":"Allow",
 "Action":[
 "elasticache:*"
],
 "Resource":"*"
 }
]
}

Example 4: Allow a user to call IAM CreateServiceLinkedRole API

The following policy allows user to call the IAM CreateServiceLinkedRole API. We recommend
that you grant this type of permissions policy to the user who invokes mutative ElastiCache
operations.

{
 "Version":"2012-10-17",
 "Statement":[
 {
 "Sid":"CreateSLRAllows",
 "Effect":"Allow",
 "Action":[
 "iam:CreateServiceLinkedRole"
],
 "Resource":"*",
 "Condition":{
 "StringLike":{
 "iam:AWSServiceName":"elasticache.amazonaws.com"
 }
 }
 }
]
}

Overview of managing access API Version 2015-02-02 1010

Amazon ElastiCache for Redis User Guide

Example 5: Allow a user to connect to serverless cache using IAM authentication

The following policy allows any user to connect to any serverless cache using IAM authentication
between 2023-04-01 and 2023-06-30.

{
 "Version" : "2012-10-17",
 "Statement" :
 [
 {
 "Effect" : "Allow",
 "Action" : ["elasticache:Connect"],
 "Resource" : [
 "arn:aws:elasticache:us-east-1:123456789012:serverlesscache:*"
],
 "Condition": {
 "DateGreaterThan": {"aws:CurrentTime": "2023-04-01T00:00:00Z"},
 "DateLessThan": {"aws:CurrentTime": "2023-06-30T23:59:59Z"}
 }
 },
 {
 "Effect" : "Allow",
 "Action" : ["elasticache:Connect"],
 "Resource" : [
 "arn:aws:elasticache:us-east-1:123456789012:user:*"
]
 }
]
}

Resource-level permissions

You can restrict the scope of permissions by specifying resources in an IAM policy. Many ElastiCache
API actions support a resource type that varies depending on the behavior of the action. Every
IAM policy statement grants permission to an action that's performed on a resource. When the
action doesn't act on a named resource, or when you grant permission to perform the action on
all resources, the value of the resource in the policy is a wildcard (*). For many API actions, you can
restrict the resources that a user can modify by specifying the Amazon Resource Name (ARN) of a
resource, or an ARN pattern that matches multiple resources. To restrict permissions by resource,
specify the resource by ARN.

Overview of managing access API Version 2015-02-02 1011

Amazon ElastiCache for Redis User Guide

To see a list of ElastiCache resource types and their ARNs, see Resources Defined by Amazon
ElastiCache in the Service Authorization Reference. To learn with which actions you can specify the
ARN of each resource, see Actions Defined by Amazon ElastiCache.

Examples

• Example 1: Allow a user full access to specific ElastiCache resource types

• Example 2: Deny a user access to a serverless cache.

Example 1: Allow a user full access to specific ElastiCache resource types

The following policy explicitly allows all resources of type serverless cache.

{
 "Sid": "Example1",
 "Effect": "Allow",
 "Action": "elasticache:*",
 "Resource": [
 "arn:aws:elasticache:us-east-1:account-id:serverlesscache:*"
]
}

Example 2: Deny a user access to a serverless cache.

The following example explicitly denies access to a particular serverless cache.

{
 "Sid": "Example2",
 "Effect": "Deny",
 "Action": "elasticache:*",
 "Resource": [
 "arn:aws:elasticache:us-east-1:account-id:serverlesscache:name"
]
}

Using condition keys

You can specify conditions that determine how an IAM policy takes effect. In ElastiCache, you
can use the Condition element of a JSON policy to compare keys in the request context with
key values that you specify in your policy. For more information, see IAM JSON policy elements:
Condition.

Overview of managing access API Version 2015-02-02 1012

https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonelasticache.html#amazonelasticache-resources-for-iam-policies
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonelasticache.html#amazonelasticache-resources-for-iam-policies
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonelasticache.html#amazonelasticache-actions-as-permissions
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition.html

Amazon ElastiCache for Redis User Guide

To see a list of ElastiCache condition keys, see Condition Keys for Amazon ElastiCache in the Service
Authorization Reference.

For a list of global condition keys, see AWS global condition context keys.

Specifying Conditions: Using Condition Keys

To implement fine-grained control, you write an IAM permissions policy that specifies conditions to
control a set of individual parameters on certain requests. You then apply the policy to IAM users,
groups, or roles that you create using the IAM console.

To apply a condition, you add the condition information to the IAM policy statement. In the
following example, you specify the condition that any self-designed cache cluster created will be of
node type cache.r5.large.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "elasticache:CreateCacheCluster",
 "elasticache:CreateReplicationGroup"
],
 "Resource": [
 "arn:aws:elasticache:*:*:parametergroup:*",
 "arn:aws:elasticache:*:*:subnetgroup:*"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "elasticache:CreateCacheCluster",
 "elasticache:CreateReplicationGroup"
],
 "Resource": [
 "arn:aws:elasticache:*:*:cluster:*",
 "arn:aws:elasticache:*:*:replicationgroup:*"
],
 "Condition": {
 "StringEquals": {
 "elasticache:CacheNodeType": [
 "cache.r5.large"

Overview of managing access API Version 2015-02-02 1013

https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonelasticache.html#amazonelasticache-policy-keys
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html

Amazon ElastiCache for Redis User Guide

]
 }
 }
 }
]
}

For more information, see Tag-Based access control policy examples.

For more information on using policy condition operators, see ElastiCache API permissions: Actions,
resources, and conditions reference.

Example Policies: Using Conditions for Fine-Grained Parameter Control

This section shows example policies for implementing fine-grained access control on the previously
listed ElastiCache parameters.

1. elasticache:MaximumDataStorage: Specify the maximum data storage of a serverless cache.
Using the provided conditions, the customer can not create caches that can store more than a
specific amount of data.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "AllowDependentResources",
 "Effect": "Allow",
 "Action": [
 "elasticache:CreateServerlessCache"
],
 "Resource": [
 "arn:aws:elasticache:*:*:serverlesscachesnapshot:*",
 "arn:aws:elasticache:*:*:snapshot:*",
 "arn:aws:elasticache:*:*:usergroup:*"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "elasticache:CreateServerlessCache"
],
 "Resource": [
 "arn:aws:elasticache:*:*:serverlesscache:*"

Overview of managing access API Version 2015-02-02 1014

https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/Tagging-Resources.html

Amazon ElastiCache for Redis User Guide

],
 "Condition": {
 "NumericLessThanEquals": {
 "elasticache:MaximumDataStorage": "30"
 },
 "StringEquals": {
 "elasticache:DataStorageUnit": "GB"
 }
 }
 }
]
}

2. elasticache:MaximumECPUPerSecond: Specify the maximum ECPU per second value of a
serverless cache. Using the provided conditions, the customer can not create caches that can
execute more than a specific number of ECPUs per second.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "AllowDependentResources",
 "Effect": "Allow",
 "Action": [
 "elasticache:CreateServerlessCache"
],
 "Resource": [
 "arn:aws:elasticache:*:*:serverlesscachesnapshot:*",
 "arn:aws:elasticache:*:*:snapshot:*",
 "arn:aws:elasticache:*:*:usergroup:*"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "elasticache:CreateServerlessCache"
],
 "Resource": [
 "arn:aws:elasticache:*:*:serverlesscache:*"
],
 "Condition": {
 "NumericLessThanEquals": {
 "elasticache:MaximumECPUPerSecond": "100000"

Overview of managing access API Version 2015-02-02 1015

Amazon ElastiCache for Redis User Guide

 }
 }
 }
]
}

3. elasticache:CacheNodeType: Specify which NodeType(s) a user can create. Using the provided
conditions, the customer can specify a single or a range value for a node type.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "elasticache:CreateCacheCluster",
 "elasticache:CreateReplicationGroup"
],
 "Resource": [
 "arn:aws:elasticache:*:*:parametergroup:*",
 "arn:aws:elasticache:*:*:subnetgroup:*"
]
 },

 {
 "Effect": "Allow",
 "Action": [
 "elasticache:CreateCacheCluster",
 "elasticache:CreateReplicationGroup"
],
 "Resource": [
 "arn:aws:elasticache:*:*:cluster:*",
 "arn:aws:elasticache:*:*:replicationgroup:*"
],
 "Condition": {
 "StringEquals": {
 "elasticache:CacheNodeType": [
 "cache.t2.micro",
 "cache.t2.medium"
]
 }
 }
 }

Overview of managing access API Version 2015-02-02 1016

Amazon ElastiCache for Redis User Guide

]
}

4. elasticache:NumNodeGroups: Create a replication group with fewer than 20 node groups.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "elasticache:CreateReplicationGroup"
],
 "Resource": [
 "arn:aws:elasticache:*:*:parametergroup:*",
 "arn:aws:elasticache:*:*:subnetgroup:*"
]
 },

 {
 "Effect": "Allow",
 "Action": [
 "elasticache:CreateReplicationGroup"
],
 "Resource": [
 "arn:aws:elasticache:*:*:replicationgroup:*"
],
 "Condition": {
 "NumericLessThanEquals": {
 "elasticache:NumNodeGroups": "20"
 }
 }
 }
]
}

5. elasticache:ReplicasPerNodeGroup: Specify the replicas per node between 5 and 10.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",

Overview of managing access API Version 2015-02-02 1017

Amazon ElastiCache for Redis User Guide

 "Action": [
 "elasticache:CreateReplicationGroup"
],
 "Resource": [
 "arn:aws:elasticache:*:*:parametergroup:*",
 "arn:aws:elasticache:*:*:subnetgroup:*"
]
 },

 {
 "Effect": "Allow",
 "Action": [
 "elasticache:CreateReplicationGroup"
],
 "Resource": [
 "arn:aws:elasticache:*:*:replicationgroup:*"
],
 "Condition": {
 "NumericGreaterThanEquals": {
 "elasticache:ReplicasPerNodeGroup": "5"
 },
 "NumericLessThanEquals": {
 "elasticache:ReplicasPerNodeGroup": "10"
 }
 }
 }
]
}

6. elasticache:EngineVersion: Specify usage of engine version 5.0.6.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "elasticache:CreateCacheCluster",
 "elasticache:CreateReplicationGroup"
],
 "Resource": [
 "arn:aws:elasticache:*:*:parametergroup:*",
 "arn:aws:elasticache:*:*:subnetgroup:*"
]

Overview of managing access API Version 2015-02-02 1018

Amazon ElastiCache for Redis User Guide

 },

 {
 "Effect": "Allow",
 "Action": [
 "elasticache:CreateCacheCluster",
 "elasticache:CreateReplicationGroup"
],
 "Resource": [
 "arn:aws:elasticache:*:*:cluster:*",
 "arn:aws:elasticache:*:*:replicationgroup:*"
],
 "Condition": {
 "StringEquals": {
 "elasticache:EngineVersion": "5.0.6"
 }
 }
 }
]
}

7. elasticache:EngineType: Specify using Redis engine only.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "elasticache:CreateCacheCluster",
 "elasticache:CreateReplicationGroup"
],
 "Resource": [
 "arn:aws:elasticache:*:*:parametergroup:*",
 "arn:aws:elasticache:*:*:subnetgroup:*"
]
 },

 {
 "Effect": "Allow",
 "Action": [
 "elasticache:CreateCacheCluster",
 "elasticache:CreateReplicationGroup"
],

Overview of managing access API Version 2015-02-02 1019

Amazon ElastiCache for Redis User Guide

 "Resource": [
 "arn:aws:elasticache:*:*:cluster:*",
 "arn:aws:elasticache:*:*:replicationgroup:*"
],
 "Condition": {
 "StringEquals": {
 "elasticache:EngineType": "redis"
 }
 }
 }
]
}

8. elasticache:AtRestEncryptionEnabled: Specify that replication groups would be created only
with encryption enabled.

{
 "Version": "2012-10-17",
 "Statement": [

 {
 "Effect": "Allow",
 "Action": [
 "elasticache:CreateReplicationGroup"
],
 "Resource": [
 "arn:aws:elasticache:*:*:parametergroup:*",
 "arn:aws:elasticache:*:*:subnetgroup:*"
]
 },

 {
 "Effect": "Allow",
 "Action": [
 "elasticache:CreateReplicationGroup"
],
 "Resource": [
 "arn:aws:elasticache:*:*:replicationgroup:*"
],
 "Condition": {
 "Bool": {
 "elasticache:AtRestEncryptionEnabled": "true"
 }

Overview of managing access API Version 2015-02-02 1020

Amazon ElastiCache for Redis User Guide

 }
 }
]
}

9. elasticache:TransitEncryptionEnabled

a. Set the elasticache:TransitEncryptionEnabled condition key to false for the
CreateReplicationGroup action to specify that replication groups can only be created when
TLS is not being used:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "elasticache:CreateReplicationGroup"
],
 "Resource": [
 "arn:aws:elasticache:*:*:parametergroup:*",
 "arn:aws:elasticache:*:*:subnetgroup:*"
]
 },

 {
 "Effect": "Allow",
 "Action": [
 "elasticache:CreateReplicationGroup"
],
 "Resource": [
 "arn:aws:elasticache:*:*:replicationgroup:*"
],
 "Condition": {
 "Bool": {
 "elasticache:TransitEncryptionEnabled": "false"
 }
 }
 }
]
}

Overview of managing access API Version 2015-02-02 1021

https://docs.aws.amazon.com/AmazonElastiCache/latest/APIReference/API_CreateReplicationGroup.html

Amazon ElastiCache for Redis User Guide

When the elasticache:TransitEncryptionEnabled condition key is set to false
in a policy for the CreateReplicationGroup action, a CreateReplicationGroup request
will be allowed only if TLS is not being used (that is, if the request does not include a
TransitEncryptionEnabled parameter set to true or a TransitEncryptionMode
parameter set to required.

b. Set the elasticache:TransitEncryptionEnabled conditon key to true for the
CreateReplicationGroup action to specify that replication groups can only be created when
TLS is being used:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "elasticache:CreateReplicationGroup"
],
 "Resource": [
 "arn:aws:elasticache:*:*:parametergroup:*",
 "arn:aws:elasticache:*:*:subnetgroup:*"
]
 },

 {
 "Effect": "Allow",
 "Action": [
 "elasticache:CreateReplicationGroup"
],
 "Resource": [
 "arn:aws:elasticache:*:*:replicationgroup:*"
],
 "Condition": {
 "Bool": {
 "elasticache:TransitEncryptionEnabled": "true"
 }
 }
 }
]
}

Overview of managing access API Version 2015-02-02 1022

https://docs.aws.amazon.com/AmazonElastiCache/latest/APIReference/API_CreateReplicationGroup.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/APIReference/API_CreateReplicationGroup.html

Amazon ElastiCache for Redis User Guide

When the elasticache:TransitEncryptionEnabled condition key is set to true in a
policy for the CreateReplicationGroup action, a CreateReplicationGroup request will be
allowed only if the request includes a TransitEncryptionEnabled parameter set to true
and a TransitEncryptionMode parameter set to required.

c. Set elasticache:TransitEncryptionEnabled to true for the
ModifyReplicationGroup action to specify that replication groups can only be modified
when TLS is being used:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "elasticache:ModifyReplicationGroup"
],
 "Resource": [
 "arn:aws:elasticache:*:*:replicationgroup:*"
],
 "Condition": {
 "BoolIfExists": {
 "elasticache:TransitEncryptionEnabled": "true"
 }
 }
 }
]
}

When the elasticache:TransitEncryptionEnabled condition key is set to true in
a policy for the ModifyReplicationGroup action, a ModifyReplicationGroup request
will be allowed only if the request includes a TransitEncryptionMode parameter set to
required. The TransitEncryptionEnabled parameter set to true may optionally be
included as well, but is not needed in this case to enable TLS.

10.elasticache:AutomaticFailoverEnabled: Specify that replication groups would be created only
with automatic failover enabled.

{
 "Version": "2012-10-17",
 "Statement": [

Overview of managing access API Version 2015-02-02 1023

https://docs.aws.amazon.com/AmazonElastiCache/latest/APIReference/API_CreateReplicationGroup.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/APIReference/API_ModifyReplicationGroup.html

Amazon ElastiCache for Redis User Guide

 {
 "Effect": "Allow",
 "Action": [
 "elasticache:CreateReplicationGroup"
],
 "Resource": [
 "arn:aws:elasticache:*:*:parametergroup:*",
 "arn:aws:elasticache:*:*:subnetgroup:*"
]
 },

 {
 "Effect": "Allow",
 "Action": [
 "elasticache:CreateReplicationGroup"
],
 "Resource": [
 "arn:aws:elasticache:*:*:replicationgroup:*"
],
 "Condition": {
 "Bool": {
 "elasticache:AutomaticFailoverEnabled": "true"
 }
 }
 }
]
}

11.elasticache:MultiAZEnabled: Specify that replication groups cannot be created with Multi-AZ
disabled.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "elasticache:CreateCacheCluster",
 "elasticache:CreateReplicationGroup"
],
 "Resource": [
 "arn:aws:elasticache:*:*:parametergroup:*",
 "arn:aws:elasticache:*:*:subnetgroup:*"

Overview of managing access API Version 2015-02-02 1024

Amazon ElastiCache for Redis User Guide

]
 },
 {
 "Effect": "Deny",
 "Action": [
 "elasticache:CreateCacheCluster",
 "elasticache:CreateReplicationGroup"
],
 "Resource": [
 "arn:aws:elasticache:*:*:cluster:*",
 "arn:aws:elasticache:*:*:replicationgroup:*"
],
 "Condition": {
 "Bool": {
 "elasticache:MultiAZEnabled": "false"
 }
 }
 }
]
}

12.elasticache:ClusterModeEnabled: Specify that replication groups can only be created with
cluster mode enabled.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "elasticache:CreateReplicationGroup"
],
 "Resource": [
 "arn:aws:elasticache:*:*:parametergroup:*",
 "arn:aws:elasticache:*:*:subnetgroup:*"
]
 },

 {
 "Effect": "Allow",
 "Action": [
 "elasticache:CreateReplicationGroup"
],

Overview of managing access API Version 2015-02-02 1025

Amazon ElastiCache for Redis User Guide

 "Resource": [
 "arn:aws:elasticache:*:*:replicationgroup:*"
],
 "Condition": {
 "Bool": {
 "elasticache:ClusterModeEnabled": "true"
 }
 }
 }
]
}

13.elasticache:AuthTokenEnabled: Specify that replication groups can only be created with AUTH
token enabled.

{
 "Version": "2012-10-17",
 "Statement": [

 {
 "Effect": "Allow",
 "Action": [
 "elasticache:CreateCacheCluster",
 "elasticache:CreateReplicationGroup"
],
 "Resource": [
 "arn:aws:elasticache:*:*:parametergroup:*",
 "arn:aws:elasticache:*:*:subnetgroup:*"
]
 },

 {
 "Effect": "Allow",
 "Action": [
 "elasticache:CreateCacheCluster",
 "elasticache:CreateReplicationGroup"
],
 "Resource": [
 "arn:aws:elasticache:*:*:cluster:*",
 "arn:aws:elasticache:*:*:replicationgroup:*"
],
 "Condition": {
 "Bool": {

Overview of managing access API Version 2015-02-02 1026

Amazon ElastiCache for Redis User Guide

 "elasticache:AuthTokenEnabled": "true"
 }
 }
 }
]
}

14.elasticache:SnapshotRetentionLimit: Specify the number of days (or min/max) to keep the
snapshot. Below policy enforces storing backups for at least 30 days.

{
 "Version": "2012-10-17",
 "Statement": [

 {
 "Effect": "Allow",
 "Action": [
 "elasticache:CreateCacheCluster",
 "elasticache:CreateReplicationGroup"
],
 "Resource": [
 "arn:aws:elasticache:*:*:parametergroup:*",
 "arn:aws:elasticache:*:*:subnetgroup:*"
]
 },

 {
 "Effect": "Allow",
 "Action": [
 "elasticache:CreateCacheCluster",
 "elasticache:CreateReplicationGroup",
 "elasticache:CreateServerlessCache"
],
 "Resource": [
 "arn:aws:elasticache:*:*:cluster:*",
 "arn:aws:elasticache:*:*:replicationgroup:*",
 "arn:aws:elasticache:*:*:serverlesscache:*"
],
 "Condition": {
 "NumericGreaterThanEquals": {
 "elasticache:SnapshotRetentionLimit": "30"
 }
 }

Overview of managing access API Version 2015-02-02 1027

Amazon ElastiCache for Redis User Guide

 }
]
}

15.elasticache:KmsKeyId: Specify usage of customer managed AWS KMS keys.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "AllowDependentResources",
 "Effect": "Allow",
 "Action": [
 "elasticache:CreateServerlessCache"
],
 "Resource": [
 "arn:aws:elasticache:*:*:serverlesscachesnapshot:*",
 "arn:aws:elasticache:*:*:snapshot:*",
 "arn:aws:elasticache:*:*:usergroup:*"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "elasticache:CreateServerlessCache"
],
 "Resource": [
 "arn:aws:elasticache:*:*:serverlesscache:*"
],
 "Condition": {
 "StringEquals": {
 "elasticache:KmsKeyId": "my-key"
 }
 }
 }
]
}

16.elasticache:CacheParameterGroupName: Specify a non default parameter group with specific
parameters from an organization on your clusters. You could also specify a naming pattern for
your parameter groups or block delete on a specific parameter group name. Following is an
example constraining usage of only "my-org-param-group".

Overview of managing access API Version 2015-02-02 1028

Amazon ElastiCache for Redis User Guide

{
 "Version": "2012-10-17",
 "Statement": [

 {
 "Effect": "Allow",
 "Action": [
 "elasticache:CreateCacheCluster",
 "elasticache:CreateReplicationGroup"
],
 "Resource": [
 "arn:aws:elasticache:*:*:parametergroup:*",
 "arn:aws:elasticache:*:*:subnetgroup:*"
]
 },

 {
 "Effect": "Allow",
 "Action": [
 "elasticache:CreateCacheCluster",
 "elasticache:CreateReplicationGroup"
],
 "Resource": [
 "arn:aws:elasticache:*:*:cluster:*",
 "arn:aws:elasticache:*:*:replicationgroup:*"
],
 "Condition": {
 "StringEquals": {
 "elasticache:CacheParameterGroupName": "my-org-param-group"
 }
 }
 }
]
}

17.elasticache:CreateCacheCluster: Denying CreateCacheCluster action if the request tag
Project is missing or is not equal to Dev, QA or Prod.

{
 "Version": "2012-10-17",
 "Statement": [
 {

Overview of managing access API Version 2015-02-02 1029

Amazon ElastiCache for Redis User Guide

 "Effect": "Allow",
 "Action": [
 "elasticache:CreateCacheCluster"
],
 "Resource": [
 "arn:aws:elasticache:*:*:parametergroup:*",
 "arn:aws:elasticache:*:*:subnetgroup:*",
 "arn:aws:elasticache:*:*:securitygroup:*",
 "arn:aws:elasticache:*:*:replicationgroup:*"
]
 },
 {
 "Effect": "Deny",
 "Action": [
 "elasticache:CreateCacheCluster"
],
 "Resource": [
 "arn:aws:elasticache:*:*:cluster:*"
],
 "Condition": {
 "Null": {
 "aws:RequestTag/Project": "true"
 }
 }
 },
 {
 "Effect": "Allow",
 "Action": [
 "elasticache:CreateCacheCluster",
 "elasticache:AddTagsToResource"
],
 "Resource": "arn:aws:elasticache:*:*:cluster:*",
 "Condition": {
 "StringEquals": {
 "aws:RequestTag/Project": [
 "Dev",
 "Prod",
 "QA"
]
 }
 }
 }
]

Overview of managing access API Version 2015-02-02 1030

Amazon ElastiCache for Redis User Guide

}

18.elasticache:CacheNodeType: Allowing CreateCacheCluster with cacheNodeType
cache.r5.large or cache.r6g.4xlarge and tag Project=XYZ.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "elasticache:CreateCacheCluster",
 "elasticache:CreateReplicationGroup"
],
 "Resource": [
 "arn:aws:elasticache:*:*:parametergroup:*",
 "arn:aws:elasticache:*:*:subnetgroup:*"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "elasticache:CreateCacheCluster"
],
 "Resource": [
 "arn:aws:elasticache:*:*:cluster:*"
],
 "Condition": {
 "StringEqualsIfExists": {
 "elasticache:CacheNodeType": [
 "cache.r5.large",
 "cache.r6g.4xlarge"
]
 },
 "StringEquals": {
 "aws:RequestTag/Project": "XYZ"
 }
 }
 }
]
}

Overview of managing access API Version 2015-02-02 1031

Amazon ElastiCache for Redis User Guide

Note

When creating polices to enforce tags and other condition keys together, the
conditional IfExists may be required on condition key elements due to the extra
elasticache:AddTagsToResource policy requirements for creation requests with the
--tags parameter.

Using Service-Linked Roles for Amazon ElastiCache

Amazon ElastiCache uses AWS Identity and Access Management (IAM) service-linked roles. A
service-linked role is a unique type of IAM role that is linked directly to an AWS service, such
as Amazon ElastiCache. Amazon ElastiCache service-linked roles are predefined by Amazon
ElastiCache. They include all the permissions that the service requires to call AWS services on
behalf of your clusters.

A service-linked role makes setting up Amazon ElastiCache easier because you don’t have to
manually add the necessary permissions. The roles already exist within your AWS account but
are linked to Amazon ElastiCache use cases and have predefined permissions. Only Amazon
ElastiCache can assume these roles, and only these roles can use the predefined permissions policy.
You can delete the roles only after first deleting their related resources. This protects your Amazon
ElastiCache resources because you can't inadvertently remove necessary permissions to access the
resources.

For information about other services that support service-linked roles, see AWS Services That Work
with IAM and look for the services that have Yes in the Service-Linked Role column. Choose a Yes
with a link to view the service-linked role documentation for that service.

Contents

• Service-Linked Role Permissions for Amazon ElastiCache

• Permissions to create service-linked role

• Creating a Service-Linked Role (IAM)

• Creating a Service-Linked Role (IAM Console)

• Creating a Service-Linked Role (IAM CLI)

• Creating a Service-Linked Role (IAM API)

• Editing the Description of a Service-Linked Role for Amazon ElastiCache

Overview of managing access API Version 2015-02-02 1032

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_terms-and-concepts.html#iam-term-service-linked-role
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html

Amazon ElastiCache for Redis User Guide

• Editing a Service-Linked Role Description (IAM Console)

• Editing a Service-Linked Role Description (IAM CLI)

• Editing a Service-Linked Role Description (IAM API)

• Deleting a Service-Linked Role for Amazon ElastiCache

• Cleaning Up a Service-Linked Role

• Deleting a Service-Linked Role (IAM Console)

• Deleting a Service-Linked Role (IAM CLI)

• Deleting a Service-Linked Role (IAM API)

Service-Linked Role Permissions for Amazon ElastiCache

Permissions to create service-linked role

To allow an IAM entity to create AWSServiceRoleForElastiCache service-linked role

Add the following policy statement to the permissions for that IAM entity:

{
 "Effect": "Allow",
 "Action": [
 "iam:CreateServiceLinkedRole",
 "iam:PutRolePolicy"
],
 "Resource": "arn:aws:iam::*:role/aws-service-role/elasticache.amazonaws.com/
AWSServiceRoleForElastiCache*",
 "Condition": {"StringLike": {"iam:AWSServiceName": "elasticache.amazonaws.com"}}
}

To allow an IAM entity to delete AWSServiceRoleForElastiCache service-linked role

Add the following policy statement to the permissions for that IAM entity:

{
 "Effect": "Allow",
 "Action": [
 "iam:DeleteServiceLinkedRole",
 "iam:GetServiceLinkedRoleDeletionStatus"
],

Overview of managing access API Version 2015-02-02 1033

Amazon ElastiCache for Redis User Guide

 "Resource": "arn:aws:iam::*:role/aws-service-role/elasticache.amazonaws.com/
AWSServiceRoleForElastiCache*",
 "Condition": {"StringLike": {"iam:AWSServiceName": "elasticache.amazonaws.com"}}
}

Alternatively, you can use an AWS managed policy to provide full access to Amazon ElastiCache.

Creating a Service-Linked Role (IAM)

You can create a service-linked role using the IAM console, CLI, or API.

Creating a Service-Linked Role (IAM Console)

You can use the IAM console to create a service-linked role.

To create a service-linked role (console)

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. In the navigation pane of the IAM console, choose Roles. Then choose Create new role.

3. Under Select type of trusted entity choose AWS Service.

4. Under Or select a service to view its use cases, choose ElastiCache.

5. Choose Next: Permissions.

6. Under Policy name, note that the ElastiCacheServiceRolePolicy is required for this
role. Choose Next:Tags.

7. Note that tags are not supported for Service-Linked roles. Choose Next:Review.

8. (Optional) For Role description, edit the description for the new service-linked role.

9. Review the role and then choose Create role.

Creating a Service-Linked Role (IAM CLI)

You can use IAM operations from the AWS Command Line Interface to create a service-linked role.
This role can include the trust policy and inline policies that the service needs to assume the role.

To create a service-linked role (CLI)

Use the following operation:

Overview of managing access API Version 2015-02-02 1034

https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/

Amazon ElastiCache for Redis User Guide

$ aws iam create-service-linked-role --aws-service-name elasticache.amazonaws.com

Creating a Service-Linked Role (IAM API)

You can use the IAM API to create a service-linked role. This role can contain the trust policy and
inline policies that the service needs to assume the role.

To create a service-linked role (API)

Use the CreateServiceLinkedRole API call. In the request, specify a service name of
elasticache.amazonaws.com.

Editing the Description of a Service-Linked Role for Amazon ElastiCache

Amazon ElastiCache does not allow you to edit the AWSServiceRoleForElastiCache service-linked
role. After you create a service-linked role, you cannot change the name of the role because various
entities might reference the role. However, you can edit the description of the role using IAM.

Editing a Service-Linked Role Description (IAM Console)

You can use the IAM console to edit a service-linked role description.

To edit the description of a service-linked role (console)

1. In the navigation pane of the IAM console, choose Roles.

2. Choose the name of the role to modify.

3. To the far right of Role description, choose Edit.

4. Enter a new description in the box and choose Save.

Editing a Service-Linked Role Description (IAM CLI)

You can use IAM operations from the AWS Command Line Interface to edit a service-linked role
description.

To change the description of a service-linked role (CLI)

1. (Optional) To view the current description for a role, use the AWS CLI for IAM operation get-
role.

Overview of managing access API Version 2015-02-02 1035

https://docs.aws.amazon.com/cli/latest/reference/iam/create-service-linked-role.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_CreateServiceLinkedRole.html
https://docs.aws.amazon.com/cli/latest/reference/iam/get-role.html
https://docs.aws.amazon.com/cli/latest/reference/iam/get-role.html

Amazon ElastiCache for Redis User Guide

Example

$ aws iam get-role --role-name AWSServiceRoleForElastiCache

Use the role name, not the ARN, to refer to roles with the CLI operations. For example, if a role
has the following ARN: arn:aws:iam::123456789012:role/myrole, refer to the role as
myrole.

2. To update a service-linked role's description, use the AWS CLI for IAM operation update-
role-description.

For Linux, macOS, or Unix:

$ aws iam update-role-description \
 --role-name AWSServiceRoleForElastiCache \
 --description "new description"

For Windows:

$ aws iam update-role-description ^
 --role-name AWSServiceRoleForElastiCache ^
 --description "new description"

Editing a Service-Linked Role Description (IAM API)

You can use the IAM API to edit a service-linked role description.

To change the description of a service-linked role (API)

1. (Optional) To view the current description for a role, use the IAM API operation GetRole.

Example

https://iam.amazonaws.com/
 ?Action=GetRole
 &RoleName=AWSServiceRoleForElastiCache
 &Version=2010-05-08
 &AUTHPARAMS

2. To update a role's description, use the IAM API operation UpdateRoleDescription.

Overview of managing access API Version 2015-02-02 1036

https://docs.aws.amazon.com/cli/latest/reference/iam/get-role.html
https://docs.aws.amazon.com/cli/latest/reference/iam/update-role-description.html
https://docs.aws.amazon.com/cli/latest/reference/iam/update-role-description.html
https://docs.aws.amazon.com/cli/latest/reference/iam/update-role-description.html
https://docs.aws.amazon.com/cli/latest/reference/iam/update-role-description.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_GetRole.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_GetRole.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_UpdateRoleDescription.html

Amazon ElastiCache for Redis User Guide

Example

https://iam.amazonaws.com/
 ?Action=UpdateRoleDescription
 &RoleName=AWSServiceRoleForElastiCache
 &Version=2010-05-08
 &Description="New description"

Deleting a Service-Linked Role for Amazon ElastiCache

If you no longer need to use a feature or service that requires a service-linked role, we recommend
that you delete that role. That way you don’t have an unused entity that is not actively monitored
or maintained. However, you must clean up your service-linked role before you can delete it.

Amazon ElastiCache does not delete the service-linked role for you.

Cleaning Up a Service-Linked Role

Before you can use IAM to delete a service-linked role, first confirm that the role has no resources
(clusters or replication groups) associated with it.

To check whether the service-linked role has an active session in the IAM console

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. In the navigation pane of the IAM console, choose Roles. Then choose the name (not the check
box) of the AWSServiceRoleForElastiCache role.

3. On the Summary page for the selected role, choose the Access Advisor tab.

4. On the Access Advisor tab, review recent activity for the service-linked role.

To delete Amazon ElastiCache resources that require AWSServiceRoleForElastiCache

• To delete a cluster, see the following:

• Using the AWS Management Console

• Using the AWS CLI

• Using the ElastiCache API

• To delete a replication group, see the following:

Overview of managing access API Version 2015-02-02 1037

https://docs.aws.amazon.com/IAM/latest/APIReference/API_UpdateRoleDescription.html
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/

Amazon ElastiCache for Redis User Guide

• Deleting a Replication Group (Console)

• Deleting a Replication Group (AWS CLI)

• Deleting a replication group (ElastiCache API)

Deleting a Service-Linked Role (IAM Console)

You can use the IAM console to delete a service-linked role.

