
User Guide

AWS Identity and Access Management

Copyright © 2024 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

AWS Identity and Access Management User Guide

AWS Identity and Access Management: User Guide

Copyright © 2024 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon's trademarks and trade dress may not be used in connection with any product or service
that is not Amazon's, in any manner that is likely to cause confusion among customers, or in any
manner that disparages or discredits Amazon. All other trademarks not owned by Amazon are
the property of their respective owners, who may or may not be affiliated with, connected to, or
sponsored by Amazon.

AWS Identity and Access Management User Guide

Table of Contents

What is IAM? .. 1
Video introduction to IAM .. 2
IAM features .. 2
Accessing IAM .. 3
When do I use IAM .. 5

When you are performing different job functions ... 5
When you are authorized to access AWS resources ... 5
When you sign-in as an IAM user .. 6
When you assume an IAM role .. 6
When you create policies and permissions .. 8

How IAM works ... 9
Terms ... 11
Principal .. 12
Request .. 13
Authentication ... 13
Authorization ... 14
Actions or operations ... 14
Resources .. 15

Users in AWS ... 15
First-time access only: Your root user credentials ... 16
IAM users and users in IAM Identity Center .. 16
Federating existing users .. 17
Access control methods ... 18

Permissions and policies in IAM .. 22
Policies and accounts ... 22
Policies and users ... 22
Policies and groups .. 23
Federated users and roles ... 23
Identity-based and resource-based policies .. 24

What is ABAC? .. 25
Comparing ABAC to the traditional RBAC model .. 25

Security features outside IAM ... 27
Quick links to common tasks .. 28
IAM console search .. 31

iii

AWS Identity and Access Management User Guide

Using IAM console search ... 32
Icons in the IAM console search results ... 32
Sample search phrases .. 33

AWS CloudFormation resources .. 34
IAM and AWS CloudFormation templates ... 34
Learn more about AWS CloudFormation ... 34

Using AWS CloudShell .. 35
Obtaining IAM permissions for AWS CloudShell .. 35
Interacting with IAM using AWS CloudShell ... 36

Working with AWS SDKs .. 38
Getting set up .. 39

Sign up for an AWS account ... 39
Create an administrative user ... 40
Prepare for least-privilege permissions ... 41
IAM management methods ... 42

AWS Console .. 42
AWS Command Line Interface (CLI) and Software Development Kits (SDKs) 44

Your AWS account ID and its alias ... 45
View your AWS account ID ... 46
About account aliases .. 47
Creating, deleting, and listing an AWS account alias .. 48

Getting started .. 53
Prerequisites .. 53
Create your first IAM user .. 53
Create your first role ... 55
Create your first IAM policy ... 57
Programmatic access ... 58

Security best practices and use cases .. 60
Security best practices .. 60

Require human users to use federation with an identity provider to access AWS using
temporary credentials .. 61
Require workloads to use temporary credentials with IAM roles to access AWS 61
Require multi-factor authentication (MFA) .. 62
Update access keys when needed for use cases that require long-term credentials 62
Follow best practices to protect your root user credentials .. 63
Apply least-privilege permissions .. 64

iv

AWS Identity and Access Management User Guide

Get started with AWS managed policies and move toward least-privilege permissions 64
Use IAM Access Analyzer to generate least-privilege policies based on access activity 64
Regularly review and remove unused users, roles, permissions, policies, and credentials 64
Use conditions in IAM policies to further restrict access .. 65
Verify public and cross-account access to resources with IAM Access Analyzer 65
Use IAM Access Analyzer to validate your IAM policies to ensure secure and functional
permissions ... 65
Establish permissions guardrails across multiple accounts .. 66
Use permissions boundaries to delegate permissions management within an account 66

Root user best practices ... 66
Secure your root user credentials to prevent unauthorized use ... 68
Use a strong root user password to help protect access .. 68
Secure your root user sign-in with multi-factor authentication (MFA) 68
Don't create access keys for the root user .. 69
Use multi-person approval for root user sign-in wherever possible .. 69
Use a group email address for root user credentials .. 69
Restrict access to account recovery mechanisms ... 69
Secure your Organizations account root user credentials .. 70
Monitor access and usage ... 71

Business use cases ... 72
Initial setup of example corp ... 72
Use case for IAM with Amazon EC2 ... 74
Use case for IAM with Amazon S3 .. 75

Tutorials ... 77
Grant access to the billing console .. 77

Prerequisites ... 79
Step 1: Activate IAM access to billing information on your test AWS account 79
Step 2: Create test users and groups ... 80
Step 3: Create a role to grant access to the AWS Billing console ... 82
Step 4: Test access to the console .. 83
Summary ... 84
Related resources .. 85

Delegate access across AWS accounts using roles .. 85
Prerequisites ... 87
Create a role in the Production Account ... 87
Grant access to the role .. 91

v

AWS Identity and Access Management User Guide

Test access by switching roles .. 93
Related resources .. 98
Summary ... 98

Create a customer managed policy .. 99
Prerequisites ... 99
Step 1: Create the policy .. 100
Step 2: Attach the policy .. 101
Step 3: Test user access .. 101
Related resources .. 102
Summary .. 102

Use attribute-based access control (ABAC) .. 102
Tutorial overview .. 103
Prerequisites .. 104
Step 1: Create test users .. 105
Step 2: Create the ABAC policy ... 107
Step 3: Create roles ... 111
Step 4: Test creating secrets .. 112
Step 5: Test viewing secrets ... 115
Step 6: Test scalability .. 117
Step 7: Test updating and deleting secrets .. 119
Summary .. 121
Related resources .. 121
Use SAML session tags for ABAC .. 122

Permit users to manage their credentials and MFA settings .. 126
Prerequisites .. 127
Step 1: Create a policy to enforce MFA sign-in .. 128
Step 2: Attach policies to your test user group ... 129
Step 3: Test your user's access .. 129
Related resources .. 131

Identities .. 133
AWS account root user ... 134
IAM users ... 134
IAM user groups ... 134
IAM roles .. 135
Temporary credentials in IAM ... 136
When to use IAM Identity Center users? .. 136

vi

AWS Identity and Access Management User Guide

When to create an IAM user (instead of a role) .. 137
When to create an IAM role (instead of a user) .. 138
Compare AWS account root user and IAM user .. 139
AWS account root user ... 140

Enable a virtual MFA device for your AWS account root user (console) 141
Enable a hardware TOTP token for the AWS account root user (console) 143
Enable a FIDO security key for the AWS account root user (console) 145
Change the password .. 147
Resetting a lost or forgotten root user password ... 149
Creating access keys for the root user ... 150
Deleting access keys for the root user ... 152
Tasks that require root user ... 154
Troubleshooting root user issues .. 155
Related information ... 156

Users ... 156
How AWS identifies an IAM user .. 157
IAM users and credentials ... 157
IAM users and permissions ... 159
IAM users and accounts .. 159
IAM users as service accounts .. 159
Adding a user .. 160
Controlling user access to the console .. 167
How IAM users sign in to AWS .. 169
Managing users ... 172
Changing permissions for a user ... 179
Managing passwords .. 186
Access keys ... 202
Retrieving lost passwords or access keys .. 219
Multi-factor authentication (MFA) ... 220
Finding unused credentials ... 290
Getting credential reports .. 294
Using IAM with CodeCommit ... 300
Using IAM with Amazon Keyspaces .. 303
Managing server certificates .. 305

User groups ... 312
Creating user groups ... 313

vii

AWS Identity and Access Management User Guide

Managing user groups ... 315
Roles ... 322

Terms and concepts ... 323
Common scenarios ... 327
Identity providers and federation ... 346
Service-linked roles .. 419
Creating roles .. 432
Using roles ... 469
Managing roles .. 639

Tagging IAM resources .. 662
Choose an AWS tag naming convention ... 663
Rules for tagging in IAM and AWS STS ... 664
Tagging IAM users .. 667
Tagging IAM roles ... 670
Tagging customer managed policies .. 674
Tagging IAM identity providers ... 676
Tagging instance profiles .. 682
Tagging server certificates ... 685
Tagging virtual MFA devices .. 687
Session tags ... 690

Temporary security credentials ... 703
AWS STS and AWS regions .. 703
Common scenarios for temporary credentials ... 704
Requesting temporary security credentials ... 706
Using temporary credentials with AWS resources ... 723
Controlling permissions for temporary security credentials .. 727
Managing AWS STS in an AWS Region .. 759
Using bearer tokens ... 769
Sample applications that use temporary credentials ... 770
Additional resources for temporary credentials ... 771

Log events with CloudTrail .. 771
IAM and AWS STS information in CloudTrail .. 772
Logging IAM and AWS STS API requests ... 773
Logging API requests to other AWS services .. 773
Logging user sign-in events ... 773
Logging sign-in events for temporary credentials .. 774

viii

AWS Identity and Access Management User Guide

Example IAM API events in CloudTrail log .. 776
Example AWS STS API events in CloudTrail log ... 777
Example sign-in events in CloudTrail log .. 787
IAM role trust policy behavior ... 790

Access management .. 791
Access management resources .. 792
Policies and permissions .. 793

Policy types .. 793
Policies and the root user ... 798
Overview of JSON policies ... 798
Grant least privilege .. 803
Managed policies and inline policies .. 805
Permissions boundaries ... 814
Identity vs resource .. 827
Controlling access using policies ... 830
Control access to IAM users and roles using tags .. 842
Control access to AWS resources using tags ... 845
Cross account resource access ... 850
Forward access sessions .. 856
Example policies ... 859

Managing IAM policies .. 935
Creating IAM policies ... 936
Validating policies .. 946
Generating policies ... 947
Testing IAM policies ... 947
Add or remove identity permissions .. 962
Versioning IAM policies ... 974
Editing IAM policies .. 978
Deleting IAM policies ... 984
Refining permissions using access information .. 988

Understanding policies ... 1511
Policy summary (list of services) .. 1512
Service summary (list of actions) ... 1525
Action summary (list of resources) ... 1530
Example policy summaries ... 1534

Permissions required ... 1544

ix

AWS Identity and Access Management User Guide

Permissions for administering IAM identities ... 1544
Permissions for working in the AWS Management Console ... 1546
Granting permissions across AWS accounts ... 1546
Permissions for one service to access another .. 1547
Required actions ... 1548
Example policies for IAM .. 1548

Code examples ... 1553
IAM .. 1555

Actions .. 1568
Scenarios .. 1989

AWS STS .. 2342
Actions .. 2343
Scenarios .. 2362

Security .. 2380
AWS security credentials .. 2381

Security considerations ... 2382
Federated identity .. 2383
Multi-factor authentication (MFA) .. 2383
Programmatic access ... 2383
Alternatives to long-term access keys ... 2385
Accessing AWS using your AWS credentials ... 2387

AWS security audit guidelines .. 2387
When to perform a security audit .. 2388
Guidelines for auditing ... 2388
Review your AWS account credentials ... 2389
Review your IAM users .. 2389
Review your IAM groups ... 2390
Review your IAM roles .. 2390
Review your IAM providers for SAML and OpenID Connect (OIDC) 2390
Review Your mobile apps ... 2390
Tips for reviewing IAM policies ... 2391

Data protection .. 2392
Data encryption in IAM and AWS STS ... 2393
Key management in IAM and AWS STS .. 2394
Internetwork traffic privacy in IAM and AWS STS ... 2394

Logging and monitoring .. 2394

x

AWS Identity and Access Management User Guide

Compliance validation .. 2395
Resilience ... 2396

Best practices for IAM resilience ... 2398
Infrastructure security .. 2399
Configuration and vulnerability analysis .. 2399
AWS managed policies ... 2400

IAMReadOnlyAccess ... 2400
IAMUserChangePassword ... 2401
IAMAccessAnalyzerFullAccess ... 2401
IAMAccessAnalyzerReadOnlyAccess .. 2403
AccessAnalyzerServiceRolePolicy .. 2404
... 2407
Policy updates ... 2407

IAM Access Analyzer .. 2411
Identifying resources shared with an external entity .. 2411
Identifying unused access granted to IAM users and roles ... 2413
Validating policies against AWS best practices ... 2414
Validating policies against your specified security standards .. 2414
Generating policies .. 2414
Pricing for IAM Access Analyzer ... 2415
Findings for external and unused access .. 2415

How IAM Access Analyzer findings work ... 2417
Getting started with IAM Access Analyzer findings .. 2418
Findings dashboard .. 2425
Working with findings ... 2428
Reviewing findings ... 2429
Filtering findings .. 2433
Archiving findings .. 2437
Resolving findings .. 2438
Supported resource types .. 2439
Settings ... 2446
Archive rules .. 2448
Monitoring with EventBridge ... 2450
Security Hub integration .. 2459
Logging with CloudTrail .. 2467
IAM Access Analyzer filter keys ... 2469

xi

AWS Identity and Access Management User Guide

Using service-linked roles ... 2477
Preview access .. 2479

Previewing access in Amazon S3 console ... 2480
Previewing access with IAM Access Analyzer APIs ... 2481

Checks for validating policies ... 2485
IAM Access Analyzer policy validation ... 2485
Custom policy checks .. 2590

IAM Access Analyzer policy generation ... 2593
How policy generation works .. 2594
Service and action-level information ... 2595
Things to know ... 2595
Permissions required ... 2596
Generate a policy based on CloudTrail activity (console) .. 2599
Generate a policy using AWS CloudTrail data in another account ... 2603
Generate a policy based on CloudTrail activity (AWS CLI) ... 2606
Generate a policy based on CloudTrail activity (AWS API) .. 2606
IAM Access Analyzer policy generation services .. 2607

IAM Access Analyzer quotas .. 2618
Troubleshooting IAM ... 2620

General issues ... 2620
I can't sign in to my AWS account ... 2620
I lost my access keys ... 2621
Policy variables aren't working ... 2621
Changes that I make are not always immediately visible .. 2621
I am not authorized to perform: iam:DeleteVirtualMFADevice ... 2622
How do I securely create IAM users? ... 2623
Additional resources .. 2624

Access denied error messages .. 2624
I get "access denied" when I make a request to an AWS service .. 2624
I get "access denied" when I make a request with temporary security credentials 2626
Access denied examples .. 2627

IAM policies ... 2633
Troubleshoot using the visual editor ... 2634
Troubleshoot using policy summaries ... 2638
Troubleshoot policy management .. 2648
Troubleshoot JSON policy documents ... 2648

xii

AWS Identity and Access Management User Guide

FIDO security keys ... 2654
I can't enable my FIDO security key .. 2655
I can't sign in using my FIDO security key .. 2656
I lost or broke my FIDO security key ... 2656
Other issues ... 2656

IAM roles ... 2656
I can't assume a role ... 2657
A new role appeared in my AWS account ... 2659
I can't edit or delete a role in my AWS account .. 2659
I'm not authorized to perform: iam:PassRole .. 2659
Why can't I assume a role with a 12-hour session? (AWS CLI, AWS API) 2660
I receive an error when I try to switch roles in the IAM console .. 2660
My role has a policy that allows me to perform an action, but I get "access denied" 2661
The service did not create the role's default policy version .. 2661
There is no use case for a service role in the console .. 2663

IAM and Amazon EC2 ... 2664
When attempting to launch an instance, I don't see the role I expected to see in the
Amazon EC2 console IAM Role list .. 2664
The credentials on my instance are for the wrong role ... 2665
When I attempt to call the AddRoleToInstanceProfile, I get an AccessDenied
error ... 2665
Amazon EC2: When I attempt to launch an instance with a role, I get an AccessDenied
error ... 2666
I can't access the temporary security credentials on my EC2 instance 2666
What do the errors from the info document in the IAM subtree mean? 2667

IAM and Amazon S3 ... 2668
How do I grant anonymous access to an Amazon S3 bucket? .. 2668
I'm signed in as an AWS account root user; why can't I access an Amazon S3 bucket under
my account? ... 2669

SAML 2.0 federation ... 2669
Invalid SAML response .. 2670
RoleSessionName is required ... 2670
Not authorized for AssumeRoleWithSAML ... 2671
Invalid RoleSessionName characters .. 2671
Invalid Source Identity characters .. 2672
Invalid response signature ... 2672

xiii

AWS Identity and Access Management User Guide

Failed to assume role .. 2672
Could not parse metadata ... 2672
Specified provider doesn't exist .. 2673
DurationSeconds exceeds MaxSessionDuration ... 2673
Response does not contain the required audience ... 2673
Viewing a SAML response in your browser ... 2674

Reference .. 2677
Amazon Resource Names (ARNs) ... 2677

ARN format .. 2677
Look up the ARN format for a resource .. 2679
Paths in ARNs ... 2679

IAM identifiers .. 2680
Friendly names and paths .. 2680
IAM ARNs ... 2681
Unique identifiers ... 2687

IAM and AWS STS quotas .. 2690
IAM name requirements ... 2691
IAM object quotas .. 2691
IAM Access Analyzer quotas ... 2693
IAM Roles Anywhere quotas .. 2693
IAM and STS character limits .. 2693

Interface VPC endpoints .. 2698
Availability ... 2699
Create a VPC endpoint for AWS STS ... 2700

Services that work with IAM ... 2700
Services that work with IAM .. 2702
More information ... 2767

Signing AWS API requests ... 2771
When to sign requests .. 2773
Why requests are signed .. 2773
Signature Version 4 request elements ... 2774
Authentication methods ... 2776
Create a signed request .. 2781
Request signature examples .. 2792
Troubleshoot ... 2794

Policy reference .. 2798

xiv

AWS Identity and Access Management User Guide

JSON element reference ... 2799
Policy evaluation logic .. 2869
Policy grammar ... 2892
AWS managed policies for job functions .. 2900
Global condition keys .. 2915
IAM condition keys ... 2974
Actions, resources, and condition keys .. 3000

Resources .. 3001
Identities .. 3001
Credentials (passwords, access keys, and MFA devices) ... 3001
Permissions and policies .. 3002
Federation and delegation .. 3002
IAM and other AWS products ... 3003

Using IAM with Amazon EC2 ... 3003
Using IAM with Amazon S3 ... 3003
Using IAM with Amazon RDS .. 3003
Using IAM with Amazon DynamoDB .. 3004

General security practices .. 3004
General resources .. 3004

Making HTTP query requests ... 3006
Endpoints ... 3006
HTTPS required .. 3007
Signing IAM API requests .. 3007

Document history .. 3009

xv

AWS Identity and Access Management User Guide

What is IAM?

AWS Identity and Access Management (IAM) is a web service that helps you securely control
access to AWS resources. With IAM, you can centrally manage permissions that control which AWS
resources users can access. You use IAM to control who is authenticated (signed in) and authorized
(has permissions) to use resources.

When you create an AWS account, you begin with one sign-in identity that has complete access to
all AWS services and resources in the account. This identity is called the AWS account root user and
is accessed by signing in with the email address and password that you used to create the account.
We strongly recommend that you don't use the root user for your everyday tasks. Safeguard your
root user credentials and use them to perform the tasks that only the root user can perform. For
the complete list of tasks that require you to sign in as the root user, see Tasks that require root
user credentials.

Contents

• Video introduction to IAM

• IAM features

• Accessing IAM

• When do I use IAM?

• How IAM works

• Overview of AWS identity management: Users

• Overview of access management: Permissions and policies

• What is ABAC for AWS?

• Security features outside IAM

• Quick links to common tasks

• IAM console search

• Creating AWS Identity and Access Management resources with AWS CloudFormation

• Using AWS CloudShell to work with AWS Identity and Access Management

• Using IAM with an AWS SDK

1

https://twitter.com/AWSSecurityInfo

AWS Identity and Access Management User Guide

Video introduction to IAM

AWS Training and Certification provides a 10-minute video introduction to IAM:

Introduction to AWS Identity and Access Management

IAM features

IAM gives you the following features:

Shared access to your AWS account

You can grant other people permission to administer and use resources in your AWS account
without having to share your password or access key.

Granular permissions

You can grant different permissions to different people for different resources. For example,
you might allow some users complete access to Amazon Elastic Compute Cloud (Amazon EC2),
Amazon Simple Storage Service (Amazon S3), Amazon DynamoDB, Amazon Redshift, and
other AWS services. For other users, you can allow read-only access to just some S3 buckets,
or permission to administer just some EC2 instances, or to access your billing information but
nothing else.

Secure access to AWS resources for applications that run on Amazon EC2

You can use IAM features to securely provide credentials for applications that run on EC2
instances. These credentials provide permissions for your application to access other AWS
resources. Examples include S3 buckets and DynamoDB tables.

Multi-factor authentication (MFA)

You can add two-factor authentication to your account and to individual users for extra security.
With MFA you or your users must provide not only a password or access key to work with your
account, but also a code from a specially configured device. If you already use a FIDO security
key with other services, and it has an AWS supported configuration, you can use WebAuthn for
MFA security. For more information, see Supported configurations for using FIDO security keys.

Identity federation

You can allow users who already have passwords elsewhere—for example, in your corporate
network or with an internet identity provider—to get temporary access to your AWS account.

Video introduction to IAM 2

https://www.aws.training/learningobject/video?id=16448

AWS Identity and Access Management User Guide

Identity information for assurance

If you use AWS CloudTrail, you receive log records that include information about those who
made requests for resources in your account. That information is based on IAM identities.

PCI DSS Compliance

IAM supports the processing, storage, and transmission of credit card data by a merchant or
service provider, and has been validated as being compliant with Payment Card Industry (PCI)
Data Security Standard (DSS). For more information about PCI DSS, including how to request a
copy of the AWS PCI Compliance Package, see PCI DSS Level 1.

Integrated with many AWS services

For a list of AWS services that work with IAM, see AWS services that work with IAM.

Eventually Consistent

IAM, like many other AWS services, is eventually consistent. IAM achieves high availability by
replicating data across multiple servers within Amazon's data centers around the world. If a
request to change some data is successful, the change is committed and safely stored. However,
the change must be replicated across IAM, which can take some time. Such changes include
creating or updating users, groups, roles, or policies. We recommend that you do not include
such IAM changes in the critical, high-availability code paths of your application. Instead, make
IAM changes in a separate initialization or setup routine that you run less frequently. Also, be
sure to verify that the changes have been propagated before production workflows depend on
them. For more information, see Changes that I make are not always immediately visible.

Free to use

AWS Identity and Access Management (IAM) and AWS Security Token Service (AWS STS) are
features of your AWS account offered at no additional charge. You are charged only when you
access other AWS services using your IAM users or AWS STS temporary security credentials. For
information about the pricing of other AWS products, see the Amazon Web Services pricing
page.

Accessing IAM

You can work with AWS Identity and Access Management in any of the following ways.

Accessing IAM 3

https://aws.amazon.com/cloudtrail/
https://aws.amazon.com/compliance/pci-dss-level-1-faqs/
https://wikipedia.org/wiki/Eventual_consistency
https://aws.amazon.com/pricing/
https://aws.amazon.com/pricing/

AWS Identity and Access Management User Guide

AWS Management Console

The console is a browser-based interface to manage IAM and AWS resources. For more
information about accessing IAM through the console, see How to sign in to AWS in the AWS
Sign-In User Guide.

AWS Command Line Tools

You can use the AWS command line tools to issue commands at your system's command line to
perform IAM and AWS tasks. Using the command line can be faster and more convenient than
the console. The command line tools are also useful if you want to build scripts that perform
AWS tasks.

AWS provides two sets of command line tools: the AWS Command Line Interface (AWS CLI)
and the AWS Tools for Windows PowerShell. For information about installing and using the
AWS CLI, see the AWS Command Line Interface User Guide. For information about installing
and using the Tools for Windows PowerShell, see the AWS Tools for Windows PowerShell User
Guide.

After signing in to the console, you can use AWS CloudShell from your browser to run CLI or
SDK commands. The permissions for accessing AWS resources are based on the credentials you
used to sign-in to the console. Depending on your experience, you may find the CLI to be a
more efficient method of managing your AWS account. For more information, see Using AWS
CloudShell to work with AWS Identity and Access Management

AWS SDKs

AWS provides SDKs (software development kits) that consist of libraries and sample code
for various programming languages and platforms (Java, Python, Ruby, .NET, iOS, Android,
etc.). The SDKs provide a convenient way to create programmatic access to IAM and AWS. For
example, the SDKs take care of tasks such as cryptographically signing requests, managing
errors, and retrying requests automatically. For information about the AWS SDKs, including how
to download and install them, see the Tools for Amazon Web Services page.

IAM Query API

You can access IAM and AWS programmatically by using the IAM Query API, which lets you issue
HTTPS requests directly to the service. When you use the Query API, you must include code
to digitally sign requests using your credentials. For more information, see Calling the IAM API
using HTTP query requests and the IAM API Reference.

Accessing IAM 4

https://docs.aws.amazon.com/signin/latest/userguide/how-to-sign-in.html
https://aws.amazon.com/cli/
https://aws.amazon.com/powershell/
https://docs.aws.amazon.com/cli/latest/userguide/
https://docs.aws.amazon.com/powershell/latest/userguide/
https://docs.aws.amazon.com/powershell/latest/userguide/
https://aws.amazon.com/tools/
https://docs.aws.amazon.com/IAM/latest/APIReference/

AWS Identity and Access Management User Guide

When do I use IAM?

When you are performing different job functions

AWS Identity and Access Management is a core infrastructure service that provides the foundation
for access control based on identities within AWS. You use IAM every time you access your AWS
account.

How you use IAM differs, depending on the work that you do in AWS.

• Service user – If you use an AWS service to do your job, then your administrator provides you
with the credentials and permissions that you need. As you use more advanced features to do
your work, you might need additional permissions. Understanding how access is managed can
help you request the right permissions from your administrator.

• Service administrator – If you're in charge of an AWS resource at your company, you probably
have full access to IAM. It's your job to determine which IAM features and resources your service
users should access. You must then submit requests to your IAM administrator to change the
permissions of your service users. Review the information on this page to understand the basic
concepts of IAM.

• IAM administrator – If you're an IAM administrator, you manage IAM identities and write policies
to manage access to IAM.

When you are authorized to access AWS resources

Authentication is how you sign in to AWS using your identity credentials. You must be
authenticated (signed in to AWS) as the AWS account root user, as an IAM user, or by assuming an
IAM role.

You can sign in to AWS as a federated identity by using credentials provided through an identity
source. AWS IAM Identity Center (IAM Identity Center) users, your company's single sign-on
authentication, and your Google or Facebook credentials are examples of federated identities.
When you sign in as a federated identity, your administrator previously set up identity federation
using IAM roles. When you access AWS by using federation, you are indirectly assuming a role.

Depending on the type of user you are, you can sign in to the AWS Management Console or the
AWS access portal. For more information about signing in to AWS, see How to sign in to your AWS
account in the AWS Sign-In User Guide.

When do I use IAM 5

https://docs.aws.amazon.com/signin/latest/userguide/how-to-sign-in.html
https://docs.aws.amazon.com/signin/latest/userguide/how-to-sign-in.html

AWS Identity and Access Management User Guide

If you access AWS programmatically, AWS provides a software development kit (SDK) and a
command line interface (CLI) to cryptographically sign your requests by using your credentials. If
you don't use AWS tools, you must sign requests yourself. For more information about using the
recommended method to sign requests yourself, see Signing AWS API requests in the IAM User
Guide.

Regardless of the authentication method that you use, you might be required to provide additional
security information. For example, AWS recommends that you use multi-factor authentication
(MFA) to increase the security of your account. To learn more, see Multi-factor authentication in the
AWS IAM Identity Center User Guide and Using multi-factor authentication (MFA) in AWS in the IAM
User Guide.

When you sign-in as an IAM user

An IAM user is an identity within your AWS account that has specific permissions for a single person
or application. Where possible, we recommend relying on temporary credentials instead of creating
IAM users who have long-term credentials such as passwords and access keys. However, if you have
specific use cases that require long-term credentials with IAM users, we recommend that you rotate
access keys. For more information, see Rotate access keys regularly for use cases that require long-
term credentials in the IAM User Guide.

An IAM group is an identity that specifies a collection of IAM users. You can't sign in as a group. You
can use groups to specify permissions for multiple users at a time. Groups make permissions easier
to manage for large sets of users. For example, you could have a group named IAMAdmins and give
that group permissions to administer IAM resources.

Users are different from roles. A user is uniquely associated with one person or application, but
a role is intended to be assumable by anyone who needs it. Users have permanent long-term
credentials, but roles provide temporary credentials. To learn more, see When to create an IAM user
(instead of a role) in the IAM User Guide.

When you assume an IAM role

An IAM role is an identity within your AWS account that has specific permissions. It is similar to an
IAM user, but is not associated with a specific person. You can temporarily assume an IAM role in
the AWS Management Console by switching roles. You can assume a role by calling an AWS CLI or
AWS API operation or by using a custom URL. For more information about methods for using roles,
see Using IAM roles in the IAM User Guide.

When you sign-in as an IAM user 6

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-signing.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/enable-mfa.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mfa.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#rotate-credentials
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#rotate-credentials
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_groups.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id.html#id_which-to-choose
https://docs.aws.amazon.com/IAM/latest/UserGuide/id.html#id_which-to-choose
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-console.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use.html

AWS Identity and Access Management User Guide

IAM roles with temporary credentials are useful in the following situations:

• Federated user access – To assign permissions to a federated identity, you create a role
and define permissions for the role. When a federated identity authenticates, the identity
is associated with the role and is granted the permissions that are defined by the role. For
information about roles for federation, see Creating a role for a third-party Identity Provider
in the IAM User Guide. If you use IAM Identity Center, you configure a permission set. To control
what your identities can access after they authenticate, IAM Identity Center correlates the
permission set to a role in IAM. For information about permissions sets, see Permission sets in
the AWS IAM Identity Center User Guide.

• Temporary IAM user permissions – An IAM user or role can assume an IAM role to temporarily
take on different permissions for a specific task.

• Cross-account access – You can use an IAM role to allow someone (a trusted principal) in a
different account to access resources in your account. Roles are the primary way to grant cross-
account access. However, with some AWS services, you can attach a policy directly to a resource
(instead of using a role as a proxy). To learn the difference between roles and resource-based
policies for cross-account access, see How IAM roles differ from resource-based policies in the
IAM User Guide.

• Cross-service access – Some AWS services use features in other AWS services. For example, when
you make a call in a service, it's common for that service to run applications in Amazon EC2 or
store objects in Amazon S3. A service might do this using the calling principal's permissions,
using a service role, or using a service-linked role.

• Forward access sessions (FAS) – When you use an IAM user or role to perform actions in
AWS, you are considered a principal. When you use some services, you might perform an
action that then initiates another action in a different service. FAS uses the permissions of the
principal calling an AWS service, combined with the requesting AWS service to make requests
to downstream services. FAS requests are only made when a service receives a request that
requires interactions with other AWS services or resources to complete. In this case, you must
have permissions to perform both actions. For policy details when making FAS requests, see
Forward access sessions.

• Service role – A service role is an IAM role that a service assumes to perform actions on your
behalf. An IAM administrator can create, modify, and delete a service role from within IAM. For
more information, see Creating a role to delegate permissions to an AWS service in the IAM
User Guide.

• Service-linked role – A service-linked role is a type of service role that is linked to an AWS
service. The service can assume the role to perform an action on your behalf. Service-linked

When you assume an IAM role 7

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-idp.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/permissionsetsconcept.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_compare-resource-policies.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_forward_access_sessions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html

AWS Identity and Access Management User Guide

roles appear in your AWS account and are owned by the service. An IAM administrator can
view, but not edit the permissions for service-linked roles.

• Applications running on Amazon EC2 – You can use an IAM role to manage temporary
credentials for applications that are running on an EC2 instance and making AWS CLI or AWS API
requests. This is preferable to storing access keys within the EC2 instance. To assign an AWS role
to an EC2 instance and make it available to all of its applications, you create an instance profile
that is attached to the instance. An instance profile contains the role and enables programs that
are running on the EC2 instance to get temporary credentials. For more information, see Using
an IAM role to grant permissions to applications running on Amazon EC2 instances in the IAM
User Guide.

To learn whether to use IAM roles or IAM users, see When to create an IAM role (instead of a user)
in the IAM User Guide.

When you create policies and permissions

You grant permissions to a user by creating a policy, which is a document that lists the actions that
a user can perform and the resources those actions can affect. Any actions or resources that are not
explicitly allowed are denied by default. Policies can be created and attached to principals (users,
groups of users, roles assumed by users, and resources).

These policies are used with an IAM role:

• Trust policy – Defines which principals can assume the role, and under which conditions. A trust
policy is a specific type of resource-based policy for IAM roles. A role can have only one trust
policy.

• Identity-based policies (inline and managed) – These policies define the permissions that the
user of the role is able to perform (or is denied from performing), and on which resources.

Use the Example IAM identity-based policies to help you define permissions for your IAM identities.
After you find the policy that you need, choose view the policy to view the JSON for the policy. You
can use the JSON policy document as a template for your own policies.

Note

If you are using IAM Identity Center to manage your users, you assign permission sets in
IAM Identity Center instead of attaching a permissions policy to a principal. When you

When you create policies and permissions 8

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-ec2.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-ec2.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id.html#id_which-to-choose_role

AWS Identity and Access Management User Guide

assign a permission set to a group or user in AWS IAM Identity Center, IAM Identity Center
creates corresponding IAM roles in each account, and attaches the policies specified in
the permission set to those roles. IAM Identity Center manages the role, and allows the
authorized users you’ve defined to assume the role. If you modify the permission set,
IAM Identity Center ensures that the corresponding IAM policies and roles are updated
accordingly.
For more information about IAM Identity Center, see What is IAM Identity Center? in the
AWS IAM Identity Center User Guide.

How IAM works

IAM provides the infrastructure necessary to control authentication and authorization for your AWS
account. The IAM infrastructure is illustrated by the following diagram:

How IAM works 9

https://docs.aws.amazon.com/singlesignon/latest/userguide/what-is.html

AWS Identity and Access Management User Guide

First, a human user or an application uses their sign-in credentials to authenticate with AWS.
Authentication is provided by matching the sign-in credentials to a principal (an IAM user,
federated user, IAM role, or application) trusted by the AWS account.

Next, a request is made to grant the principal access to resources. Access is granted in response to
an authorization request. For example, when you first sign in to the console and are on the console
Home page, you are not accessing a specific service. When you select a service, the request for
authorization is sent to that service and it looks to see if your identity is on the list of authorized
users, what policies are being enforced to control the level of access granted, and any other policies
that might be in effect. Authorization requests can be made by principals within your AWS account
or from another AWS account that you trust.

How IAM works 10

AWS Identity and Access Management User Guide

Once authorized, the principal can take action or perform operations on resources in your AWS
account. For example, the principal could launch a new Amazon Elastic Compute Cloud instance,
modify IAM group membership, or delete Amazon Simple Storage Service buckets.

Basic concepts

• Terms

• Principal

• Request

• Authentication

• Authorization

• Actions or operations

• Resources

Terms

These IAM terms are commonly used when working with AWS:

IAM Resource

IAM resources are stored in IAM. You can add, edit, and remove them from IAM.

• user

• group

• role

• policy

• identity-provider object

IAM Entity

IAM resources that AWS uses for authentication. Entities can be specified as a Principal in a
resource-based policy.

• user

• role

IAM Identity

An IAM resource that can be authorized in policies to perform actions and to access resources.
Identities include users, groups, and roles.

Terms 11

AWS Identity and Access Management User Guide

Principals

A person or application that uses the AWS account root user, an IAM user, or an IAM role to sign
in and make requests to AWS. Principals include federated users and assumed roles.

Human users

Also known as human identities; the people, administrators, developers, operators, and
consumers of your applications.

Workload

A collection of resources and code that delivers business value, such as an application or
backend process. Can include applications, operational tools, and components.

Principal

A principal is a human user or workload that can make a request for an action or operation on an
AWS resource. After authentication, the principal can be granted either permanent or temporary
credentials to make requests to AWS, depending on the principal type. IAM users and root user
are granted permanent credentials, while roles are granted temporary credentials. As a best
practice, we recommend that you require human users and workloads to access AWS resources
using temporary credentials.

Principal 12

AWS Identity and Access Management User Guide

Request

When a principal tries to use the AWS Management Console, the AWS API, or the AWS CLI, that
principal sends a request to AWS. The request includes the following information:

• Actions or operations – The actions or operations that the principal wants to perform. This can
be an action in the AWS Management Console, or an operation in the AWS CLI or AWS API.

• Resources – The AWS resource object upon which the actions or operations are performed.

• Principal – The person or application that used an entity (user or role) to send the request.
Information about the principal includes the policies that are associated with the entity that the
principal used to sign in.

• Environment data – Information about the IP address, user agent, SSL enabled status, or the
time of day.

• Resource data – Data related to the resource that is being requested. This can include
information such as a DynamoDB table name or a tag on an Amazon EC2 instance.

AWS gathers the request information into a request context, which is used to evaluate and
authorize the request.

Authentication

A principal must be authenticated (signed in to AWS) using their credentials to send a request
to AWS. Some services, such as Amazon S3 and AWS STS, allow a few requests from anonymous
users. However, they are the exception to the rule.

To authenticate from the console as a root user, you must sign in with your email address and
password. As a federated user, you are authenticated by your identity provider and granted access
to AWS resources by assuming IAM roles. As an IAM user, provide your account ID or alias, and then
your user name and password. To authenticate workloads from the API or AWS CLI, you might use
temporary credentials through being assigned a role or you might use long-term credentials by
providing your access key and secret key. You might also be required to provide additional security
information. As a best practice, AWS recommends that you use multi-factor authentication (MFA)
and temporary credentials to increase the security of your account. To learn more about the IAM
entities that AWS can authenticate, see IAM users and IAM roles.

Request 13

AWS Identity and Access Management User Guide

Authorization

You must also be authorized (allowed) to complete your request. During authorization, AWS uses
values from the request context to check for policies that apply to the request. It then uses the
policies to determine whether to allow or deny the request. Most policies are stored in AWS as
JSON documents and specify the permissions for principal entities. There are several types of
policies that can affect whether a request is authorized. To provide your users with permissions to
access the AWS resources in their own account, you need only identity-based policies. Resource-
based policies are popular for granting cross-account access. The other policy types are advanced
features and should be used carefully.

AWS checks each policy that applies to the context of your request. If a single permissions policy
includes a denied action, AWS denies the entire request and stops evaluating. This is called an
explicit deny. Because requests are denied by default, AWS authorizes your request only if every part
of your request is allowed by the applicable permissions policies. The evaluation logic for a request
within a single account follows these general rules:

• By default, all requests are denied. (In general, requests made using the AWS account root user
credentials for resources in the account are always allowed.)

• An explicit allow in any permissions policy (identity-based or resource-based) overrides this
default.

• The existence of an Organizations SCP, IAM permissions boundary, or a session policy overrides
the allow. If one or more of these policy types exists, they must all allow the request. Otherwise,
it is implicitly denied.

• An explicit deny in any policy overrides any allows.

To learn more about how all types of policies are evaluated, see Policy evaluation logic. If you need
to make a request in a different account, a policy in the other account must allow you to access the
resource and the IAM entity that you use to make the request must have an identity-based policy
that allows the request.

Actions or operations

After your request has been authenticated and authorized, AWS approves the actions or operations
in your request. Operations are defined by a service, and include things that you can do to a
resource, such as viewing, creating, editing, and deleting that resource. For example, IAM supports
approximately 40 actions for a user resource, including the following actions:

Authorization 14

AWS Identity and Access Management User Guide

• CreateUser

• DeleteUser

• GetUser

• UpdateUser

To allow a principal to perform an operation, you must include the necessary actions in a policy
that applies to the principal or the affected resource. To see a list of actions, resource types, and
condition keys supported by each service, see Actions, Resources, and Condition Keys for AWS
Services.

Resources

After AWS approves the operations in your request, they can be performed on the related resources
within your account. A resource is an object that exists within a service. Examples include an
Amazon EC2 instance, an IAM user, and an Amazon S3 bucket. The service defines a set of actions
that can be performed on each resource. If you create a request to perform an unrelated action on
a resource, that request is denied. For example, if you request to delete an IAM role but provide an
IAM group resource, the request fails. To see AWS service tables that identify which resources are
affected by an action, see Actions, Resources, and Condition Keys for AWS Services.

Overview of AWS identity management: Users

You can give access to your AWS account to specific users and provide them specific permissions
to access resources in your AWS account. You can use both IAM and AWS IAM Identity Center to
create new users or federate existing users into AWS. The main difference between the two is that
IAM users are granted long-term credentials to your AWS resources while users in IAM Identity
Center have temporary credentials that are established each time the user signs-in to AWS. As a
best practice, require human users to use federation with an identity provider to access AWS using
temporary credentials instead of as an IAM user. A primary use for IAM users is to give workloads
that cannot use IAM roles the ability to make programmatic requests to AWS services using the API
or CLI.

Topics

• First-time access only: Your root user credentials

• IAM users and users in IAM Identity Center

Resources 15

reference_policies_actions-resources-contextkeys.html
reference_policies_actions-resources-contextkeys.html
reference_policies_actions-resources-contextkeys.html

AWS Identity and Access Management User Guide

• Federating existing users

• Access control methods

First-time access only: Your root user credentials

When you create an AWS account, you begin with one sign-in identity that has complete access to
all AWS services and resources in the account. This identity is called the AWS account root user and
is accessed by signing in with the email address and password that you used to create the account.
We strongly recommend that you don't use the root user for your everyday tasks. Safeguard your
root user credentials and use them to perform the tasks that only the root user can perform. For
the complete list of tasks that require you to sign in as the root user, see Tasks that require root
user credentials in the IAM User Guide. Only service control policies (SCPs) in organizations can
restrict the permissions that are granted to the root user.

IAM users and users in IAM Identity Center

IAM users are not separate accounts; they are users within your account. Each user can have its own
password for access to the AWS Management Console. You can also create an individual access
key for each user so that the user can make programmatic requests to work with resources in your
account.

IAM users are granted long-term credentials to your AWS resources. As a best practice, do not
create IAM users with long-term credentials for your human users. Instead, require your human
users to use temporary credentials when accessing AWS.

Note

For scenarios in which you need IAM users with programmatic access and long-term
credentials, we recommend that you update access keys when needed. For more
information, see Updating access keys.

In contrast, users in AWS IAM Identity Center are granted short-term credentials to your AWS
resources. For centralized access management, we recommend that you use AWS IAM Identity
Center (IAM Identity Center) to manage access to your accounts and permissions within those
accounts. IAM Identity Center is automatically configured with an Identity Center directory as your
default identity source where you can create users and groups, and assign their level of access to

First-time access only: Your root user credentials 16

https://docs.aws.amazon.com/IAM/latest/UserGuide/root-user-tasks.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/root-user-tasks.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/getting-started.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/getting-started.html

AWS Identity and Access Management User Guide

your AWS resources. For more information, see What is AWS IAM Identity Center in the AWS IAM
Identity Center User Guide.

Federating existing users

If the users in your organization already have a way to be authenticated, such as by signing in to
your corporate network, you don't have to create separate IAM users or users in IAM Identity Center
for them. Instead, you can federate those user identities into AWS using either IAM or AWS IAM
Identity Center.

The following diagram shows how a user can get temporary AWS security credentials to access
resources in your AWS account.

Federation is particularly useful in these cases:

• Your users already exist in a corporate directory.

If your corporate directory is compatible with Security Assertion Markup Language 2.0 (SAML
2.0), you can configure your corporate directory to provide single-sign on (SSO) access to the
AWS Management Console for your users. For more information, see Common scenarios for
temporary credentials.

If your corporate directory is not compatible with SAML 2.0, you can create an identity broker
application to provide single-sign on (SSO) access to the AWS Management Console for your
users. For more information, see Enabling custom identity broker access to the AWS console.

If your corporate directory is Microsoft Active Directory, you can use AWS IAM Identity Center to
connect a self-managed directory in Active Directory or a directory in AWS Directory Service to
establish trust between your corporate directory and your AWS account.

Federating existing users 17

https://docs.aws.amazon.com/singlesignon/latest/userguide/what-is.html
https://aws.amazon.com/directoryservice/

AWS Identity and Access Management User Guide

If you are using an external identity provider (IdP) such as Okta or Microsoft Entra to manage
users, you can use AWS IAM Identity Center to establish trust between your IdP and your AWS
account. For more information, see Connect to an external identity provider in the AWS IAM
Identity Center User Guide.

• Your users already have Internet identities.

If you are creating a mobile app or web-based app that can let users identify themselves through
an Internet identity provider like Login with Amazon, Facebook, Google, or any OpenID Connect
(OIDC) compatible identity provider, the app can use federation to access AWS. For more
information, see About web identity federation.

Tip

To use identity federation with Internet identity providers, we recommend you use
Amazon Cognito.

Access control methods

Here are the ways you can control access to your AWS resources.

Type of user
access

Why would I use it? Where can I get more information?

Single sign-
on access for
human users,
such as your
workforce
users, to AWS
resources
using IAM
Identity
Center

IAM Identity Center provides
a central place that brings
together administration of
users and their access to AWS
accounts and cloud applicati
ons.

You can set up an identity
store within IAM Identity
Center or you can configure
federation with an existing
identity provider (IdP).
Granting your human users

For more information about setting up IAM
Identity Center, see Getting Started in the
AWS IAM Identity Center User Guide

For more information about using MFA in IAM
Identity Center, see Multi-factor authentic
ation in the AWS IAM Identity Center User
Guide

Access control methods 18

https://docs.aws.amazon.com/singlesignon/latest/userguide/manage-your-identity-source-idp.html
https://docs.aws.amazon.com/cognito/latest/developerguide/what-is-amazon-cognito.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/getting-started.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/enable-mfa.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/enable-mfa.html

AWS Identity and Access Management User Guide

Type of user
access

Why would I use it? Where can I get more information?

limited credentials to AWS
resources as needed is
recommended as a security
best practice.

Users have an easier sign-
in experience and you
maintain control over their
access to resources from a
single system. IAM Identity
Center supports multi-fac
tor authentication (MFA) for
additional account security.

Federated
access for
human users,
such as your
workforce
users, to
AWS services
using IAM
identity
providers

IAM supports IdPs that are
compatible with OpenID
Connect (OIDC) or SAML
2.0 (Security Assertion
Markup Language 2.0). After
you create an IAM identity
provider, you must create one
or more IAM roles that can
be dynamically assigned to a
federated user.

For more information about IAM identity
providers and federation, see Identity
providers and federation.

Access control methods 19

AWS Identity and Access Management User Guide

Type of user
access

Why would I use it? Where can I get more information?

Cross-acc
ount access
between
AWS
accounts

You want to share access to
certain AWS resources with
users in other AWS accounts.

Roles are the primary way to
grant cross-account access.
However, some AWS services
allow you to attach a policy
directly to a resource (instead
of using a role as a proxy).
These are called resource-
based policies.

For more information about IAM roles, see IAM
roles.

For more information about service-linked
roles, see Using service-linked roles.

For information about which services support
using service-linked roles, see AWS services
that work with IAM. Look for the services that
have Yes in the Service-Linked Role column.
To view the service-linked role documentation
for that service select the link associated with
the Yes in that column.

Access control methods 20

AWS Identity and Access Management User Guide

Type of user
access

Why would I use it? Where can I get more information?

Long-term
credentials
for designate
d IAM users
in your AWS
account

You might have specific use
cases that require long-term
credentials with IAM users
in AWS. You can use IAM to
create these IAM users in your
AWS account, and use IAM
to manage their permissions.
Some of the use cases include
the following:

• Workloads that cannot use
IAM roles

• Third-party AWS clients
that require programmatic
access through access keys

• Service-specific credentia
ls for AWS CodeCommit or
Amazon Keyspaces

• AWS IAM Identity Center
is not available for your
account and you have no
other identity provider

As a best practice in scenarios
in which you need IAM users
with programmatic access
and long-term credentials, we
recommend that you update
access keys when needed.
For more information, see
Updating access keys.

For more information about setting up an IAM
user, see Creating an IAM user in your AWS
account.

For more information about IAM user access
keys, see Managing access keys for IAM users.

For more information about service-specific
credentials for AWS CodeCommit or Amazon
Keyspaces, see Using IAM with CodeCommit:
Git credentials, SSH keys, and AWS access keys
and Using IAM with Amazon Keyspaces (for
Apache Cassandra).

Access control methods 21

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_access-keys.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_access-keys.html

AWS Identity and Access Management User Guide

Overview of access management: Permissions and policies

The access management portion of AWS Identity and Access Management (IAM) helps you define
what a principal entity is allowed to do in an account. A principal entity is a person or application
that is authenticated using an IAM entity (user or role). Access management is often referred
to as authorization. You manage access in AWS by creating policies and attaching them to IAM
identities (users, groups of users, or roles) or AWS resources. A policy is an object in AWS that, when
associated with an identity or resource, defines their permissions. AWS evaluates these policies
when a principal uses an IAM entity (user or role) to make a request. Permissions in the policies
determine whether the request is allowed or denied. Most policies are stored in AWS as JSON
documents. For more information about policy types and uses, see Policies and permissions in IAM.

Policies and accounts

If you manage a single account in AWS, then you define the permissions within that account
using policies. If you manage permissions across multiple accounts, it is more difficult to manage
permissions for your users. You can use IAM roles, resource-based policies, or access control
lists (ACLs) for cross-account permissions. However, if you own multiple accounts, we instead
recommend using the AWS Organizations service to help you manage those permissions. For more
information, see What is AWS Organizations? in the Organizations User Guide.

Policies and users

IAM users are identities in the service. When you create an IAM user, they can't access anything
in your account until you give them permission. You give permissions to a user by creating an
identity-based policy, which is a policy that is attached to the user or a group to which the user
belongs. The following example shows a JSON policy that allows the user to perform all Amazon
DynamoDB actions (dynamodb:*) on the Books table in the 123456789012 account within the
us-east-2 Region.

{
 "Version": "2012-10-17",
 "Statement": {
 "Effect": "Allow",
 "Action": "dynamodb:*",
 "Resource": "arn:aws:dynamodb:us-east-2:123456789012:table/Books"
 }
}

Permissions and policies in IAM 22

https://docs.aws.amazon.com/organizations/latest/userguide/orgs_introduction.html

AWS Identity and Access Management User Guide

After you attach this policy to your IAM user, the user only has those DynamoDB permissions. Most
users have multiple policies that together represent the permissions for that user.

Actions or resources that are not explicitly allowed are denied by default. For example, if the
preceding policy is the only policy that is attached to a user, then that user is allowed to only
perform DynamoDB actions on the Books table. Actions on all other tables are prohibited.
Similarly, the user is not allowed to perform any actions in Amazon EC2, Amazon S3, or in any
other AWS service. The reason is that permissions to work with those services are not included in
the policy.

Policies and groups

You can organize IAM users into IAM groups and attach a policy to a group. In that case, individual
users still have their own credentials, but all the users in a group have the permissions that are
attached to the group. Use groups for easier permissions management, and to follow our Security
best practices in IAM.

Users or groups can have multiple policies attached to them that grant different permissions. In
that case, the permissions for the users are calculated based on the combination of policies. But
the basic principle still applies: If the user has not been granted an explicit permission for an action
and a resource, the user does not have those permissions.

Federated users and roles

Federated users don't have permanent identities in your AWS account the way that IAM users do.
To assign permissions to federated users, you can create an entity referred to as a role and define
permissions for the role. When a federated user signs in to AWS, the user is associated with the role

Policies and groups 23

AWS Identity and Access Management User Guide

and is granted the permissions that are defined in the role. For more information, see Creating a
role for a third-party Identity Provider (federation).

Identity-based and resource-based policies

Identity-based policies are permissions policies that you attach to an IAM identity, such as an IAM
user, group, or role. Resource-based policies are permissions policies that you attach to a resource
such as an Amazon S3 bucket or an IAM role trust policy.

Identity-based policies control what actions the identity can perform, on which resources, and
under what conditions. Identity-based policies can be further categorized:

• Managed policies – Standalone identity-based policies that you can attach to multiple users,
groups, and roles in your AWS account. You can use two types of managed policies:

• AWS managed policies – Managed policies that are created and managed by AWS. If you are
new to using policies, we recommend that you start by using AWS managed policies.

• Customer managed policies – Managed policies that you create and manage in your AWS
account. Customer managed policies provide more precise control over your policies than AWS
managed policies. You can create, edit, and validate an IAM policy in the visual editor or by
creating the JSON policy document directly. For more information, see Creating IAM policies
and Editing IAM policies.

• Inline policies – Policies that you create and manage and that are embedded directly into a
single user, group, or role. In most cases, we don't recommend using inline policies.

Resource-based policies control what actions a specified principal can perform on that resource
and under what conditions. Resource-based policies are inline policies, and there are no managed
resource-based policies. To enable cross-account access, you can specify an entire account or IAM
entities in another account as the principal in a resource-based policy.

The IAM service supports only one type of resource-based policy called a role trust policy, which
is attached to an IAM role. Because an IAM role is both an identity and a resource that supports
resource-based policies, you must attach both a trust policy and an identity-based policy to an IAM
role. Trust policies define which principal entities (accounts, users, roles, and federated users) can
assume the role. To learn how IAM roles are different from other resource-based policies, see Cross
account resource access in IAM.

To see which services support resource-based policies, see AWS services that work with IAM. To
learn more about resource-based policies, see Identity-based policies and resource-based policies.

Identity-based and resource-based policies 24

AWS Identity and Access Management User Guide

What is ABAC for AWS?

Attribute-based access control (ABAC) is an authorization strategy that defines permissions based
on attributes. In AWS, these attributes are called tags. You can attach tags to IAM resources,
including IAM entities (users or roles) and to AWS resources. You can create a single ABAC policy
or small set of policies for your IAM principals. These ABAC policies can be designed to allow
operations when the principal's tag matches the resource tag. ABAC is helpful in environments that
are growing rapidly and helps with situations where policy management becomes cumbersome.

For example, you can create three roles with the access-project tag key. Set the tag value
of the first role to Heart, the second to Star, and the third to Lightning. You can then use a
single policy that allows access when the role and the resource are tagged with the same value for
access-project. For a detailed tutorial that demonstrates how to use ABAC in AWS, see IAM
tutorial: Define permissions to access AWS resources based on tags. To learn about services that
support ABAC, see AWS services that work with IAM.

Comparing ABAC to the traditional RBAC model

The traditional authorization model used in IAM is called role-based access control (RBAC). RBAC
defines permissions based on a person's job function, known outside of AWS as a role. Within AWS
a role usually refers to an IAM role, which is an identity in IAM that you can assume. IAM does
include managed policies for job functions that align permissions to a job function in an RBAC
model.

In IAM, you implement RBAC by creating different policies for different job functions. You then
attach the policies to identities (IAM users, groups of users, or IAM roles). As a best practice, you
grant the minimum permissions necessary for the job function. This is known as granting least
privilege. Do this by listing the specific resources that the job function can access. The disadvantage
to using the traditional RBAC model is that when employees add new resources, you must update
policies to allow access to those resources.

For example, assume that you have three projects, named Heart, Star, and Lightning, on which
your employees work. You create an IAM role for each project. You then attach policies to each IAM
role to define the resources that anyone allowed to assume the role can access. If an employee
changes jobs within your company, you assign them to a different IAM role. People or programs can
be assigned to more than one role. However, the Star project might require additional resources,
such as a new Amazon EC2 container. In that case, you must update the policy attached to the

What is ABAC? 25

AWS Identity and Access Management User Guide

Star role to specify the new container resource. Otherwise, Star project members aren't allowed
to access the new container.

ABAC provides the following advantages over the traditional RBAC model:

• ABAC permissions scale with innovation. It's no longer necessary for an administrator to update
existing policies to allow access to new resources. For example, assume that you designed your
ABAC strategy with the access-project tag. A developer uses the role with the access-
project = Heart tag. When people on the Heart project need additional Amazon EC2
resources, the developer can create new Amazon EC2 instances with the access-project =
Heart tag. Then anyone on the Heart project can start and stop those instances because their
tag values match.

• ABAC requires fewer policies. Because you don't have to create different policies for different
job functions, you create fewer policies. Those policies are easier to manage.

• Using ABAC, teams can change and grow quickly. This is because permissions for new resources
are automatically granted based on attributes. For example, if your company already supports
the Heart and Star projects using ABAC, it's easy to add a new Lightning project. An IAM
administrator creates a new role with the access-project = Lightning tag. It's not necessary
to change the policy to support a new project. Anyone that has permissions to assume the role
can create and view instances tagged with access-project = Lightning. Additionally, a team
member might move from the Heart project to the Lightning project. The IAM administrator
assigns the user to a different IAM role. It's not necessary to change the permissions policies.

• Granular permissions are possible using ABAC. When you create policies, it's a best practice to
grant least privilege. Using traditional RBAC, you must write a policy that allows access to only
specific resources. However, when you use ABAC, you can allow actions on all resources, but only
if the resource tag matches the principal's tag.

• Use employee attributes from your corporate directory with ABAC. You can configure your
SAML-based or web identity provider to pass session tags to AWS. When your employees
federate into AWS, their attributes are applied to their resulting principal in AWS. You can then
use ABAC to allow or deny permissions based on those attributes.

For a detailed tutorial that demonstrates how to use ABAC in AWS, see IAM tutorial: Define
permissions to access AWS resources based on tags.

Comparing ABAC to the traditional RBAC model 26

AWS Identity and Access Management User Guide

Security features outside IAM

You use IAM to control access to tasks that are performed using the AWS Management Console,
the AWS Command Line Tools, or service API operations using the AWS SDKs. Some AWS products
have other ways to secure their resources as well. The following list provides some examples,
though it is not exhaustive.

Amazon EC2

In Amazon Elastic Compute Cloud you log into an instance with a key pair (for Linux instances)
or using a user name and password (for Microsoft Windows instances).

For more information, see the following documentation:

• Getting Started with Amazon EC2 Linux Instances in the Amazon EC2 User Guide for Linux
Instances

• Getting Started with Amazon EC2 Windows Instances in the Amazon EC2 User Guide for
Windows Instances

Amazon RDS

In Amazon Relational Database Service you log into the database engine with a user name and
password that are tied to that database.

For more information, see Getting Started with Amazon RDS in the Amazon RDS User Guide.

Amazon EC2 and Amazon RDS

In Amazon EC2 and Amazon RDS you use security groups to control traffic to an instance or
database.

For more information, see the following documentation:

• Amazon EC2 Security Groups for Linux Instances in the Amazon EC2 User Guide for Linux
Instances

• Amazon EC2 Security Groups for Windows Instances in the Amazon EC2 User Guide for
Windows Instances

• Amazon RDS Security Groups in the Amazon RDS User Guide

WorkSpaces

In Amazon WorkSpaces, users sign in to a desktop with a user name and password.

Security features outside IAM 27

https://aws.amazon.com/tools/#Command_Line_Tools
https://aws.amazon.com/tools/
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EC2_GetStarted.html
https://docs.aws.amazon.com/AWSEC2/latest/WindowsGuide/EC2Win_GetStarted.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_GettingStarted.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-network-security.html
https://docs.aws.amazon.com/AWSEC2/latest/WindowsGuide/using-network-security.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Overview.RDSSecurityGroups.html

AWS Identity and Access Management User Guide

For more information, see Getting Started with WorkSpaces in the Amazon WorkSpaces
Administration Guide.

Amazon WorkDocs

In Amazon WorkDocs, users get access to shared documents by signing in with a user name and
password.

For more information, see Getting Started with Amazon WorkDocs in the Amazon WorkDocs
Administration Guide.

These access control methods are not part of IAM. IAM lets you control how these AWS products
are administered—creating or terminating an Amazon EC2 instance, setting up new WorkSpaces
desktops, and so on. That is, IAM helps you control the tasks that are performed by making
requests to Amazon Web Services, and it helps you control access to the AWS Management
Console. However, IAM does not help you manage security for tasks like signing in to an operating
system (Amazon EC2), database (Amazon RDS), desktop (Amazon WorkSpaces), or collaboration
site (Amazon WorkDocs).

When you work with a specific AWS product, be sure to read the documentation to learn the
security options for all the resources that belong to that product.

Quick links to common tasks

Use the following links to get help with common tasks associated with IAM.

Sign in for different user types

Sign in to the IAM console by choosing IAM user and entering your AWS account ID or account
alias. On the next page, enter your IAM user name and your password.

To sign in with your IAM Identity Center user, use the sign-in URL that was sent to your email
address when you created the IAM Identity Center user.

For help signing in using an IAM Identity Center user, see Signing in to the AWS access portal in
the AWS Sign-In User Guide.

Sign in to the AWS Management Console as the account owner by choosing Root user and
entering your AWS account email address. On the next page, enter your password.

Quick links to common tasks 28

https://docs.aws.amazon.com/workspaces/latest/adminguide/getting_started.html
https://docs.aws.amazon.com/workdocs/latest/adminguide/getting_started.html
https://console.aws.amazon.com/iam
https://docs.aws.amazon.com/signin/latest/userguide/iam-id-center-sign-in-tutorial.html
https://console.aws.amazon.com/

AWS Identity and Access Management User Guide

See What is AWS Sign-In in the AWS Sign-In User Guide for help determining your user type and
sign-in page.

Manage passwords for users

You need a password in order to access the AWS Management Console, including access to
billing information.

For your AWS account root user, see Change the password for the AWS account root user in the
AWS Account Management Reference Guide

For an IAM user, see Managing passwords for IAM users.

Manage permissions for users

You use policies to grant permissions to the IAM users in your AWS account. IAM users have no
permissions when they are created, so you must add permissions to allow them to use AWS
resources.

To provide access, add permissions to your users, groups, or roles:

• Users and groups in AWS IAM Identity Center:

Create a permission set. Follow the instructions in Create a permission set in the AWS IAM
Identity Center User Guide.

• Users managed in IAM through an identity provider:

Create a role for identity federation. Follow the instructions in Creating a role for a third-
party identity provider (federation) in the IAM User Guide.

• IAM users:

• Create a role that your user can assume. Follow the instructions in Creating a role for an
IAM user in the IAM User Guide.

• (Not recommended) Attach a policy directly to a user or add a user to a user group. Follow
the instructions in Adding permissions to a user (console) in the IAM User Guide.

For more information, see Managing IAM policies.

List the users in your AWS account and get information about their credentials

See Getting credential reports for your AWS account.

Add multi-factor authentication (MFA)

To add a virtual MFA device, see one of the following:

Quick links to common tasks 29

https://docs.aws.amazon.com/signin/latest/userguide/what-is-sign-in.html
https://docs.aws.amazon.com/accounts/latest/reference/root-user-password.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/howtocreatepermissionset.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-idp.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-idp.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-user.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-user.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_change-permissions.html#users_change_permissions-add-console

AWS Identity and Access Management User Guide

• Enable a virtual MFA device for your AWS account root user (console)

• Enable a virtual MFA device for an IAM user (console)

To add a FIDO security key, see one of the following:

• Enable a FIDO security key for the AWS account root user (console)

• Enable a FIDO security key for another IAM user (console)

To add a hardware MFA device, see one of the following:

• Enable a hardware TOTP token for the AWS account root user (console).

• Enable a hardware TOTP token for another IAM user (console)

Get an access key

You can use an access key to make AWS requests using the AWS SDKs, the AWS Command Line
Tools, or the API operations.

Important

As a best practice, use temporary security credentials (such as IAM roles) instead of
creating long-term credentials like access keys. Before creating access keys, review the
alternatives to long-term access keys.

For guidance to help you protect your access keys, see Securing access keys.

To learn about managing access keys for an IAM user, see Managing access keys for IAM users.

For more information about the security credentials available for your AWS account, see AWS
security credentials.

Tag IAM resources

You can tag the following IAM resources:

• IAM users

• IAM roles

• Customer managed policies

• Identity providers

• Server certificates

• Virtual MFA devices

Quick links to common tasks 30

https://aws.amazon.com/tools/
https://aws.amazon.com/tools/#Command_Line_Tools
https://aws.amazon.com/tools/#Command_Line_Tools
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_access-keys.html#securing_access-keys
https://docs.aws.amazon.com/IAM/latest/UserGuide/security-creds.html#access-keys-and-secret-access-keys
https://docs.aws.amazon.com/IAM/latest/UserGuide/security-creds.html#access-keys-and-secret-access-keys

AWS Identity and Access Management User Guide

To learn about tags in IAM, see Tagging IAM resources.

To learn about using tags to control access to AWS resources, see Controlling access to AWS
resources using tags.

View the actions, resources, and condition keys for all services

This set of reference documentation can help you write detailed IAM policies. Each AWS service
defines the actions, resources, and condition context keys that you use in IAM policies. To learn
more, see Actions, Resources, and Condition Keys for AWS Services.

Get started with all of AWS

This set of documentation deals primarily with the IAM service. To learn about getting started
with AWS and using multiple services to solve a problem such as building and launching your
first project, see the Getting Started Resource Center.

IAM console search

Use the IAM console search page as a faster option for finding IAM resources. You can use the
console search to locate access keys related to your account, IAM entities (such as users, groups,
roles, identity providers), policies by name, and more.

The IAM console search feature can locate any of the following:

• IAM entity names that match your search keywords (for users, groups, roles, identity providers,
and policies)

• Tasks that match your search keywords

The IAM console search feature does not return information about IAM Access Analyzer.

Every line in the search result is an active link. For example, you can choose the user name in the
search result, which takes you to that user's detail page. Or you can choose an action link, for
example Create user, to go to the Create User page.

Note

Access key search requires you to type the full access key ID in the search box. The search
result shows the user associated with that key. From there you can navigate directly to that
user's page, where you can manage the access key.

IAM console search 31

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_actions-resources-contextkeys.html
https://aws.amazon.com/getting-started/

AWS Identity and Access Management User Guide

Using IAM console search

Use the Search page in the IAM console to find items related to that account.

To search for items in the IAM console

1. Follow the sign-in procedure appropriate to your user type as described in the topic How to
sign in to AWS in the AWS Sign-In User Guide.

2. On the Console Home page, select the IAM service.

3. In the navigation pane, choose Search.

4. In the Search box, type your search keywords.

5. Choose a link in the search results list to navigate to the corresponding part of the console.

Icons in the IAM console search results

The following icons identify the types of items that are found by a search:

Icon Description

IAM users

IAM groups

IAM roles

IAM policies

Tasks such as "create user" or "attach policy"

Results from the keyword delete

Using IAM console search 32

https://docs.aws.amazon.com/signin/latest/userguide/how-to-sign-in.html
https://docs.aws.amazon.com/signin/latest/userguide/how-to-sign-in.html

AWS Identity and Access Management User Guide

Sample search phrases

You can use the following phrases in the IAM search. Replace terms in italics with the names of the
actual IAM users, groups, roles, access keys, policies, or identity providers that you want to locate.

• user_name or group_name or role_name or policy_name or identity_provider_name

• access_key

• add user user_name to groups or add users to group group_name

• remove user user_name from groups

• delete user_name or delete group_name or delete role_name, or delete
policy_name, or delete identity_provider_name

• manage access keys user_name

• manage signing certificates user_name

• users

• manage MFA for user_name

• manage password for user_name

• create role

• password policy

• edit trust policy for role role_name

• show policy document for role role_name

• attach policy to role_name

• create managed policy

• create user

• create group

• attach policy to group_name

• attach entities to policy_name

• detach entities from policy_name

Sample search phrases 33

AWS Identity and Access Management User Guide

Creating AWS Identity and Access Management resources with
AWS CloudFormation

AWS Identity and Access Management is integrated with AWS CloudFormation, a service that
helps you to model and set up your AWS resources so that you can spend less time creating and
managing your resources and infrastructure. You create a template that describes all the AWS
resources that you want (such as access keys, groups, group policies, instance profiles, managed
policies, OIDC providers, inline policies, roles, role policies, SAML providers, server certificates,
service-linked roles, users (and adding users to groups), user policies, and virtual MFA devices), and
AWS CloudFormation provisions and configures those resources for you.

When you use AWS CloudFormation, you can reuse your template to set up your IAM resources
consistently and repeatedly. Describe your resources once, and then provision the same resources
over and over in multiple AWS accounts and Regions.

IAM and AWS CloudFormation templates

To provision and configure resources for IAM and related services, you must understand AWS
CloudFormation templates. Templates are formatted text files in JSON or YAML. These templates
describe the resources that you want to provision in your AWS CloudFormation stacks. If you're
unfamiliar with JSON or YAML, you can use AWS CloudFormation Designer to help you get started
with AWS CloudFormation templates. For more information, see What is AWS CloudFormation
Designer? in the AWS CloudFormation User Guide.

IAM supports creating access keys, groups, group policies, instance profiles, managed policies,
OIDC providers, inline policies, roles, role policies, SAML providers, server certificates, service-
linked roles, users (and adding users to groups), user policies, and virtual MFA devices in AWS
CloudFormation. For more information, including examples of JSON and YAML templates for
IAM resources, see the AWS Identity and Access Management resource type reference in the AWS
CloudFormation User Guide.

You can also create templates that create related resources, such as roles and managed policies.

Learn more about AWS CloudFormation

To learn more about AWS CloudFormation, see the following resources:

• AWS CloudFormation

AWS CloudFormation resources 34

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/template-guide.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/template-guide.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/working-with-templates-cfn-designer.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/working-with-templates-cfn-designer.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/AWS_IAM.html
https://aws.amazon.com/cloudformation/

AWS Identity and Access Management User Guide

• AWS CloudFormation User Guide

• AWS CloudFormation API Reference

• AWS CloudFormation Command Line Interface User Guide

Using AWS CloudShell to work with AWS Identity and Access
Management

AWS CloudShell is a browser-based, pre-authenticated shell that you can launch directly from the
AWS Management Console. You can run AWS CLI commands against AWS services (including AWS
Identity and Access Management) using your preferred shell (Bash, PowerShell or Z shell). And you
can do this without needing to download or install command line tools.

You launch AWS CloudShell from the AWS Management Console, and the AWS credentials
you used to sign in to the console are automatically available in a new shell session. This pre-
authentication of AWS CloudShell users allows you to skip configuring credentials when interacting
with AWS services such as IAM using AWS CLI version 2 (pre-installed on the shell's compute
environment).

Obtaining IAM permissions for AWS CloudShell

Using the access management resources provided by AWS Identity and Access Management,
administrators can grant permissions to IAM users so they can access AWS CloudShell and use the
environment's features.

The quickest way for an administrator to grant access to users is through an AWS managed policy.
An AWS managed policy is a standalone policy that's created and administered by AWS. The
following AWS managed policy for CloudShell can be attached to IAM identities:

• AWSCloudShellFullAccess: Grants permission to use AWS CloudShell with full access to all
features.

If you want to limit the scope of actions that an IAM user can perform with AWS CloudShell, you
can create a custom policy that uses the AWSCloudShellFullAccess managed policy as a
template. For more information about limiting the actions that are available to users in CloudShell,
see Managing AWS CloudShell access and usage with IAM policies in the AWS CloudShell User
Guide.

Using AWS CloudShell 35

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/Welcome.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/APIReference/Welcome.html
https://docs.aws.amazon.com/cloudformation-cli/latest/userguide/what-is-cloudformation-cli.html
https://docs.aws.amazon.com/cloudshell/latest/userguide/working-with-cloudshell.html#launch-options
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#aws-managed-policies
https://docs.aws.amazon.com/cloudshell/latest/userguide/sec-auth-with-identities.html

AWS Identity and Access Management User Guide

Interacting with IAM using AWS CloudShell

After you launch AWS CloudShell from the AWS Management Console, you can immediately start
to interact with IAM using the command line interface.

Note

When using AWS CLI in AWS CloudShell, you don't need to download or install any
additional resources. Moreover, because you're already authenticated within the shell, you
don't need to configure credentials before making calls.

Create an IAM group and add an IAM user to the group using AWS CloudShell

The following example uses CloudShell to create an IAM group, add an IAM user to the group, and
then verify that the command succeeded.

1. From the AWS Management Console, you can launch CloudShell by choosing the following
options available on the navigation bar:

• Choose the CloudShell icon.

• Start typing "cloudshell" in Search box and then choose the CloudShell option.

2. To create an IAM group, enter the following command in the CloudShell command line. In this
example we named the group east_coast:

aws iam create-group --group-name east_coast

If the call is successful, the command line displays a response from the service similar to the
following output:

 {
 "Group": {
 "Path": "/",
 "GroupName": "east_coast",
 "GroupId": "AGPAYBDBW4JBY3EXAMPLE",
 "Arn": "arn:aws:iam::111122223333:group/east_coast",
 "CreateDate": "2023-09-11T21:02:21+00:00"
 }

Interacting with IAM using AWS CloudShell 36

AWS Identity and Access Management User Guide

 }

3. To add a user to the group that you created, use the following command, specifying the group
name and username. In this example we named the group east_coast and the user johndoe:

aws iam add-user-to-group --group-name east_coast --user-name johndoe

4. To verify that the user is in the group, use the following command, specifying the group name.
In this example we continue using the group east_coast :

aws iam get-group --group-name east_coast

If the call is successful, the command line displays a response from the service similar to the
following output:

 {
 "Users": [
 {
 "Path": "/",
 "UserName": "johndoe",
 "UserId": "AIDAYBDBW4JBXGEXAMPLE",
 "Arn": "arn:aws:iam::552108220995:user/johndoe",
 "CreateDate": "2023-09-11T20:43:14+00:00",
 "PasswordLastUsed": "2023-09-11T20:59:14+00:00"
 }
],
 "Group": {
 "Path": "/",
 "GroupName": "east_coast",
 "GroupId": "AGPAYBDBW4JBY3EXAMPLE",
 "Arn": "arn:aws:iam::111122223333:group/east_coast",
 "CreateDate": "2023-09-11T21:02:21+00:00"
 }
 }

Interacting with IAM using AWS CloudShell 37

AWS Identity and Access Management User Guide

Using IAM with an AWS SDK

AWS software development kits (SDKs) are available for many popular programming languages.
Each SDK provides an API, code examples, and documentation that make it easier for developers to
build applications in their preferred language.

SDK documentation Code examples

AWS SDK for C++ AWS SDK for C++ code examples

AWS SDK for Go AWS SDK for Go code examples

AWS SDK for Java AWS SDK for Java code examples

AWS SDK for JavaScript AWS SDK for JavaScript code examples

AWS SDK for Kotlin AWS SDK for Kotlin code examples

AWS SDK for .NET AWS SDK for .NET code examples

AWS SDK for PHP AWS SDK for PHP code examples

AWS SDK for Python (Boto3) AWS SDK for Python (Boto3) code examples

AWS SDK for Ruby AWS SDK for Ruby code examples

AWS SDK for Rust AWS SDK for Rust code examples

AWS SDK for SAP ABAP AWS SDK for SAP ABAP code examples

AWS SDK for Swift AWS SDK for Swift code examples

For examples specific to IAM, see Code examples for IAM using AWS SDKs.

Example availability

Can't find what you need? Request a code example by using the Provide feedback link at
the bottom of this page.

Working with AWS SDKs 38

https://docs.aws.amazon.com/sdk-for-cpp
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/cpp
https://docs.aws.amazon.com/sdk-for-go
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/gov2
https://docs.aws.amazon.com/sdk-for-java
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2
https://docs.aws.amazon.com/sdk-for-javascript
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3
https://docs.aws.amazon.com/sdk-for-kotlin
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/kotlin
https://docs.aws.amazon.com/sdk-for-net
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3
https://docs.aws.amazon.com/sdk-for-php
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/php
https://docs.aws.amazon.com/pythonsdk
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python
https://docs.aws.amazon.com/sdk-for-ruby
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby
https://docs.aws.amazon.com/sdk-for-rust
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/rust_dev_preview
https://docs.aws.amazon.com/sdk-for-sapabap
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/sap-abap
https://docs.aws.amazon.com/sdk-for-swift
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/swift

AWS Identity and Access Management User Guide

Getting set up with IAM

Important

IAM best practices recommend that you require human users to use federation with an
identity provider to access AWS using temporary credentials instead of using IAM users
with long-term credentials.

AWS Identity and Access Management (IAM) helps you securely control access to Amazon Web
Services (AWS) and your account resources. IAM can also keep your sign-in credentials private. You
don't specifically sign up to use IAM. There is no charge to use IAM.

Use IAM to give identities, such as users and roles, access to resources in your account. For example,
you can use IAM with existing users in your corporate directory that you manage external to AWS
or you can create users in AWS using AWS IAM Identity Center. Federated identities assume defined
IAM roles to access the resources they need. For more information about IAM Identity Center, see
What is IAM Identity Center? in the AWS IAM Identity Center User Guide.

Note

IAM is integrated with several AWS products. For a list of services that support IAM, see
AWS services that work with IAM.

Topics

• Sign up for an AWS account

• Create an administrative user

• Prepare for least-privilege permissions

• IAM management methods

• Your AWS account ID and its alias

Sign up for an AWS account

If you do not have an AWS account, complete the following steps to create one.

Sign up for an AWS account 39

https://docs.aws.amazon.com/singlesignon/latest/userguide/what-is.html

AWS Identity and Access Management User Guide

To sign up for an AWS account

1. Open https://portal.aws.amazon.com/billing/signup.

2. Follow the online instructions.

Part of the sign-up procedure involves receiving a phone call and entering a verification code
on the phone keypad.

When you sign up for an AWS account, an AWS account root user is created. The root user
has access to all AWS services and resources in the account. As a security best practice, assign
administrative access to an administrative user, and use only the root user to perform tasks
that require root user access.

AWS sends you a confirmation email after the sign-up process is complete. At any time, you can
view your current account activity and manage your account by going to https://aws.amazon.com/
and choosing My Account.

Create an administrative user

After you sign up for an AWS account, secure your AWS account root user, enable AWS IAM Identity
Center, and create an administrative user so that you don't use the root user for everyday tasks.

Secure your AWS account root user

1. Sign in to the AWS Management Console as the account owner by choosing Root user and
entering your AWS account email address. On the next page, enter your password.

For help signing in by using root user, see Signing in as the root user in the AWS Sign-In User
Guide.

2. Turn on multi-factor authentication (MFA) for your root user.

For instructions, see Enable a virtual MFA device for your AWS account root user (console) in
the IAM User Guide.

Create an administrative user

1. Enable IAM Identity Center.

Create an administrative user 40

https://portal.aws.amazon.com/billing/signup
https://docs.aws.amazon.com/singlesignon/latest/userguide/getting-started.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/getting-started.html
https://docs.aws.amazon.com/accounts/latest/reference/root-user-tasks.html
https://docs.aws.amazon.com/accounts/latest/reference/root-user-tasks.html
https://aws.amazon.com/
https://console.aws.amazon.com/
https://docs.aws.amazon.com/signin/latest/userguide/console-sign-in-tutorials.html#introduction-to-root-user-sign-in-tutorial
https://docs.aws.amazon.com/IAM/latest/UserGuide/enable-virt-mfa-for-root.html

AWS Identity and Access Management User Guide

For instructions, see Enabling AWS IAM Identity Center in the AWS IAM Identity Center User
Guide.

2. In IAM Identity Center, grant administrative access to an administrative user.

For a tutorial about using the IAM Identity Center directory as your identity source, see
Configure user access with the default IAM Identity Center directory in the AWS IAM Identity
Center User Guide.

Sign in as the administrative user

• To sign in with your IAM Identity Center user, use the sign-in URL that was sent to your email
address when you created the IAM Identity Center user.

For help signing in using an IAM Identity Center user, see Signing in to the AWS access portal in
the AWS Sign-In User Guide.

Prepare for least-privilege permissions

Using least-privilege permissions is an IAM best practice recommendation. The concept of
least-privilege permissions is to grant users the permissions required to perform a task and no
additional permissions. As you get set up, consider how you are going to support least-privilege
permissions. Both the root user and the administrator user have powerful permissions that aren't
required for everyday tasks. While you are learning about AWS and testing out different services
we recommend that you create at least one additional user in IAM Identity Center with lesser
permissions that you can use in different scenarios. You can use IAM policies to define the actions
that can be taken on specific resources under specific conditions and then connect to those
resources with your lesser privileged account.

If you are using IAM Identity Center, consider using IAM Identity Center permissions sets to get
started. To learn more, see Create a permission set in the IAM Identity Center User Guide.

If you aren't using IAM Identity Center, use IAM roles to define the permissions for different IAM
entities. To learn more, see Creating IAM roles.

Both IAM roles and IAM Identity Center permissions sets can use AWS managed policies based on
job functions. For details on the permissions granted by these policies, see AWS managed policies
for job functions.

Prepare for least-privilege permissions 41

https://docs.aws.amazon.com/singlesignon/latest/userguide/get-set-up-for-idc.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/quick-start-default-idc.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/quick-start-default-idc.html
https://docs.aws.amazon.com/signin/latest/userguide/iam-id-center-sign-in-tutorial.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/howtocreatepermissionset.html

AWS Identity and Access Management User Guide

Important

Keep in mind that AWS managed policies might not grant least-privilege permissions for
your specific use cases because they're available for use by all AWS customers. After getting
set up, we recommend that you use IAM Access Analyzer to generate least-privilege policies
based on your access activity that's logged in AWS CloudTrail. For more information about
policy generation, see IAM Access Analyzer policy generation.

IAM management methods

You can manage IAM using either the AWS console, the AWS command-line interface, or through
the application interfaces (APIs) in the associated SDKs. As you are getting set up, consider which
methods you want to support and how you plan to support different users.

Topics

• AWS Console

• AWS Command Line Interface (CLI) and Software Development Kits (SDKs)

AWS Console

The AWS Management Console is a web application that comprises and refers to a broad collection
of service consoles for managing AWS resources. When you first sign in, you see the console home
page. The home page provides access to each service console and offers a single place to access the
information for performing your AWS related tasks. Which services and applications are available
to you after signing in to the console depend on which AWS resources you have permission to
access. You can be granted permissions to resources either through assuming a role, being a
member of a group that has been granted permissions, or being explicitly granted permission. For
a stand-alone AWS account, the root user or IAM administrator configures access to resources. For
AWS Organizations, the management account or delegated administrator configures access to
resources.

If you plan to have people using the AWS Management Console to manage AWS resources, we
recommend configuring users with temporary credentials as a security best practice. IAM users that
have assumed a role, federated users, and users in IAM Identity Center have temporary credentials,
while the IAM user and root user have long-term credentials. Root user credentials provide full

IAM management methods 42

https://docs.aws.amazon.com/IAM/latest/UserGuide/access-analyzer-policy-generation.html

AWS Identity and Access Management User Guide

access to the AWS account, while other users have credentials that provide access to the resources
granted them by IAM policies.

The sign-in experience is different for the different types of AWS Management Console users.

• IAM users and the root user sign-in from the main AWS sign-in URL (https://
signin.aws.amazon.com). Once they sign in they have access to the resources in the account to
which they have been granted permission.

To sign in as the root user you must have the root user email address and password.

To sign in as an IAM user you must have the AWS account number or alias, the IAM user name,
and the IAM user password.

We recommend that you restrict IAM users in your account to specific situations that require
long-term credentials, such as for emergency access, and that you use the root user only for
tasks that require root user credentials.

For convenience, the AWS sign-in page uses a browser cookie to remember the IAM user name
and account information. The next time the user goes to any page in the AWS Management
Console, the console uses the cookie to redirect the user to the account sign-in page.

Sign out of the console when you finish your session to prevent reuse of your previous sign in.

• IAM Identity Center users sign in using a specific AWS access portal that's unique to their
organization. Once they sign in they can choose which account or application to access. If
they choose to access an account, they choose which permission set they want to use for the
management session.

• Federated users managed in an external identity provider linked to an AWS account sign-in using
a custom enterprise access portal. The AWS resources available to federated users are dependent
upon the policies selected by their organization.

Note

To provide an additional level of security, root user, IAM users, and users in IAM Identity
Center can have multi-factor authentication (MFA) verified by AWS before granting access
to AWS resources. When MFA is enabled, you must also have access to the MFA device to
sign in.

AWS Console 43

AWS Identity and Access Management User Guide

To learn more about how different users sign-in to the management console, see Sign in to the
AWS Management Console in the AWS Sign-In User Guide.

AWS Command Line Interface (CLI) and Software Development Kits
(SDKs)

IAM Identity Center and IAM users use different methods to authenticate their credentials when
they authenticate through the CLI or the application interfaces (APIs) in the associated SDKs.

Credentials and configuration settings are located in multiple places, such as the system or user
environment variables, local AWS configuration files, or explicitly declared on the command line as
a parameter. Certain locations take precedence over others.

Both IAM Identity Center and IAM provide access keys that can be used with the CLI or SDK. IAM
Identity Center access keys are temporary credentials that can be automatically refreshed and are
recommended over the long-term access keys associated with IAM users.

To manage your AWS account using the CLI or SDK you can use AWS CloudShell from your browser.
If you use CloudShell to run CLI or SDK commands you must first sign-in to the console. The
permissions for accessing AWS resources are based on the credentials you used to sign-in to the
console. Depending on your experience, you may find the CLI to be a more efficient method of
managing your AWS account.

For application development, you can download the CLI or SDK to your computer and sign-in
from the command prompt or a Docker window. In this scenario, you configure authentication and
access credentials as part of the CLI script or SDK application. You can configure programmatic
access to resources in different ways, depending on the environment and the access available to
you.

• Recommended options for authenticating local code with AWS service are IAM Identity Center
and IAM Roles Anywhere

• Recommended options for authenticating code running within an AWS environment are to use
IAM roles or use IAM Identity Center credentials.

If you are using IAM Identity Center you can get short-term credentials from the start page of
the AWS access portal where you choose your permission set. These credentials have a defined
duration and don't automatically refresh. If you want to use these credentials, after signing
in to the AWS portal, choose the AWS account and then choose the permissions set. Select

AWS Command Line Interface (CLI) and Software Development Kits (SDKs) 44

https://docs.aws.amazon.com/signin/latest/userguide/console-sign-in-tutorials.html
https://docs.aws.amazon.com/signin/latest/userguide/console-sign-in-tutorials.html

AWS Identity and Access Management User Guide

Command line or programmatic access to view the options you can use to access AWS resources
programmatically or from the CLI. For more information about these methods, see Getting and
refreshing temporary credentials in the IAM Identity Center User Guide. These credentials are often
used during application development to quickly test code.

We recommend using IAM Identity Center credentials that automatically refresh when automating
access to your AWS resources. If you have configured users and permission sets in IAM Identity
Center you use the aws configure sso command to use a command-line wizard that will help
you identify the credentials available to you and store them in a profile. For more information
about configuring your profile, see Configure your profile with the aws configure sso wizard in
the AWS Command Line Interface User Guide for Version 2.

Note

Many sample applications use long-term access keys associated with IAM users or root
user. You should only use long-term credentials within a sandbox environment as part of a
learning exercise. Review the alternatives to long-term access keys and plan to transition
your code to use alternative credentials, such as IAM Identity Center credentials or IAM
roles, as soon as possible. After transitioning your code, delete the access keys.

To learn more about configuring the CLI, see Install or update the latest version of the AWS
CLI in the AWS Command Line Interface User Guide for Version 2 and Authentication and access
credentials in the AWS Command Line Interface User Guide

To learn more about configuring the SDK, see IAM Identity Center authentication in the AWS SDKs
and Tools Reference Guide and IAM Roles Anywhere in the AWS SDKs and Tools Reference Guide.

Your AWS account ID and its alias

IAM users in the account sign in using a web URL that includes either the account alias or an
account ID. If you don't have the URL, the AWS sign-in page requires that you provide either the
AWS account alias or account ID.

If you don't know your account ID or alias:

• Check your browser history. If you have signed in previously, it could be stored in your recent web
sites.

Your AWS account ID and its alias 45

https://docs.aws.amazon.com/singlesignon/latest/userguide/howtogetcredentials.html#how-to-get-temp-credentials
https://docs.aws.amazon.com/singlesignon/latest/userguide/howtogetcredentials.html#how-to-get-temp-credentials
https://docs.aws.amazon.com/cli/latest/userguide/sso-configure-profile-token.html#sso-configure-profile-token-auto-sso
https://docs.aws.amazon.com/cli/latest/userguide/getting-started-install.html
https://docs.aws.amazon.com/cli/latest/userguide/getting-started-install.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-authentication.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-authentication.html
https://docs.aws.amazon.com/sdkref/latest/guide/access-sso.html
https://docs.aws.amazon.com/sdkref/latest/guide/access-rolesanywhere.html

AWS Identity and Access Management User Guide

• If you have configured the AWS CLI or an AWS SDK with your account credentials, you can obtain
your account ID from your configuration files.

• Ask your local administrator or account owner, AWS cannot provide account IDs to users.

Tip

To create a bookmark for your account sign-in page in your web browser, you should
manually type the sign-in URL in the bookmark entry. Don't use your web browser's
"bookmark this page" feature because that captures information specific to your current
browser session that interfere with future visits to the sign-in page.

Topics

• View your AWS account ID

• About account aliases

• Creating, deleting, and listing an AWS account alias

View your AWS account ID

You can view the account ID for your AWS account using the following methods.

View Your Account ID using the console

There are different ways to view your account ID in the console depending on your user type. If you
have assumed a role, Security credentials is not available.

User type Procedure

Root user In the navigation bar at the upper right,
choose your user name and then choose
Security credentials. The account number
appears under Account identifiers.

IAM user In the navigation bar at the upper right,
choose your user name and then choose

View your AWS account ID 46

AWS Identity and Access Management User Guide

User type Procedure

Security credentials. The account number
appears under Account details.

Assumed role In the navigation bar at the upper right,
choose Support, and then Support Center.
Your currently signed-in 12-digit account
number (ID) appears in the Support Center
navigation pane.

View Your Account ID using the AWS CLI

Use the following command to view your user ID, account ID, and your user ARN:

• aws sts get-caller-identity

View Your Account ID using the API

Use the following API to view your user ID, account ID, and your user ARN:

• GetCallerIdentity

About account aliases

If you want the URL for your sign-in page to contain your company name (or other friendly
identifier) instead of your AWS account ID, you can create an account alias. This section provides
information about AWS account aliases and lists the API operations that you use to create an alias.

Your sign-in page URL has the following format, by default.

https://Your_Account_ID.signin.aws.amazon.com/console/

If you create an AWS account alias for your AWS account ID, your sign-in page URL looks like the
following example.

https://Your_Account_Alias.signin.aws.amazon.com/console/

About account aliases 47

https://docs.aws.amazon.com/cli/latest/reference/sts/get-caller-identity.html
https://docs.aws.amazon.com/STS/latest/APIReference/API_GetCallerIdentity.html

AWS Identity and Access Management User Guide

Considerations

• Your AWS account can have only one alias. If you create a new alias for your AWS account, the
new alias overwrites the previous alias, and the URL containing the previous alias stops working.

• The account alias must contain only digits, lowercase letters, and hyphens. For more information
on limitations on AWS account entities, see IAM and AWS STS quotas.

• The account alias must be unique across all Amazon Web Services products within a given
network partition.

A partition is a group of AWS Regions. Each AWS account is scoped to one partition.

The following are the supported partitions:

• aws - AWS Regions

• aws-cn - China Regions

• aws-us-gov - AWS GovCloud (US) Regions

Creating, deleting, and listing an AWS account alias

You can use the AWS Management Console, the IAM API, or the command line interface to create
or delete your AWS account alias.

Note

Account aliases are not secrets, and they will appear in your public-facing sign-in page URL.
Do not include any sensitive information in your account alias.
The original URL containing your AWS account ID remains active and can be used after you
create your AWS account alias.

Create or edit an account alias (console)

You can create, edit, and delete an account alias from the AWS Management Console.

Minimum permissions

To perform the following steps, you must have at least the following IAM permissions:

• iam:ListAccountAliases

Creating, deleting, and listing an AWS account alias 48

AWS Identity and Access Management User Guide

• iam:CreateAccountAlias

To create or edit an account alias (console)

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. In the navigation pane, choose Dashboard.

3. In the AWS Account section, next to Account Alias, choose Create. If an alias already exists,
then choose Edit.

4. In the dialog box, enter the name you want to use for your alias, then choose Save changes.

Note

You can have only one alias associated with your AWS account at a time. If you create a
new alias, the previous alias is removed, and the sign-in URL that was associated with the
previous alias stops working.

Delete an account alias (console)

You can delete an account alias from the AWS Management Console.

Minimum permissions

To perform the following steps, you must have at least the following IAM permissions:

• iam:ListAccountAliases

• iam:CreateAccountAlias

• iam:DeleteAccountAlias

To delete an account alias (console)

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. In the navigation pane, choose Dashboard.

Creating, deleting, and listing an AWS account alias 49

https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/

AWS Identity and Access Management User Guide

3. In the AWS Account section, next to Account Alias, choose Delete.

Note

The only sign-in uRL for your account is based off your account ID. Any attempts to connect
to the alias URL are not redirected.

Creating, deleting, and listing aliases (AWS CLI)

Note

To use the following commands, you must have at least the following IAM permissions:

• iam:ListAccountAliases

• iam:CreateAccountAlias

• iam:DeleteAccountAlias

To create an alias for your AWS Management Console sign-in page URL, run the following
command:

• aws iam create-account-alias

To delete an AWS account ID alias, run the following command:

• aws iam delete-account-alias

To display your AWS account ID alias, run the following command:

• aws iam list-account-aliases

Example Alias commands

To display your AWS account ID alias, run the following command.

$ aws iam list-account-aliases

Creating, deleting, and listing an AWS account alias 50

https://docs.aws.amazon.com/cli/latest/reference/iam/create-account-alias.html
https://docs.aws.amazon.com/cli/latest/reference/iam/delete-account-alias.html
https://docs.aws.amazon.com/cli/latest/reference/iam/list-account-aliases.html

AWS Identity and Access Management User Guide

{
 "AccountAliases": [
 "myaccountalias"
]
}

To create an alias for your AWS Management Console sign-in, run the following command:

$ aws iam create-account-alias \
 --account-alias myaliasname

This command produces no output if it's successful.

To delete an AWS account ID alias, run the following command.

$ aws iam delete-account-alias \
--account-alias myaliasname

This command produces no output if it's successful.

Creating, deleting, and listing aliases (AWS API)

Note

To use the following API operations, you must have at least the following IAM permissions:

• iam:ListAccountAliases

• iam:CreateAccountAlias

• iam:DeleteAccountAlias

To create an alias for your AWS Management Console sign-in page URL, call the following
operation:

• CreateAccountAlias

To delete an AWS account ID alias, call the following operation:

• DeleteAccountAlias

Creating, deleting, and listing an AWS account alias 51

https://docs.aws.amazon.com/IAM/latest/APIReference/API_CreateAccountAlias.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_DeleteAccountAlias.html

AWS Identity and Access Management User Guide

To display your AWS account ID alias, call the following operation:

• ListAccountAliases

Creating, deleting, and listing an AWS account alias 52

https://docs.aws.amazon.com/IAM/latest/APIReference/API_ListAccountAliases.html

AWS Identity and Access Management User Guide

Getting started with IAM

Use this tutorial to get started with AWS Identity and Access Management (IAM). You'll learn how
to create roles, users, and policies using the AWS Management Console.

AWS Identity and Access Management is a feature of your AWS account offered at no additional
charge. You will be charged only for use of other AWS products by your IAM users. For information
about the pricing of other AWS products, see the Amazon Web Services pricing page.

Note

This set of documentation deals primarily with the IAM service. To learn about getting
started with AWS and using multiple services to solve a problem such as building and
launching your first project, see the Getting Started Resource Center.

Contents

• Prerequisites

• Create your first IAM user

• Create your first role

• Create your first IAM policy

• Programmatic access

Prerequisites

Before you begin, be sure that you've completed the steps in Getting set up with IAM. This tutorial
uses the administrator account you created in that procedure.

Create your first IAM user

An IAM user is an identity within your AWS account that has specific permissions for a single person
or application. Users can be organized into groups that share the same permissions.

Prerequisites 53

https://aws.amazon.com/pricing/
https://aws.amazon.com/getting-started/
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users.html

AWS Identity and Access Management User Guide

Note

As a security best practice, we recommend that you provide access to your resources
through identity federation instead of creating IAM users. For information about specific
situations where an IAM user is required, see When to create an IAM user (instead of a role).

For the purpose of familiarizing yourself with the process of creating a IAM user, this tutorial steps
you through creating an IAM user and group for emergency access.

To create your first IAM user

1. Follow the sign-in procedure appropriate to your user type as described in the topic How to
sign in to AWS in the AWS Sign-In User Guide.

2. On the Console Home page, select the IAM service.

3. In the navigation pane, select Users and then select Add users.

Note

If you have IAM Identity Center enabled, the AWS Management Console displays a
reminder that it is best to manage users' access in IAM Identity Center. In this tutorial,
the IAM user you create is specifically for use only when your user in IAM Identity
Center credentials are unavailable.

4. For User name, enter EmergencyAccess. Names cannot contain spaces.

5. Select the check box next to Provide user access to the AWS Management Console– optional
and then choose I want to create an IAM user.

6. Under Console password, select Autogenerated password.

7. Clear the check box next to User must create a new password at next sign-in
(recommended). Because this IAM user is for emergency access, a trusted administrator retains
the password and only provides it when needed.

8. On the Set permissions page, under Permissions options, select Add user to group. Then,
under User groups, select Create group.

9. On the Create user group page, in User group name, enter EmergencyAccessGroup. Then,
under Permissions policies, select AdministratorAccess.

10. Select Create user group to return to the Set permissions page.

Create your first IAM user 54

https://docs.aws.amazon.com/IAM/latest/UserGuide/id.html#id_which-to-choose
https://docs.aws.amazon.com/signin/latest/userguide/how-to-sign-in.html
https://docs.aws.amazon.com/signin/latest/userguide/how-to-sign-in.html

AWS Identity and Access Management User Guide

11. Under User groups, select the name of the EmergencyAccessGroup you created previously.

12. Select Next to proceed to the Review and create page.

13. On the Review and create page, review the list of user group memberships to be added to the
new user. When you are ready to proceed, select Create user.

14. On the Retrieve password page, select Download .csv file to save a .csv file with the user
credential information (Connection URL, user name, and password).

15. Save this file to use if you need to sign-in to IAM and do not have access to your federated
identity provider.

The new IAM user is displayed in the Users list. Select the User name link to view the user details.
Under Summary, copy the ARN of the user to the clipboard. Paste the ARN into a text document,
so that you can use it in the next procedure.

Create your first role

IAM roles are a secure way to grant permissions to entities you trust. An IAM role has some
similarities to an IAM user. Roles and users are both principals with permissions policies that
determine what the identity can and cannot do in AWS. However, instead of being uniquely
associated with one person, a role is intended to be assumable by anyone who needs it. Also, a role
does not have standard long-term credentials such as a password or access keys associated with it.
Instead, when you assume a role, it provides you with temporary security credentials for your role
session. Using roles helps you follow the IAM best practices. You can use a role to:

• Enable workforce identities and Identity Center enabled applications access to the AWS
Management Console using AWS IAM Identity Center.

• Delegate permission to an AWS service to carry out actions on your behalf.

• Enable application code running on an Amazon EC2 instance to access or modify AWS resources.

• Grant access to another AWS account.

Note

You can use AWS Identity and Access Management Roles Anywhere to give access to
machine identities. Using IAM Roles Anywhere means you don't need to manage long-
term credentials for workloads running outside of AWS. For more information, see What

Create your first role 55

https://docs.aws.amazon.com/rolesanywhere/latest/userguide/introduction.html

AWS Identity and Access Management User Guide

is AWS Identity and Access Management Roles Anywhere? in the AWS Identity and Access
Management Roles Anywhere User Guide.

IAM Identity Center and other AWS services automatically create roles for their services. If you are
using IAM users, we recommend that you create roles for your users to assume when they sign-in.
This will give them temporary permissions during the session instead of long-term permissions.

The AWS Management Console wizard that guides you through the steps for creating a role
displays slightly different steps depending on whether you're creating a role for an IAM user, AWS
service, or for a federated user. Regular access to AWS accounts within an organization should
be provided using federated access. If you are creating IAM users for specific purposes, such as
emergency access or programmatic access, only grant those IAM users permission to assume a role
and put those IAM users into role specific groups.

In this procedure, you create a role that provides SupportUser access for the EmergencyAccess IAM
user. Before starting this procedure, copy the ARN of the IAM user to the clipboard.

To create a role for an IAM user

1. Follow the sign-in procedure appropriate to your user type as described in the topic How to
sign in to AWS in the AWS Sign-In User Guide.

2. On the Console Home page, select the IAM service.

3. In the navigation pane of the IAM console, choose Roles and then choose Create role.

4. Choose AWS account role type.

5. In Select trusted entity, under Trusted entity type, choose Custom trust policy.

6. In the Custom trust policy section, review the basic trust policy. This is the one we will use for
this role. Use the Edit statement editor to update the trust policy:

1. In Add actions for STS, select Assume Role.

2. Next to Add a principal, select, Add. The Add principal window opens.

Under Principal type, select IAM Users.

Under ARN, paste the IAM user ARN you copied to the clipboard.

Select Add principal.

3. Verify that the Principal line in the trust policy now contains the ARN you specified:

Create your first role 56

https://docs.aws.amazon.com/rolesanywhere/latest/userguide/introduction.html
https://docs.aws.amazon.com/signin/latest/userguide/how-to-sign-in.html
https://docs.aws.amazon.com/signin/latest/userguide/how-to-sign-in.html

AWS Identity and Access Management User Guide

"Principal": { "AWS": "arn:aws:iam::123456789012:user/username" }

7. Resolve any security warnings, errors, or general warnings generated during policy validation,
and then choose Next.

8. In Add permissions, select the check box next to the permissions policy to apply. For this
tutorial we are going to select the SupportUser trust policy. You can then use this role to
troubleshoot and resolve issues with the AWS account and open support cases with AWS. We
are not going to set a permissions boundary at this time.

9. Choose Next.

10. In Name, review, and create complete these settings:

• For Role name, enter a name that identifies this role, such as SupportUserRole.

• For Description, explain the intended use of the role.

Because other AWS resources might reference the role, you cannot edit the name of the role
after it has been created.

11. Select Create role.

After the role is created, share the role information with the people who require the role. You
can share the role information by:

• Role link: Send users a link that takes them to the Switch Role page with all the details
already filled in.

• Account ID or alias: Provide each user with the role name along with the account ID number
or account alias. The user then goes to the Switch Role page and adds the details manually.

• Saving the role link information along with the EmergencyAccess user credentials.

For details, see Providing information to the user.

Create your first IAM policy

IAM policies are attached to IAM identities (users, groups of users, or roles) or AWS resources.
A policy is an object in AWS that, when associated with an identity or resource, defines their
permissions.

Create your first IAM policy 57

AWS Identity and Access Management User Guide

To create your first IAM policy

1. Follow the sign-in procedure appropriate to your user type as described in the topic How to
sign in to AWS in the AWS Sign-In User Guide.

2. On the Console Home page, select the IAM service.

3. In the navigation pane, choose Policies.

If this is your first time choosing Policies, the Welcome to Managed Policies page appears.
Choose Get Started.

4. Choose Create policy.

5. On the Create policy page, choose Actions and then choose Import policy.

6. In the Import policy window, in the Find policies box, type power to reduce the list of
policies. Select the PowerUserAccess policy.

7. Select Import policy. The policy displays in the JSON tab.

8. Choose Next.

9. On the Review and create page, for Policy name, type PowerUserExamplePolicy. For
Description, type Allows full access to all services except those for user
management. Then choose Create policy to save the policy.

You can attach this policy to a role to provide users who assume that role the permissions
associated with this policy. The PowerUserAccess policy is commonly used to provide access to
developers.

Programmatic access

Users need programmatic access if they want to interact with AWS outside of the AWS
Management Console. The way to grant programmatic access depends on the type of user that's
accessing AWS:

• If you manage identities in IAM Identity Center, the AWS APIs require a profile, and the AWS
Command Line Interface requires a profile or an environment variable.

• If you have IAM users, the AWS APIs and the AWS Command Line Interface require access keys.
Whenever possible, create temporary credentials that consist of an access key ID, a secret access
key, and a security token that indicates when the credentials expire.

Programmatic access 58

https://docs.aws.amazon.com/signin/latest/userguide/how-to-sign-in.html
https://docs.aws.amazon.com/signin/latest/userguide/how-to-sign-in.html

AWS Identity and Access Management User Guide

To grant users programmatic access, choose one of the following options.

Which user needs
programmatic access?

To By

Workforce identity

(Users managed in IAM
Identity Center)

Use short-term credentials to
sign programmatic requests
to the AWS CLI or AWS APIs
(directly or by using the AWS
SDKs).

Following the instructions for
the interface that you want to
use:

• For the AWS CLI, follow
the instructions in Getting
IAM role credentials for
CLI access in the AWS IAM
Identity Center User Guide.

• For the AWS APIs, follow
the instructions in SSO
credentials in the AWS SDKs
and Tools Reference Guide.

IAM Use short-term credentials to
sign programmatic requests
to the AWS CLI or AWS APIs
(directly or by using the AWS
SDKs).

Following the instructions in
Using temporary credentials
with AWS resources.

IAM Use long-term credentials to
sign programmatic requests
to the AWS CLI or AWS APIs
(directly or by using the AWS
SDKs).

(Not recommended)

Following the instructions in
Managing access keys for IAM
users.

Programmatic access 59

https://docs.aws.amazon.com/singlesignon/latest/userguide/howtogetcredentials.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/howtogetcredentials.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/howtogetcredentials.html
https://docs.aws.amazon.com/sdkref/latest/guide/feature-sso-credentials.html
https://docs.aws.amazon.com/sdkref/latest/guide/feature-sso-credentials.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_use-resources.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_use-resources.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_access-keys.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_access-keys.html

AWS Identity and Access Management User Guide

Security best practices and use cases in AWS Identity and
Access Management

AWS Identity and Access Management (IAM) provides a number of security features to consider as
you develop and implement your own security policies. The following best practices are general
guidelines and don't represent a complete security solution. Because these best practices might not
be appropriate or sufficient for your environment, treat them as helpful considerations rather than
prescriptions.

To get the greatest benefits from IAM, take time to learn the recommended best practices. One
way to do this is to see how IAM is used in real-world scenarios to work with other AWS services.

Topics

• Security best practices in IAM

• Root user best practices for your AWS account

• Business use cases for IAM

Security best practices in IAM

The AWS Identity and Access Management best practices were updated on July 14, 2022.

To help secure your AWS resources, follow these best practices for AWS Identity and Access
Management (IAM).

Topics

• Require human users to use federation with an identity provider to access AWS using temporary
credentials

• Require workloads to use temporary credentials with IAM roles to access AWS

• Require multi-factor authentication (MFA)

• Update access keys when needed for use cases that require long-term credentials

• Follow best practices to protect your root user credentials

• Apply least-privilege permissions

Security best practices 60

https://twitter.com/AWSSecurityInfo

AWS Identity and Access Management User Guide

• Get started with AWS managed policies and move toward least-privilege permissions

• Use IAM Access Analyzer to generate least-privilege policies based on access activity

• Regularly review and remove unused users, roles, permissions, policies, and credentials

• Use conditions in IAM policies to further restrict access

• Verify public and cross-account access to resources with IAM Access Analyzer

• Use IAM Access Analyzer to validate your IAM policies to ensure secure and functional
permissions

• Establish permissions guardrails across multiple accounts

• Use permissions boundaries to delegate permissions management within an account

Require human users to use federation with an identity provider to
access AWS using temporary credentials

Human users, also known as human identities, are the people, administrators, developers,
operators, and consumers of your applications. They must have an identity to access your AWS
environments and applications. Human users that are members of your organization are also
known as workforce identities. Human users can also be external users with whom you collaborate,
and who interact with your AWS resources. They can do this via a web browser, client application,
mobile app, or interactive command-line tools.

Require your human users to use temporary credentials when accessing AWS. You can use an
identity provider for your human users to provide federated access to AWS accounts by assuming
roles, which provide temporary credentials. For centralized access management, we recommend
that you use AWS IAM Identity Center (IAM Identity Center) to manage access to your accounts and
permissions within those accounts. You can manage your user identities with IAM Identity Center,
or manage access permissions for user identities in IAM Identity Center from an external identity
provider. For more information, see What is AWS IAM Identity Center in the AWS IAM Identity
Center User Guide.

For more information about roles, see Roles terms and concepts.

Require workloads to use temporary credentials with IAM roles to
access AWS

A workload is a collection of resources and code that delivers business value, such as an application
or backend process. Your workload can have applications, operational tools, and components

Require human users to use federation with an identity provider to access AWS using temporary
credentials

61

https://docs.aws.amazon.com/singlesignon/latest/userguide/getting-started.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/what-is.html

AWS Identity and Access Management User Guide

that require an identity to make requests to AWS services, such as requests to read data. These
identities include machines running in your AWS environments, such as Amazon EC2 instances or
AWS Lambda functions.

You can also manage machine identities for external parties who need access. To give access to
machine identities, you can use IAM roles. IAM roles have specific permissions and provide a way
to access AWS by relying on temporary security credentials with a role session. Additionally, you
might have machines outside of AWS that need access to your AWS environments. For machines
that run outside of AWS you can use AWS Identity and Access Management Roles Anywhere. For
more information about roles, see IAM roles. For details about how to use roles to delegate access
across AWS accounts, see IAM tutorial: Delegate access across AWS accounts using IAM roles.

Require multi-factor authentication (MFA)

We recommend using IAM roles for human users and workloads that access your AWS resources
so that they use temporary credentials. However, for scenarios in which you need an IAM user or
root user in your account, require MFA for additional security. With MFA, users have a device that
generates a response to an authentication challenge. Each user's credentials and device-generated
response are required to complete the sign-in process. For more information, see Using multi-
factor authentication (MFA) in AWS.

If you use IAM Identity Center for centralized access management for human users, you can use the
IAM Identity Center MFA capabilities when your identity source is configured with the IAM Identity
Center identity store, AWS Managed Microsoft AD, or AD Connector. For more information about
MFA in IAM Identity Center see Multi-factor authentication in the AWS IAM Identity Center User
Guide.

Update access keys when needed for use cases that require long-term
credentials

Where possible, we recommend relying on temporary credentials instead of creating long-
term credentials such as access keys. However, for scenarios in which you need IAM users with
programmatic access and long-term credentials, we recommend that you update the access keys
when needed, such as when an employee leaves your company. We recommend that you use IAM
access last used information to update and remove access keys safely. For more information, see
Updating access keys.

There are specific use cases that require long-term credentials with IAM users in AWS. Some of the
use cases include the following:

Require multi-factor authentication (MFA) 62

https://docs.aws.amazon.com/rolesanywhere/latest/userguide/introduction.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/enable-mfa.html

AWS Identity and Access Management User Guide

• Workloads that cannot use IAM roles – You might run a workload from a location that needs to
access AWS. In some situations, you can't use IAM roles to provide temporary credentials, such as
for WordPress plugins. In these situations, use IAM user long-term access keys for that workload
to authenticate to AWS.

• Third-party AWS clients – If you are using tools that don’t support access with IAM Identity
Center, such as third-party AWS clients or vendors that are not hosted on AWS, use IAM user
long-term access keys.

• AWS CodeCommit access – If you are using CodeCommit to store your code, you can use an
IAM user with either SSH keys or service-specific credentials for CodeCommit to authenticate
to your repositories. We recommend that you do this in addition to using a user in IAM Identity
Center for normal authentication. Users in IAM Identity Center are the people in your workforce
who need access to your AWS accounts or to your cloud applications. To give users access
to your CodeCommit repositories without configuring IAM users, you can configure the git-
remote-codecommit utility. For more information about IAM and CodeCommit, see Using
IAM with CodeCommit: Git credentials, SSH keys, and AWS access keys. For more information
about configuring the git-remote-codecommit utility, see Connecting to AWS CodeCommit
repositories with rotating credentials in the AWS CodeCommit User Guide.

• Amazon Keyspaces (for Apache Cassandra) access – In a situation where you are unable to
use users in IAM Identity Center, such as for testing purposes for Cassandra compatibility, you
can use an IAM user with service-specific credentials to authenticate with Amazon Keyspaces.
Users in IAM Identity Center are the people in your workforce who need access to your AWS
accounts or to your cloud applications. You can also connect to Amazon Keyspaces using
temporary credentials. For more information, see Using temporary credentials to connect to
Amazon Keyspaces using an IAM role and the SigV4 plugin in the Amazon Keyspaces (for Apache
Cassandra) Developer Guide.

Follow best practices to protect your root user credentials

When you create an AWS account, you establish root user credentials to sign in to the AWS
Management Console. Safeguard your root user credentials the same way you would protect
other sensitive personal information. To better understand how to secure and scale your root user
processes, see Root user best practices for your AWS account.

Follow best practices to protect your root user credentials 63

https://docs.aws.amazon.com/codecommit/latest/userguide/temporary-access.html#temporary-access-configure-credentials
https://docs.aws.amazon.com/codecommit/latest/userguide/temporary-access.html#temporary-access-configure-credentials
https://docs.aws.amazon.com/keyspaces/latest/devguide/access.credentials.html#temporary.credentials.IAM
https://docs.aws.amazon.com/keyspaces/latest/devguide/access.credentials.html#temporary.credentials.IAM

AWS Identity and Access Management User Guide

Apply least-privilege permissions

When you set permissions with IAM policies, grant only the permissions required to perform a
task. You do this by defining the actions that can be taken on specific resources under specific
conditions, also known as least-privilege permissions. You might start with broad permissions while
you explore the permissions that are required for your workload or use case. As your use case
matures, you can work to reduce the permissions that you grant to work toward least privilege. For
more information about using IAM to apply permissions, see Policies and permissions in IAM.

Get started with AWS managed policies and move toward least-
privilege permissions

To get started granting permissions to your users and workloads, use the AWS managed policies
that grant permissions for many common use cases. They are available in your AWS account. Keep
in mind that AWS managed policies might not grant least-privilege permissions for your specific
use cases because they are available for use by all AWS customers. As a result, we recommend that
you reduce permissions further by defining customer managed policies that are specific to your
use cases. For more information, see AWS managed policies. For more information about AWS
managed policies that are designed for specific job functions, see AWS managed policies for job
functions.

Use IAM Access Analyzer to generate least-privilege policies based on
access activity

To grant only the permissions required to perform a task, you can generate policies based on your
access activity that is logged in AWS CloudTrail. IAM Access Analyzer analyzes the services and
actions that your IAM roles use, and then generates a fine-grained policy that you can use. After
you test each generated policy, you can deploy the policy to your production environment. This
ensures that you grant only the required permissions to your workloads. For more information
about policy generation, see IAM Access Analyzer policy generation.

Regularly review and remove unused users, roles, permissions, policies,
and credentials

You might have IAM users, roles, permissions, policies, or credentials that you no longer need in
your AWS account. IAM provides last accessed information to help you identify the users, roles,
permissions, policies, and credentials that you no longer need so that you can remove them. This

Apply least-privilege permissions 64

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#customer-managed-policies
https://docs.aws.amazon.com/IAM/latest/UserGuide/what-is-access-analyzer.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access-analyzer-policy-generation.html

AWS Identity and Access Management User Guide

helps you reduce the number of users, roles, permissions, policies, and credentials that you have
to monitor. You can also use this information to refine your IAM policies to better adhere to least-
privilege permissions. For more information, see Refining permissions in AWS using last accessed
information.

Use conditions in IAM policies to further restrict access

You can specify conditions under which a policy statement is in effect. That way, you can grant
access to actions and resources, but only if the access request meets specific conditions. For
example, you can write a policy condition to specify that all requests must be sent using SSL.
You can also use conditions to grant access to service actions, but only if they are used through
a specific AWS service, such as AWS CloudFormation. For more information, see IAM JSON policy
elements: Condition.

Verify public and cross-account access to resources with IAM Access
Analyzer

Before you grant permissions for public or cross-account access in AWS, we recommend that you
verify if such access is required. You can use IAM Access Analyzer to help you preview and analyze
public and cross-account access for supported resource types. You do this by reviewing the findings
that IAM Access Analyzer generates. These findings help you verify that your resource access
controls grant the access that you expect. Additionally, as you update public and cross-account
permissions, you can verify the effect of your changes before deploying new access controls to
your resources. IAM Access Analyzer also monitors supported resource types continuously and
generates a finding for resources that allow public or cross-account access. For more information,
see Previewing access with IAM Access Analyzer APIs.

Use IAM Access Analyzer to validate your IAM policies to ensure secure
and functional permissions

Validate the policies you create to ensure that they adhere to the IAM policy language (JSON) and
IAM best practices. You can validate your policies by using IAM Access Analyzer policy validation.
IAM Access Analyzer provides more than 100 policy checks and actionable recommendations to
help you author secure and functional policies. As you author new policies or edit existing policies
in the console, IAM Access Analyzer provides recommendations to help you refine and validate
your policies before you save them. Additionally, we recommend that you review and validate all
of your existing policies. For more information, see IAM Access Analyzer policy validation. For more

Use conditions in IAM policies to further restrict access 65

https://docs.aws.amazon.com/IAM/latest/UserGuide/access-analyzer-findings.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access-analyzer-preview-access-apis.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access-analyzer-policy-validation.html

AWS Identity and Access Management User Guide

information about policy checks provided by IAM Access Analyzer, see IAM Access Analyzer policy
check reference.

Establish permissions guardrails across multiple accounts

As you scale your workloads, separate them by using multiple accounts that are managed with
AWS Organizations. We recommend that you use Organizations service control policies (SCPs) to
establish permissions guardrails to control access for all IAM users and roles across your accounts.
SCPs are a type of organization policy that you can use to manage permissions in your organization
at the AWS organization, OU, or account level. The permissions guardrails that you establish
apply to all users and roles within the covered accounts. However, SCPs alone are insufficient to
grant permissions to the accounts in your organization. To do this, your administrator must attach
identity-based or resource-based policies to IAM users, IAM roles, or the resources in your accounts.
For more information, see AWS Organizations, accounts, and IAM guardrails.

Use permissions boundaries to delegate permissions management
within an account

In some scenarios, you might want to delegate permissions management within an account to
others. For example, you could allow developers to create and manage roles for their workloads.
When you delegate permissions to others, use permissions boundaries to set the maximum
permissions that you delegate. A permissions boundary is an advanced feature for using a
managed policy to set the maximum permissions that an identity-based policy can grant to an IAM
role. A permissions boundary does not grant permissions on its own. For more information, see
Permissions boundaries for IAM entities.

Root user best practices for your AWS account

When you first create an AWS account, you begin with a default set of credentials with complete
access to all AWS resources in your account. This identity is called the AWS account root user.
We strongly recommend you don’t access the AWS account root user unless you have a task that
requires root user credentials. You need to secure your root user credentials and your account
recovery mechanisms to help ensure you don’t expose your highly privileged credentials for
unauthorized use.

Instead of accessing the root user, create an administrative user for everyday tasks.

• For a single, standalone AWS account, see Create an administrative user.

Establish permissions guardrails across multiple accounts 66

https://docs.aws.amazon.com/IAM/latest/UserGuide/access-analyzer-reference-policy-checks.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access-analyzer-reference-policy-checks.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_scps.html
https://docs.aws.amazon.com/prescriptive-guidance/latest/security-reference-architecture/organizations.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_root-user.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/root-user-tasks.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/root-user-tasks.html

AWS Identity and Access Management User Guide

• For multiple AWS accounts managed through AWS Organizations, see Set up AWS account access
for an IAM Identity Center administrative user.

With your administrative user, you can then create additional identities for users that need access
to resources in your AWS account. We strongly recommend you require users to authenticate with
temporary credentials when accessing AWS.

• For a single, standalone AWS account, use IAM roles to create identities in your account with
specific permissions. Roles are intended to be assumable by anyone who needs it. Also, a role
does not have standard long-term credentials, such as a password or access keys, associated with
it. Instead, when you assume a role, it provides you with temporary security credentials for your
role session. Unlike IAM roles, IAM users have long-term credentials such as passwords and access
keys. Where possible, best practices recommend relying on temporary credentials instead of
creating IAM users who have long-term credentials such as passwords and access keys.

• For multiple AWS accounts managed through Organizations, use IAM Identity Center workforce
users. With IAM Identity Center, you can centrally manage users across your AWS accounts and
permissions within those accounts. Manage your user identities with IAM Identity Center or from
an external identity provider. For more information, see What is AWS IAM Identity Center in the
AWS IAM Identity Center User Guide.

Topics

• Secure your root user credentials to prevent unauthorized use

• Use a strong root user password to help protect access

• Secure your root user sign-in with multi-factor authentication (MFA)

• Don't create access keys for the root user

• Use multi-person approval for root user sign-in wherever possible

• Use a group email address for root user credentials

• Restrict access to account recovery mechanisms

• Secure your Organizations account root user credentials

• Monitor access and usage

Root user best practices 67

https://docs.aws.amazon.com/singlesignon/latest/userguide/get-started-assign-account-access-admin-user.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/get-started-assign-account-access-admin-user.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/IAMBestPracticesAndUseCases.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/what-is.html

AWS Identity and Access Management User Guide

Secure your root user credentials to prevent unauthorized use

Secure your root user credentials and use them for only the tasks that require them. To help
prevent unauthorized use, don’t share your root user password, MFA, access keys, CloudFront key
pairs, or signing certificates with anyone, except those that have a strict business need to access the
root user.

Don't store the root user password with tools that depend on AWS services in an account that is
accessed using that same password. If you lose or forget your root user password, you will not be
able to access these tools. We recommend that you prioritize resiliency and consider requiring two
or more people to authorize access to the storage location. Access to the password or its storage
location should be logged and monitored.

Use a strong root user password to help protect access

We recommend that you use a password that is strong and unique. Tools such as password
managers with strong password generation algorithms can help you achieve these goals. AWS
requires that your password meet the following conditions:

• It must have a minimum of 8 characters and a maximum of 128 characters.

• It must include a minimum of three of the following mix of character types: uppercase,
lowercase, numbers, and ! @ # $ % ^ & * () <> [] {} | _+-= symbols.

• It must not be identical to your AWS account name or email address.

For more information, see Change the password for the AWS account root user.

Secure your root user sign-in with multi-factor authentication (MFA)

Because a root user can perform privileged actions, it's crucial to add MFA for the root user as a
second authentication factor in addition to the email address and password as sign-in credentials.
We strongly recommend enabling multiple MFA for your root user credentials to provide additional
flexibility and resiliency in your security strategy. You can register up to eight MFA devices of any
combination of the currently supported MFA types with your AWS account root user.

• FIDO Certified hardware security keys are provided by third-party providers. For more
information, see Enable a FIDO security key for the AWS account root user.

Secure your root user credentials to prevent unauthorized use 68

https://docs.aws.amazon.com/IAM/latest/UserGuide/root-user-tasks.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/enable-fido-mfa-for-root.html

AWS Identity and Access Management User Guide

• A hardware device that generates a six-digit numeric code based on the time-based one-time
password (TOTP) algorithm. For more information, see Enable a hardware TOTP token for the
AWS account root user.

• A virtual authenticator application that runs on a phone or other device and emulates a physical
device. For more information, see Enable a virtual MFA device for your AWS account root user.

Don't create access keys for the root user

Access keys let you run commands in the AWS Command Line Interface (AWS CLI) or use API
operations from one of the AWS SDKs. We strongly recommend that you do not create access key
pairs for your root user because the root user has full access to all AWS services and resources in
the account, including billing information.

Since only a few tasks require the root user and you typically perform those tasks infrequently,
we recommend signing in to the AWS Management Console to perform root user tasks. Before
creating access keys, review the alternatives to long-term access keys.

Use multi-person approval for root user sign-in wherever possible

Consider using multi-person approval to ensure that no one person can access both MFA and
password for the root user. Some companies add an additional layer of security by setting up one
group of administrators with access to the password, and another group of administrators with
access to MFA. One member from each group must come together to sign in as the root user.

Use a group email address for root user credentials

Use an email address that is managed by your business and forwards received messages directly
to a group of users. If AWS must contact the owner of the account, this approach reduces the risk
of delays in responding, even if individuals are on vacation, out sick, or have left the business. The
email address used for the root user should not be used for other purposes.

Restrict access to account recovery mechanisms

Ensure you develop a process to manage root user credential recovery mechanisms in case you
need access to it during emergency such as takeover of your administrative account.

• Ensure you have access to your root user email inbox so that you can reset a lost or forgotten
root user password.

Don't create access keys for the root user 69

https://docs.aws.amazon.com/IAM/latest/UserGuide/enable-hw-mfa-for-root.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/enable-hw-mfa-for-root.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/enable-virt-mfa-for-root.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/security-creds.html#sec-alternatives-to-long-term-access-keys
https://docs.aws.amazon.com/IAM/latest/UserGuide/reset-root-password.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reset-root-password.html

AWS Identity and Access Management User Guide

• If MFA for your AWS account root user is lost, damaged, or not working, you can sign in using
another MFA registered to the same root user credentials. If you lost access to all your MFAs, you
need both the phone number and the email to be up to date and accessible to recover your MFA.
For details, see Recovering a root user MFA device.

• If you choose not to store your root user password and MFA, then the phone number registered
in your account can be used as an alternate way to recover root user credentials. Ensure you have
access to the contact phone number, keep the phone number updated, and limit who has access
to manage the phone number.

No one person should have access to both the email inbox and phone number since both are
verification channels to recover your root user password. It is important to have two groups of
individuals managing these channels. One group having access to your primary email address and
another group having access to the primary phone number to recover access to your account as
root user.

Secure your Organizations account root user credentials

As you move to a multi-account strategy with Organizations, each of your AWS accounts has its
own root user credentials that you need to secure. The account you use to create your organization
is the management account and the rest of the accounts in your organization are member
accounts.

Secure root user credentials for member accounts

If you use Organizations to manage multiple accounts, there are two strategies that you can take to
secure root user access in your Organizations.

• Secure root user credentials of your Organizations accounts with MFA.

• Do not reset the root user password for your accounts, and only recover access to it when needed
using the password reset process. When you create a member account in your organization,
Organizations automatically creates an IAM role in the member account that allows the
management account temporary access to the member account.

For details, see Accessing member accounts in your organization in the Organizations User Guide.

Secure your Organizations account root user credentials 70

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mfa_lost-or-broken.html#root-mfa-lost-or-broken
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_accounts_access.html

AWS Identity and Access Management User Guide

Set preventative security controls in Organizations using a service control policy
(SCP)

If you use Organizations to manage multiple accounts, you can apply an SCP to restrict access
to member account root user. Denying all root user actions in your member accounts, except for
certain root-only actions, helps prevent unauthorized access. For details, see Use an SCP to restrict
what the root user in your member accounts can do.

Monitor access and usage

We recommend you use your current tracking mechanisms to monitor, alert, and report the sign
in and use of root user credentials, including alerts that announce root user sign-in and usage.
The following services can help to ensure that root user credential usage is tracked and perform
security checks that can help prevent unauthorized use.

• If you want to be notified about root user sign-in activity in your account, you can leverage
Amazon CloudWatch to create an Events rule that detects when root user credentials are used
and triggers a notification to your security administrator. For details, see Monitor and notify on
AWS account root user activity.

• If you want to set up notifications to alert you of approved root user actions, you can leverage
Amazon EventBridge along with Amazon SNS to write an EventBridge rule to track root user
usage for the specific action and notify you using an Amazon SNS topic. For an example, see
Send a notification when an Amazon S3 object is created.

• If you already using GuardDuty as your threat detection service, you can extend its capability to
notify you when root user credentials are being used in your account.

Alerts should include, but not be limited to, the email address for the root user. Have procedures
in place for how to respond to alerts so that personnel who receive a root user access alert
understand how to validate that root user access is expected, and how to escalate if they believe
that a security incident is in progress. For an example of how to configure alerts, see Monitor and
notify on AWS account root user activity.

Evaluate root user MFA compliance

• AWS Config uses rules to help enforce root user best practices. You can use AWS managed rules
to require root users to have multi-factor authentication (MFA) enabled. AWS Config can also
identify access keys for the root user.

Monitor access and usage 71

https://docs.aws.amazon.com/organizations/latest/userguide/best-practices_member-acct.html#bp_member-acct_use-scp
https://docs.aws.amazon.com/organizations/latest/userguide/best-practices_member-acct.html#bp_member-acct_use-scp
https://aws.amazon.com/blogs/mt/monitor-and-notify-on-aws-account-root-user-activity/
https://aws.amazon.com/blogs/mt/monitor-and-notify-on-aws-account-root-user-activity/
https://docs.aws.amazon.com/eventbridge/latest/userguide/eb-s3-object-created-tutorial.html
https://docs.aws.amazon.com/guardduty/latest/ug/guardduty_finding-types-iam.html#policy-iam-rootcredentialusage
https://aws.amazon.com/blogs/mt/monitor-and-notify-on-aws-account-root-user-activity/
https://aws.amazon.com/blogs/mt/monitor-and-notify-on-aws-account-root-user-activity/
https://docs.aws.amazon.com/config/latest/developerguide/root-account-mfa-enabled.html
https://docs.aws.amazon.com/config/latest/developerguide/iam-root-access-key-check.html

AWS Identity and Access Management User Guide

• Security Hub provides you with a comprehensive view of your security state in AWS and helps
you assess your AWS environment against security industry standards and best practices, such
as having MFA on the root user and not having root user access keys. For details on the rules
available, see AWS Identity and Access Management controls in the Security Hub User Guide.

• Trusted Advisor provides a security check so you know if MFA isn't enabled on the root user
account. For more information, see MFA on Root Account in the AWS Support User Guide.

If you need to report a security issue on your account, see Report Suspicious Emails or Vulnerability
Reporting. Alternatively, you can Contact AWS for assistance and additional guidance.

Business use cases for IAM

A simple business use case for IAM can help you understand basic ways you might implement the
service to control the AWS access that your users have. The use case is described in general terms,
without the mechanics of how you'd use the IAM API to achieve the results you want.

This use case looks at two typical ways a fictional company called Example Corp might use IAM.
The first scenario considers Amazon Elastic Compute Cloud (Amazon EC2). The second considers
Amazon Simple Storage Service (Amazon S3).

For more information about using IAM with other services from AWS, see AWS services that work
with IAM.

Topics

• Initial setup of example corp

• Use case for IAM with Amazon EC2

• Use case for IAM with Amazon S3

Initial setup of example corp

Nikki Wolf and Mateo Jackson are the founders of Example Corp. Upon starting the company,
they create an AWS account and set up AWS IAM Identity Center (IAM Identity Center) to create
administrative accounts to use with their AWS resources. When you set up account access for
the administrative user, IAM Identity Center creates a corresponding IAM role. This role, which is
controlled by IAM Identity Center, is created in the relevant AWS account, and the policies specified
in the AdministratorAccess permission set are attached to the role.

Business use cases 72

https://docs.aws.amazon.com/securityhub/latest/userguide/iam-controls.html#iam-4
https://docs.aws.amazon.com/awssupport/latest/user/security-checks.html#mfa-root-account
https://aws.amazon.com/security/report-suspicious-emails/
https://aws.amazon.com/security/vulnerability-reporting/
https://aws.amazon.com/security/vulnerability-reporting/
https://aws.amazon.com/contact-us/

AWS Identity and Access Management User Guide

Since they now have administrator accounts, Nikki and Mateo no longer need to use their root user
to access their AWS account. They plan to only use the root user to complete the tasks that only
the root user can perform. After reviewing the security best practices they configure multi-factor
authentication (MFA) for their root user credentials and decide how to safeguard their root user
credentials.

As their company grows, they hire employees to work as developers, admins, testers, managers,
and system administrators. Nikki is in charge of operations, while Mateo manages the engineering
teams. They set up an Active Directory Domain Server to manage the employees accounts and
manage access to internal company resources.

To give their employees access to AWS resources, they use IAM Identity Center to connect their
company's Active Directory to their AWS account.

Because they connected Active Directory to IAM Identity Center, the users, group, and group
membership are synchronized and defined. They must assign permission sets and roles to the
different groups to give the users the correct level of access to AWS resources. They use AWS
managed policies for job functions in the AWS Management Console to create these permissions
sets:

• Administrator

• Billing

• Developers

• Network administrators

• Database administrators

• System administrators

• Support users

Then they assign these permissions sets to the roles assigned to their Active Directory groups.

For a step-by-step guide describing the initial configuration of IAM Identity Center, see Getting
started in the AWS IAM Identity Center User Guide. For more information about provisioning IAM
Identity Center user access, see Single sign-on access to AWS accounts in the AWS IAM Identity
Center User Guide.

Initial setup of example corp 73

https://docs.aws.amazon.com/singlesignon/latest/userguide/get-started-assign-account-access-admin-user.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/get-started-assign-account-access-admin-user.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/useracces.html

AWS Identity and Access Management User Guide

Use case for IAM with Amazon EC2

A company like Example Corp typically uses IAM to interact with services like Amazon EC2. To
understand this part of the use case, you need a basic understanding of Amazon EC2. For more
information about Amazon EC2, go to the Amazon EC2 User Guide for Linux Instances.

Amazon EC2 permissions for the user groups

To provide "perimeter" control, Nikki attaches a policy to the AllUsers user group. This policy denies
any AWS request from a user if the originating IP address is outside Example Corp's corporate
network.

At Example Corp, different user groups require different permissions:

• System administrators – Need permission to create and manage AMIs, instances, snapshots,
volumes, security groups, and so on. Nikki attaches the AmazonEC2FullAccess AWS managed
policy to the SysAdmins user group that gives members of the group permission to use all the
Amazon EC2 actions.

• Developers – Need the ability to work with instances only. Mateo therefore creates and attaches
a policy to the Developers user group that allows developers to call DescribeInstances,
RunInstances, StopInstances, StartInstances, and TerminateInstances.

Note

Amazon EC2 uses SSH keys, Windows passwords, and security groups to control who has
access to the operating system of specific Amazon EC2 instances. There's no method in
the IAM system to allow or deny access to the operating system of a specific instance.

• Support users – Should not be able to perform any Amazon EC2 actions except listing the
Amazon EC2 resources currently available. Therefore, Nikki creates and attaches a policy to the
Support users group that only lets them call Amazon EC2 "Describe" API operations.

For examples of what these policies might look like, see Example IAM identity-based policies and
Using AWS Identity and Access Management in the Amazon EC2 User Guide for Linux Instances.

User's job function change

At some point, one of the developers, Paulo Santos, changes job functions and becomes a
manager. As a manager, Paulo becomes part of the Support users group so that he can open

Use case for IAM with Amazon EC2 74

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/index.html?UsingIAM.html

AWS Identity and Access Management User Guide

support cases for his developers. Mateo moves Paulo from the Developers user group to the
Support users group. As a result of this move, his ability to interact with Amazon EC2 instances is
limited. He can't launch or start instances. He also can't stop or terminate existing instances, even if
he was the user who launched or started the instance. He can list only the instances that Example
Corp users have launched.

Use case for IAM with Amazon S3

Companies like Example Corp would also typically use IAM with Amazon S3. John has created an
Amazon S3 bucket for the company called aws-s3-bucket.

Creation of other users and user groups

As employees, Zhang Wei and Mary Major each need to be able to create their own data in the
company's bucket. They also need to read and write shared data that all developers work on. To
enable this, Mateo logically arranges the data in aws-s3-bucket using an Amazon S3 key prefix
scheme as shown in the following figure.

/aws-s3-bucket
 /home
 /zhang
 /major
 /share
 /developers
 /managers

Mateo divides the /aws-s3-bucket into a set of home directories for each employee, and a
shared area for groups of developers and managers.

Now Mateo creates a set of policies to assign permissions to the users and user groups:

• Home directory access for Zhang – Mateo attaches a policy to Wei that lets him read, write, and
list any objects with the Amazon S3 key prefix /aws-s3-bucket/home/zhang/

• Home directory access for Major – Mateo attaches a policy to Mary that lets her read, write, and
list any objects with the Amazon S3 key prefix /aws-s3-bucket/home/major/

• Shared directory access for the developers user group – Mateo attaches a policy to the user
group that lets developers read, write, and list any objects in /aws-s3-bucket/share/
developers/

Use case for IAM with Amazon S3 75

AWS Identity and Access Management User Guide

• Shared directory access for the managers user group – Mateo attaches a policy to the user
group that lets managers read, write, and list objects in /aws-s3-bucket/share/managers/

Note

Amazon S3 doesn't automatically give a user who creates a bucket or object permission to
perform other actions on that bucket or object. Therefore, in your IAM policies, you must
explicitly give users permission to use the Amazon S3 resources they create.

For examples of what these policies might look like, see Access Control in the Amazon Simple
Storage Service User Guide. For information on how policies are evaluated at runtime, see Policy
evaluation logic.

User's job function change

At some point, one of the developers, Zhang Wei, changes job functions and becomes a manager.
We assume that he no longer needs access to the documents in the share/developers directory.
Mateo, as an admin, moves Wei to the Managers user group and out of the Developers user
group. With just that simple reassignment, Wei automatically gets all permissions granted to the
Managers user group, but can no longer access data in the share/developers directory.

Integration with a third-party business

Organizations often work with partner companies, consultants, and contractors. Example Corp has
a partner called the Widget Company, and a Widget Company employee named Shirley Rodriguez
needs to put data into a bucket for Example Corp's use. Nikki creates a user group called WidgetCo
and a user named Shirley and adds Shirley to the WidgetCo user group. Nikki also creates a
special bucket called aws-s3-bucket1 for Shirley to use.

Nikki updates existing policies or adds new ones to accommodate the partner Widget Company.
For example, Nikki can create a new policy that denies members of the WidgetCo user group the
ability to use any actions other than write. This policy would be necessary only if there's a broad
policy that gives all users access to a wide set of Amazon S3 actions.

Use case for IAM with Amazon S3 76

https://docs.aws.amazon.com/AmazonS3/latest/dev/UsingAuthAccess.html

AWS Identity and Access Management User Guide

IAM tutorials

The following tutorials present complete end-to-end procedures for common tasks for AWS
Identity and Access Management (IAM). They are intended for a lab-type environment, with
fictitious company names, user names, and so on. Their purpose is to provide general guidance.
They are not intended for direct use in a production environment without careful review and
adaptation to meet the unique needs of your organization's environment.

Tutorials

• IAM tutorial: Grant access to the billing console

• IAM tutorial: Delegate access across AWS accounts using IAM roles

• IAM tutorial: Create and attach your first customer managed policy

• IAM tutorial: Define permissions to access AWS resources based on tags

• IAM tutorial: Permit users to manage their credentials and MFA settings

IAM tutorial: Grant access to the billing console

The AWS account owner (AWS account root user) can grant IAM users and roles access to the AWS
Billing and Cost Management data for their AWS account. The instructions in this tutorial help you
set up a pretested scenario. This scenario helps you gain hands-on experience configuring billing
permissions without concern for affecting your main AWS production account.

Prerequisites

Make the following preparations before performing the steps in this tutorial:

• Create a test AWS account.

• Sign in to your test AWS account as the root user.

• Record the AWS account number of your test account so that you can use it in the tutorial. In
this tutorial we use the example account number 111122223333. Whenever a step uses that
account number, replace it with your test account number.

Step 1: Activate IAM access to billing information on your test AWS account

In this scenario, you sign in to your test AWS account as the root user to grant IAM access to
billing information. When you grant IAM access to billing information it allows IAM users and

Grant access to the billing console 77

AWS Identity and Access Management User Guide

roles to access the AWS Billing and Cost Management console. This setting doesn't grant IAM
users and roles the necessary permissions for these console pages, it enables access for IAM
users or roles that have the required IAM policies. If policies are already attached to IAM users or
roles, but this setting isn't enabled, the permissions granted by those policies aren't in effect.

Note

AWS accounts created using AWS Organizations have IAM access to billing information
enabled by default.

Step 2: Create test users and groups

In this scenario, you grant IAM users access to the billing console and you create two users:

• Pat Candella

Pat is a member of the finance department and works with billing and payments. Pat requires
full access to the billing information in your AWS account.

• Terry Whitlock

Terry is part of your IT support department. Most of the time Terry doesn't require access to
the billing console, but sometimes needs access to answer questions for employees in the
finance department.

Step 3: Create a role to grant access to the AWS Billing console

An IAM role is an IAM identity that you can create in your account that has specific permissions.
An IAM role is similar to an IAM user, in that it's an AWS identity with permission policies that
determine what the identity can and can't do in AWS. However, instead of being uniquely
associated with one person, a role is intended to be assumable by anyone who needs it. Also, a
role doesn't have standard long-term credentials such as a password or access keys associated
with it. Instead, when you assume a role, it provides you with temporary security credentials for
your role session. You can use roles to delegate access to users, applications, or services that
don't normally have access to your AWS resources. In this scenario you create a role that Terry
Whitlock can assume to access the billing console.

Grant access to the billing console 78

AWS Identity and Access Management User Guide

Step 4: Test access to the console

After you've completed the core tasks, you're ready to test the policy. Testing ensures that the
policy works the way you want it to. By testing the access of each user you can compare the
user experiences.

Prerequisites

Make the following preparations before performing the steps in this tutorial:

• Create a test AWS account.

• Sign in to your test AWS account as the root user.

• Record the AWS account number of your test account so that you can use it in the tutorial. In this
tutorial we use the example account number 111122223333. Whenever a step uses that account
number, replace it with your test account number.

Step 1: Activate IAM access to billing information on your test AWS
account

In this scenario, you sign in to your test AWS account as the root user to grant IAM access to billing
information. When you grant access to billing information it allows IAM users and roles to access
the AWS Billing and Cost Management console. This setting doesn't grant IAM users and roles the
necessary permissions for these console pages, it just enables access for IAM users or roles that
have the required IAM policies.

Note

AWS accounts created using AWS Organizations have IAM access to billing information
enabled by default.

To activate IAM user and role access to the Billing and Cost Management console

1. Sign in to the AWS Management Console with your root user credentials (specifically, the email
address and password that you used to create your AWS account).

2. On the navigation bar, select your account name, and then select Account.

Prerequisites 79

https://console.aws.amazon.com/billing/home#/account

AWS Identity and Access Management User Guide

3. Scroll down the page until you find the section IAM User and Role Access to Billing
Information, then select Edit.

4. Select the Activate IAM Access check box to activate access to the Billing and Cost
Management console pages.

5. Choose Update.

The page displays the message IAM user/role access to billing information is activated.

In the next step of this tutorial you attach IAM policies to grant or deny access to specific billing
features.

Step 2: Create test users and groups

Your test AWS account doesn't have any identities defined except for the root user. To provide
access to billing information we create additional identities to whom we can grant permission to
access billing information.

Create test users and groups

1. Sign in to the IAM console as the account owner by choosing Root user and entering your AWS
account email address. On the next page, enter your password.

Note

As the root user, you can't sign in to the Sign in as IAM user page. If you see the Sign
in as IAM user page, choose Sign in using root user email near the bottom of the
page. For help signing in as the root user, see Signing in to the AWS Management
Console as the root user in the AWS Sign-In User Guide.

2. In the navigation pane, select Users and then select Add users.

Note

If you have IAM Identity Center enabled, the AWS Management Console displays a
reminder that it's best to manage users' access in IAM Identity Center. In this tutorial,
the IAM users we create are to learn about providing access to billing information. If

Step 2: Create test users and groups 80

https://console.aws.amazon.com/iam/
https://docs.aws.amazon.com/signin/latest/userguide/introduction-to-%20%20%20%20%20%20%20%20%20%20root-user-sign-in-tutorial.html
https://docs.aws.amazon.com/signin/latest/userguide/introduction-to-%20%20%20%20%20%20%20%20%20%20root-user-sign-in-tutorial.html

AWS Identity and Access Management User Guide

you have created users in IAM Identity Center you assign the Billing permission set to
those users or groups using IAM Identity Center instead of IAM.

3. For User name, enter pcandella. Names can't contain spaces.

4. Select the select box next to Provide user access to the AWS Management Console– optional
and then choose want to create an IAM user.

5. Under Console password, select Autogenerated password.

6. Clear the select box next to User must create a new password at next sign-in
(recommended) and then select Next. Because this IAM user is for testing, we're going to
download the password for use during the verification procedure.

7. On the Set permissions page, under Permissions options, select Add user to group. Then,
under User groups, select Create group.

8. On the Create user group page, in User group name, enter BillingGroup. Then, under
Permissions policies, select the AWS managed job function policy Billing.

9. Select Create user group to return to the Set permissions page.

10. Under User groups, select the select box of the BillingGroup you created.

11. Select Next to proceed to the Review and create page.

12. On the Review and create page, review the list of user group memberships for the new user.
When you are ready to proceed, select Create user.

13. On the Retrieve password page, select Download .csv file to save a .csv file with the user sign-
in information (Connection URL, user name, and password).

Save this file to use as a reference when you sign in to AWS as this IAM user

14. Select Return to users list

15. Repeat this procedure using the following modifications to create the user for Terry Whitlock
and a group for support users.

a. In step 3, for User name, enter twhitlock.

b. In step 8, for User group name, enter SupportGroup. Then, under Permissions policies,
select the AWS managed-job function policy SupportUser.

You can review the new IAM users, groups and roles in the console lists. For each item you
created you can select the name to view its details. When you view the user details, the console

Step 2: Create test users and groups 81

AWS Identity and Access Management User Guide

displays Billing listed under Permissions policies for pcandella and SupportUser listed under
Permissions policies for twhitlock.

For more information about using policies to grant IAM users access to AWS Billing and Cost
Management features, see Using identity-based policies (IAM policies) for AWS Billing in the AWS
Billing User Guide.

Step 3: Create a role to grant access to the AWS Billing console

You can use a role to grant IAM users access to the billing console. Roles provide temporary
credentials that users can assume when needed. In this tutorial, the user twhitlock needs to be
able to access billing information when a support request from the finance department requires he
investigate an issue.

1. Sign in to the IAM console as the account owner by choosing Root user and entering your AWS
account email address. On the next page, enter your password.

Note

As the root user, you can't sign in to the Sign in as IAM user page. If you see the Sign
in as IAM user page, choose Sign in using root user email near the bottom of the
page. For help signing in as the root user, see Signing in to the AWS Management
Console as the root user in the AWS Sign-In User Guide.

2. In the navigation pane, select Users and then select the twhitlock user to view the user
details. Copy the ARN for the twhitlock user to the clipboard.

3. In the navigation pane, select Roles and then select Create role.

4. On the Select trusted entity page, select Custom trust policy and then under Edit statement
complete the following items:

• Add actions for STS - Verify that AssumeRole is selected.

• Add a principal select Add to display the Add principal dialog box. For Principal type
select IAM users then for ARN paste the ARN for the twhitlock user that you copied to the
clipboard in step 16. Then select Add principal.

5. Select Next to go to the Add permissions page.

6. Under Permissions policies in the filter box, enter Billing and then select the AWS
managed-job function policy Billing.

Step 3: Create a role to grant access to the AWS Billing console 82

https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/billing-permissions-ref.html
https://console.aws.amazon.com/iam/
https://docs.aws.amazon.com/signin/latest/userguide/introduction-to-%20%20%20%20%20%20%20%20%20%20root-user-sign-in-tutorial.html
https://docs.aws.amazon.com/signin/latest/userguide/introduction-to-%20%20%20%20%20%20%20%20%20%20root-user-sign-in-tutorial.html

AWS Identity and Access Management User Guide

7. Select Next to go to the Name, review, and create page. Under Role name, enter
TempBillingAccess then select Create role.

You are notified that the role has been created. View the role to display the details about the
role. In the Summary section take note of the following information:

• Maximum session duration is 1 hour by default. After that time the user who assumed the
role reverts to their base account permissions. If the user wants to continue using the role
permissions, they must switch roles again. You can edit the role to increase the maximum
duration. The longest session duration possible is 12 hours.

• Link to switch roles in console. You can copy the link to provide it directly to the users that
you add as principals in the trust policy. You can view and edit the trust policy from the
Trust relationships tab.

Step 4: Test access to the console

We recommend that you test access by signing in as the test users to learn what your users might
experience. Use the following steps to sign in using both test accounts to see the difference
between access rights.

To test billing access by signing in with both test users

1. Use your AWS account ID or account alias, your IAM user name, and your password to sign in to
the IAM console.

Note

For your convenience, the AWS sign-in page uses a browser cookie to remember your
IAM user name and account information. If you previously signed in as a different user,
choose Sign in to a different account near the bottom of the page to return to the
main sign-in page. From there, you can type your AWS account ID or account alias to
be redirected to the IAM user sign-in page for your account.

2. Sign in with each user using the steps provided below so you can compare the different user
experiences.

Full access

a. Sign in to your AWS account as the user pcandella.

Step 4: Test access to the console 83

https://console.aws.amazon.com/iam

AWS Identity and Access Management User Guide

b. On the navigation bar, choose pcandella@111122223333 , and then choose Billing
Dashboard.

c. Browse through the pages and choose the various buttons to make sure that you have full
modify permissions.

No access

a. Sign in to your AWS account as the user twhitlock.

b. On the navigation bar, choose twhitlock@111122223333, and then choose Billing
Dashboard.

c. A message displays stating You need permissions. No billing data is visible.

Switch role to elevate access

a. Sign in to your AWS account as the user twhitlock.

b. On the navigation bar, choose twhitlock@111122223333, and then choose Switch role.

The Switch role page opens. Complete the information as follows:

• Account-111122223333

• Role-TempBillingAccess

Select Switch role

Alternatively, you could use the URL provided in Link to switch roles in console to open the
Switch role page.

c. The console displays the AWS Billing Dashboard and the navigation bar displays
TempBillingAccess@111122223333.

Summary

You've now completed the steps necessary to provide IAM users access to the AWS Billing console.
As a result, you've seen firsthand what your users billing console experience is like. You can now
proceed to implement this logic in your production environment at your convenience.

Summary 84

AWS Identity and Access Management User Guide

Related resources

For related information found in the AWS Billing User Guide, see the following resources:

• Activating Access to the AWS Billing console

• AWS Billing policy examples

• Using identity-based policies (IAM policies) for AWS Billing

• Migrating access control for AWS Billing

For related information in the IAM User Guide, see the following resources:

• Managed policies and inline policies

• Controlling IAM users access to the AWS Management Console

• Attaching a policy to an IAM user group

IAM tutorial: Delegate access across AWS accounts using IAM
roles

This tutorial teaches you how to use a role to delegate access to resources in different AWS
accounts that you own called Production and Development. You share resources in one account
with users in a different account. By setting up cross-account access in this way, you don't have to
create individual IAM users in each account. In addition, users don't have to sign out of one account
and sign in to another account to access resources in different AWS accounts. After configuring the
role, you see how to use the role from the AWS Management Console, the AWS CLI, and the API.

Note

IAM roles and resource-based policies delegate access across accounts only within a single
partition. For example, assume that you have an account in US West (N. California) in the
standard aws partition. You also have an account in China (Beijing) in the aws-cn partition.
You can't use an Amazon S3 resource-based policy in your account in China (Beijing) to
allow access for users in your standard aws account.

In this tutorial, the Production account manages live applications. Developers and testers use
the Development account as a sandbox to freely test applications. In each account, you store

Related resources 85

https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/grantaccess.html#ControllingAccessWebsite-Activate
https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/billing-example-policies.html
https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/billing-permissions-ref.html
https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/migrate-granularaccess-whatis.html

AWS Identity and Access Management User Guide

application information in Amazon S3 buckets. You manage IAM users in the Development
account, where you have two IAM user groups: Developers and Testers. Users in both user groups
have permissions to work in the Development account and access resources there. From time to
time, a developer must update the live applications in the Production account. The developers
store these applications in an Amazon S3 bucket called productionapp.

At the end of this tutorial, you have the following:

• Users in the Development account (the trusted account) allowed to assume a specific role in the
Production account.

• A role in the Production account (the trusting account) allowed to access a specific Amazon S3
bucket.

• The productionapp bucket in the Production account.

Developers can use the role in the AWS Management Console to access the productionapp
bucket in the Production account. They can also access the bucket by using API calls authenticated
by temporary credentials provided by the role. Similar attempts by a Tester to use the role fail.

This workflow has three basic steps:

Create a role in the Production Account

First, you use the AWS Management Console to establish trust between the Production account
(ID number 999999999999) and the Development account (ID number 111111111111). You
start by creating an IAM role named UpdateApp. When you create the role, you define the
Development account as a trusted entity and specify a permissions policy that allows trusted
users to update the productionapp bucket.

Grant access to the role

In this section, you modify the IAM user group policy to deny Testers access to the UpdateApp
role. Because Testers have PowerUser access in this scenario, and you must explicitly deny the
ability to use the role.

Delegate access across AWS accounts using roles 86

AWS Identity and Access Management User Guide

Test access by switching roles

Finally, as a Developer, you use the UpdateApp role to update the productionapp bucket in
the Production account. You see how to access the role through the AWS console, the AWS CLI,
and the API.

Prerequisites

This tutorial assumes that you have the following already in place:

• Two separate AWS accounts that you can use, one to represent the Development account, and
one to represent the Production account.

• Users and user groups in the Development account created and configured as follows:

User User group Permissions

David Developers

Jane Testers

Both users can sign in and use the AWS Management
Console in the Development account.

• You do not need any users or user groups created in the Production account.

• An Amazon S3 bucket created in the Production account. You can call it ProductionApp in this
tutorial, but because S3 bucket names must be globally unique, you must use a bucket with a
different name.

Create a role in the Production Account

You can allow users from one AWS account to access resources in another AWS account. To do this,
create a role that defines who can access it and what permissions it grants to users that switch to it.

In this step of the tutorial, you create the role in the Production account and specify the
Development account as a trusted entity. You also limit the role permissions to only read and write
access to the productionapp bucket. Anyone granted permission to use the role can read and
write to the productionapp bucket.

Before you can create a role, you need the account ID of the Development AWS account. Each AWS
account has a unique account ID identifier assigned to it.

Prerequisites 87

AWS Identity and Access Management User Guide

To obtain the Development AWS account ID

1. Sign in to the AWS Management Console as an administrator of the Development account,
and open the IAM console at https://console.aws.amazon.com/iam/.

2. In the navigation bar, choose Support, and then Support Center. Your currently signed-in 12-
digit account number (ID) appears in the Support Center navigation pane. For this scenario,
you can use the account ID 111111111111 for the Development account. However, you
should use a valid account ID if you use this scenario in your test environment.

To create a role in the production account that can be used by the Development account

1. Sign in to the AWS Management Console as an administrator of the Production account, and
open the IAM console.

2. Before creating the role, prepare the managed policy that defines the permissions for the role
requirements. You attach this policy to the role in a later step.

You want to set read and write access to the productionapp bucket. Although AWS provides
some Amazon S3 managed policies, there isn't one that provides read and write access to a
single Amazon S3 bucket. You can create your own policy instead.

In the navigation pane, choose Policies and then choose Create policy.

3. Choose the JSON tab and copy the text from the following JSON policy document. Paste this
text into the JSON text box, replacing the resource ARN (arn:aws:s3:::productionapp)
with the real one for your Amazon S3 bucket.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "s3:ListAllMyBuckets",
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Action": [
 "s3:ListBucket",
 "s3:GetBucketLocation"
],

Create a role in the Production Account 88

https://console.aws.amazon.com/iam/

AWS Identity and Access Management User Guide

 "Resource": "arn:aws:s3:::productionapp"
 },
 {
 "Effect": "Allow",
 "Action": [
 "s3:GetObject",
 "s3:PutObject",
 "s3:DeleteObject"
],
 "Resource": "arn:aws:s3:::productionapp/*"
 }
]
}

The ListAllMyBuckets action grants permission to list all buckets owned by the
authenticated sender of the request. The ListBucket permission allows users to view objects
in the productionapp bucket. The GetObject, PutObject, DeleteObject permissions
allows users to view, update, and delete contents in the productionapp bucket.