To delete a service-linked role (console)

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. In the navigation pane of the IAM console, choose Roles. Then select the check box next to the
role name that you want to delete, not the name or row itself.

3. For Role actions at the top of the page, choose Delete role.

4. In the confirmation dialog box, review the service last accessed data, which shows when each
of the selected roles last accessed an AWS service. This helps you to confirm whether the role
is currently active. If you want to proceed, choose Yes, Delete to submit the service-linked role
for deletion.

5. Watch the IAM console notifications to monitor the progress of the service-linked role
deletion. Because the IAM service-linked role deletion is asynchronous, after you submit the
role for deletion, the deletion task can succeed or fail. If the task fails, you can choose View
details or View Resources from the notifications to learn why the deletion failed.

Deleting a Service-Linked Role (IAM CLI)

You can use IAM operations from the AWS Command Line Interface to delete a service-linked role.

To delete a service-linked role (CLI)

1. If you don't know the name of the service-linked role that you want to delete, enter the
following command. This command lists the roles and their Amazon Resource Names (ARNs) in
your account.

$ aws iam get-role --role-name role-name

Overview of managing access API Version 2015-02-02 1038

https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/
https://docs.aws.amazon.com/cli/latest/reference/iam/get-role.html

Amazon ElastiCache for Redis User Guide

Use the role name, not the ARN, to refer to roles with the CLI operations. For example, if a role
has the ARN arn:aws:iam::123456789012:role/myrole, you refer to the role as myrole.

2. Because a service-linked role cannot be deleted if it is being used or has associated resources,
you must submit a deletion request. That request can be denied if these conditions are not
met. You must capture the deletion-task-id from the response to check the status of the
deletion task. Enter the following to submit a service-linked role deletion request.

$ aws iam delete-service-linked-role --role-name role-name

3. Enter the following to check the status of the deletion task.

$ aws iam get-service-linked-role-deletion-status --deletion-task-id deletion-task-
id

The status of the deletion task can be NOT_STARTED, IN_PROGRESS, SUCCEEDED, or FAILED.
If the deletion fails, the call returns the reason that it failed so that you can troubleshoot.

Deleting a Service-Linked Role (IAM API)

You can use the IAM API to delete a service-linked role.

To delete a service-linked role (API)

1. To submit a deletion request for a service-linked roll, call DeleteServiceLinkedRole. In the
request, specify a role name.

Because a service-linked role cannot be deleted if it is being used or has associated resources,
you must submit a deletion request. That request can be denied if these conditions are not
met. You must capture the DeletionTaskId from the response to check the status of the
deletion task.

2. To check the status of the deletion, call GetServiceLinkedRoleDeletionStatus. In the request,
specify the DeletionTaskId.

The status of the deletion task can be NOT_STARTED, IN_PROGRESS, SUCCEEDED, or FAILED.
If the deletion fails, the call returns the reason that it failed so that you can troubleshoot.

Overview of managing access API Version 2015-02-02 1039

https://docs.aws.amazon.com/cli/latest/reference/iam/delete-service-linked-role.html
https://docs.aws.amazon.com/cli/latest/reference/iam/get-service-linked-role-deletion-status.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_DeleteServiceLinkedRole.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_GetServiceLinkedRoleDeletionStatus.html

Amazon ElastiCache for Redis User Guide

ElastiCache API permissions: Actions, resources, and conditions reference

When you set up access control and write permissions policies to attach to an IAM policy (either
idenity-based or resource-based), use the following table as a reference. The table lists each
Amazon ElastiCache API operation and the corresponding actions for which you can grant
permissions to perform the action. You specify the actions in the policy's Action field, and you
specify a resource value in the policy's Resource field. Unless indicated otherwise, the resource
is required. Some fields include both a required resource and optional resources. When there is no
resource ARN, the resource in the policy is a wildcard (*).

You can use condition keys in your ElastiCache policies to express conditions. To see a list of
ElastiCache-specific condition keys, along with the actions and resource types to which they apply,
see Using condition keys. For a complete list of AWS-wide keys, see AWS global condition context
keys in the IAM User Guide.

Note

To specify an action, use the elasticache: prefix followed by the API operation name
(for example, elasticache:DescribeCacheClusters).

To see a list of ElastiCache actions, see Actions Defined by Amazon ElastiCache in the Service
Authorization Reference.

Compliance validation for Amazon ElastiCache

Third-party auditors assess the security and compliance of AWS services as part of multiple AWS
compliance programs, such as SOC, PCI, FedRAMP, and HIPAA.

To learn whether an AWS service is within the scope of specific compliance programs, see AWS
services in Scope by Compliance Program and choose the compliance program that you are
interested in. For general information, see AWS Compliance Programs.

You can download third-party audit reports using AWS Artifact. For more information, see
Downloading Reports in AWS Artifact.

Your compliance responsibility when using AWS services is determined by the sensitivity of your
data, your company's compliance objectives, and applicable laws and regulations. AWS provides the
following resources to help with compliance:

Compliance validation API Version 2015-02-02 1040

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonelasticache.html#amazonelasticache-actions-as-permissions
https://aws.amazon.com/compliance/services-in-scope/
https://aws.amazon.com/compliance/services-in-scope/
https://aws.amazon.com/compliance/programs/
https://docs.aws.amazon.com/artifact/latest/ug/downloading-documents.html

Amazon ElastiCache for Redis User Guide

• Security and Compliance Quick Start Guides – These deployment guides discuss architectural
considerations and provide steps for deploying baseline environments on AWS that are security
and compliance focused.

• Architecting for HIPAA Security and Compliance on Amazon Web Services – This whitepaper
describes how companies can use AWS to create HIPAA-eligible applications.

Note

Not all AWS services are HIPAA eligible. For more information, see the HIPAA Eligible
Services Reference.

• AWS Compliance Resources – This collection of workbooks and guides might apply to your
industry and location.

• AWS Customer Compliance Guides – Understand the shared responsibility model through the
lens of compliance. The guides summarize the best practices for securing AWS services and map
the guidance to security controls across multiple frameworks (including National Institute of
Standards and Technology (NIST), Payment Card Industry Security Standards Council (PCI), and
International Organization for Standardization (ISO)).

• Evaluating Resources with Rules in the AWS Config Developer Guide – The AWS Config service
assesses how well your resource configurations comply with internal practices, industry
guidelines, and regulations.

• AWS Security Hub – This AWS service provides a comprehensive view of your security state within
AWS. Security Hub uses security controls to evaluate your AWS resources and to check your
compliance against security industry standards and best practices. For a list of supported services
and controls, see Security Hub controls reference.

• AWS Audit Manager – This AWS service helps you continuously audit your AWS usage to simplify
how you manage risk and compliance with regulations and industry standards.

More information

For general information about AWS Cloud compliance, see the following:

• FIPS Endpoints by Service

• Service updates in ElastiCache

• AWS Cloud Compliance

More information API Version 2015-02-02 1041

https://aws.amazon.com/quickstart/?awsf.filter-tech-category=tech-category%23security-identity-compliance
https://docs.aws.amazon.com/whitepapers/latest/architecting-hipaa-security-and-compliance-on-aws/welcome.html
https://aws.amazon.com/compliance/hipaa-eligible-services-reference/
https://aws.amazon.com/compliance/hipaa-eligible-services-reference/
https://aws.amazon.com/compliance/resources/
https://d1.awsstatic.com/whitepapers/compliance/AWS_Customer_Compliance_Guides.pdf
https://docs.aws.amazon.com/config/latest/developerguide/evaluate-config.html
https://docs.aws.amazon.com/securityhub/latest/userguide/what-is-securityhub.html
https://docs.aws.amazon.com/securityhub/latest/userguide/securityhub-controls-reference.html
https://docs.aws.amazon.com/audit-manager/latest/userguide/what-is.html
https://aws.amazon.com/compliance/fips/#FIPS_Endpoints_by_Service
https://aws.amazon.com/compliance/

Amazon ElastiCache for Redis User Guide

• Shared Responsibility Model

• AWS PCI DSS Compliance Program

Resilience in Amazon ElastiCache

The AWS global infrastructure is built around AWS Regions and Availability Zones. AWS Regions
provide multiple physically separated and isolated Availability Zones, which are connected with
low-latency, high-throughput, and highly redundant networking. With Availability Zones, you can
design and operate applications and databases that automatically fail over between Availability
Zones without interruption. Availability Zones are more highly available, fault tolerant, and
scalable than traditional single or multiple data center infrastructures.

For more information about AWS Regions and Availability Zones, see AWS Global Infrastructure.

In addition to the AWS global infrastructure, Amazon ElastiCache offers several features to help
support your data resiliency and backup needs.

Topics

• Mitigating Failures

Mitigating Failures

When planning your Amazon ElastiCache implementation, you should plan so that failures have a
minimal impact upon your application and data. The topics in this section cover approaches you
can take to protect your application and data from failures.

Topics

• Mitigating Failures when Running Redis

• Recommendations

Mitigating Failures when Running Redis

When running the Redis engine, you have the following options for minimizing the impact of a
node or Availability Zone failure.

Resilience API Version 2015-02-02 1042

https://aws.amazon.com/compliance/shared-responsibility-model/
https://aws.amazon.com/compliance/pci-dss-level-1-faqs/
https://aws.amazon.com/about-aws/global-infrastructure/

Amazon ElastiCache for Redis User Guide

Mitigating Node Failures

Serverless caches automatically mitigate node failures with a Multi-AZ architecture so that
node failures are transparent to your application. Self-designed clusters must be configured
appropriately to mitigate the failure of an individual node.

To mitigate the impact of Redis node failures on self-designed clusters, you have the following
options:

Topics

• Mitigating Failures: Redis Replication Groups

Mitigating Failures: Redis Replication Groups

A Redis replication group is comprised of a single primary node which your application can both
read from and write to, and from 1 to 5 read-only replica nodes. Whenever data is written to the
primary node it is also asynchronously updated on the read replica nodes.

When a read replica fails

1. ElastiCache detects the failed read replica.

2. ElastiCache takes the failed node off line.

3. ElastiCache launches and provisions a replacement node in the same AZ.

4. The new node synchronizes with the primary node.

During this time your application can continue reading and writing using the other nodes.

Redis Multi-AZ

You can enable Multi-AZ on your Redis replication groups. Whether you enable Multi-AZ or not, a
failed primary will be detected and replaced automatically. How this takes place varies whether or
not Multi-AZ is or is not enabled.

When Multi-AZ is enabled

1. ElastiCache detects the primary node failure.

2. ElastiCache promotes the read replica node with the least replication lag to primary node.

3. The other replicas sync with the new primary node.

Mitigating Failures API Version 2015-02-02 1043

Amazon ElastiCache for Redis User Guide

4. ElastiCache spins up a read replica in the failed primary's AZ.

5. The new node syncs with the newly promoted primary.

Failing over to a replica node is generally faster than creating and provisioning a new primary
node. This means your application can resume writing to your primary node sooner than if Multi-
AZ were not enabled.

For more information, see Minimizing downtime in ElastiCache for Redis with Multi-AZ.

When Multi-AZ is disabled

1. ElastiCache detects primary failure.

2. ElastiCache takes the primary offline.

3. ElastiCache creates and provisions a new primary node to replace the failed primary.

4. ElastiCache syncs the new primary with one of the existing replicas.

5. When the sync is finished, the new node functions as the cluster's primary node.

During steps 1 through 4 of this process, your application can't write to the primary node. However,
your application can continue reading from your replica nodes.

For added protection, we recommend that you launch the nodes in your replication group in
different Availability Zones (AZs). If you do this, an AZ failure will only impact the nodes in that AZ
and not the others.

For more information, see High availability using replication groups.

Mitigating Availability Zone Failures

Serverless caches automatically mitigate availability zone failures with a replicated Multi-AZ
architecture so that AZ failures are transparent to your application.

To mitigate the impact of an Availability Zone failure in a self-designed cluster, locate your nodes
for each shard in as many Availability Zones as possible.

No matter how many nodes you have in a shard, if they are all located in the same Availability
Zone, a catastrophic failure of that AZ results in your losing all your shard's data. However, if you
locate your nodes in multiple AZs, a failure of any AZ results in your losing only the nodes in that
AZ.

Mitigating Failures API Version 2015-02-02 1044

Amazon ElastiCache for Redis User Guide

Any time you lose a node you can experience a performance degradation since read operations
are now shared by fewer nodes. This performance degradation will continue until the nodes are
replaced.

For information on specifying the Availability Zones for Redis nodes, see Creating a Redis (cluster
mode disabled) cluster (Console).

For more information on regions and Availability Zones, see Choosing regions and availability
zones.

Recommendations

We recommend creating serverless caches over self-designed clusters, as you automatically obtain
better fault tolerance without additional configuration. When creating a self-designed cluster,
however, there are two types of failures you need to plan for: individual node failures and broad
Availability Zone failures. The best failure mitigation plan will address both kinds of failures.

Minimizing the Impact of Node Failures

To minimize the impact of a node failure, we recommend that your implementation use multiple
nodes in each shard and distribute the nodes across multiple Availability Zones. This is done
automatically for serverless caches.

For self-designed clusters, we recommend that you enable Multi-AZ on your replication group so
that ElastiCache will automatically fail over to a replica if the primary node fails.

Minimizing the Impact of Availability Zone Failures

To minimize the impact of an Availability Zone failure, we recommend launching your nodes in
as many different Availability Zones as are available. Spreading your nodes evenly across AZs will
minimize the impact in the unlikely event of an AZ failure. This is done automatically for serverless
caches.

Other precautions

If you're running Redis, then in addition to the above, we recommend that you schedule regular
backups of your cluster. Backups (snapshots) create a .rdb file you can use to restore your cache in
case of failure or corruption. For more information, see Snapshot and restore.

Mitigating Failures API Version 2015-02-02 1045

Amazon ElastiCache for Redis User Guide

Infrastructure security in AWS ElastiCache

As a managed service, AWS ElastiCache is protected by the AWS global network security
procedures that are described in the Security and Compliance section at AWS Architecture Center.

You use AWS published API calls to access ElastiCache through the network. Clients must support
Transport Layer Security (TLS) 1.2 or later. We recommend TLS 1.3 or later. Clients must also
support cipher suites with perfect forward secrecy (PFS) such as Ephemeral Diffie-Hellman (DHE)
or Elliptic Curve Ephemeral Diffie-Hellman (ECDHE). Most modern systems such as Java 7 and later
support these modes.

Additionally, requests must be signed by using an access key ID and a secret access key that is
associated with an IAM principal. Or you can use the AWS Security Token Service (AWS STS) to
generate temporary security credentials to sign requests.

Service updates in ElastiCache

ElastiCache automatically monitors your fleet of caches, clusters, and nodes to apply service
updates as they become available. Service updates for serverless caches are automatically and
transparently applied. For self-designed clusters, you set up a predefined maintenance window so
that ElastiCache can apply these updates. However, in some cases you might find this approach too
rigid and likely to constrain your business flows.

With service updates, you control when and which updates are applied to your self-designed
clusters. You can also monitor the progress of these updates to your selected ElastiCache cluster in
real time.

Managing service updates

ElastiCache service updates for self-designed clusters are released on a regular basis. If you have
one or more qualifying self-designed clusters for those service updates, you receive notifications
through email, SNS, the Personal Health Dashboard (PHD), and Amazon CloudWatch events when
the updates are released. The updates are also displayed on the Service Updates page on the
ElastiCache console. By using this dashboard, you can view all the service updates and their status
for your ElastiCache fleet. Service updates for serverless caches are transparently applied and
cannot be managed via Service Updates.

Infrastructure security API Version 2015-02-02 1046

https://aws.amazon.com/architecture/
https://docs.aws.amazon.com/STS/latest/APIReference/Welcome.html

Amazon ElastiCache for Redis User Guide

You control when to apply an update before an auto-update starts. We strongly recommend that
you apply any updates of type security-update as soon as possible to ensure that your ElastiCache
clusters are always up-to-date with current security patches.

The following sections explore these options in detail.

Topics

• Applying the service updates

• Stopping the service updates

Applying the service updates

You can start applying the service updates to your fleet from the time that the updates have an
available status. Service updates are cumulative. In other words, any updates that you haven't
applied yet are included with your latest update.

If a service update has auto-update enabled, you can choose to not take any action when it
becomes available. ElastiCache will schedule to apply the update during one of your clusters'
upcoming maintenance windows after the Auto-update start date. You will receive related
notifications for each stage of the update.

Note

You can apply only those service updates that have an available or scheduled status.

For more information about reviewing and applying any service-specific updates to applicable
ElastiCache clusters, see Applying the service updates using the console.

When a new service update is available for one or more of your ElastiCache clusters, you can use
the ElastiCache console, API, or AWS CLI to apply the update. The following sections explain the
options that you can use to apply updates.

Applying the service updates using the console

To view the list of available service updates, along with other information, go to the Service
Updates page in the console.

1. Sign in to the AWS Management Console and open the Amazon ElastiCache console at https://
console.aws.amazon.com/elasticache/.

Managing service updates API Version 2015-02-02 1047

https://console.aws.amazon.com/elasticache/
https://console.aws.amazon.com/elasticache/

Amazon ElastiCache for Redis User Guide

2. On the navigation pane, choose Service Updates.

3. Under Service updates you can view the following:

• Service update name: The unique name of the service update

• Update type: The type of the service update, which is one of security-update or engine-
update

• Update severity: The priority of applying the update:

• critical: We recommend that you apply this update immediately (within 14 days or less).

• important: We recommend that you apply this update as soon as your business flow
allows (within 30 days or less).

• medium: We recommend that you apply this update as soon as you can (within 60 days or
less).

• low: We recommend that you apply this update as soon as you can (within 90 days or
less).

• Engine version: If the update type is engine-update, the engine version that is being
updated.

• Release Date: When the update is released and available to apply on your clusters.

• Recommended Apply By Date: ElastiCache guidance date to apply the updates by.

• Status: The status of the update, which is one of the following:

• available: The update is available for requisite clusters.

• complete: The update has been applied.

• cancelled: The update has been canceled and is no longer necessary.

• expired: The update is no longer available to apply.

4. Choose an individual update (not the button to its left) to view details of the service update.

In the Cluster update status section, you can view a list of clusters where the service update
has not been applied or has just been applied recently. For each cluster, you can view the
following:

• Cluster name: The name of the cluster

• Nodes updated: The ratio of individual nodes within a specific cluster that were updated or
remain available for the specific service update.

• Update Type: The type of the service update, which is one of security-update or engine-
updateManaging service updates API Version 2015-02-02 1048

Amazon ElastiCache for Redis User Guide

• Status: The status of the service update on the cluster, which is one of the following:

• available: The update is available for the requisite cluster.

• in-progress: The update is being applied to this cluster.

• scheduled: The update date has been scheduled.

• complete: The update has been successfully applied. Cluster with a complete status will be
displayed for 7 days after its completion.

If you chose any or all of the clusters with the available or scheduled status, and then chose
Apply now, the update will start being applied on those clusters.

Applying the service updates using the AWS CLI

After you receive notification that service updates are available, you can inspect and apply them
using the AWS CLI:

• To retrieve a description of the service updates that are available, run the following command:

aws elasticache describe-service-updates --status available

For more information, see describe-service-updates.

• To apply a service update on a list of clusters, run the following command:

aws elasticache batch-apply-update-action --service-update
ServiceUpdateNameToApply=sample-service-update --cluster-names cluster-1
cluster2

For more information, see batch-apply-update-action.

Stopping the service updates

You can stop updates to clusters if needed. For example, you might want to stop updates if you
have an unexpected surge to your clusters that are undergoing updates. Or you might want to stop
updates if they're taking too long and interrupting your business flow at a peak time.

The Stopping operation immediately interrupts all updates to those clusters and any nodes that
are yet to be updated. It continues to completion any nodes that have an in progress status.
However, it ceases updates to other nodes in the same cluster that have an update available status
and reverts them to a Stopping status.

Managing service updates API Version 2015-02-02 1049

https://docs.aws.amazon.com/cli/latest/reference/elasticache/describe-service-updates.html
https://docs.aws.amazon.com/cli/latest/reference/elasticache/batch-apply-update-action.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/APIReference/API_BatchStopUpdateAction.html

Amazon ElastiCache for Redis User Guide

When the Stopping workflow is complete, the nodes that have a Stopping status change to a
Stopped status. Depending on the workflow of the update, some clusters won't have any nodes
updated. Other clusters might include some nodes that are updated and others that still have an
update available status.

You can return later to finish the update process as your business flows permit. In this case, choose
the applicable clusters that you want to complete updates on, and then choose Apply Now. For
more information, see Applying the service updates.

Using the console

You can interrupt a service update using the ElastiCache console. The following demonstrates how
to do this:

• After a service update has progressed on a selected cluster, the ElastiCache console displays the
View/Stop Update tab at the top of the ElastiCache dashboard.

• To interrupt the update, choose Stop Update.

• When you stop the update, choose the cluster and examine the status. It reverts to a Stopping
status and eventually a Stopped status.

Using the AWS CLI

You can interrupt a service update using the AWS CLI. The following code example shows how to
do this.

For a replication group, do the following:

aws elasticache batch-stop-update-action --service-update-name sample-
service-update --replication-group-ids my-replication-group-1 my-
replication-group-2

For a cache cluster, do the following:

aws elasticache batch-stop-update-action --service-update-name sample-
service-update --cache-cluster-ids my-cache-cluster-1 my-cache-cluster-2

For more information, see BatchStopUpdateAction.

Managing service updates API Version 2015-02-02 1050

https://docs.aws.amazon.com/AmazonElastiCache/latest/APIReference/API_BatchStopUpdateAction.html

Amazon ElastiCache for Redis User Guide

Logging and monitoring in Amazon ElastiCache

To manage your cache, it's important that you know how your caches are performing. ElastiCache
generates metrics that are published to Amazon CloudWatch Logs for monitoring your cache
performance. In addition, ElastiCache generates events when significant changes happen on your
cache resources (e.g. a new cache is created, or a cache is deleted).

Topics

• Serverless metrics and events

• Self-designed clusters metrics and events

• Logging Amazon ElastiCache API calls with AWS CloudTrail

Serverless metrics and events

This section describes the metrics and events that you can monitor when working with serverless
caches.

Topics

• Serverless cache metrics

• Serverless cache events

Serverless cache metrics

The AWS/ElastiCache namespace includes the following CloudWatch metrics for your Redis
serverless caches.

Metric Description Unit

BytesUsedForCache The total number of bytes
used by the data stored in
your cache.

Bytes

ElastiCacheProcessingUnits The total number of ElastiCac
heProcessingUnits (ECPUs)

Count

Serverless metrics and events API Version 2015-02-02 1051

Amazon ElastiCache for Redis User Guide

Metric Description Unit

consumed by the requests
executed on your cache

SuccessfulReadRequestLatenc
y

Latency of successful read
requests.

Microseconds

SuccessfulWriteRequestLaten
cy

Latency of successful write
requests

Microseconds

TotalCmdsCount Total count of all commands
executed on your cache

Count

CacheHitRate Indicates the hit rate of your
cache. This is calculated
using cache_hits and
cache_misses statistic
s in the following way:
cache_hits /(cache_h
its + cache_misses) .

Percent

CacheHits The number of successful
read-only key lookups in the
cache.

Count

CurrConnections The number of client
connections to your cache.

Count

ThrottledCmds The number of requests that
were throttled by ElastiCac
he because the workload was
scaling faster than ElastiCac
he can scale.

Count

NewConnections The total number of
connections that have been
accepted by the server during
this period.

Count

Serverless metrics API Version 2015-02-02 1052

Amazon ElastiCache for Redis User Guide

Metric Description Unit

CurrItems The number of items in the
cache.

Count

CurrVolatileItems The number of items in the
cache with TTL.

Count

NetworkBytesIn Total bytes transferred in to
cache

Bytes

NetworkBytesOut Total bytes transferred out of
cache

Bytes

Evictions The count of keys evicted by
the cache

Count

IamAuthenticationExpirations The total number of expired
IAM-authenticated Redis
connections. You can find
more information about
Authenticating with IAM in
the user guide.

Count

IamAuthenticationThrottling The total number of throttled
IAM-authenticated Redis
AUTH or HELLO requests. You
can find more information
about Authenticating with
IAM in the user guide.

Count

KeyAuthorizationFailures The total number of failed
attempts by users to
access keys they don’t have
permission to access. We
suggest setting an alarm on
this to detect unauthorized
access attempts.

Count

Serverless metrics API Version 2015-02-02 1053

Amazon ElastiCache for Redis User Guide

Metric Description Unit

AuthenticationFailures The total number of failed
attempts to authenticate
to Redis using the AUTH
command. We suggest
setting an alarm on this to
detect unauthorized access
attempts.

Count

CommandAuthorizati
onFailures

The total number of failed
attempts by users to run
commands they don’t have
permission to call. We suggest
setting an alarm on this to
detect unauthorized access
attempts.

Count

Command level metrics

ElastiCache also emits the following command level metrics. For each command type, ElastiCache
emits the total count of commands and the number of ECPUs consumed by that command type.

Metric Description Unit

EvalBasedCmds The number of get commands
the cache has received.

Count

EvalBasedCmdsECPUs ECPUs consumed by eval-
based commands.

Count

GeoSpatialBasedCmds The total number of
commands for geospatia
l-based commands. This
is derived from the Redis
commandstats statistic. It's
derived by summing all of

Count

Serverless metrics API Version 2015-02-02 1054

Amazon ElastiCache for Redis User Guide

Metric Description Unit

the geo type of commands:
geoadd, geodist, geohash,
geopos, georadius, and
georadiusbymember.

GeoSpatialBasedCmdsECPUs ECPUs consumed by
geospatial-based commands.

Count

GetTypeCmds The total number of read-
only type commands. This
is derived from the Redis
commandstats statistic by
summing all of the read-only
type commands (get, hget,
scard, lrange, and so on.)

Count

GetTypeCmdsECPUs ECPUs consumed by read
commands.

Count

HashBasedCmds The total number of
commands that are hash-
based. This is derived from
the Redis commandstats
statistic by summing all of the
commands that act upon one
or more hashes (hget, hkeys,
hvals, hdel, and so on).

Count

HashBasedCmdsECPUs ECPUs consumed by hash-
based commands.

Count

Serverless metrics API Version 2015-02-02 1055

Amazon ElastiCache for Redis User Guide

Metric Description Unit

HyperLogLogBasedCmds The total number of
HyperLogLog-based
commands. This is derived
from the Redis commandstats
statistic by summing all of the
pf type of commands (pfadd,
pfcount, pfmerge, and so on.).

Count

HyperLogLogBasedCm
dsECPUs

ECPUs consumed by
HyperLogLog-based
commands.

Count

JsonBasedCmds The total number of JSON
commands, including both
read and write commands.
This is derived from the Redis
commandstats statistic by
summing all JSON commands
that act upon JSON keys.

Count

JsonBasedCmdsECPUs ECPUs consumed by all JSON
commands, including both
read and write commands.

Count

JsonBasedGetCmds The total number of JSON
read-only commands. This
is derived from the Redis
commandstats statistic by
summing all JSON read
commands that act upon
JSON keys.

Count

JsonBasedGetCmdsECPUs ECPUs consumed by JSON
read-only commands.

Count

Serverless metrics API Version 2015-02-02 1056

Amazon ElastiCache for Redis User Guide

Metric Description Unit

JsonBasedSetCmds The total number of JSON
write commands. This is
derived from the Redis
commandstats statistic by
summing all JSON write
commands that act upon
JSON keys.

Count

JsonBasedSetCmdsECPUs ECPUs consumed by JSON
write commands.

Count

KeyBasedCmds The total number of
commands that are key-
based. This is derived from
the Redis commandstats
statistic by summing all of the
commands that act upon one
or more keys across multiple
data structures (del, expire,
rename, and so on.).

Count

KeyBasedCmdsECPUs ECPUs consumed by key-
based commands.

Count

ListBasedCmds The total number of
commands that are list-
based. This is derived from
the Redis commandstats
statistic by summing all of the
commands that act upon one
or more lists (lindex, lrange,
lpush, ltrim, and so on).

Count

ListBasedCmdsECPUs ECPUs consumed by list-base
d commands.

Count

Serverless metrics API Version 2015-02-02 1057

Amazon ElastiCache for Redis User Guide

Metric Description Unit

NonKeyTypeCmds The total number of
commands that are not key-
based. This is derived from
the Redis commandstats
statistic by summing all of the
commands that do not act
upon a key, for example, acl,
dbsize or info.

Count

NonKeyTypeCmdsECPUs ECPUs consumed by non-key-
based commands.

Count

PubSubBasedCmds The total number of
commands for pub/sub
functionality. This is derived
from the Redis commandst
atsstatistics by summing all of
the commands used for pub/
sub functionality: psubscrib
e, publish, pubsub, punsubscr
ibe, ssubscribe, sunsubscr
ibe, spublish, subscribe, and
unsubscribe.

Count

PubSubBasedCmdsECPUs ECPUs consumed by pub/sub-
based commands.

Count

SetBasedCmds The total number of
commands that are set-
based. This is derived from
the Redis commandstats
statistic by summing all of
the commands that act upon
one or more sets (scard, sdiff,
sadd, sunion, and so on).

Count

Serverless metrics API Version 2015-02-02 1058

Amazon ElastiCache for Redis User Guide

Metric Description Unit

SetBasedCmdsECPUs ECPUs consumed by set-
based commands.

Count

SetTypeCmds The total number of write
types of commands. This
is derived from the Redis
commandstats statistic by
summing all of the mutative
types of commands that
operate on data (set, hset,
sadd, lpop, and so on.)

Count

SetTypeCmdsECPUs ECPUs consumed by write
commands.

Count

SortedSetBasedCmds The total number of
commands that are sorted
set-based. This is derived
from the Redis commandstats
statistic by summing all of the
commands that act upon one
or more sorted sets (zcount,
zrange, zrank, zadd, and so
on).

Count

SortedSetBasedCmdsECPUs ECPUs consumed by sorted-
based commands.

Count

StringBasedCmds The total number of
commands that are string-
based. This is derived from
the Redis commandstats
statistic by summing all of the
commands that act upon one
or more strings (strlen, setex,
setrange, and so on).

Count

Serverless metrics API Version 2015-02-02 1059

Amazon ElastiCache for Redis User Guide

Metric Description Unit

StringBasedCmdsECPUs ECPUs consumed by string-ba
sed commands.

Count

StreamBasedCmds The total number of
commands that are stream-
based. This is derived from
the Redis commandstats
statistic by summing all of the
commands that act upon one
or more streams data types
(xrange, xlen, xadd, xdel, and
so on).

Count

StreamBasedCmdsECPUs ECPUs consumed by stream-
based commands.

Count

Serverless cache events

ElastiCache logs events that relate to your serverless cache. This information includes the date and
time of the event, the source name and source type of the event, and a description of the event.
You can easily retrieve events from the log using the ElastiCache console, the AWS CLI describe-
events command, or the ElastiCache API action DescribeEvents.

You can choose to monitor, ingest, transform, and act on ElastiCache events using Amazon
EventBridge. Learn more in the Amazon EventBridge https://docs.aws.amazon.com/eventbridge/
latest/userguide/.

Viewing ElastiCache events (Console)

To view events using the ElastiCache console:

1. Sign in to the AWS Management Console and open the ElastiCache console at https://
console.aws.amazon.com/elasticache/

2. To see a list of all available events, in the navigation pane, choose Events.

Serverless events API Version 2015-02-02 1060

getting%20started%20guide
getting%20started%20guide
https://console.aws.amazon.com/elasticache/
https://console.aws.amazon.com/elasticache/

Amazon ElastiCache for Redis User Guide

3. On the Events screen each row of the list represents one event and displays the event source,
the event type, the GMT time of the event, and a description of the event. Using the Filter you
can specify whether you want to see all events, or just events of a specific type in the event
list.

Viewing ElastiCache events (AWS CLI)

To generate a list of ElastiCache events using the AWS CLI, use the command describe-events.
You can use optional parameters to control the type of events listed, the time frame of the events
listed, the maximum number of events to list, and more.

The following code lists up to 40 serverless cache events.

aws elasticache describe-events --source-type serverless-cache --max-items 40

The following code lists all events for serverless caches for the past 24 hours (1440 minutes).

aws elasticache describe-events --source-type serverless-cache --duration 1440

Serverless Events

This section documents the different types of events that you may receive for your serverless
caches.

Serverless Cache Creation Events

Detail-Type Description Unit Source Message

Cache created Cache arn creation serverless-cache Cache <cache-na
me> is created
and ready to
use.

Cache created Cache arn

Snapshot arn

creation serverless-cache Cache <cache-na
me> is created
and data was
restored from
snapshot. Your

Serverless events API Version 2015-02-02 1061

Amazon ElastiCache for Redis User Guide

Detail-Type Description Unit Source Message

cache is ready to
use.

Cache creation
failed

Cache arn failure serverless-cache Failed to create
cache <cache-na
me>. Insufficient
free IP addresses
to create VPC
endpoint.

Cache creation
failed

Cache arn failure serverless-cache Failed to
create cache
<cache-name>.
Invalid subnets
provided in the
request.

Cache creation
failed

Cache arn failure serverless-cache Failed to create
cache <cache-
name>. Quota
limit reached
for creating VPC
endpoint.

Cache creation
failed

Cache arn failure serverless-cache Failed to create
cache <cache-na
me>. You do not
have permissio
ns to create a
VPC endpoint.

Serverless events API Version 2015-02-02 1062

Amazon ElastiCache for Redis User Guide

Detail-Type Description Unit Source Message

Cache creation
failed

Cache arn failure serverless-cache Failed to create
cache <cache-na
me>. A user with
an incompatible
Redis version is
present in user
group <user-gro
up-name>.

Cache creation
failed

Cache arn

Cache snapshot
arn

failure serverless-cache Failed to create
cache <cache-
name>. The
provided user
group <user-gro
up-name> does
not exist.