4. Resolve any security warnings, errors, or general warnings generated during policy validation,
and then choose Next.

Note

You can switch between the Visual and JSON editor options anytime. However, if you
make changes or choose Next in the Visual editor, IAM might restructure your policy to
optimize it for the visual editor. For more information, see Policy restructuring.

5. On the Review and create page, type read-write-app-bucket for the policy name. Review
the permissions granted by your policy, and then choose Create policy to save your work.

The new policy appears in the list of managed policies.

6. In the navigation pane, choose Roles and then choose Create role.

7. Choose the An AWS account role type.

8. For Account ID, type the Development account ID.

This tutorial uses the example account ID 111111111111 for the Development account. You
should use a valid account ID. If you use an invalid account ID, such as 111111111111, IAM
does not let you create the new role.

Create a role in the Production Account 89

AWS Identity and Access Management User Guide

For now you do not need to require an external ID, or require users to have multi-factor
authentication (MFA) in order to assume the role. Leave these options unselected. For more
information, see Using multi-factor authentication (MFA) in AWS.

9. Choose Next: Permissions to set the permissions associated with the role.

10. Select the check box next to the policy that you created previously.

Tip

For Filter, choose Customer managed to filter the list to include only the policies that
you created. This hides the AWS created policies and makes it much easier to find the
one you need.

Then, choose Next.

11. (Optional) Add metadata to the role by attaching tags as key-value pairs. For more information
about using tags in IAM, see Tagging IAM resources.

12. (Optional) For Description, enter a description for the new role.

13. After reviewing the role, choose Create role.

The UpdateApp role appears in the list of roles.

Now you must obtain the Amazon Resource Name (ARN) of the role, a unique identifier for the role.
When you modify the Developers and Testers user group policy, you specify the role ARN to grant
or deny permissions.

To obtain the ARN for UpdateApp

1. In the navigation pane of the IAM console, choose Roles.

2. In the list of roles, choose the UpdateApp role.

3. In the Summary section of the details pane, copy the Role ARN value.

The Production account has an account ID of 999999999999, so the role ARN is
arn:aws:iam::999999999999:role/UpdateApp. Ensure that you provide the real AWS
account ID for the Production account.

Create a role in the Production Account 90

AWS Identity and Access Management User Guide

At this point, you have established trust between the Production and Development accounts. You
did this by creating a role in the Production account that identifies the Development account as a
trusted principal. You also defined what the users who switch to the UpdateApp role can do.

Next, modify the permissions for the user groups.

Grant access to the role

At this point, both Testers and Developers user group members have permissions that allow them
to freely test applications in the Development account. Use the following required steps for adding
permissions to allow switching to the role.

To modify the Developers user group to allow them to switch to the UpdateApp role

1. Sign in as an administrator in the Development account, and open the IAM console.

2. Choose User groups, and then choose Developers.

3. Choose the Permissions tab, choose Add permissions, and then choose Create inline policy.

4. Choose the JSON tab.

5. Add the following policy statement to allow the AssumeRole action on the UpdateApp role in
the Production account. Be sure that you change PRODUCTION-ACCOUNT-ID in the Resource
element to the actual AWS account ID of the Production account.

{
 "Version": "2012-10-17",
 "Statement": {
 "Effect": "Allow",
 "Action": "sts:AssumeRole",
 "Resource": "arn:aws:iam::PRODUCTION-ACCOUNT-ID:role/UpdateApp"
 }
}

The Allow effect explicitly allows the Developers group access to the UpdateApp role in the
Production account. Any developer who tries to access the role succeeds.

6. Choose Review policy.

7. Type a Name such as allow-assume-S3-role-in-production.

8. Choose Create policy.

Grant access to the role 91

AWS Identity and Access Management User Guide

In most environments, you may not need the following procedure. If, however, you use
PowerUserAccess permissions, then some groups might already be able to switch roles. The
following procedure shows how to add a "Deny" permission to the Testers group to ensure that
they cannot assume the role. If you do not need this procedure in your environment, then we
recommend that you do not add it. "Deny" permissions make the overall permissions picture more
complicated to manage and understand. Use "Deny" permissions only when you do not have a
better option.

To modify the testers user group to deny permission to assume the UpdateApp role

1. Choose User groups, and then choose Testers.

2. Choose the Permissions tab, choose Add permissions, and then choose Create inline policy.

3. Choose the JSON tab.

4. Add the following policy statement to deny the AssumeRole action on the UpdateApp role.
Be sure that you change PRODUCTION-ACCOUNT-ID in the Resource element to the actual
AWS account ID of the Production account.

{
 "Version": "2012-10-17",
 "Statement": {
 "Effect": "Deny",
 "Action": "sts:AssumeRole",
 "Resource": "arn:aws:iam::PRODUCTION-ACCOUNT-ID:role/UpdateApp"
 }
}

The Deny effect explicitly denies the Testers group access to the UpdateApp role in the
Production account. Any tester who tries to access the role receives an access denied message.

5. Choose Review policy.

6. Type a Name like deny-assume-S3-role-in-production.

7. Choose Create policy.

The Developers user group now has permissions to use the UpdateApp role in the Production
account. The Testers user group is prevented from using the UpdateApp role.

Grant access to the role 92

AWS Identity and Access Management User Guide

Next, you can see how David, a developer, can access the productionapp bucket in the
Production account. David can access the bucket from the AWS Management Console, the AWS CLI,
or the AWS API.

Test access by switching roles

After completing the first two steps of this tutorial, you have a role that grants access to a resource
in the Production account. You also have one user group in the Development account with users
allowed to use that role. This step discusses how to test switching to that role from the AWS
Management Console, the AWS CLI, and the AWS API.

Important

You can switch to a role only after you sign in as an IAM user or a federated user.
Additionally, if you launch an Amazon EC2 instance to run an application, the application
can assume a role through its instance profile. You cannot switch to a role when you sign in
as the AWS account root user.

Switch roles (console)

If David needs to work within the Production environment in the AWS Management Console,
he can do so by using Switch Role. He specifies the account ID or alias and the role name,
and his permissions immediately switch to those permitted by the role. He can then use the
console to work with the productionapp bucket, but cannot work with any other resources in
Production. While David uses the role, he also cannot make use of his power-user privileges in the
Development account. That's because only one set of permissions can be in effect at a time.

Important

Switching roles using the AWS Management Console only works with accounts that do
not require an ExternalId. For example, assume that you grant access to your account
to a third party and require an ExternalId in a Condition element in your permissions
policy. In that case, the third party can access your account only by using the AWS API or a
command line tool. The third party cannot use the console because it cannot supply a value
for ExternalId. For more information about this scenario, see How to use an external ID
when granting access to your AWS resources to a third party, and How to Enable Cross-
Account Access to the AWS Management Console in the AWS Security Blog.

Test access by switching roles 93

https://aws.amazon.com/blogs/security/how-to-enable-cross-account-access-to-the-aws-management-console
https://aws.amazon.com/blogs/security/how-to-enable-cross-account-access-to-the-aws-management-console

AWS Identity and Access Management User Guide

IAM provides two ways that David can use to enter the Switch Role page:

• David receives a link from their administrator that points to a predefined Switch Role
configuration. The link is provided to the administrator on the final page of the Create role
wizard or on the Role Summary page for a cross-account role. Choosing this link takes David to
the Switch Role page with the Account ID and Role name fields already filled in. All David needs
to do is choose Switch Roles.

• The administrator does not send the link in email, but instead sends the Account ID number and
Role Name values. To switch roles, David must manually enter the values. This is illustrated in
the following procedure.

To assume a role

1. David signs into the AWS Management Console using his normal user in the Development user
group.

2. They choose the link that the administrator emailed to them. This takes David to the Switch
Role page with the account ID or alias and the role name information already filled in.

—or—

David chooses their name (the Identity menu) on the navigation bar, and then chooses Switch
Roles.

If this is the first time that David tries to access the Switch Role page this way, he first lands on
a first-run Switch Role page. This page provides additional information on how switching roles
can permit users to manage resources across AWS accounts. David must choose Switch Role on
this page to complete the rest of this procedure.

3. Next, in order to access the role, David must manually type the Production account ID number
(999999999999) and the role name (UpdateApp).

Also, David wants to monitor which roles and associated permissions currently active in
IAM. To keep track of this information, he types PRODUCTION in the Display Name text box,
chooses the red color option, and then chooses Switch Role.

4. David can now use the Amazon S3 console to work with the Amazon S3 bucket, or any other
resource to which the UpdateApp role has permissions.

Test access by switching roles 94

AWS Identity and Access Management User Guide

5. When done, David can return to their original permissions. To do that, they choose the
PRODUCTION role display name on the navigation bar and then choose Back to David @
111111111111.

6. The next time that David wants to switch roles and chooses the Identity menu in the
navigation bar, he sees the PRODUCTION entry still there from last time. He can simply choose
that entry to switch roles immediately without reentering the account ID and role name.

Switch roles (AWS CLI)

If David needs to work in the Production environment at the command line, he can do so by using
the AWS CLI. He runs the aws sts assume-role command and passes the role ARN to get
temporary security credentials for that role. He then configures those credentials in environment
variables so subsequent AWS CLI commands work using the role's permissions. While David uses
the role, he cannot use his power-user privileges in the Development account, because only one
set of permissions can be in effect at a time.

Note that all access keys and tokens are examples only and cannot be used as shown. Replace with
the appropriate values from your live environment.

To assume a role

1. David opens a command prompt window, and confirms that the AWS CLI client is working by
running the command:

aws help

Note

David's default environment uses the David user credentials from his default profile
that he created with the aws configure command. For more information, see
Configuring the AWS Command Line Interface in the AWS Command Line Interface User
Guide.

2. He begins the switch role process by running the following command to switch to the
UpdateApp role in the Production account. He received the role ARN from the administrator
that created the role. The command requires that you provide a session name as well, you can
choose any text you like for that.

Test access by switching roles 95

http://aws.amazon.com/cli/
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-started.html#cli-quick-configuration

AWS Identity and Access Management User Guide

aws sts assume-role --role-arn "arn:aws:iam::999999999999:role/UpdateApp" --role-
session-name "David-ProdUpdate"

David then sees the following in the output:

{
 "Credentials": {
 "SecretAccessKey": "wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY",
 "SessionToken": "AQoDYXdzEGcaEXAMPLE2gsYULo
+Im5ZEXAMPLEeYjs1M2FUIgIJx9tQqNMBEXAMPLE
CvSRyh0FW7jEXAMPLEW+vE/7s1HRpXviG7b+qYf4nD00EXAMPLEmj4wxS04L/
uZEXAMPLECihzFB5lTYLto9dyBgSDy
EXAMPLE9/
g7QRUhZp4bqbEXAMPLENwGPyOj59pFA4lNKCIkVgkREXAMPLEjlzxQ7y52gekeVEXAMPLEDiB9ST3Uuysg
sKdEXAMPLE1TVastU1A0SKFEXAMPLEiywCC/Cs8EXAMPLEpZgOs+6hz4AP4KEXAMPLERbASP
+4eZScEXAMPLEsnf87e
NhyDHq6ikBQ==",
 "Expiration": "2014-12-11T23:08:07Z",
 "AccessKeyId": "AKIAIOSFODNN7EXAMPLE"
 }
}

3. David sees the three pieces that they need in the Credentials section of the output.

• AccessKeyId

• SecretAccessKey

• SessionToken

David needs to configure the AWS CLI environment to use these parameters in subsequent
calls. For information about the various ways to configure your credentials, see Configuring the
AWS Command Line Interface. You cannot use the aws configure command because it does
not support capturing the session token. However, you can manually enter the information
into a configuration file. Because these are temporary credentials with a relatively short
expiration time, it is easiest to add them to the environment of your current command line
session.

4. To add the three values to the environment, David cuts and pastes the output of the previous
step into the following commands. You might want to cut and paste into a simple text editor

Test access by switching roles 96

https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-started.html#config-settings-and-precedence
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-started.html#config-settings-and-precedence

AWS Identity and Access Management User Guide

to address line wrap issues in the output of the session token. It must be added as a single
long string, even though it is shown line wrapped here for clarity.

Note

The following example shows commands given in the Windows environment, where
"set" is the command to create an environment variable. On a Linux or macOS
computer, you would use the command "export" instead. All other parts of the example
are valid in all three environments.
For details on using Tools for Windows Powershell, see Switching to an IAM role (Tools
for Windows PowerShell)

set AWS_ACCESS_KEY_ID=AKIAIOSFODNN7EXAMPLE
set AWS_SECRET_ACCESS_KEY=wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY
set AWS_SESSION_TOKEN=AQoDYXdzEGcaEXAMPLE2gsYULo
+Im5ZEXAMPLEeYjs1M2FUIgIJx9tQqNMBEXAMPLECvS
Ryh0FW7jEXAMPLEW+vE/7s1HRpXviG7b+qYf4nD00EXAMPLEmj4wxS04L/
uZEXAMPLECihzFB5lTYLto9dyBgSDyEXA
MPLEKEY9/
g7QRUhZp4bqbEXAMPLENwGPyOj59pFA4lNKCIkVgkREXAMPLEjlzxQ7y52gekeVEXAMPLEDiB9ST3UusKd
EXAMPLE1TVastU1A0SKFEXAMPLEiywCC/Cs8EXAMPLEpZgOs+6hz4AP4KEXAMPLERbASP
+4eZScEXAMPLENhykxiHen
DHq6ikBQ==

At this point, any following commands run under the permissions of the role identified by
those credentials. In David's case, the UpdateApp role.

5. Run the command to access the resources in the Production account. In this example, David
lists the contents of their S3 bucket with the following command.

aws s3 ls s3://productionapp

Because Amazon S3 bucket names are universally unique, there is no need to specify the
account ID that owns the bucket. To access resources for other AWS services, refer to the AWS
CLI documentation for that service for the commands and syntax required to reference its
resources.

Test access by switching roles 97

AWS Identity and Access Management User Guide

Using AssumeRole (AWS API)

When David needs to make an update to the Production account from code, he makes an
AssumeRole call to assume the UpdateApp role. The call returns temporary credentials that he
can use to access the productionapp bucket in the Production account. With those credentials,
David can make API calls to update the productionapp bucket. However, he cannot make API
calls to access any other resources in the Production account, even though he has power-user
permissions in the Development account.

To assume a role

1. David calls AssumeRole as part of an application. They must specify the UpdateApp ARN:
arn:aws:iam::999999999999:role/UpdateApp.

The response from the AssumeRole call includes the temporary credentials with an
AccessKeyId and a SecretAccessKey. It also includes an Expiration time that indicates
when the credentials expire and you must request new ones.

2. With the temporary credentials, David makes an s3:PutObject call to update the
productionapp bucket. They would pass the credentials to the API call as the AuthParams
parameter. Because the temporary role credentials have only read and write access to the
productionapp bucket, any other actions in the Production account are denied.

For a code example (using Python), see Switching to an IAM role (AWS API).

Related resources

• For more information about IAM users and user groups, see IAM Identities (users, user groups,
and roles).

• For more information about Amazon S3 buckets, see Create a Bucket in the Amazon Simple
Storage Service User Guide.

• To learn whether principals in accounts outside of your zone of trust (trusted organization or
account) have access to assume your roles, see What is IAM Access Analyzer?.

Summary

You have completed the cross-account API access tutorial. You created a role to establish trust
with another account and defined what actions trusted entities can take. Then, you modified a

Related resources 98

https://docs.aws.amazon.com/AmazonS3/latest/gsg/CreatingABucket.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/what-is-access-analyzer.html

AWS Identity and Access Management User Guide

user group policy to control which IAM users can access the role. As a result, developers from
the Development account can make updates to the productionapp bucket in the Production
account by using temporary credentials.

IAM tutorial: Create and attach your first customer managed
policy

In this tutorial, you use the AWS Management Console to create a customer managed policy and
then attach that policy to an IAM user in your AWS account. The policy you create allows an IAM
test user to sign in directly to the AWS Management Console with read-only permissions.

This workflow has three basic steps:

Step 1: Create the policy

By default, IAM users do not have permissions to do anything. They cannot access the AWS
Management Console or manage the data within unless you allow it. In this step, you create a
customer managed policy that allows any attached user to sign in to the console.

Step 2: Attach the policy

When you attach a policy to a user, the user inherits all of the access permissions that are
associated with that policy. In this step, you attach the new policy to a test user.

Step 3: Test user access

Once the policy is attached, you can sign in as the user and test the policy.

Prerequisites

To perform the steps in this tutorial, you need to already have the following:

• An AWS account that you can sign in to as an IAM user with administrative permissions.

• A test IAM user that has no permissions assigned or group memberships as follows:

User name Group Permissions

PolicyUser <none> <none>

Create a customer managed policy 99

AWS Identity and Access Management User Guide

Step 1: Create the policy

In this step, you create a customer managed policy that allows any attached user to sign in to the
AWS Management Console with read-only access to IAM data.

To create the policy for your test user

1. Sign in to the IAM console at https://console.aws.amazon.com/iam/ with your user that has
administrator permissions.

2. In the navigation pane, choose Policies.

3. In the content pane, choose Create policy.

4. Choose the JSON option and copy the text from the following JSON policy document. Paste
this text into the JSON text box.

{
 "Version": "2012-10-17",
 "Statement": [{
 "Effect": "Allow",
 "Action": [
 "iam:GenerateCredentialReport",
 "iam:Get*",
 "iam:List*"
],
 "Resource": "*"
 }]
}

5. Resolve any security warnings, errors, or general warnings generated during policy validation,
and then choose Next.

Note

You can switch between the Visual and JSON editor options anytime. However,
if you make changes or choose Review policy in the Visual editor tab, IAM might
restructure your policy to optimize it for the visual editor. For more information, see
Policy restructuring.

Step 1: Create the policy 100

https://console.aws.amazon.com/iam/

AWS Identity and Access Management User Guide

6. On the Review and create page, type UsersReadOnlyAccessToIAMConsole for the policy
name. Review the permissions granted by your policy, and then choose Create policy to save
your work.

The new policy appears in the list of managed policies and is ready to attach.

Step 2: Attach the policy

Next you attach the policy you just created to your test IAM user.

To attach the policy to your test user

1. In the IAM console, in the navigation pane, choose Policies.

2. At the top of the policy list, in the search box, start typing
UsersReadOnlyAccesstoIAMConsole until you can see your policy. Then choose the radio
button next to UsersReadOnlyAccessToIAMConsole in the list.

3. Choose the Actions button, and then choose Attach.

4. In IAM entities choose the option to filter for Users.

5. In the search box, start typing PolicyUser until that user is visible on the list. Then check the
box next to that user in the list.

6. Choose Attach policy.

You have attached the policy to your IAM test user, which means that user now has read-only
access to the IAM console.

Step 3: Test user access

For this tutorial, we recommend that you test access by signing in as the test user so you can see
what your users might experience.

To test access by signing in with your test user

1. Sign in to the IAM console at https://console.aws.amazon.com/iam/ with your PolicyUser
test user.

2. Browse through the pages of the console and try to create a new user or group. Notice that
PolicyUser can display data but cannot create or modify existing IAM data.

Step 2: Attach the policy 101

https://console.aws.amazon.com/iam/

AWS Identity and Access Management User Guide

Related resources

For related information, see the following resources:

• Managed policies and inline policies

• Controlling IAM users access to the AWS Management Console

Summary

You've now successfully completed all of the steps necessary to create and attach a customer
managed policy. As a result, you are able to sign in to the IAM console with your test account to see
what the experience is like for your users.

IAM tutorial: Define permissions to access AWS resources based
on tags

Attribute-based access control (ABAC) is an authorization strategy that defines permissions based
on attributes. In AWS, these attributes are called tags. You can attach tags to IAM resources,
including IAM entities (users or roles) and to AWS resources. You can define policies that use tag
condition keys to grant permissions to your principals based on their tags. When you use tags to
control access to your AWS resources, you allow your teams and resources to grow with fewer
changes to AWS policies. ABAC policies are more flexible than traditional AWS policies, which
require you to list each individual resource. For more information about ABAC and its advantage
over traditional policies, see What is ABAC for AWS?.

Note

You must pass a single value for each session tag. AWS Security Token Service does not
support multi-valued session tags.

Topics

• Tutorial overview

• Prerequisites

• Step 1: Create test users

• Step 2: Create the ABAC policy

Related resources 102

AWS Identity and Access Management User Guide

• Step 3: Create roles

• Step 4: Test creating secrets

• Step 5: Test viewing secrets

• Step 6: Test scalability

• Step 7: Test updating and deleting secrets

• Summary

• Related resources

• IAM tutorial: Use SAML session tags for ABAC

Tutorial overview

This tutorial shows how to create and test a policy that allows IAM roles with principal tags to
access resources with matching tags. When a principal makes a request to AWS, their permissions
are granted based on whether the principal and resource tags match. This strategy allows
individuals to view or edit only the AWS resources required for their jobs.

Scenario

Assume that you're a lead developer at a large company named Example Corporation, and you're
an experienced IAM administrator. You're familiar with creating and managing IAM users, roles,
and policies. You want to ensure that your development engineers and quality assurance team
members can access the resources they need. You also need a strategy that scales as your company
grows.

You choose to use AWS resource tags and IAM role principal tags to implement an ABAC strategy
for services that support it, beginning with AWS Secrets Manager. To learn which services support
authorization based on tags, see AWS services that work with IAM. To learn which tagging
condition keys you can use in a policy with each service's actions and resources, see Actions,
Resources, and Condition Keys for AWS Services. You can configure your SAML-based or web
identity provider to pass session tags to AWS. When your employees federate into AWS, their
attributes are applied to their resulting principal in AWS. You can then use ABAC to allow or deny
permissions based on those attributes. To learn how using session tags with a SAML federated
identity differs from this tutorial, see IAM tutorial: Use SAML session tags for ABAC.

Your Engineering and Quality Assurance team members are on either the Pegasus or Unicorn
project. You choose the following 3-character project and team tag values:

Tutorial overview 103

reference_policies_actions-resources-contextkeys.html
reference_policies_actions-resources-contextkeys.html

AWS Identity and Access Management User Guide

• access-project = peg for the Pegasus project

• access-project = uni for the Unicorn project

• access-team = eng for the Engineering team

• access-team = qas for the Quality Assurance team

Additionally, you choose to require the cost-center cost allocation tag to enable custom AWS
billing reports. For more information, see Using Cost Allocation Tags in the AWS Billing and Cost
Management User Guide.

Summary of key decisions

• Employees sign in with IAM user credentials and then assume the IAM role for their team
and project. If your company has its own identity system, you can set up federation to allow
employees to assume a role without IAM users. For more information, see IAM tutorial: Use SAML
session tags for ABAC.

• The same policy is attached to all of the roles. Actions are allowed or denied based on tags.

• Employees can create new resources, but only if they attach the same tags to the resource that
are applied to their role. This ensures that employees can view the resource after they create it.
Administrators are no longer required to update policies with the ARN of new resources.

• Employees can read resources owned by their team, regardless of the project.

• Employees can update and delete resources owned by their own team and project.

• IAM administrators can add a new role for new projects. They can create and tag a new IAM
user to allow access to the appropriate role. Administrators are not required to edit a policy to
support a new project or team member.

In this tutorial, you will tag each resource, tag your project roles, and add policies to the roles
to allow the behavior previously described. The resulting policy allows the roles Create, Read,
Update, and Delete access to resources that are tagged with the same project and team tags. The
policy also allows cross-project Read access for resources that are tagged with the same team.

Prerequisites

To perform the steps in this tutorial, you must already have the following:

• An AWS account that you can sign in to as a user with administrative permissions.

• Your 12-digit account ID, which you use to create the roles in step 3.

Prerequisites 104

https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/cost-alloc-tags.html

AWS Identity and Access Management User Guide

To find your AWS account ID number using the AWS Management Console, choose Support on
the navigation bar on the upper right, and then choose Support Center. The account number (ID)
appears in the navigation pane on the left.

• Experience creating and editing IAM users, roles, and policies in the AWS Management Console.
However, if you need help remembering an IAM management process, this tutorial provides links
where you can view step-by-step instructions.

Step 1: Create test users

For testing, create four IAM users with permissions to assume roles with the same tags. This makes
it easier to add more users to your teams. When you tag the users, they automatically get access to
assume the correct role. You don't have to add the users to the trust policy of the role if they work
on only one project and team.

1. Create the following customer managed policy named access-assume-role. For more
information about creating a JSON policy, see Creating IAM policies.

ABAC policy: Assume any ABAC role, but only when the user and role tags match

The following policy allows a user to assume any role in your account with the access- name
prefix. The role must also be tagged with the same project, team, and cost center tags as the
user.

To use this policy, replace the italicized placeholder text with your account information.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "TutorialAssumeRole",
 "Effect": "Allow",

Step 1: Create test users 105

AWS Identity and Access Management User Guide

 "Action": "sts:AssumeRole",
 "Resource": "arn:aws:iam::account-ID-without-hyphens:role/access-*",
 "Condition": {
 "StringEquals": {
 "iam:ResourceTag/access-project": "${aws:PrincipalTag/access-
project}",
 "iam:ResourceTag/access-team": "${aws:PrincipalTag/access-
team}",
 "iam:ResourceTag/cost-center": "${aws:PrincipalTag/cost-
center}"
 }
 }
 }
]
}

To scale this tutorial to a large number of users, you can attach the policy to a group and add
each user to the group. For more information, see Creating IAM user groups and Adding and
removing users in an IAM user group.

2. Create the following IAM users, attach the access-assume-role permissions policy. Make
sure you select Provide user access to the AWS Management Console, and then add the
following tags. For more information about creating and tagging a new user, see Creating IAM
users (console).

ABAC users

User name User tag key User tag value

access-Arnav-peg-e
ng

access-project

access-team

cost-center

peg

eng

987654

access-Mary-peg-qas access-project

access-team

cost-center

peg

qas

987654

Step 1: Create test users 106

AWS Identity and Access Management User Guide

User name User tag key User tag value

access-Saanvi-uni-
eng

access-project

access-team

cost-center

uni

eng

123456

access-Carlos-uni-
qas

access-project

access-team

cost-center

uni

qas

123456

Step 2: Create the ABAC policy

Create the following policy named access-same-project-team. You will add this policy to the
roles in a later step. For more information about creating a JSON policy, see Creating IAM policies.

For additional policies that you can adapt for this tutorial, see the following pages:

• Controlling access for IAM principals

• Amazon EC2: Allows starting or stopping EC2 instances a user has tagged, programmatically and
in the console

• EC2: Start or stop instances based on matching principal and resource tags

• EC2: Start or stop instances based on tags

• IAM: Assume roles that have a specific tag

ABAC Policy: Access Secrets Manager Resources Only When the Principal and Resource Tags
Match

The following policy allows principals to create, read, edit, and delete resources, but only when
those resources are tagged with the same key-value pairs as the principal. When a principal creates
a resource, they must add access-project, access-team, and cost-center tags with values
that match the principal's tags. The policy also allows adding optional Name or OwnedBy tags.

{
 "Version": "2012-10-17",

Step 2: Create the ABAC policy 107

AWS Identity and Access Management User Guide

 "Statement": [
 {
 "Sid": "AllActionsSecretsManagerSameProjectSameTeam",
 "Effect": "Allow",
 "Action": "secretsmanager:*",
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "aws:ResourceTag/access-project": "${aws:PrincipalTag/access-
project}",
 "aws:ResourceTag/access-team": "${aws:PrincipalTag/access-team}",
 "aws:ResourceTag/cost-center": "${aws:PrincipalTag/cost-center}"
 },
 "ForAllValues:StringEquals": {
 "aws:TagKeys": [
 "access-project",
 "access-team",
 "cost-center",
 "Name",
 "OwnedBy"
]
 },
 "StringEqualsIfExists": {
 "aws:RequestTag/access-project": "${aws:PrincipalTag/access-project}",
 "aws:RequestTag/access-team": "${aws:PrincipalTag/access-team}",
 "aws:RequestTag/cost-center": "${aws:PrincipalTag/cost-center}"
 }
 }
 },
 {
 "Sid": "AllResourcesSecretsManagerNoTags",
 "Effect": "Allow",
 "Action": [
 "secretsmanager:GetRandomPassword",
 "secretsmanager:ListSecrets"
],
 "Resource": "*"
 },
 {
 "Sid": "ReadSecretsManagerSameTeam",
 "Effect": "Allow",
 "Action": [
 "secretsmanager:Describe*",
 "secretsmanager:Get*",

Step 2: Create the ABAC policy 108

AWS Identity and Access Management User Guide

 "secretsmanager:List*"
],
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "aws:ResourceTag/access-team": "${aws:PrincipalTag/access-team}"
 }
 }
 },
 {
 "Sid": "DenyUntagSecretsManagerReservedTags",
 "Effect": "Deny",
 "Action": "secretsmanager:UntagResource",
 "Resource": "*",
 "Condition": {
 "ForAnyValue:StringLike": {
 "aws:TagKeys": "access-*"
 }
 }
 },
 {
 "Sid": "DenyPermissionsManagement",
 "Effect": "Deny",
 "Action": "secretsmanager:*Policy",
 "Resource": "*"
 }
]
}

What does this policy do?

• The AllActionsSecretsManagerSameProjectSameTeam statement allows all of this
service's actions on all related resources, but only if the resource tags match the principal
tags. By adding "Action": "secretsmanager:*" to the policy, the policy grows as Secrets
Manager grows. If Secrets Manager adds a new API operation, you are not required to add that
action to the statement. The statement implements ABAC using three condition blocks. The
request is allowed only if all three blocks return true.

• The first condition block of this statement returns true if the specified tag keys are present
on the resource, and their values match the principal's tags. This block returns false for
mismatched tags, or for actions that don't support resource tagging. To learn which actions
are not allowed by this block, see Actions, Resources, and Condition Keys for AWS Secrets

Step 2: Create the ABAC policy 109

https://docs.aws.amazon.com/IAM/latest/UserGuide/list_awssecretsmanager.html

AWS Identity and Access Management User Guide

Manager. That page shows that actions performed on the Secret resource type support the
secretsmanager:ResourceTag/tag-key condition key. Some Secrets Manager actions
don't support that resource type, including GetRandomPassword and ListSecrets. You
must create additional statements to allow those actions.

• The second condition block returns true if every tag key passed in the request is included
in the specified list. This is done using ForAllValues with the StringEquals condition
operator. If no keys or a subset of the set of keys is passed, then the condition returns true.
This allows Get* operations that do not allow passing tags in the request. If the requester
includes a tag key that is not in the list, the condition returns false. Every tag key that is
passed in the request must match a member of this list. For more information, see Multivalued
context keys.

• The third condition block returns true if the request supports passing tags, if all three of the
tags are present, and if they match the principal tag values. This block also returns true if
the request does not support passing tags. This is thanks to ...IfExists in the condition
operator. The block returns false if there is no tag passed during an action that supports it, or
if the tag keys and values don't match.

• The AllResourcesSecretsManagerNoTags statement allows the GetRandomPassword and
ListSecrets actions that are not allowed by the first statement.

• The ReadSecretsManagerSameTeam statement allows read-only operations if the principal is
tagged with the same access-team tag as the resource. This is allowed regardless of the project
or cost-center tag.

• The DenyUntagSecretsManagerReservedTags statement denies requests to remove tags
with keys that begin with "access-" from Secrets Manager. These tags are used to control access
to resources, therefore removing tags might remove permissions.

• The DenyPermissionsManagement statement denies access to create, edit, or delete Secrets
Manager resource-based policies. These policies could be used to change the permissions of the
secret.

Important

This policy uses a strategy to allow all actions for a service, but explicitly deny permissions-
altering actions. Denying an action overrides any other policy that allows the principal to
perform that action. This can have unintended results. As a best practice, use explicit denies

Step 2: Create the ABAC policy 110

https://docs.aws.amazon.com/IAM/latest/UserGuide/list_awssecretsmanager.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/list_awssecretsmanager.html#awssecretsmanager-resources-for-iam-policies
https://docs.aws.amazon.com/IAM/latest/UserGuide/list_awssecretsmanager.html#awssecretsmanager-actions-as-permissions

AWS Identity and Access Management User Guide

only when there is no circumstance that should allow that action. Otherwise, allow a list of
individual actions, and the unwanted actions are denied by default.

Step 3: Create roles

Create the following IAM roles and attach the access-same-project-team policy that you
created in the previous step. For more information about creating IAM roles, see Creating a role to
delegate permissions to an IAM user. If you choose to use federation instead of IAM users and roles,
see IAM tutorial: Use SAML session tags for ABAC.

ABAC roles

Job function Role name Role tags Role description

Project
Pegasus
Engineering

access-peg-enginee
ring

access-pr
oject =
peg

access-te
am = eng

cost-
center =
987654

Allows engineers to read all
engineering resources and
create and manage Pegasus
engineering resources.

Project
Pegasus
Quality
Assurance

access-peg-quality-
assurance

access-pr
oject =
peg

access-te
am = qas

cost-
center =
987654

Allows the QA team to read
all QA resources and create
and manage all Pegasus QA
resources.

Project
Unicorn
Engineering

access-uni-enginee
ring

access-pr
oject =
uni

Allows engineers to read all
engineering resources and

Step 3: Create roles 111

AWS Identity and Access Management User Guide

Job function Role name Role tags Role description

access-te
am = eng

cost-
center =
123456

create and manage Unicorn
engineering resources.

Project
Unicorn
Quality
Assurance

access-uni-quality-
assurance

access-pr
oject =
uni

access-te
am = qas

cost-
center =
123456

Allows the QA team to read
all QA resources and create
and manage all Unicorn QA
resources.

Step 4: Test creating secrets

The permissions policy attached to the roles allows the employees to create secrets. This is allowed
only if the secret is tagged with their project, team, and cost center. Confirm that your permissions
are working as expected by signing in as your users, assuming the correct role, and testing activity
in Secrets Manager.

To test creating a secret with and without the required tags

1. In your main browser window, remain signed in as the administrator user so that you can
review users, roles, and policies in IAM. Use a browser incognito window or separate browser
for your testing. There, sign in as the access-Arnav-peg-eng IAM user and open the Secrets
Manager console at https://console.aws.amazon.com/secretsmanager/.

2. Attempt to switch to the access-uni-engineering role.

This operation fails because the access-project and cost-center tag values do not
match for the access-Arnav-peg-eng user and access-uni-engineering role.

Step 4: Test creating secrets 112

https://console.aws.amazon.com/secretsmanager/

AWS Identity and Access Management User Guide

For more information about switching roles in the AWS Management Console, see Switching to
a role (console)

3. Switch to the access-peg-engineering role.

4. Store a new secret using the following information. To learn how to store a secret, see Creating
a Basic Secret in the AWS Secrets Manager User Guide.

Important

Secrets Manager displays alerts that you don't have permissions for additional AWS
services that work with Secrets Manager. For example, to create credentials for an
Amazon RDS database, you must have permission to describe RDS instances, RDS
clusters, and Amazon Redshift clusters. You can ignore these alerts since you aren't
using these specific AWS services in this tutorial.

1. In the Select secret type section, choose Other type of secrets. In the two text boxes, enter
test-access-key and test-access-secret.

2. Enter test-access-peg-eng for the Secret name field.

3. Add different tag combinations from the following table and view the expected behavior.

4. Choose Store to attempt to create the secret. When the storage fails, return to the previous
Secrets Manager console pages and use the next tag set from the following table. The last
tag set is allowed and will successfully create the secret.

ABAC tag combinations for test-access-peg-eng role

access-
project
Tag value

access-
team Tag
value

cost-
center
Tag value

Additional
tags

Expected behavior

(none) (none) (none) (none) Denied because the access-pr
oject tag value does not match
the role's value of peg.

Step 4: Test creating secrets 113

https://docs.aws.amazon.com/secretsmanager/latest/userguide/manage_create-basic-secret.html
https://docs.aws.amazon.com/secretsmanager/latest/userguide/manage_create-basic-secret.html

AWS Identity and Access Management User Guide

access-
project
Tag value

access-
team Tag
value

cost-
center
Tag value

Additional
tags

Expected behavior

uni eng 987654 (none) Denied because the access-pr
oject tag value does not match
the role's value of peg.

peg qas 987654 (none) Denied because the access-te
am tag value does not match the
role's value of eng.

peg eng 123456 (none) Denied because the cost-cent
er tag value does not match the
role's value of 987654.

peg eng 987654 owner =
Jane

Denied because the additional tag
owner is not allowed by the policy,
even though all three required
tags are present and their values
match the role's values.

peg eng 987654 Name =
Jane

Allowed because all three required
tags are present and their values
match the role's values. You
are also allowed to include the
optional Name tag.

5. Sign out and repeat the first three steps of this procedure for each of the following roles and
tag values. In the fourth step in this procedure, test any set of missing tags, optional tags,
disallowed tags, and invalid tag values that you choose. Then use the required tags to create a
secret with the following tags and name.

Step 4: Test creating secrets 114

AWS Identity and Access Management User Guide

ABAC roles and tags

User name Role name Secret name Secret tags

access-Mary-
peg-qas

access-pe
g-quality-
assurance

test-access-
peg-qas

access-project
= peg

access-team =
qas

cost-center =
987654

access-Saanvi-
uni-eng

access-uni-
engineering

test-access-
uni-eng

access-project
= uni

access-team =
eng

cost-center =
123456

access-Carlos-
uni-qas

access-un
i-quality-
assurance

test-access-
uni-qas

access-project
= uni

access-team =
qas

cost-center =
123456

Step 5: Test viewing secrets

The policy that you attached to each role allows the employees to view any secrets tagged
with their team name, regardless of their project. Confirm that your permissions are working as
expected by testing your roles in Secrets Manager.

Step 5: Test viewing secrets 115

AWS Identity and Access Management User Guide

To test viewing a secret with and without the required tags

1. Sign in as one of the following IAM users:

• access-Arnav-peg-eng

• access-Mary-peg-qas

• access-Saanvi-uni-eng

• access-Carlos-uni-qas

2. Switch to the matching role:

• access-peg-engineering

• access-peg-quality-assurance

• access-uni-engineering

• access-uni-quality-assurance

For more information about switching roles in the AWS Management Console, see Switching to
a role (console).

3. In the navigation pane on the left, choose the menu icon to expand the menu and then choose
Secrets.

4. You should see all four secrets in the table, regardless of your current role. This
is expected because the policy named access-same-project-team allows the
secretsmanager:ListSecrets action for all resources.

5. Choose the name of one of the secrets.

6. On the details page for the secret, your role's tags determine whether you can view the page
content. Compare the name of your role to the name of your secret. If they share the same
team name, then the access-team tags match. If they don't match, then access is denied.

ABAC secret viewing behavior for each role

Role name Secret name Expected behavior

test-access-peg-eng Allowed

test-access-peg-qas Denied

access-peg-enginee
ring

test-access-uni-eng Allowed

Step 5: Test viewing secrets 116

AWS Identity and Access Management User Guide

Role name Secret name Expected behavior

test-access-uni-qas Denied

test-access-peg-eng Denied

test-access-peg-qas Allowed

test-access-uni-eng Denied

access-peg-quality-
assurance

test-access-uni-qas Allowed

test-access-peg-eng Allowed

test-access-peg-qas Denied

test-access-uni-eng Allowed

access-uni-enginee
ring

test-access-uni-qas Denied

test-access-peg-eng Denied

test-access-peg-qas Allowed

test-access-uni-eng Denied

access-uni-quality-
assurance

test-access-uni-qas Allowed

7. From the breadcrumbs at the top of the page, choose Secrets to return to the list of secrets.
Repeat the steps in this procedure using different roles to test whether you can view each of
the secrets.

Step 6: Test scalability

An important reason for using attribute-based access control (ABAC) over role-based access control
(RBAC) is scalability. As your company adds new projects, teams, or people to AWS, you don't need
to update your ABAC-driven policies. For example, assume that Example Company is funding a
new project, code named Centaur. An engineer named Saanvi Sarkar will be the lead engineer for
Centaur while continuing to work on the Unicorn project. Saanvi will also review work for the Peg

Step 6: Test scalability 117

AWS Identity and Access Management User Guide

project. There are also several newly hired engineers, including Nikhil Jayashankar, who will work
on only the Centaur project.

To add the new project to AWS

1. Sign in as the IAM administrator user and open the IAM console at https://
console.aws.amazon.com/iam/.

2. In the navigation pane on the left, choose Roles and add an IAM role named access-cen-
engineering. Attach the access-same-project-team permissions policy to the role and
add the following role tags:

• access-project = cen

• access-team = eng

• cost-center = 101010

3. In the navigation pane on the left, choose Users.

4. Add a new user named access-Nikhil-cen-eng, attach the policy named access-
assume-role, and add the following user tags.

• access-project = cen

• access-team = eng

• cost-center = 101010

5. Use the procedures in Step 4: Test creating secrets and Step 5: Test viewing secrets. In another
browser window, test that Nikhil can create only Centaur engineering secrets, and that he can
view all engineering secrets.

6. In the main browser window where you signed in as the administrator, choose the user
access-Saanvi-uni-eng.

7. On the Permissions tab, remove the access-assume-role permissions policy.

8. Add the following inline policy named access-assume-specific-roles. For more
information about adding an inline policy to a user, see To embed an inline policy for a user or
role (console).

ABAC policy: Assume only specific roles

This policy allows Saanvi to assume the engineering roles for the Pegasus and Centaur
projects. It is necessary to create this custom policy because IAM does not support multivalued
tags. You can't tag Saanvi's user with access-project = peg and access-project = cen.

Step 6: Test scalability 118

https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/

AWS Identity and Access Management User Guide

Additionally, the AWS authorization model can't match both values. For more information, see
Rules for tagging in IAM and AWS STS. Instead, you must manually specify the two roles that
she can assume.

To use this policy, replace the italicized placeholder text with your account information.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "TutorialAssumeSpecificRoles",
 "Effect": "Allow",
 "Action": "sts:AssumeRole",
 "Resource": [
 "arn:aws:iam::account-ID-without-hyphens:role/access-peg-
engineering",
 "arn:aws:iam::account-ID-without-hyphens:role/access-cen-
engineering"
]
 }
]
}

9. Use the procedures in Step 4: Test creating secrets and Step 5: Test viewing secrets. In another
browser window, confirm that Saanvi can assume both roles. Check that she can create secrets
for only her project, team, and cost center, depending on the role's tags. Also confirm that she
can view details about any secrets owned by the engineering team, including the ones that she
just created.

Step 7: Test updating and deleting secrets

The access-same-project-team policy that is attached to the roles allows the employees to
update and delete any secrets tagged with their project, team, and cost center. Confirm that your
permissions are working as expected by testing your roles in Secrets Manager.

To test updating and deleting a secret with and without the required tags

1. Sign in as one of the following IAM users:

• access-Arnav-peg-eng

Step 7: Test updating and deleting secrets 119

AWS Identity and Access Management User Guide

• access-Mary-peg-qas

• access-Saanvi-uni-eng

• access-Carlos-uni-qas

• access-Nikhil-cen-eng

2. Switch to the matching role:

• access-peg-engineering

• access-peg-quality-assurance

• access-uni-engineering

• access-peg-quality-assurance

• access-cen-engineering

For more information about switching roles in the AWS Management Console, see Switching to
a role (console).

3. For each role, try to update the secret description and then try to delete the following secrets.
For more information, see Modifying a Secret and Deleting and Restoring a Secret in the AWS
Secrets Manager User Guide.

ABAC secret updating and deleting behavior for each role

Role name Secret name Expected behavior

test-access-peg-eng Allowed

test-access-uni-eng Denied

access-peg-enginee
ring

test-access-uni-qas Denied

test-access-peg-qas Allowedaccess-peg-quality-
assurance

test-access-uni-eng Denied

test-access-uni-eng Allowedaccess-uni-enginee
ring

test-access-uni-qas Denied

Step 7: Test updating and deleting secrets 120

https://docs.aws.amazon.com/secretsmanager/latest/userguide/manage_update-secret.html
https://docs.aws.amazon.com/secretsmanager/latest/userguide/manage_delete-restore-secret.html

AWS Identity and Access Management User Guide

Role name Secret name Expected behavior

access-peg-quality-
assurance

test-access-uni-qas Allowed

Summary

You've now successfully completed all of the steps necessary to use tags for attribute-based access
control (ABAC). You've learned how to define a tagging strategy. You applied that strategy to your
principals and resources. You created and applied a policy that enforces the strategy for Secrets
Manager. You also learned that ABAC scales easily when you add new projects and team members.
As a result, you are able to sign in to the IAM console with your test roles and experience how to
use tags for ABAC in AWS.

Note

You added policies that allow actions only under specific conditions. If you apply a different
policy to your users or roles that has broader permissions, then the actions might not be
limited to require tagging. For example, if you give a user full administrative permissions
using the AdministratorAccess AWS managed policy, then these policies don't restrict
that access. For more information about how permissions are determined when multiple
policies are involved, see Determining whether a request is allowed or denied within an
account.

Related resources

For related information, see the following resources:

• What is ABAC for AWS?

• AWS global condition context keys

• Creating IAM users (console)

• Creating a role to delegate permissions to an IAM user

• Tagging IAM resources

• Controlling access to AWS resources using tags

• Switching to a role (console)

Summary 121

AWS Identity and Access Management User Guide

• IAM tutorial: Use SAML session tags for ABAC

To learn how to monitor the tags in your account, see Monitor tag changes on AWS resources with
serverless workflows and Amazon CloudWatch Events.

IAM tutorial: Use SAML session tags for ABAC

Attribute-based access control (ABAC) is an authorization strategy that defines permissions based
on attributes. In AWS, these attributes are called tags. You can attach tags to IAM resources,
including IAM entities (users or roles), and to AWS resources. When the entities are used to make
requests to AWS, they become principals and those principals include tags.

You can also pass session tags when you assume a role or federate a user. You can then define
policies that use tag condition keys to grant permissions to your principals based on their tags.
When you use tags to control access to your AWS resources, you allow your teams and resources
to grow with fewer changes to AWS policies. ABAC policies are more flexible than traditional AWS
policies, which require you to list each individual resource. For more information about ABAC and
its advantage over traditional policies, see What is ABAC for AWS?.

If your company uses a SAML-based identity provider (IdP) to manage corporate user identities, you
can use SAML attributes for fine-grained access control in AWS. Attributes can include cost center
identifiers, user email addresses, department classifications, and project assignments. When you
pass these attributes as session tags, you can then control access to AWS based on these session
tags.

To complete the ABAC tutorial by passing SAML attributes to your session principal, complete the
tasks in IAM tutorial: Define permissions to access AWS resources based on tags, with the changes
that are included in this topic.

Prerequisites

To perform the steps to use SAML session tags for ABAC, you must already have the following:

• Access to a SAML-based IdP where you can create test users with specific attributes.

• The ability to sign in as a user with administrative permissions.

• Experience creating and editing IAM users, roles, and policies in the AWS Management Console.
However, if you need help remembering an IAM management process, the ABAC tutorial provides
links where you can view step-by-step instructions.

Use SAML session tags for ABAC 122

https://aws.amazon.com/blogs/mt/monitor-tag-changes-on-aws-resources-with-serverless-workflows-and-amazon-cloudwatch-events/
https://aws.amazon.com/blogs/mt/monitor-tag-changes-on-aws-resources-with-serverless-workflows-and-amazon-cloudwatch-events/

AWS Identity and Access Management User Guide

• Experience setting up a SAML-based IdP in IAM. To view more details and links to detailed IAM
documentation, see Passing session tags using AssumeRoleWithSAML.

Step 1: Create test users

Skip the instructions in Step 1: Create test users. Because your identities are defined in your
provider, it's not necessary for you to add IAM users for your employees.

Step 2: Create the ABAC policy

Follow the instructions in Step 2: Create the ABAC policy to create the specified managed policy in
IAM.

Step 3: Create and configure the SAML role

When you use the ABAC tutorial for SAML, you must perform additional steps to create the role,
configure the SAML IdP, and enable AWS Management Console access. For more information, see
Step 3: Create roles.

Step 3A: Create the SAML role

Create a single role that trusts your SAML identity provider and the test-session-tags user
that you created in step 1. The ABAC tutorial uses separate roles with different role tags. Because
you are passing session tags from your SAML IdP, you need only one role. To learn how to create a
SAML-based role, see Create a role for SAML 2.0 federation (console).

Name the role access-session-tags. Attach the access-same-project-team permissions
policy to the role. Edit the role trust policy to use the following policy. For detailed instructions on
how to edit the trust relationship of a role, see Modifying a role (console).

The following role trust policy allows your SAML identity provider and the test-session-tags
user to assume the role. When they assume the role, they must pass the three specified session
tags. The sts:TagSession action is required to allow passing session tags.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "AllowSamlIdentityAssumeRole",

Use SAML session tags for ABAC 123

AWS Identity and Access Management User Guide

 "Effect": "Allow",
 "Action": [
 "sts:AssumeRoleWithSAML",
 "sts:TagSession"
],
 "Principal": {"Federated":"arn:aws:iam::123456789012:saml-
provider/ExampleCorpProvider"},
 "Condition": {
 "StringLike": {
 "aws:RequestTag/cost-center": "*",
 "aws:RequestTag/access-project": "*",
 "aws:RequestTag/access-team": [
 "eng",
 "qas"
]
 },
 "StringEquals": {"SAML:aud": "https://signin.aws.amazon.com/saml"}
 }
 }
]
}

The AllowSamlIdentityAssumeRole statement allows members of the Engineering and Quality
Assurance teams to assume this role when they federate into AWS from the Example Corporation
IdP. The ExampleCorpProvider SAML provider is defined in IAM. The administrator has already
set up the SAML assertion to pass the three required session tags. The assertion can pass additional
tags, but these three must be present. The identity's attributes can have any value for the cost-
center and access-project tags. However, the access-team attribute value must match eng
or qas to indicate that the identity is on the Engineering or Quality Assurance team.

Step 3B: Configure the SAML IdP

Configure your SAML IdP to pass the cost-center, access-project, and access-
team attributes as session tags. For more information, see Passing session tags using
AssumeRoleWithSAML.

To pass these attributes as session tags, include the following elements in your SAML assertion.

<Attribute Name="https://aws.amazon.com/SAML/Attributes/PrincipalTag:cost-center">
 <AttributeValue>987654</AttributeValue>
</Attribute>
<Attribute Name="https://aws.amazon.com/SAML/Attributes/PrincipalTag:access-project">

Use SAML session tags for ABAC 124

AWS Identity and Access Management User Guide

 <AttributeValue>peg</AttributeValue>
</Attribute>
<Attribute Name="https://aws.amazon.com/SAML/Attributes/PrincipalTag:access-team">
 <AttributeValue>eng</AttributeValue>
</Attribute>

Step 3C: Enable console access

Enable console access for your federated SAML users. For more information, see Enabling SAML 2.0
federated users to access the AWS Management Console.

Step 4: Test creating secrets

Federate into the AWS Management Console using the access-session-tags role. For more
information, see Enabling SAML 2.0 federated users to access the AWS Management Console.
Then follow the instructions in Step 4: Test creating secrets to create secrets. Use different SAML
identities with attributes to match the tags that are indicated in the ABAC tutorial. For more
information, see Step 4: Test creating secrets.

Step 5: Test viewing secrets

Follow the instructions in Step 5: Test viewing secrets to view the secrets that you created in the
previous step. Use different SAML identities with attributes to match the tags that are indicated in
the ABAC tutorial.

Step 6: Test scalability

Follow the instructions in Step 6: Test scalability to test scalability. Do this by adding a new identity
in your SAML-based IdP with the following attributes:

• cost-center = 101010

• access-project = cen

• access-team = eng

Step 7: Test updating and deleting secrets

Follow the instructions in Step 7: Test updating and deleting secrets to update and delete secrets.
Use different SAML identities with attributes to match the tags that are indicated in the ABAC
tutorial.

Use SAML session tags for ABAC 125

AWS Identity and Access Management User Guide

Important

Delete all of the secrets that you created to avoid billing charges. For details about pricing
in Secrets Manager, see AWS Secrets Manager Pricing.

Summary

You've now successfully completed all of the steps necessary to use SAML session tags and
resource tags for permissions management.

Note

You added policies that allow actions only under specific conditions. If you apply a different
policy to your users or roles that has broader permissions, then the actions might not be
limited to require tagging. For example, if you give a user full administrative permissions
using the AdministratorAccess AWS managed policy, then these policies don't restrict
that access. For more information about how permissions are determined when multiple
policies are involved, see Determining whether a request is allowed or denied within an
account.

IAM tutorial: Permit users to manage their credentials and MFA
settings

You can permit your users to manage their own multi-factor authentication (MFA) devices and
credentials on the Security credentials page. You can use the AWS Management Console to
configure credentials (access keys, passwords, signing certificates, and SSH public keys), delete or
deactivate credentials that are not needed, and enable MFA devices for your users. This is useful
for a small number of users, but that task could quickly become time consuming as the number of
users grows. This tutorial shows you how to enable these best practices without burdening your
administrators.

This tutorial shows how to allow users to access AWS services, but only when they sign in with
MFA. If they are not signed in with an MFA device, then users cannot access other services.

This workflow has three basic steps.

Permit users to manage their credentials and MFA settings 126

https://aws.amazon.com/secrets-manager/pricing/

AWS Identity and Access Management User Guide

Step 1: Create a policy to enforce MFA sign-in

Create a customer managed policy that prohibits all actions except the few IAM actions. These
exceptions allow a user to change their own credentials and manage their MFA devices on the
Security credentials page. For more information about accessing that page, see How IAM users
change their own password (console).

Step 2: Attach policies to your test user group

Create a user group whose members have full access to all Amazon EC2 actions if they sign
in with MFA. To create such a user group, you attach both the AWS managed policy called
AmazonEC2FullAccess and the customer managed policy you created in the first step.

Step 3: Test your user's access

Sign in as the test user to verify that access to Amazon EC2 is blocked until the user creates an
MFA device. The user can then sign in using that device.

Prerequisites

To perform the steps in this tutorial, you must already have the following:

• An AWS account that you can sign in to as an IAM user with administrative permissions.

• Your account ID number, which you type into the policy in Step 1.

To find your account ID number, on the navigation bar at the top of the page, choose Support
and then choose Support Center. You can find your account ID under this page's Support menu.

• A virtual (software-based) MFA device, FIDO security key, or hardware-based MFA device.

• A test IAM user who is a member of a user group as follows:

Create user Create and configure user group account

User name Other instructions
User
group
name

Add user
as a
member

Other instructions

MFAUser
Choose only the option
for Enable console access

EC2MFA MFAUser
Do NOT attach any
policies or otherwise

Prerequisites 127

AWS Identity and Access Management User Guide

Create user Create and configure user group account

User name Other instructions
User
group
name

Add user
as a
member

Other instructions

– optional, and assign a
password.

 grant permissions to this
user group.

Step 1: Create a policy to enforce MFA sign-in

You begin by creating an IAM customer managed policy that denies all permissions except those
required for IAM users to manage their own credentials and MFA devices.

1. Sign in to the AWS Management Console as a user with administrator credentials. To adhere to
IAM best practices, don't sign in with your AWS account root user credentials.

Important

IAM best practices recommend that you require human users to use federation with an
identity provider to access AWS using temporary credentials instead of using IAM users
with long-term credentials.

2. Open the IAM console at https://console.aws.amazon.com/iam/.

3. In the navigation pane, choose Policies, and then choose Create policy.

4. Choose the JSON tab and copy the text from the following JSON policy document: AWS:
Allows MFA-authenticated IAM users to manage their own credentials on the Security
credentials page.

5. Paste the policy text into the JSON text box. Resolve any security warnings, errors, or general
warnings generated during policy validation, and then choose Next.

Note

You can switch between the Visual editor and JSON options anytime. However, the
policy above includes the NotAction element, which is not supported in the visual

Step 1: Create a policy to enforce MFA sign-in 128

https://console.aws.amazon.com/iam/

AWS Identity and Access Management User Guide

editor. For this policy, you will see a notification on the Visual editor tab. Return to
JSON to continue working with this policy.
This example policy does not allow users to reset a password while signing in to the
AWS Management Console for the first time. We recommend that you do not grant
permissions to new users until after they sign in and reset their password.

6. On the Review and create page, type Force_MFA for the policy name. For the policy
description, type This policy allows users to manage their own passwords and
MFA devices but nothing else unless they authenticate with MFA. In the
Tags area, you can optionally add tag key-value pairs to the customer managed policy. Review
the permissions granted by your policy, and then choose Create policy to save your work.

The new policy appears in the list of managed policies and is ready to attach.

Step 2: Attach policies to your test user group

Next you attach two policies to the test IAM user group, which will be used to grant the MFA-
protected permissions.

1. In the navigation pane, choose User groups.

2. In the search box, type EC2MFA, and then choose the group name (not the check box) in the
list.

3. Choose the Permissions tab, choose Add permissions, and then choose Attach policies.

4. On the Attach permission policies to EC2MFA group page, in the search box, type EC2Full.
Then select the check box next to AmazonEC2FullAccess in the list. Don't save your changes
yet.

5. In the search box, type Force, and then select the check box next to Force_MFA in the list.

6. Choose Attach policies.

Step 3: Test your user's access

In this part of the tutorial, you sign in as the test user and verify that the policy works as intended.

1. Sign in to your AWS account as MFAUser with the password you assigned
in the previous section. Use the URL: https://<alias or account ID
number>.signin.aws.amazon.com/console

Step 2: Attach policies to your test user group 129

AWS Identity and Access Management User Guide

2. Choose EC2 to open the Amazon EC2 console and verify that the user has no permissions to do
anything.

3. In the navigation bar on the upper right, choose the MFAUser user name, and then choose
Security credentials.

4. Now add an MFA device. In the Multi-factor Authentication (MFA) section, choose Assign MFA
device.

Note

You might receive an error that you are not authorized to perform
iam:DeleteVirtualMFADevice. This could happen if someone previously
began assigning a virtual MFA device to this user and cancelled the process. To
continue, you or another administrator must delete the user's existing unassigned
virtual MFA device. For more information, see I am not authorized to perform:
iam:DeleteVirtualMFADevice.

5. For this tutorial, we use a virtual (software-based) MFA device, such as the Google
Authenticator app on a mobile phone. Choose Authenticator app, and then click Next.

IAM generates and displays configuration information for the virtual MFA device, including
a QR code graphic. The graphic is a representation of the secret configuration key that is
available for manual entry on devices that do not support QR codes.

Step 3: Test your user's access 130

AWS Identity and Access Management User Guide

6. Open your virtual MFA app. (For a list of apps that you can use for hosting virtual MFA devices,
see Virtual MFA Applications.) If the virtual MFA app supports multiple accounts (multiple
virtual MFA devices), choose the option to create a new account (a new virtual MFA device).

7. Determine whether the MFA app supports QR codes, and then do one of the following:

• From the wizard, choose Show QR code. Then use the app to scan the QR code. For example,
you might choose the camera icon or choose an option similar to Scan code, and then use
the device's camera to scan the code.

• In the Set up device wizard, choose Show secret key, and then type the secret key into your
MFA app.

When you are finished, the virtual MFA device starts generating one-time passwords.

8. In the Set up device wizard, in the Enter the code from your authenticator app. box, type the
one-time password that currently appears in the virtual MFA device. Choose Register MFA.

Important

Submit your request immediately after generating the code. If you generate the codes
and then wait too long to submit the request, the MFA device is successfully associated
with the user. However, the MFA device is out of sync. This happens because time-
based one-time passwords (TOTP) expire after a short period of time. If this happens,
you can resync the device.

The virtual MFA device is now ready to use with AWS.

9. Sign out of the console and then sign in as MFAUser again. This time AWS prompts you for
an MFA code from your phone. When you get it, type the code in the box and then choose
Submit.

10. Choose EC2 to open the Amazon EC2 console again. Note that this time you can see all the
information and perform any actions you want. If you go to any other console as this user, you
see access denied messages. The reason is that the policies in this tutorial grant access only to
Amazon EC2.

Related resources

For additional information, see the following topics:

Related resources 131

https://aws.amazon.com/iam/details/mfa/#Virtual_MFA_Applications

AWS Identity and Access Management User Guide

• Using multi-factor authentication (MFA) in AWS

• Enabling MFA devices for users in AWS

• Using MFA devices with your IAM sign-in page

Related resources 132

AWS Identity and Access Management User Guide

IAM Identities (users, user groups, and roles)

Tip

Having trouble signing in to AWS? Make sure that you're on the correct sign-in page.

• To sign in as the AWS account root user (account owner), use the credentials that you set
up when you created the AWS account.

• To sign in as an IAM user, use the credentials your account administrator gave you to sign
in to AWS.

• To sign in with your IAM Identity Center user, use the sign-in URL that was sent to your
email address when you created the IAM Identity Center user.

For help signing in using an IAM Identity Center user, see Signing in to the AWS access
portal in the AWS Sign-In User Guide.

For sign-in tutorials, see How to sign in to AWS in the AWS Sign-In User Guide.

Note

If you need to request support, do not use the Feedback link on this page. Feedback you
enter is received by the AWS Documentation team, not AWS Support. Instead, choose the
Contact Us link at the top of this page. There, you'll find links to resources to help you get
the support that you need.

The AWS account root user or an administrative user for the account can create IAM identities. An
IAM identity provides access to an AWS account. An IAM user group is a collection of IAM users
managed as a unit. An IAM identity represents a human user or programmatic workload, and
can be authenticated and then authorized to perform actions in AWS. Each IAM identity can be
associated with one or more policies. Policies determine what actions a user, role, or member of a
user group can perform, on which AWS resources, and under what conditions.

133

https://docs.aws.amazon.com/signin/latest/userguide/iam-id-center-sign-in-tutorial.html
https://docs.aws.amazon.com/signin/latest/userguide/iam-id-center-sign-in-tutorial.html
https://docs.aws.amazon.com/signin/latest/userguide/how-to-sign-in.html

AWS Identity and Access Management User Guide

AWS account root user

When you first create an AWS account, you begin with one sign-in identity that has complete
access to all AWS services and resources in the account. This identity is called the AWS account root
user and is accessed by signing in with the email address and password that you used to create the
account.

Important

We strongly recommend that you don't use the root user for your everyday tasks.
Safeguard your root user credentials and use them to perform the tasks that only the root
user can perform. For the complete list of tasks that require you to sign in as the root user,
see Tasks that require root user credentials.

IAM users

An IAM user is an identity within your AWS account that has specific permissions for a single person
or application. Where possible, best practices recommend relying on temporary credentials instead
of creating IAM users who have long-term credentials such as passwords and access keys. Before
creating access keys, review the alternatives to long-term access keys. If you have specific use
cases that require access keys, we recommend that you update access keys when needed. For more
information, see Update access keys when needed for use cases that require long-term credentials.
To add IAM users to your AWS account, see Creating an IAM user in your AWS account.

Note

As a security best practice, we recommend that you provide access to your resources
through identity federation instead of creating IAM users. For information about specific
situations where an IAM user is required, see When to create an IAM user (instead of a role).

IAM user groups

An IAM group is an identity that specifies a collection of IAM users. You can't use a group to sign-in.
You can use groups to specify permissions for multiple users at a time. Groups make permissions
easier to manage for large sets of users. For example, you could have a group named IAMPublishers
and give that group the types of permissions that publishing workloads typically need.

AWS account root user 134

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id.html#id_which-to-choose
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_groups.html

AWS Identity and Access Management User Guide

IAM roles

An IAM role is an identity within your AWS account that has specific permissions. It's similar to an
IAM user, but isn't associated with a specific person. You can temporarily assume an IAM role in the
AWS Management Console by switching roles. You can assume a role by calling an AWS CLI or AWS
API operation or by using a custom URL. For more information about methods for using roles, see
Using IAM roles.

IAM roles with temporary credentials are used in the following situations:

• Federated user access – To assign permissions to a federated identity, you create a role
and define permissions for the role. When a federated identity authenticates, the identity
is associated with the role and is granted the permissions that are defined by the role. For
information about roles for federation, see Creating a role for a third-party Identity Provider
in the IAM User Guide. If you use IAM Identity Center, you configure a permission set. To control
what your identities can access after they authenticate, IAM Identity Center correlates the
permission set to a role in IAM. For information about permissions sets, see Permission sets in
the AWS IAM Identity Center User Guide.

• Temporary IAM user permissions – An IAM user or role can assume an IAM role to temporarily
take on different permissions for a specific task.

• Cross-account access – You can use an IAM role to allow someone (a trusted principal) in a
different account to access resources in your account. Roles are the primary way to grant cross-
account access. However, with some AWS services, you can attach a policy directly to a resource
(instead of using a role as a proxy). To learn the difference between roles and resource-based
policies for cross-account access, see Cross account resource access in IAM.

• Cross-service access – Some AWS services use features in other AWS services. For example, when
you make a call in a service, it's common for that service to run applications in Amazon EC2 or
store objects in Amazon S3. A service might do this using the calling principal's permissions,
using a service role, or using a service-linked role.

• Principal permissions – When you use an IAM user or role to perform actions in AWS, you
are considered a principal. When you use some services, you might perform an action that
then initiates another action in a different service. FAS uses the permissions of the principal
calling an AWS service, combined with the requesting AWS service to make requests to
downstream services. FAS requests are only made when a service receives a request that
requires interactions with other AWS services or resources to complete. In this case, you must

IAM roles 135

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-console.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-idp.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/permissionsetsconcept.html

AWS Identity and Access Management User Guide

have permissions to perform both actions. For policy details when making FAS requests, see
Forward access sessions.

• Service role – A service role is an IAM role that a service assumes to perform actions on your
behalf. An IAM administrator can create, modify, and delete a service role from within IAM. For
more information, see Creating a role to delegate permissions to an AWS service in the IAM
User Guide.

• Service-linked role – A service-linked role is a type of service role that is linked to an AWS
service. The service can assume the role to perform an action on your behalf. Service-linked
roles appear in your AWS account and are owned by the service. An IAM administrator can
view, but not edit the permissions for service-linked roles.

• Applications running on Amazon EC2 – You can use an IAM role to manage temporary
credentials for applications that are running on an EC2 instance and making AWS CLI or AWS API
requests. This is preferable to storing access keys within the EC2 instance. To assign an AWS role
to an EC2 instance and make it available to all of its applications, you create an instance profile
that is attached to the instance. An instance profile contains the role and enables programs that
are running on the EC2 instance to get temporary credentials. For more information, see Using
an IAM role to grant permissions to applications running on Amazon EC2 instances in the IAM
User Guide.

Temporary credentials in IAM

As a best practice, use temporary credentials with both human users and workloads. Temporary
credentials are primarily used with IAM roles, but there are also other uses. You can request
temporary credentials that have a more restricted set of permissions than your standard IAM user.
This prevents you from accidentally performing tasks that aren't permitted by the more restricted
credentials. A benefit of temporary credentials is that they expire automatically after a set period
of time. You have control over the duration that the credentials are valid.

When to use IAM Identity Center users?

We recommend that all human users use IAM Identity Center to access AWS resources. IAM Identity
Center enables significant improvements over accessing AWS resources as an IAM user. IAM Identity
Center provides:

• A central set of identities and assignments

• Access to accounts across an entire AWS Organization

Temporary credentials in IAM 136

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_forward_access_sessions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-ec2.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-ec2.html

AWS Identity and Access Management User Guide

• Connection to your existing identity provider

• Temporary credentials

• Multi-factor authentication (MFA)

• Self-service MFA configuration for end-users

• Administrative enforcement of MFA usage

• Single sign-on to all AWS account entitlements

For more information, see What is IAM Identity Center in the AWS IAM Identity Center User Guide.

When to create an IAM user (instead of a role)

We recommend you only use IAM users for use cases not supported by federated users. Some of
the use cases include the following:

• Workloads that cannot use IAM roles – You might run a workload from a location that needs to
access AWS. In some situations, you can't use IAM roles to provide temporary credentials, such as
for WordPress plugins. In these situations, use IAM user long-term access keys for that workload
to authenticate to AWS.

• Third-party AWS clients – If you are using tools that don’t support access with IAM Identity
Center, such as third-party AWS clients or vendors that aren't hosted on AWS, use IAM user long-
term access keys.

• AWS CodeCommit access – If you are using CodeCommit to store your code, you can use an
IAM user with either SSH keys or service-specific credentials for CodeCommit to authenticate
to your repositories. We recommend that you do this in addition to using a user in IAM Identity
Center for normal authentication. Users in IAM Identity Center are the people in your workforce
who need access to your AWS accounts or to your cloud applications. To give users access
to your CodeCommit repositories without configuring IAM users, you can configure the git-
remote-codecommit utility. For more information about IAM and CodeCommit, see Using
IAM with CodeCommit: Git credentials, SSH keys, and AWS access keys. For more information
about configuring the git-remote-codecommit utility, see Connecting to AWS CodeCommit
repositories with rotating credentials in the AWS CodeCommit User Guide.

• Amazon Keyspaces (for Apache Cassandra) access – In a situation where you are unable to
use users in IAM Identity Center, such as for testing purposes for Cassandra compatibility, you
can use an IAM user with service-specific credentials to authenticate with Amazon Keyspaces.
Users in IAM Identity Center are the people in your workforce who need access to your AWS

When to create an IAM user (instead of a role) 137

https://docs.aws.amazon.com/singlesignon/latest/userguide/what-is.html
https://docs.aws.amazon.com/codecommit/latest/userguide/temporary-access.html#temporary-access-configure-credentials
https://docs.aws.amazon.com/codecommit/latest/userguide/temporary-access.html#temporary-access-configure-credentials

AWS Identity and Access Management User Guide

accounts or to your cloud applications. You can also connect to Amazon Keyspaces using
temporary credentials. For more information, see Using temporary credentials to connect to
Amazon Keyspaces using an IAM role and the SigV4 plugin in the Amazon Keyspaces (for Apache
Cassandra) Developer Guide.

• Emergency access – In a situation where you can't access your identity provider and you must
take action in your AWS account. Establishing emergency access IAM users can be part of your
resiliency plan. We recommend that the emergency user credentials be tightly controlled and
secured using multi-factor authentication (MFA).

When to create an IAM role (instead of a user)

Create an IAM role in the following situations:

You're creating an application that runs on an Amazon Elastic Compute Cloud (Amazon EC2)
instance and that application makes requests to AWS.

Don't create an IAM user and pass the user's credentials to the application or embed the
credentials in the application. Instead, create an IAM role that you attach to the EC2 instance
to give temporary security credentials to applications running on the instance. When an
application uses these credentials in AWS, it can perform all of the operations that are allowed
by the policies attached to the role. For details, see Using an IAM role to grant permissions to
applications running on Amazon EC2 instances.

You're creating an app that runs on a mobile phone and that makes requests to AWS.

Don't create an IAM user and distribute the user's access key with the app. Instead, use an
identity provider like Login with Amazon, Amazon Cognito, Facebook, or Google to authenticate
users and map the users to an IAM role. The app can use the role to get temporary security
credentials that have the permissions specified by the policies attached to the role. For more
information, see the following:

• Amazon Cognito User Guide

• About web identity federation

Users in your company are authenticated in your corporate network and want to be able to use
AWS without having to sign in again—that is, you want to allow users to federate into AWS.

Don't create IAM users. Configure a federation relationship between your enterprise identity
system and AWS. You can do this in two ways:

When to create an IAM role (instead of a user) 138

https://docs.aws.amazon.com/keyspaces/latest/devguide/access.credentials.html#temporary.credentials.IAM
https://docs.aws.amazon.com/keyspaces/latest/devguide/access.credentials.html#temporary.credentials.IAM
https://docs.aws.amazon.com/cognito/latest/developerguide/cognito-identity.html

AWS Identity and Access Management User Guide

• If your company's identity system is compatible with SAML 2.0, you can establish trust
between your company's identity system and AWS. For more information, see About SAML
2.0-based federation.

• Create and use a custom proxy server that translates user identities from the enterprise
into IAM roles that provide temporary AWS security credentials. For more information, see
Enabling custom identity broker access to the AWS console.

Compare AWS account root user credentials and IAM user
credentials

The root user is the account owner and is created when the AWS account is created. Other types
of users, including IAM users, and AWS IAM Identity Center users are created by the root user or an
administrator for the account. All AWS users have security credentials.

Root user credentials

The credentials of the account owner allow full access to all resources in the account. You can't
use IAM policies to explicitly deny the root user access to resources. You can only use an AWS
Organizations service control policy (SCP) to limit the permissions of the root user of a member
account. Because of this, we recommend that you create an administrative user in IAM Identity
Center to use for everyday AWS tasks. Then, safeguard the root user credentials and use them to
perform only those few account and service management tasks that require you to sign in as the
root user. For the list of those tasks, see Tasks that require root user credentials. To learn how to
set up an administrator for daily use in IAM Identity Center, see Getting started in the IAM Identity
Center User Guide.

IAM credentials

An IAM user is an entity you create in AWS that represents the person or service that uses the IAM
user to interact with AWS resources. These users are identities within your AWS account that have
specific custom permissions. For example, you can create IAM users and give them permissions to
create a directory in IAM Identity Center. IAM users have long-term credentials that they can use to
access AWS using the AWS Management Console, or programmatically using the AWS CLI or AWS
APIs. For step-by-step instructions for how IAM users sign in to the AWS Management Console, see
Sign in to the AWS Management Console as an IAM user in the AWS Sign-In User Guide.

In general, we recommend that you avoid creating IAM users because they have long-term
credentials such as a username and password. Instead, require human users to use temporary

Compare AWS account root user and IAM user 139

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_type-auth.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/getting-started.html
https://docs.aws.amazon.com/signin/latest/userguide/introduction-to-iam-user-sign-in-tutorial.html

AWS Identity and Access Management User Guide

credentials when accessing AWS. You can use an identity provider for your human users to provide
federated access to AWS accounts by assuming IAM roles, which provide temporary credentials. For
centralized access management, we recommend that you use IAM Identity Center to manage access
to your accounts and permissions within those accounts. You can manage your user identities with
IAM Identity Center, or manage access permissions for user identities in IAM Identity Center from
an external identity provider. For more information, see What is IAM Identity Center in the IAM
Identity Center User Guide.

AWS account root user

When you first create an Amazon Web Services (AWS) account, you begin with a single sign-in
identity that has complete access to all AWS services and resources in the account. This identity is
called the AWS account root user and is accessed by signing in with the email address and password
that you used to create the account.

Important

We strongly recommend that you don't use the root user for your everyday tasks and that
you follow the root user best practices for your AWS account. Safeguard your root user
credentials and use them to perform the tasks that only the root user can perform. For the
complete list of tasks that require you to sign in as the root user, see Tasks that require root
user credentials.

The following topics detail management tasks associated with the root user.

Tasks

• Enable a virtual MFA device for your AWS account root user (console)

• Enable a hardware TOTP token for the AWS account root user (console)

• Enable a FIDO security key for the AWS account root user (console)

• Change the password for the AWS account root user

• Resetting a lost or forgotten root user password

• Creating access keys for the root user

• Deleting access keys for the root user

• Tasks that require root user credentials

AWS account root user 140

https://docs.aws.amazon.com/singlesignon/latest/userguide/getting-started.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/what-is.html

AWS Identity and Access Management User Guide

• Troubleshooting issues with the root user

• Related information

Enable a virtual MFA device for your AWS account root user (console)

You can use the AWS Management Console to configure and enable a virtual MFA device for your
root user. To enable MFA devices for the AWS account, you must be signed in to AWS using your
root user credentials.

Before you enable MFA for your root user, review your account settings and contact information to
make sure that you have access to the email and phone number. If your MFA device is lost, stolen,
or not working, you can still sign in as the root user by verifying your identity using that email and
phone number. To learn about signing in using these alternative factors of authentication, see
What if an MFA device is lost or stops working?.

To configure and enable a virtual MFA device for use with your root user (console)

1. Sign in to the AWS Management Console.

2. On the right side of the navigation bar, choose your account name, and choose Security
credentials. If necessary, choose Continue to Security credentials.

3. In the Multi-Factor Authentication (MFA) section, choose Assign MFA device.

4. In the wizard, type a Device name, choose Authenticator app, and then choose Next.

Enable a virtual MFA device for your AWS account root user (console) 141

AWS Identity and Access Management User Guide

IAM generates and displays configuration information for the virtual MFA device, including
a QR code graphic. The graphic is a representation of the secret configuration key that is
available for manual entry on devices that do not support QR codes.

5. Open the virtual MFA app on the device.

If the virtual MFA app supports multiple virtual MFA devices or accounts, choose the option to
create a new virtual MFA device or account.

6. The easiest way to configure the app is to use the app to scan the QR code. If you cannot
scan the code, you can type the configuration information manually. The QR code and secret
configuration key generated by IAM are tied to your AWS account and cannot be used with
a different account. They can, however, be reused to configure a new MFA device for your
account in case you lose access to the original MFA device.

• To use the QR code to configure the virtual MFA device, from the wizard, choose Show QR
code. Then follow the app instructions for scanning the code. For example, you might need
to choose the camera icon or choose a command like Scan account barcode, and then use
the device's camera to scan the QR code.

• In the Set up device wizard, choose Show secret key, and then type the secret key into your
MFA app.

Important

Make a secure backup of the QR code or secret configuration key, or make sure that
you enable multiple MFA devices for your account. You can register up to eight MFA
devices of any combination of the currently supported MFA types with your AWS
account root user and IAM users. A virtual MFA device might become unavailable, for
example, if you lose the smartphone where the virtual MFA device is hosted. If that
happens and you are not able to sign in to your account with no additional MFA devices
attached to the user or even by Recovering a root user MFA device, you will not be able
to sign in to your account and you will have to contact customer service to remove MFA
protection for the account.

The device starts generating six-digit numbers.

Enable a virtual MFA device for your AWS account root user (console) 142

https://aws.amazon.com/iam/features/mfa/
https://support.aws.amazon.com/#/contacts/aws-mfa-support

AWS Identity and Access Management User Guide

7. In the wizard, in the MFA code 1 box, type the one-time password that currently appears in the
virtual MFA device. Wait up to 30 seconds for the device to generate a new one-time password.
Then type the second one-time password into the MFA code 2 box. Choose Add MFA.

Important

Submit your request immediately after generating the code. If you generate the codes
and then wait too long to submit the request, the MFA device successfully associates
with the user but the MFA device is out of sync. This happens because time-based one-
time passwords (TOTP) expire after a short period of time. If this happens, you can
resync the device.

The device is ready for use with AWS. For information about using MFA with the AWS Management
Console, see Using MFA devices with your IAM sign-in page.

Enable a hardware TOTP token for the AWS account root user (console)

You can configure and enable a physical MFA device for your root user from the AWS Management
Console only, not from the AWS CLI or AWS API.

If your MFA device is lost, stolen, or not working, you can still sign in using alternative factors
of authentication. If you can't sign in with your MFA device, you can sign in by verifying your
identity using the email and phone that are registered with your account. Before you enable MFA
for your root user, review your account settings and contact information to make sure that you
have access to the email and phone number. To learn about signing in using alternative factors of
authentication, see What if an MFA device is lost or stops working?. To disable this feature, contact
AWS Support.

Note

You might see different text, such as Sign in using MFA and Troubleshoot your
authentication device. However, the same features are provided. In either case, if you
cannot verify your account email address and phone number using alternative factors of
authentication, contact AWS Support to deactivate your MFA setting.

Enable a hardware TOTP token for the AWS account root user (console) 143

https://console.aws.amazon.com/support/home#/
https://aws.amazon.com/forms/aws-mfa-support

AWS Identity and Access Management User Guide

To enable the MFA device for your root user (console)

1. Sign in to the IAM console as the account owner by choosing Root user and entering your AWS
account email address. On the next page, enter your password.

Note

As the root user, you can't sign in to the Sign in as IAM user page. If you see the Sign
in as IAM user page, choose Sign in using root user email near the bottom of the
page. For help signing in as the root user, see Signing in to the AWS Management
Console as the root user in the AWS Sign-In User Guide.

2. On the right side of the navigation bar, choose on your account name, and then choose
Security credentials. If necessary, choose Continue to Security credentials.

3. Expand the Multi-factor authentication (MFA) section.

4. Choose Assign MFA device.

5. In the wizard, type a Device name, choose Hardware TOTP token, and then choose Next.

6. In the Serial number box, type the serial number that is found on the back of the MFA device.

7. In the MFA code 1 box, type the six-digit number displayed by the MFA device. You might need
to press the button on the front of the device to display the number.

Enable a hardware TOTP token for the AWS account root user (console) 144

https://console.aws.amazon.com/iam/
https://docs.aws.amazon.com/signin/latest/userguide/introduction-to-%20%20%20%20%20%20%20%20%20%20root-user-sign-in-tutorial.html
https://docs.aws.amazon.com/signin/latest/userguide/introduction-to-%20%20%20%20%20%20%20%20%20%20root-user-sign-in-tutorial.html

AWS Identity and Access Management User Guide

8. Wait 30 seconds while the device refreshes the code, and then type the next six-digit number
into the MFA code 2 box. You might need to press the button on the front of the device again
to display the second number.

9. Choose Add MFA. The MFA device is now associated with the AWS account.

Important

Submit your request immediately after generating the authentication codes. If you
generate the codes and then wait too long to submit the request, the MFA device
successfully associates with the user but the MFA device becomes out of sync. This
happens because time-based one-time passwords (TOTP) expire after a short period of
time. If this happens, you can resync the device.

The next time you use your root user credentials to sign in, you must type a code from the MFA
device.

Enable a FIDO security key for the AWS account root user (console)

You can configure and enable a virtual MFA device for your root user from the AWS Management
Console only, not from the AWS CLI or AWS API.

If your FIDO security key is lost, stolen, or not working, you can still sign in using another MFA
device registered to the same AWS account root user. If you only have a single MFA device
registered, you can sign in using alternate factors of identification. To learn about signing in using
alternative factors of authentication, see What if an MFA device is lost or stops working?. To disable
this feature, contact AWS Support.

Note

You should not choose any of the available options on the Google Chrome pop-up that asks
to Verify your identity with amazon.com. You only need to tap on the security key.

Enable a FIDO security key for the AWS account root user (console) 145

https://console.aws.amazon.com/support/home#/

AWS Identity and Access Management User Guide

To enable the FIDO key for your root user (console)

1. Sign in to the IAM console as the account owner by choosing Root user and entering your AWS
account email address. On the next page, enter your password.

Note

As the root user, you can't sign in to the Sign in as IAM user page. If you see the Sign
in as IAM user page, choose Sign in using root user email near the bottom of the
page. For help signing in as the root user, see Signing in to the AWS Management
Console as the root user in the AWS Sign-In User Guide.

2. On the right side of the navigation bar, choose your account name, and then choose Security
credentials. If necessary, choose Continue to Security credentials.

3. Expand the Multi-factor authentication (MFA) section.

4. Choose Assign MFA device.

5. In the wizard, type a Device name, choose Security Key, and then choose Next.

6. Insert the FIDO security key into your computer's USB port.

Enable a FIDO security key for the AWS account root user (console) 146

https://console.aws.amazon.com/iam/
https://docs.aws.amazon.com/signin/latest/userguide/introduction-to-%20%20%20%20%20%20%20%20%20%20root-user-sign-in-tutorial.html
https://docs.aws.amazon.com/signin/latest/userguide/introduction-to-%20%20%20%20%20%20%20%20%20%20root-user-sign-in-tutorial.html

AWS Identity and Access Management User Guide

7. Tap the FIDO security key.

The FIDO security key is ready for use with AWS. The next time you use your root user credentials
to sign in, you must tap your FIDO security key to complete the sign-in process.

For help troubleshooting issues with your FIDO security key, see Troubleshooting FIDO security
keys.

Change the password for the AWS account root user

You can change the email address and password from either the Security Credentials or the
Account page. You can also choose Forgot password? on the AWS sign-in page to reset your
password.

To change the root user's password, you must sign in as the AWS account root user and not as an
IAM user. To learn how to reset a forgotten root user password, see Resetting a lost or forgotten
root user password.

To protect your password, it's important to follow these best practices:

• Change your password periodically.

• Keep your password private because anyone who knows your password can access your account.

• Use a different password on AWS than you use on other sites.

• Avoid passwords that are easy to guess. These include passwords such as secret, password,
amazon, or 123456. Also avoid things like dictionary words, your name, email address, or other
personal information that someone can easily obtain.

Change the password 147

https://console.aws.amazon.com/iam/home?#security_credential

AWS Identity and Access Management User Guide

AWS Management Console

To change the password for the root user

Minimum permissions

To perform the following steps, you must have at least the following IAM permissions:

• You must sign in as the AWS account root user, which requires no additional AWS
Identity and Access Management (IAM) permissions. You can't perform these steps as
an IAM user or role.

1. Use your AWS account's email address and password to sign in to the Getting Started with
the AWS Management Console as your AWS account root user.

2. In the upper right corner of the console, choose your account name or number and then
choose Account.

3. On the Account page, next to Account settings, choose Edit. You are prompted to re-
authenticate for security purposes.

Note

If you don't see the Edit option, it is likely that you are not signed in as the root
user for your account. You can't modify account settings while signed in as an IAM
user or role.

4. On the Update account settings page, under Password, choose Edit.

5. On the Update your password page, fill out the fields for Current password, New
password, and Confirm new password.

Important

Make sure to choose a strong password. Although you can set an account password
policy for IAM users, that policy doesn't apply to the root user.

AWS requires that your password meet the following conditions:

Change the password 148

https://docs.aws.amazon.com/awsconsolehelpdocs/latest/gsg/getting-started.html
https://docs.aws.amazon.com/awsconsolehelpdocs/latest/gsg/getting-started.html

AWS Identity and Access Management User Guide

• It must have a minimum of 8 characters and a maximum of 128 characters.

• It must include a minimum of three of the following mix of character types: uppercase,
lowercase, numbers, and ! @ # $ % ^ & * () <> [] {} | _+-= symbols.

• It must not be identical to your AWS account name or email address.

Note

AWS is rolling out improvements to the sign-in process. One of those improvements
is to enforce a more secure password policy for your account. If AWS has upgraded
your account, you are required to meet the password policy described earlier. If
AWS hasn't yet upgraded your account, then AWS doesn't yet enforce this policy.
However, we strongly recommend that you follow its guidelines for a more secure
password.

6. Choose Save changes.

AWS CLI or AWS SDK

This task isn't supported in the AWS CLI or by an API operation from one of the AWS SDKs. You
can perform this task only by using the AWS Management Console.

Resetting a lost or forgotten root user password

When you first created your AWS account, you provided an email address and password. These are
your AWS account root user credentials. If you forget your root user password, you can reset the
password from the AWS Management Console.

To reset your root user password:

1. Use your AWS account email address to begin signing in to the AWS Management Console as
the root user and then choose Next.

Note

If you are signed in to the AWS Management Console with IAM user credentials, then
you must sign out before you can reset the root user password. If you see the account-

Resetting a lost or forgotten root user password 149

https://console.aws.amazon.com/
https://console.aws.amazon.com/

AWS Identity and Access Management User Guide

specific IAM user sign-in page, choose Sign-in using root account credentials near the
bottom of the page. If necessary, provide your account email address and choose Next
to access the Root user sign in page.

2. Choose Forgot your password?.

Note

If you are an IAM user, this option is not available. The Forgot your password? option
is only available for the root user account. IAM users must ask their administrator to
reset a forgotten password. For more information, see I forgot my IAM user password
for my AWS account. If you sign in through the AWS access portal, see Resetting your
IAM Identity Center user password.

3. Provide the email address that is associated with the account. Then provide the CAPTCHA text
and choose Continue.

4. Check the email that is associated with your AWS account for a message from Amazon Web
Services. The email will come from an address ending in @verify.signin.aws. Follow the
directions in the email. If you don't see the email in your account, check your spam folder.
If you no longer have access to the email, see I don't have access to the email for my AWS
account in the AWS Sign-In User Guide.

Creating access keys for the root user

Warning

We strongly recommend that you do not create access key pairs for your root user. Because
only a few tasks require the root user and you typically perform those tasks infrequently,
we recommend signing in to the AWS Management Console to perform the root user tasks.
Before creating access keys, review the alternatives to long-term access keys.

Although we don't recommend it, you can create access keys for your root user so that you can run
commands in the AWS Command Line Interface (AWS CLI) or use API operations from one of the
AWS SDKs using root user credentials. When you create access keys, you create the access key ID
and secret access key as a set. During access key creation, AWS gives you one opportunity to view
and download the secret access key part of the access key. If you don't download it or if you lose it,

Creating access keys for the root user 150

https://docs.aws.amazon.com/signin/latest/userguide/troubleshooting-sign-in-issues.html#troubleshoot-forgot-iam-password
https://docs.aws.amazon.com/signin/latest/userguide/troubleshooting-sign-in-issues.html#troubleshoot-forgot-iam-password
https://docs.aws.amazon.com/singlesignon/latest/userguide/resetpassword-accessportal.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/resetpassword-accessportal.html
https://docs.aws.amazon.com/signin/latest/userguide/console-sign-in-troubleshooting.html#credentials-not-working-console
https://docs.aws.amazon.com/signin/latest/userguide/console-sign-in-troubleshooting.html#credentials-not-working-console

AWS Identity and Access Management User Guide

you can delete the access key and then create a new one. You can create root user access keys with
the console, AWS CLI, or AWS API.

A newly created access key has the status of active, which means that you can use the access key
for CLI and API calls. You can assign up to two access keys to the root user.

Access keys that are not in use should be inactivated. Once an access key is inactive, you can't use it
for API calls. Inactive keys still count toward your limit. You can create or delete an access key any
time. However, when you delete an access key, it's gone forever and can't be retrieved.

AWS Management Console

To create an access key for the AWS account root user

Minimum permissions

To perform the following steps, you must have at least the following IAM permissions:

• You must sign in as the AWS account root user, which requires no additional AWS
Identity and Access Management (IAM) permissions. You can't perform these steps as
an IAM user or role.

1. Use your AWS account's email address and password to sign in to the Getting Started with
the AWS Management Console as your AWS account root user.

2. In the upper right corner of the console, choose your account name or number and then
choose Security Credentials.

3. In the Access keys section, choose Create access key. If this option is not available, then
you already have the maximum number of access keys. You must delete one of the existing
access keys before you can create a new key. For more information, see IAM Object Quotas.

4. On the Alternatives to root user access keys page, review the security recommendations.
To continue, select the check box, and then choose Create access key.

5. On the Retrieve access key page, your Access key ID is displayed.

6. Under Secret access key, choose Show and then copy the access key ID and secret key
from your browser window and paste it somewhere secure. Alternatively, you can choose
Download .csv file which will download a file named rootkey.csv that contains the
access key ID and the secret key. Save the file somewhere safe.

Creating access keys for the root user 151

https://docs.aws.amazon.com/awsconsolehelpdocs/latest/gsg/getting-started.html
https://docs.aws.amazon.com/awsconsolehelpdocs/latest/gsg/getting-started.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_iam-quotas.html#reference_iam-quotas-entities

AWS Identity and Access Management User Guide

7. Choose Done. When you no longer need the access key we recommend that you delete it,
or at least consider deactivating it so that no one can misuse it.

AWS CLI & SDKs

To create an access key for the root user

Note

To run the following command or API operation as the root user, you must already have
one active access key pair. If you don't have any access keys, create the first access key
using the AWS Management Console. Then, you can use the credentials from that first
access key with the AWS CLI to create the second access key, or to delete an access key.

• AWS CLI: aws iam create-access-key

Example

$ aws iam create-access-key
{
 "AccessKey": {
 "UserName": "MyUserName",
 "AccessKeyId": "AKIAIOSFODNN7EXAMPLE",
 "Status": "Active",
 "SecretAccessKey": "wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY",
 "CreateDate": "2021-04-08T19:30:16+00:00"
 }
}

• AWS API: CreateAccessKey in the IAM API Reference.

Deleting access keys for the root user

You can use the AWS Management Console, the AWS CLI or the AWS API to delete the root user
access keys.

Deleting access keys for the root user 152

https://docs.aws.amazon.com/cli/latest/reference/iam/create-access-key.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_CreateAccessKey.html

AWS Identity and Access Management User Guide

AWS Management Console

To delete an access key for the root user

Minimum permissions

To perform the following steps, you must have at least the following IAM permissions:

• You must sign in as the AWS account root user, which requires no additional AWS
Identity and Access Management (IAM) permissions. You can't perform these steps as
an IAM user or role.

1. Use your AWS account's email address and password to sign in to the Getting Started with
the AWS Management Console as your AWS account root user.

2. In the upper right corner of the console, choose your account name or number and then
choose Security Credentials.

3. In the Access keys section, select the access key that you want to delete, and then, under
Actions, choose Delete.

Note

Alternatively, you can Deactivate an access key, instead of permanently deleting it.
This way you can resume using it in the future without having to change either the
key ID or secret key. While the key is inactive, any attempts to use it in requests to
the AWS API fail with the error access denied.

4. On the Delete <access key ID> dialog box, choose Deactivate, enter the access key ID to
confirm you want to delete it, and then choose Delete.

AWS CLI & SDKs

To delete an access key for the root user

Minimum permissions

To perform the following steps, you must have at least the following IAM permissions:

Deleting access keys for the root user 153

https://docs.aws.amazon.com/awsconsolehelpdocs/latest/gsg/getting-started.html
https://docs.aws.amazon.com/awsconsolehelpdocs/latest/gsg/getting-started.html

AWS Identity and Access Management User Guide

• You must sign in as the AWS account root user, which requires no additional AWS
Identity and Access Management (IAM) permissions. You can't perform these steps as
an IAM user or role.

• AWS CLI: aws iam delete-access-key

Example

$ aws iam delete-access-key \
 --access-key-id AKIAIOSFODNN7EXAMPLE

This command produces no output when successful.

• AWS API: DeleteAccessKey

Tasks that require root user credentials

We recommend that you configure an administrative user in AWS IAM Identity Center to perform
daily tasks and access AWS resources. However, you can perform the tasks listed below only when
you sign in as the root user of an account.

Tasks

• Change your account settings. This includes the account name, email address, root user
password, and root user access keys. Other account settings, such as contact information,
payment currency preference, and AWS Regions, don't require root user credentials.

• Restore IAM user permissions. If the only IAM administrator accidentally revokes their own
permissions, you can sign in as the root user to edit policies and restore those permissions.

• Activate IAM access to the Billing and Cost Management console.

• View certain tax invoices. An IAM user with the aws-portal:ViewBilling permission can view and
download VAT invoices from AWS Europe, but not AWS Inc. or Amazon Internet Services Private
Limited (AISPL).

• Close your AWS account.

For more information, see the following topics:

• How do I transfer my AWS account to another person or business?.

Tasks that require root user 154

https://docs.aws.amazon.com/cli/latest/reference/iam/delete-access-key.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_DeleteAccessKey.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/getting-started.html
https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/manage-account-payment.html#manage-account-payment-edit-user-name
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_manage-edit.html
https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/control-access-billing.html#ControllingAccessWebsite-Activate
https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/billing-permissions-ref.html#user-permissions
https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/close-account.html
https://aws.amazon.com/premiumsupport/knowledge-center/transfer-aws-account/

AWS Identity and Access Management User Guide

• How do I close my AWS account?

• Close a standalone AWS account

• Register as a seller in the Reserved Instance Marketplace.

• Configure an Amazon S3 bucket to enable MFA (multi-factor authentication).

• Edit or delete an Amazon Simple Queue Service (Amazon SQS) resource policy that denies all
principals.

• Edit or delete an Amazon Simple Storage Service (Amazon S3) bucket policy that denies all
principals.

• Sign up for AWS GovCloud (US).

• Request AWS GovCloud (US) account root user access keys from AWS Support.

• In the event that an AWS Key Management Service key becomes unmanageable, you can recover
it by contacting AWS Support as the root user.

Troubleshooting issues with the root user

Use the information here to help you troubleshoot issues related to the root user of an AWS
account.

I can't perform tasks that I expect to be able to do when signed in as the account root user

If you can't complete tasks when you are signed in as the root user for the account, your account
might be a member of an organization in AWS Organizations. If so, and your organizational
administrator used a service control policy (SCP) to limit the permissions of your account, then all
users, including the root user, are affected. For more information, see Service control policies in the
AWS Organizations User Guide.

I forgot the root user password for my AWS account

If you're a root user and you have lost or forgot the password for your AWS account, you can reset
your password. You must know the email address used to create the AWS account, and you must
have access to the email account. For more information, see Resetting a lost or forgotten root user
password.

I don't have access to the email for my AWS account

When you create an AWS account, you provide an email address and password. These are the
credentials for the AWS account root user. If you aren't sure of the email address associated with

Troubleshooting root user issues 155

https://aws.amazon.com/premiumsupport/knowledge-center/close-aws-account/
https://docs.aws.amazon.com/accounts/latest/reference/manage-acct-closing.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ri-market-general.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/MultiFactorAuthenticationDelete.html
https://aws.amazon.com/premiumsupport/knowledge-center/sqs-queue-access-issues-deny-policy
https://aws.amazon.com/premiumsupport/knowledge-center/sqs-queue-access-issues-deny-policy
https://aws.amazon.com/premiumsupport/knowledge-center/change-vpc-endpoint-s3-bucket-policy/
https://aws.amazon.com/premiumsupport/knowledge-center/change-vpc-endpoint-s3-bucket-policy/
https://docs.aws.amazon.com/govcloud-us/latest/UserGuide/getting-started-sign-up.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_type-auth.html

AWS Identity and Access Management User Guide

your AWS account, search for messages sent from @signin.aws or @verify.signin.aws to any
email address for your organization that might have been used to open the AWS account.

If you know the email address but no longer have access to the email, first try to recover access to
the email using one of the following options:

• If you own the domain for the email address, you can restore a deleted email address.
Alternatively, you can set up a catch-all for your email account, which "catches all" messages sent
to email addresses that no longer exist in the mail server and redirects them to another email
address.

• If the email address on the account is part of your corporate email system, we recommend that
you contact your IT system administrators. They might be able to help you regain access to the
email.

If you're still not able to sign in to your AWS account, you can find alternate support options at
Contact us.

Related information

The following articles provide additional information about working with the root user.

• What are some best practices for securing my AWS account and its resources?

• How can I create an EventBridge event rule to notify me that my root user was used?

• Monitor and notify on AWS account root user activity

• Monitor IAM root user activity

IAM users

Important

IAM best practices recommend that you require human users to use federation with an
identity provider to access AWS using temporary credentials instead of using IAM users
with long-term credentials.

Related information 156

https://aws.amazon.com/contact-us/
https://repost.aws/knowledge-center/security-best-practices
https://repost.aws/knowledge-center/root-user-account-eventbridge-rule
https://aws.amazon.com/blogs/mt/monitor-and-notify-on-aws-account-root-user-activity/
https://docs.aws.amazon.com/prescriptive-guidance/latest/patterns/monitor-iam-root-user-activity.html

AWS Identity and Access Management User Guide

An AWS Identity and Access Management (IAM) user is an entity that you create in AWS. The IAM
user represents the human user or workload who uses the IAM user to interact with AWS. A user in
AWS consists of a name and credentials.

An IAM user with administrator permissions is not the same thing as the AWS account root user. For
more information about the root user, see AWS account root user.

How AWS identifies an IAM user

When you create an IAM user, IAM creates these ways to identify that user:

• A "friendly name" for the IAM user, which is the name that you specified when you created the
IAM user, such as Richard or Anaya. These are the names you see in the AWS Management
Console.

• An Amazon Resource Name (ARN) for the IAM user. You use the ARN when you need to uniquely
identify the IAM user across all of AWS. For example, you could use an ARN to specify the IAM
user as a Principal in an IAM policy for an Amazon S3 bucket. An ARN for an IAM user might
look like the following:

arn:aws:iam::account-ID-without-hyphens:user/Richard

• A unique identifier for the IAM user. This ID is returned only when you use the API, Tools for
Windows PowerShell, or AWS CLI to create the IAM user; you do not see this ID in the console.

For more information about these identifiers, see IAM identifiers.

IAM users and credentials

You can access AWS in different ways depending on the IAM user credentials:

• Console password: A password that the IAM user can type to sign in to interactive sessions
such as the AWS Management Console. Disabling the password (console access) for an IAM user
prevents them from signing in to the AWS Management Console using their sign-in credentials. It
does not change their permissions or prevent them from accessing the console using an assumed
role.

• Access keys: Used to make programmatic calls to AWS. However, there are more secure
alternatives to consider before you create access keys for IAM users. For more information, see
Considerations and alternatives for long-term access keys in the AWS General Reference. If the

How AWS identifies an IAM user 157

https://docs.aws.amazon.com/general/latest/gr/aws-sec-cred-types.html#alternatives-to-long-term-access-keys

AWS Identity and Access Management User Guide

IAM user has active access keys, they continue to function and allow access through the AWS CLI,
Tools for Windows PowerShell, AWS API, or the AWS Console Mobile Application.

• SSH keys for use with CodeCommit: An SSH public key in the OpenSSH format that can be used
to authenticate with CodeCommit.

• Server certificates: SSL/TLS certificates that you can use to authenticate with some AWS
services. We recommend that you use AWS Certificate Manager (ACM) to provision, manage, and
deploy your server certificates. Use IAM only when you must support HTTPS connections in a
region that is not supported by ACM. To learn which regions support ACM, see AWS Certificate
Manager endpoints and quotas in the AWS General Reference.

You can choose the credentials that are right for your IAM user. When you use the AWS
Management Console to create an IAM user, you must choose to at least include a console
password or access keys. By default, a brand new IAM user created using the AWS CLI or AWS API
has no credentials of any kind. You must create the type of credentials for an IAM user based on
your use case.

You have the following options to administer passwords, access keys, and multi-factor
authentication (MFA) devices:

• Manage passwords for your IAM users. Create and change the passwords that permit access
to the AWS Management Console. Set a password policy to enforce a minimum password
complexity. Allow users to change their own passwords.

• Manage access keys for your IAM users. Create and update access keys for programmatic access
to the resources in your account.

• Enable multi-factor authentication (MFA) for the IAM user. As a best practice, we recommend
that you require multi-factor authentication for all IAM users in your account. With MFA, users
must provide two forms of identification: First, they provide the credentials that are part of their
user identity (a password or access key). In addition, they provide a temporary numeric code
that's generated on a hardware device or by an application on a smartphone or tablet.

• Find unused passwords and access keys. Anyone who has a password or access keys for your
account or an IAM user in your account has access to your AWS resources. The security best
practice is to remove passwords and access keys when users no longer need them.

• Download a credential report for your account. You can generate and download a credential
report that lists all IAM users in your account and the status of their various credentials, including
passwords, access keys, and MFA devices. For passwords and access keys, the credential report
shows how recently the password or access key has been used.

IAM users and credentials 158

https://docs.aws.amazon.com/general/latest/gr/acm.html
https://docs.aws.amazon.com/general/latest/gr/acm.html
https://docs.aws.amazon.com/general/latest/gr/aws-access-keys-best-practices.html
https://docs.aws.amazon.com/general/latest/gr/aws-access-keys-best-practices.html

AWS Identity and Access Management User Guide

IAM users and permissions

By default, a new IAM user has no permissions to do anything. They are not authorized to perform
any AWS operations or to access any AWS resources. An advantage of having individual IAM users
is that you can assign permissions individually to each user. You might assign administrative
permissions to a few users, who then can administer your AWS resources and can even create and
manage other IAM users. In most cases, however, you want to limit a user's permissions to just the
tasks (AWS actions or operations) and resources that are needed for the job.

Imagine a user named Diego. When you create the IAM user Diego, you create a password for
him and attach permissions that let him launch a specific Amazon EC2 instance and read (GET)
information from a table in an Amazon RDS database. For procedures on how to create users and
grant them initial credentials and permissions, see Creating an IAM user in your AWS account. For
procedures on how to change the permissions for existing users, see Changing permissions for an
IAM user. For procedures on how to change the user's password or access keys, see Managing user
passwords in AWS and Managing access keys for IAM users.

You can also add a permissions boundary to your IAM users. A permissions boundary is an
advanced feature that allows you to use AWS managed policies to limit the maximum permissions
that an identity-based policy can grant to an IAM user or role. For more information about policy
types and uses, see Policies and permissions in IAM.

IAM users and accounts

Each IAM user is associated with one and only one AWS account. Because IAM users are defined
within your AWS account, they don't need to have a payment method on file with AWS. Any AWS
activity performed by IAM users in your account is billed to your account.

The number and size of IAM resources in an AWS account are limited. For more information, see
IAM and AWS STS quotas.

IAM users as service accounts

An IAM user is a resource in IAM that has associated credentials and permissions. An IAM user
can represent a person or an application that uses its credentials to make AWS requests. This is
typically referred to as a service account. If you choose to use the long-term credentials of an IAM
user in your application, do not embed access keys directly into your application code. The AWS
SDKs and the AWS Command Line Interface allow you to put access keys in known locations so that

IAM users and permissions 159

AWS Identity and Access Management User Guide

you do not have to keep them in code. For more information, see Manage IAM User Access Keys
Properly in the AWS General Reference. Alternatively, and as a best practice, you can use temporary
security credentials (IAM roles) instead of long-term access keys.

Creating an IAM user in your AWS account

Important

IAM best practices recommend that you require human users to use federation with an
identity provider to access AWS using temporary credentials instead of using IAM users
with long-term credentials.

Note

If you found this page because you are looking for information about the Product
Advertising API to sell Amazon products on your website, see the Product Advertising API
5.0 Documentation.
If you arrived at this page from the IAM console, it is possible that your account does
not include IAM users, even though you are signed in. You could be signed in as the AWS
account root user, using a role, or signed in with temporary credentials. To learn more
about these IAM identities, see IAM Identities (users, user groups, and roles).

The process of creating a user and enabling that user to perform work tasks consists of the
following steps:

1. Create the user in the AWS Management Console, the AWS CLI, Tools for Windows PowerShell,
or using an AWS API operation. If you create the user in the AWS Management Console,
then steps 1–4 are handled automatically, based on your choices. If you create the users
programmatically, then you must perform each of those steps individually.

2. Create credentials for the user, depending on the type of access the user requires:

• Enable console access – optional: If the user needs to access the AWS Management Console,
create a password for the user. Disabling console access for a user prevents them from signing
in to the AWS Management Console using their user name and password. It does not change
their permissions or prevent them from accessing the console using an assumed role.

Adding a user 160

https://docs.aws.amazon.com/general/latest/gr/aws-access-keys-best-practices.html#iam-user-access-keys
https://docs.aws.amazon.com/general/latest/gr/aws-access-keys-best-practices.html#iam-user-access-keys
https://docs.aws.amazon.com/general/latest/gr/aws-access-keys-best-practices.html#use-roles
https://docs.aws.amazon.com/general/latest/gr/aws-access-keys-best-practices.html#use-roles
https://twitter.com/AWSSecurityInfo
https://webservices.amazon.com/paapi5/documentation/
https://webservices.amazon.com/paapi5/documentation/

AWS Identity and Access Management User Guide

Tip

Create only the credentials that the user needs. For example, for a user who requires
access only through the AWS Management Console, do not create access keys.

3. Give the user permissions to perform the required tasks by adding the user to one or more
groups. You can also grant permissions by attaching permissions policies directly to the user.
However, we recommend instead that you put your users in groups and manage permissions
through policies that are attached to those groups. You can also use a permissions boundary to
limit the permissions that a user can have, though this is not common.

4. (Optional) Add metadata to the user by attaching tags. For more information about using tags in
IAM, see Tagging IAM resources.

5. Provide the user with the necessary sign-in information. This includes the password and the
console URL for the account sign-in page where the user provides those credentials. For more
information, see How IAM users sign in to AWS.

6. (Optional) Configure multi-factor authentication (MFA) for the user. MFA requires the user to
provide a one-time-use code each time he or she signs into the AWS Management Console.

7. (Optional) Give users permissions to manage their own security credentials. (By default, users do
not have permissions to manage their own credentials.) For more information, see Permitting
IAM users to change their own passwords.

For information about the permissions that you need in order to create a user, see Permissions
required to access IAM resources.

Topics

• Creating IAM users (console)

• Creating IAM users (AWS CLI)

• Creating IAM users (AWS API)

Creating IAM users (console)

You can use the AWS Management Console to create IAM users.

Adding a user 161

AWS Identity and Access Management User Guide

To create an IAM user (console)

1. Follow the sign-in procedure appropriate to your user type as described in the topic How to
sign in to AWS in the AWS Sign-In User Guide.

2. On the Console Home page, select the IAM service.

3. In the navigation pane, select Users and then select Add users.

4. On the Specify user details page, under User details, in User name, enter the name for the
new user. This is their sign-in name for AWS.

Note

The number and size of IAM resources in an AWS account are limited. For more
information, see IAM and AWS STS quotas. User names can be a combination of up to
64 letters, digits, and these characters: plus (+), equal (=), comma (,), period (.), at sign
(@), underscore (_), and hyphen (-). Names must be unique within an account. They are
not distinguished by case. For example, you cannot create two users named TESTUSER
and testuser. When a user name is used in a policy or as part of an ARN, the name is
case sensitive. When a user name appears to customers in the console, such as during
the sign-in process, the user name is case insensitive.

5. Select Provide user access to the – AWS Management Console optional This produces AWS
Management Console sign-in credentials for the new user.

You are asked whether you are providing console access to a person. We recommend that you
create users in IAM Identity Center rather than IAM.

• To switch to creating the user in IAM Identity Center, select Specify a user in Identity
Center.

If you have not enabled IAM Identity Center, selecting this option takes you to the service
page in the console so that you can enable the service. For details on this procedure, see
https://docs.aws.amazon.com/singlesignon/latest/userguide/getting-started.html in the
AWS IAM Identity Center User Guide

If you have enabled IAM Identity Center, selecting this option takes you to the Specify
user details page in IAM Identity Center. For details on this procedure, see https://
docs.aws.amazon.com/singlesignon/latest/userguide/addusers.html in the AWS IAM Identity
Center User Guide

Adding a user 162

https://docs.aws.amazon.com/signin/latest/userguide/how-to-sign-in.html
https://docs.aws.amazon.com/signin/latest/userguide/how-to-sign-in.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/getting-started.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/addusers.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/addusers.html

AWS Identity and Access Management User Guide

• If you cannot use IAM Identity Center, select I want to create an IAM user and continue
following this procedure.

a. For Console password, select one of the following:

• Autogenerated password – The user gets a randomly generated password that meets
the account password policy. You can view or download the password when you get to
the Retrieve password page.

• Custom password – The user is assigned the password that you enter in the box.

b. (Optional) Users must create a new password at next sign-in (recommended) is selected
by default to ensure that the user is forced to change their password the first time they
sign in.

Note

If an administrator has enabled the Allow users to change their own
password account password policy setting, then this check box does nothing.
Otherwise, it automatically attaches an AWS managed policy named
IAMUserChangePassword to the new users. The policy grants them permission
to change their own passwords.

6. Select Next.

7. On the Set permissions page, specify how you want to assign permissions for this user. Select
one of the following three options:

• Add user to group – Select this option if you want to assign the user to one or more groups
that already have permissions policies. IAM displays a list of the groups in your account,
along with their attached policies. You can select one or more existing groups, or select
Create group to create a new group. For more information, see Changing permissions for an
IAM user.

• Copy permissions – Select this option to copy all of the group memberships, attached
managed policies, embedded inline policies, and any existing permissions boundaries from
an existing user to the new user. IAM displays a list of the users in your account. Select the
one whose permissions most closely match the needs of your new user.

• Attach policies directly – Select this option to see a list of the AWS managed and customer
managed policies in your account. Select the policies that you want to attach to the user

Adding a user 163

https://console.aws.amazon.com/iam/home?#/account_settings
https://console.aws.amazon.com/iam/home?#/account_settings
https://console.aws.amazon.com/iam/home#policies/arn:aws:iam::aws:policy/IAMUserChangePassword

AWS Identity and Access Management User Guide

or select Create policy to open a new browser tab and create a new policy. For more
information, see step 4 in the procedure Creating IAM policies. After you create the policy,
close that tab and return to your original tab to add the policy to the user.

Tip

Whenever possible, attach your policies to a group and then make users members of
the appropriate groups.

8. (Optional) Set a permissions boundary. This is an advanced feature.

Open the Permissions boundary section and select Use a permissions boundary to control
the maximum permissions. IAM displays a list of the AWS managed and customer managed
policies in your account. Select the policy to use for the permissions boundary or select Create
policy to open a new browser tab and create a new policy. For more information, see step 4 in
the procedure Creating IAM policies. After you create the policy, close that tab and return to
your original tab to select the policy to use for the permissions boundary.

9. Select Next.

10. (Optional) On the Review and create page, under Tags, select Add new tag to add metadata
to the user by attaching tags as key-value pairs. For more information about using tags in IAM,
see Tagging IAM resources.

11. Review all of the choices you made up to this point. When you are ready to proceed, select
Create user.

12. On the Retrieve password page, get the password assigned to the user:

• Select Show next to the password to view the user's password so that you can record it
manually.

• Select Download .csv to download the user's sign in credentials as a .csv file that you can
save to a safe location.

13. Select Email sign-in instructions. Your local mail client opens with a draft that you can
customize and send to the user. The email template includes the following details to each user:

• User name

• URL to the account sign-in page. Use the following example, substituting the correct account
ID number or account alias:

Adding a user 164

AWS Identity and Access Management User Guide

https://AWS-account-ID or alias.signin.aws.amazon.com/console

Important

The user's password is not included in the generated email. You must provide
the password to the user in a way that complies with your organization's security
guidelines.

14. If the user also requires access keys, refer to Managing access keys for IAM users.

Creating IAM users (AWS CLI)

You can use the AWS CLI to create an IAM user.

To create an IAM user (AWS CLI)

1. Create a user.

• aws iam create-user

2. (Optional) Give the user access to the AWS Management Console. This requires a password.
You must also give the user the URL of your account's sign-in page.

• aws iam create-login-profile

3. (Optional) Give the user programmatic access. This requires access keys.

• aws iam create-access-key

• Tools for Windows PowerShell: New-IAMAccessKey

• IAM API: CreateAccessKey

Important

This is your only opportunity to view or download the secret access keys, and you
must provide this information to your users before they can use the AWS API. Save
the user's new access key ID and secret access key in a safe and secure place. You will
not have access to the secret keys again after this step.

Adding a user 165

https://docs.aws.amazon.com/cli/latest/reference/iam/create-user.html
https://docs.aws.amazon.com/cli/latest/reference/iam/create-login-profile.html
https://docs.aws.amazon.com/cli/latest/reference/iam/create-access-key.html
https://docs.aws.amazon.com/powershell/latest/reference/Index.html?page=New-IAMAccessKey.html&tocid=New-IAMAccessKey
https://docs.aws.amazon.com/IAM/latest/APIReference/API_CreateAccessKey.html

AWS Identity and Access Management User Guide

4. Add the user to one or more groups. The groups that you specify should have attached policies
that grant the appropriate permissions for the user.

• aws iam add-user-to-group

5. (Optional) Attach a policy to the user that defines the user's permissions. Note: We
recommend that you manage user permissions by adding the user to a group and attaching a
policy to the group instead of attaching directly to a user.

• aws iam attach-user-policy

6. (Optional) Add custom attributes to the user by attaching tags. For more information, see
Managing tags on IAM users (AWS CLI or AWS API).

7. (Optional) Give the user permission to manage their own security credentials. For more
information, see AWS: Allows MFA-authenticated IAM users to manage their own credentials
on the Security credentials page.

Creating IAM users (AWS API)

You can use the AWS API to create an IAM user.

To create an IAM user from the (AWS API)

1. Create a user.

• CreateUser

2. (Optional) Give the user access to the AWS Management Console. This requires a password.
You must also give the user the URL of your account's sign-in page.

• CreateLoginProfile

3. (Optional) Give the user programmatic access. This requires access keys.

• CreateAccessKey

Important

This is your only opportunity to view or download the secret access keys, and you
must provide this information to your users before they can use the AWS API. Save

Adding a user 166

https://docs.aws.amazon.com/cli/latest/reference/iam/add-user-to-group.html
https://docs.aws.amazon.com/cli/latest/reference/iam/attach-user-policy.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_CreateUser.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_CreateLoginProfile.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_CreateAccessKey.html

AWS Identity and Access Management User Guide

the user's new access key ID and secret access key in a safe and secure place. You will
not have access to the secret keys again after this step.

4. Add the user to one or more groups. The groups that you specify should have attached policies
that grant the appropriate permissions for the user.

• AddUserToGroup

5. (Optional) Attach a policy to the user that defines the user's permissions. Note: We
recommend that you manage user permissions by adding the user to a group and attaching a
policy to the group instead of attaching directly to a user.

• AttachUserPolicy

6. (Optional) Add custom attributes to the user by attaching tags. For more information, see
Managing tags on IAM users (AWS CLI or AWS API).

7. (Optional) Give the user permission to manage their own security credentials. For more
information, see AWS: Allows MFA-authenticated IAM users to manage their own credentials
on the Security credentials page.

Controlling IAM users access to the AWS Management Console

IAM users with permission who sign in to your AWS account through the AWS Management
Console can access your AWS resources. The following list shows the ways that you can grant IAM
users access to your AWS account resources through the AWS Management Console. It also shows
how IAM users can access other AWS account features through the AWS website.

Note

There is no charge to use IAM.

The AWS Management Console

You create a password for each IAM user who needs access to the AWS Management Console.
Users access the console through your IAM-enabled AWS account sign-in page. For information
about accessing the sign-in page, see How to sign in to AWS in the AWS Sign-In User Guide. For
information about creating passwords, see Managing user passwords in AWS.

Controlling user access to the console 167

https://docs.aws.amazon.com/IAM/latest/APIReference/API_AddUserToGroup.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_AttachUserPolicy.html
https://docs.aws.amazon.com/signin/latest/userguide/how-to-sign-in.html

AWS Identity and Access Management User Guide

You can prevent an IAM user from accessing the AWS Management Console by removing their
password. This prevents them from signing into the AWS Management Console using their
sign-in credentials. It does not change their permissions or prevent them from accessing the
console using an assumed role. If the user has active access keys, they continue to function and
allow access through the AWS CLI, Tools for Windows PowerShell, AWS API, or the AWS Console
Mobile Application.

Your AWS resources, such as Amazon EC2 instances, Amazon S3 buckets, and so on

Even if your IAM users have passwords, they still need permission to access your AWS resources.
When you create an IAM user, that user has no permissions by default. To give your IAM users
the permissions they need, you attach policies to them. If you have many IAM users who
perform the same tasks with the same resources, you can assign those IAM users to a group.
Then assign the permissions to that group. For information about creating IAM users and
groups, see IAM Identities (users, user groups, and roles). For information about using policies to
set permissions, see Access management for AWS resources.

AWS Discussion Forums

Anyone can read the posts on the AWS Discussion Forums. Users who want to post questions
or comments to the AWS Discussion Forum can do so using their user name. The first time a
user posts to the AWS Discussion Forum, the user is prompted to enter a nickname and email
address. Only that user can use that nickname in the AWS Discussion Forums.

Your AWS account billing and usage information

You can grant users access your AWS account billing and usage information. For more
information, see Controlling Access to Your Billing Information in the AWS Billing User Guide.

Your AWS account profile information

Users cannot access your AWS account profile information.

Your AWS account security credentials

Users cannot access your AWS account security credentials.

Note

IAM policies control access regardless of the interface. For example, you could provide
a user with a password to access the AWS Management Console. The policies for that
user (or any groups the user belongs to) would control what the user can do in the AWS
Management Console. Or, you could provide the user with AWS access keys for making API

Controlling user access to the console 168

https://forums.aws.amazon.com/
https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/control-access-billing.html

AWS Identity and Access Management User Guide

calls to AWS. The policies would control which actions the user could call through a library
or client that uses those access keys for authentication.

How IAM users sign in to AWS

To sign in to the AWS Management Console as an IAM user, you must provide your account ID or
account alias in addition to your user name and password. When your administrator created your
IAM user in the console, they should have sent you your sign-in credentials, including your user
name and the URL to your account sign-in page that includes your account ID or account alias.

https://My_AWS_Account_ID.signin.aws.amazon.com/console/

Tip

To create a bookmark for your account sign-in page in your web browser, you should
manually type the sign-in URL for your account in the bookmark entry. Do not use your
web browser bookmark feature because redirects can obscure the sign-in URL.

You can also sign in at the following general sign-in endpoint and type your account ID or account
alias manually:

https://console.aws.amazon.com/

For convenience, the AWS sign-in page uses a browser cookie to remember the IAM user name and
account information. The next time the user goes to any page in the AWS Management Console,
the console uses the cookie to redirect the user to the account sign-in page.

You have access only to the AWS resources that your administrator specifies in the policy that is
attached to your IAM user identity. To work in the console, you must have permissions to perform
the actions that the console performs, such as listing and creating AWS resources. For more
information, see Access management for AWS resources and Example IAM identity-based policies.

Note

If your organization has an existing identity system, you might want to create a single sign-
on (SSO) option. SSO gives users access to the AWS Management Console for your account

How IAM users sign in to AWS 169

https://console.aws.amazon.com/

AWS Identity and Access Management User Guide

without requiring them to have an IAM user identity. SSO also eliminates the need for users
to sign in to your organization's site and to AWS separately. For more information, see
Enabling custom identity broker access to the AWS console.

Logging sign-in details in CloudTrail

If you enable CloudTrail to log sign-in events to your logs, you need to be aware of how CloudTrail
chooses where to log the events.

• If your users sign-in directly to a console, they are redirected to either a global or a regional sign-
in endpoint, based on whether the selected service console supports regions. For example, the
main console home page supports regions, so if you sign in to the following URL:

https://alias.signin.aws.amazon.com/console

you are redirected to a regional sign-in endpoint such as https://us-
east-2.signin.aws.amazon.com, resulting in a regional CloudTrail log entry in the user's
region's log:

On the other hand, the Amazon S3 console does not support regions, so if you sign in to the
following URL

https://alias.signin.aws.amazon.com/console/s3

AWS redirects you to the global sign-in endpoint at https://signin.aws.amazon.com,
resulting in a global CloudTrail log entry.

• You can manually request a certain regional sign-in endpoint by signing in to the region-enabled
main console home page using a URL syntax like the following:

https://alias.signin.aws.amazon.com/console?region=ap-southeast-1

AWS redirects you to the ap-southeast-1 regional sign-in endpoint and results in a regional
CloudTrail log event.

For more information about CloudTrail and IAM, see Logging IAM events with CloudTrail.

How IAM users sign in to AWS 170

https://docs.aws.amazon.com/IAM/latest/UserGuide/cloudtrail-integration.html

AWS Identity and Access Management User Guide

If users need programmatic access to work with your account, you can create an access key pair (an
access key ID and a secret access key) for each user. However, there are more secure alternatives
to consider before you create access keys for users. For more information, see Considerations and
alternatives for long-term access keys in the AWS General Reference.

Using MFA devices with your IAM sign-in page

Users who are configured with multi-factor authentication (MFA) devices must use their MFA
devices to sign in to the AWS Management Console. After the user enters their sign-in credentials,
AWS checks the user's account to see if MFA is required for that user. The following topics provide
information on how users complete signing in when MFA is required.

Topics

• Signing in with multiple MFA devices enabled

• Signing in with a FIDO security key

• Signing in with a virtual MFA device

• Signing in with a hardware TOTP token

Signing in with multiple MFA devices enabled

If a user signs in to the AWS Management Console as an AWS account root user or IAM user with
multiple MFA devices enabled for that account, they only need to use one MFA device to sign in.
After the user authenticates with the user’s password, they select which MFA device type they
would like to use to finish authenticating. Then the user is prompted to authenticate with the type
of device that they selected.

Signing in with a FIDO security key

If MFA is required for the user, a second sign-in page appears. The user needs to tap the FIDO
security key.

Note

Google Chrome users should not choose any of the available options on the pop-up that
asks to Verify your identity with amazon.com. You only need to tap on the security key.

How IAM users sign in to AWS 171

https://docs.aws.amazon.com/general/latest/gr/aws-sec-cred-types.html#alternatives-to-long-term-access-keys
https://docs.aws.amazon.com/general/latest/gr/aws-sec-cred-types.html#alternatives-to-long-term-access-keys

AWS Identity and Access Management User Guide

Unlike other MFA devices, FIDO security keys do not go out of sync. Administrators can deactivate
a FIDO security key if it's lost or broken. For more information, see Deactivating MFA devices
(console).

For information on browsers that support WebAuthn and FIDO-compliant devices that AWS
supports, see Supported configurations for using FIDO security keys.

Signing in with a virtual MFA device

If MFA is required for the user, a second sign-in page appears. In the MFA code box, the user must
enter the numeric code provided by the MFA application.

If the MFA code is correct, the user can access the AWS Management Console. If the code is
incorrect, the user can try again with another code.

A virtual MFA device can go out of sync. If a user cannot sign in to the AWS Management Console
after several tries, the user is prompted to synchronize the virtual MFA device. The user can follow
the on-screen prompts to synchronize the virtual MFA device. For information about how you can
synchronize a device on behalf of a user in your AWS account, see Resynchronizing virtual and
hardware MFA devices.

Signing in with a hardware TOTP token

If MFA is required for the user, a second sign-in page appears. In the MFA code box, the user must
enter the numeric code provided by a hardware TOTP token.

If the MFA code is correct, the user can access the AWS Management Console. If the code is
incorrect, the user can try again with another code.

A hardware TOTP token can go out of sync. If a user can't sign in to the AWS Management Console
after several tries, the user is prompted to synchronize the MFA token device. The user can follow
the on-screen prompts to synchronize the MFA token device. For information about how you can
synchronize a device on behalf of a user in your AWS account, see Resynchronizing virtual and
hardware MFA devices.

Managing IAM users

Note

As a best practice, we recommend that you require human users to use federation with
an identity provider to access AWS using temporary credentials. If you follow the best

Managing users 172

AWS Identity and Access Management User Guide

practices, you are not managing IAM users and groups. Instead, your users and groups are
managed outside of AWS and are able to access AWS resources as a federated identity. A
federated identity is a user from your enterprise user directory, a web identity provider,
the AWS Directory Service, the Identity Center directory, or any user that accesses AWS
services by using credentials provided through an identity source. Federated identities use
the groups defined by their identity provider. If you are using AWS IAM Identity Center,
see Manage identities in IAM Identity Center in the AWS IAM Identity Center User Guide for
information about creating users and groups in IAM Identity Center.

Amazon Web Services offers multiple tools for managing the IAM users in your AWS account.
You can list the IAM users in your account or in a user group, or list all user groups that a user
is a member of. You can rename or change the path of an IAM user. If you are moving to using
federated identities instead of IAM users, you can delete an IAM user from your AWS account, or
deactivate the user.

For more information about adding, changing, or removing managed policies for an IAM user, see
Changing permissions for an IAM user. For information about managing inline policies for IAM
users, see Adding and removing IAM identity permissions, Editing IAM policies, and Deleting IAM
policies. As a best practice, use managed policies instead of inline policies. AWS managed policies
grant permissions for many common use cases. Keep in mind that AWS managed policies might
not grant least-privilege permissions for your specific use cases because they are available for use
by all AWS customers. As a result, we recommend that you reduce permissions further by defining
customer managed policies that are specific to your use cases. For more information, see AWS
managed policies. For more information about AWS managed policies that are designed for specific
job functions, see AWS managed policies for job functions.

To learn about validating IAM policies, see Validating IAM policies.

Tip

IAM Access Analyzer can analyze the services and actions that your IAM roles use, and then
generate a fine-grained policy that you can use. After you test each generated policy, you
can deploy the policy to your production environment. This ensures that you grant only the
required permissions to your workloads. For more information about policy generation, see
IAM Access Analyzer policy generation.

Managing users 173

https://docs.aws.amazon.com/singlesignon/latest/userguide/manage-your-identity-source-sso.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#customer-managed-policies
https://docs.aws.amazon.com/IAM/latest/UserGuide/what-is-access-analyzer.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access-analyzer-policy-generation.html

AWS Identity and Access Management User Guide

For information about managing IAM user passwords, see Managing passwords for IAM users,

Topics

• View user access

• Listing IAM users

• Renaming an IAM user

• Deleting an IAM user

• Deactivating an IAM user

View user access

Before you delete a user, you should review its recent service-level activity. This is important
because you don't want to remove access from a principal (person or application) who is using it.
For more information about viewing last accessed information, see Refining permissions in AWS
using last accessed information.

Listing IAM users

You can list the IAM users in your AWS account or in a specific IAM user group, and list all the user
groups that a user is in. For information about the permissions that you need in order to list users,
see Permissions required to access IAM resources.

To list all the users in the account

• AWS Management Console: In the navigation pane, choose Users. The console displays the users
in your AWS account.

• AWS CLI: aws iam list-users

• AWS API: ListUsers

To list the users in a specific user group

• AWS Management Console: In the navigation pane, choose User groups, choose the name of the
user group, and then choose the Users tab.

• AWS CLI: aws iam get-group

• AWS API: GetGroup

Managing users 174

https://console.aws.amazon.com/iam/
https://docs.aws.amazon.com/cli/latest/reference/iam/list-users.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_ListUsers.html
https://console.aws.amazon.com/iam/
https://docs.aws.amazon.com/cli/latest/reference/iam/get-group.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_GetGroup.html

AWS Identity and Access Management User Guide

To list all the user groups that a user is in

• AWS Management Console: In the navigation pane, choose Users, choose the user name, and
then choose the Groups tab.

• AWS CLI: aws iam list-groups-for-user

• AWS API: ListGroupsForUser

Renaming an IAM user

To change a user's name or path, you must use the AWS CLI, Tools for Windows PowerShell, or AWS
API. There is no option in the console to rename a user. For information about the permissions that
you need in order to rename a user, see Permissions required to access IAM resources.

When you change a user's name or path, the following happens:

• Any policies attached to the user stay with the user under the new name.

• The user stays in the same user groups under the new name.

• The unique ID for the user remains the same. For more information about unique IDs, see Unique
identifiers.

• Any resource or role policies that refer to the user as a principal (the user is being granted access)
are automatically updated to use the new name or path. For example, any queue-based policies
in Amazon SQS or resource-based policies in Amazon S3 are automatically updated to use the
new name and path.

IAM does not automatically update policies that refer to the user as a resource to use the new name
or path; you must manually do that. For example, imagine that user Richard has a policy attached
to him that lets him manage his security credentials. If an administrator renames Richard to
Rich, the administrator also needs to update that policy to change the resource from this:

arn:aws:iam::111122223333:user/division_abc/subdivision_xyz/Richard

to this:

arn:aws:iam::111122223333:user/division_abc/subdivision_xyz/Rich

This is true also if an administrator changes the path; the administrator needs to update the policy
to reflect the new path for the user.

Managing users 175

https://console.aws.amazon.com/iam/
https://docs.aws.amazon.com/cli/latest/reference/iam/list-groups-for-user.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_ListGroupsForUser.html

AWS Identity and Access Management User Guide

To rename a user

• AWS CLI: aws iam update-user

• AWS API: UpdateUser

Deleting an IAM user

You might delete an IAM user from your AWS account if that user quits your company. If the user is
away temporarily, you can deactivate the user's access instead of deleting them from the account
as described in Deactivating an IAM user.

Topics

• Deleting an IAM user (console)

• Deleting an IAM user (AWS CLI)

Deleting an IAM user (console)

When you use the AWS Management Console to delete an IAM user, IAM automatically deletes the
following information for you:

• The user

• Any user group memberships—that is, the user is removed from any IAM user groups that the
user was a member of

• Any password associated with the user

• Any access keys belonging to the user

• All inline policies embedded in the user (policies that are applied to a user via user group
permissions are not affected)

Note

IAM removes any managed policies attached to the user when you delete the user, but
does not delete managed policies.

• Any associated MFA device

Managing users 176

https://docs.aws.amazon.com/cli/latest/reference/iam/update-user.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_UpdateUser.html

AWS Identity and Access Management User Guide

To delete an IAM user (console)

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. In the navigation pane, choose Users, and then select the check box next to the user name that
you want to delete.

3. At the top of the page, choose Delete.

4. In the confirmation dialog box, enter the username in the text input field to confirm the
deletion of the user. Choose Delete.

Deleting an IAM user (AWS CLI)

Unlike the AWS Management Console, when you delete a user with the AWS CLI, you must delete
the items attached to the user manually. This procedure illustrates the process.

To delete a user from your account (AWS CLI)

1. Delete the user's password, if the user has one.

aws iam delete-login-profile

2. Delete the user's access keys, if the user has them.

aws iam list-access-keys (to list the user's access keys) and aws iam delete-
access-key

3. Delete the user's signing certificate. Note that when you delete a security credential, it's gone
forever and can't be retrieved.

aws iam list-signing-certificates (to list the user's signing certificates) and aws
iam delete-signing-certificate

4. Delete the user's SSH public key, if the user has them.

aws iam list-ssh-public-keys (to list the user's SSH public keys) and aws iam
delete-ssh-public-key

5. Delete the user's Git credentials.

aws iam list-service-specific-credentials (to list the user's git credentials) and
aws iam delete-service-specific-credential

6. Deactivate the user's multi-factor authentication (MFA) device, if the user has one.

Managing users 177

https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/
https://docs.aws.amazon.com/cli/latest/reference/iam/delete-login-profile.html
https://docs.aws.amazon.com/cli/latest/reference/iam/list-access-keys.html
https://docs.aws.amazon.com/cli/latest/reference/iam/delete-access-key.html
https://docs.aws.amazon.com/cli/latest/reference/iam/delete-access-key.html
https://docs.aws.amazon.com/cli/latest/reference/iam/list-signing-certificates.html
https://docs.aws.amazon.com/cli/latest/reference/iam/delete-signing-certificate.html
https://docs.aws.amazon.com/cli/latest/reference/iam/delete-signing-certificate.html
https://docs.aws.amazon.com/cli/latest/reference/iam/list-ssh-public-keys.html
https://docs.aws.amazon.com/cli/latest/reference/iam/delete-ssh-public-key.html
https://docs.aws.amazon.com/cli/latest/reference/iam/delete-ssh-public-key.html
https://docs.aws.amazon.com/cli/latest/reference/iam/list-service-specific-credentials.html
https://docs.aws.amazon.com/cli/latest/reference/iam/delete-service-specific-credential.html

AWS Identity and Access Management User Guide

aws iam list-mfa-devices (to list the user's MFA devices), aws iam deactivate-
mfa-device (to deactivate the device), and aws iam delete-virtual-mfa-device (to
permanently delete a virtual MFA device)

7. Delete the user's inline policies.

aws iam list-user-policies (to list the inline policies for the user) and aws iam
delete-user-policy (to delete the policy)

8. Detach any managed policies that are attached to the user.

aws iam list-attached-user-policies (to list the managed policies attached to the
user) and aws iam detach-user-policy (to detach the policy)

9. Remove the user from any user groups.

aws iam list-groups-for-user (to list the user groups to which the user belongs) and
aws iam remove-user-from-group

10. Delete the user.

aws iam delete-user

Deactivating an IAM user

You might need to deactivate an IAM user while they are temporarily away from your company. You
can leave their IAM user credentials in place and still block their AWS access.

To deactivate a user, create and attach a policy to deny the user access to AWS. You can restore the
user's access later.

Here are two examples of deny policies that you can attach to a user to deny their access.

The following policy does not include a time limit. You must remove the policy to restore the user's
access.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Deny",
 "Action": "*",

Managing users 178

https://docs.aws.amazon.com/cli/latest/reference/iam/list-mfa-devices.html
https://docs.aws.amazon.com/cli/latest/reference/iam/deactivate-mfa-device.html
https://docs.aws.amazon.com/cli/latest/reference/iam/deactivate-mfa-device.html
https://docs.aws.amazon.com/cli/latest/reference/iam/delete-virtual-mfa-device.html
https://docs.aws.amazon.com/cli/latest/reference/iam/list-user-policies.html
https://docs.aws.amazon.com/cli/latest/reference/iam/delete-user-policy.html
https://docs.aws.amazon.com/cli/latest/reference/iam/delete-user-policy.html
https://docs.aws.amazon.com/cli/latest/reference/iam/list-attached-user-policies.html
https://docs.aws.amazon.com/cli/latest/reference/iam/detach-user-policy.html
https://docs.aws.amazon.com/cli/latest/reference/iam/list-groups-for-user.html
https://docs.aws.amazon.com/cli/latest/reference/iam/remove-user-from-group.html
https://docs.aws.amazon.com/cli/latest/reference/iam/delete-user.html

AWS Identity and Access Management User Guide

 "Resource": "*"
 }
]
}

The following policy includes a condition that starts the policy on December 24, 2024 at 11:59 PM
(UTC) and ends it on February 28, 2025 at 11:59 PM (UTC).

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Deny",
 "Action": "*",
 "Resource": "*",
 "Condition": {
 "DateGreaterThan": {"aws:CurrentTime": "2024-12-24T23:59:59Z"},
 "DateLessThan": {"aws:CurrentTime": "2025-02-28T23:59:59Z"}
 }
 }
]
}

Changing permissions for an IAM user

You can change the permissions for an IAM user in your AWS account by changing its group
memberships, by copying permissions from an existing user, by attaching policies directly to a user,
or by setting a permissions boundary. A permissions boundary controls the maximum permissions
that a user can have. Permissions boundaries are an advanced AWS feature.

For information about the permissions that you need in order to modify the permissions for a user,
see Permissions required to access IAM resources.

Topics

• View user access

• Generate a policy based on a user's access activity

• Adding permissions to a user (console)

• Changing permissions for a user (console)

• Removing a permissions policy from a user (console)

Changing permissions for a user 179

AWS Identity and Access Management User Guide

• Removing the permissions boundary from a user (console)

• Adding and removing a user's permissions (AWS CLI or AWS API)

View user access

Before you change the permissions for a user, you should review its recent service-level activity.
This is important because you don't want to remove access from a principal (person or application)
who is using it. For more information about viewing last accessed information, see Refining
permissions in AWS using last accessed information.

Generate a policy based on a user's access activity

You might sometimes grant permissions to an IAM entity (user or role) beyond what they require.
To help you refine the permissions that you grant, you can generate an IAM policy that is based
on the access activity for an entity. IAM Access Analyzer reviews your AWS CloudTrail logs and
generates a policy template that contains the permissions that have been used by the entity in
your specified date range. You can use the template to create a managed policy with fine-grained
permissions and then attach it to the IAM entity. That way, you grant only the permissions that
the user or role needs to interact with AWS resources for your specific use case. To learn more, see
Generate policies based on access activity.

Adding permissions to a user (console)

IAM offers three ways to add permissions policies to a user:

• Add user to group – Make the user a member of a group. The policies from the group are
attached to the user.

• Copy permissions from existing user – Copy all group memberships, attached managed policies,
inline policies, and any existing permissions boundaries from the source user.

• Attach policies directly to user – Attach a managed policy directly to the user. For easier
permissions management, attach your policies to a group and then make users members of the
appropriate groups.

Important

If the user has a permissions boundary, then you cannot add more permissions to a user
than are allowed by the permissions boundary.

Changing permissions for a user 180

AWS Identity and Access Management User Guide

Adding permissions by adding the user to a group

Adding a user to a group affects the user immediately.

To add permissions to a user by adding the user to a group

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. In the navigation pane, choose Users.

3. Review the current group memberships for users in the Groups column of the console. If
necessary, add the column to the users table by completing the following steps:

1. Above the table on the far right, choose the settings symbol

().

2. In the Manage Columns dialog box, select the Groups column. Optionally, you can also
clear the check box for any column headings that you do not want to appear in the users
table.

3. Choose Close to return to the list of users.

The Groups column tells you to which groups the user belongs. The column includes the group
names for up to two groups. If the user is a member of three or more groups, the first two
groups are shown (ordered alphabetically), and the number of additional group memberships
is included. For example, if the user belongs to Group A, Group B, Group C, and Group D, then
the field contains the value Group A, Group B + 2 more. To see the total number of groups to
which the user belongs, you can add the Group count column to the users table.

4. Choose the name of the user whose permissions you want to modify.

5. Choose the Permissions tab, and then choose Add permissions. Choose Add user to group.

6. Select the check box for each group that you want the user to join. The list shows each group's
name and the policies that the user receives if made a member of that group.

7. (Optional) In addition to selecting from existing groups, you can choose Create group to
define a new group:

a. In the new tab, for User group name, type a name for your new group.

Changing permissions for a user 181

https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/

AWS Identity and Access Management User Guide

Note

The number and size of IAM resources in an AWS account are limited. For more
information, see IAM and AWS STS quotas. Group names can be a combination of
up to 128 letters, digits, and these characters: plus (+), equal (=), comma (,), period
(.), at sign (@), and hyphen (-). Names must be unique within an account. They
are not distinguished by case. For example, you cannot create two groups named
TESTGROUP and testgroup.

b. Select one or more check boxes for the managed policies that you want to attach to the
group. You can also create a new managed policy by choosing Create policy. If you do,
return to this browser tab or window when the new policy is done; choose Refresh; and
then choose the new policy to attach it to your group. For more information, see Creating
IAM policies.

c. Choose Create user group.

d. Return to the original tab, refresh your list of groups. Then select the check box for your
new group.

8. Choose Next to see the list of group memberships to be added to the user. Then choose Add
permissions.

Adding permissions by copying from another user

Copying permissions affects the user immediately.

To add permissions to a user by copying permissions from another user

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. Choose Users in the navigation pane, choose the name of the user whose permissions you
want to modify, and then choose the Permissions tab.

3. Choose Add permissions, and then choose Copy permissions from existing user. The list
displays available users along with their group memberships and attached policies. If the full
list of groups or policies doesn't fit on one line, you can choose the link for and n more. Doing
that opens a new browser tab and see the full list of policies (Permissions tab) and groups
(Groups tab).

4. Select the radio button next to the user whose permissions you want to copy.

Changing permissions for a user 182

https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/

AWS Identity and Access Management User Guide

5. Choose Next to see the list of changes that are to be made to the user. Then choose Add
permissions.

Adding permissions by attaching policies directly to the user

Attaching policies affects the user immediately.

To add permissions to a user by directly attaching managed policies

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. Choose Users in the navigation pane, choose the name of the user whose permissions you
want to modify, and then choose the Permissions tab.

3. Choose Add permissions, and then choose Attach policies directly.

4. Select one or more check boxes for the managed policies that you want to attach to the user.
You can also create a new managed policy by choosing Create policy. If you do, return to this
browser tab or window when the new policy is done. Choose Refresh; and then select the
check box for the new policy to attach it to your user. For more information, see Creating IAM
policies.

5. Choose Next to see the list of policies that are to be attached to the user. Then choose Add
permissions.

Setting the permissions boundary for a user

Setting a permissions boundary affects the user immediately.

To set the permissions boundary for a user

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. In the navigation pane, choose Users.

3. Choose the name of the user whose permissions boundary you want to change.

4. Choose the Permissions tab. If necessary, open the Permissions boundary section and then
choose Set permissions boundary.

5. Select the policy that you want to use for the permissions boundary.

6. Choose Set boundary.

Changing permissions for a user 183

https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/

AWS Identity and Access Management User Guide

Changing permissions for a user (console)

IAM allows you to change the permissions that are associated with a user in the following ways:

• Edit a permissions policy – Edit a user's inline policy, the inline policy of the user's group, or
edit a managed policy that is attached to the user directly or from a group. If the user has a
permissions boundary, then you cannot provide more permissions than are allowed by the policy
that was used as the user's permissions boundary.

• Changing the permissions boundary – Change the policy that is used as the permissions
boundary for the user. This can expand or restrict the maximum permissions that a user can
have.

Editing a permissions policy attached to a user

Changing permissions affects the user immediately.

To edit a user's attached managed policies

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. In the navigation pane, choose Users.

3. Choose the name of the user whose permissions policy you want to change.

4. Choose the Permissions tab. If necessary, open the Permissions policies section.

5. Choose the name of the policy that you want to edit to view details about the policy. Choose
the Policy usage tab to view other entities that might be affected if you edit the policy.

6. Choose the Permissions tab and review the permissions granted by the policy. Then choose
Edit policy.

7. Edit the policy and resolve any policy validation recommendations. For more information, see
Editing IAM policies.

8. Choose Review policy, review the policy summary, and then choose Save changes.

Changing the permissions boundary for a user

Changing a permissions boundary affects the user immediately.

Changing permissions for a user 184

https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/

AWS Identity and Access Management User Guide

To change the policy used to set the permissions boundary for a user

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. In the navigation pane, choose Users.

3. Choose the name of the user whose permissions boundary you want to change.

4. Choose the Permissions tab. If necessary, open the Permissions boundary section and then
choose Change boundary.

5. Select the policy that you want to use for the permissions boundary.

6. Choose Set boundary.

Removing a permissions policy from a user (console)

Removing a policy affects the user immediately.

To remove permissions for IAM users

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. In the navigation pane, choose Users.

3. Choose the name of the user whose permissions boundary you want to remove.

4. Choose the Permissions tab.

5. If you want to remove permissions by removing an existing policy, view the Type to
understand how the user is getting that policy before choosing Remove to remove the policy:

• If the policy applies because of group membership, then choosing Remove removes the
user from the group. Remember that you might have multiple policies attached to a single
group. If you remove a user from a group, the user loses access to all policies that it received
through that group membership.

• If the policy is a managed policy attached directly to the user, then choosing Remove
detaches the policy from the user. This does not affect the policy itself or any other entity
that the policy might be attached to.

• If the policy is an inline embedded policy, then choosing X removes the policy from IAM.
Inline policies that are attached directly to a user exist only on that user.

Changing permissions for a user 185

https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/

AWS Identity and Access Management User Guide

Removing the permissions boundary from a user (console)

Removing a permissions boundary affects the user immediately.

To remove the permissions boundary from a user

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. In the navigation pane, choose Users.

3. Choose the name of the user whose permissions boundary you want to remove.

4. Choose the Permissions tab. If necessary, open the Permissions boundary section and then
choose Remove boundary.

5. Choose Remove boundary to confirm that you want to remove the permissions boundary.

Adding and removing a user's permissions (AWS CLI or AWS API)

To add or remove permissions programmatically, you must add or remove the group memberships,
attach or detach the managed policies, or add or delete the inline policies. For more information,
see the following topics:

• Adding and removing users in an IAM user group

• Adding and removing IAM identity permissions

Managing user passwords in AWS

You can manage passwords for IAM users in your account. IAM users need passwords in order
to access the AWS Management Console. Users do not need passwords to access AWS resources
programmatically by using the AWS CLI, Tools for Windows PowerShell, the AWS SDKs or APIs.
For those environments, you have the option of assigning IAM users access keys. However, there
are other more secure alternatives to access keys that we recommend you consider first. For more
information, see AWS security credentials.

Contents

• Setting an account password policy for IAM users

• Managing passwords for IAM users

Managing passwords 186

https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/

AWS Identity and Access Management User Guide

• Permitting IAM users to change their own passwords

• How an IAM user changes their own password

Setting an account password policy for IAM users

You can set a custom password policy on your AWS account to specify complexity requirements
and mandatory rotation periods for your IAM users' passwords. If you don't set a custom password
policy, IAM user passwords must meet the default AWS password policy. For more information, see
Custom password policy options.

Topics

• Rules for setting a password policy

• Permissions required to set a password policy

• Default password policy

• Custom password policy options

• Setting a password policy (console)

• Setting a password policy (AWS CLI)

• Setting a password policy (AWS API)

Rules for setting a password policy

The IAM password policy does not apply to the AWS account root user password or IAM user access
keys. If a password expires, the IAM user can't sign in to the AWS Management Console but can
continue to use their access keys.

When you create or change a password policy, most of the password policy settings are enforced
the next time your users change their passwords. However, some of the settings are enforced
immediately. For example:

• When the minimum length and character type requirements change, these settings are enforced
the next time that your users change their passwords. Users are not forced to change their
existing passwords, even if the existing passwords do not adhere to the updated password policy.

• When you set a password expiration period, the expiration period is enforced immediately. For
example, assume that you set a password expiration period of 90 days. In that case, the password
expires for all IAM users whose existing password is older than 90 days. Those users are required
to change their password the next time that they sign in.

Managing passwords 187

AWS Identity and Access Management User Guide

You can't create a "lockout policy" to lock a user out of the account after a specified number of
failed sign-in attempts. For enhanced security, we recommend that you combine a strong password
policy with multi-factor authentication (MFA). For more information about MFA, see Using multi-
factor authentication (MFA) in AWS.

Permissions required to set a password policy

You must configure permissions to allow an IAM entity (user or role) to view or edit their account
password policy. You can include the following password policy actions in an IAM policy:

• iam:GetAccountPasswordPolicy – Allows the entity to view the password policy for their
account

• iam:DeleteAccountPasswordPolicy – Allows the entity to delete the custom password
policy for their account and revert to the default password policy

• iam:UpdateAccountPasswordPolicy – Allows the entity to create or change the custom
password policy for their account

The following policy allows full access to view and edit the account password policy. To learn how
to create an IAM policy using this example JSON policy document, see the section called “Creating
policies using the JSON editor”.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "FullAccessPasswordPolicy",
 "Effect": "Allow",
 "Action": [
 "iam:GetAccountPasswordPolicy",
 "iam:DeleteAccountPasswordPolicy",
 "iam:UpdateAccountPasswordPolicy"
],
 "Resource": "*"
 }
]
}

For information about the permissions required for an IAM user to change their own password, see
Permitting IAM users to change their own passwords.

Managing passwords 188

AWS Identity and Access Management User Guide

Default password policy

If an administrator does not set a custom password policy, IAM user passwords must meet the
default AWS password policy.

The default password policy enforces the following conditions:

• Minimum password length of 8 characters and a maximum length of 128 characters

• Minimum of three of the following mix of character types: uppercase, lowercase, numbers, and
non-alphanumeric character (! @ # $ % ^ & * () _ + - = [] { } | ')

• Not be identical to your AWS account name or email address

• Never expire password

Custom password policy options

When you configure a custom password policy for your account, you can specify the following
conditions:

• Password minimum length – You can specify a minimum of 6 characters and a maximum of 128
characters.

• Password strength – You can select any of the following check boxes to define the strength of
your IAM user passwords:

• Require at least one uppercase letter from the Latin alphabet (A–Z)

• Require at least one lowercase letter from the Latin alphabet (a–z)

• Require at least one number

• Require at least one nonalphanumeric character ! @ # $ % ^ & * () _ + - = [] { }
| '

• Turn on password expiration – You can select and specify a minimum of 1 and a maximum of
1,095 days that IAM user passwords are valid after they are set. For example, if you specify an
expiration of 90 days, it immediately impacts all of your users. For users with passwords older
than 90 days, when they log into the console after the change, they must set a new password.
Users with passwords 75-89 days old receive an AWS Management Console warning about their
password expiration. IAM users can change their password at any time if they have permission.
When they set a new password, the expiration period for that password starts over. An IAM user
can have only one valid password at a time.

Managing passwords 189

AWS Identity and Access Management User Guide

• Password expiration requires administrator reset – Select this option to prevent IAM
users from using the AWS Management Console to update their own passwords after the
password expires. Before you select this option, confirm that your AWS account has more
than one user with administrative permissions to reset IAM user passwords. Administrators
with iam:UpdateLoginProfile permission can reset IAM user passwords. IAM users with
iam:ChangePassword permission and active access keys can reset their own IAM user console
password programmatically. If you clear this check box, IAM users with expired passwords must
still set a new password before they can access the AWS Management Console.

• Allow users to change their own password – You can permit all IAM users in your account to
change their own password. This gives users access to the iam:ChangePassword action for only
their user and to the iam:GetAccountPasswordPolicy action. This option does not attach
a permissions policy to each user. Rather, IAM applies the permissions at the account-level for
all users. Alternatively, you can allow only some users to manage their own passwords. To do
so, you clear this check box. For more information about using policies to limit who can manage
passwords, see Permitting IAM users to change their own passwords.

• Prevent password reuse – You can prevent IAM users from reusing a specified number of
previous passwords. You can specify a minimum number of 1 and a maximum number of 24
previous passwords that can't be repeated.

Setting a password policy (console)

You can use the AWS Management Console to create, change, or delete a custom password policy.

To create a custom password policy (console)

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. In the navigation pane, choose Account settings.

3. In the Password policy section, choose Edit.

4. Choose Custom to use a custom password policy.

5. Select the options that you want to apply to your password policy and choose Save changes.

6. Confirm that you want to set a custom password policy by choosing Set custom.

Managing passwords 190

https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/

AWS Identity and Access Management User Guide

To change a custom password policy (console)

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. In the navigation pane, choose Account settings.

3. In the Password policy section, choose Edit.

4. Select the options that you want to apply to your password policy and choose Save changes.

5. Confirm that you want to set a custom password policy by choosing Set custom.

To delete a custom password policy (console)

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. In the navigation pane, choose Account settings.

3. In the Password policy section, choose Edit.

4. Choose IAM default to delete the custom password policy and choose Save changes.

5. Confirm that you want to set the IAM default password policy by choosing Set default.

Setting a password policy (AWS CLI)

You can use the AWS Command Line Interface to set a password policy.

To manage the custom account password policy from the AWS CLI

Run the following commands:

• To create or change the custom password policy: aws iam update-account-password-
policy

• To view the password policy: aws iam get-account-password-policy

• To delete the custom password policy: aws iam delete-account-password-policy

Setting a password policy (AWS API)

You can use AWS API operations to set a password policy.

To manage the custom account password policy from the AWS API

Managing passwords 191

https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/
https://docs.aws.amazon.com/cli/latest/reference/iam/update-account-password-policy.html
https://docs.aws.amazon.com/cli/latest/reference/iam/update-account-password-policy.html
https://docs.aws.amazon.com/cli/latest/reference/iam/get-account-password-policy.html
https://docs.aws.amazon.com/cli/latest/reference/iam/delete-account-password-policy.html

AWS Identity and Access Management User Guide

Call the following operations:

• To create or change the custom password policy: UpdateAccountPasswordPolicy

• To view the password policy: GetAccountPasswordPolicy

• To delete the custom password policy: DeleteAccountPasswordPolicy

Managing passwords for IAM users

IAM users who use the AWS Management Console to work with AWS resources must have a
password in order to sign in. You can create, change, or delete a password for an IAM user in your
AWS account.

After you have assigned a password to a user, the user can sign in to the AWS Management Console
using the sign-in URL for your account, which looks like this:

https://12-digit-AWS-account-ID or alias.signin.aws.amazon.com/console

For more information about how IAM users sign in to the AWS Management Console, see How to
sign in to AWS in the AWS Sign-In User Guide.

Even if your users have their own passwords, they still need permissions to access your AWS
resources. By default, a user has no permissions. To give your users the permissions they need, you
assign policies to them or to the groups they belong to. For information about creating users and
groups, see IAM Identities (users, user groups, and roles). For information about using policies to
set permissions, see Changing permissions for an IAM user.

You can grant users permission to change their own passwords. For more information, see
Permitting IAM users to change their own passwords. For information about how users access your
account sign-in page, see How to sign in to AWS in the AWS Sign-In User Guide.