Serverless events API Version 2015-02-02 1063

Amazon ElastiCache for Redis User Guide

Detail-Type Description Unit Source Message

Cache creation
failed

Cache arn failure serverless-cache Failed to create
cache <cache-
name>. Data
restoration
from snapshot
failed because
<reason>.

Failure reasons:

• failed to
retrieve file
from S3.

• expected
md5 does not
match actual
md5.

• the provided
RDB file has
an unsupport
ed version.

Serverless Cache Update Events

Detail-Type Resources list Category Source Message

Cache updated Cache arn configuration
change

serverless-cache SecurityGroups
updated for the
cache <cache-na
me>.

Cache updated Cache arn configuration
change

serverless-cache Tags updated
for the cache
<cache-name>.

Serverless events API Version 2015-02-02 1064

Amazon ElastiCache for Redis User Guide

Detail-Type Resources list Category Source Message

Cache updated
failed

Cache arn configuration
change

serverless-cache An update to the
cache <cache-
name> failed.
A user with an
incompatible
Redis version is
present in user
group <user-gro
up-name>.

Cache updated
failed

Cache arn configuration
change

serverless-cache An update to the
cache <cache-
name> failed.
SecurityGroups
update failed.

Cache updated
failed

Cache arn configuration
change

serverless-cache An update
to the cache
<cache-name>
failed. SecurityG
roups update
failed because
of insufficient
permissions.

Cache updated
failed

Cache arn configuration
change

serverless-cache An update to the
cache <cache-
name> failed.
SecurityGroups
update failed
because the
SecurityGroups
are invalid.

Serverless Cache Deletion Events

Serverless events API Version 2015-02-02 1065

Amazon ElastiCache for Redis User Guide

Detail-Type Resources list Category Source Message

Cache deleted Cache arn deletion serverless-cache Cache <cache-
name> was
deleted.

Serverless Cache Usage Limit Events

Detail-Type Description Unit Source Message

Cache updated Cache arn configuration
change

serverless-cache Limits updated
for the cache
<cache-name>.

Cache limit
approaching

Cache arn notification serverless-cache Slot <X> is using
more than <Y>
% of the per-
slot limit of 32
GB. For example,
Slot 10 is using
more than 90%
of the per-slot
limit of 32 GB.

Cache updated
failed

Cache arn failure serverless-cache A limit update
to the cache
<cache-name>
failed because
the cache was
deleted.

Cache updated
failed

Cache arn failure serverless-cache A limit update
to the cache
<cache-name>
failed due to

Serverless events API Version 2015-02-02 1066

Amazon ElastiCache for Redis User Guide

Detail-Type Description Unit Source Message

invalid configura
tion.

Cache updated
failed

Cache arn failure serverless-cache A limit update
to the cache
<cache-name>
failed because
current cached
data exceeds
new limits.
Please flush
some data
before applying
the limits.

Serverless Cache Snapshot Events

Detail-Type Resources-list Category Source Message

Snapshot
created

Cache arn

Snapshot arn

creation serverless-
cache-snapshot

Snapshot
<snapshot-
name> created
for cache
<cache-name>.

Snapshot
creation failed

Cache arn

Snapshot arn

failure serverless-
cache-snapshot

Failed to create
snapshot for
cache <cache-na
me>. Snapshot
<snapshot-
name> creation
failed with
Customer
Managed

Serverless events API Version 2015-02-02 1067

Amazon ElastiCache for Redis User Guide

Detail-Type Resources-list Category Source Message

Key <key-id>
<reason>.

Failure reason
messages:

• because
Customer
Managed Key
is disabled

• because
Customer
Managed Key
cannot be
found

• because the
request timed
out

Snapshot
creation failed

Cache arn

Snapshot arn

failure serverless-
cache-snapshot

Failed to create
snapshot for
cache <cache-na
me>. Snapshot
<snapshot-
name> creation
failed because
<reason>.

Default reason:

• because of an
internal error

Serverless events API Version 2015-02-02 1068

Amazon ElastiCache for Redis User Guide

Detail-Type Resources-list Category Source Message

Snapshot export
failed

Snapshot arn failure serverless-
cache-snapshot

Failed to export
snapshot for
cache <cache-na
me>. Could not
export snapshot
to bucket
%s because
ElastiCache
does not have
permissions to
the bucket.

Snapshot export
failed

Snapshot arn failure serverless-
cache-snapshot

Failed to export
snapshot for
cache <cache-na
me>. Could not
export snapshot
to bucket '%s'
because there
is already an
object with the
same name in
the bucket.

Snapshot export
failed

Snapshot arn failure serverless-
cache-snapshot

Failed to export
snapshot for
cache <cache-na
me>. Could not
export snapshot
to bucket '%s'
because bucket
owner account
Id has changed.

Serverless events API Version 2015-02-02 1069

Amazon ElastiCache for Redis User Guide

Detail-Type Resources-list Category Source Message

Snapshot export
failed

Snapshot arn failure serverless-
cache-snapshot

Failed to export
snapshot for
cache <cache-na
me>. Could not
export snapshot
to bucket '%s'
because the S3
bucket is not
accessible.

Snapshot export
failed

Snapshot arn failure serverless-
cache-snapshot

Failed to export
snapshot for
cache <cache-na
me>. Could not
export snapshot
to bucket '%s'
because the
bucket is not
accessible.

Snapshot export
failed

Snapshot arn failure serverless-
cache-snapshot

Failed to export
snapshot for
cache <cache-na
me>. Could not
export snapshot
to bucket '%s'
because bucket
does not exist.

Serverless events API Version 2015-02-02 1070

Amazon ElastiCache for Redis User Guide

Detail-Type Resources-list Category Source Message

Snapshot export
failed

Snapshot arn failure serverless-
cache-snapshot

Failed to export
snapshot for
cache <cache-
name>. Could
not export
snapshot to
bucket '%s' with
source snapshot
Customer
Managed Key
%s <reason>.

Snapshot export
failed

Snapshot arn failure serverless-
cache-snapshot

Failed to export
snapshot for
cache <cache-na
me>. Could not
export snapshot
to bucket '%s'.

Snapshot copy
failed

Snapshot arn-1

Snapshot arn-2

failure serverless-
cache-snapshot

Failed to copy
snapshot
<snapshot-
name>. Could
not copy
snapshot '%s'
to snapshot
'%s' with source
snapshot
Customer
Managed
Key <key-id>
<reason-name>.

Serverless events API Version 2015-02-02 1071

Amazon ElastiCache for Redis User Guide

Detail-Type Resources-list Category Source Message

Snapshot copy
failed

Snapshot arn-1

Snapshot arn-2

failure serverless-
cache-snapshot

Failed to copy
snapshot
<snapshot-
name>. Could
not copy
snapshot '%s'
to snapshot
'%s' with target
snapshot
Customer
Managed Key
'%s' '%s'.

Self-designed clusters metrics and events

This section describes the metrics, events, and logs that you can expect to see when you work with
self-designed clusters.

Topics

• Metrics for self-designed clusters

• Events for self-designed clusters

• Log delivery

• Monitoring use with CloudWatch Metrics

• Amazon SNS monitoring of ElastiCache events

Metrics for self-designed clusters

When you self-design clusters, ElastiCache emits metrics at each node level, including both host-
level metrics and cache metrics.

For more information on host-level metrics, see Host-Level Metrics.

For more information on node-level metrics, see Metrics for Redis.

Self-designed clusters metrics and events API Version 2015-02-02 1072

Amazon ElastiCache for Redis User Guide

Events for self-designed clusters

ElastiCache logs events that relate to your self-designed caches. When working with self-designed
clusters, you can view your cluster events in the ElastiCache console, using the AWS CLI, or using
Amazon Simple Notification Service (SNS). Self-designed cluster events are not published to
Amazon EventBridge.

Self-designed cluster event information includes the date and time of the event, the source name
and source type of the event, and a description of the event. You can easily retrieve events from
the log using the ElastiCache console, the AWS CLI describe-events command, or the ElastiCache
API action DescribeEvents.

Viewing ElastiCache events (Console)

The following procedure displays events using the ElastiCache console.

To view events using the ElastiCache console

1. Sign in to the AWS Management Console and open the ElastiCache console at https://
console.aws.amazon.com/elasticache/

2. To see a list of all available events, in the navigation pane, choose Events.

3. On the Events screen each row of the list represents one event and displays the event source,
the event type, the GMT time of the event, and a description of the event. Using the Filter you
can specify whether you want to see all events, or just events of a specific type in the event
list.

Viewing ElastiCache events (AWS CLI)

To generate a list of ElastiCache events using the AWS CLI, use the command describe-events.
You can use optional parameters to control the type of events listed, the time frame of the events
listed, the maximum number of events to list, and more.

The following code lists up to 40 self-designed cluster events.

aws elasticache describe-events --source-type cache-cluster --max-items 40

The following code lists all events for self-designed caches for the past 24 hours (1440 minutes).

aws elasticache describe-events --source-type cache-cluster --duration 1440

Self-designed cluster events API Version 2015-02-02 1073

https://console.aws.amazon.com/elasticache/
https://console.aws.amazon.com/elasticache/

Amazon ElastiCache for Redis User Guide

Self-designed cluster events

This section contains the list of events you can expect to receive for your self-designed clusters.

The following ElastiCache events trigger Amazon SNS notifications. For information on event
details, see Viewing ElastiCache events.

Event Name Message Description

ElastiCache:AddCac
heNodeComplete

ElastiCache:AddCac
heNodeComplete :
cache-cluster

A cache node has been added
to the cache cluster and is
ready for use.

ElastiCache:AddCacheNodeFai
led due to insufficient free IP
addresses

ElastiCache:AddCac
heNodeFailed :
cluster-name

A cache node could not be
added because there are not
enough available IP addresses
.

ElastiCache:CacheClusterPar
ametersChanged

ElastiCache:CacheC
lusterParametersCh
anged : cluster-name

One or more cache cluster
parameters have been
changed.

ElastiCache:CacheClusterPro
visioningComplete

ElastiCache:CacheC
lusterProvisioning
Complete cluster-n
ame-0001-005

The provisioning of a cache
cluster is completed, and the
cache nodes in the cache
 cluster are ready to use.

ElastiCache:CacheClusterPro
visioningFailed due to
incompatible network state

ElastiCache:CacheC
lusterProvisioning
Failed : cluster-n
ame

An attempt was made to
launch a new cache cluster
into a nonexistent virtual
private cloud (VPC).

ElastiCache:CacheClusterSca
lingComplete

CacheClusterScalin
gComplete : cluster-n
ame

Scaling for cache-cluster
completed successfully.

ElastiCache:CacheClusterSca
lingFailed

ElastiCache:CacheClusterSca
lingFailed : cluster-name

Scale-up operation on cache-
cluster failed.

Self-designed cluster events API Version 2015-02-02 1074

Amazon ElastiCache for Redis User Guide

Event Name Message Description

ElastiCache:CacheClusterSec
urityGroupModified

ElastiCache:CacheC
lusterSecurityGrou
pModified : cluster-n
ame

One of the following events
has occurred:

•
The list of cache security
groups authorized for the
cache cluster has been
 modified.

•
One or more new EC2
security groups have been
authorized on any of the
cache security groups
associated with the cache
cluster.

•
One or more EC2 security
groups have been revoked
from any of the cache
security groups associated
with the cache cluster.

Self-designed cluster events API Version 2015-02-02 1075

Amazon ElastiCache for Redis User Guide

Event Name Message Description

ElastiCache:CacheNodeReplac
eStarted

ElastiCache:CacheN
odeReplaceStarted :
cluster-name

ElastiCache has detected
that the host running a
cache node is degraded or
unreachable and has started
replacing the cache node.

Note

The DNS entry for the
replaced cache node is
not changed.

In most instances, you do not
need to refresh the server-
list for your clients when
 this event occurs. However,
some cache client libraries
may stop using the cache
node even after ElastiCache
has replaced the cache node;
 in this case, the application
should refresh the server-list
when this event occurs.

Self-designed cluster events API Version 2015-02-02 1076

Amazon ElastiCache for Redis User Guide

Event Name Message Description

ElastiCache:CacheNodeReplac
eComplete

ElastiCache:CacheN
odeReplaceComplete :
cluster-name

ElastiCache has detected
that the host running a
cache node is degraded
or unreachable and has
completed replacing the
cache node.

Note

The DNS entry for the
replaced cache node is
not changed.

In most instances, you do not
need to refresh the server-
list for your clients when
 this event occurs. However,
some cache client libraries
may stop using the cache
node even after ElastiCache
has replaced the cache node;
 in this case, the application
should refresh the server-list
when this event occurs.

ElastiCache:CacheN
odesRebooted

ElastiCache:CacheN
odesRebooted :
cluster-name

One or more cache nodes has
been rebooted.

Message (Memcache
d): "Cache node %s
shutdown" Then a second
message: "Cache node %s
restarted"

Self-designed cluster events API Version 2015-02-02 1077

Amazon ElastiCache for Redis User Guide

Event Name Message Description

ElastiCache:CertificateRene
walComplete (Redis only)

ElastiCache:Certif
icateRenewalComple
te

The Amazon CA certificate
was successfully renewed.

ElastiCache:CreateReplicati
onGroupComplete

ElastiCache:Create
ReplicationGroupCo
mplete : cluster-n
ame

The replication group was
successfully created.

ElastiCache:DeleteCacheClus
terComplete

ElastiCache:Delete
CacheClusterComple
te : cluster-name

The deletion of a cache
cluster and all associated
cache nodes has completed.

ElastiCache:FailoverComplete
(Redis only)

ElastiCache:Failov
erComplete :
mycluster

Failover over to a replica node
was successful.

ElastiCache:ReplicationGrou
pIncreaseReplicaCountFinish
ed

ElastiCache:Replic
ationGroupIncrease
ReplicaCountFinish
ed : cluster-n
ame-0001-005

The number of replicas in the
cluster has been increased.

ElastiCache:ReplicationGrou
pIncreaseReplicaCountStarted

ElastiCache:Replic
ationGroupIncrease
ReplicaCountStarte
d : cluster-n
ame-0003-004

The process of adding replicas
to your cluster has begun.

ElastiCache:NodeRe
placementCanceled

ElastiCache:NodeRe
placementCanceled :
cluster-name

A node in your cluster that
was scheduled for replaceme
nt is no longer scheduled for
replacement.

Self-designed cluster events API Version 2015-02-02 1078

Amazon ElastiCache for Redis User Guide

Event Name Message Description

ElastiCache:NodeRe
placementRescheduled

ElastiCache:NodeRe
placementReschedul
ed : cluster-name

A node in your cluster
previously scheduled for
replacement has been
rescheduled for replaceme
nt during the new window
described in the notification.

For information on what
actions you can take, see
Replacing nodes.

ElastiCache:NodeRe
placementScheduled

ElastiCache:NodeRe
placementScheduled :
cluster-name

A node in your cluster is
scheduled for replacement
during the window described
in the notification.

For information on what
actions you can take, see
Replacing nodes.

ElastiCache:Remove
CacheNodeComplete

ElastiCache:Remove
CacheNodeComplete :
cluster-name

A cache node has been
removed from the cache
cluster.

ElastiCache:ReplicationGrou
pScalingComplete

ElastiCache:Replic
ationGroupScalingC
omplete : cluster-n
ame

Scale-up operation on
replication group completed
successfully.

ElastiCache:ReplicationGrou
pScalingFailed

"Failed applying
modification to cache
node type to %s."

Scale-up operation on
replication group failed.

ElastiCache:ServiceUpdateAv
ailableForNode

"Service update is
available for cache
node %s."

A self-service update is
available for the node.

Self-designed cluster events API Version 2015-02-02 1079

Amazon ElastiCache for Redis User Guide

Event Name Message Description

ElastiCache:SnapshotComplet
e (Redis only)

ElastiCache:Snapsh
otComplete :
cluster-name

A cache snapshot has
completed successfully.

ElastiCache:SnapshotFailed
(Redis only)

SnapshotFailed :
cluster-name

A cache snapshot has failed.
See the cluster’s cache events
for more a detailed cause.

If you describe the snapshot,
see DescribeSnapshots ,
the status will be failed.

Self-designed cluster events API Version 2015-02-02 1080

https://docs.aws.amazon.com/AmazonElastiCache/latest/APIReference/API_DescribeSnapshots.html

Amazon ElastiCache for Redis User Guide

Log delivery

Note

Redis Slow Log is supported for Redis cache clusters and replication groups using engine
version 6.0 onward.
Redis Engine Log is supported for Redis cache clusters and replication groups using engine
version 6.2 onward.

Log delivery lets you stream Redis SLOWLOG or Redis Engine Log to one of two destinations:

• Amazon Data Firehose

• Amazon CloudWatch Logs

You enable and configure log delivery when you create or modify a cluster using ElastiCache APIs.
Each log entry will be delivered to the specified destination in one of two formats: JSON or TEXT.

A fixed number of Slow log entries are retrieved from the Redis engine periodically. Depending on
the value specified for engine parameter slowlog-max-len, additional slow log entries might not
be delivered to the destination.

You can choose to change the delivery configurations or disable log delivery at any time using the
AWS console or one of the modify APIs, either modify-cache-cluster or modify-replication-group.

You must set the apply-immediately parameter for all log delivery modifications.

Note

Amazon CloudWatch Logs charges apply when log delivery is enabled, even when logs are
delivered directly to Amazon Data Firehose. For more information, see Vended Logs section
in Amazon CloudWatch Pricing.

Contents of a slow log entry

The ElastiCache for Redis Slow Log contains the following information:

• CacheClusterId – The ID of the cache cluster

Log delivery API Version 2015-02-02 1081

https://redis.io/commands/slowlog
https://docs.aws.amazon.com/cli/latest/reference/elasticache/modify-cache-cluster.html
https://docs.aws.amazon.com/cli/latest/reference/elasticache/modify-replication-group.html
https://aws.amazon.com/cloudwatch/pricing/

Amazon ElastiCache for Redis User Guide

• CacheNodeId – The ID of the cache node

• Id – A unique progressive identifier for every slow log entry

• Timestamp – The Unix timestamp at which the logged command was processed

• Duration – The amount of time needed for its execution, in microseconds

• Command – The command used by the client. For example, set foo bar where foo is the key
and bar is the value. ElastiCache for Redis replaces the actual key name and value with (2 more
arguments) to avoid exposing sensitive data.

• ClientAddress – Client IP address and port

• ClientName – Client name if set via the CLIENT SETNAME command

Contents of an engine log entry

The ElastiCache for Redis Engine Log contains the following information:

• CacheClusterId – The ID of the cache cluster

• CacheNodeId – The ID of the cache node

• Log level – LogLevel can one of the following: VERBOSE("-"), NOTICE("*"), WARNING("#").

• Time – The UTC time of the logged message. Time is in following format: "DD MMM YYYY
hh:mm:ss.ms UTC"

• Role – Role of the node from where the log is emitted. It can be one of the following: “M” for
Primary, “S” for replica, "C" for writer child process working on RDB/AOF or "X" for sentinel.

• Message – Redis Engine log message.

Permissions to configure logging

You need to include the following IAM permissions in your IAM user/role policy:

• logs:CreateLogDelivery

• logs:UpdateLogDelivery

• logs:DeleteLogDelivery

• logs:GetLogDelivery

• logs:ListLogDeliveries

For more information, see Overview of access management: Permissions and policies.

Log delivery API Version 2015-02-02 1082

https://docs.aws.amazon.com/IAM/latest/UserGuide/introduction_access-management.html

Amazon ElastiCache for Redis User Guide

Log type and log format specifications

Slow log

Slow log supports both JSON and TEXT

The following shows a JSON format example:

{
 "CacheClusterId": "logslowxxxxmsxj",
 "CacheNodeId": "0001",
 "Id": 296,
 "Timestamp": 1605631822,
 "Duration (us)": 0,
 "Command": "GET ... (1 more arguments)",
 "ClientAddress": "192.168.12.104:55452",
 "ClientName": "logslowxxxxmsxj##"
}

The following shows a TEXT format example:

logslowxxxxmsxj,0001,1605631822,30,GET ... (1 more
 arguments),192.168.12.104:55452,logslowxxxxmsxj##

Engine log

Engine log supports both JSON and TEXT

The following shows a JSON format example:

{
 "CacheClusterId": "xxxxxxxxxzy-engine-log-test",
 "CacheNodeId": "0001",
 "LogLevel": "VERBOSE",
 "Role": "M",
 "Time": "12 Nov 2020 01:28:57.994 UTC",
 "Message": "Replica is waiting for next BGSAVE before synchronizing with the primary.
 Check back later"
}

The following shows a TEXT format example:

Log delivery API Version 2015-02-02 1083

Amazon ElastiCache for Redis User Guide

xxxxxxxxxxxzy-engine-log-test/0001:M 29 Oct 2020 20:12:20.499 UTC * A slow-running Lua
 script detected that is still in execution after 10000 milliseconds.

ElastiCache logging destinations

This section describes the logging destinations that you can choose for your ElastiCache logs.
Each section provides guidance for configuring logging for the destination type and information
about any behavior that's specific to the destination type. After you've configured your logging
destination, you can provide its specifications to the ElastiCache logging configuration to start
logging to it.

Topics

• Amazon CloudWatch Logs

• Amazon Data Firehose

Amazon CloudWatch Logs

• You specify a CloudWatch Logs log group where the logs will be delivered.

• Logs from multiple Redis clusters and replication groups can be delivered to the same log group.

• A new log stream will be created for each node within a cache cluster or replication group
and the logs will be delivered to the respective log streams. The log stream name will use the
following format: elasticache/${engine-name}/${cache-cluster-id}/${cache-
node-id}/${log-type}

Permissions to publish logs to CloudWatch Logs

You must have the following permissions settings to configure ElastiCache for Redis to send logs to
a CloudWatch Logs log group:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "logs:CreateLogDelivery",
 "logs:GetLogDelivery",

Log delivery API Version 2015-02-02 1084

Amazon ElastiCache for Redis User Guide

 "logs:UpdateLogDelivery",
 "logs:DeleteLogDelivery",
 "logs:ListLogDeliveries"
],
 "Resource": [
 "*"
],
 "Effect": "Allow",
 "Sid": "ElastiCacheLogging"
 },
 {
 "Sid": "ElastiCacheLoggingCWL",
 "Action": [
 "logs:PutResourcePolicy",
 "logs:DescribeResourcePolicies",
 "logs:DescribeLogGroups"
],
 "Resource": [
 "*"
],
 "Effect": "Allow"
 }
]
}

For more information, see Logs sent to CloudWatch Logs.

Amazon Data Firehose

• You specify a Firehose delivery stream where the logs will be delivered.

• Logs from multiple Redis clusters and replication groups can be delivered to the same delivery
stream.

• Logs from each node within a cache cluster or replication group will be delivered to the same
delivery stream. You can distinguish log messages from different cache nodes based on the
cache-cluster-id and cache-node-id included in each log message.

• Log delivery to Firehose is currently not available in the Asia Pacific (Osaka) Region.

Permissions to publish logs to Firehose

You must have the following permissions to configure ElastiCache for Redis to send logs to an
Amazon Kinesis Data Firehose delivery stream.

Log delivery API Version 2015-02-02 1085

https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/AWS-logs-and-resource-policy.html#AWS-logs-infrastructure-CWL

Amazon ElastiCache for Redis User Guide

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "logs:CreateLogDelivery",
 "logs:GetLogDelivery",
 "logs:UpdateLogDelivery",
 "logs:DeleteLogDelivery",
 "logs:ListLogDeliveries"
],
 "Resource": [
 "*"
],
 "Effect": "Allow",
 "Sid": "ElastiCacheLogging"
 },
 {
 "Sid": "ElastiCacheLoggingFHSLR",
 "Action": [
 "iam:CreateServiceLinkedRole"
],
 "Resource": "*",
 "Effect": "Allow"
 },
 {
 "Sid": "ElastiCacheLoggingFH",
 "Action": [
 "firehose:TagDeliveryStream"
],
 "Resource": "Amazon Kinesis Data Firehose delivery stream ARN",
 "Effect": "Allow"
 }
]
}

Specifying log delivery using the Console

Using the AWS Management Console you can create a Redis (cluster mode disabled) cluster by
following the steps at Creating a Redis (cluster mode disabled) cluster (Console) or create a Redis

Log delivery API Version 2015-02-02 1086

Amazon ElastiCache for Redis User Guide

(cluster mode enabled) cluster using the steps at Creating a Redis (cluster mode enabled) cluster
(Console). In either case, you configure log delivery by doing the following;

1. Under Advanced Redis settings, choose Logs and then check either Slow logs or Engine logs.

2. Under Log format, choose either Text or JSON.

3. Under Destination Type, choose either CloudWatch Logs or Kinesis Firehose.

4. Under Log destination, choose either Create new and enter either your Amazon S3 bucket
name, CloudWatchLogs log group name or your Kinesis Data Firehose stream name, or choose
Select existing and then choose either your CloudWatch Logs group name or your Kinesis Data
Firehose stream name,

When modifying a cluster:

You can choose to either enable/disable log delivery or change either the destination type, format
or destination:

1. Sign in to the Console and open the ElastiCache console at https://console.aws.amazon.com/
elasticache/.

2. From the navigation pane, choose Redis clusters.

3. From the list of clusters, choose the cluster you want to modify. Choose the Cluster name and
not the checkbox beside it.

4. On the Cluster name page, choose the Logs tab.

5. To enable/disable slow logs, choose either Enable slow logs or Disable slow logs.

6. To enable/disable engine logs, choose either Enable engine logs or Disable engine logs.

7. To change your configuration, choose either Modify slow logs or Modify engine logs:

• Under Destination Type, choose either CloudWatch Logs or Kinesis Firehose.

• Under Log destination, choose either Create new and enter either your CloudWatchLogs log
group name or your Kinesis Data Firehose stream name. Or choose Select existing and then
choose either your CloudWatchLogs log group name or your Kinesis Data Firehose stream
name.

Specifying log delivery using the AWS CLI

Slow Log

Log delivery API Version 2015-02-02 1087

https://console.aws.amazon.com/elasticache/home
https://console.aws.amazon.com/elasticache/home

Amazon ElastiCache for Redis User Guide

Create a replication group with slow log delivery to CloudWatch Logs.

For Linux, macOS, or Unix:

aws elasticache create-replication-group \
 --replication-group-id test-slow-log \
 --replication-group-description test-slow-log \
 --engine redis \
 --cache-node-type cache.r5.large \
 --num-cache-clusters 2 \
 --log-delivery-configurations '{
 "LogType":"slow-log",
 "DestinationType":"cloudwatch-logs",
 "DestinationDetails":{
 "CloudWatchLogsDetails":{
 "LogGroup":"my-log-group"
 }
 },
 "LogFormat":"json"
 }'

For Windows:

aws elasticache create-replication-group ^
 --replication-group-id test-slow-log ^
 --replication-group-description test-slow-log ^
 --engine redis ^
 --cache-node-type cache.r5.large ^
 --num-cache-clusters 2 ^
 --log-delivery-configurations '{
 "LogType":"slow-log",
 "DestinationType":"cloudwatch-logs",
 "DestinationDetails":{
 "CloudWatchLogsDetails":{
 "LogGroup":"my-log-group"
 }
 },
 "LogFormat":"json"
 }'

Modify a replication group to deliver slow log to CloudWatch Logs

For Linux, macOS, or Unix:

Log delivery API Version 2015-02-02 1088

Amazon ElastiCache for Redis User Guide

aws elasticache modify-replication-group \
 --replication-group-id test-slow-log \
 --apply-immediately \
 --log-delivery-configurations '
 {
 "LogType":"slow-log",
 "DestinationType":"cloudwatch-logs",
 "DestinationDetails":{
 "CloudWatchLogsDetails":{

 "LogGroup":"my-log-group"
 }
 },
 "LogFormat":"json"
 }'

For Windows:

aws elasticache modify-replication-group ^
 --replication-group-id test-slow-log ^
 --apply-immediately ^
 --log-delivery-configurations '
 {
 "LogType":"slow-log",
 "DestinationType":"cloudwatch-logs",
 "DestinationDetails":{
 "CloudWatchLogsDetails":{
 "LogGroup":"my-log-group"
 }
 },
 "LogFormat":"json"
 }'

Modify a replication group to disable slow log delivery

For Linux, macOS, or Unix:

aws elasticache modify-replication-group \
 --replication-group-id test-slow-log \
 --apply-immediately \
 --log-delivery-configurations '
 {

Log delivery API Version 2015-02-02 1089

Amazon ElastiCache for Redis User Guide

 "LogType":"slow-log",
 "Enabled":false
 }'

For Windows:

aws elasticache modify-replication-group ^
 --replication-group-id test-slow-log ^
 --apply-immediately ^
 --log-delivery-configurations '
 {
 "LogType":"slow-log",
 "Enabled":false
 }'

Engine Log

Create a replication group with engine log delivery to CloudWatch Logs.

For Linux, macOS, or Unix:

aws elasticache create-replication-group \
 --replication-group-id test-slow-log \
 --replication-group-description test-slow-log \
 --engine redis \
 --cache-node-type cache.r5.large \
 --num-cache-clusters 2 \
 --log-delivery-configurations '{
 "LogType":"engine-log",
 "DestinationType":"cloudwatch-logs",
 "DestinationDetails":{
 "CloudWatchLogsDetails":{
 "LogGroup":"my-log-group"
 }
 },
 "LogFormat":"json"
 }'

For Windows:

aws elasticache create-replication-group ^
 --replication-group-id test-slow-log ^

Log delivery API Version 2015-02-02 1090

Amazon ElastiCache for Redis User Guide

 --replication-group-description test-slow-log ^
 --engine redis ^
 --cache-node-type cache.r5.large ^
 --num-cache-clusters 2 ^
 --log-delivery-configurations '{
 "LogType":"engine-log",
 "DestinationType":"cloudwatch-logs",
 "DestinationDetails":{
 "CloudWatchLogsDetails":{
 "LogGroup":"my-log-group"
 }
 },
 "LogFormat":"json"
 }'

Modify a replication group to deliver engine log to Firehose

For Linux, macOS, or Unix:

aws elasticache modify-replication-group \
 --replication-group-id test-slow-log \
 --apply-immediately \
 --log-delivery-configurations '
 {
 "LogType":"engine-log",
 "DestinationType":"kinesis-firehose",
 "DestinationDetails":{
 "KinesisFirehoseDetails":{
 "DeliveryStream":"test"
 }
 },
 "LogFormat":"json"
 }'

For Windows:

aws elasticache modify-replication-group ^
 --replication-group-id test-slow-log ^
 --apply-immediately ^
 --log-delivery-configurations '
 {
 "LogType":"engine-log",
 "DestinationType":"kinesis-firehose",

Log delivery API Version 2015-02-02 1091

Amazon ElastiCache for Redis User Guide

 "DestinationDetails":{
 "KinesisFirehoseDetails":{
 "DeliveryStream":"test"
 }
 },
 "LogFormat":"json"
 }'

Modify a replication group to switch to engine format

For Linux, macOS, or Unix:

aws elasticache modify-replication-group \
 --replication-group-id test-slow-log \
 --apply-immediately \
 --log-delivery-configurations '
 {
 "LogType":"engine-log",
 "LogFormat":"json"
 }'

For Windows:

aws elasticache modify-replication-group ^
 --replication-group-id test-slow-log ^
 --apply-immediately ^
 --log-delivery-configurations '
 {
 "LogType":"engine-log",
 "LogFormat":"json"
 }'

Modify a replication group to disable engine log delivery

For Linux, macOS, or Unix:

aws elasticache modify-replication-group \
 --replication-group-id test-slow-log \
 --apply-immediately \
 --log-delivery-configurations '
 {
 "LogType":"engine-log",

Log delivery API Version 2015-02-02 1092

Amazon ElastiCache for Redis User Guide

 "Enabled":false
 }'

For Windows:

aws elasticache modify-replication-group ^
 --replication-group-id test-slow-log ^
 --apply-immediately ^
 --log-delivery-configurations '
 {
 "LogType":"engine-log",
 "Enabled":false
 }'

Log delivery API Version 2015-02-02 1093

Amazon ElastiCache for Redis User Guide

Monitoring use with CloudWatch Metrics

ElastiCache provides metrics that enable you to monitor your clusters. You can access these metrics
through CloudWatch. For more information on CloudWatch, see the CloudWatch documentation.

ElastiCache provides both host-level metrics (for example, CPU usage) and metrics that are specific
to the cache engine software (for example, cache gets and cache misses). These metrics are
measured and published for each Cache node in 60-second intervals.

Important

You should consider setting CloudWatch alarms on certain key metrics, so that you will be
notified if your cache cluster's performance starts to degrade. For more information, see
Which Metrics Should I Monitor? in this guide.

Topics

• Host-Level Metrics

• Metrics for Redis

• Which Metrics Should I Monitor?

• Choosing Metric Statistics and Periods

• Monitoring CloudWatch Cluster and Node Metrics

Host-Level Metrics

The AWS/ElastiCache namespace includes the following host-level metrics for individual cache
nodes. These metrics are measured and published for each Cache node in 60-second intervals.

See Also

• Metrics for Redis

Metric Description Unit

CPUUtilization The percentage of CPU utilization for the
entire host. Because Redis is single-threaded,

Percent

Monitoring use API Version 2015-02-02 1094

https://aws.amazon.com/documentation/cloudwatch/

Amazon ElastiCache for Redis User Guide

Metric Description Unit

we recommend you monitor EngineCPU
Utilization metric for nodes with 4 or
more vCPUs.

CPUCreditBalance The number of earned CPU credits that an
instance has accrued since it was launched
or started. For T2 Standard, the CPUCredit
Balance also includes the number of launch
credits that have been accrued.

Credits are accrued in the credit balance
after they are earned, and removed from the
credit balance when they are spent. The credit
balance has a maximum limit, determined by
the instance size. After the limit is reached,
any new credits that are earned are discarded
. For T2 Standard, launch credits do not count
towards the limit.

The credits in the CPUCreditBalance are
available for the instance to spend to burst
beyond its baseline CPU utilization.

CPU credit metrics are available at a five-minu
te frequency only.

This metrics is not available for T2 burstable
performance instances.

Credits
(vCPU-min
utes)

Monitoring use API Version 2015-02-02 1095

Amazon ElastiCache for Redis User Guide

Metric Description Unit

CPUCreditUsage The number of CPU credits spent by the
instance for CPU utilization. One CPU credit
equals one vCPU running at 100% utilization
for one minute or an equivalent combination
of vCPUs, utilization, and time (for example,
one vCPU running at 50% utilization for two
minutes or two vCPUs running at 25% utilizati
on for two minutes).

CPU credit metrics are available at a five-
minute frequency only. If you specify a period
greater than five minutes, use the Sum
statistic instead of the Average statistic.

This metrics is not available for T2 burstable
performance instances.

Credits
(vCPU-min
utes)

FreeableMemory The amount of free memory available on the
host. This is derived from the RAM, buffers,
and cache that the OS reports as freeable.

Bytes

NetworkBytesIn The number of bytes the host has read from
the network.

Bytes

NetworkBytesOut The number of bytes sent out on all network
interfaces by the instance.

Bytes

NetworkPacketsIn The number of packets received on all
network interfaces by the instance. This metric
identifies the volume of incoming traffic in
terms of the number of packets on a single
instance.

Count

Monitoring use API Version 2015-02-02 1096

Amazon ElastiCache for Redis User Guide

Metric Description Unit

NetworkPacketsOut The number of packets sent out on all network
interfaces by the instance. This metric identifie
s the volume of outgoing traffic in terms of
the number of packets on a single instance.

Count

NetworkBandwidthIn
AllowanceExceeded

The number of packets queued or dropped
because the inbound aggregate bandwidth
exceeded the maximum for the instance.

Count

NetworkConntrackAl
lowanceExceeded

The number of packets dropped because
connection tracking exceeded the maximum
for the instance and new connections could
not be established. This can result in packet
loss for traffic to or from the instance.

Count

NetworkBandwidthOu
tAllowanceExceeded

The number of packets queued or dropped
because the outbound aggregate bandwidth
exceeded the maximum for the instance.

Count

NetworkPacketsPerS
econdAllowanceExce
eded

The number of packets queued or dropped
because the bidirectional packets per second
exceeded the maximum for the instance.

Count

NetworkMaxBytesIn The maximum burst of received bytes within
each minute.

Bytes

NetworkMaxBytesOut The maximum burst of transmitted bytes
within each minute.

Bytes

NetworkMaxPacketsIn The maximum burst of received packets within
each minute.

Count

NetworkMaxPacketsOut The maximum burst of transmitted packets
within each minute.

Count

SwapUsage The amount of swap used on the host. Bytes

Monitoring use API Version 2015-02-02 1097

Amazon ElastiCache for Redis User Guide

Metrics for Redis

The AWS/ElastiCache namespace includes the following Redis metrics.

With the exception of ReplicationLag and EngineCPUUtilization, these metrics are derived
from the Redis info command. Each metric is calculated at the cache node level.

For complete documentation of the Redis info command, see http://redis.io/commands/info.

See Also

• Host-Level Metrics

Metric Description Unit

ActiveDefragHits The number of value reallocations per minute
performed by the active defragmentation
process. This is derived from active_de
frag_hits statistic at Redis INFO.

Number

AuthenticationFail
ures

The total number of failed attempts to
authenticate to Redis using the AUTH
command. You can find more information
about individual authentication failures using
the ACL LOG command. We suggest setting an
alarm on this to detect unauthorized access
attempts.

Count

The total number of bytes allocated by Redis
for all purposes, including the dataset, buffers,
and so on.

Bytes

BytesUsedForCache Dimension: Tier=Memory for Redis
clusters using Data tiering: The total number
 of bytes used for cache by memory. This is
the value of used_memory statistic at Redis
 INFO.

Bytes

Monitoring use API Version 2015-02-02 1098

http://redis.io/commands/info
http://redis.io/commands/info
https://redis.io/commands/acl-log
http://redis.io/commands/info
http://redis.io/commands/info

Amazon ElastiCache for Redis User Guide

Metric Description Unit

Dimension: Tier=SSD for Redis clusters
using Data tiering: The total number of bytes
used for cache by SSD.

Bytes

BytesReadFromDisk The total number of bytes read from disk per
minute. Supported only for clusters using Data
tiering.

Bytes

BytesWrittenToDisk The total number of bytes written to disk per
minute. Supported only for clusters using Data
tiering.

Bytes

CacheHits The number of successful read-only key
lookups in the main dictionary. This is derived
from keyspace_hits statistic at Redis
INFO.

Count

CacheMisses The number of unsuccessful read-only key
lookups in the main dictionary. This is derived
from keyspace_misses statistic at Redis
INFO.

Count

CommandAuthorizati
onFailures

The total number of failed attempts by users
to run commands they don’t have permission
to call. You can find more information about
individual authentication failures using the
ACL LOG command. We suggest setting an
alarm on this to detect unauthorized access
attempts.

Count

Monitoring use API Version 2015-02-02 1099

http://redis.io/commands/info
http://redis.io/commands/info
http://redis.io/commands/info
http://redis.io/commands/info
https://redis.io/commands/acl-log

Amazon ElastiCache for Redis User Guide

Metric Description Unit

CacheHitRate Indicates the usage efficiency of the Redis
instance. If the cache ratio is lower than
 about 0.8, it means that a significant amount
of keys are evicted, expired, or don't exist.
This is calculated using cache_hits and
cache_misses statistics in the following
way: cache_hits /(cache_hits +
cache_misses) .

Percent

ChannelAuthorizati
onFailures

The total number of failed attempts by users
to access channels they do not have permissio
n to access. You can find more information
about individual authentication failures using
the ACL LOG command. We suggest setting
an alarm on this metric to detect unauthorized
access attempts.

Count

CurrConnections The number of client connections, excluding
connections from read replicas. ElastiCache
uses two to four of the connections to monitor
the cluster in each case. This is derived from
the connected_clients statistic at Redis
INFO.

Count

The number of items in the cache. This is
derived from the Redis keyspace statistic
, summing all of the keys in the entire keys
pace.

Count

Dimension: Tier=Memory for clusters
using Data tiering. The number of items in
memory.

Count
CurrItems

Dimension: Tier=SSD (solid state drives)
for clusters using Data tiering. The number of
items in SSD.

Count

Monitoring use API Version 2015-02-02 1100

https://redis.io/commands/acl-log
http://redis.io/commands/info
http://redis.io/commands/info

Amazon ElastiCache for Redis User Guide

Metric Description Unit

CurrVolatileItems Total number of keys in all databases that
have a ttl set. This is derived from the Redis
 expires statistic, summing all of the keys
with a ttl set in the entire keyspace.

Count

DatabaseCapacityUs
agePercentage

Percentage of the total data capacity for the
cluster that is in use. This metric is calculated
as:

used_memory/maxmemory

On Data Tiered instances, the metric is
calculated as:

(used_memory - mem_not_counted_fo
r_evict + SSD used) / (maxmemory
+ SSD total capacity)

where used_memory and maxmemory are
taken from Redis INFO.

Percent

Monitoring use API Version 2015-02-02 1101

https://redis.io/commands/info/

Amazon ElastiCache for Redis User Guide

Metric Description Unit

DatabaseCapacityUs
ageCountedForEvict
Percentage

Percentage of the total data capacity for the
cluster that is in use, excluding the memory
used for overhead and COB. This metric is
calculated as:

 used_memory - mem_not_counted_fo
r_evict/maxmemory

On Data Tiered instances, the metric is
calculated as:

(used_memory + SSD used) /
(maxmemory + SSD total capacity)

where used_memory and maxmemory are
taken from Redis INFO

Percent

DatabaseMemoryUsag
ePercentage

Percentage of the memory for the cluster that
is in use. This is calculated using used_memo
ry/maxmemory from Redis INFO.

Percent

DatabaseMemoryUsag
eCountedForEvictPe
rcentage

Percentage of the memory for the cluster that
is in use, excluding memory used for overhead
and COB. This is calculated using used_memo
ry-mem_not_counted_for_evict/
maxmemory from Redis INFO.

Percent

Monitoring use API Version 2015-02-02 1102

https://redis.io/commands/info/
http://redis.io/commands/info
http://redis.io/commands/info

Amazon ElastiCache for Redis User Guide

Metric Description Unit

DB0AverageTTL Exposes avg_ttl of DBO from the keyspace
statistic of Redis INFO command. Replicas
don't expire keys, instead they wait for
primary nodes to expire keys. When a primary
node expires a key (or evicts it because of
LRU), it synthesizes a DEL command, which
is transmitted to all the replicas. Therefore,
DB0AverageTTL is 0 for replica nodes, due the
fact that they don't expire keys, and thus don't
track TTL.

Milliseconds

Monitoring use API Version 2015-02-02 1103

http://redis.io/commands/info

Amazon ElastiCache for Redis User Guide

Metric Description Unit

EngineCPUUtilization Provides CPU utilization of the Redis engine
thread. Because Redis is single-threaded,
you can use this metric to analyze the load
of the Redis process itself. The EngineCPU
Utilization metric provides a more
precise visibility of the Redis process. You can
use it in conjunction with the CPUUtiliz
ation metric. CPUUtilization exposes
CPU utilization for the server instance as a
whole, including other operating system and
management processes. For larger node types
with four vCPUs or more, use the EngineCPU
Utilization metric to monitor and set
 thresholds for scaling.

Note

On an ElastiCache host, background
processes monitor the host to provide
a managed database experience.
These background processes can take
up a significant portion of the CPU
workload. This is not significant on
larger hosts with more than two
vCPUs. But it can affect smaller hosts
 with 2vCPUs or fewer. If you only
monitor the EngineCPUUtilizati
on metric, you will be unaware of
situations where the host is overloade
d with both high CPU usage from
Redis and high CPU usage from the
background monitoring processes.
Therefore, we recommend monitorin

Percent

Monitoring use API Version 2015-02-02 1104

Amazon ElastiCache for Redis User Guide

Metric Description Unit

g the CPUUtilization metric for
hosts with two vCPUs or less.

Evictions The number of keys that have been evicted
due to the maxmemory limit. This is derived
from the evicted_keys statistic at Redis
INFO.

Count

GlobalDatastoreRep
licationLag

This is the lag between the secondary Region's
primary node and the primary Region's
primary node. For cluster mode enabled Redis,
the lag indicates the maximum delay among
the shards.

Seconds

IamAuthenticationE
xpirations

The total number of expired IAM-authe
nticated Redis connections. You can find more
information about Authenticating with IAM in
the user guide.

Count

IamAuthenticationT
hrottling

The total number of throttled IAM-authe
nticated Redis AUTH or HELLO requests. You
can find more information about Authentic
ating with IAM in the user guide.

Count

IsMaster Indicates whether the node is the primary
node of current shard/cluster. The metric can
be either 0 (not primary) or 1 (primary).

Count

Monitoring use API Version 2015-02-02 1105

http://redis.io/commands/info
http://redis.io/commands/info

Amazon ElastiCache for Redis User Guide

Metric Description Unit

KeyAuthorizationFa
ilures

The total number of failed attempts by users
to access keys they don’t have permission to
access. You can find more information about
individual authentication failures using the
ACL LOG command. We suggest setting an
alarm on this to detect unauthorized access
attempts.

Count

 KeysTracked The number of keys being tracked by Redis
key tracking as a percentage of tracking-
table-max-keys . Key tracking is used to
aid client-side caching and notifies clients
when keys are modified.

Count

MemoryFragmentatio
nRatio

Indicates the efficiency in the allocation
of memory of the Redis engine. Certain
 thresholds signify different behaviors. The
recommended value is to have fragme
ntation above 1.0. This is calculated from the
mem_fragmentation_ratio statistic

 of Redis INFO.

Number

Monitoring use API Version 2015-02-02 1106

https://redis.io/commands/acl-log
http://redis.io/commands/info

Amazon ElastiCache for Redis User Guide

Metric Description Unit

NewConnections The total number of connections that have
been accepted by the server during this
period. This is derived from the total_con
nections_received statistic at Redis
INFO.

Note

If you are using ElastiCache for Redis
version 5 or lower, between two and
four of the connections reported by
this metric are used by ElastiCache to
monitor the cluster. However, when
using ElastiCache for Redis version
6 or above, the connections used by
ElastiCache to monitor the cluster are
not included in this metric.

Count

NumItemsReadFromDisk The total number of items retrieved from disk
per minute. Supported only for clusters using
Data tiering.

Count

NumItemsWrittenToD
isk

The total number of items written to disk per
minute. Supported only for clusters using Data
tiering.

Count

MasterLinkHealthSt
atus

This status has two values: 0 or 1. The value 0
indicates that data in the ElastiCache primary
node is not in sync with Redis on EC2. The
value of 1 indicates that the data is in sync. To
complete the migration, use the CompleteM
igration API operation.

Boolean

Monitoring use API Version 2015-02-02 1107

http://redis.io/commands/info
http://redis.io/commands/info
https://docs.aws.amazon.com/AmazonElastiCache/latest/APIReference/API_CompleteMigration.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/APIReference/API_CompleteMigration.html

Amazon ElastiCache for Redis User Guide

Metric Description Unit

Reclaimed The total number of key expiration events.
This is derived from the expired_keys
statistic at Redis INFO.

Count

ReplicationBytes For nodes in a replicated configuration,
ReplicationBytes reports the number
of bytes that the primary is sending to all of
its replicas. This metric is representative of
the write load on the replication group. This
is derived from the master_repl_offset
statistic at Redis INFO.

Bytes

ReplicationLag This metric is only applicable for a node
running as a read replica. It represents
how far behind, in seconds, the replica is in
 applying changes from the primary node. For
Redis engine version 5.0.6 onwards, the lag
can be measured in milliseconds.

Seconds

SaveInProgress This binary metric returns 1 whenever a
background save (forked or forkless) is in
 progress, and 0 otherwise. A background save
process is typically used during snapshots and
syncs. These operations can cause degraded
 performance. Using the SaveInProgress
metric, you can diagnose whether degraded
performance was caused by a backgroun
d save process. This is derived from the
rdb_bgsave_in_progress statistic at
Redis INFO.

Boolean

Monitoring use API Version 2015-02-02 1108

http://redis.io/commands/info
http://redis.io/commands/info
http://redis.io/commands/info

Amazon ElastiCache for Redis User Guide

Metric Description Unit

TrafficManagementA
ctive

Indicates whether ElastiCache for Redis is
actively managing traffic by adjusting traffic
allocated to incoming commands, monitoring
or replication. Traffic is managed when more
commands are sent to the node than can be
processed by Redis and is used to maintain the
stability and optimal operation of the engine.
Any data points of 1 may indicate that the
node is underscaled for the workload being
provided.

Note

If this metric remains active,
evaluate the cluster to decide
if scaling up or scaling out is
necessary. Related metrics include
NetworkBandwidthOutAllowanc
eExceeded and EngineCPU
Utilization .

Boolean

EngineCPUUtilization availability

AWS Regions listed following are available on all supported node types.

Region Region name

us-east-2 US East (Ohio)

us-east-1 US East (N. Virginia)

us-west-1 US West (N. California)

us-west-2 US West (Oregon)

Monitoring use API Version 2015-02-02 1109

Amazon ElastiCache for Redis User Guide

Region Region name

ap-northeast-1 Asia Pacific (Tokyo)

ap-northeast-2 Asia Pacific (Seoul)

ap-northeast-3 Asia Pacific (Osaka)

ap-east-1 Asia Pacific (Hong Kong)

ap-south-1 Asia Pacific (Mumbai)

ap-southeast-1 Asia Pacific (Singapore)

ap-southeast-2 Asia Pacific (Sydney)

ap-southeast-3 Asia Pacific (Jakarta)

ca-central-1 Canada (Central)

cn-north-1 China (Beijing)

cn-northwest-2 China (Ningxia)

me-south-1 Middle East (Bahrain)

eu-central-1 Europe (Frankfurt)

eu-west-1 Europe (Ireland)

eu-west-2 Europe (London)

eu-west-3 EU (Paris)

eu-south-1 Europe (Milan)

af-south-1 Africa (Cape Town)

eu-north-1 Europe (Stockholm)

sa-east-1 South America (São Paulo)

Monitoring use API Version 2015-02-02 1110

Amazon ElastiCache for Redis User Guide

Region Region name

us-gov-west-1 AWS GovCloud (US-West)

us-gov-east-1 AWS GovCloud (US-East)

The following are aggregations of certain kinds of commands, derived from info commandstats.
The commandstats section provides statistics based on the command type, including the number
of calls, the total CPU time consumed by these commands, and the average CPU consumed
per command execution. For each command type, the following line is added: cmdstat_XXX:
calls=XXX,usec=XXX,usec_per_call=XXX.

The latency metrics listed following are calculated using commandstats statistic from Redis INFO.
They are calculated in the following way: delta(usec)/delta(calls). delta is calculated
as the diff within one minute. Latency is defined as CPU time taken by ElastiCache to process the
command. Note that for clusters using data tiering, the time taken to fetch items from SSD is not
included in these measurements.

For a full list of available commands, see redis commands in the Redis documentation.

Metric Description Unit

ClusterBasedCmds The total number of commands that are
cluster-based. This is derived from the Redis
commandstats statistic by summing all
of the commands that act upon a cluster
(cluster slot, cluster info, and so on).

Count

ClusterBasedCmdsLa
tency

Latency of cluster-based commands. Microseconds

EvalBasedCmds The total number of commands for eval-base
d commands. This is derived from the Redis
 commandstats statistic by summing eval,
 evalsha.

Count

EvalBasedCmdsLatency Latency of eval-based commands. Microseconds

Monitoring use API Version 2015-02-02 1111

http://redis.io/commands/info
https://redis.io/commands

Amazon ElastiCache for Redis User Guide

Metric Description Unit

GeoSpatialBasedCmds The total number of commands for geospatia
l-based commands. This is derived from the
 Redis commandstats statistic. It's derived
by summing all of the geo type of commands:
 geoadd, geodist, geohash, geopos,
georadius, and georadiusbymember.

Count

GeoSpatialBasedCmd
sLatency

Latency of geospatial-based commands. Microseconds

GetTypeCmds The total number of read-only type
commands. This is derived from the Redis
commandstats statistic by summing all of
the read-only type commands (get, hget,
scard, lrange, and so on.)

Count

GetTypeCmdsLatency Latency of read commands. Microseconds

HashBasedCmds The total number of commands that are
hash-based. This is derived from the Redis
 commandstats statistic by summing all of
the commands that act upon one or more
hashes (hget, hkeys, hvals, hdel, and so on).

Count

 HashBasedCm
dsLatency

 Latency of hash-based commands. Microseconds

HyperLogLogBasedCmds The total number of HyperLogLog -based
commands. This is derived from the Redis
commandstats statistic by summing all of
the pf type of commands (pfadd, pfcount,
pfmerge, and so on.).

Count

 HyperLogLog
BasedCmdsLatency

Latency of HyperLogLog-based commands. Microseconds

Monitoring use API Version 2015-02-02 1112

Amazon ElastiCache for Redis User Guide

Metric Description Unit

JsonBasedCmds The total number of JSON commands,
including both read and write commands. This
is derived from the Redis commandstats
statistic by summing all JSON commands that
act upon JSON keys.

Count

JsonBasedCmdsLatency Latency of all JSON commands, including both
read and write commands.

Microseconds

JsonBasedGetCmds The total number of JSON read-only
commands. This is derived from the Redis
commandstats statistic by summing all
JSON read commands that act upon JSON
keys.

Count

JsonBasedGetCmdsLatency Latency of JSON read-only commands. Microseconds

JsonBasedSetCmds The total number of JSON write commands.
This is derived from the Redis commandst
ats statistic by summing all JSON write
commands that act upon JSON keys.

Count

JsonBasedSetCmdsLatency Latency of JSON write commands. Microseconds

KeyBasedCmds The total number of commands that are
key-based. This is derived from the Redis
 commandstats statistic by summing all of
the commands that act upon one or more
keys across multiple data structures (del,
expire, rename, and so on.).

Count

 KeyBasedCmd
sLatency

 Latency of key-based commands. Microseconds

Monitoring use API Version 2015-02-02 1113

Amazon ElastiCache for Redis User Guide

Metric Description Unit

ListBasedCmds The total number of commands that are
list-based. This is derived from the Redis
 commandstats statistic by summing all of
the commands that act upon one or more lists
(lindex, lrange, lpush, ltrim, and so on).

Count

 ListBasedCm
dsLatency

 Latency of list-based commands. Microseconds

NonKeyTypeCmds The total number of commands that are not
key-based. This is derived from the Redis
commandstats statistic by summing all of
the commands that do not act upon a key, for
example, acl, dbsize or info.

Count

NonKeyTypeCmdsLatency Latency of non-key-based commands. Microseconds

PubSubBasedCmds The total number of commands for pub/sub
functionality. This is derived from the Redis
commandstats statistics by summing all of
the commands used for pub/sub functionality:
psubscribe, publish, pubsub, punsubscribe,
ssubscribe, sunsubscribe, spublish, subscribe
, and unsubscribe.

Count

PubSubBasedCmdsLat
ency

Latency of pub/sub-based commands. Microseconds

SetBasedCmds The total number of commands that are
set-based. This is derived from the Redis
 commandstats statistic by summing all of
the commands that act upon one or more sets
(scard, sdiff, sadd, sunion, and so on).

Count

 SetBasedCmd
sLatency

 Latency of set-based commands. Microseconds

Monitoring use API Version 2015-02-02 1114

Amazon ElastiCache for Redis User Guide

Metric Description Unit

SetTypeCmds The total number of write types of
commands. This is derived from the Redis
commandstats statistic by summing all
of the mutative types of commands that
operate on data (set, hset, sadd, lpop, and
so on.)

Count

SetTypeCmdsLatency Latency of write commands. Microseconds

SortedSetBasedCmds The total number of commands that are
sorted set-based. This is derived from the
Redis commandstats statistic by summing
all of the commands that act upon one or
more sorted sets (zcount, zrange, zrank,
 zadd, and so on).

Count

 SortedSetBa
sedCmdsLatency

 Latency of sorted-based commands. Microseconds

StringBasedCmds The total number of commands that are
string-based. This is derived from the Redis
 commandstats statistic by summing all of
the commands that act upon one or more
strings (strlen, setex, setrange, and so on).

Count

 StringBased
CmdsLatency

 Latency of string-based commands. Microseconds

StreamBasedCmds The total number of commands that are
stream-based. This is derived from the Redis
 commandstats statistic by summing all of
the commands that act upon one or more
streams data types (xrange, xlen, xadd, xdel,
and so on).

Count

Monitoring use API Version 2015-02-02 1115

Amazon ElastiCache for Redis User Guide

Metric Description Unit

 StreamBased
CmdsLatency

 Latency of stream-based commands. Microseconds

Monitoring use API Version 2015-02-02 1116

Amazon ElastiCache for Redis User Guide

Which Metrics Should I Monitor?

The following CloudWatch metrics offer good insight into ElastiCache performance. In most cases,
we recommend that you set CloudWatch alarms for these metrics so that you can take corrective
action before performance issues occur.

Metrics to Monitor

• CPUUtilization

• EngineCPUUtilization

• SwapUsage

• Evictions

• CurrConnections

• Memory

• Network

• Latency

• Replication

• Traffic Management

CPUUtilization

This is a host-level metric reported as a percentage. For more information, see Host-Level Metrics.

For smaller node types with 2vCPUs or less, use the CPUUtilization metric to monitor your
workload.

Generally speaking, we suggest you set your threshold at 90% of your available CPU. Because
Redis is single-threaded, the actual threshold value should be calculated as a fraction of the node's
total capacity. For example, suppose you are using a node type that has two cores. In this case, the
threshold for CPUUtilization would be 90/2, or 45%.

You will need to determine your own threshold, based on the number of cores in the cache node
that you are using. If you exceed this threshold, and your main workload is from read requests,
scale your cache cluster out by adding read replicas. If the main workload is from write requests,
depending on your cluster configuration, we recommend that you:

• Redis (cluster mode disabled) clusters: scale up by using a larger cache instance type.

Monitoring use API Version 2015-02-02 1117

Amazon ElastiCache for Redis User Guide

• Redis (cluster mode enabled) clusters: add more shards to distribute the write workload across
more primary nodes.

Tip

Instead of using the Host-Level metric CPUUtilization, Redis users might be able to use
the Redis metric EngineCPUUtilization, which reports the percentage of usage on the
Redis engine core. To see if this metric is available on your nodes and for more information,
see Metrics for Redis.

For larger node types with 4vCPUs or more, you may want to use the EngineCPUUtilization
metric, which reports the percentage of usage on the Redis engine core. To see if this metric is
available on your nodes and for more information, see Metrics for Redis.

EngineCPUUtilization

For larger node types with 4vCPUs or more, you may want to use the EngineCPUUtilization
metric, which reports the percentage of usage on the Redis engine core. To see if this metric is
available on your nodes and for more information, see Metrics for Redis.

For more information, see the CPUs section at Monitoring best practices with Amazon ElastiCache
for Redis using Amazon CloudWatch.

SwapUsage

This is a host-level metric reported in bytes. For more information, see Host-Level Metrics.

The FreeableMemory CloudWatch metric being close to 0 (i.e., below 100MB) or SwapUsage
metric greater than the FreeableMemory metric indicates a node is under memory pressure. If
this happens, see the following topics:

• Ensuring that you have enough memory to create a Redis snapshot

• Managing Reserved Memory

Evictions

This is a cache engine metric. We recommend that you determine your own alarm threshold for this
metric based on your application needs.

Monitoring use API Version 2015-02-02 1118

https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/CacheMetrics.Redis.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/CacheMetrics.Redis.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/CacheMetrics.Redis.html
https://aws.amazon.com/blogs/database/monitoring-best-practices-with-amazon-elasticache-for-redis-using-amazon-cloudwatch/
https://aws.amazon.com/blogs/database/monitoring-best-practices-with-amazon-elasticache-for-redis-using-amazon-cloudwatch/

Amazon ElastiCache for Redis User Guide

CurrConnections

This is a cache engine metric. We recommend that you determine your own alarm threshold for this
metric based on your application needs.

An increasing number of CurrConnections might indicate a problem with your application; you will
need to investigate the application behavior to address this issue.

For more information, see the Connections section at Monitoring best practices with Amazon
ElastiCache for Redis using Amazon CloudWatch.

Memory

Memory is a core aspect of Redis. Understanding the memory utilization of your cluster is
necessary to avoid data loss and accommodate future growth of your dataset. Statistics about the
memory utilization of a node are available in the memory section of the Redis INFO command.

For more information, see the Memory section at Monitoring best practices with Amazon
ElastiCache for Redis using Amazon CloudWatch.

Network

One of the determining factors for the network bandwidth capacity of your cluster is the node type
you have selected. For more information about the network capacity of your node, see Amazon
ElastiCache pricing.

For more information, see the Network section at Monitoring best practices with Amazon
ElastiCache for Redis using Amazon CloudWatch.

Latency

You can measure a command’s latency with a set of CloudWatch metrics that provide aggregated
latencies per data structure. These latency metrics are calculated using the commandstats statistic
from the Redis INFO command.

For more information, see the Latency section at Monitoring best practices with Amazon
ElastiCache for Redis using Amazon CloudWatch.

Replication

The volume of data being replicated is visible via the ReplicationBytes metric. Although this
metric is representative of the write load on the replication group, it doesn't provide insights into
replication health. For this purpose, you can use the ReplicationLag metric.

Monitoring use API Version 2015-02-02 1119

https://aws.amazon.com/blogs/database/monitoring-best-practices-with-amazon-elasticache-for-redis-using-amazon-cloudwatch/
https://aws.amazon.com/blogs/database/monitoring-best-practices-with-amazon-elasticache-for-redis-using-amazon-cloudwatch/
https://redis.io/commands/info
https://aws.amazon.com/blogs/database/monitoring-best-practices-with-amazon-elasticache-for-redis-using-amazon-cloudwatch/
https://aws.amazon.com/blogs/database/monitoring-best-practices-with-amazon-elasticache-for-redis-using-amazon-cloudwatch/
https://aws.amazon.com/elasticache/pricing/
https://aws.amazon.com/elasticache/pricing/
https://aws.amazon.com/blogs/database/monitoring-best-practices-with-amazon-elasticache-for-redis-using-amazon-cloudwatch/
https://aws.amazon.com/blogs/database/monitoring-best-practices-with-amazon-elasticache-for-redis-using-amazon-cloudwatch/
https://redis.io/commands/info
https://aws.amazon.com/blogs/database/monitoring-best-practices-with-amazon-elasticache-for-redis-using-amazon-cloudwatch/
https://aws.amazon.com/blogs/database/monitoring-best-practices-with-amazon-elasticache-for-redis-using-amazon-cloudwatch/

Amazon ElastiCache for Redis User Guide

For more information, see the Replication section at Monitoring best practices with Amazon
ElastiCache for Redis using Amazon CloudWatch.

Traffic Management

ElastiCache for Redis automatically manages traffic against a node when more incoming
commands are sent to the node than can be processed by Redis. This is done to maintain optimal
operation and stability of the engine.

When traffic is actively managed on a node, the metric TrafficManagementActive will emit
data points of 1. This indicates that the node may be underscaled for the workload being provided.
If this metric remains 1 for long periods of time, evaluate the cluster to decide if scaling up or
scaling out is necessary.

For more information, see the TrafficManagementActive metric on the Metrics page.

Monitoring use API Version 2015-02-02 1120

https://aws.amazon.com/blogs/database/monitoring-best-practices-with-amazon-elasticache-for-redis-using-amazon-cloudwatch/
https://aws.amazon.com/blogs/database/monitoring-best-practices-with-amazon-elasticache-for-redis-using-amazon-cloudwatch/
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/CacheMetrics.Redis.html

Amazon ElastiCache for Redis User Guide

Choosing Metric Statistics and Periods

While CloudWatch will allow you to choose any statistic and period for each metric, not all
combinations will be useful. For example, the Average, Minimum, and Maximum statistics for
CPUUtilization are useful, but the Sum statistic is not.

All ElastiCache samples are published for a 60 second duration for each individual cache node. For
any 60 second period, a cache node metric will only contain a single sample.

For further information on how to retrieve metrics for your cache nodes, see Monitoring
CloudWatch Cluster and Node Metrics.

Monitoring CloudWatch Cluster and Node Metrics

ElastiCache and CloudWatch are integrated so you can gather a variety of metrics. You can monitor
these metrics using CloudWatch.

Note

The following examples require the CloudWatch command line tools. For more information
about CloudWatch and to download the developer tools, see the CloudWatch product
page.

The following procedures show you how to use CloudWatch to gather storage space statistics for
an cache cluster for the past hour.

Note

The StartTime and EndTime values supplied in the examples below are for illustrative
purposes. You must substitute appropriate start and end time values for your cache nodes.

For information on ElastiCache limits, see AWS Service Limits for ElastiCache.

Monitoring CloudWatch Cluster and Node Metrics (Console)

To gather CPU utilization statistics for a cache cluster

1. Sign in to the AWS Management Console and open the ElastiCache console at https://
console.aws.amazon.com/elasticache/.

Monitoring use API Version 2015-02-02 1121

https://aws.amazon.com/cloudwatch
https://aws.amazon.com/cloudwatch
https://docs.aws.amazon.com/general/latest/gr/aws_service_limits.html#limits_elasticache
https://console.aws.amazon.com/elasticache/
https://console.aws.amazon.com/elasticache/

Amazon ElastiCache for Redis User Guide

2. Select the cache nodes you want to view metrics for.

Note

Selecting more than 20 nodes disables viewing metrics on the console.

a. On the Cache Clusters page of the AWS Management Console, click the name of one or
more cache clusters.

The detail page for the cache cluster appears.

b. Click the Nodes tab at the top of the window.

c. On the Nodes tab of the detail window, select the cache nodes that you want to view
metrics for.

A list of available CloudWatch Metrics appears at the bottom of the console window.

d. Click on the CPU Utilization metric.

The CloudWatch console will open, displaying your selected metrics. You can use the
Statistic and Period drop-down list boxes and Time Range tab to change the metrics
being displayed.

Monitoring CloudWatch Cluster and Node Metrics using the CloudWatch CLI

To gather CPU utilization statistics for a cache cluster

• For Linux, macOS, or Unix:

aws cloudwatch get-metric-statistics \
 --namespace AWS/ElastiCache \
 --metric-name CPUUtilization \
 --dimensions='[{"Name":"CacheClusterId","Value":"test"},
{"Name":"CacheNodeId","Value":"0001"}]' \
 --statistics=Average \
 --start-time 2018-07-05T00:00:00 \
 --end-time 2018-07-06T00:00:00 \
 --period=3600

For Windows:
Monitoring use API Version 2015-02-02 1122

Amazon ElastiCache for Redis User Guide

aws cloudwatch get-metric-statistics ^
 --namespace AWS/ElastiCache ^
 --metric-name CPUUtilization ^
 --dimensions='[{"Name":"CacheClusterId","Value":"test"},
{"Name":"CacheNodeId","Value":"0001"}]' ^
 --statistics=Average ^
 --start-time 2018-07-05T00:00:00 ^
 --end-time 2018-07-06T00:00:00 ^
 --period=3600

Monitoring CloudWatch Cluster and Node Metrics using the CloudWatch API

To gather CPU utilization statistics for a cache cluster

• Call the CloudWatch API GetMetricStatistics with the following parameters (note that
the start and end times are shown as examples only; you will need to substitute your own
appropriate start and end times):

• Statistics.member.1=Average

• Namespace=AWS/ElastiCache

• StartTime=2013-07-05T00:00:00

• EndTime=2013-07-06T00:00:00

• Period=60

• MeasureName=CPUUtilization

• Dimensions=CacheClusterId=mycachecluster,CacheNodeId=0002

Example

http://monitoring.amazonaws.com/
 ?Action=GetMetricStatistics
 &SignatureVersion=4
 &Version=2014-12-01
 &StartTime=2018-07-05T00:00:00
 &EndTime=2018-07-06T23:59:00
 &Period=3600
 &Statistics.member.1=Average

Monitoring use API Version 2015-02-02 1123

Amazon ElastiCache for Redis User Guide

 &Dimensions.member.1="CacheClusterId=mycachecluster"
 &Dimensions.member.2="CacheNodeId=0002"
 &Namespace=&AWS;/ElastiCache
 &MeasureName=CPUUtilization
 &Timestamp=2018-07-07T17%3A48%3A21.746Z
 &AWS;AccessKeyId=<&AWS; Access Key ID>
 &Signature=<Signature>

Amazon SNS monitoring of ElastiCache events

When significant events happen for a cluster, ElastiCache sends notification to a specific Amazon
SNS topic. Examples include a failure to add a node, success in adding a node, the modification of
a security group, and others. By monitoring for key events, you can know the current state of your
clusters and, depending upon the event, be able to take corrective action.