Topics

• Creating, changing, or deleting an IAM user password (console)

• Creating, changing, or deleting an IAM user password (AWS CLI)

• Creating, changing, or deleting an IAM user password (AWS API)

Creating, changing, or deleting an IAM user password (console)

You can use the AWS Management Console to manage passwords for your IAM users.

Managing passwords 192

https://docs.aws.amazon.com/IAM/latest/APIReference/API_UpdateAccountPasswordPolicy.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_GetAccountPasswordPolicy.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_DeleteAccountPasswordPolicy.html
https://docs.aws.amazon.com/signin/latest/userguide/how-to-sign-in.html
https://docs.aws.amazon.com/signin/latest/userguide/how-to-sign-in.html
https://docs.aws.amazon.com/signin/latest/userguide/how-to-sign-in.html

AWS Identity and Access Management User Guide

When users leave your organization or no longer need AWS access, it is important to find the
credentials that they were using and ensure that they are no longer operational. Ideally, you delete
credentials if they are no longer needed. You can always recreate them at a later date if the need
arises. At the very least, you should change the credentials so that the former users no longer have
access.

To add a password for an IAM user (console)

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. In the navigation pane, choose Users.

3. Choose the name of the user whose password you want to create.

4. Choose the Security credentials tab, and then under Console sign-in, choose Enable console
access.

5. In Manage console access, for Console access choose Enable if not already selected. If console
access is disabled, then no password is needed.

6. For Set password, choose whether to have IAM generate a password or create a custom
password:

• To have IAM generate a password, choose Autogenerated password.

• To create a custom password, choose Custom password, and type the password.

Note

The password that you create must meet the account's password policy.

7. To require the user to create a new password when signing in, choose User must create a new
password at next sign-in. Then choose Apply.

Important

If you select the User must create a new password at next sign-in option, make sure
that the user has permission to change his or her password. For more information, see
Permitting IAM users to change their own passwords.

8. If you choose the option to generate a password, choose Show in the Console password
dialog box. This lets you view the password so you can share it with the user.

Managing passwords 193

https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/

AWS Identity and Access Management User Guide

Important

For security reasons, you cannot access the password after completing this step, but
you can create a new password at any time.

To change the password for an IAM user (console)

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. In the navigation pane, choose Users.

3. Choose the name of the user whose password you want to change.

4. Choose the Security credentials tab, and then under Console sign-in, choose Manage console
access.

5. In Manage console access, for Console access choose Enable if not already selected. If console
access is disabled, then no password is needed.

6. For Set password, choose whether to have IAM generate a password or create a custom
password:

• To have IAM generate a password, choose Autogenerated password.

• To create a custom password, choose Custom password, and type the password.

Note

The password that you create must meet the account's password policy, if one is
currently set.

7. To require the user to create a new password when signing in, choose User must create a new
password at next sign-in. Then choose Apply.

Important

If you select the User must create a new password at next sign-in option, make sure
that the user has permission to change his or her password. For more information, see
Permitting IAM users to change their own passwords.

Managing passwords 194

https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/

AWS Identity and Access Management User Guide

8. If you choose the option to generate a password, choose Show in the Console password
dialog box. This lets you view the password so you can share it with the user.

Important

For security reasons, you cannot access the password after completing this step, but
you can create a new password at any time.

To delete (disable) an IAM user password (console)

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. In the navigation pane, choose Users.

3. Choose the name of the user whose password you want to delete.

4. Choose the Security credentials tab, and then under Console sign-in, choose Manage console
access.

5. For Console access, choose Disable, and then choose Apply.

Important

You can prevent an IAM user from accessing the AWS Management Console by removing
their password. This prevents them from signing in to the AWS Management Console
using their sign-in credentials. It does not change their permissions or prevent them
from accessing the console using an assumed role. If the user has active access keys, they
continue to function and allow access through the AWS CLI, Tools for Windows PowerShell,
AWS API, or the AWS Console Mobile Application.

Creating, changing, or deleting an IAM user password (AWS CLI)

You can use the AWS CLI API to manage passwords for your IAM users.

To create a password (AWS CLI)

1. (Optional) To determine whether a user has a password, run this command: aws iam get-login-
profile

Managing passwords 195

https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/
https://docs.aws.amazon.com/cli/latest/reference/iam/get-login-profile.html
https://docs.aws.amazon.com/cli/latest/reference/iam/get-login-profile.html

AWS Identity and Access Management User Guide

2. To create a password, run this command: aws iam create-login-profile

To change a user's password (AWS CLI)

1. (Optional) To determine whether a user has a password, run this command: aws iam get-login-
profile

2. To change a password, run this command: aws iam update-login-profile

To delete (disable) a user's password (AWS CLI)

1. (Optional) To determine whether a user has a password, run this command: aws iam get-login-
profile

2. (Optional) To determine when a password was last used, run this command: aws iam get-user

3. To delete a password, run this command: aws iam delete-login-profile

Important

When you delete a user's password, the user can no longer sign in to the AWS Management
Console. If the user has active access keys, they continue to function and allow access
through the AWS CLI, Tools for Windows PowerShell, or AWS API function calls. When
you use the AWS CLI, Tools for Windows PowerShell, or AWS API to delete a user from
your AWS account, you must first delete the password using this operation. For more
information, see Deleting an IAM user (AWS CLI).

Creating, changing, or deleting an IAM user password (AWS API)

You can use the AWS API to manage passwords for your IAM users.

To create a password (AWS API)

1. (Optional) To determine whether a user has a password, call this operation: GetLoginProfile

2. To create a password, call this operation: CreateLoginProfile

To change a user's password (AWS API)

1. (Optional) To determine whether a user has a password, call this operation: GetLoginProfile

Managing passwords 196

https://docs.aws.amazon.com/cli/latest/reference/iam/create-login-profile.html
https://docs.aws.amazon.com/cli/latest/reference/iam/get-login-profile.html
https://docs.aws.amazon.com/cli/latest/reference/iam/get-login-profile.html
https://docs.aws.amazon.com/cli/latest/reference/iam/update-login-profile.html
https://docs.aws.amazon.com/cli/latest/reference/iam/get-login-profile.html
https://docs.aws.amazon.com/cli/latest/reference/iam/get-login-profile.html
https://docs.aws.amazon.com/cli/latest/reference/iam/get-user.html
https://docs.aws.amazon.com/cli/latest/reference/iam/delete-login-profile.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_GetLoginProfile.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_CreateLoginProfile.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_GetLoginProfile.html

AWS Identity and Access Management User Guide

2. To change a password, call this operation: UpdateLoginProfile

To delete (disable) a user's password (AWS API)

1. (Optional) To determine whether a user has a password, run this command: GetLoginProfile

2. (Optional) To determine when a password was last used, run this command: GetUser

3. To delete a password, run this command: DeleteLoginProfile

Important

When you delete a user's password, the user can no longer sign in to the AWS Management
Console. If the user has active access keys, they continue to function and allow access
through the AWS CLI, Tools for Windows PowerShell, or AWS API function calls. When
you use the AWS CLI, Tools for Windows PowerShell, or AWS API to delete a user from
your AWS account, you must first delete the password using this operation. For more
information, see Deleting an IAM user (AWS CLI).

Permitting IAM users to change their own passwords

Note

Users with federated identities will use the process defined by their identity provider to
change their passwords. As a best practice, require human users to use federation with an
identity provider to access AWS using temporary credentials.

You can grant IAM users the permission to change their own passwords for signing in to the AWS
Management Console. You can do this in one of two ways:

• Allow all IAM users in the account to change their own passwords.

• Allow only selected IAM users to change their own passwords. In this scenario, you disable
the option for all users to change their own passwords and you use an IAM policy to grant
permissions to only some users. This approach allows those users to change their own passwords
and optionally other credentials like their own access keys.

Managing passwords 197

https://docs.aws.amazon.com/IAM/latest/APIReference/API_UpdateLoginProfile.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_GetLoginProfile.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_GetUser.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_DeleteLoginProfile.html

AWS Identity and Access Management User Guide

Important

We recommend that you set a custom password policy that requires IAM users to create
strong passwords.

To allow all IAM users change their own passwords

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. In the navigation pane, click Account settings.

3. In the Password policy section, choose Edit.

4. Choose Custom to use a custom password policy.

5. Select Allow users to change their own password, and then choose Save changes. This allows
all users in the account access to the iam:ChangePassword action for only their user and to
the iam:GetAccountPasswordPolicy action.

6. Provide users with the following instructions for changing their passwords: How an IAM user
changes their own password.

For information about the AWS CLI, Tools for Windows PowerShell, and API commands that you
can use to change the account's password policy (which includes letting all users change their own
passwords), see Setting a password policy (AWS CLI).

To allow selected IAM users change their own passwords

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. In the navigation pane, click Account settings.

3. In the Password policy section, make sure that Allow users to change their own password is
not selected. If this check box is selected, all users can change their own passwords. (See the
previous procedure.)

4. Create the users who should be allowed to change their own password, if they do not already
exist. For details, see Creating an IAM user in your AWS account.

Managing passwords 198

https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/

AWS Identity and Access Management User Guide

5. (Optional) Create an IAM group for the users who should be allowed to change their
passwords, and then add the users from the previous step to the group. For details, see
Managing IAM user groups.

6. Assign the following policy to the group. For more information, see Managing IAM policies.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "iam:GetAccountPasswordPolicy",
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Action": "iam:ChangePassword",
 "Resource": "arn:aws:iam::*:user/${aws:username}"
 }
]
}

This policy grants access to the ChangePassword action, which lets users change only their
own passwords from the console, the AWS CLI, Tools for Windows PowerShell, or the API.
It also grants access to the GetAccountPasswordPolicy action, which lets the user view the
current password policy; this permission is required so that the user can view the account
password policy on the Change password page. The user must be allowed to read the current
password policy to ensure that the changed password meets the requirements of the policy.

7. Provide users with the following instructions for changing their passwords: How an IAM user
changes their own password.

For more information

For more information on managing credentials, see the following topics:

• Permitting IAM users to change their own passwords

• Managing user passwords in AWS

• Setting an account password policy for IAM users

• Managing IAM policies

Managing passwords 199

https://docs.aws.amazon.com/IAM/latest/APIReference/API_ChangePassword.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_GetAccountPasswordPolicy.html

AWS Identity and Access Management User Guide

• How an IAM user changes their own password

How an IAM user changes their own password

If you have been granted permission to change your own IAM user password, you can use a special
page in the AWS Management Console to do this. You can also use the AWS CLI or AWS API.

Topics

• Permissions required

• How IAM users change their own password (console)

• How IAM users change their own password (AWS CLI or AWS API)

Permissions required

To change the password for your own IAM user, you must have the permissions from the following
policy: AWS: Allows IAM users to change their own console password on the Security credentials
page.

How IAM users change their own password (console)

The following procedure describes how IAM users can use the AWS Management Console to change
their own password.

To change your own IAM user password (console)

1. Use your AWS account ID or account alias, your IAM user name, and your password to sign in to
the IAM console.

Note

For your convenience, the AWS sign-in page uses a browser cookie to remember your
IAM user name and account information. If you previously signed in as a different user,
choose Sign in to a different account near the bottom of the page to return to the
main sign-in page. From there, you can type your AWS account ID or account alias to
be redirected to the IAM user sign-in page for your account.

To get your AWS account ID, contact your administrator.

Managing passwords 200

https://console.aws.amazon.com/iam

AWS Identity and Access Management User Guide

2. In the navigation bar on the upper right, choose your user name, and then choose Security
credentials.

3. On the AWS IAM credentials tab, choose Update password.

4. For Current password, enter your current password. Enter a new password for New password
and Confirm new password. Then choose Update password.

Note

The new password must meet the requirements of the account password policy. For
more information, see Setting an account password policy for IAM users.

How IAM users change their own password (AWS CLI or AWS API)

The following procedure describes how IAM users can use the AWS CLI or AWS API to change their
own password.

To change your own IAM password, use the following:

• AWS CLI: aws iam change-password

• AWS API: ChangePassword

Managing passwords 201

https://docs.aws.amazon.com/cli/latest/reference/iam/change-password.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_ChangePassword.html

AWS Identity and Access Management User Guide

Managing access keys for IAM users

Important

As a best practice, use temporary security credentials (such as IAM roles) instead of creating
long-term credentials like access keys. Before creating access keys, review the alternatives
to long-term access keys.

Access keys are long-term credentials for an IAM user or the AWS account root user. You can use
access keys to sign programmatic requests to the AWS CLI or AWS API (directly or using the AWS
SDK). For more information, see Signing AWS API requests.

Access keys consist of two parts: an access key ID (for example, AKIAIOSFODNN7EXAMPLE) and a
secret access key (for example, wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY). You must use
both the access key ID and secret access key together to authenticate your requests.

When you create an access key pair, save the access key ID and secret access key in a secure
location. The secret access key is available only at the time you create it. If you lose your secret
access key, you must delete the access key and create a new one. For more details, see Resetting
lost or forgotten passwords or access keys for AWS.

You can have a maximum of two access keys per user.

Important

Manage your access keys securely. Do not provide your access keys to unauthorized
parties, even to help find your account identifiers. By doing this, you might give someone
permanent access to your account.

The following topics detail management tasks associated with access keys.

Topics

• Permissions required to manage access keys

• Managing access keys (console)

• Managing access keys (AWS CLI)

Access keys 202

https://twitter.com/AWSSecurityInfo
https://docs.aws.amazon.com/general/latest/gr/acct-identifiers.html

AWS Identity and Access Management User Guide

• Managing access keys (AWS API)

• Updating access keys

• Securing access keys

• Auditing access keys

Permissions required to manage access keys

Note

iam:TagUser is an optional permission for adding and editing descriptions for the access
key. For more information, see Tagging IAM users

To create access keys for your own IAM user, you must have the permissions from the following
policy:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "CreateOwnAccessKeys",
 "Effect": "Allow",
 "Action": [
 "iam:CreateAccessKey",
 "iam:GetUser",
 "iam:ListAccessKeys",
 "iam:TagUser"
],
 "Resource": "arn:aws:iam::*:user/${aws:username}"
 }
]
}

To update access keys for your own IAM user, you must have the permissions from the following
policy:

{
 "Version": "2012-10-17",
 "Statement": [

Access keys 203

AWS Identity and Access Management User Guide

 {
 "Sid": "ManageOwnAccessKeys",
 "Effect": "Allow",
 "Action": [
 "iam:CreateAccessKey",
 "iam:DeleteAccessKey",
 "iam:GetAccessKeyLastUsed",
 "iam:GetUser",
 "iam:ListAccessKeys",
 "iam:UpdateAccessKey",
 "iam:TagUser"
],
 "Resource": "arn:aws:iam::*:user/${aws:username}"
 }
]
}

Managing access keys (console)

You can use the AWS Management Console to manage the access keys of an IAM user.

To create, modify, or delete your own access keys (console)

1. Use your AWS account ID or account alias, your IAM user name, and your password to sign in to
the IAM console.

Note

For your convenience, the AWS sign-in page uses a browser cookie to remember your
IAM user name and account information. If you previously signed in as a different user,
choose Sign in to a different account near the bottom of the page to return to the
main sign-in page. From there, you can type your AWS account ID or account alias to
be redirected to the IAM user sign-in page for your account.

To get your AWS account ID, contact your administrator.

2. In the navigation bar on the upper right, choose your user name, and then choose Security
credentials.

Access keys 204

https://console.aws.amazon.com/iam

AWS Identity and Access Management User Guide

Note

The Security credentials tab is displayed only for the AWS account root user. IAM users
can manage access keys from the navigation pane.

1. Choose Users.

2. In the Users list, choose the name of the IAM user.

3. Choose the Security Credentials tab. Under Access keys, choose Create access
key.

Do one of the following:

To create an access key

1. In the Access keys section, choose Create access key. If you already have two access keys, this
button is deactivated and you must delete an access key before you can create a new one.

2. On the Access key best practices & alternatives page, choose your use case to learn about
additional options which can help you avoid creating a long-term access key. If you determine
that your use case still requires an access key, choose Other and then choose Next.

Access keys 205

AWS Identity and Access Management User Guide

3. (Optional) Set a description tag value for the access key. This adds a tag key-value pair to your
IAM user. This can help you identify and update access keys later. The tag key is set to the
access key id. The tag value is set to the access key description that you specify. When you are
finished, choose Create access key.

4. On the Retrieve access keys page, choose either Show to reveal the value of your user's secret
access key, or Download .csv file. This is your only opportunity to save your secret access key.
After you've saved your secret access key in a secure location, choose Done.

To deactivate an access key

• In the Access keys section find the key you want to deactivate, then choose Actions, then
choose Deactivate. When prompted for confirmation, choose Deactivate. A deactivated access
key still counts toward your limit of two access keys.

To activate an access key

• In the Access keys section, find the key to activate, then choose Actions, then choose Activate.

To delete an access key when you no longer need it

• In the Access keys section, find the key you want to delete, then choose Actions, then choose
Delete. Follow the instructions in the dialog to first Deactivate and then confirm the deletion.
We recommend that you verify that the access key is no longer in use before you permanently
delete it.

To create, modify, or delete the access keys of another IAM user (console)

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. In the navigation pane, choose Users.

3. Choose the name of the user whose access keys you want to manage, and then choose the
Security credentials tab.

4. In the Access keys section, do any of the following:

• To create an access key, choose Create access key. If the button is deactivated, then you
must delete one of the existing keys before you can create a new one. On the Access key

Access keys 206

https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/

AWS Identity and Access Management User Guide

best practices & alternatives page, review the best practices and alternatives. Choose your
use case to learn about additional options which can help you avoid creating a long-term
access key. If you determine that your use case still requires an access key, choose Other and
then choose Next. On the Retrieve access key page, choose Show to reveal the value of
your user's secret access key. To save the access key ID and secret access key to a .csv file to
a secure location on your computer, choose the Download .csv file button. When you create
an access key for your user, that key pair is active by default, and your user can use the pair
right away.

• To deactivate an active access key, choose Actions, and then choose Deactivate.

• To activate an inactive access key, choose Actions, and then choose Activate.

• To delete your access key, choose Actions, and then choose Delete. Follow the instructions
in the dialog to first Deactivate and then confirm the deletion. AWS recommends that
before you do this, you first deactivate the key and test that it’s no longer in use. When you
use the AWS Management Console, you must deactivate your key before deleting it.

To list the access keys for an IAM user (console)

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. In the navigation pane, choose Users.

3. Choose the name of the intended user, and then choose the Security credentials tab. In the
Access keys section, you will see the user's access keys and the status of each key displayed.

Note

Only the user's access key ID is visible. The secret access key can only be retrieved when
the key is created.

To list the access key IDs for multiple IAM users (console)

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. In the navigation pane, choose Users.

3. If necessary, add the Access key ID column to the users table by completing the following
steps:

Access keys 207

https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/

AWS Identity and Access Management User Guide

a. Above the table on the far right, choose the settings icon

().

b. In Manage columns, select Access key ID.

c. Choose Close to return to the list of users.

4. The Access key ID column shows each access key ID, followed by its state; for example,
23478207027842073230762374023 (Active) or 22093740239670237024843420327
(Inactive).

You can use this information to view and copy the access keys for users with one or two access
keys. The column displays None for users with no access key.

Note

Only the user's access key ID and status is visible. The secret access key can only be
retrieved when the key is created.

To find which IAM user owns a specific access key (console)

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. In the navigation pane, choose Users.

3. In the search box, type or paste the access key ID of the user you want to find.

4. If necessary, add the Access key ID column to the users table by completing the following
steps:

a. Above the table on the far right, choose the settings icon

().

b. In Manage columns, select Access key ID.

c. Choose Close to return to the list of users and confirm that the filtered user owns the
specified access key.

Managing access keys (AWS CLI)

To manage the IAM user access keys from the AWS CLI, run the following commands.

Access keys 208

https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/

AWS Identity and Access Management User Guide

• To create an access key: aws iam create-access-key

• To deactivate or activate an access key: aws iam update-access-key

• To list a user's access keys: aws iam list-access-keys

• To determine when an access key was most recently used: aws iam get-access-key-last-
used

• To delete an access key: aws iam delete-access-key

Managing access keys (AWS API)

To manage the access keys of an IAM user from the AWS API, call the following operations.

• To create an access key: CreateAccessKey

• To deactivate or activate an access key: UpdateAccessKey

• To list a user's access keys: ListAccessKeys

• To determine when an access key was most recently used: GetAccessKeyLastUsed

• To delete an access key: DeleteAccessKey

Updating access keys

As a security best practice, we recommend that you update IAM user access keys when needed,
such as when an employee leaves your company. IAM users can update their own access keys if they
have been granted the necessary permissions.

For details about granting IAM users permissions to update their own access keys, see AWS:
Allows IAM users to manage their own password, access keys, and SSH public keys on the Security
credentials page. You can also apply a password policy to your account to require that all of
your IAM users periodically update their passwords and how often they must do so. For more
information, see Setting an account password policy for IAM users.

Topics

• Updating IAM user access keys (console)

• Updating access keys (AWS CLI)

• Updating access keys (AWS API)

Access keys 209

https://docs.aws.amazon.com/cli/latest/reference/iam/create-access-key.html
https://docs.aws.amazon.com/cli/latest/reference/iam/update-access-key.html
https://docs.aws.amazon.com/cli/latest/reference/iam/list-access-keys.html
https://docs.aws.amazon.com/cli/latest/reference/iam/get-access-key-last-used.html
https://docs.aws.amazon.com/cli/latest/reference/iam/get-access-key-last-used.html
https://docs.aws.amazon.com/cli/latest/reference/iam/delete-access-key.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_CreateAccessKey.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_UpdateAccessKey.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_ListAccessKeys.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_GetAccessKeyLastUsed.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_DeleteAccessKey.html

AWS Identity and Access Management User Guide

Updating IAM user access keys (console)

You can update access keys from the AWS Management Console.

To update access keys for an IAM user without interrupting your applications (console)

1. While the first access key is still active, create a second access key.

a. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

b. In the navigation pane, choose Users.

c. Choose the name of the intended user, and then choose the Security credentials tab.

d. In the Access keys section, choose Create access key. On the Access key best practices &
alternatives page, choose Other, then choose Next.

e. (Optional) Set a description tag value for the access key to add a tag key-value pair to this
IAM user. This can help you identify and update access keys later. The tag key is set to the
access key id. The tag value is set to the access key description that you specify. When you
are finished, choose Create access key.

f. On the Retrieve access keys page, choose either Show to reveal the value of your user's
secret access key, or Download .csv file. This is your only opportunity to save your secret
access key. After you've saved your secret access key in a secure location, choose Done.

When you create an access key for your user, that key pair is active by default, and your
user can use the pair right away. At this point, the user has two active access keys.

2. Update all applications and tools to use the new access key.

3. Determine whether the first access key is still in use by reviewing the Last used information for
the oldest access key. One approach is to wait several days and then check the old access key
for any use before proceeding.

4. Even if the Last used information indicates that the old key has never been used, we
recommend that you do not immediately delete the first access key. Instead, choose Actions
and then choose Deactivate to deactivate the first access key.

5. Use only the new access key to confirm that your applications are working. Any applications
and tools that still use the original access key will stop working at this point because they no
longer have access to AWS resources. If you find such an application or tool, you can reactivate
the first access key. Then return to Step 3 and update this application to use the new key.

Access keys 210

https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/

AWS Identity and Access Management User Guide

6. After you wait some period of time to ensure that all applications and tools have been
updated, you can delete the first access key:

a. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

b. In the navigation pane, choose Users.

c. Choose the name of the intended user, and then choose the Security credentials tab.

d. In the Access keys section for the access key you want to delete, choose Actions, and then
choose Delete. Follow the instructions in the dialog to first Deactivate and then confirm
the deletion.

To determine which access keys need to be updated or deleted(console)

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. In the navigation pane, choose Users.

3. If necessary, add the Access key age column to the users table by completing the following
steps:

a. Above the table on the far right, choose the settings icon

().

b. In Manage columns, select Access key age.

c. Choose Close to return to the list of users.

4. The Access key age column shows the number of days since the oldest active access key was
created. You can use this information to find users with access keys that might need to be
updated or deleted. The column displays None for users with no access key.

Updating access keys (AWS CLI)

You can update access keys from the AWS Command Line Interface.

To update access keys without interrupting your applications (AWS CLI)

1. While the first access key is still active, create a second access key, which is active by default.
Run the following command:

Access keys 211

https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/

AWS Identity and Access Management User Guide

• aws iam create-access-key

At this point, the user has two active access keys.

2. Update all applications and tools to use the new access key.

3. Determine whether the first access key is still in use by using this command:

• aws iam get-access-key-last-used

One approach is to wait several days and then check the old access key for any use before
proceeding.

4. Even if step Step 3 indicates no use of the old key, we recommend that you do not
immediately delete the first access key. Instead, change the state of the first access key to
Inactive using this command:

• aws iam update-access-key

5. Use only the new access key to confirm that your applications are working. Any applications
and tools that still use the original access key will stop working at this point because they no
longer have access to AWS resources. If you find such an application or tool, you can switch its
state back to Active to reactivate the first access key. Then return to step Step 2 and update
this application to use the new key.

6. After you wait some period of time to ensure that all applications and tools have been
updated, you can delete the first access key with this command:

• aws iam delete-access-key

Updating access keys (AWS API)

You can update access keys using the AWS API.

To update access keys without interrupting your applications (AWS API)

1. While the first access key is still active, create a second access key, which is active by default.
Call the following operation:

• CreateAccessKey

At this point, the user has two active access keys.

Access keys 212

https://docs.aws.amazon.com/cli/latest/reference/iam/create-access-key.html
https://docs.aws.amazon.com/cli/latest/reference/iam/get-access-key-last-used.html
https://docs.aws.amazon.com/cli/latest/reference/iam/update-access-key.html
https://docs.aws.amazon.com/cli/latest/reference/iam/delete-access-key.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_CreateAccessKey.html

AWS Identity and Access Management User Guide

2. Update all applications and tools to use the new access key.

3. Determine whether the first access key is still in use by calling this operation:

• GetAccessKeyLastUsed

One approach is to wait several days and then check the old access key for any use before
proceeding.

4. Even if step Step 3 indicates no use of the old key, we recommend that you do not
immediately delete the first access key. Instead, change the state of the first access key to
Inactive calling this operation:

• UpdateAccessKey

5. Use only the new access key to confirm that your applications are working. Any applications
and tools that still use the original access key will stop working at this point because they no
longer have access to AWS resources. If you find such an application or tool, you can switch its
state back to Active to reactivate the first access key. Then return to step Step 2 and update
this application to use the new key.

6. After you wait some period of time to ensure that all applications and tools have been
updated, you can delete the first access key calling this operation:

• DeleteAccessKey

Securing access keys

Anyone who has your access keys has the same level of access to your AWS resources that you do.
Consequently, AWS goes to significant lengths to protect your access keys, and, in keeping with our
shared-responsibility model, you should as well.

Expand the following sections for guidance to help you protect your access keys.

Note

Your organization may have different security requirements and policies than those
described in this topic. The suggestions provided here are intended as general guidelines.

Access keys 213

https://docs.aws.amazon.com/IAM/latest/APIReference/API_GetAccessKeyLastUsed.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_UpdateAccessKey.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_DeleteAccessKey.html
https://aws.amazon.com/compliance/shared-responsibility-model/

AWS Identity and Access Management User Guide

Remove (or don't generate) AWS account root user access keys

One of the best ways to protect your account is to not have access keys for your AWS account
root user. Unless you must have root user access keys (which is rare), it is best not to generate
them. Instead, create an administrative user in AWS IAM Identity Center for daily administrative
tasks.For information about how to create an administrative user in IAM Identity Center, see
Getting started in the IAM Identity Center User Guide.

If you already have root user access keys for your account, we recommend the following: Find
places in your applications where you are currently using access keys (if any), and replace the root
user access keys with IAM user access keys. Then disable and remove the root user access keys. For
more information about how to update access keys, see Updating access keys

Use temporary security credentials (IAM roles) instead of long-term access keys

In many scenarios, you don't need long-term access keys that never expire (as you have with an IAM
user). Instead, you can create IAM roles and generate temporary security credentials. Temporary
security credentials consist of an access key ID and a secret access key, but they also include a
security token that indicates when the credentials expire.

Long-term access keys, such as those associated with IAM users and the root user, remain valid
until you manually revoke them. However, temporary security credentials obtained through IAM
roles and other features of the AWS Security Token Service expire after a short period of time. Use
temporary security credentials to help reduce your risk in case credentials are accidentally exposed.

Use an IAM role and temporary security credentials in these scenarios:

• You have an application or AWS CLI scripts running on an Amazon EC2 instance. Don't use
access keys directly in your application. Don't pass access keys to the application, embed them
in the application, or let the application read access keys from any source. Instead, define an
IAM role that has appropriate permissions for your application and launch the Amazon Elastic
Compute Cloud (Amazon EC2) instance with roles for EC2. Doing this associates an IAM role
with the Amazon EC2 instance. This practice also enables the application to get temporary
security credentials that it can in turn use to make programmatic calls to AWS. The AWS SDKs
and the AWS Command Line Interface (AWS CLI) can get temporary credentials from the role
automatically.

• You need to grant cross-account access. Use an IAM role to establish trust between accounts,
and then grant users in one account limited permissions to access the trusted account. For more
information, see IAM tutorial: Delegate access across AWS accounts using IAM roles.

Access keys 214

https://docs.aws.amazon.com/singlesignon/latest/userguide/getting-started.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-ec2.html

AWS Identity and Access Management User Guide

• You have a mobile app. Don't embed access keys with the app, even in encrypted storage.
Instead, use Amazon Cognito to manage user identities in your app. This service lets you
authenticate users using Login with Amazon, Facebook, Google, or any OpenID Connect (OIDC)–
compatible identity provider. You can then use the Amazon Cognito credentials provider to
manage credentials that your app uses to make requests to AWS.

• You want to federate into AWS and your organization supports SAML 2.0. If you work for an
organization that has an identity provider that supports SAML 2.0, configure the provider to use
SAML. You can use SAML to exchange authentication information with AWS and get back a set of
temporary security credentials. For more information, see About SAML 2.0-based federation.

• You want to federate into AWS and your organization has an on-premises identity store. If
users can authenticate inside your organization, you can write an application that can issue them
temporary security credentials for access to AWS resources. For more information, see Enabling
custom identity broker access to the AWS console.

Note

Are you using an Amazon EC2 instance with an application that requires programmatic
access to AWS resources? If so, use IAM roles for EC2.

Manage IAM user access keys properly

If you must create access keys for programmatic access to AWS, create them for IAM users, granting
the users only the permissions they require.

Observe these precautions to help protect IAM user access keys:

• Don't embed access keys directly into code. The AWS SDKs and the AWS Command Line Tools
enable you to put access keys in known locations so that you don't have to keep them in code.

Put access keys in one of the following locations:

• The AWS credentials file. The AWS SDKs and AWS CLI automatically use the credentials that
you store in the AWS credentials file.

For information about using the AWS credentials file, see the documentation for your SDK.
Examples include Set AWS Credentials and Region in the AWS SDK for Java Developer Guide
and Configuration and credential files in the AWS Command Line Interface User Guide.

Access keys 215

https://aws.amazon.com/cognito/
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-ec2.html
https://aws.amazon.com/tools/#sdk
https://aws.amazon.com/tools/#cli
https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/setup-credentials.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-files.html

AWS Identity and Access Management User Guide

To store credentials for the AWS SDK for .NET and the AWS Tools for Windows PowerShell, we
recommend that you use the SDK Store. For more information, see Using the SDK Store in the
AWS SDK for .NET Developer Guide.

• Environment variables. On a multi-tenant system, choose user environment variables, not
system environment variables.

For more information about using environment variables to store credentials, see Environment
Variables in the AWS Command Line Interface User Guide.

• Use different access keys for different applications. Do this so that you can isolate the
permissions and revoke the access keys for individual applications if they are exposed. Having
separate access keys for different applications also generates distinct entries in AWS CloudTrail
log files. This configuration makes it easier for you to determine which application performed
specific actions.

• Update access keys when needed. If there is a risk that the access key could be compromised,
update the access key and delete the previous access key. For details, see Updating access keys

• Remove unused access keys. If a user leaves your organization, remove the corresponding IAM
user so that the user can no longer access your resources. To find out when an access key was last
used, use the GetAccessKeyLastUsed API (AWS CLI command: aws iam get-access-key-
last-used).

• Use temporary credentials and configure multi-factor authentication for your most
sensitive API operations. With IAM policies, you can specify which API operations a user is
allowed to call. In some cases, you might want the additional security of requiring users to
be authenticated with AWS MFA before you allow them to perform particularly sensitive
actions. For example, you might have a policy that allows a user to perform the Amazon EC2
RunInstances, DescribeInstances, and StopInstances actions. But you might want to
restrict a destructive action like TerminateInstances and ensure that users can perform that
action only if they authenticate with an AWS MFA device. For more information, see Configuring
MFA-protected API access.

Access the mobile app using AWS access keys

You can access a limited set of AWS services and features using the AWS mobile app. The mobile
app helps you support incident response while on the go. For more information and to download
the app, see AWS Console Mobile Application.

Access keys 216

https://docs.aws.amazon.com/sdk-for-net/v3/developer-guide/sdk-store.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-envvars.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-envvars.html
https://aws.amazon.com/cloudtrail/
https://docs.aws.amazon.com/IAM/latest/APIReference/API_GetAccessKeyLastUsed.html
https://docs.aws.amazon.com/cli/latest/reference/iam/get-access-key-last-used.html
https://docs.aws.amazon.com/cli/latest/reference/iam/get-access-key-last-used.html
https://aws.amazon.com/console/mobile/

AWS Identity and Access Management User Guide

You can sign in to the mobile app using your console password or your access keys. As a best
practice, do not use root user access keys. Instead, we strongly recommend that in addition to
using a password or biometric lock on your mobile device, you create an IAM user specifically for
managing AWS resources using the mobile app. If you lose your mobile device, you can remove the
IAM user's access.

To sign in using access keys (mobile app)

1. Open the app on your mobile device.

2. If this is the first time that you're adding an identity to the device, choose Add an identity and
then choose Access keys.

If you have already signed in using another identity, choose the menu icon and choose Switch
identity. Then choose Sign in as a different identity and then Access keys.

3. On the Access keys page, enter your information:

• Access key ID – Enter your access key ID.

• Secret access key – Enter your secret access key.

• Identity name – Enter the name of the identity that will appear in the mobile app. This does
not need to match your IAM user name.

• Identity PIN – Create a personal identification number (PIN) that you will use for future
sign-ins.

Note

If you enable biometrics for the AWS mobile app, you will be prompted to use your
fingerprint or facial recognition for verification instead of the PIN. If the biometrics
fail, you might be prompted for the PIN instead.

4. Choose Verify and add keys.

You can now access a select set of your resources using the mobile app.

Related information

The following topics provide guidance for setting up the AWS SDKs and the AWS CLI to use access
keys:

Access keys 217

AWS Identity and Access Management User Guide

• Set AWS credentials and Region in the AWS SDK for Java Developer Guide

• Using the SDK Store in the AWS SDK for .NET Developer Guide

• Providing Credentials to the SDK in the AWS SDK for PHP Developer Guide

• Configuration in the Boto 3 (AWS SDK for Python) documentation

• Using AWS Credentials in the AWS Tools for Windows PowerShell User Guide

• Configuration and credential files in the AWS Command Line Interface User Guide

• Granting access using an IAM role in the AWS SDK for .NET Developer Guide

• Configure IAM roles for Amazon EC2 in the AWS SDK for Java 2.x

Auditing access keys

You can review the AWS access keys in your code to determine whether the keys are from an
account that you own. You can pass an access key ID using the aws sts get-access-key-info
AWS CLI command or the GetAccessKeyInfo AWS API operation.

The AWS CLI and AWS API operations return the ID of the AWS account to which the access key
belongs. Access key IDs beginning with AKIA are long-term credentials for an IAM user or an AWS
account root user. Access key IDs beginning with ASIA are temporary credentials that are created
using AWS STS operations. If the account in the response belongs to you, you can sign in as the
root user and review your root user access keys. Then, you can pull a credentials report to learn
which IAM user owns the keys. To learn who requested the temporary credentials for an ASIA
access key, view the AWS STS events in your CloudTrail logs.

For security purposes, you can review AWS CloudTrail logs to learn who performed an action in
AWS. You can use the sts:SourceIdentity condition key in the role trust policy to require users
to specify an identity when they assume a role. For example, you can require that IAM users specify
their own user name as their source identity. This can help you determine which user performed a
specific action in AWS. For more information, see sts:SourceIdentity.

This operation does not indicate the state of the access key. The key might be active, inactive, or
deleted. Active keys might not have permissions to perform an operation. Providing a deleted
access key might return an error that the key doesn't exist.

Access keys 218

https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/setup-credentials.html
https://docs.aws.amazon.com/sdk-for-net/v3/developer-guide/sdk-store.html
https://docs.aws.amazon.com/aws-sdk-php/v2/guide/credentials.html
https://boto3.amazonaws.com/v1/documentation/api/latest/guide/quickstart.html#configuration
https://docs.aws.amazon.com/powershell/latest/userguide/specifying-your-aws-credentials.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-files.html
https://docs.aws.amazon.com/sdk-for-net/latest/developer-guide/net-dg-hosm.html
https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/java-dg-roles.html
https://docs.aws.amazon.com/cli/latest/reference/sts/get-access-key-info.html
https://docs.aws.amazon.com/STS/latest/APIReference/API_GetAccessKeyInfo.html

AWS Identity and Access Management User Guide

Resetting lost or forgotten passwords or access keys for AWS

Important

Having trouble signing in to AWS? Make sure that you're on the correct AWS sign-in page
for your type of user. If you are the AWS account root user (account owner), you can sign
in to AWS using the credentials that you set up when you created the AWS account. If you
are an IAM user, your account administrator can give you the credentials that you can use to
sign in to AWS. If you need to request support, do not use the feedback link on this page,
as the form is received by the AWS Documentation team, not AWS Support. Instead, on the
Contact Us page choose Still unable to log into your AWS account and then choose one of
the available support options.

On the main sign-in page, you must enter your email address to sign in as the root user, or enter
your account ID to sign in as an IAM user. You can provide your password only on the sign-in
page that matches your user type. For more information, see Signing in to the AWS Management
Console.

If you are on the correct sign-in page and lose or forget your passwords or access keys, you cannot
retrieve them from IAM. Instead, you can reset them using the following methods:

• AWS account root user password – If you forget your root user password, you can reset the
password from the AWS Management Console. For details, see the section called “Resetting a
lost or forgotten root user password” later in this topic.

• AWS account access keys – If you forget your account access keys, you can create new access
keys without disabling the existing access keys. If you are not using the existing keys, you can
delete those. For details, see Creating access keys for the root user and Deleting access keys for
the root user.

• IAM user password – If you are an IAM user and you forget your password, you must ask your
administrator to reset your password. To learn how an administrator can manage your password,
see Managing passwords for IAM users.

• IAM user access keys – If you are an IAM user and you forget your access keys, you will need
new access keys. If you have permission to create your own access keys, you can find instructions
for creating a new one at Managing access keys (console). If you do not have the required
permissions, you must ask your administrator to create new access keys. If you are still using your

Retrieving lost passwords or access keys 219

https://docs.aws.amazon.com/signin/latest/userguide/console-sign-in-tutorials.html
https://aws.amazon.com/contact-us/
https://docs.aws.amazon.com/signin/latest/userguide/console-sign-in-tutorials.html
https://docs.aws.amazon.com/signin/latest/userguide/console-sign-in-tutorials.html

AWS Identity and Access Management User Guide

old keys, ask your administrator not to delete the old keys. To learn how an administrator can
manage your access keys, see Managing access keys for IAM users.

Using multi-factor authentication (MFA) in AWS

For increased security, we recommend that you configure multi-factor authentication (MFA) to
help protect your AWS resources. You can enable MFA for the AWS account root user and IAM
users. When you enable MFA for the root user, it affects only the root user credentials. IAM users
in the account are distinct identities with their own credentials, and each identity has its own
MFA configuration. You can register up to eight MFA devices of any combination of the currently
supported MFA types with your AWS account root user and IAM users. For more information about
supported MFA types see What is MFA?. With multiple MFA devices, only one MFA device is needed
to sign in to the AWS Management Console or create a session through the AWS CLI as that user.

Note

We recommend that you require your human users to use temporary credentials when
accessing AWS. Have you considered using AWS IAM Identity Center? You can use IAM
Identity Center to centrally manage access to multiple AWS accounts and provide users
with MFA-protected, single sign-on access to all their assigned accounts from one place.
With IAM Identity Center, you can create and manage user identities in IAM Identity
Center or easily connect to your existing SAML 2.0 compatible identity provider. For more
information, see What is IAM Identity Center? in the AWS IAM Identity Center User Guide.

What is MFA?

MFA adds extra security because it requires users to provide unique authentication from an AWS
supported MFA mechanism in addition to their regular sign-in credentials when they access AWS
websites or services. AWS supports the following MFA types.

FIDO security

FIDO Certified hardware security keys are provided by third-party providers.

The FIDO Alliance maintains a list of all FIDO Certified products that are compatible with FIDO
specifications. FIDO authentication standards are based on public key cryptography, which

Multi-factor authentication (MFA) 220

https://twitter.com/AWSSecurityInfo
https://docs.aws.amazon.com/singlesignon/latest/userguide/what-is.html
https://fidoalliance.org/certification/fido-certified-products/

AWS Identity and Access Management User Guide

enables strong, phishing-resistant authentication that is more secure than passwords. FIDO
security keys support multiple root accounts and IAM users using a single security key. For more
information about enabling FIDO security keys, see Enabling a FIDO security key (console).

Virtual MFA devices

A virtual authenticator application that runs on a phone or other device and emulates a physical
device.

Virtual authenticator apps implement the time-based one-time password (TOTP) algorithm and
support multiple tokens on a single device. The user must type a valid code from the device on
a second webpage during sign-in. Each virtual MFA device assigned to a user must be unique. A
user can't type a code from another user's virtual MFA device to authenticate. Because they can
run on unsecured mobile devices, virtual MFA might not provide the same level of security as
FIDO security keys.

We do recommend that you use a virtual MFA device while waiting for hardware purchase
approval or while you wait for your hardware to arrive. For a list of a few supported apps that
you can use as virtual MFA devices, see Multi-Factor Authentication. For instructions on setting
up a virtual MFA device with AWS, see Enabling a virtual multi-factor authentication (MFA)
device (console).

Hardware TOTP token

A hardware device that generates a six-digit numeric code based on the time-based one-time
password (TOTP) algorithm.

The user must type a valid code from the device on a second webpage during sign-in. Each MFA
device assigned to a user must be unique. A user cannot type a code from another user's device
to be authenticated. For information on supported hardware MFA devices, see Multi-Factor
Authentication. For instructions on setting up a hardware TOTP token with AWS, see Enabling a
hardware TOTP token (console).

We recommend that you use FIDO security keys as an alternative to hardware TOTP devices.
FIDO security keys offer the benefits of no battery requirements, phishing resistance, and they
support multiple IAM or root users on a single device for enhanced security.

Note

SMS text message-based MFA – AWS ended support for enabling SMS multi-factor
authentication (MFA). We recommend that customers who have IAM users that use SMS

Multi-factor authentication (MFA) 221

https://datatracker.ietf.org/doc/html/rfc6238
http://aws.amazon.com/iam/details/mfa/
https://datatracker.ietf.org/doc/html/rfc6238
https://datatracker.ietf.org/doc/html/rfc6238
http://aws.amazon.com/iam/details/mfa/
http://aws.amazon.com/iam/details/mfa/

AWS Identity and Access Management User Guide

text message-based MFA switch to one of the following alternative methods: FIDO security
key, virtual (software-based) MFA device, or hardware MFA device. You can identify the
users in your account with an assigned SMS MFA device. To do so, go to the IAM console,
choose Users from the navigation pane, and look for users with SMS in the MFA column of
the table.

Topics

• Enabling MFA devices for users in AWS

• Checking MFA status

• Resynchronizing virtual and hardware MFA devices

• Deactivating MFA devices

• What if an MFA device is lost or stops working?

• Configuring MFA-protected API access

• Sample code: Requesting credentials with multi-factor authentication

Enabling MFA devices for users in AWS

The steps for configuring MFA depend on the type of MFA device you are using.

Topics

• General steps for enabling MFA devices

• Enabling a virtual multi-factor authentication (MFA) device (console)

• Enabling a FIDO security key (console)

• Enabling a hardware TOTP token (console)

• Enabling and managing virtual MFA devices (AWS CLI or AWS API)

General steps for enabling MFA devices

The following overview procedure describes how to set up and use MFA and provides links to
related information.

Multi-factor authentication (MFA) 222

AWS Identity and Access Management User Guide

Note

You can also watch this English-language video, How to Setup AWS Multi-Factor
Authentication (MFA) and AWS Budget Alerts, for more information.

1. Get an MFA device such as one of the following. You can enable up to eight MFA devices per AWS
account root user or IAM user of any combination of the following types.

• A virtual MFA device, which is a software app that is compliant with RFC 6238, a standards-
based TOTP (time-based one-time password) algorithm. You can install the app on a phone
or other device. For a list of a few supported apps that you can use as virtual MFA devices, see
Multi-Factor Authentication.

• A FIDO security key with an AWS supported configuration. The FIDO Alliance maintains a list
of all FIDO Certified products that are compatible with FIDO specifications.

• A hardware-based MFA device from a third-party provider, like a token device. These tokens
are used exclusively with AWS accounts. For more information, see Enabling a hardware TOTP
token (console). You can only use tokens that have their unique token seeds shared securely
with AWS. Token seeds are secret keys generated at the time of token production. Tokens
purchased from other sources will not function with IAM. To ensure compatibility, you must
purchase your hardware MFA device from one of the following links: OTP token or OTP display
card.

2. Enable the MFA device.

• Virtual or Hardware TOTP tokens –You can use AWS CLI commands or AWS API operations
to enable a virtual MFA device for an IAM user. You cannot enable an MFA device for the AWS
account root user with the AWS CLI, AWS API, Tools for Windows PowerShell, or any other
command line tool. However, you can use the AWS Management Console to enable an MFA
device for the root user.

• FIDO security keys – Root users and IAM users with FIDO security keys can enable from the
AWS Management Console only, not from the AWS CLI or AWS API.

For information about enabling each type of MFA device, see the following pages:

• Virtual MFA device: Enabling a virtual multi-factor authentication (MFA) device (console)

• FIDO security key: Enabling a FIDO security key (console)

• Hardware TOTP token: Enabling a hardware TOTP token (console)

3. Enable Multiple MFA devices (recommended)
Multi-factor authentication (MFA) 223

https://www.youtube.com/watch?v=e6A7z7FqQDE
https://www.youtube.com/watch?v=e6A7z7FqQDE
https://datatracker.ietf.org/doc/html/rfc6238
https://datatracker.ietf.org/doc/html/rfc6238
http://aws.amazon.com/iam/details/mfa/
https://fidoalliance.org/certification/fido-certified-products/
https://www.amazon.com/SafeNet-IDProve-Time-based-6-Digit-Services/dp/B002CRN5X8
https://www.amazon.com/SafeNet-IDProve-Card-Amazon-Services/dp/B00J4NGUO4
https://www.amazon.com/SafeNet-IDProve-Card-Amazon-Services/dp/B00J4NGUO4

AWS Identity and Access Management User Guide

• We recommend that you enable multiple MFA devices to the AWS account root user and IAM
users in your AWS accounts. This allows you to raise the security bar in your AWS accounts and
simplify managing access to highly privileged users, such as the AWS account root user.

• You can register up to eight MFA devices of any combination of the currently supported MFA
types with your AWS account root user and IAM users. With multiple MFA devices, you only
need one MFA device to sign in to the AWS Management Console or create a session through
the AWS CLI as that user. An IAM user must authenticate with an existing MFA device to enable
or disable an additional MFA device.

• In the event of a lost, stolen, or inaccessible MFA device you can use one of the remaining MFA
devices to access the AWS account without performing the AWS account recovery procedure. If
an MFA device is lost or stolen, it should be disassociated from the IAM principal with which it
is associated.

• The use of multiple MFAs allows your employees in geographically dispersed locations or
working remotely to use hardware-based MFA to access AWS without having to coordinate the
physical exchange of a single hardware device between employees.

• The use of additional MFA devices for IAM principals allows you to use one or more MFAs for
everyday usage, while also maintaining physical MFA devices in a secure physical location such
as a vault or safe for backup and redundancy.

4. Use the MFA device when you log in to or access AWS resources. Note the following:

• FIDO security keys – To access an AWS website, enter your credentials and then tap the FIDO
security key when prompted.

• Virtual MFA devices and hardware TOTP tokens – To access an AWS website, you need an
MFA code from the device in addition to your user name and password.

To access MFA-protected API operations, you need the following:

• An MFA code

• The identifier for the MFA device (the device serial number of a physical device or the ARN
of a virtual device defined in AWS)

• The usual access key ID and secret access key

Notes

• You cannot pass the MFA information for a FIDO security key to AWS STS API
operations to request temporary credentials.

Multi-factor authentication (MFA) 224

https://aws.amazon.com/iam/features/mfa/
https://aws.amazon.com/iam/features/mfa/

AWS Identity and Access Management User Guide

• You cannot use AWS CLI commands or AWS API operations to enable FIDO security
keys.

• You cannot use the same name for more than one root or IAM MFA device.

For more information, see Using MFA devices with your IAM sign-in page.

Enabling a virtual multi-factor authentication (MFA) device (console)

You can use a phone or other device as a virtual multi-factor authentication (MFA) device. To do
this, install a mobile app that is compliant with RFC 6238, a standards-based TOTP (time-based
one-time password) algorithm. These apps generate a six-digit authentication code. Because they
can run on unsecured mobile devices, virtual MFA might not provide the same level of security as
FIDO security keys. We do recommend that you use a virtual MFA device while waiting for hardware
purchase approval or while you wait for your hardware to arrive.

Most virtual MFA apps support creating multiple virtual devices, allowing you to use the same app
for multiple AWS accounts or users. You can register up to eight MFA devices of any combination of
the currently supported MFA types with your AWS account root user and IAM users. With multiple
MFA devices, you only need one MFA device to sign in to the AWS Management Console or create a
session through the AWS CLI as that user. We recommend that you register multiple MFA devices.
For authenticator applications, we also recommend enabling the cloud backup or sync feature in
those apps to help you avoid losing access to your account if you lose or break your device with the
authenticator apps.

For a list of virtual MFA apps that you can use, see Multi-Factor Authentication. AWS requires a
virtual MFA app that produces a six-digit OTP.

Topics

• Permissions required

• Enable a virtual MFA device for an IAM user (console)

• Replace a virtual MFA device

Permissions required

To manage virtual MFA devices for your IAM user, you must have the permissions from the
following policy: AWS: Allows MFA-authenticated IAM users to manage their own MFA device on
the Security credentials page.

Multi-factor authentication (MFA) 225

https://datatracker.ietf.org/doc/html/rfc6238
https://datatracker.ietf.org/doc/html/rfc6238
https://aws.amazon.com/iam/features/mfa/
http://aws.amazon.com/iam/details/mfa/

AWS Identity and Access Management User Guide

Enable a virtual MFA device for an IAM user (console)

You can use IAM in the AWS Management Console to enable and manage a virtual MFA device
for an IAM user in your account. You can attach tags to your IAM resources, including virtual MFA
devices, to identify, organize, and control access to them. You can tag virtual MFA devices only
when you use the AWS CLI or AWS API. To enable and manage an MFA device using the AWS CLI
or AWS API, see Enabling and managing virtual MFA devices (AWS CLI or AWS API). For more
information about tagging IAM resources, see Tagging IAM resources.

Note

You must have physical access to the hardware that will host the user's virtual MFA
device in order to configure MFA. For example, you might configure MFA for a user who
will use a virtual MFA device running on a smartphone. In that case, you must have the
smartphone available in order to finish the wizard. Because of this, you might want to let
users configure and manage their own virtual MFA devices. In that case, you must grant
users the permissions to perform the necessary IAM actions. For more information and for
an example of an IAM policy that grants these permissions, see the IAM tutorial: Permit
users to manage their credentials and MFA settings and example policy AWS: Allows MFA-
authenticated IAM users to manage their own MFA device on the Security credentials page.

To enable a virtual MFA device for an IAM user (console)

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. In the navigation pane, choose Users.

3. In the Users list, choose the name of the IAM user.

4. Choose the Security Credentials tab. Under Multi-factor authentication (MFA), choose Assign
MFA device.

5. In the wizard, type a Device name, choose Authenticator app, and then choose Next.

IAM generates and displays configuration information for the virtual MFA device, including
a QR code graphic. The graphic is a representation of the "secret configuration key" that is
available for manual entry on devices that do not support QR codes.

6. Open your virtual MFA app. For a list of apps that you can use for hosting virtual MFA devices,
see Multi-Factor Authentication.

Multi-factor authentication (MFA) 226

https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/
http://aws.amazon.com/iam/details/mfa/

AWS Identity and Access Management User Guide

If the virtual MFA app supports multiple virtual MFA devices or accounts, choose the option to
create a new virtual MFA device or account.

7. Determine whether the MFA app supports QR codes, and then do one of the following:

• From the wizard, choose Show QR code, and then use the app to scan the QR code. For
example, you might choose the camera icon or choose an option similar to Scan code, and
then use the device's camera to scan the code.

• From the wizard, choose Show secret key, and then type the secret key into your MFA app.

When you are finished, the virtual MFA device starts generating one-time passwords.

8. On the Set up device page, in the MFA code 1 box, type the one-time password that currently
appears in the virtual MFA device. Wait up to 30 seconds for the device to generate a new one-
time password. Then type the second one-time password into the MFA code 2 box. Choose
Add MFA.

Important

Submit your request immediately after generating the codes. If you generate the codes
and then wait too long to submit the request, the MFA device successfully associates
with the user but the MFA device is out of sync. This happens because time-based one-
time passwords (TOTP) expire after a short period of time. If this happens, you can
resync the device.

The virtual MFA device is now ready for use with AWS. For information about using MFA with the
AWS Management Console, see Using MFA devices with your IAM sign-in page.

Replace a virtual MFA device

You can register up to eight MFA devices of any combination of the currently supported MFA types
with your AWS account root user and IAM users. If the user loses a device or needs to replace it for
any reason, you must first deactivate the old device. Then you can add the new device for the user.

• To deactivate the device currently associated with another IAM user, see Deactivating MFA
devices.

• To add a replacement virtual MFA device for another IAM user, follow the steps in the procedure
Enable a virtual MFA device for an IAM user (console) above.

Multi-factor authentication (MFA) 227

https://aws.amazon.com/iam/features/mfa/

AWS Identity and Access Management User Guide

• To add a replacement virtual MFA device for the AWS account root user, follow the steps in the
procedure Enable a virtual MFA device for your AWS account root user (console).

Enabling a FIDO security key (console)

FIDO security keys are a type of multi-factor authentication (MFA) device that you can use to
protect your AWS resources. You plug your FIDO security key into a USB port on your computer
and enable it using the instructions that follow. After you enable it, you tap it when prompted to
securely complete the sign-in process. If you already use a FIDO security key with other services,
and it has an AWS supported configuration (for example, the YubiKey 5 Series from Yubico), you
can also use it with AWS. Otherwise, you need to purchase a FIDO security key if you want to
use WebAuthn for MFA in AWS. For specifications and purchase information, see Multi-Factor
Authentication.

FIDO2 is an open authentication standard and an extension of FIDO U2F, offering the same high
level of security based on public key cryptography. FIDO2 consists of the W3C Web Authentication
specification (WebAuthn API) and the FIDO Alliance Client-to-Authenticator Protocol (CTAP),
an application layer protocol. CTAP enables communication between client or platform, like a
browser or operating system, with an external authenticator. When you enable a FIDO Certified
authenticator in AWS, the FIDO security key creates a new key pair for use with only AWS. First,
you enter your credentials. When prompted, you tap the FIDO security key, which responds to the
authentication challenge issued by AWS. To learn more about the FIDO2 standard, see the FIDO2
Project.

You can register up to eight MFA devices of any combination of the currently supported MFA types
with your AWS account root user and IAM users. With multiple MFA devices, you only need one
MFA device to sign in to the AWS Management Console or create a session through the AWS CLI as
that user. We recommend that you register multiple MFA devices. For example, you can register a
built-in authenticator and also register a security key that you keep in a physically secure location.
If you’re unable to use your built-in authenticator, then you can use your registered security key.
For authenticator applications, we also recommend enabling the cloud backup or sync feature in
those apps to help you avoid losing access to your account if you lose or break your device with the
authenticator apps.

Note

We recommend that you require your human users to use temporary credentials when
accessing AWS. Your users can federate into AWS with an identity provider where they

Multi-factor authentication (MFA) 228

http://aws.amazon.com/iam/details/mfa/
http://aws.amazon.com/iam/details/mfa/
https://en.wikipedia.org/wiki/FIDO2_Project
https://en.wikipedia.org/wiki/FIDO2_Project
https://aws.amazon.com/iam/features/mfa/

AWS Identity and Access Management User Guide

authenticate with their corporate credentials and MFA configurations. To manage access to
AWS and business applications, we recommend that you use IAM Identity Center. For more
information, see the The IAM Identity Center User Guide.

Topics

• Permissions required

• Enable a FIDO security key for your own IAM user (console)

• Enable a FIDO security key for another IAM user (console)

• Replace a FIDO security key

• Supported configurations for using FIDO security keys

Permissions required

To manage a FIDO security key for your own IAM user while protecting sensitive MFA-related
actions, you must have the permissions from the following policy:

Note

The ARN values are static values and are not an indicator of what protocol was used to
register the authenticator. We have deprecated U2F, so all new implementations use
WebAuthn.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "AllowManageOwnUserMFA",
 "Effect": "Allow",
 "Action": [
 "iam:DeactivateMFADevice",
 "iam:EnableMFADevice",
 "iam:GetUser",
 "iam:ListMFADevices",
 "iam:ResyncMFADevice"
],

Multi-factor authentication (MFA) 229

https://docs.aws.amazon.com/singlesignon/latest/userguide/what-is.html

AWS Identity and Access Management User Guide

 "Resource": "arn:aws:iam::*:user/${aws:username}"
 },
 {
 "Sid": "DenyAllExceptListedIfNoMFA",
 "Effect": "Deny",
 "NotAction": [
 "iam:EnableMFADevice",
 "iam:GetUser",
 "iam:ListMFADevices",
 "iam:ResyncMFADevice"
],
 "Resource": "*",
 "Condition": {
 "BoolIfExists": {
 "aws:MultiFactorAuthPresent": "false"
 }
 }
 }
]
}

Enable a FIDO security key for your own IAM user (console)

You can enable a FIDO security key for your own IAM user from the AWS Management Console
only, not from the AWS CLI or AWS API.

Note

Before you can enable a FIDO security key, you must have physical access to the device.

Note

You should not choose any of the available options on the Google Chrome pop-up that asks
to Verify your identity with amazon.com. You only need to tap on the security key.

To enable a FIDO security key for your own IAM user (console)

1. Use your AWS account ID or account alias, your IAM user name, and your password to sign in to
the IAM console.

Multi-factor authentication (MFA) 230

https://console.aws.amazon.com/iam

AWS Identity and Access Management User Guide

Note

For your convenience, the AWS sign-in page uses a browser cookie to remember your
IAM user name and account information. If you previously signed in as a different user,
choose Sign in to a different account near the bottom of the page to return to the
main sign-in page. From there, you can type your AWS account ID or account alias to
be redirected to the IAM user sign-in page for your account.

To get your AWS account ID, contact your administrator.

2. In the navigation bar on the upper right, choose your user name, and then choose Security
credentials.

3. On the AWS IAM credentials tab, in the Multi-factor authentication (MFA) section, choose
Assign MFA device.

4. In the wizard, type a Device name, choose Security Key, and then choose Next.

5. Insert the FIDO security key into your computer's USB port.

Multi-factor authentication (MFA) 231

AWS Identity and Access Management User Guide

6. Tap the FIDO security key.

The FIDO security key is ready for use with AWS. For information about using MFA with the AWS
Management Console, see Using MFA devices with your IAM sign-in page.

Enable a FIDO security key for another IAM user (console)

You can enable a FIDO security key for another IAM user from the AWS Management Console only,
not from the AWS CLI or AWS API.

To enable a FIDO security key for another IAM user (console)

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. In the navigation pane, choose Users.

3. Choose the name of the user for whom you want to enable MFA.

4. Choose the Security Credentials tab. Under Multi-factor authentication (MFA), choose Assign
MFA device.

5. In the wizard, type a Device name, choose Security Key, and then choose Next.

6. Insert the FIDO security key into your computer's USB port.

7. Tap the FIDO security key.

Multi-factor authentication (MFA) 232

https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/

AWS Identity and Access Management User Guide

The FIDO security key is ready for use with AWS. For information about using MFA with the AWS
Management Console, see Using MFA devices with your IAM sign-in page.

Replace a FIDO security key

You can have up to eight MFA devices of any combination of the currently supported MFA types
assigned to a use at a time with your AWS account root user and IAM users. If the user loses a
FIDO authenticator or needs to replace it for any reason, you must first deactivate the old FIDO
authenticator. Then you can add a new MFA device for the user.

• To deactivate the device currently associated with an IAM user, see Deactivating MFA devices.

• To add a new FIDO security key for an IAM user, see Enable a FIDO security key for your own IAM
user (console).

If you don't have access to a new FIDO security key, you can enable a new virtual MFA device or
hardware TOTP token. See one of the following for instructions:

• Enabling a virtual multi-factor authentication (MFA) device (console)

• Enabling a hardware TOTP token (console)

Supported configurations for using FIDO security keys

You can use FIDO2 security keys as a multi-factor authentication (MFA) method with IAM using
currently supported configurations. These include FIDO2 devices supported by IAM and browsers
that support FIDO2. Before you register your FIDO2 device, check that you’re using the latest
browser and operating system (OS) version. Features may behave differently across different
browsers, authenticators, and OS clients. If your device registration fails on one browser, you can
try to register with another browser.

FIDO2 devices supported by AWS

IAM supports FIDO2 security devices that connect to your devices through USB, Bluetooth, or NFC.
We don't support platform authenticators such as TouchID, FaceID, or Windows Hello.

Multi-factor authentication (MFA) 233

https://aws.amazon.com/iam/features/mfa/

AWS Identity and Access Management User Guide

Note

AWS requires access to the physical USB port on your computer to verify your FIDO2
device. FIDO2 security keys will not work with a virtual machine, a remote connection, or a
browser's incognito mode.

The FIDO Alliance maintains a list of all FIDO2 products that are compatible with FIDO
specifications.

Browsers that support FIDO2

The availability of FIDO2 security devices that run in a web browser depends on the combination of
browser and operating system. The following browsers currently support the use of FIDO2 security
keys:

 macOS
10.15+

Windows 10 Linux iOS 14.5+ Android 7+

Chrome Yes Yes Yes Yes No

Safari Yes No No Yes No

Edge Yes Yes No Yes No

Firefox Yes Yes No Yes No

Note

Most Firefox versions that currently support FIDO2 don't enable support by default. For
instructions on enabling FIDO2 support in Firefox, see Troubleshooting FIDO security keys.

For more information about browser support for a FIDO2-certified device like YubiKey, see
Operating system and web browser support for FIDO2 and U2F.

Multi-factor authentication (MFA) 234

https://fidoalliance.org/certification/fido-certified-products/
https://support.yubico.com/hc/en-us/articles/360016615020-Operating-system-and-web-browser-support-for-FIDO2-and-U2F

AWS Identity and Access Management User Guide

Browser plugins

AWS supports only browsers that natively support FIDO2. AWS doesn't support using plugins to
add FIDO2 browser support. Some browser plugins are incompatible with the FIDO2 standard and
can cause unexpected results with FIDO2 security keys.

For information on disabling browser plugins and other troubleshooting tips, see I can't enable my
FIDO security key.

Device certifications

We capture and assign device-related certifications, such as FIPS validation and FIDO certification
level, only during the registration of a FIDO security key. Your device certification is retrieved from
the FIDO Alliance Metadata Service (MDS). If the certification status or level of your FIDO security
key changes, it will not be reflected in the device tags automatically. To update the certification
information of a device, register the device again to fetch the updated certification information.

AWS provides the following certification types as condition keys during device registration,
obtained from the FIDO MDS: FIPS-140-2, FIPS-140-3, and FIDO certification levels. You have the
ability to specify the registration of specific authenticators in their IAM policies, based on your
preferred certification type and level. For more information, see the policies below.

Example policies for device certifications

The following use cases show sample policies that allow you to register MFA devices with FIPS
certifications.

Topics

• Use case 1: Allow registering only devices that have FIPS-140-2 L2 certifications

• Use case 2: Allow registering devices that have FIPS-140-2 L2 and FIDO L1 certifications

• Use case 3: Allow registering devices that have either FIPS-140-2 L2 or FIPS-140-3 L2
certifications

• Use case 4: Allow registering devices that have FIPS-140-2 L2 certification and support other
MFA types like virtual authenticators and hardware TOTP

Use case 1: Allow registering only devices that have FIPS-140-2 L2 certifications

{
 "Version": "2012-10-17",

Multi-factor authentication (MFA) 235

https://fidoalliance.org/metadata/

AWS Identity and Access Management User Guide

 "Statement": [{
 "Effect": "Allow",
 "Action": "iam:EnableMFADevice",
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "iam:RegisterSecurityKey" : "Create"
 }
 }
 },
 {
 "Effect": "Allow",
 "Action": "iam:EnableMFADevice",
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "iam:RegisterSecurityKey" : "Activate",
 "iam:FIDO-FIPS-140-2-certification": "L2"
 }
 }
 }
]
}

Use case 2: Allow registering devices that have FIPS-140-2 L2 and FIDO L1 certifications

{
 "Version": "2012-10-17",
 "Statement": [{
 "Effect": "Allow",
 "Action": "iam:EnableMFADevice",
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "iam:RegisterSecurityKey" : "Create"
 }
 }
 },
 {
 "Effect": "Allow",
 "Action": "iam:EnableMFADevice",
 "Resource": "*",
 "Condition": {

Multi-factor authentication (MFA) 236

AWS Identity and Access Management User Guide

 "StringEquals": {
 "iam:RegisterSecurityKey" : "Activate",
 "iam:FIDO-FIPS-140-2-certification": "L2",
 "iam:FIDO-certification": "L1"
 }
 }
 }
]
}

Use case 3: Allow registering devices that have either FIPS-140-2 L2 or FIPS-140-3 L2
certifications

{
 "Version": "2012-10-17",
 "Statement": [{
 "Effect": "Allow",
 "Action": "iam:EnableMFADevice",
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "iam:RegisterSecurityKey" : "Create"
 }
 }
 },
 {
 "Effect": "Allow",
 "Action": "iam:EnableMFADevice",
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "iam:RegisterSecurityKey" : "Activate",
 "iam:FIDO-FIPS-140-2-certification": "L2"
 }
 }
 },
 {
 "Effect": "Allow",
 "Action": "iam:EnableMFADevice",
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "iam:RegisterSecurityKey" : "Activate",

Multi-factor authentication (MFA) 237

AWS Identity and Access Management User Guide

 "iam:FIDO-FIPS-140-3-certification": "L2"
 }
 }
 }
]
}

Use case 4: Allow registering devices that have FIPS-140-2 L2 certification and support other
MFA types like virtual authenticators and hardware TOTP

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "iam:EnableMFADevice",
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "iam:RegisterSecurityKey": "Create"
 }
 }
 },
 {
 "Effect": "Allow",
 "Action": "iam:EnableMFADevice",
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "iam:RegisterSecurityKey": "Activate",
 "iam:FIPS-140-2-certification": "L2"
 }
 }
 },
 {
 "Effect": "Allow",
 "Action": "iam:EnableMFADevice",
 "Resource": "*",
 "Condition": {
 "Null": {
 "iam:RegisterSecurityKey": "true"
 }
 }

Multi-factor authentication (MFA) 238

AWS Identity and Access Management User Guide

 }
]
}

AWS CLI and AWS API

AWS supports using FIDO2 security keys only in the AWS Management Console. Using FIDO2
security keys for MFA is not supported in the AWS CLI and AWS API, or for access to MFA-protected
API operations.

Additional resources

• For more information on using FIDO2 security keys in AWS, see Enabling a FIDO security key
(console).

• For help with troubleshooting FIDO2 security keys in AWS, see Troubleshooting FIDO security
keys.

• For general industry information on FIDO2 support, see FIDO2 Project.

Enabling a hardware TOTP token (console)

A hardware TOTP token generates a six-digit numeric code based upon a time-based one-time
password (TOTP) algorithm. The user must type a valid code from the device when prompted
during the sign-in process. Each MFA device assigned to a user must be unique; a user cannot
type a code from another user's device to be authenticated. MFA devices cannot be shared across
accounts or users.

Hardware TOTP tokens and FIDO security keys are both physical devices that you purchase.
Hardware MFA devices generate TOTP codes for authentication when you sign in to AWS. They
rely on batteries, which may need replacement and resynchronization with AWS over time. FIDO
security keys, which utilize public key cryptography, do not require batteries and offer a seamless
authentication process. We recommend using FIDO security keys for their phishing resistance,
which provides a more secure alternative to TOTP devices. Additionally, FIDO security keys can
support multiple IAM or root users on the same device, enhancing their utility for account security.
For specifications and purchase information for both device types, see Multi-Factor Authentication.

You can enable a hardware TOTP token for an IAM user from the AWS Management Console, the
command line, or the IAM API. To enable an MFA device for your AWS account root user, see Enable
a hardware TOTP token for the AWS account root user (console).

Multi-factor authentication (MFA) 239

https://docs.aws.amazon.com/cli/latest/userguide/
https://aws.amazon.com/tools/
https://en.wikipedia.org/wiki/FIDO2_Project
http://aws.amazon.com/iam/details/mfa/

AWS Identity and Access Management User Guide

You can register up to eight MFA devices of any combination of the currently supported MFA types
with your AWS account root user and IAM users. With multiple MFA devices, you only need one MFA
device to sign in to the AWS Management Console or create a session through the AWS CLI as that
user.

Important

We recommend that you enable multiple MFA devices for your users for continued access to
your account in case of a lost or inaccessible MFA device.

Note

If you want to enable the MFA device from the command line, use aws iam enable-mfa-
device. To enable the MFA device with the IAM API, use the EnableMFADevice operation.

Topics

• Permissions required

• Enable a hardware TOTP token for your own IAM user (console)

• Enable a hardware TOTP token for another IAM user (console)

• Replace a physical MFA device

Permissions required

To manage a hardware TOTP token for your own IAM user while protecting sensitive MFA-related
actions, you must have the permissions from the following policy:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "AllowManageOwnUserMFA",
 "Effect": "Allow",
 "Action": [
 "iam:DeactivateMFADevice",
 "iam:EnableMFADevice",
 "iam:GetUser",

Multi-factor authentication (MFA) 240

https://aws.amazon.com/iam/features/mfa/
https://docs.aws.amazon.com/cli/latest/reference/iam/enable-mfa-device.html
https://docs.aws.amazon.com/cli/latest/reference/iam/enable-mfa-device.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_EnableMFADevice.html

AWS Identity and Access Management User Guide

 "iam:ListMFADevices",
 "iam:ResyncMFADevice"
],
 "Resource": "arn:aws:iam::*:user/${aws:username}"
 },
 {
 "Sid": "DenyAllExceptListedIfNoMFA",
 "Effect": "Deny",
 "NotAction": [
 "iam:EnableMFADevice",
 "iam:GetUser",
 "iam:ListMFADevices",
 "iam:ResyncMFADevice"
],
 "Resource": "arn:aws:iam::*:user/${aws:username}",
 "Condition": {
 "BoolIfExists": {
 "aws:MultiFactorAuthPresent": "false"
 }
 }
 }
]
}

Enable a hardware TOTP token for your own IAM user (console)

You can enable your own hardware TOTP token from the AWS Management Console.

Note

Before you can enable a hardware TOTP token, you must have physical access to the device.

To enable a hardware TOTP token for your own IAM user (console)

1. Use your AWS account ID or account alias, your IAM user name, and your password to sign in to
the IAM console.

Note

For your convenience, the AWS sign-in page uses a browser cookie to remember your
IAM user name and account information. If you previously signed in as a different user,

Multi-factor authentication (MFA) 241

https://console.aws.amazon.com/iam

AWS Identity and Access Management User Guide

choose Sign in to a different account near the bottom of the page to return to the
main sign-in page. From there, you can type your AWS account ID or account alias to
be redirected to the IAM user sign-in page for your account.

To get your AWS account ID, contact your administrator.

2. In the navigation bar on the upper right, choose your user name, and then choose Security
credentials.

3. On the AWS IAM credentials tab, in the Multi-factor authentication (MFA) section, choose
Assign MFA device.

4. In the wizard, type a Device name, choose Hardware TOTP token, and then choose Next.

5. Type the device serial number. The serial number is usually on the back of the device.

6. In the MFA code 1 box, type the six-digit number displayed by the MFA device. You might need
to press the button on the front of the device to display the number.

7. Wait 30 seconds while the device refreshes the code, and then type the next six-digit number
into the MFA code 2 box. You might need to press the button on the front of the device again
to display the second number.

Multi-factor authentication (MFA) 242

AWS Identity and Access Management User Guide

8. Choose Add MFA.

Important

Submit your request immediately after generating the authentication codes. If you
generate the codes and then wait too long to submit the request, the MFA device
successfully associates with the user but the MFA device becomes out of sync. This
happens because time-based one-time passwords (TOTP) expire after a short period of
time. If this happens, you can resync the device.

The device is ready for use with AWS. For information about using MFA with the AWS Management
Console, see Using MFA devices with your IAM sign-in page.

Enable a hardware TOTP token for another IAM user (console)

You can enable a hardware TOTP token for another IAM user from the AWS Management Console.

To enable a hardware TOTP token for another IAM user (console)

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. In the navigation pane, choose Users.

3. Choose the name of the user for whom you want to enable MFA.

4. Choose the Security Credentials tab. Under Multi-factor authentication (MFA), choose Assign
MFA device.

5. In the wizard, type a Device name, choose Hardware TOTP token, and then choose Next.

6. Type the device serial number. The serial number is usually on the back of the device.

7. In the MFA code 1 box, type the six-digit number displayed by the MFA device. You might need
to press the button on the front of the device to display the number.

8. Wait 30 seconds while the device refreshes the code, and then type the next six-digit number
into the MFA code 2 box. You might need to press the button on the front of the device again
to display the second number.

Multi-factor authentication (MFA) 243

https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/

AWS Identity and Access Management User Guide

9. Choose Add MFA.

Important

Submit your request immediately after generating the authentication codes. If you
generate the codes and then wait too long to submit the request, the MFA device
successfully associates with the user but the MFA device becomes out of sync. This
happens because time-based one-time passwords (TOTP) expire after a short period of
time. If this happens, you can resync the device.

The device is ready for use with AWS. For information about using MFA with the AWS Management
Console, see Using MFA devices with your IAM sign-in page.

Replace a physical MFA device

You can have up to eight MFA devices of any combination of the currently supported MFA types
assigned to a user at a time with your AWS account root user and IAM users. If the user loses a
device or needs to replace it for any reason, you must first deactivate the old device. Then you can
add the new device for the user.

• To deactivate the device currently associated with a user, see Deactivating MFA devices.

• To add a replacement hardware TOTP token for an IAM user, follow the steps in the procedure
Enable a hardware TOTP token for another IAM user (console) earlier in this topic.

• To add a replacement hardware TOTP token for the AWS account root user, follow the steps in
the procedure Enable a hardware TOTP token for the AWS account root user (console) earlier in
this topic.

Enabling and managing virtual MFA devices (AWS CLI or AWS API)

You can use AWS CLI commands or AWS API operations to enable a virtual MFA device for an IAM
user. You cannot enable an MFA device for the AWS account root user with the AWS CLI, AWS API,
Tools for Windows PowerShell, or any other command line tool. However, you can use the AWS
Management Console to enable an MFA device for the root user.

When you enable an MFA device from the AWS Management Console, the console performs
multiple steps for you. If you instead create a virtual device using the AWS CLI, Tools for Windows
PowerShell, or AWS API, then you must perform the steps manually and in the correct order. For

Multi-factor authentication (MFA) 244

https://aws.amazon.com/iam/features/mfa/

AWS Identity and Access Management User Guide

example, to create a virtual MFA device, you must create the IAM object and extract the code
as either a string or a QR code graphic. Then you must sync the device and associate it with an
IAM user. See the Examples section of New-IAMVirtualMFADevice for more details. For a physical
device, you skip the creation step and go directly to syncing the device and associating it with the
user.

You can attach tags to your IAM resources, including virtual MFA devices, to identify, organize, and
control access to them. You can tag virtual MFA devices only when you use the AWS CLI or AWS
API.

An IAM user using the SDK or CLI can enable an additional MFA device by calling
EnableMFADevice or deactivate an existing MFA device by calling DeactivateMFADevice.
To do this successfully, they must first call GetSessionToken and submit MFA codes with an
existing MFA device. This call returns temporary security credentials that can then be used to
sign API operations that require MFA authentication. For an example request and response, see
GetSessionToken—temporary credentials for users in untrusted environments.

To create the virtual device entity in IAM to represent a virtual MFA device

These commands provide an ARN for the device that is used in place of a serial number in many of
the following commands.

• AWS CLI: aws iam create-virtual-mfa-device

• AWS API: CreateVirtualMFADevice

To enable an MFA device for use with AWS

These commands synchronize the device with AWS and associate it with a user. If the device is
virtual, use the ARN of the virtual device as the serial number.

Important

Submit your request immediately after generating the authentication codes. If you
generate the codes and then wait too long to submit the request, the MFA device
successfully associates with the user but the MFA device becomes out of sync. This happens
because time-based one-time passwords (TOTP) expire after a short period of time. If this
happens, you can resynchronize the device using the commands described below.

Multi-factor authentication (MFA) 245

https://docs.aws.amazon.com/powershell/latest/reference/Index.html?page=New-IAMVirtualMFADevice.html&tocid=New-IAMVirtualMFADevice
https://docs.aws.amazon.com/IAM/latest/APIReference/API_EnableMFADevice.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_DeactivateMFADevice.html
https://docs.aws.amazon.com/STS/latest/APIReference/API_GetSessionToken.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_request.html#api_getsessiontoken
https://docs.aws.amazon.com/cli/latest/reference/iam/create-virtual-mfa-device.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_CreateVirtualMFADevice.html

AWS Identity and Access Management User Guide

• AWS CLI: aws iam enable-mfa-device

• AWS API: EnableMFADevice

To deactivate a device

Use these commands to disassociate the device from the user and deactivate it. If the device is
virtual, use the ARN of the virtual device as the serial number. You must also separately delete the
virtual device entity.

• AWS CLI: aws iam deactivate-mfa-device

• AWS API: DeactivateMFADevice

To list virtual MFA device entities

Use these commands to list virtual MFA device entities.

• AWS CLI: aws iam list-virtual-mfa-devices

• AWS API: ListVirtualMFADevices

To tag a virtual MFA device

Use these commands to tag a virtual MFA device.

• AWS CLI: aws iam tag-mfa-device

• AWS API: TagMFADevice

To list tags for a virtual MFA device

Use these commands to list the tags attached to a virtual MFA device.

• AWS CLI: aws iam list-mfa-device-tags

• AWS API: ListMFADeviceTags

To untag a virtual MFA device

Use these commands to remove tags attached to a virtual MFA device.

• AWS CLI: aws iam untag-mfa-device

Multi-factor authentication (MFA) 246

https://docs.aws.amazon.com/cli/latest/reference/iam/enable-mfa-device.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_EnableMFADevice.html
https://docs.aws.amazon.com/cli/latest/reference/iam/deactivate-mfa-device.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_DeactivateMFADevice.html
https://docs.aws.amazon.com/cli/latest/reference/iam/list-virtual-mfa-devices.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_ListVirtualMFADevices.html
https://docs.aws.amazon.com/cli/latest/reference/iam/tag-mfa-device.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_TagMFADevice.html
https://docs.aws.amazon.com/cli/latest/reference/iam/list-mfa-device-tags.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_ListMFADeviceTags.html
https://docs.aws.amazon.com/cli/latest/reference/iam/untag-mfa-device.html

AWS Identity and Access Management User Guide

• AWS API: UntagMFADevice

To resynchronize an MFA device

Use these commands if the device is generating codes that are not accepted by AWS. If the device
is virtual, use the ARN of the virtual device as the serial number.

• AWS CLI: aws iam resync-mfa-device

• AWS API: ResyncMFADevice

To delete a virtual MFA device entity in IAM

After the device is disassociated from the user, you can delete the device entity.

• AWS CLI: aws iam delete-virtual-mfa-device

• AWS API: DeleteVirtualMFADevice

To recover a virtual MFA device that is lost or not working

Sometimes, a user's device that hosts the virtual MFA app is lost, replaced, or not working. When
this happens, the user can't recover it on their own. The user must contact an administrator to
deactivate the device. For more information, see What if an MFA device is lost or stops working?.

Checking MFA status

Use the IAM console to check whether an AWS account root user or IAM user has a valid MFA device
enabled.

To check the MFA status of a root user

1. Sign in to the AWS Management Console with your root user credentials and then open the
IAM console at https://console.aws.amazon.com/iam/.

2. In the navigation bar on the upper right, choose your user name, and then choose Security
credentials.

3. Check under Multi-factor Authentication (MFA) to see whether MFA
is enabled or disabled. If MFA has not been activated, an alert symbol

()
is displayed.

Multi-factor authentication (MFA) 247

https://docs.aws.amazon.com/IAM/latest/APIReference/API_UntagMFADevice.html
https://docs.aws.amazon.com/cli/latest/reference/iam/resync-mfa-device.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_ResyncMFADevice.html
https://docs.aws.amazon.com/cli/latest/reference/iam/delete-virtual-mfa-device.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_DeleteVirtualMFADevice.html
https://console.aws.amazon.com/iam/

AWS Identity and Access Management User Guide

If you want to enable MFA for the account, see one of the following:

• Enable a virtual MFA device for your AWS account root user (console)

• Enable a FIDO security key for the AWS account root user (console)

• Enable a hardware TOTP token for the AWS account root user (console)

To check the MFA status of IAM users

1. Open the IAM console at https://console.aws.amazon.com/iam/.

2. In the navigation pane, choose Users.

3. If necessary, add the MFA column to the users table by completing the following steps:

a. Above the table on the far right, choose the settings icon

().

b. In Manage Columns, select MFA.

c. (Optional) Clear the check box for any column headings that you do not want to appear in
the users table.

d. Choose Close to return to the list of users.

4. The MFA column tells you about the MFA device that is enabled. If no MFA device is active for
the user, the console displays None. If the user has an MFA device enabled, the MFA column
shows the type of device that is enabled with a value of Virtual, Security key, Hardware, or
SMS.

Note

AWS ended support for enabling SMS multi-factor authentication (MFA). We
recommend that customers who have IAM users that use SMS text message-based
MFA switch to one of the following alternative methods: virtual (software-based) MFA
device, FIDO security key, or hardware MFA device. You can identify the users in your
account with an assigned SMS MFA device. To do so, go to the IAM console, choose
Users from the navigation pane, and look for users with SMS in the MFA column of the
table.

5. To view additional information about the MFA device for a user, choose the name of the user
whose MFA status you want to check. Then choose the Security credentials tab.

Multi-factor authentication (MFA) 248

https://console.aws.amazon.com/iam/

AWS Identity and Access Management User Guide

6. If no MFA device is active for the user, the console displays No MFA devices. Assign an MFA
device to improve the security of your AWS environment in the Multi-factor authentication
(MFA) section. If the user has MFA devices enabled, the Multi-factor authentication (MFA)
section shows details about the devices:

• The device name

• The device type

• The identifier for the device, such as a serial number for a physical device or the ARN in AWS
for a virtual device

• When the device was created

To remove or resync a device, choose the radio button next to the device and choose Remove or
Resync.

For more information on enabling MFA, see the following:

• Enabling a virtual multi-factor authentication (MFA) device (console)

• Enabling a FIDO security key (console)

• Enabling a hardware TOTP token (console)

Resynchronizing virtual and hardware MFA devices

You can use AWS to resynchronize your virtual and hardware multi-factor authentication (MFA)
devices. If your device is not synchronized when you try to use it, the sign-in attempt fails and IAM
prompts you to resynchronize the device.

Note

FIDO security keys do not go out of sync. If a FIDO security key is lost or broken, you can
deactivate it. For instructions on deactivating any MFA device type, see To deactivate an
MFA device for another IAM user (console).

As an AWS administrator, you can resynchronize your IAM users' virtual and hardware MFA devices
if they get out of synchronization.

Multi-factor authentication (MFA) 249

AWS Identity and Access Management User Guide

If your AWS account root user MFA device is not working, you can resynchronize your device using
the IAM console with or without completing the sign-in process. If you aren’t able to successfully
resynchronize your device, you may need to de-associate and re-associate it. For more information
on how to do this, see Deactivating MFA devices and Enabling MFA devices for users in AWS.

Topics

• Permissions required

• Resynchronizing virtual and hardware MFA devices (IAM console)

• Resynchronizing virtual and hardware MFA devices (AWS CLI)

• Resynchronizing virtual and hardware MFA devices (AWS API)

Permissions required

To resynchronize virtual or hardware MFA devices for your own IAM user, you must have the
permissions from the following policy. This policy does not allow you to create or deactivate a
device.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "AllowListActions",
 "Effect": "Allow",
 "Action": [
 "iam:ListVirtualMFADevices"
],
 "Resource": "*"
 },
 {
 "Sid": "AllowUserToViewAndManageTheirOwnUserMFA",
 "Effect": "Allow",
 "Action": [
 "iam:ListMFADevices",
 "iam:ResyncMFADevice"
],
 "Resource": "arn:aws:iam::*:user/${aws:username}"
 },
 {
 "Sid": "BlockAllExceptListedIfNoMFA",
 "Effect": "Deny",

Multi-factor authentication (MFA) 250

AWS Identity and Access Management User Guide

 "NotAction": [
 "iam:ListMFADevices",
 "iam:ListVirtualMFADevices",
 "iam:ResyncMFADevice"
],
 "Resource": "*",
 "Condition": {
 "BoolIfExists": {
 "aws:MultiFactorAuthPresent": "false"
 }
 }
 }
]
}

Resynchronizing virtual and hardware MFA devices (IAM console)

You can use the IAM console to resynchronize virtual and hardware MFA devices.

To resynchronize a virtual or hardware MFA device for your own IAM user (console)

1. Use your AWS account ID or account alias, your IAM user name, and your password to sign in to
the IAM console.

Note

For your convenience, the AWS sign-in page uses a browser cookie to remember your
IAM user name and account information. If you previously signed in as a different user,
choose Sign in to a different account near the bottom of the page to return to the
main sign-in page. From there, you can type your AWS account ID or account alias to
be redirected to the IAM user sign-in page for your account.

To get your AWS account ID, contact your administrator.

2. In the navigation bar on the upper right, choose your user name, and then choose Security
credentials.

Multi-factor authentication (MFA) 251

https://console.aws.amazon.com/iam

AWS Identity and Access Management User Guide

3. On the AWS IAM credentials tab, in the Multi-factor authentication (MFA) section, choose
the radio button next to the MFA device and choose Resync.

4. Type the next two sequentially generated codes from the device into MFA code 1 and MFA
code 2. Then choose Resync.

Important

Submit your request immediately after generating the codes. If you generate the codes
and then wait too long to submit the request, the request appears to work but the
device remains out of sync. This happens because time-based one-time passwords
(TOTP) expire after a short period of time.

To resynchronize a virtual or hardware MFA device for another IAM user (console)

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. In the navigation pane, choose Users, and then choose the name of the user whose MFA device
needs to be resynchronized.

3. Choose the Security credentials tab. In the Multi-factor authentication (MFA) section, choose
the radio button next to the MFA device and choose Resync.

Multi-factor authentication (MFA) 252

https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/

AWS Identity and Access Management User Guide

4. Type the next two sequentially generated codes from the device into MFA code 1 and MFA
code 2. Then choose Resync.

Important

Submit your request immediately after generating the codes. If you generate the codes
and then wait too long to submit the request, the request appears to work but the
device remains out of sync. This happens because time-based one-time passwords
(TOTP) expire after a short period of time.

To resynchronize your root user MFA before signing in (console)

1. On the Amazon Web Services Sign In With Authentication Device page, choose Having
problems with your authentication device? Click here.

Note

You might see different text, such as Sign in using MFA and Troubleshoot your
authentication device. However, the same features are provided.

2. In the Re-Sync With Our Servers section, type the next two sequentially generated codes from
the device into MFA code 1 and MFA code 2. Then choose Re-sync authentication device.

3. If necessary, type your password again and choose Sign in. Then complete the sign-in using
your MFA device.

To resynchronize your root user MFA device after signing in (console)

1. Sign in to the IAM console as the account owner by choosing Root user and entering your AWS
account email address. On the next page, enter your password.

Note

As the root user, you can't sign in to the Sign in as IAM user page. If you see the Sign
in as IAM user page, choose Sign in using root user email near the bottom of the
page. For help signing in as the root user, see Signing in to the AWS Management
Console as the root user in the AWS Sign-In User Guide.

Multi-factor authentication (MFA) 253

https://console.aws.amazon.com/iam/
https://docs.aws.amazon.com/signin/latest/userguide/introduction-to-%20%20%20%20%20%20%20%20%20%20root-user-sign-in-tutorial.html
https://docs.aws.amazon.com/signin/latest/userguide/introduction-to-%20%20%20%20%20%20%20%20%20%20root-user-sign-in-tutorial.html

AWS Identity and Access Management User Guide

2. On the right side of the navigation bar, choose on your account name, and then choose
Security credentials. If necessary, choose Continue to Security credentials.

3. Expand the Multi-factor authentication (MFA) section on the page.

4. Choose the radio button next to the device and choose Resync.

5. In the Resync MFA device dialog box, type the next two sequentially generated codes from the
device into MFA code 1 and MFA code 2. Then choose Resync.

Important

Submit your request immediately after generating the codes. If you generate the codes
and then wait too long to submit the request, the MFA device is successfully associated
with the user, but the MFA device is out of sync. This happens because time-based one-
time passwords (TOTP) expire after a short period of time.

Resynchronizing virtual and hardware MFA devices (AWS CLI)

You can resynchronize virtual and hardware MFA devices from the AWS CLI.

To resynchronize a virtual or hardware MFA device for an IAM user (AWS CLI)

At a command prompt, issue the aws iam resync-mfa-device command:

Multi-factor authentication (MFA) 254

https://docs.aws.amazon.com/cli/latest/reference/iam/resync-mfa-device.html

AWS Identity and Access Management User Guide

• Virtual MFA device: Specify Amazon Resource Name (ARN) of device as the serial number.

aws iam resync-mfa-device --user-name Richard --serial-number
 arn:aws:iam::123456789012:mfa/RichardsMFA --authentication-code1 123456 --
authentication-code2 987654

• Hardware MFA device: Specify hardware device's serial number as serial number. The format is
vendor-specific. For example, you can purchase a gemalto token from Amazon. Its serial number
is typically four letters followed by four numbers.

aws iam resync-mfa-device --user-name Richard --serial-number ABCD12345678 --
authentication-code1 123456 --authentication-code2 987654

Important

Submit your request immediately after generating the codes. If you generate the codes and
then wait too long to submit the request, the request fails because the codes expire after a
short time.

Resynchronizing virtual and hardware MFA devices (AWS API)

IAM has an API call that performs synchronization. In this case, we recommend that you give your
virtual and hardware MFA device users permission to access this API call. Then build a tool based on
that API call so your users can resynchronize their devices whenever they need to.

To resynchronize a virtual or hardware MFA device for an IAM user (AWS API)

• Send the ResyncMFADevice request.

Deactivating MFA devices

If you are having trouble signing in with a multi-factor authentication (MFA) device as an IAM user,
contact your administrator for help.

As an administrator, you can deactivate the device for another IAM user. This allows the user to sign
in without using MFA. You might do this as a temporary solution while the MFA device is replaced,
or if the device is temporarily unavailable. However, we recommend that you enable a new device

Multi-factor authentication (MFA) 255

https://docs.aws.amazon.com/IAM/latest/APIReference/API_ResyncMFADevice.html

AWS Identity and Access Management User Guide

for the user as soon as possible. To learn how to enable a new MFA device, see the section called
“Enabling MFA devices”.

Note

If you use the API or AWS CLI to delete a user from your AWS account, you must deactivate
or delete the user's MFA device. You make this change as part of the process of removing
the user. For more information about deleting users, see Managing IAM users.

Topics

• Deactivating MFA devices (console)

• Deactivating MFA devices (AWS CLI)

• Deactivating MFA devices (AWS API)

Deactivating MFA devices (console)

To deactivate an MFA device for another IAM user (console)

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. In the navigation pane, choose Users.

3. To deactivate the MFA device for a user, choose the name of the user whose MFA you want to
remove.

4. Choose the Security credentials tab.

5. Under Multi-factor authentication (MFA), choose the radio button next to the MFA device,
choose Remove, and then choose Remove.

The device is removed from AWS. It cannot be used to sign in or authenticate requests until it
is reactivated and associated with an AWS user or AWS account root user.

To deactivate the MFA device for your AWS account root user (console)

1. Sign in to the IAM console as the account owner by choosing Root user and entering your AWS
account email address. On the next page, enter your password.

Multi-factor authentication (MFA) 256

https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/

AWS Identity and Access Management User Guide

Note

As the root user, you can't sign in to the Sign in as IAM user page. If you see the Sign
in as IAM user page, choose Sign in using root user email near the bottom of the
page. For help signing in as the root user, see Signing in to the AWS Management
Console as the root user in the AWS Sign-In User Guide.

2. On the right side of the navigation bar, choose on your account name, and then choose
Security credentials. If necessary, choose Continue to Security credentials.

3. In the Multi-factor authentication (MFA) section, choose the radio button next the MFA device
that you want to deactivate and choose Remove.

4. Choose Remove.

The MFA device is deactivated for the AWS account. Check the email that is associated with
your AWS account for a confirmation message from Amazon Web Services. The email informs
you that your Amazon Web Services multi-factor authentication (MFA) has been deactivated.
The message will come from @amazon.com or @aws.amazon.com.

Multi-factor authentication (MFA) 257

https://docs.aws.amazon.com/signin/latest/userguide/introduction-to-%20%20%20%20%20%20%20%20%20%20root-user-sign-in-tutorial.html
https://docs.aws.amazon.com/signin/latest/userguide/introduction-to-%20%20%20%20%20%20%20%20%20%20root-user-sign-in-tutorial.html

AWS Identity and Access Management User Guide

Deactivating MFA devices (AWS CLI)

To deactivate an MFA device for an IAM user (AWS CLI)

• Run this command: aws iam deactivate-mfa-device

Deactivating MFA devices (AWS API)

To deactivate an MFA device for an IAM user (AWS API)

• Call this operation: DeactivateMFADevice

What if an MFA device is lost or stops working?

If your virtual MFA device or hardware TOTP token appears to be functioning properly, but you
can't use it to access your AWS resources, it might be out of synchronization with AWS. For
information about synchronizing a virtual MFA device or hardware MFA device, see Resynchronizing
virtual and hardware MFA devices. FIDO security keys do not go out of sync.

If your AWS account root user multi-factor authentication (MFA) device is lost, damaged, or not
working, you can recover access to your account. IAM users must contact an administrator to
deactivate the device.

Important

We recommend that you enable multiple MFA devices for your IAM users to ensure
continued access to your account in case of lost or inaccessible MFA device. You can register
up to eight MFA devices of any combination of the currently supported MFA types with
your AWS account root user and IAM users.

Recovering a root user MFA device

If your AWS account root user multi-factor authentication (MFA) device is lost, damaged, or not
working, you can sign in using another MFA device registered to the same AWS account root user. If
the root user only has one MFA device enabled, you can use alternative methods of authentication.
This means that if you can't sign in with your MFA device, you can sign in by verifying your identity
using the email and the primary contact phone number registered with your account.

Multi-factor authentication (MFA) 258

https://docs.aws.amazon.com/cli/latest/reference/iam/deactivate-mfa-device.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_DeactivateMFADevice.html

AWS Identity and Access Management User Guide

Before you use alternative factors of authentication to sign in as a root user, you must be able
to access the email and primary contact phone number that are associated with your account.
If you need to update the primary contact phone number, you can sign in as an IAM user with
Administrator access instead of the root user. For additional instructions on updating the account
contact information, see Editing contact information in the AWS Billing User Guide. If you do not
have access to an email and primary contact phone number, you must contact AWS Support.

Important

We recommend that you keep the email address and contact phone number linked to your
root user up to date for a successful account recovery. For more information, see Update
the primary contact for your AWS account in the AWS Account Management Reference
Guide.

To sign in using alternative factors of authentication as an AWS account root user

1. Sign in to the AWS Management Console as the account owner by choosing Root user and
entering your AWS account email address. On the next page, enter your password.

2. On the Additional verification required page, select an MFA method to authenticate with and
choose Next.

Note

You might see alternative text, such as Sign in using MFA, Troubleshoot your
authentication device, or Troubleshoot MFA, but the functionality is the same. If you
can't use alternative factors of authentication to verify your account email address and
primary contact phone number, contact AWS Support to deactivate your MFA device.

3. Depending on the type of MFA you are using, you will see a different page, but the
Troubleshoot MFA option functions the same. On the Additional verification required page
or Multi-factor authentication page, choose Troubleshoot MFA.

4. If required, type your password again and choose Sign in.

5. On the Troubleshoot your authentication device page, in the Sign in using alternative
factors of authentication section, choose Sign in using alternative factors.

6. On the Sign in using alternative factors of authentication page, authenticate your account by
verifying the email address, choose Send verification email.

Multi-factor authentication (MFA) 259

https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/manage-account-payment.html#manage-account-payment-edit-contacts
https://aws.amazon.com/forms/aws-mfa-support
https://docs.aws.amazon.com/accounts/latest/reference/manage-acct-update-contact-primary.html
https://docs.aws.amazon.com/accounts/latest/reference/manage-acct-update-contact-primary.html
https://console.aws.amazon.com/
https://aws.amazon.com/forms/aws-mfa-support

AWS Identity and Access Management User Guide

7. Check the email that is associated with your AWS account for a message from Amazon Web
Services (recover-mfa-no-reply@verify.signin.aws). Follow the directions in the email.

If you don't see the email in your account, check your spam folder, or return to your browser
and choose Resend the email.

8. After you verify your email address, you can continue authenticating your account. To verify
your primary contact phone number, choose Call me now.

9. Answer the call from AWS and, when prompted, enter the 6-digit number from the AWS
website on your phone keypad.

If you don't receive a call from AWS, choose Sign in to sign in to the console again and start
over. Or see Lost or unusable Multi-Factor Authentication (MFA) device to contact support for
help.

10. After you verify your phone number, you can sign in to your account by choosing Sign in to
the console.

11. The next step varies depending on the type of MFA you are using:

• For a virtual MFA device, remove the account from your device. Then go to the AWS Security
Credentials page and delete the old MFA virtual device entity before you create a new one.

• For a FIDO security key, go to the AWS Security Credentials page and deactivate the old
FIDO security key before enabling a new one.

• For a hardware TOTP token, contact the third-party provider for help fixing or replacing
the device. You can continue to sign in using alternative factors of authentication until
you receive your new device. After you have the new hardware MFA device, go to the AWS
Security Credentials page and delete the old MFA hardware device entity before you create a
new one.

Note

You don't have to replace a lost or stolen MFA device with the same type of device. For
example, if you break your FIDO security key and order a new one, you can use virtual
MFA or a hardware TOTP token until you receive a new FIDO security key.

Multi-factor authentication (MFA) 260

https://support.aws.amazon.com/#/contacts/aws-mfa-support
https://console.aws.amazon.com/iam/home?#security_credential
https://console.aws.amazon.com/iam/home?#security_credential
https://console.aws.amazon.com/iam/home?#security_credential
https://console.aws.amazon.com/iam/home?#security_credential
https://console.aws.amazon.com/iam/home?#security_credential

AWS Identity and Access Management User Guide

Important

If your MFA device is missing or stolen, after signing in using alternative factors of
authentication and establishing your replacement MFA device, change your root user
password in case an attacker has stolen the authentication device and might also have your
current password. For more information, see Change the password for the AWS account
root user in the AWS Account Management Reference Guide.

Recovering an IAM user MFA device

If you are an IAM user and your device is lost or stops working, you can't recover it by yourself. You
must contact an administrator to deactivate the device. Then you can enable a new device.

To get help for an MFA device as an IAM user

1. Contact the AWS administrator or other person who gave you the user name and password for
the IAM user. The administrator must deactivate the MFA device as described in Deactivating
MFA devices so that you can sign in.

2. The next step varies depending on the type of MFA you are using:

• For a virtual MFA device, remove the account from your device. Then enable the virtual
device as described in Enabling a virtual multi-factor authentication (MFA) device (console).

• For a FIDO security key, contact the third-party provider for help replacing the device. When
you receive the new FIDO security key, enable it as described in Enabling a FIDO security key
(console).

• For a hardware TOTP token, contact the third-party provider for help fixing or replacing
the device. After you have the new physical MFA device, enable the device as described in
Enabling a hardware TOTP token (console).

Note

You don't have to replace a lost or stolen MFA device with the same type of device. You
can have up to eight MFA devices of any combination. For example, if you break your
FIDO security key and order a new one, you can use virtual MFA or a hardware TOTP
token until you receive a new FIDO security key.

Multi-factor authentication (MFA) 261

https://docs.aws.amazon.com/accounts/latest/reference/root-user-password.html
https://docs.aws.amazon.com/accounts/latest/reference/root-user-password.html

AWS Identity and Access Management User Guide

3. If your MFA device is missing or stolen, also change your password in case an attacker has
stolen the authentication device and might also have your current password. For more
information, see Managing passwords for IAM users

Configuring MFA-protected API access

With IAM policies, you can specify which API operations a user is allowed to call. In some cases, you
might want the additional security of requiring users to be authenticated with AWS multi-factor
authentication (MFA) before you allow them to perform particularly sensitive actions.

For example, you might have a policy that allows a user to perform the Amazon EC2
RunInstances, DescribeInstances, and StopInstances actions. But you might want to
restrict a destructive action like TerminateInstances and ensure that users can perform that
action only if they authenticate with an AWS MFA device.

Topics

• Overview

• Scenario: MFA protection for cross-account delegation

• Scenario: MFA protection for access to API operations in the current account

• Scenario: MFA protection for resources that have resource-based policies

Overview

Adding MFA protection to API operations involves these tasks:

1. The administrator configures an AWS MFA device for each user who needs to make API requests
that require MFA authentication. This process is described at Enabling MFA devices for users in
AWS.

2. The administrator creates policies for the users that include a Condition element that checks
whether the user authenticated with an AWS MFA device.

3. The user calls one of the AWS STS API operations that support the MFA parameters AssumeRole
or GetSessionToken, depending on the scenario for MFA protection, as explained later. As part
of the call, the user includes the device identifier for the device that's associated with the user.
The user also includes the time-based one-time password (TOTP) that the device generates. In
either case, the user gets back temporary security credentials that the user can then use to make
additional requests to AWS.

Multi-factor authentication (MFA) 262

https://docs.aws.amazon.com/STS/latest/APIReference/API_AssumeRole.html
https://docs.aws.amazon.com/STS/latest/APIReference/API_GetSessionToken.html

AWS Identity and Access Management User Guide

Note

MFA protection for a service's API operations is available only if the service supports
temporary security credentials. For a list of these services, see Using Temporary Security
Credentials to Access AWS.

If authorization fails, AWS returns an access denied error message (as it does for any unauthorized
access). With MFA-protected API policies in place, AWS denies access to the API operations specified
in the policies if the user attempts to call an API operation without valid MFA authentication. The
operation is also denied if the time stamp of the request for the API operation is outside of the
allowed range specified in the policy. The user must be reauthenticated with MFA by requesting
new temporary security credentials with an MFA code and device serial number.

IAM policies with MFA conditions

Policies with MFA conditions can be attached to the following:

• An IAM user or group

• A resource such as an Amazon S3 bucket, Amazon SQS queue, or Amazon SNS topic

• The trust policy of an IAM role that can be assumed by a user

You can use an MFA condition in a policy to check the following properties:

• Existence—To simply verify that the user did authenticate with MFA, check that the
aws:MultiFactorAuthPresent key is True in a Bool condition. The key is only present when
the user authenticates with short-term credentials. Long-term credentials, such as access keys,
do not include this key.

• Duration—If you want to grant access only within a specified time after MFA authentication, use
a numeric condition type to compare the aws:MultiFactorAuthAge key's age to a value (such
as 3600 seconds). Note that the aws:MultiFactorAuthAge key is not present if MFA was not
used.

The following example shows the trust policy of an IAM role that includes an MFA condition to test
for the existence of MFA authentication. With this policy, users from the AWS account specified
in the Principal element (replace ACCOUNT-B-ID with a valid AWS account ID) can assume

Multi-factor authentication (MFA) 263

https://docs.aws.amazon.com/STS/latest/UsingSTS/UsingTokens.html
https://docs.aws.amazon.com/STS/latest/UsingSTS/UsingTokens.html

AWS Identity and Access Management User Guide

the role that this policy is attached to. However such users can only assume the role if the user is
authenticated using MFA.

{
 "Version": "2012-10-17",
 "Statement": {
 "Effect": "Allow",
 "Principal": {"AWS": "ACCOUNT-B-ID"},
 "Action": "sts:AssumeRole",
 "Condition": {"Bool": {"aws:MultiFactorAuthPresent": "true"}}
 }
}

For more information on the condition types for MFA, see AWS global condition context keys,
Numeric condition operators, and Condition operator to check existence of condition keys .

Choosing between GetSessionToken and AssumeRole

AWS STS provides two API operations that let users pass MFA information: GetSessionToken and
AssumeRole. The API operation that the user calls to get temporary security credentials depends
on which of the following scenarios applies.

Use GetSessionToken for the following scenarios:

• Call API operations that access resources in the same AWS account as the IAM user who makes
the request. Note that temporary credentials from a GetSessionToken request can access IAM
and AWS STS API operations only if you include MFA information in the request for credentials.
Because temporary credentials returned by GetSessionToken include MFA information, you
can check for MFA in individual API operations made by the credentials.

• Access to resources that are protected with resource-based policies that include an MFA
condition.

The purpose of the GetSessionToken operation is to authenticate the user using MFA. You
cannot use policies to control authentication operations.

Use AssumeRole for the following scenarios:

• Call API operations that access resources in the same or a different AWS account. The API calls
can include any IAM or AWS STS API. Note that to protect access you enforce MFA at the time
when the user assumes the role. The temporary credentials returned by AssumeRole do not

Multi-factor authentication (MFA) 264

AWS Identity and Access Management User Guide

include MFA information in the context, so you cannot check individual API operations for
MFA. This is why you must use GetSessionToken to restrict access to resources protected by
resource-based policies.

Details about how to implement these scenarios are provided later in this document.

Important points about MFA-protected API access

It's important to understand the following aspects of MFA protection for API operations:

• MFA protection is available only with temporary security credentials, which must be obtained
with AssumeRole or GetSessionToken.

• You cannot use MFA-protected API access with AWS account root user credentials.

• You cannot use MFA-protected API access with U2F security keys.

• Federated users cannot be assigned an MFA device for use with AWS services, so they cannot
access AWS resources controlled by MFA. (See next point.)

• Other AWS STS API operations that return temporary credentials do not support MFA. For
AssumeRoleWithWebIdentity and AssumeRoleWithSAML, the user is authenticated by
an external provider and AWS cannot determine whether that provider required MFA. For
GetFederationToken, MFA is not necessarily associated with a specific user.

• Similarly, long-term credentials (IAM user access keys and root user access keys) cannot be used
with MFA-protected API access because they don't expire.

• AssumeRole and GetSessionToken can also be called without MFA information. In that
case, the caller gets back temporary security credentials, but the session information for those
temporary credentials does not indicate that the user authenticated with MFA.

• To establish MFA protection for API operations, you add MFA conditions to policies. A policy
must include the aws:MultiFactorAuthPresent condition key to enforce the use of MFA. For
cross-account delegation, the role's trust policy must include the condition key.

• When you allow another AWS account to access resources in your account, the security of your
resources depends on the configuration of the trusted account (the other account, not yours).
This is true even when you require multi-factor authentication. Any identity in the trusted
account that has permission to create virtual MFA devices can construct an MFA claim to satisfy
that part of your role's trust policy. Before you allow members of another account access to
your AWS resources that require multi-factor authentication, you should ensure that the trusted
account's owner follows security best practices. For example, the trusted account should restrict

Multi-factor authentication (MFA) 265

AWS Identity and Access Management User Guide

access to sensitive API operations, such as MFA device-management API operations, to specific,
trusted identities.

• If a policy includes an MFA condition, a request is denied if users have not been MFA
authenticated, or if they provide an invalid MFA device identifier or invalid TOTP.

Scenario: MFA protection for cross-account delegation

In this scenario, you want to delegate access to IAM users in another account, but only if the users
are authenticated with an AWS MFA device. (For more information about cross-account delegation,
see Roles terms and concepts.

Imagine that you have account A (the trusting account that owns the resource to be accessed), with
the IAM user Anaya, who has administrator permission. She wants to grant access to user Richard
in account B (the trusted account), but wants to make sure that Richard is authenticated with MFA
before he assumes the role.

1. In the trusting account A, Anaya creates an IAM role named CrossAccountRole and sets
the principal in the role's trust policy to the account ID of account B. The trust policy grants
permission to the AWS STS AssumeRole action. Anaya also adds an MFA condition to the trust
policy, as in the following example.

{
 "Version": "2012-10-17",
 "Statement": {
 "Effect": "Allow",
 "Principal": {"AWS": "ACCOUNT-B-ID"},
 "Action": "sts:AssumeRole",
 "Condition": {"Bool": {"aws:MultiFactorAuthPresent": "true"}}
 }
}

2. Anaya adds a permissions policy to the role that specifies what the role is allowed to do.
The permissions policy for a role with MFA protection is no different than any other role-
permission policy. The following example shows the policy that Anaya adds to the role; it allows
an assuming user to perform any Amazon DynamoDB action on the table Books in account A.
This policy also allows the dynamodb:ListTables action, which is required to perform actions
in the console.

Multi-factor authentication (MFA) 266

AWS Identity and Access Management User Guide

Note

The permissions policy does not include an MFA condition. It is important to understand
that the MFA authentication is used only to determine whether a user can assume the
role. Once the user has assumed the role, no further MFA checks are made.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "TableActions",
 "Effect": "Allow",
 "Action": "dynamodb:*",
 "Resource": "arn:aws:dynamodb:*:ACCOUNT-A-ID:table/Books"
 },
 {
 "Sid": "ListTables",
 "Effect": "Allow",
 "Action": "dynamodb:ListTables",
 "Resource": "*"
 }
]
}

3. In trusted account B, the administrator makes sure that IAM user Richard is configured with an
AWS MFA device and that he knows the ID of the device. The device ID is the serial number if it's
a hardware MFA device, or the device's ARN if it's a virtual MFA device.

4. In account B, the administrator attaches the following policy to user Richard (or a group that he's
a member of) that allows him to call the AssumeRole action. The resource is set to the ARN of
the role that Anaya created in step 1. Notice that this policy does not contain an MFA condition.

{
 "Version": "2012-10-17",
 "Statement": [{
 "Effect": "Allow",
 "Action": ["sts:AssumeRole"],
 "Resource": ["arn:aws:iam::ACCOUNT-A-ID:role/CrossAccountRole"]
 }]

Multi-factor authentication (MFA) 267

AWS Identity and Access Management User Guide

}

5. In account B, Richard (or an application that Richard is running) calls AssumeRole. The
API call includes the ARN of the role to assume (arn:aws:iam::ACCOUNT-A-ID:role/
CrossAccountRole), the ID of the MFA device, and the current TOTP that Richard gets from his
device.

When Richard calls AssumeRole, AWS determines whether he has valid credentials, including
the requirement for MFA. If so, Richard successfully assumes the role and can perform any
DynamoDB action on the table named Books in account A while using the role's temporary
credentials.

For an example of a program that calls AssumeRole, see Calling AssumeRole with MFA
authentication.

Scenario: MFA protection for access to API operations in the current account

In this scenario, you should ensure that a user in your AWS account can access sensitive API
operations only when the user is authenticated using an AWS MFA device.

Imagine that you have account A that contains a group of developers who need to work with EC2
instances. Ordinary developers can work with the instances, but they are not granted permissions
for the ec2:StopInstances or ec2:TerminateInstances actions. You want to limit those
"destructive" privileged actions to just a few trusted users, so you add MFA protection to the policy
that allows these sensitive Amazon EC2 actions.

In this scenario, one of those trusted users is user Sofía. User Anaya is an administrator in account
A.

1. Anaya makes sure that Sofía is configured with an AWS MFA device and that Sofía knows the ID
of the device. The device ID is the serial number if it's a hardware MFA device, or the device's ARN
if it's a virtual MFA device.

2. Anaya creates a group named EC2-Admins and adds user Sofía to the group.

3. Anaya attaches the following policy to the EC2-Admins group. This policy grants users
permission to call the Amazon EC2 StopInstances and TerminateInstances actions only if
the user has authenticated using MFA.

{
 "Version": "2012-10-17",

Multi-factor authentication (MFA) 268

AWS Identity and Access Management User Guide

 "Statement": [{
 "Effect": "Allow",
 "Action": [
 "ec2:StopInstances",
 "ec2:TerminateInstances"
],
 "Resource": ["*"],
 "Condition": {"Bool": {"aws:MultiFactorAuthPresent": "true"}}
 }]
}

4.
Note

For this policy to take effect, users must first sign out and then sign in again.

If user Sofía needs to stop or terminate an Amazon EC2 instance, she (or an application that she
is running) calls GetSessionToken. This API operation passes the ID of the MFA device and the
current TOTP that Sofía gets from her device.

5. User Sofía (or an application that Sofía is using) uses the temporary credentials provided by
GetSessionToken to call the Amazon EC2 StopInstances or TerminateInstances action.

For an example of a program that calls GetSessionToken, see Calling GetSessionToken with
MFA authentication later in this document.

Scenario: MFA protection for resources that have resource-based policies

In this scenario, you are the owner of an S3 bucket, an SQS queue, or an SNS topic. You want to
make sure that any user from any AWS account who accesses the resource is authenticated by an
AWS MFA device.

This scenario illustrates a way to provide cross-account MFA protection without requiring users
to assume a role first. In this case, the user can access the resource if three conditions are met:
The user must be authenticated by MFA, be able to get temporary security credentials from
GetSessionToken, and be in an account that is trusted by the resource's policy.

Imagine that you are in account A and you create an S3 bucket. You want to grant access to this
bucket to users who are in several different AWS accounts, but only if those users are authenticated
with MFA.

Multi-factor authentication (MFA) 269

AWS Identity and Access Management User Guide

In this scenario, user Anaya is an administrator in account A. User Nikhil is an IAM user in account C.

1. In account A, Anaya creates a bucket named Account-A-bucket.

2. Anaya adds the bucket policy to the bucket. The policy allows any user in account A, account B,
or account C to perform the Amazon S3 PutObject and DeleteObject actions in the bucket.
The policy includes an MFA condition.

{
 "Version": "2012-10-17",
 "Statement": [{
 "Effect": "Allow",
 "Principal": {"AWS": [
 "ACCOUNT-A-ID",
 "ACCOUNT-B-ID",
 "ACCOUNT-C-ID"
]},
 "Action": [
 "s3:PutObject",
 "s3:DeleteObject"
],
 "Resource": ["arn:aws:s3:::ACCOUNT-A-BUCKET-NAME/*"],
 "Condition": {"Bool": {"aws:MultiFactorAuthPresent": "true"}}
 }]
}

Note

Amazon S3 offers an MFA Delete feature for root account access (only). You can enable
Amazon S3 MFA Delete when you set the versioning state of the bucket. Amazon S3
MFA Delete cannot be applied to an IAM user, and is managed independently from MFA-
protected API access. An IAM user with permissions to delete a bucket cannot delete a
bucket with Amazon S3 MFA Delete enabled. For more information on Amazon S3 MFA
Delete, see MFA Delete.

3. In account C, an administrator makes sure that user Nikhil is configured with an AWS MFA device
and that he knows the ID of the device. The device ID is the serial number if it's a hardware MFA
device, or the device's ARN if it's a virtual MFA device.

4. In account C, Nikhil (or an application that he is running) calls GetSessionToken. The call
includes the ID or ARN of the MFA device and the current TOTP that Nikhil gets from his device.

Multi-factor authentication (MFA) 270

https://docs.aws.amazon.com/AmazonS3/latest/dev/MultiFactorAuthenticationDelete.html

AWS Identity and Access Management User Guide

5. Nikhil (or an application that he is using) uses the temporary credentials returned by
GetSessionToken to call the Amazon S3 PutObject action to upload a file to Account-A-
bucket.

For an example of a program that calls GetSessionToken, see Calling GetSessionToken with
MFA authentication later in this document.

Note

The temporary credentials that AssumeRole returns won't work in this case. Although
the user can provide MFA information to assume a role, the temporary credentials
returned by AssumeRole don't include the MFA information. That information is
required in order to meet the MFA condition in the policy.

Sample code: Requesting credentials with multi-factor authentication

The following examples show how to call GetSessionToken and AssumeRole operations and
pass MFA authentication parameters. No permissions are required to call GetSessionToken, but
you must have a policy that allows you to call AssumeRole. The credentials returned are then used
to list all S3 buckets in the account.

Calling GetSessionToken with MFA authentication

The following example shows how to call GetSessionToken and pass MFA authentication
information. The temporary security credentials returned by the GetSessionToken operation are
then used to list all S3 buckets in the account.

The policy attached to the user who runs this code (or to a group that the user is in) provides the
permissions for the returned temporary credentials. For this example code, the policy must grant
the user permission to request the Amazon S3 ListBuckets operation.

The following code examples show how to get a session token with AWS STS and use it to perform
a service action that requires an MFA token.

CLI

AWS CLI

To get a set of short term credentials for an IAM identity

Multi-factor authentication (MFA) 271

AWS Identity and Access Management User Guide

The following get-session-token command retrieves a set of short-term credentials for
the IAM identity making the call. The resulting credentials can be used for requests where
multi-factor authentication (MFA) is required by policy. The credentials expire 15 minutes
after they are generated.

aws sts get-session-token \
 --duration-seconds 900 \
 --serial-number "YourMFADeviceSerialNumber" \
 --token-code 123456

Output:

{
 "Credentials": {
 "AccessKeyId": "ASIAIOSFODNN7EXAMPLE",
 "SecretAccessKey": "wJalrXUtnFEMI/K7MDENG/bPxRfiCYzEXAMPLEKEY",
 "SessionToken": "AQoEXAMPLEH4aoAH0gNCAPyJxz4BlCFFxWNE1OPTgk5TthT
+FvwqnKwRcOIfrRh3c/LTo6UDdyJwOOvEVPvLXCrrrUtdnniCEXAMPLE/
IvU1dYUg2RVAJBanLiHb4IgRmpRV3zrkuWJOgQs8IZZaIv2BXIa2R4OlgkBN9bkUDNCJiBeb/
AXlzBBko7b15fjrBs2+cTQtpZ3CYWFXG8C5zqx37wnOE49mRl/+OtkIKGO7fAE",
 "Expiration": "2020-05-19T18:06:10+00:00"
 }
}

For more information, see Requesting Temporary Security Credentials in the AWS IAM User
Guide.

• For API details, see GetSessionToken in AWS CLI Command Reference.

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Get a session token by passing an MFA token and use it to list Amazon S3 buckets for the
account.

Multi-factor authentication (MFA) 272

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_request.html#api_getsessiontoken
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/sts/get-session-token.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/sts#code-examples

AWS Identity and Access Management User Guide

def list_buckets_with_session_token_with_mfa(mfa_serial_number, mfa_totp,
 sts_client):
 """
 Gets a session token with MFA credentials and uses the temporary session
 credentials to list Amazon S3 buckets.

 Requires an MFA device serial number and token.

 :param mfa_serial_number: The serial number of the MFA device. For a virtual
 MFA
 device, this is an Amazon Resource Name (ARN).
 :param mfa_totp: A time-based, one-time password issued by the MFA device.
 :param sts_client: A Boto3 STS instance that has permission to assume the
 role.
 """
 if mfa_serial_number is not None:
 response = sts_client.get_session_token(
 SerialNumber=mfa_serial_number, TokenCode=mfa_totp
)
 else:
 response = sts_client.get_session_token()
 temp_credentials = response["Credentials"]

 s3_resource = boto3.resource(
 "s3",
 aws_access_key_id=temp_credentials["AccessKeyId"],
 aws_secret_access_key=temp_credentials["SecretAccessKey"],
 aws_session_token=temp_credentials["SessionToken"],
)

 print(f"Buckets for the account:")
 for bucket in s3_resource.buckets.all():
 print(bucket.name)

• For API details, see GetSessionToken in AWS SDK for Python (Boto3) API Reference.

Multi-factor authentication (MFA) 273

https://docs.aws.amazon.com/goto/boto3/sts-2011-06-15/GetSessionToken

AWS Identity and Access Management User Guide

Calling AssumeRole with MFA authentication

The following examples show how to call AssumeRole and pass MFA authentication information.
The temporary security credentials returned by AssumeRole are then used to list all Amazon S3
buckets in the account.

For more information about this scenario, see Scenario: MFA protection for cross-account
delegation.

The following code examples show how to assume a role with AWS STS.

.NET

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

using System;
using System.Threading.Tasks;
using Amazon;
using Amazon.SecurityToken;
using Amazon.SecurityToken.Model;

namespace AssumeRoleExample
{
 class AssumeRole
 {
 /// <summary>
 /// This example shows how to use the AWS Security Token
 /// Service (AWS STS) to assume an IAM role.
 ///
 /// NOTE: It is important that the role that will be assumed has a
 /// trust relationship with the account that will assume the role.
 ///
 /// Before you run the example, you need to create the role you want to
 /// assume and have it trust the IAM account that will assume that role.
 ///

Multi-factor authentication (MFA) 274

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/STS#code-examples

AWS Identity and Access Management User Guide

 /// See https://docs.aws.amazon.com/IAM/latest/UserGuide/
id_roles_create.html
 /// for help in working with roles.
 /// </summary>

 private static readonly RegionEndpoint REGION = RegionEndpoint.USWest2;

 static async Task Main()
 {
 // Create the SecurityToken client and then display the identity of
 the
 // default user.
 var roleArnToAssume = "arn:aws:iam::123456789012:role/
testAssumeRole";

 var client = new
 Amazon.SecurityToken.AmazonSecurityTokenServiceClient(REGION);

 // Get and display the information about the identity of the default
 user.
 var callerIdRequest = new GetCallerIdentityRequest();
 var caller = await client.GetCallerIdentityAsync(callerIdRequest);
 Console.WriteLine($"Original Caller: {caller.Arn}");

 // Create the request to use with the AssumeRoleAsync call.
 var assumeRoleReq = new AssumeRoleRequest()
 {
 DurationSeconds = 1600,
 RoleSessionName = "Session1",
 RoleArn = roleArnToAssume
 };

 var assumeRoleRes = await client.AssumeRoleAsync(assumeRoleReq);

 // Now create a new client based on the credentials of the caller
 assuming the role.
 var client2 = new AmazonSecurityTokenServiceClient(credentials:
 assumeRoleRes.Credentials);

 // Get and display information about the caller that has assumed the
 defined role.
 var caller2 = await client2.GetCallerIdentityAsync(callerIdRequest);
 Console.WriteLine($"AssumedRole Caller: {caller2.Arn}");
 }

Multi-factor authentication (MFA) 275

AWS Identity and Access Management User Guide

 }
}

• For API details, see AssumeRole in AWS SDK for .NET API Reference.

Bash

AWS CLI with Bash script

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

###
function iecho
#
This function enables the script to display the specified text only if
the global variable $VERBOSE is set to true.
###
function iecho() {
 if [[$VERBOSE == true]]; then
 echo "$@"
 fi
}

###
function errecho
#
This function outputs everything sent to it to STDERR (standard error output).
###
function errecho() {
 printf "%s\n" "$*" 1>&2
}

###
function sts_assume_role
#
This function assumes a role in the AWS account and returns the temporary
credentials.

Multi-factor authentication (MFA) 276

https://docs.aws.amazon.com/goto/DotNetSDKV3/sts-2011-06-15/AssumeRole
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/aws-cli/bash-linux/iam#code-examples

AWS Identity and Access Management User Guide

#
Parameters:
-n role_session_name -- The name of the session.
-r role_arn -- The ARN of the role to assume.
#
Returns:
[access_key_id, secret_access_key, session_token]
And:
0 - If successful.
1 - If an error occurred.
###
function sts_assume_role() {
 local role_session_name role_arn response
 local option OPTARG # Required to use getopts command in a function.

 # bashsupport disable=BP5008
 function usage() {
 echo "function sts_assume_role"
 echo "Assumes a role in the AWS account and returns the temporary
 credentials:"
 echo " -n role_session_name -- The name of the session."
 echo " -r role_arn -- The ARN of the role to assume."
 echo ""
 }

 while getopts n:r:h option; do
 case "${option}" in
 n) role_session_name=${OPTARG} ;;
 r) role_arn=${OPTARG} ;;
 h)
 usage
 return 0
 ;;
 \?)
 ech o"Invalid parameter"
 usage
 return 1
 ;;
 esac
 done

 response=$(aws sts assume-role \
 --role-session-name "$role_session_name" \
 --role-arn "$role_arn" \

Multi-factor authentication (MFA) 277

AWS Identity and Access Management User Guide

 --output text \
 --query "Credentials.[AccessKeyId, SecretAccessKey, SessionToken]")

 local error_code=${?}

 if [[$error_code -ne 0]]; then
 aws_cli_error_log $error_code
 errecho "ERROR: AWS reports create-role operation failed.\n$response"
 return 1
 fi

 echo "$response"

 return 0
}

• For API details, see AssumeRole in AWS CLI Command Reference.

C++

SDK for C++

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

bool AwsDoc::STS::assumeRole(const Aws::String &roleArn,
 const Aws::String &roleSessionName,
 const Aws::String &externalId,
 Aws::Auth::AWSCredentials &credentials,
 const Aws::Client::ClientConfiguration
 &clientConfig) {
 Aws::STS::STSClient sts(clientConfig);
 Aws::STS::Model::AssumeRoleRequest sts_req;

 sts_req.SetRoleArn(roleArn);
 sts_req.SetRoleSessionName(roleSessionName);
 sts_req.SetExternalId(externalId);

Multi-factor authentication (MFA) 278

https://docs.aws.amazon.com/goto/aws-cli/sts-2011-06-15/AssumeRole
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/cpp/example_code/sts#code-examples

AWS Identity and Access Management User Guide

 const Aws::STS::Model::AssumeRoleOutcome outcome = sts.AssumeRole(sts_req);

 if (!outcome.IsSuccess()) {
 std::cerr << "Error assuming IAM role. " <<
 outcome.GetError().GetMessage() << std::endl;
 }
 else {
 std::cout << "Credentials successfully retrieved." << std::endl;
 const Aws::STS::Model::AssumeRoleResult result = outcome.GetResult();
 const Aws::STS::Model::Credentials &temp_credentials =
 result.GetCredentials();

 // Store temporary credentials in return argument.
 // Note: The credentials object returned by assumeRole differs
 // from the AWSCredentials object used in most situations.
 credentials.SetAWSAccessKeyId(temp_credentials.GetAccessKeyId());
 credentials.SetAWSSecretKey(temp_credentials.GetSecretAccessKey());
 credentials.SetSessionToken(temp_credentials.GetSessionToken());
 }

 return outcome.IsSuccess();
}

• For API details, see AssumeRole in AWS SDK for C++ API Reference.

CLI

AWS CLI

To assume a role

The following assume-role command retrieves a set of short-term credentials for the IAM
role s3-access-example.

aws sts assume-role \
 --role-arn arn:aws:iam::123456789012:role/xaccounts3access \
 --role-session-name s3-access-example

Output:

{

Multi-factor authentication (MFA) 279

https://docs.aws.amazon.com/goto/SdkForCpp/sts-2011-06-15/AssumeRole

AWS Identity and Access Management User Guide

 "AssumedRoleUser": {
 "AssumedRoleId": "AROA3XFRBF535PLBIFPI4:s3-access-example",
 "Arn": "arn:aws:sts::123456789012:assumed-role/xaccounts3access/s3-
access-example"
 },
 "Credentials": {
 "SecretAccessKey": "9drTJvcXLB89EXAMPLELB8923FB892xMFI",
 "SessionToken": "AQoXdzELDDY//////////
wEaoAK1wvxJY12r2IrDFT2IvAzTCn3zHoZ7YNtpiQLF0MqZye/
qwjzP2iEXAMPLEbw/m3hsj8VBTkPORGvr9jM5sgP+w9IZWZnU+LWhmg
+a5fDi2oTGUYcdg9uexQ4mtCHIHfi4citgqZTgco40Yqr4lIlo4V2b2Dyauk0eYFNebHtYlFVgAUj
+7Indz3LU0aTWk1WKIjHmmMCIoTkyYp/k7kUG7moeEYKSitwQIi6Gjn+nyzM
+PtoA3685ixzv0R7i5rjQi0YE0lf1oeie3bDiNHncmzosRM6SFiPzSvp6h/32xQuZsjcypmwsPSDtTPYcs0+YN/8BRi2/
IcrxSpnWEXAMPLEXSDFTAQAM6Dl9zR0tXoybnlrZIwMLlMi1Kcgo5OytwU=",
 "Expiration": "2016-03-15T00:05:07Z",
 "AccessKeyId": "ASIAJEXAMPLEXEG2JICEA"
 }
}

The output of the command contains an access key, secret key, and session token that you
can use to authenticate to AWS.

For AWS CLI use, you can set up a named profile associated with a role. When you use
the profile, the AWS CLI will call assume-role and manage credentials for you. For more
information, see Use an IAM role in the AWS CLI in the AWS CLI User Guide.

• For API details, see AssumeRole in AWS CLI Command Reference.

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

import software.amazon.awssdk.regions.Region;
import software.amazon.awssdk.services.sts.StsClient;
import software.amazon.awssdk.services.sts.model.AssumeRoleRequest;
import software.amazon.awssdk.services.sts.model.StsException;

Multi-factor authentication (MFA) 280

https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-role.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/sts/assume-role.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/sts#readme

AWS Identity and Access Management User Guide

import software.amazon.awssdk.services.sts.model.AssumeRoleResponse;
import software.amazon.awssdk.services.sts.model.Credentials;
import java.time.Instant;
import java.time.ZoneId;
import java.time.format.DateTimeFormatter;
import java.time.format.FormatStyle;
import java.util.Locale;

/**
 * To make this code example work, create a Role that you want to assume.
 * Then define a Trust Relationship in the AWS Console. You can use this as an
 * example:
 *
 * {
 * "Version": "2012-10-17",
 * "Statement": [
 * {
 * "Effect": "Allow",
 * "Principal": {
 * "AWS": "<Specify the ARN of your IAM user you are using in this code
 * example>"
 * },
 * "Action": "sts:AssumeRole"
 * }
 *]
 * }
 *
 * For more information, see "Editing the Trust Relationship for an Existing
 * Role" in the AWS Directory Service guide.
 *
 * Also, set up your development environment, including your credentials.
 *
 * For information, see this documentation topic:
 *
 * https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/get-
started.html
 */
public class AssumeRole {
 public static void main(String[] args) {
 final String usage = """

 Usage:
 <roleArn> <roleSessionName>\s

Multi-factor authentication (MFA) 281

AWS Identity and Access Management User Guide

 Where:
 roleArn - The Amazon Resource Name (ARN) of the role to
 assume (for example, rn:aws:iam::000008047983:role/s3role).\s
 roleSessionName - An identifier for the assumed role session
 (for example, mysession).\s
 """;

 if (args.length != 2) {
 System.out.println(usage);
 System.exit(1);
 }

 String roleArn = args[0];
 String roleSessionName = args[1];
 Region region = Region.US_EAST_1;
 StsClient stsClient = StsClient.builder()
 .region(region)
 .build();

 assumeGivenRole(stsClient, roleArn, roleSessionName);
 stsClient.close();
 }

 public static void assumeGivenRole(StsClient stsClient, String roleArn,
 String roleSessionName) {
 try {
 AssumeRoleRequest roleRequest = AssumeRoleRequest.builder()
 .roleArn(roleArn)
 .roleSessionName(roleSessionName)
 .build();

 AssumeRoleResponse roleResponse = stsClient.assumeRole(roleRequest);
 Credentials myCreds = roleResponse.credentials();

 // Display the time when the temp creds expire.
 Instant exTime = myCreds.expiration();
 String tokenInfo = myCreds.sessionToken();

 // Convert the Instant to readable date.
 DateTimeFormatter formatter =
 DateTimeFormatter.ofLocalizedDateTime(FormatStyle.SHORT)
 .withLocale(Locale.US)
 .withZone(ZoneId.systemDefault());

Multi-factor authentication (MFA) 282

AWS Identity and Access Management User Guide

 formatter.format(exTime);
 System.out.println("The token " + tokenInfo + " expires on " +
 exTime);

 } catch (StsException e) {
 System.err.println(e.getMessage());
 System.exit(1);
 }
 }
}

• For API details, see AssumeRole in AWS SDK for Java 2.x API Reference.

JavaScript

SDK for JavaScript (v3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Create the client.

import { STSClient } from "@aws-sdk/client-sts";
// Set the AWS Region.
const REGION = "us-east-1";
// Create an AWS STS service client object.
export const client = new STSClient({ region: REGION });

Assume the IAM role.

import { AssumeRoleCommand } from "@aws-sdk/client-sts";

import { client } from "../libs/client.js";

export const main = async () => {
 try {

Multi-factor authentication (MFA) 283

https://docs.aws.amazon.com/goto/SdkForJavaV2/sts-2011-06-15/AssumeRole
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/sts#code-examples

AWS Identity and Access Management User Guide

 // Returns a set of temporary security credentials that you can use to
 // access Amazon Web Services resources that you might not normally
 // have access to.
 const command = new AssumeRoleCommand({
 // The Amazon Resource Name (ARN) of the role to assume.
 RoleArn: "ROLE_ARN",
 // An identifier for the assumed role session.
 RoleSessionName: "session1",
 // The duration, in seconds, of the role session. The value specified
 // can range from 900 seconds (15 minutes) up to the maximum session
 // duration set for the role.
 DurationSeconds: 900,
 });
 const response = await client.send(command);
 console.log(response);
 } catch (err) {
 console.error(err);
 }
};

• For API details, see AssumeRole in AWS SDK for JavaScript API Reference.

SDK for JavaScript (v2)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

// Load the AWS SDK for Node.js
const AWS = require("aws-sdk");
// Set the region
AWS.config.update({ region: "REGION" });

var roleToAssume = {
 RoleArn: "arn:aws:iam::123456789012:role/RoleName",
 RoleSessionName: "session1",
 DurationSeconds: 900,
};
var roleCreds;

Multi-factor authentication (MFA) 284

https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/client/sts/command/AssumeRoleCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascript/example_code/sts#code-examples

AWS Identity and Access Management User Guide

// Create the STS service object
var sts = new AWS.STS({ apiVersion: "2011-06-15" });

//Assume Role
sts.assumeRole(roleToAssume, function (err, data) {
 if (err) console.log(err, err.stack);
 else {
 roleCreds = {
 accessKeyId: data.Credentials.AccessKeyId,
 secretAccessKey: data.Credentials.SecretAccessKey,
 sessionToken: data.Credentials.SessionToken,
 };
 stsGetCallerIdentity(roleCreds);
 }
});

//Get Arn of current identity
function stsGetCallerIdentity(creds) {
 var stsParams = { credentials: creds };
 // Create STS service object
 var sts = new AWS.STS(stsParams);

 sts.getCallerIdentity({}, function (err, data) {
 if (err) {
 console.log(err, err.stack);
 } else {
 console.log(data.Arn);
 }
 });
}

• For API details, see AssumeRole in AWS SDK for JavaScript API Reference.

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Multi-factor authentication (MFA) 285

https://docs.aws.amazon.com/goto/AWSJavaScriptSDK/sts-2011-06-15/AssumeRole
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/sts#code-examples

AWS Identity and Access Management User Guide

Assume an IAM role that requires an MFA token and use temporary credentials to list
Amazon S3 buckets for the account.

def list_buckets_from_assumed_role_with_mfa(
 assume_role_arn, session_name, mfa_serial_number, mfa_totp, sts_client
):
 """
 Assumes a role from another account and uses the temporary credentials from
 that role to list the Amazon S3 buckets that are owned by the other account.
 Requires an MFA device serial number and token.

 The assumed role must grant permission to list the buckets in the other
 account.

 :param assume_role_arn: The Amazon Resource Name (ARN) of the role that
 grants access to list the other account's buckets.
 :param session_name: The name of the STS session.
 :param mfa_serial_number: The serial number of the MFA device. For a virtual
 MFA
 device, this is an ARN.
 :param mfa_totp: A time-based, one-time password issued by the MFA device.
 :param sts_client: A Boto3 STS instance that has permission to assume the
 role.
 """
 response = sts_client.assume_role(
 RoleArn=assume_role_arn,
 RoleSessionName=session_name,
 SerialNumber=mfa_serial_number,
 TokenCode=mfa_totp,
)
 temp_credentials = response["Credentials"]
 print(f"Assumed role {assume_role_arn} and got temporary credentials.")

 s3_resource = boto3.resource(
 "s3",
 aws_access_key_id=temp_credentials["AccessKeyId"],
 aws_secret_access_key=temp_credentials["SecretAccessKey"],
 aws_session_token=temp_credentials["SessionToken"],
)

 print(f"Listing buckets for the assumed role's account:")
 for bucket in s3_resource.buckets.all():
 print(bucket.name)

Multi-factor authentication (MFA) 286

AWS Identity and Access Management User Guide

• For API details, see AssumeRole in AWS SDK for Python (Boto3) API Reference.

Ruby

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 # Creates an AWS Security Token Service (AWS STS) client with specified
 credentials.
 # This is separated into a factory function so that it can be mocked for unit
 testing.
 #
 # @param key_id [String] The ID of the access key used by the STS client.
 # @param key_secret [String] The secret part of the access key used by the STS
 client.
 def create_sts_client(key_id, key_secret)
 Aws::STS::Client.new(access_key_id: key_id, secret_access_key: key_secret)
 end

 # Gets temporary credentials that can be used to assume a role.
 #
 # @param role_arn [String] The ARN of the role that is assumed when these
 credentials
 # are used.
 # @param sts_client [AWS::STS::Client] An AWS STS client.
 # @return [Aws::AssumeRoleCredentials] The credentials that can be used to
 assume the role.
 def assume_role(role_arn, sts_client)
 credentials = Aws::AssumeRoleCredentials.new(
 client: sts_client,
 role_arn: role_arn,
 role_session_name: "create-use-assume-role-scenario"
)

Multi-factor authentication (MFA) 287

https://docs.aws.amazon.com/goto/boto3/sts-2011-06-15/AssumeRole
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/iam#code-examples

AWS Identity and Access Management User Guide

 @logger.info("Assumed role '#{role_arn}', got temporary credentials.")
 credentials
 end

• For API details, see AssumeRole in AWS SDK for Ruby API Reference.

Rust

SDK for Rust

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

async fn assume_role(config: &SdkConfig, role_name: String, session_name:
 Option<String>) {
 let provider = aws_config::sts::AssumeRoleProvider::builder(role_name)
 .session_name(session_name.unwrap_or("rust_sdk_example_session".into()))
 .configure(config)
 .build()
 .await;

 let local_config = aws_config::from_env()
 .credentials_provider(provider)
 .load()
 .await;
 let client = Client::new(&local_config);
 let req = client.get_caller_identity();
 let resp = req.send().await;
 match resp {
 Ok(e) => {
 println!("UserID : {}",
 e.user_id().unwrap_or_default());
 println!("Account: {}",
 e.account().unwrap_or_default());
 println!("Arn : {}", e.arn().unwrap_or_default());
 }
 Err(e) => println!("{:?}", e),
 }

Multi-factor authentication (MFA) 288

https://docs.aws.amazon.com/goto/SdkForRubyV3/sts-2011-06-15/AssumeRole
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/rustv1/examples/sts/#code-examples

AWS Identity and Access Management User Guide

}

• For API details, see AssumeRole in AWS SDK for Rust API reference.

Swift

SDK for Swift

Note

This is prerelease documentation for an SDK in preview release. It is subject to
change.

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 public func assumeRole(role: IAMClientTypes.Role, sessionName: String)
 async throws -> STSClientTypes.Credentials {
 let input = AssumeRoleInput(
 roleArn: role.arn,
 roleSessionName: sessionName
)
 do {
 let output = try await stsClient.assumeRole(input: input)

 guard let credentials = output.credentials else {
 throw ServiceHandlerError.authError
 }

 return credentials
 } catch {
 throw error
 }
 }

Multi-factor authentication (MFA) 289

https://docs.rs/releases/search?query=aws-sdk
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/swift/example_code/iam#code-examples

AWS Identity and Access Management User Guide

• For API details, see AssumeRole in AWS SDK for Swift API reference.

Finding unused credentials

To increase the security of your AWS account, remove IAM user credentials (that is, passwords
and access keys) that are not needed. For example, when users leave your organization or no
longer need AWS access, find the credentials that they were using and ensure that they are no
longer operational. Ideally, you delete credentials if they are no longer needed. You can always
recreate them at a later date if the need arises. At the very least, you should change the password
or deactivate the access keys so that the former users no longer have access.

Of course, the definition of unused can vary and usually means a credential that has not been used
within a specified period of time.

Finding unused passwords

You can use the AWS Management Console to view password usage information for your users.
If you have a large number of users, you can use the console to download a credential report
with information about when each user last used their console password. You can also access the
information from the AWS CLI or the IAM API.

To find unused passwords (console)

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. In the navigation pane, choose Users.

3. If necessary, add the Console last sign-in column to the users table:

a. Above the table on the far right, choose the settings icon

().

b. In Select visible columns, select Console last sign-in.

c. Choose Confirm to return to the list of users.

4. The Console last sign-in column shows the date when the user last signed in to AWS through
the console. You can use this information to find users with passwords who have not signed in
for more than a specified period of time. The column displays Never for users with passwords
that have never signed in. None indicates users with no passwords. Passwords that have not
been used recently might be good candidates for removal.

Finding unused credentials 290

https://awslabs.github.io/aws-sdk-swift/reference/0.x
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/

AWS Identity and Access Management User Guide

Important

Due to a service issue, password last used data does not include password use from
May 3rd 2018 22:50 PDT to May 23rd 2018 14:08 PDT. This affects last sign-in dates
shown in the IAM console and password last used dates in the IAM credential report,
and returned by the GetUser API operation. If users signed in during the affected time,
the password last used date that is returned is the date the user last signed in before
May 3rd 2018. For users that signed in after May 23rd 2018 14:08 PDT, the returned
password last used date is accurate.
If you use password last used information to identify unused credentials for deletion,
such as deleting users who did not sign in to AWS in the last 90 days, we recommend
that you adjust your evaluation window to include dates after May 23rd 2018.
Alternatively, if your users use access keys to access AWS programmatically you can
refer to access key last used information because it is accurate for all dates.

To find unused passwords by downloading the credentials report (console)

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. In the navigation pane, choose Credential report.

3. Choose Download Report to download a comma-separated value (CSV) file
named status_reports_<date>T<time>.csv. The fifth column contains the
password_last_used column with the dates or one of the following:

• N/A – Users that do not have a password assigned at all.

• no_information – Users that have not used their password since IAM began tracking
password age on October 20, 2014.

To find unused passwords (AWS CLI)

Run the following command to find unused passwords:

• aws iam list-users returns a list of users, each with a PasswordLastUsed value. If the
value is missing, then the user either has no password or the password has not been used since
IAM began tracking password age on October 20, 2014.

Finding unused credentials 291

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_finding-unused.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/SupportedTypes.xmlid_credentials_getting-report.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_GetUser.html
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/
https://docs.aws.amazon.com/cli/latest/reference/iam/list-users.html

AWS Identity and Access Management User Guide

To find unused passwords (AWS API)

Call the following operation to find unused passwords:

• ListUsers returns a collection of users, each of which has a <PasswordLastUsed> value. If
the value is missing, then the user either has no password or the password has not been used
since IAM began tracking password age on October 20, 2014.

For information about the commands to download the credentials report, see Getting credential
reports (AWS CLI).

Finding unused access keys

You can use the AWS Management Console to view access key usage information for your users. If
you have a large number of users, you can use the console to download a credentials report to find
when each user last used their access keys. You can also access the information from the AWS CLI
or the IAM API.

To find unused access keys (console)

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. In the navigation pane, choose Users.

3. If necessary, add the Access key last used column to the users table:

a. Above the table on the far right, choose the settings icon

().

b. In Select visible columns, select Access key last used.

c. Choose Confirm to return to the list of users.

4. The Access key last used column shows the number of days since the user last accessed AWS
programmatically. You can use this information to find users with access keys that have not
been used for more than a specified period of time. The column displays – for users with
no access keys. Access keys that have not been used recently might be good candidates for
removal.

Finding unused credentials 292

https://docs.aws.amazon.com/IAM/latest/APIReference/API_ListUsers.html
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/

AWS Identity and Access Management User Guide

To find unused access keys by downloading the credentials report (console)

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. In the navigation pane, choose Credential Report.

3. Choose Download Report to download a comma-separated value (CSV) file named
status_reports_<date>T<time>.csv. Columns 11 through 13 contain the last used date,
Region, and service information for access key 1. Columns 16 through 18 contain the same
information for access key 2. The value is N/A if the user does not have an access key or the
user has not used the access key since IAM began tracking access key age on April 22, 2015.

To find unused access keys (AWS CLI)

Run the following commands to find unused access keys:

• aws iam list-access-keys returns information about the access keys for a user, including
the AccessKeyID.

• aws iam get-access-key-last-used takes an access key ID and returns output that
includes the LastUsedDate, the Region in which the access key was last used, and the
ServiceName of the last service requested. If LastUsedDate is missing, then the access key has
not been used since IAM began tracking access key age on April 22, 2015.

To find unused access keys (AWS API)

Call the following operations to find unused access keys:

• ListAccessKeys returns a list of AccessKeyID values for access keys that are associated with
the specified user.

• GetAccessKeyLastUsed takes an access key ID and returns a collection of values. Included are
the LastUsedDate, the Region in which the access key was last used, and the ServiceName
of the last service requested. If the value is missing, then either the user has no access key or the
access key has not been used since IAM began tracking access key age on April 22, 2015.

For information about the commands to download the credentials report, see Getting credential
reports (AWS CLI).

Finding unused credentials 293

https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/
https://docs.aws.amazon.com/cli/latest/reference/iam/list-access-keys.html
https://docs.aws.amazon.com/cli/latest/reference/iam/get-access-key-last-used.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_ListAccessKeys.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_GetAccessKeyLastUsed.html

AWS Identity and Access Management User Guide

Getting credential reports for your AWS account

You can generate and download a credential report that lists all users in your account and the
status of their various credentials, including passwords, access keys, and MFA devices. You can get a
credential report from the AWS Management Console, the AWS SDKs and Command Line Tools, or
the IAM API.

You can use credential reports to assist in your auditing and compliance efforts. You can use the
report to audit the effects of credential lifecycle requirements, such as password and access key
updates. You can provide the report to an external auditor, or grant permissions to an auditor so
that he or she can download the report directly.

You can generate a credential report as often as once every four hours. When you request a report,
IAM first checks whether a report for the AWS account has been generated within the past four
hours. If so, the most recent report is downloaded. If the most recent report for the account is older
than four hours, or if there are no previous reports for the account, IAM generates and downloads a
new report.

Topics

• Required permissions

• Understanding the report format

• Getting credential reports (console)

• Getting credential reports (AWS CLI)

• Getting credential reports (AWS API)

Required permissions

The following permissions are needed to create and download reports:

• To create a credential report: iam:GenerateCredentialReport

• To download the report: iam:GetCredentialReport

Understanding the report format

Credential reports are formatted as comma-separated values (CSV) files. You can open CSV files
with common spreadsheet software to perform analysis, or you can build an application that
consumes the CSV files programmatically and performs custom analysis.

Getting credential reports 294

https://aws.amazon.com/tools
https://aws.amazon.com/tools/#Command_Line_Tools

AWS Identity and Access Management User Guide

The CSV file contains the following columns:

user

The friendly name of the user.

arn

The Amazon Resource Name (ARN) of the user. For more information about ARNs, see IAM
ARNs.

user_creation_time

The date and time when the user was created, in ISO 8601 date-time format.

password_enabled

When the user has a password, this value is TRUE. Otherwise it is FALSE.The value for the AWS
account root user is always not_supported.

password_last_used

The date and time when the AWS account root user or user's password was last used to sign
in to an AWS website, in ISO 8601 date-time format. AWS websites that capture a user's last
sign-in time are the AWS Management Console, the AWS Discussion Forums, and the AWS
Marketplace. When a password is used more than once in a 5-minute span, only the first use is
recorded in this field.

• The value in this field is no_information in these cases:

• The user's password has never been used.

• There is no sign-in data associated with the password, such as when user's password has
not been used after IAM started tracking this information on October 20, 2014.

• The value in this field is N/A (not applicable) when the user does not have a password.

Important

Due to a service issue, password last used data does not include password use from May 3rd
2018 22:50 PDT to May 23rd 2018 14:08 PDT. This affects last sign-in dates shown in the
IAM console and password last used dates in the IAM credential report, and returned by the
GetUser API operation. If users signed in during the affected time, the password last used
date that is returned is the date the user last signed in before May 3rd 2018. For users that
signed in after May 23rd 2018 14:08 PDT, the returned password last used date is accurate.

Getting credential reports 295

https://en.wikipedia.org/wiki/ISO_8601
http://www.iso.org/iso/iso8601
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_finding-unused.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/SupportedTypes.xmlid_credentials_getting-report.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_GetUser.html

AWS Identity and Access Management User Guide

If you use password last used information to identify unused credentials for deletion, such
as deleting users who did not sign in to AWS in the last 90 days, we recommend that you
adjust your evaluation window to include dates after May 23rd 2018. Alternatively, if your
users use access keys to access AWS programmatically you can refer to access key last used
information because it is accurate for all dates.

password_last_changed

The date and time when the user's password was last set, in ISO 8601 date-time format. If the
user does not have a password, the value in this field is N/A (not applicable). The value for the
AWS account (root) is always not_supported.

password_next_rotation

When the account has a password policy that requires password rotation, this field contains the
date and time, in ISO 8601 date-time format, when the user is required to set a new password.
The value for the AWS account (root) is always not_supported.

mfa_active

When a multi-factor authentication (MFA) device has been enabled for the user, this value is
TRUE. Otherwise it is FALSE.

access_key_1_active

When the user has an access key and the access key's status is Active, this value is TRUE.
Otherwise it is FALSE.

access_key_1_last_rotated

The date and time, in ISO 8601 date-time format, when the user's access key was created or
last changed. If the user does not have an active access key, the value in this field is N/A (not
applicable).

access_key_1_last_used_date

The date and time, in ISO 8601 date-time format, when the user's access key was most recently
used to sign an AWS API request. When an access key is used more than once in a 15-minute
span, only the first use is recorded in this field.

The value in this field is N/A (not applicable) in these cases:

Getting credential reports 296

https://en.wikipedia.org/wiki/ISO_8601
https://docs.aws.amazon.com/IAM/latest/UserGuide/Using_ManagingPasswordPolicies.html
https://en.wikipedia.org/wiki/ISO_8601
https://en.wikipedia.org/wiki/ISO_8601
https://en.wikipedia.org/wiki/ISO_8601

AWS Identity and Access Management User Guide

• The user does not have an access key.

• The access key has never been used.

• The access key has not been used after IAM started tracking this information on April 22,
2015.

access_key_1_last_used_region

The AWS Region in which the access key was most recently used. When an access key is used
more than once in a 15-minute span, only the first use is recorded in this field.

The value in this field is N/A (not applicable) in these cases:

• The user does not have an access key.

• The access key has never been used.

• The access key was last used before IAM started tracking this information on April 22, 2015.

• The last used service is not Region-specific, such as Amazon S3.

access_key_1_last_used_service

The AWS service that was most recently accessed with the access key. The value in this field
uses the service's namespace—for example, s3 for Amazon S3 and ec2 for Amazon EC2. When
an access key is used more than once in a 15-minute span, only the first use is recorded in this
field.

The value in this field is N/A (not applicable) in these cases:

• The user does not have an access key.

• The access key has never been used.

• The access key was last used before IAM started tracking this information on April 22, 2015.

access_key_2_active

When the user has a second access key and the second key's status is Active, this value is
TRUE. Otherwise it is FALSE.

Note

Users can have up to two access keys, to make rotation easier by updating the key first
and then deleting the previous key. For more information about updating access keys,
see Updating access keys.

Getting credential reports 297

https://docs.aws.amazon.com/general/latest/gr/rande.html

AWS Identity and Access Management User Guide

access_key_2_last_rotated

The date and time, in ISO 8601 date-time format, when the user's second access key was
created or last updated. If the user does not have a second active access key, the value in this
field is N/A (not applicable).

access_key_2_last_used_date

The date and time, in ISO 8601 date-time format, when the user's second access key was most
recently used to sign an AWS API request. When an access key is used more than once in a 15-
minute span, only the first use is recorded in this field.

The value in this field is N/A (not applicable) in these cases:

• The user does not have a second access key.

• The user's second access key has never been used.

• The user's second access key was last used before IAM started tracking this information on
April 22, 2015.

access_key_2_last_used_region

The AWS Region in which the user's second access key was most recently used. When an access
key is used more than once in a 15-minute span, only the first use is recorded in this field. The
value in this field is N/A (not applicable) in these cases:

• The user does not have a second access key.

• The user's second access key has never been used.

• The user's second access key was last used before IAM started tracking this information on
April 22, 2015.

• The last used service is not Region-specific, such as Amazon S3.

access_key_2_last_used_service

The AWS service that was most recently accessed with the user's second access key. The value
in this field uses the service's namespace—for example, s3 for Amazon S3 and ec2 for Amazon
EC2. When an access key is used more than once in a 15-minute span, only the first use is
recorded in this field. The value in this field is N/A (not applicable) in these cases:

• The user does not have a second access key.

• The user's second access key has never been used.

Getting credential reports 298

https://en.wikipedia.org/wiki/ISO_8601
https://en.wikipedia.org/wiki/ISO_8601
https://docs.aws.amazon.com/general/latest/gr/rande.html

AWS Identity and Access Management User Guide

• The user's second access key was last used before IAM started tracking this information on
April 22, 2015.

cert_1_active

When the user has an X.509 signing certificate and that certificate's status is Active, this value
is TRUE. Otherwise it is FALSE.

cert_1_last_rotated

The date and time, in ISO 8601 date-time format, when the user's signing certificate was
created or last changed. If the user does not have an active signing certificate, the value in this
field is N/A (not applicable).

cert_2_active

When the user has a second X.509 signing certificate and that certificate's status is Active, this
value is TRUE. Otherwise it is FALSE.