Topics

• Managing ElastiCache Amazon SNS notifications

• Viewing ElastiCache events

• Event Notifications and Amazon SNS

Managing ElastiCache Amazon SNS notifications

You can configure ElastiCache to send notifications for important cluster events using Amazon
Simple Notification Service (Amazon SNS). In these examples, you will configure a cluster with the
Amazon Resource Name (ARN) of an Amazon SNS topic to receive notifications.

Note

This topic assumes that you've signed up for Amazon SNS and have set up and subscribed
to an Amazon SNS topic. For information on how to do this, see the Amazon Simple
Notification Service Developer Guide.

Adding an Amazon SNS topic

The following sections show you how to add an Amazon SNS topic using the AWS Console, the
AWS CLI, or the ElastiCache API.

Amazon SNS event monitoring API Version 2015-02-02 1124

https://docs.aws.amazon.com/sns/latest/dg/
https://docs.aws.amazon.com/sns/latest/dg/

Amazon ElastiCache for Redis User Guide

Adding an Amazon SNS topic (Console)

The following procedure shows you how to add an Amazon SNS topic for a cluster. To add an
Amazon SNS topic for a replication group, in step 2, instead of choosing a cluster, choose a
replication group then follow the same remaining steps.

Note

This process can also be used to modify the Amazon SNS topic.

To add or modify an Amazon SNS topic for a cluster (Console)

1. Sign in to the AWS Management Console and open the ElastiCache console at https://
console.aws.amazon.com/elasticache/.

2. In Clusters, choose the cluster for which you want to add or modify an Amazon SNS topic
ARN.

3. Choose Modify.

4. In Modify Cluster under Topic for SNS Notification, choose the SNS topic you want to add, or
choose Manual ARN input and type the ARN of the Amazon SNS topic.

5. Choose Modify.

Adding an Amazon SNS topic (AWS CLI)

To add or modify an Amazon SNS topic for a cluster, use the AWS CLI command modify-cache-
cluster.

The following code example adds an Amazon SNS topic arn to my-cluster.

For Linux, macOS, or Unix:

aws elasticache modify-cache-cluster \
 --cache-cluster-id my-cluster \
 --notification-topic-arn arn:aws:sns:us-
west-2:123456789xxx:ElastiCacheNotifications

For Windows:

Amazon SNS event monitoring API Version 2015-02-02 1125

https://console.aws.amazon.com/elasticache/
https://console.aws.amazon.com/elasticache/

Amazon ElastiCache for Redis User Guide

aws elasticache modify-cache-cluster ^
 --cache-cluster-id my-cluster ^
 --notification-topic-arn arn:aws:sns:us-west-2:123456789xx:ElastiCacheNotifications

For more information, see modify-cache-cluster.

Adding an Amazon SNS topic (ElastiCache API)

To add or modify an Amazon SNS topic for a cluster, call the ModifyCacheCluster action with
the following parameters:

• CacheClusterId=my-cluster

• TopicArn=arn%3Aaws%3Asns%3Aus-
west-2%3A565419523791%3AElastiCacheNotifications

Example

https://elasticache.amazon.com/
 ?Action=ModifyCacheCluster
 &ApplyImmediately=false
 &CacheClusterId=my-cluster
 &NotificationTopicArn=arn%3Aaws%3Asns%3Aus-
west-2%3A565419523791%3AElastiCacheNotifications
 &Version=2014-12-01
 &SignatureVersion=4
 &SignatureMethod=HmacSHA256
 &Timestamp=20141201T220302Z
 &X-Amz-Algorithm=&AWS;4-HMAC-SHA256
 &X-Amz-Date=20141201T220302Z
 &X-Amz-SignedHeaders=Host
 &X-Amz-Expires=20141201T220302Z
 &X-Amz-Credential=<credential>
 &X-Amz-Signature=<signature>

For more information, see ModifyCacheCluster.

Enabling and disabling Amazon SNS notifications

You can turn notifications on or off for a cluster. The following procedures show you how to disable
Amazon SNS notifications.

Amazon SNS event monitoring API Version 2015-02-02 1126

https://docs.aws.amazon.com/cli/latest/reference/elasticache/modify-cache-cluster.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/APIReference/API_ModifyCacheCluster.html

Amazon ElastiCache for Redis User Guide

Enabling and disabling Amazon SNS notifications (Console)

To disable Amazon SNS notifications using the AWS Management Console

1. Sign in to the AWS Management Console and open the ElastiCache console at https://
console.aws.amazon.com/elasticache/.

2. To see a list of your clusters running Redis, in the navigation pane choose Redis.

3. Choose the box to the left of the cluster you want to modify notification for.

4. Choose Modify.

5. In Modify Cluster under Topic for SNS Notification, choose Disable Notifications.

6. Choose Modify.

Enabling and disabling Amazon SNS notifications (AWS CLI)

To disable Amazon SNS notifications, use the command modify-cache-cluster with the
following parameters:

For Linux, macOS, or Unix:

aws elasticache modify-cache-cluster \
 --cache-cluster-id my-cluster \
 --notification-topic-status inactive

For Windows:

aws elasticache modify-cache-cluster ^
 --cache-cluster-id my-cluster ^
 --notification-topic-status inactive

Enabling and disabling Amazon SNS notifications (ElastiCache API)

To disable Amazon SNS notifications, call the ModifyCacheCluster action with the following
parameters:

• CacheClusterId=my-cluster

• NotificationTopicStatus=inactive

This call returns output similar to the following:

Amazon SNS event monitoring API Version 2015-02-02 1127

https://console.aws.amazon.com/elasticache/
https://console.aws.amazon.com/elasticache/

Amazon ElastiCache for Redis User Guide

Example

https://elasticache.us-west-2.amazonaws.com/
 ?Action=ModifyCacheCluster
 &ApplyImmediately=false
 &CacheClusterId=my-cluster
 &NotificationTopicStatus=inactive
 &Version=2014-12-01
 &SignatureVersion=4
 &SignatureMethod=HmacSHA256
 &Timestamp=20141201T220302Z
 &X-Amz-Algorithm=&AWS;4-HMAC-SHA256
 &X-Amz-Date=20141201T220302Z
 &X-Amz-SignedHeaders=Host
 &X-Amz-Expires=20141201T220302Z
 &X-Amz-Credential=<credential>
 &X-Amz-Signature=<signature>

Amazon SNS event monitoring API Version 2015-02-02 1128

Amazon ElastiCache for Redis User Guide

Viewing ElastiCache events

ElastiCache logs events that relate to your cluster instances, security groups, and parameter
groups. This information includes the date and time of the event, the source name and source type
of the event, and a description of the event. You can easily retrieve events from the log using the
ElastiCache console, the AWS CLI describe-events command, or the ElastiCache API action
DescribeEvents.

The following procedures show you how to view all ElastiCache events for the past 24 hours (1440
minutes).

Viewing ElastiCache events (Console)

The following procedure displays events using the ElastiCache console.

To view events using the ElastiCache console

1. Sign in to the AWS Management Console and open the ElastiCache console at https://
console.aws.amazon.com/elasticache/.

2. To see a list of all available events, in the navigation pane, choose Events.

On the Events screen each row of the list represents one event and displays the event source,
the event type (cache-cluster, cache-parameter-group, cache-security-group, or cache-subnet-
group), the GMT time of the event, and a description of the event.

Using the Filter you can specify whether you want to see all events, or just events of a specific
type in the event list.

Viewing ElastiCache events (AWS CLI)

To generate a list of ElastiCache events using the AWS CLI, use the command describe-events.
You can use optional parameters to control the type of events listed, the time frame of the events
listed, the maximum number of events to list, and more.

The following code lists up to 40 cache cluster events.

aws elasticache describe-events --source-type cache-cluster --max-items 40

The following code lists all events for the past 24 hours (1440 minutes).

Amazon SNS event monitoring API Version 2015-02-02 1129

https://console.aws.amazon.com/elasticache/
https://console.aws.amazon.com/elasticache/

Amazon ElastiCache for Redis User Guide

aws elasticache describe-events --source-type cache-cluster --duration 1440

The output from the describe-events command looks something like this.

aws elasticache describe-events --source-type cache-cluster --max-items 40
{
 "Events": [
 {
 "SourceIdentifier": "my-mem-cluster",
 "SourceType": "cache-cluster",
 "Message": "Finished modifying number of nodes from 1 to 3",
 "Date": "2020-06-09T02:01:21.772Z"
 },
 {
 "SourceIdentifier": "my-mem-cluster",
 "SourceType": "cache-cluster",
 "Message": "Added cache node 0002 in availability zone us-west-2a",
 "Date": "2020-06-09T02:01:21.716Z"
 },
 {
 "SourceIdentifier": "my-mem-cluster",
 "SourceType": "cache-cluster",
 "Message": "Added cache node 0003 in availability zone us-west-2a",
 "Date": "2020-06-09T02:01:21.706Z"
 },
 {
 "SourceIdentifier": "my-mem-cluster",
 "SourceType": "cache-cluster",
 "Message": "Increasing number of requested nodes",
 "Date": "2020-06-09T01:58:34.178Z"
 },
 {
 "SourceIdentifier": "mycluster-0003-004",
 "SourceType": "cache-cluster",
 "Message": "Added cache node 0001 in availability zone us-west-2c",
 "Date": "2020-06-09T01:51:14.120Z"
 },
 {
 "SourceIdentifier": "mycluster-0003-004",
 "SourceType": "cache-cluster",
 "Message": "This cache cluster does not support persistence (ex:
 'appendonly'). Please use a different instance type to enable persistence.",
 "Date": "2020-06-09T01:51:14.095Z"

Amazon SNS event monitoring API Version 2015-02-02 1130

Amazon ElastiCache for Redis User Guide

 },
 {
 "SourceIdentifier": "mycluster-0003-004",
 "SourceType": "cache-cluster",
 "Message": "Cache cluster created",
 "Date": "2020-06-09T01:51:14.094Z"
 },
 {
 "SourceIdentifier": "mycluster-0001-005",
 "SourceType": "cache-cluster",
 "Message": "Added cache node 0001 in availability zone us-west-2b",
 "Date": "2020-06-09T01:42:55.603Z"
 },
 {
 "SourceIdentifier": "mycluster-0001-005",
 "SourceType": "cache-cluster",
 "Message": "This cache cluster does not support persistence (ex:
 'appendonly'). Please use a different instance type to enable persistence.",
 "Date": "2020-06-09T01:42:55.576Z"
 },
 {
 "SourceIdentifier": "mycluster-0001-005",
 "SourceType": "cache-cluster",
 "Message": "Cache cluster created",
 "Date": "2020-06-09T01:42:55.574Z"
 },
 {
 "SourceIdentifier": "mycluster-0001-004",
 "SourceType": "cache-cluster",
 "Message": "Added cache node 0001 in availability zone us-west-2b",
 "Date": "2020-06-09T01:28:40.798Z"
 },
 {
 "SourceIdentifier": "mycluster-0001-004",
 "SourceType": "cache-cluster",
 "Message": "This cache cluster does not support persistence (ex:
 'appendonly'). Please use a different instance type to enable persistence.",
 "Date": "2020-06-09T01:28:40.775Z"
 },
 {
 "SourceIdentifier": "mycluster-0001-004",
 "SourceType": "cache-cluster",
 "Message": "Cache cluster created",
 "Date": "2020-06-09T01:28:40.773Z"

Amazon SNS event monitoring API Version 2015-02-02 1131

Amazon ElastiCache for Redis User Guide

 }
]
}

For more information, such as available parameters and permitted parameter values, see
describe-events.

Viewing ElastiCache events (ElastiCache API)

To generate a list of ElastiCache events using the ElastiCache API, use the DescribeEvents
action. You can use optional parameters to control the type of events listed, the time frame of the
events listed, the maximum number of events to list, and more.

The following code lists the 40 most recent cache-cluster events.

https://elasticache.us-west-2.amazonaws.com/
 ?Action=DescribeEvents
 &MaxRecords=40
 &SignatureVersion=4
 &SignatureMethod=HmacSHA256
 &SourceType=cache-cluster
 &Timestamp=20150202T192317Z
 &Version=2015-02-02
 &X-Amz-Credential=<credential>

The following code lists the cache-cluster events for the past 24 hours (1440 minutes).

https://elasticache.us-west-2.amazonaws.com/
 ?Action=DescribeEvents
 &Duration=1440
 &SignatureVersion=4
 &SignatureMethod=HmacSHA256
 &SourceType=cache-cluster
 &Timestamp=20150202T192317Z
 &Version=2015-02-02
 &X-Amz-Credential=<credential>

The above actions should produce output similar to the following.

<DescribeEventsResponse xmlns="http://elasticache.amazonaws.com/doc/2015-02-02/">
 <DescribeEventsResult>

Amazon SNS event monitoring API Version 2015-02-02 1132

https://docs.aws.amazon.com/cli/latest/reference/elasticache/describe-events.html

Amazon ElastiCache for Redis User Guide

 <Events>
 <Event>
 <Message>Cache cluster created</Message>
 <SourceType>cache-cluster</SourceType>
 <Date>2015-02-02T18:22:18.202Z</Date>
 <SourceIdentifier>mem01</SourceIdentifier>
 </Event>

 (...output omitted...)

 </Events>
 </DescribeEventsResult>
 <ResponseMetadata>
 <RequestId>e21c81b4-b9cd-11e3-8a16-7978bb24ffdf</RequestId>
 </ResponseMetadata>
</DescribeEventsResponse>

For more information, such as available parameters and permitted parameter values, see
DescribeEvents.

Event Notifications and Amazon SNS

ElastiCache can publish messages using Amazon Simple Notification Service (SNS) when significant
events happen on a cache cluster. This feature can be used to refresh the server-lists on client
machines connected to individual cache node endpoints of a cache cluster.

Note

For more information on Amazon Simple Notification Service (SNS), including information
on pricing and links to the Amazon SNS documentation, see the Amazon SNS product page.

Notifications are published to a specified Amazon SNS topic. The following are requirements for
notifications:

• Only one topic can be configured for ElastiCache notifications.

• The AWS account that owns the Amazon SNS topic must be the same account that owns the
cache cluster on which notifications are enabled.

• The Amazon SNS topic you are publishing to cannot be encrypted.

Amazon SNS event monitoring API Version 2015-02-02 1133

https://docs.aws.amazon.com/AmazonElastiCache/latest/APIReference/API_DescribeEvents.html
https://aws.amazon.com/sns

Amazon ElastiCache for Redis User Guide

Note

It is possible to attach an encrypted (at-rest) Amazon SNS topic to the cluster. However,
the status of the topic from the ElastiCache console will show as inactive, which
effectively disassociates the topic from the cluster when ElastiCache pushes messages to
the topic.

• The Amazon SNS topic has to be in the same Region as the ElastiCache cluster.

ElastiCache Events

The following ElastiCache events trigger Amazon SNS notifications. For information on event
details, see Viewing ElastiCache events.

Event Name Message Description

ElastiCache:AddCac
heNodeComplete

ElastiCache:AddCac
heNodeComplete :
cache-cluster

A cache node has been added
to the cache cluster and is
ready for use.

ElastiCache:AddCacheNodeFai
led due to insufficient free IP
addresses

ElastiCache:AddCac
heNodeFailed :
cluster-name

A cache node could not be
added because there are not
enough available IP addresses
.

ElastiCache:CacheClusterPar
ametersChanged

ElastiCache:CacheC
lusterParametersCh
anged : cluster-name

One or more cache cluster
parameters have been
changed.

ElastiCache:CacheClusterPro
visioningComplete

ElastiCache:CacheC
lusterProvisioning
Complete cluster-n
ame-0001-005

The provisioning of a cache
cluster is completed, and the
cache nodes in the cache
 cluster are ready to use.

ElastiCache:CacheClusterPro
visioningFailed due to
incompatible network state

ElastiCache:CacheC
lusterProvisioning

An attempt was made to
launch a new cache cluster

Amazon SNS event monitoring API Version 2015-02-02 1134

Amazon ElastiCache for Redis User Guide

Event Name Message Description

Failed : cluster-n
ame

into a nonexistent virtual
private cloud (VPC).

ElastiCache:CacheClusterSca
lingComplete

CacheClusterScalin
gComplete : cluster-n
ame

Scaling for cache-cluster
completed successfully.

ElastiCache:CacheClusterSca
lingFailed

ElastiCache:CacheClusterSca
lingFailed : cluster-name

Scale-up operation on cache-
cluster failed.

ElastiCache:CacheClusterSec
urityGroupModified

ElastiCache:CacheC
lusterSecurityGrou
pModified : cluster-n
ame

One of the following events
has occurred:

•
The list of cache security
groups authorized for the
cache cluster has been
 modified.

•
One or more new EC2
security groups have been
authorized on any of the
cache security groups
associated with the cache
cluster.

•
One or more EC2 security
groups have been revoked
from any of the cache
security groups associated
with the cache cluster.

Amazon SNS event monitoring API Version 2015-02-02 1135

Amazon ElastiCache for Redis User Guide

Event Name Message Description

ElastiCache:CacheNodeReplac
eStarted

ElastiCache:CacheN
odeReplaceStarted :
cluster-name

ElastiCache has detected
that the host running a
cache node is degraded or
unreachable and has started
replacing the cache node.

Note

The DNS entry for the
replaced cache node is
not changed.

In most instances, you do not
need to refresh the server-
list for your clients when
 this event occurs. However,
some cache client libraries
may stop using the cache
node even after ElastiCache
has replaced the cache node;
 in this case, the application
should refresh the server-list
when this event occurs.

Amazon SNS event monitoring API Version 2015-02-02 1136

Amazon ElastiCache for Redis User Guide

Event Name Message Description

ElastiCache:CacheNodeReplac
eComplete

ElastiCache:CacheN
odeReplaceComplete :
cluster-name

ElastiCache has detected
that the host running a
cache node is degraded
or unreachable and has
completed replacing the
cache node.

Note

The DNS entry for the
replaced cache node is
not changed.

In most instances, you do not
need to refresh the server-
list for your clients when
 this event occurs. However,
some cache client libraries
may stop using the cache
node even after ElastiCache
has replaced the cache node;
 in this case, the application
should refresh the server-list
when this event occurs.

ElastiCache:CacheN
odesRebooted

ElastiCache:CacheN
odesRebooted :
cluster-name

One or more cache nodes has
been rebooted.

Message (Memcache
d): "Cache node %s
shutdown" Then a second
message: "Cache node %s
restarted"

Amazon SNS event monitoring API Version 2015-02-02 1137

Amazon ElastiCache for Redis User Guide

Event Name Message Description

ElastiCache:CertificateRene
walComplete (Redis only)

ElastiCache:Certif
icateRenewalComple
te

The Amazon CA certificate
was successfully renewed.

ElastiCache:CreateReplicati
onGroupComplete

ElastiCache:Create
ReplicationGroupCo
mplete : cluster-n
ame

The replication group was
successfully created.

ElastiCache:DeleteCacheClus
terComplete

ElastiCache:Delete
CacheClusterComple
te : cluster-name

The deletion of a cache
cluster and all associated
cache nodes has completed.

ElastiCache:FailoverComplete
(Redis only)

ElastiCache:Failov
erComplete :
mycluster

Failover over to a replica node
was successful.

ElastiCache:ReplicationGrou
pIncreaseReplicaCountFinish
ed

ElastiCache:Replic
ationGroupIncrease
ReplicaCountFinish
ed : cluster-n
ame-0001-005

The number of replicas in the
cluster has been increased.

ElastiCache:ReplicationGrou
pIncreaseReplicaCountStarted

ElastiCache:Replic
ationGroupIncrease
ReplicaCountStarte
d : cluster-n
ame-0003-004

The process of adding replicas
to your cluster has begun.

ElastiCache:NodeRe
placementCanceled

ElastiCache:NodeRe
placementCanceled :
cluster-name

A node in your cluster that
was scheduled for replaceme
nt is no longer scheduled for
replacement.

Amazon SNS event monitoring API Version 2015-02-02 1138

Amazon ElastiCache for Redis User Guide

Event Name Message Description

ElastiCache:NodeRe
placementRescheduled

ElastiCache:NodeRe
placementReschedul
ed : cluster-name

A node in your cluster
previously scheduled for
replacement has been
rescheduled for replaceme
nt during the new window
described in the notification.

For information on what
actions you can take, see
Replacing nodes.

ElastiCache:NodeRe
placementScheduled

ElastiCache:NodeRe
placementScheduled :
cluster-name

A node in your cluster is
scheduled for replacement
during the window described
in the notification.

For information on what
actions you can take, see
Replacing nodes.

ElastiCache:Remove
CacheNodeComplete

ElastiCache:Remove
CacheNodeComplete :
cluster-name

A cache node has been
removed from the cache
cluster.

ElastiCache:ReplicationGrou
pScalingComplete

ElastiCache:Replic
ationGroupScalingC
omplete : cluster-n
ame

Scale-up operation on
replication group completed
successfully.

ElastiCache:ReplicationGrou
pScalingFailed

"Failed applying
modification to cache
node type to %s."

Scale-up operation on
replication group failed.

ElastiCache:ServiceUpdateAv
ailableForNode

"Service update is
available for cache
node %s."

A self-service update is
available for the node.

Amazon SNS event monitoring API Version 2015-02-02 1139

Amazon ElastiCache for Redis User Guide

Event Name Message Description

ElastiCache:SnapshotComplet
e (Redis only)

ElastiCache:Snapsh
otComplete :
cluster-name

A cache snapshot has
completed successfully.

ElastiCache:SnapshotFailed
(Redis only)

SnapshotFailed :
cluster-name

A cache snapshot has failed.
See the cluster’s cache events
for more a detailed cause.

If you describe the snapshot,
see DescribeSnapshots ,
the status will be failed.

Related topics

• Viewing ElastiCache events

Amazon SNS event monitoring API Version 2015-02-02 1140

https://docs.aws.amazon.com/AmazonElastiCache/latest/APIReference/API_DescribeSnapshots.html

Amazon ElastiCache for Redis User Guide

Logging Amazon ElastiCache API calls with AWS CloudTrail

Amazon ElastiCache is integrated with AWS CloudTrail, a service that provides a record of actions
taken by a user, role, or an AWS service in Amazon ElastiCache. CloudTrail captures all API calls for
Amazon ElastiCache as events, including calls from the Amazon ElastiCache console and from code
calls to the Amazon ElastiCache API operations. If you create a trail, you can enable continuous
delivery of CloudTrail events to an Amazon S3 bucket, including events for Amazon ElastiCache.
If you don't configure a trail, you can still view the most recent events in the CloudTrail console in
Event history. Using the information collected by CloudTrail, you can determine the request that
was made to Amazon ElastiCache, the IP address from which the request was made, who made the
request, when it was made, and additional details.

To learn more about CloudTrail, see the AWS CloudTrail User Guide.

Amazon ElastiCache information in CloudTrail

CloudTrail is enabled on your AWS account when you create the account. When activity occurs in
Amazon ElastiCache, that activity is recorded in a CloudTrail event along with other AWS service
events in Event history. You can view, search, and download recent events in your AWS account.
For more information, see Viewing Events with CloudTrail Event History.

For an ongoing record of events in your AWS account, including events for Amazon ElastiCache,
create a trail. A trail enables CloudTrail to deliver log files to an Amazon S3 bucket. By default,
when you create a trail in the console, the trail applies to all regions. The trail logs events from all
regions in the AWS partition and delivers the log files to the Amazon S3 bucket that you specify.
Additionally, you can configure other AWS services to further analyze and act upon the event data
collected in CloudTrail logs. For more information, see the following:

• Overview for Creating a Trail

• CloudTrail Supported Services and Integrations

• Configuring Amazon SNS Notifications for CloudTrail

• Receiving CloudTrail Log Files from Multiple Regions and Receiving CloudTrail Log Files from
Multiple Accounts

All Amazon ElastiCache actions are logged by CloudTrail and are documented in the ElastiCache
API Reference. For example, calls to the CreateCacheCluster, DescribeCacheCluster and
ModifyCacheCluster actions generate entries in the CloudTrail log files.

Logging Amazon ElastiCache API calls with AWS CloudTrail API Version 2015-02-02 1141

https://docs.aws.amazon.com/awscloudtrail/latest/userguide/
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/view-cloudtrail-events.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-create-and-update-a-trail.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-aws-service-specific-topics.html#cloudtrail-aws-service-specific-topics-integrations
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/getting_notifications_top_level.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/receive-cloudtrail-log-files-from-multiple-regions.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-receive-logs-from-multiple-accounts.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-receive-logs-from-multiple-accounts.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/APIReference/
https://docs.aws.amazon.com/AmazonElastiCache/latest/APIReference/

Amazon ElastiCache for Redis User Guide

Every event or log entry contains information about who generated the request. The identity
information helps you determine the following:

• Whether the request was made with root or IAM user credentials.

• Whether the request was made with temporary security credentials for a role or federated user.

• Whether the request was made by another AWS service.

For more information, see the CloudTrail userIdentity Element.

Understanding Amazon ElastiCache log file entries

A trail is a configuration that enables delivery of events as log files to an Amazon S3 bucket that
you specify. CloudTrail log files contain one or more log entries. An event represents a single
request from any source and includes information about the requested action, the date and time of
the action, request parameters, and so on. CloudTrail log files are not an ordered stack trace of the
public API calls, so they do not appear in any specific order.

The following example shows a CloudTrail log entry that demonstrates the CreateCacheCluster
action.

{
 "eventVersion":"1.01",
 "userIdentity":{
 "type":"IAMUser",
 "principalId":"EXAMPLEEXAMPLEEXAMPLE",
 "arn":"arn:aws:iam::123456789012:user/elasticache-allow",
 "accountId":"123456789012",
 "accessKeyId":"AKIAIOSFODNN7EXAMPLE",
 "userName":"elasticache-allow"
 },
 "eventTime":"2014-12-01T22:00:35Z",
 "eventSource":"elasticache.amazonaws.com",
 "eventName":"CreateCacheCluster",
 "awsRegion":"us-west-2",
 "sourceIPAddress":"192.0.2.01",
 "userAgent":"AWS CLI/ElastiCache 1.10 API 2014-12-01",
 "requestParameters":{
 "numCacheNodes":2,
 "cacheClusterId":"test-memcached",
 "engine":"memcached",
 "aZMode":"cross-az",

Understanding Amazon ElastiCache log file entries API Version 2015-02-02 1142

https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-event-reference-user-identity.html

Amazon ElastiCache for Redis User Guide

 "cacheNodeType":"cache.m1.small",

 },
 "responseElements":{
 "engine":"memcached",
 "clientDownloadLandingPage":"https://console.aws.amazon.com/elasticache/
home#client-download:",
 "cacheParameterGroup":{
 "cacheParameterGroupName":"default.memcached1.4",
 "cacheNodeIdsToReboot":{
 },
 "parameterApplyStatus":"in-sync"
 },
 "preferredAvailabilityZone":"Multiple",
 "numCacheNodes":2,
 "cacheNodeType":"cache.m1.small",

 "cacheClusterStatus":"creating",
 "autoMinorVersionUpgrade":true,
 "preferredMaintenanceWindow":"thu:05:00-thu:06:00",
 "cacheClusterId":"test-memcached",
 "engineVersion":"1.4.14",
 "cacheSecurityGroups":[
 {
 "status":"active",
 "cacheSecurityGroupName":"default"
 }
],
 "pendingModifiedValues":{
 }
 },
 "requestID":"104f30b3-3548-11e4-b7b8-6d79ffe84edd",
 "eventID":"92762127-7a68-42ce-8787-927d2174cde1"
}

The following example shows a CloudTrail log entry that demonstrates the
DescribeCacheCluster action. Note that for all Amazon ElastiCache Describe calls
(Describe*), the ResponseElements section is removed and appears as null.

{
 "eventVersion":"1.01",
 "userIdentity":{
 "type":"IAMUser",

Understanding Amazon ElastiCache log file entries API Version 2015-02-02 1143

Amazon ElastiCache for Redis User Guide

 "principalId":"EXAMPLEEXAMPLEEXAMPLE",
 "arn":"arn:aws:iam::123456789012:user/elasticache-allow",
 "accountId":"123456789012",
 "accessKeyId":"AKIAIOSFODNN7EXAMPLE",
 "userName":"elasticache-allow"
 },
 "eventTime":"2014-12-01T22:01:00Z",
 "eventSource":"elasticache.amazonaws.com",
 "eventName":"DescribeCacheClusters",
 "awsRegion":"us-west-2",
 "sourceIPAddress":"192.0.2.01",
 "userAgent":"AWS CLI/ElastiCache 1.10 API 2014-12-01",
 "requestParameters":{
 "showCacheNodeInfo":false,
 "maxRecords":100
 },
 "responseElements":null,
 "requestID":"1f0b5031-3548-11e4-9376-c1d979ba565a",
 "eventID":"a58572a8-e81b-4100-8e00-1797ed19d172"
}

The following example shows a CloudTrail log entry that records a ModifyCacheCluster action.

{
 "eventVersion":"1.01",
 "userIdentity":{
 "type":"IAMUser",
 "principalId":"EXAMPLEEXAMPLEEXAMPLE",
 "arn":"arn:aws:iam::123456789012:user/elasticache-allow",
 "accountId":"123456789012",
 "accessKeyId":"AKIAIOSFODNN7EXAMPLE",
 "userName":"elasticache-allow"
 },
 "eventTime":"2014-12-01T22:32:21Z",
 "eventSource":"elasticache.amazonaws.com",
 "eventName":"ModifyCacheCluster",
 "awsRegion":"us-west-2",
 "sourceIPAddress":"192.0.2.01",
 "userAgent":"AWS CLI/ElastiCache 1.10 API 2014-12-01",
 "requestParameters":{
 "applyImmediately":true,
 "numCacheNodes":3,
 "cacheClusterId":"test-memcached"

Understanding Amazon ElastiCache log file entries API Version 2015-02-02 1144

Amazon ElastiCache for Redis User Guide

 },
 "responseElements":{
 "engine":"memcached",
 "clientDownloadLandingPage":"https://console.aws.amazon.com/elasticache/
home#client-download:",
 "cacheParameterGroup":{
 "cacheParameterGroupName":"default.memcached1.4",
 "cacheNodeIdsToReboot":{
 },
 "parameterApplyStatus":"in-sync"
 },
 "cacheClusterCreateTime":"Dec 1, 2014 10:16:06 PM",
 "preferredAvailabilityZone":"Multiple",
 "numCacheNodes":2,
 "cacheNodeType":"cache.m1.small",
 "cacheClusterStatus":"modifying",
 "autoMinorVersionUpgrade":true,
 "preferredMaintenanceWindow":"thu:05:00-thu:06:00",
 "cacheClusterId":"test-memcached",
 "engineVersion":"1.4.14",
 "cacheSecurityGroups":[
 {
 "status":"active",
 "cacheSecurityGroupName":"default"
 }
],
 "configurationEndpoint":{
 "address":"test-memcached.example.cfg.use1prod.cache.amazonaws.com",
 "port":11211
 },
 "pendingModifiedValues":{
 "numCacheNodes":3
 }
 },
 "requestID":"807f4bc3-354c-11e4-9376-c1d979ba565a",
 "eventID":"e9163565-376f-4223-96e9-9f50528da645"
}

Understanding Amazon ElastiCache log file entries API Version 2015-02-02 1145

Amazon ElastiCache for Redis User Guide

Quotas for ElastiCache

Your AWS account has default quotas, formerly referred to as limits, for each AWS service. Unless
otherwise noted, each quota is Region-specific. You can request increases for some quotas, and
other quotas cannot be increased.

To view the quotas for ElastiCache, open the Service Quotas console. In the navigation pane,
choose AWS services and select ElastiCache.

To request a quota increase, see Requesting a Quota Increase in the Service Quotas User Guide. If
the quota is not yet available in Service Quotas, use the limit increase form.

Your AWS account has the following quotas related to ElastiCache.

Resource Default

Serverless caches per region 40

Serverless snapshots per day per cache 24

Nodes per Region 300

Nodes per cluster per instance type (Redis
cluster mode enabled)

90

Nodes per shard (Redis cluster mode disabled) 6

Parameter groups per Region 300

Security groups per Region 50

Subnet groups per Region 300

Subnets per subnet group 20

Users per user group 100

Maximum number of users 1000

Maximum number of user groups 100

API Version 2015-02-02 1146

https://console.aws.amazon.com/servicequotas/home
https://docs.aws.amazon.com/servicequotas/latest/userguide/request-quota-increase.html
https://console.aws.amazon.com/support/home#/case/create?issueType=service-limit-increase

Amazon ElastiCache for Redis User Guide

Reference

The topics in this section cover working with the Amazon ElastiCache API and the ElastiCache
section of the AWS CLI. Also included in this section are common error messages and service
notifications.

• Using the ElastiCache API

• ElastiCache API Reference

• ElastiCache section of the AWS CLI Reference

• Amazon ElastiCache error messages

• Notifications

Using the ElastiCache API

This section provides task-oriented descriptions of how to use and implement ElastiCache
operations. For a complete description of these operations, see the Amazon ElastiCache API
Reference

Topics

• Using the query API

• Available libraries

• Troubleshooting applications

Using the query API

Query parameters

HTTP Query-based requests are HTTP requests that use the HTTP verb GET or POST and a Query
parameter named Action.

Each Query request must include some common parameters to handle authentication and
selection of an action.

Some operations take lists of parameters. These lists are specified using the param.n notation.
Values of n are integers starting from 1.

Using the ElastiCache API API Version 2015-02-02 1147

https://docs.aws.amazon.com/AmazonElastiCache/latest/APIReference/Welcome.html
https://docs.aws.amazon.com/cli/latest/reference/elasticache/index.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/APIReference/
https://docs.aws.amazon.com/AmazonElastiCache/latest/APIReference/

Amazon ElastiCache for Redis User Guide

Query request authentication

You can only send Query requests over HTTPS and you must include a signature in every Query
request. This section describes how to create the signature. The method described in the following
procedure is known as signature version 4.

The following are the basic steps used to authenticate requests to AWS. This assumes you are
registered with AWS and have an Access Key ID and Secret Access Key.

Query authentication process

1. The sender constructs a request to AWS.

2. The sender calculates the request signature, a Keyed-Hashing for Hash-based Message
Authentication Code (HMAC) with a SHA-1 hash function, as defined in the next section of this
topic.

3. The sender of the request sends the request data, the signature, and Access Key ID (the key-
identifier of the Secret Access Key used) to AWS.

4. AWS uses the Access Key ID to look up the Secret Access Key.

5. AWS generates a signature from the request data and the Secret Access Key using the same
algorithm used to calculate the signature in the request.

6. If the signatures match, the request is considered to be authentic. If the comparison fails, the
request is discarded, and AWS returns an error response.

Note

If a request contains a Timestamp parameter, the signature calculated for the request
expires 15 minutes after its value.
If a request contains an Expires parameter, the signature expires at the time specified by
the Expires parameter.

To calculate the request signature

1. Create the canonicalized query string that you need later in this procedure:

Using the query API API Version 2015-02-02 1148

Amazon ElastiCache for Redis User Guide

a. Sort the UTF-8 query string components by parameter name with natural byte ordering.
The parameters can come from the GET URI or from the POST body (when Content-Type
is application/x-www-form-urlencoded).

b. URL encode the parameter name and values according to the following rules:

i. Do not URL encode any of the unreserved characters that RFC 3986 defines. These
unreserved characters are A-Z, a-z, 0-9, hyphen (-), underscore (_), period (.), and
tilde (~).

ii. Percent encode all other characters with %XY, where X and Y are hex characters 0-9
and uppercase A-F.

iii. Percent encode extended UTF-8 characters in the form %XY%ZA....

iv. Percent encode the space character as %20 (and not +, as common encoding schemes
do).

c. Separate the encoded parameter names from their encoded values with the equals sign
(=) (ASCII character 61), even if the parameter value is empty.

d. Separate the name-value pairs with an ampersand (&) (ASCII code 38).

2. Create the string to sign according to the following pseudo-grammar (the "\n" represents an
ASCII newline).

StringToSign = HTTPVerb + "\n" +
ValueOfHostHeaderInLowercase + "\n" +
HTTPRequestURI + "\n" +
CanonicalizedQueryString <from the preceding step>

The HTTPRequestURI component is the HTTP absolute path component of the URI up to, but
not including, the query string. If the HTTPRequestURI is empty, use a forward slash (/).

3. Calculate an RFC 2104-compliant HMAC with the string you just created, your Secret Access
Key as the key, and SHA256 or SHA1 as the hash algorithm.

For more information, see https://www.ietf.org/rfc/rfc2104.txt.

4. Convert the resulting value to base64.

5. Include the value as the value of the Signature parameter in the request.

For example, the following is a sample request (linebreaks added for clarity).

Using the query API API Version 2015-02-02 1149

https://www.ietf.org/rfc/rfc2104.txt

Amazon ElastiCache for Redis User Guide

https://elasticache.us-west-2.amazonaws.com/
 ?Action=DescribeCacheClusters
 &CacheClusterIdentifier=myCacheCluster
 &SignatureMethod=HmacSHA256
 &SignatureVersion=4
 &Version=2014-12-01

For the preceding query string, you would calculate the HMAC signature over the following string.

GET\n
 elasticache.amazonaws.com\n
 Action=DescribeCacheClusters
 &CacheClusterIdentifier=myCacheCluster
 &SignatureMethod=HmacSHA256
 &SignatureVersion=4
 &Version=2014-12-01
 &X-Amz-Algorithm=&AWS;4-HMAC-SHA256
 &X-Amz-Credential=AKIADQKE4SARGYLE%2F20140523%2Fus-west-2%2Felasticache
%2Faws4_request
 &X-Amz-Date=20141201T223649Z
 &X-Amz-SignedHeaders=content-type%3Bhost%3Buser-agent%3Bx-amz-content-sha256%3Bx-
amz-date
 content-type:
 host:elasticache.us-west-2.amazonaws.com
 user-agent:CacheServicesAPICommand_Client
 x-amz-content-sha256:
 x-amz-date:

The result is the following signed request.

https://elasticache.us-west-2.amazonaws.com/
 ?Action=DescribeCacheClusters
 &CacheClusterIdentifier=myCacheCluster
 &SignatureMethod=HmacSHA256
 &SignatureVersion=4
 &Version=2014-12-01
 &X-Amz-Algorithm=&AWS;4-HMAC-SHA256
 &X-Amz-Credential=AKIADQKE4SARGYLE/20141201/us-west-2/elasticache/aws4_request
 &X-Amz-Date=20141201T223649Z
 &X-Amz-SignedHeaders=content-type;host;user-agent;x-amz-content-sha256;x-amz-date
 &X-Amz-Signature=2877960fced9040b41b4feaca835fd5cfeb9264f768e6a0236c9143f915ffa56

Using the query API API Version 2015-02-02 1150

Amazon ElastiCache for Redis User Guide

For detailed information on the signing process and calculating the request signature, see the topic
Signature Version 4 Signing Process and its subtopics.

Available libraries

AWS provides software development kits (SDKs) for software developers who prefer to build
applications using language-specific APIs instead of the Query API. These SDKs provide basic
functions (not included in the APIs), such as request authentication, request retries, and error
handling so that it is easier to get started. SDKs and additional resources are available for the
following programming languages:

• Java

• Windows and .NET

• PHP

• Python

• Ruby

For information about other languages, see Sample Code & Libraries.

Troubleshooting applications

ElastiCache provides specific and descriptive errors to help you troubleshoot problems while
interacting with the ElastiCache API.

Retrieving errors

Typically, you want your application to check whether a request generated an error before you
spend any time processing results. The easiest way to find out if an error occurred is to look for an
Error node in the response from the ElastiCache API.

XPath syntax provides a simple way to search for the presence of an Error node, as well as an
easy way to retrieve the error code and message. The following code snippet uses Perl and the
XML::XPath module to determine if an error occurred during a request. If an error occurred, the
code prints the first error code and message in the response.

use XML::XPath;

Available libraries API Version 2015-02-02 1151

https://docs.aws.amazon.com/general/latest/gr/signature-version-4.html
https://aws.amazon.com/java
https://aws.amazon.com/net
https://aws.amazon.com/php
https://aws.amazon.com/python
https://aws.amazon.com/ruby
https://aws.amazon.com/code

Amazon ElastiCache for Redis User Guide

my $xp = XML::XPath->new(xml =>$response);
if ($xp->find("//Error"))
{print "There was an error processing your request:\n", " Error code: ",
$xp->findvalue("//Error[1]/Code"), "\n", " ",
$xp->findvalue("//Error[1]/Message"), "\n\n"; }

Troubleshooting tips

We recommend the following processes to diagnose and resolve problems with the ElastiCache
API.

• Verify that ElastiCache is running correctly.

To do this, simply open a browser window and submit a query request to the ElastiCache service
(such as https://elasticache.amazonaws.com). A MissingAuthenticationTokenException or 500
Internal Server Error confirms that the service is available and responding to requests.

• Check the structure of your request.

Each ElastiCache operation has a reference page in the ElastiCache API Reference. Double-check
that you are using parameters correctly. To give you ideas regarding what might be wrong, look
at the sample requests or user scenarios to see if those examples are doing similar operations.

• Check the forum.

ElastiCache has a discussion forum where you can search for solutions to problems others have
experienced along the way. To view the forum, see

https://forums.aws.amazon.com/ .

Setting up the ElastiCache command line interface

This section describes the prerequisites for running the command line tools, where to get the
command line tools, how to set up the tools and their environment, and includes a series of
common examples of tool usage.

Follow the instructions in this topic only if you are going to the AWS CLI for ElastiCache.

Set up the AWS CLI for ElastiCache API Version 2015-02-02 1152

https://forums.aws.amazon.com/

Amazon ElastiCache for Redis User Guide

Important

The Amazon ElastiCache Command Line Interface (CLI) does not support any ElastiCache
improvements after API version 2014-09-30. To use newer ElastiCache functionality from
the command line, use the AWS Command Line Interface.

Topics

• Prerequisites

• Getting the command line tools

• Setting up the tools

• Providing credentials for the tools

• Environmental variables

Prerequisites

This document assumes that you can work in a Linux/UNIX or Windows environment. The Amazon
ElastiCache command line tools also work on Mac OS X, which is a UNIX-based environment;
however, no specific Mac OS X instructions are included in this guide.

As a convention, all command line text is prefixed with a generic PROMPT> command line prompt.
The actual command line prompt on your machine is likely to be different. We also use $ to
indicate a Linux/UNIX specific command and C:\> for a Windows specific command. The example
output resulting from the command is shown immediately thereafter without any prefix.

The Java runtime environment

The command line tools used in this guide require Java version 5 or later to run. Either a JRE or JDK
installation is acceptable. To view and download JREs for a range of platforms, including Linux/
UNIX and Windows, see Java SE Downloads.

Setting the Java home variable

The command line tools depend on an environment variable (JAVA_HOME) to locate the Java
Runtime. This environment variable should be set to the full path of the directory that contains
a subdirectory named bin which in turn contains the executable java (on Linux and UNIX) or
java.exe (on Windows) executable.

Prerequisites API Version 2015-02-02 1153

https://aws.amazon.com/cli
http://www.oracle.com/technetwork/java/javase/downloads/index.html

Amazon ElastiCache for Redis User Guide

To set the Java Home variable

1. Set the Java Home variable.

• On Linux and UNIX, enter the following command:

$ export JAVA_HOME=<PATH>

• On Windows, enter the following command:

C:\> set JAVA_HOME=<PATH>

2. Confirm the path setting by running $JAVA_HOME/bin/java -version and checking the
output.

• On Linux/UNIX, you will see output similar to the following:

$ $JAVA_HOME/bin/java -version
java version "1.6.0_23"
Java(TM) SE Runtime Environment (build 1.6.0_23-b05)
Java HotSpot(TM) Client VM (build 19.0-b09, mixed mode, sharing)

• On Windows, you will see output similar to the following:

C:\> %JAVA_HOME%\bin\java -version
java version "1.6.0_23"
Java(TM) SE Runtime Environment (build 1.6.0_23-b05)
Java HotSpot(TM) Client VM (build 19.0-b09, mixed mode, sharing)

Getting the command line tools

The command line tools are available as a ZIP file on the ElastiCache Developer Tools web site.
These tools are written in Java, and include shell scripts for Windows 2000/XP/Vista/Windows
7, Linux/UNIX, and Mac OSX. The ZIP file is self-contained and no installation is required; simply
download the zip file and unzip it to a directory on your local machine.

Getting the command line tools API Version 2015-02-02 1154

https://aws.amazon.com/developertools/Amazon-ElastiCache

Amazon ElastiCache for Redis User Guide

Setting up the tools

The command line tools depend on an environment variable (AWS_ELASTICACHE_HOME) to locate
supporting libraries. You need to set this environment variable before you can use the tools. Set
it to the path of the directory you unzipped the command line tools into. This directory is named
ElastiCacheCli-A.B.nnnn (A, B and n are version/release numbers), and contains subdirectories
named bin and lib.

To set the AWS_ELASTICACHE_HOME environment variable

• Open a command line window and enter one of the following commands to set the
AWS_ELASTICACHE_HOME environment variable.

• On Linux and UNIX, enter the following command:

$ export &AWS;_ELASTICACHE_HOME=<path-to-tools>

• On Windows, enter the following command:

C:\> set &AWS;_ELASTICACHE_HOME=<path-to-tools>

To make the tools easier to use, we recommend that you add the tools' BIN directory to your
system PATH. The rest of this guide assumes that the BIN directory is in your system path.

To add the tools' BIN directory to your system path

• Enter the following commands to add the tools' BIN directory to your system PATH.

• On Linux and UNIX, enter the following command:

$ export PATH=$PATH:$&AWS;_ELASTICACHE_HOME/bin

• On Windows, enter the following command:

C:\> set PATH=%PATH%;%&AWS;_ELASTICACHE_HOME%\bin

Setting up the tools API Version 2015-02-02 1155

Amazon ElastiCache for Redis User Guide

Note

The Windows environment variables are reset when you close the command window.
You might want to set them permanently. Consult the documentation for your version of
Windows for more information.

Note

Paths that contain a space must be wrapped in double quotes, for example:
"C:\Program Files\Java"

Providing credentials for the tools

The command line tools need the AWS Access Key and Secret Access Key provided with your AWS
account. You can get them using the command line or from a credential file located on your local
system.

The deployment includes a template file ${AWS_ELASTICACHE_HOME}/credential-file-
path.template that you need to edit with your information. Following are the contents of the
template file:

AWSAccessKeyId=<Write your AWS access ID>
AWSSecretKey=<Write your AWS secret key>

Important

On UNIX, limit permissions to the owner of the credential file:

$ chmod 600 <the file created above>

With the credentials file setup, you'll need to set the AWS_CREDENTIAL_FILE environment variable
so that the ElastiCache tools can find your information.

Providing credentials for the tools API Version 2015-02-02 1156

Amazon ElastiCache for Redis User Guide

To set the AWS_CREDENTIAL_FILE environment variable

1. Set the environment variable:

• On Linux and UNIX, update the variable using the following command:

$ export &AWS;_CREDENTIAL_FILE=<the file created above>

• On Windows, set the variable using the following command:

C:\> set &AWS;_CREDENTIAL_FILE=<the file created above>

2. Check that your setup works properly, run the following command:

elasticache --help

You should see the usage page for all ElastiCache commands.

Environmental variables

Environment variables can be useful for scripting, configuring defaults or temporarily overriding
them.

In addition to the AWS_CREDENTIAL_FILE environment variable, most API tools included with the
ElastiCache Command Line Interface support the following variables:

• EC2_REGION — The AWS region to use.

• AWS_ELASTICACHE_URL — The URL to use for the service call. Not required to specify a
different regional endpoint if EC2_REGION is specified or the --region parameter is passed.

The following examples show how to set the environmental variable EC2_REGION to configure the
region used by the API tools:

Linux, OS X, or Unix

$ export EC2_REGION=us-west-1

Windows

Environmental variables API Version 2015-02-02 1157

Amazon ElastiCache for Redis User Guide

$ set EC2_REGION=us-west-1

Amazon ElastiCache error messages

The following error messages are returned by Amazon ElastiCache. You may receive other error
messages that are returned by ElastiCache, other AWS services, or by Redis. For descriptions of
error messages from sources other than ElastiCache, see the documentation from the source that is
generating the error message.

• Cluster node quota exceeded

• Customer's node quota exceeded

• Manual snapshot quota exceeded

• Insufficient cache cluster capacity

Error Message: Cluster node quota exceeded. Each cluster can have at most %n nodes in this
region.

Cause: You attempted to create or modify a cluster with the result that the cluster would have
more than %n nodes.

Solution: Change your request so that the cluster does not have more than %n nodes. Or, if
you need more than %n nodes, make your request using the Amazon ElastiCache Node request
form.

For more information, see Amazon ElastiCache Limits in Amazon Web Services General
Reference.

Error Messages: Customer node quota exceeded. You can have at most %n nodes in this region
Or, You have already reached your quota of %s nodes in this region.

Cause: You attempted to create or modify a cluster with the result that your account would
have more than %n nodes across all clusters in this region.

Solution: Change your request so that the total nodes in the region across all clusters for this
account does not exceed %n. Or, if you need more than %n nodes, make your request using the
Amazon ElastiCache Node request form.

Error messages API Version 2015-02-02 1158

https://aws.amazon.com/contact-us/elasticache-node-limit-request/
https://aws.amazon.com/contact-us/elasticache-node-limit-request/
https://docs.aws.amazon.com/general/latest/gr/aws_service_limits.html#limits_elasticache
https://aws.amazon.com/contact-us/elasticache-node-limit-request/

Amazon ElastiCache for Redis User Guide

For more information, see Amazon ElastiCache Limits in Amazon Web Services General
Reference.

Error Messages: The maximum number of manual snapshots for this cluster taken within 24
hours has been reached or The maximum number of manual snapshots for this node taken
within 24 hours has been reached its quota of %n

Cause: You attempted to take a manual snapshot of a cluster when you have already taken the
maximum number of manual snapshots allowed in a 24-hour period.

Solution: Wait 24 hours to attempt another manual snapshot of the cluster. Or, if you need to
take a manual snapshot now, take the snapshot of another node that has the same data, such
as a different node in a cluster.

Error Messages: InsufficientCacheClusterCapacity

Cause: AWS does not currently have enough available On-Demand capacity to service your
request.

Solution:

• Wait a few minutes and then submit your request again; capacity can shift frequently.

• Submit a new request with a reduced number of nodes or shards (node groups). For example,
if you're making a single request to launch 15 nodes, try making 3 requests of 5 nodes, or 15
requests for 1 node instead.

• If you're launching a cluster, submit a new request without specifying an Availability Zone.

• If you're launching a cluster, submit a new request using a different node type (which you can
scale up at a later stage). For more information, see Scaling ElastiCache for Redis .

Notifications

This topic covers ElastiCache notifications that you might be interested in. A notification is a
situation or event that, in most cases, is temporary, lasting only until a solution is found and
implemented. Notifications generally have a start date and a resolution date, after which the

Notifications API Version 2015-02-02 1159

https://docs.aws.amazon.com/general/latest/gr/aws_service_limits.html#limits_elasticache

Amazon ElastiCache for Redis User Guide

notification is no longer relevant. Any one notification might or might not be relevant to you. We
recommend an implementation guideline that, if followed, improves the performance of your
cluster.

Notifications do not announce new or improved ElastiCache features or functionality.

General ElastiCache notifications

Currently there are no outstanding ElastiCache notifications that are not engine specific.

ElastiCache for Redis specific notifications

There are currently no outstanding ElastiCache for Redis notifications.

General ElastiCache notifications API Version 2015-02-02 1160

Amazon ElastiCache for Redis User Guide

ElastiCache for Redis Documentation history

• API version: 2015-02-02

• Latest documentation update: November 27, 2023

The following table describes important changes in each release of the ElastiCache for Redis User
Guide after March 2018. For notification about updates to this documentation, you can subscribe to
the RSS feed.

Recent ElastiCache for Redis Updates

Change Description Date

ElastiCache for Redis added
support for additional C7gn
node sizes

ElastiCache for Redis added
support for additional C7gn
node sizes.

January 10, 2024

ElastiCache for Redis now
supports creation of serverles
s caches

You can now create serverles
s caches, which simplify cache
management and instantly
scale to support the most
demanding applications.
For more information, see
Choosing between deploymen
t options. As part of this
feature, new permissions
were added to ElastiCac
heServiceRolePolicy
and AmazonElastiCacheF
ullAccess to allow
association of serverless
caches with managed VPC
endpoints. Additionally,
permissions were added to
support a revised console
experience using AmazonEla

November 27, 2023

API Version 2015-02-02 1161

https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/WhatIs.deployment.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/WhatIs.deployment.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/IAM.IdentityBasedPolicies.PredefinedPolicies.html

Amazon ElastiCache for Redis User Guide

stiCacheFullAccess
policy.

ElastiCache for Redis now
supports modifying cluster
mode

You can now migrate clusters
from Cluster Mode Disabled
(CMD) to Cluster Mode
Enabled (CME). For more
information, see Modifying
cluster mode.

May 11, 2023

ElastiCache for Redis now
supports modifying in-transit
encryption settings

You can now change the TLS
configuration of your Redis
clusters without the need to
re-build or re-provision the
clusters or impact applicati
on availability. For more
information, see Enabling
in-transit encryption for an
existing cluster.

December 28, 2022

ElastiCache for Redis now
supports authenticating users
using IAM

IAM Authentication allows
you to authenticate a
connection to ElastiCache for
Redis using AWS IAM identitie
s. This allows you to strengthe
n your security model and
simplify many administrative
security tasks. For more
information, see Authentic
ating with IAM.

November 16, 2022

API Version 2015-02-02 1162

https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/modify-cluster-mode.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/modify-cluster-mode.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/in-transit-encryption.html#in-transit-encryption-enable-existing
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/in-transit-encryption.html#in-transit-encryption-enable-existing
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/in-transit-encryption.html#in-transit-encryption-enable-existing
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/auth-iam.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/auth-iam.html

Amazon ElastiCache for Redis User Guide

ElastiCache for Redis now
supports Redis 7

This release brings several
new features to Amazon
ElastiCache for Redis: Redis
functions, ACL improveme
nts and Sharded Pub/Sub.
 For more information, see
ElastiCache for Redis version
7.0.

November 8, 2022

ElastiCache for Redis now
supports IPV6

ElastiCache supports the
Internet Protocol versions
4 and 6 (IPv4 and IPv6),
allowing you to configure
your cluster to accept only
IPv4 connections, only IPv6
connections or both IPv4
and IPv6 connections (dual-
stack). IPv6 is supported
for workloads using Redis
engine version 6.2 onward
on all instances built on
the Nitro system. There are
no additional charges for
accessing ElastiCache over
IPv6. For more information,
see Choosing a network type.

November 7, 2022

API Version 2015-02-02 1163

https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/supported-engine-versions.html#redis-version-7.0
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/supported-engine-versions.html#redis-version-7.0
https://aws.amazon.com/ec2/nitro/
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/network-type.html

Amazon ElastiCache for Redis User Guide

ElastiCache for Redis now
supports native JavaScrip
t Object Notation (JSON)
format

The native JavaScript Object
Notation (JSON) format is a
simple, schemaless way to
encode complex datasets
inside Redis clusters. You can
natively store and access data
using the JavaScript Object
Notation (JSON) format inside
Redis clusters and update
JSON data stored in those
clusters, without needing
to manage custom code to
serialize and deserialize it. For
more information, see Getting
started with JSON.

May 25, 2022

ElastiCache now supports
PrivateLink

AWS PrivateLink allows you
to privately access ElastiCac
he API operations without
an internet gateway, NAT
device, VPN connection, or
AWS Direct Connect connectio
n. For more information,
see Amazon ElastiCache API
and interface VPC endpoints
(AWS PrivateLink) for Redis or
Amazon ElastiCache API and
interface VPC endpoints (AWS
PrivateLink) for Memcached.

January 24, 2022

API Version 2015-02-02 1164

https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/json-gs.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/json-gs.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/elasticache-privatelink.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/elasticache-privatelink.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/elasticache-privatelink.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/mem-ug/elasticache-privatelink.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/mem-ug/elasticache-privatelink.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/mem-ug/elasticache-privatelink.html

Amazon ElastiCache for Redis User Guide

ElastiCache for Redis now
supports Redis 6.2 and Data
Tiering

Amazon ElastiCache for
Redis introduces the next
version of the Redis engine
supported by Amazon
ElastiCache. ElastiCache for
Redis 6.2 includes performan
ce improvements for TLS-
enabled clusters using x86
node types with 8 vCPUs or
more or Graviton2 node types
with 4 vCPUs or more. ElastiC
ache for Redis also introduces
data tiering. You can use data
tiering as a lower-cost way
to scale your clusters to up
to hundreds of terabytes of
capacity. For more informati
on, see ElastiCache for Redis
version 6.2 (enhanced) and
Data tiering.

November 23, 2021

Support for Auto Scaling ElastiCache for Redis now
supports Auto Scaling.
ElastiCache for Redis auto
scaling is the ability to
increase or decrease the
desired shards or replicas
in your ElastiCache for
Redis service automatically.
ElastiCache leverages the
Application Auto Scaling
service to provide this
functionality. For more
information, see Auto Scaling
ElastiCache for Redis clusters.

August 19, 2021

API Version 2015-02-02 1165

https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/supported-engine-versions.html#redis-version-6.2
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/supported-engine-versions.html#redis-version-6.2
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/data-tiering.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/AutoScaling.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/AutoScaling.html

Amazon ElastiCache for Redis User Guide

Support for delivery of Redis
Slow logs

ElastiCache now lets you
stream Redis SLOWLOG to
one of two destinations:
Amazon Data Firehose or
Amazon CloudWatch Logs.
For more information, see Log
delivery.

April 22, 2021

Support for tagging resources
and condition keys

ElastiCache now supports
tagging to help you manage
your clusters and other
ElastiCache resources. For
more information, see
Tagging your ElastiCac
he resources. ElastiCache
also introduces support
for condition keys. You
can specify conditions that
determine how an IAM
policy takes effect. For more
information, see Using
condition keys.

April 7, 2021

ElastiCache is now available
on AWS Outposts

AWS Outposts bring native
AWS services, infrastructure,
and operating models to
virtually any data center, co-
location space, or on-premis
es facility. You can deploy
ElastiCache on Outposts
to set up, operate, and use
cache on-premises, just as
you would in the cloud. For
more information, see Using
Outposts for Redis or Using
Outposts for Memcached.

October 8, 2020

API Version 2015-02-02 1166

https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/Log_Delivery.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/Log_Delivery.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/Tagging-Resources.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/Tagging-Resources.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/IAM.ConditionKeys.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/IAM.ConditionKeys.html
https://aws.amazon.com/outposts/
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/ElastiCache-Outposts.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/ElastiCache-Outposts.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/mem-ug/ElastiCache-Outposts.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/mem-ug/ElastiCache-Outposts.html

Amazon ElastiCache for Redis User Guide

ElastiCache now supports
Redis 6

Amazon ElastiCache for Redis
introduces the next version of
the Redis engine supported
by Amazon ElastiCache. This
 version includes authentic
ating users with role-based
access control, versionless s
upport, client-side caching,
and significant operational
improvements. For more
 information, see ElastiCac
he for Redis Version 6.0
(Enhanced).

October 7, 2020

ElastiCache now supports
Local Zones

A Local Zone is an extension
of an AWS Region that is g
eographically close to your
users. You can extend any
virtual private cloud (VPC)
from a parent AWS Region
into Local Zones by creating
a new subnet and assigning
it to a Local Zone. For more
information, see Using Local
Zones.

September 25, 2020

API Version 2015-02-02 1167

https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/Clusters.RBAC.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/Clusters.RBAC.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/Clusters.RBAC.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/supported-engine-versions.html#redis-version-6.0.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/supported-engine-versions.html#redis-version-6.0.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/supported-engine-versions.html#redis-version-6.0.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/Local_zones.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/Local_zones.html

Amazon ElastiCache for Redis User Guide

ElastiCache for Redis now
supports scaling your Redis
Cluster environment up to
500 nodes or 500 shards

The Redis Cluster mode
makes configurations possible
that you can use to partition
your data across multiple
shards and offers better
scalability, performance, and
availability. This feature is
available on Amazon ElastiCac
he for Redis version 5.0.6
onwards in all AWS Regions
and for all existing and new
ElastiCache for Redis Cluster
 environments. For more
information, see Redis Nodes
 and Shards.

August 13, 2020

ElastiCache now supports
resource-level permissions

You can now restrict the
scope of a user's permissio
ns by specifying ElastiCache
resources in an AWS Identity
and Access Managemen
t (IAM) policy. For more
 information, see Resource-
level permissions.

August 12, 2020

ElastiCache for Redis adds
additional Amazon CloudWatc
h metrics

ElastiCache for Redis now
supports new CloudWatch
metrics, including PubSubCmd
s and HyperLogL
ogBasedCmds . For a full
list, see Metrics for Redis.

June 10, 2020

API Version 2015-02-02 1168

https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/CacheNodes.NodeGroups.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/CacheNodes.NodeGroups.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/IAM.ResourceLevelPermissions.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/IAM.ResourceLevelPermissions.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/CacheMetrics.Redis.html

Amazon ElastiCache for Redis User Guide

ElastiCache now supports
auto-update of ElastiCache
clusters

Amazon ElastiCache now
supports auto-update of
ElastiCache clusters after
the "recommended apply by
date" of service update has
passed. ElastiCache will use
your maintenance window to
schedule the auto-update of
applicable clusters. For more
 information, see Self-service
updates.

May 13, 2020

ElastiCache for Redis now
supports Global Datastore for
Redis

The Global Datastore for
Redis feature offers fully
managed, fast, reliable, and
secure replication across
AWS Regions. Using this
feature, you can create cross-
Region read replica clusters
for ElastiCache for Redis to
enable low-latency reads
and disaster recovery across
AWS Regions. You can create,
modify, and describe a global
 datastore. You can also add
or remove AWS Regions from
your global datastore and
promote an AWS Region
as primary within a global
datastore. For more informat
ion, see Replication Across
AWS Regions Using Global
Datastore.

March 16, 2020

API Version 2015-02-02 1169

https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/Self-Service-Updates.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/Self-Service-Updates.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/Redis-Global-Datastore.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/Redis-Global-Datastore.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/Redis-Global-Datastore.html

Amazon ElastiCache for Redis User Guide

ElastiCache for Redis now
supports Redis version 5.0.6

For more information, see
ElastiCache for Redis Version
5.0.6 (Enhanced).

December 18, 2019

Amazon ElastiCache now
supports T3-Standard cache
nodes

You can now launch the next
generation general-purpose
burstable T3-Standard cache
nodes in Amazon ElastiCache.
Amazon EC2’s T3-Standard
instances provide a baseline
level of CPU performance
with the ability to burst CPU
usage at any time until the
accrued credits are exhausted
. For more information, see
Supported Node Types.

November 12, 2019

API Version 2015-02-02 1170

https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/supported-engine-versions.html#redis-version-5-0.6
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/supported-engine-versions.html#redis-version-5-0.6
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/CacheNodes.SupportedTypes.html

Amazon ElastiCache for Redis User Guide

Amazon ElastiCache now
supports modifying the AUTH
token on an existing ElastiCac
he for Redis server

ElastiCache for Redis 5.0.6
now enables you to modify
authentication tokens
by setting and rotating
new tokens. You can now
modify active tokens while
they're in use. You can also
add brand-new tokens to
existing clusters enabled
with encryption in transit
that were previously set
up without authentication
tokens. This is a two-step
process by which you can set
and rotate the token without
interrupting client requests.
 This feature is currently not
supported on AWS CloudForm
ation. For more information,
see Authenticating Users with
the Redis AUTH Command.

October 30, 2019

Amazon ElastiCache now
supports online data
migration from Redis on
Amazon EC2

You can now use Online
Migration to migrate your
data from self-hosted
Redis on Amazon EC2 to
Amazon ElastiCache. For
more information, see Online
Migration to ElastiCache.

October 28, 2019

API Version 2015-02-02 1171

https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/auth.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/auth.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/OnlineMigration.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/OnlineMigration.html

Amazon ElastiCache for Redis User Guide

ElastiCache for Redis
introduces online vertical
scaling for Redis Cluster
mode.

You can now scale up or
scale down your sharded
Redis Cluster on demand.
ElastiCache for Redis resizes
your cluster by changing the
node type, while the cluster
continues to stay online and
serve incoming requests. For
more information, see Online
Vertical Scaling by Modifying
Node Type.

August 20, 2019

ElastiCache for Redis now
allows users to use a single
reader endpoint for your
Amazon ElastiCache for Redis
cluster.

This feature allows you
to direct all read traffic to
your ElastiCache for Redis
cluster through a single,
cluster-level endpoint to take
advantage of load balancing
and higher availability. For
more information, see Finding
connection endpoints.

June 13, 2019

API Version 2015-02-02 1172

https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/redis-cluster-vertical-scaling.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/redis-cluster-vertical-scaling.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/redis-cluster-vertical-scaling.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/Endpoints.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/Endpoints.html

Amazon ElastiCache for Redis User Guide

ElastiCache for Redis now
allows users to apply service
updates on their own
schedule

With this feature, you can
choose to apply available
service updates at a time of
your choosing and not just
during maintenance windows.
This will minimize service
interruptions, particularly
during peak business flows,
and help ensure you remain
compliant if your cluster is
in ElastiCache-supported
compliance programs. For
more information, see Self-
Service Updates in Amazon
ElastiCache and Complianc
e validation for Amazon
ElastiCache.

June 4, 2019

ElastiCache Standard
Reserved Instance offerings
: Partial Upfront, All Upfront
and No Upfront.

Reserved Instances give you
the flexibility to reserve an
Amazon ElastiCache instance
for a one- or three-year term
based on an instance type
and AWS Region. For more
information, see Managing
Costs with Reserved Nodes.

January 18, 2019

ElastiCache for Redis support
for up to 250 nodes per Redis
cluster

The node or shard limit can
be increased to a maximum of
250 per ElastiCache for Redis
cluster. For more information,
see Shards.

November 19, 2018

API Version 2015-02-02 1173

https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/Self-Service-Updates.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/Self-Service-Updates.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/Self-Service-Updates.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/elasticache-compliance.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/elasticache-compliance.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/elasticache-compliance.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/reserved-nodes.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/reserved-nodes.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/Shards.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/Shards.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/Shards.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/Shards.html

Amazon ElastiCache for Redis User Guide

ElastiCache for Redis support
for autofailover and backup
and restore on all T2 nodes

ElastiCache for Redis
introduces support for
autofailover, creating
snapshots, and backup and
restore on all T2 nodes.
For more information, see
ElastiCache for Redis Backup
and Restore and Snapshot.

November 19, 2018

ElastiCache for Redis support
for M5 and R5 nodes

ElastiCache for Redis now
supports M5 and R5 nodes,
general-purpose and
memory-optimized instance
types based on the AWS Nitro
System. For more informati
on, see Supported Node
Types.