Note

Users can have up to two X.509 signing certificates, to make certificate rotation easier.

cert_2_last_rotated

The date and time, in ISO 8601 date-time format, when the user's second signing certificate
was created or last changed. If the user does not have a second active signing certificate, the
value in this field is N/A (not applicable).

Getting credential reports (console)

You can use the AWS Management Console to download a credential report as a comma-separated
values (CSV) file.

To download a credential report (console)

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. In the navigation pane, choose Credential report.

3. Choose Download Report.

Getting credential reports 299

https://en.wikipedia.org/wiki/ISO_8601
https://en.wikipedia.org/wiki/ISO_8601
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/

AWS Identity and Access Management User Guide

Getting credential reports (AWS CLI)

To download a credentials report (AWS CLI)

1. Generate a credentials report. AWS stores a single report. If a report exists, generating a
credentials report overwrites the previous report. aws iam generate-credential-report

2. View the last report that was generated: aws iam get-credential-report

Getting credential reports (AWS API)

To download a credentials report (AWS API)

1. Generate a credentials report. AWS stores a single report. If a report exists, generating a
credentials report overwrites the previous report. GenerateCredentialReport

2. View the last report that was generated: GetCredentialReport

Using IAM with CodeCommit: Git credentials, SSH keys, and AWS access
keys

CodeCommit is a managed version control service that hosts private Git repositories in the AWS
cloud. To use CodeCommit, you configure your Git client to communicate with CodeCommit
repositories. As part of this configuration, you provide IAM credentials that CodeCommit can use to
authenticate you. IAM supports CodeCommit with three types of credentials:

• Git credentials, an IAM-generated user name and password pair you can use to communicate
with CodeCommit repositories over HTTPS.

• SSH keys, a locally generated public-private key pair that you can associate with your IAM user to
communicate with CodeCommit repositories over SSH.

• AWS access keys, which you can use with the credential helper included with the AWS CLI to
communicate with CodeCommit repositories over HTTPS.

Note

You cannot use SSH keys or Git credentials to access repositories in another AWS account.
To learn how to configure access to CodeCommit repositories for IAM users and groups

Using IAM with CodeCommit 300

https://docs.aws.amazon.com/cli/latest/reference/iam/generate-credential-report.html
https://docs.aws.amazon.com/cli/latest/reference/iam/get-credential-report.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_GenerateCredentialReport.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_GetCredentialReport.html

AWS Identity and Access Management User Guide

in another AWS account, see Configure cross-account access to an AWS CodeCommit
repository using roles in the AWS CodeCommit User Guide.

See the following sections for more information about each option.

Use Git credentials and HTTPS with CodeCommit (recommended)

With Git credentials, you generate a static user name and password pair for your IAM user, and then
use those credentials for HTTPS connections. You can also use these credentials with any third-
party tool or integrated development environment (IDE) that supports static Git credentials.

Because these credentials are universal for all supported operating systems and compatible
with most credential management systems, development environments, and other software
development tools, this is the recommended method. You can reset the password for Git
credentials at any time. You can also make the credentials inactive or delete them if you no longer
need them.

Note

You cannot choose your own user name or password for Git credentials. IAM generates
these credentials for you to help ensure they meet the security standards for AWS and
secure repositories in CodeCommit. You can download the credentials only once, at the
time they are generated. Make sure that you save the credentials in a secure location. If
necessary, you can reset the password at any time, but doing so invalidates any connections
configured with the old password. You must reconfigure connections to use the new
password before you can connect.

See the following topics for more information:

• To create an IAM user, see Creating an IAM user in your AWS account.

• To generate and use Git credentials with CodeCommit, see For HTTPS Users Using Git Credentials
in the AWS CodeCommit User Guide.

Using IAM with CodeCommit 301

https://docs.aws.amazon.com/codecommit/latest/userguide/cross-account.html
https://docs.aws.amazon.com/codecommit/latest/userguide/cross-account.html
https://docs.aws.amazon.com/codecommit/latest/userguide/setting-up-gc.html

AWS Identity and Access Management User Guide

Note

Changing the name of an IAM user after generating Git credentials does not change the
user name of the Git credentials. The user name and password remain the same and are
still valid.

To update service specific credentials

1. Create a second service-specific credential set in addition to the set currently in use.

2. Update all of your applications to use the new set of credentials and validate that the
applications are working.

3. Change the state of the original credentials to "Inactive".

4. Ensure that all of your applications are still working.

5. Delete the inactive service-specific credentials.

Use SSH keys and SSH with CodeCommit

With SSH connections, you create public and private key files on your local machine that Git and
CodeCommit use for SSH authentication. You associate the public key with your IAM user and store
the private key on your local machine. See the following topics for more information:

• To create an IAM user, see Creating an IAM user in your AWS account.

• To create an SSH public key and associate it with an IAM user, see For SSH Connections on Linux,
macOS, or Unix or see For SSH Connections on Windows in the AWS CodeCommit User Guide.

Note

The public key must be encoded in ssh-rsa format or PEM format. The minimum bit-length
of the public key is 2048 bits, and the maximum length is 16384 bits. This is separate from
the size of the file you upload. For example, you can generate a 2048-bit key, and the
resulting PEM file is 1679 bytes long. If you provide your public key in another format or
size, you will see an error message stating that the key format is not valid.

Using IAM with CodeCommit 302

https://docs.aws.amazon.com/codecommit/latest/userguide/setting-up-ssh-unixes.html
https://docs.aws.amazon.com/codecommit/latest/userguide/setting-up-ssh-unixes.html
https://docs.aws.amazon.com/codecommit/latest/userguide/setting-up-ssh-windows.html

AWS Identity and Access Management User Guide

Use HTTPS with the AWS CLI credential helper and CodeCommit

As an alternative to HTTPS connections with Git credentials, you can allow Git to use a
cryptographically signed version of your IAM user credentials or Amazon EC2 instance role
whenever Git needs to authenticate with AWS to interact with CodeCommit repositories. This
is the only connection method for CodeCommit repositories that does not require an IAM user.
This is also the only method that works with federated access and temporary credentials. See the
following topics for more information:

• To learn more about federated access, see Identity providers and federation and Providing access
to externally authenticated users (identity federation).

• To learn more about temporary credentials, see Temporary security credentials in IAM and
Temporary Access to CodeCommit Repositories.

The AWS CLI credential helper is not compatible with other credential helper systems, such
as Keychain Access or Windows Credential Management. There are additional configuration
considerations when you configure HTTPS connections with the credential helper. For more
information, see For HTTPS Connections on Linux, macOS, or Unix with the AWS CLI Credential
Helper or HTTPS Connections on Windows with the AWS CLI Credential Helper in the AWS
CodeCommit User Guide.

Using IAM with Amazon Keyspaces (for Apache Cassandra)

Amazon Keyspaces (for Apache Cassandra) is a scalable, highly available, and managed Apache
Cassandra-compatible database service. You can access Amazon Keyspaces through the AWS
Management Console, or programmatically. To access Amazon Keyspaces programmatically with
service-specific credentials, you can use cqlsh or open-source Cassandra drivers. Service-specific
credentials include a user name and password like those that Cassandra uses for authentication and
access management. You can have a maximum of two sets of service-specific credentials for each
supported service per user.

To access Amazon Keyspaces programmatically with AWS access keys, you can use the AWS SDK,
the AWS Command Line Interface (AWS CLI) or open-source Cassandra drivers with the SigV4
plugin. To learn more, see Connecting programmatically to Amazon Keyspaces in the Amazon
Keyspaces (for Apache Cassandra) Developer Guide.

Using IAM with Amazon Keyspaces 303

https://docs.aws.amazon.com/codecommit/latest/userguide/temporary-access.html
https://docs.aws.amazon.com/codecommit/latest/userguide/setting-up-https-unixes.html
https://docs.aws.amazon.com/codecommit/latest/userguide/setting-up-https-unixes.html
https://docs.aws.amazon.com/codecommit/latest/userguide/setting-up-https-windows.html
https://docs.aws.amazon.com/keyspaces/latest/devguide/programmatic.html

AWS Identity and Access Management User Guide

Note

If you plan to interact with Amazon Keyspaces only through the console, you don't need
to generate service-specific credentials. For more information, see Accessing Amazon
Keyspaces using the console in the Amazon Keyspaces (for Apache Cassandra) Developer
Guide.

For more information about the permissions required to access Amazon Keyspaces, see Amazon
Keyspaces (for Apache Cassandra) Identity-Based Policy Examples in the Amazon Keyspaces (for
Apache Cassandra) Developer Guide.

Generating Amazon Keyspaces credentials (console)

You can use the AWS Management Console to generate Amazon Keyspaces (for Apache Cassandra)
credentials for your IAM users.

To generate Amazon Keyspaces service-specific credentials (console)

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. In the navigation pane, choose Users and then choose the name of the user that requires the
credentials.

3. On the Security Credentials tab beneath Credentials for Amazon Keyspaces (for Apache
Cassandra), choose Generate credentials.

4. Your service-specific credentials are now available. This is the only time that the password can
be viewed or downloaded. You cannot recover it later. However, you can reset your password at
any time. Save the user and password in a secure location, because you'll need them later.

Generating Amazon Keyspaces credentials (AWS CLI)

You can use the AWS CLI to generate Amazon Keyspaces (for Apache Cassandra) credentials for
your IAM users.

To generate Amazon Keyspaces service-specific credentials (AWS CLI)

• Use the following command:

Using IAM with Amazon Keyspaces 304

https://docs.aws.amazon.com/keyspaces/latest/devguide/console_keyspaces.html
https://docs.aws.amazon.com/keyspaces/latest/devguide/console_keyspaces.html
https://docs.aws.amazon.com/keyspaces/latest/devguide/security_iam_id-based-policy-examples.html#security_iam_id-based-policy-examples-console
https://docs.aws.amazon.com/keyspaces/latest/devguide/security_iam_id-based-policy-examples.html#security_iam_id-based-policy-examples-console
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/

AWS Identity and Access Management User Guide

• aws iam create-service-specific-credential

Generating Amazon Keyspaces credentials (AWS API)

You can use the AWS API to generate Amazon Keyspaces (for Apache Cassandra) credentials for
your IAM users.

To generate Amazon Keyspaces service-specific credentials (AWS API)

• Complete the following operation:

• CreateServiceSpecificCredential

Managing server certificates in IAM

To enable HTTPS connections to your website or application in AWS, you need an SSL/TLS
server certificate. For certificates in a Region supported by AWS Certificate Manager (ACM), we
recommend that you use ACM to provision, manage, and deploy your server certificates. In
unsupported Regions, you must use IAM as a certificate manager. To learn which Regions ACM
supports, see AWS Certificate Manager endpoints and quotas in the AWS General Reference.

ACM is the preferred tool to provision, manage, and deploy your server certificates. With ACM
you can request a certificate or deploy an existing ACM or external certificate to AWS resources.
Certificates provided by ACM are free and automatically renew. In a supported Region, you can use
ACM to manage server certificates from the console or programmatically. For more information
about using ACM, see the AWS Certificate Manager User Guide. For more information about
requesting an ACM certificate, see Request a Public Certificate or Request a Private Certificate
in the AWS Certificate Manager User Guide. For more information about importing third-party
certificates into ACM, see Importing Certificates in the AWS Certificate Manager User Guide.

Use IAM as a certificate manager only when you must support HTTPS connections in a Region that
is not supported by ACM. IAM securely encrypts your private keys and stores the encrypted version
in IAM SSL certificate storage. IAM supports deploying server certificates in all Regions, but you
must obtain your certificate from an external provider for use with AWS. You cannot upload an
ACM certificate to IAM. Additionally, you cannot manage your certificates from the IAM Console.

For more information about uploading third-party certificates to IAM, see the following topics.

Managing server certificates 305

https://docs.aws.amazon.com/cli/latest/reference/iam/create-service-specific-credential.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_CreateServiceSpecificCredential.html
https://docs.aws.amazon.com/general/latest/gr/acm.html
https://docs.aws.amazon.com/general/latest/gr/acm.html
https://docs.aws.amazon.com/acm/latest/userguide/acm-overview.html
https://docs.aws.amazon.com/acm/latest/userguide/gs-acm-request-public.html
https://docs.aws.amazon.com/acm/latest/userguide/gs-acm-request-private.html
https://docs.aws.amazon.com/acm/latest/userguide/import-certificate.html
https://docs.aws.amazon.com/general/latest/gr/acm.html

AWS Identity and Access Management User Guide

Contents

• Uploading a server certificate (AWS API)

• Retrieving a server certificate (AWS API)

• Listing server certificates (AWS API)

• Tagging and Untagging Server Certificates (AWS API)

• Renaming a server certificate or updating its path (AWS API)

• Deleting a server certificate (AWS API)

• Troubleshooting

Uploading a server certificate (AWS API)

To upload a server certificate to IAM, you must provide the certificate and its matching private key.
When the certificate is not self-signed, you must also provide a certificate chain. (You don't need a
certificate chain when uploading a self-signed certificate.) Before you upload a certificate, ensure
that you have all these items and that they meet the following criteria:

• The certificate must be valid at the time of upload. You cannot upload a certificate before its
validity period begins (the certificate's NotBefore date) or after it expires (the certificate's
NotAfter date).

• The private key must be unencrypted. You cannot upload a private key that is protected by a
password or passphrase. For help decrypting an encrypted private key, see Troubleshooting.

• The certificate, private key, and certificate chain must all be PEM-encoded. For help converting
these items to PEM format, see Troubleshooting.

To use the IAM API to upload a certificate, send an UploadServerCertificate request. The following
example shows how to do this with the AWS Command Line Interface (AWS CLI). The example
assumes the following:

• The PEM-encoded certificate is stored in a file named Certificate.pem.

• The PEM-encoded certificate chain is stored in a file named CertificateChain.pem.

• The PEM-encoded, unencrypted private key is stored in a file named PrivateKey.pem.

• (Optional) You want to tag the server certificate with a key–value pair. For example, you might
add the tag key Department and the tag value Engineering to help you identify and organize
your certificates.

Managing server certificates 306

https://docs.aws.amazon.com/IAM/latest/APIReference/
https://docs.aws.amazon.com/IAM/latest/APIReference/API_UploadServerCertificate.html
https://aws.amazon.com/cli/

AWS Identity and Access Management User Guide

To use the following example command, replace these file names with your own. Replace
ExampleCertificate with a name for your uploaded certificate. If you want to tag the
certificate, replace the ExampleKey and ExampleValue tag key-value pair with your own values.
Type the command on one continuous line. The following example includes line breaks and extra
spaces to make it easier to read.

aws iam upload-server-certificate --server-certificate-name ExampleCertificate
 --certificate-body file://Certificate.pem
 --certificate-chain file://CertificateChain.pem
 --private-key file://PrivateKey.pem
 --tags '{"Key": "ExampleKey", "Value":
 "ExampleValue"}'

When the preceding command is successful, it returns metadata about the uploaded certificate,
including its Amazon Resource Name (ARN), its friendly name, its identifier (ID), its expiration date,
tags, and more.

Note

If you are uploading a server certificate to use with Amazon CloudFront, you must specify a
path using the --path option. The path must begin with /cloudfront and must include
a trailing slash (for example, /cloudfront/test/).

To use the AWS Tools for Windows PowerShell to upload a certificate, use Publish-
IAMServerCertificate.

Retrieving a server certificate (AWS API)

To use the IAM API to retrieve a certificate, send a GetServerCertificate request. The following
example shows how to do this with the AWS CLI. Replace ExampleCertificate with the name of
the certificate to retrieve.

aws iam get-server-certificate --server-certificate-name ExampleCertificate

When the preceding command is successful, it returns the certificate, the certificate chain (if one
was uploaded), and metadata about the certificate.

Managing server certificates 307

https://docs.aws.amazon.com/powershell/latest/reference/Index.html?page=Publish-IAMServerCertificate.html&tocid=Publish-IAMServerCertificate
https://docs.aws.amazon.com/powershell/latest/reference/Index.html?page=Publish-IAMServerCertificate.html&tocid=Publish-IAMServerCertificate
https://docs.aws.amazon.com/IAM/latest/APIReference/API_GetServerCertificate.html

AWS Identity and Access Management User Guide

Note

You cannot download or retrieve a private key from IAM after you upload it.

To use the AWS Tools for Windows PowerShell to retrieve a certificate, use Get-
IAMServerCertificate.

Listing server certificates (AWS API)

To use the IAM API to list your uploaded server certificates, send a ListServerCertificates request.
The following example shows how to do this with the AWS CLI.

aws iam list-server-certificates

When the preceding command is successful, it returns a list that contains metadata about each
certificate.

To use the AWS Tools for Windows PowerShell to list your uploaded server certificates, use Get-
IAMServerCertificates.

Tagging and Untagging Server Certificates (AWS API)

You can attach tags to your IAM resources to organize and control access to them. To use the IAM
API to tag an existing server certificate, send a TagServerCertificate request. The following example
shows how to do this with the AWS CLI.

aws iam tag-server-certificate --server-certificate-name ExampleCertificate
 --tags '{"Key": "ExampleKey", "Value":
 "ExampleValue"}'

When the preceding command is successful, no output is returned.

To use the IAM API to untag a server certificate, send a UntagServerCertificate request. The
following example shows how to do this with the AWS CLI.

aws iam untag-server-certificate --server-certificate-name ExampleCertificate
 --tag-keys ExampleKeyName

Managing server certificates 308

https://docs.aws.amazon.com/powershell/latest/reference/Index.html?page=Get-IAMServerCertificate.html&tocid=Get-IAMServerCertificate
https://docs.aws.amazon.com/powershell/latest/reference/Index.html?page=Get-IAMServerCertificate.html&tocid=Get-IAMServerCertificate
https://docs.aws.amazon.com/IAM/latest/APIReference/API_ListServerCertificates.html
https://docs.aws.amazon.com/powershell/latest/reference/Index.html?page=Get-IAMServerCertificates.html&tocid=Get-IAMServerCertificates
https://docs.aws.amazon.com/powershell/latest/reference/Index.html?page=Get-IAMServerCertificates.html&tocid=Get-IAMServerCertificates
https://docs.aws.amazon.com/IAM/latest/APIReference/API_TagServerCertificate.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_UntagServerCertificate.html

AWS Identity and Access Management User Guide

When the preceding command is successful, no output is returned.

Renaming a server certificate or updating its path (AWS API)

To use the IAM API to rename a server certificate or update its path, send an
UpdateServerCertificate request. The following example shows how to do this with the AWS CLI.

To use the following example command, replace the old and new certificate names and the
certificate path, and type the command on one continuous line. The following example includes
line breaks and extra spaces to make it easier to read.

aws iam update-server-certificate --server-certificate-name ExampleCertificate
 --new-server-certificate-name CloudFrontCertificate
 --new-path /cloudfront/

When the preceding command is successful, it does not return any output.

To use the AWS Tools for Windows PowerShell to rename a server certificate or update its path, use
Update-IAMServerCertificate.

Deleting a server certificate (AWS API)

To use the IAM API to delete a server certificate, send a DeleteServerCertificate request. The
following example shows how to do this with the AWS CLI.

To use the following example command, replace ExampleCertificate with the name of the
certificate to delete.

aws iam delete-server-certificate --server-certificate-name ExampleCertificate

When the preceding command is successful, it does not return any output.

To use the AWS Tools for Windows PowerShell to delete a server certificate, use Remove-
IAMServerCertificate.

Troubleshooting

Before you can upload a certificate to IAM, you must make sure that the certificate, private key, and
certificate chain are all PEM-encoded. You must also ensure that the private key is unencrypted.
See the following examples.

Managing server certificates 309

https://docs.aws.amazon.com/IAM/latest/APIReference/API_UpdateServerCertificate.html
https://docs.aws.amazon.com/powershell/latest/reference/Index.html?page=Update-IAMServerCertificate.html&tocid=Update-IAMServerCertificate
https://docs.aws.amazon.com/IAM/latest/APIReference/API_DeleteServerCertificate.html
https://docs.aws.amazon.com/powershell/latest/reference/Index.html?page=Remove-IAMServerCertificate.html&tocid=Remove-IAMServerCertificate
https://docs.aws.amazon.com/powershell/latest/reference/Index.html?page=Remove-IAMServerCertificate.html&tocid=Remove-IAMServerCertificate

AWS Identity and Access Management User Guide

Example Example PEM-encoded certificate

-----BEGIN CERTIFICATE-----
Base64-encoded certificate
-----END CERTIFICATE-----

Example Example PEM-encoded, unencrypted private key

-----BEGIN RSA PRIVATE KEY-----
Base64-encoded private key
-----END RSA PRIVATE KEY-----

Example Example PEM-encoded certificate chain

A certificate chain contains one or more certificates. You can use a text editor, the copy command
in Windows, or the Linux cat command to concatenate your certificate files into a chain. When you
include multiple certificates, each certificate must certify the preceding certificate. You accomplish
this by concatenating the certificates, including the root CA certificate last.

The following example contains three certificates, but your certificate chain might contain more or
fewer certificates.

-----BEGIN CERTIFICATE-----
Base64-encoded certificate
-----END CERTIFICATE-----
-----BEGIN CERTIFICATE-----
Base64-encoded certificate
-----END CERTIFICATE-----
-----BEGIN CERTIFICATE-----
Base64-encoded certificate
-----END CERTIFICATE-----

If these items are not in the right format for uploading to IAM, you can use OpenSSL to convert
them to the right format.

To convert a certificate or certificate chain from DER to PEM

Use the OpenSSL x509 command, as in the following example. In the following example
command, replace Certificate.der with the name of the file that contains your DER-
encoded certificate. Replace Certificate.pem with the preferred name of the output file to
contain the PEM-encoded certificate.

Managing server certificates 310

https://openssl.org/
https://openssl.org/docs/manmaster/man1/x509.html

AWS Identity and Access Management User Guide

openssl x509 -inform DER -in Certificate.der -outform PEM -out Certificate.pem

To convert a private key from DER to PEM

Use the OpenSSL rsa command, as in the following example. In the following example
command, replace PrivateKey.der with the name of the file that contains your DER-encoded
private key. Replace PrivateKey.pem with the preferred name of the output file to contain
the PEM-encoded private key.

openssl rsa -inform DER -in PrivateKey.der -outform PEM -out PrivateKey.pem

To decrypt an encrypted private key (remove the password or passphrase)

Use the OpenSSL rsa command, as in the following example. To use the following example
command, replace EncryptedPrivateKey.pem with the name of the file that contains your
encrypted private key. Replace PrivateKey.pem with the preferred name of the output file to
contain the PEM-encoded unencrypted private key.

openssl rsa -in EncryptedPrivateKey.pem -out PrivateKey.pem

To convert a certificate bundle from PKCS#12 (PFX) to PEM

Use the OpenSSL pkcs12 command, as in the following example. In the following example
command, replace CertificateBundle.p12 with the name of the file that contains your
PKCS#12-encoded certificate bundle. Replace CertificateBundle.pem with the preferred
name of the output file to contain the PEM-encoded certificate bundle.

openssl pkcs12 -in CertificateBundle.p12 -out CertificateBundle.pem -nodes

To convert a certificate bundle from PKCS#7 to PEM

Use the OpenSSL pkcs7 command, as in the following example. In the following example
command, replace CertificateBundle.p7b with the name of the file that contains your

Managing server certificates 311

https://openssl.org/docs/manmaster/man1/rsa.html
https://openssl.org/docs/manmaster/man1/rsa.html
https://openssl.org/docs/manmaster/man1/pkcs12.html
https://openssl.org/docs/manmaster/man1/pkcs7.html

AWS Identity and Access Management User Guide

PKCS#7-encoded certificate bundle. Replace CertificateBundle.pem with the preferred
name of the output file to contain the PEM-encoded certificate bundle.

openssl pkcs7 -in CertificateBundle.p7b -print_certs -out CertificateBundle.pem

IAM user groups

An IAM user group is a collection of IAM users. User groups let you specify permissions for multiple
users, which can make it easier to manage the permissions for those users. For example, you could
have a user group called Admins and give that user group typical administrator permissions. Any
user in that user group automatically has Admins group permissions. If a new user joins your
organization and needs administrator privileges you can assign the appropriate permissions by
adding the user to the Admins user group. If a person changes jobs in your organization, instead of
editing that user's permissions you can remove them from the old user groups and add them to the
appropriate new user groups.

You can attach an identity-based policy to a user group so that all of the users in the user group
receive the policy's permissions. You cannot identify a user group as a Principal in a policy (such
as a resource-based policy) because groups relate to permissions, not authentication, and principals
are authenticated IAM entities. For more information about policy types, see Identity-based policies
and resource-based policies.

Here are some important characteristics of user groups:

• A user group can contain many users, and a user can belong to multiple user groups.

• User groups can't be nested; they can contain only users, not other user groups.

• There is no default user group that automatically includes all users in the AWS account. If you
want to have a user group like that, you must create it and assign each new user to it.

• The number and size of IAM resources in an AWS account, such as the number of groups, and the
number of groups that a user can be a member of, are limited. For more information, see IAM
and AWS STS quotas.

The following diagram shows a simple example of a small company. The company owner creates an
Admins user group for users to create and manage other users as the company grows. The Admins
user group creates a Developers user group and a Test user group. Each of these user groups
consists of users (humans and applications) that interact with AWS (Jim, Brad, DevApp1, and so

User groups 312

AWS Identity and Access Management User Guide

on). Each user has an individual set of security credentials. In this example, each user belongs to a
single user group. However, users can belong to multiple user groups.

Creating IAM user groups

Note

As a best practice, we recommend that you require human users to use federation with
an identity provider to access AWS using temporary credentials. If you follow the best
practices, you are not managing IAM users and groups. Instead, your users and groups are
managed outside of AWS and are able to access AWS resources as a federated identity. A
federated identity is a user from your enterprise user directory, a web identity provider,
the AWS Directory Service, the Identity Center directory, or any user that accesses AWS
services by using credentials provided through an identity source. Federated identities use
the groups defined by their identity provider. If you are using AWS IAM Identity Center,

Creating user groups 313

AWS Identity and Access Management User Guide

see Manage identities in IAM Identity Center in the AWS IAM Identity Center User Guide for
information about creating users and groups in IAM Identity Center.

To set up a user group, you need to create the group. Then give the group permissions based on
the type of work that you expect the users in the group to do. Finally, add users to the group.

For information about the permissions that you need in order to create a user group, see
Permissions required to access IAM resources.

To create an IAM user group and attach policies (console)

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. In the navigation pane, choose User groups and then choose Create group.

3. For User group name, type the name of the group.

Note

The number and size of IAM resources in an AWS account are limited. For more
information, see IAM and AWS STS quotas. Group names can be a combination of up to
128 letters, digits, and these characters: plus (+), equal (=), comma (,), period (.), at sign
(@), underscore (_), and hyphen (-). Names must be unique within an account. They are
not distinguished by case. For example, you cannot create groups named both ADMINS
and admins.

4. In the list of users, select the check box for each user that you want to add to the group.

5. In the list of policies, select the check box for each policy that you want to apply to all
members of the group.

6. Choose Create group.

To create IAM user groups (AWS CLI or AWS API)

Use one of the following:

• AWS CLI: aws iam create-group

• AWS API: CreateGroup

Creating user groups 314

https://docs.aws.amazon.com/singlesignon/latest/userguide/manage-your-identity-source-sso.html
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/
https://docs.aws.amazon.com/cli/latest/reference/iam/create-group.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_CreateGroup.html

AWS Identity and Access Management User Guide

Managing IAM user groups

Amazon Web Services offers multiple tools for managing IAM user groups. For information about
the permissions that you need in order to add and remove users in a user group, see Permissions
required to access IAM resources.

Topics

• Listing IAM user groups

• Adding and removing users in an IAM user group

• Attaching a policy to an IAM user group

• Renaming an IAM user group

• Deleting an IAM user group

Listing IAM user groups

You can list all the user groups in your account, list the users in a user group, and list the user
groups a user belongs to. If you use the AWS CLI or AWS API, you can list all the user groups with a
particular path prefix.

To list all the user groups in your account

Do any of the following:

• AWS Management Console: In the navigation pane, choose User groups.

• AWS CLI: aws iam list-groups

• AWS API: ListGroups

To list the users in a specific user group

Do any of the following:

• AWS Management Console: In the navigation pane, choose User groups, choose the name of the
group, and then choose the Users tab.

• AWS CLI: aws iam get-group

• AWS API: GetGroup

Managing user groups 315

https://console.aws.amazon.com/iam/
https://docs.aws.amazon.com/cli/latest/reference/iam/list-groups.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_ListGroups.html
https://console.aws.amazon.com/iam/
https://docs.aws.amazon.com/cli/latest/reference/iam/get-group.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_GetGroup.html

AWS Identity and Access Management User Guide

To list all the user groups that a user is in

Do any of the following:

• AWS Management Console: In the navigation pane, choose Users, choose the user name, and
then choose the Groups tab.

• AWS CLI: aws iam list-groups-for-user

• AWS API: ListGroupsForUser

Adding and removing users in an IAM user group

Use user groups to apply the same permissions policies across multiple users at once. You can then
add users to or remove users from an IAM user group. This is useful as people enter and leave your
organization.

View policy access

Before you change the permissions for a policy, you should review its recent service-level activity.
This is important because you don't want to remove access from a principal (person or application)
who is using it. For more information about viewing last accessed information, see Refining
permissions in AWS using last accessed information.

Add or remove a user in a user group (console)

You can use the AWS Management Console to add or remove a user from a user group.

To add a user to an IAM user group (console)

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. In the navigation pane, choose User groups and then choose the name of the group.

3. Choose the Users tab and then choose Add users. Select the check box next to the users you
want to add.

4. Choose Add users.

To remove a user from an IAM group (console)

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

Managing user groups 316

https://console.aws.amazon.com/iam/
https://docs.aws.amazon.com/cli/latest/reference/iam/list-groups-for-user.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_ListGroupsForUser.html
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/

AWS Identity and Access Management User Guide

2. In the navigation pane, choose User groups and then choose the name of the group.

3. Choose the Users tab. Select the check box next to the users you want to remove and then
choose Remove users.

Add or remove a user in a user group (AWS CLI)

You can use the AWS CLI to add or remove a user from a user group.

To add a user to an IAM user group (AWS CLI)

• Use the following command:

• aws iam add-user-to-group

To remove a user from an IAM user group (AWS CLI)

• Use the following command:

• aws iam remove-user-from-group

Add or remove a user in a user group (AWS API)

You can use the AWS API to add or remove a user in a user group.

To add a user to an IAM group (AWS API)

• Complete the following operation:

• AddUserToGroup

To remove a user from an IAM user group (AWS API)

• Complete the following operation:

• RemoveUserFromGroup

Managing user groups 317

https://docs.aws.amazon.com/cli/latest/reference/iam/add-user-to-group.html
https://docs.aws.amazon.com/cli/latest/reference/iam/remove-user-from-group.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_AddUserToGroup.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_RemoveUserFromGroup.html

AWS Identity and Access Management User Guide

Attaching a policy to an IAM user group

You can attach an AWS managed policy—that is, a prewritten policy provided by AWS—to a user
group, as explained in the following steps. To attach a customer managed policy—that is, a policy
with custom permissions that you create—you must first create the policy. For information about
creating customer managed policies, see Creating IAM policies.

For more information about permissions and policies, see Access management for AWS resources.

To attach a policy to a user group (console)

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. In the navigation pane, choose User groups and then choose the name of the group.

3. Choose the Permissions tab.

4. Choose Add permissions and then choose Attach policies.

5. The current policies attached to the user group are displayed in the Current permissions
policies list. In the list of Other permissions policies, select the check box next to the names
of the policies to attach. You can use the search box to filter the list of policies by type and
policy name.

6. Select the policy you want to attach to your IAM user group and choose Attach policies.

To attach a policy to a user group (AWS CLI or AWS API)

Do either of the following:

• AWS CLI: aws iam attach-group-policy

• AWS API: AttachGroupPolicy

Renaming an IAM user group

When you change a user group's name or path, the following happens:

• Any policies attached to the user group stay with the group under the new name.

• The user group retains all its users under the new name.

• The unique ID for the user group remains the same. For more information about unique IDs, see
Unique identifiers.

Managing user groups 318

https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/
https://docs.aws.amazon.com/cli/latest/reference/iam/attach-group-policy.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_AttachGroupPolicy.html

AWS Identity and Access Management User Guide

IAM does not automatically update policies that refer to the user group as a resource to use the
new name. Therefore, you must be careful when you rename a user group. Before you rename
your user group, you must manually check all of your policies to find any policies where that user
group is mentioned by name. For example, let's say Bob is the manager of the testing part of the
organization. Bob has a policy attached to his IAM user entity that lets him add and remove users
from the Test user group. If an administrator changes the name of the user group (or changes the
group path), the administrator must also update the policy attached to Bob to use the new name
or path. Otherwise Bob won't be able to add and remove users from the user group.

To find policies that refer to a user group as a resource:

1. From the navigation pane of the IAM console, choose Policies.

2. Sort by the Type column to find your Customer managed custom policies.

3. Choose the policy name of the policy to edit.

4. Choose the Permissions tab, and then choose Summary.

5. Choose IAM from the list of services, if it exists.

6. Look for the name of your user group in the Resource column.

7. Choose Edit to change the name of your user group in the policy.

To change the name of an IAM user group

Do any of the following:

• AWS Management Console: In the navigation pane, choose User groups and then select the
group name. Choose Edit. Type the new user group name and then choose Save changes.

• AWS CLI: aws iam update-group

• AWS API: UpdateGroup

Deleting an IAM user group

When you delete a user group in the AWS Management Console, the console automatically
removes all group members, detaches all attached managed policies, and deletes all inline policies.
However, because IAM does not automatically delete policies that refer to the user group as a
resource, you must be careful when you delete a user group. Before you delete your user group,
you must manually check all of your policies to find any policies that mention the group by name.
For example, John, the Test Team manager, has a policy attached to his IAM user entity that

Managing user groups 319

https://console.aws.amazon.com/iam/
https://docs.aws.amazon.com/cli/latest/reference/iam/update-group.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_UpdateGroup.html

AWS Identity and Access Management User Guide

lets him add and remove users from the Test user group. If an administrator deletes the group,
the administrator must also delete the policy attached to John. Otherwise, if the administrator
recreates the deleted group and give it the same name, John's permissions remain in place, even if
he left the Test Team.

To find policies that refer to a user group as a resource

1. From the navigation pane of the IAM console, choose Policies.

2. Sort by the Type column to find your Customer managed custom policies.

3. Choose the policy name of the policy to delete.

4. Choose the Permissions tab, and then choose Summary.

5. Choose IAM from the list of services, if it exists.

6. Look for the name of your user group in the Resource column.

7. Choose Delete to delete the policy.

8. Type the policy name to confirm deletion of the policy and choose Delete.

In contrast, when you use the AWS CLI, Tools for Windows PowerShell, or AWS API to delete a user
group, you must first remove the users in the group. Then delete any inline policies embedded in
the user group. Next, detach any managed policies that are attached to the group. Only then can
you delete the user group itself.

Deleting an IAM user group (console)

You can delete an IAM user group from the AWS Management Console.

To delete an IAM user group (console)

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. In the navigation pane, choose User groups.

3. In the list of user groups, select the check box next to the names of the user groups to delete.
You can use the search box to filter the list of user groups by type, permissions, and user group
name.

4. Choose Delete.

5. In the confirmation box, if you want to delete a single user group, type the user group name
and choose Delete. If you want to delete multiple user groups, type the number of user groups

Managing user groups 320

https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/

AWS Identity and Access Management User Guide

to delete followed by user groups and choose Delete. For example, if you delete three user
groups, type 3 user groups.

Deleting an IAM user group (AWS CLI)

You can delete an IAM user group from the AWS CLI.

To delete an IAM user group (AWS CLI)

1. Remove all users from the user group.

• aws iam get-group (to get the list of users in the user group), and aws iam remove-user-
from-group (to remove a user from the user group)

2. Delete all inline policies embedded in the user group.

• aws iam list-group-policies (to get a list of the user group's inline policies), and aws iam
delete-group-policy (to delete the user group's inline policies)

3. Detach all managed policies attached to the user group.

• aws iam list-attached-group-policies (to get a list of the managed policies attached to the
user group), and aws iam detach-group-policy (to detach a managed policy from the user
group)

4. Delete the user group.

• aws iam delete-group

Deleting an IAM user group (AWS API)

You can use the AWS API to delete an IAM user group.

To delete an IAM user group (AWS API)

1. Remove all users from the user group.

• GetGroup (to get the list of users in the user group) and RemoveUserFromGroup (to remove
a user from the user group)

2. Delete all inline policies embedded in the user group.

Managing user groups 321

https://docs.aws.amazon.com/cli/latest/reference/iam/get-group.html
https://docs.aws.amazon.com/cli/latest/reference/iam/remove-user-from-group.html
https://docs.aws.amazon.com/cli/latest/reference/iam/remove-user-from-group.html
https://docs.aws.amazon.com/cli/latest/reference/iam/list-group-policies.html
https://docs.aws.amazon.com/cli/latest/reference/iam/delete-group-policy.html
https://docs.aws.amazon.com/cli/latest/reference/iam/delete-group-policy.html
https://docs.aws.amazon.com/cli/latest/reference/iam/list-attached-group-policies.html
https://docs.aws.amazon.com/cli/latest/reference/iam/detach-group-policy.html
https://docs.aws.amazon.com/cli/latest/reference/iam/delete-group.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_GetGroup.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_RemoveUserFromGroup.html

AWS Identity and Access Management User Guide

• ListGroupPolicies (to get a list of the user group's inline policies) and DeleteGroupPolicy (to
delete the user group's inline policies)

3. Detach all managed policies attached to the user group.

• ListAttachedGroupPolicies (to get a list of the managed policies attached to the user group)
and DetachGroupPolicy (to detach a managed policy from the user group)

4. Delete the user group.

• DeleteGroup

IAM roles

An IAM role is an IAM identity that you can create in your account that has specific permissions.
An IAM role is similar to an IAM user, in that it is an AWS identity with permission policies that
determine what the identity can and cannot do in AWS. However, instead of being uniquely
associated with one person, a role is intended to be assumable by anyone who needs it. Also, a role
does not have standard long-term credentials such as a password or access keys associated with it.
Instead, when you assume a role, it provides you with temporary security credentials for your role
session.

You can use roles to delegate access to users, applications, or services that don't normally have
access to your AWS resources. For example, you might want to grant users in your AWS account
access to resources they don't usually have, or grant users in one AWS account access to resources
in another account. Or you might want to allow a mobile app to use AWS resources, but not want
to embed AWS keys within the app (where they can be difficult to update and where users can
potentially extract them). Sometimes you want to give AWS access to users who already have
identities defined outside of AWS, such as in your corporate directory. Or, you might want to grant
access to your account to third parties so that they can perform an audit on your resources.

For these scenarios, you can delegate access to AWS resources using an IAM role. This section
introduces roles and the different ways you can use them, when and how to choose among
approaches, and how to create, manage, switch to (or assume), and delete roles.

Note

When you first create your AWS account, no roles are created by default. As you add
services to your account, they may add service-linked roles to support their use cases.

Roles 322

https://docs.aws.amazon.com/IAM/latest/APIReference/API_ListGroupPolicies.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_DeleteGroupPolicy.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_ListAttachedGroupPolicies.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_DetachGroupPolicy.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_DeleteGroup.html

AWS Identity and Access Management User Guide

A service-linked role is a type of service role that is linked to an AWS service. The service
can assume the role to perform an action on your behalf. Service-linked roles appear in
your AWS account and are owned by the service. An IAM administrator can view, but not
edit the permissions for service-linked roles.
Before you can delete service-linked roles you must first delete their related resources. This
protects your resources because you can't inadvertently remove permission to access the
resources.
For information about which services support using service-linked roles, see AWS services
that work with IAM and look for the services that have Yes in the Service-Linked Role
column. Choose a Yes with a link to view the service-linked role documentation for that
service.

Topics

• Roles terms and concepts

• Common scenarios for roles: Users, applications, and services

• Identity providers and federation

• Using service-linked roles

• Creating IAM roles

• Using IAM roles

• Managing IAM roles

Roles terms and concepts

Here are some basic terms to help you get started with roles.

Role

An IAM identity that you can create in your account that has specific permissions. An IAM role
has some similarities to an IAM user. Roles and users are both AWS identities with permissions
policies that determine what the identity can and cannot do in AWS. However, instead of being
uniquely associated with one person, a role is intended to be assumable by anyone who needs
it. Also, a role does not have standard long-term credentials such as a password or access keys
associated with it. Instead, when you assume a role, it provides you with temporary security
credentials for your role session.

Terms and concepts 323

AWS Identity and Access Management User Guide

Roles can be used by the following:

• An IAM user in the same AWS account as the role

• An IAM user in a different AWS account than the role

• A web service offered by AWS such as Amazon Elastic Compute Cloud (Amazon EC2)

• An external user authenticated by an external identity provider (IdP) service that is
compatible with SAML 2.0 or OpenID Connect, or a custom-built identity broker.

AWS service role

A service role is an IAM role that a service assumes to perform actions on your behalf. An
IAM administrator can create, modify, and delete a service role from within IAM. For more
information, see Creating a role to delegate permissions to an AWS service in the IAM User
Guide.

AWS service role for an EC2 instance

A special type of service role that an application running on an Amazon EC2 instance can
assume to perform actions in your account. This role is assigned to the EC2 instance when it is
launched. Applications running on that instance can retrieve temporary security credentials and
perform actions that the role allows. For details about using a service role for an EC2 instance,
see Using an IAM role to grant permissions to applications running on Amazon EC2 instances.

AWS service-linked role

A service-linked role is a type of service role that is linked to an AWS service. The service
can assume the role to perform an action on your behalf. Service-linked roles appear in your
AWS account and are owned by the service. An IAM administrator can view, but not edit the
permissions for service-linked roles.

Note

If you are already using a service when it begins supporting service-linked roles,
you might receive an email announcing a new role in your account. In this case, the
service automatically created the service-linked role in your account. You don't need to
take any action to support this role, and you should not manually delete it. For more
information, see A new role appeared in my AWS account.

For information about which services support using service-linked roles, see AWS services that
work with IAM and look for the services that have Yes in the Service-Linked Role column.

Terms and concepts 324

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html

AWS Identity and Access Management User Guide

Choose a Yes with a link to view the service-linked role documentation for that service. For
more information, see Using service-linked roles.

Role chaining

Role chaining is when you use a role to assume a second role through the AWS CLI or API. For
example, RoleA has permission to assume RoleB. You can enable User1 to assume RoleA by
using their long-term user credentials in the AssumeRole API operation. This returns RoleA
short-term credentials. With role chaining, you can use RoleA's short-term credentials to
enable User1 to assume RoleB.

When you assume a role, you can pass a session tag and set the tag as transitive. Transitive
session tags are passed to all subsequent sessions in a role chain. To learn more about session
tags, see Passing session tags in AWS STS.

Role chaining limits your AWS CLI or AWS API role session to a maximum of one hour. When
you use the AssumeRole API operation to assume a role, you can specify the duration of your
role session with the DurationSeconds parameter. You can specify a parameter value of up to
43200 seconds (12 hours), depending on the maximum session duration setting for your role.
However, if you assume a role using role chaining and provide a DurationSeconds parameter
value greater than one hour, the operation fails.

AWS does not treat using roles to grant permissions to applications that run on EC2 instances as
role chaining.

Delegation

The granting of permissions to someone to allow access to resources that you control.
Delegation involves setting up a trust between two accounts. The first is the account that owns
the resource (the trusting account). The second is the account that contains the users that need
to access the resource (the trusted account). The trusted and trusting accounts can be any of the
following:

• The same account.

• Separate accounts that are both under your organization's control.

• Two accounts owned by different organizations.

To delegate permission to access a resource, you create an IAM role in the trusting account
that has two policies attached. The permissions policy grants the user of the role the needed
permissions to carry out the intended tasks on the resource. The trust policy specifies which
trusted account members are allowed to assume the role.

Terms and concepts 325

https://docs.aws.amazon.com/STS/latest/APIReference/API_AssumeRole.html

AWS Identity and Access Management User Guide

When you create a trust policy, you cannot specify a wildcard (*) as part of and ARN in the
principal element. The trust policy is attached to the role in the trusting account, and is one-
half of the permissions. The other half is a permissions policy attached to the user in the trusted
account that allows that user to switch to, or assume the role. A user who assumes a role
temporarily gives up his or her own permissions and instead takes on the permissions of the
role. When the user exits, or stops using the role, the original user permissions are restored. An
additional parameter called external ID helps ensure secure use of roles between accounts that
are not controlled by the same organization.

Federation

The creation of a trust relationship between an external identity provider and AWS. Users
can sign in to a web identity provider, such as Login with Amazon, Facebook, Google, or any
IdP that is compatible with OpenID Connect (OIDC). Users can also sign in to an enterprise
identity system that is compatible with Security Assertion Markup Language (SAML) 2.0, such as
Microsoft Active Directory Federation Services. When you use OIDC and SAML 2.0 to configure
a trust relationship between these external identity providers and AWS, the user is assigned to
an IAM role. The user also receives temporary credentials that allow the user to access your AWS
resources.

Federated user

Instead of creating an IAM user, you can use existing identities from AWS Directory Service, your
enterprise user directory, or a web identity provider. These are known as federated users. AWS
assigns a role to a federated user when access is requested through an identity provider. For
more information about federated users, see Federated users and roles.

Trust policy

A JSON policy document in which you define the principals that you trust to assume the role.
A role trust policy is a required resource-based policy that is attached to a role in IAM. The
principals that you can specify in the trust policy include users, roles, accounts, and services.

Permissions policy

A permissions document in JSON format in which you define what actions and resources the
role can use. The document is written according to the rules of the IAM policy language.

Permissions boundary

An advanced feature in which you use policies to limit the maximum permissions that an
identity-based policy can grant to a role. You cannot apply a permissions boundary to a service-
linked role. For more information, see Permissions boundaries for IAM entities.

Terms and concepts 326

http://www.json.org

AWS Identity and Access Management User Guide

Principal

An entity in AWS that can perform actions and access resources. A principal can be an AWS
account root user, an IAM user, or a role. You can grant permissions to access a resource in one
of two ways:

• You can attach a permissions policy to a user (directly, or indirectly through a group) or to a
role.

• For those services that support resource-based policies, you can identify the principal in the
Principal element of a policy attached to the resource.

If you reference an AWS account as principal, it generally means any principal defined within
that account.

Note

You cannot use a wildcard (*) to match part of a principal name or ARN in a role's trust
policy. For details, see AWS JSON policy elements: Principal.

Role for cross-account access

A role that grants access to resources in one account to a trusted principal in a different
account. Roles are the primary way to grant cross-account access. However, some AWS services
allow you to attach a policy directly to a resource (instead of using a role as a proxy). These
are called resource-based policies, and you can use them to grant principals in another AWS
account access to the resource. Some of these resources include Amazon Simple Storage Service
(S3) buckets, S3 Glacier vaults, Amazon Simple Notification Service (SNS) topics, and Amazon
Simple Queue Service (SQS) queues. To learn which services support resource-based policies,
see AWS services that work with IAM. For more information about resource-based policies, see
Cross account resource access in IAM.

Common scenarios for roles: Users, applications, and services

As with most AWS features, you generally have two ways to use a role: interactively in the IAM
console, or programmatically with the AWS CLI, Tools for Windows PowerShell, or API.

• IAM users in your account using the IAM console can switch to a role to temporarily use the
permissions of the role in the console. The users give up their original permissions and take on

Common scenarios 327

AWS Identity and Access Management User Guide

the permissions assigned to the role. When the users exit the role, their original permissions are
restored.

• An application or a service offered by AWS (like Amazon EC2) can assume a role by requesting
temporary security credentials for a role with which to make programmatic requests to AWS. You
use a role this way so that you don't have to share or maintain long-term security credentials (for
example, by creating an IAM user) for each entity that requires access to a resource.

Note

This guide uses the phrases switch to a role and assume a role interchangeably.

The simplest way to use roles is to grant your IAM users permissions to switch to roles that you
create within your own or another AWS account. They can switch roles easily using the IAM console
to use permissions that you don't ordinarily want them to have, and then exit the role to surrender
those permissions. This can help prevent accidental access to or modification of sensitive resources.

For more complex uses of roles, such as granting access to applications and services, or federated
external users, you can call the AssumeRole API. This API call returns a set of temporary
credentials that the application can use in subsequent API calls. Actions attempted with the
temporary credentials have only the permissions granted by the associated role. An application
doesn't have to "exit" the role the way a user in the console does; rather the application simply
stops using the temporary credentials and resumes making calls with the original credentials.

Federated users sign in by using credentials from an identity provider (IdP). AWS then provides
temporary credentials to the trusted IdP to pass on to the user for including in subsequent AWS
resource requests. Those credentials provide the permissions granted to the assigned role.

This section provides overviews of the following scenarios:

• Provide access for an IAM user in one AWS account that you own to access resources in another
account that you own

• Provide access to non AWS workloads

• Provide access to IAM users in AWS accounts owned by third parties

• Provide access for services offered by AWS to AWS resources

• Provide access for externally authenticated users (identity federation)

Common scenarios 328

AWS Identity and Access Management User Guide

Providing access to an IAM user in another AWS account that you own

You can grant your IAM users permission to switch to roles within your AWS account or to roles
defined in other AWS accounts that you own.

Note

If you want to grant access to an account that you do not own or control, see Providing
access to AWS accounts owned by third parties later in this topic.

Imagine that you have Amazon EC2 instances that are critical to your organization. Instead of
directly granting your users permission to terminate the instances, you can create a role with
those privileges. Then allow administrators to switch to the role when they need to terminate an
instance. Doing this adds the following layers of protection to the instances:

• You must explicitly grant your users permission to assume the role.

• Your users must actively switch to the role using the AWS Management Console or assume the
role using the AWS CLI or AWS API.

• You can add multi-factor authentication (MFA) protection to the role so that only users who
sign in with an MFA device can assume the role. To learn how to configure a role so that users
who assume the role must first be authenticated using multi-factor authentication (MFA), see
Configuring MFA-protected API access.

We recommend using this approach to enforce the principle of least privilege. That means
restricting the use of elevated permissions to only those times when they are needed for specific
tasks. With roles you can help prevent accidental changes to sensitive environments, especially if
you combine them with auditing to help ensure that roles are only used when needed.

When you create a role for this purpose, you specify the accounts by ID whose users need access in
the Principal element of the role's trust policy. You can then grant specific users in those other
accounts permissions to switch to the role. To learn whether principals in accounts outside of your
zone of trust (trusted organization or account) have access to assume your roles, see What is IAM
Access Analyzer?.

A user in one account can switch to a role in the same or a different account. While using the role,
the user can perform only the actions and access only the resources permitted by the role; their

Common scenarios 329

https://docs.aws.amazon.com/IAM/latest/UserGuide/what-is-access-analyzer.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/what-is-access-analyzer.html

AWS Identity and Access Management User Guide

original user permissions are suspended. When the user exits the role, the original user permissions
are restored.

Example scenario using separate development and production accounts

Imagine that your organization has multiple AWS accounts to isolate a development environment
from a production environment. Users in the development account might occasionally need to
access resources in the production account. For example, you might need cross-account access
when you are promoting an update from the development environment to the production
environment. Although you could create separate identities (and passwords) for users who work in
both accounts, managing credentials for multiple accounts makes identity management difficult.
In the following figure, all users are managed in the development account, but some developers
require limited access to the production account. The development account has two groups: Testers
and Developers, and each group has its own policy.

1. In the production account, an administrator uses IAM to create the UpdateApp role in that
account. In the role, the administrator defines a trust policy that specifies the development
account as a Principal, meaning that authorized users from the development account can
use the UpdateApp role. The administrator also defines a permissions policy for the role that
specifies the read and write permissions to the Amazon S3 bucket named productionapp.

The administrator then shares the appropriate information with anyone who needs to assume
the role. That information is the account number and name of the role (for AWS console users)
or the Amazon Resource Name (ARN) (for AWS CLI or AWS API access). The role ARN might look

Common scenarios 330

AWS Identity and Access Management User Guide

like arn:aws:iam::123456789012:role/UpdateApp, where the role is named UpdateApp
and the role was created in account number 123456789012.

Note

The administrator can optionally configure the role so that users who assume the
role must first be authenticated using multi-factor authentication (MFA). For more
information, see Configuring MFA-protected API access.

2. In the development account, an administrator grants members of the Developers group
permission to switch to the role. This is done by granting the Developers group permission to
call the AWS Security Token Service (AWS STS) AssumeRole API for the UpdateApp role. Any
IAM user that belongs to the Developers group in the development account can now switch to
the UpdateApp role in the production account. Other users who are not in the developer group
do not have permission to switch to the role and therefore cannot access the S3 bucket in the
production account.

3. The user requests switches to the role:

• AWS console: The user chooses the account name on the navigation bar and chooses Switch
Role. The user specifies the account ID (or alias) and role name. Alternatively, the user can click
on a link sent in email by the administrator. The link takes the user to the Switch Role page
with the details already filled in.

• AWS API/AWS CLI: A user in the Developers group of the development account calls the
AssumeRole function to obtain credentials for the UpdateApp role. The user specifies the
ARN of the UpdateApp role as part of the call. If a user in the Testers group makes the same
request, the request fails because Testers do not have permission to call AssumeRole for the
UpdateApp role ARN.

4. AWS STS returns temporary credentials:

• AWS console: AWS STS verifies the request with the role's trust policy to ensure that the
request is from a trusted entity (which it is: the development account). After verification, AWS
STS returns temporary security credentials to the AWS console.

• API/CLI: AWS STS verifies the request against the role's trust policy to ensure that the request
is from a trusted entity (which it is: the Development account). After verification, AWS STS
returns temporary security credentials to the application.

5. The temporary credentials allow access to the AWS resource:

Common scenarios 331

https://docs.aws.amazon.com/STS/latest/UsingSTS/Welcome.html
https://docs.aws.amazon.com/STS/latest/UsingSTS/Welcome.html

AWS Identity and Access Management User Guide

• AWS console: The AWS console uses the temporary credentials on behalf of the user for all
subsequent console actions, in this case, to read and write to the productionapp bucket. The
console cannot access any other resource in the production account. When the user exits the
role, the user's permissions revert to the original permissions held before switching to the role.

• API/CLI: The application uses the temporary security credentials to update the
productionapp bucket. With the temporary security credentials, the application can only
read from and write to the productionapp bucket and cannot access any other resource in
the Production account. The application does not have to exit the role, but instead stops using
the temporary credentials and uses the original credentials in subsequent API calls.

More information

For more information, see the following:

• IAM tutorial: Delegate access across AWS accounts using IAM roles

Providing access for non AWS workloads

An IAM role is an object in AWS Identity and Access Management (IAM) that is assigned
permissions. When you assume that role using an IAM identity or an identity from outside of AWS,
it provides you with temporary security credentials for your role session. You might have workloads
running in your data center or other infrastructure outside of AWS that need to access your AWS
resources. Instead of creating, distributing, and managing long-term access keys, you can use AWS
Identity and Access Management Roles Anywhere (IAM Roles Anywhere) to authenticate your non
AWS workloads. IAM Roles Anywhere uses X.509 certificates from your certificate authority (CA) to
authenticate identities and securely provide access to AWS services with the temporary credentials
provided by an IAM role.

To use IAM Roles Anywhere, you set up a CA using AWS Private Certificate Authority or use a CA
from your own PKI infrastructure. After you have set up a CA, you create an object in IAM Roles
Anywhere called a trust anchor to establish trust between IAM Roles Anywhere and your CA for
authentication. You can then configure your existing IAM roles, or create new roles that trust
the IAM Roles Anywhere service. When your non AWS workloads authenticate with IAM Roles
Anywhere using the trust anchor, they can get temporary credentials for your IAM roles to access
your AWS resources.

Common scenarios 332

https://docs.aws.amazon.com/privateca/latest/userguide/PcaWelcome.html

AWS Identity and Access Management User Guide

For more information about configuring IAM Roles Anywhere, see What is AWS Identity and Access
Management Roles Anywhere in the IAM Roles Anywhere User Guide.

Providing access to AWS accounts owned by third parties

When third parties require access to your organization's AWS resources, you can use roles to
delegate access to them. For example, a third party might provide a service for managing your AWS
resources. With IAM roles, you can grant these third parties access to your AWS resources without
sharing your AWS security credentials. Instead, the third party can access your AWS resources
by assuming a role that you create in your AWS account. To learn whether principals in accounts
outside of your zone of trust (trusted organization or account) have access to assume your roles,
see What is IAM Access Analyzer?.

Third parties must provide you with the following information for you to create a role that they can
assume:

• The third party's AWS account ID. You specify their AWS account ID as the principal when you
define the trust policy for the role.

• An external ID to uniquely associate with the role. The external ID can be any identifier that is
known only by you and the third party. For example, you can use an invoice ID between you and
the third party, but do not use something that can be guessed, like the name or phone number
of the third party. You must specify this ID when you define the trust policy for the role. The
third party must provide this ID when they assume the role. For more information about the
external ID, see How to use an external ID when granting access to your AWS resources to a third
party.

• The permissions that the third party requires to work with your AWS resources. You must specify
these permissions when defining the role's permission policy. This policy defines what actions
they can take and what resources they can access.

After you create the role, you must provide the role's Amazon Resource Name (ARN) to the third
party. They require your role's ARN in order to assume the role.

Important

When you grant third parties access to your AWS resources, they can access any resource
that you specify in the policy. Their use of your resources is billed to you. Ensure that you
limit their use of your resources appropriately.

Common scenarios 333

https://docs.aws.amazon.com/rolesanywhere/latest/userguide/introduction.html
https://docs.aws.amazon.com/rolesanywhere/latest/userguide/introduction.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/what-is-access-analyzer.html

AWS Identity and Access Management User Guide

How to use an external ID when granting access to your AWS resources to a third party

At times, you need to give a third party access to your AWS resources (delegate access). One
important aspect of this scenario is the External ID, optional information that you can use in an
IAM role trust policy to designate who can assume the role.

Important

AWS does not treat the external ID as a secret. After you create a secret like an access key
pair or a password in AWS, you cannot view them again. The external ID for a role can be
seen by anyone with permission to view the role.

In a multi-tenant environment where you support multiple customers with different AWS accounts,
we recommend using one external ID per AWS account. This ID should be a random string
generated by the third party.

To require that the third party provides an external ID when assuming a role, update the role's trust
policy with the external ID of your choice.

To provide an external ID when you assume a role, use the AWS CLI or AWS API to assume that
role. For more information, see the STS AssumeRole API operation, or the STS assume-role CLI
operation.

For example, let's say that you decide to hire a third-party company called Example Corp to
monitor your AWS account and help optimize costs. In order to track your daily spending, Example
Corp needs to access your AWS resources. Example Corp also monitors many other AWS accounts
for other customers.

Do not give Example Corp access to an IAM user and its long-term credentials in your AWS account.
Instead, use an IAM role and its temporary security credentials. An IAM role provides a mechanism
to allow a third party to access your AWS resources without needing to share long-term credentials
(such as an IAM user access key).

You can use an IAM role to establish a trusted relationship between your AWS account and the
Example Corp account. After this relationship is established, a member of the Example Corp
account can call the AWS Security Token Service AssumeRole API to obtain temporary security
credentials. The Example Corp members can then use the credentials to access AWS resources in
your account.

Common scenarios 334

https://docs.aws.amazon.com/STS/latest/APIReference/API_AssumeRole.html
https://docs.aws.amazon.com/cli/latest/reference/sts/assume-role.html
https://docs.aws.amazon.com/STS/latest/APIReference/API_AssumeRole.html

AWS Identity and Access Management User Guide

Note

For more information about the AssumeRole and other AWS API operations that you
can call to obtain temporary security credentials, see Requesting temporary security
credentials.

Here's a more detailed breakdown of this scenario:

1. You hire Example Corp, so they create a unique customer identifier for you. They provide you
with this unique customer ID and their AWS account number. You need this information to
create an IAM role in the next step.

Note

Example Corp can use any string value they want for the ExternalId, as long as it is
unique for each customer. It can be a customer account number or even a random string
of characters, as long as no two customers have the same value. It is not intended to
be a 'secret'. Example Corp must provide the ExternalId value to each customer. What is
crucial is that it must be generated by Example Corp and not their customers to ensure
each external ID is unique.

2. You sign in to AWS and create an IAM role that gives Example Corp access to your resources. Like
any IAM role, the role has two policies, a permission policy and a trust policy. The role's trust
policy specifies who can assume the role. In our sample scenario, the policy specifies the AWS
account number of Example Corp as the Principal. This allows identities from that account to
assume the role. In addition, you add a Condition element to the trust policy. This Condition
tests the ExternalId context key to ensure that it matches the unique customer ID from
Example Corp. For example:

 "Principal": {"AWS": "Example Corp's AWS account ID"},
 "Condition": {"StringEquals": {"sts:ExternalId": "Unique ID Assigned by Example
 Corp"}}

3. The permission policy for the role specifies what the role allows someone to do. For example,
you could specify that the role allows someone to manage only your Amazon EC2 and Amazon
RDS resources but not your IAM users or groups. In our sample scenario, you use the permission
policy to give Example Corp read-only access to all of the resources in your account.

Common scenarios 335

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements.html#Condition

AWS Identity and Access Management User Guide

4. After you create the role, you provide the Amazon Resource Name (ARN) of the role to Example
Corp.

5. When Example Corp needs to access your AWS resources, someone from the company calls the
AWS sts:AssumeRole API. The call includes the ARN of the role to assume and the ExternalId
parameter that corresponds to their customer ID.

If the request comes from someone using Example Corp's AWS account, and if the role ARN and the
external ID are correct, the request succeeds. It then provides temporary security credentials that
Example Corp can use to access the AWS resources that your role allows.

In other words, when a role policy includes an external ID, anyone who wants to assume the role
must be a principal in the role and must include the correct external ID.

Why use an external ID?

In abstract terms, the external ID allows the user that is assuming the role to assert the
circumstances in which they are operating. It also provides a way for the account owner to permit
the role to be assumed only under specific circumstances. The primary function of the external ID is
to address and prevent The confused deputy problem.

When should I use an external ID?

Use an external ID in the following situations:

• You are an AWS account owner and you have configured a role for a third party that accesses
other AWS accounts in addition to yours. You should ask the third party for an external ID that it
includes when it assumes your role. Then you check for that external ID in your role's trust policy.
Doing so ensures that the external party can assume your role only when it is acting on your
behalf.

• You are in the position of assuming roles on behalf of different customers like Example Corp
in our previous scenario. You should assign a unique external ID to each customer and instruct
them to add the external ID to their role's trust policy. You must then ensure that you always
include the correct external ID in your requests to assume roles.

You probably already have a unique identifier for each of your customers, and this unique ID is
sufficient for use as an external ID. The external ID is not a special value that you need to create
explicitly, or track separately, just for this purpose.

Common scenarios 336

AWS Identity and Access Management User Guide

You should always specify the external ID in your AssumeRole API calls. In addition when a
customer gives you a role ARN, test whether you can assume the role both with and without the
correct external ID. If you can assume the role without the correct external ID, don't store the
customer's role ARN in your system. Wait until your customer has updated the role trust policy to
require the correct external ID. In this way you help your customers to do the right thing, which
helps to keep both of you protected against the confused deputy problem.

Providing access to an AWS service

Many AWS services require that you use roles to control what that service can access. A role that
a service assumes to perform actions on your behalf is called a service role. When a role serves
a specialized purpose for a service, it can be categorized as a service role for EC2 instances, or a
service-linked role. See the AWS documentation for each service to see if it uses roles and to learn
how to assign a role for the service to use.

For details about creating a role to delegate access to a service offered by AWS, see Creating a role
to delegate permissions to an AWS service.

The confused deputy problem

The confused deputy problem is a security issue where an entity that doesn't have permission to
perform an action can coerce a more-privileged entity to perform the action. To prevent this, AWS
provides tools that help you protect your account if you provide third parties (known as cross-
account) or other AWS services (known as cross-service) access to resources in your account.

At times, you might need to give a third party access to your AWS resources (delegate access). For
example, let's say that you decide to hire a third-party company called Example Corp to monitor
your AWS account and help optimize costs. In order to track your daily spending, Example Corp
needs to access your AWS resources. Example Corp also monitors many other AWS accounts for
other customers. You can use an IAM role to establish a trusted relationship between your AWS
account and the Example Corp account. One important aspect of this scenario is the external ID,
optional information that you can use in an IAM role trust policy to designate who can assume
the role. The primary function of the external ID is to address and prevent the confused deputy
problem.

In AWS, cross-service impersonation can result in the confused deputy problem. Cross-service
impersonation can occur when one service (the calling service) calls another service (the called

Common scenarios 337

https://docs.aws.amazon.com/

AWS Identity and Access Management User Guide

service). The calling service can be manipulated to use its permissions to act on another customer's
resources in a way it should not otherwise have permission to access.

Cross-account confused deputy prevention

The following diagram illustrates the cross-account confused deputy problem.

This scenario assumes the following:

• AWS1 is your AWS account.

• AWS1:ExampleRole is a role in your account. This role's trust policy trusts Example Corp by
specifying Example Corp's AWS account as the one that can assume the role.

Here's what happens:

1. When you start using Example Corp's service, you provide the ARN of AWS1:ExampleRole to
Example Corp.

2. Example Corp uses that role ARN to obtain temporary security credentials to access resources in
your AWS account. In this way, you are trusting Example Corp as a "deputy" that can act on your
behalf.

3. Another AWS customer also starts using Example Corp's service, and this customer also provides
the ARN of AWS1:ExampleRole for Example Corp to use. Presumably the other customer
learned or guessed the AWS1:ExampleRole, which isn't a secret.

4. When the other customer asks Example Corp to access AWS resources in (what it claims to be) its
account, Example Corp uses AWS1:ExampleRole to access resources in your account.

This is how the other customer could gain unauthorized access to your resources. Because this
other customer was able to trick Example Corp into unwittingly acting on your resources, Example
Corp is now a "confused deputy."

Common scenarios 338

AWS Identity and Access Management User Guide

Example Corp can address the confused deputy problem by requiring that you include the
ExternalId condition check in the role's trust policy. Example Corp generates a unique
ExternalId value for each customer and uses that value in its request to assume the role. The
ExternalId value must be unique among Example Corp's customers and controlled by Example
Corp, not its customers. This is why you get it from Example Corp and you don't come up with it
on your own. This prevents Example Corp from being a confused deputy and granting access to
another account's AWS resources.

In our scenario, imagine Example Corp's unique identifier for you is 12345, and its identifier for
the other customer is 67890. These identifiers are simplified for this scenario. Generally, these
identifiers are GUIDs. Assuming that these identifiers are unique among Example Corp's customers,
they are sensible values to use for the external ID.

Example Corp gives the external ID value of 12345 to you. You must then add a Condition
element to the role's trust policy that requires the sts:ExternalId value to be 12345, like this:

{
 "Version": "2012-10-17",
 "Statement": {
 "Effect": "Allow",
 "Principal": {
 "AWS": "Example Corp's AWS Account ID"
 },
 "Action": "sts:AssumeRole",
 "Condition": {
 "StringEquals": {
 "sts:ExternalId": "12345"
 }
 }
 }
}

The Condition element in this policy allows Example Corp to assume the role only when the
AssumeRole API call includes the external ID value of 12345. Example Corp makes sure that
whenever it assumes a role on behalf of a customer, it always includes that customer's external ID
value in the AssumeRole call. Even if another customer supplies Example Corp with your ARN, it
cannot control the external ID that Example Corp includes in its request to AWS. This helps prevent
an unauthorized customer from gaining access to your resources.

The following diagram illustrates this.

Common scenarios 339

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_iam-condition-keys.html#condition-keys-sts

AWS Identity and Access Management User Guide

1. As before, when you start using Example Corp's service, you provide the ARN of
AWS1:ExampleRole to Example Corp.

2. When Example Corp uses that role ARN to assume the role AWS1:ExampleRole, Example Corp
includes your external ID (12345) in the AssumeRole API call. The external ID matches the role's
trust policy, so the AssumeRole API call succeeds and Example Corp obtains temporary security
credentials to access resources in your AWS account.

3. Another AWS customer also starts using Example Corp's service, and as before, this customer
also provides the ARN of AWS1:ExampleRole for Example Corp to use.

4. But this time, when Example Corp attempts to assume the role AWS1:ExampleRole, it provides
the external ID associated with the other customer (67890). The other customer has no way to
change this. Example Corp does this because the request to use the role came from the other
customer, so 67890 indicates the circumstance in which Example Corp is acting. Because you
added a condition with your own external ID (12345) to the trust policy of AWS1:ExampleRole,
the AssumeRole API call fails. The other customer is prevented from gaining unauthorized access
to resources in your account (indicated by the red "X" in the diagram).

The external ID helps prevent any other customer from tricking Example Corp into unwittingly
accessing your resources.

Cross-service confused deputy prevention

We recommend using the aws:SourceArn, aws:SourceAccount, aws:SourceOrgID,
or aws:SourceOrgPaths global condition context keys in resource-based policies to limit
the permissions that a service has to a specific resource. Use aws:SourceArn to associate
only one resource with cross-service access. Use aws:SourceAccount to let any resource in
that account be associated with the cross-service use. Use aws:SourceOrgID to allow any
resource from any account within an organization be associated with the cross-service use. Use
aws:SourceOrgPaths to associate any resource from accounts within an AWS Organizations

Common scenarios 340

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-sourcearn
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-sourceaccount
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-sourceorgid
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-sourceorgpaths

AWS Identity and Access Management User Guide

path with the cross-service use. For more information about using and understanding paths, see
Understand the AWS Organizations entity path.

The most granular way to protect against the confused deputy problem is to use the
aws:SourceArn global condition context key with the full ARN of the resource in your resource-
based policies. If you don't know the full ARN of the resource or if you are specifying multiple
resources, use the aws:SourceArn global condition context key with wildcards (*) for the
unknown portions of the ARN. For example, arn:aws:servicename:*:123456789012:*.

If the aws:SourceArn value does not contain the account ID, such as an Amazon S3 bucket ARN,
you must use both aws:SourceAccount and aws:SourceArn to limit permissions.

To protect against the confused deputy problem at scale, use the aws:SourceOrgID or
aws:SourceOrgPaths global condition context key with the organization ID or organization path
of the resource in your resource-based policies. Policies that include the aws:SourceOrgID or
aws:SourceOrgPaths key will automatically include the correct accounts and you don't have to
manually update the policies when you add, remove, or move accounts in your organization.

For non-service-linked role trust policies, every service in the trust policy has performed the
iam:PassRole action to verify that the role is in the same account as the calling service. As a
result, using aws:SourceAccount, aws:SourceOrgID, or aws:SourceOrgPaths with those
trust policies is not necessary. Using aws:SourceArn in a trust policy allows you to specify
resources a role can be assumed on behalf of, such as a Lambda function ARN. Some AWS services
use aws:SourceAccount and aws:SourceArn in trust policies for newly created roles, but using
the keys isn't required for existing roles in your account.

Note

AWS services that integrate with AWS Key Management Service using KMS key grants
do not support the aws:SourceArn, aws:SourceAccount, aws:SourceOrgID, or
aws:SourceOrgPaths condition keys. Usage of these condition keys in a KMS key policy
will result in unexpected behavior if the key is also used by AWS services via KMS key
grants.

Cross-service confused deputy prevention for AWS Security Token Service

Many AWS services require that you use roles to allow the service to access another service's
resources on your behalf. A role that a service assumes to perform actions on your behalf is called

Common scenarios 341

AWS Identity and Access Management User Guide

a service role. A role requires two policies: a role trust policy that specifies the principal that is
allowed to assume the role and a permissions policy that specifies what can be done with the
role. A role trust policy is the only type of resource-based policy in IAM. Other AWS services have
resource-based policies, such as an Amazon S3 bucket policy.

When a service assumes a role on your behalf, the service principal must be allowed to perform
the sts:AssumeRole action in the role trust policy. When a service calls sts:AssumeRole, AWS
STS returns a set of temporary security credentials that the service principal uses to access the
resources that are permitted by the role’s permissions policy. When a service assumes a role in your
account, you can include the aws:SourceArn, aws:SourceAccount, aws:SourceOrgID, or
aws:SourceOrgPaths global condition context keys in your role trust policy to limit access to the
role to only requests that are generated by expected resources.

For example, in AWS Systems Manager Incident Manager, you must choose a role to allow Incident
Manager to run a Systems Manager automation document on your behalf. The automation
document can include automated response plans for incidents that are initiated by CloudWatch
alarms or EventBridge events. In the following role trust policy example, you can use the
aws:SourceArn condition key to restrict access to the service role based on the incident record's
ARN. Only incident records that are created from the response plan resource myresponseplan are
able to use this role.

{
 "Version": "2012-10-17",
 "Statement": {
 "Effect": "Allow",
 "Principal": {
 "Service": "ssm-incidents.amazonaws.com"
 },
 "Action": "sts:AssumeRole",
 "Condition": {
 "ArnLike": {
 "aws:SourceArn": "arn:aws:ssm-incidents:*:111122223333:incident-
record/myresponseplan/*"
 }
 }
 }
}

Common scenarios 342

https://docs.aws.amazon.com/STS/latest/APIReference/API_AssumeRole.html

AWS Identity and Access Management User Guide

Note

Not all service integrations with AWS STS support aws:SourceArn,
aws:SourceAccount, aws:SourceOrgID, or aws:SourceOrgPaths condition keys.
Usage of these keys in IAM trust policies with unsupported integrations may result in
unexpected behavior.

Providing access to externally authenticated users (identity federation)

Your users might already have identities outside of AWS, such as in your corporate directory.
If those users need to work with AWS resources (or work with applications that access those
resources), then those users also need AWS security credentials. You can use an IAM role to specify
permissions for users whose identity is federated from your organization or a third-party identity
provider (IdP).

Note

As a security best practice, we recommend you manage user access in IAM Identity Center
with identity federation instead of creating IAM users. For information about specific
situations where an IAM user is required, see When to create an IAM user (instead of a role).

Federating users of a mobile or web-based app with Amazon Cognito

If you create a mobile or web-based app that accesses AWS resources, the app needs security
credentials in order to make programmatic requests to AWS. For most mobile application scenarios,
we recommend that you use Amazon Cognito. You can use this service with the AWS Mobile
SDK for iOS and the AWS Mobile SDK for Android and Fire OS to create unique identities for
users and authenticate them for secure access to your AWS resources. Amazon Cognito supports
the same identity providers as those listed in the next section, and it also supports developer
authenticated identities and unauthenticated (guest) access. Amazon Cognito also provides API
operations for synchronizing user data so that it is preserved as users move between devices. For
more information, see Using Amazon Cognito for mobile apps.

Federating users with public identity service providers or OpenID Connect

Whenever possible, use Amazon Cognito for mobile and web-based application scenarios. Amazon
Cognito does most of the behind-the-scenes work with public identity provider services for you.

Common scenarios 343

https://docs.aws.amazon.com/singlesignon/latest/userguide/what-is.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id.html#id_which-to-choose
https://aws.amazon.com/cognito/
https://aws.amazon.com/sdkforios/
https://aws.amazon.com/sdkforios/
https://aws.amazon.com/sdkforandroid/
https://aws.amazon.com/blogs/mobile/amazon-cognito-announcing-developer-authenticated-identities
https://aws.amazon.com/blogs/mobile/amazon-cognito-announcing-developer-authenticated-identities

AWS Identity and Access Management User Guide

It works with the same third-party services and also supports anonymous sign-ins. However,
for more advanced scenarios, you can work directly with a third-party service like Login with
Amazon, Facebook, Google, or any IdP that is compatible with OpenID Connect (OIDC). For more
information about using web identity federation using one of these services, see About web
identity federation.

Federating users with SAML 2.0

If your organization already uses an identity provider software package that supports SAML 2.0
(Security Assertion Markup Language 2.0), you can create trust between your organization as an
identity provider (IdP) and AWS as the service provider. You can then use SAML to provide your
users with federated single-sign on (SSO) to the AWS Management Console or federated access to
call AWS API operations. For example, if your company uses Microsoft Active Directory and Active
Directory Federation Services, then you can federate using SAML 2.0. For more information about
federating users with SAML 2.0, see About SAML 2.0-based federation.

Federating users by creating a custom identity broker application

If your identity store is not compatible with SAML 2.0, then you can build a custom identity broker
application to perform a similar function. The broker application authenticates users, requests
temporary credentials for users from AWS, and then provides them to the user to access AWS
resources.

For example, Example Corp. has many employees who need to run internal applications that access
the company's AWS resources. The employees already have identities in the company identity and
authentication system, and Example Corp. doesn't want to create a separate IAM user for each
company employee.

Bob is a developer at Example Corp. To enable Example Corp. internal applications to access the
company's AWS resources, Bob develops a custom identity broker application. The application
verifies that employees are signed into the existing Example Corp. identity and authentication
system, which might use LDAP, Active Directory, or another system. The identity broker application
then obtains temporary security credentials for the employees. This scenario is similar to the
previous one (a mobile app that uses a custom authentication system), except that the applications
that need access to AWS resources all run within the corporate network, and the company has an
existing authentication system.

To get temporary security credentials, the identity broker application calls either AssumeRole
or GetFederationToken to obtain temporary security credentials, depending on how Bob

Common scenarios 344

AWS Identity and Access Management User Guide

wants to manage the policies for users and when the temporary credentials should expire. (For
more information about the differences between these API operations, see Temporary security
credentials in IAM and Controlling permissions for temporary security credentials.) The call returns
temporary security credentials consisting of an AWS access key ID, a secret access key, and a session
token. The identity broker application makes these temporary security credentials available to
the internal company application. The app can then use the temporary credentials to make calls
to AWS directly. The app caches the credentials until they expire, and then requests a new set of
temporary credentials. The following figure illustrates this scenario.

This scenario has the following attributes:

• The identity broker application has permissions to access IAM's token service (STS) API to create
temporary security credentials.

• The identity broker application is able to verify that employees are authenticated within the
existing authentication system.

• Users are able to get a temporary URL that gives them access to the AWS Management Console
(which is referred to as single sign-on).

For information about creating temporary security credentials, see Requesting temporary security
credentials. For more information about federated users getting access to the AWS Management
Console, see Enabling SAML 2.0 federated users to access the AWS Management Console.

Common scenarios 345

AWS Identity and Access Management User Guide

Identity providers and federation

If you already manage user identities outside of AWS, you can use identity providers instead of
creating IAM users in your AWS account. With an identity provider (IdP), you can manage your user
identities outside of AWS and give these external user identities permissions to use AWS resources
in your account. This is useful if your organization already has its own identity system, such as a
corporate user directory. It is also useful if you are creating a mobile app or web application that
requires access to AWS resources.

An external IdP provides identity information to AWS using either OpenID Connect (OIDC) or SAML
2.0 (Security Assertion Markup Language 2.0). Examples of well-known OIDC identity providers are:
Login with Amazon, Facebook, and Google. Examples of well-known SAML identity providers are:
Shibboleth and Active Directory Federation Services.

Note

As a security best practice, we recommend you manage human users in IAM Identity Center
with an external SAML identity provider instead of using SAML federation in IAM. For
information about specific situations where an IAM user is required, see When to create an
IAM user (instead of a role).

When you use an identity provider, you don't have to create custom sign-in code or manage your
own user identities. The IdP provides that for you. Your external users sign in through an IdP, and
you can give those external identities permissions to use AWS resources in your account. Identity
providers help keep your AWS account secure because you don't have to distribute or embed long-
term security credentials, such as access keys, in your application.

This guide covers IAM federation. Your use case might be better supported by IAM Identity Center
or Amazon Cognito. The following summaries and table provide an overview of the methods that
your users can employ to gain federated access to AWS resources.

 Account type Access management
of..

Supported identity
source

Federation with IAM
Identity Center

Multiple accounts
managed by AWS
Organizations

Your workforce’s
human users

• SAML 2.0

Identity providers and federation 346

http://openid.net/connect/
https://wiki.oasis-open.org/security
https://wiki.oasis-open.org/security
https://docs.aws.amazon.com/singlesignon/latest/userguide/what-is.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id.html#id_which-to-choose
https://docs.aws.amazon.com/IAM/latest/UserGuide/id.html#id_which-to-choose

AWS Identity and Access Management User Guide

 Account type Access management
of..

Supported identity
source

• Managed Active
Directory

• Identity Center
directory

Federation with IAM Single, standalone
account

• Human users in
short-term, small
scale deployments

• Machine users

• SAML 2.0

• OIDC

Federation with
Amazon Cognito
identity pools

Any The users of apps
that require IAM
authorization to
access resources

• SAML 2.0

• OIDC

• Select OAuth 2.0
social identity
providers

Federation with IAM Identity Center

For centralized access management of human users, we recommend that you use IAM Identity
Center to manage access to your accounts and permissions within those accounts. Users in IAM
Identity Center are granted short-term credentials to your AWS resources. You can use Active
Directory, an external identity provider (IdP), or an IAM Identity Center directory as the identity
source for users and groups to assign access to your AWS resources.

IAM Identity Center supports identity federation with SAML (Security Assertion Markup Language)
2.0 to provide federated single sign-on access for users who are authorized to use applications
within the AWS access portal. Users can then single sign-on into services that support SAML,
including the AWS Management Console and third-party applications, such as Microsoft 365, SAP
Concur, and Salesforce.

Federation with IAM

While we strongly recommend managing human users in IAM Identity Center, you can enable
federated user access with IAM for human users in short-term, small scale deployments. IAM allows

Identity providers and federation 347

https://docs.aws.amazon.com/singlesignon/latest/userguide/what-is.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/what-is.html

AWS Identity and Access Management User Guide

you to use separate SAML 2.0 and Open ID Connect (OIDC) IdPs and use federated user attributes
for access control. With IAM, you can pass user attributes, such as cost center, title, or locale, from
your IdPs to AWS, and implement fine-grained access permissions based on these attributes.

A workload is a collection of resources and code that delivers business value, such as an application
or backend process. Your workload can require an IAM identity to make requests to AWS services,
applications, operational tools, and components. These identities include machines running in your
AWS environments, such as Amazon EC2 instances or AWS Lambda functions.

You can also manage machine identities for external parties who need access. To give access to
machine identities, you can use IAM roles. IAM roles have specific permissions and provide a way
to access AWS by relying on temporary security credentials with a role session. Additionally, you
might have machines outside of AWS that need access to your AWS environments. For machines
that run outside of AWS you can use IAM Roles Anywhere. For more information about roles, see
IAM roles. For details about how to use roles to delegate access across AWS accounts, see IAM
tutorial: Delegate access across AWS accounts using IAM roles.

To link an IdP directly to IAM, you create an identity provider entity to establish a trust relationship
between your AWS account and the IdP. IAM supports IdPs that are compatible with OpenID
Connect (OIDC) or SAML 2.0 (Security Assertion Markup Language 2.0). For more information
about using one of these IdPs with AWS, see the following sections:

• About web identity federation

• About SAML 2.0-based federation

For details about creating the IAM identity provider entity to establish a trust relationship between
a compatible IdP and AWS, see Creating IAM identity providers.

Federation with Amazon Cognito identity pools

Amazon Cognito is designed for developers who want to authenticate and authorize users in their
mobile and web apps. Amazon Cognito user pools add sign-in and sign-up features to your app,
and identity pools deliver IAM credentials that grant your users access to protected resources
that you manage in AWS. Identity pools acquire credentials for temporary sessions through the
AssumeRoleWithWebIdentity API operation.

Amazon Cognito works with external identity providers that support SAML and OpenID Connect,
and with social identity providers like Facebook, Google, and Amazon. Your app can sign in a

Identity providers and federation 348

https://docs.aws.amazon.com/rolesanywhere/latest/userguide/introduction.html
http://openid.net/connect/
http://openid.net/connect/
https://wiki.oasis-open.org/security
https://docs.aws.amazon.com/STS/latest/APIReference/API_AssumeRoleWithWebIdentity.html

AWS Identity and Access Management User Guide

user with a user pool or an external IdP, then retrieve resources on their behalf with customized
temporary sessions in an IAM role.

About web identity federation

Imagine that you are creating a mobile app that accesses AWS resources, such as a game that runs
on a mobile device and stores player and score information using Amazon S3 and DynamoDB.

When you write such an app, you make requests to AWS services that must be signed with an AWS
access key. However, we strongly recommend that you do not embed or distribute long-term AWS
credentials with apps that a user downloads to a device, even in an encrypted store. Instead, build
your app so that it requests temporary AWS security credentials dynamically when needed using
web identity federation. The supplied temporary credentials map to an AWS role that has only the
permissions needed to perform the tasks required by the mobile app.

With web identity federation, you don't need to create custom sign-in code or manage your
own user identities. Instead, users of your app can sign in using a well-known external identity
provider (IdP), such as Login with Amazon, Facebook, Google, or any other OpenID Connect (OIDC)-
compatible IdP. They can receive an authentication token, known as a JSON Web Token (JWT),
and then exchange that token for temporary security credentials in AWS that map to an IAM role
with permissions to use the resources in your AWS account. Using an IdP helps you keep your AWS
account secure, because you don't have to embed and distribute long-term security credentials
with your application.

For most scenarios, we recommend that you use Amazon Cognito because it acts as an identity
broker and does much of the federation work for you. For details, see the following section, Using
Amazon Cognito for mobile apps.

If you don't use Amazon Cognito, then you must write code that interacts with a web IdP, such
as Facebook, and then calls the AssumeRoleWithWebIdentity API to trade the authentication
token you get from those IdPs for AWS temporary security credentials. If you have already used
this approach for existing apps, you can continue to use it.

Note

JSON Web Tokens (JWTs) issued by OpenID Connect (OIDC) identity providers contain
an expiration time in the exp claim that specifies when the token expires. IAM provides a
five-minute window beyond the expiration time specified in the JWT to account for clock
skew, as allowed by the OpenID Connect (OIDC) Core 1.0 standard. This means OIDC JWTs

Identity providers and federation 349

http://openid.net/connect/
https://aws.amazon.com/cognito/
https://openid.net/specs/openid-connect-core-1_0.html

AWS Identity and Access Management User Guide

received by IAM after the expiration time but within this five-minute window are accepted
for further evaluation and processing.

Topics

• Using Amazon Cognito for mobile apps

• Using web identity federation API operations for mobile apps

• Identifying users with web identity federation

• Additional resources for web identity federation

Using Amazon Cognito for mobile apps

The preferred way to use web identity federation is to use Amazon Cognito. For example, Adele
the developer is building a game for a mobile device where user data such as scores and profiles is
stored in Amazon S3 and Amazon DynamoDB. Adele could also store this data locally on the device
and use Amazon Cognito to keep it synchronized across devices. She knows that for security and
maintenance reasons, long-term AWS security credentials should not be distributed with the game.
She also knows that the game might have a large number of users. For all of these reasons, she
does not want to create new user identities in IAM for each player. Instead, she builds the game so
that users can sign in using an identity that they've already established with a well-known external
identity provider (IdP), such as Login with Amazon, Facebook, Google, or any OpenID Connect
(OIDC)-compatible IdP. Her game can take advantage of the authentication mechanism from one
of these providers to validate the user's identity.

To enable the mobile app to access her AWS resources, Adele first registers for a developer ID
with her chosen IdPs. She also configures the application with each of these providers. In her
AWS account that contains the Amazon S3 bucket and DynamoDB table for the game, Adele uses
Amazon Cognito to create IAM roles that precisely define permissions that the game needs. If she is
using an OIDC IdP, she also creates an IAM OIDC identity provider entity to establish trust between
an Amazon Cognito identity pool in her AWS account and the IdP.

In the app's code, Adele calls the sign-in interface for the IdP that she configured previously. The
IdP handles all the details of letting the user sign in, and the app gets an OAuth access token or
OIDC ID token from the provider. Adele's app can trade this authentication information for a set
of temporary security credentials that consist of an AWS access key ID, a secret access key, and a
session token. The app can then use these credentials to access web services offered by AWS. The
app is limited to the permissions that are defined in the role that it assumes.

Identity providers and federation 350

https://aws.amazon.com/cognito/
https://docs.aws.amazon.com/cognito/latest/developerguide/external-identity-providers.html

AWS Identity and Access Management User Guide

The following figure shows a simplified flow for how this might work, using Login with Amazon as
the IdP. For Step 2, the app can also use Facebook, Google, or any OIDC-compatible IdP, but that's
not shown here.

1. A customer starts your app on a mobile device. The app asks the user to sign in.

2. The app uses Login with Amazon resources to accept the user's credentials.

3. The app uses the Amazon Cognito API operations GetId and GetCredentialsForIdentity
to exchange the Login with Amazon ID token for an Amazon Cognito token. Amazon Cognito,
which has been configured to trust your Login with Amazon project, generates a token that it
exchanges for temporary session credentials with AWS STS.

4. The app receives temporary security credentials from Amazon Cognito. Your app can also
use the Basic (Classic) workflow in Amazon Cognito to retrieve tokens from AWS STS using
AssumeRoleWithWebIdentity. For more information, see Identity pools (federated identities)
authentication flow in the Amazon Cognito Developer Guide.

5. The temporary security credentials can be used by the app to access any AWS resources required
by the app to operate. The role associated with the temporary security credentials and the
assigned policies determines what can be accessed.

Use the following process to configure your app to use Amazon Cognito to authenticate users and
give your app access to AWS resources. For specific steps to accomplish this scenario, consult the
documentation for Amazon Cognito.

Identity providers and federation 351

https://docs.aws.amazon.com/cognito/latest/developerguide/authentication-flow.html
https://docs.aws.amazon.com/cognito/latest/developerguide/authentication-flow.html

AWS Identity and Access Management User Guide

1. (Optional) Sign up as a developer with Login with Amazon, Facebook, Google, or any other
OpenID Connect (OIDC)–compatible IdP and configure one or more apps with the provider. This
step is optional because Amazon Cognito also supports unauthenticated (guest) access for your
users.

2. Go to Amazon Cognito in the AWS Management Console. Use the Amazon Cognito wizard
to create an identity pool, which is a container that Amazon Cognito uses to keep end user
identities organized for your apps. You can share identity pools between apps. When you set up
an identity pool, Amazon Cognito creates one or two IAM roles (one for authenticated identities,
and one for unauthenticated "guest" identities) that define permissions for Amazon Cognito
users.

3. Integrate AWSAmplify with your app, and import the files required to use Amazon Cognito.

4. Create an instance of the Amazon Cognito credentials provider, passing the identity pool ID, your
AWS account number, and the Amazon Resource Name (ARN) of the roles that you associated
with the identity pool. The Amazon Cognito wizard in the AWS Management Console provides
sample code to help you get started.

5. When your app accesses an AWS resource, pass the credentials provider instance to the client
object, which passes temporary security credentials to the client. The permissions for the
credentials are based on the role or roles that you defined earlier.

For more information, see the following:

• Sign in (Android) in the AWS Amplify Framework Documentation.

• Sign in (iOS) in the AWS Amplify Framework Documentation.

Using web identity federation API operations for mobile apps

For best results, use Amazon Cognito as your identity broker for almost all web identity federation
scenarios. Amazon Cognito is easy to use and provides additional capabilities like anonymous
(unauthenticated) access, and synchronizing user data across devices and providers. However,
if you have already created an app that uses web identity federation by manually calling the
AssumeRoleWithWebIdentity API, you can continue to use it and your apps will still work fine.

The process for using web identity federation without Amazon Cognito follows this general
outline:

Identity providers and federation 352

https://console.aws.amazon.com/cognito/home
https://docs.amplify.aws
https://docs.amplify.aws/lib/auth/signin/q/platform/android/
https://docs.amplify.aws/lib/auth/signin/q/platform/ios/

AWS Identity and Access Management User Guide

1. Sign up as a developer with the external identity provider (IdP) and configure your app with the
IdP, who gives you a unique ID for your app. (Different IdPs use different terminology for this
process. This outline uses the term configure for the process of identifying your app with the
IdP.) Each IdP gives you an app ID that's unique to that IdP, so if you configure the same app with
multiple IdPs, your app will have multiple app IDs. You can configure multiple apps with each
provider.

The following external links provide information about using some of the commonly used
identity providers (IdPs):

• Login with Amazon Developer Center

• Add Facebook Login to Your App or Website on the Facebook developers site.

• Using OAuth 2.0 for Login (OpenID Connect) on the Google developers site.

Important

If you use an OIDC identity provider from Google, Facebook, or Amazon Cognito, do not
create a separate IAM identity provider in the AWS Management Console. AWS has these
OIDC identity providers built-in and available for your use. Skip the following step and
move directly to creating new roles using your identity provider.

2. If you use an IdP other than Google, Facebook or Amazon Cognito compatible with OIDC, then
create an IAM identity provider entity for it.

3. In IAM, create one or more roles. For each role, define who can assume the role (the trust policy)
and what permissions the app's users have (the permissions policy). Typically, you create one role
for each IdP that an app supports. For example, you might create a role assumed by an app if
the user signs in through Login with Amazon, a second role for the same app if the user signs
in through Facebook, and a third role for the app if the user signs in through Google. For the
trust relationship, specify the IdP (like Amazon.com) as the Principal (the trusted entity),
and include a Condition that matches the IdP assigned app ID. Examples of roles for different
providers are described in Creating a role for a third-party Identity Provider (federation).

4. In your application, authenticate your users with the IdP. The specifics of how to do this vary
both according to which IdP you use (Login with Amazon, Facebook, or Google) and on which
platform your app runs. For example, an Android app's method of authentication can differ from
that of an iOS app or a JavaScript-based web app.

Typically, if the user is not already signed in, the IdP takes care of displaying a sign-in page. After
the IdP authenticates the user, the IdP returns an authentication token with information about

Identity providers and federation 353

https://login.amazon.com/
https://developers.facebook.com/docs/facebook-login/v2.1
https://developers.google.com/accounts/docs/OAuth2Login

AWS Identity and Access Management User Guide

the user to your app. The information included depends on what the IdP exposes and what
information the user is willing to share. You can use this information in your app.

5. In your app, make an unsigned call to the AssumeRoleWithWebIdentity action to request
temporary security credentials. In the request, you pass the IdP's authentication token and
specify the Amazon Resource Name (ARN) for the IAM role that you created for that IdP. AWS
verifies that the token is trusted and valid and if so, returns temporary security credentials to
your app that have the permissions for the role that you name in the request. The response
also includes metadata about the user from the IdP, such as the unique user ID that the IdP
associates with the user.

6. Using the temporary security credentials from the AssumeRoleWithWebIdentity response,
your app makes signed requests to AWS API operations. The user ID information from the IdP
can distinguish users in your app—for example, you can put objects into Amazon S3 folders that
include the user ID as prefixes or suffixes. This lets you create access control policies that lock
the folder so only the user with that ID can access it. For more information, see Identifying users
with web identity federation later in this topic.

7. Your app should cache the temporary security credentials so that you do not have to get
new ones each time the app needs to make a request to AWS. By default, the credentials
are good for one hour. When the credentials expire (or before then), you make another call
to AssumeRoleWithWebIdentity to obtain a new set of temporary security credentials.
Depending on the IdP and how they manage their tokens, you might have to refresh the
IdP's token before you make a new call to AssumeRoleWithWebIdentity, since the IdP's
tokens also usually expire after a fixed time. If you use the AWS SDK for iOS or the AWS SDK
for Android, you can use the AmazonSTSCredentialsProvider action, which manages the IAM
temporary credentials, including refreshing them as required.

Identifying users with web identity federation

When you create access policies in IAM, it's often useful to be able to specify permissions based
on configured apps and on the ID of users who have authenticated using an external identity
provider (IdP). For example, your mobile app uses web identity federation might keep information
in Amazon S3 using a structure like this:

myBucket/app1/user1
myBucket/app1/user2
myBucket/app1/user3
...
myBucket/app2/user1

Identity providers and federation 354

https://aws.amazon.com/blogs/mobile/using-the-amazoncredentialsprovider-protocol-in-the-aws-sdk-for-ios

AWS Identity and Access Management User Guide

myBucket/app2/user2
myBucket/app2/user3
...

You might also want to additionally distinguish these paths by provider. In that case, the structure
might look like the following (only two providers are listed to save space):

myBucket/Amazon/app1/user1
myBucket/Amazon/app1/user2
myBucket/Amazon/app1/user3
...
myBucket/Amazon/app2/user1
myBucket/Amazon/app2/user2
myBucket/Amazon/app2/user3

myBucket/Facebook/app1/user1
myBucket/Facebook/app1/user2
myBucket/Facebook/app1/user3
...
myBucket/Facebook/app2/user1
myBucket/Facebook/app2/user2
myBucket/Facebook/app2/user3
...

For these structures, app1 and app2 represent different apps, such as different games, and each
user of the app has a distinct folder. The values for app1 and app2 might be friendly names that
you assign (for example, mynumbersgame) or they might be the app IDs that the providers assign
when you configure your app. If you decide to include provider names in the path, those can also
be friendly names like Cognito, Amazon, Facebook, and Google.

You can typically create the folders for app1 and app2 through the AWS Management Console,
since the application names are static values. That's true also if you include the provider name
in the path, since the provider name is also a static value. In contrast, the user-specific folders
(user1, user2, user3, etc.) have to be created at run time from the app, using the user ID that's
available in the SubjectFromWebIdentityToken value that is returned by the request to
AssumeRoleWithWebIdentity.

To write policies that allow exclusive access to resources for individual users, you can match the
complete folder name, including the app name and provider name, if you're using that. You can
then include the following provider-specific context keys that reference the user ID that the
provider returns:

Identity providers and federation 355

AWS Identity and Access Management User Guide

• cognito-identity.amazonaws.com:sub

• www.amazon.com:user_id

• graph.facebook.com:id

• accounts.google.com:sub

For OIDC providers, use the fully qualified URL of the OIDC provider with the subcontext key, like
the following example:

• server.example.com:sub

The following example shows a permission policy that grants access to a bucket in Amazon S3 only
if the prefix for the bucket matches the string:

myBucket/Amazon/mynumbersgame/user1

The example assumes that the user signs in using Login with Amazon, and that the user uses an
app called mynumbersgame. The user's unique ID is presented as an attribute called user_id.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": ["s3:ListBucket"],
 "Resource": ["arn:aws:s3:::myBucket"],
 "Condition": {"StringLike": {"s3:prefix": ["Amazon/mynumbersgame/
${www.amazon.com:user_id}/*"]}}
 },
 {
 "Effect": "Allow",
 "Action": [
 "s3:GetObject",
 "s3:PutObject",
 "s3:DeleteObject"
],
 "Resource": [
 "arn:aws:s3:::myBucket/amazon/mynumbersgame/${www.amazon.com:user_id}",
 "arn:aws:s3:::myBucket/amazon/mynumbersgame/${www.amazon.com:user_id}/*"
]
 }

Identity providers and federation 356

AWS Identity and Access Management User Guide

]
}

You would create similar policies for users who sign in using Amazon Cognito, Facebook, Google,
or another OpenID Connect–compatible IdP. Those policies would use a different provider name as
part of the path as well as different app IDs.

For more information about the web identity federation keys available for condition checks in
policies, see Available keys for AWS web identity federation.

Additional resources for web identity federation

The following resources can help you learn more about web identity federation:

• Amazon Cognito Identity in the Amplify Libraries for Android Guide and Amazon Cognito Identity
in the Amplify Libraries for Swift Guide.

• The Web Identity Federation Playground is an interactive website that lets you walk through
the process of authenticating via Login with Amazon, Facebook, or Google, getting temporary
security credentials, and then using those credentials to make a request to AWS.

• The entry Web Identity Federation using the AWS SDK for .NET on the AWS .NET Development
blog walks through how to use web identity federation with Facebook and includes code
snippets in C# that show how to call AssumeRoleWithWebIdentity and how to use the
temporary security credentials from that API call to access an S3 bucket.

• The article Web Identity Federation with Mobile Applications discusses web identity federation
and shows an example of how to use web identity federation to get access to content in Amazon
S3.

About SAML 2.0-based federation

AWS supports identity federation with SAML 2.0 (Security Assertion Markup Language 2.0), an
open standard that many identity providers (IdPs) use. This feature enables federated single sign-
on (SSO), so users can log into the AWS Management Console or call the AWS API operations
without you having to create an IAM user for everyone in your organization. By using SAML, you
can simplify the process of configuring federation with AWS, because you can use the IdP's service
instead of writing custom identity proxy code.

IAM federation supports these use cases:

Identity providers and federation 357

https://docs.amplify.aws/lib/auth/advanced/q/platform/android/
https://docs.amplify.aws/lib/auth/advanced/q/platform/ios/
https://aws.amazon.com/blogs/aws/the-aws-web-identity-federation-playground/
https://aws.amazon.com/blogs/developer/web-identity-federation-using-the-aws-sdk-for-net/
http://aws.amazon.com/articles/4617974389850313
https://wiki.oasis-open.org/security
https://docs.aws.amazon.com/STS/latest/UsingSTS/CreatingFedTokens.html

AWS Identity and Access Management User Guide

• Federated access to allow a user or application in your organization to call AWS API
operations. You use a SAML assertion (as part of the authentication response) that is generated
in your organization to get temporary security credentials. This scenario is similar to other
federation scenarios that IAM supports, like those described in Requesting temporary
security credentials and About web identity federation. However, SAML 2.0–based IdPs in
your organization handle many of the details at run time for performing authentication and
authorization checking. This is the scenario discussed in this topic.

• Web-based single sign-on (SSO) to the AWS Management Console from your organization.
Users can sign in to a portal in your organization hosted by a SAML 2.0–compatible IdP, select an
option to go to AWS, and be redirected to the console without having to provide additional sign-
in information. You can use a third-party SAML IdP to establish SSO access to the console or you
can create a custom IdP to enable console access for your external users. For more information
about building a custom IdP, see Enabling custom identity broker access to the AWS console.

Topics

• Using SAML-based federation for API access to AWS

• Overview of configuring SAML 2.0-based federation

• Overview of the role to allow SAML-federated access to your AWS resources

• Uniquely identifying users in SAML-based federation

Using SAML-based federation for API access to AWS

Assume that you want to provide a way for employees to copy data from their computers to a
backup folder. You build an application that users can run on their computers. On the back end,
the application reads and writes objects in an S3 bucket. Users don't have direct access to AWS.
Instead, the following process is used:

Identity providers and federation 358

AWS Identity and Access Management User Guide

1. A user in your organization uses a client app to request authentication from your organization's
IdP.

2. The IdP authenticates the user against your organization's identity store.

3. The IdP constructs a SAML assertion with information about the user and sends the assertion to
the client app.

4. The client app calls the AWS STS AssumeRoleWithSAML API, passing the ARN of the SAML
provider, the ARN of the role to assume, and the SAML assertion from IdP.

5. The API response to the client app includes temporary security credentials.

6. The client app uses the temporary security credentials to call Amazon S3 API operations.

Overview of configuring SAML 2.0-based federation

Before you can use SAML 2.0-based federation as described in the preceding scenario and diagram,
you must configure your organization's IdP and your AWS account to trust each other. The general
process for configuring this trust is described in the following steps. Inside your organization, you
must have an IdP that supports SAML 2.0, like Microsoft Active Directory Federation Service (AD FS,
part of Windows Server), Shibboleth, or another compatible SAML 2.0 provider.

Identity providers and federation 359

https://docs.aws.amazon.com/STS/latest/APIReference/API_AssumeRoleWithSAML.html

AWS Identity and Access Management User Guide

Note

To improve federation resiliency, we recommend that you configure your IdP and AWS
federation to support multiple SAML sign-in endpoints. For details, see the AWS Security
Blog article How to use regional SAML endpoints for failover.

To configure your organization's IdP and AWS to trust each other

1. Register AWS as a service provider (SP) with the IdP of your organization. Use the SAML
metadata document from https://region-code.signin.aws.amazon.com/static/
saml-metadata.xml

For a list of possible region-code values, see the Region column in AWS Sign-In endpoints.

You can optionally use the SAML metadata document from https://
signin.aws.amazon.com/static/saml-metadata.xml .

2. Using your organization's IdP, you generate an equivalent metadata XML file that can describe
your IdP as an IAM identity provider in AWS. It must include the issuer name, a creation date,
an expiration date, and keys that AWS can use to validate authentication responses (assertions)
from your organization.

3. In the IAM console, you create a SAML identity provider entity. As part of this process, you
upload the SAML metadata document that was produced by the IdP in your organization in
Step 2. For more information, see Creating IAM SAML identity providers.

4. In IAM, you create one or more IAM roles. In the role's trust policy, you set the SAML provider
as the principal, which establishes a trust relationship between your organization and AWS.
The role's permission policy establishes what users from your organization are allowed to do in
AWS. For more information, see Creating a role for a third-party Identity Provider (federation).

Note

SAML IDPs used in a role trust policy must be in the same account that the role is in.

5. In your organization's IdP, you define assertions that map users or groups in your organization
to the IAM roles. Note that different users and groups in your organization might map to
different IAM roles. The exact steps for performing the mapping depend on what IdP you're
using. In the earlier scenario of an Amazon S3 folder for users, it's possible that all users

Identity providers and federation 360

https://aws.amazon.com/blogs/security/how-to-use-regional-saml-endpoints-for-failover
https://docs.aws.amazon.com/general/latest/gr/signin-service.html

AWS Identity and Access Management User Guide

will map to the same role that provides Amazon S3 permissions. For more information, see
Configuring SAML assertions for the authentication response.

If your IdP enables SSO to the AWS console, then you can configure the maximum duration of
the console sessions. For more information, see Enabling SAML 2.0 federated users to access
the AWS Management Console.

Note

The AWS implementation of SAML 2.0 federation does not support encrypted SAML
assertions between the IAM identity provider and AWS. However, the traffic between
the customer's systems and AWS is transmitted over an encrypted (TLS) channel.

6. In the application that you're creating, you call the AWS Security Token Service
AssumeRoleWithSAML API, passing it the ARN of the SAML provider you created in Step 3,
the ARN of the role to assume that you created in Step 4, and the SAML assertion about the
current user that you get from your IdP. AWS makes sure that the request to assume the role
comes from the IdP referenced in the SAML provider.

For more information, see AssumeRoleWithSAML in the AWS Security Token Service API
Reference.

7. If the request is successful, the API returns a set of temporary security credentials, which your
application can use to make signed requests to AWS. Your application has information about
the current user and can access user-specific folders in Amazon S3, as described in the previous
scenario.

Overview of the role to allow SAML-federated access to your AWS resources

The role or roles that you create in IAM define what federated users from your organization
are allowed to do in AWS. When you create the trust policy for the role, you specify the SAML
provider that you created earlier as the Principal. You can additionally scope the trust policy
with a Condition to allow only users that match certain SAML attributes to access the role. For
example, you can specify that only users whose SAML affiliation is staff (as asserted by https://
openidp.feide.no) are allowed to access the role, as illustrated by the following sample policy:

{
 "Version": "2012-10-17",
 "Statement": [{

Identity providers and federation 361

https://docs.aws.amazon.com/STS/latest/APIReference/API_AssumeRoleWithSAML.html

AWS Identity and Access Management User Guide

 "Effect": "Allow",
 "Principal": {"Federated": "arn:aws:iam::account-id:saml-provider/
ExampleOrgSSOProvider"},
 "Action": "sts:AssumeRoleWithSAML",
 "Condition": {
 "StringEquals": {
 "saml:aud": "https://signin.aws.amazon.com/saml",
 "saml:iss": "https://openidp.feide.no"
 },
 "ForAllValues:StringLike": {"saml:edupersonaffiliation": ["staff"]}
 }
 }]
}

Note

SAML IDPs used in a role trust policy must be in the same account that the role is in.

For more information about the SAML keys that you can check in a policy, see Available keys for
SAML-based AWS STS federation.

You can include regional endpoints for the saml:aud attribute at https://region-
code.signin.aws.amazon.com/static/saml-metadata.xml. For a list of possible region-
code values, see the Region column in AWS Sign-In endpoints.

For the permission policy in the role, you specify permissions as you would for any role. For
example, if users from your organization are allowed to administer Amazon Elastic Compute Cloud
instances, you must explicitly allow Amazon EC2 actions in the permissions policy, such as those in
the AmazonEC2FullAccess managed policy.

Uniquely identifying users in SAML-based federation

When you create access policies in IAM, it's often useful to be able to specify permissions based on
the identity of users. For example, for users who have been federated using SAML, an application
might want to keep information in Amazon S3 using a structure like this:

myBucket/app1/user1
myBucket/app1/user2
myBucket/app1/user3

Identity providers and federation 362

https://docs.aws.amazon.com/general/latest/gr/signin-service.html

AWS Identity and Access Management User Guide

You can create the bucket (myBucket) and folder (app1) through the Amazon S3 console or the
AWS CLI, since those are static values. However, the user-specific folders (user1, user2, user3,
etc.) have to be created at run time using code, since the value that identifies the user isn't known
until the first time the user signs in through the federation process.

To write policies that reference user-specific details as part of a resource name, the user identity
has to be available in SAML keys that can be used in policy conditions. The following keys are
available for SAML 2.0–based federation for use in IAM policies. You can use the values returned by
the following keys to create unique user identifiers for resources like Amazon S3 folders.

• saml:namequalifier. A hash value based on the concatenation of the Issuer response value
(saml:iss) and a string with the AWS account ID and the friendly name (the last part of the
ARN) of the SAML provider in IAM. The concatenation of the account ID and friendly name of
the SAML provider is available to IAM policies as the key saml:doc. The account ID and provider
name must be separated by a '/' as in "123456789012/provider_name". For more information,
see the saml:doc key at Available keys for SAML-based AWS STS federation.

The combination of NameQualifier and Subject can be used to uniquely identify a federated
user. The following pseudocode shows how this value is calculated. In this pseudocode +
indicates concatenation, SHA1 represents a function that produces a message digest using
SHA-1, and Base64 represents a function that produces Base-64 encoded version of the hash
output.

Base64 (SHA1 ("https://example.com/saml" + "123456789012" + "/
MySAMLIdP"))

For more information about the policy keys that are available for SAML-based federation, see
Available keys for SAML-based AWS STS federation.

• saml:sub (string). This is the subject of the claim, which includes a value that
uniquely identifies an individual user within an organization (for example,
_cbb88bf52c2510eabe00c1642d4643f41430fe25e3).

• saml:sub_type (string). This key can be persistent, transient, or the full Format URI
from the Subject and NameID elements used in your SAML assertion. A value of persistent
indicates that the value in saml:sub is the same for a user across all sessions. If the value is
transient, the user has a different saml:sub value for each session. For information about
the NameID element's Format attribute, see Configuring SAML assertions for the authentication
response.

Identity providers and federation 363

AWS Identity and Access Management User Guide

The following example shows a permission policy that uses the preceding keys to grant permissions
to a user-specific folder in Amazon S3. The policy assumes that the Amazon S3 objects are
identified using a prefix that includes both saml:namequalifier and saml:sub. Notice that the
Condition element includes a test to be sure that saml:sub_type is set to persistent. If it
is set to transient, the saml:sub value for the user can be different for each session, and the
combination of values should not be used to identify user-specific folders.

{
 "Version": "2012-10-17",
 "Statement": {
 "Effect": "Allow",
 "Action": [
 "s3:GetObject",
 "s3:PutObject",
 "s3:DeleteObject"
],
 "Resource": [
 "arn:aws:s3:::exampleorgBucket/backup/${saml:namequalifier}/${saml:sub}",
 "arn:aws:s3:::exampleorgBucket/backup/${saml:namequalifier}/${saml:sub}/*"
],
 "Condition": {"StringEquals": {"saml:sub_type": "persistent"}}
 }
}

For more information about mapping assertions from the IdP to policy keys, see Configuring SAML
assertions for the authentication response.

Creating IAM identity providers

Note

We recommend that you require your human users to use temporary credentials when
accessing AWS. Have you considered using AWS IAM Identity Center? You can use IAM
Identity Center to centrally manage access to multiple AWS accounts and provide users
with MFA-protected, single sign-on access to all their assigned accounts from one place.
With IAM Identity Center, you can create and manage user identities in IAM Identity
Center or easily connect to your existing SAML 2.0 compatible identity provider. For more
information, see What is IAM Identity Center? in the AWS IAM Identity Center User Guide.

Identity providers and federation 364

https://docs.aws.amazon.com/singlesignon/latest/userguide/what-is.html

AWS Identity and Access Management User Guide

You can use an external identity provider (IdP) to manage user identities outside of AWS. An
external IdP can provide identity information to AWS using either OpenID Connect (OIDC) or
Security Assertion Markup Language (SAML). Examples of well-known OIDC identity providers are:
Login with Amazon, Facebook, and Google. Examples of well-known SAML identity providers are:
Shibboleth and Active Directory Federation Services.

When you want to configure federation with an external IdP, you create an IAM identity provider
to inform AWS about the external IdP and its configuration. This establishes "trust" between your
AWS account and the external IdP. The following topics include details about how to create an IAM
identity provider for each of the external IdP types.

Topics

• Creating OpenID Connect (OIDC) identity providers

• Creating IAM SAML identity providers

Creating OpenID Connect (OIDC) identity providers

IAM OIDC identity providers are entities in IAM that describe an external identity provider (IdP)
service that supports the OpenID Connect (OIDC) standard, such as Google or Salesforce. You use
an IAM OIDC identity provider when you want to establish trust between an OIDC-compatible IdP
and your AWS account. This is useful when creating a mobile app or web application that requires
access to AWS resources, but you don't want to create custom sign-in code or manage your own
user identities. For more information about this scenario, see the section called “About web identity
federation”.

You can create and manage an IAM OIDC identity provider using the AWS Management Console,
the AWS Command Line Interface, the Tools for Windows PowerShell, or the IAM API.

After you create an IAM OIDC identity provider, you must create one or more IAM roles. A role is
an identity in AWS that doesn't have its own credentials (as a user does). But in this context, a role
is dynamically assigned to a federated user that is authenticated by your organization's IdP. The
role permits your organization's IdP to request temporary security credentials for access to AWS.
The policies assigned to the role determine what the federated users are allowed to do in AWS.
To create a role for a third-party identity provider, see Creating a role for a third-party Identity
Provider (federation).

Identity providers and federation 365

http://openid.net/connect/

AWS Identity and Access Management User Guide

Important

When you configure identity-based policies for actions that support oidc-provider
resources, IAM evaluates the full OIDC identity provider URL, including any specified paths.
If your OIDC identity provider URL has a path, you must include that path in the oidc-
provider ARN as a Resource element value. You also have the option to append a
forward slash and wildcard (/*) to the URL domain or use wildcard characters (* and ?) at
any point in the URL path. If the OIDC identity provider URL in the request doesn't match
the value set in the policy's Resource element, the request fails.

Topics

• Creating and managing an OIDC provider (console)

• Creating and managing an IAM OIDC identity provider (AWS CLI)

• Creating and managing an OIDC Identity Provider (AWS API)

• Obtaining the thumbprint for an OpenID Connect Identity Provider

Creating and managing an OIDC provider (console)

Follow these instructions to create and manage an IAM OIDC identity provider in the AWS
Management Console.

Important

If you are using an OIDC identity provider from either Google, Facebook, or Amazon
Cognito, do not create a separate IAM identity provider using this procedure. These OIDC
identity providers are already built-in to AWS and are available for your use. Instead,
follow the steps to create new roles for your identity provider, see Create a role for OpenID
Connect federation (console).

To create an IAM OIDC identity provider (console)

1. Before you create an IAM OIDC identity provider, you must register your application with the
IdP to receive a client ID. The client ID (also known as audience) is a unique identifier for your
app that is issued to you when you register your app with the IdP. For more information about
obtaining a client ID, see the documentation for your IdP.

Identity providers and federation 366

AWS Identity and Access Management User Guide

Note

AWS secures communication with some OIDC identity providers (IdPs) through
our library of trusted root certificate authorities (CAs) instead of using a certificate
thumbprint to verify your IdP server certificate. In these cases, your legacy thumbprint
remains in your configuration, but is no longer used for validation. These OIDC IdPs
include Auth0, GitHub, GitLab, Google, and those that use an Amazon S3 bucket to
host a JSON Web Key Set (JWKS) endpoint.

2. Open the IAM console at https://console.aws.amazon.com/iam/.

3. In the navigation pane, choose Identity providers, and then choose Add provider.

4. For Configure provider, choose OpenID Connect.

5. For Provider URL, type the URL of the IdP. The URL must comply with these restrictions:

• The URL is case-sensitive.

• The URL must begin with https://.

• The URL should not contain a port number.

• Within your AWS account, each IAM OIDC identity provider must use a unique URL.

6. Choose Get thumbprint to verify the server certificate of your IdP. To learn how, see Obtaining
the thumbprint for an OpenID Connect Identity Provider.

Note

The OIDC identity provider's certificate chain must start with the domain or issuer URL,
then the intermediate certificate, and end with the root certificate. If the certificate
chain order is different or includes duplicate or additional certificates, then you receive
a signature mismatch error and STS fails to validate the JSON Web Token (JWT).
Correct the order of the certificates in the chain returned from the server to resolve the
error. For more information about certificate chain standards, see certificate_list in RFC
5246 on the RFC Series website.

7. For Audience, type the client ID of the application that you registered with the IdP and
received in Step 1, and that make requests to AWS. If you have additional client IDs (also
known as audiences) for this IdP, you can add them later on the provider detail page.

Identity providers and federation 367

https://console.aws.amazon.com/iam/
https://www.rfc-editor.org/rfc/rfc5246#section-7.4.2
https://www.rfc-editor.org/rfc/rfc5246#section-7.4.2

AWS Identity and Access Management User Guide

8. (Optional) For Add tags, you can add key–value pairs to help you identify and organize your
IdPs. You can also use tags to control access to AWS resources. To learn more about tagging
IAM OIDC identity providers, see Tagging OpenID Connect (OIDC) identity providers. Choose
Add tag. Enter values for each tag key-value pair.

9. Verify the information that you have provided. When you are done choose Add provider.

10. Assign an IAM role to your identity provider to give external user identities managed by your
identity provider permissions to access AWS resources in your account. To learn more about
creating roles for identity federation, see Creating a role for a third-party Identity Provider
(federation).

Note

OIDC IDPs used in a role trust policy must be in the same account that the role is in.

To add or remove a thumbprint for an IAM OIDC identity provider (console)

1. Open the IAM console at https://console.aws.amazon.com/iam/.

2. In the navigation pane, choose Identity providers. Then choose the name of the IAM identity
provider that you want to update.

3. In the Thumbprints section, choose Manage. To enter a new thumbprint value, choose Add
thumbprint. To remove a thumbprint, choose Remove next to the thumbprint that you want
to remove.

Note

An IAM OIDC identity provider must have at least one and can have a maximum of five
thumbprints.

When you are done, choose Save changes.

To add an audience for an IAM OIDC identity provider (console)

1. In the navigation pane, choose Identity providers, then choose the name of the IAM identity
provider that you want to update.

Identity providers and federation 368

https://console.aws.amazon.com/iam/

AWS Identity and Access Management User Guide

2. In the Audiences section, choose Actions and select Add audience.

3. Type the client ID of the application that you registered with the IdP and received in Step 1,
and that will make requests to AWS. Then choose Add audiences.

Note

An IAM OIDC identity provider must have at least one and can have a maximum of 100
audiences.

To remove an audience for an IAM OIDC identity provider (console)

1. In the navigation pane, choose Identity providers, then choose the name of the IAM identity
provider that you want to update.

2. In the Audiences section, select the radio button next to the audience that you want to
remove, then select Actions.

3. Choose Remove audience. A new window opens.

4. If you remove an audience, identities federating with the audience cannot assume roles
associated with the audience. In the window, read the warning and confirm that you want to
remove the audience by typing the word remove in the field.

5. Choose Remove to remove the audience.

To delete an IAM OIDC identity provider (console)

1. Open the IAM console at https://console.aws.amazon.com/iam/.

2. In the navigation pane, choose Identity providers.

3. Select the check box next to the IAM identity provider that you want to delete. A new window
opens.

4. Confirm that you want to delete the provider by typing the word delete in the field. Then,
choose Delete.

Creating and managing an IAM OIDC identity provider (AWS CLI)

You can use the following AWS CLI commands to create and manage IAM OIDC identity providers.

Identity providers and federation 369

https://console.aws.amazon.com/iam/

AWS Identity and Access Management User Guide

To create an IAM OIDC identity provider (AWS CLI)

1. (Optional) To get a list of all the IAM OIDC identity providers in your AWS account, run the
following command:

• aws iam list-open-id-connect-providers

2. To create a new IAM OIDC identity provider, run the following command:

• aws iam create-open-id-connect-provider

To update the list of server certificate thumbprints for an existing IAM OIDC identity provider
(AWS CLI)

• To update the list of server certificate thumbprints for an IAM OIDC identity provider, run the
following command:

• aws iam update-open-id-connect-provider-thumbprint

To tag an existing IAM OIDC identity provider (AWS CLI)

• To tag an existing IAM OIDC identity provider, run the following command:

• aws iam tag-open-id-connect-provider

To list tags for an existing IAM OIDC identity provider (AWS CLI)

• To list tags for an existing IAM OIDC identity provider, run the following command:

• aws iam list-open-id-connect-provider-tags

To remove tags on an IAM OIDC identity provider (AWS CLI)

• To remove tags on an existing IAM OIDC identity provider, run the following command:

• aws iam untag-open-id-connect-provider

Identity providers and federation 370

https://docs.aws.amazon.com/cli/latest/reference/iam/list-open-id-connect-providers.html
https://docs.aws.amazon.com/cli/latest/reference/iam/create-open-id-connect-provider.html
https://docs.aws.amazon.com/cli/latest/reference/iam/update-open-id-connect-provider-thumbprint.html
https://docs.aws.amazon.com/cli/latest/reference/iam/tag-open-id-connect-provider.html
https://docs.aws.amazon.com/cli/latest/reference/iam/list-open-id-connect-provider-tags.html
https://docs.aws.amazon.com/cli/latest/reference/iam/untag-open-id-connect-provider.html

AWS Identity and Access Management User Guide

To add or remove a client ID from an existing IAM OIDC identity provider (AWS CLI)

1. (Optional) To get a list of all the IAM OIDC identity provider in your AWS account, run the
following command:

• aws iam list-open-id-connect-providers

2. (Optional) To get detailed information about an IAM OIDC identity provider, run the following
command:

• aws iam get-open-id-connect-provider

3. To add a new client ID to an existing IAM OIDC identity provider, run the following command:

• aws iam add-client-id-to-open-id-connect-provider

4. To remove a client from an existing IAM OIDC identity provider, run the following command:

• aws iam remove-client-id-from-open-id-connect-provider

To delete an IAM OIDC identity provider (AWS CLI)

1. (Optional) To get a list of all the IAM OIDC identity provider in your AWS account, run the
following command:

• aws iam list-open-id-connect-providers

2. (Optional) To get detailed information about an IAM OIDC identity provider, run the following
command:

• aws iam get-open-id-connect-provider

3. To delete an IAM OIDC identity provider, run the following command:

• aws iam delete-open-id-connect-provider

Creating and managing an OIDC Identity Provider (AWS API)

You can use the following IAM API commands to create and manage OIDC providers.

To create an IAM OIDC identity provider (AWS API)

1. (Optional) To get a list of all the IAM OIDC identity provider in your AWS account, call the
following operation:

Identity providers and federation 371

https://docs.aws.amazon.com/cli/latest/reference/iam/list-open-id-connect-providers.html
https://docs.aws.amazon.com/cli/latest/reference/iam/get-open-id-connect-provider.html
https://docs.aws.amazon.com/cli/latest/reference/iam/add-client-id-to-open-id-connect-provider.html
https://docs.aws.amazon.com/cli/latest/reference/iam/remove-client-id-from-open-id-connect-provider.html
https://docs.aws.amazon.com/cli/latest/reference/iam/list-open-id-connect-providers.html
https://docs.aws.amazon.com/cli/latest/reference/iam/get-open-id-connect-provider.html
https://docs.aws.amazon.com/cli/latest/reference/iam/delete-open-id-connect-provider.html

AWS Identity and Access Management User Guide

• ListOpenIDConnectProviders

2. To create a new IAM OIDC identity provider, call the following operation:

• CreateOpenIDConnectProvider

To update the list of server certificate thumbprints for an existing IAM OIDC identity provider
(AWS API)

• To update the list of server certificate thumbprints for an IAM OIDC identity provider, call the
following operation:

• UpdateOpenIDConnectProviderThumbprint

To tag an existing IAM OIDC identity provider (AWS API)

• To tag an existing IAM OIDC identity provider, call the following operation:

• TagOpenIDConnectProvider

To list tags for an existing IAM OIDC identity provider (AWS API)

• To list tags for an existing IAM OIDC identity provider, call the following operation:

• ListOpenIDConnectProviderTags

To remove tags on an existing IAM OIDC identity provider (AWS API)

• To remove tags on an existing IAM OIDC identity provider, call the following operation:

• UntagOpenIDConnectProvider

To add or remove a client ID from an existing IAM OIDC identity provider (AWS API)

1. (Optional) To get a list of all the IAM OIDC identity provider in your AWS account, call the
following operation:

• ListOpenIDConnectProviders

Identity providers and federation 372

https://docs.aws.amazon.com/IAM/latest/APIReference/API_ListOpenIDConnectProviders.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_CreateOpenIDConnectProvider.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_UpdateOpenIDConnectProviderThumbprint.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_TagOpenIDConnectProvider.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_ListOpenIDConnectProviderTags.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_UntagOpenIDConnectProvider.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_ListOpenIDConnectProviders.html

AWS Identity and Access Management User Guide

2. (Optional) To get detailed information about an IAM OIDC identity provider, call the following
operation:

• GetOpenIDConnectProvider

3. To add a new client ID to an existing IAM OIDC identity provider, call the following operation:

• AddClientIDToOpenIDConnectProvider

4. To remove a client ID from an existing IAM OIDC identity provider, call the following operation:

• RemoveClientIDFromOpenIDConnectProvider

To delete an IAM OIDC identity provider (AWS API)

1. (Optional) To get a list of all the IAM OIDC identity provider in your AWS account, call the
following operation:

• ListOpenIDConnectProviders

2. (Optional) To get detailed information about an IAM OIDC identity provider, call the following
operation:

• GetOpenIDConnectProvider

3. To delete an IAM OIDC identity provider, call the following operation:

• DeleteOpenIDConnectProvider

Obtaining the thumbprint for an OpenID Connect Identity Provider

When you create an OpenID Connect (OIDC) identity provider in IAM, you must supply a
thumbprint. IAM requires the thumbprint for the top intermediate certificate authority (CA) that
signed the certificate used by the external identity provider (IdP). The thumbprint is a signature
for the CA's certificate that was used to issue the certificate for the OIDC-compatible IdP. When
you create an IAM OIDC identity provider, you are trusting identities authenticated by that IdP
to have access to your AWS account. By supplying the CA's certificate thumbprint, you trust any
certificate issued by that CA with the same DNS name as the one registered. This eliminates the
need to update trusts in each account when you renew the IdP's signing certificate.

Identity providers and federation 373

https://docs.aws.amazon.com/IAM/latest/APIReference/API_GetOpenIDConnectProvider.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_AddClientIDToOpenIDConnectProvider.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_RemoveClientIDFromOpenIDConnectProvider.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_ListOpenIDConnectProviders.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_GetOpenIDConnectProvider.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_DeleteOpenIDConnectProvider.html

AWS Identity and Access Management User Guide

Important

In most cases, the federation server uses two different certificates:

• The first establishes an HTTPS connection between AWS and your IdP. This should be
issued by a well-known public root CA, such as AWS Certificate Manager. This enables the
client to check the reliability and status of the certificate.

• The second is used to encrypt tokens, and should be signed by a private or public root
CA.

You can create an IAM OIDC identity provider with the AWS Command Line Interface, the Tools
for Windows PowerShell, or the IAM API. When you use these methods, you must obtain the
thumbprint manually and supply it to AWS. When you create an OIDC identity provider with the
IAM console, the console attempts to fetch the thumbprint for you. We recommend that you also
obtain the thumbprint for your OIDC IdP manually and verify that the console fetched the correct
thumbprint.

You use a web browser and the OpenSSL command line tool to obtain the thumbprint for an OIDC
provider. For more information, see the following sections.

To obtain the thumbprint for an OIDC IdP

1. Before you can obtain the thumbprint for an OIDC IdP, you need to obtain the OpenSSL
command line tool. You use this tool to download the OIDC IdP certificate chain and produce
a thumbprint of the final certificate in the certificate chain. If you need to install and configure
OpenSSL, follow the instructions at Install OpenSSL and Configure OpenSSL.

Note

AWS secures communication with some OIDC identity providers (IdPs) through
our library of trusted root certificate authorities (CAs) instead of using a certificate
thumbprint to verify your IdP server certificate. In these cases, your legacy thumbprint
remains in your configuration, but is no longer used for validation. These OIDC IdPs
include Auth0, GitHub, GitLab, Google, and those that use an Amazon S3 bucket to
host a JSON Web Key Set (JWKS) endpoint.

Identity providers and federation 374

AWS Identity and Access Management User Guide

2. Start with the OIDC IdP URL (for example, https://server.example.com), and then
add /.well-known/openid-configuration to form the URL for the IdP's configuration
document, such as the following:

https://server.example.com/.well-known/openid-configuration

Open this URL in a web browser, replacing server.example.com with your IdP server name.

3. In the displayed document, use your web browser Find feature to locate the text "jwks_uri".
Immediately following the text "jwks_uri", there is a colon (:) followed by a URL. Copy the
fully qualified domain name of the URL. Do not include https:// or any path that comes
after the top-level domain.

{
 "issuer": "https://accounts.example.com",
 "authorization_endpoint": "https://accounts.example.com/o/oauth2/v2/auth",
 "device_authorization_endpoint": "https://oauth2.exampleapis.com/device/code",
 "token_endpoint": "https://oauth2.exampleapis.com/token",
 "userinfo_endpoint": "https://openidconnect.exampleapis.com/v1/userinfo",
 "revocation_endpoint": "https://oauth2.exampleapis.com/revoke",
 "jwks_uri": "https://www.exampleapis.com/oauth2/v3/certs",
...

4. Use the OpenSSL command line tool to run the following command. Replace
keys.example.com with the domain name you obtained in Step 3.

openssl s_client -servername keys.example.com -showcerts -
connect keys.example.com:443

5. In your command window, scroll up until you see a certificate similar to the following example.
If you see more than one certificate, find the last certificate displayed (at the end of the
command output). This contains the certificate of the top intermediate CA in the certificate
authority chain.

-----BEGIN CERTIFICATE-----
 MIICiTCCAfICCQD6m7oRw0uXOjANBgkqhkiG9w0BAQUFADCBiDELMAkGA1UEBhMC
 VVMxCzAJBgNVBAgTAldBMRAwDgYDVQQHEwdTZWF0dGxlMQ8wDQYDVQQKEwZBbWF6
 b24xFDASBgNVBAsTC0lBTSBDb25zb2xlMRIwEAYDVQQDEwlUZXN0Q2lsYWMxHzAd
 BgkqhkiG9w0BCQEWEG5vb25lQGFtYXpvbi5jb20wHhcNMTEwNDI1MjA0NTIxWhcN
 MTIwNDI0MjA0NTIxWjCBiDELMAkGA1UEBhMCVVMxCzAJBgNVBAgTAldBMRAwDgYD
 VQQHEwdTZWF0dGxlMQ8wDQYDVQQKEwZBbWF6b24xFDASBgNVBAsTC0lBTSBDb25z

Identity providers and federation 375

AWS Identity and Access Management User Guide

 b2xlMRIwEAYDVQQDEwlUZXN0Q2lsYWMxHzAdBgkqhkiG9w0BCQEWEG5vb25lQGFt
 YXpvbi5jb20wgZ8wDQYJKoZIhvcNAQEBBQADgY0AMIGJAoGBAMaK0dn+a4GmWIWJ
 21uUSfwfEvySWtC2XADZ4nB+BLYgVIk60CpiwsZ3G93vUEIO3IyNoH/f0wYK8m9T
 rDHudUZg3qX4waLG5M43q7Wgc/MbQITxOUSQv7c7ugFFDzQGBzZswY6786m86gpE
 Ibb3OhjZnzcvQAaRHhdlQWIMm2nrAgMBAAEwDQYJKoZIhvcNAQEFBQADgYEAtCu4
 nUhVVxYUntneD9+h8Mg9q6q+auNKyExzyLwaxlAoo7TJHidbtS4J5iNmZgXL0Fkb
 FFBjvSfpJIlJ00zbhNYS5f6GuoEDmFJl0ZxBHjJnyp378OD8uTs7fLvjx79LjSTb
 NYiytVbZPQUQ5Yaxu2jXnimvw3rrszlaEXAMPLE=
 -----END CERTIFICATE-----

Copy the certificate (including the -----BEGIN CERTIFICATE----- and -----END
CERTIFICATE----- lines) and paste it into a text file. Then save the file with the file name
certificate.crt.

Note

The OIDC identity provider's certificate chain must start with the domain or issuer URL,
then the intermediate certificate, and end with the root certificate. If the certificate
chain order is different or includes duplicate or additional certificates, then you receive
a signature mismatch error and STS fails to validate the JSON Web Token (JWT).
Correct the order of the certificates in the chain returned from the server to resolve the
error. For more information about certificate chain standards, see certificate_list in RFC
5246 on the RFC Series website.

6. Use the OpenSSL command line tool to run the following command.

openssl x509 -in certificate.crt -fingerprint -sha1 -noout

Your command window displays the certificate thumbprint, which looks similar to the
following example:

SHA1 Fingerprint=99:0F:41:93:97:2F:2B:EC:F1:2D:DE:DA:52:37:F9:C9:52:F2:0D:9E

Remove the colon characters (:) from this string to produce the final thumbprint, like this:

990F4193972F2BECF12DDEDA5237F9C952F20D9E

7. If you are creating the IAM OIDC identity provider with the AWS CLI, Tools for Windows
PowerShell, or the IAM API, supply this thumbprint when creating the provider.

Identity providers and federation 376

https://www.rfc-editor.org/rfc/rfc5246#section-7.4.2
https://www.rfc-editor.org/rfc/rfc5246#section-7.4.2

AWS Identity and Access Management User Guide

If you are creating the IAM OIDC identity provider in the IAM console, compare this thumbprint
to the thumbprint shown on the console Verify Provider Information page when you create
an OIDC provider.

Important

If the thumbprint you obtained does not match the one you see in the console, you
should not create the OIDC provider in the console. Instead, you should wait a while
and then try again to create the OIDC provider, ensuring that the thumbprints match
before you create the provider. If the thumbprints still do not match after a second
attempt, use the IAM Forum to contact AWS.

Install OpenSSL

If you don't already have OpenSSL installed, follow the instructions in this section.

To install OpenSSL on Linux or Unix

1. Go to OpenSSL: Source, Tarballs (https://openssl.org/source/).

2. Download the latest source and build the package.

To install OpenSSL on Windows

1. Go to OpenSSL: Binary Distributions (https://wiki.openssl.org/index.php/Binaries) for a list of
sites from which you can install the Windows version.

2. Follow the instructions on your selected site to start the installation.

3. If you are asked to install the Microsoft Visual C++ 2008 Redistributables and it is not
already installed on your system, choose the download link appropriate for your environment.
Follow the instructions provided by the Microsoft Visual C++ 2008 Redistributable Setup
Wizard.

Note

If you are not sure whether the Microsoft Visual C++ 2008 Redistributables is already
installed on your system, you can try installing OpenSSL first. The OpenSSL installer
displays an alert if the Microsoft Visual C++ 2008 Redistributables is not yet installed.

Identity providers and federation 377

https://forums.aws.amazon.com/forum.jspa?forumID=76
https://openssl.org/source/
https://wiki.openssl.org/index.php/Binaries

AWS Identity and Access Management User Guide

Make sure that you install the architecture (32-bit or 64-bit) that matches the version
of OpenSSL that you install.

4. After you have installed the Microsoft Visual C++ 2008 Redistributables, select the appropriate
version of the OpenSSL binaries for your environment and save the file locally. Start the
OpenSSL Setup Wizard.

5. Follow the instructions described in the OpenSSL Setup Wizard.

Configure OpenSSL

Before you use OpenSSL commands, you must configure the operating system so that it has
information about the location where OpenSSL is installed.

To configure OpenSSL on Linux or Unix

1. At the command line, set the OpenSSL_HOME variable to the location of the OpenSSL
installation:

$ export OpenSSL_HOME=path_to_your_OpenSSL_installation

2. Set the path to include the OpenSSL installation:

$ export PATH=$PATH:$OpenSSL_HOME/bin

Note

Any changes you make to environment variables with the export command are valid
only for the current session. You can make persistent changes to the environment
variables by setting them in your shell configuration file. For more information, see the
documentation for your operating system.

To configure OpenSSL on Windows

1. Open a Command Prompt window.

2. Set the OpenSSL_HOME variable to the location of the OpenSSL installation:

Identity providers and federation 378

AWS Identity and Access Management User Guide

C:\> set OpenSSL_HOME=path_to_your_OpenSSL_installation

3. Set the OpenSSL_CONF variable to the location of the configuration file in your OpenSSL
installation:

C:\> set OpenSSL_CONF=path_to_your_OpenSSL_installation\bin\openssl.cfg

4. Set the path to include the OpenSSL installation:

C:\> set Path=%Path%;%OpenSSL_HOME%\bin

Note

Any changes you make to Windows environment variables in a Command Prompt
window are valid only for the current command line session. You can make persistent
changes to the environment variables by setting them as system properties. The
exact procedures depend on what version of Windows you're using. (For example,
in Windows 7, open Control Panel, System and Security, System. Then choose
Advanced system settings, Advanced tab, Environment Variables.) For more
information, see the Windows documentation.

Creating IAM SAML identity providers

An IAM SAML 2.0 identity provider is an entity in IAM that describes an external identity provider
(IdP) service that supports the SAML 2.0 (Security Assertion Markup Language 2.0) standard.
You use an IAM identity provider when you want to establish trust between a SAML-compatible
IdP such as Shibboleth or Active Directory Federation Services and AWS, so that users in your
organization can access AWS resources. IAM SAML identity providers are used as principals in an
IAM trust policy.

For more information about this scenario, see About SAML 2.0-based federation.

You can create and manage an IAM identity provider in the AWS Management Console or with AWS
CLI, Tools for Windows PowerShell, or AWS API calls.

After you create a SAML provider, you must create one or more IAM roles. A role is an identity in
AWS that doesn't have its own credentials (as a user does). But in this context, a role is dynamically

Identity providers and federation 379

https://wiki.oasis-open.org/security

AWS Identity and Access Management User Guide

assigned to a federated user that is authenticated by your organization's IdP. The role permits
your organization's IdP to request temporary security credentials for access to AWS. The policies
assigned to the role determine what the federated users are allowed to do in AWS. To create a role
for SAML federation, see Creating a role for a third-party Identity Provider (federation).

Finally, after you create the role, you complete the SAML trust by configuring your IdP with
information about AWS and the roles that you want your federated users to use. This is referred to
as configuring relying party trust between your IdP and AWS. To configure relying party trust, see
Configuring your SAML 2.0 IdP with relying party trust and adding claims.

Topics

• Creating and managing an IAM SAML identity provider (console)

• Creating and managing an IAM SAML Identity Provider (AWS CLI)

• Creating and managing an IAM SAML identity provider (AWS API)

• Configuring your SAML 2.0 IdP with relying party trust and adding claims

• Integrating third-party SAML solution providers with AWS

• Configuring SAML assertions for the authentication response

Creating and managing an IAM SAML identity provider (console)

You can use the AWS Management Console to create and delete IAM SAML identity providers.

To create an IAM SAML identity provider (console)

1. Before you can create an IAM SAML identity provider, you need the SAML metadata document
that you get from the IdP. This document includes the issuer's name, expiration information,
and keys that can be used to validate the SAML authentication response (assertions) that are
received from the IdP. To generate the metadata document, use the identity management
software your organization uses as its IdP. For instructions on how to configure many of the
available IdPs to work with AWS, including how to generate the required SAML metadata
document, see Integrating third-party SAML solution providers with AWS.

Important

This metadata file includes the issuer name, expiration information, and keys that can
be used to validate the SAML authentication response (assertions) received from the
IdP. The metadata file must be encoded in UTF-8 format without a byte order mark

Identity providers and federation 380

AWS Identity and Access Management User Guide

(BOM). To remove the BOM, you can encode the file as UTF-8 using a text editing tool,
such as Notepad++.
The x.509 certificate included as part of the SAML metadata document must use a key
size of at least 1024 bits. Also, the x.509 certificate must also be free of any repeated
extensions. You can use extensions, but the extensions can only appear once in the
certificate. If the x.509 certificate does not meet either condition, IdP creation fails and
returns an "Unable to parse metadata" error.
As defined by the SAML V2.0 Metadata Interoperability Profile Version 1.0, IAM neither
evaluates nor takes action regarding the expiration of the metadata document’s X.509
certificate.

2. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

3. In the navigation pane, choose Identity providers and then choose Add provider.

4. For Configure provider, choose SAML.

5. Type a name for the identity provider.

6. For Metadata document, choose Choose file, specify the SAML metadata document that you
downloaded in Step 1.

7. (Optional) For Add tags you can add key–value pairs to help you identify and organize your
IdPs. You can also use tags to control access to AWS resources. To learn more about tagging
SAML identity providers, see Tagging IAM SAML identity providers.

Choose Add tag. Enter values for each tag key-value pair.

8. Verify the information that you have provided. When you are done, choose Add provider.

9. Assign an IAM role to your identity provider to give external user identities managed by your
identity provider permissions to access AWS resources in your account. To learn more about
creating roles for identity federation, see Creating a role for a third-party Identity Provider
(federation).

Note

SAML IDPs used in a role trust policy must be in the same account that the role is in.

Identity providers and federation 381

https://docs.oasis-open.org/security/saml/Post2.0/sstc-metadata-iop-os.html
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/

AWS Identity and Access Management User Guide

To delete a SAML provider (console)

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. In the navigation pane, choose Identity providers.

3. Select the radio button next to the identity provider that you want to delete.

4. Choose Delete. A new window opens.

5. Confirm that you want to delete the provider by typing the word delete in the field. Then,
choose Delete.

Creating and managing an IAM SAML Identity Provider (AWS CLI)

You can use the AWS CLI to create and manage SAML providers.

Before you can create an IAM identity provider, you need the SAML metadata document that you
get from the IdP. This document includes the issuer's name, expiration information, and keys that
can be used to validate the SAML authentication response (assertions) that are received from the
IdP. To generate the metadata document, use the identity management software your organization
uses as its IdP. For instructions on how to configure many of the available IdPs to work with AWS,
including how to generate the required SAML metadata document, see Integrating third-party
SAML solution providers with AWS.

Important

This metadata file includes the issuer name, expiration information, and keys that can
be used to validate the SAML authentication response (assertions) received from the IdP.
The metadata file must be encoded in UTF-8 format without a byte order mark (BOM).
To remove the BOM, you can encode the file as UTF-8 using a text editing tool, such as
Notepad++.
The x.509 certificate included as part of the SAML metadata document must use a key
size of at least 1024 bits. Also, the x.509 certificate must also be free of any repeated
extensions. You can use extensions, but the extensions can only appear once in the
certificate. If the x.509 certificate does not meet either condition, IdP creation fails and
returns an "Unable to parse metadata" error.

Identity providers and federation 382

https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/

AWS Identity and Access Management User Guide

As defined by the SAML V2.0 Metadata Interoperability Profile Version 1.0, IAM neither
evaluates nor takes action regarding the expiration of the metadata document’s X.509
certificate.

To create an IAM identity provider and upload a metadata document (AWS CLI)

• Run this command: aws iam create-saml-provider

To upload a new metadata document for an IAM identity provider (AWS CLI)

• Run this command:aws iam update-saml-provider

To tag an existing IAM identity provider (AWS CLI)

• Run this command:aws iam tag-saml-provider

To list tags for existing IAM identity provider (AWS CLI)

• Run this command:aws iam list-saml-provider-tags

To remove tags on an existing IAM identity provider (AWS CLI)

• Run this command:aws iam untag-saml-provider

To delete an IAM SAML identity provider (AWS CLI)

1. (Optional) To list information for all providers, such as the ARN, creation date, and expiration,
run the following command:

• aws iam list-saml-providers

2. (Optional) To get information about a specific provider, such as the ARN, creation date, and
expiration, run the following command:

• aws iam get-saml-provider

3. To delete an IAM identity provider, run the following command:

Identity providers and federation 383

https://docs.oasis-open.org/security/saml/Post2.0/sstc-metadata-iop-os.html
https://docs.aws.amazon.com/cli/latest/reference/iam/create-saml-provider.html
https://docs.aws.amazon.com/cli/latest/reference/iam/update-saml-provider.html
https://docs.aws.amazon.com/cli/latest/reference/iam/tag-saml-provider.html
https://docs.aws.amazon.com/cli/latest/reference/iam/list-saml-provider-tags.html
https://docs.aws.amazon.com/cli/latest/reference/iam/untag-saml-provider.html
https://docs.aws.amazon.com/cli/latest/reference/iam/list-saml-providers.html
https://docs.aws.amazon.com/cli/latest/reference/iam/get-saml-provider.html

AWS Identity and Access Management User Guide

• aws iam delete-saml-provider

Creating and managing an IAM SAML identity provider (AWS API)

You can use the AWS API to create and manage SAML providers.

Before you can create an IAM identity provider, you need the SAML metadata document that you
get from the IdP. This document includes the issuer's name, expiration information, and keys that
can be used to validate the SAML authentication response (assertions) that are received from the
IdP. To generate the metadata document, use the identity management software your organization
uses as its IdP. For instructions on how to configure many of the available IdPs to work with AWS,
including how to generate the required SAML metadata document, see Integrating third-party
SAML solution providers with AWS.

Important

The metadata file must be encoded in UTF-8 format without a byte order mark (BOM).
Also, the X.509 certificate that is included as part of the SAML metadata document must
use a key size of at least 1024 bits. If the key size is smaller, the IdP creation fails with an
"Unable to parse metadata" error. To remove the BOM, you can encode the file as UTF-8
using a text editing tool, such as Notepad++.

To create an IAM identity provider and upload a metadata document (AWS API)

• Call this operation: CreateSAMLProvider

To upload a new metadata document for an IAM identity provider (AWS API)

• Call this operation: UpdateSAMLProvider

To tag an existing IAM identity provider (AWS API)

• Call this operation: TagSAMLProvider

Identity providers and federation 384

https://docs.aws.amazon.com/cli/latest/reference/iam/delete-saml-provider.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_CreateSAMLProvider.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_UpdateSAMLProvider.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_TagSAMLProvider.html

AWS Identity and Access Management User Guide

To list tags for an existing IAM identity provider (AWS API)

• Call this operation: ListSAMLProviderTags

To remove tags on an existing IAM identity provider (AWS API)

• Call this operation: UntagSAMLProvider

To delete an IAM identity provider (AWS API)

1. (Optional) To list information for all IdPs, such as the ARN, creation date, and expiration, call
the following operation:

• ListSAMLProviders

2. (Optional) To get information about a specific provider, such as the ARN, creation date, and
expiration, call the following operation:

• GetSAMLProvider

3. To delete an IdP, call the following operation:

• DeleteSAMLProvider

Configuring your SAML 2.0 IdP with relying party trust and adding claims

When you create an IAM identity provider and role for SAML access, you are telling AWS about the
external identity provider (IdP) and what its users are allowed to do. Your next step is to then tell
the IdP about AWS as a service provider. This is called adding relying party trust between your IdP
and AWS. The exact process for adding relying party trust depends on what IdP you're using. For
details, see the documentation for your identity management software.

Many IdPs allow you to specify a URL from which the IdP can read an XML document that
contains relying party information and certificates. For AWS, use https://region-
code.signin.aws.amazon.com/static/saml-metadata.xml or https://
signin.aws.amazon.com/static/saml-metadata.xml. For a list of possible region-code
values, see the Region column in AWS Sign-In endpoints.

If you can't specify a URL directly, then download the XML document from the preceding URL and
import it into your IdP software.

Identity providers and federation 385

https://docs.aws.amazon.com/IAM/latest/APIReference/API_ListSAMLProviderTags.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_UntagSAMLProvider.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_ListSAMLProviders.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_GetSAMLProvider.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_DeleteSAMLProvider.html
https://docs.aws.amazon.com/general/latest/gr/signin-service.html

AWS Identity and Access Management User Guide

You also need to create appropriate claim rules in your IdP that specify AWS as a relying party.
When the IdP sends a SAML response to the AWS endpoint, it includes a SAML assertion that
contains one or more claims. A claim is information about the user and its groups. A claim rule
maps that information into SAML attributes. This lets you make sure that SAML authentication
responses from your IdP contain the necessary attributes that AWS uses in IAM policies to check
permissions for federated users. For more information, see the following topics:

• Overview of the role to allow SAML-federated access to your AWS resources. This topic discusses
using SAML-specific keys in IAM policies and how to use them to restrict permissions for SAML-
federated users.

• Configuring SAML assertions for the authentication response. This topic discusses how to
configure SAML claims that include information about the user. The claims are bundled into a
SAML assertion and included in the SAML response that is sent to AWS. You must ensure that the
information needed by AWS policies is included in the SAML assertion in a form that AWS can
recognize and use.

• Integrating third-party SAML solution providers with AWS. This topic provides links to
documentation provided by third-party organizations about how to integrate identity solutions
with AWS.

Note

To improve federation resiliency, we recommend that you configure your IdP and AWS
federation to support multiple SAML sign-in endpoints. For details, see the AWS Security
Blog article How to use regional SAML endpoints for failover.

Integrating third-party SAML solution providers with AWS

Note

We recommend that you require your human users to use temporary credentials when
accessing AWS. Have you considered using AWS IAM Identity Center? You can use IAM
Identity Center to centrally manage access to multiple AWS accounts and provide users
with MFA-protected, single sign-on access to all their assigned accounts from one place.
With IAM Identity Center, you can create and manage user identities in IAM Identity

Identity providers and federation 386

https://aws.amazon.com/blogs/security/how-to-use-regional-saml-endpoints-for-failover

AWS Identity and Access Management User Guide

Center or easily connect to your existing SAML 2.0 compatible identity provider. For more
information, see What is IAM Identity Center? in the AWS IAM Identity Center User Guide.

The following links help you configure third-party SAML 2.0 identity provider (IdP) solutions to
work with AWS federation.

Tip

AWS Support engineers can assist customers who have business and enterprise support
plans with some integration tasks that involve third-party software. For a current list of
supported platforms and applications, see What third-party software is supported? in the
AWS Support FAQs.

Solution More information

Auth0 Integrate with Amazon Web Services – This page on the
Auth0 documentation website has links to resources that
describe how to set up single sign-on (SSO) with the AWS
Management Console and includes a JavaScript example.
You can configure Auth0 to pass session tags. For more
information, see Auth0 Announces Partnership with AWS
for IAM Session Tags.

Microsoft Entra Tutorial: Microsoft Entra SSO integration with AWS
Single-Account Access – This tutorial on the Microsoft
website describes how to set up Microsoft Entra (formerly
known as Azure AD) as an identity provider (IdP) using
SAML federation.

Centrify Configure Centrify and Use SAML for SSO to AWS – This
page on the Centrify website explains how to configure
Centrify to use SAML for SSO to AWS.

Identity providers and federation 387

https://docs.aws.amazon.com/singlesignon/latest/userguide/what-is.html
https://aws.amazon.com/premiumsupport/faqs/#what3rdParty
https://auth0.com/docs/integrations/aws
https://auth0.com/blog/auth0-partners-with-aws-for-iam-session-tags/
https://auth0.com/blog/auth0-partners-with-aws-for-iam-session-tags/
https://learn.microsoft.com/en-us/azure/active-directory/saas-apps/amazon-web-service-tutorial
https://learn.microsoft.com/en-us/azure/active-directory/saas-apps/amazon-web-service-tutorial
https://docs.centrify.com/Content/Applications/AppsWeb/AmazonSAML.htm

AWS Identity and Access Management User Guide

Solution More information

CyberArk Configure CyberArk to provide Amazon Web Services
(AWS) access to users logging in through SAML single
sign-on (SSO) from the CyberArk User Portal.

ForgeRock The ForgeRock Identity Platform integrates with AWS.
You can configure ForgeRock to pass session tags. For
more information, see Attribute Based Access Control for
Amazon Web Services.

Google Workspace Amazon Web Services cloud application – This article on
the Google Workspace Admin Help site describes how to
configure Google Workspace as a SAML 2.0 IdP with AWS
as the service provider.

IBM You can configure IBM to pass session tags. For more
information, see IBM Cloud Identity IDaaS one of first to
support AWS session tags.

JumpCloud Granting Access via IAM Roles for Single Sign On (SSO)
with Amazon AWS – This article on the JumpCloud
website describes how to set up and enable SSO based on
IAM roles for AWS.

Matrix42 MyWorkspace Getting Started Guide – This guide
describes how to integrate AWS identity services with
Matrix42 MyWorkspace.

Identity providers and federation 388

https://docs.cyberark.com/Product-Doc/OnlineHelp/Idaptive/Latest/en/Content/Applications/AppsWeb/AmazonSAML.htm
https://backstage.forgerock.com/docs/am/6.5/saml2-guide/#saml2-create-hosted-idp
https://www.forgerock.com/blog/attribute-based-access-control-amazon-web-services
https://www.forgerock.com/blog/attribute-based-access-control-amazon-web-services
https://support.google.com/a/answer/6194963
https://community.ibm.com/community/user/security/blogs/adam-case/2019/11/25/ibm-cloud-identity-idaas-one-of-first-to-support-aws-session-tags
https://community.ibm.com/community/user/security/blogs/adam-case/2019/11/25/ibm-cloud-identity-idaas-one-of-first-to-support-aws-session-tags
https://support.jumpcloud.com/support/s/article/Granting-Access-via-IAM-Roles-for-Single-Sign-On-SSO-with-Amazon-AWS
https://support.jumpcloud.com/support/s/article/Granting-Access-via-IAM-Roles-for-Single-Sign-On-SSO-with-Amazon-AWS
https://myworkspace.matrix42.com/documents/MyWorkspace-Getting-Started-with-AWS.pdf

AWS Identity and Access Management User Guide

Solution More information

Microsoft Active Directory
Federation Services (AD FS)

Field Notes: Integrating Active Directory Federation
Service with AWS IAM Identity Center – This post on
the AWS Architecture Blog explains the authentication
flow between AD FS and AWS IAM Identity Center (IAM
Identity Center). IAM Identity Center supports identity
federation with SAML 2.0, allowing integration with AD
FS solutions. Users can sign in to the IAM Identity Center
portal with their corporate credentials reducing the admin
overhead of maintaining separate credentials on IAM
Identity Center. You can also configure AD FS to pass
session tags. For more information, see Use attribute-
based access control with AD FS to simplify IAM permissio
ns management.

miniOrange SSO for AWS – This page on the miniOrange website
describes how to establish secure access to AWS for
enterprises and full control over access of AWS applicati
ons.