October 23, 2018

Support for dynamically
changing the number of read
replicas

ElastiCache for Redis has
added support for adding
and removing read replicas
from any cluster with no c
luster downtime. For more
information about these and
other changes in this release,
see Changing the Number of
Replicas in the ElastiCache
for Redis User Guide. See also
DecreaseReplicaCount and
IncreaseReplicaCount in the
ElastiCache API Reference.

September 17, 2018

API Version 2015-02-02 1174

https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/backups.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/backups.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/APIReference/API_Snapshot.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/CacheNodes.SupportedTypes.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/CacheNodes.SupportedTypes.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/CacheNodes.SupportedTypes.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/CacheNodes.SupportedTypes.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/increase-decrease-replica-count.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/increase-decrease-replica-count.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/increase-decrease-replica-count.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/increase-decrease-replica-count.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/increase-decrease-replica-count.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/APIReference/API_DecreaseReplicaCount.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/APIReference/API_IncreaseReplicaCount.html

Amazon ElastiCache for Redis User Guide

FedRAMP compliance certifica
tion

ElastiCache for Redis is
now certified for FedRAMP
compliance. For more
information, see Complianc
e validation for Amazon
ElastiCache.

August 30, 2018

Redis (cluster mode enabled)
engine upgrades

Amazon ElastiCache for
Redis has added support
for upgrading Redis (cluster
mode enabled) engine
versions. For more informat
ion, see Upgrading Engine
Versions.

August 20, 2018

PCI DSS compliance certifica
tion

ElastiCache for Redis is
now certified for PCI DSS
compliance. For more
information, see Complianc
e validation for Amazon
ElastiCache.

July 5, 2018

Support for ElastiCache for
Redis 4.0.10

ElastiCache for Redis now
supports Redis 4.0.10,
including both encryption
and online cluster resizing
in a single version. For more
information, see ElastiCac
he for Redis Version 4.0.10
(Enhanced).

June 14, 2018

API Version 2015-02-02 1175

https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/elasticache-compliance.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/elasticache-compliance.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/elasticache-compliance.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/elasticache-compliance.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/elasticache-compliance.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/VersionManagement.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/VersionManagement.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/VersionManagement.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/VersionManagement.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/elasticache-compliance.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/elasticache-compliance.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/elasticache-compliance.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/elasticache-compliance.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/elasticache-compliance.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/supported-engine-versions.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/supported-engine-versions.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/supported-engine-versions.html#redis-version-4-0-10
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/supported-engine-versions.html#redis-version-4-0-10
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/supported-engine-versions.html#redis-version-4-0-10

Amazon ElastiCache for Redis User Guide

User Guide restructure The single ElastiCache User
Guide is now restructured so
that there are separate user
guides for Redis (ElastiCac
he for Redis User Guide) and
for Memcached (ElastiCache
for Memcached User Guide).
The documentation structure
in the AWS CLI Command
Reference: elasticache section
and the Amazon ElastiCac
he API Reference remain
unchanged.

April 20, 2018

Support for EngineCPU
Utilization metric

ElastiCache for Redis added
a new metric, EngineCPU
Utilization , which
reports the percentage of
your CPU's capacity that
is currently being used.
For more information, see
 Metrics for Redis.

April 9, 2018

The following table describes the important changes to the ElastiCache for Redis User Guide before
March 2018.

Change Description Date Changed

Support for Asia
Pacific (Osaka-lo
cal) Region.

ElastiCache added support for the Asia Pacific
(Osaka-local) Region. The Asia Pacific (Osaka)
 Region currently supports a single Availability
Zone and is by invitation only. For more informati
on, see the following:

•
Supported Regions

February 12, 2018

API Version 2015-02-02 1176

https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/WhatIs.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/WhatIs.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/mem-ug/WhatIs.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/mem-ug/WhatIs.html
https://docs.aws.amazon.com/cli/latest/reference/elasticache/index.html
https://docs.aws.amazon.com/cli/latest/reference/elasticache/index.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/APIReference/Welcome.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/APIReference/Welcome.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/CacheMetrics.Redis.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/CacheMetrics.Redis.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/CacheMetrics.Redis.html
https://docs.aws.amazon.com/https://docs.aws.amazon.com/AmazonElastiCache/latest/redis/SupportedRegions.html

Amazon ElastiCache for Redis User Guide

Change Description Date Changed

•
Supported cache node types

Support for EU
(Paris).

ElastiCache added support for the EU (Paris)
Region. For more information, see the following:

•
Supported Regions

•
Supported cache node types

December 18, 2017

Support for
China (Ningxia)
Region

Amazon ElastiCache added support for China
(Ningxia) Region. For more information, see the
following:

•
 Supported Regions

•
Supported cache node types

December 11, 2017

Support for
Service Linked
Roles

This release of ElastiCache added support for
Service Linked Roles (SLR). For more information,
see the following:

•
Using Service-Linked Roles for Amazon
ElastiCache

•
Set up your permissions (new ElastiCache users
 only)

December 7, 2017

API Version 2015-02-02 1177

https://docs.aws.amazon.com/https://docs.aws.amazon.com/AmazonElastiCache/latest/redis/CacheNodes.SupportedTypes.html
https://docs.aws.amazon.com/https://docs.aws.amazon.com/AmazonElastiCache/latest/redis/SupportedRegions.html
https://docs.aws.amazon.com/https://docs.aws.amazon.com/AmazonElastiCache/latest/redis/CacheNodes.SupportedTypes.html
https://docs.aws.amazon.com/https://docs.aws.amazon.com/AmazonElastiCache/latest/redis/SupportedRegions.html
https://docs.aws.amazon.com/https://docs.aws.amazon.com/AmazonElastiCache/latest/redis/CacheNodes.SupportedTypes.html

Amazon ElastiCache for Redis User Guide

Change Description Date Changed

Support for R4
node types

This release of ElastiCache added support R4
node types in all AWS Regions supported by
ElastiCache. You can purchase R4 node types as
On-Demand or as Reserved Cache Nodes. For
more information, see the following:

•
Supported cache node types

•
Redis node-type specific parameters

November 20, 2017

ElastiCache for
Redis 3.2.10
and support for
online reshardin
g

Amazon ElastiCache for Redis adds support for
ElastiCache for Redis 3.2.10. ElastiCache for
Redis also introduces online cluster resizing to
add or remove shards from the cluster while it
continues to serve incoming I/O requests. For
more information, see the following:

•
Online cluster resizing

•
Online resharding and shard rebalancing for
Redis (cluster mode enabled)

November 9, 2017

HIPAA eligibility ElastiCache for Redis version 3.2.6 is now certified
for HIPAA eligibility when encryption is enabled
on your cluster. For more information, see the
following:

• Compliance validation for Amazon ElastiCache

• Data security in Amazon ElastiCache

November 2, 2017

API Version 2015-02-02 1178

https://docs.aws.amazon.com/https://docs.aws.amazon.com/AmazonElastiCache/latest/redis/CacheNodes.SupportedTypes.html

Amazon ElastiCache for Redis User Guide

Change Description Date Changed

ElastiCache
for Redis 3.2.6
and support for
encryption

ElastiCache adds support for ElastiCache for Redis
3.2.6, which includes two encryption features:

•
In-transit encryption encrypts your data
whenever it is in transit, such as between
nodes in a cluster or between a cluster and
your application.

•
At-rest encryption encrypts your on-disk data
during sync and backup operations.

For more information, see the following:

• Data security in Amazon ElastiCache

• Supported ElastiCache for Redis versions

October 25, 2017

Connection
patterns topic

ElastiCache documentation adds a topic covering
various patterns for accessing an ElastiCache
 cluster in an Amazon VPC.

For more information, see Access Patterns for
Accessing an ElastiCache Cache in an Amazon VPC
in the ElastiCache User Guide.

April 24, 2017

Support
for testing
Automatic
Failover

ElastiCache adds support for testing Automatic
Failover on Redis clusters that support rep
lication. For more information, see the following:

•
Testing automatic failover in the ElastiCache
User Guide.

•
TestFailover in the ElastiCache API Reference.

•
test-failover in the AWS CLI Reference.

April 4, 2017

API Version 2015-02-02 1179

https://docs.aws.amazon.com/AmazonElastiCache/latest/APIReference/API_TestFailover.html
https://docs.aws.amazon.com/cli/latest/reference/elasticache/test-failover.html

Amazon ElastiCache for Redis User Guide

Change Description Date Changed

Enhanced Redis
restore

ElastiCache adds enhanced Redis backup and
restore with cluster resizing. This feature sup
ports restoring a backup to a cluster with a
different number of shards than the cluster
used to create the backup. (For the API and CLI,
 this feature can restore a different number of
node groups rather than a different number of
shards.) This update also supports different Redis
 slot configurations. For more information, see
Restoring from a backup into a new cache.

March 15, 2017

New Redis
memory
management
parameter

ElastiCache adds a new Redis parameter,
reserved-memory-percent , which makes
 managing your reserved memory easier. This
parameter is available on all versions of ElastiCac
he for Redis. For more information, see the
following:

• Managing Reserved Memory

• New parameters for Redis 3.2.4

March 15, 2017

Support for EU
West (London)
Region

ElastiCache adds support for EU (London)
Region. Only node types T2 and M4 are currently
 supported. For more information, see the
following:

• Supported Regions

• Supported cache node types

December 13, 2016

API Version 2015-02-02 1180

https://docs.aws.amazon.com/https://docs.aws.amazon.com/AmazonElastiCache/latest/redis/SupportedRegions.html
https://docs.aws.amazon.com/https://docs.aws.amazon.com/AmazonElastiCache/latest/redis/CacheNodes.SupportedTypes.html

Amazon ElastiCache for Redis User Guide

Change Description Date Changed

Support
for Canada
(Montreal)
Region

ElastiCache adds support for the Canada
(Montreal) Region. Only node type M4 and T2 are
 currently supported in this AWS Region. For more
information, see the following:

• Supported Regions

• Supported cache node types

December 8, 2016

Support for M4
and R3 node
types

ElastiCache adds support for R3 and M4 node
types in South America (São Paulo) Region and
M4 node types in China (Beijing) Region. For
more information, see the following:

• Supported Regions

• Supported cache node types

November 1, 2016

US East 2 (Ohio)
Region support

ElastiCache adds support for the US East (Ohio)
Region (us-east-2) with M4, T2, and R3 node
types. For more information, see the following:

• Supported Regions

• Supported cache node types

October 17, 2016

API Version 2015-02-02 1181

https://docs.aws.amazon.com/https://docs.aws.amazon.com/AmazonElastiCache/latest/redis/SupportedRegions.html
https://docs.aws.amazon.com/https://docs.aws.amazon.com/AmazonElastiCache/latest/redis/CacheNodes.SupportedTypes.html
https://docs.aws.amazon.com/https://docs.aws.amazon.com/AmazonElastiCache/latest/redis/SupportedRegions.html
https://docs.aws.amazon.com/https://docs.aws.amazon.com/AmazonElastiCache/latest/redis/CacheNodes.SupportedTypes.html
https://docs.aws.amazon.com/https://docs.aws.amazon.com/AmazonElastiCache/latest/redis/SupportedRegions.html
https://docs.aws.amazon.com/https://docs.aws.amazon.com/AmazonElastiCache/latest/redis/CacheNodes.SupportedTypes.html

Amazon ElastiCache for Redis User Guide

Change Description Date Changed

Support for
Redis Cluster

ElastiCache adds support for Redis Cluster
(enhanced). Customers using Redis Cluster, can
partition their data across up to 15 shards (node
groups). Each shard supports replication with
up to 5 read replicas per shard. Redis Cluster
automatic failover times are about one fourth as
long as those of earlier versions.

This release includes a redesigned managemen
t console that uses terminology in keeping with
industry usage.

For more information, see the following:

•
Comparing Memcached and Redis

•
 ElastiCache for Redis components and features
— note the sections on Nodes, Shards,
Clusters, and Replication.

•
ElastiCache for Redis terminology

October 12, 2016

M4 node type
support

ElastiCache adds support for the M4 family of
node types in most AWS Regions supported by
 ElastiCache. You can purchase M4 node types
as On-Demand or as Reserved Cache Nodes. For
more information, see the following:

• Supported cache node types

• Redis node-type specific parameters

August 3, 2016

API Version 2015-02-02 1182

https://docs.aws.amazon.com/AmazonElastiCache/latest/UserGuide/SelectEngine.html
https://docs.aws.amazon.com/https://docs.aws.amazon.com/AmazonElastiCache/latest/redis/CacheNodes.SupportedTypes.html

Amazon ElastiCache for Redis User Guide

Change Description Date Changed

Mumbai Region
support

ElastiCache adds support for the Asia Pacific
(Mumbai) Region. For more information, see the
following:

• Supported cache node types

• Redis node-type specific parameters

June 27, 2016

Snapshot export ElastiCache adds the ability to export a Redis
snapshot so you can access it from outside Ela
stiCache. For more information, see the following:

• Exporting a backup in the Amazon ElastiCache
User Guide

• CopySnapshot in the Amazon ElastiCache API
Reference

May 26, 2016

Node type scale
up

ElastiCache adds the ability to scale up your Redis
node type. For more information, see Scaling
ElastiCache for Redis .

March 24, 2016

Easy engine
upgrade

ElastiCache adds the ability to easily upgrade
your Redis cache engine. For more information,
see Engine versions and upgrading .

March 22, 2016

Support for R3
node types

ElastiCache adds support for R3 node types in
the China (Beijing) Region and South America
(São Paulo) Region. For more information, see
Supported cache node types.

March 16, 2016

Accessing
ElastiCache
using a Lambda
function

Added a tutorial on configuring a Lambda
function to access ElastiCache in an Amazon VPC.
 For more information, see ElastiCache tutorials
and videos.

February 12, 2016

API Version 2015-02-02 1183

https://docs.aws.amazon.com/https://docs.aws.amazon.com/AmazonElastiCache/latest/redis/CacheNodes.SupportedTypes.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/APIReference/API_CopySnapshot.html
https://docs.aws.amazon.com/https://docs.aws.amazon.com/AmazonElastiCache/latest/redis/CacheNodes.SupportedTypes.html

Amazon ElastiCache for Redis User Guide

Change Description Date Changed

Support for
Redis 2.8.24

ElastiCache adds support for Redis version 2.8.24
with improvements added since Redis 2.8.23.
 Improvements include bug fixes and support for
logging bad memory access addresses. For more
information, see the following:

• ElastiCache for Redis version 2.8.24 (enhanced)

• Redis 2.8 Release Notes

January 20, 2016

Support for Asia
Pacific (Seoul)
Region

ElastiCache adds support for the Asia Pacific
(Seoul) (ap-northeast-2) Region with t2, m3, and
r3 node types.

January 6, 2016

Amazon
ElastiCache
console change.

Because the newer Redis versions provide a better
and more stable user experience, Redis versions
2.6.13, 2.8.6, and 2.8.19 are no longer listed in
the ElastiCache Management Console. For other
options and more information, see Supported
ElastiCache for Redis versions.

December 15, 2015

Support for
Redis 2.8.23.

ElastiCache adds support for Redis version 2.8.23
with improvements added since Redis 2.8.22.
 Improvements include bug fixes and support
for the new parameter close-on-slave-wri
te which, if enabled, disconnects clients who
attempt to write to a read-only replica. For more
information, see ElastiCache for Redis version
2.8.23 (enhanced).

November 13, 2015

API Version 2015-02-02 1184

https://raw.githubusercontent.com/antirez/redis/2.8/00-RELEASENOTES

Amazon ElastiCache for Redis User Guide

Change Description Date Changed

Support for
Redis 2.8.22.

ElastiCache adds support for Redis version 2.8.22
with ElastiCache added enhancements and
 improvements since version 2.8.21. Improveme
nts include:

•
Implementation of a forkless save process that
enables a successful save when low available
memory could cause a forked save to fail.

•
Additional CloudWatch metrics — SaveInPro
gress and ReplicationBytes.

•
To enable partial synchronizations, the Redis
parameter repl-backlog-size now applies
to all clusters.

For a complete list of changes and more informati
on, see ElastiCache for Redis version 2.8.22
(enhanced).

This documentation release includes a reorganiz
ation of the documentation and removal of
the ElastiCache command line interface (CLI)
documentation. For command line use, refer to
the AWS Command Line for ElastiCache.

September 28, 2015

Support for
Redis 2.8.21

ElastiCache adds support for Redis version 2.8.21
and Redis improvements since version 2.8.19.
 This Redis release includes several bug fixes. For
more information, see Redis 2.8 release notes.

July 29, 2015

New topic:
Accessing
ElastiCache from
outside AWS

Added new topic on how to access ElastiCache
resources from outside AWS. For more informati
on, see Accessing ElastiCache from outside AWS.

July 9, 2015

API Version 2015-02-02 1185

https://docs.aws.amazon.com/cli/latest/reference/elasticache/index.html
https://raw.githubusercontent.com/antirez/redis/2.8/00-RELEASENOTES
https://docs.aws.amazon.com/https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/access-from-outside-aws.html

Amazon ElastiCache for Redis User Guide

Change Description Date Changed

Node replaceme
nt messages
added

ElastiCache adds three messages pertaining to
scheduled node replacement, ElastiCache:Node
ReplacementScheduled, ElastiCache:Node
ReplacementRescheduled, and ElastiCache:Node
ReplacementCanceled.

For more information and actions you can take
when a node is scheduled for replacement, see
ElastiCache's Event Notifications and Amazon
SNS.

June 11, 2015

Support for
Redis v. 2.8.19.

ElastiCache adds support for Redis version 2.8.19
and Redis improvements since version 2.8.6. This
support includes support for:

•
The HyperLogLog data structure, with the
Redis commands PFADD, PFCOUNT, and
PFMERGE.

•
Lexicographic range queries with the new
commands ZRANGEBYLEX, ZLEXCOUNT, and
 ZREMRANGEBYLEX.

•
Introduced a number of bug fixes, namely
preventing a primary node from sending stale
data to replica nodes by failing the primary
SYNC when a background save (bgsave) child
process terminates unexpectedly.

For more information on HyperLogLog, see Redis
new data structure: the HyperLogLog.

For more information on PFADD, PFCOUNT, and
PFMERGE, see the Redis Documentation and click
HyperLogLog.

March 11, 2015

API Version 2015-02-02 1186

http://antirez.com/news/75
http://antirez.com/news/75
http://redis.io/documentation

Amazon ElastiCache for Redis User Guide

Change Description Date Changed

Support for cost
allocation tags

ElastiCache adds support for cost allocation tags.
 For more information, see Monitoring costs with
cost allocation tags.

February 9, 2015

Support for AWS
GovCloud (US-
West) Region

ElastiCache adds support for the AWS GovCloud
(US-West) (us-gov-west-1) Region.

January 29, 2015

Support for
Europe (Frankfur
t) Region

ElastiCache adds support for the Europe (Frankfur
t) (eu-central-1) Region.

January 19, 2015

Multi-AZ
support for
Redis replication
groups

ElastiCache adds support for Multi-AZ from the
primary node to a read replica in a Redis replicati
on group. ElastiCache monitors the health of the
 replication group. If the primary fails, ElastiCac
he automatically promotes a replica to primary,
then replaces the replica. For more information,
 see Minimizing downtime in ElastiCache for Redis
with Multi-AZ.

October 24, 2014

AWS CloudTrai
l logging of API
calls supported

ElastiCache adds support for using AWS CloudTrai
l to log all ElastiCache API calls. For more
information, see Logging Amazon ElastiCache API
calls with AWS CloudTrail.

September 15, 2014

New instance
sizes supported

ElastiCache adds support for additional General
Purpose (T2) instances. For more information, see
Configuring engine parameters using parameter
 groups.

September 11, 2014

New instance
sizes supported

ElastiCache adds support for additional General
Purpose (M3) instances and Memory Optimized (
R3) instances. For more information, see Configuri
ng engine parameters using parameter groups.

July 1, 2014

API Version 2015-02-02 1187

Amazon ElastiCache for Redis User Guide

Change Description Date Changed

Backup and
restore for Redis
clusters

In this release, ElastiCache allows customers
to create snapshots of their Redis clusters, and
create new clusters using these snapshots. A
backup is a copy of the cluster at a specific
moment in time, and consists of cluster
metadata and all of the data in the Redis cache.
Backups are stored in Amazon S3, and customers
can restore the data from a snapshot into a new
cluster at any time. For more information, see
Snapshot and restore.

April 24, 2014

Redis 2.8.6 ElastiCache supports Redis 2.8.6, in addition to
Redis 2.6.13. With Redis 2.8.6, customers can
 improve the resiliency and fault tolerance of
read replicas, with support for partial resynchro
nization, and a user-defined minimum number of
read replicas that must be available at all times.
Redis 2.8.6 also offers full support for publish-
and-subscribe, where clients can be notified of
events that occur on the server.

March 13, 2014

API Version 2015-02-02 1188

Amazon ElastiCache for Redis User Guide

Change Description Date Changed

Redis cache
engine

ElastiCache offers Redis cache engine software,
in addition to Memcached. Customers who
 currently use Redis can "seed" a new ElastiCac
he Redis cache cluster with their existing data
from a Redis snapshot file, easing migration to a
managed ElastiCache environment.

To support Redis replication capabilities, the
ElastiCache API now supports replication groups.
Customers can create a replication group with
a primary Redis cache node, and add one or
more read replica nodes that automatically stay
synchronized with cache data in the primary
node. Read-intensive applications can be
offloaded to a read replica, reducing the load on
the primary node. Read replicas can also guard
against data loss in the event of a primary cache
node failure.

September 3, 2013

Support for
default Amazon
Virtual Private
Cloud (VPC)

In this release, ElastiCache is fully integrated
with Amazon Virtual Private Cloud (VPC). For
 new customers, cache clusters are created in an
Amazon VPC by default. For more information,
see Amazon VPCs and ElastiCache security.

January 8, 2013

Support for
Amazon Virtual
Private Cloud
(VPC)

In this release, ElastiCache clusters can be
launched in Amazon Virtual Private Cloud (VPC).
By default, new customers' cache clusters are
created in an Amazon VPC automatically; existing
customers can migrate to Amazon VPC at their
own pace. For more information, see Amazon
VPCs and ElastiCache security.

December 20, 2012

New cache node
types

This release provides four additional cache node
types.

November 13, 2012

API Version 2015-02-02 1189

Amazon ElastiCache for Redis User Guide

Change Description Date Changed

Reserved cache
nodes

This release adds support for reserved cache
nodes.

April 5, 2012

New guide This is the first release of Amazon ElastiCache
User Guide.

August 22, 2011

API Version 2015-02-02 1190

Amazon ElastiCache for Redis User Guide

AWS Glossary

For the latest AWS terminology, see the AWS glossary in the AWS Glossary Reference.

API Version 2015-02-02 1191

https://docs.aws.amazon.com/glossary/latest/reference/glos-chap.html

	Amazon ElastiCache for Redis
	Table of Contents
	What is Amazon ElastiCache for Redis?
	Serverless caching
	Designing your own ElastiCache for Redis cluster
	Related services
	How it works
	Cache and caching engines
	How ElastiCache for Redis works
	Pricing dimensions
	ElastiCache for Redis backups

	Choosing between deployment options
	Comparing serverless caching and self-designed clusters

	Amazon ElastiCache resources
	AWS Regions and Availability Zones
	Common ElastiCache Use Cases and How ElastiCache Can Help
	In-Memory Data Store
	What Should I Cache?

	Gaming Leaderboards (Redis Sorted Sets)
	Messaging (Redis Pub/Sub)
	Subscribing
	Publishing

	Recommendation Data (Redis Hashes)
	Other Redis Uses
	ElastiCache Customer Testimonials

	Getting started with Amazon ElastiCache for Redis
	Setting up
	Sign up for an AWS account
	Create an administrative user
	Grant programmatic access
	Set up your permissions (new ElastiCache users only)
	Set up EC2
	Grant network access from an Amazon VPC security group to your cache
	Download and set up redis-cli

	Step 1: Create a cache
	Step 2: Read and write data to the cache
	Connect to your Redis Cache (Linux)
	Connect to your Redis Cache (Windows)

	Step 3: (Optional) Clean up
	Next Steps
	Getting Started with ElastiCache and AWS SDKs
	Python and ElastiCache
	Tutorial Prerequisites
	Creating ElastiCache clusters and users
	Create a cluster mode disabled cluster
	Create a cluster mode disabled cluster with TLS and RBAC
	Create a cluster mode enabled cluster
	Create a cluster mode enabled cluster with TLS and RBAC
	Check if users/usergroup exists, otherwise create them

	Connecting to ElastiCache
	Connecting to a cluster mode disabled cluster
	Connecting to a cluster mode enabled cluster

	Usage examples
	Set and Get strings
	Set and Get a hash with multiple items
	Publish (write) and subscribe (read) from a Pub/Sub channel
	Write and read from a stream

	Tutorial: Configuring a Lambda function to access Amazon ElastiCache in an Amazon VPC
	Step 1: Create a serverless cache
	Step 1.1: Create a serverless cache
	Step 1.2: Copy serverless cache endpoint
	Step 1.3: Create IAM Role
	Step 1.4: Create a serverless cache

	Step 2: Create a Lambda function
	Step 2.1: Create a Lambda function
	Step 2.2: Create the IAM role (execution role)
	Step 2.3: Upload the deployment package (create the Lambda function)

	Step 3: Test the Lambda function
	Step 4: Clean up (Optional)
	Step 4.1: Delete Lambda function
	Step 4.2: Delete Serverless cache
	Step 4.3: Remove IAM Role and policies

	Designing and managing your own ElastiCache cluster
	ElastiCache for Redis components and features
	ElastiCache nodes
	ElastiCache for Redis shards
	ElastiCache for Redis clusters
	Typical cluster configurations
	Redis clusters

	ElastiCache for Redis replication
	AWS Regions and availability zones
	ElastiCache for Redis endpoints
	Single node endpoints for Redis (Cluster Mode Disabled)
	Multi-node endpoints for Redis (Cluster Mode Disabled)
	Redis (Cluster Mode Enabled) endpoints

	ElastiCache parameter groups
	ElastiCache for Redis security
	ElastiCache subnet groups
	ElastiCache for Redis backups
	ElastiCache events

	ElastiCache for Redis terminology
	Designing your own cluster
	Setting up
	Step 1: Create a subnet group
	Creating a subnet group (Console)
	Create a subnet group (AWS CLI)

	Step 2: Create a cluster
	Creating a Redis (cluster mode disabled) cluster (Console)
	Creating a Redis (cluster mode disabled) cluster (AWS CLI)

	Step 3: Authorize access to the cluster
	Step 4: Connect to the cluster's node
	Find your node endpoints
	Finding a Redis (Cluster Mode Disabled) Cluster's Endpoints (Console)

	Connect to a Redis cluster or replication group (Linux)
	Connecting to a cluster mode disabled unencrypted-cluster
	Connecting to a cluster mode enabled unencrypted-cluster
	Connecting to an Encryption/Authentication enabled cluster
	Redis-cli alternative

	Connect to a Redis cluster or replication group (Windows)

	Step 5: Deleting a cluster
	Using the AWS Management Console
	Using the AWS CLI

	ElastiCache tutorials and videos
	ElastiCache Videos
	Introductory Videos
	AWS re:Invent 2020: What’s new in Amazon ElastiCache
	AWS re:Invent 2019: What’s new in Amazon ElastiCache
	AWS re:Invent 2017: What’s new in Amazon ElastiCache
	DAT204—Building Scalable Applications on AWS NoSQL Services (re:Invent 2015)
	DAT207—Accelerating Application Performance with Amazon ElastiCache (AWS re:Invent 2013)

	Advanced Videos
	Design for success with Amazon ElastiCache best practices (re:Invent 2020)
	Supercharge your real-time apps with Amazon ElastiCache (re:Invent 2019)
	Best practices: migrating Redis clusters from Amazon EC2 to ElastiCache (re:Invent 2019)
	Scaling a Fantasy Sports Platform with Amazon ElastiCache & Amazon Aurora STP11 (re:Invent 2018)
	Reliable & Scalable Redis in the Cloud with Amazon ElastiCache (re:Invent 2018)
	ElastiCache Deep Dive: Design Patterns for In-Memory Data Stores (re:Invent 2018)
	DAT305—Amazon ElastiCache Deep Dive (re:Invent 2017)
	DAT306—Amazon ElastiCache Deep Dive (re:Invent 2016)
	DAT317—How IFTTT uses ElastiCache for Redis to Predict Events (re:Invent 2016)
	DAT407—Amazon ElastiCache Deep Dive (re:Invent 2015)
	SDD402—Amazon ElastiCache Deep Dive (re:Invent 2014)
	DAT307—Deep Dive into Amazon ElastiCache Architecture and Design Patterns (re:Invent 2013)

	Where do I go from here?

	Managing nodes
	Viewing ElastiCache Node Status
	Viewing ElastiCache Node Status with the console
	Viewing ElastiCache Node Status with the AWS CLI
	Viewing ElastiCache Node Status through the API

	Redis nodes and shards
	Connecting to nodes
	Supported node types
	Current Generation
	Supported node types by AWS Region
	Burstable Performance Instances
	Related Information

	Rebooting nodes (cluster mode disabled only)
	Using the AWS Management Console

	Replacing nodes
	ElastiCache reserved nodes
	Managing costs with reserved nodes
	Standard reserved node offerings
	Legacy reserved node offerings
	Getting info about reserved node offerings
	Getting info about reserved node offerings (Console)
	Getting info about reserved node offerings (AWS CLI)
	Getting info about reserved node offerings (ElastiCache API)

	Purchasing a reserved node
	Purchasing a reserved node (Console)
	Purchasing a reserved node (AWS CLI)
	Purchasing a reserved node (ElastiCache API)

	Getting info about your reserved nodes
	Getting info about your reserved nodes (Console)
	Getting info about your reserved nodes (AWS CLI)
	Getting info about your reserved nodes (ElastiCache API)

	Migrating previous generation nodes
	Migrating nodes on a Redis cluster
	Fixing or removing restore-failed-node(s)

	Managing clusters
	Choosing a network type
	Configuring subnets for network type
	Using dual-stack
	TLS enabled dual stack ElastiCache clusters
	Using the AWS Management Console
	Using the CLI

	Data tiering
	Best practices
	Limitations
	Pricing
	Monitoring
	Using data tiering
	Using data tiering using the AWS Management Console
	Enabling data tiering using the AWS CLI

	Restoring data from backup into clusters with data tiering enabled
	Restoring data from backup into clusters with data tiering enabled (console)
	Restoring data from backup into clusters with data tiering enabled (AWS CLI)

	Preparing a cluster
	Determining your requirements
	Memory and processor requirements
	Redis cluster configuration
	Scaling requirements
	Access requirements
	Region, Availability Zone and Local Zone requirements

	Choosing your node size
	Choosing your node size

	Creating a cluster
	Creating a Redis (cluster mode disabled) (Console)
	Creating a Redis (cluster mode enabled) cluster (Console)
	Creating a cluster (AWS CLI)
	Creating a Redis (cluster mode disabled) cluster (CLI)
	Creating a Redis (cluster mode enabled) cluster (AWS CLI)

	Creating a cluster (ElastiCache API)
	Creating a Redis (cluster mode disabled) cache cluster (ElastiCache API)
	Creating a cache cluster in Redis (cluster mode enabled) (ElastiCache API)

	Viewing a cluster's details
	Viewing details of a Redis (Cluster Mode Disabled) cluster (Console)
	Viewing details for a Redis (Cluster Mode Enabled) cluster (Console)
	Viewing a cluster's details (AWS CLI)
	Viewing a cluster's details (ElastiCache API)

	Modifying an ElastiCache cluster
	Using the AWS Management Console
	Using the AWS CLI
	Using the ElastiCache API

	Adding nodes to a cluster
	Using the AWS Management Console
	Using the AWS CLI
	Using the ElastiCache API

	Removing nodes from a cluster
	Using the AWS Management Console
	Using the AWS CLI
	Using the ElastiCache API

	Canceling pending add or delete node operations
	Deleting a cluster
	Using the AWS Management Console
	Using the AWS CLI
	Using the ElastiCache API

	Accessing your cluster or replication group
	Grant access to your cluster or replication group
	You launched your cluster into EC2-VPC
	Accessing ElastiCache resources from outside AWS
	Requirements
	Considerations
	Limitations
	How to access ElastiCache resources from outside AWS
	Related topics

	Finding connection endpoints
	Finding a Redis (Cluster Mode Disabled) Cluster's Endpoints (Console)
	Finding Endpoints for a Redis (Cluster Mode Enabled) Cluster (Console)
	Finding Endpoints (AWS CLI)
	Finding Endpoints for Nodes and Clusters (AWS CLI)
	Finding the Endpoints for Replication Groups (AWS CLI)

	Finding Endpoints (ElastiCache API)
	Finding Endpoints for Nodes and Clusters (ElastiCache API)
	Finding Endpoints for Replication Groups (ElastiCache API)

	Working with shards
	Finding a shard's ID
	Using the AWS Management Console
	For Redis (Cluster Mode Disabled)
	For Redis (Cluster Mode Enabled)

	Using the AWS CLI
	Using the ElastiCache API

	Comparing Memcached and Redis self-designed caches
	Online migration to ElastiCache
	Overview
	Migration steps
	Preparing your source and target Redis nodes for migration
	Testing the data migration
	Starting migration
	Verifying the data migration progress
	Completing the data migration
	Performing online data migration using the Console

	Choosing regions and availability zones
	Locating your nodes
	Supported regions & endpoints
	Using local zones with ElastiCache
	Enabling a local zone

	Using Outposts
	Using Outposts with the Redis console
	Configure on-premises options
	Viewing Outpost cluster details

	Using Outposts with the AWS CLI
	Downloading and configuring the AWS CLI
	Using the AWS CLI with Outposts