Okta Integrating the Amazon Web Services Command Line
Interface Using Okta – From this page on the Okta
support site you can learn how to configure Okta for
use with AWS. You can configure Okta to pass session
tags. For more information, see Okta and AWS Partner to
Simplify Access Via Session Tags.

Okta AWS Account Federation – This section on the Okta
website describes how to set up and enable IAM Identity
Center for AWS.

Identity providers and federation 389

https://aws.amazon.com/blogs/architecture/field-notes-integrating-active-directory-federation-service-with-aws-single-sign-on/
https://aws.amazon.com/blogs/architecture/field-notes-integrating-active-directory-federation-service-with-aws-single-sign-on/
https://aws.amazon.com/blogs/security/attribute-based-access-control-ad-fs-simplify-iam-permissions-management/
https://aws.amazon.com/blogs/security/attribute-based-access-control-ad-fs-simplify-iam-permissions-management/
https://aws.amazon.com/blogs/security/attribute-based-access-control-ad-fs-simplify-iam-permissions-management/
http://miniorange.com/amazon-web-services-%28aws%29-single-sign-on-%28sso%29
https://support.okta.com/help/Documentation/Knowledge_Article/Integrating-the-Amazon-Web-Services-Command-Line-Interface-Using-Okta
https://support.okta.com/help/Documentation/Knowledge_Article/Integrating-the-Amazon-Web-Services-Command-Line-Interface-Using-Okta
https://www.okta.com/blog/2019/11/okta-and-aws-partner-to-simplify-access-via-session-tags/
https://www.okta.com/blog/2019/11/okta-and-aws-partner-to-simplify-access-via-session-tags/
https://help.okta.com/oie/en-us/Content/Topics/DeploymentGuides/AWS/aws-deployment.htm

AWS Identity and Access Management User Guide

Solution More information

OneLogin From the OneLogin Knowledgebase, search for SAML
AWS for a list of articles that explain how to set up IAM
Identity Center functionality between OneLogin and
AWS for a single-role and multi-role scenarios. You
can configure OneLogin to pass session tags. For more
information, see OneLogin and Session Tags: Attribute-
Based Access Control for AWS Resources.

Ping Identity PingFederate AWS Connector – View details about
the PingFederate AWS Connector, a quick connectio
n template to easily set up a single sign-on (SSO) and
provisioning connection. Read documentation and
download the latest PingFederate AWS Connector for
integrations with AWS. You can configure Ping Identity to
pass session tags. For more information, see Announcing
Ping Identity Support for Attribute-Based Access Control
in AWS.

RadiantLogic Radiant Logic Technology Partners – Radiant Logic's
RadiantOne Federated Identity Service integrates with
AWS to provide an identity hub for SAML-based SSO.

RSA Amazon Web Services - RSA Ready Implementation Guide
provides guidance for integrating AWS and RSA. For more
information on SAML configuration, see Amazon Web
Services - SAML My Page SSO Configuration - RSA Ready
Implementation Guide.

Salesforce.com How to configure SSO from Salesforce to AWS – This
how-to article on the Salesforce.com developer site
describes how to set up an identity provider (IdP) in
Salesforce and configure AWS as a service provider.

SecureAuth AWS - SecureAuth SAML SSO – This article on the
SecureAuth website describes how to set up SAML
integration with AWS for a SecureAuth appliance.

Identity providers and federation 390

https://onelogin.service-now.com/support
https://www.onelogin.com/blog/aws-session-tags-integration
https://www.onelogin.com/blog/aws-session-tags-integration
https://support.pingidentity.com/s/marketplace-integration-details?recordId=a7i1W0000004HBwQAM
https://support.pingidentity.com/s/document-item?bundleId=integrations&topicId=pon1571779451105.html
https://support.pingidentity.com/s/document-item?bundleId=integrations&topicId=pon1571779451105.html
https://support.pingidentity.com/s/document-item?bundleId=integrations&topicId=pon1571779451105.html
http://www.radiantlogic.com/about/partners/technology-partners/
https://community.rsa.com/s/article/Amazon-Web-Services-RSA-Ready-Implementation-Guide
https://community.rsa.com/s/article/Amazon-Web-Services-SAML-My-Page-SSO-Configuration-RSA-Ready-Implementation-Guide
https://community.rsa.com/s/article/Amazon-Web-Services-SAML-My-Page-SSO-Configuration-RSA-Ready-Implementation-Guide
https://community.rsa.com/s/article/Amazon-Web-Services-SAML-My-Page-SSO-Configuration-RSA-Ready-Implementation-Guide
https://developer.salesforce.com/page/Configuring-SAML-SSO-to-AWS
https://docs.secureauth.com/2104/en/amazon-web-services--aws---idp-initiated--integration-guide.html

AWS Identity and Access Management User Guide

Solution More information

Shibboleth How to Use Shibboleth for SSO to the AWS Managemen
t Console – This entry on the AWS Security Blog provides
a step-by-step tutorial on how to set up Shibboleth and
configure it as an identity provider for AWS. You can
configure Shibboleth to pass session tags.

For more details, see the IAM Partners page on the AWS website.

Configuring SAML assertions for the authentication response

After you have verified a user's identity in your organization, the external identity provider
(IdP) sends an authentication response to the AWS SAML endpoint at https://region-
code.signin.aws.amazon.com/saml. For a list of potential region-code replacements, see
the Region column in AWS Sign-In endpoints. This response is a POST request that includes a
SAML token that adheres to the HTTP POST Binding for SAML 2.0 standard and that contains the
following elements, or claims. You configure these claims in your SAML-compatible IdP. Refer to
the documentation for your IdP for instructions on how to enter these claims.

When the IdP sends the response containing the claims to AWS, many of the incoming claims map
to AWS context keys. These context keys can be checked in IAM policies using the Condition
element. A listing of the available mappings follows in the section Mapping SAML attributes to
AWS trust policy context keys.

Subject and NameID

The following excerpt shows an example. Substitute your own values for the marked ones. There
must be exactly one SubjectConfirmation element with a SubjectConfirmationData
element that includes both the NotOnOrAfter attribute and a Recipient attribute.
These attributes include a value that must match the AWS endpoint https://region-
code.signin.aws.amazon.com/saml. For a list of possible region-code values, see the
Region column in AWS Sign-In endpoints. For the AWS value, you can also use https://
signin.aws.amazon.com/static/saml, as shown in the following example.

NameID elements can have the value persistent, transient, or consist of the full Format URI as
provided by the IdP solution. A value of persistent indicates that the value in NameID is the same

Identity providers and federation 391

https://aws.amazon.com/blogs/security/how-to-use-shibboleth-for-single-sign-on-to-the-aws-management-console
https://aws.amazon.com/blogs/security/how-to-use-shibboleth-for-single-sign-on-to-the-aws-management-console
https://aws.amazon.com/iam/partners/
https://docs.aws.amazon.com/general/latest/gr/signin-service.html
http://docs.oasis-open.org/security/saml/v2.0/saml-bindings-2.0-os.pdf
https://docs.aws.amazon.com/general/latest/gr/signin-service.html

AWS Identity and Access Management User Guide

for a user between sessions. If the value is transient, the user has a different NameID value for each
session. Single sign-on interactions support the following types of identifiers:

• urn:oasis:names:tc:SAML:2.0:nameid-format:persistent

• urn:oasis:names:tc:SAML:2.0:nameid-format:transient

• urn:oasis:names:tc:SAML:1.1:nameid-format:emailAddress

• urn:oasis:names:tc:SAML:1.1:nameid-format:unspecified

• urn:oasis:names:tc:SAML:1.1:nameid-format:X509SubjectName

• urn:oasis:names:tc:SAML:1.1:nameid-format:WindowsDomainQualifiedName

• urn:oasis:names:tc:SAML:2.0:nameid-format:kerberos

• urn:oasis:names:tc:SAML:2.0:nameid-format:entity

<Subject>
 <NameID Format="urn:oasis:names:tc:SAML:2.0:nameid-
format:persistent">_cbb88bf52c2510eabe00c1642d4643f41430fe25e3</NameID>
 <SubjectConfirmation Method="urn:oasis:names:tc:SAML:2.0:cm:bearer">
 <SubjectConfirmationData NotOnOrAfter="2013-11-05T02:06:42.876Z"
 Recipient="https://signin.aws.amazon.com/saml"/>
 </SubjectConfirmation>
</Subject>

Important

The saml:aud context key comes from the SAML recipient attribute because it is the SAML
equivalent to the OIDC audience field, for example, accounts.google.com:aud.

PrincipalTag SAML attribute

(Optional) You can use an Attribute element with the Name attribute set to https://
aws.amazon.com/SAML/Attributes/PrincipalTag:{TagKey}. This element allows you to
pass attributes as session tags in the SAML assertion. For more information about session tags, see
Passing session tags in AWS STS.

To pass attributes as session tags, include the AttributeValue element that specifies the value
of the tag. For example, to pass the tag key-value pairs Project = Marketing and CostCenter =
12345, use the following attribute. Include a separate Attribute element for each tag.

Identity providers and federation 392

AWS Identity and Access Management User Guide

<Attribute Name="https://aws.amazon.com/SAML/Attributes/PrincipalTag:Project">
 <AttributeValue>Marketing</AttributeValue>
</Attribute>
<Attribute Name="https://aws.amazon.com/SAML/Attributes/PrincipalTag:CostCenter">
 <AttributeValue>12345</AttributeValue>
</Attribute>

To set the tags above as transitive, include another Attribute element with the Name attribute
set to https://aws.amazon.com/SAML/Attributes/TransitiveTagKeys. This is an
optional multivalued attribute that sets your session tags as transitive. Transitive tags persist
when you use the SAML session to assume another role in AWS. This is known as role chaining.
For example, to set both the Principal and CostCenter tags as transitive, use the following
attribute to specify the keys.

<Attribute Name="https://aws.amazon.com/SAML/Attributes/TransitiveTagKeys">
 <AttributeValue>Project</AttributeValue>
 <AttributeValue>CostCenter</AttributeValue>
</Attribute>

Role SAML attribute

You can use an Attribute element with the Name attribute set to https://aws.amazon.com/
SAML/Attributes/Role. This element contains one or more AttributeValue elements that
list the IAM identity provider and role to which the user is mapped by your IdP. The IAM role and
IAM identity provider are specified as a comma-delimited pair of ARNs in the same format as the
RoleArn and PrincipalArn parameters that are passed to AssumeRoleWithSAML. This element
must contain at least one role-provider pair (AttributeValue element), and can contain multiple
pairs. If the element contains multiple pairs, then the user is asked to choose which role to assume
when they use WebSSO to sign in to the AWS Management Console.

Important

The value of the Name attribute in the Attribute tag is case-sensitive. It must be set to
https://aws.amazon.com/SAML/Attributes/Role exactly.

<Attribute Name="https://aws.amazon.com/SAML/Attributes/Role">
 <AttributeValue>arn:aws:iam::account-number:role/role-name1,arn:aws:iam::account-
number:saml-provider/provider-name</AttributeValue>

Identity providers and federation 393

https://docs.aws.amazon.com/STS/latest/APIReference/API_AssumeRoleWithSAML.html

AWS Identity and Access Management User Guide

 <AttributeValue>arn:aws:iam::account-number:role/role-name2,arn:aws:iam::account-
number:saml-provider/provider-name</AttributeValue>
 <AttributeValue>arn:aws:iam::account-number:role/role-name3,arn:aws:iam::account-
number:saml-provider/provider-name</AttributeValue>
</Attribute>

RoleSessionName SAML attribute

You can use an Attribute element with the Name attribute set to https://aws.amazon.com/
SAML/Attributes/RoleSessionName. This element contains one AttributeValue element
that provides an identifier for the temporary credentials that are issued when the role is
assumed. You can use this to associate the temporary credentials with the user who is using your
application. This element is used to display user information in the AWS Management Console.
The value in the AttributeValue element must be between 2 and 64 characters long, can
contain only alphanumeric characters, underscores, and the following characters: . , + = @ -
(hyphen). It cannot contain spaces. The value is typically a user ID (johndoe) or an email address
(johndoe@example.com). It should not be a value that includes a space, like a user's display name
(John Doe).

Important

The value of the Name attribute in the Attribute tag is case-sensitive. It must be set to
https://aws.amazon.com/SAML/Attributes/RoleSessionName exactly.

<Attribute Name="https://aws.amazon.com/SAML/Attributes/RoleSessionName">
 <AttributeValue>user-id-name</AttributeValue>
</Attribute>

SessionDuration SAML attribute

(Optional) You can use an Attribute element with the Name attribute set to https://
aws.amazon.com/SAML/Attributes/SessionDuration". This element contains one
AttributeValue element that specifies how long the user can access the AWS Management
Console before having to request new temporary credentials. The value is an integer representing
the number of seconds for the session. The value can range from 900 seconds (15 minutes) to
43200 seconds (12 hours). If this attribute is not present, then the credential last for one hour (the
default value of the DurationSeconds parameter of the AssumeRoleWithSAML API).

Identity providers and federation 394

AWS Identity and Access Management User Guide

To use this attribute, you must configure the SAML provider to provide single sign-on access to
the AWS Management Console through the console sign-in web endpoint at https://region-
code.signin.aws.amazon.com/saml. For a list of possible region-code values, see the
Region column in AWS Sign-In endpoints. You can optionally use the following URL: https://
signin.aws.amazon.com/static/saml. Note that this attribute extends sessions only to the
AWS Management Console. It cannot extend the lifetime of other credentials. However, if it is
present in an AssumeRoleWithSAML API call, it can be used to shorten the duration of the session.
The default lifetime of the credentials returned by the call is 60 minutes.

Note, too, that if a SessionNotOnOrAfter attribute is also defined, then the lesser value of the
two attributes, SessionDuration or SessionNotOnOrAfter, establishes the maximum duration
of the console session.

When you enable console sessions with an extended duration the risk of compromise of the
credentials rises. To help you mitigate this risk, you can immediately disable the active console
sessions for any role by choosing Revoke Sessions on the Role Summary page in the IAM console.
For more information, see Revoking IAM role temporary security credentials.

Important

The value of the Name attribute in the Attribute tag is case-sensitive. It must be set to
https://aws.amazon.com/SAML/Attributes/SessionDuration exactly.

<Attribute Name="https://aws.amazon.com/SAML/Attributes/SessionDuration">
 <AttributeValue>1800</AttributeValue>
</Attribute>

SourceIdentity SAML attribute

(Optional) You can use an Attribute element with the Name attribute set to https://
aws.amazon.com/SAML/Attributes/SourceIdentity. This element contains one
AttributeValue element that provides an identifier for the person or application that is using an
IAM role. The value for source identity persists when you use the SAML session to assume another
role in AWS known as role chaining. The value for source identity is present in the request for
every action taken during the role session. The value that is set cannot be changed during the role
session. Administrators can then use AWS CloudTrail logs to monitor and audit the source identity
information to determine who performed actions with shared roles.

Identity providers and federation 395

https://docs.aws.amazon.com/general/latest/gr/signin-service.html

AWS Identity and Access Management User Guide

The value in the AttributeValue element must be between 2 and 64 characters long, can
contain only alphanumeric characters, underscores, and the following characters: . , + = @ -
(hyphen). It cannot contain spaces. The value is typically an attribute that is associated with the
user such as a user id (johndoe) or an email address (johndoe@example.com). It should not be
a value that includes a space, like a user's display name (John Doe). For more information about
using source identity, see Monitor and control actions taken with assumed roles.

Important

If your SAML assertion is configured to use the SourceIdentity attribute, then your role
trust policy must also include the sts:SetSourceIdentity action, otherwise the assume
role operation will fail. For more information about using source identity, see Monitor and
control actions taken with assumed roles.

To pass a source identity attribute, include the AttributeValue element that specifies the value
of the source identity. For example, to pass the source identity DiegoRamirez use the following
attribute.

<Attribute Name="https://aws.amazon.com/SAML/Attributes/SourceIdentity">
 <AttributeValue>DiegoRamirez</AttributeValue>

Mapping SAML attributes to AWS trust policy context keys

The tables in this section list commonly used SAML attributes and how they map to trust policy
condition context keys in AWS. You can use these keys to control access to a role. To do that,
compare the keys to the values that are included in the assertions that accompany a SAML access
request.

Important

These keys are available only in IAM trust policies (policies that determine who can assume
a role) and are not applicable to permissions policies.

In the eduPerson and eduOrg attributes table, values are typed either as strings or as lists of
strings. For string values, you can test these values in IAM trust policies using StringEquals or

Identity providers and federation 396

AWS Identity and Access Management User Guide

StringLike conditions. For values that contain a list of strings, you can use the ForAnyValue
and ForAllValues policy set operators to test the values in trust policies.

Note

You should include only one claim per AWS context key. If you include more than one, only
one claim will be mapped.

eduPerson and eduOrg attributes

eduPerson or eduOrg attribute (Name key) Maps to this
AWS context key
(FriendlyName key)

Type

urn:oid:1.3.6.1.4.1.5923.1.1.1.1 eduPerson
Affiliation

List of strings

urn:oid:1.3.6.1.4.1.5923.1.1.1.2 eduPersonNickname List of strings

urn:oid:1.3.6.1.4.1.5923.1.1.1.3 eduPersonOrgDN String

urn:oid:1.3.6.1.4.1.5923.1.1.1.4 eduPerson
OrgUnitDN

List of strings

urn:oid:1.3.6.1.4.1.5923.1.1.1.5 eduPerson
PrimaryAf
filiation

String

urn:oid:1.3.6.1.4.1.5923.1.1.1.6 eduPerson
PrincipalName

String

urn:oid:1.3.6.1.4.1.5923.1.1.1.7 eduPerson
Entitlement

List of strings

urn:oid:1.3.6.1.4.1.5923.1.1.1.8 eduPerson
PrimaryOrgUnitDN

String

Identity providers and federation 397

AWS Identity and Access Management User Guide

eduPerson or eduOrg attribute (Name key) Maps to this
AWS context key
(FriendlyName key)

Type

urn:oid:1.3.6.1.4.1.5923.1.1.1.9 eduPerson
ScopedAff
iliation

List of strings

urn:oid:1.3.6.1.4.1.5923.1.
1.1.10

eduPerson
TargetedID

List of strings

urn:oid:1.3.6.1.4.1.5923.1.
1.1.11

eduPerson
Assurance

List of strings

urn:oid:1.3.6.1.4.1.5923.1.2.1.2 eduOrgHomePageURI List of strings

urn:oid:1.3.6.1.4.1.5923.1.2.1.3 eduOrgIde
ntityAuth
NPolicyURI

List of strings

urn:oid:1.3.6.1.4.1.5923.1.2.1.4 eduOrgLegalName List of strings

urn:oid:1.3.6.1.4.1.5923.1.2.1.5 eduOrgSuperiorURI List of strings

urn:oid:1.3.6.1.4.1.5923.1.2.1.6 eduOrgWhi
tePagesURI

List of strings

urn:oid:2.5.4.3 cn List of strings

Active Directory attributes

AD attribute Maps to this AWS
context key

Type

http://schemas.xmlsoap.org/ws/2005/0
5/identity/claims/name

name String

http://schemas.xmlsoap.org/claims/Co
mmonName

commonName String

Identity providers and federation 398

AWS Identity and Access Management User Guide

AD attribute Maps to this AWS
context key

Type

http://schemas.xmlsoap.org/ws/2005/0
5/identity/claims/givenname

givenName String

http://schemas.xmlsoap.org/ws/2005/0
5/identity/claims/surname

surname String

http://schemas.xmlsoap.org/ws/2005/0
5/identity/claims/emailaddress

mail String

http://schemas.microsoft.com/ws/2008
/06/identity/claims/primarygroupsid

uid String

X.500 attributes

X.500 attribute Maps to this AWS context
key

Type

2.5.4.3 commonName String

2.5.4.4 surname String

2.4.5.42 givenName String

2.5.4.45 x500UniqueIdentifi
er

String

0.9.2342.19200300100.1.1 uid String

0.9.2342.19200300100.1.3 mail String

0.9.2342.19200300.100.1.45 organizationStatus String

Enabling SAML 2.0 federated users to access the AWS Management Console

You can use a role to configure your SAML 2.0-compliant identity provider (IdP) and AWS to permit
your federated users to access the AWS Management Console. The role grants the user permissions

Identity providers and federation 399

AWS Identity and Access Management User Guide

to carry out tasks in the console. If you want to give SAML federated users other ways to access
AWS, see one of these topics:

• AWS CLI: Switching to an IAM role (AWS CLI)

• Tools for Windows PowerShell: Switching to an IAM role (Tools for Windows PowerShell)

• AWS API: Switching to an IAM role (AWS API)

Overview

The following diagram illustrates the flow for SAML-enabled single sign-on.

Note

This specific use of SAML differs from the more general one illustrated at About SAML 2.0-
based federation because this workflow opens the AWS Management Console on behalf of
the user. This requires the use of the AWS sign-in endpoint instead of directly calling the
AssumeRoleWithSAML API. The endpoint calls the API for the user and returns a URL that
automatically redirects the user's browser to the AWS Management Console.

Identity providers and federation 400

AWS Identity and Access Management User Guide

The diagram illustrates the following steps:

1. The user browses to your organization's portal and selects the option to go to the AWS
Management Console. In your organization, the portal is typically a function of your IdP that
handles the exchange of trust between your organization and AWS. For example, in Active
Directory Federation Services, the portal URL is: https://ADFSServiceName/adfs/ls/
IdpInitiatedSignOn.aspx

2. The portal verifies the user's identity in your organization.

3. The portal generates a SAML authentication response that includes assertions that identify the
user and include attributes about the user. You can also configure your IdP to include a SAML
assertion attribute called SessionDuration that specifies how long the console session is
valid. You can also configure the IdP to pass attributes as session tags. The portal sends this
response to the client browser.

4. The client browser is redirected to the AWS single sign-on endpoint and posts the SAML
assertion.

5. The endpoint requests temporary security credentials on behalf of the user and creates a
console sign-in URL that uses those credentials.

Identity providers and federation 401

AWS Identity and Access Management User Guide

6. AWS sends the sign-in URL back to the client as a redirect.

7. The client browser is redirected to the AWS Management Console. If the SAML authentication
response includes attributes that map to multiple IAM roles, the user is first prompted to select
the role for accessing the console.

From the user's perspective, the process happens transparently: The user starts at your
organization's internal portal and ends up at the AWS Management Console, without ever having
to supply any AWS credentials.

Consult the following sections for an overview of how to configure this behavior along with links to
detailed steps.

Configure your network as a SAML provider for AWS

Inside your organization's network, you configure your identity store (such as Windows Active
Directory) to work with a SAML-based IdP like Windows Active Directory Federation Services,
Shibboleth, etc. Using your IdP, you generate a metadata document that describes your
organization as an IdP and includes authentication keys. You also configure your organization's
portal to route user requests for the AWS Management Console to the AWS SAML endpoint for
authentication using SAML assertions. How you configure your IdP to produce the metadata.xml
file depends on your IdP. Refer to your IdP's documentation for instructions, or see Integrating
third-party SAML solution providers with AWS for links to the web documentation for many of the
SAML providers supported.

Create a SAML provider in IAM

Next, you sign in to the AWS Management Console and go to the IAM console. There you create a
new SAML provider, which is an entity in IAM that holds information about your organization's IdP.
As part of this process, you upload the metadata document produced by the IdP software in your
organization in the previous section. For details, see Creating IAM SAML identity providers.

Configure permissions in AWS for your federated users

The next step is to create an IAM role that establishes a trust relationship between IAM and your
organization's IdP. This role must identify your IdP as a principal (trusted entity) for purposes of
federation. The role also defines what users authenticated by your organization's IdP are allowed
to do in AWS. You can use the IAM console to create this role. When you create the trust policy
that indicates who can assume the role, you specify the SAML provider that you created earlier
in IAM. You also specify one or more SAML attributes that a user must match to be allowed to

Identity providers and federation 402

AWS Identity and Access Management User Guide

assume the role. For example, you can specify that only users whose SAML eduPersonOrgDN
value is ExampleOrg are allowed to sign in. The role wizard automatically adds a condition to
test the saml:aud attribute to make sure that the role is assumed only for sign-in to the AWS
Management Console. The trust policy for the role might look like this:

{
 "Version": "2012-10-17",
 "Statement": [{
 "Effect": "Allow",
 "Principal": {"Federated": "arn:aws:iam::account-id:saml-provider/
ExampleOrgSSOProvider"},
 "Action": "sts:AssumeRoleWithSAML",
 "Condition": {"StringEquals": {
 "saml:edupersonorgdn": "ExampleOrg",
 "saml:aud": "https://signin.aws.amazon.com/saml"
 }}
 }]
}

Note

SAML IDPs used in a role trust policy must be in the same account that the role is in.

You can include regional endpoints for the saml:aud attribute at https://region-
code.signin.aws.amazon.com/static/saml-metadata.xml. For a list of possible region-
code values, see the Region column in AWS Sign-In endpoints.

For the permission policy in the role, you specify permissions as you would for any role, user,
or group. For example, if users from your organization are allowed to administer Amazon EC2
instances, you explicitly allow Amazon EC2 actions in the permission policy. You can do this by
assigning a managed policy, such as the Amazon EC2 Full Access managed policy.

For details about creating a role for a SAML IdP, see Create a role for SAML 2.0 federation (console).

Finish configuration and create SAML assertions

Notify your SAML IdP that AWS is your service provider by installing the saml-metadata.xml file
found at https://region-code.signin.aws.amazon.com/static/saml-metadata.xml
or https://signin.aws.amazon.com/static/saml-metadata.xml. For a list of possible
region-code values, see the Region column in AWS Sign-In endpoints.

Identity providers and federation 403

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_iam-condition-keys.html#ck_edupersonorgdn
https://docs.aws.amazon.com/general/latest/gr/signin-service.html
https://docs.aws.amazon.com/general/latest/gr/signin-service.html

AWS Identity and Access Management User Guide

How you install that file depends on your IdP. Some providers give you the option to type the
URL, whereupon the IdP gets and installs the file for you. Others require you to download the file
from the URL and then provide it as a local file. Refer to your IdP documentation for details, or see
Integrating third-party SAML solution providers with AWS for links to the web documentation for
many of the supported SAML providers.

You also configure the information that you want the IdP to pass as SAML attributes to AWS as
part of the authentication response. Most of this information appears in AWS as condition context
keys that you can evaluate in your policies. These condition keys ensure that only authorized users
in the right contexts are granted permissions to access your AWS resources. You can specify time
windows that restrict when the console may be used. You can also specify the maximum time (up
to 12 hours) that users can access the console before having to refresh their credentials. For details,
see Configuring SAML assertions for the authentication response.

Enabling custom identity broker access to the AWS console

You can write and run code to create a URL that lets users who sign in to your organization's
network securely access the AWS Management Console. The URL includes a sign-in token that you
get from AWS and that authenticates the user to AWS. The resulting console session might include
a distinct AccessKeyId due to federation. To trace the access key usage for federation sign-in
through related CloudTrail events, see Logging IAM and AWS STS API calls with AWS CloudTrail and
AWS Management Console sign-in events.

Note

If your organization uses an identity provider (IdP) that is compatible with SAML, you can
set up access to the console without writing code. This works with providers like Microsoft's
Active Directory Federation Services or open-source Shibboleth. For details, see Enabling
SAML 2.0 federated users to access the AWS Management Console.

To enable your organization's users to access the AWS Management Console, you can create a
custom identity broker that performs the following steps:

1. Verify that the user is authenticated by your local identity system.

2. Call the AWS Security Token Service (AWS STS) AssumeRole (recommended) or
GetFederationToken API operations to obtain temporary security credentials for the user. To
learn about the different methods that you can use to assume a role, see Using IAM roles. To

Identity providers and federation 404

https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-event-reference-aws-console-sign-in-events.html
https://docs.aws.amazon.com/STS/latest/APIReference/API_AssumeRole.html
https://docs.aws.amazon.com/STS/latest/APIReference/API_GetFederationToken.html

AWS Identity and Access Management User Guide

learn how to pass optional session tags when you obtain your security credentials, see Passing
session tags in AWS STS.

• If you use one of the AssumeRole* API operations to get the temporary security credentials
for a role, you can include the DurationSeconds parameter in your call. This parameter
specifies the duration of your role session, from 900 seconds (15 minutes) up to the maximum
session duration setting for the role. When you use DurationSeconds in an AssumeRole*
operation, you must call it as an IAM user with long-term credentials. Otherwise, the call to
the federation endpoint in step 3 fails. To learn how to view or change the maximum value for
a role, see View the maximum session duration setting for a role.

• If you use the GetFederationToken API operation to get the credentials, you can include
the DurationSeconds parameter in your call. This parameter specifies the duration of your
role session. The value can range from 900 seconds (15 minutes) to 129,600 seconds (36
hours). You can make this API call only by using the long-term AWS security credentials of an
IAM user. You can also make these calls using AWS account root user credentials, but we do
not recommend it. If you make this call as the root user, the default session lasts for one hour.
Or you can specify a session from 900 seconds (15 minutes) up to 3,600 seconds (one hour).

3. Call the AWS federation endpoint and supply the temporary security credentials to request a
sign-in token.

4. Construct a URL for the console that includes the token:

• If you use one of the AssumeRole* API operations in your URL, you can include the
SessionDuration HTTP parameter. This parameter specifies the duration of the console
session, from 900 seconds (15 minutes) to 43200 seconds (12 hours).

• If you use the GetFederationToken API operation in your URL, you can include the
DurationSeconds parameter. This parameter specifies the duration of the federated console
session. The value can range from 900 seconds (15 minutes) to 129,600 seconds (36 hours).

Note

• Do not use the SessionDuration HTTP parameter if you got the temporary
credentials with GetFederationToken. Doing so will cause the operation to fail.

• Using the credentials for one role to assume a different role is called role chaining.
When you use role chaining, your new credentials are limited to a maximum
duration of one hour. When you use roles to grant permissions to applications that
run on EC2 instances, those applications are not subject to this limitation.

Identity providers and federation 405

AWS Identity and Access Management User Guide

5. Give the URL to the user or invoke the URL on the user's behalf.

The URL that the federation endpoint provides is valid for 15 minutes after it is created. This differs
from the duration (in seconds) of the temporary security credential session that is associated with
the URL. Those credentials are valid for the duration you specified when you created them, starting
from the time they were created.

Important

The URL grants access to your AWS resources through the AWS Management Console if you
have enabled permissions in the associated temporary security credentials. For this reason,
you should treat the URL as a secret. We recommend returning the URL through a secure
redirect, for example, by using a 302 HTTP response status code over an SSL connection.
For more information about the 302 HTTP response status code, go to RFC 2616, section
10.3.3.

To complete these tasks, you can use the HTTPS Query API for AWS Identity and Access
Management (IAM) and the AWS Security Token Service (AWS STS). Or, you can use programming
languages, such as Java, Ruby, or C#, along with the appropriate AWS SDK. Each of these methods
is described in the following topics.

Topics

• Example code using IAM query API operations

• Example code using Python

• Example code using Java

• Example showing how to construct the URL (Ruby)

Example code using IAM query API operations

You can construct a URL that gives your federated users direct access to the AWS Management
Console. This task uses the IAM and AWS STS HTTPS Query API. For more information about
making query requests, see Making Query Requests.

Identity providers and federation 406

https://datatracker.ietf.org/doc/html/rfc2616#section-10.3.3
https://datatracker.ietf.org/doc/html/rfc2616#section-10.3.3
https://docs.aws.amazon.com/IAM/latest/APIReference/
https://docs.aws.amazon.com/IAM/latest/APIReference/
https://docs.aws.amazon.com/STS/latest/APIReference/
https://aws.amazon.com/tools/
https://docs.aws.amazon.com/IAM/latest/UserGuide/IAM_UsingQueryAPI.html

AWS Identity and Access Management User Guide

Note

The following procedure contains examples of text strings. To enhance readability, line
breaks have been added to some of the longer examples. When you create these strings for
your own use, you should omit any line breaks.

To give a federated user access to your resources from the AWS Management Console

1. Authenticate the user in your identity and authorization system.

2. Obtain temporary security credentials for the user. The temporary credentials consist of an
access key ID, a secret access key, and a session token. For more information about creating
temporary credentials, see Temporary security credentials in IAM.

To get temporary credentials, you call either the AWS STS AssumeRole API (recommended) or
the GetFederationToken API. For more information about the differences between these API
operations, see Understanding the API Options for Securely Delegating Access to Your AWS
Account in the AWS Security Blog.

Important

When you use the GetFederationToken API to create temporary security credentials,
you must specify the permissions that the credentials grant to the user who assumes
the role. For any of the API operations that begin with AssumeRole*, you use an IAM
role to assign permissions. For the other API operations, the mechanism varies with the
API. For more details, see Controlling permissions for temporary security credentials.
Additionally, if you use the AssumeRole* API operations, you must call them as an
IAM user with long-term credentials. Otherwise, the call to the federation endpoint in
step 3 fails.

3. After you obtain the temporary security credentials, build them into a JSON session string
to exchange them for a sign-in token. The following example shows how to encode the
credentials. You replace the placeholder text with the appropriate values from the credentials
that you receive in the previous step.

{"sessionId":"*** temporary access key ID ***",
"sessionKey":"*** temporary secret access key ***",
"sessionToken":"*** session token ***"}

Identity providers and federation 407

https://docs.aws.amazon.com/STS/latest/APIReference/API_AssumeRole.html
https://docs.aws.amazon.com/STS/latest/APIReference/API_GetFederationToken.html
https://aws.amazon.com/blogs/security/understanding-the-api-options-for-securely-delegating-access-to-your-aws-account
https://aws.amazon.com/blogs/security/understanding-the-api-options-for-securely-delegating-access-to-your-aws-account
https://docs.aws.amazon.com/STS/latest/APIReference/API_GetFederationToken.html

AWS Identity and Access Management User Guide

4. URL encode the session string from the previous step. Because the information that you are
encoding is sensitive, we recommend that you avoid using a web service for this encoding.
Instead, use a locally installed function or feature in your development toolkit to securely
encode this information. You can use the urllib.quote_plus function in Python, the
URLEncoder.encode function in Java, or the CGI.escape function in Ruby. See the
examples later in this topic.

5.
Note

AWS supports POST requests here.

Send your request to the AWS federation endpoint:

https://region-code.signin.aws.amazon.com/federation

For a list of possible region-code values, see the Region column in AWS Sign-In endpoints.
You can optionally use the default AWS Sign-In federation endpoint:

https://signin.aws.amazon.com/federation

The request must include the Action and Session parameters, and (optionally) if you used
an AssumeRole* API operation, a SessionDuration HTTP parameter as shown in the
following example.

Action = getSigninToken
SessionDuration = time in seconds
Session = *** the URL encoded JSON string created in steps 3 & 4 ***

Note

The following instructions in this step only work using GET requests.

The SessionDuration HTTP parameter specifies the duration of the console session.
This is separate from the duration of the temporary credentials that you specify using the
DurationSeconds parameter. You can specify a SessionDuration maximum value of
43,200 (12 hours). If the SessionDuration parameter is missing, then the session defaults
to the duration of the credentials that you retrieved from AWS STS in step 2 (which defaults

Identity providers and federation 408

https://en.wikipedia.org/wiki/Percent-encoding
https://docs.aws.amazon.com/general/latest/gr/signin-service.html
https://docs.aws.amazon.com/STS/latest/APIReference/API_AssumeRole.html

AWS Identity and Access Management User Guide

to one hour). See the documentation for the AssumeRole API for details about how to specify
a duration using the DurationSeconds parameter. The ability to create a console session
that is longer than one hour is intrinsic to the getSigninToken operation of the federation
endpoint.

Note

• Do not use the SessionDuration HTTP parameter if you got the temporary
credentials with GetFederationToken. Doing so will cause the operation to fail.

• Using the credentials for one role to assume a different role is called role chaining.
When you use role chaining, your new credentials are limited to a maximum duration
of one hour. When you use roles to grant permissions to applications that run on EC2
instances, those applications are not subject to this limitation.

When you enable console sessions with an extended duration, you increase the risk of
credential exposure. To help you mitigate this risk, you can immediately disable the active
console sessions for any role by choosing Revoke Sessions on the Role Summary IAM console
page. For more information, see Revoking IAM role temporary security credentials.

The following is an example of what your request might look like. The lines are wrapped here
for readability, but you should submit it as a one-line string.

https://signin.aws.amazon.com/federation
?Action=getSigninToken
&SessionDuration=1800
&Session=%7B%22sessionId%22%3A+%22ASIAJUMHIZPTOKTBMK5A%22%2C+%22sessionKey%22
%3A+%22LSD7LWI%2FL%2FN%2BgYpan5QFz0XUpc8s7HYjRsgcsrsm%22%2C+%22sessionToken%2
2%3A+%22FQoDYXdzEBQaDLbj3VWv2u50NN%2F3yyLSASwYtWhPnGPMNmzZFfZsL0Qd3vtYHw5A5dW
AjOsrkdPkghomIe3mJip5%2F0djDBbo7SmO%2FENDEiCdpsQKodTpleKA8xQq0CwFg6a69xdEBQT8
FipATnLbKoyS4b%2FebhnsTUjZZQWp0wXXqFF7gSm%2FMe2tXe0jzsdP0O12obez9lijPSdF1k2b5
PfGhiuyAR9aD5%2BubM0pY86fKex1qsytjvyTbZ9nXe6DvxVDcnCOhOGETJ7XFkSFdH0v%2FYR25C
UAhJ3nXIkIbG7Ucv9cOEpCf%2Fg23ijRgILIBQ%3D%3D%22%7D

The response from the federation endpoint is a JSON document with a SigninToken value. It
will look similar to the following example.

{"SigninToken":"*** the SigninToken string ***"}

Identity providers and federation 409

https://docs.aws.amazon.com/STS/latest/APIReference/API_AssumeRole.html

AWS Identity and Access Management User Guide

6.
Note

AWS supports POST requests here.

Finally, create the URL that your federated users can use to access the AWS Management
Console. The URL is the same federation URL endpoint that you used in Step 5, plus the
following parameters:

?Action = login
&Issuer = *** the form-urlencoded URL for your internal sign-in page ***
&Destination = *** the form-urlencoded URL to the desired AWS console page ***
&SigninToken = *** the value of SigninToken received in the previous step ***

Note

The following instructions in this step only work using GET API.

The following example shows what the final URL might look like. The URL is valid for 15
minutes from the time it is created. The temporary security credentials and console session
embedded within the URL are valid for the duration you specify in the SessionDuration
HTTP parameter when you initially request them.

https://signin.aws.amazon.com/federation
?Action=login
&Issuer=https%3A%2F%2Fexample.com
&Destination=https%3A%2F%2Fconsole.aws.amazon.com%2F
&SigninToken=VCQgs5qZZt3Q6fn8Tr5EXAMPLEmLnwB7JjUc-SHwnUUWabcRdnWsi4DBn-dvC
CZ85wrD0nmldUcZEXAMPLE-vXYH4Q__mleuF_W2BE5HYexbe9y4Of-kje53SsjNNecATfjIzpW1
WibbnH6YcYRiBoffZBGExbEXAMPLE5aiKX4THWjQKC6gg6alHu6JFrnOJoK3dtP6I9a6hi6yPgm
iOkPZMmNGmhsvVxetKzr8mx3pxhHbMEXAMPLETv1pij0rok3IyCR2YVcIjqwfWv32HU2Xlj471u
3fU6uOfUComeKiqTGX974xzJOZbdmX_t_lLrhEXAMPLEDDIisSnyHGw2xaZZqudm4mo2uTDk9Pv
9l5K0ZCqIgEXAMPLEcA6tgLPykEWGUyH6BdSC6166n4M4JkXIQgac7_7821YqixsNxZ6rsrpzwf
nQoS14O7R0eJCCJ684EXAMPLEZRdBNnuLbUYpz2Iw3vIN0tQgOujwnwydPscM9F7foaEK3jwMkg
Apeb1-6L_OB12MZhuFxx55555EXAMPLEhyETEd4ZulKPdXHkgl6T9ZkIlHz2Uy1RUTUhhUxNtSQ
nWc5xkbBoEcXqpoSIeK7yhje9Vzhd61AEXAMPLElbWeouACEMG6-Vd3dAgFYd6i5FYoyFrZLWvm
0LSG7RyYKeYN5VIzUk3YWQpyjP0RiT5KUrsUi-NEXAMPLExMOMdoODBEgKQsk-iu2ozh6r8bxwC
RNhujg

Identity providers and federation 410

AWS Identity and Access Management User Guide

Example code using Python

The following examples show how to use Python to programmatically construct a URL that gives
federated users direct access to the AWS Management Console. There are two examples:

• Federate via GET requests to AWS

• Federate via POST requests to AWS

Both examples use the the AWS SDK for Python (Boto3) and AssumeRole API to obtain temporary
security credentials.

Use GET Requests

import urllib, json, sys
import requests # 'pip install requests'
import boto3 # AWS SDK for Python (Boto3) 'pip install boto3'

Step 1: Authenticate user in your own identity system.

Step 2: Using the access keys for an IAM user in your AWS account,
call "AssumeRole" to get temporary access keys for the federated user

Note: Calls to AWS STS AssumeRole must be signed using the access key ID
and secret access key of an IAM user or using existing temporary credentials.
The credentials can be in Amazon EC2 instance metadata, in environment variables,
or in a configuration file, and will be discovered automatically by the
client('sts') function. For more information, see the Python SDK docs:
http://boto3.readthedocs.io/en/latest/reference/services/sts.html
http://boto3.readthedocs.io/en/latest/reference/services/
sts.html#STS.Client.assume_role
sts_connection = boto3.client('sts')

assumed_role_object = sts_connection.assume_role(
 RoleArn="arn:aws:iam::account-id:role/ROLE-NAME",
 RoleSessionName="AssumeRoleSession",
)

Step 3: Format resulting temporary credentials into JSON
url_credentials = {}
url_credentials['sessionId'] =
 assumed_role_object.get('Credentials').get('AccessKeyId')

Identity providers and federation 411

https://aws.amazon.com/tools/
https://docs.aws.amazon.com/STS/latest/APIReference/API_AssumeRole.html

AWS Identity and Access Management User Guide

url_credentials['sessionKey'] =
 assumed_role_object.get('Credentials').get('SecretAccessKey')
url_credentials['sessionToken'] =
 assumed_role_object.get('Credentials').get('SessionToken')
json_string_with_temp_credentials = json.dumps(url_credentials)

Step 4. Make request to AWS federation endpoint to get sign-in token. Construct the
 parameter string with
the sign-in action request, a 12-hour session duration, and the JSON document with
 temporary credentials
as parameters.
request_parameters = "?Action=getSigninToken"
request_parameters += "&SessionDuration=43200"
if sys.version_info[0] < 3:
 def quote_plus_function(s):
 return urllib.quote_plus(s)
else:
 def quote_plus_function(s):
 return urllib.parse.quote_plus(s)
request_parameters += "&Session=" +
 quote_plus_function(json_string_with_temp_credentials)
request_url = "https://signin.aws.amazon.com/federation" + request_parameters
r = requests.get(request_url)
Returns a JSON document with a single element named SigninToken.
signin_token = json.loads(r.text)

Step 5: Create URL where users can use the sign-in token to sign in to
the console. This URL must be used within 15 minutes after the
sign-in token was issued.
request_parameters = "?Action=login"
request_parameters += "&Issuer=Example.org"
request_parameters += "&Destination=" + quote_plus_function("https://
console.aws.amazon.com/")
request_parameters += "&SigninToken=" + signin_token["SigninToken"]
request_url = "https://signin.aws.amazon.com/federation" + request_parameters

Send final URL to stdout
print (request_url)

Use POST Requests

import urllib, json, sys
import requests # 'pip install requests'

Identity providers and federation 412

AWS Identity and Access Management User Guide

import boto3 # AWS SDK for Python (Boto3) 'pip install boto3'
import os
from selenium import webdriver # 'pip install selenium', 'brew install chromedriver'

Step 1: Authenticate user in your own identity system.

Step 2: Using the access keys for an IAM user in your AAWS account,
call "AssumeRole" to get temporary access keys for the federated user

Note: Calls to AWS STS AssumeRole must be signed using the access key ID
and secret access key of an IAM user or using existing temporary credentials.
The credentials can be in Amazon EC2 instance metadata, in environment variables,

or in a configuration file, and will be discovered automatically by the
client('sts') function. For more information, see the Python SDK docs:
http://boto3.readthedocs.io/en/latest/reference/services/sts.html
http://boto3.readthedocs.io/en/latest/reference/services/
sts.html#STS.Client.assume_role
if sys.version_info[0] < 3:
 def quote_plus_function(s):
 return urllib.quote_plus(s)
else:
 def quote_plus_function(s):
 return urllib.parse.quote_plus(s)

sts_connection = boto3.client('sts')

assumed_role_object = sts_connection.assume_role(
 RoleArn="arn:aws:iam::account-id:role/ROLE-NAME",
 RoleSessionName="AssumeRoleDemoSession",
)

Step 3: Format resulting temporary credentials into JSON
url_credentials = {}
url_credentials['sessionId'] =
 assumed_role_object.get('Credentials').get('AccessKeyId')
url_credentials['sessionKey'] =
 assumed_role_object.get('Credentials').get('SecretAccessKey')
url_credentials['sessionToken'] =
 assumed_role_object.get('Credentials').get('SessionToken')
json_string_with_temp_credentials = json.dumps(url_credentials)

Step 4. Make request to AWS federation endpoint to get sign-in token. Construct the
 parameter string with

Identity providers and federation 413

AWS Identity and Access Management User Guide

the sign-in action request, a 12-hour session duration, and the JSON document with
 temporary credentials
as parameters.
request_parameters = {}
request_parameters['Action'] = 'getSigninToken'
request_parameters['SessionDuration'] = '43200'
request_parameters['Session'] = json_string_with_temp_credentials

request_url = "https://signin.aws.amazon.com/federation"
r = requests.post(request_url, data=request_parameters)

Returns a JSON document with a single element named SigninToken.
signin_token = json.loads(r.text)

Step 5: Create a POST request where users can use the sign-in token to sign in to
the console. The POST request must be made within 15 minutes after the
sign-in token was issued.
request_parameters = {}
request_parameters['Action'] = 'login'
request_parameters['Issuer']='Example.org'
request_parameters['Destination'] = 'https://console.aws.amazon.com/'
request_parameters['SigninToken'] =signin_token['SigninToken']

jsrequest = '''
var form = document.createElement('form');
form.method = 'POST';
form.action = '{request_url}';
request_parameters = {request_parameters}
for (var param in request_parameters) {{
 if (request_parameters.hasOwnProperty(param)) {{
 const hiddenField = document.createElement('input');
 hiddenField.type = 'hidden';
 hiddenField.name = param;
 hiddenField.value = request_parameters[param];
 form.appendChild(hiddenField);
 }}
}}
document.body.appendChild(form);
form.submit();
'''.format(request_url=request_url, request_parameters=request_parameters)

driver = webdriver.Chrome()
driver.execute_script(jsrequest);

Identity providers and federation 414

AWS Identity and Access Management User Guide

Example code using Java

The following example shows how to use Java to programmatically construct a URL that gives
federated users direct access to the AWS Management Console. The following code snippet uses
the AWS SDK for Java.

import java.net.URLEncoder;
import java.net.URL;
import java.net.URLConnection;
import java.io.BufferedReader;
import java.io.InputStreamReader;
// Available at http://www.json.org/java/index.html
import org.json.JSONObject;
import com.amazonaws.auth.AWSCredentials;
import com.amazonaws.auth.BasicAWSCredentials;
import com.amazonaws.services.securitytoken.AWSSecurityTokenServiceClient;
import com.amazonaws.services.securitytoken.model.Credentials;
import com.amazonaws.services.securitytoken.model.GetFederationTokenRequest;
import com.amazonaws.services.securitytoken.model.GetFederationTokenResult;

/* Calls to AWS STS API operations must be signed using the access key ID
 and secret access key of an IAM user or using existing temporary
 credentials. The credentials should not be embedded in code. For
 this example, the code looks for the credentials in a
 standard configuration file.
*/
AWSCredentials credentials =
 new PropertiesCredentials(
 AwsConsoleApp.class.getResourceAsStream("AwsCredentials.properties"));

AWSSecurityTokenServiceClient stsClient =
 new AWSSecurityTokenServiceClient(credentials);

GetFederationTokenRequest getFederationTokenRequest =
 new GetFederationTokenRequest();
getFederationTokenRequest.setDurationSeconds(1800);
getFederationTokenRequest.setName("UserName");

// A sample policy for accessing Amazon Simple Notification Service (Amazon SNS) in the
 console.

String policy = "{\"Version\":\"2012-10-17\",\"Statement\":[{\"Action\":\"sns:*\"," +

Identity providers and federation 415

http://aws.amazon.com/documentation/sdkforjava/

AWS Identity and Access Management User Guide

 "\"Effect\":\"Allow\",\"Resource\":\"*\"}]}";

getFederationTokenRequest.setPolicy(policy);

GetFederationTokenResult federationTokenResult =
 stsClient.getFederationToken(getFederationTokenRequest);

Credentials federatedCredentials = federationTokenResult.getCredentials();

// The issuer parameter specifies your internal sign-in
// page, for example https://mysignin.internal.mycompany.com/.
// The console parameter specifies the URL to the destination console of the
// AWS Management Console. This example goes to Amazon SNS.
// The signin parameter is the URL to send the request to.

String issuerURL = "https://mysignin.internal.mycompany.com/";
String consoleURL = "https://console.aws.amazon.com/sns";
String signInURL = "https://signin.aws.amazon.com/federation";

// Create the sign-in token using temporary credentials,
// including the access key ID, secret access key, and session token.
String sessionJson = String.format(
 "{\"%1$s\":\"%2$s\",\"%3$s\":\"%4$s\",\"%5$s\":\"%6$s\"}",
 "sessionId", federatedCredentials.getAccessKeyId(),
 "sessionKey", federatedCredentials.getSecretAccessKey(),
 "sessionToken", federatedCredentials.getSessionToken());

// Construct the sign-in request with the request sign-in token action, a
// 12-hour console session duration, and the JSON document with temporary
// credentials as parameters.

String getSigninTokenURL = signInURL +
 "?Action=getSigninToken" +
 "&DurationSeconds=43200" +
 "&SessionType=json&Session=" +
 URLEncoder.encode(sessionJson,"UTF-8");

URL url = new URL(getSigninTokenURL);

// Send the request to the AWS federation endpoint to get the sign-in token
URLConnection conn = url.openConnection ();

BufferedReader bufferReader = new BufferedReader(new
 InputStreamReader(conn.getInputStream()));

Identity providers and federation 416

AWS Identity and Access Management User Guide

String returnContent = bufferReader.readLine();

String signinToken = new JSONObject(returnContent).getString("SigninToken");

String signinTokenParameter = "&SigninToken=" + URLEncoder.encode(signinToken,"UTF-8");

// The issuer parameter is optional, but recommended. Use it to direct users
// to your sign-in page when their session expires.

String issuerParameter = "&Issuer=" + URLEncoder.encode(issuerURL, "UTF-8");

// Finally, present the completed URL for the AWS console session to the user

String destinationParameter = "&Destination=" + URLEncoder.encode(consoleURL,"UTF-8");
String loginURL = signInURL + "?Action=login" +
 signinTokenParameter + issuerParameter + destinationParameter;

Example showing how to construct the URL (Ruby)

The following example shows how to use Ruby to programmatically construct a URL that gives
federated users direct access to the AWS Management Console. This code snippet uses the AWS
SDK for Ruby.

require 'rubygems'
require 'json'
require 'open-uri'
require 'cgi'
require 'aws-sdk'

Create a new STS instance

Note: Calls to AWS STS API operations must be signed using an access key ID
and secret access key. The credentials can be in EC2 instance metadata
or in environment variables and will be automatically discovered by
the default credentials provider in the AWS Ruby SDK.
sts = Aws::STS::Client.new()

The following call creates a temporary session that returns
temporary security credentials and a session token.
The policy grants permissions to work
in the AWS SNS console.

session = sts.get_federation_token({

Identity providers and federation 417

http://aws.amazon.com/documentation/sdkforruby/
http://aws.amazon.com/documentation/sdkforruby/

AWS Identity and Access Management User Guide

 duration_seconds: 1800,
 name: "UserName",
 policy: "{\"Version\":\"2012-10-17\",\"Statement\":{\"Effect\":\"Allow\",\"Action\":
\"sns:*\",\"Resource\":\"*\"}}",
})

The issuer value is the URL where users are directed (such as
to your internal sign-in page) when their session expires.
#
The console value specifies the URL to the destination console.
This example goes to the Amazon SNS console.
#
The sign-in value is the URL of the AWS STS federation endpoint.
issuer_url = "https://mysignin.internal.mycompany.com/"
console_url = "https://console.aws.amazon.com/sns"
signin_url = "https://signin.aws.amazon.com/federation"

Create a block of JSON that contains the temporary credentials
(including the access key ID, secret access key, and session token).
session_json = {
 :sessionId => session.credentials[:access_key_id],
 :sessionKey => session.credentials[:secret_access_key],
 :sessionToken => session.credentials[:session_token]
}.to_json

Call the federation endpoint, passing the parameters
created earlier and the session information as a JSON block.
The request returns a sign-in token that's valid for 15 minutes.
Signing in to the console with the token creates a session
that is valid for 12 hours.
get_signin_token_url = signin_url +
 "?Action=getSigninToken" +
 "&SessionType=json&Session=" +
 CGI.escape(session_json)

returned_content = URI.parse(get_signin_token_url).read

Extract the sign-in token from the information returned
by the federation endpoint.
signin_token = JSON.parse(returned_content)['SigninToken']
signin_token_param = "&SigninToken=" + CGI.escape(signin_token)

Create the URL to give to the user, which includes the
sign-in token and the URL of the console to open.

Identity providers and federation 418

AWS Identity and Access Management User Guide

The "issuer" parameter is optional but recommended.
issuer_param = "&Issuer=" + CGI.escape(issuer_url)
destination_param = "&Destination=" + CGI.escape(console_url)
login_url = signin_url + "?Action=login" + signin_token_param +
 issuer_param + destination_param

Using service-linked roles

A service-linked role is a unique type of IAM role that is linked directly to an AWS service. Service-
linked roles are predefined by the service and include all the permissions that the service requires
to call other AWS services on your behalf. The linked service also defines how you create, modify,
and delete a service-linked role. A service might automatically create or delete the role. It might
allow you to create, modify, or delete the role as part of a wizard or process in the service. Or it
might require that you use IAM to create or delete the role. Regardless of the method, service-
linked roles simplify the process of setting up a service because you don't have to manually add
permissions for the service to complete actions on your behalf.

Note

Remember that service roles are different from service-linked roles. A service role is an
IAM role that a service assumes to perform actions on your behalf. An IAM administrator
can create, modify, and delete a service role from within IAM. For more information, see
Creating a role to delegate permissions to an AWS service in the IAM User Guide. A service-
linked role is a type of service role that is linked to an AWS service. The service can assume
the role to perform an action on your behalf. Service-linked roles appear in your AWS
account and are owned by the service. An IAM administrator can view, but not edit the
permissions for service-linked roles.

The linked service defines the permissions of its service-linked roles, and unless defined otherwise,
only that service can assume the roles. The defined permissions include the trust policy and the
permissions policy, and that permissions policy cannot be attached to any other IAM entity.

Before you can delete the roles, you must first delete their related resources. This protects your
resources because you can't inadvertently remove permission to access the resources.

Service-linked roles 419

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html

AWS Identity and Access Management User Guide

Tip

For information about which services support using service-linked roles, see AWS services
that work with IAM and look for the services that have Yes in the Service-Linked Role
column. Choose a Yes with a link to view the service-linked role documentation for that
service.

Service-linked role permissions

You must configure permissions for an IAM entity (user or role) to allow the user or role to create or
edit the service-linked role.

Note

The ARN for a service-linked role includes a service principal, which is indicated in the
policies below as SERVICE-NAME.amazonaws.com. Do not try to guess the service
principal, because it is case sensitive and the format can vary across AWS services. To view
the service principal for a service, see its service-linked role documentation.

To allow an IAM entity to create a specific service-linked role

Add the following policy to the IAM entity that needs to create the service-linked role.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "iam:CreateServiceLinkedRole",
 "Resource": "arn:aws:iam::*:role/aws-service-role/SERVICE-
NAME.amazonaws.com/SERVICE-LINKED-ROLE-NAME-PREFIX*",
 "Condition": {"StringLike": {"iam:AWSServiceName": "SERVICE-
NAME.amazonaws.com"}}
 },
 {
 "Effect": "Allow",
 "Action": [
 "iam:AttachRolePolicy",

Service-linked roles 420

AWS Identity and Access Management User Guide

 "iam:PutRolePolicy"
],
 "Resource": "arn:aws:iam::*:role/aws-service-role/SERVICE-
NAME.amazonaws.com/SERVICE-LINKED-ROLE-NAME-PREFIX*"
 }
]
}

To allow an IAM entity to create any service-linked role

Add the following statement to the permissions policy for the IAM entity that needs to create a
service-linked role, or any service role that includes the needed policies. This policy statement does
not allow the IAM entity to attach a policy to the role.

{
 "Effect": "Allow",
 "Action": "iam:CreateServiceLinkedRole",
 "Resource": "arn:aws:iam::*:role/aws-service-role/*"
}

To allow an IAM entity to edit the description of any service roles

Add the following statement to the permissions policy for the IAM entity that needs to edit the
description of a service-linked role, or any service role.

{
 "Effect": "Allow",
 "Action": "iam:UpdateRoleDescription",
 "Resource": "arn:aws:iam::*:role/aws-service-role/*"
}

To allow an IAM entity to delete a specific service-linked role

Add the following statement to the permissions policy for the IAM entity that needs to delete the
service-linked role.

{
 "Effect": "Allow",
 "Action": [
 "iam:DeleteServiceLinkedRole",

Service-linked roles 421

AWS Identity and Access Management User Guide

 "iam:GetServiceLinkedRoleDeletionStatus"
],
 "Resource": "arn:aws:iam::*:role/aws-service-role/SERVICE-
NAME.amazonaws.com/SERVICE-LINKED-ROLE-NAME-PREFIX*"
}

To allow an IAM entity to delete any service-linked role

Add the following statement to the permissions policy for the IAM entity that needs to delete a
service-linked role, but not service role.

{
 "Effect": "Allow",
 "Action": [
 "iam:DeleteServiceLinkedRole",
 "iam:GetServiceLinkedRoleDeletionStatus"
],
 "Resource": "arn:aws:iam::*:role/aws-service-role/*"
}

To allow an IAM entity to pass an existing role to the service

Some AWS services allow you to pass an existing role to the service, instead of creating a new
service-linked role. To do this, a user must have permissions to pass the role to the service. Add the
following statement to the permissions policy for the IAM entity that needs to pass a role. This
policy statement also allows the entity to view a list of roles from which they can choose the role
to pass. For more information, see Granting a user permissions to pass a role to an AWS service.

{
 "Sid": "PolicyStatementToAllowUserToListRoles",
 "Effect": "Allow",
 "Action": ["iam:ListRoles"],
 "Resource": "*"
},
{
 "Sid": "PolicyStatementToAllowUserToPassOneSpecificRole",
 "Effect": "Allow",
 "Action": ["iam:PassRole"],
 "Resource": "arn:aws:iam::account-id:role/my-role-for-XYZ"
}

Service-linked roles 422

AWS Identity and Access Management User Guide

Indirect permissions with service-linked roles

The permissions granted by a service-linked role can be indirectly transferred to other users and
roles. When a service-linked role is used by an AWS service, that service-linked role can use it’s own
permissions to call other AWS services. This means that users and roles with permissions to call a
service that uses a service-linked role may have indirect access to services that can be accessed by
that service-linked role.

For example, when you create an Amazon RDS DB instance, a service-linked role for RDS is
automatically created if one does not already exist. This service-linked role allows RDS to call
Amazon EC2, Amazon SNS, Amazon CloudWatch Logs, and Amazon Kinesis on your behalf. If you
allow users and roles in your account to modify or create RDS databases, then they may be able
to indirectly interact with Amazon EC2, Amazon SNS, Amazon CloudWatch Logs logs, and Amazon
Kinesis resources by calling RDS, as RDS would use it’s service-linked role to access those resources.

Creating a service-linked role

The method that you use to create a service-linked role depends on the service. In some cases, you
don't need to manually create a service-linked role. For example, when you complete a specific
action (such as creating a resource) in the service, the service might create the service-linked role
for you. Or if you were using a service before it began supporting service-linked roles, then the
service might have automatically created the role in your account. To learn more, see A new role
appeared in my AWS account.

In other cases, the service might support creating a service-linked role manually using the service
console, API, or CLI. For information about which services support using service-linked roles, see
AWS services that work with IAM and look for the services that have Yes in the Service-Linked Role
column. To learn whether the service supports creating the service-linked role, choose the Yes link
to view the service-linked role documentation for that service.

If the service does not support creating the role, then you can use IAM to create the service-linked
role.

Important

Service-linked roles count toward your IAM roles in an AWS account limit, but if you have
reached your limit, you can still create service-linked roles in your account. Only service-
linked roles can exceed the limit.

Service-linked roles 423

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/UsingWithRDS.IAM.ServiceLinkedRoles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_iam-quotas.html#reference_iam-quotas-entities

AWS Identity and Access Management User Guide

Creating a service-linked role (console)

Before you create a service-linked role in IAM, find out whether the linked service automatically
creates service-linked roles, In addition, learn whether you can create the role from the service's
console, API, or CLI.

To create a service-linked role (console)

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. In the navigation pane of the IAM console, choose Roles. Then, choose Create role.

3. Choose the AWS Service role type.

4. Choose the use case for your service. Use cases are defined by the service to include the trust
policy required by the service. Then, choose Next.

5. Choose one or more permissions policies to attach to the role. Depending on the use case that
you selected, the service might do any of the following:

• Define the permissions used by the role.

• Allow you to choose from a limited set of permissions.

• Allow you to choose from any permissions.

• Allow you to select no policies at this time, create the policies later, and then attach them to
the role.

Select the check box next to the policy that assigns the permissions that you want the role to
have, and then choose Next.

Note

The permissions that you specify are available to any entity that uses the role. By
default, a role has no permissions.

6. For Role name, the degree of role name customization is defined by the service. If the service
defines the role's name, then this option is not editable. In other cases, the service might
define a prefix for the role and let you enter an optional suffix.

If possible, enter a role name suffix to add to the default name. This suffix helps you identify
the purpose of this role. Role names must be unique within your AWS account. They are

Service-linked roles 424

https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/

AWS Identity and Access Management User Guide

not distinguished by case. For example, you cannot create roles named both <service-
linked-role-name>_SAMPLE and <service-linked-role-name>_sample. Because
various entities might reference the role, you cannot edit the name of the role after it has been
created.

7. (Optional) For Description, edit the description for the new service-linked role.

8. You cannot attach tags to service-linked roles during creation. For more information about
using tags in IAM, see Tagging IAM resources.

9. Review the role and then choose Create role.

Creating a service-linked role (AWS CLI)

Before creating a service-linked role in IAM, find out whether the linked service automatically
creates service-linked roles and whether you can create the role from the service's CLI. If the service
CLI is not supported, you can use IAM commands to create a service-linked role with the trust
policy and inline policies that the service needs to assume the role.

To create a service-linked role (AWS CLI)

Run the following command:

aws iam create-service-linked-role --aws-service-name SERVICE-NAME.amazonaws.com

Creating a service-linked role (AWS API)

Before creating a service-linked role in IAM, find out whether the linked service automatically
creates service-linked roles and whether you can create the role from the service's API. If the
service API is not supported, you can use the AWS API to create a service-linked role with the trust
policy and inline policies that the service needs to assume the role.

To create a service-linked role (AWS API)

Use the CreateServiceLinkedRole API call. In the request, specify a service name of
SERVICE_NAME_URL.amazonaws.com.

For example, to create the Lex Bots service-linked role, use lex.amazonaws.com.

Editing a service-linked role

The method that you use to edit a service-linked role depends on the service. Some services might
allow you to edit the permissions for a service-linked role from the service console, API, or CLI.

Service-linked roles 425

https://docs.aws.amazon.com/cli/latest/reference/iam/create-service-linked-role.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_CreateServiceLinkedRole.html

AWS Identity and Access Management User Guide

However, after you create a service-linked role, you cannot change the name of the role because
various entities might reference the role. You can edit the description of any role from the IAM
console, API, or CLI.

For information about which services support using service-linked roles, see AWS services that
work with IAM and look for the services that have Yes in the Service-Linked Role column. To
learn whether the service supports editing the service-linked role, choose the Yes link to view the
service-linked role documentation for that service.

Editing a service-linked role description (console)

You can use the IAM console to edit the description of a service-linked role.

To edit the description of a service-linked role (console)

1. In the navigation pane of the IAM console, choose Roles.

2. Choose the name of the role to modify.

3. To the far right of Role description, choose Edit.

4. Enter a new description in the box and choose Save.

Editing a service-linked role description (AWS CLI)

You can use IAM commands from the AWS CLI to edit the description of a service-linked role.

To change the description of a service-linked role (AWS CLI)

1. (Optional) To view the current description for a role, run the following commands:

aws iam get-role --role-name ROLE-NAME

Use the role name, not the ARN, to refer to roles with the CLI commands. For example, if a role
has the following ARN: arn:aws:iam::123456789012:role/myrole, you refer to the role
as myrole.

2. To update a service-linked role's description, run the following command:

aws iam update-role --role-name ROLE-NAME --description OPTIONAL-DESCRIPTION

Service-linked roles 426

https://docs.aws.amazon.com/cli/latest/reference/iam/get-role.html
https://docs.aws.amazon.com/cli/latest/reference/iam/update-role.html

AWS Identity and Access Management User Guide

Editing a service-linked role description (AWS API)

You can use the AWS API to edit the description of a service-linked role.

To change the description of a service-linked role (AWS API)

1. (Optional) To view the current description for a role, call the following operation, and specify
the name of the role:

AWS API: GetRole

2. To update a role's description, call the following operation, and specify the name (and optional
description) of the role:

AWS API: UpdateRole

Deleting a service-linked role

The method that you use to create a service-linked role depends on the service. In some cases, you
don't need to manually delete a service-linked role. For example, when you complete a specific
action (such as removing a resource) in the service, the service might delete the service-linked role
for you.

In other cases, the service might support deleting a service-linked role manually from the service
console, API, or AWS CLI.

For information about which services support using service-linked roles, see AWS services that
work with IAM and look for the services that have Yes in the Service-Linked Role column. To learn
whether the service supports deleting the service-linked role, choose the Yes link to view the
service-linked role documentation for that service.

If the service does not support deleting the role, then you can delete the service-linked role from
the IAM console, API, or AWS CLI. If you no longer need to use a feature or service that requires a
service-linked role, we recommend that you delete that role. That way you don't have an unused
entity that is not actively monitored or maintained. However, you must clean up your service-linked
role before you can delete it.

Cleaning up a service-linked role

Before you can use IAM to delete a service-linked role, you must first confirm that the role has no
active sessions and remove any resources used by the role.

Service-linked roles 427

https://docs.aws.amazon.com/IAM/latest/APIReference/API_GetRole.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_UpdateRole.html

AWS Identity and Access Management User Guide

To check whether the service-linked role has an active session in the IAM console

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. In the navigation pane of the IAM console, choose Roles. Then choose the name (not the check
box) of the service-linked role.

3. On the Summary page for the selected role, choose the Access Advisor tab.

4. On the Access Advisor tab, review recent activity for the service-linked role.

Note

If you are unsure whether the service is using the service-linked role, you can try to
delete the role. If the service is using the role, then the deletion fails and you can view
the regions where the role is being used. If the role is being used, then you must wait
for the session to end before you can delete the role. You cannot revoke the session for
a service-linked role.

To remove resources used by a service-linked role

For information about which services support using service-linked roles, see AWS services that
work with IAM and look for the services that have Yes in the Service-Linked Role column. To learn
whether the service supports deleting the service-linked role, choose the Yes link to view the
service-linked role documentation for that service. See the documentation for that service to learn
how to remove resources used by your service-linked role.

Deleting a service-linked role (console)

You can use the IAM console to delete a service-linked role.

To delete a service-linked role (console)

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. In the navigation pane of the IAM console, choose Roles. Then select the check box next to the
role name that you want to delete, not the name or row itself.

3. For Role actions at the top of the page, choose Delete.

Service-linked roles 428

https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/

AWS Identity and Access Management User Guide

4. In the confirmation dialog box, review the last accessed information, which shows when each
of the selected roles last accessed an AWS service. This helps you to confirm whether the role
is currently active. If you want to proceed, choose Yes, Delete to submit the service-linked role
for deletion.

5. Watch the IAM console notifications to monitor the progress of the service-linked role
deletion. Because the IAM service-linked role deletion is asynchronous, after you submit the
role for deletion, the deletion task can succeed or fail.

• If the task succeeds, then the role is removed from the list and a notification of success
appears at the top of the page.

• If the task fails, you can choose View details or View Resources from the notifications to
learn why the deletion failed. If the deletion fails because the role is using the service's
resources, then the notification includes a list of resources, if the service returns that
information. You can then clean up the resources and submit the deletion again.

Note

You might have to repeat this process several times, depending on the information
that the service returns. For example, your service-linked role might use six resources
and your service might return information about five of them. If you clean up
the five resources and submit the role for deletion again, the deletion fails and
the service reports the one remaining resource. A service might return all of the
resources, a few of them, or it might not report any resources.

• If the task fails and the notification does not include a list of resources, then the service
might not return that information. To learn how to clean up the resources for that service,
see AWS services that work with IAM. Find your service in the table, and choose the Yes link
to view the service-linked role documentation for that service.

Deleting a service-linked role (AWS CLI)

You can use IAM commands from the AWS CLI to delete a service-linked role.

To delete a service-linked role (AWS CLI)

1. If you know the name of the service-linked role that you want to delete, enter the following
command to list the role in your account:

Service-linked roles 429

AWS Identity and Access Management User Guide

aws iam get-role --role-name role-name

Use the role name, not the ARN, to refer to roles with the CLI commands. For example, if a role
has the following ARN: arn:aws:iam::123456789012:role/myrole, you refer to the role
as myrole.

2. Because a service-linked role cannot be deleted if it is being used or has associated resources,
you must submit a deletion request. That request can be denied if these conditions are not
met. You must capture the deletion-task-id from the response to check the status of the
deletion task. Enter the following command to submit a service-linked role deletion request:

aws iam delete-service-linked-role --role-name role-name

3. Enter the following command to check the status of the deletion task:

aws iam get-service-linked-role-deletion-status --deletion-task-id deletion-task-id

The status of the deletion task can be NOT_STARTED, IN_PROGRESS, SUCCEEDED, or FAILED.
If the deletion fails, the call returns the reason that it failed so that you can troubleshoot.
If the deletion fails because the role is using the service's resources, then the notification
includes a list of resources, if the service returns that information. You can then clean up the
resources and submit the deletion again.

Note

You might have to repeat this process several times, depending on the information
that the service returns. For example, your service-linked role might use six resources
and your service might return information about five of them. If you clean up the five
resources and submit the role for deletion again, the deletion fails and the service
reports the one remaining resource. A service might return all of the resources, a few
of them, or it might not report any resources. To learn how to clean up the resources
for a service that does not report any resources, see AWS services that work with IAM.
Find your service in the table, and choose the Yes link to view the service-linked role
documentation for that service.

Service-linked roles 430

https://docs.aws.amazon.com/cli/latest/reference/iam/get-role.html
https://docs.aws.amazon.com/cli/latest/reference/iam/delete-service-linked-role.html
https://docs.aws.amazon.com/cli/latest/reference/iam/get-service-linked-role-deletion-status.html

AWS Identity and Access Management User Guide

Deleting a service-linked role (AWS API)

You can use the AWS API to delete a service-linked role.

To delete a service-linked role (AWS API)

1. To submit a deletion request for a service-linked role, call DeleteServiceLinkedRole. In the
request, specify a role name.

Because a service-linked role cannot be deleted if it is being used or has associated resources,
you must submit a deletion request. That request can be denied if these conditions are not
met. You must capture the DeletionTaskId from the response to check the status of the
deletion task.

2. To check the status of the deletion, call GetServiceLinkedRoleDeletionStatus. In the request,
specify the DeletionTaskId.

The status of the deletion task can be NOT_STARTED, IN_PROGRESS, SUCCEEDED, or FAILED.
If the deletion fails, the call returns the reason that it failed so that you can troubleshoot.
If the deletion fails because the role is using the service's resources, then the notification
includes a list of resources, if the service returns that information. You can then clean up the
resources and submit the deletion again.

Note

You might have to repeat this process several times, depending on the information
that the service returns. For example, your service-linked role might use six resources
and your service might return information about five of them. If you clean up the five
resources and submit the role for deletion again, the deletion fails and the service
reports the one remaining resource. A service might return all of the resources, a few
of them, or it might not report any resources. To learn how to clean up the resources
for a service that does not report any resources, see AWS services that work with IAM.
Find your service in the table, and choose the Yes link to view the service-linked role
documentation for that service.

Service-linked roles 431

https://docs.aws.amazon.com/IAM/latest/APIReference/API_DeleteServiceLinkedRole.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_GetServiceLinkedRoleDeletionStatus.html

AWS Identity and Access Management User Guide

Creating IAM roles

To create a role, you can use the AWS Management Console, the AWS CLI, the Tools for Windows
PowerShell, or the IAM API.

If you use the AWS Management Console, a wizard guides you through the steps for creating a role.
The wizard has slightly different steps depending on whether you're creating a role for an AWS
service, for an AWS account, or for a federated user.

Topics

• Creating a role to delegate permissions to an IAM user

• Creating a role to delegate permissions to an AWS service

• Creating a role for a third-party Identity Provider (federation)

• Creating a role using custom trust policies (console)

• Examples of policies for delegating access

Creating a role to delegate permissions to an IAM user

You can use IAM roles to delegate access to your AWS resources. With IAM roles, you can establish
trust relationships between your trusting account and other AWS trusted accounts. The trusting
account owns the resource to be accessed and the trusted account contains the users who
need access to the resource. However, it is possible for another account to own a resource in
your account. For example, the trusting account might allow the trusted account to create new
resources, such as creating new objects in an Amazon S3 bucket. In that case, the account that
creates the resource owns the resource and controls who can access that resource.

After you create the trust relationship, an IAM user or an application from the trusted account can
use the AWS Security Token Service (AWS STS) AssumeRole API operation. This operation provides
temporary security credentials that enable access to AWS resources in your account.

The accounts can both be controlled by you, or the account with the users can be controlled by a
third party. If the other account with the users is an AWS account that you do not control, then you
can use the externalId attribute. The external ID can be any word or number that is agreed upon
between you and the administrator of the third-party account. This option automatically adds a
condition to the trust policy that allows the user to assume the role only if the request includes
the correct sts:ExternalID. For more information, see How to use an external ID when granting
access to your AWS resources to a third party.

Creating roles 432

https://docs.aws.amazon.com/STS/latest/APIReference/API_AssumeRole.html

AWS Identity and Access Management User Guide

For information about how to use roles to delegate permissions, see Roles terms and concepts. For
information about using a service role to allow services to access resources in your account, see
Creating a role to delegate permissions to an AWS service.

Creating an IAM role (console)

You can use the AWS Management Console to create a role that an IAM user can assume. For
example, assume that your organization has multiple AWS accounts to isolate a development
environment from a production environment. For high-level information about creating a role
that allows users in the development account to access resources in the production account, see
Example scenario using separate development and production accounts.

To create a role (console)

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. In the navigation pane of the console, choose Roles and then choose Create role.

3. Choose AWS account role type.

4. To create a role for your account, choose This account. To create a role for another account,
choose Another AWS account and enter the Account ID to which you want to grant access to
your resources.

The administrator of the specified account can grant permission to assume this role to any IAM
user in that account. To do this, the administrator attaches a policy to the user or a group that
grants permission for the sts:AssumeRole action. That policy must specify the role's ARN as
the Resource.

5. If you are granting permissions to users from an account that you do not control, and the
users will assume this role programmatically, select Require external ID. The external ID can
be any word or number that is agreed upon between you and the administrator of the third
party account. This option automatically adds a condition to the trust policy that allows the
user to assume the role only if the request includes the correct sts:ExternalID. For more
information, see How to use an external ID when granting access to your AWS resources to a
third party.

Important

Choosing this option restricts access to the role only through the AWS CLI, Tools for
Windows PowerShell, or the AWS API. This is because you cannot use the AWS console

Creating roles 433

https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/

AWS Identity and Access Management User Guide

to switch to a role that has an externalId condition in its trust policy. However, you
can create this kind of access programmatically by writing a script or an application
using the relevant SDK. For more information and a sample script, see How to Enable
Cross-Account Access to the AWS Management Console in the AWS Security Blog.

6. If you want to restrict the role to users who sign in with multi-factor authentication (MFA),
select Require MFA. This adds a condition to the role's trust policy that checks for an MFA sign-
in. A user who wants to assume the role must sign in with a temporary one-time password
from a configured MFA device. Users without MFA authentication cannot assume the role. For
more information about MFA, see Using multi-factor authentication (MFA) in AWS

7. Choose Next.

8. IAM includes a list of the AWS managed and customer managed policies in your account.
Select the policy to use for the permissions policy or choose Create policy to open a new
browser tab and create a new policy from scratch. For more information, see Creating IAM
policies. After you create the policy, close that tab and return to your original tab. Select the
check box next to the permissions policies that you want anyone who assumes the role to
have. If you prefer, you can select no policies at this time, and then attach policies to the role
later. By default, a role has no permissions.

9. (Optional) Set a permissions boundary. This is an advanced feature.

Open the Set permissions boundary section and choose Use a permissions boundary to
control the maximum role permissions. Select the policy to use for the permissions boundary.

10. Choose Next.

11. For Role name, enter a name for your role. Role names must be unique within your AWS
account. When a role name is used in a policy or as part of an ARN, the role name is case
sensitive. When a role name appears to customers in the console, such as during the sign-in
process, the role name is case insensitive. Because various entities might reference the role,
you can't edit the name of the role after it is created.

12. (Optional) For Description, enter a description for the new role.

13. Choose Edit in the Step 1: Select trusted entities or Step 2: Add permissions sections to edit
the use cases and permissions for the role. You will be returned to previous pages to make the
edits.

14. (Optional) Add metadata to the role by attaching tags as key–value pairs. For more
information about using tags in IAM, see Tagging IAM resources.

15. Review the role and then choose Create role.

Creating roles 434

https://aws.amazon.com/blogs/security/how-to-enable-cross-account-access-to-the-aws-management-console
https://aws.amazon.com/blogs/security/how-to-enable-cross-account-access-to-the-aws-management-console

AWS Identity and Access Management User Guide

Important

Remember that this is only the first half of the configuration required. You must also
give individual users in the trusted account permissions to switch to the role in the
console, or assume the role programmatically. For more information about this step,
see Granting a user permissions to switch roles.

Creating an IAM role (AWS CLI)

Creating a role from the AWS CLI involves multiple steps. When you use the console to create a
role, many of the steps are done for you, but with the AWS CLI you must explicitly perform each
step yourself. You must create the role and then assign a permissions policy to the role. Optionally,
you can also set the permissions boundary for your role.

To create a role for cross-account access (AWS CLI)

1. Create a role: aws iam create-role

2. Attach a managed permissions policy to the role: aws iam attach-role-policy

or

Create an inline permissions policy for the role: aws iam put-role-policy

3. (Optional) Add custom attributes to the role by attaching tags: aws iam tag-role

For more information, see Managing tags on IAM roles (AWS CLI or AWS API).

4. (Optional) Set the permissions boundary for the role: aws iam put-role-permissions-boundary

A permissions boundary controls the maximum permissions that a role can have. Permissions
boundaries are an advanced AWS feature.

The following example shows the first two, and most common steps for creating a cross-account
role in a simple environment. This example allows any user in the 123456789012 account to
assume the role and view the example_bucket Amazon S3 bucket. This example also assumes
that you are using a client computer running Windows, and have already configured your command
line interface with your account credentials and Region. For more information, see Configuring the
AWS Command Line Interface.

Creating roles 435

https://docs.aws.amazon.com/cli/latest/reference/iam/create-role.html
https://docs.aws.amazon.com/cli/latest/reference/iam/attach-role-policy.html
https://docs.aws.amazon.com/cli/latest/reference/iam/put-role-policy.html
https://docs.aws.amazon.com/cli/latest/reference/iam/tag-role.html
https://docs.aws.amazon.com/cli/latest/reference/iam/put-role-permissions-boundary.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-started.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-started.html

AWS Identity and Access Management User Guide

In this example, include the following trust policy in the first command when you create
the role. This trust policy allows users in the 123456789012 account to assume the role
using the AssumeRole operation, but only if the user provides MFA authentication using the
SerialNumber and TokenCode parameters. For more information about MFA, see Using multi-
factor authentication (MFA) in AWS.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": { "AWS": "arn:aws:iam::123456789012:root" },
 "Action": "sts:AssumeRole",
 "Condition": { "Bool": { "aws:MultiFactorAuthPresent": "true" } }
 }
]
}

Important

If your Principal element contains the ARN for a specific IAM role or user, then that ARN
is transformed to a unique principal ID when the policy is saved. This helps mitigate the
risk of someone escalating their permissions by removing and recreating the role or user.
You don't normally see this ID in the console because there is also a reverse transformation
back to the ARN when the trust policy is displayed. However, if you delete the role or user,
then the principal ID appears in the console because AWS can no longer map it back to
an ARN. Therefore, if you delete and recreate a user or role referenced in a trust policy's
Principal element, you must edit the role to replace the ARN.

When you use the second command, you must attach an existing managed policy to the role.
The following permissions policy allows anyone who assumes the role to perform only the
ListBucket action on the example_bucket Amazon S3 bucket.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",

Creating roles 436

AWS Identity and Access Management User Guide

 "Action": "s3:ListBucket",
 "Resource": "arn:aws:s3:::example_bucket"
 }
]
}

To create this Test-UserAccess-Role role, you must first save the previous trust policy with the
name trustpolicyforacct123456789012.json to the policies folder in your local C: drive.
Then save the previous permissions policy as a customer managed policy in your AWS account
with the name PolicyForRole. You can then use the following commands to create the role and
attach the managed policy.

Create the role and attach the trust policy file that allows users in the specified
 account to assume the role.
$ aws iam create-role --role-name Test-UserAccess-Role --assume-role-policy-document
 file://C:\policies\trustpolicyforacct123456789012.json

Attach the permissions policy (in this example a managed policy) to the role to
 specify what it is allowed to do.
$ aws iam attach-role-policy --role-name Test-UserAccess-Role --policy-arn
 arn:aws:iam::123456789012:policy/PolicyForRole

Important

Remember that this is only the first half of the configuration required. You must also
give individual users in the trusted account permissions to switch to the role. For more
information about this step, see Granting a user permissions to switch roles.

After you create the role and grant it permissions to perform AWS tasks or access AWS resources,
any users in the 123456789012 account can assume the role. For more information, see Switching
to an IAM role (AWS CLI).

Creating an IAM role (AWS API)

Creating a role from the AWS API involves multiple steps. When you use the console to create a
role, many of the steps are done for you, but with the API you must explicitly perform each step
yourself. You must create the role and then assign a permissions policy to the role. Optionally, you
can also set the permissions boundary for your role.

Creating roles 437

AWS Identity and Access Management User Guide

To create a role in code (AWS API)

1. Create a role: CreateRole

For the role's trust policy, you can specify a file location.

2. Attach a managed permission policy to the role: AttachRolePolicy

or

Create an inline permission policy for the role: PutRolePolicy

Important

Remember that this is only the first half of the configuration required. You must also
give individual users in the trusted account permissions to switch to the role. For more
information about this step, see Granting a user permissions to switch roles.

3. (Optional) Add custom attributes to the user by attaching tags: TagRole

For more information, see Managing tags on IAM users (AWS CLI or AWS API).

4. (Optional) Set the permissions boundary for the role: PutRolePermissionsBoundary

A permissions boundary controls the maximum permissions that a role can have. Permissions
boundaries are an advanced AWS feature.

After you create the role and grant it permissions to perform AWS tasks or access AWS resources,
you must grant permissions to users in the account to allow them to assume the role. For more
information about assuming a role, see Switching to an IAM role (AWS API).

Creating an IAM role (AWS CloudFormation)

For information about creating an IAM role in AWS CloudFormation, see the resource and property
reference and examples in the AWS CloudFormation User Guide.

For more information about IAM templates in AWS CloudFormation, see AWS Identity and Access
Management template snippets in the AWS CloudFormation User Guide.

Creating roles 438

https://docs.aws.amazon.com/IAM/latest/APIReference/API_CreateRole.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_AttachRolePolicy.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_PutRolePolicy.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_TagRole.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_PutRolePermissionsBoundary.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-iam-role.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-iam-role.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-iam-role.html#aws-resource-iam-role--examples
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/quickref-iam.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/quickref-iam.html

AWS Identity and Access Management User Guide

Creating a role to delegate permissions to an AWS service

Many AWS services require that you use roles to allow the service to access resources in other
services on your behalf. A role that a service assumes to perform actions on your behalf is called a
service role. When a role serves a specialized purpose for a service, it is categorized as a service role
for EC2 instances (for example), or a service-linked role. To see what services support using service-
linked roles, or whether a service supports any form of temporary credentials, see AWS services
that work with IAM. To learn how an individual service uses roles, choose the service name in the
table to view the documentation for that service.

When setting the PassRole permission, you should make sure that a user doesn’t pass a role
where the role has more permissions than you want the user to have. For example, Alice might
not be allowed to perform any Amazon S3 actions. If Alice could pass a role to a service that
allows Amazon S3 actions, the service could perform Amazon S3 actions on behalf of Alice when
executing the job.

For information about how roles help you to delegate permissions, see Roles terms and concepts.

Service role permissions

You must configure permissions to allow an IAM entity (user or role) to create or edit a service role.

Note

The ARN for a service-linked role includes a service principal, which is indicated in the
following policies as SERVICE-NAME.amazonaws.com. Do not try to guess the service
principal, because it is case-sensitive and the format can vary across AWS services. To view
the service principal for a service, see its service-linked role documentation.

To allow an IAM entity to create a specific service role

Add the following policy to the IAM entity that needs to create the service role. This policy allows
you to create a service role for the specified service and with a specific name. You can then attach
managed or inline policies to that role.

{
 "Version": "2012-10-17",
 "Statement": [
 {

Creating roles 439

AWS Identity and Access Management User Guide

 "Effect": "Allow",
 "Action": [
 "iam:AttachRolePolicy",
 "iam:CreateRole",
 "iam:PutRolePolicy"
],
 "Resource": "arn:aws:iam::*:role/SERVICE-ROLE-NAME"
 }
]
}

To allow an IAM entity to create any service role

AWS recommends that you allow only administrative users to create any service role. A person
with permissions to create a role and attach any policy can escalate their own permissions. Instead,
create a policy that allows them to create only the roles that they need or have an administrator
create the service role on their behalf.

To attach a policy that allows an administrator to access your entire AWS account, use the
AdministratorAccess AWS managed policy.

To allow an IAM entity to edit a service role

Add the following policy to the IAM entity that needs to edit the service role.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "EditSpecificServiceRole",
 "Effect": "Allow",
 "Action": [
 "iam:AttachRolePolicy",
 "iam:DeleteRolePolicy",
 "iam:DetachRolePolicy",
 "iam:GetRole",
 "iam:GetRolePolicy",
 "iam:ListAttachedRolePolicies",
 "iam:ListRolePolicies",
 "iam:PutRolePolicy",
 "iam:UpdateRole",
 "iam:UpdateRoleDescription"
],

Creating roles 440

https://console.aws.amazon.com/iam/home#policies/arn:aws:iam::aws:policy/AdministratorAccess

AWS Identity and Access Management User Guide

 "Resource": "arn:aws:iam::*:role/SERVICE-ROLE-NAME"
 },
 {
 "Sid": "ViewRolesAndPolicies",
 "Effect": "Allow",
 "Action": [
 "iam:GetPolicy",
 "iam:ListRoles"
],
 "Resource": "*"
 }
]
}

To allow an IAM entity to delete a specific service role

Add the following statement to the permissions policy for the IAM entity that needs to delete the
specified service role.

{
 "Effect": "Allow",
 "Action": "iam:DeleteRole",
 "Resource": "arn:aws:iam::*:role/SERVICE-ROLE-NAME"
}

To allow an IAM entity to delete any service role

AWS recommends that you allow only administrative users to delete any service role. Instead,
create a policy that allows them to delete only the roles that they need or have an administrator
delete the service role on their behalf.

To attach a policy that allows an administrator to access your entire AWS account, use the
AdministratorAccess AWS managed policy.

Creating a role for an AWS service (console)

You can use the AWS Management Console to create a role for a service. Because some services
support more than one service role, see the AWS documentation for your service to see which use
case to choose. You can learn how to assign the necessary trust and permissions policies to the
role so that the service can assume the role on your behalf. The steps that you can use to control
the permissions for your role can vary, depending on how the service defines the use cases, and
whether or not you create a service-linked role.

Creating roles 441

https://console.aws.amazon.com/iam/home#policies/arn:aws:iam::aws:policy/AdministratorAccess
https://docs.aws.amazon.com/

AWS Identity and Access Management User Guide

To create a role for an AWS service (IAM console)

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. In the navigation pane of the IAM console, choose Roles, and then choose Create role.

3. For Trusted entity type, choose AWS service.

4. For Service or use case, choose a service, and then choose the use case. Use cases are defined
by the service to include the trust policy that the service requires.

5. Choose Next.

6. For Permissions policies, the options depend on the use case that you selected:

• If the service defines the permissions for the role, you can't select permissions policies.

• Select from a limited set of permission polices.

• Select from all permission policies.

• Select no permissions policies, create the policies after the role is create, and then attach the
policies to the role.

7. (Optional) Set a permissions boundary. This is an advanced feature that is available for service
roles, but not service-linked roles.

a. Open the Set permissions boundary section, and then choose Use a permissions
boundary to control the maximum role permissions.

IAM includes a list of the AWS managed and customer-managed policies in your account.

b. Select the policy to use for the permissions boundary.

8. Choose Next.

9. For Role name, the options depend on the service:

• If the service defines the role name, you can't edit the role name.

• If the service defines a prefix for the role name, you can enter an optional suffix.

• If the service doesn't define the role name, you can name the role.

Important

When you name a role, note the following:

• Role names must be unique within your AWS account, and can't be made unique
by case.

Creating roles 442

https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_boundaries.html

AWS Identity and Access Management User Guide

For example, don't create roles named both PRODROLE and prodrole. When a
role name is used in a policy or as part of an ARN, the role name is case sensitive,
however when a role name appears to customers in the console, such as during
the sign-in process, the role name is case insensitive.

• You can't edit the name of the role after it's created because other entities might
reference the role.

10. (Optional) For Description, enter a description for the role.

11. (Optional) To edit the use cases and permissions for the role, in the Step 1: Select trusted
entities or Step 2: Add permissions sections, choose Edit.

12. (Optional) To help identify, organize, or search for the role, add tags as key-value pairs. For
more information about using tags in IAM, see Tagging IAM resources in the IAM User Guide.

13. Review the role, and then choose Create role.

Creating a role for a service (AWS CLI)

Creating a role from the AWS CLI involves multiple steps. When you use the console to create a
role, many of the steps are done for you, but with the AWS CLI you must explicitly perform each
step yourself. You must create the role and then assign a permissions policy to the role. If the
service you are working with is Amazon EC2, then you must also create an instance profile and add
the role to it. Optionally, you can also set the permissions boundary for your role.

To create a role for an AWS service from the AWS CLI

1. The following create-role command creates a role named Test-Role and attaches a trust
policy to it:

aws iam create-role --role-name Test-Role --assume-role-policy-document
file://Test-Role-Trust-Policy.json

2. Attach a managed permissions policy to the role: aws iam attach-role-policy.

For example, the following attach-role-policy command attaches the AWS managed
policy named ReadOnlyAccess to the IAM role named ReadOnlyRole:

aws iam attach-role-policy --policy-arn arn:aws:iam::aws:policy/
ReadOnlyAccess --role-name ReadOnlyRole

Creating roles 443

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_tags.html
https://docs.aws.amazon.com/cli/latest/reference/iam/create-role.html
https://docs.aws.amazon.com/cli/latest/reference/iam/attach-role-policy.html

AWS Identity and Access Management User Guide

or

Create an inline permissions policy for the role: aws iam put-role-policy

To add an inline permissions policy, see the following example:

aws iam put-role-policy --role-name Test-Role --policy-name
ExamplePolicy --policy-document file://AdminPolicy.json

3. (Optional) Add custom attributes to the role by attaching tags: aws iam tag-role

For more information, see Managing tags on IAM roles (AWS CLI or AWS API).

4. (Optional) Set the permissions boundary for the role: aws iam put-role-permissions-boundary

A permissions boundary controls the maximum permissions that a role can have. Permissions
boundaries are an advanced AWS feature.

If you are going to use the role with Amazon EC2 or another AWS service that uses Amazon EC2,
you must store the role in an instance profile. An instance profile is a container for a role that can
be attached to an Amazon EC2 instance when launched. An instance profile can contain only one
role, and that limit cannot be increased. If you create the role using the AWS Management Console,
the instance profile is created for you with the same name as the role. For more information about
instance profiles, see Using instance profiles. For information about how to launch an EC2 instance
with a role, see Controlling Access to Amazon EC2 Resources in the Amazon EC2 User Guide for
Linux Instances.

To create an instance profile and store the role in it (AWS CLI)

1. Create an instance profile: aws iam create-instance-profile

2. Add the role to the instance profile: aws iam add-role-to-instance-profile

The AWS CLI example command set below demonstrates the first two steps for creating a role and
attaching permissions. It also shows the two steps for creating an instance profile and adding the
role to the profile. This example trust policy allows the Amazon EC2 service to assume the role and
view the example_bucket Amazon S3 bucket. The example also assumes that you are running on
a client computer running Windows and have already configured your command line interface with
your account credentials and Region. For more information, see Configuring the AWS Command
Line Interface.

Creating roles 444

https://docs.aws.amazon.com/cli/latest/reference/iam/put-role-policy.html
https://docs.aws.amazon.com/cli/latest/reference/iam/tag-role.html
https://docs.aws.amazon.com/cli/latest/reference/iam/put-role-permissions-boundary.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/UsingIAM.html#UsingIAMrolesWithAmazonEC2Instances
https://docs.aws.amazon.com/cli/latest/reference/iam/create-instance-profile.html
https://docs.aws.amazon.com/cli/latest/reference/iam/add-role-to-instance-profile.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-started.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-started.html

AWS Identity and Access Management User Guide

In this example, include the following trust policy in the first command when you create the role.
This trust policy allows the Amazon EC2 service to assume the role.

{
 "Version": "2012-10-17",
 "Statement": {
 "Effect": "Allow",
 "Principal": {"Service": "ec2.amazonaws.com"},
 "Action": "sts:AssumeRole"
 }
}

When you use the second command, you must attach a permissions policy to the role. The
following example permissions policy allows the role to perform only the ListBucket action on
the example_bucket Amazon S3 bucket.

{
 "Version": "2012-10-17",
 "Statement": {
 "Effect": "Allow",
 "Action": "s3:ListBucket",
 "Resource": "arn:aws:s3:::example_bucket"
 }
}

To create this Test-Role-for-EC2 role, you must first save the previous trust policy with
the name trustpolicyforec2.json and the previous permissions policy with the name
permissionspolicyforec2.json to the policies directory in your local C: drive. You can
then use the following commands to create the role, attach the policy, create the instance profile,
and add the role to the instance profile.

Create the role and attach the trust policy that allows EC2 to assume this role.
$ aws iam create-role --role-name Test-Role-for-EC2 --assume-role-policy-document
 file://C:\policies\trustpolicyforec2.json

Embed the permissions policy (in this example an inline policy) to the role to
 specify what it is allowed to do.
$ aws iam put-role-policy --role-name Test-Role-for-EC2 --policy-name Permissions-
Policy-For-Ec2 --policy-document file://C:\policies\permissionspolicyforec2.json

Create the instance profile required by EC2 to contain the role

Creating roles 445

AWS Identity and Access Management User Guide

$ aws iam create-instance-profile --instance-profile-name EC2-ListBucket-S3

Finally, add the role to the instance profile
$ aws iam add-role-to-instance-profile --instance-profile-name EC2-ListBucket-S3 --
role-name Test-Role-for-EC2

When you launch the EC2 instance, specify the instance profile name in the Configure Instance
Details page if you use the AWS console. If you use the aws ec2 run-instances CLI command,
specify the --iam-instance-profile parameter.

Creating a role for a service (AWS API)

Creating a role from the AWS API involves multiple steps. When you use the console to create a
role, many of the steps are done for you, but with the API you must explicitly perform each step
yourself. You must create the role and then assign a permissions policy to the role. If the service
you are working with is Amazon EC2, then you must also create an instance profile and add the role
to it. Optionally, you can also set the permissions boundary for your role.

To create a role for an AWS service (AWS API)

1. Create a role: CreateRole

For the role's trust policy, you can specify a file location.

2. Attach a managed permissions policy to the role: AttachRolePolicy

or

Create an inline permissions policy for the role: PutRolePolicy

3. (Optional) Add custom attributes to the user by attaching tags: TagRole

For more information, see Managing tags on IAM users (AWS CLI or AWS API).

4. (Optional) Set the permissions boundary for the role: PutRolePermissionsBoundary

A permissions boundary controls the maximum permissions that a role can have. Permissions
boundaries are an advanced AWS feature.

If you are going to use the role with Amazon EC2 or another AWS service that uses Amazon EC2,
you must store the role in an instance profile. An instance profile is a container for a role. Each
instance profile can contain only one role, and that limit cannot be increased. If you create the role

Creating roles 446

https://docs.aws.amazon.com/IAM/latest/APIReference/API_CreateRole.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_AttachRolePolicy.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_PutRolePolicy.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_TagRole.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_PutRolePermissionsBoundary.html

AWS Identity and Access Management User Guide

in the AWS Management Console, the instance profile is created for you with the same name as
the role. For more information about instance profiles, see Using instance profiles. For information
about how to launch an Amazon EC2 instance with a role, see Controlling Access to Amazon EC2
Resources in the Amazon EC2 User Guide for Linux Instances.

To create an instance profile and store the role in it (AWS API)

1. Create an instance profile: CreateInstanceProfile

2. Add the role to the instance profile: AddRoleToInstanceProfile

Creating a role for a third-party Identity Provider (federation)

You can use identity providers instead of creating IAM users in your AWS account. With an identity
provider (IdP), you can manage your user identities outside of AWS and give these external user
identities permissions to access AWS resources in your account. For more information about
federation and identity providers, see Identity providers and federation.

Creating a role for federated users (console)

The procedures for creating a role for federated users depend on your choice of third party
providers:

• For Web Identity or OpenID Connect (OIDC), see Create a role for OpenID Connect federation
(console).

• For SAML 2.0, see Create a role for SAML 2.0 federation (console).

Creating a role for federated access (AWS CLI)

The steps to create a role for the supported identity providers (OIDC or SAML) from the AWS CLI
are identical. The difference is in the contents of the trust policy that you create in the prerequisite
steps. Begin by following the steps in the Prerequisites section for the type of provider you are
using:

• For an OIDC provider, see Prerequisites for creating a role for OIDC.

• For a SAML provider, see Prerequisites for creating a role for SAML.

Creating a role from the AWS CLI involves multiple steps. When you use the console to create a
role, many of the steps are done for you, but with the AWS CLI you must explicitly perform each

Creating roles 447

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/UsingIAM.html#UsingIAMrolesWithAmazonEC2Instances
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/UsingIAM.html#UsingIAMrolesWithAmazonEC2Instances
https://docs.aws.amazon.com/IAM/latest/APIReference/API_CreateInstanceProfile.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_AddRoleToInstanceProfile.html

AWS Identity and Access Management User Guide

step yourself. You must create the role and then assign a permissions policy to the role. Optionally,
you can also set the permissions boundary for your role.

To create a role for identity federation (AWS CLI)

1. Create a role: aws iam create-role

2. Attach a permissions policy to the role: aws iam attach-role-policy

or

Create an inline permissions policy for the role: aws iam put-role-policy

3. (Optional) Add custom attributes to the role by attaching tags: aws iam tag-role

For more information, see Managing tags on IAM roles (AWS CLI or AWS API).

4. (Optional) Set the permissions boundary for the role: aws iam put-role-permissions-boundary

A permissions boundary controls the maximum permissions that a role can have. Permissions
boundaries are an advanced AWS feature.

The following example shows the first two, and most common, steps for creating an identity
provider role in a simple environment. This example allows any user in the 123456789012 account
to assume the role and view the example_bucket Amazon S3 bucket. This example also assumes
that you are running the AWS CLI on a computer running Windows, and have already configured
the AWS CLI with your credentials. For more information, see Configuring the AWS Command Line
Interface.

The following example trust policy is designed for a mobile app if the user signs in using Amazon
Cognito. In this example, us-east:12345678-ffff-ffff-ffff-123456 represents the identity
pool ID assigned by Amazon Cognito.

{
 "Version": "2012-10-17",
 "Statement": {
 "Sid": "RoleForCognito",
 "Effect": "Allow",
 "Principal": {"Federated": "cognito-identity.amazonaws.com"},
 "Action": "sts:AssumeRoleWithWebIdentity",
 "Condition": {"StringEquals": {"cognito-identity.amazonaws.com:aud": "us-
east:12345678-ffff-ffff-ffff-123456"}}
 }

Creating roles 448

https://docs.aws.amazon.com/cli/latest/reference/iam/create-role.html
https://docs.aws.amazon.com/cli/latest/reference/iam/attach-role-policy.html
https://docs.aws.amazon.com/cli/latest/reference/iam/put-role-policy.html
https://docs.aws.amazon.com/cli/latest/reference/iam/tag-role.html
https://docs.aws.amazon.com/cli/latest/reference/iam/put-role-permissions-boundary.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-started.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-started.html

AWS Identity and Access Management User Guide

}

The following permissions policy allows anyone who assumes the role to perform only the
ListBucket action on the example_bucket Amazon S3 bucket.

{
 "Version": "2012-10-17",
 "Statement": {
 "Effect": "Allow",
 "Action": "s3:ListBucket",
 "Resource": "arn:aws:s3:::example_bucket"
 }
}

To create this Test-Cognito-Role role, you must first save the previous trust policy with the
name trustpolicyforcognitofederation.json and the previous permissions policy with
the name permspolicyforcognitofederation.json to the policies folder in your local C:
drive. You can then use the following commands to create the role and attach the inline policy.

Create the role and attach the trust policy that enables users in an account to
 assume the role.
$ aws iam create-role --role-name Test-Cognito-Role --assume-role-policy-document
 file://C:\policies\trustpolicyforcognitofederation.json

Attach the permissions policy to the role to specify what it is allowed to do.
aws iam put-role-policy --role-name Test-Cognito-Role --policy-name
 Perms-Policy-For-CognitoFederation --policy-document file://C:\policies
\permspolicyforcognitofederation.json

Creating a role for federated access (AWS API)

The steps to create a role for the supported identity providers (OIDC or SAML) from the AWS CLI
are identical. The difference is in the contents of the trust policy that you create in the prerequisite
steps. Begin by following the steps in the Prerequisites section for the type of provider you are
using:

• For an OIDC provider, see Prerequisites for creating a role for OIDC.

• For a SAML provider, see Prerequisites for creating a role for SAML.

Creating roles 449

AWS Identity and Access Management User Guide

To create a role for identity federation (AWS API)

1. Create a role: CreateRole

2. Attach a permissions policy to the role:AttachRolePolicy

or

Create an inline permissions policy for the role: PutRolePolicy

3. (Optional) Add custom attributes to the user by attaching tags: TagRole

For more information, see Managing tags on IAM users (AWS CLI or AWS API).

4. (Optional) Set the permissions boundary for the role: PutRolePermissionsBoundary

A permissions boundary controls the maximum permissions that a role can have. Permissions
boundaries are an advanced AWS feature.

Create a role for OpenID Connect federation (console)

You can use OpenID Connect (OIDC) federated identity providers instead of creating AWS Identity
and Access Management users in your AWS account. With an identity provider (IdP), you can
manage your user identities outside of AWS and give these external user identities permissions to
access AWS resources in your account. For more information about federation and IdPs, see Identity
providers and federation.

Prerequisites for creating a role for OIDC

Before you can create a role for OIDC federation, you must first complete the following
prerequisite steps.

To prepare to create a role for OIDC federation

1. Sign up with one or more services offering federated OIDC identity. If you are creating an
app that needs access to your AWS resources, you also configure your app with the provider
information. When you do, the provider gives you an application or audience ID that is unique
to your app. (Different providers use different terminology for this process. This guide uses the
term configure for the process of identifying your app with the provider.) You can configure
multiple apps with each provider, or multiple providers with a single app. View information
about using the identity providers as follows:

• Login with Amazon Developer Center

Creating roles 450

https://docs.aws.amazon.com/IAM/latest/APIReference/API_CreateRole.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_AttachRolePolicy.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_PutRolePolicy.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_TagRole.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_PutRolePermissionsBoundary.html
https://login.amazon.com/

AWS Identity and Access Management User Guide

• Add Facebook Login to Your App or Website on the Facebook developers site.

• Using OAuth 2.0 for Login (OpenID Connect) on the Google developers site.

2. After you receive the required information from the IdP, create an IdP in IAM. For more
information, see Creating OpenID Connect (OIDC) identity providers.

Important

If you are using an OIDC IdP from Google, Facebook, or Amazon Cognito, don't create a
separate IAM IdP in the AWS Management Console. These OIDC identity providers are
already built into AWS and are available for you to use. Skip this step and create new
roles using your IdP in the following step.

3. Prepare the policies for the role that the IdP-authenticated users will assume. As with any
role, a role for a mobile app includes two policies. One is the trust policy that specifies who
can assume the role. The other is the permissions policy that specifies the AWS actions and
resources that the mobile app is allowed or denied access to.

For web IdPs, we recommend that you use Amazon Cognito to manage identities. In this case,
use a trust policy similar to this example.

{
 "Version": "2012-10-17",
 "Statement": {
 "Effect": "Allow",
 "Principal": {"Federated": "cognito-identity.amazonaws.com"},
 "Action": "sts:AssumeRoleWithWebIdentity",
 "Condition": {
 "StringEquals": {"cognito-identity.amazonaws.com:aud": "us-
east-2:12345678-abcd-abcd-abcd-123456"},
 "ForAnyValue:StringLike": {"cognito-identity.amazonaws.com:amr":
 "unauthenticated"}
 }
 }
}

Replace us-east-2:12345678-abcd-abcd-abcd-123456 with the identity pool ID that
Amazon Cognito assigns to you.

Creating roles 451

https://developers.facebook.com/docs/facebook-login/v2.1
https://developers.google.com/accounts/docs/OAuth2Login
https://aws.amazon.com/cognito/

AWS Identity and Access Management User Guide

If you manually configure an OIDC IdP, when you create the trust policy, you must use three
values that ensure that only your app can assume the role:

• For the Action element, use the sts:AssumeRoleWithWebIdentity action.

• For the Principal element, use the string {"Federated":providerUrl/
providerArn}.

• For some common OIDC IdPs, the providerUrl is a URL. The following examples include
methods to specify the principal for some common IdPs:

"Principal":{"Federated":"cognito-identity.amazonaws.com"}

"Principal":{"Federated":"www.amazon.com"}

"Principal":{"Federated":"graph.facebook.com"}

"Principal":{"Federated":"accounts.google.com"}

• For other OIDC providers, use the Amazon Resource Name (ARN) of the OIDC IdP that you
created in Step 2, such as the following example:

"Principal":{"Federated":"arn:aws:iam::123456789012:oidc-provider/
server.example.com"}

• For the Condition element, use a StringEquals condition to limit permissions. Test the
identity pool ID for Amazon Cognito) or the app ID for other providers. The identity pool ID
should match the app ID that you received when you configured the app with the IdP. This
match between the IDs ensures that the request comes from your app.

Note

A role trust policy that trusts Amazon Cognito identity pools (cognito-
identity.amazonaws.com) must contain at least one condition key to limit the
principals who can assume the role. For more information, see Trust policies for IAM
roles in Basic (Classic) authentication in the Amazon Cognito Developer Guide.

Create a condition element similar to one of the following examples, depending on the IdP
that you are using:

Creating roles 452

https://docs.aws.amazon.com/cognito/latest/developerguide/iam-roles.html#trust-policies
https://docs.aws.amazon.com/cognito/latest/developerguide/iam-roles.html#trust-policies

AWS Identity and Access Management User Guide

"Condition": {"StringEquals": {"cognito-identity.amazonaws.com:aud":
"us-east:12345678-ffff-ffff-ffff-123456"}}

"Condition": {"StringEquals": {"www.amazon.com:app_id":
"amzn1.application-oa2-123456"}}

"Condition": {"StringEquals": {"graph.facebook.com:app_id":
"111222333444555"}}

"Condition": {"StringEquals": {"accounts.google.com:aud":
"66677788899900pro0"}}

For OIDC providers, use the fully qualified URL of the OIDC IdP with the aud context key,
such as the following example:

"Condition": {"StringEquals": {"server.example.com:aud":
"appid_from_oidc_idp"}}

Note

The values for the principal in the trust policy for the role are specific to an IdP. A role
for OIDC can specify only one principal. Therefore, if the mobile app allows users to
sign in from more than one IdP, create a separate role for each IdP that you want to
support. Create separate trust policies for each IdP.

If a user uses a mobile app to sign in from Login with Amazon, the following example trust
policy would apply. In the example, amzn1.application-oa2-123456 represents the app ID
that Amazon assigns when you configured the app using Login with Amazon.

{
 "Version": "2012-10-17",
 "Statement": [{
 "Sid": "RoleForLoginWithAmazon",
 "Effect": "Allow",
 "Principal": {"Federated": "www.amazon.com"},
 "Action": "sts:AssumeRoleWithWebIdentity",

Creating roles 453

AWS Identity and Access Management User Guide

 "Condition": {"StringEquals": {"www.amazon.com:app_id":
 "amzn1.application-oa2-123456"}}
 }]
 }

If a user uses a mobile app to sign in from Facebook, the following example trust policy would
apply. In this example, 111222333444555 represents the app ID that Facebook assigns.

{
 "Version": "2012-10-17",
 "Statement": [{
 "Sid": "RoleForFacebook",
 "Effect": "Allow",
 "Principal": {"Federated": "graph.facebook.com"},
 "Action": "sts:AssumeRoleWithWebIdentity",
 "Condition": {"StringEquals": {"graph.facebook.com:app_id":
 "111222333444555"}}
 }]
 }

If a user uses a mobile app to sign in from Google, the following example trust policy would
apply. In this example, 666777888999000 represents the app ID that Google assigns.

{
 "Version": "2012-10-17",
 "Statement": [{
 "Sid": "RoleForGoogle",
 "Effect": "Allow",
 "Principal": {"Federated": "accounts.google.com"},
 "Action": "sts:AssumeRoleWithWebIdentity",
 "Condition": {"StringEquals": {"accounts.google.com:aud":
 "666777888999000"}}
 }]
 }

If a user uses a mobile app to sign in from Amazon Cognito, the following example trust policy
would apply. In this example, us-east:12345678-ffff-ffff-ffff-123456 represents the
identity pool ID that Amazon Cognito assigns.

Creating roles 454

AWS Identity and Access Management User Guide

{
 "Version": "2012-10-17",
 "Statement": [{
 "Sid": "RoleForCognito",
 "Effect": "Allow",
 "Principal": {"Federated": "cognito-identity.amazonaws.com"},
 "Action": "sts:AssumeRoleWithWebIdentity",
 "Condition": {"StringEquals": {"cognito-identity.amazonaws.com:aud": "us-
east:12345678-ffff-ffff-ffff-123456"}}
 }]
 }

Creating a role for OIDC

After you complete the prerequisites, you can create the role in IAM. The following procedure
describes how to create the role for OIDC federation in the AWS Management Console. To create a
role from the AWS CLI or AWS API, see the procedures at Creating a role for a third-party Identity
Provider (federation).

Important

If you use Amazon Cognito, use the Amazon Cognito console to set up the roles. Otherwise,
use the IAM console to create a role for OIDC federation.

To create an IAM role for OIDC federation

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. In the navigation pane, choose Roles and then choose Create role.

3. Choose the OIDC role type.

4. For Identity provider, choose the IdP for your role:

• If you want to create a role for an individual web IdP, choose Login with Amazon, Facebook,
or Google.

Creating roles 455

https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/

AWS Identity and Access Management User Guide

Note

You must create a separate role for each IdP that you want to support.

• If you want to create an advanced scenario role for Amazon Cognito, choose Amazon
Cognito.

Note

You must manually create a role to use with Amazon Cognito only when you work on
an advanced scenario. Otherwise, Amazon Cognito can create roles for you. For more
information about Amazon Cognito, see Identity pools (federated identities) external
identity providers in the Amazon Cognito Developer Guide.

• If you want to create a role for GitHub Actions, you must start by adding the GitHub
OIDC provider to IAM. After you've added the GitHub OIDC provider to IAM, choose
token.actions.githubusercontent.com.

Note

For information about how to configure AWS to trust GitHub's OIDC as a federated
identity, see GitHub Docs - Configuring OpenID Connect in Amazon Web Services.
For information about best practices for limiting access for roles associated with the
IAM IdP for GitHub, see Configuring a role for GitHub OIDC identity provider on this
page.

5. Enter the identifier for your application. The label of the identifier changes based on the
provider you choose:

• If you want to create a role for Login with Amazon, enter the app ID into the Application ID
box.

• If you want to create a role for Facebook, enter the app ID into the Application ID box.

• If you want to create a role for Google, enter the audience name into the Audience box.

• If you want to create a role for Amazon Cognito, enter the ID of the identity pool that you
have created for your Amazon Cognito applications into the Identity Pool ID box.

• If you want to create a role for GitHub Actions, enter the following details:

Creating roles 456

https://docs.aws.amazon.com/cognito/latest/developerguide/external-identity-providers.html
https://docs.aws.amazon.com/cognito/latest/developerguide/external-identity-providers.html
https://docs.github.com/en/actions/deployment/security-hardening-your-deployments/configuring-openid-connect-in-amazon-web-services

AWS Identity and Access Management User Guide

• For Audience, choose sts.amazonaws.com.

• For GitHub organization, enter your GitHub organization name. The GitHub organization
name is required and must be alphanumeric including dashes (-). You can't use wildcard
characters (* and ?) in the GitHub organization name.

• (Optional) For GitHub repository, enter the GitHub repository name. If you don’t specify a
value, it defaults to a wildcard (*).

• (Optional) For GitHub branch, enter the GitHub branch name. If you don’t specify a value,
it defaults to a wildcard (*).

6. (Optional) For Condition (optional), choose Add Condition to create additional conditions
that must be met before users of your application can use the permissions that the role grants.
For example, you can add a condition that grants access to AWS resources only for a specific
IAM user ID. You can also add conditions to the trust policy after the role is created. For more
information, see Modifying a role trust policy (console).

7. Review your OIDC information and then choose Next.

8. IAM includes a list of the AWS managed and customer managed policies in your account.
Select the policy to use for the permissions policy, or choose Create policy to open a new
browser tab and create a new policy from scratch. For more information, see Creating IAM
policies. After you create the policy, close that tab and return to your original tab. Select the
check box next to the permissions policies that you want OIDC users to have. If you prefer, you
can select no policies at this time, and then attach policies to the role later. By default, a role
has no permissions.

9. (Optional) Set a permissions boundary. This is an advanced feature.

Open the Permissions boundary section and choose Use a permissions boundary to control
the maximum role permissions. Select the policy to use for the permissions boundary.

10. Choose Next.

11. For Role name, enter a role name. Role names must be unique within your AWS account.
They are not case dependent. For example, you can't create roles named both PRODROLE and
prodrole. Because other AWS resources might reference the role, you can't edit the name of
the role after you create it.

12. (Optional) For Description, enter a description for the new role.

13. To edit the use cases and permissions for the role, choose Edit in the Step 1: Select trusted
entities or Step 2: Add permissions sections.

Creating roles 457

AWS Identity and Access Management User Guide

14. (Optional) To add metadata to the role, attach tags as key–value pairs. For more information
about using tags in IAM, see Tagging IAM resources.

15. Review the role and then choose Create role.

Configuring a role for GitHub OIDC identity provider

If you use GitHub as an OpenID Connect (OIDC) identity provider (IdP), best practice is to limit
the entities that can assume the role associated with the IAM IdP. When you include a condition
statement in the trust policy, you can limit the role to a specific GitHub organization, repository,
or branch. You can use the condition key token.actions.githubusercontent.com:sub
with string condition operators to limit access. We recommend that you limit the condition to a
specific set of repositories or branches within your GitHub organization. For information about how
to configure AWS to trust GitHub's OIDC as a federated identity, see GitHub Docs - Configuring
OpenID Connect in Amazon Web Services.

If you use GitHub environments in action workflows or in OIDC policies, we strongly recommend
adding protection rules to the environment for additional security. Use deployment branches and
tags to restrict which branches and tags can deploy to the environment. For more information on
configuring environments with protection rules, see Deployment branches and tags in GitHub's
Using environments for deployment article.

When GitHub's OIDC IdP is the trusted Principal for your role, IAM checks the role trust policy
condition to verify that the condition key token.actions.githubusercontent.com:sub
is present and that its value is not solely a wildcard character (* and ?) or null. IAM
performs this check when the trust policy is created or updated. If the condition key
token.actions.githubusercontent.com:sub is not present, or the key value doesn't satisfy
the mentioned value criteria, the request will fail and return an error.

Important

If you do not limit the condition key token.actions.githubusercontent.com:sub to
a specific organization or repository, then GitHub Actions from organizations or repositories
outside of your control are able to assume roles associated with the GitHub IAM IdP in your
AWS account.

Creating roles 458

https://docs.github.com/en/actions/deployment/security-hardening-your-deployments/configuring-openid-connect-in-amazon-web-services
https://docs.github.com/en/actions/deployment/security-hardening-your-deployments/configuring-openid-connect-in-amazon-web-services
https://docs.github.com/en/actions/deployment/targeting-different-environments/using-environments-for-deployment#deployment-branches-and-tags

AWS Identity and Access Management User Guide

The following example trust policy limits access to the defined GitHub organization, repository,
and branch. The condition key token.actions.githubusercontent.com:sub value in the
following example is the default subject value format documented by GitHub.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Federated": "arn:aws:iam::012345678910:oidc-provider/
token.actions.githubusercontent.com"
 },
 "Action": "sts:AssumeRoleWithWebIdentity",
 "Condition": {
 "StringEquals": {
 "token.actions.githubusercontent.com:aud": "sts.amazonaws.com",
 "token.actions.githubusercontent.com:sub":
 "repo:GitHubOrg/GitHubRepo:ref:refs/heads/GitHubBranch"
 }
 }
 }
]
}

The following example condition limits access to the defined GitHub organization and repository,
but grants access to any branch within the repository.

"Condition": {
 "StringEquals": {
 "token.actions.githubusercontent.com:aud": "sts.amazonaws.com"
 },
 "StringLike": {
 "token.actions.githubusercontent.com:sub": "repo:GitHubOrg/GitHubRepo:*"
 }
}

The following example condition limits access to any repository or branch within
the defined GitHub organization. We recommend that you limit the condition key
token.actions.githubusercontent.com:sub to a specific value that limits access to GitHub
Actions from within your GitHub organization.

Creating roles 459

AWS Identity and Access Management User Guide

"Condition": {
 "StringEquals": {
 "token.actions.githubusercontent.com:aud": "sts.amazonaws.com"
 },
 "StringLike": {
 "token.actions.githubusercontent.com:sub": "repo:GitHubOrg/*"
 }
}

For more information about the OIDC federation keys available for condition checks in policies, see
Available keys for AWS web identity federation.

Create a role for SAML 2.0 federation (console)

You can use SAML 2.0 federation instead of creating IAM users in your AWS account. With an
identity provider (IdP), you can manage your user identities outside of AWS and give these external
user identities permissions to access AWS resources in your account. For more information about
federation and identity providers, see Identity providers and federation.

Note

To improve federation resiliency, we recommend that you configure your IdP and AWS
federation to support multiple SAML sign-in endpoints. For details, see the AWS Security
Blog article How to use regional SAML endpoints for failover.

Prerequisites for creating a role for SAML

Before you can create a role for SAML 2.0 federation, you must first complete the following
prerequisite steps.

To prepare to create a role for SAML 2.0 federation

1. Before you create a role for SAML-based federation, you must create a SAML provider in IAM.
For more information, see Creating IAM SAML identity providers.

2. Prepare the policies for the role that the SAML 2.0–authenticated users will assume. As with
any role, a role for the SAML federation includes two policies. One is the role trust policy that
specifies who can assume the role. The other is the IAM permissions policy that specifies the
AWS actions and resources that the federated user is allowed or denied access to.

Creating roles 460

https://aws.amazon.com/blogs/security/how-to-use-regional-saml-endpoints-for-failover

AWS Identity and Access Management User Guide

When you create the trust policy for your role, you must use three values to ensure that only
your application can assume the role:

• For the Action element, use the sts:AssumeRoleWithSAML action.

• For the Principal element, use the string {"Federated":ARNofIdentityProvider}.
Replace ARNofIdentityProvider with the ARN of the SAML identity provider that you
created in Step 1.

• For the Condition element, use a StringEquals condition to test that the saml:aud
attribute from the SAML response matches the SAML federation endpoint for AWS.

The following example trust policy is designed for a SAML federated user:

{
 "Version": "2012-10-17",
 "Statement": {
 "Effect": "Allow",
 "Action": "sts:AssumeRoleWithSAML",
 "Principal": {"Federated": "arn:aws:iam::account-id:saml-provider/PROVIDER-
NAME"},
 "Condition": {"StringEquals": {"SAML:aud": "https://signin.aws.amazon.com/
saml"}}
 }
 }

Replace the principal ARN with the actual ARN for the SAML provider that you created in IAM.
It will have your own account ID and provider name.

Creating a role for SAML

After you complete the prerequisite steps, you can create the role for SAML-based federation.

To create a role for SAML-based federation

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. In the navigation pane of the IAM console, choose Roles and then choose Create role.

3. Choose the SAML 2.0 federation role type.

Creating roles 461

https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/

AWS Identity and Access Management User Guide

4. For Select a SAML provider, choose the provider for your role.

5. Choose the SAML 2.0 access level method.

• Choose Allow programmatic access only to create a role that can be assumed
programmatically from the AWS API or AWS CLI.

• Choose Allow programmatic and AWS Management Console access to create a role that
can be assumed programmatically and from the AWS Management Console.

The roles created by both are similar, but the role that can also be assumed from the console
includes a trust policy with a particular condition. That condition explicitly ensures that the
SAML audience (SAML:aud attribute) is set to the AWS sign-in endpoint for SAML (https://
signin.aws.amazon.com/saml).

6. If you're creating a role for programmatic access, choose an attribute from the Attribute
list. Then, in the Value box, enter a value to include in the role. This restricts role access to
users from the identity provider whose SAML authentication response (assertion) includes the
attributes that you specify. You must specify at least one attribute to ensure that your role is
limited to a subset of users at your organization.

If you're creating a role for programmatic and console access, the SAML:aud attribute
is automatically added and set to the URL of the AWS SAML endpoint (https://
signin.aws.amazon.com/saml).

7. To add more attribute-related conditions to the trust policy, choose Condition (optional),
select the additional condition, and specify a value.

Note

The list includes the most commonly used SAML attributes. IAM supports additional
attributes that you can use to create conditions. For a list of the supported attributes,
see Available Keys for SAML Federation. If you need a condition for a supported SAML
attribute that's not in the list, you can manually add that condition. To do that, edit the
trust policy after you create the role.

8. Review your SAML 2.0 trust information and then choose Next.

9. IAM includes a list of the AWS managed and customer managed policies in your account.
Select the policy to use for the permissions policy, or choose Create policy to open a new
browser tab and create a new policy from scratch. For more information, see Creating IAM

Creating roles 462

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_iam-condition-keys.html#condition-keys-saml

AWS Identity and Access Management User Guide

policies. After you create the policy, close that tab and return to your original tab. Select the
check box next to the permissions policies that you want web identity users to have. If you
prefer, you can select no policies at this time, and then attach policies to the role later. By
default, a role has no permissions.

10. (Optional) Set a permissions boundary. This is an advanced feature.

Open the Permissions boundary section and choose Use a permissions boundary to control
the maximum role permissions. Select the policy to use for the permissions boundary.

11. Choose Next.

12. Choose Next: Review.

13. For Role name, enter a role name. Role names must be unique within your AWS account. They
are not distinguished by case. For example, you cannot create roles named both PRODROLE
and prodrole. Because other AWS resources might reference the role, you cannot edit the
name of the role after it has been created.

14. (Optional) For Description, enter a description for the new role.

15. Choose Edit in the Step 1: Select trusted entities or Step 2: Add permissions sections to edit
the use cases and permissions for the role.

16. (Optional) Add metadata to the role by attaching tags as key–value pairs. For more
information about using tags in IAM, see Tagging IAM resources.

17. Review the role and then choose Create role.

After you create the role, you complete the SAML trust by configuring your identity provider
software with information about AWS. This information includes the roles that you want your
federated users to use. This is referred to as configuring the relying party trust between your IdP
and AWS. For more information, see Configuring your SAML 2.0 IdP with relying party trust and
adding claims.

Creating a role using custom trust policies (console)

You can create a custom trust policy to delegate access and allow others to perform actions in your
AWS account. For more information, see Creating IAM policies.

For information about how to use roles to delegate permissions, see Roles terms and concepts.

Creating roles 463

AWS Identity and Access Management User Guide

Creating an IAM role using a custom trust policy (console)

You can use the AWS Management Console to create a role that an IAM user can assume. For
example, assume that your organization has multiple AWS accounts to isolate a development
environment from a production environment. For high-level information about creating a role
that allows users in the development account to access resources in the production account, see
Example scenario using separate development and production accounts.

To create a role using a custom trust policy (console)

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. In the navigation pane of the console, choose Roles and then choose Create role.

3. Choose the Custom trust policy role type.

4. In the Custom trust policy section, enter or paste the custom trust policy for the role. For
more information, see Creating IAM policies.

5. Resolve any security warnings, errors, or general warnings generated during policy validation,
and then choose Next.

6. Select the check box next to the custom trust policy you created.

7. (Optional) Set a permissions boundary. This is an advanced feature that is available for service
roles, but not service-linked roles.

Open the Permissions boundary section and choose Use a permissions boundary to control
the maximum role permissions. IAM includes a list of the AWS managed and customer
managed policies in your account. Select the policy to use for the permissions boundary.

8. Choose Next.

9. For Role name, the degree of role name customization is defined by the service. If the service
defines the role's name, this option is not editable. In other cases, the service might define a
prefix for the role and allow you to enter an optional suffix. Some services allow you to specify
the entire name of your role.

If possible, enter a role name or role name suffix. Role names must be unique within your AWS
account. They are not distinguished by case. For example, you cannot create roles named both
PRODROLE and prodrole. Because other AWS resources might reference the role, you cannot
edit the name of the role after it has been created.

10. (Optional) For Description, enter a description for the new role.

Creating roles 464

https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/

AWS Identity and Access Management User Guide

11. Choose Edit in the Step 1: Select trusted entities or Step 2: Add permissions sections to edit
the custom policy and permissions for the role.

12. (Optional) Add metadata to the role by attaching tags as key–value pairs. For more
information about using tags in IAM, see Tagging IAM resources.

13. Review the role and then choose Create role.

Examples of policies for delegating access

The following examples show how you can allow or grant an AWS account access to the resources
in another AWS account. To learn how to create an IAM policy using these example JSON policy
documents, see the section called “Creating policies using the JSON editor”.

Topics

• Using roles to delegate access to the resources of another AWS account resources

• Using a policy to delegate access to services

• Using a resource-based policy to delegate access to an Amazon S3 bucket in another account

• Using a resource-based policy to delegate access to an Amazon SQS queue in another account

• Cannot delegate access when the account is denied access

Using roles to delegate access to the resources of another AWS account resources

For a tutorial that shows how to use IAM roles to grant users in one account access to AWS
resources that are in another account, see IAM tutorial: Delegate access across AWS accounts using
IAM roles.

Important

You can include the ARN for a specific role or user in the Principal element of a role
trust policy. When you save the policy, AWS transforms the ARN to a unique principal
ID. This helps mitigate the risk of someone escalating their privileges by removing and
recreating the role or user. You don't normally see this ID in the console, because there is
also a reverse transformation back to the ARN when the trust policy is displayed. However,
if you delete the role or user, then the relationship is broken. The policy no longer applies,
even if you recreate the user or role because it does not match the principal ID stored in
the trust policy. When this happens, the principal ID shows up in the console because AWS
can no longer map it back to an ARN. The result is that if you delete and recreate a user or

Creating roles 465

AWS Identity and Access Management User Guide

role referenced in a trust policy's Principal element, you must edit the role to replace the
ARN. It is transformed into the new principal ID when you save the policy.

Using a policy to delegate access to services

The following example shows a policy that can be attached to a role. The policy enables two
services, Amazon EMR and AWS Data Pipeline, to assume the role. The services can then perform
any tasks granted by the permissions policy assigned to the role (not shown). To specify multiple
service principals, you do not specify two Service elements; you can have only one. Instead, you
use an array of multiple service principals as the value of a single Service element.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": [
 "elasticmapreduce.amazonaws.com",
 "datapipeline.amazonaws.com"
]
 },
 "Action": "sts:AssumeRole"
 }
]
}

Using a resource-based policy to delegate access to an Amazon S3 bucket in another account

In this example, account A uses a resource-based policy (an Amazon S3 bucket policy) to grant
account B full access to account A's S3 bucket. Then account B creates an IAM user policy to
delegate that access to account A's bucket to one of the users in account B.

The S3 bucket policy in account A might look like the following policy. In this example, account
A's S3 bucket is named mybucket, and account B's account number is 111122223333. It does not
specify any individual users or groups in account B, only the account itself.

{
 "Version": "2012-10-17",
 "Statement": {

Creating roles 466

https://docs.aws.amazon.com/AmazonS3/latest/dev/UsingBucketPolicies.html

AWS Identity and Access Management User Guide

 "Sid": "AccountBAccess1",
 "Effect": "Allow",
 "Principal": {"AWS": "111122223333"},
 "Action": "s3:*",
 "Resource": [
 "arn:aws:s3:::mybucket",
 "arn:aws:s3:::mybucket/*"
]
 }
}

Alternatively, account A can use Amazon S3 Access Control Lists (ACLs) to grant account B access
to an S3 bucket or a single object within a bucket. In that case, the only thing that changes is how
account A grants access to account B. Account B still uses a policy to delegate access to an IAM
group in account B, as described in the next part of this example. For more information about
controlling access on S3 buckets and objects, go to Access Control in the Amazon Simple Storage
Service User Guide.

The administrator of account B might create the following policy sample. The policy allows read
access to a group or user in account B. The preceding policy grants access to account B. However,
individual groups and users in account B cannot access the resource until a group or user policy
explicitly grants permissions to the resource. The permissions in this policy can only be a subset
of those in the preceding cross-account policy. Account B cannot grant more permissions to its
groups and users than account A granted to account B in the first policy. In this policy, the Action
element is explicitly defined to allow only List actions, and the Resource element of this policy
matches the Resource for the bucket policy implemented by account A.

To implement this policy account B uses IAM to attach it to the appropriate user (or group) in
account B.

{
 "Version": "2012-10-17",
 "Statement": {
 "Effect": "Allow",
 "Action": "s3:List*",
 "Resource": [
 "arn:aws:s3:::mybucket",
 "arn:aws:s3:::mybucket/*"
]
 }
}

Creating roles 467

https://docs.aws.amazon.com/AmazonS3/latest/dev/S3_ACLs_UsingACLs.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/UsingAuthAccess.html

AWS Identity and Access Management User Guide

Using a resource-based policy to delegate access to an Amazon SQS queue in another account

In the following example, account A has an Amazon SQS queue that uses a resource-based policy
attached to the queue to grant queue access to account B. Then account B uses an IAM group
policy to delegate access to a group in account B.

The following example queue policy gives account B permission to perform the SendMessage
and ReceiveMessage actions on account A's queue named queue1, but only between noon and
3:00 p.m. on November 30, 2014. Account B's account number is 1111-2222-3333. Account A uses
Amazon SQS to implement this policy.

{
 "Version": "2012-10-17",
 "Statement": {
 "Effect": "Allow",
 "Principal": {"AWS": "111122223333"},
 "Action": [
 "sqs:SendMessage",
 "sqs:ReceiveMessage"
],
 "Resource": ["arn:aws:sqs:*:123456789012:queue1"],
 "Condition": {
 "DateGreaterThan": {"aws:CurrentTime": "2014-11-30T12:00Z"},
 "DateLessThan": {"aws:CurrentTime": "2014-11-30T15:00Z"}
 }
 }
}

Account B's policy for delegating access to a group in account B might look like the following
example. Account B uses IAM to attach this policy to a group (or user).

{
 "Version": "2012-10-17",
 "Statement": {
 "Effect": "Allow",
 "Action": "sqs:*",
 "Resource": "arn:aws:sqs:*:123456789012:queue1"
 }
}

In the preceding IAM user policy example, account B uses a wildcard to grant its user access to all
Amazon SQS actions on account A's queue. However account B can delegate access only to the

Creating roles 468

AWS Identity and Access Management User Guide

extent that account B has been granted access. The account B group that has the second policy
can access the queue only between noon and 3:00 p.m. on November 30, 2014. The user can only
perform the SendMessage and ReceiveMessage actions, as defined in account A's Amazon SQS
queue policy.

Cannot delegate access when the account is denied access

An AWS account cannot delegate access to another account's resources if the other account has
explicitly denied access to the user's parent account. The deny propagates to the users under that
account whether or not the users have existing policies granting them access.

For example, account A writes a bucket policy on account A's S3 bucket that explicitly denies
account B access to account A's bucket. But account B writes an IAM user policy that grants a
user in account B access to account A's bucket. The explicit deny applied to account A's S3 bucket
propagates to the users in account B. It overrides the IAM user policy granting access to the user in
account B. (For detailed information how permissions are evaluated, see Policy evaluation logic.)

Account A's bucket policy might look like the following policy. In this example, account A's S3
bucket is named mybucket, and account B's account number is 1111-2222-3333. Account A uses
Amazon S3 to implement this policy.

{
 "Version": "2012-10-17",
 "Statement": {
 "Sid": "AccountBDeny",
 "Effect": "Deny",
 "Principal": {"AWS": "111122223333"},
 "Action": "s3:*",
 "Resource": "arn:aws:s3:::mybucket/*"
 }
}

This explicit deny overrides any policies in account B that provide permission to access the S3
bucket in account A.

Using IAM roles

Before a user, application, or service can use a role that you created, you must grant permissions
to switch to the role. You can use any policy attached to groups or users to grant the necessary
permissions. This section describes how to grant users permission to use a role. It also explains

Using roles 469

AWS Identity and Access Management User Guide

how the user can switch to a role from the AWS Management Console, the Tools for Windows
PowerShell, the AWS Command Line Interface (AWS CLI) and the AssumeRole API.

Important

When you create a role programmatically instead of in the IAM console, you have an option
to add a Path of up to 512 characters in addition to the RoleName, which can be up to
64 characters long. However, if you intend to use a role with the Switch Role feature in
the AWS Management Console, then the combined Path and RoleName cannot exceed 64
characters.

You can switch roles from the AWS Management Console. You can assume a role by calling an
AWS CLI or API operation or by using a custom URL. The method that you use determines who
can assume the role and how long the role session can last. When using AssumeRole* API
operations, the IAM role that you assume is the resource. The user or role that calls AssumeRole*
API operations is the principal.

Comparing methods for using roles

Method of
assuming the
role

Who can assume the role Method
to specify
credential
lifetime

Credential
lifetime (min |
max | default)

AWS
Management
Console

User (by switching roles) Maximum
session duration
on the Role
Summary page

15m | Maximum
session duration
setting² | 1hr

assume-ro
le CLI or
AssumeRole
API operation

User or role¹ duration-
seconds CLI
or DurationS
econds API
parameter

15m | Maximum
session duration
setting² | 1hr

assume-ro
le-with-
saml CLI or

Any user authenticated using SAML duration-
seconds CLI
or DurationS

15m | Maximum
session duration
setting² | 1hr

Using roles 470

https://docs.aws.amazon.com/STS/latest/APIReference/API_AssumeRole.html
https://docs.aws.amazon.com/cli/latest/reference/sts/assume-role.html
https://docs.aws.amazon.com/cli/latest/reference/sts/assume-role.html
https://docs.aws.amazon.com/STS/latest/APIReference/API_AssumeRole.html
https://docs.aws.amazon.com/cli/latest/reference/sts/assume-role-with-saml.html
https://docs.aws.amazon.com/cli/latest/reference/sts/assume-role-with-saml.html
https://docs.aws.amazon.com/cli/latest/reference/sts/assume-role-with-saml.html

AWS Identity and Access Management User Guide

Method of
assuming the
role

Who can assume the role Method
to specify
credential
lifetime

Credential
lifetime (min |
max | default)

AssumeRol
eWithSAML
API operation

econds API
parameter

assume-ro
le-with-w
eb-identi
ty CLI or
AssumeRol
eWithWebI
dentity API
operation

Any user authenticated using a web
identity provider

duration-
seconds CLI
or DurationS
econds API
parameter

15m | Maximum
session duration
setting² | 1hr

Console URL
constructed with
AssumeRole

User or role SessionDu
ration HTML
parameter in the
URL

15m | 12hr | 1hr

Console URL
constructed with
AssumeRol
eWithSAML

Any user authenticated using SAML SessionDu
ration HTML
parameter in the
URL

15m | 12hr | 1hr

Console URL
constructed with
AssumeRol
eWithWebI
dentity

Any user authenticated using a web
identity provider

SessionDu
ration HTML
parameter in the
URL

15m | 12hr | 1hr

¹ Using the credentials for one role to assume a different role is called role chaining. When you use
role chaining, your new credentials are limited to a maximum duration of one hour. When you use

Using roles 471

https://docs.aws.amazon.com/STS/latest/APIReference/API_AssumeRoleWithSAML.html
https://docs.aws.amazon.com/STS/latest/APIReference/API_AssumeRoleWithSAML.html
https://docs.aws.amazon.com/cli/latest/reference/sts/assume-role-with-web-identity.html
https://docs.aws.amazon.com/cli/latest/reference/sts/assume-role-with-web-identity.html
https://docs.aws.amazon.com/cli/latest/reference/sts/assume-role-with-web-identity.html
https://docs.aws.amazon.com/cli/latest/reference/sts/assume-role-with-web-identity.html
https://docs.aws.amazon.com/STS/latest/APIReference/API_AssumeRoleWithWebIdentity.html
https://docs.aws.amazon.com/STS/latest/APIReference/API_AssumeRoleWithWebIdentity.html
https://docs.aws.amazon.com/STS/latest/APIReference/API_AssumeRoleWithWebIdentity.html

AWS Identity and Access Management User Guide

roles to grant permissions to applications that run on EC2 instances, those applications are not
subject to this limitation.

² This setting can have a value from 1 hour to 12 hours. For details about modifying the maximum
session duration setting, see Modifying a role. This setting determines the maximum session
duration that you can request when you get the role credentials. For example, when you use
the AssumeRole* API operations to assume a role, you can specify a session length using the
DurationSeconds parameter. Use this parameter to specify the length of the role session from
900 seconds (15 minutes) up to the maximum session duration setting for the role. IAM users who
switch roles in the console are granted the maximum session duration, or the remaining time in
their user session, whichever is less. Assume that you set a maximum duration of 5 hours on a role.
An IAM user that has been signed into the console for 10 hours (out of the default maximum of
12) switches to the role. The available role session duration is 2 hours. To learn how to view the
maximum value for your role, see View the maximum session duration setting for a role later in this
page.

Notes

• The maximum session duration setting does not limit sessions that are assumed by AWS
services.

• Amazon EC2 IAM role credentials are not subject to maximum session durations
configured in the role.

• To allow users to assume the current role again within a role session, specify the role
ARN or AWS account ARN as a principal in the role trust policy. AWS services that provide
compute resources such as Amazon EC2, Amazon ECS, Amazon EKS, and Lambda provide
temporary credentials and automatically update these credentials. This ensures that you
always have a valid set of credentials. For these services, it's not necessary to assume
the current role again to obtain temporary credentials. However, if you intend to pass
session tags or a session policy, you need to assume the current role again. To learn
how to modify a role trust policy to add the principal role ARN or AWS account ARN, see
Modifying a role trust policy (console).

Topics

• View the maximum session duration setting for a role

• Granting a user permissions to switch roles

Using roles 472

https://docs.aws.amazon.com/STS/latest/APIReference/API_AssumeRole.html

AWS Identity and Access Management User Guide

• Granting a user permissions to pass a role to an AWS service

• Switching to a role (console)

• Switching to an IAM role (AWS CLI)

• Switching to an IAM role (Tools for Windows PowerShell)

• Switching to an IAM role (AWS API)

• Using an IAM role to grant permissions to applications running on Amazon EC2 instances

• Revoking IAM role temporary security credentials

View the maximum session duration setting for a role

You can specify the maximum session duration for a role using the AWS Management Console or
by using the AWS CLI or AWS API. When you use an AWS CLI or API operation to assume a role,
you can specify a value for the DurationSeconds parameter. You can use this parameter to
specify the duration of the role session, from 900 seconds (15 minutes) up to the maximum session
duration setting for the role. Before you specify the parameter, you should view this setting for
your role. If you specify a value for the DurationSeconds parameter that is higher than the
maximum setting, the operation fails.

To view a role's maximum session duration (console)

1. In the navigation pane of the IAM console, choose Roles.

2. Choose the name of the role that you want to view.

3. Next to Maximum session duration, view the maximum session length that is granted for
the role. This is the maximum session duration that you can specify in your AWS CLI, or API
operation.

To view a role's maximum session duration setting (AWS CLI)

1. If you don't know the name of the role that you want to assume, run the following command
to list the roles in your account:

• aws iam list-roles

2. To view the role's maximum session duration, run the following command. Then view the
maximum session duration parameter.

• aws iam get-role

Using roles 473

https://docs.aws.amazon.com/cli/latest/reference/iam/list-roles.html
https://docs.aws.amazon.com/cli/latest/reference/iam/get-role.html

AWS Identity and Access Management User Guide

To view a role's maximum session duration setting (AWS API)

1. If you don't know the name of the role that you want to assume, call the following operation
to list the roles in your account:

• ListRoles

2. To view the role's maximum session duration, run the following operation. Then view the
maximum session duration parameter.

• GetRole

Granting a user permissions to switch roles

When an administrator creates a role for cross-account access, they establish trust between the
account that owns the role, the resources (trusting account), and the account that contains the
users (trusted account). To do this, the administrator of the trusting account specifies the trusted
account number as the Principal in the role's trust policy. That potentially allows any user in the
trusted account to assume the role. To complete the configuration, the administrator of the trusted
account must give specific groups or users in that account permission to switch to the role.

To grant permission to switch to a role

1. As the administrator of the trusted account, create a new policy for the user, or edit an existing
policy to add the required elements. For details, see Creating or editing the policy.

2. Then, choose how you want to share the role information:

• Role link: Send users a link that takes them to the Switch Role page with all the details
already filled in.

• Account ID or alias: Provide each user with the role name along with the account ID number
or account alias. The user then goes to the Switch Role page and adds the details manually.

For details, see Providing information to the user.

Note that you can switch roles only when you sign in as an IAM user, a SAML-federated role, or a
web-identity federated role. You cannot switch roles when you sign in as the AWS account root
user.

Using roles 474

https://docs.aws.amazon.com/IAM/latest/APIReference/API_ListRoles.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_GetRole.html

AWS Identity and Access Management User Guide

Important

You cannot switch roles in the AWS Management Console to a role that requires an
ExternalId value. You can switch to such a role only by calling the AssumeRole API that
supports the ExternalId parameter.

Notes

• This topic discusses policies for a user, because you are ultimately granting permissions
to a user to accomplish a task. However, we don't recommend that you grant permissions
directly to an individual user. When a user assumes a role, they are assigned the
permissions associated with that role.

• When you switch roles in the AWS Management Console, the console always uses your
original credentials to authorize the switch. This applies whether you sign in as an IAM
user, as a SAML-federated role, or as a web-identity federated role. For example, if you
switch to RoleA, IAM uses your original user or federated role credentials to determine
if you are allowed to assume RoleA. If you then try to switch to RoleB while you are
using RoleA, your original user or federated role credentials are used to authorize your
attempt. The credentials for RoleA are not used for this action.

Topics

• Creating or editing the policy

• Providing information to the user

Creating or editing the policy

A policy that grants a user permission to assume a role must include a statement with the Allow
effect on the following:

• The sts:AssumeRole action

• The Amazon Resource Name (ARN) of the role in a Resource element

Users that get the policy are allowed to switch roles on the resource listed (either through group
membership or directly attached).

Using roles 475

https://docs.aws.amazon.com/STS/latest/APIReference/API_AssumeRole.html

AWS Identity and Access Management User Guide

Note

If Resource is set to *, the user can assume any role in any account that trusts the user's
account. (In other words, the role's trust policy specifies the user's account as Principal).
As a best practice, we recommend that you follow the principle of least privilege and
specify the complete ARN for only the roles that the user needs.

The following example shows a policy that lets the user assume roles in only one account. In
addition, the policy uses a wildcard (*) to specify that the user can switch to a role only if the role
name begins with the letters Test.

{
 "Version": "2012-10-17",
 "Statement": {
 "Effect": "Allow",
 "Action": "sts:AssumeRole",
 "Resource": "arn:aws:iam::account-id:role/Test*"
 }
}

Note

The permissions that the role grants to the user do not add to the permissions already
granted to the user. When a user switches to a role, the user temporarily gives up his or
her original permissions in exchange for those granted by the role. When the user exits the
role, then the original user permissions are automatically restored. For example, let's say
the user's permissions allow working with Amazon EC2 instances, but the role's permissions
policy does not grant those permissions. In that case, while using the role, the user cannot
work with Amazon EC2 instances in the console. In addition, temporary credentials
obtained via AssumeRole do not work with Amazon EC2 instances programmatically.

Providing information to the user

After you create a role and grant your user permissions to switch to it, you must provide the user
with the following:

• The name of the role

Using roles 476

http://en.wikipedia.org/wiki/Principle_of_least_privilege

AWS Identity and Access Management User Guide

• The ID or alias of the account that contains the role

You can streamline access for your users by sending them a link that is preconfigured with the
account ID and role name. You can see the role link after completing the Create Role wizard by
selecting the View Role banner, or on the Role Summary page for any cross-account enabled role.

You can also use the following format to manually construct the link. Substitute your account ID or
alias and the role name for the two parameters in the following example.

https://signin.aws.amazon.com/switchrole?
account=your_account_ID_or_alias&roleName=optional_path/role_name

We recommend that you direct your users to Switching to a role (console) to walk them through
the process. To troubleshoot common issues that you might encounter when you assume a role,
see I can't assume a role.

Considerations

• If you create the role programmatically, you can create the role with a path and a name. If you
do so, you must provide the complete path and role name to your users so they can enter it
on the Switch Role page of the AWS Management Console. For example: division_abc/
subdivision_efg/role_XYZ.

• If you create the role programmatically, you can add a Path of up to 512 characters and a
RoleName. The role name can be up to 64 characters long. However, to use a role with the
Switch Role feature in the AWS Management Console, the combined Path and RoleName
cannot exceed 64 characters.

• For security purposes, you can review AWS CloudTrail logs to learn who performed an action in
AWS. You can use the sts:SourceIdentity condition key in the role trust policy to require
users to specify an identity when they assume a role. For example, you can require that IAM users
specify their own user name as their source identity. This can help you determine which user
performed a specific action in AWS. For more information, see sts:SourceIdentity. You can
also use sts:RoleSessionName to require users to specify a session name when they assume
a role. This can help you differentiate between role sessions when a role is used by different
principals.

Using roles 477

AWS Identity and Access Management User Guide

Granting a user permissions to pass a role to an AWS service

To configure many AWS services, you must pass an IAM role to the service. This allows the service
to assume the role later and perform actions on your behalf. For most services, you only have to
pass the role to the service once during setup, and not every time that the service assumes the
role. For example, assume that you have an application running on an Amazon EC2 instance. That
application requires temporary credentials for authentication, and permissions to authorize the
application to perform actions in AWS. When you set up the application, you must pass a role to
Amazon EC2 to use with the instance that provides those credentials. You define the permissions
for the applications running on the instance by attaching an IAM policy to the role. The application
assumes the role every time it needs to perform the actions that are allowed by the role.

To pass a role (and its permissions) to an AWS service, a user must have permissions to pass the role
to the service. This helps administrators ensure that only approved users can configure a service
with a role that grants permissions. To allow a user to pass a role to an AWS service, you must
grant the PassRole permission to the user's IAM user, role, or group.

Warning

• You can only use the PassRole permission to pass an IAM role to a service that shares
the same AWS account. To pass a role in Account A to a service in Account B, you must
first create an IAM role in Account B that can assume the role from Account A, and then
the role in Account B can be passed to the service. For details, see Cross account resource
access in IAM.

• Do not try to control who can pass a role by tagging the role and then using the
ResourceTag condition key in a policy with the iam:PassRole action. This approach
does not have reliable results.

When setting the PassRole permission, you should make sure that a user doesn’t pass a role
where the role has more permissions than you want the user to have. For example, Alice might
not be allowed to perform any Amazon S3 actions. If Alice could pass a role to a service that
allows Amazon S3 actions, the service could perform Amazon S3 actions on behalf of Alice when
executing the job.

When you specify a service-linked role, you must also have permission to pass that role to
the service. Some services automatically create a service-linked role in your account when

Using roles 478

AWS Identity and Access Management User Guide

you perform an action in that service. For example, Amazon EC2 Auto Scaling creates the
AWSServiceRoleForAutoScaling service-linked role for you when you create an Auto Scaling
group for the first time. If you try to specify the service-linked role when you create an Auto
Scaling group and you don't have the iam:PassRole permission, you receive an error. If you
don't explicitly specify the role, the iam:PassRole permission is not required, and the default
is to use AWSServiceRoleForAutoScaling role for all operations that are performed on that
group. To learn which services support service-linked roles, see AWS services that work with IAM.
To learn which services automatically create a service-linked role when you perform an action in
that service, choose the Yes link and view the service-linked role documentation for the service.

A user can pass a role ARN as a parameter in any API operation that uses the role to assign
permissions to the service. The service then checks whether that user has the iam:PassRole
permission. To limit the user to passing only approved roles, you can filter the iam:PassRole
permission with the Resources element of the IAM policy statement.

You can use the Condition element in a JSON policy to test the value of keys included in the
request context of all AWS requests. To learn more about using condition keys in a policy, see
IAM JSON policy elements: Condition. The iam:PassedToService condition key can be used to
specify the service principal of the service to which a role can be passed. To learn more about using
the iam:PassedToService condition key in a policy, see iam:PassedToService.

Example 1

Suppose you want to grant a user the ability to pass any of an approved set of roles to the Amazon
EC2 service upon launching an instance. You need three elements:

• An IAM permissions policy attached to the role that determines what the role can do. Scope
permissions to only the actions that the role must perform, and to only the resources that the
role needs for those actions. You can use an AWS managed or customer-created IAM permissions
policy.

{
 "Version": "2012-10-17",
 "Statement": {
 "Effect": "Allow",
 "Action": ["A list of the permissions the role is allowed to use"],
 "Resource": ["A list of the resources the role is allowed to access"]
 }
}

Using roles 479

AWS Identity and Access Management User Guide

• A trust policy for the role that allows the service to assume the role. For example, you could
attach the following trust policy to the role with the UpdateAssumeRolePolicy action. This
trust policy allows Amazon EC2 to use the role and the permissions attached to the role.

{
 "Version": "2012-10-17",
 "Statement": {
 "Sid": "TrustPolicyStatementThatAllowsEC2ServiceToAssumeTheAttachedRole",
 "Effect": "Allow",
 "Principal": { "Service": "ec2.amazonaws.com" },
 "Action": "sts:AssumeRole"
 }
}

• An IAM permissions policy attached to the IAM user that allows the user to pass only those
approved roles. You usually add iam:GetRole to iam:PassRole so the user can get the details
of the role to be passed. In this example, the user can pass only roles that exist in the specified
account with names beginning with EC2-roles-for-XYZ-:

{
 "Version": "2012-10-17",
 "Statement": [{
 "Effect": "Allow",
 "Action": [
 "iam:GetRole",
 "iam:PassRole"
],
 "Resource": "arn:aws:iam::account-id:role/EC2-roles-for-XYZ-*"
 }]
}

Now the user can start an Amazon EC2 instance with an assigned role. Applications running on the
instance can access temporary credentials for the role through the instance profile metadata. The
permissions policies attached to the role determine what the instance can do.

Example 2

Amazon Relational Database Service (Amazon RDS) supports a feature called Enhanced
Monitoring. This feature enables Amazon RDS to monitor a database instance using an agent. It
also allows Amazon RDS to log metrics to Amazon CloudWatch Logs. To enable this feature, you

Using roles 480

AWS Identity and Access Management User Guide

must create a service role to give Amazon RDS permissions to monitor and write metrics to your
logs.

To create a role for Amazon RDS enhanced monitoring

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. Choose Roles, and then choose Create role.

3. Choose the AWS Service role type, and then for Use cases for other AWS services, choose the
RDS service. Choose RDS – Enhanced Monitoring, and then choose Next.

4. Choose the AmazonRDSEnhancedMonitoringRole permissions policy.

5. Choose Next.

6. For Role name, enter a role name that helps you identify the purpose of this role. Role names
must be unique within your AWS account. When a role name is used in a policy or as part of an
ARN, the role name is case sensitive. When a role name appears to customers in the console,
such as during the sign-in process, the role name is case insensitive. Because various entities
might reference the role, you can't edit the name of the role after it is created.

7. (Optional) For Description, enter a description for the new role.

8. (Optional) Add metadata to the user by attaching tags as key-value pairs. For more
information about using tags in IAM, see Tagging IAM resources.

9. Review the role and then choose Create role.

The role automatically gets a trust policy that grants the monitoring.rds.amazonaws.com
service permissions to assume the role. After it does, Amazon RDS can perform all of the actions
that the AmazonRDSEnhancedMonitoringRole policy allows.

The user that you want to access Enhanced Monitoring needs a policy that includes a statement
that allows the user to to list the RDS roles and a statement that allows the user to pass the
role, like the following. Use your account number and replace the role name with the name you
provided in step 6.

 {
 "Sid": "PolicyStatementToAllowUserToListRoles",
 "Effect": "Allow",
 "Action": ["iam:ListRoles"],
 "Resource": "*"
 },

Using roles 481

https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/

AWS Identity and Access Management User Guide

 {
 "Sid": "PolicyStatementToAllowUserToPassOneSpecificRole",
 "Effect": "Allow",
 "Action": ["iam:PassRole"],
 "Resource": "arn:aws:iam::account-id:role/RDS-Monitoring-Role"
 }

You can combine this statement with statements in another policy or put it in its own policy. To
instead specify that the user can pass any role that begins with RDS-, you can replace the role
name in the resource ARN with a wildcard, as follows.

 "Resource": "arn:aws:iam::account-id:role/RDS-*"

iam:PassRole actions in AWS CloudTrail logs

PassRole is not an API call. PassRole is a permission, meaning no CloudTrail logs are generated
for IAM PassRole. To review what roles are passed to which AWS services in CloudTrail, you
must review the CloudTrail log that created or modified the AWS resource receiving the role.
For example, a role is passed to an AWS Lambda function when it's created. The log for the
CreateFunction action shows a record of role that was passed to the function.

Switching to a role (console)

A role specifies a set of permissions that you can use to access AWS resources that you need. In that
sense, it is similar to a user in AWS Identity and Access Management (IAM). When you sign in as
a user, you get a specific set of permissions. However, you don't sign in to a role, but once signed
in you can switch to a role. This temporarily sets aside your original user permissions and instead
gives you the permissions assigned to the role. The role can be in your own account or any other
AWS account. For more information about roles, their benefits, and how to create them, see IAM
roles, and Creating IAM roles.

Important

The permissions of your user and any roles that you switch to are not cumulative. Only one
set of permissions is active at a time. When you switch to a role, you temporarily give up
your user permissions and work with the permissions that are assigned to the role. When
you exit the role, your user permissions are automatically restored.

Using roles 482

https://docs.aws.amazon.com/IAM/latest/UserGuide/id.html

AWS Identity and Access Management User Guide

When you switch roles in the AWS Management Console, the console always uses your original
credentials to authorize the switch. This applies whether you sign in as an IAM user, a user in IAM
Identity Center, as a SAML-federated role, or as a web-identity federated role. For example, if you
switch to RoleA, IAM uses your original user or federated role credentials to determine whether
you are allowed to assume RoleA. If you then switch to RoleB while you are using RoleA, AWS still
uses your original user or federated role credentials to authorize the switch, not the credentials for
RoleA.

Things to know about switching roles in the console

This section provides additional information about using the IAM console to switch to a role.

Notes:

• You cannot switch roles if you sign in as the AWS account root user. You can switch roles
when you sign in as an IAM user, a user in IAM Identity Center, a SAML-federated role, or
a web-identity federated role.

• You cannot switch roles in the AWS Management Console to a role that requires an
ExternalId value. You can switch to such a role only by calling the AssumeRole API that
supports the ExternalId parameter.

• If your administrator gives you a link, choose the link and then skip to step Step 5 in the
following procedure. The link takes you to the appropriate webpage and fills in the account ID (or
alias) and the role name.

• You can manually construct the link and then skip to step Step 5 in the following procedure. To
construct your link, use the following format:

https://signin.aws.amazon.com/switchrole?
account=account_id_number&roleName=role_name&displayName=text_to_display

Where you replace the following text:

• account_id_number – The 12-digit account identifier provided to you by your administrator.
Alternatively, your administrator might create an account alias so that the URL includes your
account name instead of an account ID. For more information, see User Types in the AWS Sign-
In User Guide.

Using roles 483

https://docs.aws.amazon.com/STS/latest/APIReference/API_AssumeRole.html
https://docs.aws.amazon.com/signin/latest/userguide/user-types-list.html

AWS Identity and Access Management User Guide

• role_name – The name of the role that you want to assume. You can get this from the end
of the role's ARN. For example, provide the TestRole role name from the following role ARN:
arn:aws:iam::123456789012:role/TestRole.

• (Optional) text_to_display – The text that you want to appear on the navigation bar in
place of your user name when this role is active.

• You can manually switch roles using the information your administrator provides by using the
procedures that follow.

By default, when you switch roles, your AWS Management Console session lasts for 1 hour. IAM
user sessions are 12 hours by default. IAM users who switch roles in the console are granted the
role maximum session duration, or the remaining time in the user's session, whichever is less. For
example, assume that a maximum session duration of 10 hours is set for a role. An IAM user has
been signed in to the console for 8 hours when they decide to switch to the role. There are 4 hours
remaining in the user session, so the allowed role session duration is 4 hours. The following table
shows how to determine the session duration for an IAM user when switching roles in the console.

IAM users console role session duration

IAM user
session time
remaining is…

Role session duration is…

Less than role
maximum
session duration

Time remaining in user session

Greater than
role maximum
session duration

Maximum session duration value

Equal to role
maximum
session duration

Maximum session duration value
(approximate)

Using roles 484

AWS Identity and Access Management User Guide

Note

Some AWS service consoles can autorenew your role session when it expires without you
taking any action. Some might prompt you to reload your browser page to reauthenticate
your session.

To troubleshoot common issues that you might encounter when you assume a role, see I can't
assume a role.

To switch to a role (console)

1. Sign in to the AWS Management Console as an IAM user and open the IAM console at https://
console.aws.amazon.com/iam/.

2. In the IAM console, choose your user name on the navigation bar in the upper right. It typically
looks like this: username@account_ID_number_or_alias.

3. Choose Switch Role. If this is the first time choosing this option, a page appears with more
information. After reading it, choose Switch Role. If you clear your browser cookies, this page
can appear again.

4. On the Switch Role page, type the account ID number or the account alias and the name of
the role that was provided by your administrator.

Note

If your administrator created the role with a path, such as division_abc/
subdivision_efg/roleToDoX, then you must type that complete path and name in
the Role box. If you type only the role name, or if the combined Path and RoleName
exceed 64 characters, the role switch fails. This is a limit of the browser cookies that
store the role name. If this happens, contact your administrator and ask them to
reduce the size of the path and role name.

5. (Optional) Choose a Display name. Type text that you want to appear on the navigation bar
in place of your user name when this role is active. A name is suggested, based on the account
and role information, but you can change it to whatever has meaning for you. You can also
select a color to highlight the display name. The name and color can help remind you when
this role is active, which changes your permissions. For example, for a role that gives you
access to the test environment, you might specify a Display name of Test and select the

Using roles 485

https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/

AWS Identity and Access Management User Guide

green Color. For the role that gives you access to production, you might specify a Display
name of Production and select red as the Color.

6. Choose Switch Role. The display name and color replace your user name on the navigation bar,
and you can start using the permissions that the role grants you.

Tip

The last several roles that you used appear on the menu. The next time you need to switch
to one of those roles, you can simply choose the role you want. You only need to type the
account and role information manually if the role is not displayed on the menu.

To stop using a role (console)

1. In the IAM console, choose your role's Display name on the navigation bar in the upper right. It
typically looks like this: rolename@account_ID_number_or_alias.

2. Choose Back to username. The role and its permissions are deactivated, and the permissions
associated with your IAM user and groups are automatically restored.

For example, assume you are signed in to account number 123456789012 using the user
name RichardRoe. After you use the AdminRole role, you want to stop using the role and
return to your original permissions. To stop using a role, choose AdminRole @ 123456789012,
and then choose Back to RichardRoe.

Using roles 486

AWS Identity and Access Management User Guide

Switching to an IAM role (AWS CLI)

A role specifies a set of permissions that you can use to access AWS resources that you need. In that
sense, it is similar to a user in AWS Identity and Access Management (IAM). When you sign in as a
user, you get a specific set of permissions. However, you don't sign in to a role, but after signing
in as a user, you can switch to a role. This temporarily sets aside your original user permissions
and instead gives you the permissions assigned to the role. The role can be in your own account or
any other AWS account. For more information about roles, their benefits, and how to create and
configure them, see IAM roles, and Creating IAM roles. To learn about the different methods that
you can use to assume a role, see Using IAM roles.

Important

The permissions of your IAM user and any roles that you assume are not cumulative. Only
one set of permissions is active at a time. When you assume a role, you temporarily give up
your previous user or role permissions and work with the permissions that are assigned to
the role. When you exit the role, your user permissions are automatically restored.

You can use a role to run an AWS CLI command when you are signed in as an IAM user. You can
also use a role to run an AWS CLI command when you are signed in as an externally authenticated

Using roles 487

https://docs.aws.amazon.com/IAM/latest/UserGuide/id.html

AWS Identity and Access Management User Guide

user (SAML or OIDC) that is already using a role. In addition, you can use a role to run an AWS
CLI command from within an Amazon EC2 instance that is attached to a role through its instance
profile. You cannot assume a role when you are signed in as the AWS account root user.

Role chaining – You can also use role chaining, which is using permissions from a role to access a
second role.

By default, your role session lasts for one hour. When you assume this role using the assume-
role* CLI operations, you can specify a value for the duration-seconds parameter. This value
can range from 900 seconds (15 minutes) up to the maximum session duration setting for the role.
If you switch roles in the console, your session duration is limited to maximum of one hour. To learn
how to view the maximum value for your role, see View the maximum session duration setting for
a role.

If you use role chaining, your session duration is limited to a maximum of one hour. If you then use
the duration-seconds parameter to provide a value greater than one hour, the operation fails.

Example scenario: Switch to a production role

Imagine that you are an IAM user for working in the development environment. In this scenario,
you occasionally need to work with the production environment at the command line with the
AWS CLI. You already have an access key credential set available to you. This can be the access key
pair that is assigned to your standard IAM user. Or, if you signed in as a federated user, it can be
the access key pair for the role that was initially assigned to you. If your current permissions grant
you the ability to assume a specific IAM role, then you can identify that role in a "profile" in the
AWS CLI configuration files. That command is then run with the permissions of the specified IAM
role, not the original identity. Note that when you specify that profile in an AWS CLI command, you
are using the new role. In this situation, you cannot make use of your original permissions in the
development account at the same time. The reason is that only one set of permissions can be in
effect at a time.

Note

For security purposes, administrators can review AWS CloudTrail logs to learn who
performed an action in AWS. Your administrator might require that you specify a source
identity or a role session name when you assume the role. For more information, see
sts:SourceIdentity and sts:RoleSessionName.

Using roles 488

http://aws.amazon.com/cli/

AWS Identity and Access Management User Guide

To switch to a production role (AWS CLI)

1. If you have never used the AWS CLI, then you must first configure your default CLI profile.
Open a command prompt and set up your AWS CLI installation to use the access key from
your IAM user or from your federated role. For more information, see Configuring the AWS
Command Line Interface in the AWS Command Line Interface User Guide.

Run the aws configure command as follows:

aws configure

When prompted, provide the following information:

AWS Access Key ID [None]: AKIAIOSFODNN7EXAMPLE
AWS Secret Access Key [None]: wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY
Default region name [None]: us-east-2
Default output format [None]: json

2. Create a new profile for the role in the .aws/config file in Unix or Linux, or the C:\Users
\USERNAME\.aws\config file in Windows. The following example creates a profile called
prodaccess that switches to the role ProductionAccessRole in the 123456789012
account. You get the role ARN from the account administrator who created the role. When
this profile is invoked, the AWS CLI uses the credentials of the source_profile to request
credentials for the role. Because of that, the identity referenced as the source_profile must
have sts:AssumeRole permissions to the role that is specified in the role_arn.

[profile prodaccess]
 role_arn = arn:aws:iam::123456789012:role/ProductionAccessRole
 source_profile = default

3. After you create the new profile, any AWS CLI command that specifies the parameter --
profile prodaccess runs under the permissions that are attached to the IAM role
ProductionAccessRole instead of the default user.

aws iam list-users --profile prodaccess

This command works if the permissions assigned to the ProductionAccessRole enable
listing the users in the current AWS account.

Using roles 489

https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-started.html#cli-quick-configuration
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-started.html#cli-quick-configuration
https://docs.aws.amazon.com/cli/latest/reference/configure/

AWS Identity and Access Management User Guide

4. To return to the permissions granted by your original credentials, run commands without the
--profile parameter. The AWS CLI reverts to using the credentials in your default profile,
which you configured in Step 1.

For more information, see Assuming a Role in the AWS Command Line Interface User Guide.

Example scenario: Allow an instance profile role to switch to a role in another account

Imagine that you are using two AWS accounts, and you want to allow an application running on an
Amazon EC2 instance to run AWS CLI commands in both accounts. Assume that the EC2 instance
exists in account 111111111111. That instance includes the abcd instance profile role that allows
the application to perform read-only Amazon S3 tasks on the my-bucket-1 bucket within the
same 111111111111 account. However, the application must also be allowed to assume the efgh
cross-account role to perform tasks in account 222222222222. To do this, the abcd EC2 instance
profile role must have the following permissions policy:

Account 111111111111 abcd role permissions policy

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "AllowAccountLevelS3Actions",
 "Effect": "Allow",
 "Action": [
 "s3:GetBucketLocation",
 "s3:GetAccountPublicAccessBlock",
 "s3:ListAccessPoints",
 "s3:ListAllMyBuckets"
],
 "Resource": "arn:aws:s3:::*"
 },
 {
 "Sid": "AllowListAndReadS3ActionOnMyBucket",
 "Effect": "Allow",
 "Action": [
 "s3:Get*",
 "s3:List*"
],
 "Resource": [
 "arn:aws:s3:::my-bucket-1/*",
 "arn:aws:s3:::my-bucket-1"

Using roles 490

https://docs.aws.amazon.com/cli/latest/userguide/cli-roles.html
http://aws.amazon.com/cli/

AWS Identity and Access Management User Guide

]
 },
 {
 "Sid": "AllowIPToAssumeCrossAccountRole",
 "Effect": "Allow",
 "Action": "sts:AssumeRole",
 "Resource": "arn:aws:iam::222222222222:role/efgh"
 }
]
}

Assume that the efgh cross-account role allows read-only Amazon S3 tasks on the my-bucket-2
bucket within the same 222222222222 account. To do this, the efgh cross-account role must have
the following permissions policy:

Account 222222222222 efgh role permissions policy

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "AllowAccountLevelS3Actions",
 "Effect": "Allow",
 "Action": [
 "s3:GetBucketLocation",
 "s3:GetAccountPublicAccessBlock",
 "s3:ListAccessPoints",
 "s3:ListAllMyBuckets"
],
 "Resource": "arn:aws:s3:::*"
 },
 {
 "Sid": "AllowListAndReadS3ActionOnMyBucket",
 "Effect": "Allow",
 "Action": [
 "s3:Get*",
 "s3:List*"
],
 "Resource": [
 "arn:aws:s3:::my-bucket-2/*",
 "arn:aws:s3:::my-bucket-2"
]
 }

Using roles 491

AWS Identity and Access Management User Guide

]
}

The efgh role must allow the abcd instance profile role to assume it. To do this, the efgh role
must have the following trust policy:

Account 222222222222 efgh role trust policy

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "efghTrustPolicy",
 "Effect": "Allow",
 "Action": "sts:AssumeRole",
 "Principal": {"AWS": "arn:aws:iam::111111111111:role/abcd"}
 }
]
}

To then run AWS CLI commands in account 222222222222, you must update the CLI configuration
file. Identify the efgh role as the "profile" and the abcd EC2 instance profile role as the "credential
source" in the AWS CLI configuration file. Then your CLI commands are run with the permissions of
the efgh role, not the original abcd role.

Note

For security purposes, you can use AWS CloudTrail to audit the use of roles in the account.
To differentiate between role sessions when a role is used by different principals in
CloudTrail logs, you can use the role session name. When the AWS CLI assumes a role on
a user's behalf as described in this topic, a role session name is automatically created as
AWS-CLI-session-nnnnnnnn. Here nnnnnnnn is an integer that represents the time in
Unix epoch time (the number of seconds since midnight UTC on January 1, 1970). For more
information, see CloudTrail Event Reference in the AWS CloudTrail User Guide.

To allow an EC2 instance profile role to switch to a cross-account role (AWS CLI)

1. You do not have to configure a default CLI profile. Instead, you can load credentials from the
EC2 instance profile metadata. Create a new profile for the role in the .aws/config file. The

Using roles 492

http://wikipedia.org/wiki/Unix_time
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/eventreference.html

AWS Identity and Access Management User Guide

following example creates an instancecrossaccount profile that switches to the role efgh
in the 222222222222 account. When this profile is invoked, the AWS CLI uses the credentials
of the EC2 instance profile metadata to request credentials for the role. Because of that, the
EC2 instance profile role must have sts:AssumeRole permissions to the role specified in the
role_arn.

[profile instancecrossaccount]
role_arn = arn:aws:iam::222222222222:role/efgh
credential_source = Ec2InstanceMetadata

2. After you create the new profile, any AWS CLI command that specifies the parameter --
profile instancecrossaccount runs under the permissions that are attached to the
efgh role in account 222222222222.

aws s3 ls my-bucket-2 --profile instancecrossaccount

This command works if the permissions that are assigned to the efgh role allow listing the
users in the current AWS account.

3. To return to the original EC2 instance profile permissions in account 111111111111, run the
CLI commands without the --profile parameter.

For more information, see Assuming a Role in the AWS Command Line Interface User Guide.

Switching to an IAM role (Tools for Windows PowerShell)

A role specifies a set of permissions that you can use to access AWS resources that you need. In that
sense, it is similar to a user in AWS Identity and Access Management (IAM). When you sign in as
a user, you get a specific set of permissions. However, you don't sign in to a role, but once signed
in you can switch to a role. This temporarily sets aside your original user permissions and instead
gives you the permissions assigned to the role. The role can be in your own account or any other
AWS account. For more information about roles, their benefits, and how to create and configure
them, see IAM roles, and Creating IAM roles.

Important

The permissions of your IAM user and any roles that you switch to are not cumulative.
Only one set of permissions is active at a time. When you switch to a role, you temporarily

Using roles 493

https://docs.aws.amazon.com/cli/latest/userguide/cli-roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id.html

AWS Identity and Access Management User Guide

give up your user permissions and work with the permissions that are assigned to the role.
When you exit the role, your user permissions are automatically restored.

This section describes how to switch roles when you work at the command line with the AWS Tools
for Windows PowerShell.

Imagine that you have an account in the development environment and you occasionally need
to work with the production environment at the command line using the Tools for Windows
PowerShell. You already have one access key credential set available to you. These can be an
access key pair assigned to your standard IAM user. Or, if you signed-in as a federated user, they
can be the access key pair for the role initially assigned to you. You can use these credentials to
run the Use-STSRole cmdlet that passes the ARN of a new role as a parameter. The command
returns temporary security credentials for the requested role. You can then use those credentials
in subsequent PowerShell commands with the role's permissions to access resources in production.
While you use the role, you cannot use your user permissions in the Development account because
only one set of permissions is in effect at a time.

Note

For security purposes, administrators can review AWS CloudTrail logs to learn who
performed an action in AWS. Your administrator might require that you specify a source
identity or a role session name when you assume the role. For more information, see
sts:SourceIdentity and sts:RoleSessionName.

Note that all access keys and tokens are examples only and cannot be used as shown. Replace with
the appropriate values from your live environment.

To switch to a role (Tools for Windows PowerShell)

1. Open a PowerShell command prompt and configure the default profile to use the access key
from your current IAM user or from your federated role. If you have previously used the Tools
for Windows PowerShell, then this is likely already done. Note that you can switch roles only if
you are signed in as an IAM user, not the AWS account root user.

PS C:\> Set-AWSCredentials -AccessKey AKIAIOSFODNN7EXAMPLE -
SecretKey wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY -StoreAs MyMainUserProfile

Using roles 494

http://aws.amazon.com/powershell/
http://aws.amazon.com/powershell/

AWS Identity and Access Management User Guide

PS C:\> Initialize-AWSDefaults -ProfileName MyMainUserProfile -Region us-east-2

For more information, see Using AWS Credentials in the AWS Tools for Windows PowerShell
User Guide.

2. To retrieve credentials for the new role, run the following command to switch to the
RoleName role in the 123456789012 account. You get the role ARN from the account
administrator who created the role. The command requires that you provide a session name as
well. You can choose any text for that. The following command requests the credentials and
then captures the Credentials property object from the returned results object and stores it
in the $Creds variable.

PS C:\> $Creds = (Use-STSRole -RoleArn "arn:aws:iam::123456789012:role/RoleName" -
RoleSessionName "MyRoleSessionName").Credentials

$Creds is an object that now contains the AccessKeyId, SecretAccessKey, and
SessionToken elements that you need in the following steps. The following sample
commands illustrate typical values:

PS C:\> $Creds.AccessKeyId
AKIAIOSFODNN7EXAMPLE

PS C:\> $Creds.SecretAccessKey
wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY

PS C:\> $Creds.SessionToken
AQoDYXdzEGcaEXAMPLE2gsYULo
+Im5ZEXAMPLEeYjs1M2FUIgIJx9tQqNMBEXAMPLECvSRyh0FW7jEXAMPLEW+vE/7s1HRp
XviG7b+qYf4nD00EXAMPLEmj4wxS04L/uZEXAMPLECihzFB5lTYLto9dyBgSDyEXAMPLE9/
g7QRUhZp4bqbEXAMPLENwGPy
Oj59pFA4lNKCIkVgkREXAMPLEjlzxQ7y52gekeVEXAMPLEDiB9ST3UuysgsKdEXAMPLE1TVastU1A0SKFEXAMPLEiywCC/
C
s8EXAMPLEpZgOs+6hz4AP4KEXAMPLERbASP+4eZScEXAMPLEsnf87eNhyDHq6ikBQ==

PS C:\> $Creds.Expiration
Thursday, June 18, 2018 2:28:31 PM

3. To use these credentials for any subsequent command, include them with the -Credential
parameter. For example, the following command uses the credentials from the role and works
only if the role is granted the iam:ListRoles permission and can therefore run the Get-
IAMRoles cmdlet:

Using roles 495

https://docs.aws.amazon.com/powershell/latest/userguide/specifying-your-aws-credentials.html

AWS Identity and Access Management User Guide

 PS C:\> get-iamroles -Credential $Creds

4. To return to your original credentials, simply stop using the -Credentials $Creds
parameter and allow PowerShell to revert to the credentials that are stored in the default
profile.

Switching to an IAM role (AWS API)

A role specifies a set of permissions that you can use to access AWS resources. In that sense, it is
similar to an IAM user. A principal (person or application) assumes a role to receive temporary
permissions to carry out required tasks and interact with AWS resources. The role can be in your
own account or any other AWS account. For more information about roles, their benefits, and how
to create and configure them, see IAM roles, and Creating IAM roles. To learn about the different
methods that you can use to assume a role, see Using IAM roles.

Important

The permissions of your IAM user and any roles that you assume are not cumulative. Only
one set of permissions is active at a time. When you assume a role, you temporarily give up
your previous user or role permissions and work with the permissions that are assigned to
the role. When you exit the role, your original permissions are automatically restored.

To assume a role, an application calls the AWS STS AssumeRole API operation and passes the ARN
of the role to use. The operation creates a new session with temporary credentials. This session has
the same permissions as the identity-based policies for that role.

When you call AssumeRole, you can optionally pass inline or managed session policies. Session
policies are advanced policies that you pass as a parameter when you programmatically create a
temporary credential session for a role or federated user. You can pass a single JSON inline session
policy document using the Policy parameter. You can use the PolicyArns parameter to specify
up to 10 managed session policies. The resulting session's permissions are the intersection of
the entity's identity-based policies and the session policies. Session policies are useful when you
need to give the role's temporary credentials to someone else. They can use the role's temporary
credentials in subsequent AWS API calls to access resources in the account that owns the role. You

Using roles 496

https://docs.aws.amazon.com/IAM/latest/UserGuide/id.html
https://docs.aws.amazon.com/STS/latest/APIReference/API_AssumeRole.html
https://docs.aws.amazon.com/STS/latest/APIReference/API_AssumeRole.html

AWS Identity and Access Management User Guide

cannot use session policies to grant more permissions than those allowed by the identity-based
policy. To learn more about how AWS determines the effective permissions of a role, see Policy
evaluation logic.

You can call AssumeRole when you are signed in as an IAM user, or as an externally authenticated
user (SAML or OIDC) already using a role. You can also use role chaining, which is using a role to
assume a second role. You cannot assume a role when you are signed in as the AWS account root
user.

By default, your role session lasts for one hour. When you assume this role using the AWS STS
AssumeRole* API operations, you can specify a value for the DurationSeconds parameter. This
value can range from 900 seconds (15 minutes) up to the maximum session duration setting for
the role. To learn how to view the maximum value for your role, see View the maximum session
duration setting for a role.

If you use role chaining, your session is limited to a maximum of one hour. If you then use the
DurationSeconds parameter to provide a value greater than one hour, the operation fails.

Note

For security purposes, administrators can review AWS CloudTrail logs to learn who
performed an action in AWS. Your administrator might require that you specify a source
identity or a role session name when you assume the role. For more information, see
sts:SourceIdentity and sts:RoleSessionName.

The following code examples show how to create a user and assume a role.

Using roles 497

https://docs.aws.amazon.com/STS/latest/APIReference/API_AssumeRole.html

AWS Identity and Access Management User Guide

Warning

To avoid security risks, don't use IAM users for authentication when developing purpose-
built software or working with real data. Instead, use federation with an identity provider
such as AWS IAM Identity Center.

• Create a user with no permissions.

• Create a role that grants permission to list Amazon S3 buckets for the account.

• Add a policy to let the user assume the role.

• Assume the role and list S3 buckets using temporary credentials, then clean up resources.

.NET

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

global using Amazon.IdentityManagement;
global using Amazon.S3;
global using Amazon.SecurityToken;
global using IAMActions;
global using IamScenariosCommon;
global using Microsoft.Extensions.DependencyInjection;
global using Microsoft.Extensions.Hosting;
global using Microsoft.Extensions.Logging;
global using Microsoft.Extensions.Logging.Console;
global using Microsoft.Extensions.Logging.Debug;

namespace IAMActions;

public class IAMWrapper
{
 private readonly IAmazonIdentityManagementService _IAMService;

Using roles 498

https://docs.aws.amazon.com/singlesignon/latest/userguide/what-is.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/IAM#code-examples

AWS Identity and Access Management User Guide

 /// <summary>
 /// Constructor for the IAMWrapper class.
 /// </summary>
 /// <param name="IAMService">An IAM client object.</param>
 public IAMWrapper(IAmazonIdentityManagementService IAMService)
 {
 _IAMService = IAMService;
 }

 /// <summary>
 /// Add an existing IAM user to an existing IAM group.
 /// </summary>
 /// <param name="userName">The username of the user to add.</param>
 /// <param name="groupName">The name of the group to add the user to.</param>
 /// <returns>A Boolean value indicating the success of the action.</returns>
 public async Task<bool> AddUserToGroupAsync(string userName, string
 groupName)
 {
 var response = await _IAMService.AddUserToGroupAsync(new
 AddUserToGroupRequest
 {
 GroupName = groupName,
 UserName = userName,
 });

 return response.HttpStatusCode == HttpStatusCode.OK;
 }

 /// <summary>
 /// Attach an IAM policy to a role.
 /// </summary>
 /// <param name="policyArn">The policy to attach.</param>
 /// <param name="roleName">The role that the policy will be attached to.</
param>
 /// <returns>A Boolean value indicating the success of the action.</returns>
 public async Task<bool> AttachRolePolicyAsync(string policyArn, string
 roleName)
 {
 var response = await _IAMService.AttachRolePolicyAsync(new
 AttachRolePolicyRequest
 {
 PolicyArn = policyArn,

Using roles 499

AWS Identity and Access Management User Guide

 RoleName = roleName,
 });

 return response.HttpStatusCode == System.Net.HttpStatusCode.OK;
 }

 /// <summary>
 /// Create an IAM access key for a user.
 /// </summary>
 /// <param name="userName">The username for which to create the IAM access
 /// key.</param>
 /// <returns>The AccessKey.</returns>
 public async Task<AccessKey> CreateAccessKeyAsync(string userName)
 {
 var response = await _IAMService.CreateAccessKeyAsync(new
 CreateAccessKeyRequest
 {
 UserName = userName,
 });

 return response.AccessKey;

 }

 /// <summary>
 /// Create an IAM group.
 /// </summary>
 /// <param name="groupName">The name to give the IAM group.</param>
 /// <returns>The IAM group that was created.</returns>
 public async Task<Group> CreateGroupAsync(string groupName)
 {
 var response = await _IAMService.CreateGroupAsync(new CreateGroupRequest
 { GroupName = groupName });
 return response.Group;
 }

 /// <summary>
 /// Create an IAM policy.
 /// </summary>
 /// <param name="policyName">The name to give the new IAM policy.</param>

Using roles 500

AWS Identity and Access Management User Guide

 /// <param name="policyDocument">The policy document for the new policy.</
param>
 /// <returns>The new IAM policy object.</returns>
 public async Task<ManagedPolicy> CreatePolicyAsync(string policyName, string
 policyDocument)
 {
 var response = await _IAMService.CreatePolicyAsync(new
 CreatePolicyRequest
 {
 PolicyDocument = policyDocument,
 PolicyName = policyName,
 });

 return response.Policy;
 }

 /// <summary>
 /// Create a new IAM role.
 /// </summary>
 /// <param name="roleName">The name of the IAM role.</param>
 /// <param name="rolePolicyDocument">The name of the IAM policy document
 /// for the new role.</param>
 /// <returns>The Amazon Resource Name (ARN) of the role.</returns>
 public async Task<string> CreateRoleAsync(string roleName, string
 rolePolicyDocument)
 {
 var request = new CreateRoleRequest
 {
 RoleName = roleName,
 AssumeRolePolicyDocument = rolePolicyDocument,
 };

 var response = await _IAMService.CreateRoleAsync(request);
 return response.Role.Arn;
 }

 /// <summary>
 /// Create an IAM service-linked role.
 /// </summary>
 /// <param name="serviceName">The name of the AWS Service.</param>
 /// <param name="description">A description of the IAM service-linked role.</
param>

Using roles 501

AWS Identity and Access Management User Guide

 /// <returns>The IAM role that was created.</returns>
 public async Task<Role> CreateServiceLinkedRoleAsync(string serviceName,
 string description)
 {
 var request = new CreateServiceLinkedRoleRequest
 {
 AWSServiceName = serviceName,
 Description = description
 };

 var response = await _IAMService.CreateServiceLinkedRoleAsync(request);
 return response.Role;
 }

 /// <summary>
 /// Create an IAM user.
 /// </summary>
 /// <param name="userName">The username for the new IAM user.</param>
 /// <returns>The IAM user that was created.</returns>
 public async Task<User> CreateUserAsync(string userName)
 {
 var response = await _IAMService.CreateUserAsync(new CreateUserRequest
 { UserName = userName });
 return response.User;
 }

 /// <summary>
 /// Delete an IAM user's access key.
 /// </summary>
 /// <param name="accessKeyId">The Id for the IAM access key.</param>
 /// <param name="userName">The username of the user that owns the IAM
 /// access key.</param>
 /// <returns>A Boolean value indicating the success of the action.</returns>
 public async Task<bool> DeleteAccessKeyAsync(string accessKeyId, string
 userName)
 {
 var response = await _IAMService.DeleteAccessKeyAsync(new
 DeleteAccessKeyRequest
 {
 AccessKeyId = accessKeyId,
 UserName = userName,
 });

Using roles 502

AWS Identity and Access Management User Guide

 return response.HttpStatusCode == System.Net.HttpStatusCode.OK;
 }

 /// <summary>
 /// Delete an IAM group.
 /// </summary>
 /// <param name="groupName">The name of the IAM group to delete.</param>
 /// <returns>A Boolean value indicating the success of the action.</returns>
 public async Task<bool> DeleteGroupAsync(string groupName)
 {
 var response = await _IAMService.DeleteGroupAsync(new DeleteGroupRequest
 { GroupName = groupName });
 return response.HttpStatusCode == HttpStatusCode.OK;
 }

 /// <summary>
 /// Delete an IAM policy associated with an IAM group.
 /// </summary>
 /// <param name="groupName">The name of the IAM group associated with the
 /// policy.</param>
 /// <param name="policyName">The name of the policy to delete.</param>
 /// <returns>A Boolean value indicating the success of the action.</returns>
 public async Task<bool> DeleteGroupPolicyAsync(string groupName, string
 policyName)
 {
 var request = new DeleteGroupPolicyRequest()
 {
 GroupName = groupName,
 PolicyName = policyName,
 };

 var response = await _IAMService.DeleteGroupPolicyAsync(request);
 return response.HttpStatusCode == System.Net.HttpStatusCode.OK;
 }

 /// <summary>
 /// Delete an IAM policy.
 /// </summary>
 /// <param name="policyArn">The Amazon Resource Name (ARN) of the policy to
 /// delete.</param>

Using roles 503

AWS Identity and Access Management User Guide

 /// <returns>A Boolean value indicating the success of the action.</returns>
 public async Task<bool> DeletePolicyAsync(string policyArn)
 {
 var response = await _IAMService.DeletePolicyAsync(new
 DeletePolicyRequest { PolicyArn = policyArn });
 return response.HttpStatusCode == System.Net.HttpStatusCode.OK;
 }

 /// <summary>
 /// Delete an IAM role.
 /// </summary>
 /// <param name="roleName">The name of the IAM role to delete.</param>
 /// <returns>A Boolean value indicating the success of the action.</returns>
 public async Task<bool> DeleteRoleAsync(string roleName)
 {
 var response = await _IAMService.DeleteRoleAsync(new DeleteRoleRequest
 { RoleName = roleName });
 return response.HttpStatusCode == System.Net.HttpStatusCode.OK;
 }

 /// <summary>
 /// Delete an IAM role policy.
 /// </summary>
 /// <param name="roleName">The name of the IAM role.</param>
 /// <param name="policyName">The name of the IAM role policy to delete.</
param>
 /// <returns>A Boolean value indicating the success of the action.</returns>
 public async Task<bool> DeleteRolePolicyAsync(string roleName, string
 policyName)
 {
 var response = await _IAMService.DeleteRolePolicyAsync(new
 DeleteRolePolicyRequest
 {
 PolicyName = policyName,
 RoleName = roleName,
 });

 return response.HttpStatusCode == System.Net.HttpStatusCode.OK;
 }

 /// <summary>

Using roles 504

AWS Identity and Access Management User Guide

 /// Delete an IAM user.
 /// </summary>
 /// <param name="userName">The username of the IAM user to delete.</param>
 /// <returns>A Boolean value indicating the success of the action.</returns>
 public async Task<bool> DeleteUserAsync(string userName)
 {
 var response = await _IAMService.DeleteUserAsync(new DeleteUserRequest
 { UserName = userName });

 return response.HttpStatusCode == System.Net.HttpStatusCode.OK;
 }

 /// <summary>
 /// Delete an IAM user policy.
 /// </summary>
 /// <param name="policyName">The name of the IAM policy to delete.</param>
 /// <param name="userName">The username of the IAM user.</param>
 /// <returns>A Boolean value indicating the success of the action.</returns>
 public async Task<bool> DeleteUserPolicyAsync(string policyName, string
 userName)
 {
 var response = await _IAMService.DeleteUserPolicyAsync(new
 DeleteUserPolicyRequest { PolicyName = policyName, UserName = userName });

 return response.HttpStatusCode == System.Net.HttpStatusCode.OK;
 }

 /// <summary>
 /// Detach an IAM policy from an IAM role.
 /// </summary>
 /// <param name="policyArn">The Amazon Resource Name (ARN) of the IAM
 policy.</param>
 /// <param name="roleName">The name of the IAM role.</param>
 /// <returns>A Boolean value indicating the success of the action.</returns>
 public async Task<bool> DetachRolePolicyAsync(string policyArn, string
 roleName)
 {
 var response = await _IAMService.DetachRolePolicyAsync(new
 DetachRolePolicyRequest
 {
 PolicyArn = policyArn,
 RoleName = roleName,

Using roles 505

AWS Identity and Access Management User Guide

 });

 return response.HttpStatusCode == System.Net.HttpStatusCode.OK;
 }

 /// <summary>
 /// Gets the IAM password policy for an AWS account.
 /// </summary>
 /// <returns>The PasswordPolicy for the AWS account.</returns>
 public async Task<PasswordPolicy> GetAccountPasswordPolicyAsync()
 {
 var response = await _IAMService.GetAccountPasswordPolicyAsync(new
 GetAccountPasswordPolicyRequest());
 return response.PasswordPolicy;
 }

 /// <summary>
 /// Get information about an IAM policy.
 /// </summary>
 /// <param name="policyArn">The IAM policy to retrieve information for.</
param>
 /// <returns>The IAM policy.</returns>
 public async Task<ManagedPolicy> GetPolicyAsync(string policyArn)
 {

 var response = await _IAMService.GetPolicyAsync(new GetPolicyRequest
 { PolicyArn = policyArn });
 return response.Policy;
 }

 /// <summary>
 /// Get information about an IAM role.
 /// </summary>
 /// <param name="roleName">The name of the IAM role to retrieve information
 /// for.</param>
 /// <returns>The IAM role that was retrieved.</returns>
 public async Task<Role> GetRoleAsync(string roleName)
 {
 var response = await _IAMService.GetRoleAsync(new GetRoleRequest
 {
 RoleName = roleName,

Using roles 506

AWS Identity and Access Management User Guide

 });

 return response.Role;
 }

 /// <summary>
 /// Get information about an IAM user.
 /// </summary>
 /// <param name="userName">The username of the user.</param>
 /// <returns>An IAM user object.</returns>
 public async Task<User> GetUserAsync(string userName)
 {
 var response = await _IAMService.GetUserAsync(new GetUserRequest
 { UserName = userName });
 return response.User;
 }

 /// <summary>
 /// List the IAM role policies that are attached to an IAM role.
 /// </summary>
 /// <param name="roleName">The IAM role to list IAM policies for.</param>
 /// <returns>A list of the IAM policies attached to the IAM role.</returns>
 public async Task<List<AttachedPolicyType>>
 ListAttachedRolePoliciesAsync(string roleName)
 {
 var attachedPolicies = new List<AttachedPolicyType>();
 var attachedRolePoliciesPaginator =
 _IAMService.Paginators.ListAttachedRolePolicies(new
 ListAttachedRolePoliciesRequest { RoleName = roleName });

 await foreach (var response in attachedRolePoliciesPaginator.Responses)
 {
 attachedPolicies.AddRange(response.AttachedPolicies);
 }

 return attachedPolicies;
 }

 /// <summary>
 /// List IAM groups.
 /// </summary>

Using roles 507

AWS Identity and Access Management User Guide

 /// <returns>A list of IAM groups.</returns>
 public async Task<List<Group>> ListGroupsAsync()
 {
 var groupsPaginator = _IAMService.Paginators.ListGroups(new
 ListGroupsRequest());
 var groups = new List<Group>();

 await foreach (var response in groupsPaginator.Responses)
 {
 groups.AddRange(response.Groups);
 }

 return groups;
 }

 /// <summary>
 /// List IAM policies.
 /// </summary>
 /// <returns>A list of the IAM policies.</returns>
 public async Task<List<ManagedPolicy>> ListPoliciesAsync()
 {
 var listPoliciesPaginator = _IAMService.Paginators.ListPolicies(new
 ListPoliciesRequest());
 var policies = new List<ManagedPolicy>();

 await foreach (var response in listPoliciesPaginator.Responses)
 {
 policies.AddRange(response.Policies);
 }

 return policies;
 }

 /// <summary>
 /// List IAM role policies.
 /// </summary>
 /// <param name="roleName">The IAM role for which to list IAM policies.</
param>
 /// <returns>A list of IAM policy names.</returns>
 public async Task<List<string>> ListRolePoliciesAsync(string roleName)
 {

Using roles 508

AWS Identity and Access Management User Guide

 var listRolePoliciesPaginator =
 _IAMService.Paginators.ListRolePolicies(new ListRolePoliciesRequest { RoleName =
 roleName });
 var policyNames = new List<string>();

 await foreach (var response in listRolePoliciesPaginator.Responses)
 {
 policyNames.AddRange(response.PolicyNames);
 }

 return policyNames;
 }

 /// <summary>
 /// List IAM roles.
 /// </summary>
 /// <returns>A list of IAM roles.</returns>
 public async Task<List<Role>> ListRolesAsync()
 {
 var listRolesPaginator = _IAMService.Paginators.ListRoles(new
 ListRolesRequest());
 var roles = new List<Role>();

 await foreach (var response in listRolesPaginator.Responses)
 {
 roles.AddRange(response.Roles);
 }

 return roles;
 }

 /// <summary>
 /// List SAML authentication providers.
 /// </summary>
 /// <returns>A list of SAML providers.</returns>
 public async Task<List<SAMLProviderListEntry>> ListSAMLProvidersAsync()
 {
 var response = await _IAMService.ListSAMLProvidersAsync(new
 ListSAMLProvidersRequest());
 return response.SAMLProviderList;
 }

Using roles 509

AWS Identity and Access Management User Guide

 /// <summary>
 /// List IAM users.
 /// </summary>
 /// <returns>A list of IAM users.</returns>
 public async Task<List<User>> ListUsersAsync()
 {
 var listUsersPaginator = _IAMService.Paginators.ListUsers(new
 ListUsersRequest());
 var users = new List<User>();

 await foreach (var response in listUsersPaginator.Responses)
 {
 users.AddRange(response.Users);
 }

 return users;
 }

 /// <summary>
 /// Remove a user from an IAM group.
 /// </summary>
 /// <param name="userName">The username of the user to remove.</param>
 /// <param name="groupName">The name of the IAM group to remove the user
 from.</param>
 /// <returns>A Boolean value indicating the success of the action.</returns>
 public async Task<bool> RemoveUserFromGroupAsync(string userName, string
 groupName)
 {
 // Remove the user from the group.
 var removeUserRequest = new RemoveUserFromGroupRequest()
 {
 UserName = userName,
 GroupName = groupName,
 };

 var response = await
 _IAMService.RemoveUserFromGroupAsync(removeUserRequest);
 return response.HttpStatusCode == HttpStatusCode.OK;
 }

 /// <summary>

Using roles 510

AWS Identity and Access Management User Guide

 /// Add or update an inline policy document that is embedded in an IAM group.
 /// </summary>
 /// <param name="groupName">The name of the IAM group.</param>
 /// <param name="policyName">The name of the IAM policy.</param>
 /// <param name="policyDocument">The policy document defining the IAM
 policy.</param>
 /// <returns>A Boolean value indicating the success of the action.</returns>
 public async Task<bool> PutGroupPolicyAsync(string groupName, string
 policyName, string policyDocument)
 {
 var request = new PutGroupPolicyRequest
 {
 GroupName = groupName,
 PolicyName = policyName,
 PolicyDocument = policyDocument
 };

 var response = await _IAMService.PutGroupPolicyAsync(request);
 return response.HttpStatusCode == System.Net.HttpStatusCode.OK;
 }

 /// <summary>
 /// Update the inline policy document embedded in a role.
 /// </summary>
 /// <param name="policyName">The name of the policy to embed.</param>
 /// <param name="roleName">The name of the role to update.</param>
 /// <param name="policyDocument">The policy document that defines the role.</
param>
 /// <returns>A Boolean value indicating the success of the action.</returns>
 public async Task<bool> PutRolePolicyAsync(string policyName, string
 roleName, string policyDocument)
 {
 var request = new PutRolePolicyRequest
 {
 PolicyName = policyName,
 RoleName = roleName,
 PolicyDocument = policyDocument
 };

 var response = await _IAMService.PutRolePolicyAsync(request);
 return response.HttpStatusCode == HttpStatusCode.OK;
 }

Using roles 511

AWS Identity and Access Management User Guide

 /// <summary>
 /// Add or update an inline policy document that is embedded in an IAM user.
 /// </summary>
 /// <param name="userName">The name of the IAM user.</param>
 /// <param name="policyName">The name of the IAM policy.</param>
 /// <param name="policyDocument">The policy document defining the IAM
 policy.</param>
 /// <returns>A Boolean value indicating the success of the action.</returns>
 public async Task<bool> PutUserPolicyAsync(string userName, string
 policyName, string policyDocument)
 {
 var request = new PutUserPolicyRequest
 {
 UserName = userName,
 PolicyName = policyName,
 PolicyDocument = policyDocument
 };

 var response = await _IAMService.PutUserPolicyAsync(request);
 return response.HttpStatusCode == System.Net.HttpStatusCode.OK;
 }

 /// <summary>
 /// Wait for a new access key to be ready to use.
 /// </summary>
 /// <param name="accessKeyId">The Id of the access key.</param>
 /// <returns>A boolean value indicating the success of the action.</returns>
 public async Task<bool> WaitUntilAccessKeyIsReady(string accessKeyId)
 {
 var keyReady = false;

 do
 {
 try
 {
 var response = await _IAMService.GetAccessKeyLastUsedAsync(
 new GetAccessKeyLastUsedRequest { AccessKeyId =
 accessKeyId });
 if (response.UserName is not null)
 {
 keyReady = true;
 }
 }

Using roles 512

AWS Identity and Access Management User Guide

 catch (NoSuchEntityException)
 {
 keyReady = false;
 }
 } while (!keyReady);

 return keyReady;
 }
}

using Microsoft.Extensions.Configuration;

namespace IAMBasics;

public class IAMBasics
{
 private static ILogger logger = null!;

 static async Task Main(string[] args)
 {
 // Set up dependency injection for the AWS service.
 using var host = Host.CreateDefaultBuilder(args)
 .ConfigureLogging(logging =>
 logging.AddFilter("System", LogLevel.Debug)
 .AddFilter<DebugLoggerProvider>("Microsoft",
 LogLevel.Information)
 .AddFilter<ConsoleLoggerProvider>("Microsoft",
 LogLevel.Trace))
 .ConfigureServices((_, services) =>
 services.AddAWSService<IAmazonIdentityManagementService>()
 .AddTransient<IAMWrapper>()
 .AddTransient<UIWrapper>()
)
 .Build();

 logger = LoggerFactory.Create(builder => { builder.AddConsole(); })
 .CreateLogger<IAMBasics>();

 IConfiguration configuration = new ConfigurationBuilder()
 .SetBasePath(Directory.GetCurrentDirectory())
 .AddJsonFile("settings.json") // Load test settings from .json file.

Using roles 513

AWS Identity and Access Management User Guide

 .AddJsonFile("settings.local.json",
 true) // Optionally load local settings.
 .Build();

 // Values needed for user, role, and policies.
 string userName = configuration["UserName"]!;
 string s3PolicyName = configuration["S3PolicyName"]!;
 string roleName = configuration["RoleName"]!;

 var iamWrapper = host.Services.GetRequiredService<IAMWrapper>();
 var uiWrapper = host.Services.GetRequiredService<UIWrapper>();

 uiWrapper.DisplayBasicsOverview();
 uiWrapper.PressEnter();

 // First create a user. By default, the new user has
 // no permissions.
 uiWrapper.DisplayTitle("Create User");
 Console.WriteLine($"Creating a new user with user name: {userName}.");
 var user = await iamWrapper.CreateUserAsync(userName);
 var userArn = user.Arn;

 Console.WriteLine($"Successfully created user: {userName} with ARN:
 {userArn}.");
 uiWrapper.WaitABit(15, "Now let's wait for the user to be ready for
 use.");

 // Define a role policy document that allows the new user
 // to assume the role.
 string assumeRolePolicyDocument = "{" +
 "\"Version\": \"2012-10-17\"," +
 "\"Statement\": [{" +
 "\"Effect\": \"Allow\"," +
 "\"Principal\": {" +
 $" \"AWS\": \"{userArn}\"" +
 "}," +
 "\"Action\": \"sts:AssumeRole\"" +
 "}]" +
 "}";

 // Permissions to list all buckets.
 string policyDocument = "{" +
 "\"Version\": \"2012-10-17\"," +

Using roles 514

AWS Identity and Access Management User Guide

 " \"Statement\" : [{" +
 " \"Action\" : [\"s3:ListAllMyBuckets\"]," +
 " \"Effect\" : \"Allow\"," +
 " \"Resource\" : \"*\"" +
 "}]" +
 "}";

 // Create an AccessKey for the user.
 uiWrapper.DisplayTitle("Create access key");
 Console.WriteLine("Now let's create an access key for the new user.");
 var accessKey = await iamWrapper.CreateAccessKeyAsync(userName);

 var accessKeyId = accessKey.AccessKeyId;
 var secretAccessKey = accessKey.SecretAccessKey;

 Console.WriteLine($"We have created the access key with Access key id:
 {accessKeyId}.");

 Console.WriteLine("Now let's wait until the IAM access key is ready to
 use.");
 var keyReady = await iamWrapper.WaitUntilAccessKeyIsReady(accessKeyId);

 // Now try listing the Amazon Simple Storage Service (Amazon S3)
 // buckets. This should fail at this point because the user doesn't
 // have permissions to perform this task.
 uiWrapper.DisplayTitle("Try to display Amazon S3 buckets");
 Console.WriteLine("Now let's try to display a list of the user's Amazon
 S3 buckets.");
 var s3Client1 = new AmazonS3Client(accessKeyId, secretAccessKey);
 var stsClient1 = new AmazonSecurityTokenServiceClient(accessKeyId,
 secretAccessKey);

 var s3Wrapper = new S3Wrapper(s3Client1, stsClient1);
 var buckets = await s3Wrapper.ListMyBucketsAsync();

 Console.WriteLine(buckets is null
 ? "As expected, the call to list the buckets has returned a null
 list."
 : "Something went wrong. This shouldn't have worked.");

 uiWrapper.PressEnter();

 uiWrapper.DisplayTitle("Create IAM role");
 Console.WriteLine($"Creating the role: {roleName}");

Using roles 515

AWS Identity and Access Management User Guide

 // Creating an IAM role to allow listing the S3 buckets. A role name
 // is not case sensitive and must be unique to the account for which it
 // is created.
 var roleArn = await iamWrapper.CreateRoleAsync(roleName,
 assumeRolePolicyDocument);

 uiWrapper.PressEnter();

 // Create a policy with permissions to list S3 buckets.
 uiWrapper.DisplayTitle("Create IAM policy");
 Console.WriteLine($"Creating the policy: {s3PolicyName}");
 Console.WriteLine("with permissions to list the Amazon S3 buckets for the
 account.");
 var policy = await iamWrapper.CreatePolicyAsync(s3PolicyName,
 policyDocument);

 // Wait 15 seconds for the IAM policy to be available.
 uiWrapper.WaitABit(15, "Waiting for the policy to be available.");

 // Attach the policy to the role you created earlier.
 uiWrapper.DisplayTitle("Attach new IAM policy");
 Console.WriteLine("Now let's attach the policy to the role.");
 await iamWrapper.AttachRolePolicyAsync(policy.Arn, roleName);

 // Wait 15 seconds for the role to be updated.
 Console.WriteLine();
 uiWrapper.WaitABit(15, "Waiting for the policy to be attached.");

 // Use the AWS Security Token Service (AWS STS) to have the user
 // assume the role we created.
 var stsClient2 = new AmazonSecurityTokenServiceClient(accessKeyId,
 secretAccessKey);

 // Wait for the new credentials to become valid.
 uiWrapper.WaitABit(10, "Waiting for the credentials to be valid.");

 var assumedRoleCredentials = await
 s3Wrapper.AssumeS3RoleAsync("temporary-session", roleArn);

 // Try again to list the buckets using the client created with
 // the new user's credentials. This time, it should work.
 var s3Client2 = new AmazonS3Client(assumedRoleCredentials);

Using roles 516

AWS Identity and Access Management User Guide

 s3Wrapper.UpdateClients(s3Client2, stsClient2);

 buckets = await s3Wrapper.ListMyBucketsAsync();

 uiWrapper.DisplayTitle("List Amazon S3 buckets");
 Console.WriteLine("This time we should have buckets to list.");
 if (buckets is not null)
 {
 buckets.ForEach(bucket =>
 {
 Console.WriteLine($"{bucket.BucketName} created:
 {bucket.CreationDate}");
 });
 }

 uiWrapper.PressEnter();

 // Now clean up all the resources used in the example.
 uiWrapper.DisplayTitle("Clean up resources");
 Console.WriteLine("Thank you for watching. The IAM Basics demo is
 complete.");
 Console.WriteLine("Please wait while we clean up the resources we
 created.");

 await iamWrapper.DetachRolePolicyAsync(policy.Arn, roleName);

 await iamWrapper.DeletePolicyAsync(policy.Arn);

 await iamWrapper.DeleteRoleAsync(roleName);

 await iamWrapper.DeleteAccessKeyAsync(accessKeyId, userName);

 await iamWrapper.DeleteUserAsync(userName);

 uiWrapper.PressEnter();

 Console.WriteLine("All done cleaning up our resources. Thank you for your
 patience.");
 }
}

namespace IamScenariosCommon;

Using roles 517

AWS Identity and Access Management User Guide

using System.Net;

/// <summary>
/// A class to perform Amazon Simple Storage Service (Amazon S3) actions for
/// the IAM Basics scenario.
/// </summary>
public class S3Wrapper
{
 private IAmazonS3 _s3Service;
 private IAmazonSecurityTokenService _stsService;

 /// <summary>
 /// Constructor for the S3Wrapper class.
 /// </summary>
 /// <param name="s3Service">An Amazon S3 client object.</param>
 /// <param name="stsService">An AWS Security Token Service (AWS STS)
 /// client object.</param>
 public S3Wrapper(IAmazonS3 s3Service, IAmazonSecurityTokenService stsService)
 {
 _s3Service = s3Service;
 _stsService = stsService;
 }

 /// <summary>
 /// Assumes an AWS Identity and Access Management (IAM) role that allows
 /// Amazon S3 access for the current session.
 /// </summary>
 /// <param name="roleSession">A string representing the current session.</
param>
 /// <param name="roleToAssume">The name of the IAM role to assume.</param>
 /// <returns>Credentials for the newly assumed IAM role.</returns>
 public async Task<Credentials> AssumeS3RoleAsync(string roleSession, string
 roleToAssume)
 {
 // Create the request to use with the AssumeRoleAsync call.
 var request = new AssumeRoleRequest()
 {
 RoleSessionName = roleSession,
 RoleArn = roleToAssume,
 };

 var response = await _stsService.AssumeRoleAsync(request);

 return response.Credentials;

Using roles 518

AWS Identity and Access Management User Guide

 }

 /// <summary>
 /// Delete an S3 bucket.
 /// </summary>
 /// <param name="bucketName">Name of the S3 bucket to delete.</param>
 /// <returns>A Boolean value indicating the success of the action.</returns>
 public async Task<bool> DeleteBucketAsync(string bucketName)
 {
 var result = await _s3Service.DeleteBucketAsync(new DeleteBucketRequest
 { BucketName = bucketName });
 return result.HttpStatusCode == HttpStatusCode.OK;
 }

 /// <summary>
 /// List the buckets that are owned by the user's account.
 /// </summary>
 /// <returns>Async Task.</returns>
 public async Task<List<S3Bucket>?> ListMyBucketsAsync()
 {
 try
 {
 // Get the list of buckets accessible by the new user.
 var response = await _s3Service.ListBucketsAsync();

 return response.Buckets;
 }
 catch (AmazonS3Exception ex)
 {
 // Something else went wrong. Display the error message.
 Console.WriteLine($"Error: {ex.Message}");
 return null;
 }
 }

 /// <summary>
 /// Create a new S3 bucket.
 /// </summary>
 /// <param name="bucketName">The name for the new bucket.</param>
 /// <returns>A Boolean value indicating whether the action completed
 /// successfully.</returns>
 public async Task<bool> PutBucketAsync(string bucketName)
 {

Using roles 519

AWS Identity and Access Management User Guide

 var response = await _s3Service.PutBucketAsync(new PutBucketRequest
 { BucketName = bucketName });
 return response.HttpStatusCode == HttpStatusCode.OK;
 }

 /// <summary>
 /// Update the client objects with new client objects. This is available
 /// because the scenario uses the methods of this class without and then
 /// with the proper permissions to list S3 buckets.
 /// </summary>
 /// <param name="s3Service">The Amazon S3 client object.</param>
 /// <param name="stsService">The AWS STS client object.</param>
 public void UpdateClients(IAmazonS3 s3Service, IAmazonSecurityTokenService
 stsService)
 {
 _s3Service = s3Service;
 _stsService = stsService;
 }
}

namespace IamScenariosCommon;

public class UIWrapper
{
 public readonly string SepBar = new('-', Console.WindowWidth);

 /// <summary>
 /// Show information about the IAM Groups scenario.
 /// </summary>
 public void DisplayGroupsOverview()
 {
 Console.Clear();

 DisplayTitle("Welcome to the IAM Groups Demo");
 Console.WriteLine("This example application does the following:");
 Console.WriteLine("\t1. Creates an Amazon Identity and Access Management
 (IAM) group.");
 Console.WriteLine("\t2. Adds an IAM policy to the IAM group giving it
 full access to Amazon S3.");
 Console.WriteLine("\t3. Creates a new IAM user.");
 Console.WriteLine("\t4. Creates an IAM access key for the user.");
 Console.WriteLine("\t5. Adds the user to the IAM group.");
 Console.WriteLine("\t6. Lists the buckets on the account.");

Using roles 520

AWS Identity and Access Management User Guide

 Console.WriteLine("\t7. Proves that the user has full Amazon S3 access by
 creating a bucket.");
 Console.WriteLine("\t8. List the buckets again to show the new bucket.");
 Console.WriteLine("\t9. Cleans up all the resources created.");
 }

 /// <summary>
 /// Show information about the IAM Basics scenario.
 /// </summary>
 public void DisplayBasicsOverview()
 {
 Console.Clear();

 DisplayTitle("Welcome to IAM Basics");
 Console.WriteLine("This example application does the following:");
 Console.WriteLine("\t1. Creates a user with no permissions.");
 Console.WriteLine("\t2. Creates a role and policy that grant
 s3:ListAllMyBuckets permission.");
 Console.WriteLine("\t3. Grants the user permission to assume the role.");
 Console.WriteLine("\t4. Creates an S3 client object as the user and tries
 to list buckets (this will fail).");
 Console.WriteLine("\t5. Gets temporary credentials by assuming the
 role.");
 Console.WriteLine("\t6. Creates a new S3 client object with the temporary
 credentials and lists the buckets (this will succeed).");
 Console.WriteLine("\t7. Deletes all the resources.");
 }

 /// <summary>
 /// Display a message and wait until the user presses enter.
 /// </summary>
 public void PressEnter()
 {
 Console.Write("\nPress <Enter> to continue. ");
 _ = Console.ReadLine();
 Console.WriteLine();
 }

 /// <summary>
 /// Pad a string with spaces to center it on the console display.
 /// </summary>
 /// <param name="strToCenter">The string to be centered.</param>
 /// <returns>The padded string.</returns>
 public string CenterString(string strToCenter)

Using roles 521

AWS Identity and Access Management User Guide

 {
 var padAmount = (Console.WindowWidth - strToCenter.Length) / 2;
 var leftPad = new string(' ', padAmount);
 return $"{leftPad}{strToCenter}";
 }

 /// <summary>
 /// Display a line of hyphens, the centered text of the title, and another
 /// line of hyphens.
 /// </summary>
 /// <param name="strTitle">The string to be displayed.</param>
 public void DisplayTitle(string strTitle)
 {
 Console.WriteLine(SepBar);
 Console.WriteLine(CenterString(strTitle));
 Console.WriteLine(SepBar);
 }

 /// <summary>
 /// Display a countdown and wait for a number of seconds.
 /// </summary>
 /// <param name="numSeconds">The number of seconds to wait.</param>
 public void WaitABit(int numSeconds, string msg)
 {
 Console.WriteLine(msg);

 // Wait for the requested number of seconds.
 for (int i = numSeconds; i > 0; i--)
 {
 System.Threading.Thread.Sleep(1000);
 Console.Write($"{i}...");
 }

 PressEnter();
 }
}

• For API details, see the following topics in AWS SDK for .NET API Reference.

• AttachRolePolicy

• CreateAccessKey

Using roles 522

https://docs.aws.amazon.com/goto/DotNetSDKV3/iam-2010-05-08/AttachRolePolicy
https://docs.aws.amazon.com/goto/DotNetSDKV3/iam-2010-05-08/CreateAccessKey

AWS Identity and Access Management User Guide

• CreatePolicy

• CreateRole

• CreateUser

• DeleteAccessKey

• DeletePolicy

• DeleteRole

• DeleteUser

• DeleteUserPolicy

• DetachRolePolicy

• PutUserPolicy

Bash

AWS CLI with Bash script

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

###
function iam_create_user_assume_role
#
Scenario to create an IAM user, create an IAM role, and apply the role to the
 user.
#
"IAM access" permissions are needed to run this code.
"STS assume role" permissions are needed to run this code. (Note: It might
 be necessary to
create a custom policy).
#
Returns:
0 - If successful.
1 - If an error occurred.
###
function iam_create_user_assume_role() {

Using roles 523

https://docs.aws.amazon.com/goto/DotNetSDKV3/iam-2010-05-08/CreatePolicy
https://docs.aws.amazon.com/goto/DotNetSDKV3/iam-2010-05-08/CreateRole
https://docs.aws.amazon.com/goto/DotNetSDKV3/iam-2010-05-08/CreateUser
https://docs.aws.amazon.com/goto/DotNetSDKV3/iam-2010-05-08/DeleteAccessKey
https://docs.aws.amazon.com/goto/DotNetSDKV3/iam-2010-05-08/DeletePolicy
https://docs.aws.amazon.com/goto/DotNetSDKV3/iam-2010-05-08/DeleteRole
https://docs.aws.amazon.com/goto/DotNetSDKV3/iam-2010-05-08/DeleteUser
https://docs.aws.amazon.com/goto/DotNetSDKV3/iam-2010-05-08/DeleteUserPolicy
https://docs.aws.amazon.com/goto/DotNetSDKV3/iam-2010-05-08/DetachRolePolicy
https://docs.aws.amazon.com/goto/DotNetSDKV3/iam-2010-05-08/PutUserPolicy
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/aws-cli/bash-linux/iam#code-examples

AWS Identity and Access Management User Guide

 {
 if ["$IAM_OPERATIONS_SOURCED" != "True"]; then

 source ./iam_operations.sh
 fi
 }

 echo_repeat "*" 88
 echo "Welcome to the IAM create user and assume role demo."
 echo
 echo "This demo will create an IAM user, create an IAM role, and apply the role
 to the user."
 echo_repeat "*" 88
 echo

 echo -n "Enter a name for a new IAM user: "
 get_input
 user_name=$get_input_result

 local user_arn
 user_arn=$(iam_create_user -u "$user_name")

 # shellcheck disable=SC2181
 if [[${?} == 0]]; then
 echo "Created demo IAM user named $user_name"
 else
 errecho "$user_arn"
 errecho "The user failed to create. This demo will exit."
 return 1
 fi

 local access_key_response
 access_key_response=$(iam_create_user_access_key -u "$user_name")
 # shellcheck disable=SC2181
 if [[${?} != 0]]; then
 errecho "The access key failed to create. This demo will exit."
 clean_up "$user_name"
 return 1
 fi

 IFS=$'\t ' read -r -a access_key_values <<<"$access_key_response"
 local key_name=${access_key_values[0]}
 local key_secret=${access_key_values[1]}

Using roles 524

AWS Identity and Access Management User Guide

 echo "Created access key named $key_name"

 echo "Wait 10 seconds for the user to be ready."
 sleep 10
 echo_repeat "*" 88
 echo

 local iam_role_name
 iam_role_name=$(generate_random_name "test-role")
 echo "Creating a role named $iam_role_name with user $user_name as the
 principal."

 local assume_role_policy_document="{
 \"Version\": \"2012-10-17\",
 \"Statement\": [{
 \"Effect\": \"Allow\",
 \"Principal\": {\"AWS\": \"$user_arn\"},
 \"Action\": \"sts:AssumeRole\"
 }]
 }"

 local role_arn
 role_arn=$(iam_create_role -n "$iam_role_name" -p
 "$assume_role_policy_document")

 # shellcheck disable=SC2181
 if [${?} == 0]; then
 echo "Created IAM role named $iam_role_name"
 else
 errecho "The role failed to create. This demo will exit."
 clean_up "$user_name" "$key_name"
 return 1
 fi

 local policy_name
 policy_name=$(generate_random_name "test-policy")
 local policy_document="{
 \"Version\": \"2012-10-17\",
 \"Statement\": [{
 \"Effect\": \"Allow\",
 \"Action\": \"s3:ListAllMyBuckets\",
 \"Resource\": \"arn:aws:s3:::*\"}]}"

 local policy_arn

Using roles 525

AWS Identity and Access Management User Guide

 policy_arn=$(iam_create_policy -n "$policy_name" -p "$policy_document")
 # shellcheck disable=SC2181
 if [[${?} == 0]]; then
 echo "Created IAM policy named $policy_name"
 else
 errecho "The policy failed to create."
 clean_up "$user_name" "$key_name" "$iam_role_name"
 return 1
 fi

 if (iam_attach_role_policy -n "$iam_role_name" -p "$policy_arn"); then
 echo "Attached policy $policy_arn to role $iam_role_name"
 else
 errecho "The policy failed to attach."
 clean_up "$user_name" "$key_name" "$iam_role_name" "$policy_arn"
 return 1
 fi

 local assume_role_policy_document="{
 \"Version\": \"2012-10-17\",
 \"Statement\": [{
 \"Effect\": \"Allow\",
 \"Action\": \"sts:AssumeRole\",
 \"Resource\": \"$role_arn\"}]}"

 local assume_role_policy_name
 assume_role_policy_name=$(generate_random_name "test-assume-role-")

 # shellcheck disable=SC2181
 local assume_role_policy_arn
 assume_role_policy_arn=$(iam_create_policy -n "$assume_role_policy_name" -p
 "$assume_role_policy_document")
 # shellcheck disable=SC2181
 if [${?} == 0]; then
 echo "Created IAM policy named $assume_role_policy_name for sts assume role"
 else
 errecho "The policy failed to create."
 clean_up "$user_name" "$key_name" "$iam_role_name" "$policy_arn"
 "$policy_arn"
 return 1
 fi

 echo "Wait 10 seconds to give AWS time to propagate these new resources and
 connections."

Using roles 526

AWS Identity and Access Management User Guide

 sleep 10
 echo_repeat "*" 88
 echo

 echo "Try to list buckets without the new user assuming the role."
 echo_repeat "*" 88
 echo

 # Set the environment variables for the created user.
 # bashsupport disable=BP2001
 export AWS_ACCESS_KEY_ID=$key_name
 # bashsupport disable=BP2001
 export AWS_SECRET_ACCESS_KEY=$key_secret

 local buckets
 buckets=$(s3_list_buckets)

 # shellcheck disable=SC2181
 if [${?} == 0]; then
 local bucket_count
 bucket_count=$(echo "$buckets" | wc -w | xargs)
 echo "There are $bucket_count buckets in the account. This should not have
 happened."
 else
 errecho "Because the role with permissions has not been assumed, listing
 buckets failed."
 fi

 echo
 echo_repeat "*" 88
 echo "Now assume the role $iam_role_name and list the buckets."
 echo_repeat "*" 88
 echo

 local credentials

 credentials=$(sts_assume_role -r "$role_arn" -n "AssumeRoleDemoSession")
 # shellcheck disable=SC2181
 if [${?} == 0]; then
 echo "Assumed role $iam_role_name"
 else
 errecho "Failed to assume role."
 export AWS_ACCESS_KEY_ID=""
 export AWS_SECRET_ACCESS_KEY=""

Using roles 527

AWS Identity and Access Management User Guide

 clean_up "$user_name" "$key_name" "$iam_role_name" "$policy_arn"
 "$policy_arn" "$assume_role_policy_arn"
 return 1
 fi

 IFS=$'\t ' read -r -a credentials <<<"$credentials"

 export AWS_ACCESS_KEY_ID=${credentials[0]}
 export AWS_SECRET_ACCESS_KEY=${credentials[1]}
 # bashsupport disable=BP2001
 export AWS_SESSION_TOKEN=${credentials[2]}

 buckets=$(s3_list_buckets)

 # shellcheck disable=SC2181
 if [${?} == 0]; then
 local bucket_count
 bucket_count=$(echo "$buckets" | wc -w | xargs)
 echo "There are $bucket_count buckets in the account. Listing buckets
 succeeded because of "
 echo "the assumed role."
 else
 errecho "Failed to list buckets. This should not happen."
 export AWS_ACCESS_KEY_ID=""
 export AWS_SECRET_ACCESS_KEY=""
 export AWS_SESSION_TOKEN=""
 clean_up "$user_name" "$key_name" "$iam_role_name" "$policy_arn"
 "$policy_arn" "$assume_role_policy_arn"
 return 1
 fi

 local result=0
 export AWS_ACCESS_KEY_ID=""
 export AWS_SECRET_ACCESS_KEY=""

 echo
 echo_repeat "*" 88
 echo "The created resources will now be deleted."
 echo_repeat "*" 88
 echo

 clean_up "$user_name" "$key_name" "$iam_role_name" "$policy_arn" "$policy_arn"
 "$assume_role_policy_arn"

Using roles 528

AWS Identity and Access Management User Guide

 # shellcheck disable=SC2181
 if [[${?} -ne 0]]; then
 result=1
 fi

 return $result
}

The IAM functions used in this scenario.

###
function iam_user_exists
#
This function checks to see if the specified AWS Identity and Access Management
 (IAM) user already exists.
#
Parameters:
$1 - The name of the IAM user to check.
#
Returns:
0 - If the user already exists.
1 - If the user doesn't exist.
###
function iam_user_exists() {
 local user_name
 user_name=$1

 # Check whether the IAM user already exists.
 # We suppress all output - we're interested only in the return code.

 local errors
 errors=$(aws iam get-user \
 --user-name "$user_name" 2>&1 >/dev/null)

 local error_code=${?}

 if [[$error_code -eq 0]]; then
 return 0 # 0 in Bash script means true.
 else
 if [[$errors != *"error"*"(NoSuchEntity)"*]]; then
 aws_cli_error_log $error_code
 errecho "Error calling iam get-user $errors"

Using roles 529

AWS Identity and Access Management User Guide

 fi

 return 1 # 1 in Bash script means false.
 fi
}

###
function iam_create_user
#
This function creates the specified IAM user, unless
it already exists.
#
Parameters:
-u user_name -- The name of the user to create.
#
Returns:
The ARN of the user.
And:
0 - If successful.
1 - If it fails.
###
function iam_create_user() {
 local user_name response
 local option OPTARG # Required to use getopts command in a function.

 # bashsupport disable=BP5008
 function usage() {
 echo "function iam_create_user"
 echo "Creates an WS Identity and Access Management (IAM) user. You must
 supply a username:"
 echo " -u user_name The name of the user. It must be unique within the
 account."
 echo ""
 }

 # Retrieve the calling parameters.
 while getopts "u:h" option; do
 case "${option}" in
 u) user_name="${OPTARG}" ;;
 h)
 usage
 return 0
 ;;
 \?)

Using roles 530

AWS Identity and Access Management User Guide

 echo "Invalid parameter"
 usage
 return 1
 ;;
 esac
 done
 export OPTIND=1

 if [[-z "$user_name"]]; then
 errecho "ERROR: You must provide a username with the -u parameter."
 usage
 return 1
 fi

 iecho "Parameters:\n"
 iecho " User name: $user_name"
 iecho ""

 # If the user already exists, we don't want to try to create it.
 if (iam_user_exists "$user_name"); then
 errecho "ERROR: A user with that name already exists in the account."
 return 1
 fi

 response=$(aws iam create-user --user-name "$user_name" \
 --output text \
 --query 'User.Arn')

 local error_code=${?}

 if [[$error_code -ne 0]]; then
 aws_cli_error_log $error_code
 errecho "ERROR: AWS reports create-user operation failed.$response"
 return 1
 fi

 echo "$response"

 return 0
}

###
function iam_create_user_access_key
#

Using roles 531

AWS Identity and Access Management User Guide

This function creates an IAM access key for the specified user.
#
Parameters:
-u user_name -- The name of the IAM user.
[-f file_name] -- The optional file name for the access key output.
#
Returns:
[access_key_id access_key_secret]
And:
0 - If successful.
1 - If it fails.
###
function iam_create_user_access_key() {
 local user_name file_name response
 local option OPTARG # Required to use getopts command in a function.

 # bashsupport disable=BP5008
 function usage() {
 echo "function iam_create_user_access_key"
 echo "Creates an AWS Identity and Access Management (IAM) key pair."
 echo " -u user_name The name of the IAM user."
 echo " [-f file_name] Optional file name for the access key output."
 echo ""
 }

 # Retrieve the calling parameters.
 while getopts "u:f:h" option; do
 case "${option}" in
 u) user_name="${OPTARG}" ;;
 f) file_name="${OPTARG}" ;;
 h)
 usage
 return 0
 ;;
 \?)
 echo "Invalid parameter"
 usage
 return 1
 ;;
 esac
 done
 export OPTIND=1

 if [[-z "$user_name"]]; then

Using roles 532

AWS Identity and Access Management User Guide

 errecho "ERROR: You must provide a username with the -u parameter."
 usage
 return 1
 fi

 response=$(aws iam create-access-key \
 --user-name "$user_name" \
 --output text)

 local error_code=${?}

 if [[$error_code -ne 0]]; then
 aws_cli_error_log $error_code
 errecho "ERROR: AWS reports create-access-key operation failed.$response"
 return 1
 fi

 if [[-n "$file_name"]]; then
 echo "$response" >"$file_name"
 fi

 local key_id key_secret
 # shellcheck disable=SC2086
 key_id=$(echo $response | cut -f 2 -d ' ')
 # shellcheck disable=SC2086
 key_secret=$(echo $response | cut -f 4 -d ' ')

 echo "$key_id $key_secret"

 return 0
}

###
function iam_create_role
#
This function creates an IAM role.
#
Parameters:
-n role_name -- The name of the IAM role.
-p policy_json -- The assume role policy document.
#
Returns:
The ARN of the role.
And:

Using roles 533

AWS Identity and Access Management User Guide

0 - If successful.
1 - If it fails.
###
function iam_create_role() {
 local role_name policy_document response
 local option OPTARG # Required to use getopts command in a function.

 # bashsupport disable=BP5008
 function usage() {
 echo "function iam_create_user_access_key"
 echo "Creates an AWS Identity and Access Management (IAM) role."
 echo " -n role_name The name of the IAM role."
 echo " -p policy_json -- The assume role policy document."
 echo ""
 }

 # Retrieve the calling parameters.
 while getopts "n:p:h" option; do
 case "${option}" in
 n) role_name="${OPTARG}" ;;
 p) policy_document="${OPTARG}" ;;
 h)
 usage
 return 0
 ;;
 \?)
 echo "Invalid parameter"
 usage
 return 1
 ;;
 esac
 done
 export OPTIND=1

 if [[-z "$role_name"]]; then
 errecho "ERROR: You must provide a role name with the -n parameter."
 usage
 return 1
 fi

 if [[-z "$policy_document"]]; then
 errecho "ERROR: You must provide a policy document with the -p parameter."
 usage
 return 1

Using roles 534

AWS Identity and Access Management User Guide

 fi

 response=$(aws iam create-role \
 --role-name "$role_name" \
 --assume-role-policy-document "$policy_document" \
 --output text \
 --query Role.Arn)

 local error_code=${?}

 if [[$error_code -ne 0]]; then
 aws_cli_error_log $error_code
 errecho "ERROR: AWS reports create-role operation failed.\n$response"
 return 1
 fi

 echo "$response"

 return 0
}

###
function iam_create_policy
#
This function creates an IAM policy.
#
Parameters:
-n policy_name -- The name of the IAM policy.
-p policy_json -- The policy document.
#
Returns:
0 - If successful.
1 - If it fails.
###
function iam_create_policy() {
 local policy_name policy_document response
 local option OPTARG # Required to use getopts command in a function.

 # bashsupport disable=BP5008
 function usage() {
 echo "function iam_create_policy"
 echo "Creates an AWS Identity and Access Management (IAM) policy."
 echo " -n policy_name The name of the IAM policy."
 echo " -p policy_json -- The policy document."

Using roles 535

AWS Identity and Access Management User Guide

 echo ""
 }

 # Retrieve the calling parameters.
 while getopts "n:p:h" option; do
 case "${option}" in
 n) policy_name="${OPTARG}" ;;
 p) policy_document="${OPTARG}" ;;
 h)
 usage
 return 0
 ;;
 \?)
 echo "Invalid parameter"
 usage
 return 1
 ;;
 esac
 done
 export OPTIND=1

 if [[-z "$policy_name"]]; then
 errecho "ERROR: You must provide a policy name with the -n parameter."
 usage
 return 1
 fi

 if [[-z "$policy_document"]]; then
 errecho "ERROR: You must provide a policy document with the -p parameter."
 usage
 return 1
 fi

 response=$(aws iam create-policy \
 --policy-name "$policy_name" \
 --policy-document "$policy_document" \
 --output text \
 --query Policy.Arn)

 local error_code=${?}

 if [[$error_code -ne 0]]; then
 aws_cli_error_log $error_code
 errecho "ERROR: AWS reports create-policy operation failed.\n$response"

Using roles 536

AWS Identity and Access Management User Guide

 return 1
 fi

 echo "$response"
}

###
function iam_attach_role_policy
#
This function attaches an IAM policy to a tole.
#
Parameters:
-n role_name -- The name of the IAM role.
-p policy_ARN -- The IAM policy document ARN..
#
Returns:
0 - If successful.
1 - If it fails.
###
function iam_attach_role_policy() {
 local role_name policy_arn response
 local option OPTARG # Required to use getopts command in a function.

 # bashsupport disable=BP5008
 function usage() {
 echo "function iam_attach_role_policy"
 echo "Attaches an AWS Identity and Access Management (IAM) policy to an IAM
 role."
 echo " -n role_name The name of the IAM role."
 echo " -p policy_ARN -- The IAM policy document ARN."
 echo ""
 }

 # Retrieve the calling parameters.
 while getopts "n:p:h" option; do
 case "${option}" in
 n) role_name="${OPTARG}" ;;
 p) policy_arn="${OPTARG}" ;;
 h)
 usage
 return 0
 ;;
 \?)
 echo "Invalid parameter"

Using roles 537

AWS Identity and Access Management User Guide

 usage
 return 1
 ;;
 esac
 done
 export OPTIND=1

 if [[-z "$role_name"]]; then
 errecho "ERROR: You must provide a role name with the -n parameter."
 usage
 return 1
 fi

 if [[-z "$policy_arn"]]; then
 errecho "ERROR: You must provide a policy ARN with the -p parameter."
 usage
 return 1
 fi

 response=$(aws iam attach-role-policy \
 --role-name "$role_name" \
 --policy-arn "$policy_arn")

 local error_code=${?}

 if [[$error_code -ne 0]]; then
 aws_cli_error_log $error_code
 errecho "ERROR: AWS reports attach-role-policy operation failed.\n$response"
 return 1
 fi

 echo "$response"

 return 0
}

###
function iam_detach_role_policy
#
This function detaches an IAM policy to a tole.
#
Parameters:
-n role_name -- The name of the IAM role.
-p policy_ARN -- The IAM policy document ARN..

Using roles 538

AWS Identity and Access Management User Guide

#
Returns:
0 - If successful.
1 - If it fails.
###
function iam_detach_role_policy() {
 local role_name policy_arn response
 local option OPTARG # Required to use getopts command in a function.

 # bashsupport disable=BP5008
 function usage() {
 echo "function iam_detach_role_policy"
 echo "Detaches an AWS Identity and Access Management (IAM) policy to an IAM
 role."
 echo " -n role_name The name of the IAM role."
 echo " -p policy_ARN -- The IAM policy document ARN."
 echo ""
 }

 # Retrieve the calling parameters.
 while getopts "n:p:h" option; do
 case "${option}" in
 n) role_name="${OPTARG}" ;;
 p) policy_arn="${OPTARG}" ;;
 h)
 usage
 return 0
 ;;
 \?)
 echo "Invalid parameter"
 usage
 return 1
 ;;
 esac
 done
 export OPTIND=1

 if [[-z "$role_name"]]; then
 errecho "ERROR: You must provide a role name with the -n parameter."
 usage
 return 1
 fi

 if [[-z "$policy_arn"]]; then

Using roles 539

AWS Identity and Access Management User Guide

 errecho "ERROR: You must provide a policy ARN with the -p parameter."
 usage
 return 1
 fi

 response=$(aws iam detach-role-policy \
 --role-name "$role_name" \
 --policy-arn "$policy_arn")

 local error_code=${?}

 if [[$error_code -ne 0]]; then
 aws_cli_error_log $error_code
 errecho "ERROR: AWS reports detach-role-policy operation failed.\n$response"
 return 1
 fi

 echo "$response"

 return 0
}

###
function iam_delete_policy
#
This function deletes an IAM policy.
#
Parameters:
-n policy_arn -- The name of the IAM policy arn.
#
Returns:
0 - If successful.
1 - If it fails.
###
function iam_delete_policy() {
 local policy_arn response
 local option OPTARG # Required to use getopts command in a function.

 # bashsupport disable=BP5008
 function usage() {
 echo "function iam_delete_policy"
 echo "Deletes an WS Identity and Access Management (IAM) policy"
 echo " -n policy_arn -- The name of the IAM policy arn."
 echo ""

Using roles 540

AWS Identity and Access Management User Guide

 }

 # Retrieve the calling parameters.
 while getopts "n:h" option; do
 case "${option}" in
 n) policy_arn="${OPTARG}" ;;
 h)
 usage
 return 0
 ;;
 \?)
 echo "Invalid parameter"
 usage
 return 1
 ;;
 esac
 done
 export OPTIND=1

 if [[-z "$policy_arn"]]; then
 errecho "ERROR: You must provide a policy arn with the -n parameter."
 usage
 return 1
 fi

 iecho "Parameters:\n"
 iecho " Policy arn: $policy_arn"
 iecho ""

 response=$(aws iam delete-policy \
 --policy-arn "$policy_arn")

 local error_code=${?}

 if [[$error_code -ne 0]]; then
 aws_cli_error_log $error_code
 errecho "ERROR: AWS reports delete-policy operation failed.\n$response"
 return 1
 fi

 iecho "delete-policy response:$response"
 iecho

 return 0

Using roles 541

AWS Identity and Access Management User Guide

}

###
function iam_delete_role
#
This function deletes an IAM role.
#
Parameters:
-n role_name -- The name of the IAM role.
#
Returns:
0 - If successful.
1 - If it fails.
###
function iam_delete_role() {
 local role_name response
 local option OPTARG # Required to use getopts command in a function.

 # bashsupport disable=BP5008
 function usage() {
 echo "function iam_delete_role"
 echo "Deletes an WS Identity and Access Management (IAM) role"
 echo " -n role_name -- The name of the IAM role."
 echo ""
 }

 # Retrieve the calling parameters.
 while getopts "n:h" option; do
 case "${option}" in
 n) role_name="${OPTARG}" ;;
 h)
 usage
 return 0
 ;;
 \?)
 echo "Invalid parameter"
 usage
 return 1
 ;;
 esac
 done
 export OPTIND=1

 echo "role_name:$role_name"

Using roles 542

AWS Identity and Access Management User Guide

 if [[-z "$role_name"]]; then
 errecho "ERROR: You must provide a role name with the -n parameter."
 usage
 return 1
 fi

 iecho "Parameters:\n"
 iecho " Role name: $role_name"
 iecho ""

 response=$(aws iam delete-role \
 --role-name "$role_name")

 local error_code=${?}

 if [[$error_code -ne 0]]; then
 aws_cli_error_log $error_code
 errecho "ERROR: AWS reports delete-role operation failed.\n$response"
 return 1
 fi

 iecho "delete-role response:$response"
 iecho

 return 0
}

###
function iam_delete_access_key
#
This function deletes an IAM access key for the specified IAM user.
#
Parameters:
-u user_name -- The name of the user.
-k access_key -- The access key to delete.
#
Returns:
0 - If successful.
1 - If it fails.
###
function iam_delete_access_key() {
 local user_name access_key response
 local option OPTARG # Required to use getopts command in a function.

Using roles 543

AWS Identity and Access Management User Guide

 # bashsupport disable=BP5008
 function usage() {
 echo "function iam_delete_access_key"
 echo "Deletes an WS Identity and Access Management (IAM) access key for the
 specified IAM user"
 echo " -u user_name The name of the user."
 echo " -k access_key The access key to delete."
 echo ""
 }

 # Retrieve the calling parameters.
 while getopts "u:k:h" option; do
 case "${option}" in
 u) user_name="${OPTARG}" ;;
 k) access_key="${OPTARG}" ;;
 h)
 usage
 return 0
 ;;
 \?)
 echo "Invalid parameter"
 usage
 return 1
 ;;
 esac
 done
 export OPTIND=1

 if [[-z "$user_name"]]; then
 errecho "ERROR: You must provide a username with the -u parameter."
 usage
 return 1
 fi

 if [[-z "$access_key"]]; then
 errecho "ERROR: You must provide an access key with the -k parameter."
 usage
 return 1
 fi

 iecho "Parameters:\n"
 iecho " Username: $user_name"
 iecho " Access key: $access_key"
 iecho ""

Using roles 544

AWS Identity and Access Management User Guide

 response=$(aws iam delete-access-key \
 --user-name "$user_name" \
 --access-key-id "$access_key")

 local error_code=${?}

 if [[$error_code -ne 0]]; then
 aws_cli_error_log $error_code
 errecho "ERROR: AWS reports delete-access-key operation failed.\n$response"
 return 1
 fi

 iecho "delete-access-key response:$response"
 iecho

 return 0
}

###
function iam_delete_user
#
This function deletes the specified IAM user.
#
Parameters:
-u user_name -- The name of the user to create.
#
Returns:
0 - If successful.
1 - If it fails.
###
function iam_delete_user() {
 local user_name response
 local option OPTARG # Required to use getopts command in a function.

 # bashsupport disable=BP5008
 function usage() {
 echo "function iam_delete_user"
 echo "Deletes an WS Identity and Access Management (IAM) user. You must
 supply a username:"
 echo " -u user_name The name of the user."
 echo ""
 }

Using roles 545

AWS Identity and Access Management User Guide

 # Retrieve the calling parameters.
 while getopts "u:h" option; do
 case "${option}" in
 u) user_name="${OPTARG}" ;;
 h)
 usage
 return 0
 ;;
 \?)
 echo "Invalid parameter"
 usage
 return 1
 ;;
 esac
 done
 export OPTIND=1

 if [[-z "$user_name"]]; then
 errecho "ERROR: You must provide a username with the -u parameter."
 usage
 return 1
 fi

 iecho "Parameters:\n"
 iecho " User name: $user_name"
 iecho ""

 # If the user does not exist, we don't want to try to delete it.
 if (! iam_user_exists "$user_name"); then
 errecho "ERROR: A user with that name does not exist in the account."
 return 1
 fi

 response=$(aws iam delete-user \
 --user-name "$user_name")

 local error_code=${?}

 if [[$error_code -ne 0]]; then
 aws_cli_error_log $error_code
 errecho "ERROR: AWS reports delete-user operation failed.$response"
 return 1
 fi

Using roles 546

AWS Identity and Access Management User Guide

 iecho "delete-user response:$response"
 iecho

 return 0
}

• For API details, see the following topics in AWS CLI Command Reference.

• AttachRolePolicy

• CreateAccessKey

• CreatePolicy

• CreateRole

• CreateUser

• DeleteAccessKey

• DeletePolicy

• DeleteRole

• DeleteUser

• DeleteUserPolicy

• DetachRolePolicy

• PutUserPolicy

C++

SDK for C++

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

namespace AwsDoc {
 namespace IAM {

 //! Cleanup by deleting created entities.
 /*!

Using roles 547

https://docs.aws.amazon.com/goto/aws-cli/iam-2010-05-08/AttachRolePolicy
https://docs.aws.amazon.com/goto/aws-cli/iam-2010-05-08/CreateAccessKey
https://docs.aws.amazon.com/goto/aws-cli/iam-2010-05-08/CreatePolicy
https://docs.aws.amazon.com/goto/aws-cli/iam-2010-05-08/CreateRole
https://docs.aws.amazon.com/goto/aws-cli/iam-2010-05-08/CreateUser
https://docs.aws.amazon.com/goto/aws-cli/iam-2010-05-08/DeleteAccessKey
https://docs.aws.amazon.com/goto/aws-cli/iam-2010-05-08/DeletePolicy
https://docs.aws.amazon.com/goto/aws-cli/iam-2010-05-08/DeleteRole
https://docs.aws.amazon.com/goto/aws-cli/iam-2010-05-08/DeleteUser
https://docs.aws.amazon.com/goto/aws-cli/iam-2010-05-08/DeleteUserPolicy
https://docs.aws.amazon.com/goto/aws-cli/iam-2010-05-08/DetachRolePolicy
https://docs.aws.amazon.com/goto/aws-cli/iam-2010-05-08/PutUserPolicy
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/cpp/example_code/iam#code-examples

AWS Identity and Access Management User Guide

 \sa DeleteCreatedEntities
 \param client: IAM client.
 \param role: IAM role.
 \param user: IAM user.
 \param policy: IAM policy.
 */
 static bool DeleteCreatedEntities(const Aws::IAM::IAMClient &client,
 const Aws::IAM::Model::Role &role,
 const Aws::IAM::Model::User &user,
 const Aws::IAM::Model::Policy &policy);
 }

 static const int LIST_BUCKETS_WAIT_SEC = 20;

 static const char ALLOCATION_TAG[] = "example_code";
}

//! Scenario to create an IAM user, create an IAM role, and apply the role to the
 user.
// "IAM access" permissions are needed to run this code.
// "STS assume role" permissions are needed to run this code. (Note: It might be
 necessary to
// create a custom policy).
/*!
 \sa iamCreateUserAssumeRoleScenario
 \param clientConfig: Aws client configuration.
 \return bool: Successful completion.
*/
bool AwsDoc::IAM::iamCreateUserAssumeRoleScenario(
 const Aws::Client::ClientConfiguration &clientConfig) {

 Aws::IAM::IAMClient client(clientConfig);
 Aws::IAM::Model::User user;
 Aws::IAM::Model::Role role;
 Aws::IAM::Model::Policy policy;

 // 1. Create a user.
 {
 Aws::IAM::Model::CreateUserRequest request;
 Aws::String uuid = Aws::Utils::UUID::RandomUUID();
 Aws::String userName = "iam-demo-user-" +
 Aws::Utils::StringUtils::ToLower(uuid.c_str());
 request.SetUserName(userName);

Using roles 548

AWS Identity and Access Management User Guide

 Aws::IAM::Model::CreateUserOutcome outcome = client.CreateUser(request);
 if (!outcome.IsSuccess()) {
 std::cout << "Error creating IAM user " << userName << ":" <<
 outcome.GetError().GetMessage() << std::endl;
 return false;
 }
 else {
 std::cout << "Successfully created IAM user " << userName <<
 std::endl;
 }

 user = outcome.GetResult().GetUser();
 }

 // 2. Create a role.
 {
 // Get the IAM user for the current client in order to access its ARN.
 Aws::String iamUserArn;
 {
 Aws::IAM::Model::GetUserRequest request;
 Aws::IAM::Model::GetUserOutcome outcome = client.GetUser(request);
 if (!outcome.IsSuccess()) {
 std::cerr << "Error getting Iam user. " <<
 outcome.GetError().GetMessage() << std::endl;

 DeleteCreatedEntities(client, role, user, policy);
 return false;
 }
 else {
 std::cout << "Successfully retrieved Iam user "
 << outcome.GetResult().GetUser().GetUserName()
 << std::endl;
 }

 iamUserArn = outcome.GetResult().GetUser().GetArn();
 }

 Aws::IAM::Model::CreateRoleRequest request;

 Aws::String uuid = Aws::Utils::UUID::RandomUUID();
 Aws::String roleName = "iam-demo-role-" +
 Aws::Utils::StringUtils::ToLower(uuid.c_str());
 request.SetRoleName(roleName);

Using roles 549

AWS Identity and Access Management User Guide

 // Build policy document for role.
 Aws::Utils::Document jsonStatement;
 jsonStatement.WithString("Effect", "Allow");

 Aws::Utils::Document jsonPrincipal;
 jsonPrincipal.WithString("AWS", iamUserArn);
 jsonStatement.WithObject("Principal", jsonPrincipal);
 jsonStatement.WithString("Action", "sts:AssumeRole");
 jsonStatement.WithObject("Condition", Aws::Utils::Document());

 Aws::Utils::Document policyDocument;
 policyDocument.WithString("Version", "2012-10-17");

 Aws::Utils::Array<Aws::Utils::Document> statements(1);
 statements[0] = jsonStatement;
 policyDocument.WithArray("Statement", statements);

 std::cout << "Setting policy for role\n "
 << policyDocument.View().WriteCompact() << std::endl;

 // Set role policy document as JSON string.

 request.SetAssumeRolePolicyDocument(policyDocument.View().WriteCompact());

 Aws::IAM::Model::CreateRoleOutcome outcome = client.CreateRole(request);
 if (!outcome.IsSuccess()) {
 std::cerr << "Error creating role. " <<
 outcome.GetError().GetMessage() << std::endl;

 DeleteCreatedEntities(client, role, user, policy);
 return false;
 }
 else {
 std::cout << "Successfully created a role with name " << roleName
 << std::endl;
 }

 role = outcome.GetResult().GetRole();
 }

 // 3. Create an IAM policy.
 {
 Aws::IAM::Model::CreatePolicyRequest request;
 Aws::String uuid = Aws::Utils::UUID::RandomUUID();

Using roles 550

AWS Identity and Access Management User Guide

 Aws::String policyName = "iam-demo-policy-" +
 Aws::Utils::StringUtils::ToLower(uuid.c_str());
 request.SetPolicyName(policyName);

 // Build IAM policy document.
 Aws::Utils::Document jsonStatement;
 jsonStatement.WithString("Effect", "Allow");
 jsonStatement.WithString("Action", "s3:ListAllMyBuckets");
 jsonStatement.WithString("Resource", "arn:aws:s3:::*");

 Aws::Utils::Document policyDocument;
 policyDocument.WithString("Version", "2012-10-17");

 Aws::Utils::Array<Aws::Utils::Document> statements(1);
 statements[0] = jsonStatement;
 policyDocument.WithArray("Statement", statements);

 std::cout << "Creating a policy.\n " <<
 policyDocument.View().WriteCompact()
 << std::endl;

 // Set IAM policy document as JSON string.
 request.SetPolicyDocument(policyDocument.View().WriteCompact());

 Aws::IAM::Model::CreatePolicyOutcome outcome =
 client.CreatePolicy(request);
 if (!outcome.IsSuccess()) {
 std::cerr << "Error creating policy. " <<
 outcome.GetError().GetMessage() << std::endl;

 DeleteCreatedEntities(client, role, user, policy);
 return false;
 }
 else {
 std::cout << "Successfully created a policy with name, " <<
 policyName <<
 "." << std::endl;
 }

 policy = outcome.GetResult().GetPolicy();
 }

 // 4. Assume the new role using the AWS Security Token Service (STS).
 Aws::STS::Model::Credentials credentials;

Using roles 551

AWS Identity and Access Management User Guide

 {
 Aws::STS::STSClient stsClient(clientConfig);

 Aws::STS::Model::AssumeRoleRequest request;
 request.SetRoleArn(role.GetArn());
 Aws::String uuid = Aws::Utils::UUID::RandomUUID();
 Aws::String roleSessionName = "iam-demo-role-session-" +

 Aws::Utils::StringUtils::ToLower(uuid.c_str());
 request.SetRoleSessionName(roleSessionName);

 Aws::STS::Model::AssumeRoleOutcome assumeRoleOutcome;

 // Repeatedly call AssumeRole, because there is often a delay
 // before the role is available to be assumed.
 // Repeat at most 20 times when access is denied.
 int count = 0;
 while (true) {
 assumeRoleOutcome = stsClient.AssumeRole(request);
 if (!assumeRoleOutcome.IsSuccess()) {
 if (count > 20 ||
 assumeRoleOutcome.GetError().GetErrorType() !=
 Aws::STS::STSErrors::ACCESS_DENIED) {
 std::cerr << "Error assuming role after 20 tries. " <<
 assumeRoleOutcome.GetError().GetMessage() <<
 std::endl;

 DeleteCreatedEntities(client, role, user, policy);
 return false;
 }
 std::this_thread::sleep_for(std::chrono::seconds(1));
 }
 else {
 std::cout << "Successfully assumed the role after " << count
 << " seconds." << std::endl;
 break;
 }
 count++;
 }

 credentials = assumeRoleOutcome.GetResult().GetCredentials();
 }

Using roles 552

AWS Identity and Access Management User Guide

 // 5. List objects in the bucket (This should fail).
 {
 Aws::S3::S3Client s3Client(
 Aws::Auth::AWSCredentials(credentials.GetAccessKeyId(),
 credentials.GetSecretAccessKey(),
 credentials.GetSessionToken()),
 Aws::MakeShared<Aws::S3::S3EndpointProvider>(ALLOCATION_TAG),
 clientConfig);
 Aws::S3::Model::ListBucketsOutcome listBucketsOutcome =
 s3Client.ListBuckets();
 if (!listBucketsOutcome.IsSuccess()) {
 if (listBucketsOutcome.GetError().GetErrorType() !=
 Aws::S3::S3Errors::ACCESS_DENIED) {
 std::cerr << "Could not lists buckets. " <<
 listBucketsOutcome.GetError().GetMessage() <<
 std::endl;
 }
 else {
 std::cout
 << "Access to list buckets denied because privileges have
 not been applied."
 << std::endl;
 }
 }
 else {
 std::cerr
 << "Successfully retrieved bucket lists when this should not
 happen."
 << std::endl;
 }
 }

 // 6. Attach the policy to the role.
 {
 Aws::IAM::Model::AttachRolePolicyRequest request;
 request.SetRoleName(role.GetRoleName());
 request.WithPolicyArn(policy.GetArn());

 Aws::IAM::Model::AttachRolePolicyOutcome outcome =
 client.AttachRolePolicy(
 request);
 if (!outcome.IsSuccess()) {
 std::cerr << "Error creating policy. " <<
 outcome.GetError().GetMessage() << std::endl;

Using roles 553

AWS Identity and Access Management User Guide

 DeleteCreatedEntities(client, role, user, policy);
 return false;
 }
 else {
 std::cout << "Successfully attached the policy with name, "
 << policy.GetPolicyName() <<
 ", to the role, " << role.GetRoleName() << "." <<
 std::endl;
 }
 }

 int count = 0;
 // 7. List objects in the bucket (this should succeed).
 // Repeatedly call ListBuckets, because there is often a delay
 // before the policy with ListBucket permissions has been applied to the
 role.
 // Repeat at most LIST_BUCKETS_WAIT_SEC times when access is denied.
 while (true) {
 Aws::S3::S3Client s3Client(
 Aws::Auth::AWSCredentials(credentials.GetAccessKeyId(),
 credentials.GetSecretAccessKey(),
 credentials.GetSessionToken()),
 Aws::MakeShared<Aws::S3::S3EndpointProvider>(ALLOCATION_TAG),
 clientConfig);
 Aws::S3::Model::ListBucketsOutcome listBucketsOutcome =
 s3Client.ListBuckets();
 if (!listBucketsOutcome.IsSuccess()) {
 if ((count > LIST_BUCKETS_WAIT_SEC) ||
 listBucketsOutcome.GetError().GetErrorType() !=
 Aws::S3::S3Errors::ACCESS_DENIED) {
 std::cerr << "Could not lists buckets after " <<
 LIST_BUCKETS_WAIT_SEC << " seconds. " <<
 listBucketsOutcome.GetError().GetMessage() <<
 std::endl;
 DeleteCreatedEntities(client, role, user, policy);
 return false;
 }

 std::this_thread::sleep_for(std::chrono::seconds(1));
 }
 else {

 std::cout << "Successfully retrieved bucket lists after " << count

Using roles 554

AWS Identity and Access Management User Guide

 << " seconds." << std::endl;
 break;
 }
 count++;
 }

 // 8. Delete all the created resources.
 return DeleteCreatedEntities(client, role, user, policy);
}

bool AwsDoc::IAM::DeleteCreatedEntities(const Aws::IAM::IAMClient &client,
 const Aws::IAM::Model::Role &role,
 const Aws::IAM::Model::User &user,
 const Aws::IAM::Model::Policy &policy) {
 bool result = true;
 if (policy.ArnHasBeenSet()) {
 // Detach the policy from the role.
 {
 Aws::IAM::Model::DetachRolePolicyRequest request;
 request.SetPolicyArn(policy.GetArn());
 request.SetRoleName(role.GetRoleName());

 Aws::IAM::Model::DetachRolePolicyOutcome outcome =
 client.DetachRolePolicy(
 request);
 if (!outcome.IsSuccess()) {
 std::cerr << "Error Detaching policy from roles. " <<
 outcome.GetError().GetMessage() << std::endl;
 result = false;
 }
 else {
 std::cout << "Successfully detached the policy with arn "
 << policy.GetArn()
 << " from role " << role.GetRoleName() << "." <<
 std::endl;
 }
 }

 // Delete the policy.
 {
 Aws::IAM::Model::DeletePolicyRequest request;
 request.WithPolicyArn(policy.GetArn());

Using roles 555

AWS Identity and Access Management User Guide

 Aws::IAM::Model::DeletePolicyOutcome outcome =
 client.DeletePolicy(request);
 if (!outcome.IsSuccess()) {
 std::cerr << "Error deleting policy. " <<
 outcome.GetError().GetMessage() << std::endl;
 result = false;
 }
 else {
 std::cout << "Successfully deleted the policy with arn "
 << policy.GetArn() << std::endl;
 }
 }

 }

 if (role.RoleIdHasBeenSet()) {
 // Delete the role.
 Aws::IAM::Model::DeleteRoleRequest request;
 request.SetRoleName(role.GetRoleName());

 Aws::IAM::Model::DeleteRoleOutcome outcome = client.DeleteRole(request);
 if (!outcome.IsSuccess()) {
 std::cerr << "Error deleting role. " <<
 outcome.GetError().GetMessage() << std::endl;
 result = false;
 }
 else {
 std::cout << "Successfully deleted the role with name "
 << role.GetRoleName() << std::endl;
 }
 }

 if (user.ArnHasBeenSet()) {
 // Delete the user.
 Aws::IAM::Model::DeleteUserRequest request;
 request.WithUserName(user.GetUserName());

 Aws::IAM::Model::DeleteUserOutcome outcome = client.DeleteUser(request);
 if (!outcome.IsSuccess()) {
 std::cerr << "Error deleting user. " <<
 outcome.GetError().GetMessage() << std::endl;
 result = false;
 }
 else {

Using roles 556

AWS Identity and Access Management User Guide

 std::cout << "Successfully deleted the user with name "
 << user.GetUserName() << std::endl;
 }
 }

 return result;
}

• For API details, see the following topics in AWS SDK for C++ API Reference.

• AttachRolePolicy

• CreateAccessKey

• CreatePolicy

• CreateRole

• CreateUser

• DeleteAccessKey

• DeletePolicy

• DeleteRole

• DeleteUser

• DeleteUserPolicy

• DetachRolePolicy

• PutUserPolicy

Go

SDK for Go V2

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Run an interactive scenario at a command prompt.

Using roles 557

https://docs.aws.amazon.com/goto/SdkForCpp/iam-2010-05-08/AttachRolePolicy
https://docs.aws.amazon.com/goto/SdkForCpp/iam-2010-05-08/CreateAccessKey
https://docs.aws.amazon.com/goto/SdkForCpp/iam-2010-05-08/CreatePolicy
https://docs.aws.amazon.com/goto/SdkForCpp/iam-2010-05-08/CreateRole
https://docs.aws.amazon.com/goto/SdkForCpp/iam-2010-05-08/CreateUser
https://docs.aws.amazon.com/goto/SdkForCpp/iam-2010-05-08/DeleteAccessKey
https://docs.aws.amazon.com/goto/SdkForCpp/iam-2010-05-08/DeletePolicy
https://docs.aws.amazon.com/goto/SdkForCpp/iam-2010-05-08/DeleteRole
https://docs.aws.amazon.com/goto/SdkForCpp/iam-2010-05-08/DeleteUser
https://docs.aws.amazon.com/goto/SdkForCpp/iam-2010-05-08/DeleteUserPolicy
https://docs.aws.amazon.com/goto/SdkForCpp/iam-2010-05-08/DetachRolePolicy
https://docs.aws.amazon.com/goto/SdkForCpp/iam-2010-05-08/PutUserPolicy
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/gov2/iam#code-examples

AWS Identity and Access Management User Guide

// AssumeRoleScenario shows you how to use the AWS Identity and Access Management
 (IAM)
// service to perform the following actions:
//
// 1. Create a user who has no permissions.
// 2. Create a role that grants permission to list Amazon Simple Storage Service
// (Amazon S3) buckets for the account.
// 3. Add a policy to let the user assume the role.
// 4. Try and fail to list buckets without permissions.
// 5. Assume the role and list S3 buckets using temporary credentials.
// 6. Delete the policy, role, and user.
type AssumeRoleScenario struct {
 sdkConfig aws.Config
 accountWrapper actions.AccountWrapper
 policyWrapper actions.PolicyWrapper
 roleWrapper actions.RoleWrapper
 userWrapper actions.UserWrapper
 questioner demotools.IQuestioner
 helper IScenarioHelper
 isTestRun bool
}

// NewAssumeRoleScenario constructs an AssumeRoleScenario instance from a
 configuration.
// It uses the specified config to get an IAM client and create wrappers for the
 actions
// used in the scenario.
func NewAssumeRoleScenario(sdkConfig aws.Config, questioner
 demotools.IQuestioner,
 helper IScenarioHelper) AssumeRoleScenario {
 iamClient := iam.NewFromConfig(sdkConfig)
 return AssumeRoleScenario{
 sdkConfig: sdkConfig,
 accountWrapper: actions.AccountWrapper{IamClient: iamClient},
 policyWrapper: actions.PolicyWrapper{IamClient: iamClient},
 roleWrapper: actions.RoleWrapper{IamClient: iamClient},
 userWrapper: actions.UserWrapper{IamClient: iamClient},
 questioner: questioner,
 helper: helper,
 }
}

// addTestOptions appends the API options specified in the original configuration
 to

Using roles 558

AWS Identity and Access Management User Guide

// another configuration. This is used to attach the middleware stubber to
 clients
// that are constructed during the scenario, which is needed for unit testing.
func (scenario AssumeRoleScenario) addTestOptions(scenarioConfig *aws.Config) {
 if scenario.isTestRun {
 scenarioConfig.APIOptions = append(scenarioConfig.APIOptions,
 scenario.sdkConfig.APIOptions...)
 }
}

// Run runs the interactive scenario.
func (scenario AssumeRoleScenario) Run() {
 defer func() {
 if r := recover(); r != nil {
 log.Printf("Something went wrong with the demo.\n")
 log.Println(r)
 }
 }()

 log.Println(strings.Repeat("-", 88))
 log.Println("Welcome to the AWS Identity and Access Management (IAM) assume role
 demo.")
 log.Println(strings.Repeat("-", 88))

 user := scenario.CreateUser()
 accessKey := scenario.CreateAccessKey(user)
 role := scenario.CreateRoleAndPolicies(user)
 noPermsConfig := scenario.ListBucketsWithoutPermissions(accessKey)
 scenario.ListBucketsWithAssumedRole(noPermsConfig, role)
 scenario.Cleanup(user, role)

 log.Println(strings.Repeat("-", 88))
 log.Println("Thanks for watching!")
 log.Println(strings.Repeat("-", 88))
}

// CreateUser creates a new IAM user. This user has no permissions.
func (scenario AssumeRoleScenario) CreateUser() *types.User {
 log.Println("Let's create an example user with no permissions.")
 userName := scenario.questioner.Ask("Enter a name for the example user:",
 demotools.NotEmpty{})
 user, err := scenario.userWrapper.GetUser(userName)
 if err != nil {
 panic(err)

Using roles 559

AWS Identity and Access Management User Guide

 }
 if user == nil {
 user, err = scenario.userWrapper.CreateUser(userName)
 if err != nil {
 panic(err)
 }
 log.Printf("Created user %v.\n", *user.UserName)
 } else {
 log.Printf("User %v already exists.\n", *user.UserName)
 }
 log.Println(strings.Repeat("-", 88))
 return user
}

// CreateAccessKey creates an access key for the user.
func (scenario AssumeRoleScenario) CreateAccessKey(user *types.User)
 *types.AccessKey {
 accessKey, err := scenario.userWrapper.CreateAccessKeyPair(*user.UserName)
 if err != nil {
 panic(err)
 }
 log.Printf("Created access key %v for your user.", *accessKey.AccessKeyId)
 log.Println("Waiting a few seconds for your user to be ready...")
 scenario.helper.Pause(10)
 log.Println(strings.Repeat("-", 88))
 return accessKey
}

// CreateRoleAndPolicies creates a policy that grants permission to list S3
 buckets for
// the current account and attaches the policy to a newly created role. It also
 adds an
// inline policy to the specified user that grants the user permission to assume
 the role.
func (scenario AssumeRoleScenario) CreateRoleAndPolicies(user *types.User)
 *types.Role {
 log.Println("Let's create a role and policy that grant permission to list S3
 buckets.")
 scenario.questioner.Ask("Press Enter when you're ready.")
 listBucketsRole, err :=
 scenario.roleWrapper.CreateRole(scenario.helper.GetName(), *user.Arn)
 if err != nil {panic(err)}
 log.Printf("Created role %v.\n", *listBucketsRole.RoleName)
 listBucketsPolicy, err := scenario.policyWrapper.CreatePolicy(

Using roles 560

AWS Identity and Access Management User Guide

 scenario.helper.GetName(), []string{"s3:ListAllMyBuckets"}, "arn:aws:s3:::*")
 if err != nil {panic(err)}
 log.Printf("Created policy %v.\n", *listBucketsPolicy.PolicyName)
 err = scenario.roleWrapper.AttachRolePolicy(*listBucketsPolicy.Arn,
 *listBucketsRole.RoleName)
 if err != nil {panic(err)}
 log.Printf("Attached policy %v to role %v.\n", *listBucketsPolicy.PolicyName,
 *listBucketsRole.RoleName)
 err = scenario.userWrapper.CreateUserPolicy(*user.UserName,
 scenario.helper.GetName(),
 []string{"sts:AssumeRole"}, *listBucketsRole.Arn)
 if err != nil {panic(err)}
 log.Printf("Created an inline policy for user %v that lets the user assume the
 role.\n",
 *user.UserName)
 log.Println("Let's give AWS a few seconds to propagate these new resources and
 connections...")
 scenario.helper.Pause(10)
 log.Println(strings.Repeat("-", 88))
 return listBucketsRole
}

// ListBucketsWithoutPermissions creates an Amazon S3 client from the user's
 access key
// credentials and tries to list buckets for the account. Because the user does
 not have
// permission to perform this action, the action fails.
func (scenario AssumeRoleScenario) ListBucketsWithoutPermissions(accessKey
 *types.AccessKey) *aws.Config {
 log.Println("Let's try to list buckets without permissions. This should return
 an AccessDenied error.")
 scenario.questioner.Ask("Press Enter when you're ready.")
 noPermsConfig, err := config.LoadDefaultConfig(context.TODO(),
 config.WithCredentialsProvider(credentials.NewStaticCredentialsProvider(
 *accessKey.AccessKeyId, *accessKey.SecretAccessKey, ""),
))
 if err != nil {panic(err)}

 // Add test options if this is a test run. This is needed only for testing
 purposes.
 scenario.addTestOptions(&noPermsConfig)

 s3Client := s3.NewFromConfig(noPermsConfig)
 _, err = s3Client.ListBuckets(context.TODO(), &s3.ListBucketsInput{})

Using roles 561

AWS Identity and Access Management User Guide

 if err != nil {
 // The SDK for Go does not model the AccessDenied error, so check ErrorCode
 directly.
 var ae smithy.APIError
 if errors.As(err, &ae) {
 switch ae.ErrorCode() {
 case "AccessDenied":
 log.Println("Got AccessDenied error, which is the expected result because\n"
 +
 "the ListBuckets call was made without permissions.")
 default:
 log.Println("Expected AccessDenied, got something else.")
 panic(err)
 }
 }
 } else {
 log.Println("Expected AccessDenied error when calling ListBuckets without
 permissions,\n" +
 "but the call succeeded. Continuing the example anyway...")
 }
 log.Println(strings.Repeat("-", 88))
 return &noPermsConfig
}

// ListBucketsWithAssumedRole performs the following actions:
//
// 1. Creates an AWS Security Token Service (AWS STS) client from the config
 created from
// the user's access key credentials.
// 2. Gets temporary credentials by assuming the role that grants permission to
 list the
// buckets.
// 3. Creates an Amazon S3 client from the temporary credentials.
// 4. Lists buckets for the account. Because the temporary credentials are
 generated by
// assuming the role that grants permission, the action succeeds.
func (scenario AssumeRoleScenario) ListBucketsWithAssumedRole(noPermsConfig
 *aws.Config, role *types.Role) {
 log.Println("Let's assume the role that grants permission to list buckets and
 try again.")
 scenario.questioner.Ask("Press Enter when you're ready.")
 stsClient := sts.NewFromConfig(*noPermsConfig)
 tempCredentials, err := stsClient.AssumeRole(context.TODO(),
 &sts.AssumeRoleInput{

Using roles 562

AWS Identity and Access Management User Guide

 RoleArn: role.Arn,
 RoleSessionName: aws.String("AssumeRoleExampleSession"),
 DurationSeconds: aws.Int32(900),
 })
 if err != nil {
 log.Printf("Couldn't assume role %v.\n", *role.RoleName)
 panic(err)
 }
 log.Printf("Assumed role %v, got temporary credentials.\n", *role.RoleName)
 assumeRoleConfig, err := config.LoadDefaultConfig(context.TODO(),
 config.WithCredentialsProvider(credentials.NewStaticCredentialsProvider(
 *tempCredentials.Credentials.AccessKeyId,
 *tempCredentials.Credentials.SecretAccessKey,
 *tempCredentials.Credentials.SessionToken),
),
)
 if err != nil {panic(err)}

 // Add test options if this is a test run. This is needed only for testing
 purposes.
 scenario.addTestOptions(&assumeRoleConfig)

 s3Client := s3.NewFromConfig(assumeRoleConfig)
 result, err := s3Client.ListBuckets(context.TODO(), &s3.ListBucketsInput{})
 if err != nil {
 log.Println("Couldn't list buckets with assumed role credentials.")
 panic(err)
 }
 log.Println("Successfully called ListBuckets with assumed role credentials, \n"
 +
 "here are some of them:")
 for i := 0; i < len(result.Buckets) && i < 5; i++ {
 log.Printf("\t%v\n", *result.Buckets[i].Name)
 }
 log.Println(strings.Repeat("-", 88))
}

// Cleanup deletes all resources created for the scenario.
func (scenario AssumeRoleScenario) Cleanup(user *types.User, role *types.Role) {
 if scenario.questioner.AskBool(
 "Do you want to delete the resources created for this example? (y/n)", "y",
) {
 policies, err := scenario.roleWrapper.ListAttachedRolePolicies(*role.RoleName)
 if err != nil {panic(err)}

Using roles 563

AWS Identity and Access Management User Guide

 for _, policy := range policies {
 err = scenario.roleWrapper.DetachRolePolicy(*role.RoleName,
 *policy.PolicyArn)
 if err != nil {panic(err)}
 err = scenario.policyWrapper.DeletePolicy(*policy.PolicyArn)
 if err != nil {panic(err)}
 log.Printf("Detached policy %v from role %v and deleted the policy.\n",
 *policy.PolicyName, *role.RoleName)
 }
 err = scenario.roleWrapper.DeleteRole(*role.RoleName)
 if err != nil {panic(err)}
 log.Printf("Deleted role %v.\n", *role.RoleName)

 userPols, err := scenario.userWrapper.ListUserPolicies(*user.UserName)
 if err != nil {panic(err)}
 for _, userPol := range userPols {
 err = scenario.userWrapper.DeleteUserPolicy(*user.UserName, userPol)
 if err != nil {panic(err)}
 log.Printf("Deleted policy %v from user %v.\n", userPol, *user.UserName)
 }
 keys, err := scenario.userWrapper.ListAccessKeys(*user.UserName)
 if err != nil {panic(err)}
 for _, key := range keys {
 err = scenario.userWrapper.DeleteAccessKey(*user.UserName, *key.AccessKeyId)
 if err != nil {panic(err)}
 log.Printf("Deleted access key %v from user %v.\n", *key.AccessKeyId,
 *user.UserName)
 }
 err = scenario.userWrapper.DeleteUser(*user.UserName)
 if err != nil {panic(err)}
 log.Printf("Deleted user %v.\n", *user.UserName)
 log.Println(strings.Repeat("-", 88))
 }

}

Define a struct that wraps account actions.

// AccountWrapper encapsulates AWS Identity and Access Management (IAM) account
 actions

Using roles 564

AWS Identity and Access Management User Guide

// used in the examples.
// It contains an IAM service client that is used to perform account actions.
type AccountWrapper struct {
 IamClient *iam.Client
}

// GetAccountPasswordPolicy gets the account password policy for the current
 account.
// If no policy has been set, a NoSuchEntityException is error is returned.
func (wrapper AccountWrapper) GetAccountPasswordPolicy() (*types.PasswordPolicy,
 error) {
 var pwPolicy *types.PasswordPolicy
 result, err := wrapper.IamClient.GetAccountPasswordPolicy(context.TODO(),
 &iam.GetAccountPasswordPolicyInput{})
 if err != nil {
 log.Printf("Couldn't get account password policy. Here's why: %v\n", err)
 } else {
 pwPolicy = result.PasswordPolicy
 }
 return pwPolicy, err
}

// ListSAMLProviders gets the SAML providers for the account.
func (wrapper AccountWrapper) ListSAMLProviders() ([]types.SAMLProviderListEntry,
 error) {
 var providers []types.SAMLProviderListEntry
 result, err := wrapper.IamClient.ListSAMLProviders(context.TODO(),
 &iam.ListSAMLProvidersInput{})
 if err != nil {
 log.Printf("Couldn't list SAML providers. Here's why: %v\n", err)
 } else {
 providers = result.SAMLProviderList
 }
 return providers, err
}

Define a struct that wraps policy actions.

Using roles 565

AWS Identity and Access Management User Guide

// PolicyDocument defines a policy document as a Go struct that can be serialized
// to JSON.
type PolicyDocument struct {
 Version string
 Statement []PolicyStatement
}

// PolicyStatement defines a statement in a policy document.
type PolicyStatement struct {
 Effect string
 Action []string
 Principal map[string]string `json:",omitempty"`
 Resource *string `json:",omitempty"`
}

// PolicyWrapper encapsulates AWS Identity and Access Management (IAM) policy
 actions
// used in the examples.
// It contains an IAM service client that is used to perform policy actions.
type PolicyWrapper struct {
 IamClient *iam.Client
}

// ListPolicies gets up to maxPolicies policies.
func (wrapper PolicyWrapper) ListPolicies(maxPolicies int32) ([]types.Policy,
 error) {
 var policies []types.Policy
 result, err := wrapper.IamClient.ListPolicies(context.TODO(),
 &iam.ListPoliciesInput{
 MaxItems: aws.Int32(maxPolicies),
 })
 if err != nil {
 log.Printf("Couldn't list policies. Here's why: %v\n", err)
 } else {
 policies = result.Policies
 }
 return policies, err
}

Using roles 566

AWS Identity and Access Management User Guide

// CreatePolicy creates a policy that grants a list of actions to the specified
 resource.
// PolicyDocument shows how to work with a policy document as a data structure
 and
// serialize it to JSON by using Go's JSON marshaler.
func (wrapper PolicyWrapper) CreatePolicy(policyName string, actions []string,
 resourceArn string) (*types.Policy, error) {
 var policy *types.Policy
 policyDoc := PolicyDocument{
 Version: "2012-10-17",
 Statement: []PolicyStatement{{
 Effect: "Allow",
 Action: actions,
 Resource: aws.String(resourceArn),
 }},
 }
 policyBytes, err := json.Marshal(policyDoc)
 if err != nil {
 log.Printf("Couldn't create policy document for %v. Here's why: %v\n",
 resourceArn, err)
 return nil, err
 }
 result, err := wrapper.IamClient.CreatePolicy(context.TODO(),
 &iam.CreatePolicyInput{
 PolicyDocument: aws.String(string(policyBytes)),
 PolicyName: aws.String(policyName),
 })
 if err != nil {
 log.Printf("Couldn't create policy %v. Here's why: %v\n", policyName, err)
 } else {
 policy = result.Policy
 }
 return policy, err
}

// GetPolicy gets data about a policy.
func (wrapper PolicyWrapper) GetPolicy(policyArn string) (*types.Policy, error) {
 var policy *types.Policy
 result, err := wrapper.IamClient.GetPolicy(context.TODO(), &iam.GetPolicyInput{

Using roles 567

AWS Identity and Access Management User Guide

 PolicyArn: aws.String(policyArn),
 })
 if err != nil {
 log.Printf("Couldn't get policy %v. Here's why: %v\n", policyArn, err)
 } else {
 policy = result.Policy
 }
 return policy, err
}

// DeletePolicy deletes a policy.
func (wrapper PolicyWrapper) DeletePolicy(policyArn string) error {
 _, err := wrapper.IamClient.DeletePolicy(context.TODO(), &iam.DeletePolicyInput{
 PolicyArn: aws.String(policyArn),
 })
 if err != nil {
 log.Printf("Couldn't delete policy %v. Here's why: %v\n", policyArn, err)
 }
 return err
}

Define a struct that wraps role actions.

// RoleWrapper encapsulates AWS Identity and Access Management (IAM) role actions
// used in the examples.
// It contains an IAM service client that is used to perform role actions.
type RoleWrapper struct {
 IamClient *iam.Client
}

// ListRoles gets up to maxRoles roles.
func (wrapper RoleWrapper) ListRoles(maxRoles int32) ([]types.Role, error) {
 var roles []types.Role
 result, err := wrapper.IamClient.ListRoles(context.TODO(),
 &iam.ListRolesInput{MaxItems: aws.Int32(maxRoles)},
)

Using roles 568

AWS Identity and Access Management User Guide

 if err != nil {
 log.Printf("Couldn't list roles. Here's why: %v\n", err)
 } else {
 roles = result.Roles
 }
 return roles, err
}

// CreateRole creates a role that trusts a specified user. The trusted user can
 assume
// the role to acquire its permissions.
// PolicyDocument shows how to work with a policy document as a data structure
 and
// serialize it to JSON by using Go's JSON marshaler.
func (wrapper RoleWrapper) CreateRole(roleName string, trustedUserArn string)
 (*types.Role, error) {
 var role *types.Role
 trustPolicy := PolicyDocument{
 Version: "2012-10-17",
 Statement: []PolicyStatement{{
 Effect: "Allow",
 Principal: map[string]string{"AWS": trustedUserArn},
 Action: []string{"sts:AssumeRole"},
 }},
 }
 policyBytes, err := json.Marshal(trustPolicy)
 if err != nil {
 log.Printf("Couldn't create trust policy for %v. Here's why: %v\n",
 trustedUserArn, err)
 return nil, err
 }
 result, err := wrapper.IamClient.CreateRole(context.TODO(),
 &iam.CreateRoleInput{
 AssumeRolePolicyDocument: aws.String(string(policyBytes)),
 RoleName: aws.String(roleName),
 })
 if err != nil {
 log.Printf("Couldn't create role %v. Here's why: %v\n", roleName, err)
 } else {
 role = result.Role
 }
 return role, err

Using roles 569

AWS Identity and Access Management User Guide

}

// GetRole gets data about a role.
func (wrapper RoleWrapper) GetRole(roleName string) (*types.Role, error) {
 var role *types.Role
 result, err := wrapper.IamClient.GetRole(context.TODO(),
 &iam.GetRoleInput{RoleName: aws.String(roleName)})
 if err != nil {
 log.Printf("Couldn't get role %v. Here's why: %v\n", roleName, err)
 } else {
 role = result.Role
 }
 return role, err
}

// CreateServiceLinkedRole creates a service-linked role that is owned by the
 specified service.
func (wrapper RoleWrapper) CreateServiceLinkedRole(serviceName string,
 description string) (*types.Role, error) {
 var role *types.Role
 result, err := wrapper.IamClient.CreateServiceLinkedRole(context.TODO(),
 &iam.CreateServiceLinkedRoleInput{
 AWSServiceName: aws.String(serviceName),
 Description: aws.String(description),
 })
 if err != nil {
 log.Printf("Couldn't create service-linked role %v. Here's why: %v\n",
 serviceName, err)
 } else {
 role = result.Role
 }
 return role, err
}

// DeleteServiceLinkedRole deletes a service-linked role.
func (wrapper RoleWrapper) DeleteServiceLinkedRole(roleName string) error {
 _, err := wrapper.IamClient.DeleteServiceLinkedRole(context.TODO(),
 &iam.DeleteServiceLinkedRoleInput{

Using roles 570

AWS Identity and Access Management User Guide

 RoleName: aws.String(roleName)},
)
 if err != nil {
 log.Printf("Couldn't delete service-linked role %v. Here's why: %v\n",
 roleName, err)
 }
 return err
}

// AttachRolePolicy attaches a policy to a role.
func (wrapper RoleWrapper) AttachRolePolicy(policyArn string, roleName string)
 error {
 _, err := wrapper.IamClient.AttachRolePolicy(context.TODO(),
 &iam.AttachRolePolicyInput{
 PolicyArn: aws.String(policyArn),
 RoleName: aws.String(roleName),
 })
 if err != nil {
 log.Printf("Couldn't attach policy %v to role %v. Here's why: %v\n", policyArn,
 roleName, err)
 }
 return err
}

// ListAttachedRolePolicies lists the policies that are attached to the specified
 role.
func (wrapper RoleWrapper) ListAttachedRolePolicies(roleName string)
 ([]types.AttachedPolicy, error) {
 var policies []types.AttachedPolicy
 result, err := wrapper.IamClient.ListAttachedRolePolicies(context.TODO(),
 &iam.ListAttachedRolePoliciesInput{
 RoleName: aws.String(roleName),
 })
 if err != nil {
 log.Printf("Couldn't list attached policies for role %v. Here's why: %v\n",
 roleName, err)
 } else {
 policies = result.AttachedPolicies
 }
 return policies, err

Using roles 571

AWS Identity and Access Management User Guide

}

// DetachRolePolicy detaches a policy from a role.
func (wrapper RoleWrapper) DetachRolePolicy(roleName string, policyArn string)
 error {
 _, err := wrapper.IamClient.DetachRolePolicy(context.TODO(),
 &iam.DetachRolePolicyInput{
 PolicyArn: aws.String(policyArn),
 RoleName: aws.String(roleName),
 })
 if err != nil {
 log.Printf("Couldn't detach policy from role %v. Here's why: %v\n", roleName,
 err)
 }
 return err
}

// ListRolePolicies lists the inline policies for a role.
func (wrapper RoleWrapper) ListRolePolicies(roleName string) ([]string, error) {
 var policies []string
 result, err := wrapper.IamClient.ListRolePolicies(context.TODO(),
 &iam.ListRolePoliciesInput{
 RoleName: aws.String(roleName),
 })
 if err != nil {
 log.Printf("Couldn't list policies for role %v. Here's why: %v\n", roleName,
 err)
 } else {
 policies = result.PolicyNames
 }
 return policies, err
}

// DeleteRole deletes a role. All attached policies must be detached before a
// role can be deleted.
func (wrapper RoleWrapper) DeleteRole(roleName string) error {
 _, err := wrapper.IamClient.DeleteRole(context.TODO(), &iam.DeleteRoleInput{
 RoleName: aws.String(roleName),

Using roles 572

AWS Identity and Access Management User Guide

 })
 if err != nil {
 log.Printf("Couldn't delete role %v. Here's why: %v\n", roleName, err)
 }
 return err
}

Define a struct that wraps user actions.

// UserWrapper encapsulates user actions used in the examples.
// It contains an IAM service client that is used to perform user actions.
type UserWrapper struct {
 IamClient *iam.Client
}

// ListUsers gets up to maxUsers number of users.
func (wrapper UserWrapper) ListUsers(maxUsers int32) ([]types.User, error) {
 var users []types.User
 result, err := wrapper.IamClient.ListUsers(context.TODO(), &iam.ListUsersInput{
 MaxItems: aws.Int32(maxUsers),
 })
 if err != nil {
 log.Printf("Couldn't list users. Here's why: %v\n", err)
 } else {
 users = result.Users
 }
 return users, err
}

// GetUser gets data about a user.
func (wrapper UserWrapper) GetUser(userName string) (*types.User, error) {
 var user *types.User
 result, err := wrapper.IamClient.GetUser(context.TODO(), &iam.GetUserInput{
 UserName: aws.String(userName),
 })

Using roles 573

AWS Identity and Access Management User Guide

 if err != nil {
 var apiError smithy.APIError
 if errors.As(err, &apiError) {
 switch apiError.(type) {
 case *types.NoSuchEntityException:
 log.Printf("User %v does not exist.\n", userName)
 err = nil
 default:
 log.Printf("Couldn't get user %v. Here's why: %v\n", userName, err)
 }
 }
 } else {
 user = result.User
 }
 return user, err
}

// CreateUser creates a new user with the specified name.
func (wrapper UserWrapper) CreateUser(userName string) (*types.User, error) {
 var user *types.User
 result, err := wrapper.IamClient.CreateUser(context.TODO(),
 &iam.CreateUserInput{
 UserName: aws.String(userName),
 })
 if err != nil {
 log.Printf("Couldn't create user %v. Here's why: %v\n", userName, err)
 } else {
 user = result.User
 }
 return user, err
}

// CreateUserPolicy adds an inline policy to a user. This example creates a
 policy that
// grants a list of actions on a specified role.
// PolicyDocument shows how to work with a policy document as a data structure
 and
// serialize it to JSON by using Go's JSON marshaler.
func (wrapper UserWrapper) CreateUserPolicy(userName string, policyName string,
 actions []string,

Using roles 574

AWS Identity and Access Management User Guide

 roleArn string) error {
 policyDoc := PolicyDocument{
 Version: "2012-10-17",
 Statement: []PolicyStatement{{
 Effect: "Allow",
 Action: actions,
 Resource: aws.String(roleArn),
 }},
 }
 policyBytes, err := json.Marshal(policyDoc)
 if err != nil {
 log.Printf("Couldn't create policy document for %v. Here's why: %v\n", roleArn,
 err)
 return err
 }
 _, err = wrapper.IamClient.PutUserPolicy(context.TODO(),
 &iam.PutUserPolicyInput{
 PolicyDocument: aws.String(string(policyBytes)),
 PolicyName: aws.String(policyName),
 UserName: aws.String(userName),
 })
 if err != nil {
 log.Printf("Couldn't create policy for user %v. Here's why: %v\n", userName,
 err)
 }
 return err
}

// ListUserPolicies lists the inline policies for the specified user.
func (wrapper UserWrapper) ListUserPolicies(userName string) ([]string, error) {
 var policies []string
 result, err := wrapper.IamClient.ListUserPolicies(context.TODO(),
 &iam.ListUserPoliciesInput{
 UserName: aws.String(userName),
 })
 if err != nil {
 log.Printf("Couldn't list policies for user %v. Here's why: %v\n", userName,
 err)
 } else {
 policies = result.PolicyNames
 }
 return policies, err

Using roles 575

AWS Identity and Access Management User Guide

}

// DeleteUserPolicy deletes an inline policy from a user.
func (wrapper UserWrapper) DeleteUserPolicy(userName string, policyName string)
 error {
 _, err := wrapper.IamClient.DeleteUserPolicy(context.TODO(),
 &iam.DeleteUserPolicyInput{
 PolicyName: aws.String(policyName),
 UserName: aws.String(userName),
 })
 if err != nil {
 log.Printf("Couldn't delete policy from user %v. Here's why: %v\n", userName,
 err)
 }
 return err
}

// DeleteUser deletes a user.
func (wrapper UserWrapper) DeleteUser(userName string) error {
 _, err := wrapper.IamClient.DeleteUser(context.TODO(), &iam.DeleteUserInput{
 UserName: aws.String(userName),
 })
 if err != nil {
 log.Printf("Couldn't delete user %v. Here's why: %v\n", userName, err)
 }
 return err
}

// CreateAccessKeyPair creates an access key for a user. The returned access key
 contains
// the ID and secret credentials needed to use the key.
func (wrapper UserWrapper) CreateAccessKeyPair(userName string)
 (*types.AccessKey, error) {
 var key *types.AccessKey
 result, err := wrapper.IamClient.CreateAccessKey(context.TODO(),
 &iam.CreateAccessKeyInput{
 UserName: aws.String(userName)})
 if err != nil {

Using roles 576

AWS Identity and Access Management User Guide

 log.Printf("Couldn't create access key pair for user %v. Here's why: %v\n",
 userName, err)
 } else {
 key = result.AccessKey
 }
 return key, err
}

// DeleteAccessKey deletes an access key from a user.
func (wrapper UserWrapper) DeleteAccessKey(userName string, keyId string) error {
 _, err := wrapper.IamClient.DeleteAccessKey(context.TODO(),
 &iam.DeleteAccessKeyInput{
 AccessKeyId: aws.String(keyId),
 UserName: aws.String(userName),
 })
 if err != nil {
 log.Printf("Couldn't delete access key %v. Here's why: %v\n", keyId, err)
 }
 return err
}

// ListAccessKeys lists the access keys for the specified user.
func (wrapper UserWrapper) ListAccessKeys(userName string)
 ([]types.AccessKeyMetadata, error) {
 var keys []types.AccessKeyMetadata
 result, err := wrapper.IamClient.ListAccessKeys(context.TODO(),
 &iam.ListAccessKeysInput{
 UserName: aws.String(userName),
 })
 if err != nil {
 log.Printf("Couldn't list access keys for user %v. Here's why: %v\n", userName,
 err)
 } else {
 keys = result.AccessKeyMetadata
 }
 return keys, err
}

Using roles 577

AWS Identity and Access Management User Guide

• For API details, see the following topics in AWS SDK for Go API Reference.

• AttachRolePolicy

• CreateAccessKey

• CreatePolicy

• CreateRole

• CreateUser

• DeleteAccessKey

• DeletePolicy

• DeleteRole

• DeleteUser

• DeleteUserPolicy

• DetachRolePolicy

• PutUserPolicy

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Create functions that wrap IAM user actions.

/*
 To run this Java V2 code example, set up your development environment,
 including your credentials.

 For information, see this documentation topic:

 https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/get-
started.html

 This example performs these operations:

Using roles 578

https://pkg.go.dev/github.com/aws/aws-sdk-go-v2/service/iam#Client.AttachRolePolicy
https://pkg.go.dev/github.com/aws/aws-sdk-go-v2/service/iam#Client.CreateAccessKey
https://pkg.go.dev/github.com/aws/aws-sdk-go-v2/service/iam#Client.CreatePolicy
https://pkg.go.dev/github.com/aws/aws-sdk-go-v2/service/iam#Client.CreateRole
https://pkg.go.dev/github.com/aws/aws-sdk-go-v2/service/iam#Client.CreateUser
https://pkg.go.dev/github.com/aws/aws-sdk-go-v2/service/iam#Client.DeleteAccessKey
https://pkg.go.dev/github.com/aws/aws-sdk-go-v2/service/iam#Client.DeletePolicy
https://pkg.go.dev/github.com/aws/aws-sdk-go-v2/service/iam#Client.DeleteRole
https://pkg.go.dev/github.com/aws/aws-sdk-go-v2/service/iam#Client.DeleteUser
https://pkg.go.dev/github.com/aws/aws-sdk-go-v2/service/iam#Client.DeleteUserPolicy
https://pkg.go.dev/github.com/aws/aws-sdk-go-v2/service/iam#Client.DetachRolePolicy
https://pkg.go.dev/github.com/aws/aws-sdk-go-v2/service/iam#Client.PutUserPolicy
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/iam#readme

AWS Identity and Access Management User Guide

 1. Creates a user that has no permissions.
 2. Creates a role and policy that grants Amazon S3 permissions.
 3. Creates a role.
 4. Grants the user permissions.
 5. Gets temporary credentials by assuming the role. Creates an Amazon S3
 Service client object with the temporary credentials.
 6. Deletes the resources.
 */

public class IAMScenario {
 public static final String DASHES = new String(new char[80]).replace("\0",
 "-");
 public static final String PolicyDocument = "{" +
 " \"Version\": \"2012-10-17\"," +
 " \"Statement\": [" +
 " {" +
 " \"Effect\": \"Allow\"," +
 " \"Action\": [" +
 " \"s3:*\"" +
 "]," +
 " \"Resource\": \"*\"" +
 " }" +
 "]" +
 "}";

 public static String userArn;

 public static void main(String[] args) throws Exception {

 final String usage = """

 Usage:
 <username> <policyName> <roleName> <roleSessionName>
 <bucketName>\s

 Where:
 username - The name of the IAM user to create.\s
 policyName - The name of the policy to create.\s
 roleName - The name of the role to create.\s
 roleSessionName - The name of the session required for the
 assumeRole operation.\s
 bucketName - The name of the Amazon S3 bucket from which
 objects are read.\s
 """;

Using roles 579

AWS Identity and Access Management User Guide

 if (args.length != 5) {
 System.out.println(usage);
 System.exit(1);
 }

 String userName = args[0];
 String policyName = args[1];
 String roleName = args[2];
 String roleSessionName = args[3];
 String bucketName = args[4];

 Region region = Region.AWS_GLOBAL;
 IamClient iam = IamClient.builder()
 .region(region)
 .build();

 System.out.println(DASHES);
 System.out.println("Welcome to the AWS IAM example scenario.");
 System.out.println(DASHES);

 System.out.println(DASHES);
 System.out.println(" 1. Create the IAM user.");
 User createUser = createIAMUser(iam, userName);

 System.out.println(DASHES);
 userArn = createUser.arn();

 AccessKey myKey = createIAMAccessKey(iam, userName);
 String accessKey = myKey.accessKeyId();
 String secretKey = myKey.secretAccessKey();
 String assumeRolePolicyDocument = "{" +
 "\"Version\": \"2012-10-17\"," +
 "\"Statement\": [{" +
 "\"Effect\": \"Allow\"," +
 "\"Principal\": {" +
 " \"AWS\": \"" + userArn + "\"" +
 "}," +
 "\"Action\": \"sts:AssumeRole\"" +
 "}]" +
 "}";

 System.out.println(assumeRolePolicyDocument);
 System.out.println(userName + " was successfully created.");

Using roles 580

AWS Identity and Access Management User Guide

 System.out.println(DASHES);
 System.out.println("2. Creates a policy.");
 String polArn = createIAMPolicy(iam, policyName);
 System.out.println("The policy " + polArn + " was successfully
 created.");
 System.out.println(DASHES);

 System.out.println(DASHES);
 System.out.println("3. Creates a role.");
 TimeUnit.SECONDS.sleep(30);
 String roleArn = createIAMRole(iam, roleName, assumeRolePolicyDocument);
 System.out.println(roleArn + " was successfully created.");
 System.out.println(DASHES);

 System.out.println(DASHES);
 System.out.println("4. Grants the user permissions.");
 attachIAMRolePolicy(iam, roleName, polArn);
 System.out.println(DASHES);

 System.out.println(DASHES);
 System.out.println("*** Wait for 30 secs so the resource is available");
 TimeUnit.SECONDS.sleep(30);
 System.out.println("5. Gets temporary credentials by assuming the
 role.");
 System.out.println("Perform an Amazon S3 Service operation using the
 temporary credentials.");
 assumeRole(roleArn, roleSessionName, bucketName, accessKey, secretKey);
 System.out.println(DASHES);

 System.out.println(DASHES);
 System.out.println("6 Getting ready to delete the AWS resources");
 deleteKey(iam, userName, accessKey);
 deleteRole(iam, roleName, polArn);
 deleteIAMUser(iam, userName);
 System.out.println(DASHES);

 System.out.println(DASHES);
 System.out.println("This IAM Scenario has successfully completed");
 System.out.println(DASHES);
 }

 public static AccessKey createIAMAccessKey(IamClient iam, String user) {
 try {
 CreateAccessKeyRequest request = CreateAccessKeyRequest.builder()

Using roles 581

AWS Identity and Access Management User Guide

 .userName(user)
 .build();

 CreateAccessKeyResponse response = iam.createAccessKey(request);
 return response.accessKey();

 } catch (IamException e) {
 System.err.println(e.awsErrorDetails().errorMessage());
 System.exit(1);
 }
 return null;
 }

 public static User createIAMUser(IamClient iam, String username) {
 try {
 // Create an IamWaiter object
 IamWaiter iamWaiter = iam.waiter();
 CreateUserRequest request = CreateUserRequest.builder()
 .userName(username)
 .build();

 // Wait until the user is created.
 CreateUserResponse response = iam.createUser(request);
 GetUserRequest userRequest = GetUserRequest.builder()
 .userName(response.user().userName())
 .build();

 WaiterResponse<GetUserResponse> waitUntilUserExists =
 iamWaiter.waitUntilUserExists(userRequest);

 waitUntilUserExists.matched().response().ifPresent(System.out::println);
 return response.user();

 } catch (IamException e) {
 System.err.println(e.awsErrorDetails().errorMessage());
 System.exit(1);
 }
 return null;
 }

 public static String createIAMRole(IamClient iam, String rolename, String
 json) {

 try {

Using roles 582

AWS Identity and Access Management User Guide

 CreateRoleRequest request = CreateRoleRequest.builder()
 .roleName(rolename)
 .assumeRolePolicyDocument(json)
 .description("Created using the AWS SDK for Java")
 .build();

 CreateRoleResponse response = iam.createRole(request);
 System.out.println("The ARN of the role is " +
 response.role().arn());
 return response.role().arn();

 } catch (IamException e) {
 System.err.println(e.awsErrorDetails().errorMessage());
 System.exit(1);
 }
 return "";
 }

 public static String createIAMPolicy(IamClient iam, String policyName) {
 try {
 // Create an IamWaiter object.
 IamWaiter iamWaiter = iam.waiter();
 CreatePolicyRequest request = CreatePolicyRequest.builder()
 .policyName(policyName)
 .policyDocument(PolicyDocument).build();

 CreatePolicyResponse response = iam.createPolicy(request);
 GetPolicyRequest polRequest = GetPolicyRequest.builder()
 .policyArn(response.policy().arn())
 .build();

 WaiterResponse<GetPolicyResponse> waitUntilPolicyExists =
 iamWaiter.waitUntilPolicyExists(polRequest);

 waitUntilPolicyExists.matched().response().ifPresent(System.out::println);
 return response.policy().arn();

 } catch (IamException e) {
 System.err.println(e.awsErrorDetails().errorMessage());
 System.exit(1);
 }
 return "";
 }

Using roles 583

AWS Identity and Access Management User Guide

 public static void attachIAMRolePolicy(IamClient iam, String roleName, String
 policyArn) {
 try {
 ListAttachedRolePoliciesRequest request =
 ListAttachedRolePoliciesRequest.builder()
 .roleName(roleName)
 .build();

 ListAttachedRolePoliciesResponse response =
 iam.listAttachedRolePolicies(request);
 List<AttachedPolicy> attachedPolicies = response.attachedPolicies();
 String polArn;
 for (AttachedPolicy policy : attachedPolicies) {
 polArn = policy.policyArn();
 if (polArn.compareTo(policyArn) == 0) {
 System.out.println(roleName + " policy is already attached to
 this role.");
 return;
 }
 }

 AttachRolePolicyRequest attachRequest =
 AttachRolePolicyRequest.builder()
 .roleName(roleName)
 .policyArn(policyArn)
 .build();

 iam.attachRolePolicy(attachRequest);
 System.out.println("Successfully attached policy " + policyArn + " to
 role " + roleName);

 } catch (IamException e) {
 System.err.println(e.awsErrorDetails().errorMessage());
 System.exit(1);
 }
 }

 // Invoke an Amazon S3 operation using the Assumed Role.
 public static void assumeRole(String roleArn, String roleSessionName, String
 bucketName, String keyVal,
 String keySecret) {

 // Use the creds of the new IAM user that was created in this code
 example.

Using roles 584

AWS Identity and Access Management User Guide

 AwsBasicCredentials credentials = AwsBasicCredentials.create(keyVal,
 keySecret);
 StsClient stsClient = StsClient.builder()
 .region(Region.US_EAST_1)

 .credentialsProvider(StaticCredentialsProvider.create(credentials))
 .build();

 try {
 AssumeRoleRequest roleRequest = AssumeRoleRequest.builder()
 .roleArn(roleArn)
 .roleSessionName(roleSessionName)
 .build();

 AssumeRoleResponse roleResponse = stsClient.assumeRole(roleRequest);
 Credentials myCreds = roleResponse.credentials();
 String key = myCreds.accessKeyId();
 String secKey = myCreds.secretAccessKey();
 String secToken = myCreds.sessionToken();

 // List all objects in an Amazon S3 bucket using the temp creds
 retrieved by
 // invoking assumeRole.
 Region region = Region.US_EAST_1;
 S3Client s3 = S3Client.builder()
 .credentialsProvider(

 StaticCredentialsProvider.create(AwsSessionCredentials.create(key, secKey,
 secToken)))
 .region(region)
 .build();

 System.out.println("Created a S3Client using temp credentials.");
 System.out.println("Listing objects in " + bucketName);
 ListObjectsRequest listObjects = ListObjectsRequest.builder()
 .bucket(bucketName)
 .build();

 ListObjectsResponse res = s3.listObjects(listObjects);
 List<S3Object> objects = res.contents();
 for (S3Object myValue : objects) {
 System.out.println("The name of the key is " + myValue.key());
 System.out.println("The owner is " + myValue.owner());
 }

Using roles 585

AWS Identity and Access Management User Guide

 } catch (StsException e) {
 System.err.println(e.getMessage());
 System.exit(1);
 }
 }

 public static void deleteRole(IamClient iam, String roleName, String polArn)
 {

 try {
 // First the policy needs to be detached.
 DetachRolePolicyRequest rolePolicyRequest =
 DetachRolePolicyRequest.builder()
 .policyArn(polArn)
 .roleName(roleName)
 .build();

 iam.detachRolePolicy(rolePolicyRequest);

 // Delete the policy.
 DeletePolicyRequest request = DeletePolicyRequest.builder()
 .policyArn(polArn)
 .build();

 iam.deletePolicy(request);
 System.out.println("*** Successfully deleted " + polArn);

 // Delete the role.
 DeleteRoleRequest roleRequest = DeleteRoleRequest.builder()
 .roleName(roleName)
 .build();

 iam.deleteRole(roleRequest);
 System.out.println("*** Successfully deleted " + roleName);

 } catch (IamException e) {
 System.err.println(e.awsErrorDetails().errorMessage());
 System.exit(1);
 }
 }

 public static void deleteKey(IamClient iam, String username, String
 accessKey) {

Using roles 586

AWS Identity and Access Management User Guide

 try {
 DeleteAccessKeyRequest request = DeleteAccessKeyRequest.builder()
 .accessKeyId(accessKey)
 .userName(username)
 .build();

 iam.deleteAccessKey(request);
 System.out.println("Successfully deleted access key " + accessKey +
 " from user " + username);

 } catch (IamException e) {
 System.err.println(e.awsErrorDetails().errorMessage());
 System.exit(1);
 }
 }

 public static void deleteIAMUser(IamClient iam, String userName) {
 try {
 DeleteUserRequest request = DeleteUserRequest.builder()
 .userName(userName)
 .build();

 iam.deleteUser(request);
 System.out.println("*** Successfully deleted " + userName);

 } catch (IamException e) {
 System.err.println(e.awsErrorDetails().errorMessage());
 System.exit(1);
 }
 }
}

• For API details, see the following topics in AWS SDK for Java 2.x API Reference.

• AttachRolePolicy

• CreateAccessKey

• CreatePolicy

• CreateRole

• CreateUser

• DeleteAccessKey

Using roles 587

https://docs.aws.amazon.com/goto/SdkForJavaV2/iam-2010-05-08/AttachRolePolicy
https://docs.aws.amazon.com/goto/SdkForJavaV2/iam-2010-05-08/CreateAccessKey
https://docs.aws.amazon.com/goto/SdkForJavaV2/iam-2010-05-08/CreatePolicy
https://docs.aws.amazon.com/goto/SdkForJavaV2/iam-2010-05-08/CreateRole
https://docs.aws.amazon.com/goto/SdkForJavaV2/iam-2010-05-08/CreateUser
https://docs.aws.amazon.com/goto/SdkForJavaV2/iam-2010-05-08/DeleteAccessKey

AWS Identity and Access Management User Guide

• DeletePolicy

• DeleteRole

• DeleteUser

• DeleteUserPolicy

• DetachRolePolicy

• PutUserPolicy

JavaScript

SDK for JavaScript (v3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Create an IAM user and a role that grants permission to list Amazon S3 buckets. The user
has rights only to assume the role. After assuming the role, use temporary credentials to list
buckets for the account.

import {
 CreateUserCommand,
 CreateAccessKeyCommand,
 CreatePolicyCommand,
 CreateRoleCommand,
 AttachRolePolicyCommand,
 DeleteAccessKeyCommand,
 DeleteUserCommand,
 DeleteRoleCommand,
 DeletePolicyCommand,
 DetachRolePolicyCommand,
 IAMClient,
} from "@aws-sdk/client-iam";
import { ListBucketsCommand, S3Client } from "@aws-sdk/client-s3";
import { AssumeRoleCommand, STSClient } from "@aws-sdk/client-sts";
import { retry } from "@aws-doc-sdk-examples/lib/utils/util-timers.js";

// Set the parameters.

Using roles 588

https://docs.aws.amazon.com/goto/SdkForJavaV2/iam-2010-05-08/DeletePolicy
https://docs.aws.amazon.com/goto/SdkForJavaV2/iam-2010-05-08/DeleteRole
https://docs.aws.amazon.com/goto/SdkForJavaV2/iam-2010-05-08/DeleteUser
https://docs.aws.amazon.com/goto/SdkForJavaV2/iam-2010-05-08/DeleteUserPolicy
https://docs.aws.amazon.com/goto/SdkForJavaV2/iam-2010-05-08/DetachRolePolicy
https://docs.aws.amazon.com/goto/SdkForJavaV2/iam-2010-05-08/PutUserPolicy
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/iam#code-examples

AWS Identity and Access Management User Guide

const iamClient = new IAMClient({});
const userName = "test_name";
const policyName = "test_policy";
const roleName = "test_role";

export const main = async () => {
 // Create a user. The user has no permissions by default.
 const { User } = await iamClient.send(
 new CreateUserCommand({ UserName: userName }),
);

 if (!User) {
 throw new Error("User not created");
 }

 // Create an access key. This key is used to authenticate the new user to
 // Amazon Simple Storage Service (Amazon S3) and AWS Security Token Service
 (AWS STS).
 // It's not best practice to use access keys. For more information, see
 https://aws.amazon.com/iam/resources/best-practices/.
 const createAccessKeyResponse = await iamClient.send(
 new CreateAccessKeyCommand({ UserName: userName }),
);

 if (
 !createAccessKeyResponse.AccessKey?.AccessKeyId ||
 !createAccessKeyResponse.AccessKey?.SecretAccessKey
) {
 throw new Error("Access key not created");
 }

 const {
 AccessKey: { AccessKeyId, SecretAccessKey },
 } = createAccessKeyResponse;

 let s3Client = new S3Client({
 credentials: {
 accessKeyId: AccessKeyId,
 secretAccessKey: SecretAccessKey,
 },
 });

 // Retry the list buckets operation until it succeeds. InvalidAccessKeyId is
 // thrown while the user and access keys are still stabilizing.

Using roles 589

AWS Identity and Access Management User Guide

 await retry({ intervalInMs: 1000, maxRetries: 300 }, async () => {
 try {
 return await listBuckets(s3Client);
 } catch (err) {
 if (err instanceof Error && err.name === "InvalidAccessKeyId") {
 throw err;
 }
 }
 });

 // Retry the create role operation until it succeeds. A MalformedPolicyDocument
 error
 // is thrown while the user and access keys are still stabilizing.
 const { Role } = await retry(
 {
 intervalInMs: 2000,
 maxRetries: 60,
 },
 () =>
 iamClient.send(
 new CreateRoleCommand({
 AssumeRolePolicyDocument: JSON.stringify({
 Version: "2012-10-17",
 Statement: [
 {
 Effect: "Allow",
 Principal: {
 // Allow the previously created user to assume this role.
 AWS: User.Arn,
 },
 Action: "sts:AssumeRole",
 },
],
 }),
 RoleName: roleName,
 }),
),
);

 if (!Role) {
 throw new Error("Role not created");
 }

 // Create a policy that allows the user to list S3 buckets.

Using roles 590

AWS Identity and Access Management User Guide

 const { Policy: listBucketPolicy } = await iamClient.send(
 new CreatePolicyCommand({
 PolicyDocument: JSON.stringify({
 Version: "2012-10-17",
 Statement: [
 {
 Effect: "Allow",
 Action: ["s3:ListAllMyBuckets"],
 Resource: "*",
 },
],
 }),
 PolicyName: policyName,
 }),
);

 if (!listBucketPolicy) {
 throw new Error("Policy not created");
 }

 // Attach the policy granting the 's3:ListAllMyBuckets' action to the role.
 await iamClient.send(
 new AttachRolePolicyCommand({
 PolicyArn: listBucketPolicy.Arn,
 RoleName: Role.RoleName,
 }),
);

 // Assume the role.
 const stsClient = new STSClient({
 credentials: {
 accessKeyId: AccessKeyId,
 secretAccessKey: SecretAccessKey,
 },
 });

 // Retry the assume role operation until it succeeds.
 const { Credentials } = await retry(
 { intervalInMs: 2000, maxRetries: 60 },
 () =>
 stsClient.send(
 new AssumeRoleCommand({
 RoleArn: Role.Arn,
 RoleSessionName: `iamBasicScenarioSession-${Math.floor(

Using roles 591

AWS Identity and Access Management User Guide

 Math.random() * 1000000,
)}`,
 DurationSeconds: 900,
 }),
),
);

 if (!Credentials?.AccessKeyId || !Credentials?.SecretAccessKey) {
 throw new Error("Credentials not created");
 }

 s3Client = new S3Client({
 credentials: {
 accessKeyId: Credentials.AccessKeyId,
 secretAccessKey: Credentials.SecretAccessKey,
 sessionToken: Credentials.SessionToken,
 },
 });

 // List the S3 buckets again.
 // Retry the list buckets operation until it succeeds. AccessDenied might
 // be thrown while the role policy is still stabilizing.
 await retry({ intervalInMs: 2000, maxRetries: 60 }, () =>
 listBuckets(s3Client),
);

 // Clean up.
 await iamClient.send(
 new DetachRolePolicyCommand({
 PolicyArn: listBucketPolicy.Arn,
 RoleName: Role.RoleName,
 }),
);

 await iamClient.send(
 new DeletePolicyCommand({
 PolicyArn: listBucketPolicy.Arn,
 }),
);

 await iamClient.send(
 new DeleteRoleCommand({
 RoleName: Role.RoleName,
 }),

Using roles 592

AWS Identity and Access Management User Guide

);

 await iamClient.send(
 new DeleteAccessKeyCommand({
 UserName: userName,
 AccessKeyId,
 }),
);

 await iamClient.send(
 new DeleteUserCommand({
 UserName: userName,
 }),
);
};

/**
 *
 * @param {S3Client} s3Client
 */
const listBuckets = async (s3Client) => {
 const { Buckets } = await s3Client.send(new ListBucketsCommand({}));

 if (!Buckets) {
 throw new Error("Buckets not listed");
 }

 console.log(Buckets.map((bucket) => bucket.Name).join("\n"));
};

• For API details, see the following topics in AWS SDK for JavaScript API Reference.