	Working with ElastiCache
	Snapshot and restore
	Backup constraints
	Performance impact of backups of self-designed clusters
	Scheduling automatic backups
	Taking manual backups
	Creating a manual backup (Console)
	Creating a manual backup (AWS CLI)
	Example 1: Backing up a Redis (Cluster Mode Disabled) cluster that has no replica nodes
	Example 2: Backing up a Redis (Cluster Mode Disabled) cluster with replica nodes
	Example 3: Backing up a cluster for Redis (Cluster Mode Enabled)
	Related topics

	Creating a final backup
	Creating a final backup (Console)
	Creating a final backup (AWS CLI)
	When deleting a Redis serverless cache
	When deleting a Redis cluster with no read replicas
	When deleting a Redis cluster with read replicas

	Describing backups
	Describing backups (Console)
	Describing serverless backups (AWS CLI)
	Describing self-designed cluster backups (AWS CLI)

	Copying backups
	Copying backups (Console)
	Copying a serverless backup (AWS CLI)
	Copying a self designed cluster backup (AWS CLI)

	Exporting a backup
	Step 1: Create an Amazon S3 bucket
	Step 2: Grant ElastiCache access to your Amazon S3 bucket
	Step 3: Export an ElastiCache backup
	Exporting an ElastiCache backup (Console)
	Exporting an ElastiCache serverless backup (AWS CLI)
	Exporting a self-designed ElastiCache cluster backup (AWS CLI)

	Restoring from a backup into a new cache
	Restoring a backup into a serverless cache (Console)
	Restoring a backup into a self-designed cluster (Console)
	Restoring a backup into a serverless cache (AWS CLI)
	Restoring a backup into a self-designed cluster (AWS CLI)

	Deleting a backup
	Deleting a backup (Console)
	Deleting a serverless backup (AWS CLI)
	Deleting a self-designed cluster backup (AWS CLI)

	Tagging backups
	Seeding a new self-designed cluster with an externally created backup
	Step 1: Create a Redis backup
	Step 2: Create an Amazon S3 bucket and folder
	Step 3: Upload your backup to Amazon S3
	Step 4: Grant ElastiCache read access to the .rdb file
	Grant ElastiCache read access to the .rdb file in a default Region
	Grant ElastiCache read access to the .rdb file in an opt-in Region
	Step 5: Seed the ElastiCache cluster with the .rdb file data

	Engine versions and upgrading
	Engine versions and upgrading
	Version management for ElastiCache Serverless
	Version management for self-designed ElastiCache clusters
	Upgrade considerations when working with self-designed clusters
	How to upgrade engine versions
	Resolving blocked Redis engine upgrades

	Supported ElastiCache for Redis versions
	ElastiCache for Redis version 7.1 (enhanced)
	ElastiCache for Redis version 7.0 (enhanced)
	ElastiCache for Redis version 6.2 (enhanced)
	ElastiCache for Redis version 6.0 (enhanced)
	ElastiCache for Redis version 5.0.6 (enhanced)
	ElastiCache for Redis version 5.0.5 (deprecated, use version 5.0.6)
	ElastiCache for Redis version 5.0.4 (deprecated, use version 5.0.6)
	ElastiCache for Redis version 5.0.3 (deprecated, use version 5.0.6)
	ElastiCache for Redis version 5.0.0 (deprecated, use version 5.0.6)
	ElastiCache for Redis version 4.0.10 (enhanced)
	Past End of Life (EOL) versions (3.x)
	ElastiCache for Redis version 3.2.10 (enhanced)
	ElastiCache for Redis version 3.2.6 (enhanced)
	ElastiCache for Redis version 3.2.4 (enhanced)

	Past End of Life (EOL) versions (2.x)
	ElastiCache for Redis version 2.8.24 (enhanced)
	ElastiCache for Redis version 2.8.23 (enhanced)
	ElastiCache for Redis version 2.8.22 (enhanced)
	ElastiCache for Redis version 2.8.21
	ElastiCache for Redis version 2.8.19
	ElastiCache for Redis version 2.8.6
	ElastiCache for Redis version 2.6.13

	Redis versions end of life schedule
	How to upgrade engine versions
	Resolving blocked Redis engine upgrades
	Major version behavior and compatibility differences
	Redis 7.0 behavior and backwards incompatible changes
	Redis 6.2 behavior and backwards incompatible changes
	Redis 6.0 behavior and backwards incompatible changes
	Redis 5.0 behavior and backwards incompatible changes
	Redis 4.0 behavior and backwards incompatible changes
	Past EOL
	Redis 3.2 behavior and backwards incompatible changes
	Redis 2.8 behavior and backwards incompatible changes

	ElastiCache best practices and caching strategies
	Working with Redis
	Supported and restricted Redis commands
	Supported Redis commands
	Restricted Redis commands

	Redis configuration and limits
	Serverless caches
	Self-designed clusters

	Best practices with Redis clients
	Large number of connections
	Redis cluster client discovery and exponential backoff
	Configure a client-side timeout
	Configure a server-side idle timeout
	Redis Lua scripts
	Storing large composite items
	Lettuce client configuration
	Example: Lettuce configuration for cluster mode and TLS enabled
	Example: Lettuce configuration for cluster mode disabled and TLS enabled

	IPv6 client examples
	Validated clients
	Configuring a preferred protocol for dual stack clusters
	TLS enabled dual stack ElastiCache clusters

	Best practices when working with self-designed clusters
	Minimizing downtime with Multi-AZ
	Ensuring that you have enough memory to create a Redis snapshot
	Background Write Process and Memory Usage
	Avoiding running out of memory when executing a background write

	Managing Reserved Memory
	How Much Reserved Memory Do You Need?
	Parameters to Manage Reserved Memory
	The reserved-memory Parameter
	The reserved-memory-percent parameter

	Specifying Your Reserved Memory Management Parameter

	Online cluster resizing
	Minimizing downtime during maintenance

	Redis best practices
	Caching strategies
	Lazy loading
	Advantages and disadvantages of lazy loading
	Lazy loading pseudocode example

	Write-through
	Advantages and disadvantages of write-through
	Write-through pseudocode example

	Adding TTL
	TTL pseudocode examples

	Related topics

	Managing your self-designed cluster
	Auto Scaling ElastiCache for Redis clusters
	Prerequisites
	Managing Capacity Automatically with ElastiCache for Redis Auto Scaling
	Auto Scaling policies
	Target metric for Auto Scaling
	Minimum and maximum capacity
	Cool down period
	Enable or disable scale-in activities

	IAM Permissions Required for ElastiCache for Redis Auto Scaling
	Service-linked role
	Auto Scaling Best Practices
	Using Auto Scaling with shards
	Target tracking scaling policies
	Predefined metrics
	Auto Scaling criteria for shards
	Auto Scaling considerations

	Adding a scaling policy
	Registering a Scalable Target
	Defining a scaling policy
	Using a predefined metric
	Using a custom metric
	Using cooldown periods
	Disabling scale-in activity
	Applying a scaling policy
	Applying a scaling policy using the AWS CLI
	Applying a scaling policy using the API

	Editing a scaling policy
	Editing a scaling policy using the AWS Management Console
	Editing a scaling policy using the AWS CLI and API

	Deleting a scaling policy
	Deleting a scaling policy using the AWS Management Console
	Deleting a scaling policy using the AWS CLI
	Deleting a scaling policy using the API

	Use AWS CloudFormation for Auto Scaling policies
	Scheduled scaling
	Use AWS CloudFormation to create a scheduled action

	Using Auto Scaling with replicas
	Target tracking scaling policies
	Auto Scaling criteria for replicas
	Auto Scaling considerations

	Adding a scaling policy
	Registering a Scalable Target
	Defining a scaling policy
	Using a predefined metric
	Using a predefined metric
	Using a custom metric
	Using cooldown periods
	Disabling scale-in activity
	Applying a scaling policy to an ElastiCache for Redis cluster

	Editing a scaling policy
	Deleting a scaling policy
	Use AWS CloudFormation for Auto Scaling policies
	Scheduled scaling
	Use AWS CloudFormation to create Auto Scaling policies

	Modifying cluster mode
	Replication across AWS Regions using global datastores
	Overview
	Prerequisites and limitations
	Using global datastores (console)
	Creating a global datastore using an existing cluster
	Creating a new global datastore using a new primary cluster
	Viewing global datastore details
	Adding a Region to a global datastore
	Modifying a global datastore
	Promoting the secondary cluster to primary
	Removing a Region from a global datastore
	Deleting a global datastore

	Using global datastores (CLI)
	Downloading and configuring the AWS CLI
	Using the AWS CLI with global datastores

	High availability using replication groups
	Understanding Redis replication
	Redis (Cluster Mode Disabled)
	Redis (cluster mode enabled)

	Replication: Redis (Cluster Mode Disabled) vs. Redis (Cluster Mode Enabled)
	Which should I choose?

	Minimizing downtime in ElastiCache for Redis with Multi-AZ
	Enabling Multi-AZ
	Enabling Multi-AZ (Console)
	Enabling Multi-AZ when creating a cluster using the ElastiCache console
	Enabling Multi-AZ on an existing cluster (Console)

	Enabling Multi-AZ (AWS CLI)
	Enabling Multi-AZ (ElastiCache API)

	Failure scenarios with Multi-AZ responses
	Failure scenarios when only the primary node fails
	Failure scenarios when the primary node and some read replicas fail
	Failure scenarios when the entire cluster fails

	Testing automatic failover
	Testing automatic failover using the AWS Management Console
	Testing automatic failover using the AWS CLI
	Testing automatic failover using the ElastiCache API

	Limitations on Redis Multi-AZ

	How synchronization and backup are implemented
	Redis Version 2.8.22 and Later
	Redis Versions Before 2.8.22

	Creating a Redis replication group
	Creating a Replication Group Using an Available Redis (Cluster Mode Disabled) Cluster
	Creating a Replication Group Using an Available Redis Cluster (Console)
	Creating a replication group using an available Redis cache cluster (AWS CLI)
	Adding replicas to a standalone Redis (Cluster Mode Disabled) cluster (ElastiCache API)

	Creating a Redis replication group from scratch
	Creating a Redis (Cluster Mode Disabled) replication group from scratch
	Creating a Redis (Cluster Mode Disabled) replication group from scratch (AWS CLI)
	Creating a Redis (cluster mode disabled) replication group from scratch (ElastiCache API)

	Creating a replication group in Redis (Cluster Mode Enabled) from scratch
	Creating a Redis (Cluster Mode Enabled) cluster (Console)
	Creating a Redis (Cluster Mode Enabled) replication group from scratch (AWS CLI)
	Creating a replication group in Redis (Cluster Mode Enabled) from scratch (ElastiCache API)

	Viewing a replication group's details
	Viewing details for a Redis (Cluster Mode Disabled) with replicas
	Viewing Details for a Redis (Cluster Mode Disabled) Replication Group (Console)
	Viewing details for a Redis (Cluster Mode Disabled) replication group (AWS CLI)
	Viewing Details for a Redis (Cluster Mode Disabled) Replication Group (ElastiCache API)

	Viewing a replication group's details: Redis (Cluster Mode Enabled)
	Viewing details for a Redis (Cluster Mode Enabled) cluster (Console)
	Viewing details for a Redis (Cluster Mode Enabled) cluster (AWS CLI)
	Viewing details for a Redis (Cluster Mode Enabled) Cluster (ElastiCache API)

	Viewing a replication group's details (AWS CLI)
	Viewing a replication group's details (ElastiCache API)

	Finding replication group endpoints
	Modifying a replication group
	Using the AWS Management Console
	Using the AWS CLI
	Using the ElastiCache API

	Deleting a replication group
	Deleting a Replication Group (Console)
	Deleting a Replication Group (AWS CLI)
	Deleting a replication group (ElastiCache API)

	Changing the number of replicas
	Increasing the number of replicas in a shard
	Using the AWS Management Console
	Using the AWS CLI
	Using the ElastiCache API

	Decreasing the number of replicas in a shard
	Using the AWS Management Console
	Using the AWS CLI
	Using the ElastiCache API

	Adding a read replica, for Redis (Cluster Mode Disabled) replication groups
	Adding a read replica to a replication group (AWS CLI)
	Adding a read replica to a replication group using the API

	Deleting a read replica, for Redis (Cluster Mode Disabled) replication groups

	Promoting a read replica to primary, for Redis (cluster mode disabled) replication groups
	Using the AWS Management Console
	Using the AWS CLI
	Using the ElastiCache API

	Managing maintenance
	Configuring engine parameters using parameter groups
	Parameter management
	Cache parameter group tiers
	Creating a parameter group
	Creating a parameter group (Console)
	Creating a parameter group (AWS CLI)
	Creating a parameter group (ElastiCache API)

	Listing parameter groups by name
	Listing parameter groups by name (Console)
	Listing parameter groups by name (AWS CLI)
	Listing parameter groups by name (ElastiCache API)

	Listing a parameter group's values
	Listing a parameter group's values (Console)
	Listing a parameter group's values (AWS CLI)
	Listing a parameter group's values (ElastiCache API)

	Modifying a parameter group
	Modifying a parameter group (Console)
	Modifying a parameter group (AWS CLI)
	Modifying a parameter group (ElastiCache API)

	Deleting a parameter group
	Deleting a parameter group (Console)
	Deleting a parameter group (AWS CLI)
	Deleting a parameter group (ElastiCache API)

	Memcached specific parameters
	Memcached 1.6.17 changes
	Memcached 1.6.6 added parameters
	Memcached 1.5.10 parameter changes
	Memcached 1.4.34 added parameters
	Memcached 1.4.33 added parameters
	Memcached 1.4.24 added parameters
	Memcached 1.4.14 added parameters
	Memcached 1.4.5 supported parameters
	Memcached connection overhead
	Memcached node-type specific parameters

	Redis-specific parameters
	Redis 7 parameter changes
	Redis 6.x parameter changes
	Redis 5.0.3 parameter changes
	Redis 5.0.0 parameter changes
	Redis 4.0.10 parameter changes
	Redis 3.2.10 parameter changes
	Redis 3.2.6 parameter changes
	Redis 3.2.4 parameter changes
	New parameters for Redis 3.2.4
	Parameters changed in Redis 3.2.4 (enhanced)

	Redis 2.8.24 (enhanced) added parameters
	Redis 2.8.23 (enhanced) added parameters
	How close-on-slave-write works
	When you might disable close-on-replica-write

	Redis 2.8.22 (enhanced) added parameters
	Redis 2.8.21 added parameters
	Redis 2.8.19 added parameters
	Redis 2.8.6 added parameters
	Redis 2.6.13 parameters
	Redis node-type specific parameters

	Scaling ElastiCache for Redis
	Scaling ElastiCache Serverless
	Scaling ElastiCache for Redis self-designed clusters
	Scaling clusters for Redis (Cluster Mode Disabled)
	Scaling single-node clusters for Redis (Cluster Mode Disabled)
	Scaling up single-node clusters for Redis (Cluster Mode Disabled)
	Scaling up single-node clusters for Redis (Cluster Mode Disabled) (Console)
	Scaling up single-node Redis cache clusters (AWS CLI)
	Scaling up single-node Redis cache clusters (ElastiCache API)

	Scaling down single-node Redis clusters
	Scaling down a single-node Redis cluster (Console)
	Scaling down single-node Redis cache clusters (AWS CLI)
	Scaling down single-node Redis cache clusters (ElastiCache API)

	Scaling Redis (Cluster Mode Disabled) clusters with replica nodes
	Scaling up Redis clusters with replicas
	Scaling up a Redis cluster with replicas (Console)
	Scaling up a Redis replication group (AWS CLI)
	Scaling up a Redis replication group (ElastiCache API)

	Scaling down Redis clusters with replicas
	Scaling down a Redis cluster with replicas (Console)
	Scaling down a Redis replication group (AWS CLI)
	Scaling down a Redis replication group (ElastiCache API)

	Increasing read capacity
	Decreasing read capacity

	Scaling clusters in Redis (Cluster Mode Enabled)
	Offline resharding and shard rebalancing for Redis (cluster mode enabled)
	Online resharding and shard rebalancing for Redis (cluster mode enabled)
	Adding shards with online resharding
	Adding shards (Console)
	Adding shards (AWS CLI)
	Adding shards (ElastiCache API)

	Removing shards with online resharding
	Removing shards (Console)
	Removing shards (AWS CLI)
	Removing shards (ElastiCache API)

	Online shard rebalancing
	Online Shard Rebalancing (Console)
	Online shard rebalancing (AWS CLI)
	Online shard rebalancing (ElastiCache API)

	Online vertical scaling by modifying node type
	Online scaling up
	Scaling up Redis cache clusters (Console)
	Scaling up Redis cache clusters (AWS CLI)
	Scaling up Redis cache clusters (ElastiCache API)

	Online scaling down
	Scaling down Redis cache clusters (Console)
	Scaling down Redis cache clusters (AWS CLI)
	Scaling down Redis cache clusters (ElastiCache API)

	Getting started with JSON in ElastiCache for Redis
	Redis JSON data type overview
	Terminology
	Supported JSON standard
	Root element
	Document size limit
	JSON ACLs
	Nesting depth limit
	Command syntax
	Path syntax
	Common error prefixes
	JSON-related metrics
	How ElastiCache for Redis interacts with JSON
	Operator precedence
	Maximum path nesting limit behavior
	Handling numeric values
	Direct array filtering
	Array indexing behavior
	Strict syntax evaluation

	Supported Redis JSON commands
	JSON.ARRAPPEND
	JSON.ARRINDEX
	JSON.ARRINSERT
	JSON.ARRLEN
	JSON.ARRPOP
	JSON.ARRTRIM
	JSON.CLEAR
	JSON.DEBUG
	JSON.DEL
	JSON.FORGET
	JSON.GET
	JSON.MGET
	JSON.NUMINCRBY
	JSON.NUMMULTBY
	JSON.OBJLEN
	JSON.OBJKEYS
	JSON.RESP
	JSON.SET
	JSON.STRAPPEND
	JSON.STRLEN
	JSON.TOGGLE
	JSON.TYPE

	Tagging your ElastiCache resources
	Tag basics
	Resources you can tag
	Tagging caches and snapshots
	Tag restrictions
	Tagging resources examples
	Tag-Based access control policy examples
	Monitoring costs with cost allocation tags
	Managing your cost allocation tags using the AWS CLI
	Listing tags using the AWS CLI
	Adding tags using the AWS CLI
	Modifying tags using the AWS CLI
	Removing tags using the AWS CLI

	Managing your cost allocation tags using the ElastiCache API
	Listing tags using the ElastiCache API
	Adding tags using the ElastiCache API
	Modifying tags using the ElastiCache API
	Removing tags using the ElastiCache API

	Using the Amazon ElastiCache Well-Architected Lens
	Amazon ElastiCache Well-Architected Lens Operational Excellence Pillar
	OE 1: How do you understand and respond to alerts and events triggered by your ElastiCache cluster?
	OE 2: When and how do you scale your existing ElastiCache clusters?
	OE 3: How do you manage your ElastiCache cluster resources and maintain your cluster up-to-date?
	OE 4: How do you manage clients’ connections to your ElastiCache clusters?
	OE 5: How do you deploy ElastiCache Components for a Workload?
	OE 6: How do you plan for and mitigate failures?
	OE 7: How do you troubleshoot Redis engine events?

	Amazon ElastiCache Well-Architected Lens Security Pillar
	SEC 1: What steps are you taking in controlling authorized access to ElastiCache data?
	SEC 2: Do your applications require additional authorization to ElastiCache over and above networking-based controls?
	SEC 3: Is there a risk that commands can be executed inadvertently, causing data loss or failure?
	SEC 4: How do you ensure data encryption at rest with ElastiCache
	SEC 5: How do you encrypt in-transit data with ElastiCache?
	SEC 6: How do you restrict access to control plane resources?
	SEC 7: How do you detect and respond to security events?

	Amazon ElastiCache Well-Architected Lens Reliability Pillar
	REL 1: How are you supporting high availability (HA) architecture deployments?
	REL 2: How are you meeting your Recovery Point Objectives (RPOs) with ElastiCache?
	REL 3: How do you support disaster recovery (DR) requirements?
	REL 4: How do you effectively plan for failovers?
	REL 5: Are your ElastiCache components designed to scale?

	Amazon ElastiCache Well-Architected Lens Performance Efficiency Pillar
	PE 1: How do you monitor the performance of your Amazon ElastiCache cluster?
	PE 2: How are you distributing work across your ElastiCache Cluster nodes?
	PE 3: For caching workloads, how do you track and report the effectiveness and performance of your cache?
	PE 4: How does your workload optimize the use of networking resources and connections?
	PE 5: How do you manage key deletion and/or eviction?
	PE 6: How do you model and interact with data in ElastiCache?
	PE 7: How do you log slow running commands in your Amazon ElastiCache cluster?
	PE8: How does Auto Scaling help in increasing the performance of the ElastiCache cluster?

	Amazon ElastiCache Well-Architected Lens Cost Optimization Pillar
	COST 1: How do you identify and track costs associated with your ElastiCache resources? How do you develop mechanisms to enable users to create, manage, and dispose of created resources?
	COST 2: How do you use continuous monitoring tools to help you optimize the costs associated with your ElastiCache resources?
	COST 3: Should you use an instance type that support data tiering? What are the advantages of a data tiering? When not to use data tiering instances?

	Common troubleshooting steps and best practices
	Connection issues
	Redis client errors
	Troubleshooting high latency in ElastiCache Serverless
	Troubleshooting throttling issues in ElastiCache Serverless
	Related Topics

	Additional troubleshooting steps
	Security groups
	Network ACLs
	Route tables
	DNS resolution
	Identifying issues with server-side diagnostics
	Network connectivity validation
	Network-related limits
	CPU Usage
	Connections being terminated from the server side
	Client-side troubleshooting for Amazon EC2 instances
	Dissecting the time taken to complete a single request

	Security in Amazon ElastiCache
	Data protection in Amazon ElastiCache
	Data security in Amazon ElastiCache
	ElastiCache in-transit encryption (TLS)
	In-transit encryption overview
	In-transit encryption conditions
	In-transit encryption best practices
	See also
	Enabling in-transit encryption
	Enabling in-transit encryption using the AWS Management Console
	Enabling in-transit encryption for a new self-designed cluster using the AWS Management Console
	Enabling in-transit encryption for an existing self-designed cluster using the AWS Management Console

	Enabling in-transit encryption using the AWS CLI
	Enabling in-transit encryption on a new self-designed cluster for Redis (Cluster Mode Disabled) (CLI)
	Enabling in-transit encryption on a new self-designed cluster for Redis (Cluster Mode Enabled) (CLI)
	Enabling in-transit encryption for an existing cluster using the AWS CLI

	Connecting to Amazon ElastiCache for Redis with in-transit encryption using redis-cli
	Encrypted connection with Linux
	Encrypted connection with stunnel

	Enabling in-transit encryption on a self-designed Redis Cluster using Python
	Define the string constants that will launch the ElastiCache Redis Cluster
	Define the classes for the cluster configuration
	Define a class that will represent the cluster itself
	(Optional) Create a wrapper class to demo client connection to Redis cluster
	Create the main function that demos the process of changing in-transit encryption configuration

	Best practices when enabling in-transit encryption
	Before enabling in-transit encryption: make sure you have proper DNS records handling
	Description of the changes in the DNS records that take place when enabling in-transit encryption
	The suggested usage of the DNS records

	During the in-transit encryption: pay attention to when the migration process finishes
	After enabling in-transit encryption: make sure the clients you use are configured properly

	At-Rest Encryption in ElastiCache
	At-Rest Encryption Conditions
	Using customer managed keys from AWS KMS
	Enabling At-Rest Encryption
	Enabling At-Rest Encryption on an Existing Self-Designed Redis Cluster
	Enabling At-Rest Encryption Using the AWS Management Console
	Enabling At-Rest Encryption on a Serverless Cache (Console)
	Enabling At-Rest Encryption on a Self-Designed Cluster (Console)

	Enabling At-Rest Encryption Using the AWS CLI
	Enabling At-Rest Encryption on a Redis (Cluster Mode Disabled) Cluster (CLI)
	Enabling At-Rest Encryption on a Cluster for Redis (Cluster Mode Enabled) (CLI)

	See Also

	Authentication and Authorization
	Role-Based Access Control (RBAC)
	Specifying Permissions Using an Access String
	Applying RBAC to a Cache for ElastiCache for Redis
	Creating Users and User Groups with the Console and CLI
	Managing Users with the Console and CLI

	Managing User Groups with the Console and CLI
	Assigning User Groups to Serverless Caches
	Assigning User Groups to Serverless Caches Using the Console
	Assigning User Groups to Serverless Caches Using the AWS CLI

	Assigning User Groups to Replication Groups
	Assigning User Groups to Replication Groups Using the Console
	Assigning User Groups to Replication Groups Using the AWS CLI

	Migrating from Redis AUTH to RBAC
	Migrating from RBAC to Redis AUTH
	Automatically rotating passwords for users
	How ElastiCache uses secrets
	How ElastiCache users are associated with the secret
	Lambda rotation function
	How to create an ElastiCache user and associate it with Secrets Manager

	Authenticating with IAM
	Overview
	Limitations
	Setup
	Connecting

	Authenticating with the Redis AUTH command
	Overview of AUTH in ElastiCache for Redis
	Applying authentication to an ElastiCache for Redis cluster
	Modifying the AUTH token on an existing ElastiCache for Redis cluster
	Rotating the AUTH token
	Setting the AUTH token
	Enabling authentication on an existing ElastiCache for Redis cluster

	Migrating from RBAC to Redis AUTH

	Disabling access control on an ElastiCache Redis cache

	Internetwork traffic privacy
	Amazon VPCs and ElastiCache security
	Understanding ElastiCache and Amazon VPCs
	Overview of ElastiCache in an Amazon VPC
	Prerequisites
	Routing and security
	Amazon VPC documentation

	Access Patterns for Accessing an ElastiCache Cache in an Amazon VPC
	Accessing an ElastiCache Cache when it and the Amazon EC2 Instance are in the Same Amazon VPC
	Accessing an ElastiCache Cache when it and the Amazon EC2 Instance are in Different Amazon VPCs
	Accessing an ElastiCache Cache when it and the Amazon EC2 Instance are in Different Amazon VPCs in the Same Region
	Using Transit Gateway

	Accessing an ElastiCache Cache when it and the Amazon EC2 Instance are in Different Amazon VPCs in Different Regions
	Using Transit VPC

	Accessing an ElastiCache Cache from an Application Running in a Customer's Data Center
	Accessing an ElastiCache Cache from an Application Running in a Customer's Data Center Using VPN Connectivity
	Accessing an ElastiCache Cache from an Application Running in a Customer's Data Center Using Direct Connect

	Creating a Virtual Private Cloud (VPC)
	Creating an Amazon VPC (Console)

	Connecting to a cache running in an Amazon VPC
	Connecting to a cache running in an Amazon VPC (Console)

	Amazon ElastiCache API and interface VPC endpoints (AWS PrivateLink)
	Considerations for VPC endpoints
	Creating an interface VPC endpoint for the ElastiCache API
	Creating a VPC endpoint policy for the Amazon ElastiCache API

	Subnets and subnet groups
	Creating a subnet group
	Creating a subnet group (Console)
	Creating a subnet group (AWS CLI)

	Assigning a subnet group to a cache
	Modifying a subnet group
	Modifying subnet groups (Console)
	Modifying subnet groups (AWS CLI)

	Deleting a subnet group
	Deleting a subnet group (Console)
	Deleting a subnet group (AWS CLI)

	Identity and Access Management for Amazon ElastiCache
	Audience
	Authenticating with identities
	AWS account root user
	Federated identity
	IAM users and groups
	IAM roles

	Managing access using policies
	Identity-based policies
	Resource-based policies
	Access control lists (ACLs)
	Other policy types
	Multiple policy types

	How Amazon ElastiCache works with IAM
	Identity-based policies for ElastiCache
	Identity-based policy examples for ElastiCache

	Resource-based policies within ElastiCache
	Policy actions for ElastiCache
	Policy resources for ElastiCache
	Policy condition keys for ElastiCache
	Access control lists (ACLs) in ElastiCache
	Attribute-based access control (ABAC) with ElastiCache
	Using Temporary credentials with ElastiCache
	Cross-service principal permissions for ElastiCache
	Service roles for ElastiCache
	Service-linked roles for ElastiCache

	Identity-based policy examples for Amazon ElastiCache
	Policy best practices
	Using the ElastiCache console
	Allow users to view their own permissions

	Troubleshooting Amazon ElastiCache identity and access
	I am not authorized to perform an action in ElastiCache
	I am not authorized to perform iam:PassRole
	I want to allow people outside of my AWS account to access my ElastiCache resources

	Access control
	Overview of managing access permissions to your ElastiCache resources
	Amazon ElastiCache resources and operations
	Understanding resource ownership
	Managing access to resources
	Identity-based policies (IAM policies)
	Specifying policy elements: Actions, effects, resources, and principals
	Specifying conditions in a policy

	AWS managed policies for Amazon ElastiCache
	AWS managed policy: ElastiCacheServiceRolePolicy
	AWS managed policy: AmazonElastiCacheFullAccess
	AWS managed policy: AmazonElastiCacheReadOnlyAccess
	ElastiCache updates to AWS managed policies

	Using identity-based policies (IAM policies) for Amazon ElastiCache
	Customer-managed policy examples
	Example 1: Allow a user read-only access to ElastiCache resources
	Example 2: Allow a user to perform common ElastiCache system administrator tasks
	Example 3: Allow a user to access all ElastiCache API actions
	Example 4: Allow a user to call IAM CreateServiceLinkedRole API
	Example 5: Allow a user to connect to serverless cache using IAM authentication

	Resource-level permissions
	Example 1: Allow a user full access to specific ElastiCache resource types
	Example 2: Deny a user access to a serverless cache.

	Using condition keys
	Specifying Conditions: Using Condition Keys
	Example Policies: Using Conditions for Fine-Grained Parameter Control

	Using Service-Linked Roles for Amazon ElastiCache
	Service-Linked Role Permissions for Amazon ElastiCache
	Permissions to create service-linked role

	Creating a Service-Linked Role (IAM)
	Creating a Service-Linked Role (IAM Console)
	Creating a Service-Linked Role (IAM CLI)
	Creating a Service-Linked Role (IAM API)

	Editing the Description of a Service-Linked Role for Amazon ElastiCache
	Editing a Service-Linked Role Description (IAM Console)
	Editing a Service-Linked Role Description (IAM CLI)
	Editing a Service-Linked Role Description (IAM API)

	Deleting a Service-Linked Role for Amazon ElastiCache
	Cleaning Up a Service-Linked Role
	Deleting a Service-Linked Role (IAM Console)
	Deleting a Service-Linked Role (IAM CLI)
	Deleting a Service-Linked Role (IAM API)

	ElastiCache API permissions: Actions, resources, and conditions reference

	Compliance validation for Amazon ElastiCache
	More information

	Resilience in Amazon ElastiCache
	Mitigating Failures
	Mitigating Failures when Running Redis
	Mitigating Node Failures
	Mitigating Failures: Redis Replication Groups

	Mitigating Availability Zone Failures

	Recommendations
	Minimizing the Impact of Node Failures
	Minimizing the Impact of Availability Zone Failures
	Other precautions

	Infrastructure security in AWS ElastiCache
	Service updates in ElastiCache
	Managing service updates
	Applying the service updates
	Applying the service updates using the console
	Applying the service updates using the AWS CLI

	Stopping the service updates
	Using the console
	Using the AWS CLI

	Logging and monitoring in Amazon ElastiCache
	Serverless metrics and events
	Serverless cache metrics
	Serverless cache events

	Self-designed clusters metrics and events
	Metrics for self-designed clusters
	Events for self-designed clusters
	Log delivery
	Contents of a slow log entry
	Contents of an engine log entry
	Permissions to configure logging
	Log type and log format specifications
	Slow log
	Engine log

	ElastiCache logging destinations
	Amazon CloudWatch Logs
	Amazon Data Firehose

	Specifying log delivery using the Console
	Specifying log delivery using the AWS CLI

	Monitoring use with CloudWatch Metrics
	Host-Level Metrics
	Metrics for Redis
	Which Metrics Should I Monitor?
	CPUUtilization
	EngineCPUUtilization
	SwapUsage
	Evictions
	CurrConnections
	Memory
	Network
	Latency
	Replication
	Traffic Management

	Choosing Metric Statistics and Periods
	Monitoring CloudWatch Cluster and Node Metrics
	Monitoring CloudWatch Cluster and Node Metrics (Console)
	Monitoring CloudWatch Cluster and Node Metrics using the CloudWatch CLI
	Monitoring CloudWatch Cluster and Node Metrics using the CloudWatch API

	Amazon SNS monitoring of ElastiCache events
	Managing ElastiCache Amazon SNS notifications
	Adding an Amazon SNS topic
	Adding an Amazon SNS topic (Console)
	Adding an Amazon SNS topic (AWS CLI)
	Adding an Amazon SNS topic (ElastiCache API)

	Enabling and disabling Amazon SNS notifications
	Enabling and disabling Amazon SNS notifications (Console)
	Enabling and disabling Amazon SNS notifications (AWS CLI)
	Enabling and disabling Amazon SNS notifications (ElastiCache API)

	Viewing ElastiCache events
	Viewing ElastiCache events (Console)
	Viewing ElastiCache events (AWS CLI)
	Viewing ElastiCache events (ElastiCache API)

	Event Notifications and Amazon SNS
	ElastiCache Events
	Related topics

	Logging Amazon ElastiCache API calls with AWS CloudTrail
	Amazon ElastiCache information in CloudTrail
	Understanding Amazon ElastiCache log file entries

	Quotas for ElastiCache
	Reference
	Using the ElastiCache API
	Using the query API
	Query parameters
	Query request authentication

	Available libraries
	Troubleshooting applications
	Retrieving errors
	Troubleshooting tips

	Setting up the ElastiCache command line interface
	Prerequisites
	The Java runtime environment
	Setting the Java home variable

	Getting the command line tools
	Setting up the tools
	Providing credentials for the tools
	Environmental variables

	Amazon ElastiCache error messages
	Notifications
	General ElastiCache notifications
	ElastiCache for Redis specific notifications

	ElastiCache for Redis Documentation history
	AWS Glossary