• AttachRolePolicy

• CreateAccessKey

• CreatePolicy

• CreateRole

• CreateUser

• DeleteAccessKey

• DeletePolicy

Using roles 593

https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/client/iam/command/AttachRolePolicyCommand
https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/client/iam/command/CreateAccessKeyCommand
https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/client/iam/command/CreatePolicyCommand
https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/client/iam/command/CreateRoleCommand
https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/client/iam/command/CreateUserCommand
https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/client/iam/command/DeleteAccessKeyCommand
https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/client/iam/command/DeletePolicyCommand

AWS Identity and Access Management User Guide

• DeleteRole

• DeleteUser

• DeleteUserPolicy

• DetachRolePolicy

• PutUserPolicy

Kotlin

SDK for Kotlin

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Create functions that wrap IAM user actions.

suspend fun main(args: Array<String>) {

 val usage = """
 Usage:
 <username> <policyName> <roleName> <roleSessionName> <fileLocation>
 <bucketName>

 Where:
 username - The name of the IAM user to create.
 policyName - The name of the policy to create.
 roleName - The name of the role to create.
 roleSessionName - The name of the session required for the assumeRole
 operation.
 fileLocation - The file location to the JSON required to create the role
 (see Readme).
 bucketName - The name of the Amazon S3 bucket from which objects are
 read.
 """

 if (args.size != 6) {
 println(usage)
 exitProcess(1)

Using roles 594

https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/client/iam/command/DeleteRoleCommand
https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/client/iam/command/DeleteUserCommand
https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/client/iam/command/DeleteUserPolicyCommand
https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/client/iam/command/DetachRolePolicyCommand
https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/client/iam/command/PutUserPolicyCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/kotlin/services/iam#code-examples

AWS Identity and Access Management User Guide

 }

 val userName = args[0]
 val policyName = args[1]
 val roleName = args[2]
 val roleSessionName = args[3]
 val fileLocation = args[4]
 val bucketName = args[5]

 createUser(userName)
 println("$userName was successfully created.")

 val polArn = createPolicy(policyName)
 println("The policy $polArn was successfully created.")

 val roleArn = createRole(roleName, fileLocation)
 println("$roleArn was successfully created.")
 attachRolePolicy(roleName, polArn)

 println("*** Wait for 1 MIN so the resource is available.")
 delay(60000)
 assumeGivenRole(roleArn, roleSessionName, bucketName)

 println("*** Getting ready to delete the AWS resources.")
 deleteRole(roleName, polArn)
 deleteUser(userName)
 println("This IAM Scenario has successfully completed.")
}

suspend fun createUser(usernameVal: String?): String? {

 val request = CreateUserRequest {
 userName = usernameVal
 }

 IamClient { region = "AWS_GLOBAL" }.use { iamClient ->
 val response = iamClient.createUser(request)
 return response.user?.userName
 }
}

suspend fun createPolicy(policyNameVal: String?): String {

 val policyDocumentValue: String = "{" +

Using roles 595

AWS Identity and Access Management User Guide

 " \"Version\": \"2012-10-17\"," +
 " \"Statement\": [" +
 " {" +
 " \"Effect\": \"Allow\"," +
 " \"Action\": [" +
 " \"s3:*\"" +
 "]," +
 " \"Resource\": \"*\"" +
 " }" +
 "]" +
 "}"

 val request = CreatePolicyRequest {
 policyName = policyNameVal
 policyDocument = policyDocumentValue
 }

 IamClient { region = "AWS_GLOBAL" }.use { iamClient ->
 val response = iamClient.createPolicy(request)
 return response.policy?.arn.toString()
 }
}

suspend fun createRole(rolenameVal: String?, fileLocation: String?): String? {

 val jsonObject = fileLocation?.let { readJsonSimpleDemo(it) } as JSONObject

 val request = CreateRoleRequest {
 roleName = rolenameVal
 assumeRolePolicyDocument = jsonObject.toJSONString()
 description = "Created using the AWS SDK for Kotlin"
 }

 IamClient { region = "AWS_GLOBAL" }.use { iamClient ->
 val response = iamClient.createRole(request)
 return response.role?.arn
 }
}

suspend fun attachRolePolicy(roleNameVal: String, policyArnVal: String) {

 val request = ListAttachedRolePoliciesRequest {
 roleName = roleNameVal
 }

Using roles 596

AWS Identity and Access Management User Guide

 IamClient { region = "AWS_GLOBAL" }.use { iamClient ->
 val response = iamClient.listAttachedRolePolicies(request)
 val attachedPolicies = response.attachedPolicies

 // Ensure that the policy is not attached to this role.
 val checkStatus: Int
 if (attachedPolicies != null) {
 checkStatus = checkMyList(attachedPolicies, policyArnVal)
 if (checkStatus == -1)
 return
 }

 val policyRequest = AttachRolePolicyRequest {
 roleName = roleNameVal
 policyArn = policyArnVal
 }
 iamClient.attachRolePolicy(policyRequest)
 println("Successfully attached policy $policyArnVal to role
 $roleNameVal")
 }
}

fun checkMyList(attachedPolicies: List<AttachedPolicy>, policyArnVal: String):
 Int {

 for (policy in attachedPolicies) {
 val polArn = policy.policyArn.toString()

 if (polArn.compareTo(policyArnVal) == 0) {
 println("The policy is already attached to this role.")
 return -1
 }
 }
 return 0
}

suspend fun assumeGivenRole(roleArnVal: String?, roleSessionNameVal: String?,
 bucketName: String) {

 val stsClient = StsClient {
 region = "us-east-1"
 }

Using roles 597

AWS Identity and Access Management User Guide

 val roleRequest = AssumeRoleRequest {
 roleArn = roleArnVal
 roleSessionName = roleSessionNameVal
 }

 val roleResponse = stsClient.assumeRole(roleRequest)
 val myCreds = roleResponse.credentials
 val key = myCreds?.accessKeyId
 val secKey = myCreds?.secretAccessKey
 val secToken = myCreds?.sessionToken

 val staticCredentials = StaticCredentialsProvider {
 accessKeyId = key
 secretAccessKey = secKey
 sessionToken = secToken
 }

 // List all objects in an Amazon S3 bucket using the temp creds.
 val s3 = S3Client {
 credentialsProvider = staticCredentials
 region = "us-east-1"
 }

 println("Created a S3Client using temp credentials.")
 println("Listing objects in $bucketName")

 val listObjects = ListObjectsRequest {
 bucket = bucketName
 }

 val response = s3.listObjects(listObjects)
 response.contents?.forEach { myObject ->
 println("The name of the key is ${myObject.key}")
 println("The owner is ${myObject.owner}")
 }
}

suspend fun deleteRole(roleNameVal: String, polArn: String) {

 val iam = IamClient { region = "AWS_GLOBAL" }

 // First the policy needs to be detached.
 val rolePolicyRequest = DetachRolePolicyRequest {
 policyArn = polArn

Using roles 598

AWS Identity and Access Management User Guide

 roleName = roleNameVal
 }

 iam.detachRolePolicy(rolePolicyRequest)

 // Delete the policy.
 val request = DeletePolicyRequest {
 policyArn = polArn
 }

 iam.deletePolicy(request)
 println("*** Successfully deleted $polArn")

 // Delete the role.
 val roleRequest = DeleteRoleRequest {
 roleName = roleNameVal
 }

 iam.deleteRole(roleRequest)
 println("*** Successfully deleted $roleNameVal")
}

suspend fun deleteUser(userNameVal: String) {
 val iam = IamClient { region = "AWS_GLOBAL" }
 val request = DeleteUserRequest {
 userName = userNameVal
 }

 iam.deleteUser(request)
 println("*** Successfully deleted $userNameVal")
}

@Throws(java.lang.Exception::class)
fun readJsonSimpleDemo(filename: String): Any? {
 val reader = FileReader(filename)
 val jsonParser = JSONParser()
 return jsonParser.parse(reader)
}

• For API details, see the following topics in AWS SDK for Kotlin API reference.

• AttachRolePolicy

• CreateAccessKey

Using roles 599

https://github.com/awslabs/aws-sdk-kotlin#generating-api-documentation
https://github.com/awslabs/aws-sdk-kotlin#generating-api-documentation

AWS Identity and Access Management User Guide

• CreatePolicy

• CreateRole

• CreateUser

• DeleteAccessKey

• DeletePolicy

• DeleteRole

• DeleteUser

• DeleteUserPolicy

• DetachRolePolicy

• PutUserPolicy

PHP

SDK for PHP

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

namespace Iam\Basics;

require 'vendor/autoload.php';

use Aws\Credentials\Credentials;
use Aws\S3\Exception\S3Exception;
use Aws\S3\S3Client;
use Aws\Sts\StsClient;
use Iam\IAMService;

echo("\n");
echo("--------------------------------------\n");
print("Welcome to the IAM getting started demo using PHP!\n");
echo("--------------------------------------\n");

$uuid = uniqid();

Using roles 600

https://github.com/awslabs/aws-sdk-kotlin#generating-api-documentation
https://github.com/awslabs/aws-sdk-kotlin#generating-api-documentation
https://github.com/awslabs/aws-sdk-kotlin#generating-api-documentation
https://github.com/awslabs/aws-sdk-kotlin#generating-api-documentation
https://github.com/awslabs/aws-sdk-kotlin#generating-api-documentation
https://github.com/awslabs/aws-sdk-kotlin#generating-api-documentation
https://github.com/awslabs/aws-sdk-kotlin#generating-api-documentation
https://github.com/awslabs/aws-sdk-kotlin#generating-api-documentation
https://github.com/awslabs/aws-sdk-kotlin#generating-api-documentation
https://github.com/awslabs/aws-sdk-kotlin#generating-api-documentation
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/php/example_code/iam#code-examples

AWS Identity and Access Management User Guide

$service = new IAMService();

$user = $service->createUser("iam_demo_user_$uuid");
echo "Created user with the arn: {$user['Arn']}\n";

$key = $service->createAccessKey($user['UserName']);
$assumeRolePolicyDocument = "{
 \"Version\": \"2012-10-17\",
 \"Statement\": [{
 \"Effect\": \"Allow\",
 \"Principal\": {\"AWS\": \"{$user['Arn']}\"},
 \"Action\": \"sts:AssumeRole\"
 }]
 }";
$assumeRoleRole = $service->createRole("iam_demo_role_$uuid",
 $assumeRolePolicyDocument);
echo "Created role: {$assumeRoleRole['RoleName']}\n";

$listAllBucketsPolicyDocument = "{
 \"Version\": \"2012-10-17\",
 \"Statement\": [{
 \"Effect\": \"Allow\",
 \"Action\": \"s3:ListAllMyBuckets\",
 \"Resource\": \"arn:aws:s3:::*\"}]
}";
$listAllBucketsPolicy = $service->createPolicy("iam_demo_policy_$uuid",
 $listAllBucketsPolicyDocument);
echo "Created policy: {$listAllBucketsPolicy['PolicyName']}\n";

$service->attachRolePolicy($assumeRoleRole['RoleName'],
 $listAllBucketsPolicy['Arn']);

$inlinePolicyDocument = "{
 \"Version\": \"2012-10-17\",
 \"Statement\": [{
 \"Effect\": \"Allow\",
 \"Action\": \"sts:AssumeRole\",
 \"Resource\": \"{$assumeRoleRole['Arn']}\"}]
}";
$inlinePolicy = $service->createUserPolicy("iam_demo_inline_policy_$uuid",
 $inlinePolicyDocument, $user['UserName']);
//First, fail to list the buckets with the user
$credentials = new Credentials($key['AccessKeyId'], $key['SecretAccessKey']);

Using roles 601

AWS Identity and Access Management User Guide

$s3Client = new S3Client(['region' => 'us-west-2', 'version' => 'latest',
 'credentials' => $credentials]);
try {
 $s3Client->listBuckets([
]);
 echo "this should not run";
} catch (S3Exception $exception) {
 echo "successfully failed!\n";
}

$stsClient = new StsClient(['region' => 'us-west-2', 'version' => 'latest',
 'credentials' => $credentials]);
sleep(10);
$assumedRole = $stsClient->assumeRole([
 'RoleArn' => $assumeRoleRole['Arn'],
 'RoleSessionName' => "DemoAssumeRoleSession_$uuid",
]);
$assumedCredentials = [
 'key' => $assumedRole['Credentials']['AccessKeyId'],
 'secret' => $assumedRole['Credentials']['SecretAccessKey'],
 'token' => $assumedRole['Credentials']['SessionToken'],
];
$s3Client = new S3Client(['region' => 'us-west-2', 'version' => 'latest',
 'credentials' => $assumedCredentials]);
try {
 $s3Client->listBuckets([]);
 echo "this should now run!\n";
} catch (S3Exception $exception) {
 echo "this should now not fail\n";
}

$service->detachRolePolicy($assumeRoleRole['RoleName'],
 $listAllBucketsPolicy['Arn']);
$deletePolicy = $service->deletePolicy($listAllBucketsPolicy['Arn']);
echo "Delete policy: {$listAllBucketsPolicy['PolicyName']}\n";
$deletedRole = $service->deleteRole($assumeRoleRole['Arn']);
echo "Deleted role: {$assumeRoleRole['RoleName']}\n";
$deletedKey = $service->deleteAccessKey($key['AccessKeyId'], $user['UserName']);
$deletedUser = $service->deleteUser($user['UserName']);
echo "Delete user: {$user['UserName']}\n";

• For API details, see the following topics in AWS SDK for PHP API Reference.

Using roles 602

AWS Identity and Access Management User Guide

• AttachRolePolicy

• CreateAccessKey

• CreatePolicy

• CreateRole

• CreateUser

• DeleteAccessKey

• DeletePolicy

• DeleteRole

• DeleteUser

• DeleteUserPolicy

• DetachRolePolicy

• PutUserPolicy

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Create an IAM user and a role that grants permission to list Amazon S3 buckets. The user
has rights only to assume the role. After assuming the role, use temporary credentials to list
buckets for the account.

import json
import sys
import time
from uuid import uuid4

import boto3
from botocore.exceptions import ClientError

Using roles 603

https://docs.aws.amazon.com/goto/SdkForPHPV3/iam-2010-05-08/AttachRolePolicy
https://docs.aws.amazon.com/goto/SdkForPHPV3/iam-2010-05-08/CreateAccessKey
https://docs.aws.amazon.com/goto/SdkForPHPV3/iam-2010-05-08/CreatePolicy
https://docs.aws.amazon.com/goto/SdkForPHPV3/iam-2010-05-08/CreateRole
https://docs.aws.amazon.com/goto/SdkForPHPV3/iam-2010-05-08/CreateUser
https://docs.aws.amazon.com/goto/SdkForPHPV3/iam-2010-05-08/DeleteAccessKey
https://docs.aws.amazon.com/goto/SdkForPHPV3/iam-2010-05-08/DeletePolicy
https://docs.aws.amazon.com/goto/SdkForPHPV3/iam-2010-05-08/DeleteRole
https://docs.aws.amazon.com/goto/SdkForPHPV3/iam-2010-05-08/DeleteUser
https://docs.aws.amazon.com/goto/SdkForPHPV3/iam-2010-05-08/DeleteUserPolicy
https://docs.aws.amazon.com/goto/SdkForPHPV3/iam-2010-05-08/DetachRolePolicy
https://docs.aws.amazon.com/goto/SdkForPHPV3/iam-2010-05-08/PutUserPolicy
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/iam#code-examples

AWS Identity and Access Management User Guide

def progress_bar(seconds):
 """Shows a simple progress bar in the command window."""
 for _ in range(seconds):
 time.sleep(1)
 print(".", end="")
 sys.stdout.flush()
 print()

def setup(iam_resource):
 """
 Creates a new user with no permissions.
 Creates an access key pair for the user.
 Creates a role with a policy that lets the user assume the role.
 Creates a policy that allows listing Amazon S3 buckets.
 Attaches the policy to the role.
 Creates an inline policy for the user that lets the user assume the role.

 :param iam_resource: A Boto3 AWS Identity and Access Management (IAM)
 resource
 that has permissions to create users, roles, and
 policies
 in the account.
 :return: The newly created user, user key, and role.
 """
 try:
 user = iam_resource.create_user(UserName=f"demo-user-{uuid4()}")
 print(f"Created user {user.name}.")
 except ClientError as error:
 print(
 f"Couldn't create a user for the demo. Here's why: "
 f"{error.response['Error']['Message']}"
)
 raise

 try:
 user_key = user.create_access_key_pair()
 print(f"Created access key pair for user.")
 except ClientError as error:
 print(
 f"Couldn't create access keys for user {user.name}. Here's why: "
 f"{error.response['Error']['Message']}"
)
 raise

Using roles 604

AWS Identity and Access Management User Guide

 print(f"Wait for user to be ready.", end="")
 progress_bar(10)

 try:
 role = iam_resource.create_role(
 RoleName=f"demo-role-{uuid4()}",
 AssumeRolePolicyDocument=json.dumps(
 {
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {"AWS": user.arn},
 "Action": "sts:AssumeRole",
 }
],
 }
),
)
 print(f"Created role {role.name}.")
 except ClientError as error:
 print(
 f"Couldn't create a role for the demo. Here's why: "
 f"{error.response['Error']['Message']}"
)
 raise

 try:
 policy = iam_resource.create_policy(
 PolicyName=f"demo-policy-{uuid4()}",
 PolicyDocument=json.dumps(
 {
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "s3:ListAllMyBuckets",
 "Resource": "arn:aws:s3:::*",
 }
],
 }
),
)

Using roles 605

AWS Identity and Access Management User Guide

 role.attach_policy(PolicyArn=policy.arn)
 print(f"Created policy {policy.policy_name} and attached it to the
 role.")
 except ClientError as error:
 print(
 f"Couldn't create a policy and attach it to role {role.name}. Here's
 why: "
 f"{error.response['Error']['Message']}"
)
 raise

 try:
 user.create_policy(
 PolicyName=f"demo-user-policy-{uuid4()}",
 PolicyDocument=json.dumps(
 {
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "sts:AssumeRole",
 "Resource": role.arn,
 }
],
 }
),
)
 print(
 f"Created an inline policy for {user.name} that lets the user assume
 "
 f"the role."
)
 except ClientError as error:
 print(
 f"Couldn't create an inline policy for user {user.name}. Here's why:
 "
 f"{error.response['Error']['Message']}"
)
 raise

 print("Give AWS time to propagate these new resources and connections.",
 end="")
 progress_bar(10)

Using roles 606

AWS Identity and Access Management User Guide

 return user, user_key, role

def show_access_denied_without_role(user_key):
 """
 Shows that listing buckets without first assuming the role is not allowed.

 :param user_key: The key of the user created during setup. This user does not
 have permission to list buckets in the account.
 """
 print(f"Try to list buckets without first assuming the role.")
 s3_denied_resource = boto3.resource(
 "s3", aws_access_key_id=user_key.id,
 aws_secret_access_key=user_key.secret
)
 try:
 for bucket in s3_denied_resource.buckets.all():
 print(bucket.name)
 raise RuntimeError("Expected to get AccessDenied error when listing
 buckets!")
 except ClientError as error:
 if error.response["Error"]["Code"] == "AccessDenied":
 print("Attempt to list buckets with no permissions: AccessDenied.")
 else:
 raise

def list_buckets_from_assumed_role(user_key, assume_role_arn, session_name):
 """
 Assumes a role that grants permission to list the Amazon S3 buckets in the
 account.
 Uses the temporary credentials from the role to list the buckets that are
 owned
 by the assumed role's account.

 :param user_key: The access key of a user that has permission to assume the
 role.
 :param assume_role_arn: The Amazon Resource Name (ARN) of the role that
 grants access to list the other account's buckets.
 :param session_name: The name of the STS session.
 """
 sts_client = boto3.client(
 "sts", aws_access_key_id=user_key.id,
 aws_secret_access_key=user_key.secret

Using roles 607

AWS Identity and Access Management User Guide

)
 try:
 response = sts_client.assume_role(
 RoleArn=assume_role_arn, RoleSessionName=session_name
)
 temp_credentials = response["Credentials"]
 print(f"Assumed role {assume_role_arn} and got temporary credentials.")
 except ClientError as error:
 print(
 f"Couldn't assume role {assume_role_arn}. Here's why: "
 f"{error.response['Error']['Message']}"
)
 raise

 # Create an S3 resource that can access the account with the temporary
 credentials.
 s3_resource = boto3.resource(
 "s3",
 aws_access_key_id=temp_credentials["AccessKeyId"],
 aws_secret_access_key=temp_credentials["SecretAccessKey"],
 aws_session_token=temp_credentials["SessionToken"],
)
 print(f"Listing buckets for the assumed role's account:")
 try:
 for bucket in s3_resource.buckets.all():
 print(bucket.name)
 except ClientError as error:
 print(
 f"Couldn't list buckets for the account. Here's why: "
 f"{error.response['Error']['Message']}"
)
 raise

def teardown(user, role):
 """
 Removes all resources created during setup.

 :param user: The demo user.
 :param role: The demo role.
 """
 try:

Using roles 608

AWS Identity and Access Management User Guide

 for attached in role.attached_policies.all():
 policy_name = attached.policy_name
 role.detach_policy(PolicyArn=attached.arn)
 attached.delete()
 print(f"Detached and deleted {policy_name}.")
 role.delete()
 print(f"Deleted {role.name}.")
 except ClientError as error:
 print(
 "Couldn't detach policy, delete policy, or delete role. Here's why: "
 f"{error.response['Error']['Message']}"
)
 raise

 try:
 for user_pol in user.policies.all():
 user_pol.delete()
 print("Deleted inline user policy.")
 for key in user.access_keys.all():
 key.delete()
 print("Deleted user's access key.")
 user.delete()
 print(f"Deleted {user.name}.")
 except ClientError as error:
 print(
 "Couldn't delete user policy or delete user. Here's why: "
 f"{error.response['Error']['Message']}"
)

def usage_demo():
 """Drives the demonstration."""
 print("-" * 88)
 print(f"Welcome to the IAM create user and assume role demo.")
 print("-" * 88)
 iam_resource = boto3.resource("iam")
 user = None
 role = None
 try:
 user, user_key, role = setup(iam_resource)
 print(f"Created {user.name} and {role.name}.")
 show_access_denied_without_role(user_key)
 list_buckets_from_assumed_role(user_key, role.arn,
 "AssumeRoleDemoSession")

Using roles 609

AWS Identity and Access Management User Guide

 except Exception:
 print("Something went wrong!")
 finally:
 if user is not None and role is not None:
 teardown(user, role)
 print("Thanks for watching!")

if __name__ == "__main__":
 usage_demo()

• For API details, see the following topics in AWS SDK for Python (Boto3) API Reference.

• AttachRolePolicy

• CreateAccessKey

• CreatePolicy

• CreateRole

• CreateUser

• DeleteAccessKey

• DeletePolicy

• DeleteRole

• DeleteUser

• DeleteUserPolicy

• DetachRolePolicy

• PutUserPolicy

Ruby

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Using roles 610

https://docs.aws.amazon.com/goto/boto3/iam-2010-05-08/AttachRolePolicy
https://docs.aws.amazon.com/goto/boto3/iam-2010-05-08/CreateAccessKey
https://docs.aws.amazon.com/goto/boto3/iam-2010-05-08/CreatePolicy
https://docs.aws.amazon.com/goto/boto3/iam-2010-05-08/CreateRole
https://docs.aws.amazon.com/goto/boto3/iam-2010-05-08/CreateUser
https://docs.aws.amazon.com/goto/boto3/iam-2010-05-08/DeleteAccessKey
https://docs.aws.amazon.com/goto/boto3/iam-2010-05-08/DeletePolicy
https://docs.aws.amazon.com/goto/boto3/iam-2010-05-08/DeleteRole
https://docs.aws.amazon.com/goto/boto3/iam-2010-05-08/DeleteUser
https://docs.aws.amazon.com/goto/boto3/iam-2010-05-08/DeleteUserPolicy
https://docs.aws.amazon.com/goto/boto3/iam-2010-05-08/DetachRolePolicy
https://docs.aws.amazon.com/goto/boto3/iam-2010-05-08/PutUserPolicy
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/iam#code-examples

AWS Identity and Access Management User Guide

Create an IAM user and a role that grants permission to list Amazon S3 buckets. The user
has rights only to assume the role. After assuming the role, use temporary credentials to list
buckets for the account.

Wraps the scenario actions.
class ScenarioCreateUserAssumeRole
 attr_reader :iam_client

 # @param [Aws::IAM::Client] iam_client: The AWS IAM client.
 def initialize(iam_client, logger: Logger.new($stdout))
 @iam_client = iam_client
 @logger = logger
 end

 # Waits for the specified number of seconds.
 #
 # @param duration [Integer] The number of seconds to wait.
 def wait(duration)
 puts("Give AWS time to propagate resources...")
 sleep(duration)
 end

 # Creates a user.
 #
 # @param user_name [String] The name to give the user.
 # @return [Aws::IAM::User] The newly created user.
 def create_user(user_name)
 user = @iam_client.create_user(user_name: user_name).user
 @logger.info("Created demo user named #{user.user_name}.")
 rescue Aws::Errors::ServiceError => e
 @logger.info("Tried and failed to create demo user.")
 @logger.info("\t#{e.code}: #{e.message}")
 @logger.info("\nCan't continue the demo without a user!")
 raise
 else
 user
 end

 # Creates an access key for a user.
 #
 # @param user [Aws::IAM::User] The user that owns the key.
 # @return [Aws::IAM::AccessKeyPair] The newly created access key.
 def create_access_key_pair(user)

Using roles 611

AWS Identity and Access Management User Guide

 user_key = @iam_client.create_access_key(user_name:
 user.user_name).access_key
 @logger.info("Created accesskey pair for user #{user.user_name}.")
 rescue Aws::Errors::ServiceError => e
 @logger.info("Couldn't create access keys for user #{user.user_name}.")
 @logger.info("\t#{e.code}: #{e.message}")
 raise
 else
 user_key
 end

 # Creates a role that can be assumed by a user.
 #
 # @param role_name [String] The name to give the role.
 # @param user [Aws::IAM::User] The user who is granted permission to assume the
 role.
 # @return [Aws::IAM::Role] The newly created role.
 def create_role(role_name, user)
 trust_policy = {
 Version: "2012-10-17",
 Statement: [{
 Effect: "Allow",
 Principal: {'AWS': user.arn},
 Action: "sts:AssumeRole"
 }]
 }.to_json
 role = @iam_client.create_role(
 role_name: role_name,
 assume_role_policy_document: trust_policy
).role
 @logger.info("Created role #{role.role_name}.")
 rescue Aws::Errors::ServiceError => e
 @logger.info("Couldn't create a role for the demo. Here's why: ")
 @logger.info("\t#{e.code}: #{e.message}")
 raise
 else
 role
 end

 # Creates a policy that grants permission to list S3 buckets in the account,
 and
 # then attaches the policy to a role.
 #
 # @param policy_name [String] The name to give the policy.

Using roles 612

AWS Identity and Access Management User Guide

 # @param role [Aws::IAM::Role] The role that the policy is attached to.
 # @return [Aws::IAM::Policy] The newly created policy.
 def create_and_attach_role_policy(policy_name, role)
 policy_document = {
 Version: "2012-10-17",
 Statement: [{
 Effect: "Allow",
 Action: "s3:ListAllMyBuckets",
 Resource: "arn:aws:s3:::*"
 }]
 }.to_json
 policy = @iam_client.create_policy(
 policy_name: policy_name,
 policy_document: policy_document
).policy
 @iam_client.attach_role_policy(
 role_name: role.role_name,
 policy_arn: policy.arn
)
 @logger.info("Created policy #{policy.policy_name} and attached it to role
 #{role.role_name}.")
 rescue Aws::Errors::ServiceError => e
 @logger.info("Couldn't create a policy and attach it to role
 #{role.role_name}. Here's why: ")
 @logger.info("\t#{e.code}: #{e.message}")
 raise
 end

 # Creates an inline policy for a user that lets the user assume a role.
 #
 # @param policy_name [String] The name to give the policy.
 # @param user [Aws::IAM::User] The user that owns the policy.
 # @param role [Aws::IAM::Role] The role that can be assumed.
 # @return [Aws::IAM::UserPolicy] The newly created policy.
 def create_user_policy(policy_name, user, role)
 policy_document = {
 Version: "2012-10-17",
 Statement: [{
 Effect: "Allow",
 Action: "sts:AssumeRole",
 Resource: role.arn
 }]
 }.to_json
 @iam_client.put_user_policy(

Using roles 613

AWS Identity and Access Management User Guide

 user_name: user.user_name,
 policy_name: policy_name,
 policy_document: policy_document
)
 puts("Created an inline policy for #{user.user_name} that lets the user
 assume role #{role.role_name}.")
 rescue Aws::Errors::ServiceError => e
 @logger.info("Couldn't create an inline policy for user #{user.user_name}.
 Here's why: ")
 @logger.info("\t#{e.code}: #{e.message}")
 raise
 end

 # Creates an Amazon S3 resource with specified credentials. This is separated
 into a
 # factory function so that it can be mocked for unit testing.
 #
 # @param credentials [Aws::Credentials] The credentials used by the Amazon S3
 resource.
 def create_s3_resource(credentials)
 Aws::S3::Resource.new(client: Aws::S3::Client.new(credentials: credentials))
 end

 # Lists the S3 buckets for the account, using the specified Amazon S3 resource.
 # Because the resource uses credentials with limited access, it may not be able
 to
 # list the S3 buckets.
 #
 # @param s3_resource [Aws::S3::Resource] An Amazon S3 resource.
 def list_buckets(s3_resource)
 count = 10
 s3_resource.buckets.each do |bucket|
 @logger.info "\t#{bucket.name}"
 count -= 1
 break if count.zero?
 end
 rescue Aws::Errors::ServiceError => e
 if e.code == "AccessDenied"
 puts("Attempt to list buckets with no permissions: AccessDenied.")
 else
 @logger.info("Couldn't list buckets for the account. Here's why: ")
 @logger.info("\t#{e.code}: #{e.message}")
 raise
 end

Using roles 614

AWS Identity and Access Management User Guide

 end

 # Creates an AWS Security Token Service (AWS STS) client with specified
 credentials.
 # This is separated into a factory function so that it can be mocked for unit
 testing.
 #
 # @param key_id [String] The ID of the access key used by the STS client.
 # @param key_secret [String] The secret part of the access key used by the STS
 client.
 def create_sts_client(key_id, key_secret)
 Aws::STS::Client.new(access_key_id: key_id, secret_access_key: key_secret)
 end

 # Gets temporary credentials that can be used to assume a role.
 #
 # @param role_arn [String] The ARN of the role that is assumed when these
 credentials
 # are used.
 # @param sts_client [AWS::STS::Client] An AWS STS client.
 # @return [Aws::AssumeRoleCredentials] The credentials that can be used to
 assume the role.
 def assume_role(role_arn, sts_client)
 credentials = Aws::AssumeRoleCredentials.new(
 client: sts_client,
 role_arn: role_arn,
 role_session_name: "create-use-assume-role-scenario"
)
 @logger.info("Assumed role '#{role_arn}', got temporary credentials.")
 credentials
 end

 # Deletes a role. If the role has policies attached, they are detached and
 # deleted before the role is deleted.
 #
 # @param role_name [String] The name of the role to delete.
 def delete_role(role_name)
 @iam_client.list_attached_role_policies(role_name:
 role_name).attached_policies.each do |policy|
 @iam_client.detach_role_policy(role_name: role_name, policy_arn:
 policy.policy_arn)
 @iam_client.delete_policy(policy_arn: policy.policy_arn)
 @logger.info("Detached and deleted policy #{policy.policy_name}.")
 end

Using roles 615

AWS Identity and Access Management User Guide

 @iam_client.delete_role({ role_name: role_name })
 @logger.info("Role deleted: #{role_name}.")
 rescue Aws::Errors::ServiceError => e
 @logger.info("Couldn't detach policies and delete role #{role.name}. Here's
 why:")
 @logger.info("\t#{e.code}: #{e.message}")
 raise
 end

 # Deletes a user. If the user has inline policies or access keys, they are
 deleted
 # before the user is deleted.
 #
 # @param user [Aws::IAM::User] The user to delete.
 def delete_user(user_name)
 user = @iam_client.list_access_keys(user_name: user_name).access_key_metadata
 user.each do |key|
 @iam_client.delete_access_key({ access_key_id: key.access_key_id,
 user_name: user_name })
 @logger.info("Deleted access key #{key.access_key_id} for user
 '#{user_name}'.")
 end

 @iam_client.delete_user(user_name: user_name)
 @logger.info("Deleted user '#{user_name}'.")
 rescue Aws::IAM::Errors::ServiceError => e
 @logger.error("Error deleting user '#{user_name}': #{e.message}")
 end
end

Runs the IAM create a user and assume a role scenario.
def run_scenario(scenario)
 puts("-" * 88)
 puts("Welcome to the IAM create a user and assume a role demo!")
 puts("-" * 88)
 user = scenario.create_user("doc-example-user-#{Random.uuid}")
 user_key = scenario.create_access_key_pair(user)
 scenario.wait(10)
 role = scenario.create_role("doc-example-role-#{Random.uuid}", user)
 scenario.create_and_attach_role_policy("doc-example-role-policy-
#{Random.uuid}", role)
 scenario.create_user_policy("doc-example-user-policy-#{Random.uuid}", user,
 role)
 scenario.wait(10)

Using roles 616

AWS Identity and Access Management User Guide

 puts("Try to list buckets with credentials for a user who has no permissions.")
 puts("Expect AccessDenied from this call.")
 scenario.list_buckets(
 scenario.create_s3_resource(Aws::Credentials.new(user_key.access_key_id,
 user_key.secret_access_key)))
 puts("Now, assume the role that grants permission.")
 temp_credentials = scenario.assume_role(
 role.arn, scenario.create_sts_client(user_key.access_key_id,
 user_key.secret_access_key))
 puts("Here are your buckets:")
 scenario.list_buckets(scenario.create_s3_resource(temp_credentials))
 puts("Deleting role '#{role.role_name}' and attached policies.")
 scenario.delete_role(role.role_name)
 puts("Deleting user '#{user.user_name}', policies, and keys.")
 scenario.delete_user(user.user_name)
 puts("Thanks for watching!")
 puts("-" * 88)
rescue Aws::Errors::ServiceError => e
 puts("Something went wrong with the demo.")
 puts("\t#{e.code}: #{e.message}")
end

run_scenario(ScenarioCreateUserAssumeRole.new(Aws::IAM::Client.new)) if
 $PROGRAM_NAME == __FILE__

• For API details, see the following topics in AWS SDK for Ruby API Reference.

• AttachRolePolicy

• CreateAccessKey

• CreatePolicy

• CreateRole

• CreateUser

• DeleteAccessKey

• DeletePolicy

• DeleteRole

• DeleteUser

• DeleteUserPolicy

• DetachRolePolicy

Using roles 617

https://docs.aws.amazon.com/goto/SdkForRubyV3/iam-2010-05-08/AttachRolePolicy
https://docs.aws.amazon.com/goto/SdkForRubyV3/iam-2010-05-08/CreateAccessKey
https://docs.aws.amazon.com/goto/SdkForRubyV3/iam-2010-05-08/CreatePolicy
https://docs.aws.amazon.com/goto/SdkForRubyV3/iam-2010-05-08/CreateRole
https://docs.aws.amazon.com/goto/SdkForRubyV3/iam-2010-05-08/CreateUser
https://docs.aws.amazon.com/goto/SdkForRubyV3/iam-2010-05-08/DeleteAccessKey
https://docs.aws.amazon.com/goto/SdkForRubyV3/iam-2010-05-08/DeletePolicy
https://docs.aws.amazon.com/goto/SdkForRubyV3/iam-2010-05-08/DeleteRole
https://docs.aws.amazon.com/goto/SdkForRubyV3/iam-2010-05-08/DeleteUser
https://docs.aws.amazon.com/goto/SdkForRubyV3/iam-2010-05-08/DeleteUserPolicy
https://docs.aws.amazon.com/goto/SdkForRubyV3/iam-2010-05-08/DetachRolePolicy

AWS Identity and Access Management User Guide

• PutUserPolicy

Rust

SDK for Rust

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

use aws_config::meta::region::RegionProviderChain;
use aws_sdk_iam::Error as iamError;
use aws_sdk_iam::{config::Credentials as iamCredentials, config::Region, Client
 as iamClient};
use aws_sdk_s3::Client as s3Client;
use aws_sdk_sts::Client as stsClient;
use tokio::time::{sleep, Duration};
use uuid::Uuid;

#[tokio::main]
async fn main() -> Result<(), iamError> {
 let (client, uuid, list_all_buckets_policy_document, inline_policy_document)
 =
 initialize_variables().await;

 if let Err(e) = run_iam_operations(
 client,
 uuid,
 list_all_buckets_policy_document,
 inline_policy_document,
)
 .await
 {
 println!("{:?}", e);
 };

 Ok(())
}

Using roles 618

https://docs.aws.amazon.com/goto/SdkForRubyV3/iam-2010-05-08/PutUserPolicy
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/rustv1/examples/iam#code-examples

AWS Identity and Access Management User Guide

async fn initialize_variables() -> (iamClient, String, String, String) {
 let region_provider = RegionProviderChain::first_try(Region::new("us-
west-2"));

 let shared_config =
 aws_config::from_env().region(region_provider).load().await;
 let client = iamClient::new(&shared_config);
 let uuid = Uuid::new_v4().to_string();

 let list_all_buckets_policy_document = "{
 \"Version\": \"2012-10-17\",
 \"Statement\": [{
 \"Effect\": \"Allow\",
 \"Action\": \"s3:ListAllMyBuckets\",
 \"Resource\": \"arn:aws:s3:::*\"}]
 }"
 .to_string();
 let inline_policy_document = "{
 \"Version\": \"2012-10-17\",
 \"Statement\": [{
 \"Effect\": \"Allow\",
 \"Action\": \"sts:AssumeRole\",
 \"Resource\": \"{}\"}]
 }"
 .to_string();

 (
 client,
 uuid,
 list_all_buckets_policy_document,
 inline_policy_document,
)
}

async fn run_iam_operations(
 client: iamClient,
 uuid: String,
 list_all_buckets_policy_document: String,
 inline_policy_document: String,
) -> Result<(), iamError> {
 let user = iam_service::create_user(&client, &format!("{}{}",
 "iam_demo_user_", uuid)).await?;
 println!("Created the user with the name: {}", user.user_name());

Using roles 619

AWS Identity and Access Management User Guide

 let key = iam_service::create_access_key(&client, user.user_name()).await?;

 let assume_role_policy_document = "{
 \"Version\": \"2012-10-17\",
 \"Statement\": [{
 \"Effect\": \"Allow\",
 \"Principal\": {\"AWS\": \"{}\"},
 \"Action\": \"sts:AssumeRole\"
 }]
 }"
 .to_string()
 .replace("{}", user.arn());

 let assume_role_role = iam_service::create_role(
 &client,
 &format!("{}{}", "iam_demo_role_", uuid),
 &assume_role_policy_document,
)
 .await?;
 println!("Created the role with the ARN: {}", assume_role_role.arn());

 let list_all_buckets_policy = iam_service::create_policy(
 &client,
 &format!("{}{}", "iam_demo_policy_", uuid),
 &list_all_buckets_policy_document,
)
 .await?;
 println!(
 "Created policy: {}",
 list_all_buckets_policy.policy_name.as_ref().unwrap()
);

 let attach_role_policy_result =
 iam_service::attach_role_policy(&client, &assume_role_role,
 &list_all_buckets_policy)
 .await?;
 println!(
 "Attached the policy to the role: {:?}",
 attach_role_policy_result
);

 let inline_policy_name = format!("{}{}", "iam_demo_inline_policy_", uuid);
 let inline_policy_document = inline_policy_document.replace("{}",
 assume_role_role.arn());

Using roles 620

AWS Identity and Access Management User Guide

 iam_service::create_user_policy(&client, &user, &inline_policy_name,
 &inline_policy_document)
 .await?;
 println!("Created inline policy.");

 //First, fail to list the buckets with the user.
 let creds = iamCredentials::from_keys(key.access_key_id(),
 key.secret_access_key(), None);
 let fail_config = aws_config::from_env()
 .credentials_provider(creds.clone())
 .load()
 .await;
 println!("Fail config: {:?}", fail_config);
 let fail_client: s3Client = s3Client::new(&fail_config);
 match fail_client.list_buckets().send().await {
 Ok(e) => {
 println!("This should not run. {:?}", e);
 }
 Err(e) => {
 println!("Successfully failed with error: {:?}", e)
 }
 }

 let sts_config = aws_config::from_env()
 .credentials_provider(creds.clone())
 .load()
 .await;
 let sts_client: stsClient = stsClient::new(&sts_config);
 sleep(Duration::from_secs(10)).await;
 let assumed_role = sts_client
 .assume_role()
 .role_arn(assume_role_role.arn())
 .role_session_name(&format!("{}{}", "iam_demo_assumerole_session_",
 uuid))
 .send()
 .await;
 println!("Assumed role: {:?}", assumed_role);
 sleep(Duration::from_secs(10)).await;

 let assumed_credentials = iamCredentials::from_keys(
 assumed_role
 .as_ref()
 .unwrap()
 .credentials

Using roles 621

AWS Identity and Access Management User Guide

 .as_ref()
 .unwrap()
 .access_key_id(),
 assumed_role
 .as_ref()
 .unwrap()
 .credentials
 .as_ref()
 .unwrap()
 .secret_access_key(),
 Some(
 assumed_role
 .as_ref()
 .unwrap()
 .credentials
 .as_ref()
 .unwrap()
 .session_token
 .clone(),
),
);

 let succeed_config = aws_config::from_env()
 .credentials_provider(assumed_credentials)
 .load()
 .await;
 println!("succeed config: {:?}", succeed_config);
 let succeed_client: s3Client = s3Client::new(&succeed_config);
 sleep(Duration::from_secs(10)).await;
 match succeed_client.list_buckets().send().await {
 Ok(_) => {
 println!("This should now run successfully.")
 }
 Err(e) => {
 println!("This should not run. {:?}", e);
 panic!()
 }
 }

 //Clean up.
 iam_service::detach_role_policy(
 &client,
 assume_role_role.role_name(),
 list_all_buckets_policy.arn().unwrap_or_default(),

Using roles 622

AWS Identity and Access Management User Guide

)
 .await?;
 iam_service::delete_policy(&client, list_all_buckets_policy).await?;
 iam_service::delete_role(&client, &assume_role_role).await?;
 println!("Deleted role {}", assume_role_role.role_name());
 iam_service::delete_access_key(&client, &user, &key).await?;
 println!("Deleted key for {}", key.user_name());
 iam_service::delete_user_policy(&client, &user, &inline_policy_name).await?;
 println!("Deleted inline user policy: {}", inline_policy_name);
 iam_service::delete_user(&client, &user).await?;
 println!("Deleted user {}", user.user_name());

 Ok(())
}

• For API details, see the following topics in AWS SDK for Rust API reference.

• AttachRolePolicy

• CreateAccessKey

• CreatePolicy

• CreateRole

• CreateUser

• DeleteAccessKey

• DeletePolicy

• DeleteRole

• DeleteUser

• DeleteUserPolicy

• DetachRolePolicy

• PutUserPolicy

Using an IAM role to grant permissions to applications running on Amazon EC2
instances

Applications that run on an Amazon EC2 instance must include AWS credentials in the AWS API
requests. You could have your developers store AWS credentials directly within the Amazon EC2
instance and allow applications in that instance to use those credentials. But developers would
Using roles 623

https://docs.rs/releases/search?query=aws-sdk
https://docs.rs/releases/search?query=aws-sdk
https://docs.rs/releases/search?query=aws-sdk
https://docs.rs/releases/search?query=aws-sdk
https://docs.rs/releases/search?query=aws-sdk
https://docs.rs/releases/search?query=aws-sdk
https://docs.rs/releases/search?query=aws-sdk
https://docs.rs/releases/search?query=aws-sdk
https://docs.rs/releases/search?query=aws-sdk
https://docs.rs/releases/search?query=aws-sdk
https://docs.rs/releases/search?query=aws-sdk
https://docs.rs/releases/search?query=aws-sdk

AWS Identity and Access Management User Guide

then have to manage the credentials and ensure that they securely pass the credentials to each
instance and update each Amazon EC2 instance when it's time to update the credentials. That's a
lot of additional work.

Instead, you can and should use an IAM role to manage temporary credentials for applications
that run on an Amazon EC2 instance. When you use a role, you don't have to distribute long-
term credentials (such as sign-in credentials or access keys) to an Amazon EC2 instance. Instead,
the role supplies temporary permissions that applications can use when they make calls to other
AWS resources. When you launch an Amazon EC2 instance, you specify an IAM role to associate
with the instance. Applications that run on the instance can then use the role-supplied temporary
credentials to sign API requests.

Using roles to grant permissions to applications that run on Amazon EC2 instances requires a bit
of extra configuration. An application running on an Amazon EC2 instance is abstracted from AWS
by the virtualized operating system. Because of this extra separation, you need an additional step
to assign an AWS role and its associated permissions to an Amazon EC2 instance and make them
available to its applications. This extra step is the creation of an instance profile attached to the
instance. The instance profile contains the role and can provide the role's temporary credentials
to an application that runs on the instance. Those temporary credentials can then be used in the
application's API calls to access resources and to limit access to only those resources that the role
specifies.

Note

Only one role can be assigned to an Amazon EC2 instance at a time, and all applications
on the instance share the same role and permissions. When you leverage Amazon ECS to
manage your Amazon EC2 instances, you can assign roles to Amazon ECS tasks that can
be distinguished from the role of the Amazon EC2 instance that it's running on. Assigning
each task a role aligns with the principle of least privileged access and allows for greater
granular control over actions and resources.
For more information, see Using IAM roles with Amazon ECS tasks in the Amazon Elastic
Container Service Best Practices Guide.

Using roles in this way has several benefits. Because role credentials are temporary and updated
automatically, you don't have to manage credentials, and you don't have to worry about long-term
security risks. In addition, if you use a single role for multiple instances, you can make a change to
that one role and the change propagates automatically to all the instances.

Using roles 624

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-ec2_instance-profiles.html
https://docs.aws.amazon.com/AmazonECS/latest/bestpracticesguide/security-iam-roles.html

AWS Identity and Access Management User Guide

Note

Although a role is usually assigned to an Amazon EC2 instance when you launch it, a role
can also be attached to an Amazon EC2 instance currently running. To learn how to attach
a role to a running instance, see IAM Roles for Amazon EC2.

Topics

• How do roles for Amazon EC2 instances work?

• Permissions required for using roles with Amazon EC2

• How do I get started?

• Related information

• Using instance profiles

How do roles for Amazon EC2 instances work?

In the following figure, a developer runs an application on an Amazon EC2 instance that requires
access to the S3 bucket named photos. An administrator creates the Get-pics service role and
attaches the role to the Amazon EC2 instance. The role includes a permissions policy that grants
read-only access to the specified S3 bucket. It also includes a trust policy that allows the Amazon
EC2 instance to assume the role and retrieve the temporary credentials. When the application
runs on the instance, it can use the role's temporary credentials to access the photos bucket. The
administrator doesn't have to grant the developer permission to access the photos bucket, and the
developer never has to share or manage credentials.

Using roles 625

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/iam-roles-for-amazon-ec2.html#attach-iam-role

AWS Identity and Access Management User Guide

1. The administrator uses IAM to create the Get-pics role. In the role's trust policy, the
administrator specifies that only Amazon EC2 instances can assume the role. In the role's
permission policy, the administrator specifies read-only permissions for the photos bucket.

2. A developer launches an Amazon EC2 instance and assigns the Get-pics role to that instance.

Note

If you use the IAM console, the instance profile is managed for you and is mostly
transparent to you. However, if you use the AWS CLI or API to create and manage the
role and Amazon EC2 instance, then you must create the instance profile and assign the
role to it as separate steps. Then, when you launch the instance, you must specify the
instance profile name instead of the role name.

3. When the application runs, it obtains temporary security credentials from Amazon EC2 instance
metadata, as described in Retrieving Security Credentials from Instance Metadata. These are
temporary security credentials that represent the role and are valid for a limited period of time.

With some AWS SDKs, the developer can use a provider that manages the temporary security
credentials transparently. (The documentation for individual AWS SDKs describes the features
supported by that SDK for managing credentials.)

Alternatively, the application can get the temporary credentials directly from the instance
metadata of the Amazon EC2 instance. Credentials and related values are available from
the iam/security-credentials/role-name category (in this case, iam/security-
credentials/Get-pics) of the metadata. If the application gets the credentials from the
instance metadata, it can cache the credentials.

4. Using the retrieved temporary credentials, the application accesses the photo bucket. Because of
the policy attached to the Get-pics role, the application has read-only permissions.

The temporary security credentials available on the instance automatically update before they
expire so that a valid set is always available. The application just needs to make sure that it
gets a new set of credentials from the instance metadata before the current ones expire. It is
possible to use the AWS SDK to manage credentials so the application does not need to include
additional logic to refresh the credentials. For example, instantiating clients with Instance Profile
Credential Providers. However, if the application gets temporary security credentials from the
instance metadata and has cached them, it should get a refreshed set of credentials every hour,

Using roles 626

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-instance-metadata.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-instance-metadata.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/iam-roles-for-amazon-ec2.html#instance-metadata-security-credentials
https://aws.amazon.com/tools/

AWS Identity and Access Management User Guide

or at least 15 minutes before the current set expires. The expiration time is included in the
information returned in the iam/security-credentials/role-name category.

Permissions required for using roles with Amazon EC2

To launch an instance with a role, the developer must have permission to launch Amazon EC2
instances and permission to pass IAM roles.

The following sample policy allows users to use the AWS Management Console to launch an
instance with a role. The policy includes wildcards (*) to allow a user to pass any role and to
perform the listed Amazon EC2 actions. The ListInstanceProfiles action allows users to view
all of the roles available in the AWS account.

Example Example policy that grants a user permission to use the Amazon EC2 console to launch
an instance with any role

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "IamPassRole",
 "Effect": "Allow",
 "Action": "iam:PassRole",
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "iam:PassedToService": "ec2.amazonaws.com"
 }
 }
 },
 {
 "Sid": "ListEc2AndListInstanceProfiles",
 "Effect": "Allow",
 "Action": [
 "iam:ListInstanceProfiles",
 "ec2:Describe*",
 "ec2:Search*",
 "ec2:Get*"
],
 "Resource": "*"
 }
]

Using roles 627

AWS Identity and Access Management User Guide

}

Restricting which roles can be passed to Amazon EC2 instances (using PassRole)

You can use the PassRole permission to restrict which role a user can pass to an Amazon
EC2 instance when the user launches the instance. This helps prevent the user from running
applications that have more permissions than the user has been granted—that is, from being able
to obtain elevated privileges. For example, imagine that user Alice has permissions only to launch
Amazon EC2 instances and to work with Amazon S3 buckets, but the role she passes to an Amazon
EC2 instance has permissions to work with IAM and Amazon DynamoDB. In that case, Alice might
be able to launch the instance, log into it, get temporary security credentials, and then perform
IAM or DynamoDB actions that she's not authorized for.

To restrict which roles a user can pass to an Amazon EC2 instance, you create a policy that allows
the PassRole action. You then attach the policy to the user (or to an IAM group that the user
belongs to) who will launch Amazon EC2 instances. In the Resource element of the policy, you list
the role or roles that the user is allowed to pass to Amazon EC2 instances. When the user launches
an instance and associates a role with it, Amazon EC2 checks whether the user is allowed to pass
that role. Of course, you should also ensure that the role that the user can pass does not include
more permissions than the user is supposed to have.

Note

PassRole is not an API action in the same way that RunInstances or
ListInstanceProfiles is. Instead, it's a permission that AWS checks whenever a role
ARN is passed as a parameter to an API (or the console does this on the user's behalf). It
helps an administrator to control which roles can be passed by which users. In this case, it
ensures that the user is allowed to attach a specific role to an Amazon EC2 instance.

Example Example policy that grants a user permission to launch an Amazon EC2 instance with a
specific role

The following sample policy allows users to use the Amazon EC2 API to launch an instance with a
role. The Resource element specifies the Amazon Resource Name (ARN) of a role. By specifying
the ARN, the policy grants the user the permission to pass only the Get-pics role. If the user
tries to specify a different role when launching an instance, the action fails. The user does have
permissions to run any instance, regardless of whether they pass a role.

Using roles 628

AWS Identity and Access Management User Guide

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "ec2:RunInstances",
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Action": "iam:PassRole",
 "Resource": "arn:aws:iam::account-id:role/Get-pics"
 }
]
}

Allowing an instance profile role to switch to a role in another account

You can allow an application running on an Amazon EC2 instance to run commands in another
account. To do this, you must allow the Amazon EC2 instance role in the first account to switch to a
role in the second account.

Imagine that you are using two AWS accounts and you want to allow an application running on
an Amazon EC2 instance to run AWS CLI commands in both accounts. Assume that the Amazon
EC2 instance exists in account 111111111111. That instance includes the abcd instance profile
role that allows the application to perform read-only Amazon S3 tasks on the my-bucket-1
bucket within the same 111111111111 account. However, the application must also be allowed
to assume the efgh cross-account role to access the my-bucket-2 Amazon S3 bucket in account
222222222222.

Using roles 629

https://aws.amazon.com/cli/

AWS Identity and Access Management User Guide

The abcd Amazon EC2 instance profile role must have the following permissions policy to allow
the application to access the my-bucket-1 Amazon S3 bucket:

Account 111111111111 abcd Role Permissions Policy

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "AllowAccountLevelS3Actions",
 "Effect": "Allow",
 "Action": [
 "s3:GetBucketLocation",
 "s3:GetAccountPublicAccessBlock",
 "s3:ListAccessPoints",
 "s3:ListAllMyBuckets"
],
 "Resource": "arn:aws:s3:::*"
 },
 {
 "Sid": "AllowListAndReadS3ActionOnMyBucket",
 "Effect": "Allow",
 "Action": [
 "s3:Get*",
 "s3:List*"
],

Using roles 630

AWS Identity and Access Management User Guide

 "Resource": [
 "arn:aws:s3:::my-bucket-1/*",
 "arn:aws:s3:::my-bucket-1"
]
 },
 {
 "Sid": "AllowIPToAssumeCrossAccountRole",
 "Effect": "Allow",
 "Action": "sts:AssumeRole",
 "Resource": "arn:aws:iam::222222222222:role/efgh"
 }
]
}

The abcd role must trust the Amazon EC2 service to assume the role. To do this, the abcd role
must have the following trust policy:

Account 111111111111 abcd Role Trust Policy

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "abcdTrustPolicy",
 "Effect": "Allow",
 "Action": "sts:AssumeRole",
 "Principal": {"Service": "ec2.amazonaws.com"}
 }
]
}

Assume that the efgh cross-account role allows read-only Amazon S3 tasks on the my-bucket-2
bucket within the same 222222222222 account. To do this, the efgh cross-account role must have
the following permissions policy:

Account 222222222222 efgh Role Permissions Policy

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "AllowAccountLevelS3Actions",

Using roles 631

AWS Identity and Access Management User Guide

 "Effect": "Allow",
 "Action": [
 "s3:GetBucketLocation",
 "s3:GetAccountPublicAccessBlock",
 "s3:ListAccessPoints",
 "s3:ListAllMyBuckets"
],
 "Resource": "arn:aws:s3:::*"
 },
 {
 "Sid": "AllowListAndReadS3ActionOnMyBucket",
 "Effect": "Allow",
 "Action": [
 "s3:Get*",
 "s3:List*"
],
 "Resource": [
 "arn:aws:s3:::my-bucket-2/*",
 "arn:aws:s3:::my-bucket-2"
]
 }
]
}

The efgh role must trust the abcd instance profile role to assume it. To do this, the efgh role must
have the following trust policy:

Account 222222222222 efgh Role Trust Policy

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "efghTrustPolicy",
 "Effect": "Allow",
 "Action": "sts:AssumeRole",
 "Principal": {"AWS": "arn:aws:iam::111111111111:role/abcd"}
 }
]
}

Using roles 632

AWS Identity and Access Management User Guide

How do I get started?

To understand how roles work with Amazon EC2 instances, you need to use the IAM console to
create a role, launch an Amazon EC2 instance that uses that role, and then examine the running
instance. You can examine the instance metadata to see how the role's temporary credentials are
made available to an instance. You can also see how an application that runs on an instance can
use the role. Use the following resources to learn more.

•

• SDK walkthroughs. The AWS SDK documentation includes walkthroughs that show an
application running on an Amazon EC2 instance that uses temporary credentials for roles to read
an Amazon S3 bucket. Each of the following walkthroughs presents similar steps with a different
programming language:

• Configure IAM Roles for Amazon EC2 with the SDK for Java in the AWS SDK for Java Developer
Guide

• Launch an Amazon EC2 Instance using the SDK for .NET in the AWS SDK for .NET Developer
Guide

• Creating an Amazon EC2 Instance with the SDK for Ruby in the AWS SDK for Ruby Developer
Guide

Related information

For more information about creating roles or roles for Amazon EC2 instances, see the following
information:

• For more information about using IAM roles with Amazon EC2 instances, go to the Amazon EC2
User Guide for Linux Instances.

• To create a role, see Creating IAM roles

• For more information about using temporary security credentials, see Temporary security
credentials in IAM.

• If you work with the IAM API or CLI, you must create and manage IAM instance profiles. For more
information about instance profiles, see Using instance profiles.

• For more information about temporary security credentials for roles in the instance metadata,
see Retrieving Security Credentials from Instance Metadata in the Amazon EC2 User Guide for
Linux Instances.

Using roles 633

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/AESDG-chapter-instancedata.html
https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/java-dg-roles.html
https://docs.aws.amazon.com/sdk-for-net/latest/developer-guide/run-instance.html
https://docs.aws.amazon.com/sdk-for-ruby/latest/developer-guide/ec2-example-create-instance.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/iam-roles-for-amazon-ec2.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/iam-roles-for-amazon-ec2.html#instance-metadata-security-credentials

AWS Identity and Access Management User Guide

Using instance profiles

Use an instance profile to pass an IAM role to an EC2 instance. For more information, see IAM roles
for Amazon EC2 in the Amazon EC2 User Guide for Linux Instances.

Managing instance profiles (console)

If you use the AWS Management Console to create a role for Amazon EC2, the console
automatically creates an instance profile and gives it the same name as the role. When you then
use the Amazon EC2 console to launch an instance with an IAM role, you can select a role to
associate with the instance. In the console, the list that's displayed is actually a list of instance
profile names. The console does not create an instance profile for a role that is not associated with
Amazon EC2.

You can use the AWS Management Console to delete IAM roles and instance profiles for Amazon
EC2 if the role and the instance profile have the same name. To learn more about deleting instance
profiles, see Deleting roles or instance profiles.

Managing instance profiles (AWS CLI or AWS API)

If you manage your roles from the AWS CLI or the AWS API, you create roles and instance profiles
as separate actions. Because roles and instance profiles can have different names, you must know
the names of your instance profiles as well as the names of roles they contain. That way you can
choose the correct instance profile when you launch an EC2 instance.

You can attach tags to your IAM resources, including instance profiles, to identify, organize, and
control access to them. You can tag instance profiles only when you use the AWS CLI or AWS API.

Note

An instance profile can contain only one IAM role, although a role can be included in
multiple instance profiles. This limit of one role per instance profile cannot be increased.
You can remove the existing role and then add a different role to an instance profile. You
must then wait for the change to appear across all of AWS because of eventual consistency.
To force the change, you must disassociate the instance profile and then associate the
instance profile, or you can stop your instance and then restart it.

Managing instance profiles (AWS CLI)

You can use the following AWS CLI commands to work with instance profiles in an AWS account.

Using roles 634

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/iam-roles-for-amazon-ec2.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/iam-roles-for-amazon-ec2.html
https://en.wikipedia.org/wiki/Eventual_consistency
https://docs.aws.amazon.com/AWSEC2/latest/APIReference/API_DisassociateIamInstanceProfile.html
https://docs.aws.amazon.com/AWSEC2/latest/APIReference/API_AssociateIamInstanceProfile.html
https://docs.aws.amazon.com/AWSEC2/latest/APIReference/API_AssociateIamInstanceProfile.html

AWS Identity and Access Management User Guide

• Create an instance profile: aws iam create-instance-profile

• Tag an instance profile: aws iam tag-instance-profile

• List tags for an instance profile: aws iam list-instance-profile-tags

• Untag an instance profile: aws iam untag-instance-profile

• Add a role to an instance profile: aws iam add-role-to-instance-profile

• List instance profiles: aws iam list-instance-profiles, aws iam list-instance-
profiles-for-role

• Get information about an instance profile: aws iam get-instance-profile

• Remove a role from an instance profile: aws iam remove-role-from-instance-profile

• Delete an instance profile: aws iam delete-instance-profile

You can also attach a role to an already running EC2 instance by using the following commands.
For more information, see IAM Roles for Amazon EC2.

• Attach an instance profile with a role to a stopped or running EC2 instance: aws ec2
associate-iam-instance-profile

• Get information about an instance profile attached to an EC2 instance: aws ec2 describe-
iam-instance-profile-associations

• Detach an instance profile with a role from a stopped or running EC2 instance: aws ec2
disassociate-iam-instance-profile

Managing instance profiles (AWS API)

You can call the following AWS API operations to work with instance profiles in an AWS account.

• Create an instance profile: CreateInstanceProfile

• Tag an instance profile: TagInstanceProfile

• List tags on an instance profile: ListInstanceProfileTags

• Untag an instance profile: UntagInstanceProfile

• Add a role to an instance profile: AddRoleToInstanceProfile

• List instance profiles: ListInstanceProfiles, ListInstanceProfilesForRole

• Get information about an instance profile: GetInstanceProfile

• Remove a role from an instance profile: RemoveRoleFromInstanceProfile

Using roles 635

https://docs.aws.amazon.com/cli/latest/reference/iam/create-instance-profile.html
https://docs.aws.amazon.com/cli/latest/reference/iam/tag-instance-profile.html
https://docs.aws.amazon.com/cli/latest/reference/iam/list-instance-profile-tags.html
https://docs.aws.amazon.com/cli/latest/reference/iam/untag-instance-profile.html
https://docs.aws.amazon.com/cli/latest/reference/iam/add-role-to-instance-profile.html
https://docs.aws.amazon.com/cli/latest/reference/iam/list-instance-profiles.html
https://docs.aws.amazon.com/cli/latest/reference/iam/list-instance-profiles-for-role.html
https://docs.aws.amazon.com/cli/latest/reference/iam/list-instance-profiles-for-role.html
https://docs.aws.amazon.com/cli/latest/reference/iam/get-instance-profile.html
https://docs.aws.amazon.com/cli/latest/reference/iam/remove-role-from-instance-profile.html
https://docs.aws.amazon.com/cli/latest/reference/iam/delete-instance-profile.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/iam-roles-for-amazon-ec2.html#attach-iam-role
https://docs.aws.amazon.com/cli/latest/reference/ec2/associate-iam-instance-profile.html
https://docs.aws.amazon.com/cli/latest/reference/ec2/associate-iam-instance-profile.html
https://docs.aws.amazon.com/cli/latest/reference/ec2/describe-iam-instance-profile-associations.html
https://docs.aws.amazon.com/cli/latest/reference/ec2/describe-iam-instance-profile-associations.html
https://docs.aws.amazon.com/cli/latest/reference/ec2/disassociate-iam-instance-profile.html
https://docs.aws.amazon.com/cli/latest/reference/ec2/disassociate-iam-instance-profile.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_CreateInstanceProfile.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_TagInstanceProfile.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_TagInstanceProfile.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_TagInstanceProfile.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_AddRoleToInstanceProfile.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_ListInstanceProfiles.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_ListInstanceProfilesForRole.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_GetInstanceProfile.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_RemoveRoleFromInstanceProfile.html

AWS Identity and Access Management User Guide

• Delete an instance profile: DeleteInstanceProfile

You can also attach a role to an already running EC2 instance by calling the following operations.
For more information, see IAM Roles for Amazon EC2.

• Attach an instance profile with a role to a stopped or running EC2 instance:
AssociateIamInstanceProfile

• Get information about an instance profile attached to an EC2 instance:
DescribeIamInstanceProfileAssociations

• Detach an instance profile with a role from a stopped or running EC2 instance:
DisassociateIamInstanceProfile

Revoking IAM role temporary security credentials

Warning

If you follow the steps on this page, all users with current sessions created by assuming
the role are denied access to all AWS actions and resources. This can result in users losing
unsaved work.

When you permit users to access the AWS Management Console with a long session duration time
(such as 12 hours), their temporary credentials do not expire as quickly. If users inadvertently
expose their credentials to an unauthorized third-party, that party has access for the duration
of the session. However, you can immediately revoke all permissions to the role's credentials
issued before a certain point in time if you need to. All temporary credentials for that role issued
before the specified time become invalid. This forces all users to re-authenticate and request new
credentials.

Note

You cannot revoke the session for a service-linked role.

When you revoke permissions for a role using the procedure in this topic, AWS attaches a new
inline policy to the role that denies all permissions to all actions. It includes a condition that applies

Using roles 636

https://docs.aws.amazon.com/IAM/latest/APIReference/API_DeleteInstanceProfile.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/iam-roles-for-amazon-ec2.html#attach-iam-role
https://docs.aws.amazon.com/AWSEC2/latest/APIReference/API_AssociateIamInstanceProfile.html
https://docs.aws.amazon.com/AWSEC2/latest/APIReference/API_DescribeIamInstanceProfileAssociations.html
https://docs.aws.amazon.com/AWSEC2/latest/APIReference/API_DisassociateIamInstanceProfile.html

AWS Identity and Access Management User Guide

the restrictions only if the user assumed the role before the point in time when you revoke the
permissions. If the user assumes the role after you revoked the permissions, then the deny policy
does not apply to that user.

For more information on denying access, see Disabling permissions for temporary security
credentials.

Important

This deny policy applies to all users of the specified role, not just those with longer
duration console sessions.

Minimum permissions to revoke session permissions from a role

To successfully revoke session permissions from a role, you must have the PutRolePolicy
permission for the role. This allows you to attach the AWSRevokeOlderSessions inline policy to
the role.

Revoking session permissions

You can revoke the session permissions from a role.

To immediately deny all permissions to any current user of role credentials

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. In the navigation pane, choose Roles, and then choose the name (not the check box) of the
role whose permissions you want to revoke.

3. On the Summary page for the selected role, choose the Revoke sessions tab.

4. On the Revoke sessions tab, choose Revoke active sessions.

5. AWS asks you to confirm the action. Select the I acknowledge that I am revoking all active
sessions for this role. check box and choose Revoke active sessions on the dialog box.

IAM immediately attaches a policy named AWSRevokeOlderSessions to the role. The policy
denies all access to users who assumed the role before the moment you choose Revoke active
sessions. Any user who assumes the role after you choose Revoke active sessions is not
affected.

Using roles 637

https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/

AWS Identity and Access Management User Guide

When you apply a new policy to a user or a resource, it can take a few minutes for policy
updates to take effect. To learn why changes are not always immediately visible, see Changes
that I make are not always immediately visible.

Note

Don't worry about remembering to delete the policy. Any user who assumes the role
after you revoke sessions is not affected by the policy. If you choose to Revoke Sessions
again later, then the date and time stamp in the policy is refreshed and it again denies all
permissions to any user who assumed the role before the new specified time.

Valid users whose sessions are revoked in this way must acquire temporary credentials for a new
session to continue working. The AWS CLI caches credentials until they expire. To force the CLI to
delete and refresh cached credentials that are no longer valid, run one of the following commands:

Linux, macOS, or Unix

$ rm -r ~/.aws/cli/cache

Windows

C:\> del /s /q %UserProfile%\.aws\cli\cache

Revoking session permissions before a specified time

You can also revoke session permissions programmatically by specifying a value for the
aws:TokenIssueTime key in the Condition element of a policy.

This policy denies all permissions when the value of aws:TokenIssueTime is earlier than the
specified date and time. The value of aws:TokenIssueTime corresponds to the exact time at
which the temporary security credentials were created. The aws:TokenIssueTime value is only
present in the context of AWS requests that are signed with temporary security credentials, so
the Deny statement in the policy does not affect requests that are signed with the long-term
credentials of the IAM user.

This policy can also be attached to a role. In that case, the policy affects only the temporary
security credentials that were created by the role before the specified date and time.

Using roles 638

AWS Identity and Access Management User Guide

{
 "Version": "2012-10-17",
 "Statement": {
 "Effect": "Deny",
 "Action": "*",
 "Resource": "*",
 "Condition": {
 "DateLessThan": {"aws:TokenIssueTime": "2014-05-07T23:47:00Z"}
 }
 }
}

Valid users whose sessions are revoked in this way must acquire temporary credentials for a new
session to continue working. The AWS CLI caches credentials until they expire. To force the CLI to
delete and refresh cached credentials that are no longer valid, run one of the following commands:

Linux, macOS, or Unix

$ rm -r ~/.aws/cli/cache

Windows

C:\> del /s /q %UserProfile%\.aws\cli\cache

Managing IAM roles

Occasionally you need to modify or delete the roles that you have created. To change a role, you
can do any of the following:

• Modify the policies that are associated with the role

• Change who can access the role

• Edit the permissions that the role grants to users

• Change the maximum session duration setting for roles that are assumed using the AWS
Management Console, AWS CLI or API

You can also delete roles that are no longer needed. You can manage your roles from the AWS
Management Console, the AWS CLI, and the API.

Managing roles 639

AWS Identity and Access Management User Guide

Topics

• Modifying a role

• Deleting roles or instance profiles

Modifying a role

You can use the AWS Management Console, the AWS CLI, or the IAM API to make changes to a role.

Topics

• View role access

• Generate a policy based on access information

• Modifying a role (console)

• Modifying a role (AWS CLI)

• Modifying a role (AWS API)

View role access

Before you change the permissions for a role, you should review its recent service-level activity.
This is important because you don't want to remove access from a principal (person or application)
who is using it. For more information about viewing last accessed information, see Refining
permissions in AWS using last accessed information.

Generate a policy based on access information

You might sometimes grant permissions to an IAM entity (user or role) beyond what they require.
To help you refine the permissions that you grant, you can generate an IAM policy that is based
on the access activity for an entity. IAM Access Analyzer reviews your AWS CloudTrail logs and
generates a policy template that contains the permissions that have been used by the entity in
your specified date range. You can use the template to create a managed policy with fine-grained
permissions and then attach it to the IAM entity. That way, you grant only the permissions that
the user or role needs to interact with AWS resources for your specific use case. To learn more, see
Generate policies based on access activity.

Modifying a role (console)

You can use the AWS Management Console to modify a role. To change the set of tags on a role,
see Managing tags on IAM roles (console).

Managing roles 640

AWS Identity and Access Management User Guide

Topics

• Modifying a role trust policy (console)

• Modifying a role permissions policy (console)

• Modifying a role description (console)

• Modifying a role maximum session duration (console)

• Modifying a role permissions boundary (console)

Modifying a role trust policy (console)

To change who can assume a role, you must modify the role's trust policy. You cannot modify the
trust policy for a service-linked role.

Notes

• If a user is listed as the principal in a role's trust policy but cannot assume the role, check
the user's permissions boundary. If a permissions boundary is set for the user, then it
must allow the sts:AssumeRole action.

• To allow users to assume the current role again within a role session, specify the role
ARN or AWS account ARN as a principal in the role trust policy. AWS services that provide
compute resources such as Amazon EC2, Amazon ECS, Amazon EKS, and Lambda provide
temporary credentials and automatically update these credentials. This ensures that you
always have a valid set of credentials. For these services, it's not necessary to assume the
current role again to obtain temporary credentials. However, if you intend to pass session
tags or a session policy, you need to assume the current role again.

To modify a role trust policy (console)

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. In the navigation pane of the IAM console, choose Roles.

3. In the list of roles in your account, choose the name of the role that you want to modify.

4. Choose the Trust relationships tab, and then choose Edit trust policy.

Managing roles 641

https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/

AWS Identity and Access Management User Guide

5. Edit the trust policy as needed. To add additional principals that can assume the role, specify
them in the Principal element. For example, the following policy snippet shows how to
reference two AWS accounts in the Principal element:

"Principal": {
 "AWS": [
 "arn:aws:iam::111122223333:root",
 "arn:aws:iam::444455556666:root"
]
},

If you specify a principal in another account, adding an account to the trust policy of a role
is only half of establishing the cross-account trust relationship. By default, no users in the
trusted accounts can assume the role. The administrator for the newly trusted account must
grant the users the permission to assume the role. To do that, the administrator must create
or edit a policy that is attached to the user to allow the user access to the sts:AssumeRole
action. For more information, see the following procedure or Granting a user permissions to
switch roles.

The following policy snippet shows how to reference two AWS services in the Principal
element:

"Principal": {
 "Service": [
 "opsworks.amazonaws.com",
 "ec2.amazonaws.com"
]
},

6. When you are finished editing your trust policy, choose Update policy to save your changes.

For more information about policy structure and syntax, see Policies and permissions in IAM
and the IAM JSON policy elements reference.

To allow users in a trusted external account to use the role (console)

For more information and detail about this procedure, see Granting a user permissions to switch
roles.

1. Sign in to the trusted external AWS account.

Managing roles 642

AWS Identity and Access Management User Guide

2. Decide whether to attach the permissions to a user or to a group. In the navigation pane of the
IAM console, choose Users or User groups accordingly.

3. Choose the name of the user or group to which you want to grant access, and then choose the
Permissions tab.

4. Do one of the following:

• To edit a customer managed policy, choose the name of the policy,
choose Edit policy, and then choose the JSON tab. You cannot edit an
AWS managed policy. AWS managed policies appear with the AWS icon

().
For more information about the difference between AWS managed policies and customer
managed policies, see Managed policies and inline policies.

• To edit an inline policy, choose the arrow next to the name of the policy and choose Edit
policy.

5. In the policy editor, add a new Statement element that specifies the following:

{
 "Effect": "Allow",
 "Action": "sts:AssumeRole",
 "Resource": "arn:aws:iam::ACCOUNT-ID:role/ROLE-NAME"
}

Replace the ARN in the statement with the ARN of the role that the user can assume.

6. Follow the prompts on screen to finish editing the policy.

Modifying a role permissions policy (console)

To change the permissions allowed by the role, modify the role's permissions policy (or policies).
You cannot modify the permissions policy for a service-linked role in IAM. You might be able to
modify the permissions policy within the service that depends on the role. To check whether a
service supports this feature, see AWS services that work with IAM and look for the services that
have Yes in the Service-linked roles column. Choose a Yes with a link to view the service-linked
role documentation for that service.

To change the permissions allowed by a role (console)

1. Open the IAM console at https://console.aws.amazon.com/iam/.

Managing roles 643

https://console.aws.amazon.com/iam/

AWS Identity and Access Management User Guide

2. In the navigation pane of the IAM console, choose Roles.

3. Choose the name of the role that you want to modify, and then choose the Permissions tab.

4. Do one of the following:

• To edit an existing customer managed policy, choose the name of the policy and then
choose Edit policy.

Note

You cannot edit an AWS managed policy. AWS managed policy appear with the AWS
icon

().
For more information about the difference between AWS managed policies and
customer managed policies, see Managed policies and inline policies.

• To attach an existing managed policy to the role, choose Add permissions and then choose
Attach policies.

• To edit an existing inline policy, expand the policy and choose Edit.

• To embed a new inline policy, choose Add permissions and then choose Create inline
policy.

Modifying a role description (console)

To change the description of the role, modify the description text.

To change the description of a role (console)

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. In the navigation pane of the IAM console, choose Roles.

3. Choose the name of the role to modify.

4. In the Summary section, choose Edit.

5. Enter a new description in the box and choose Save changes.

Managing roles 644

https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/

AWS Identity and Access Management User Guide

Modifying a role maximum session duration (console)

To specify the maximum session duration setting for roles that are assumed using the console, the
AWS CLI, or AWS API, modify the maximum session duration setting value. This setting can have
a value from 1 hour to 12 hours. If you do not specify a value, the default maximum of 1 hour is
applied. This setting does not limit sessions assumed by AWS services.

To change the maximum session duration setting for roles that are assumed using the console,
AWS CLI, or AWS API (console)

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. In the navigation pane of the IAM console, choose Roles.

3. Choose the name of the role to modify.

4. In the Summary section, choose Edit.

5. For Maximum session duration, choose a value. Alternatively, choose Custom duration and
enter a value (in seconds).

6. Choose Save changes.

Your changes don't take effect until the next time someone assumes this role. To learn how to
revoke existing sessions for this role, see Revoking IAM role temporary security credentials.

In the AWS Management Console, IAM user sessions are 12 hours by default. IAM users who switch
roles in the console are granted the role maximum session duration, or the remaining time in the
user's session, whichever is less.

Anyone who assumes the role from the AWS CLI or AWS API can request a longer session, up to
this maximum. The MaxSessionDuration setting determines the maximum duration of the role
session that can be requested.

• To specify a session duration using the AWS CLI use the duration-seconds parameter. To learn
more, see Switching to an IAM role (AWS CLI).

• To specify a session duration using the AWS API, use the DurationSeconds parameter. To learn
more, see Switching to an IAM role (AWS API).

Managing roles 645

https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/

AWS Identity and Access Management User Guide

Modifying a role permissions boundary (console)

To change the maximum permissions allowed for a role, modify the role's permissions boundary.

To change the policy used to set the permissions boundary for a role

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. In the navigation pane, choose Roles.

3. Choose the name of the role with the permissions boundary that you want to change.

4. Choose the Permissions tab. If necessary, open the Permissions boundary section and then
choose Change boundary.

5. Select the policy that you want to use for the permissions boundary.

6. Choose Change boundary.

Your changes don't take effect until the next time someone assumes this role.

Modifying a role (AWS CLI)

You can use the AWS Command Line Interface to modify a role. To change the set of tags on a role,
see Managing tags on IAM roles (AWS CLI or AWS API).

Topics

• Modifying a role trust policy (AWS CLI)

• Modifying a role permissions policy (AWS CLI)

• Modifying a role description (AWS CLI)

• Modifying a role maximum session duration (AWS CLI)

• Modifying a role permissions boundary (AWS CLI)

Modifying a role trust policy (AWS CLI)

To change who can assume a role, you must modify the role's trust policy. You cannot modify the
trust policy for a service-linked role.

Managing roles 646

https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/

AWS Identity and Access Management User Guide

Notes

• If a user is listed as the principal in a role's trust policy but cannot assume the role, check
the user's permissions boundary. If a permissions boundary is set for the user, then it
must allow the sts:AssumeRole action.

• To allow users to assume the current role again within a role session, specify the role
ARN or AWS account ARN as a principal in the role trust policy. AWS services that provide
compute resources such as Amazon EC2, Amazon ECS, Amazon EKS, and Lambda provide
temporary credentials and automatically update these credentials. This ensures that you
always have a valid set of credentials. For these services, it's not necessary to assume
the current role again to obtain temporary credentials. However, if you intend to pass
session tags or a session policy, you need to assume the current role again. To learn
how to modify a role trust policy to add the principal role ARN or AWS account ARN, see
Modifying a role trust policy (console).

To modify a role trust policy (AWS CLI)

1. (Optional) If you don't know the name of the role that you want to modify, run the following
command to list the roles in your account:

• aws iam list-roles

2. (Optional) To view the current trust policy for a role, run the following command:

• aws iam get-role

3. To modify the trusted principals that can access the role, create a text file with the updated
trust policy. You can use any text editor to construct the policy.

For example, the following trust policy shows how to reference two AWS accounts in the
Principal element. This allows users within two separate AWS accounts to assume this role.

{
 "Version": "2012-10-17",
 "Statement": {
 "Effect": "Allow",
 "Principal": {"AWS": [
 "arn:aws:iam::111122223333:root",
 "arn:aws:iam::444455556666:root"

Managing roles 647

https://docs.aws.amazon.com/cli/latest/reference/iam/list-roles.html
https://docs.aws.amazon.com/cli/latest/reference/iam/get-role.html

AWS Identity and Access Management User Guide

]},
 "Action": "sts:AssumeRole"
 }
}

If you specify a principal in another account, adding an account to the trust policy of a role
is only half of establishing the cross-account trust relationship. By default, no users in the
trusted accounts can assume the role. The administrator for the newly trusted account must
grant the users the permission to assume the role. To do that, the administrator must create
or edit a policy that is attached to the user to allow the user access to the sts:AssumeRole
action. For more information, see the following procedure or Granting a user permissions to
switch roles.

4. To use the file that you just created to update the trust policy, run the following command:

• aws iam update-assume-role-policy

To allow users in a trusted external account to use the role (AWS CLI)

For more information and detail about this procedure, see Granting a user permissions to switch
roles.

1. Create a JSON file that contains a permissions policy that grants permissions to assume the
role. For example, the following policy contains the minimum necessary permissions:

{
 "Version": "2012-10-17",
 "Statement": {
 "Effect": "Allow",
 "Action": "sts:AssumeRole",
 "Resource": "arn:aws:iam::ACCOUNT-ID-THAT-CONTAINS-ROLE:role/ROLE-NAME"
 }
}

Replace the ARN in the statement with the ARN of the role that the user can assume.

2. Run the following command to upload the JSON file that contains the trust policy to IAM:

• aws iam create-policy

Managing roles 648

https://docs.aws.amazon.com/cli/latest/reference/iam/update-assume-role-policy.html
https://docs.aws.amazon.com/cli/latest/reference/iam/create-policy.html

AWS Identity and Access Management User Guide

The output of this command includes the ARN of the policy. Make a note of this ARN because
you will need it in a later step.

3. Decide which user or group to attach the policy to. If you don't know the name of the intended
user or group, use one of the following commands to list the users or groups in your account:

• aws iam list-users

• aws iam list-groups

4. Use one of the following commands to attach the policy that you created in the previous step
to the user or group:

• aws iam attach-user-policy

• aws iam attach-group-policy

Modifying a role permissions policy (AWS CLI)

To change the permissions allowed by the role, modify the role's permissions policy (or policies).
You cannot modify the permissions policy for a service-linked role in IAM. You might be able to
modify the permissions policy within the service that depends on the role. To check whether a
service supports this feature, see AWS services that work with IAM and look for the services that
have Yes in the Service-linked roles column. Choose a Yes with a link to view the service-linked
role documentation for that service.

To change the permissions allowed by a role (AWS CLI)

1. (Optional) To view the current permissions associated with a role, run the following
commands:

1. aws iam list-role-policies to list inline policies

2. aws iam list-attached-role-policies to list managed policies

2. The command to update permissions for the role differs depending on whether you are
updating a managed policy or an inline policy.

To update a managed policy, run the following command to create a new version of the
managed policy:

• aws iam create-policy-version

Managing roles 649

https://docs.aws.amazon.com/cli/latest/reference/iam/list-users.html
https://docs.aws.amazon.com/cli/latest/reference/iam/list-groups.html
https://docs.aws.amazon.com/cli/latest/reference/iam/attach-user-policy.html
https://docs.aws.amazon.com/cli/latest/reference/iam/attach-group-policy.html
https://docs.aws.amazon.com/cli/latest/reference/iam/list-role-policies.html
https://docs.aws.amazon.com/cli/latest/reference/iam/list-attached-role-policies.html
https://docs.aws.amazon.com/cli/latest/reference/iam/create-policy-version.html

AWS Identity and Access Management User Guide

To update an inline policy, run the following command:

• aws iam put-role-policy

Modifying a role description (AWS CLI)

To change the description of the role, modify the description text.

To change the description of a role (AWS CLI)

1. (Optional) To view the current description for a role, run the following command:

• aws iam get-role

2. To update a role's description, run the following command with the description parameter:

• aws iam update-role

Modifying a role maximum session duration (AWS CLI)

To specify the maximum session duration setting for roles that are assumed using the AWS CLI
or API, modify the maximum session duration setting's value. This setting can have a value from
1 hour to 12 hours. If you do not specify a value, the default maximum of 1 hour is applied. This
setting does not limit sessions assumed by AWS services.

Note

Anyone who assumes the role from the AWS CLI or API can use the duration-seconds
CLI parameter or the DurationSeconds API parameter to request a longer session. The
MaxSessionDuration setting determines the maximum duration of the role session that
can be requested using the DurationSeconds parameter. If users don't specify a value for
the DurationSeconds parameter, their security credentials are valid for one hour.

To change the maximum session duration setting for roles that are assumed using the AWS CLI
(AWS CLI)

1. (Optional) To view the current maximum session duration setting for a role, run the following
command:

Managing roles 650

https://docs.aws.amazon.com/cli/latest/reference/iam/put-role-policy.html
https://docs.aws.amazon.com/cli/latest/reference/iam/get-role.html
https://docs.aws.amazon.com/cli/latest/reference/iam/update-role.html

AWS Identity and Access Management User Guide

• aws iam get-role

2. To update a role's maximum session duration setting, run the following command with the
max-session-duration CLI parameter or the MaxSessionDuration API parameter:

• aws iam update-role

Your changes don't take effect until the next time someone assumes this role. To learn how to
revoke existing sessions for this role, see Revoking IAM role temporary security credentials.

Modifying a role permissions boundary (AWS CLI)

To change the maximum permissions allowed for a role, modify the role's permissions boundary.

To change the managed policy used to set the permissions boundary for a role (AWS CLI)

1. (Optional) To view the current permissions boundary for a role, run the following command:

• aws iam get-role

2. To use a different managed policy to update the permissions boundary for a role, run the
following command:

• aws iam put-role-permissions-boundary

A role can have only one managed policy set as a permissions boundary. If you change the
permissions boundary, you change the maximum permissions allowed for a role.

Modifying a role (AWS API)

You can use the AWS API to modify a role. To change the set of tags on a role, see Managing tags
on IAM roles (AWS CLI or AWS API).

Topics

• Modifying a role trust policy (AWS API)

• Modifying a role permissions policy (AWS API)

• Modifying a role description (AWS API)

• Modifying a role maximum session duration (AWS API)

Managing roles 651

https://docs.aws.amazon.com/cli/latest/reference/iam/get-role.html
https://docs.aws.amazon.com/cli/latest/reference/iam/update-role.html
https://docs.aws.amazon.com/cli/latest/reference/iam/get-role.html
https://docs.aws.amazon.com/cli/latest/reference/iam/put-role-permissions-boundary.html

AWS Identity and Access Management User Guide

• Modifying a role permissions boundary (AWS API)

Modifying a role trust policy (AWS API)

To change who can assume a role, you must modify the role's trust policy. You cannot modify the
trust policy for a service-linked role.

Notes

• If a user is listed as the principal in a role's trust policy but cannot assume the role, check
the user's permissions boundary. If a permissions boundary is set for the user, then it
must allow the sts:AssumeRole action.

• To allow users to assume the current role again within a role session, specify the role
ARN or AWS account ARN as a principal in the role trust policy. AWS services that provide
compute resources such as Amazon EC2, Amazon ECS, Amazon EKS, and Lambda provide
temporary credentials and automatically update these credentials. This ensures that you
always have a valid set of credentials. For these services, it's not necessary to assume
the current role again to obtain temporary credentials. However, if you intend to pass
session tags or a session policy, you need to assume the current role again. To learn
how to modify a role trust policy to add the principal role ARN or AWS account ARN, see
Modifying a role trust policy (console).

To modify a role trust policy (AWS API)

1. (Optional) If you don't know the name of the role that you want to modify, call the following
operation to list the roles in your account:

• ListRoles

2. (Optional) To view the current trust policy for a role, call the following operation:

• GetRole

3. To modify the trusted principals that can access the role, create a text file with the updated
trust policy. You can use any text editor to construct the policy.

For example, the following trust policy shows how to reference two AWS accounts in the
Principal element. This allows users within two separate AWS accounts to assume this role.

Managing roles 652

https://docs.aws.amazon.com/IAM/latest/APIReference/API_ListRoles.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_GetRole.html

AWS Identity and Access Management User Guide

{
 "Version": "2012-10-17",
 "Statement": {
 "Effect": "Allow",
 "Principal": {"AWS": [
 "arn:aws:iam::111122223333:root",
 "arn:aws:iam::444455556666:root"
]},
 "Action": "sts:AssumeRole"
 }
}

If you specify a principal in another account, adding an account to the trust policy of a role
is only half of establishing the cross-account trust relationship. By default, no users in the
trusted accounts can assume the role. The administrator for the newly trusted account must
grant the users the permission to assume the role. To do that, the administrator must create
or edit a policy that is attached to the user to allow the user access to the sts:AssumeRole
action. For more information, see the following procedure or Granting a user permissions to
switch roles.

4. To use the file that you just created to update the trust policy, call the following operation:

• UpdateAssumeRolePolicy

To allow users in a trusted external account to use the role (AWS API)

For more information and detail about this procedure, see Granting a user permissions to switch
roles.

1. Create a JSON file that contains a permissions policy that grants permissions to assume the
role. For example, the following policy contains the minimum necessary permissions:

{
 "Version": "2012-10-17",
 "Statement": {
 "Effect": "Allow",
 "Action": "sts:AssumeRole",
 "Resource": "arn:aws:iam::ACCOUNT-ID-THAT-CONTAINS-ROLE:role/ROLE-NAME"
 }
}

Managing roles 653

https://docs.aws.amazon.com/IAM/latest/APIReference/API_UpdateAssumeRolePolicy.html

AWS Identity and Access Management User Guide

Replace the ARN in the statement with the ARN of the role that the user can assume.

2. Call the following operation to upload the JSON file that contains the trust policy to IAM:

• CreatePolicy

The output of this operation includes the ARN of the policy. Make a note of this ARN because
you will need it in a later step.

3. Decide which user or group to attach the policy to. If you don't know the name of the intended
user or group, call one of the following operations to list the users or groups in your account:

• ListUsers

• ListGroups

4. Call one of the following operations to attach the policy that you created in the previous step
to the user or group:

• API: AttachUserPolicy

• AttachGroupPolicy

Modifying a role permissions policy (AWS API)

To change the permissions allowed by the role, modify the role's permissions policy (or policies).
You cannot modify the permissions policy for a service-linked role in IAM. You might be able to
modify the permissions policy within the service that depends on the role. To check whether a
service supports this feature, see AWS services that work with IAM and look for the services that
have Yes in the Service-linked roles column. Choose a Yes with a link to view the service-linked
role documentation for that service.

To change the permissions allowed by a role (AWS API)

1. (Optional) To view the current permissions associated with a role, call the following operations:

1. ListRolePolicies to list inline policies

2. ListAttachedRolePolicies to list managed policies

2. The operation to update permissions for the role differs depending on whether you are
updating a managed policy or an inline policy.

Managing roles 654

https://docs.aws.amazon.com/IAM/latest/APIReference/API_CreatePolicy.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_ListUsers.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_ListGroups.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_AttachUserPolicy.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_AttachGroupPolicy.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_ListRolePolicies.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_ListAttachedRolePolicies.html

AWS Identity and Access Management User Guide

To update a managed policy, call the following operation to create a new version of the
managed policy:

• CreatePolicyVersion

To update an inline policy, call the following operation:

• PutRolePolicy

Modifying a role description (AWS API)

To change the description of the role, modify the description text.

To change the description of a role (AWS API)

1. (Optional) To view the current description for a role, call the following operation:

• GetRole

2. To update a role's description, call the following operation with the description parameter:

• UpdateRole

Modifying a role maximum session duration (AWS API)

To specify the maximum session duration setting for roles that are assumed using the AWS CLI
or API, modify the maximum session duration setting's value. This setting can have a value from
1 hour to 12 hours. If you do not specify a value, the default maximum of 1 hour is applied. This
setting does not limit sessions assumed by AWS services.

Note

Anyone who assumes the role from the AWS CLI or API can use the duration-seconds
CLI parameter or the DurationSeconds API parameter to request a longer session. The
MaxSessionDuration setting determines the maximum duration of the role session that
can be requested using the DurationSeconds parameter. If users don't specify a value for
the DurationSeconds parameter, their security credentials are valid for one hour.

Managing roles 655

https://docs.aws.amazon.com/IAM/latest/APIReference/API_CreatePolicyVersion.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_PutRolePolicy.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_GetRole.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_UpdateRole.html

AWS Identity and Access Management User Guide

To change the maximum session duration setting for roles that are assumed using the API (AWS
API)

1. (Optional) To view the current maximum session duration setting for a role, call the following
operation:

• GetRole

2. To update a role's maximum session duration setting, call the following operation with the
max-sessionduration CLI parameter or the MaxSessionDuration API parameter:

• UpdateRole

Your changes don't take effect until the next time someone assumes this role. To learn how to
revoke existing sessions for this role, see Revoking IAM role temporary security credentials.

Modifying a role permissions boundary (AWS API)

To change the maximum permissions allowed for a role, modify the role's permissions boundary.

To change the managed policy used to set the permissions boundary for a role (AWS API)

1. (Optional) To view the current permissions boundary for a role, call the following operation:

• GetRole

2. To use a different managed policy to update the permissions boundary for a role, call the
following operation:

• PutRolePermissionsBoundary

A role can have only one managed policy set as a permissions boundary. If you change the
permissions boundary, you change the maximum permissions allowed for a role.

Deleting roles or instance profiles

If you no longer need a role, we recommend that you delete the role and its associated
permissions. That way you don't have an unused entity that is not actively monitored or
maintained.

Managing roles 656

https://docs.aws.amazon.com/IAM/latest/APIReference/API_GetRole.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_UpdateRole.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_GetRole.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_PutRolePermissionsBoundary.html

AWS Identity and Access Management User Guide

If the role was associated with an EC2 instance, you can also remove the role from the instance
profile and then delete the instance profile.

Warning

Make sure that you do not have any Amazon EC2 instances running with the role or
instance profile you are about to delete. Deleting a role or instance profile that is
associated with a running instance will break any applications that are running on the
instance.

If you prefer not to permanently delete a role, you can disable a role. To do this, change the role
policies and then revoke all current sessions. For example, you could add a policy to the role
that denied access to all of AWS. You could also edit the trust policy to deny access to anyone
attempting to assume the role. For more information about revoking sessions, see Revoking IAM
role temporary security credentials.

Topics

• View role access

• Deleting a service-linked role

• Deleting an IAM role (console)

• Deleting an IAM role (AWS CLI)

• Deleting an IAM role (AWS API)

• Related information

View role access

Before you delete a role, we recommend that you review when the role was last used. You can
do this using the AWS Management Console, the AWS CLI, or the AWS API. You should view this
information because you don't want to remove access from someone using the role.

The date of the role last activity might not match the last date reported in the Access Advisor tab.
The Access Advisor tab reports activity only for services allowed by the role permissions policies.
The date of the role last activity includes the last attempt to access any service in AWS.

Managing roles 657

AWS Identity and Access Management User Guide

Note

The tracking period for a role last activity and Access Advisor data is for the trailing 400
days. This period can be shorter if your Region began supporting these features within the
last year. The role might have been used more than 400 days ago. For more information
about the tracking period, see Where AWS tracks last accessed information.

To view when a role was last used (console)

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. In the navigation pane, choose Roles.

3. Find the row of the role with the activity you want to view. You can use the search field to
narrow the results. View the Last activity column to see the number of days since the role
was last used. If the role has not been used within the tracking period, then the table displays
None.

4. Choose the name of the role to view more information. The role Summary page also includes
Last activity, which displays the last used date for the role. If the role has not been used within
the last 400 days, then Last activity displays Not accessed in the tracking period.

To view when a role was last used (AWS CLI)

aws iam get-role - Run this command to return information about a role, including the
RoleLastUsed object. This object contains the LastUsedDate and the Region in which the role
was last used. If RoleLastUsed is present but does not contain a value, then the role has not been
used within the tracking period.

To view when a role was last used (AWS API)

GetRole - Call this operation to return information about a role, including the RoleLastUsed
object. This object contains the LastUsedDate and the Region in which the role was last used. If
RoleLastUsed is present but does not contain a value, then the role has not been used within the
tracking period.

Managing roles 658

https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/
https://docs.aws.amazon.com/cli/latest/reference/iam/get-role.html
https://docs.aws.amazon.com/IAM/latest/APIReference/GetRole.html

AWS Identity and Access Management User Guide

Deleting a service-linked role

If the role is a service-linked role, review the documentation for the linked service to learn how to
delete the role. You can view the service-linked roles in your account by going to the IAM Roles
page in the console. Service-linked roles appear with (Service-linked role) in the Trusted entities
column of the table. A banner on the role Summary page also indicates that the role is a service-
linked role.

If the service does not include documentation for deleting the service-linked role, you can use the
IAM console, AWS CLI, or API to delete the role. For more information, see Deleting a service-linked
role.

Deleting an IAM role (console)

When you use the AWS Management Console to delete a role, IAM automatically detaches
managed policies associated with the role. It also automatically deletes any inline policies
associated with the role, and any Amazon EC2 instance profile that contains the role.

Important

In some cases, a role might be associated with an Amazon EC2 instance profile, and
the role and the instance profile might have the same name. In that case you can use
the AWS Management Console to delete the role and the instance profile. This linkage
happens automatically for roles and instance profiles that you create in the console. If
you created the role from the AWS CLI, Tools for Windows PowerShell, or the AWS API,
then the role and the instance profile might have different names. In that case you cannot
use the console to delete them. Instead, you must use the AWS CLI, Tools for Windows
PowerShell, or AWS API to first remove the role from the instance profile. You must then
take a separate step to delete the role.

To delete a role (console)

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. In the navigation pane, choose Roles, and then select the check box next to the role name that
you want to delete.

3. At the top of the page, choose Delete.

Managing roles 659

https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/

AWS Identity and Access Management User Guide

4. In the confirmation dialog box, review the last accessed information, which shows when each
of the selected roles last accessed an AWS service. This helps you to confirm if the role is
currently active. If you want to proceed, enter the name of the role in the text input field and
choose Delete. If you are sure, you can proceed with the deletion even if the last accessed
information is still loading.

Note

You cannot use the console to delete an instance profile unless it has the same name as the
role. The instance profile is deleted as part of the process of deleting a role as described in
the preceding procedure. To delete an instance profile without also deleting the role, you
must use the AWS CLI or AWS API. For more information, see the following sections.

Deleting an IAM role (AWS CLI)

When you use the AWS CLI to delete a role, you must first delete inline policies associated with
the role. You must also detach managed policies associated with the role. If you want to delete the
associated instance profile that contains the role, you must delete it separately.

To delete a role (AWS CLI)

1. If you don't know the name of the role that you want to delete, enter the following command
to list the roles in your account:

aws iam list-roles

The list includes the Amazon Resource Name (ARN) of each role. Use the role name, not the
ARN, to refer to roles with the CLI commands. For example, if a role has the following ARN:
arn:aws:iam::123456789012:role/myrole, you refer to the role as myrole.

2. Remove the role from all instance profiles that the role is associated with.

a. To list all instance profiles that the role is associated with, enter the following command:

aws iam list-instance-profiles-for-role --role-name role-name

b. To remove the role from an instance profile, enter the following command for each
instance profile:

Managing roles 660

AWS Identity and Access Management User Guide

aws iam remove-role-from-instance-profile --instance-profile-name instance-
profile-name --role-name role-name

3. Delete all policies that are associated with the role.

a. To list all inline policies that are in the role, enter the following command:

aws iam list-role-policies --role-name role-name

b. To delete each inline policy from the role, enter the following command for each policy:

aws iam delete-role-policy --role-name role-name --policy-name policy-name

c. To list all managed policies that are attached to the role, enter the following command:

aws iam list-attached-role-policies --role-name role-name

d. To detach each managed policy from the role, enter the following command for each
policy:

aws iam detach-role-policy --role-name role-name --policy-arn policy-arn

4. Enter the following command to delete the role:

aws iam delete-role --role-name role-name

5. If you do not plan to reuse the instance profiles that were associated with the role, you can
enter the following command to delete them:

aws iam delete-instance-profile --instance-profile-name instance-profile-name

Deleting an IAM role (AWS API)

When you use the IAM API to delete a role, you must first delete inline policies associated with the
role. You must also detach managed policies associated with the role. If you want to delete the
associated instance profile that contains the role, you must delete it separately.

Managing roles 661

AWS Identity and Access Management User Guide

To delete a role (AWS API)

1. To list all instance profiles that a role is associated with, call ListInstanceProfilesForRole.

To remove the role from an instance profile, call RemoveRoleFromInstanceProfile. You must
pass the role name and instance profile name.

If you are not going to reuse an instance profile that was associated with the role, call
DeleteInstanceProfile to delete it.

2. To list all inline policies for a role, call ListRolePolicies.

To delete inline policies that are associated with the role, call DeleteRolePolicy. You must pass
the role name and inline policy name.

3. To list all managed policies that are attached to a role, call ListAttachedRolePolicies.

To detach managed policies that are attached to the role, call DetachRolePolicy. You must pass
the role name and managed policy ARN.

4. Call DeleteRole to delete the role.

Related information

For general information about instance profiles, see Using instance profiles.

For general information about service-linked roles, see Using service-linked roles.

Tagging IAM resources

A tag is a custom attribute label that you can assign to an AWS resource. Each tag has two parts:

• A tag key (for example, CostCenter, Environment, Project, or Purpose).

• An optional field known as a tag value (for example, 111122223333, Production, or a team
name). Omitting the tag value is the same as using an empty string.

Together these are known as key-value pairs. For limits on the number of tags you can have on IAM
resources, see IAM and AWS STS quotas.

Tagging IAM resources 662

https://docs.aws.amazon.com/IAM/latest/APIReference/API_ListInstanceProfilesForRole.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_RemoveRoleFromInstanceProfile.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_DeleteInstanceProfile.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_ListRolePolicies.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_DeleteRolePolicy.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_ListAttachedRolePolicies.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_DetachRolePolicy.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_DeleteRole.html

AWS Identity and Access Management User Guide

Note

For details about case sensitivity for tag keys and tag key values, see Case sensitivity.

Tags help you identify and organize your AWS resources. Many AWS services support tagging, so
you can assign the same tag to resources from different services to indicate that the resources are
related. For example, you can assign the same tag to an IAM role that you assign to an Amazon S3
bucket. For more information about tagging strategies, see the Tagging AWS resources User Guide.

In addition to identifying, organizing, and tracking your IAM resources with tags, you can use tags
in IAM policies to help control who can view and interact with your resources. To learn more about
using tags to control access, see Controlling access to and for IAM users and roles using tags.

You can also use tags in AWS STS to add custom attributes when you assume a role or federate a
user. For more information, see Passing session tags in AWS STS.

Choose an AWS tag naming convention

When you begin attaching tags to your IAM resources, choose your tag naming convention
carefully. Apply the same convention to all of your AWS tags. This is especially important if you
use tags in policies to control access to AWS resources. If you already use tags in AWS, review your
naming convention and adjust it accordingly.

Note

If your account is a member of AWS Organizations, see Tag policies in the Organizations
user guide to learn more about using tags in Organizations.

Best practices for tag naming

These are some best practices and naming conventions for tags.

Ensure that tag names are used consistently. For example, the tags CostCenter and costcenter
are different, so one might be configured as a cost allocation tag for financial analysis and
reporting and the other one might not be. Similarly, the Name tag appears in the AWS Console for
many resources, but the name tag does not. For details about case sensitivity for tag keys and tag
key values, see Case sensitivity.

Choose an AWS tag naming convention 663

https://docs.aws.amazon.com/tag-editor/latest/userguide/tagging.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_tag-policies.html

AWS Identity and Access Management User Guide

A number of tags are predefined by AWS or created automatically by various AWS services. Many
AWS-defined tags names use all lowercase, with hyphens separating words in the name, and
prefixes to identify the source service for the tag. For example:

• aws:ec2spot:fleet-request-id identifies the Amazon EC2 Spot Instance Request that
launched the instance.

• aws:cloudformation:stack-name identifies the AWS CloudFormation stack that created the
resource.

• elasticbeanstalk:environment-name identifies the application that created the resource.

Consider naming your tags using all lowercase, with hyphens separating words, and a prefix
identifying the organization name or abbreviated name. For example, for a fictitious company
named AnyCompany, you might define tags such as:

• anycompany:cost-center to identify the internal Cost Center code

• anycompany:environment-type to identify whether the environment is development, test, or
production

• anycompany:application-id to identify the application the resource was created for

The prefix ensures that tags are clearly identified as having been defined by your organization
and not by AWS or a third-party tool that you may be using. Using all lowercase with
hyphens for separators avoids confusion about how to capitalize a tag name. For example,
anycompany:project-id is simpler to remember than ANYCOMPANY:ProjectID,
anycompany:projectID, or Anycompany:ProjectId.

Rules for tagging in IAM and AWS STS

A number of conventions govern the creation and application of tags in IAM and AWS STS.

Naming tags

Observe the following conventions when formulating a tag naming convention for IAM resources,
AWS STS assume-role sessions, and AWS STS federated user sessions:

Character requirements – Tag keys and values can include any combination of letters, numbers,
spaces, and _ . : / = + - @ symbols.

Rules for tagging in IAM and AWS STS 664

AWS Identity and Access Management User Guide

Case sensitivity – Case sensitivity for tag keys differs depending on the type of IAM resource that
is tagged. Tag key values for IAM users and roles are not case sensitive, but case is preserved. This
means that you cannot have separate Department and department tag keys. If you have tagged
a user with the Department=finance tag and you add the department=hr tag, it replaces the
first tag. A second tag is not added.

For other IAM resource types, tag key values are case sensitive. That means you can have separate
Costcenter and costcenter tag keys. For example, if you have tagged a customer managed
policy with the Costcenter = 1234 tag and you add the costcenter = 5678 tag, the policy
will have both the Costcenter and costcenter tag keys.

As a best practice, we recommend that you avoid using similar tags with inconsistent case
treatment. We recommend that you decide on a strategy for capitalizing tags, and consistently
implement that strategy across all resource types. To learn more about best practices for tagging,
see Tagging AWS Resources in the AWS General Reference.

The following lists show the differences in case sensitivity for tag keys that are attached to IAM
resources.

Tag key values are not case sensitive:

• IAM roles

• IAM users

Tag key values are case sensitive:

• Customer managed policies

• Instance profiles

• OpenID Connect identity providers

• SAML identity providers

• Server certificates

• Virtual MFA devices

Additionally, the following rules apply:

• You cannot create a tag key or value that begins with the text aws:. This tag prefix is reserved
for AWS internal use.

Rules for tagging in IAM and AWS STS 665

https://docs.aws.amazon.com/general/latest/gr/aws_tagging.html

AWS Identity and Access Management User Guide

• You can create a tag with an empty value such as phoneNumber = . You cannot create an
empty tag key.

• You cannot specify multiple values in a single tag, but you can create a custom multivalue
structure in the single value. For example, assume that the user Zhang works on the engineering
team and the QA team. If you attach the team = Engineering tag and then attach the team
= QA tag, you change the value of the tag from Engineering to QA. Instead, you can include
multiple values in a single tag with a custom separator. In this example, you could attach the
team = Engineering:QA tag to Zhang.

Note

To control access to engineers in this example using the team tag, you must create a
policy that allows for every configuration that might include Engineering, including
Engineering:QA. To learn more about using tags in policies, see Controlling access to
and for IAM users and roles using tags.

Applying and editing tags

Observe the following conventions when attaching tags to IAM resources:

• You can tag most IAM resources, but not groups, assumed roles, access reports, or hardware-
based MFA devices.

• You cannot use Tag Editor to tag IAM resources. Tag Editor does not support IAM tags. For
information about using Tag Editor with other services, see Working with Tag Editor in the AWS
Resource Groups User Guide.

• To tag an IAM resource, you must have specific permissions. To tag or untag resources, you
must also have permission to list tags. For more information, see the list of topics for each IAM
resource at the end of this page.

• The number and size of IAM resources in an AWS account are limited. For more information, see
IAM and AWS STS quotas.

• You can apply the same tag to multiple IAM resources. For example, suppose you have a
department named AWS_Development with 12 members. You can have 12 users and a
role with the tag key of department and a value of awsDevelopment (department =
awsDevelopment). You can also use the same tag on resources in other services that support
tagging.

Rules for tagging in IAM and AWS STS 666

https://docs.aws.amazon.com/awsconsolehelpdocs/latest/gsg/tag-editor.html

AWS Identity and Access Management User Guide

• IAM entities (users or roles) cannot have multiple instances of the same tag key. For example, if
you have a user with the tag key-value pair costCenter = 1234, you can then attach the tag
key-value pair costCenter = 5678. IAM updates the value of the costCenter tag to 5678.

• To edit a tag that is attached to an IAM entity (user or role), attach a tag with a new value to
overwrite the existing tag. For example, assume that you have a user with the tag key-value
pair department = Engineering. If you need to move the user to the QA department,
then you can attach the department = QA tag key-value pair to the user. This results in the
Engineering value of the department tag key being replaced with the QA value.

Topics

• Tagging IAM users

• Tagging IAM roles

• Tagging customer managed policies

• Tagging IAM identity providers

• Tagging instance profiles for Amazon EC2 roles

• Tagging server certificates

• Tagging virtual MFA devices

• Passing session tags in AWS STS

Tagging IAM users

You can use IAM tag key-value pairs to add custom attributes to an IAM user. For example,
to add location information to a user, you can add the tag key location and the tag value
us_wa_seattle. Or you could use three separate location tag key-value pairs: loc-country =
us, loc-state = wa, and loc-city = seattle. You can use tags to control a user's access
to resources or to control what tags can be attached to a user. To learn more about using tags to
control access, see Controlling access to and for IAM users and roles using tags.

You can also use tags in AWS STS to add custom attributes when you assume a role or federate a
user. For more information, see Passing session tags in AWS STS.

Permissions required for tagging IAM users

You must configure permissions to allow an IAM user to tag other users. You can specify one or all
of the following IAM tag actions in an IAM policy:

Tagging IAM users 667

AWS Identity and Access Management User Guide

• iam:ListUserTags

• iam:TagUser

• iam:UntagUser

To allow an IAM user to add, list, or remove a tag for a specific user

Add the following statement to the permissions policy for the IAM user that needs to manage tags.
Use your account number and replace <username> with the name of the user whose tags need
to be managed. To learn how to create a policy using this example JSON policy document, see the
section called “Creating policies using the JSON editor”.

{
 "Effect": "Allow",
 "Action": [
 "iam:ListUserTags",
 "iam:TagUser",
 "iam:UntagUser"
],
 "Resource": "arn:aws:iam::<account-number>:user/<username>"
}

To allow an IAM user to self-manage tags

Add the following statement to the permissions policy for users to allow users to manage their
own tags. To learn how to create a policy using this example JSON policy document, see the
section called “Creating policies using the JSON editor”.

{
 "Effect": "Allow",
 "Action": [
 "iam:ListUserTags",
 "iam:TagUser",
 "iam:UntagUser"
],
 "Resource": "arn:aws:iam::user/${aws:username}"
}

To allow an IAM user to add a tag to a specific user

Tagging IAM users 668

AWS Identity and Access Management User Guide

Add the following statement to the permissions policy for the IAM user that needs to add, but not
remove, tags for a specific user.

Note

The iam:TagUser action requires that you also include the iam:ListUserTags action.

To use this policy, replace <username> with the name of the user whose tags need to be managed.
To learn how to create a policy using this example JSON policy document, see the section called
“Creating policies using the JSON editor”.

{
 "Effect": "Allow",
 "Action": [
 "iam:ListUserTags",
 "iam:TagUser"
],
 "Resource": "arn:aws:iam::<account-number>:user/<username>"
}

Alternatively, you can use an AWS managed policy such as IAMFullAccess to provide full access to
IAM.

Managing tags on IAM users (console)

You can manage tags for IAM users from the AWS Management Console.

To manage tags on users (console)

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. In the navigation pane of the console, choose Users and then choose the name of the user that
you want to edit.

3. Choose the Tags tab and then complete one of the following actions:

• Choose Add new tag if the user does not yet have tags.

• Choose Manage tags to manage the existing set of tags.

4. Add or remove tags to complete the set of tags. Then choose Save changes.

Tagging IAM users 669

https://console.aws.amazon.com/iam/home#policies/arn:aws:iam::aws:policy/IAMFullAccess
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/

AWS Identity and Access Management User Guide

Managing tags on IAM users (AWS CLI or AWS API)

You can list, attach, or remove tags for IAM users. You can use the AWS CLI or the AWS API to
manage tags for IAM users.

To list the tags currently attached to an IAM user (AWS CLI or AWS API)

• AWS CLI: aws iam list-user-tags

• AWS API: ListUserTags

To attach tags to an IAM user (AWS CLI or AWS API)

• AWS CLI: aws iam tag-user

• AWS API: TagUser

To remove tags from an IAM user (AWS CLI or AWS API)

• AWS CLI: aws iam untag-user

• AWS API: UntagUser

For information about attaching tags to resources for other AWS services, see the documentation
for those services.

For information about using tags to set more granular permissions with IAM permissions policies,
see IAM policy elements: Variables and tags.

Tagging IAM roles

You can use IAM tag key-value pairs to add custom attributes to an IAM role. For example,
to add location information to a role, you can add the tag key location and the tag value
us_wa_seattle. Or you could use three separate location tag key-value pairs: loc-country =
us, loc-state = wa, and loc-city = seattle. You can use tags to control a role's access
to resources or to control what tags can be attached to a role. To learn more about using tags to
control access, see Controlling access to and for IAM users and roles using tags.

You can also use tags in AWS STS to add custom attributes when you assume a role or federate a
user. For more information, see Passing session tags in AWS STS.

Tagging IAM roles 670

https://docs.aws.amazon.com/cli/latest/reference/iam/list-user-tags.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_ListUserTags.html
https://docs.aws.amazon.com/cli/latest/reference/iam/tag-user.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_TagUser.html
https://docs.aws.amazon.com/cli/latest/reference/iam/untag-user.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_UntagUser.html

AWS Identity and Access Management User Guide

Permissions required for tagging IAM roles

You must configure permissions to allow an IAM role to tag other entities (users or roles). You can
specify one or all of the following IAM tag actions in an IAM policy:

• iam:ListRoleTags

• iam:TagRole

• iam:UntagRole

• iam:ListUserTags

• iam:TagUser

• iam:UntagUser

To allow an IAM role to add, list, or remove a tag for a specific user

Add the following statement to the permissions policy for the IAM role that needs to manage tags.
Use your account number and replace <username> with the name of the user whose tags need
to be managed. To learn how to create a policy using this example JSON policy document, see the
section called “Creating policies using the JSON editor”.

{
 "Effect": "Allow",
 "Action": [
 "iam:ListUserTags",
 "iam:TagUser",
 "iam:UntagUser"
],
 "Resource": "arn:aws:iam::<account-number>:user/<username>"
}

To allow an IAM role to add a tag to a specific user

Add the following statement to the permissions policy for the IAM role that needs to add, but not
remove, tags for a specific user.

Note

The iam:TagRole action requires that you also include the iam:ListRoleTags action.

Tagging IAM roles 671

AWS Identity and Access Management User Guide

To use this policy, replace <username> with the name of the user whose tags need to be managed.
To learn how to create a policy using this example JSON policy document, see the section called
“Creating policies using the JSON editor”.

{
 "Effect": "Allow",
 "Action": [
 "iam:ListUserTags",
 "iam:TagUser"
],
 "Resource": "arn:aws:iam::<account-number>:user/<username>"
}

To allow an IAM role to add, list, or remove a tag for a specific role

Add the following statement to the permissions policy for the IAM role that needs to manage tags.
Replace <rolename> with the name of the role whose tags need to be managed. To learn how to
create a policy using this example JSON policy document, see the section called “Creating policies
using the JSON editor”.

{
 "Effect": "Allow",
 "Action": [
 "iam:ListRoleTags",
 "iam:TagRole",
 "iam:UntagRole"
],
 "Resource": "arn:aws:iam::<account-number>:role/<rolename>"
}

Alternatively, you can use an AWS managed policy such as IAMFullAccess to provide full access to
IAM.

Managing tags on IAM roles (console)

You can manage tags for IAM roles from the AWS Management Console.

To manage tags on roles (console)

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

Tagging IAM roles 672

https://console.aws.amazon.com/iam/home#policies/arn:aws:iam::aws:policy/IAMFullAccess
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/

AWS Identity and Access Management User Guide

2. In the navigation pane of the console, choose Roles and then choose the name of the role that
you want to edit.

3. Choose the Tags tab and then complete one of the following actions:

• Choose Add new tag if the role does not yet have tags.

• Choose Manage tags to manage the existing set of tags.

4. Add or remove tags to complete the set of tags. Then, choose Save changes.

Managing tags on IAM roles (AWS CLI or AWS API)

You can list, attach, or remove tags for IAM roles. You can use the AWS CLI or the AWS API to
manage tags for IAM roles.

To list the tags currently attached to an IAM role (AWS CLI or AWS API)

• AWS CLI: aws iam list-role-tags

• AWS API: ListRoleTags

To attach tags to an IAM role (AWS CLI or AWS API)

• AWS CLI: aws iam tag-role

• AWS API: TagRole

To remove tags from an IAM role (AWS CLI or AWS API)

• AWS CLI: aws iam untag-role

• AWS API: UntagRole

For information about attaching tags to resources for other AWS services, see the documentation
for those services.

For information about using tags to set more granular permissions with IAM permissions policies,
see IAM policy elements: Variables and tags.

Tagging IAM roles 673

https://docs.aws.amazon.com/cli/latest/reference/iam/list-role-tags.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_ListRoleTags.html
https://docs.aws.amazon.com/cli/latest/reference/iam/tag-role.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_TagRole.html
https://docs.aws.amazon.com/cli/latest/reference/iam/untag-role.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_UntagRole.html

AWS Identity and Access Management User Guide

Tagging customer managed policies

You can use IAM tag key-value pairs to add custom attributes to your customer managed policies.
For example, to tag a policy with department information, you can add the tag key Department
and the tag value eng. Or, you might want to tag policies to indicate that they are for a specific
environment, such as Environment = lab. You can use tags to control access to resources or to
control what tags can be attached to a resource. To learn more about using tags to control access,
see Controlling access to and for IAM users and roles using tags.

You can also use tags in AWS STS to add custom attributes when you assume a role or federate a
user. For more information, see Passing session tags in AWS STS.

Permissions required for tagging customer managed policies

You must configure permissions to allow an IAM entity (users or roles) to tag customer managed
policies. You can specify one or all of the following IAM tag actions in an IAM policy:

• iam:ListPolicyTags

• iam:TagPolicy

• iam:UntagPolicy

To allow an IAM entity (user or role) to add, list, or remove a tag for a customer managed policy

Add the following statement to the permissions policy for the IAM entity that needs to manage
tags. Use your account number and replace <policyname> with the name of the policy whose
tags need to be managed. To learn how to create a policy using this example JSON policy
document, see the section called “Creating policies using the JSON editor”.

{
 "Effect": "Allow",
 "Action": [
 "iam:ListPolicyTags",
 "iam:TagPolicy",
 "iam:UntagPolicy"
],
 "Resource": "arn:aws:iam::<account-number>:policy/<policyname>"
}

To allow an IAM entity (user or role) to add a tag to a specific customer managed policy

Tagging customer managed policies 674

AWS Identity and Access Management User Guide

Add the following statement to the permissions policy for the IAM entity that needs to add, but
not remove, tags for a specific policy.

Note

The iam:TagPolicy action requires that you also include the iam:ListPolicyTags
action.

To use this policy, replace <policyname> with the name of the policy whose tags need to be
managed. To learn how to create a policy using this example JSON policy document, see the
section called “Creating policies using the JSON editor”.

{
 "Effect": "Allow",
 "Action": [
 "iam:ListPolicyTags",
 "iam:TagPolicy"
],
 "Resource": "arn:aws:iam::<account-number>:policy/<policyname>"
}

Alternatively, you can use an AWS managed policy such as IAMFullAccess to provide full access to
IAM.

Managing tags on IAM customer managed policies (console)

You can manage tags for IAM customer managed policies from the AWS Management Console.

To manage tags on customer managed policies (console)

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. In the navigation pane of the console, choose Policies and then choose the name of the
customer managed policy that you want to edit.

3. Choose the Tags tab and then choose Manage tags.

4. Add or remove tags to complete the set of tags. Then choose Save changes.

Tagging customer managed policies 675

https://console.aws.amazon.com/iam/home#policies/arn:aws:iam::aws:policy/IAMFullAccess
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/

AWS Identity and Access Management User Guide

Managing tags on IAM customer managed policies (AWS CLI or AWS API)

You can list, attach, or remove tags for IAM customer managed policies. You can use the AWS CLI or
the AWS API to manage tags for IAM customer managed policies.

To list the tags currently attached to an IAM customer managed policy (AWS CLI or AWS API)

• AWS CLI: aws iam list-policy-tags

• AWS API: ListPolicyTags

To attach tags to an IAM customer managed policy(AWS CLI or AWS API)

• AWS CLI: aws iam tag-policy

• AWS API: TagPolicy

To remove tags from an IAM customer managed policy (AWS CLI or AWS API)

• AWS CLI: aws iam untag-policy

• AWS API: UntagPolicy

For information about attaching tags to resources for other AWS services, see the documentation
for those services.

For information about using tags to set more granular permissions with IAM permissions policies,
see IAM policy elements: Variables and tags.

Tagging IAM identity providers

You can use IAM tag key-value pairs to add custom attributes to IAM identity providers (IdPs).

You can also use tags in AWS STS to add custom attributes when you assume a role or federate a
user. For more information, see Passing session tags in AWS STS.

To learn about tagging IdPs in IAM, see the following topics:

Topics

• Tagging OpenID Connect (OIDC) identity providers

• Tagging IAM SAML identity providers

Tagging IAM identity providers 676

https://docs.aws.amazon.com/cli/latest/reference/iam/list-policy-tags.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_ListPolicyTags.html
https://docs.aws.amazon.com/cli/latest/reference/iam/tag-policy.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_TagPolicy.html
https://docs.aws.amazon.com/cli/latest/reference/iam/untag-policy.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_UntagPolicy.html

AWS Identity and Access Management User Guide

Tagging OpenID Connect (OIDC) identity providers

You can use IAM tag key-values to add custom attributes to IAM OpenID Connect (OIDC) identity
providers. For example, to identify an OIDC identity provider, you can add the tag key google and
the tag value oidc. You can use tags to control access to resources or to control what tags can be
attached to an object. To learn more about using tags to control access, see Controlling access to
and for IAM users and roles using tags.

Permissions required for tagging IAM OIDC identity providers

You must configure permissions to allow an IAM entity (user or role) to tag IAM OIDC identity
providers. You can specify one or all of the following IAM tag actions in an IAM policy:

• iam:ListOpenIDConnectProviderTags

• iam:TagOpenIDConnectProvider

• iam:UntagOpenIDConnectProvider

To allow an IAM entity (user or role) to add, list, or remove a tag for an IAM OIDC identity
provider

Add the following statement to the permissions policy for the IAM entity that needs to manage
tags. Use your account number and replace <OIDCProviderName> with the name of the OIDC
provider whose tags need to be managed. To learn how to create a policy using this example JSON
policy document, see the section called “Creating policies using the JSON editor”.

{
 "Effect": "Allow",
 "Action": [
 "iam:ListOpenIDConnectProviderTags",
 "iam:TagOpenIDConnectProvider",
 "iam:UntagOpenIDConnectProvider"
],
 "Resource": "arn:aws:iam::<account-number>:oidc-provider/<OIDCProviderName>"
}

To allow an IAM entity (user or role) to add a tag to a specific IAM OIDC identity provider

Add the following statement to the permissions policy for the IAM entity that needs to add, but
not remove, tags for a specific identity provider.

Tagging IAM identity providers 677

AWS Identity and Access Management User Guide

Note

The iam:TagOpenIDConnectProvider action requires that you also include the
iam:ListOpenIDConnectProviderTags action.

To use this policy, replace <OIDCProviderName> with the name of the OIDC provider whose tags
need to be managed. To learn how to create a policy using this example JSON policy document, see
the section called “Creating policies using the JSON editor”.

{
 "Effect": "Allow",
 "Action": [
 "iam:ListOpenIDConnectProviderTags",
 "iam:TagOpenIDConnectProvider"
],
 "Resource": "arn:aws:iam::<account-number>:oidc-provider/<OIDCProviderName>"
}

Alternatively, you can use an AWS managed policy such as IAMFullAccess to provide full access to
IAM.

Managing tags on IAM OIDC identity providers (console)

You can manage tags for IAM OIDC identity providers from the AWS Management Console.

Note

You can manage tags using the new Identity providers console experience only.

To manage tags on OIDC identity providers (console)

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. In the navigation pane of the console, choose Identity providers and then choose the name of
the identity provider that you want to edit.

3. In the Tags section, choose Manage tags and then complete one of the following actions:

Tagging IAM identity providers 678

https://console.aws.amazon.com/iam/home#policies/arn:aws:iam::aws:policy/IAMFullAccess
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/

AWS Identity and Access Management User Guide

• Choose Add tag if the OIDC identity provider does not yet have tags or to add a new tag.

• Edit existing tag keys and values.

• Choose Remove tag to remove a tag.

4. Then choose Save changes.

Managing tags on IAM OIDC identity providers (AWS CLI or AWS API)

You can list, attach, or remove tags for IAM OIDC identity providers. You can use the AWS CLI or the
AWS API to manage tags for IAM OIDC identity providers.

To list the tags currently attached to an IAM OIDC identity provider (AWS CLI or AWS API)

• AWS CLI: aws iam list-open-id-connect-provider-tags

• AWS API: ListOpenIDConnectProviderTags

To attach tags to an IAM OIDC identity provider (AWS CLI or AWS API)

• AWS CLI: aws iam tag-open-id-connect-provider

• AWS API: TagOpenIDConnectProvider

To remove tags from an IAM OIDC identity provider (AWS CLI or AWS API)

• AWS CLI: aws iam untag-open-id-connect-provider

• AWS API: UntagOpenIDConnectProvider

For information about attaching tags to resources for other AWS services, see the documentation
for those services.

For information about using tags to set more granular permissions with IAM permissions policies,
see IAM policy elements: Variables and tags.

Tagging IAM SAML identity providers

You can use IAM tag key-value pairs to add custom attributes to SAML identity providers. For
example, to identify a provider, you can add the tag key okta and the tag value saml. You can use
tags to control access to resources or to control what tags can be attached to an object. To learn

Tagging IAM identity providers 679

https://docs.aws.amazon.com/cli/latest/reference/iam/list-open-id-connect-provider-tags.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_ListOpenIDConnectProviderTags.html
https://docs.aws.amazon.com/cli/latest/reference/iam/tag-open-id-connect-provider.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_TagOpenIDConnectProvider.html
https://docs.aws.amazon.com/cli/latest/reference/iam/untag-open-id-connect-provider.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_UntagOpenIDConnectProvider.html

AWS Identity and Access Management User Guide

more about using tags to control access, see Controlling access to and for IAM users and roles using
tags.

Permissions required for tagging SAML identity providers

You must configure permissions to allow an IAM entity (users or roles) to tag SAML 2.0–based
Identity Providers (IdPs). You can specify one or all of the following IAM tag actions in an IAM
policy:

• iam:ListSAMLProviderTags

• iam:TagSAMLProvider

• iam:UntagSAMLProvider

To allow an IAM entity (user or role) to add, list, or remove a tag for a SAML identity provider

Add the following statement to the permissions policy for the IAM entity that needs to manage
tags. Use your account number and replace <SAMLProviderName> with the name of the SAML
provider whose tags need to be managed. To learn how to create a policy using this example JSON
policy document, see the section called “Creating policies using the JSON editor”.

{
 "Effect": "Allow",
 "Action": [
 "iam:ListSAMLProviderTags",
 "iam:TagSAMLProvider",
 "iam:UntagSAMLProvider"
],
 "Resource": "arn:aws:iam::<account-number>:saml-provider/<SAMLProviderName>"
}

To allow an IAM entity (user or role) to add a tag to a specific SAML identity provider

Add the following statement to the permissions policy for the IAM entity that needs to add, but
not remove, tags for a specific SAML provider.

Note

The iam:TagSAMLProvider action requires that you also include the
iam:ListSAMLProviderTags action.

Tagging IAM identity providers 680

AWS Identity and Access Management User Guide

To use this policy, replace <SAMLProviderName> with the name of the SAML provider whose tags
need to be managed. To learn how to create a policy using this example JSON policy document, see
the section called “Creating policies using the JSON editor”.

{
 "Effect": "Allow",
 "Action": [
 "iam:ListSAMLProviderTags",
 "iam:TagSAMLProvider"
],
 "Resource": "arn:aws:iam::<account-number>:saml-provider/<SAMLProviderName>"
}

Alternatively, you can use an AWS managed policy such as IAMFullAccess to provide full access to
IAM.

Managing tags on IAM SAML identity providers (console)

You can manage tags for IAM SAML Identity Providers from the AWS Management Console.

Note

You can manage tags using the new Identity providers console experience only.

To manage tags on SAML identity providers (console)

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. In the navigation pane of the console, choose Identity providers and then choose the name of
the SAML identity provider that you want to edit.

3. In the Tags section, choose Manage tags and then complete one of the following actions:

• Choose Add tag if the SAML identity provider does not yet have tags or to add a new tag.

• Edit existing tag keys and values.

• Choose Remove tag to remove a tag.

4. Add or remove tags to complete the set of tags. Then choose Save changes.

Tagging IAM identity providers 681

https://console.aws.amazon.com/iam/home#policies/arn:aws:iam::aws:policy/IAMFullAccess
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/

AWS Identity and Access Management User Guide

Managing tags on IAM SAML identity providers (AWS CLI or AWS API)

You can list, attach, or remove tags for IAM SAML identity providers. You can use the AWS CLI or
the AWS API to manage tags for IAM SAML identity providers.

To list the tags currently attached to an SAML identity provider (AWS CLI or AWS API)

• AWS CLI: aws iam list-saml-provider-tags

• AWS API: ListSAMLProviderTags

To attach tags to a SAML identity provider (AWS CLI or AWS API)

• AWS CLI: aws iam tag-saml-provider

• AWS API: TagSAMLProvider

To remove tags from a SAML identity provider (AWS CLI or AWS API)

• AWS CLI: aws iam untag-saml-provider

• AWS API: UntagSAMLProvider

For information about attaching tags to resources for other AWS services, see the documentation
for those services.

For information about using tags to set more granular permissions with IAM permissions policies,
see IAM policy elements: Variables and tags.

Tagging instance profiles for Amazon EC2 roles

When you launch an Amazon EC2 instance, you specify an IAM role to associate with the instance.
An instance profile is a container for an IAM role that you can use to pass role information to an
Amazon EC2 instance when the instance starts. You can tag instance profiles when you use the
AWS CLI or AWS API.

You can use IAM tag key-value pairs to add custom attributes to an instance profile. For example,
to add department information to an instance profile, you can add the tag key access-team and
the tag value eng. Doing this gives principals with matching tags access to instance profiles with
the same tag. You could use multiple tag key-value pairs to specify a team and project: access-

Tagging instance profiles 682

https://docs.aws.amazon.com/cli/latest/reference/iam/list-saml-provider-tags.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_ListSAMLProviderTags.html
https://docs.aws.amazon.com/cli/latest/reference/iam/tag-saml-provider.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_TagSAMLProvider.html
https://docs.aws.amazon.com/cli/latest/reference/iam/untag-saml-provider.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_UntagSAMLProvider.html

AWS Identity and Access Management User Guide

team = eng , and project = peg. You can use tags to control a user's access to resources or to
control what tags can be attached to a user. To learn more about using tags to control access, see
Controlling access to and for IAM users and roles using tags.

You can also use tags in AWS STS to add custom attributes when you assume a role or federate a
user. For more information, see Passing session tags in AWS STS.

Permissions required for tagging instance profiles

You must configure permissions to allow an IAM entity (user or role) to tag instance profiles. You
can specify one or all of the following IAM tag actions in an IAM policy:

• iam:ListInstanceProfileTags

• iam:TagInstanceProfile

• iam:UntagInstanceProfile

To allow an IAM entity (user or role) to add, list, or remove a tag for an instance profile

Add the following statement to the permissions policy for the IAM entity that needs to manage
tags. Use your account number and replace <InstanceProfileName> with the name of the
instance profile whose tags need to be managed. To learn how to create a policy using this
example JSON policy document, see the section called “Creating policies using the JSON editor”.

{
 "Effect": "Allow",
 "Action": [
 "iam:ListInstanceProfileTags",
 "iam:TagInstanceProfile",
 "iam:UntagInstanceProfile"
],
 "Resource": "arn:aws:iam::<account-number>:instance-profile/<InstanceProfileName>"
}

To allow an IAM entity (user or role) to add a tag to a specific instance profile

Add the following statement to the permissions policy for the IAM entity that needs to add, but
not remove, tags for a specific instance profile.

Tagging instance profiles 683

AWS Identity and Access Management User Guide

Note

The iam:TagInstanceProfile action requires that you also include the
iam:ListInstanceProfileTags action.

To use this policy, replace <InstanceProfileName> with the name of the instance profile
whose tags need to be managed. To learn how to create a policy using this example JSON policy
document, see the section called “Creating policies using the JSON editor”.

{
 "Effect": "Allow",
 "Action": [
 "iam:ListInstanceProfileTags",
 "iam:TagInstanceProfile"
],
 "Resource": "arn:aws:iam::<account-number>:instance-profile/<InstanceProfileName>"
}

Alternatively, you can use an AWS managed policy such as IAMFullAccess to provide full access to
IAM.

Managing tags on instance profiles (AWS CLI or AWS API)

You can list, attach, or remove tags for instance profiles. You can use the AWS CLI or the AWS API
to manage tags for instance profiles.

To list the tags currently attached to an instance profile (AWS CLI or AWS API)

• AWS CLI: aws iam list-instance-profile-tags

• AWS API: ListInstanceProfileTags

To attach tags to an instance profile (AWS CLI or AWS API)

• AWS CLI: aws iam tag-instance-profile

• AWS API: TagInstanceProfile

Tagging instance profiles 684

https://console.aws.amazon.com/iam/home#policies/arn:aws:iam::aws:policy/IAMFullAccess
https://docs.aws.amazon.com/cli/latest/reference/iam/list-instance-profile-tags.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_ListInstanceProfileTags.html
https://docs.aws.amazon.com/cli/latest/reference/iam/tag-instance-profile.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_TagInstanceProfile.html

AWS Identity and Access Management User Guide

To remove tags from an instance profile (AWS CLI or AWS API)

• AWS CLI: aws iam untag-instance-profile

• AWS API: UntagInstanceProfile

For information about attaching tags to resources for other AWS services, see the documentation
for those services.

For information about using tags to set more granular permissions with IAM permissions policies,
see IAM policy elements: Variables and tags.

Tagging server certificates

If you use IAM to manage SSL/TLS certificates, you can tag server certificates in IAM using the
AWS CLI or AWS API. For certificates in a Region supported by AWS Certificate Manager (ACM),
we recommend that you use ACM instead of IAM to provision, manage, and deploy your server
certificates. In unsupported Regions, you must use IAM as a certificate manager. To learn which
Regions ACM supports, see AWS Certificate Manager endpoints and quotas in the AWS General
Reference.

You can use IAM tag key-value pairs to add custom attributes to a server certificate. For example,
to add information about the owner or administrator of a server certificate, add the tag key owner
and the tag value net-eng. Or you can specify a cost center by adding the tag key CostCenter
and the tag value 1234. You can use tags to control access to resources or to control what tags can
be attached to resources. To learn more about using tags to control access, see Controlling access
to and for IAM users and roles using tags.

You can also use tags in AWS STS to add custom attributes when you assume a role or federate a
user. For more information, see Passing session tags in AWS STS.

Permissions required for tagging server certificates

You must configure permissions to allow an IAM entity (user or role) to tag server certificates. You
can specify one or all of the following IAM tag actions in an IAM policy:

• iam:ListServerCertificateTags

• iam:TagServerCertificate

• iam:UntagServerCertificate

Tagging server certificates 685

https://docs.aws.amazon.com/cli/latest/reference/iam/untag-instance-profile.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_UntagInstanceProfile.html
https://docs.aws.amazon.com/general/latest/gr/acm.html

AWS Identity and Access Management User Guide

To allow an IAM entity (user or role) to add, list, or remove a tag for a server certificate

Add the following statement to the permissions policy for the IAM entity that needs to manage
tags. Use your account number and replace <CertificateName> with the name of the server
certificate whose tags need to be managed. To learn how to create a policy using this example
JSON policy document, see the section called “Creating policies using the JSON editor”.

{
 "Effect": "Allow",
 "Action": [
 "iam:ListServerCertificateTags",
 "iam:TagServerCertificate",
 "iam:UntagServerCertificate"
],
 "Resource": "arn:aws:iam::<account-number>:server-certificate/<CertificateName>"
}

To allow an IAM entity (user or role) to add a tag to a specific server certificate

Add the following statement to the permissions policy for the IAM entity that needs to add, but
not remove, tags for a specific server certificate.

Note

The iam:TagServerCertificate action requires that you also include the
iam:ListServerCertificateTags action.

To use this policy, replace <CertificateName> with the name of the server certificate whose tags
need to be managed. To learn how to create a policy using this example JSON policy document, see
the section called “Creating policies using the JSON editor”.

{
 "Effect": "Allow",
 "Action": [
 "iam:ListServerCertificateTags",
 "iam:TagServerCertificate"
],
 "Resource": "arn:aws:iam::<account-number>:server-certificate/<CertificateName>"
}

Tagging server certificates 686

AWS Identity and Access Management User Guide

Alternatively, you can use an AWS managed policy such as IAMFullAccess to provide full access to
IAM.

Managing tags on server certificates (AWS CLI or AWS API)

You can list, attach, or remove tags for server certificates. You can use the AWS CLI or the AWS API
to manage tags for server certificates.

To list the tags currently attached to a server certificate (AWS CLI or AWS API)

• AWS CLI: aws iam list-server-certificate-tags

• AWS API: ListServerCertificateTags

To attach tags to a server certificate(AWS CLI or AWS API)

• AWS CLI: aws iam tag-server-certificate

• AWS API: TagServerCertificate

To remove tags from a server certificate (AWS CLI or AWS API)

• AWS CLI: aws iam untag-server-certificate

• AWS API: UntagServerCertificate

For information about attaching tags to resources for other AWS services, see the documentation
for those services.

For information about using tags to set more granular permissions with IAM permissions policies,
see IAM policy elements: Variables and tags.

Tagging virtual MFA devices

You can use IAM tag key-value pairs to add custom attributes to a virtual MFA device. For
example, to add cost center information for a user's virtual MFA device, you can add the tag key
CostCenter and the tag value 1234. You can use tags to control access to resources or to control
what tags can be attached to an object. To learn more about using tags to control access, see
Controlling access to and for IAM users and roles using tags.

You can also use tags in AWS STS to add custom attributes when you assume a role or federate a
user. For more information, see Passing session tags in AWS STS.

Tagging virtual MFA devices 687

https://console.aws.amazon.com/iam/home#policies/arn:aws:iam::aws:policy/IAMFullAccess
https://docs.aws.amazon.com/cli/latest/reference/iam/list-server-certificate-tags.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_ListServerCertificateTags.html
https://docs.aws.amazon.com/cli/latest/reference/iam/tag-server-certificate.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_TagServerCertificate.html
https://docs.aws.amazon.com/cli/latest/reference/iam/untag-server-certificate.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_UntagServerCertificate.html

AWS Identity and Access Management User Guide

Permissions required for tagging virtual MFA devices

You must configure permissions to allow an IAM entity (user or role) to tag virtual MFA devices. You
can specify one or all of the following IAM tag actions in an IAM policy:

• iam:ListMFADeviceTags

• iam:TagMFADevice

• iam:UntagMFADevice

To allow an IAM entity (user or role) to add, list, or remove a tag for a virtual MFA device

Add the following statement to the permissions policy for the IAM entity that needs to manage
tags. Use your account number and replace <MFATokenID> with the name of the virtual MFA
device whose tags need to be managed. To learn how to create a policy using this example JSON
policy document, see the section called “Creating policies using the JSON editor”.

{
 "Effect": "Allow",
 "Action": [
 "iam:ListMFADeviceTags",
 "iam:TagMFADevice",
 "iam:UntagMFADevice"
],
 "Resource": "arn:aws:iam::<account-number>:mfa/<MFATokenID>"
}

To allow an IAM entity (user or role) to add a tag to a specific virtual MFA device

Add the following statement to the permissions policy for the IAM entity that needs to add, but
not remove, tags for a specific MFA device.

Note

The iam:TagMFADevice action requires that you also include the
iam:ListMFADeviceTags action.

Tagging virtual MFA devices 688

AWS Identity and Access Management User Guide

To use this policy, replace <MFATokenID> with the name of the virtual MFA device whose tags
need to be managed. To learn how to create a policy using this example JSON policy document, see
the section called “Creating policies using the JSON editor”.

{
 "Effect": "Allow",
 "Action": [
 "iam:ListMFADeviceTags",
 "iam:TagMFADevice"
],
 "Resource": "arn:aws:iam::<account-number>:mfa/<MFATokenID>"
}

Alternatively, you can use an AWS managed policy such as IAMFullAccess to provide full access to
IAM.

Managing tags on virtual MFA devices (AWS CLI or AWS API)

You can list, attach, or remove tags for a virtual MFA device. You can use the AWS CLI or the AWS
API to manage tags for a virtual MFA device.

To list the tags currently attached to a virtual MFA device (AWS CLI or AWS API)

• AWS CLI: aws iam list-mfa-device-tags

• AWS API: ListMFADeviceTags

To attach tags to a virtual MFA device (AWS CLI or AWS API)

• AWS CLI: aws iam tag-mfa-device

• AWS API: TagMFADevice

To remove tags from a virtual MFA device (AWS CLI or AWS API)

• AWS CLI: aws iam untag-mfa-device

• AWS API: UntagMFADevice

For information about attaching tags to resources for other AWS services, see the documentation
for those services.

Tagging virtual MFA devices 689

https://console.aws.amazon.com/iam/home#policies/arn:aws:iam::aws:policy/IAMFullAccess
https://docs.aws.amazon.com/cli/latest/reference/iam/list-mfa-device-tags.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_ListMFADeviceTags.html
https://docs.aws.amazon.com/cli/latest/reference/iam/tag-mfa-device.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_TagMFADevice.html
https://docs.aws.amazon.com/cli/latest/reference/iam/untag-mfa-device.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_UntagMFADevice.html

AWS Identity and Access Management User Guide

For information about using tags to set more granular permissions with IAM permissions policies,
see IAM policy elements: Variables and tags.

Passing session tags in AWS STS

Session tags are key-value pair attributes that you pass when you assume an IAM role or federate
a user in AWS STS. You do this by making an AWS CLI or AWS API request through AWS STS
or through your identity provider (IdP). When you use AWS STS to request temporary security
credentials, you generate a session. Sessions expire and have credentials, such as an access
key pair and a session token. When you use the session credentials to make a subsequent
request, the request context includes the aws:PrincipalTag context key. You can use the
aws:PrincipalTag key in the Condition element of your policies to allow or deny access based
on those tags.

When you use temporary credentials to make a request, your principal might include a set of tags.
These tags come from the following sources:

1. Session tags – The tags passed when you assume the role or federate the user using the AWS
CLI or AWS API. For more information about these operations, see Session tagging operations.

2. Incoming transitive session tags – The tags inherited from a previous session in a role chain. For
more information, see Chaining roles with session tags later in this topic.

3. IAM tags – The tags attached to your IAM assumed role.

Topics

• Session tagging operations

• Things to know about session tags

• Permissions required to add session tags

• Passing session tags using AssumeRole

• Passing session tags using AssumeRoleWithSAML

• Passing session tags using AssumeRoleWithWebIdentity

• Passing session tags using GetFederationToken

• Chaining roles with session tags

• Using session tags for ABAC

• Viewing session tags in CloudTrail

Session tags 690

https://docs.aws.amazon.com/STS/latest/APIReference/API_Credentials.html

AWS Identity and Access Management User Guide

Session tagging operations

You can pass session tags using the following AWS CLI or AWS API operations in AWS STS. The AWS
Management Console Switch Role feature does not allow you to pass session tags.

You can also set the session tags as transitive. Transitive tags persist during role chaining. For more
information, see Chaining roles with session tags.

Comparing methods for passing session tags

Operation Who can assume the role Method to pass
tags

Method to set
transitive tags

assume-role
CLI or AssumeRol
e API operation

IAM user or a session Tags API
parameter or --
tags CLI option

Transitiv
eTagKeys API
parameter or --
transitive-
tag-keys CLI
option

assume-role-
with-saml CLI
or AssumeRol
eWithSAML API
operation

Any user authenticated using
a SAML identity provider

PrincipalTag
SAML attribute

Transitiv
eTagKeys SAML
Attribute

assume-role-
with-web-
identity CLI
or AssumeRol
eWithWebI
dentity API
operation

Any user authenticated using
a web identity provider

PrincipalTag
web identity token

Transitiv
eTagKeys web
identity token

get-feder
ation-token
CLI or GetFedera
tionToken API
operation

IAM user or root user Tags API
parameter or --
tags CLI option

Not supported

Session tags 691

https://docs.aws.amazon.com/cli/latest/reference/sts/assume-role.html
https://docs.aws.amazon.com/STS/latest/APIReference/API_AssumeRole.html
https://docs.aws.amazon.com/STS/latest/APIReference/API_AssumeRole.html
https://docs.aws.amazon.com/cli/latest/reference/sts/assume-role-with-saml.html
https://docs.aws.amazon.com/cli/latest/reference/sts/assume-role-with-saml.html
https://docs.aws.amazon.com/STS/latest/APIReference/API_AssumeRoleWithSAML.html
https://docs.aws.amazon.com/STS/latest/APIReference/API_AssumeRoleWithSAML.html
https://docs.aws.amazon.com/cli/latest/reference/sts/assume-role-with-web-identity.html
https://docs.aws.amazon.com/cli/latest/reference/sts/assume-role-with-web-identity.html
https://docs.aws.amazon.com/cli/latest/reference/sts/assume-role-with-web-identity.html
https://docs.aws.amazon.com/STS/latest/APIReference/API_AssumeRoleWithWebIdentity.html
https://docs.aws.amazon.com/STS/latest/APIReference/API_AssumeRoleWithWebIdentity.html
https://docs.aws.amazon.com/STS/latest/APIReference/API_AssumeRoleWithWebIdentity.html
https://docs.aws.amazon.com/cli/latest/reference/sts/get-federation-token.html
https://docs.aws.amazon.com/cli/latest/reference/sts/get-federation-token.html
https://docs.aws.amazon.com/STS/latest/APIReference/API_GetFederationToken.html
https://docs.aws.amazon.com/STS/latest/APIReference/API_GetFederationToken.html

AWS Identity and Access Management User Guide

Operations that support session tagging can fail under the following conditions:

• You pass more than 50 session tags.

• The plaintext of your session tag keys exceeds 128 characters.

• The plaintext of your session tag values exceeds 256 characters.

• The total size of the plaintext of session policies exceeds 2048 characters.

• The total packed size of the combined session policies and tags is too large. If the operation fails,
the error message shows how close the policies and tags combined come to the upper size limit,
by percentage.

Things to know about session tags

Before you use session tags, review the following details about sessions and tags.

• When using session tags, trust policies for all roles connected to the identity provider (IdP)
passing tags must have the sts:TagSession permission. For roles without this permission in
the trust policy, the AssumeRole operation fails.

• When you request a session, you can specify principal tags as the session tags. The tags apply to
requests that you make using the session's credentials.

• Session tags use key-value pairs. For example, to add contact information to a session, you can
add the session tag key email and the tag value johndoe@example.com.

• Session tags must follow the rules for naming tags in IAM and AWS STS. This topic includes
information about case sensitivity and restricted prefixes that apply to your session tags.

• New session tags override existing assumed role or federated user tags with the same tag key,
regardless of character case.

• You cannot pass session tags using the AWS Management Console.

• Session tags are valid only for the current session.

• Session tags support role chaining. By default, AWS STS does not pass tags to subsequent role
sessions. However, you can set session tags as transitive. Transitive tags persist during role
chaining and replace matching ResourceTag values after the evaluation of the role trust policy.
For more information, see Chaining roles with session tags.

• You can use session tags to control access to resources or to control what tags can be passed into
a subsequent session. For more information, see IAM tutorial: Use SAML session tags for ABAC.

Session tags 692

AWS Identity and Access Management User Guide

• You can view the principal tags for your session, including the session tags, in the AWS CloudTrail
logs. For more information, see Viewing session tags in CloudTrail.

• You must pass a single value for each session tag. AWS STS does not support multi-valued
session tags.

• You can pass a maximum of 50 session tags. The number and size of IAM resources in an AWS
account are limited. For more information, see IAM and AWS STS quotas.

• An AWS conversion compresses the passed session policies and session tags combined into a
packed binary format with a separate limit. If you exceed this limit, the AWS CLI or AWS API
error message shows how close the policies and tags combined come to the upper size limit, by
percentage.

Permissions required to add session tags

In addition to the action that matches the API operation, you must have the following permissions-
only action in your policy:

sts:TagSession

Important

When using session tags, the role trust policies for all roles connected to an identity
provider (IdP) must have the sts:TagSession permission. The AssumeRole operation
fails for any role connected to an IdP passing session tags without this permission. If you
don't want to update the role trust policy for each role, you can use a separate IdP instance
for passing session tags. Then, add the sts:TagSession permission to only the roles
connected to the separate IdP.

You can use the sts:TagSession action with the following condition keys.

• aws:PrincipalTag – Compares the tag attached to the principal making the request with the
tag you specified in the policy. For example, you can allow a principal to pass session tags only if
the principal making the request has the specified tags.

• aws:RequestTag – Compares the tag key-value pair passed in the request with the tag pair you
specified in the policy. For example, you can allow the principal to pass the specified session tags,
but only with the specified values.

Session tags 693

AWS Identity and Access Management User Guide

• aws:ResourceTag – Compares the tag key-value pair you specified in the policy with the key-
value pair attached to the resource. For example, you can allow the principal to pass session tags
only if the role they assume includes the specified tags.

• aws:TagKeys – Compares the tag keys in a request with the keys you specified in the policy. For
example, you can allow the principal to pass only session tags with the specified tag keys. This
condition key limits the maximum set of session tags that can be passed.

• sts:TransitiveTagKeys - Compares the transitive session tag keys in the request with those
specified in the policy. For example, you can write a policy to allow a principal to set only specific
tags as transitive. Transitive tags persist during role chaining. For more information, see Chaining
roles with session tags.

For example, the following role trust policy allows the test-session-tags user to assume the
role with the attached policy. When that user assumes the role, they must use the AWS CLI or AWS
API to pass the three required session tags and the required external ID. Additionally, the user can
choose to set the Project and Department tags as transitive.

Example Example role trust policy for session tags

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "AllowIamUserAssumeRole",
 "Effect": "Allow",
 "Action": "sts:AssumeRole",
 "Principal": {"AWS": "arn:aws:iam::123456789012:user/test-session-tags"},
 "Condition": {
 "StringLike": {
 "aws:RequestTag/Project": "*",
 "aws:RequestTag/CostCenter": "*",
 "aws:RequestTag/Department": "*"
 },
 "StringEquals": {"sts:ExternalId": "Example987"}
 }
 },
 {
 "Sid": "AllowPassSessionTagsAndTransitive",
 "Effect": "Allow",
 "Action": "sts:TagSession",
 "Principal": {"AWS": "arn:aws:iam::123456789012:user/test-session-tags"},

Session tags 694

AWS Identity and Access Management User Guide

 "Condition": {
 "StringLike": {
 "aws:RequestTag/Project": "*",
 "aws:RequestTag/CostCenter": "*"
 },
 "StringEquals": {
 "aws:RequestTag/Department": [
 "Engineering",
 "Marketing"
]
 },
 "ForAllValues:StringEquals": {
 "sts:TransitiveTagKeys": [
 "Project",
 "Department"
]
 }
 }
 }
]
}

What does this policy do?

• The AllowIamUserAssumeRole statement allows the test-session-tags user to assume
the role with the attached policy. When that user assumes the role, they must pass the required
session tags and external ID.

• The first condition block of this statement requires the user to pass the Project,
CostCenter, and Department session tags. The tag values do not matter in this statement,
so you can use wildcards (*) for the tag values. This block ensures that user passes at least
these three session tags. Otherwise, the operation fails. The user can pass additional tags.

• The second condition block requires the user to pass an external ID with the value
Example987.

• The AllowPassSessionTagsAndTransitive statement allows the sts:TagSession
permissions-only action. This action must be allowed before the user can pass session tags. If
your policy includes the first statement without the second statement, the user can't assume the
role.

Session tags 695

AWS Identity and Access Management User Guide

• The first condition block of this statement allows the user to pass any value for the
CostCenter and Project session tags. You do this by using wildcards (*) for the tag value in
the policy, which requires that you use the StringLike condition operator.

• The second condition block allows the user to pass only the Engineering or Marketing
value for the Department session tag.

• The third condition block lists the maximum set of tags you can set as transitive. The user can
choose to set a subset or no tags as transitive. They cannot set additional tags as transitive.
You can require that they set at least one of the tags as transitive by adding another condition
block that includes "Null":{"sts:TransitiveTagKeys":"false"}.

Passing session tags using AssumeRole

The AssumeRole operation returns a set of temporary credentials you can use to access AWS
resources. You can use IAM user or role credentials to call AssumeRole. To pass session tags while
assuming a role, use the --tags AWS CLI option or the Tags AWS API parameter.

To set tags as transitive, use the --transitive-tag-keys AWS CLI option or the
TransitiveTagKeys AWS API parameter. Transitive tags persist during role chaining. For more
information, see Chaining roles with session tags.

The following example shows a sample request that uses AssumeRole. In this example, when
you assume the my-role-example role, you create a session named my-session. You add the
session tag key-value pairs Project = Automation, CostCenter = 12345, and Department =
Engineering. You also set the Project and Department tags as transitive by specifying their
keys.

Example Example AssumeRole CLI request

aws sts assume-role \
--role-arn arn:aws:iam::123456789012:role/my-role-example \
--role-session-name my-session \
--tags Key=Project,Value=Automation Key=CostCenter,Value=12345
 Key=Department,Value=Engineering \
--transitive-tag-keys Project Department \
--external-id Example987

Session tags 696

AWS Identity and Access Management User Guide

Passing session tags using AssumeRoleWithSAML

The AssumeRoleWithSAML operation authenticates with SAML-based federation. This operation
returns a set of temporary credentials you can use to access AWS resources. For more information
about using SAML-based federation for AWS Management Console access, see Enabling SAML 2.0
federated users to access the AWS Management Console. For details about AWS CLI or AWS API
access, see About SAML 2.0-based federation. For a tutorial on configuring SAML federation for
your Active Directory users, see AWS Federated Authentication with Active Directory Federation
Services (ADFS) in the AWS Security Blog.

As an administrator, you can allow members of your company directory to federate into AWS using
the AWS STS AssumeRoleWithSAML operation. To do this, you must complete the following tasks:

1. Configure your network as a SAML provider for AWS.

2. Create a SAML provider in IAM

3. Configure a role and permissions in AWS for your federated users

4. Finish configuring the SAML IdP and create assertions for the SAML authentication response

AWS includes identity providers with certified end-to-end experience for session tags with their
identity solutions. To learn how to use these identity providers to configure session tags, see
Integrating third-party SAML solution providers with AWS.

To pass SAML attributes as session tags, include the Attribute element with the Name attribute
set to https://aws.amazon.com/SAML/Attributes/PrincipalTag:{TagKey}. Use the
AttributeValue element to specify the value of the tag. Include a separate Attribute element
for each session tag.

For example, assume that you want to pass the following identity attributes as session tags:

• Project:Automation

• CostCenter:12345

• Department:Engineering

To pass these attributes, include the following elements in your SAML assertion.

Example Example snippet of a SAML assertion

<Attribute Name="https://aws.amazon.com/SAML/Attributes/PrincipalTag:Project">

Session tags 697

https://aws.amazon.com/blogs/security/aws-federated-authentication-with-active-directory-federation-services-ad-fs/
https://aws.amazon.com/blogs/security/aws-federated-authentication-with-active-directory-federation-services-ad-fs/

AWS Identity and Access Management User Guide

 <AttributeValue>Automation</AttributeValue>
</Attribute>
<Attribute Name="https://aws.amazon.com/SAML/Attributes/PrincipalTag:CostCenter">
 <AttributeValue>12345</AttributeValue>
</Attribute>
<Attribute Name="https://aws.amazon.com/SAML/Attributes/PrincipalTag:Department">
 <AttributeValue>Engineering</AttributeValue>
</Attribute>

To set the preceding tags as transitive, include another Attribute element with the Name
attribute set to https://aws.amazon.com/SAML/Attributes/TransitiveTagKeys.
Transitive tags persist during role chaining. For more information, see Chaining roles with session
tags.

To set the Project and Department tags as transitive, use the following multi-valued attribute:

Example Example snippet of a SAML assertion

<Attribute Name="https://aws.amazon.com/SAML/Attributes/TransitiveTagKeys">
 <AttributeValue>Project</AttributeValue>
 <AttributeValue>Department</AttributeValue>
</Attribute>

Passing session tags using AssumeRoleWithWebIdentity

Use OpenID Connect(OIDC)-compliant web identity federation to authenticate the
AssumeRoleWithWebIdentity operation. This operation returns a set of temporary credentials
you can use to access AWS resources. For more information about using web identity federation for
AWS Management Console access, see About web identity federation.

To pass session tags from OpenID Connect (OIDC), you must include the session tags in the JSON
Web Token (JWT). Include session tags in the https://aws.amazon.com/ tags namespace in
the token when you submit the AssumeRoleWithWebIdentity request. To learn more about
OIDC tokens and claims, see Using Tokens with User Pools in the Amazon Cognito Developer Guide.

For example, the following decoded JWT uses a token to call AssumeRoleWithWebIdentity with
the Project, CostCenter, and Department session tags. The token also sets the Project and
CostCenter tags as transitive. Transitive tags persist during role chaining. For more information,
see Chaining roles with session tags.

Session tags 698

https://aws.amazon.com/
https://docs.aws.amazon.com/cognito/latest/developerguide/amazon-cognito-user-pools-using-tokens-with-identity-providers.html

AWS Identity and Access Management User Guide

Example Example decoded JSON Web Token

{
 "sub": "johndoe",
 "aud": "ac_oic_client",
 "jti": "ZYUCeRMQVtqHypVPWAN3VB",
 "iss": "https://xyz.com",
 "iat": 1566583294,
 "exp": 1566583354,
 "auth_time": 1566583292,
 "https://aws.amazon.com/tags": {
 "principal_tags": {
 "Project": ["Automation"],
 "CostCenter": ["987654"],
 "Department": ["Engineering"]
 },
 "transitive_tag_keys": [
 "Project",
 "CostCenter"
]
 }
}

Passing session tags using GetFederationToken

The GetFederationToken allows you to federate your user. This operation returns a set of
temporary credentials you can use to access AWS resources. To add tags to your federated user
session, use the --tags AWS CLI option or the Tags AWS API parameter. You can't set session
tags as transitive when you use GetFederationToken, because you can't use the temporary
credentials to assume a role. You cannot use role chaining in this case.

The following example shows a sample request using GetFederationToken. In this example,
when you request the token, you create a session named my-fed-user. You add the session tag
key-value pairs Project = Automation and Department = Engineering.

Example Example GetFederationToken CLI request

aws sts get-federation-token \
--name my-fed-user \
--tags key=Project,value=Automation key=Department,value=Engineering

Session tags 699

AWS Identity and Access Management User Guide

When you use the temporary credentials returned by the GetFederationToken operation, the
session principal tags include the user tags and the passed session tags.

Chaining roles with session tags

You can assume one role and then use the temporary credentials to assume another role. You can
continue from session to session. This is called role chaining. When you pass session tags while
assuming a role, you can set the keys as transitive. This ensures that those session tags pass to
subsequent sessions in a role chain. You cannot set role tags as transitive. To pass these tags to
subsequent sessions, specify them as session tags.

Note

Transitive tags persist during role chaining and replace matching ResourceTag values
after the evaluation of the role trust policy.

The following example shows how AWS STS passes session tags, transitive tags, and role tags into
subsequent sessions in a role chain.

In this example role chaining scenario, you use an IAM user access key in the AWS CLI to assume a
role named Role1. You then use the resulting session credentials to assume a second role named
Role2. You can then use the second session credentials to assume a third role named Role3.
These requests occur as three separate operations. Each role is already tagged in IAM. And during
each request, you pass additional session tags.

When you chain roles, you can ensure that tags from an earlier session persist to the later sessions.
To do this using the assume-role CLI command, you must pass the tag as a session tag and set
the tag as transitive. You pass the tag Star = 1 as a session tag. The command also attaches the
tag Heart = 1 to the role and applies as a principal tag when you use the session. However, you
also want the Heart = 1 tag to automatically pass to the second or third session. To do that, you
manually include it as a session tag. The resulting session principal tags include both of these tags,
and sets them as transitive.

You perform this request using the following AWS CLI command:

Example Example AssumeRole CLI request

aws sts assume-role \

Session tags 700

AWS Identity and Access Management User Guide

--role-arn arn:aws:iam::123456789012:role/Role1 \
--role-session-name Session1 \
--tags Key=Star,Value=1 Key=Heart,Value=1 \
--transitive-tag-keys Star Heart

You then use the credentials for that session to assume Role2. The command attaches the tag Sun
= 2 to the second role and applies as a principal tag when you use the second session. The Heart
and Star tags inherits the transitive session tags in the first session. The second session resulting
principal tags are Heart = 1, Star = 1, and Sun = 2. Heart and Star continue to be transitive.
The Sun tag attached to Role2 is not marked as transitive because it is not a session tag. Future
sessions do not inherit this tag.

You perform this second request using the following AWS CLI command:

Example Example AssumeRole CLI request

aws sts assume-role \
--role-arn arn:aws:iam::123456789012:role/Role2 \
--role-session-name Session2

You then use the second session credentials to assume Role3. The principal tags for the third
session come from any new session tags, the inherited transitive session tags, and the role tags.
The Heart = 1 and Star = 1 tags on the second session are inherited from the transitive session
tag in the first session. If you try to pass the Sun = 2 session tag, the operation fails. The inherited
Star = 1 session tag overrides the role Star = 3 tag. In role chaining, the value of a transitive
tag overrides the role matching the ResourceTag value after the evaluation of the role trust
policy. In this example, if Role3 uses Star as a ResourceTag in the role trust policy, and sets
ResourceTag value to the transitive tag value from the calling role session. The role Lightning
tag also applies to the third session, and not set as transitive.

You perform the third request using the following AWS CLI command:

Example Example AssumeRole CLI request

aws sts assume-role \
--role-arn arn:aws:iam::123456789012:role/Role3 \
--role-session-name Session3

Session tags 701

AWS Identity and Access Management User Guide

Using session tags for ABAC

Attribute-based access control (ABAC) uses an authorization strategy that defines permissions
based on tag attributes.

If your company uses an OIDC or SAML-based identity provider (IdP) to manage user identities,
you can configure your assertion to pass session tags to AWS. For example, with corporate user
identities, when your employees federate into AWS, AWS applies their attributes to their resulting
principal. You can then use ABAC to allow or deny permissions based on those attributes. For
details, see IAM tutorial: Use SAML session tags for ABAC.

For more information about using IAM Identity Center with ABAC, see Attributes for access control
in the AWS IAM Identity Center User Guide.

Viewing session tags in CloudTrail

You can use AWS CloudTrail to view the requests used to assume roles or federate users. The
CloudTrail log file includes information about the principal tags for the assumed-role or federated
user session. For more information, see Logging IAM and AWS STS API calls with AWS CloudTrail.

For example, assume that you make an AWS STS AssumeRoleWithSAML request, pass session
tags, and set those tags as transitive. You can find the following information in your CloudTrail log.

Example Example AssumeRoleWithSAML CloudTrail log

 "requestParameters": {
 "sAMLAssertionID": "_c0046cEXAMPLEb9d4b8eEXAMPLE2619aEXAMPLE",
 "roleSessionName": "MyRoleSessionName",
 "principalTags": {
 "CostCenter": "987654",
 "Project": "Unicorn"
 },
 "transitiveTagKeys": [
 "CostCenter",
 "Project"
],
 "durationSeconds": 3600,
 "roleArn": "arn:aws:iam::123456789012:role/SAMLTestRoleShibboleth",
 "principalArn": "arn:aws:iam::123456789012:saml-provider/Shibboleth"
 },

You can view the following example CloudTrail logs to view events that use session tags.

Session tags 702

https://docs.aws.amazon.com/singlesignon/latest/userguide/attributesforaccesscontrol.html

AWS Identity and Access Management User Guide

• Example AWS STS role chaining API event in CloudTrail log file

• Example SAML AWS STS API event in CloudTrail log file

• Example web identity AWS STS API event in CloudTrail log file

Temporary security credentials in IAM

You can use the AWS Security Token Service (AWS STS) to create and provide trusted users
with temporary security credentials that can control access to your AWS resources. Temporary
security credentials work almost identically to long-term access key credentials, with the following
differences:

• Temporary security credentials are short-term, as the name implies. They can be configured to
last for anywhere from a few minutes to several hours. After the credentials expire, AWS no
longer recognizes them or allows any kind of access from API requests made with them.

• Temporary security credentials are not stored with the user but are generated dynamically and
provided to the user when requested. When (or even before) the temporary security credentials
expire, the user can request new credentials, as long as the user requesting them still has
permissions to do so.

As a result, temporary credentials have the following advantages over long-term credentials:

• You do not have to distribute or embed long-term AWS security credentials with an application.

• You can provide access to your AWS resources to users without having to define an AWS identity
for them. Temporary credentials are the basis for roles and identity federation.

• The temporary security credentials have a limited lifetime, so you do not have to update them
or explicitly revoke them when they're no longer needed. After temporary security credentials
expire, they cannot be reused. You can specify how long the credentials are valid, up to a
maximum limit.

AWS STS and AWS regions

Temporary security credentials are generated by AWS STS. By default, AWS STS is a global service
with a single endpoint at https://sts.amazonaws.com. However, you can also choose to make
AWS STS API calls to endpoints in any other supported Region. This can reduce latency (server lag)
by sending the requests to servers in a Region that is geographically closer to you. No matter which

Temporary security credentials 703

AWS Identity and Access Management User Guide

Region your credentials come from, they work globally. For more information, see Managing AWS
STS in an AWS Region.

Common scenarios for temporary credentials

Temporary credentials are useful in scenarios that involve identity federation, delegation, cross-
account access, and IAM roles.

Identity federation

You can manage your user identities in an external system outside of AWS and grant users who
sign in from those systems access to perform AWS tasks and access your AWS resources. IAM
supports two types of identity federation. In both cases, the identities are stored outside of AWS.
The distinction is where the external system resides—in your data center or an external third party
on the web. For more information about external identity providers, see Identity providers and
federation.

• Enterprise identity federation – You can authenticate users in your organization's network,
and then provide those users access to AWS without creating new AWS identities for them and
requiring them to sign in with different sign-in credentials. This is known as the single sign-on
approach to temporary access. AWS STS supports open standards like Security Assertion Markup
Language (SAML) 2.0, with which you can use Microsoft AD FS to leverage your Microsoft Active
Directory. You can also use SAML 2.0 to manage your own solution for federating user identities.
For more information, see About SAML 2.0-based federation.

• Custom federation broker – You can use your organization's authentication system to grant
access to AWS resources. For an example scenario, see Enabling custom identity broker access
to the AWS console.

• Federation using SAML 2.0 – You can use your organization's authentication system and SAML
to grant access to AWS resources. For more information and an example scenario, see About
SAML 2.0-based federation.

• Web identity federation – You can let users sign in using a well-known third-party identity
provider such as Login with Amazon, Facebook, Google, or any OpenID Connect (OIDC) 2.0
compatible provider. You can exchange the credentials from that provider for temporary
permissions to use resources in your AWS account. This is known as the web identity federation
approach to temporary access. When you use web identity federation for your mobile or web
application, you don't need to create custom sign-in code or manage your own user identities.
Using web identity federation helps you keep your AWS account secure, because you don't have

Common scenarios for temporary credentials 704

AWS Identity and Access Management User Guide

to distribute long-term security credentials, such as IAM user access keys, with your application.
For more information, see About web identity federation.

AWS STS web identity federation supports Login with Amazon, Facebook, Google, and any
OpenID Connect (OIDC)-compatible identity provider.

Note

For mobile applications, we recommend that you use Amazon Cognito. You can use
this service with AWS SDKs for mobile development to create unique identities for
users and authenticate them for secure access to your AWS resources. Amazon Cognito
supports the same identity providers as AWS STS, and also supports unauthenticated
(guest) access and lets you migrate user data when a user signs in. Amazon Cognito also
provides API operations for synchronizing user data so that it is preserved as users move
between devices. For more information, see Authentication with Amplify in the Amplify
Documentation.

Roles for cross-account access

Many organizations maintain more than one AWS account. Using roles and cross-account access,
you can define user identities in one account, and use those identities to access AWS resources
in other accounts that belong to your organization. This is known as the delegation approach to
temporary access. For more information about creating cross-account roles, see Creating a role to
delegate permissions to an IAM user. To learn whether principals in accounts outside of your zone
of trust (trusted organization or account) have access to assume your roles, see What is IAM Access
Analyzer?.

Roles for Amazon EC2

If you run applications on Amazon EC2 instances and those applications need access to AWS
resources, you can provide temporary security credentials to your instances when you launch them.
These temporary security credentials are available to all applications that run on the instance, so
you don't need to store any long-term credentials on the instance. For more information, see Using
an IAM role to grant permissions to applications running on Amazon EC2 instances.

Common scenarios for temporary credentials 705

https://docs.amplify.aws/lib/auth/getting-started/q/platform/js/#authentication-with-amplify
https://docs.aws.amazon.com/IAM/latest/UserGuide/what-is-access-analyzer.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/what-is-access-analyzer.html

AWS Identity and Access Management User Guide

Other AWS services

You can use temporary security credentials to access most AWS services. For a list of the services
that accept temporary security credentials, see AWS services that work with IAM.

Requesting temporary security credentials

To request temporary security credentials, you can use AWS Security Token Service (AWS STS)
operations in the AWS API. These include operations to create and provide trusted users with
temporary security credentials that can control access to your AWS resources. For more information
about AWS STS, see Temporary security credentials in IAM. To learn about the different methods
that you can use to request temporary security credentials by assuming a role, see Using IAM roles.

To call the API operations, you can use one of the AWS SDKs. The SDKs are available for a variety
of programming languages and environments, including Java, .NET, Python, Ruby, Android,
and iOS. The SDKs take care of tasks such as cryptographically signing your requests, retrying
requests if necessary, and handling error responses. You can also use the AWS STS Query API,
which is described in the AWS Security Token Service API Reference. Finally, two command line
tools support the AWS STS commands: the AWS Command Line Interface, and the AWS Tools for
Windows PowerShell.

The AWS STS API operations create a new session with temporary security credentials that include
an access key pair and a session token. The access key pair consists of an access key ID and a secret
key. Users (or an application that the user runs) can use these credentials to access your resources.
You can create a role session and pass session policies and session tags programmatically using
AWS STS API operations. The resulting session permissions are the intersection of the role's
identity-based policies and the session policies. For more information about session policies, see
Session policies. For more information about session tags, see Passing session tags in AWS STS.

Note

The size of the session token that AWS STS API operations return is not fixed. We strongly
recommend that you make no assumptions about the maximum size. The typical token size
is less than 4096 bytes, but that can vary.

Requesting temporary security credentials 706

http://aws.amazon.com/tools/
https://docs.aws.amazon.com/STS/latest/APIReference/
https://aws.amazon.com/documentation/cli
https://aws.amazon.com/documentation/powershell
https://aws.amazon.com/documentation/powershell

AWS Identity and Access Management User Guide

Using AWS STS with AWS Regions

You can send AWS STS API calls either to a global endpoint or to one of the Regional endpoints.
If you choose an endpoint closer to you, you can reduce latency and improve the performance of
your API calls. You also can choose to direct your calls to an alternative Regional endpoint if you
can no longer communicate with the original endpoint. If you are using one of the various AWS
SDKs, then use that SDK method to specify a Region before you make the API call. If you manually
construct HTTP API requests, then you must direct the request to the correct endpoint yourself. For
more information, see the AWS STS section of Regions and Endpoints and Managing AWS STS in an
AWS Region.

The following are the API operations that you can use to acquire temporary credentials for use in
your AWS environment and applications.

AssumeRole—cross-account delegation and federation through a custom identity
broker

The AssumeRole API operation is useful for allowing existing IAM users to access AWS resources
that they don't already have access to. For example, the user might need access to resources
in another AWS account. It is also useful as a means to temporarily gain privileged access—
for example, to provide multi-factor authentication (MFA). You must call this API using active
credentials. To learn who can call this operation, see Comparing the AWS STS API operations. For
more information, see Creating a role to delegate permissions to an IAM user and Configuring MFA-
protected API access.

This call must be made using valid AWS security credentials. When you make this call, you pass the
following information:

• The Amazon Resource Name (ARN) of the role that the app should assume.

• (Optional) Duration, which specifies the duration of the temporary security credentials. Use
the DurationSeconds parameter to specify the duration of the role session from 900
seconds (15 minutes) up to the maximum session duration setting for the role. To learn how
to view the maximum value for your role, see View the maximum session duration setting for
a role. If you do not pass this parameter, the temporary credentials expire in one hour. The
DurationSeconds parameter from this API is separate from the SessionDuration HTTP
parameter that you use to specify the duration of a console session. Use the SessionDuration
HTTP parameter in the request to the federation endpoint for a console sign-in token. For more
information, see Enabling custom identity broker access to the AWS console.

Requesting temporary security credentials 707

https://docs.aws.amazon.com/general/latest/gr/rande.html#sts_region
https://docs.aws.amazon.com/STS/latest/APIReference/API_AssumeRole.html

AWS Identity and Access Management User Guide

• Role session name. Use this string value to identify the session when a role is used by different
principals. For security purposes, administrators can view this field in AWS CloudTrail logs to help
identify who performed an action in AWS. Your administrator might require that you specify
your IAM user name as the session name when you assume the role. For more information, see
sts:RoleSessionName.

• (Optional) Source identity. You can require users to specify a source identity when they assume
a role. After the source identity is set, the value cannot be changed. It is present in the request
for all actions that are taken during the role session. The source identity value persists across
chained role sessions. You can use source identity information in AWS CloudTrail logs to
determine who took actions with a role. For more information about using source identity, see
Monitor and control actions taken with assumed roles.

• (Optional) Inline or managed session policies. These policies limit the permissions from the role's
identity-based policy that are assigned to the role session. The resulting session's permissions
are the intersection of the role's identity-based policies and the session policies. Session policies
cannot be used to grant more permissions than those allowed by the identity-based policy of
the role that is being assumed. For more information about role session permissions, see Session
policies.

• (Optional) Session tags. You can assume a role and then use the temporary credentials to make a
request. When you do, the session's principal tags include the role's tags and the passed session
tags. If you make this call using temporary credentials, the new session also inherits transitive
session tags from the calling session. For more information about session tags, see Passing
session tags in AWS STS.

• (Optional) MFA information. If configured to use multi-factor authentication (MFA), then you
include the identifier for an MFA device and the one-time code provided by that device.

• (Optional) ExternalId value that can be used when delegating access to your account to a third
party. This value helps ensure that only the specified third party can access the role. For more
information, see How to use an external ID when granting access to your AWS resources to a
third party.

The following example shows a sample request and response using AssumeRole. This example
request assumes the demo role for the specified duration with the included session policy, session
tags, external ID, and source identity. The resulting session is named John-session.

Example Example request

https://sts.amazonaws.com/

Requesting temporary security credentials 708

AWS Identity and Access Management User Guide

?Version=2011-06-15
&Action=AssumeRole
&RoleSessionName=John-session
&RoleArn=arn:aws::iam::123456789012:role/demo
&Policy=%7B%22Version%22%3A%222012-10-17%22%2C%22Statement%22%3A%5B%7B%22Sid%22%3A
%20%22Stmt1%22%2C%22Effect%22%3A%20%22Allow%22%2C%22Action%22%3A%20%22s3%3A*%22%2C
%22Resource%22%3A%20%22*%22%7D%5D%7D
&DurationSeconds=1800
&Tags.member.1.Key=Project
&Tags.member.1.Value=Pegasus
&Tags.member.2.Key=Cost-Center
&Tags.member.2.Value=12345
&ExternalId=123ABC
&SourceIdentity=DevUser123
&AUTHPARAMS

The policy value shown in the preceding example is the URL-encoded version of the following
policy:

{"Version":"2012-10-17","Statement":
[{"Sid":"Stmt1","Effect":"Allow","Action":"s3:*","Resource":"*"}]}

The AUTHPARAMS parameter in the example is a placeholder for your signature. A signature is the
authentication information that you must include with AWS HTTP API requests. We recommend
using the AWS SDKs to create API requests, and one benefit of doing so is that the SDKs handle
request signing for you. If you must create and sign API requests manually, see Signing AWS
Requests By Using Signature Version 4 in the Amazon Web Services General Reference to learn how
to sign a request.

In addition to the temporary security credentials, the response includes the Amazon Resource
Name (ARN) for the federated user and the expiration time of the credentials.

Example Example response

<AssumeRoleResponse xmlns="https://sts.amazonaws.com/doc/2011-06-15/">
<AssumeRoleResult>
<SourceIdentity>DevUser123</SourceIdentity>
<Credentials>
 <SessionToken>
 AQoDYXdzEPT//////////wEXAMPLEtc764bNrC9SAPBSM22wDOk4x4HIZ8j4FZTwdQW
 LWsKWHGBuFqwAeMicRXmxfpSPfIeoIYRqTflfKD8YUuwthAx7mSEI/qkPpKPi/kMcGd
 QrmGdeehM4IC1NtBmUpp2wUE8phUZampKsburEDy0KPkyQDYwT7WZ0wq5VSXDvp75YU

Requesting temporary security credentials 709

https://aws.amazon.com/tools/
https://docs.aws.amazon.com/general/latest/gr/sigv4_signing.html
https://docs.aws.amazon.com/general/latest/gr/sigv4_signing.html

AWS Identity and Access Management User Guide

 9HFvlRd8Tx6q6fE8YQcHNVXAkiY9q6d+xo0rKwT38xVqr7ZD0u0iPPkUL64lIZbqBAz
 +scqKmlzm8FDrypNC9Yjc8fPOLn9FX9KSYvKTr4rvx3iSIlTJabIQwj2ICCR/oLxBA==
 </SessionToken>
 <SecretAccessKey>
 wJalrXUtnFEMI/K7MDENG/bPxRfiCYzEXAMPLEKEY
 </SecretAccessKey>
 <Expiration>2019-07-15T23:28:33.359Z</Expiration>
 <AccessKeyId>AKIAIOSFODNN7EXAMPLE</AccessKeyId>
</Credentials>
<AssumedRoleUser>
 <Arn>arn:aws:sts::123456789012:assumed-role/demo/John</Arn>
 <AssumedRoleId>ARO123EXAMPLE123:John</AssumedRoleId>
</AssumedRoleUser>
<PackedPolicySize>8</PackedPolicySize>
</AssumeRoleResult>
<ResponseMetadata>
<RequestId>c6104cbe-af31-11e0-8154-cbc7ccf896c7</RequestId>
</ResponseMetadata>
</AssumeRoleResponse>

Note

An AWS conversion compresses the passed session policies and session tags into a packed
binary format that has a separate limit. Your request can fail for this limit even if your
plaintext meets the other requirements. The PackedPolicySize response element
indicates by percentage how close the policies and tags for your request are to the upper
size limit.

AssumeRoleWithWebIdentity—federation through a web-based identity provider

The AssumeRoleWithWebIdentity API operation returns a set of temporary security credentials
for federated users who are authenticated through a public identity provider. Examples of public
identity providers include Login with Amazon, Facebook, Google, or any OpenID Connect (OIDC)-
compatible identity provider. This operation is useful for creating mobile applications or client-
based web applications that require access to AWS. Using this operation means that your users
do not need their own AWS or IAM identities. For more information, see About web identity
federation.

Requesting temporary security credentials 710

https://docs.aws.amazon.com/STS/latest/APIReference/API_AssumeRoleWithWebIdentity.html

AWS Identity and Access Management User Guide

Instead of directly calling AssumeRoleWithWebIdentity, we recommend that you use Amazon
Cognito and the Amazon Cognito credentials provider with the AWS SDKs for mobile development.
For more information, see Authentication with Amplify in the Amplify Documentation.

If you are not using Amazon Cognito, you call the AssumeRoleWithWebIdentity action of
AWS STS. This is an unsigned call, meaning that the app does not need to have access to any AWS
security credentials to make the call. When you make this call, you pass the following information:

• The Amazon Resource Name (ARN) of the role that the app should assume. If your app supports
multiple ways for users to sign in, you must define multiple roles, one per identity provider. The
call to AssumeRoleWithWebIdentity should include the ARN of the role that is specific to the
provider through which the user signed in.

• The token that the app gets from the IdP after the app authenticates the user.

• You can configure your IdP to pass attributes into your token as session tags.

• (Optional) Duration, which specifies the duration of the temporary security credentials. Use
the DurationSeconds parameter to specify the duration of the role session from 900
seconds (15 minutes) up to the maximum session duration setting for the role. To learn how
to view the maximum value for your role, see View the maximum session duration setting for
a role. If you do not pass this parameter, the temporary credentials expire in one hour. The
DurationSeconds parameter from this API is separate from the SessionDuration HTTP
parameter that you use to specify the duration of a console session. Use the SessionDuration
HTTP parameter in the request to the federation endpoint for a console sign-in token. For more
information, see Enabling custom identity broker access to the AWS console.

• Role session name. Use this string value to identify the session when a role is used by different
principals. For security purposes, administrators can view this field in AWS CloudTrail logs to
learn who performed an action in AWS. Your administrator might require that you provide
a specific value for the session name when you assume the role. For more information, see
sts:RoleSessionName.

• (Optional) Source identity. You can require federated users to specify a source identity when they
assume a role. After the source identity is set, the value cannot be changed. It is present in the
request for all actions that are taken during the role session. The source identity value persists
across chained role sessions. You can use source identity information in AWS CloudTrail logs to
determine who took actions with a role. For more information about using source identity, see
Monitor and control actions taken with assumed roles.

• (Optional) Inline or managed session policies. These policies limit the permissions from the role's
identity-based policy that are assigned to the role session. The resulting session's permissions

Requesting temporary security credentials 711

https://docs.amplify.aws/lib/auth/getting-started/q/platform/js/#authentication-with-amplify

AWS Identity and Access Management User Guide

are the intersection of the role's identity-based policies and the session policies. Session policies
cannot be used to grant more permissions than those allowed by the identity-based policy of
the role that is being assumed. For more information about role session permissions, see Session
policies.

Note

A call to AssumeRoleWithWebIdentity is not signed (encrypted). Therefore, you
should only include optional session policies if the request is transmitted through
a trusted intermediary. In this case, someone could alter the policy to remove the
restrictions.

When you call AssumeRoleWithWebIdentity, AWS verifies the authenticity of the token. For
example, depending on the provider, AWS might make a call to the provider and include the token
that the app has passed. Assuming that the identity provider validates the token, AWS returns the
following information to you:

• A set of temporary security credentials. These consist of an access key ID, a secret access key, and
a session token.

• The role ID and the ARN of the assumed role.

• A SubjectFromWebIdentityToken value that contains the unique user ID.

When you have the temporary security credentials, you can use them to make AWS API calls. This
is the same process as making an AWS API call with long-term security credentials. The difference
is that you must include the session token, which lets AWS verify that the temporary security
credentials are valid.

Your app should cache the credentials. As noted, by default the credentials expire after an hour.
If you don't use the AmazonSTSCredentialsProvider operation in the AWS SDK, it's up to you and
your app to call AssumeRoleWithWebIdentity again. Call this operation to get a new set of
temporary security credentials before the old ones expire.

Requesting temporary security credentials 712

https://aws.amazon.com/blogs/mobile/using-the-amazoncredentialsprovider-protocol-in-the-aws-sdk-for-ios/

AWS Identity and Access Management User Guide

AssumeRoleWithSAML—federation through an enterprise Identity Provider
compatible with SAML 2.0

The AssumeRoleWithSAML API operation returns a set of temporary security credentials for
federated users who are authenticated by your organization's existing identity system. The
users must also use SAML 2.0 (Security Assertion Markup Language) to pass authentication
and authorization information to AWS. This API operation is useful in organizations that have
integrated their identity systems (such as Windows Active Directory or OpenLDAP) with software
that can produce SAML assertions. Such an integration provides information about user identity
and permissions (such as Active Directory Federation Services or Shibboleth). For more information,
see About SAML 2.0-based federation.

Note

A call to AssumeRoleWithSAML is not signed (encrypted). Therefore, you should
only include optional session policies if the request is transmitted through a trusted
intermediary. In this case, someone could alter the policy to remove the restrictions.

This is an unsigned call, which means that the app does not need to have access to any AWS
security credentials in order to make the call. When you make this call, you pass the following
information:

• The Amazon Resource Name (ARN) of the role that the app should assume.

• The ARN of the SAML provider created in IAM that describes the identity provider.

• The SAML assertion, encoded in base64, that was provided by the SAML identity provider in its
authentication response to the sign-in request from your app.

• You can configure your IdP to pass attributes into your SAML assertion as session tags.

• (Optional) Duration, which specifies the duration of the temporary security credentials. Use
the DurationSeconds parameter to specify the duration of the role session from 900
seconds (15 minutes) up to the maximum session duration setting for the role. To learn how
to view the maximum value for your role, see View the maximum session duration setting for
a role. If you do not pass this parameter, the temporary credentials expire in one hour. The
DurationSeconds parameter from this API is separate from the SessionDuration HTTP
parameter that you use to specify the duration of a console session. Use the SessionDuration
HTTP parameter in the request to the federation endpoint for a console sign-in token. For more
information, see Enabling custom identity broker access to the AWS console.

Requesting temporary security credentials 713

https://docs.aws.amazon.com/STS/latest/APIReference/API_AssumeRoleWithSAML.html
https://www.oasis-open.org/standards#samlv2.0

AWS Identity and Access Management User Guide

• (Optional) Inline or managed session policies. These policies limit the permissions from the role's
identity-based policy that are assigned to the role session. The resulting session's permissions
are the intersection of the role's identity-based policies and the session policies. Session policies
cannot be used to grant more permissions than those allowed by the identity-based policy of
the role that is being assumed. For more information about role session permissions, see Session
policies.

• Role session name. Use this string value to identify the session when a role is used by different
principals. For security purposes, administrators can view this field in AWS CloudTrail logs to
learn who performed an action in AWS. Your administrator might require that you provide
a specific value for the session name when you assume the role. For more information, see
sts:RoleSessionName.

• (Optional) Source identity. You can require federated users to specify a source identity when they
assume a role. After the source identity is set, the value cannot be changed. It is present in the
request for all actions that are taken during the role session. The source identity value persists
across chained role sessions. You can use source identity information in AWS CloudTrail logs to
determine who took actions with a role. For more information about using source identity, see
Monitor and control actions taken with assumed roles.

When you call AssumeRoleWithSAML, AWS verifies the authenticity of the SAML assertion.
Assuming that the identity provider validates the assertion, AWS returns the following information
to you:

• A set of temporary security credentials. These consist of an access key ID, a secret access key, and
a session token.

• The role ID and the ARN of the assumed role.

• An Audience value that contains the value of the Recipient attribute of the
SubjectConfirmationData element of the SAML assertion.

• An Issuer value that contains the value of the Issuer element of the SAML assertion.

• A NameQualifier element that contains a hash value built from the Issuer value, the AWS
account ID, and the friendly name of the SAML provider. When combined with the Subject
element, they can uniquely identify the federated user.

• A Subject element that contains the value of the NameID element in the Subject element of
the SAML assertion.

• A SubjectType element that indicates the format of the Subject element. The value can be
persistent, transient, or the full Format URI from the Subject and NameID elements

Requesting temporary security credentials 714

AWS Identity and Access Management User Guide

used in your SAML assertion. For information about the NameID element's Format attribute, see
Configuring SAML assertions for the authentication response.

When you have the temporary security credentials, you can use them to make AWS API calls. This
is the same process as making an AWS API call with long-term security credentials. The difference
is that you must include the session token, which lets AWS verify that the temporary security
credentials are valid.

Your app should cache the credentials. By default the credentials expire after an hour. If you are
not using the AmazonSTSCredentialsProvider action in the AWS SDK, it's up to you and your app
to call AssumeRoleWithSAML again. Call this operation to get a new set of temporary security
credentials before the old ones expire.

GetFederationToken—federation through a custom identity broker

The GetFederationToken API operation returns a set of temporary security credentials
for federated users. This API differs from AssumeRole in that the default expiration
period is substantially longer (12 hours instead of one hour). Additionally, you can use the
DurationSeconds parameter to specify a duration for the temporary security credentials to
remain valid. The resulting credentials are valid for the specified duration, between 900 seconds
(15 minutes) to 129,600 seconds (36 hours). The longer expiration period can help reduce the
number of calls to AWS because you do not need to get new credentials as often.

When you make this request, you use the credentials of a specific IAM user. The permissions for
the temporary security credentials are determined by the session policies that you pass when you
call GetFederationToken. The resulting session permissions are the intersection of the IAM
user policies and the session policies that you pass. Session policies cannot be used to grant more
permissions than those allowed by the identity-based policy of the IAM user that is requesting
federation. For more information about role session permissions, see Session policies.

When you use the temporary credentials that are returned by the GetFederationToken
operation, the session's principal tags include the user's tags and the passed session tags. For more
information about session tags, see Passing session tags in AWS STS.

The GetFederationToken call returns temporary security credentials that consist of the session
token, access key, secret key, and expiration. You can use GetFederationToken if you want
to manage permissions inside your organization (for example, using the proxy application to
assign permissions). To view a sample application that uses GetFederationToken, go to Identity

Requesting temporary security credentials 715

https://aws.amazon.com/blogs/mobile/using-the-amazoncredentialsprovider-protocol-in-the-aws-sdk-for-ios
https://docs.aws.amazon.com/STS/latest/APIReference/API_GetFederationToken.html
https://aws.amazon.com/code/1288653099190193

AWS Identity and Access Management User Guide

Federation Sample Application for an Active Directory Use Case in the AWS Sample Code &
Libraries.

The following example shows a sample request and response that uses GetFederationToken.
This example request federates the calling user for the specified duration with the session policy
ARN and session tags. The resulting session is named Jane-session.

Example Example request

https://sts.amazonaws.com/
?Version=2011-06-15
&Action=GetFederationToken
&Name=Jane-session
&PolicyArns.member.1.arn==arn%3Aaws%3Aiam%3A%3A123456789012%3Apolicy%2FRole1policy
&DurationSeconds=1800
&Tags.member.1.Key=Project
&Tags.member.1.Value=Pegasus
&Tags.member.2.Key=Cost-Center
&Tags.member.2.Value=12345
&AUTHPARAMS

The policy ARN shown in the preceding example includes the following URL-encoded ARN:

arn:aws:iam::123456789012:policy/Role1policy

Also, note that the &AUTHPARAMS parameter in the example is meant as a placeholder for the
authentication information. This is the signature, which you must include with AWS HTTP API
requests. We recommend using the AWS SDKs to create API requests, and one benefit of doing so
is that the SDKs handle request signing for you. If you must create and sign API requests manually,
go to Signing AWS Requests By Using Signature Version 4 in the Amazon Web Services General
Reference to learn how to sign a request.

In addition to the temporary security credentials, the response includes the Amazon Resource
Name (ARN) for the federated user and the expiration time of the credentials.

Example Example response

<GetFederationTokenResponse xmlns="https://sts.amazonaws.com/doc/2011-06-15/">
<GetFederationTokenResult>
<Credentials>

Requesting temporary security credentials 716

https://aws.amazon.com/code/1288653099190193
https://aws.amazon.com/tools/
https://docs.aws.amazon.com/general/latest/gr/sigv4_signing.html

AWS Identity and Access Management User Guide

 <SessionToken>
 AQoDYXdzEPT//////////wEXAMPLEtc764bNrC9SAPBSM22wDOk4x4HIZ8j4FZTwdQW
 LWsKWHGBuFqwAeMicRXmxfpSPfIeoIYRqTflfKD8YUuwthAx7mSEI/qkPpKPi/kMcGd
 QrmGdeehM4IC1NtBmUpp2wUE8phUZampKsburEDy0KPkyQDYwT7WZ0wq5VSXDvp75YU
 9HFvlRd8Tx6q6fE8YQcHNVXAkiY9q6d+xo0rKwT38xVqr7ZD0u0iPPkUL64lIZbqBAz
 +scqKmlzm8FDrypNC9Yjc8fPOLn9FX9KSYvKTr4rvx3iSIlTJabIQwj2ICCEXAMPLE==
 </SessionToken>
 <SecretAccessKey>
 wJalrXUtnFEMI/K7MDENG/bPxRfiCYzEXAMPLEKEY
 </SecretAccessKey>
 <Expiration>2019-04-15T23:28:33.359Z</Expiration>
 <AccessKeyId>AKIAIOSFODNN7EXAMPLE;</AccessKeyId>
</Credentials>
<FederatedUser>
 <Arn>arn:aws:sts::123456789012:federated-user/Jean</Arn>
 <FederatedUserId>123456789012:Jean</FederatedUserId>
</FederatedUser>
<PackedPolicySize>4</PackedPolicySize>
</GetFederationTokenResult>
<ResponseMetadata>
<RequestId>c6104cbe-af31-11e0-8154-cbc7ccf896c7</RequestId>
</ResponseMetadata>
</GetFederationTokenResponse>

Note

An AWS conversion compresses the passed session policies and session tags into a packed
binary format that has a separate limit. Your request can fail for this limit even if your
plaintext meets the other requirements. The PackedPolicySize response element
indicates by percentage how close the policies and tags for your request are to the upper
size limit.

AWS recommends that you grant permissions at the resource level (for example, you attach a
resource-based policy to an Amazon S3 bucket), you can omit the Policy parameter. However, if
you do not include a policy for the federated user, the temporary security credentials will not grant
any permissions. In this case, you must use resource policies to grant the federated user access to
your AWS resources.

For example, assume your AWS account number is 111122223333, and you have an Amazon S3
bucket that you want to allow Susan to access. Susan's temporary security credentials don't include

Requesting temporary security credentials 717

AWS Identity and Access Management User Guide

a policy for the bucket. In that case, you would need to ensure that the bucket has a policy with
an ARN that matches Susan's ARN, such as arn:aws:sts::111122223333:federated-user/
Susan.

GetSessionToken—temporary credentials for users in untrusted environments

The GetSessionToken API operation returns a set of temporary security credentials to an
existing IAM user. This is useful for providing enhanced security, such as allowing AWS requests
only when MFA is enabled for the IAM user. Because the credentials are temporary, they provide
enhanced security when you have an IAM user who accesses your resources through a less secure
environment. Examples of less secure environments include a mobile device or web browser. For
more information, see Requesting temporary security credentials or GetSessionToken in the AWS
Security Token Service API Reference.

By default, temporary security credentials for an IAM user are valid for a maximum of 12
hours. But you can request a duration as short as 15 minutes or as long as 36 hours using the
DurationSeconds parameter. For security reasons, a token for an AWS account root user is
restricted to a duration of one hour.

GetSessionToken returns temporary security credentials consisting of a session token, an access
key ID, and a secret access key. The following example shows a sample request and response using
GetSessionToken. The response also includes the expiration time of the temporary security
credentials.

Example Example request

https://sts.amazonaws.com/
?Version=2011-06-15
&Action=GetSessionToken
&DurationSeconds=1800
&AUTHPARAMS

The AUTHPARAMS parameter in the example is a placeholder for your signature. A signature is the
authentication information that you must include with AWS HTTP API requests. We recommend
using the AWS SDKs to create API requests, and one benefit of doing so is that the SDKs handle
request signing for you. If you must create and sign API requests manually, go to Signing AWS
Requests By Using Signature Version 4 in the Amazon Web Services General Reference to learn how
to sign a request.

Requesting temporary security credentials 718

https://docs.aws.amazon.com/STS/latest/APIReference/API_GetSessionToken.html
https://docs.aws.amazon.com/STS/latest/APIReference/API_GetSessionToken.html
https://aws.amazon.com/tools/
https://docs.aws.amazon.com/general/latest/gr/sigv4_signing.html
https://docs.aws.amazon.com/general/latest/gr/sigv4_signing.html

AWS Identity and Access Management User Guide

Example Example response

<GetSessionTokenResponse xmlns="https://sts.amazonaws.com/doc/2011-06-15/">
<GetSessionTokenResult>
<Credentials>
 <SessionToken>
 AQoEXAMPLEH4aoAH0gNCAPyJxz4BlCFFxWNE1OPTgk5TthT+FvwqnKwRcOIfrRh3c/L
 To6UDdyJwOOvEVPvLXCrrrUtdnniCEXAMPLE/IvU1dYUg2RVAJBanLiHb4IgRmpRV3z
 rkuWJOgQs8IZZaIv2BXIa2R4OlgkBN9bkUDNCJiBeb/AXlzBBko7b15fjrBs2+cTQtp
 Z3CYWFXG8C5zqx37wnOE49mRl/+OtkIKGO7fAE
 </SessionToken>
 <SecretAccessKey>
 wJalrXUtnFEMI/K7MDENG/bPxRfiCYzEXAMPLEKEY
 </SecretAccessKey>
 <Expiration>2011-07-11T19:55:29.611Z</Expiration>
 <AccessKeyId>AKIAIOSFODNN7EXAMPLE</AccessKeyId>
</Credentials>
</GetSessionTokenResult>
<ResponseMetadata>
<RequestId>58c5dbae-abef-11e0-8cfe-09039844ac7d</RequestId>
</ResponseMetadata>
</GetSessionTokenResponse>

Optionally, the GetSessionToken request can include SerialNumber and TokenCode values
for AWS multi-factor authentication (MFA) verification. If the provided values are valid, AWS
STS provides temporary security credentials that include the state of MFA authentication. The
temporary security credentials can then be used to access the MFA-protected API operations or
AWS websites for as long as the MFA authentication is valid.

The following example shows a GetSessionToken request that includes an MFA verification code
and device serial number.

https://sts.amazonaws.com/
?Version=2011-06-15
&Action=GetSessionToken
&DurationSeconds=7200
&SerialNumber=YourMFADeviceSerialNumber
&TokenCode=123456
&AUTHPARAMS

Requesting temporary security credentials 719

AWS Identity and Access Management User Guide

Note

The call to AWS STS can be to the global endpoint or to any of the Regional endpoints that
you activate your AWS account. For more information, see the AWS STS section of Regions
and Endpoints.
The AUTHPARAMS parameter in the example is a placeholder for your signature. A signature
is the authentication information that you must include with AWS HTTP API requests. We
recommend using the AWS SDKs to create API requests, and one benefit of doing so is
that the SDKs handle request signing for you. If you must create and sign API requests
manually, see Signing AWS Requests By Using Signature Version 4 in the Amazon Web
Services General Reference to learn how to sign a request.

Comparing the AWS STS API operations

The following table compares features of the API operations in AWS STS that return temporary
security credentials. To learn about the different methods you can use to request temporary
security credentials by assuming a role, see Using IAM roles. To learn about the different AWS STS
API operations that allow you to pass session tags, see Passing session tags in AWS STS.

Comparing your API options

AWS
STS API

Who can call Credentia
l
lifetime
(min |
max |
default)

MFA
support¹

Session
policy
support²

Restrictions on resulting
temporary credentials

AssumeRol
e

IAM user or IAM
role with existing
temporary security
credentials

15 m |
Maximum
session
duration
setting³
| 1 hr

Yes Yes Cannot call GetFedera
tionToken or GetSessio
nToken .

Requesting temporary security credentials 720

https://docs.aws.amazon.com/general/latest/gr/rande.html#sts_region
https://docs.aws.amazon.com/general/latest/gr/rande.html#sts_region
https://aws.amazon.com/tools/
https://docs.aws.amazon.com/general/latest/gr/sigv4_signing.html
https://docs.aws.amazon.com/STS/latest/APIReference/API_AssumeRole.html
https://docs.aws.amazon.com/STS/latest/APIReference/API_AssumeRole.html

AWS Identity and Access Management User Guide

AWS
STS API

Who can call Credentia
l
lifetime
(min |
max |
default)

MFA
support¹

Session
policy
support²

Restrictions on resulting
temporary credentials

AssumeRol
eWithSAML

Any user; caller
must pass a SAML
authentication
response that
indicates authentic
ation from a
known identity
provider

15 m |
Maximum
session
duration
setting³
| 1 hr

No Yes Cannot call GetFedera
tionToken or GetSessio
nToken .

AssumeRol
eWithWebI
dentity

Any user; caller
must pass a web
identity token
that indicates
authentication
from a known
identity provider

15 m |
Maximum
session
duration
setting³
| 1 hr

No Yes Cannot call GetFedera
tionToken or GetSessio
nToken .

GetFedera
tionToken

IAM user or AWS
account root user

IAM
user: 15
m | 36
hr | 12
hr

Root
user: 15
m | 1 hr
| 1 hr

No Yes Cannot call IAM operation
s using the AWS CLI or AWS
API. This limitation does not
apply to console sessions.

Cannot call AWS STS
operations except
GetCallerIdentity .⁴

SSO to console is allowed.⁵

Requesting temporary security credentials 721

https://docs.aws.amazon.com/STS/latest/APIReference/API_AssumeRoleWithSAML.html
https://docs.aws.amazon.com/STS/latest/APIReference/API_AssumeRoleWithSAML.html
https://docs.aws.amazon.com/STS/latest/APIReference/API_AssumeRoleWithSAML.html
https://docs.aws.amazon.com/STS/latest/APIReference/API_AssumeRoleWithWebIdentity.html
https://docs.aws.amazon.com/STS/latest/APIReference/API_AssumeRoleWithWebIdentity.html
https://docs.aws.amazon.com/STS/latest/APIReference/API_AssumeRoleWithWebIdentity.html
https://docs.aws.amazon.com/STS/latest/APIReference/API_GetFederationToken.html
https://docs.aws.amazon.com/STS/latest/APIReference/API_GetFederationToken.html
https://docs.aws.amazon.com/STS/latest/APIReference/API_GetFederationToken.html

AWS Identity and Access Management User Guide

AWS
STS API

Who can call Credentia
l
lifetime
(min |
max |
default)

MFA
support¹

Session
policy
support²

Restrictions on resulting
temporary credentials

GetSessio
nToken

IAM user or AWS
account root user

IAM
user: 15
m | 36
hr | 12
hr

Root
user: 15
m | 1 hr
| 1 hr

Yes No Cannot call IAM API operation
s unless MFA information is
included with the request.

Cannot call AWS STS
API operations except
AssumeRole or GetCaller
Identity .

SSO to console is not
allowed.⁶

¹ MFA support. You can include information about a multi-factor authentication (MFA) device when
you call the AssumeRole and GetSessionToken API operations. This ensures that the temporary
security credentials that result from the API call can be used only by users who are authenticated
with an MFA device. For more information, see Configuring MFA-protected API access.

² Session policy support. Session policies are policies that you pass as a parameter when you
programmatically create a temporary session for a role or federated user. This policy limits the
permissions from the role or user's identity-based policy that are assigned to the session. The
resulting session's permissions are the intersection of the entity's identity-based policies and the
session policies. Session policies cannot be used to grant more permissions than those allowed
by the identity-based policy of the role that is being assumed. For more information about role
session permissions, see Session policies.

³ Maximum session duration setting. Use the DurationSeconds parameter to specify the
duration of your role session from 900 seconds (15 minutes) up to the maximum session duration
setting for the role. To learn how to view the maximum value for your role, see View the maximum
session duration setting for a role.

Requesting temporary security credentials 722

https://docs.aws.amazon.com/STS/latest/APIReference/API_GetSessionToken.html
https://docs.aws.amazon.com/STS/latest/APIReference/API_GetSessionToken.html

AWS Identity and Access Management User Guide

⁴ GetCallerIdentity. No permissions are required to perform this operation. If an
administrator adds a policy to your IAM user or role that explicitly denies access to the
sts:GetCallerIdentity action, you can still perform this operation. Permissions are not
required because the same information is returned when an IAM user or role is denied access. To
view an example response, see I am not authorized to perform: iam:DeleteVirtualMFADevice.

⁵ Single sign-on (SSO) to the console. To support SSO, AWS lets you call a federation endpoint
(https://signin.aws.amazon.com/federation) and pass temporary security credentials.
The endpoint returns a token that you can use to construct a URL that signs a user directly into
the console without requiring a password. For more information, see Enabling SAML 2.0 federated
users to access the AWS Management Console and How to Enable Cross-Account Access to the
AWS Management Console in the AWS Security Blog.

⁶ After you retrieve your temporary credentials, you can't access the AWS Management Console
by passing the credentials to the federation single sign-on endpoint. For more information, see
Enabling custom identity broker access to the AWS console.

Using temporary credentials with AWS resources

You can use temporary security credentials to make programmatic requests for AWS resources
using the AWS CLI or AWS API (using the AWS SDKs). The temporary credentials provide the same
permissions as long-term security credentials, such as IAM user credentials. However, there are a
few differences:

• When you make a call using temporary security credentials, the call must include a session token,
which is returned along with those temporary credentials. AWS uses the session token to validate
the temporary security credentials.

• Temporary credentials expire after a specified interval. After temporary credentials expire, any
calls that you make with those credentials will fail, so you must generate a new set of temporary
credentials. Temporary credentials cannot be extended or refreshed beyond the original specified
interval.

• When you use temporary credentials to make a request, your principal might include a set of
tags. These tags come from session tags and tags that are attached to the role that you assume.
For more information about session tags, see Passing session tags in AWS STS.

If you are using the AWS SDKs, the AWS Command Line Interface (AWS CLI), or the Tools for
Windows PowerShell, the way to get and use temporary security credentials differs with the

Using temporary credentials with AWS resources 723

https://aws.amazon.com/blogs/security/how-to-enable-cross-account-access-to-the-aws-management-console
https://aws.amazon.com/blogs/security/how-to-enable-cross-account-access-to-the-aws-management-console
https://aws.amazon.com/tools/
https://aws.amazon.com/tools
https://docs.aws.amazon.com/cli/latest/userguide/
https://aws.amazon.com/powershell
https://aws.amazon.com/powershell

AWS Identity and Access Management User Guide

context. If you are running code, AWS CLI, or Tools for Windows PowerShell commands inside an
EC2 instance, you can take advantage of roles for Amazon EC2. Otherwise, you can call an AWS STS
API to get the temporary credentials, and then use them explicitly to make calls to AWS services.

Note

You can use AWS Security Token Service (AWS STS) to create and provide trusted users
with temporary security credentials that can control access to your AWS resources. For
more information about AWS STS, see Temporary security credentials in IAM. AWS STS
is a global service that has a default endpoint at https://sts.amazonaws.com. This
endpoint is in the US East (N. Virginia) Region, although credentials that you get from this
and other endpoints are valid globally. These credentials work with services and resources
in any Region. You can also choose to make AWS STS API calls to endpoints in any of the
supported Regions. This can reduce latency by making the requests from servers in a
Region that is geographically closer to you. No matter which Region your credentials come
from, they work globally. For more information, see Managing AWS STS in an AWS Region.

Contents

• Using temporary credentials in Amazon EC2 instances

• Using temporary security credentials with the AWS SDKs

• Using temporary security credentials with the AWS CLI

• Using temporary security credentials with API operations

• More information

Using temporary credentials in Amazon EC2 instances

If you want to run AWS CLI commands or code inside an EC2 instance, the recommended way to
get credentials is to use roles for Amazon EC2. You create an IAM role that specifies the permissions
that you want to grant to applications that run on the EC2 instances. When you launch the
instance, you associate the role with the instance.

Applications, AWS CLI, and Tools for Windows PowerShell commands that run on the instance
can then get automatic temporary security credentials from the instance metadata. You do not
have to explicitly get the temporary security credentials. The AWS SDKs, AWS CLI, and Tools for
Windows PowerShell automatically get the credentials from the EC2 Instance Metadata Service

Using temporary credentials with AWS resources 724

https://docs.aws.amazon.com/STS/latest/APIReference/
https://docs.aws.amazon.com/STS/latest/APIReference/
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/iam-roles-for-amazon-ec2.html

AWS Identity and Access Management User Guide

(IMDS) and use them. The temporary credentials have the permissions that you define for the role
that is associated with the instance.

For more information and for examples, see the following:

• Using IAM Roles to Grant Access to AWS Resources on Amazon Elastic Compute Cloud — AWS
SDK for Java

• Granting Access Using an IAM Role — AWS SDK for .NET

• Creating a Role — AWS SDK for Ruby

Using temporary security credentials with the AWS SDKs

To use temporary security credentials in code, you programmatically call an AWS STS API like
AssumeRole and extract the resulting credentials and session token. You then use those values as
credentials for subsequent calls to AWS. The following example shows pseudocode for how to use
temporary security credentials if you're using an AWS SDK:

assumeRoleResult = AssumeRole(role-arn);
tempCredentials = new SessionAWSCredentials(
 assumeRoleResult.AccessKeyId,
 assumeRoleResult.SecretAccessKey,
 assumeRoleResult.SessionToken);
s3Request = CreateAmazonS3Client(tempCredentials);

For an example written in Python (using the AWS SDK for Python (Boto)), see Switching to an IAM
role (AWS API). This example shows how to call AssumeRole to get temporary security credentials
and then use those credentials to make a call to Amazon S3.

For details about how to call AssumeRole, GetFederationToken, and other API operations,
see the AWS Security Token Service API Reference. For information on getting the temporary
security credentials and session token from the result, see the documentation for the SDK that
you're working with. You can find the documentation for all the AWS SDKs on the main AWS
documentation page, in the SDKs and Toolkits section.

You must make sure that you get a new set of credentials before the old ones expire. In some
SDKs, you can use a provider that manages the process of refreshing credentials for you; check the
documentation for the SDK you're using.

Using temporary credentials with AWS resources 725

https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/java-dg-roles.html
https://docs.aws.amazon.com/sdk-for-net/latest/developer-guide/net-dg-hosm.html
https://docs.aws.amazon.com/sdk-for-ruby/latest/developer-guide/iam-example-create-role.html
https://aws.amazon.com/sdk-for-python/
https://docs.aws.amazon.com/STS/latest/APIReference/
http://aws.amazon.com/documentation
http://aws.amazon.com/documentation

AWS Identity and Access Management User Guide

Using temporary security credentials with the AWS CLI

You can use temporary security credentials with the AWS CLI. This can be useful for testing policies.

Using the AWS CLI, you can call an AWS STS API like AssumeRole or GetFederationToken
and then capture the resulting output. The following example shows a call to AssumeRole that
sends the output to a file. In the example, the profile parameter is assumed to be a profile in
the AWS CLI configuration file. It is also assumed to reference credentials for an IAM user who has
permissions to assume the role.

aws sts assume-role --role-arn arn:aws:iam::123456789012:role/role-name --role-session-
name "RoleSession1" --profile IAM-user-name > assume-role-output.txt

When the command is finished, you can extract the access key ID, secret access key, and session
token from wherever you've routed it. You can do this either manually or by using a script. You can
then assign these values to environment variables.

When you run AWS CLI commands, the AWS CLI looks for credentials in a specific order—first in
environment variables and then in the configuration file. Therefore, after you've put the temporary
credentials into environment variables, the AWS CLI uses those credentials by default. (If you
specify a profile parameter in the command, the AWS CLI skips the environment variables.
Instead, the AWS CLI looks in the configuration file, which lets you override the credentials in the
environment variables if you need to.)

The following example shows how you might set the environment variables for temporary security
credentials and then call an AWS CLI command. Because no profile parameter is included in the
AWS CLI command, the AWS CLI looks for credentials first in environment variables and therefore
uses the temporary credentials.

Linux

$ export AWS_ACCESS_KEY_ID=ASIAIOSFODNN7EXAMPLE
$ export AWS_SECRET_ACCESS_KEY=wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY
$ export AWS_SESSION_TOKEN=AQoDYXdzEJr...<remainder of session token>
$ aws ec2 describe-instances --region us-west-1

Windows

C:\> SET AWS_ACCESS_KEY_ID=ASIAIOSFODNN7EXAMPLE
C:\> SET AWS_SECRET_ACCESS_KEY=wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY

Using temporary credentials with AWS resources 726

https://docs.aws.amazon.com/cli/latest/reference/
https://docs.aws.amazon.com/STS/latest/APIReference/

AWS Identity and Access Management User Guide

C:\> SET AWS_SESSION_TOKEN=AQoDYXdzEJr...<remainder of token>
C:\> aws ec2 describe-instances --region us-west-1

Using temporary security credentials with API operations

If you're making direct HTTPS API requests to AWS, you can sign those requests with the temporary
security credentials that you get from the AWS Security Token Service (AWS STS). To do this, you
use the access key ID and secret access key that you receive from AWS STS. You use the access key
ID and secret access key the same way you would use long-term credentials to sign a request. You
also add to your API request the session token that you receive from AWS STS. You add the session
token to an HTTP header or to a query string parameter named X-Amz-Security-Token. You
add the session token to the HTTP header or the query string parameter, but not both. For more
information about signing HTTPS API requests, see Signing AWS API Requests in the AWS General
Reference.

More information

For more information about using AWS STS with other AWS services, see the following links:

• Amazon S3. See Making requests using IAM user temporary credentials or Making requests using
federated user temporary credentials in the Amazon Simple Storage Service User Guide.

• Amazon SNS. See Using identity-based policies with Amazon SNS in the Amazon Simple
Notification Service Developer Guide.

• Amazon SQS. See Identity and access management in Amazon SQS in the Amazon Simple Queue
Service Developer Guide.

• Amazon SimpleDB. See Using Temporary Security Credentials in the Amazon SimpleDB
Developer Guide.

Controlling permissions for temporary security credentials

You can use AWS Security Token Service (AWS STS) to create and provide trusted users with
temporary security credentials that can control access to your AWS resources. For more information
about AWS STS, see Temporary security credentials in IAM. After AWS STS issues temporary
security credentials, they are valid through the expiration period and cannot be revoked. However,
the permissions assigned to temporary security credentials are evaluated each time a request
is made that uses the credentials, so you can achieve the effect of revoking the credentials by
changing their access rights after they have been issued.

Controlling permissions for temporary security credentials 727

https://docs.aws.amazon.com/general/latest/gr/signing_aws_api_requests.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/AuthUsingTempSessionToken.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/AuthUsingTempFederationToken.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/AuthUsingTempFederationToken.html
https://docs.aws.amazon.com/sns/latest/dg/UsingIAMwithSNS.html#UsingTemporarySecurityCredentials_SNS
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/UsingIAM.html#UsingTemporarySecurityCredentials_SQS
https://docs.aws.amazon.com/AmazonSimpleDB/latest/DeveloperGuide/index.html?UsingTemporarySecurityCredentials_SDB.html

AWS Identity and Access Management User Guide

The following topics assume you have a working knowledge of AWS permissions and policies. For
more information on these topics, see Access management for AWS resources.

Topics

• Permissions for AssumeRole, AssumeRoleWithSAML, and AssumeRoleWithWebIdentity

• Monitor and control actions taken with assumed roles

• Permissions for GetFederationToken

• Permissions for GetSessionToken

• Disabling permissions for temporary security credentials

• Granting permissions to create temporary security credentials

Permissions for AssumeRole, AssumeRoleWithSAML, and
AssumeRoleWithWebIdentity

The permissions policy of the role that is being assumed determines the permissions for the
temporary security credentials that are returned by AssumeRole, AssumeRoleWithSAML, and
AssumeRoleWithWebIdentity. You define these permissions when you create or update the
role.

Optionally, you can pass inline or managed session policies as parameters of the AssumeRole,
AssumeRoleWithSAML, or AssumeRoleWithWebIdentity API operations. Session policies limit
the permissions for the role's temporary credential session. The resulting session's permissions
are the intersection of the role's identity-based policy and the session policies. You can use the
role's temporary credentials in subsequent AWS API calls to access resources in the account that
owns the role. You cannot use session policies to grant more permissions than those allowed by the
identity-based policy of the role that is being assumed. To learn more about how AWS determines
the effective permissions of a role, see Policy evaluation logic.

Controlling permissions for temporary security credentials 728

AWS Identity and Access Management User Guide

The policies that are attached to the credentials that made the original call to AssumeRole are not
evaluated by AWS when making the "allow" or "deny" authorization decision. The user temporarily
gives up its original permissions in favor of the permissions assigned by the assumed role. In the
case of the AssumeRoleWithSAML and AssumeRoleWithWebIdentity API operations, there are
no policies to evaluate because the caller of the API is not an AWS identity.

Example: Assigning permissions using AssumeRole

You can use the AssumeRole API operation with different kinds of policies. Here are a few
examples.

Role permissions policy

In this example, you call the AssumeRole API operation without specifying the session policy
in the optional Policy parameter. The permissions assigned to the temporary credentials
are determined by the permissions policy of the role being assumed. The following example
permissions policy grants the role permission to list all objects that are contained in an S3 bucket
named productionapp. It also allows the role to get, put, and delete objects within that bucket.

Example Example role permissions policy

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "s3:ListBucket",
 "Resource": "arn:aws:s3:::productionapp"
 },
 {

Controlling permissions for temporary security credentials 729

AWS Identity and Access Management User Guide

 "Effect": "Allow",
 "Action": [
 "s3:GetObject",
 "s3:PutObject",
 "s3:DeleteObject"
],
 "Resource": "arn:aws:s3:::productionapp/*"
 }
]
}

Session policy passed as a parameter

Imagine that you want to allow a user to assume the same role as in the previous example.
But in this case you want the role session to have permission only to get and put objects in
the productionapp S3 bucket. You do not want to allow them to delete objects. One way to
accomplish this is to create a new role and specify the desired permissions in that role's permissions
policy. Another way to accomplish this is to call the AssumeRole API and include session policies
in the optional Policy parameter as part of the API operation. The resulting session's permissions
are the intersection of the role's identity-based policies and the session policies. Session policies
cannot be used to grant more permissions than those allowed by the identity-based policy of
the role that is being assumed. For more information about role session permissions, see Session
policies.

After you retrieve the new session's temporary credentials, you can pass them to the user that you
want to have those permissions.

For example, imagine that the following policy is passed as a parameter of the API call. The person
using the session has permissions to perform only these actions:

• List all objects in the productionapp bucket.

• Get and put objects in the productionapp bucket.

In the following session policy, the s3:DeleteObject permission is filtered out and the
assumed session is not granted the s3:DeleteObject permission. The policy sets the maximum
permissions for the role session so that it overrides any existing permissions policies on the role.

Example Example session policy passed with AssumeRole API call

{

Controlling permissions for temporary security credentials 730

AWS Identity and Access Management User Guide

 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "s3:ListBucket",
 "Resource": "arn:aws:s3:::productionapp"
 },
 {
 "Effect": "Allow",
 "Action": [
 "s3:GetObject",
 "s3:PutObject"
],
 "Resource": "arn:aws:s3:::productionapp/*"
 }
]
}

Resource-based policy

Some AWS resources support resource-based policies, and these policies provide another
mechanism to define permissions that affect temporary security credentials. Only a few resources,
like Amazon S3 buckets, Amazon SNS topics, and Amazon SQS queues support resource-based
policies. The following example expands on the previous examples, using an S3 bucket named
productionapp. The following policy is attached to the bucket.

When you attach the following resource-based policy to the productionapp bucket, all users
are denied permission to delete objects from the bucket. (See the Principal element in the
policy.) This includes all assumed role users, even though the role permissions policy grants the
DeleteObject permission. An explicit Deny statement always takes precedence over an Allow
statement.

Example Example bucket policy

{
 "Version": "2012-10-17",
 "Statement": {
 "Principal": {"AWS": "*"},
 "Effect": "Deny",
 "Action": "s3:DeleteObject",
 "Resource": "arn:aws:s3:::productionapp/*"
 }

Controlling permissions for temporary security credentials 731

AWS Identity and Access Management User Guide

}

For more information about how multiple policy types are combined and evaluated by AWS, see
Policy evaluation logic.

Monitor and control actions taken with assumed roles

An IAM role is an object in IAM that is assigned permissions. When you assume that role using an
IAM identity or an identity from outside of AWS, you receive a session with the permissions that are
assigned to the role.

When you perform actions in AWS, the information about your session can be logged to AWS
CloudTrail for your account administrator to monitor. Administrators can configure roles to require
identities to pass a custom string that identifies the person or application that is performing
actions in AWS. This identity information is stored as the source identity in AWS CloudTrail. When
the administrator reviews activity in CloudTrail, they can view the source identity information to
determine who or what performed actions with assumed role sessions.

After a source identity is set, it is present in requests for any AWS action taken during the role
session. The value that is set persists when a role is used to assume another role through the AWS
CLI or AWS API, known as role chaining. The value that is set cannot be changed during the role
session. Administrators can configure granular permissions based on the presence or value of the
source identity to further control AWS actions that are taken with shared roles. You can decide
whether the source identity attribute can be used, whether it is required, and what value can be
used.

The way that you use source identity differs from role session name and session tags in an
important way. The source identity value can't be changed after it is set, and it persists for any
additional actions that are taken with the role session. Here's how you can use session tags and role
session name:

• Session tags – You can pass session tags when you assume a role or federate a user. Session
tags are present when a role is assumed. You can define policies that use tag condition keys to
grant permissions to your principals based on their tags. Then you can use CloudTrail to view the
requests made to assume roles or federate users. To learn more about session tags, see Passing
session tags in AWS STS.

• Role session name – You can use the sts:RoleSessionName condition key in a role trust policy
to require that your users provide a specific session name when they assume a role. Role session

Controlling permissions for temporary security credentials 732

AWS Identity and Access Management User Guide

name can be used to differentiate role sessions when a role is used by different principals. To
learn more about role session name, see sts:RoleSessionName.

We recommend that you use source identity when you want to control the identity that assumes
a role. Source identity is also useful for mining CloudTrail logs to determine who used the role to
perform actions.

Topics

• Setting up to use source identity

• Things to know about source identity

• Permissions required to set source identity

• Specifying a source identity when assuming a role

• Using source identity with AssumeRole

• Using source identity with AssumeRoleWithSAML

• Using source identity with AssumeRoleWithWebIdentity

• Control access using source identity information

• Viewing source identity in CloudTrail

Setting up to use source identity

The way that you set up to use source identity depends on the method used when your roles
are assumed. For example, your IAM users might assume roles directly using the AssumeRole
operation. If you have enterprise identities, also known as workforce identities, they might
access your AWS resources using AssumeRoleWithSAML. If end users access your mobile or web
applications, they might do so using AssumeRoleWithWebIdentity. The following is a high-
level workflow overview to help you understand how you can set up to utilize source identity
information in your existing environment.

1. Configure test users and roles – Using a preproduction environment, configure test users and
roles and configure their policies to allow setting a source identity.

If you use an identity provider (IdP) for your federated identities, configure your IdP to pass a
user attribute of your choice for source identity in the assertion or token.

2. Assume the role – Test assuming roles and passing a source identity with the users and roles
that you set up for testing.

Controlling permissions for temporary security credentials 733

AWS Identity and Access Management User Guide

3. Review CloudTrail – Review the source identity information for your test roles in your CloudTrail
logs.

4. Train your users – After you've tested in your preproduction environment, ensure that your
users know how to pass in the source identity information, if necessary. Set a deadline for when
you will require your users to provide a source identity in your production environment.

5. Configure production policies – Configure your policies for your production environment, and
then add them to your production users and roles.

6. Monitor activity – Monitor your production role activity using CloudTrail logs.

Things to know about source identity

Keep the following in mind when working with source identity.

• Trust policies for all roles connected to an identity provider (IdP) must have the
sts:SetSourceIdentity permission. For roles that don't have this permission in the role
trust policy, the AssumeRole* operation will fail. If you don't want to update the role trust
policy for each role, you can use a separate IdP instance for passing source identity. Then add the
sts:SetSourceIdentity permission to only the roles that are connected to the separate IdP.

• When an identity sets a source identity, the sts:SourceIdentity key is present in the
request. For subsequent actions taken during the role session, the aws:SourceIdentity
key is present in the request. AWS doesn’t control the value of the source identity in either
the sts:SourceIdentity or aws:SourceIdentity keys. If you choose to require a source
identity, you must choose an attribute that you want your users or IdP to provide. For security
purposes, you must ensure that you can control how those values are provided.

• The value of source identity must be between 2 and 64 characters long, can contain only
alphanumeric characters, underscores, and the following characters: . , + = @ - (hyphen). You
cannot use a value that begins with the text aws:. This prefix is reserved for AWS internal use.

• The source identity information is not captured by CloudTrail when an AWS service or service-
linked role carries out an action on behalf of a federated or workforce identity.

Important

You cannot switch to a role in the AWS Management Console that requires a source identity
to be set when the role is assumed. To assume such a role, you can use the AWS CLI or AWS
API to call the AssumeRole operation and specify the source identity parameter.

Controlling permissions for temporary security credentials 734

AWS Identity and Access Management User Guide

Permissions required to set source identity

In addition to the action that matches the API operation, you must have the following permissions-
only action in your policy:

sts:SetSourceIdentity

• To specify a source identity, principals (IAM users and roles) must have permissions to
sts:SetSourceIdentity. As the administrator, you can configure this in the role trust policy
and in the principal’s permissions policy.

• When you assume a role with another role, called role chaining, permissions for
sts:SetSourceIdentity are required in both the permissions policy of the principal who
is assuming the role and in the role trust policy of the target role. Otherwise, the assume role
operation will fail.

• When using source identity, the role trust policies for all roles connected to an IdP must have
the sts:SetSourceIdentity permission. The AssumeRole* operation will fail for any
role connected to an IdP without this permission. If you don't want to update the role trust
policy for each role, you can use a separate IdP instance for passing source identity and add the
sts:SetSourceIdentity permission to only the roles that are connected to the separate IdP.

• To set a source identity across account boundaries, you must include the
sts:SetSourceIdentity permission in two places. It must be in the permissions policy of the
principal in the originating account and in the role trust policy of the role in the target account.
You might need to do this, for example, when a role is used to assume a role in another account
with role chaining.

As the account administrator, imagine that you want to allow the IAM user DevUser in your
account to assume the Developer_Role in the same account. But you want to allow this action
only if the user has set the source identity to their IAM user name. You can attach the following
policy to the IAM user.

Example Example identity-based policy attached to DevUser

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "AssumeRole",

Controlling permissions for temporary security credentials 735

AWS Identity and Access Management User Guide

 "Effect": "Allow",
 "Action": "sts:AssumeRole",
 "Resource": "arn:aws:iam::123456789012:role/Developer_Role"
 },
 {
 "Sid": "SetAwsUserNameAsSourceIdentity",
 "Effect": "Allow",
 "Action": "sts:SetSourceIdentity",
 "Resource": "arn:aws:iam::123456789012:role/Developer_Role",
 "Condition": {
 "StringLike": {
 "sts:SourceIdentity": "${aws:username}"
 }
 }
 }
]
}

To enforce the acceptable source identity values, you can configure the following role trust policy.
The policy gives the IAM user DevUser permissions to assume the role and set a source identity.
The sts:SourceIdentity condition key defines the acceptable source identity value.

Example Example role trust policy for source identity

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "AllowDevUserAssumeRole",
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::123456789012:user/DevUser"
 },
 "Action": [
 "sts:AssumeRole",
 "sts:SetSourceIdentity"
],
 "Condition": {
 "StringEquals": {
 "sts:SourceIdentity": "DevUser"
 }
 }
 }

Controlling permissions for temporary security credentials 736

AWS Identity and Access Management User Guide

]
}

Using the credentials for the IAM user DevUser, the user attempts to assume the DeveloperRole
using the following AWS CLI request.

Example Example AssumeRole CLI request

aws sts assume-role \
--role-arn arn:aws:iam::123456789012:role/Developer_Role \
--role-session-name Dev-project \
--source-identity DevUser \

When AWS evaluates the request, the request context contains the sts:SourceIdentity of
DevUser.

Specifying a source identity when assuming a role

You can specify a source identity when you use one of the AWS STS AssumeRole* API operations
to get temporary security credentials for a role. The API operation that you use differs depending
on your use case. For example, if you use IAM roles to give IAM users access to AWS resources that
they don’t normally have access to, you might use the AssumeRole operation. If you use enterprise
identity federation to manage your workforce users, you might use the AssumeRoleWithSAML
operation. If you use web identity federation to allow end users to access your mobile or web
applications, you might use the AssumeRoleWithWebIdentity operation. The following sections
explain how to use source identity with each operation. To learn more about common scenarios for
temporary credentials, see Common scenarios for temporary credentials.

Using source identity with AssumeRole

The AssumeRole operation returns a set of temporary credentials that you can use to access AWS
resources. You can use IAM user or role credentials to call AssumeRole. To pass source identity
while assuming a role, use the -–source-identity AWS CLI option or the SourceIdentity
AWS API parameter. The following example shows how to specify the source identity using the
AWS CLI.

Example Example AssumeRole CLI request

aws sts assume-role \

Controlling permissions for temporary security credentials 737

AWS Identity and Access Management User Guide

--role-arn arn:aws:iam::123456789012:role/developer \
--role-session-name Audit \
--source-identity Admin \

Using source identity with AssumeRoleWithSAML

The principal calling the AssumeRoleWithSAML operation is authenticated using SAML-based
federation. This operation returns a set of temporary credentials that you can use to access AWS
resources. For more information about using SAML-based federation for AWS Management
Console access, see Enabling SAML 2.0 federated users to access the AWS Management Console.
For details about AWS CLI or AWS API access, see About SAML 2.0-based federation. For a tutorial
of setting up SAML federation for your Active Directory users, see AWS Federated Authentication
with Active Directory Federation Services (ADFS) in the AWS Security Blog.

As an administrator, you can allow members of your company directory to federate into AWS using
the AWS STS AssumeRoleWithSAML operation. To do this, you must complete the following tasks:

1. Configure a SAML provider in your organization.

2. Create a SAML provider in IAM.

3. Configure a role and its permissions in AWS for your federated users.

4. Finish configuring the SAML IdP and create assertions for the SAML authentication response.

To set a SAML attribute for source identity, include the Attribute element with the Name
attribute set to https://aws.amazon.com/SAML/Attributes/SourceIdentity. Use the
AttributeValue element to specify the value of the source identity. For example, assume that
you want to pass the following identity attribute as the source identity.

SourceIdentity:DiegoRamirez

To pass this attribute, include the following element in your SAML assertion.

Example Example snippet of a SAML assertion

<Attribute Name="https://aws.amazon.com/SAML/Attributes/SourceIdentity">
<AttributeValue>DiegoRamirez</AttributeValue>
</Attribute>

Controlling permissions for temporary security credentials 738

https://aws.amazon.com/blogs/security/aws-federated-authentication-with-active-directory-federation-services-ad-fs/
https://aws.amazon.com/blogs/security/aws-federated-authentication-with-active-directory-federation-services-ad-fs/

AWS Identity and Access Management User Guide

Using source identity with AssumeRoleWithWebIdentity

The principal calling the AssumeRoleWithWebIdentity operation is authenticated using OpenID
Connect (OIDC)-compliant web identity federation. This operation returns a set of temporary
credentials that you can use to access AWS resources. For more information about using web
identity federation for AWS Management Console access, see About web identity federation.

To pass source identity from OpenID Connect (OIDC), you must include the source
identity in the JSON Web Token (JWT). Include source identity in the https://
aws.amazon.com/ source_identity namespace in the token when you submit the
AssumeRoleWithWebIdentity request. To learn more about OIDC tokens and claims, see Using
Tokens with User Pools in the Amazon Cognito Developer Guide.

For example, the following decoded JWT is a token that is used to call
AssumeRoleWithWebIdentity with the Admin source identity.

Example Example decoded JSON Web Token

{
 "sub": "johndoe",
 "aud": "ac_oic_client",
 "jti": "ZYUCeRMQVtqHypVPWAN3VB",
 "iss": "https://xyz.com",
 "iat": 1566583294,
 "exp": 1566583354,
 "auth_time": 1566583292,
 "https://aws.amazon.com/source_identity":"Admin"
}

Control access using source identity information

When a source identity is initially set, the sts:SourceIdentity key is present in the request. After a
source identity is set, the aws:SourceIdentity key is present in all subsequent requests made during
the role session. As the administrator, you can write policies that grant conditional authorization to
perform AWS actions based on the existence or value of the source identity attribute.

Imagine that you want to require your developers to set a source identity to assume a critical role
that has permission to write to a production critical AWS resource. Also imagine that you grant
AWS access to your workforce identities using AssumeRoleWithSAML. You only want senior

Controlling permissions for temporary security credentials 739

https://aws.amazon.com/
https://aws.amazon.com/
https://docs.aws.amazon.com/cognito/latest/developerguide/amazon-cognito-user-pools-using-tokens-with-identity-providers.html
https://docs.aws.amazon.com/cognito/latest/developerguide/amazon-cognito-user-pools-using-tokens-with-identity-providers.html

AWS Identity and Access Management User Guide

developers Saanvi and Diego to have access to the role, so you create the following trust policy for
the role.

Example Example role trust policy for source identity (SAML)

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "SAMLProviderAssumeRoleWithSAML",
 "Effect": "Allow",
 "Principal": {
 "Federated": "arn:aws:iam::111122223333:saml-provider/name-of-identity-
provider"
 },
 "Action": [
 "sts:AssumeRoleWithSAML"
],
 "Condition": {
 "StringEquals": {
 "SAML:aud": "https://signin.aws.amazon.com/saml"
 }
 }
 },
 {
 "Sid": "SetSourceIdentitySrEngs",
 "Effect": "Allow",
 "Principal": {
 "Federated": "arn:aws:iam::111122223333:saml-provider/name-of-identity-
provider"
 },
 "Action": [
 "sts:SetSourceIdentity"
],
 "Condition": {
 "StringLike": {
 "sts:SourceIdentity": [
 "Saanvi",
 "Diego"
]
 }
 }
 }

Controlling permissions for temporary security credentials 740

AWS Identity and Access Management User Guide

]
}

The trust policy contains a condition for sts:SourceIdentity that requires a source identity of
Saanvi or Diego to assume the critical role.

Alternatively, if you use an OIDC provider for web identity federation and users are authenticated
with AssumeRoleWithWebIdentity, your role trust policy might look as follows.

Example Example role trust policy for source identity (OIDC provider)

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Federated": "arn:aws:iam::111122223333:oidc-provider/server.example.com"
 },
 "Action": [
 "sts:AssumeRoleWithWebIdentity",
 "sts:SetSourceIdentity"
],
 "Condition": {
 "StringEquals": {
 "server.example.com:aud": "oidc-audience-id"
 },
 "StringLike": {
 "sts:SourceIdentity": [
 "Saanvi",
 "Diego"
]
 }
 }
 }
]
}

Role chaining and cross-account requirements

Imagine that you want to allow users who have assumed CriticalRole to assume a
CriticalRole_2 in another account. The role session credentials that were obtained to assume

Controlling permissions for temporary security credentials 741

AWS Identity and Access Management User Guide

CriticalRole are used to role chain to a second role, CriticalRole_2, in a different account.
The role is being assumed across an account boundary. Therefore, the sts:SetSourceIdentity
permission must be granted in both the permissions policy on CriticalRole and in the role trust
policy on CriticalRole_2.

Example Example permissions policy on CriticalRole

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "AssumeRoleAndSetSourceIdentity",
 "Effect": "Allow",
 "Action": [
 "sts:AssumeRole",
 "sts:SetSourceIdentity"
],
 "Resource": "arn:aws:iam::222222222222:role/CriticalRole_2"
 }
]
}

To secure setting source identity across the account boundary, the following role trust policy trusts
only the role principal for CriticalRole to set the source identity.

Example Example role trust policy on CriticalRole_2

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::111111111111:role/CriticalRole"
 },
 "Action": [
 "sts:AssumeRole",
 "sts:SetSourceIdentity"
],
 "Condition": {
 "StringLike": {
 "aws:SourceIdentity": ["Saanvi","Diego"]

Controlling permissions for temporary security credentials 742

AWS Identity and Access Management User Guide

 }
 }
 }
]
}

The user makes the following call using role session credentials obtained from assuming
CriticalRole. The source identity was set during the assumption of CriticalRole, so it does not need
to be explicitly set again. If the user attempts to set a source identity that is different from the
value set when CriticalRole was assumed, the assume role request will be denied.

Example Example AssumeRole CLI request

aws sts assume-role \
--role-arn arn:aws:iam::222222222222:role/CriticalRole_2 \
--role-session-name Audit \

When the calling principal assumes the role, the source identity in the request persists
from the first assumed role session. Therefore, both the aws:SourceIdentity and
sts:SourceIdentity keys are present in the request context.

Viewing source identity in CloudTrail

You can use CloudTrail to view the requests made to assume roles or federate users. You can also
view the role or user requests to take actions in AWS. The CloudTrail log file includes information
about the source identity set for the assumed-role or federated user session. For more information,
see Logging IAM and AWS STS API calls with AWS CloudTrail

For example, assume that a user makes an AWS STS AssumeRole request, and sets a source
identity. You can find the sourceIdentity information in the requestParameters key in your
CloudTrail log.

Example Example requestParameters section in an AWS CloudTrail log

"eventVersion": "1.05",
 "userIdentity": {
 "type": "AWSAccount",
 "principalId": "AIDAJ45Q7YFFAREXAMPLE",
 "accountId": "111122223333"

Controlling permissions for temporary security credentials 743

AWS Identity and Access Management User Guide

 },
 "eventTime": "2020-04-02T18:20:53Z",
 "eventSource": "sts.amazonaws.com",
 "eventName": "AssumeRole",
 "awsRegion": "us-east-1",
 "sourceIPAddress": "203.0.113.64",
 "userAgent": "aws-cli/1.16.96 Python/3.6.0 Windows/10 botocore/1.12.86",
 "requestParameters": {
 "roleArn": "arn:aws:iam::123456789012:role/DevRole",
 "roleSessionName": "Dev1",
 "sourceIdentity": "source-identity-value-set"
 }

If the user uses the assumed role session to perform an action, the source identity information is
present in the userIdentity key in the CloudTrail log.

Example Example userIdentity key in an AWS CloudTrail log

{
 "eventVersion": "1.08",
 "userIdentity": {
 "type": "AssumedRole",
 "principalId": "AROAJ45Q7YFFAREXAMPLE:Dev1",
 "arn": "arn:aws:sts::123456789012:assumed-role/DevRole/Dev1",
 "accountId": "123456789012",
 "accessKeyId": "ASIAIOSFODNN7EXAMPLE",
 "sessionContext": {
 "sessionIssuer": {
 "type": "Role",
 "principalId": "AROAJ45Q7YFFAREXAMPLE",
 "arn": "arn:aws:iam::123456789012:role/DevRole",
 "accountId": "123456789012",
 "userName": "DevRole"
 },
 "webIdFederationData": {},
 "attributes": {
 "mfaAuthenticated": "false",
 "creationDate": "2021-02-21T23:46:28Z"
 },
 "sourceIdentity": "source-identity-value-present"
 }
 }
}

Controlling permissions for temporary security credentials 744

AWS Identity and Access Management User Guide

To see example AWS STS API events in CloudTrail logs, see Example IAM API events in CloudTrail
log. For more details about the information contained in CloudTrail log files, see CloudTrail Event
Reference in the AWS CloudTrail User Guide.

Permissions for GetFederationToken

The GetFederationToken operation is called by an IAM user and returns temporary credentials
for that user. This operation federates the user. The permissions assigned a federated user are
defined in one of two places:

• The session policies passed as a parameter of the GetFederationToken API call. (This is most
common.)

• A resource-based policy that explicitly names the federated user in the Principal element of
the policy. (This is less common.)

Session policies are advanced policies that you pass as parameters when you programmatically
create a temporary session. When you create a federated user session and pass session policies,
the resulting session's permissions are the intersection of the user's identity-based policy and the
session policies. You cannot use the session policy to grant more permissions than those allowed by
the identity-based policy of the user that is being federated.

In most cases if you do not pass a policy with the GetFederationToken API call, the resulting
temporary security credentials have no permissions. However, a resource-based policy can provide
additional permissions for the session. You can access a resource with a resource-based policy that
specifies your session as the allowed principal.

The following figures show a visual representation of how the policies interact to determine
permissions for the temporary security credentials returned by a call to GetFederationToken.

Controlling permissions for temporary security credentials 745

https://docs.aws.amazon.com/awscloudtrail/latest/userguide/eventreference.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/eventreference.html

AWS Identity and Access Management User Guide

Example: Assigning permissions using GetFederationToken

You can use the GetFederationToken API action with different kinds of policies. Here are a few
examples.

Policy attached to the IAM user

In this example, you have a browser-based client application that relies on two backend web
services. One backend service is your own authentication server that uses your own identity system
to authenticate the client application. The other backend service is an AWS service that provides
some of the client application's functionality. The client application is authenticated by your server,
and your server creates or retrieves the appropriate permissions policy. Your server then calls the
GetFederationToken API to obtain temporary security credentials, and returns those credentials
to the client application. The client application can then make requests directly to the AWS service
with the temporary security credentials. This architecture allows the client application to make
AWS requests without embedding long-term AWS credentials.

Your authentication server calls the GetFederationToken API with the long-term security
credentials of an IAM user named token-app. But the long-term IAM user credentials remain on
your server and are never distributed to the client. The following example policy is attached to
the token-app IAM user and defines the broadest set of permissions that your federated users
(clients) will need. Note that the sts:GetFederationToken permission is required for your
authentication service to obtain temporary security credentials for the federated users.

Note

AWS provides a sample Java application to serve this purpose, which you can download
here: Token Vending Machine for Identity Registration - Sample Java Web Application.

Example Example policy attached to IAM user token-app that calls GetFederationToken

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "sts:GetFederationToken",
 "Resource": "*"

Controlling permissions for temporary security credentials 746

https://aws.amazon.com/code/7351543942956566

AWS Identity and Access Management User Guide

 },
 {
 "Effect": "Allow",
 "Action": "dynamodb:ListTables",
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Action": "sqs:ReceiveMessage",
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Action": "s3:ListBucket",
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Action": "sns:ListSubscriptions",
 "Resource": "*"
 }
]
}

The preceding policy grants several permissions to the IAM user. However, this policy alone doesn't
grant any permissions to the federated user. If this IAM user calls GetFederationToken and
does not pass a policy as a parameter of the API call, the resulting federated user has no effective
permissions.

Session policy passed as parameter

The most common way to ensure that the federated user is assigned appropriate permission
is to pass session policies in the GetFederationToken API call. Expanding on the previous
example, imagine that GetFederationToken is called with the credentials of the IAM user
token-app. Then imagine that the following session policy is passed as a parameter of the API
call. The resulting federated user has permission to list the contents of the Amazon S3 bucket
named productionapp. The user can't perform the Amazon S3 GetObject, PutObject, and
DeleteObject actions on items in the productionapp bucket.

The federated user is assigned these permissions because the permissions are the intersection of
the IAM user policies and the session policies that you pass.

Controlling permissions for temporary security credentials 747

AWS Identity and Access Management User Guide

The federated user could not perform actions in Amazon SNS, Amazon SQS, Amazon DynamoDB,
or in any S3 bucket except productionapp. These actions are denied even though those
permissions are granted to the IAM user that is associated with the GetFederationToken call.

Example Example session policy passed as parameter of GetFederationToken API call

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": ["s3:ListBucket"],
 "Resource": ["arn:aws:s3:::productionapp"]
 },
 {
 "Effect": "Allow",
 "Action": [
 "s3:GetObject",
 "s3:PutObject",
 "s3:DeleteObject"
],
 "Resource": ["arn:aws:s3:::productionapp/*"]
 }
]
}

Resource-based policies

Some AWS resources support resource-based policies, and these policies provide another
mechanism to grant permissions directly to a federated user. Only some AWS services support
resource-based policies. For example, Amazon S3 has buckets, Amazon SNS has topics, and
Amazon SQS has queues that you can attach policies to. For a list of all services that support
resource-based policies, see AWS services that work with IAM and review the "Resource-based
policies" column of the tables. You can use resource-based policies to assign permissions directly to
a federated user. Do this by specifying the Amazon Resource Name (ARN) of the federated user in
the Principal element of the resource-based policy. The following example illustrates this and
expands on the previous examples, using an S3 bucket named productionapp.

The following resource-based policy is attached to the bucket. This bucket policy allows a
federated user named Carol to access the bucket. When the example policy described earlier
is attached to the token-app IAM user, the federated user named Carol has permission to

Controlling permissions for temporary security credentials 748

AWS Identity and Access Management User Guide

perform the s3:GetObject, s3:PutObject, and s3:DeleteObject actions on the bucket
named productionapp. This is true even when no session policy is passed as a parameter of the
GetFederationToken API call. That's because in this case the federated user named Carol has
been explicitly granted permissions by the following resource-based policy.

Remember, a federated user is granted permissions only when those permissions are explicitly
granted to both the IAM user and the federated user. They can also be granted (within the account)
by a resource-based policy that explicitly names the federated user in the Principal element of
the policy, as in the following example.

Example Example bucket policy that allows access to federated user

{
 "Version": "2012-10-17",
 "Statement": {
 "Principal": {"AWS": "arn:aws:sts::account-id:federated-user/Carol"},
 "Effect": "Allow",
 "Action": [
 "s3:GetObject",
 "s3:PutObject",
 "s3:DeleteObject"
],
 "Resource": ["arn:aws:s3:::productionapp/*"]
 }
}

For more information about how policies are evaluated see Policy evaluation logic.

Permissions for GetSessionToken

The primary occasion for calling the GetSessionToken API operation or the get-session-
token CLI command is when a user must be authenticated with multi-factor authentication
(MFA). It is possible to write a policy that allows certain actions only when those actions are
requested by a user who has been authenticated with MFA. In order to successfully pass the
MFA authorization check, a user must first call GetSessionToken and include the optional
SerialNumber and TokenCode parameters. If the user is successfully authenticated with an MFA
device, the credentials returned by the GetSessionToken API operation include the MFA context.
This context indicates that the user is authenticated with MFA and is authorized for API operations
that require MFA authentication.

Controlling permissions for temporary security credentials 749

AWS Identity and Access Management User Guide

Permissions required for GetSessionToken

No permissions are required for a user to get a session token. The purpose of the
GetSessionToken operation is to authenticate the user using MFA. You cannot use policies to
control authentication operations.

To grant permissions to perform most AWS operations, you add the action with the same name to
a policy. For example, to create a user, you must use the CreateUser API operation, the create-
user CLI command, or the AWS Management Console. To perform these operations, you must
have a policy that allows you to access the CreateUser action.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "iam:CreateUser",
 "Resource": "*"
 }
]
}

You can include the GetSessionToken action in your policies, but it has no effect on a user's
ability to perform the GetSessionToken operation.

Permissions granted by GetSessionToken

If GetSessionToken is called with the credentials of an IAM user, the temporary security
credentials have the same permissions as the IAM user. Similarly, if GetSessionToken is called
with AWS account root user credentials, the temporary security credentials have root user
permissions.

Note

We recommend that you do not call GetSessionToken with root user credentials. Instead,
follow our best practices and create IAM users with the permissions they need. Then use
these IAM users for everyday interaction with AWS.

The temporary credentials that you get when you call GetSessionToken have the following
capabilities and limitations:

Controlling permissions for temporary security credentials 750

AWS Identity and Access Management User Guide

• You can use the credentials to access the AWS Management Console by passing the credentials
to the federation single sign-on endpoint at https://signin.aws.amazon.com/
federation. For more information, see Enabling custom identity broker access to the AWS
console.

• You cannot use the credentials to call IAM or AWS STS API operations. You can use them to call
API operations for other AWS services.

Compare this API operation and its limitations and capability with the other API operations that
create temporary security credentials at Comparing the AWS STS API operations

For more information about MFA-protected API access using GetSessionToken, see Configuring
MFA-protected API access.

Disabling permissions for temporary security credentials

Temporary security credentials are valid until they expire. These credentials are valid for the
specified duration, from 900 seconds (15 minutes) up to a maximum of 129,600 seconds (36
hours). The default session duration is 43,200 seconds (12 hours). You can revoke these credentials,
but you must also change permissions for the role to stop the use of compromised credentials for
malicious account activity. Permissions assigned to temporary security credentials are evaluated
each time they are used to make an AWS request. Once you remove all permissions from the
credentials, AWS requests that use them fail.

It might take a few minutes for policy updates to take effect. Revoke the role’s temporary security
credentials to force all users assuming the role to reauthenticate and request new credentials.

You cannot change the permissions for an AWS account root user. Likewise, you cannot
change the permissions for the temporary security credentials that were created by calling
GetFederationToken or GetSessionToken while signed in as the root user. For this reason, we
recommend that you do not call GetFederationToken or GetSessionToken as a root user.

Important

For users in IAM Identity Center, see Disable user access in the AWS IAM Identity Center
User Guide. You can also Remove user access to cloud applications or custom SAML 2.0
applications in the IAM Identity Center console.

Topics

Controlling permissions for temporary security credentials 751

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_revoke-sessions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_revoke-sessions.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/disableuser.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/removeaccessfromapp.html

AWS Identity and Access Management User Guide

• Deny access to all sessions associated with a role

• Deny access to a specific session

• Deny a user session with condition context keys

• Deny a session user with resource-based policies

Deny access to all sessions associated with a role

Use this approach when you are concerned about suspicious access by:

• Principals from another account using cross-account access

• External user identities with permissions to access AWS resources in your account

• Users who have been authenticated in a mobile or web application with a web identity provider

This procedure denies permissions to all users that have permissions to assume a role.

To change or remove the permissions assigned to the temporary security credentials obtained
by calling AssumeRole, AssumeRoleWithSAML, or AssumeRoleWithWebIdentity,
GetFederationToken, or GetSessionToken, you can edit or delete the permissions policy that
defines the permissions for the role.

Important

If there's a resource-based policy that allows the principal access, you must also add an
explicit deny for that resource. See Deny a session user with resource-based policies for
details.

1. Sign in to the AWS Management Console and open the IAM console.

2. In the navigation pane, choose the name of the role to edit. You can use the search box to
filter the list.

3. Select the relevant policy.

4. Choose the Permissions tab.

5. Choose the JSON tab and update the policy to deny all resources and actions.

{

Controlling permissions for temporary security credentials 752

AWS Identity and Access Management User Guide

 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Deny",
 "Action": "*",
 "Resource": "*"
 }
]
}

6. On the Review page, review the policy Summary and then choose Save changes to save your
work.

When you update the policy, the changes affect the permissions of all temporary security
credentials associated with the role, including credentials that were issued before you changed the
role's permissions policy. After you update the policy, you can revoke the role’s temporary security
credentials to immediately revoke all permissions to the role's issued credentials.

Deny access to a specific session

When you update the roles that are assumable from an IdP with a deny-all policy or delete the
role entirely, all users that have access to the role are disrupted. You can deny access based on the
Principal element without impacting the permissions of all other sessions associated with the
role.

The Principal can be denied permissions using condition context keys or resource-based policies.

Tip

You can find the ARNs of federated users using AWS CloudTrail logs. For more information,
see How to Easily Identify Your Federated Users by Using AWS CloudTrail.

Deny a user session with condition context keys

You can use condition context keys in situations where you want to deny access to specific
temporary security credential sessions without affecting the permissions of the IAM user or role
that created the credentials.

For more information about condition context keys, see AWS global condition context keys.

Controlling permissions for temporary security credentials 753

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_revoke-sessions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_revoke-sessions.html
https://aws.amazon.com/blogs/security/how-to-easily-identify-your-federated-users-by-using-aws-cloudtrail/

AWS Identity and Access Management User Guide

Note

If there's a resource-based policy that allows the principal access, you must also add an
explicit deny statement on the resource-based policy after you complete these steps.

After you update the policy, you can revoke the role’s temporary security credentials to
immediately revoke all issued credentials.

aws:PrincipalArn

You can use condition context key aws:PrincipalArn to deny access to a specific principal ARN.
You do this by specifying the unique identifier (ID) of the IAM user, role, or federated user the
temporary security credentials are associated with in the Condition element of a policy.

1. In the IAM console navigation pane, choose the name of the role to edit. You can use the
search box to filter the list.

2. Select the relevant policy.

3. Choose the Permissions tab.

4. Choose the JSON tab and add a deny statement for the principal ARN as shown in the
following example.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Deny",
 "Action": "*",
 "Resource": "*",
 "Condition": {
 "ArnEquals": {
 "aws:PrincipalArn": [
 "arn:aws:iam::222222222222:role/ROLENAME",
 "arn:aws:iam::222222222222:user/USERNAME",
 "arn:aws:sts::222222222222:federated-user/USERNAME"
]
 }
 }
 }
]

Controlling permissions for temporary security credentials 754

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_revoke-sessions.html

AWS Identity and Access Management User Guide

}

5. On the Review page, review the policy Summary and then choose Save changes to save your
work.

aws:userid

You can use condition context key aws:userid to deny access to all or specific temporary security
credential sessions associated with the IAM user or role. You do this by specifying the unique
identifier (ID) of the IAM user, role, or federated user the temporary security credentials are
associated with in the Condition element of a policy.

The following policy shows an example of how you can deny access to temporary security
credential sessions using condition context key aws:userid.

• AIDAXUSER1 represents the unique identifier for an IAM user. Specifying the unique identifier of
an IAM user as a value for context key aws:userid will deny all sessions associated with the IAM
user.

• AROAXROLE1 represents the unique identifier for an IAM role. Specifying the unique identifier
of an IAM role as a value for context key aws:userid will deny all sessions associated with the
role.

• AROAXROLE2 represents the unique identifier for an assumed-role session. In the caller-
specified-role-session-name portion of the assumed-role unique identifier you can specify a role
session name or a wildcard character if the StringLike condition operator is used. If you specify
the role session name, it will deny the named role session without affecting the permissions of
the role that created the credentials. If you specify a wildcard for the role session name, it will
deny all sessions associated with the role.

• account-id:<federated-user-caller-specified-name> represents the unique
identifier for a federated user session. A federated user is created by an IAM user calling the
GetFederationToken API. If you specify the unique identifier for a federated user, it will deny
the named federated user session without affecting the permissions of the role that created the
credentials.

{
 "Version": "2012-10-17",
 "Statement": [
 {

Controlling permissions for temporary security credentials 755

AWS Identity and Access Management User Guide

 "Effect": "Deny",
 "Action": "*",
 "Resource": "*",
 "Condition": {
 "StringLike": {
 "aws:userId": [
 "AIDAXUSER1",
 "AROAXROLE1",
 "AROAXROLE2:<caller-specified-role-session-name>",
 "account-id:<federated-user-caller-specified-name>"
]
 }
 }
 }
]
}

For specific examples of principal key values, see Principal key values. For information about IAM
unique identifiers, see Unique identifiers.

Deny a session user with resource-based policies

If the principal ARN is also included in any resource-based policies, you must also revoke access
based on the specific user’s principalId or sourceIdentity values in the Principal element
of a resource-based policy. If you only update the permissions policy for the role, the user can still
perform actions allowed in the resource-based policy.

1. Refer to AWS services that work with IAM to see if the service supports resource-based
policies.

2. Sign in to the AWS Management Console and open the console for the service. Each service
has a different location in the console for attaching policies.

3. Edit the policy statement to specify the identifying information of the credential:

a. In Principal, enter the ARN of the credential to deny.

b. In Effect, enter “Deny.”

c. In Action, enter the service namespace and the name of the action to deny. To deny all
actions, use the wildcard (*) character. For example: “s3:*.”

d. In Resource, enter the ARN of the target resource. For example: "arn:aws:s3:::EXAMPLE-
BUCKET."

Controlling permissions for temporary security credentials 756

AWS Identity and Access Management User Guide

{
"Version": "2012-10-17",
 "Statement": {
 "Principal": [
 "arn:aws:iam::222222222222:role/ROLENAME",
 "arn:aws:iam::222222222222:user/USERNAME",
 "arn:aws:sts::222222222222:federated-user/USERNAME"
],
 "Effect": "Deny",
 "Action": "s3:*",
 "Resource": "arn:aws:s3:::EXAMPLE-BUCKET"
 }
}

4. Save your work.

Granting permissions to create temporary security credentials

By default, IAM users do not have permission to create temporary security credentials for federated
users and roles. You must use a policy to provide your users with these permissions. Although you
can grant permissions directly to a user, we strongly recommend that you grant permissions to a
group. This makes management of the permissions much easier. When someone no longer needs
to perform the tasks associated with the permissions, you simply remove them from the group. If
someone else needs to perform that task, add them to the group to grant the permissions.

To grant an IAM group permission to create temporary security credentials for federated users or
roles, you attach a policy that grants one or both of the following privileges:

• For federated users to access an IAM role, grant access to AWS STS AssumeRole.

• For federated users that don't need a role, grant access to AWS STS GetFederationToken.

For more information about the differences between the AssumeRole and GetFederationToken
API operations, see Requesting temporary security credentials.

IAM users can also call GetSessionToken to create temporary security credentials. No
permissions are required for a user to call GetSessionToken. The purpose of this operation is to
authenticate the user using MFA. You cannot use policies to control authentication. This means that
you cannot prevent IAM users from calling GetSessionToken to create temporary credentials.

Controlling permissions for temporary security credentials 757

https://docs.aws.amazon.com/STS/latest/APIReference/API_GetSessionToken.html

AWS Identity and Access Management User Guide

Example Example policy that grants permission to assume a role

The following example policy grants permission to call AssumeRole for the UpdateApp role in
AWS account 123123123123. When AssumeRole is used, the user (or application) that creates
the security credentials on behalf of a federated user cannot delegate any permissions that are not
already specified in the role permission policy.

{
 "Version": "2012-10-17",
 "Statement": [{
 "Effect": "Allow",
 "Action": "sts:AssumeRole",
 "Resource": "arn:aws:iam::123123123123:role/UpdateAPP"
 }]
}

Example Example policy that grants permission to create temporary security credentials for a
federated user

The following example policy grants permission to access GetFederationToken.

{
 "Version": "2012-10-17",
 "Statement": [{
 "Effect": "Allow",
 "Action": "sts:GetFederationToken",
 "Resource": "*"
 }]
}

Important

When you give IAM users permission to create temporary security credentials for federated
users with GetFederationToken, be aware that this permits those users to delegate their
own permissions. For more information about delegating permissions across IAM users and
AWS accounts, see Examples of policies for delegating access. For more information about
controlling permissions in temporary security credentials, see Controlling permissions for
temporary security credentials.

Controlling permissions for temporary security credentials 758

AWS Identity and Access Management User Guide

Example Example policy that grants a user limited permission to create temporary security
credentials for federated users

When you let an IAM user call GetFederationToken, it is a best practice to restrict the
permissions that the IAM user can delegate. For example, the following policy shows how to let an
IAM user create temporary security credentials only for federated users whose names start with
Manager.

{
 "Version": "2012-10-17",
 "Statement": [{
 "Effect": "Allow",
 "Action": "sts:GetFederationToken",
 "Resource": ["arn:aws:sts::123456789012:federated-user/Manager*"]
 }]
}

Managing AWS STS in an AWS Region

By default, the AWS Security Token Service (AWS STS) is available as a global service, and all AWS
STS requests go to a single endpoint at https://sts.amazonaws.com. AWS recommends using
Regional AWS STS endpoints instead of the global endpoint to reduce latency, build in redundancy,
and increase session token validity.

• Reduce latency – By making your AWS STS calls to an endpoint that is geographically closer to
your services and applications, you can access AWS STS services with lower latency and better
response times.

• Build in redundancy – You can limit the effects of a failure within a workload to a limited
number of components with a predictable scope of impact containment. Using regional AWS STS
endpoints lets you align the scope of your components with the scope of your session tokens. For
more information about this reliability pillar, see Use fault isolation to protect your workload in
the AWS Well-Architected Framework.

• Increase session token validity – Session tokens from Regional AWS STS endpoints are valid
in all AWS Regions. Session tokens from the global STS endpoint are valid only in AWS Regions
that are enabled by default. If you intend to enable a new Region for your account, you can use
session tokens from Regional AWS STS endpoints. If you choose to use the global endpoint, you
must change the Region compatibility of AWS STS session tokens for the global endpoint. Doing
so ensures that tokens are valid in all AWS Regions.

Managing AWS STS in an AWS Region 759

https://docs.aws.amazon.com/wellarchitected/latest/reliability-pillar/use-fault-isolation-to-protect-your-workload.html

AWS Identity and Access Management User Guide

Managing global endpoint session tokens

Most AWS Regions are enabled for operations in all AWS services by default. Those Regions are
automatically activated for use with AWS STS. Some Regions, such as Asia Pacific (Hong Kong),
must be manually enabled. To learn more about enabling and disabling AWS Regions, see Specify
which AWS Regions your account can use in the AWS Account Management Reference Guide. When
you enable these AWS Regions, they are automatically activated for use with AWS STS. You cannot
activate the AWS STS endpoint for a Region that is disabled. Tokens that are valid in all AWS
Regions include more characters than tokens that are valid in Regions that are enabled by default.
Changing this setting might affect existing systems where you temporarily store tokens.

You can change this setting using the AWS Management Console, AWS CLI, or AWS API.

To change the Region compatibility of session tokens for the global endpoint (console)

1. Sign in as a root user or a user with permissions to perform IAM administration tasks.
To change the compatibility of session tokens, you must have a policy that allows the
iam:SetSecurityTokenServicePreferences action.

2. Open the IAM console. In the navigation pane, choose Account settings.

3. Under Security Token Service (STS) section Session Tokens from the STS endpoints. The
Global endpoint indicates Valid only in AWS Regions enabled by default. Choose
Change.

4. In the Change region compatibility dialog box, select All AWS Regions. Then choose Save
changes.

Note

Tokens that are valid in all AWS Region include more characters than tokens that are
valid in Regions that are enabled by default. Changing this setting might affect existing
systems where you temporarily store tokens.

To change the Region compatibility of session tokens for the global endpoint (AWS CLI)

Set the session token version. Version 1 tokens are valid only in AWS Regions that are available by
default. These tokens do not work in manually enabled Regions, such as Asia Pacific (Hong Kong).
Version 2 tokens are valid in all Regions. However, version 2 tokens include more characters and
might affect systems where you temporarily store tokens.

Managing AWS STS in an AWS Region 760

https://docs.aws.amazon.com/accounts/latest/reference/manage-acct-regions.html
https://docs.aws.amazon.com/accounts/latest/reference/manage-acct-regions.html
https://console.aws.amazon.com/iam/home?#home

AWS Identity and Access Management User Guide

• aws iam set-security-token-service-preferences

To change the Region compatibility of session tokens for the global endpoint (AWS API)

Set the session token version. Version 1 tokens are valid only in AWS Regions that are available by
default. These tokens do not work in manually enabled Regions, such as Asia Pacific (Hong Kong).
Version 2 tokens are valid in all Regions. However, version 2 tokens include more characters and
might affect systems where you temporarily store tokens.

• SetSecurityTokenServicePreferences

Activating and deactivating AWS STS in an AWS Region

When you activate STS endpoints for a Region, AWS STS can issue temporary credentials to users
and roles in your account that make an AWS STS request. Those credentials can then be used in any
Region that is enabled by default or is manually enabled. For Regions that are enabled by default,
you must activate the Regional STS endpoint in the account where the temporary credentials are
generated. It does not matter whether a user is signed into the same account or a different account
when they make the request. For Regions that are manually enabled, you must activate the Region
in both the account making the request and the account where the temporary credentials are
generated.

For example, imagine a user in account A wants to send an sts:AssumeRole API request to the
AWS STS Regional endpoint https://sts.us-east-2.amazonaws.com. The request is for
temporary credentials for the role named Developer in account B. Because the request is to
create credentials for an entity in account B, account B must activate the us-east-2 Region. Users
from account A (or any other account) can call the us-east-2 endpoint to request credentials for
account B whether or not the Region is activated in their accounts.

Note

Active Regions are available to everyone that uses temporary credentials in that account.
To control which IAM users or roles can access the Region, use the aws:RequestedRegion
condition key in your permissions policies.

Managing AWS STS in an AWS Region 761

https://docs.aws.amazon.com/cli/latest/reference/iam/set-security-token-service-preferences.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_SetSecurityTokenServicePreferences.html

AWS Identity and Access Management User Guide

To activate or deactivate AWS STS in a Region that is enabled by default (console)

1. Sign in as a root user or a user with permissions to perform IAM administration tasks.

2. Open the IAM console and in the navigation pane choose Account settings.

3. In the Security Token Service (STS) section Endpoints, find the Region that you want to
configure, and then choose Active or Inactive in the STS status column.

4. In the dialog box that opens, choose Activate or Deactivate.

For Regions that must be enabled, we activate AWS STS automatically when you enable the
Region. After you enable a Region, AWS STS is always active for the Region and you cannot
deactivate it. To learn about enabling Regions that are disabled by default, see Specifying which
AWS Regions your account can use in the AWS Account Management Reference Guide.

Writing code to use AWS STS Regions

After you activate a Region, you can direct AWS STS API calls to that Region. The following Java
code snippet demonstrates how to configure an AWSSecurityTokenService object to make
requests to the Europe (Ireland) (eu-west-1) Region.

EndpointConfiguration regionEndpointConfig = new EndpointConfiguration("https://sts.eu-
west-1.amazonaws.com", "eu-west-1");
AWSSecurityTokenService stsRegionalClient =
 AWSSecurityTokenServiceClientBuilder.standard()
.withCredentials(credentials)
.withEndpointConfiguration(regionEndpointConfig)
.build();

AWS STS recommends that you make calls to a Regional endpoint. To learn how to manually
enable a Region, see Specify which AWS Regions your account can use in the AWS Account
Management Reference Guide.

In the example, the first line instantiates an EndpointConfiguration object called
regionEndpointConfig, passing the URL of the endpoint and the AWS Region as the
parameters.

To learn how to set AWS STS regional endpoints using an environment variable for AWS SDKs, see
AWS STS Regionalized endpoints in the AWS SDKs and Tools Reference Guide.

Managing AWS STS in an AWS Region 762

https://console.aws.amazon.com/iam/home?#home
https://console.aws.amazon.com/iam/home?#account_settings
https://docs.aws.amazon.com/accounts/latest/reference/manage-acct-regions.html
https://docs.aws.amazon.com/accounts/latest/reference/manage-acct-regions.html
https://docs.aws.amazon.com/accounts/latest/reference/manage-acct-regions.html
https://docs.aws.amazon.com/sdkref/latest/guide/feature-sts-regionalized-endpoints.html

AWS Identity and Access Management User Guide

For all other language and programming environment combinations, refer to the documentation
for the relevant SDK.

Regions and endpoints

The following table lists the Regions and their endpoints. It indicates which ones are activated by
default and which ones you can activate or deactivate.

Region name Endpoint Active by
default

Manually
activate/

deactivate

--Global-- sts.amazonaws.com

Yes No

US East (Ohio) sts.us-east-2.amazonaws.com

Yes Yes

US East (N. Virginia) sts.us-east-1.amazonaws.com

Yes No

US West (N.
California)

sts.us-west-1.amazonaws.com

Yes Yes

US West (Oregon) sts.us-west-2.amazonaws.com

Yes Yes

Managing AWS STS in an AWS Region 763

https://aws.amazon.com/tools/
https://aws.amazon.com/tools/

AWS Identity and Access Management User Guide

Region name Endpoint Active by
default

Manually
activate/

deactivate

Africa (Cape Town) sts.af-south-1.amazonaws.com

No¹ No

Asia Pacific (Hong
Kong)

sts.ap-east-1.amazonaws.com

No¹ No

Asia Pacific
(Hyderabad)

sts.ap-south-2.amazonaws.com

No¹ No

Asia Pacific
(Jakarta)

sts.ap-southeast-3.amazonaws.com

No¹ No

Asia Pacific
(Melbourne)

sts.ap-southeast-4.amazonaws.com

No¹ No

Asia Pacific
(Mumbai)

sts.ap-south-1.amazonaws.com

Yes Yes

Managing AWS STS in an AWS Region 764

AWS Identity and Access Management User Guide

Region name Endpoint Active by
default

Manually
activate/

deactivate

Asia Pacific (Osaka) sts.ap-northeast-3.amazonaws.com

Yes Yes

Asia Pacific (Seoul) sts.ap-northeast-2.amazonaws.com

Yes Yes

Asia Pacific
(Singapore)

sts.ap-southeast-1.amazonaws.com

Yes Yes

Asia Pacific
(Sydney)

sts.ap-southeast-2.amazonaws.com

Yes Yes

Asia Pacific (Tokyo) sts.ap-northeast-1.amazonaws.com

Yes Yes

Canada (Central) sts.ca-central-1.amazonaws.com

Yes Yes

Managing AWS STS in an AWS Region 765

AWS Identity and Access Management User Guide

Region name Endpoint Active by
default

Manually
activate/

deactivate

Canada West
(Calgary)

sts.ca-west-1.amazonaws.com

Yes Yes

China (Beijing) sts.cn-north-1.amazonaws.com.cn

Yes² No

China (Ningxia) sts.cn-northwest-1.amazonaws.com.cn

Yes² Yes

Europe (Frankfurt) sts.eu-central-1.amazonaws.com

Yes Yes

Europe (Ireland) sts.eu-west-1.amazonaws.com

Yes Yes

Europe (London) sts.eu-west-2.amazonaws.com

Yes Yes

Managing AWS STS in an AWS Region 766

AWS Identity and Access Management User Guide

Region name Endpoint Active by
default

Manually
activate/

deactivate

Europe (Milan) sts.eu-south-1.amazonaws.com

No¹ No

Europe (Paris) sts.eu-west-3.amazonaws.com

Yes Yes

Europe (Spain) sts.eu-south-2.amazonaws.com

No¹ No

Europe (Stockholm) sts.eu-north-1.amazonaws.com

Yes Yes

Europe (Zurich) sts.eu-central-2.amazonaws.com

No¹ No

Israel (Tel Aviv) sts.il-central-1.amazonaws.com

No¹ No

Managing AWS STS in an AWS Region 767

AWS Identity and Access Management User Guide

Region name Endpoint Active by
default

Manually
activate/

deactivate

Middle East
(Bahrain)

sts.me-south-1.amazonaws.com

No¹ No

Middle East (UAE) sts.me-central-1.amazonaws.com

No¹ No

South America (São
Paulo)

sts.sa-east-1.amazonaws.com

Yes Yes

¹You must enable the Region to use it. This automatically activates AWS STS. You cannot manually
activate or deactivate AWS STS in these Regions.

²To use AWS in China, you need an account and credentials specific to AWS in China.

AWS CloudTrail and Regional endpoints

Calls to regional and global endpoints are logged in the tlsDetails field in AWS CloudTrail. Calls
to regional endpoints, such as us-east-2.amazonaws.com, are logged in CloudTrail to their
appropriate region. Calls to the global endpoint, sts.amazonaws.com, are logged as calls to a
global service. Events for global AWS STS endpoints are logged to us-east-1.

Note

tlsDetails can only be viewed for services that support this field. See Services that
support TLS details in CloudTrail in the AWS CloudTrail User Guide
For more information, see Logging IAM and AWS STS API calls with AWS CloudTrail.

Managing AWS STS in an AWS Region 768

https://docs.aws.amazon.com/general/latest/gr/rande-manage.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-supported-tls-details.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-supported-tls-details.html

AWS Identity and Access Management User Guide

Using bearer tokens

Some AWS services require that you have permission to get an AWS STS service bearer token
before you can access their resources programmatically. These services support a protocol that
requires you to use a bearer token instead of using a traditional Signature Version 4 signed request.
When you perform AWS CLI or AWS API operations that require bearer tokens, the AWS service
requests a bearer token on your behalf. The service provides you with the token, which you can
then use to perform subsequent operations in that service.

AWS STS service bearer tokens include information from your original principal authentication that
might affect your permissions. This information can include principal tags, session tags, and session
policies. The token's access key ID begins with the ABIA prefix. This helps you to identify operations
that were performed using service bearer tokens in your CloudTrail logs.

Important

The bearer token can be used only for calls to the service that generates it and in the
Region where it was generated. You can't use the bearer token to perform operations in
other services or Regions.

An example of a service that supports bearer tokens is AWS CodeArtifact. Before you can interact
with AWS CodeArtifact using a package manager such as NPM, Maven, or PIP, you must call the
aws codeartifact get-authorization-token operation. This operation returns a bearer
token that you can use to perform AWS CodeArtifact operations. Alternatively, you can use the aws
codeartifact login command that completes the same operation and then configures your
client automatically.

If you perform an action in an AWS service that generates a bearer token for you, you must have
the following permissions in your IAM policy:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "AllowServiceBearerToken",
 "Effect": "Allow",
 "Action": "sts:GetServiceBearerToken",
 "Resource": "*"

Using bearer tokens 769

https://docs.aws.amazon.com/general/latest/gr/sigv4_signing.html

AWS Identity and Access Management User Guide

 }
]
}

For a service bearer token example, see Using identity-based policies for AWS CodeArtifact in the
AWS CodeArtifact user guide.

Sample applications that use temporary credentials

You can use AWS Security Token Service (AWS STS) to create and provide trusted users with
temporary security credentials that can control access to your AWS resources. For more information
about AWS STS, see Temporary security credentials in IAM. To see how you can use AWS STS to
manage temporary security credentials, you can download the following sample applications that
implement complete example scenarios:

• Enabling Federation to AWS Using Windows Active Directory, ADFS, and SAML 2.0. Demonstrates
how to delgate access using enterprise federation to AWS using Windows Active Directory (AD),
Active Directory Federation Services (ADFS) 2.0, and SAML (Security Assertion Markup Language)
2.0.

• Enabling custom identity broker access to the AWS console. Demonstrates how to create a
custom federation proxy that enables single sign-on (SSO) so that existing Active Directory users
can sign in to the AWS Management Console.

• How to Use Shibboleth for Single Sign-On to the AWS Management Console.. Shows how to use
Shibboleth and SAML to provide users with single sign-on (SSO) access to the AWS Management
Console.

Samples for web identity federation

The following sample applications illustrate how to use web identity federation with providers
like Login with Amazon, Amazon Cognito, Facebook, or Google. You can trade authentication from
these providers for temporary AWS security credentials to access AWS services.

• Amazon Cognito Tutorials – We recommend that you use Amazon Cognito with the AWS SDKs
for mobile development. Amazon Cognito is the simplest way to manage identity for mobile
apps, and it provides additional features like synchronization and cross-device identity. For
more information about Amazon Cognito, see Authentication with Amplify in the Amplify
Documentation.

Sample applications that use temporary credentials 770

https://docs.aws.amazon.com/codeartifact/latest/ug/auth-and-access-control-iam-identity-based-access-control.html
https://aws.amazon.com/blogs/security/enabling-federation-to-aws-using-windows-active-directory-adfs-and-saml-2-0/
https://aws.amazon.com/blogs/security/how-to-use-shibboleth-for-single-sign-on-to-the-aws-management-console/
http://shibboleth.net/
https://docs.aws.amazon.com/cognito/latest/developerguide/tutorials.html
https://docs.amplify.aws/lib/auth/getting-started/q/platform/js/#authentication-with-amplify

AWS Identity and Access Management User Guide

Additional resources for temporary security credentials

The following scenarios and applications can guide you in using temporary security credentials:

• How to integrate AWS STS SourceIdentity with your identity provider. This post shows you how
to set up the AWS STS SourceIdentity attribute when using Okta, Ping, or OneLogin as your
IdP.

• About web identity federation. This section discusses how to configure IAM roles when you use
web identity federation and the AssumeRoleWithWebIdentity API.

• Configuring MFA-protected API access. This topic explains how to use roles to require multi-
factor authentication (MFA) to protect sensitive API actions in your account.

For more information on policies and permissions in AWS see the following topics:

• Access management for AWS resources

• Policy evaluation logic.

• Managing Access Permissions to Your Amazon S3 Resources in Amazon Simple Storage Service
User Guide.

• To learn whether principals in accounts outside of your zone of trust (trusted organization or
account) have access to assume your roles, see What is IAM Access Analyzer?.

Logging IAM and AWS STS API calls with AWS CloudTrail

IAM and AWS STS are integrated with AWS CloudTrail, a service that provides a record of actions
taken by an IAM user or role. CloudTrail captures all API calls for IAM and AWS STS as events,
including calls from the console and from API calls. If you create a trail, you can enable continuous
delivery of CloudTrail events to an Amazon S3 bucket. If you don't configure a trail, you can still
view the most recent events in the CloudTrail console in Event history. You can use CloudTrail to
get information about the request that was made to IAM or AWS STS. For example, you can view
the IP address from which the request was made, who made the request, when it was made, and
additional details.

To learn more about CloudTrail, see the AWS CloudTrail User Guide.

Topics

• IAM and AWS STS information in CloudTrail

Additional resources for temporary credentials 771

https://aws.amazon.com/blogs/security/how-to-integrate-aws-sts-sourceidentity-with-your-identity-provider/
https://docs.aws.amazon.com/AmazonS3/latest/dev/s3-access-control.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/what-is-access-analyzer.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/

AWS Identity and Access Management User Guide

• Logging IAM and AWS STS API requests

• Logging API requests to other AWS services

• Logging user sign-in events

• Logging sign-in events for temporary credentials

• Example IAM API events in CloudTrail log

• Example AWS STS API events in CloudTrail log

• Example sign-in events in CloudTrail log

• IAM role trust policy behavior

IAM and AWS STS information in CloudTrail

CloudTrail is enabled on your AWS account when you create the account. When activity occurs in
IAM or AWS STS, that activity is recorded in a CloudTrail event along with other AWS service events
in Event history. You can view, search, and download recent events in your AWS account. For more
information, see Viewing Events with CloudTrail Event History.

For an ongoing record of events in your AWS account, including events for IAM and AWS STS,
create a trail. A trail enables CloudTrail to deliver log files to an Amazon S3 bucket. By default,
when you create a trail in the console, the trail applies to all Regions. The trail logs events from all
Regions in the AWS partition and delivers the log files to the Amazon S3 bucket that you specify.
Additionally, you can configure other AWS services to further analyze and act upon the event data
collected in CloudTrail logs. For more information, see:

• Overview for Creating a Trail

• CloudTrail Supported Services and Integrations

• Configuring Amazon SNS Notifications for CloudTrail

• Receiving CloudTrail Log Files from Multiple Regions and Receiving CloudTrail Log Files from
Multiple Accounts

All IAM and AWS STS actions are logged by CloudTrail and are documented in the IAM API
Reference and the AWS Security Token Service API Reference.

IAM and AWS STS information in CloudTrail 772

https://docs.aws.amazon.com/awscloudtrail/latest/userguide/view-cloudtrail-events.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-create-and-update-a-trail.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-aws-service-specific-topics.html#cloudtrail-aws-service-specific-topics-integrations
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/getting_notifications_top_level.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/receive-cloudtrail-log-files-from-multiple-regions.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-receive-logs-from-multiple-accounts.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-receive-logs-from-multiple-accounts.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_Operations.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_Operations.html
https://docs.aws.amazon.com/STS/latest/APIReference/API_Operations.html

AWS Identity and Access Management User Guide

Logging IAM and AWS STS API requests

CloudTrail logs all authenticated API requests (made with credentials) to IAM and AWS STS
API operations. CloudTrail also logs non-authenticated requests to the AWS STS actions,
AssumeRoleWithSAML and AssumeRoleWithWebIdentity, and logs information provided by
the identity provider. You can use this information to map calls made by a federated user with an
assumed role back to the originating external federated caller. In the case of AssumeRole, you
can map calls back to the originating AWS service or to the account of the originating user. The
userIdentity section of the JSON data in the CloudTrail log entry contains the information that
you need to map the AssumeRole* request with a specific federated user. For more information, see
CloudTrail userIdentity Element in the AWS CloudTrail User Guide.

For example, calls to the IAM CreateUser, DeleteRole, ListGroups, and other API operations
are all logged by CloudTrail.

Examples for this type of log entry are presented later in this topic.

Logging API requests to other AWS services

Authenticated requests to other AWS service API operations are logged by CloudTrail, and these
log entries contain information about who generated the request.

For example, assume that you made a request to list Amazon EC2 instances or create an AWS
CodeDeploy deployment group. Details about the person or service that made the request are
contained in the log entry for that request. This information helps you determine whether the
request was made by the AWS account root user, an IAM user, a role, or another AWS service.

For more details about the user identity information in CloudTrail log entries, see userIdentity
Element in the AWS CloudTrail User Guide.

Logging user sign-in events

CloudTrail logs sign-in events to the AWS Management Console, the AWS discussion forums,
and AWS Marketplace. CloudTrail logs successful and failed sign-in attempts for IAM users and
federated users.

To view sample CloudTrail events for successful and unsuccessful root user sign-ins, see Example
event records for root users in the AWS CloudTrail User Guide.

Logging IAM and AWS STS API requests 773

https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-event-reference-user-identity.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/event_reference_user_identity.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/event_reference_user_identity.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-event-reference-aws-console-sign-in-events.html#cloudtrail-event-reference-aws-console-sign-in-events-root
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-event-reference-aws-console-sign-in-events.html#cloudtrail-event-reference-aws-console-sign-in-events-root

AWS Identity and Access Management User Guide

As a security best practice, AWS does not log the entered IAM user name text when the sign-
in failure is caused by an incorrect user name. The user name text is masked by the value
HIDDEN_DUE_TO_SECURITY_REASONS. For an example of this, see Example sign-in failure event
caused by incorrect user name, later in this topic. The user name text is obscured because such
failures might be caused by user errors. Logging these errors could expose potentially sensitive
information. For example:

• You accidentally type your password in the user name box.

• You choose the link for the sign-in page of one AWS account, but then type the account number
for a different AWS account.

• You forget which account you are signing in to and accidentally type the account name of your
personal email account, your bank sign-in identifier, or some other private ID.

Logging sign-in events for temporary credentials

When a principal requests temporary credentials, the principal type determines how CloudTrail
logs the event. This can be complicated when a principal assumes a role in another account. There
are multiple API calls to perform operations related to role cross-account operations. First, the
principal calls an AWS STS API to retrieve the temporary credentials. That operation is logged in
the calling account and the account where the AWS STS operation is performed. Then the principal
then uses the role to perform other API calls in the assumed role's account.

You can use the sts:SourceIdentity condition key in the role trust policy to require users to
specify an identity when they assume a role. For example, you can require that IAM users specify
their own user name as their source identity. This can help you determine which user performed
a specific action in AWS. For more information, see sts:SourceIdentity. You can also use
sts:RoleSessionName to require users to specify a session name when they assume a role. This
can help you differentiate between role sessions for a role that is used by different principals when
you review AWS CloudTrail logs.

The following table shows how CloudTrail logs different user identity information for each of the
AWS STS APIs that generate temporary credentials.

Logging sign-in events for temporary credentials 774

AWS Identity and Access Management User Guide

Principal type STS API User identity
in CloudTrail
log for caller's
account

User identity in
CloudTrail log
for the assumed
role's account

User identity in
CloudTrail log
for the role's
subsequent API
calls

AWS account
root user
credentials

GetSessio
nToken

Root user
identity

Role owner
account is
same as calling
account

Root user
identity

IAM user GetSessio
nToken

IAM user identity Role owner
account is
same as calling
account

IAM user identity

IAM user GetFedera
tionToken

IAM user identity Role owner
account is
same as calling
account

IAM user identity

IAM user AssumeRole IAM user identity Account number
and principal
ID (if a user),
or AWS service
principal

Role identity
only (no user)

Externally
authenticated
user

AssumeRol
eWithSAML

n/a SAML user
identity

Role identity
only (no user)

Externally
authenticated
user

AssumeRol
eWithWebI
dentity

n/a OIDC/Web user
identity

Role identity
only (no user)

CloudTrail considers an action read-only if it does not have any mutating effect on a resource.
When logging a read-only event, CloudTrail redacts the responseElements information in the

Logging sign-in events for temporary credentials 775

AWS Identity and Access Management User Guide

log. When CloudTrail logs an event that is not read-only, the full responseElements is shown
in the log entry. However, for the AWS STS APIs AssumeRole, AssumeRoleWithSAML, and
AssumeRoleWithWebIdentity, even though they are logged as read-only, CloudTrail will include
the full responseElements in the log for these APIs.

The following table shows how CloudTrail logs responseElements and readOnly information
for each of the AWS STS APIs that generate temporary credentials.

STS API Response elements informati
on

Read-only

AssumeRole Included true

AssumeRoleWithSAML Included true

AssumeRoleWithWebIdentity Included true

GetFederationToken Included false

GetSessionToken Included false

Example IAM API events in CloudTrail log

CloudTrail log files contain events that are formatted using JSON. An API event represents a single
API request and includes information about the principal, the requested action, any parameters,
and the date and time of the action.

Example IAM API event in CloudTrail log file

The following example shows a CloudTrail log entry for a request made for the IAM
GetUserPolicy action.

{
 "eventVersion": "1.05",
 "userIdentity": {
 "type": "IAMUser",
 "principalId": "AIDACKCEVSQ6C2EXAMPLE",
 "arn": "arn:aws:iam::444455556666:user/JaneDoe",
 "accountId": "444455556666",

Example IAM API events in CloudTrail log 776

AWS Identity and Access Management User Guide

 "accessKeyId": "AKIAI44QH8DHBEXAMPLE",
 "userName": "JaneDoe",
 "sessionContext": {
 "attributes": {
 "mfaAuthenticated": "false",
 "creationDate": "2014-07-15T21:39:40Z"
 }
 },
 "invokedBy": "signin.amazonaws.com"
 },
 "eventTime": "2014-07-15T21:40:14Z",
 "eventSource": "iam.amazonaws.com",
 "eventName": "GetUserPolicy",
 "awsRegion": "us-east-2",
 "sourceIPAddress": "signin.amazonaws.com",
 "userAgent": "signin.amazonaws.com",
 "requestParameters": {
 "userName": "JaneDoe",
 "policyName": "ReadOnlyAccess-JaneDoe-201407151307"
 },
 "responseElements": null,
 "requestID": "9EXAMPLE-0c68-11e4-a24e-d5e16EXAMPLE",
 "eventID": "cEXAMPLE-127e-4632-980d-505a4EXAMPLE"
}

From this event information, you can determine that the request was made to get a user policy
named ReadOnlyAccess-JaneDoe-201407151307 for user JaneDoe, as specified in the
requestParameters element. You can also see that the request was made by an IAM user
named JaneDoe on July 15, 2014 at 9:40 PM (UTC). In this case, the request originated in the AWS
Management Console, as you can tell from the userAgent element.

Example AWS STS API events in CloudTrail log

CloudTrail log files contain events that are formatted using JSON. An API event represents a single
API request and includes information about the principal, the requested action, any parameters,
and the date and time of the action.

Example cross-account AWS STS API events in CloudTrail log files

The IAM user named JohnDoe in account 777788889999 calls the AWS STS AssumeRole action
to assume the role EC2-dev in account 111122223333. The account administrator requires users

Example AWS STS API events in CloudTrail log 777

AWS Identity and Access Management User Guide

to set a source identity equal to their user name when assuming the role. The user passes in the
source identity value of JohnDoe.

{
 "eventVersion": "1.05",
 "userIdentity": {
 "type": "IAMUser",
 "principalId": "AIDAQRSTUVWXYZEXAMPLE",
 "arn": "arn:aws:iam::777788889999:user/JohnDoe",
 "accountId": "777788889999",
 "accessKeyId": "AKIAIOSFODNN7EXAMPLE",
 "userName": "JohnDoe"
 },
 "eventTime": "2014-07-18T15:07:39Z",
 "eventSource": "sts.amazonaws.com",
 "eventName": "AssumeRole",
 "awsRegion": "us-east-2",
 "sourceIPAddress": "192.0.2.101",
 "userAgent": "aws-cli/1.11.10 Python/2.7.8
 Linux/3.2.45-0.6.wd.865.49.315.metal1.x86_64 botocore/1.4.67",
 "requestParameters": {
 "roleArn": "arn:aws:iam::111122223333:role/EC2-dev",
 "roleSessionName": "JohnDoe-EC2-dev",
 "sourceIdentity": "JohnDoe",
 "serialNumber": "arn:aws:iam::777788889999:mfa"
 },
 "responseElements": {
 "credentials": {
 "sessionToken": "<encoded session token blob>",
 "accessKeyId": "ASIAI44QH8DHBEXAMPLE",
 "expiration": "Jul 18, 2023, 4:07:39 PM"
 },
 "assumedRoleUser": {
 "assumedRoleId": "AIDAQRSTUVWXYZEXAMPLE:JohnDoe-EC2-dev",
 "arn": "arn:aws:sts::111122223333:assumed-role/EC2-dev/JohnDoe-EC2-dev"
 },
 "sourceIdentity": "JohnDoe"
 },
 "resources": [
 {
 "ARN": "arn:aws:iam::111122223333:role/EC2-dev",
 "accountId": "111122223333",
 "type": "AWS::IAM::Role"

Example AWS STS API events in CloudTrail log 778

AWS Identity and Access Management User Guide

 }
],
 "requestID": "4EXAMPLE-0e8d-11e4-96e4-e55c0EXAMPLE",
 "sharedEventID": "bEXAMPLE-efea-4a70-b951-19a88EXAMPLE",
 "eventID": "dEXAMPLE-ac7f-466c-a608-4ac8dEXAMPLE",
 "eventType": "AwsApiCall",
 "recipientAccountId": "111122223333"
}

The second example shows the assumed role account's (111122223333) CloudTrail log entry for
the same request.

{
 "eventVersion": "1.05",
 "userIdentity": {
 "type": "AWSAccount",
 "principalId": "AIDAQRSTUVWXYZEXAMPLE",
 "accountId": "777788889999"
 },
 "eventTime": "2014-07-18T15:07:39Z",
 "eventSource": "sts.amazonaws.com",
 "eventName": "AssumeRole",
 "awsRegion": "us-east-2",
 "sourceIPAddress": "192.0.2.101",
 "userAgent": "aws-cli/1.11.10 Python/2.7.8
 Linux/3.2.45-0.6.wd.865.49.315.metal1.x86_64 botocore/1.4.67",
 "requestParameters": {
 "roleArn": "arn:aws:iam::111122223333:role/EC2-dev",
 "roleSessionName": "JohnDoe-EC2-dev",
 "sourceIdentity": "JohnDoe",
 "serialNumber": "arn:aws:iam::777788889999:mfa"
 },
 "responseElements": {
 "credentials": {
 "sessionToken": "<encoded session token blob>",
 "accessKeyId": "ASIAI44QH8DHBEXAMPLE",
 "expiration": "Jul 18, 2014, 4:07:39 PM"
 },
 "assumedRoleUser": {
 "assumedRoleId": "AIDAQRSTUVWXYZEXAMPLE:JohnDoe-EC2-dev",
 "arn": "arn:aws:sts::111122223333:assumed-role/EC2-dev/JohnDoe-EC2-dev"
 },
 "sourceIdentity": "JohnDoe"

Example AWS STS API events in CloudTrail log 779

AWS Identity and Access Management User Guide

 },
 "requestID": "4EXAMPLE-0e8d-11e4-96e4-e55c0EXAMPLE",
 "sharedEventID": "bEXAMPLE-efea-4a70-b951-19a88EXAMPLE",
 "eventID": "dEXAMPLE-ac7f-466c-a608-4ac8dEXAMPLE"
}

Example AWS STS role chaining API event in CloudTrail log file

The following example shows a CloudTrail log entry for a request made by John Doe in account
111111111111. John previously used his JohnDoe user to assume the JohnRole1 role. For this
request, he uses the credentials from that role to assume the JohnRole2 role. This is known as
role chaining. The source identity that he set when he assumed the JohnDoe1 role persists in
the request to assume JohnRole2. If John tries to set a different source identity when assuming
the role, the request is denied. John passes two session tags into the request. He sets those two
tags as transitive. The request inherits the Department tag as transitive because John set it as
transitive when he assumed JohnRole1. For more information about source identity, see Monitor
and control actions taken with assumed roles. For more information about transitive keys in role
chains, see Chaining roles with session tags.

{
 "eventVersion": "1.05",
 "userIdentity": {
 "type": "AssumedRole",
 "principalId": "AROAIN5ATK5U7KEXAMPLE:JohnRole1",
 "arn": "arn:aws:sts::111111111111:assumed-role/JohnDoe/JohnRole1",
 "accountId": "111111111111",
 "accessKeyId": "ASIAIOSFODNN7EXAMPLE",
 "sessionContext": {
 "attributes": {
 "mfaAuthenticated": "false",
 "creationDate": "2019-10-02T21:50:54Z"
 },
 "sessionIssuer": {
 "type": "Role",
 "principalId": "AROAIN5ATK5U7KEXAMPLE",
 "arn": "arn:aws:iam::111111111111:role/JohnRole1",
 "accountId": "111111111111",
 "userName": "JohnDoe"
 },
 "sourceIdentity": "JohnDoe"
 }

Example AWS STS API events in CloudTrail log 780

AWS Identity and Access Management User Guide

 },
 "eventTime": "2019-10-02T22:12:29Z",
 "eventSource": "sts.amazonaws.com",
 "eventName": "AssumeRole",
 "awsRegion": "us-east-2",
 "sourceIPAddress": "123.145.67.89",
 "userAgent": "aws-cli/1.16.248 Python/3.4.7
 Linux/4.9.184-0.1.ac.235.83.329.metal1.x86_64 botocore/1.12.239",
 "requestParameters": {
 "incomingTransitiveTags": {
 "Department": "Engineering"
 },
 "tags": [
 {
 "value": "johndoe@example.com",
 "key": "Email"
 },
 {
 "value": "12345",
 "key": "CostCenter"
 }
],
 "roleArn": "arn:aws:iam::111111111111:role/JohnRole2",
 "roleSessionName": "Role2WithTags",
 "sourceIdentity": "JohnDoe",
 "transitiveTagKeys": [
 "Email",
 "CostCenter"
],
 "durationSeconds": 3600
 },
 "responseElements": {
 "credentials": {
 "accessKeyId": "ASIAI44QH8DHBEXAMPLE",
 "expiration": "Oct 2, 2019, 11:12:29 PM",
 "sessionToken": "AgoJb3JpZ2luX2VjEB4aCXVzLXdlc3QtMSJHMEXAMPLETOKEN
+//rJb8Lo30mFc5MlhFCEbubZvEj0wHB/mDMwIgSEe9gk/Zjr09tZV7F1HDTMhmEXAMPLETOKEN/iEJ/
rkqngII9///////////
ARABGgw0MjgzMDc4NjM5NjYiDLZjZFKwP4qxQG5sFCryASO4UPz5qE97wPPH1eLMvs7CgSDBSWfonmRTCfokm2FN1+hWUdQQH6adjbbrVLFL8c3jSsBhQ383AvxpwK5YRuDE1AI/
+C+WKFZb701eiv9J5La2EXAMPLETOKEN/c7S5Iro1WUJ0q3Cxuo/8HUoSxVhQHM7zF7mWWLhXLEQ52ivL
+F6q5dpXu4aTFedpMfnJa8JtkWwG9x1Axj0Ypy2ok8v5unpQGWych1vwdvj6ez1Dm8Xg1+qIzXILiEXAMPLETOKEN/
vQGqu8H+nxp3kabcrtOvTFTvxX6vsc8OGwUfHhzAfYGEXAMPLETOKEN/
L6v1yMM3B1OwFOrQBno1HEjf1oNI8RnQiMNFdUOtwYj7HUZIOCZmjfN8PPHq77N7GJl9lzvIZKQA0Owcjg
+mc78zHCj8y0siY8C96paEXAMPLETOKEN/

Example AWS STS API events in CloudTrail log 781

AWS Identity and Access Management User Guide

E3cpksxWdgs91HRzJWScjN2+r2LTGjYhyPqcmFzzo2mCE7mBNEXAMPLETOKEN/oJy
+2o83YNW5tOiDmczgDzJZ4UKR84yGYOMfSnF4XcEJrDgAJ3OJFwmTcTQICAlSwLEXAMPLETOKEN"
 },
 "assumedRoleUser": {
 "assumedRoleId": "AROAIFR7WHDTSOYQYHFUE:Role2WithTags",
 "arn": "arn:aws:sts::111111111111:assumed-role/test-role/Role2WithTags"
 },
 "sourceIdentity": "JohnDoe"
 },
 "requestID": "b96b0e4e-e561-11e9-8b3f-7b396EXAMPLE",
 "eventID": "1917948f-3042-46ec-98e2-62865EXAMPLE",
 "resources": [
 {
 "ARN": "arn:aws:iam::111111111111:role/JohnRole2",
 "accountId": "111111111111",
 "type": "AWS::IAM::Role"
 }
],
 "eventType": "AwsApiCall",
 "recipientAccountId": "111111111111"
}

Example AWS service AWS STS API event in CloudTrail log file

The following example shows a CloudTrail log entry for a request made by an AWS service calling
another service API using permissions from a service role. It shows the CloudTrail log entry for the
request made in account 777788889999.

{
 "eventVersion": "1.04",
 "userIdentity": {
 "type": "AssumedRole",
 "principalId": "AROAQRSTUVWXYZEXAMPLE:devdsk",
 "arn": "arn:aws:sts::777788889999:assumed-role/AssumeNothing/devdsk",
 "accountId": "777788889999",
 "accessKeyId": "ASIAI44QH8DHBEXAMPLE",
 "sessionContext": {
 "attributes": {
 "mfaAuthenticated": "false",
 "creationDate": "2016-11-14T17:25:26Z"
 },
 "sessionIssuer": {
 "type": "Role",

Example AWS STS API events in CloudTrail log 782

AWS Identity and Access Management User Guide

 "principalId": "AROAQRSTUVWXYZEXAMPLE",
 "arn": "arn:aws:iam::777788889999:role/AssumeNothing",
 "accountId": "777788889999",
 "userName": "AssumeNothing"
 }
 }
 },
 "eventTime": "2016-11-14T17:25:45Z",
 "eventSource": "s3.amazonaws.com",
 "eventName": "DeleteBucket",
 "awsRegion": "us-east-2",
 "sourceIPAddress": "192.0.2.1",
 "userAgent": "[aws-cli/1.11.10 Python/2.7.8
 Linux/3.2.45-0.6.wd.865.49.315.metal1.x86_64 botocore/1.4.67]",
 "requestParameters": {
 "bucketName": "my-test-bucket-cross-account"
 },
 "responseElements": null,
 "requestID": "EXAMPLE463D56D4C",
 "eventID": "dEXAMPLE-265a-41e0-9352-4401bEXAMPLE",
 "eventType": "AwsApiCall",
 "recipientAccountId": "777788889999"
}

Example SAML AWS STS API event in CloudTrail log file

The following example shows a CloudTrail log entry for a request made for the AWS STS
AssumeRoleWithSAML action. The request includes the SAML attributes CostCenter and
Project that are passed through the SAML assertion as session tags. Those tags are set as
transitive so that they persist in role chaining scenarios. The request includes the optional API
parameter DurationSeconds, represented as durationSeconds in the CloudTrail log, and is set
to 1800 seconds. The request also includes the SAML attribute sourceIdentity, which is passed
in the SAML assertion. If someone uses the resulting role session credentials to assume another
role, this source identity persists.

{
 "eventVersion": "1.08",
 "userIdentity": {
 "type": "SAMLUser",
 "principalId": "SampleUkh1i4+ExamplexL/jEvs=:SamlExample",
 "userName": "SamlExample",
 "identityProvider": "bdGOnTesti4+ExamplexL/jEvs="

Example AWS STS API events in CloudTrail log 783

AWS Identity and Access Management User Guide

 },
 "eventTime": "2023-08-28T18:30:58Z",
 "eventSource": "sts.amazonaws.com",
 "eventName": "AssumeRoleWithSAML",
 "awsRegion": "us-east-2",
 "sourceIPAddress": "AWS Internal",
 "userAgent": "aws-internal/3 aws-sdk-java/1.12.479
 Linux/5.10.186-157.751.amzn2int.x86_64 OpenJDK_64-Bit_Server_VM/17.0.7+11 java/17.0.7
 kotlin/1.3.72 vendor/Amazon.com_Inc. cfg/retry-mode/standard",
 "requestParameters": {
 "sAMLAssertionID": "_c0046cEXAMPLEb9d4b8eEXAMPLE2619aEXAMPLE",
 "roleSessionName": "MyAssignedRoleSessionName",
 "sourceIdentity": "MySAMLUser",
 "principalTags": {
 "CostCenter": "987654",
 "Project": "Unicorn",
 "Department": "Engineering"
 },
 "transitiveTagKeys": [
 "CostCenter",
 "Project"
],
 "roleArn": "arn:aws:iam::444455556666:role/SAMLTestRoleShibboleth",
 "principalArn": "arn:aws:iam::444455556666:saml-provider/Shibboleth",
 "durationSeconds": 1800
 },
 "responseElements": {
 "credentials": {
 "accessKeyId": "ASIAIOSFODNN7EXAMPLE",
 "sessionToken": "<encoded session token blob>",
 "expiration": "Aug 28, 2023, 7:00:58 PM"
 },
 "assumedRoleUser": {
 "assumedRoleId": "AROAD35QRSTUVWEXAMPLE:MyAssignedRoleSessionName",
 "arn": "arn:aws:sts::444455556666:assumed-role/SAMLTestRoleShibboleth/
MyAssignedRoleSessionName"
 },
 "packedPolicySize": 1,
 "subject": "SamlExample",
 "subjectType": "transient",
 "issuer": "https://server.example.com/idp/shibboleth",
 "audience": "https://signin.aws.amazon.com/saml",
 "nameQualifier": "bdGOnTesti4+ExamplexL/jEvs=",
 "sourceIdentity": "MySAMLUser"

Example AWS STS API events in CloudTrail log 784

AWS Identity and Access Management User Guide

 },
 "requestID": "6EXAMPLE-e595-11e5-b2c7-c974fEXAMPLE",
 "eventID": "dEXAMPLE-265a-41e0-9352-4401bEXAMPLE",
 "readOnly": true,
 "resources": [
 {
 "accountId": "444455556666",
 "type": "AWS::IAM::Role",
 "ARN": "arn:aws:iam::444455556666:role/SAMLTestRoleShibboleth"
 },
 {
 "accountId": "444455556666",
 "type": "AWS::IAM::SAMLProvider",
 "ARN": "arn:aws:iam::444455556666:saml-provider/test-saml-provider"
 }
],
 "eventType": "AwsApiCall",
 "managementEvent": true,
 "recipientAccountId": "444455556666",
 "eventCategory": "Management",
 "tlsDetails": {
 "tlsVersion": "TLSv1.2",
 "cipherSuite": "ECDHE-RSA-AES128-GCM-SHA256",
 "clientProvidedHostHeader": "sts.us-east-2.amazonaws.com"
 }
}

Example web identity AWS STS API event in CloudTrail log file

The following example shows a CloudTrail log entry for a request made for the AWS STS
AssumeRoleWithWebIdentity action. The request includes the attributes CostCenter and
Project that are passed through the identity provider token as session tags. Those tags are set as
transitive so that they persist in role chaining. The request includes the sourceIdentity attribute
from the identity provider token. If someone uses the resulting role session credentials to assume
another role, this source identity persists.

{
 "eventVersion": "1.05",
 "userIdentity": {
 "type": "WebIdentityUser",
 "principalId": "accounts.google.com:<id-of-
application>.apps.googleusercontent.com:<id-of-user>",

Example AWS STS API events in CloudTrail log 785

AWS Identity and Access Management User Guide

 "userName": "<id of user>",
 "identityProvider": "accounts.google.com"
 },
 "eventTime": "2016-03-23T01:39:51Z",
 "eventSource": "sts.amazonaws.com",
 "eventName": "AssumeRoleWithWebIdentity",
 "awsRegion": "us-east-2",
 "sourceIPAddress": "192.0.2.101",
 "userAgent": "aws-cli/1.3.23 Python/2.7.6 Linux/2.6.18-164.el5",
 "requestParameters": {
 "sourceIdentity": "MyWebIdentityUser",
 "durationSeconds": 3600,
 "roleArn": "arn:aws:iam::444455556666:role/FederatedWebIdentityRole",
 "roleSessionName": "MyAssignedRoleSessionName"
 "principalTags": {
 "CostCenter": "24680",
 "Project": "Pegasus"
 },
 "transitiveTagKeys": [
 "CostCenter",
 "Project"
],
 },
 "responseElements": {
 "provider": "accounts.google.com",
 "subjectFromWebIdentityToken": "<id of user>",
 "sourceIdentity": "MyWebIdentityUser",
 "audience": "<id of application>.apps.googleusercontent.com",
 "credentials": {
 "accessKeyId": "ASIAIOSFODNN7EXAMPLE",
 "expiration": "Mar 23, 2016, 2:39:51 AM",
 "sessionToken": "<encoded session token blob>"
 },
 "assumedRoleUser": {
 "assumedRoleId": "AROACQRSTUVWRAOEXAMPLE:MyAssignedRoleSessionName",
 "arn": "arn:aws:sts::444455556666:assumed-role/FederatedWebIdentityRole/
MyAssignedRoleSessionName"
 }
 },
 "resources": [
 {
 "ARN": "arn:aws:iam::444455556666:role/FederatedWebIdentityRole",
 "accountId": "444455556666",
 "type": "AWS::IAM::Role"

Example AWS STS API events in CloudTrail log 786

AWS Identity and Access Management User Guide

 }
],
 "requestID": "6EXAMPLE-e595-11e5-b2c7-c974fEXAMPLE",
 "eventID": "bEXAMPLE-0b30-4246-b28c-e3da3EXAMPLE",
 "eventType": "AwsApiCall",
 "recipientAccountId": "444455556666"
}

Example sign-in events in CloudTrail log

CloudTrail log files contain events that are formatted using JSON. A sign-in event represents a
single sign-in request and includes information about the sign-in principal, the Region, and the
date and time of the action.

Example sign-in success event in CloudTrail log file

The following example shows a CloudTrail log entry for a successful sign-in event.

{
 "eventVersion": "1.05",
 "userIdentity": {
 "type": "IAMUser",
 "principalId": "AIDACKCEVSQ6C2EXAMPLE",
 "arn":"arn:aws:iam::111122223333:user/JohnDoe",
 "accountId": "111122223333",
 "userName": "JohnDoe"
 },
 "eventTime": "2014-07-16T15:49:27Z",
 "eventSource": "signin.amazonaws.com",
 "eventName": "ConsoleLogin",
 "awsRegion": "us-east-2",
 "sourceIPAddress": "192.0.2.110",
 "userAgent": "Mozilla/5.0 (Windows NT 6.1; WOW64; rv:24.0) Gecko/20100101
 Firefox/24.0",
 "requestParameters": null,
 "responseElements": {
 "ConsoleLogin": "Success"
 },
 "additionalEventData": {
 "MobileVersion": "No",
 "LoginTo": "https://console.aws.amazon.com/s3/ ",
 "MFAUsed": "No"

Example sign-in events in CloudTrail log 787

https://console.aws.amazon.com/s3/

AWS Identity and Access Management User Guide

 },
 "eventID": "3fcfb182-98f8-4744-bd45-10a395ab61cb"
}

For more details about the information contained in CloudTrail log files, see CloudTrail Event
Reference in the AWS CloudTrail User Guide.

Example sign-in failure event in CloudTrail log file

The following example shows a CloudTrail log entry for a failed sign-in event.

{
 "eventVersion": "1.05",
 "userIdentity": {
 "type": "IAMUser",
 "principalId": "AIDACKCEVSQ6C2EXAMPLE",
 "arn":"arn:aws:iam::111122223333:user/JaneDoe",
 "accountId": "111122223333",
 "userName": "JaneDoe"
 },
 "eventTime": "2014-07-08T17:35:27Z",
 "eventSource": "signin.amazonaws.com",
 "eventName": "ConsoleLogin",
 "awsRegion": "us-east-2",
 "sourceIPAddress": "192.0.2.100",
 "userAgent": "Mozilla/5.0 (Windows NT 6.1; WOW64; rv:24.0) Gecko/20100101
 Firefox/24.0",
 "errorMessage": "Failed authentication",
 "requestParameters": null,
 "responseElements": {
 "ConsoleLogin": "Failure"
 },
 "additionalEventData": {
 "MobileVersion": "No",
 "LoginTo": "https://console.aws.amazon.com/sns",
 "MFAUsed": "No"
 },
 "eventID": "11ea990b-4678-4bcd-8fbe-62509088b7cf"
}

From this information, you can determine that the sign-in attempt was made by an IAM user
named JaneDoe, as shown in the userIdentity element. You can also see that the sign-in

Example sign-in events in CloudTrail log 788

https://docs.aws.amazon.com/awscloudtrail/latest/userguide/eventreference.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/eventreference.html

AWS Identity and Access Management User Guide

attempt failed, as shown in the responseElements element. You can see that JaneDoe tried to
sign in to the Amazon SNS console at 5:35 PM (UTC) on July 8, 2014.

Example sign-in failure event caused by incorrect user name

The following example shows a CloudTrail log entry for an unsuccessful sign-in event
caused by the user entering an incorrect user name. AWS masks the userName text with
HIDDEN_DUE_TO_SECURITY_REASONS to help prevent exposing potentially sensitive information.

{
 "eventVersion": "1.05",
 "userIdentity": {
 "type": "IAMUser",
 "accountId": "123456789012",
 "accessKeyId": "",
 "userName": "HIDDEN_DUE_TO_SECURITY_REASONS"
 },
 "eventTime": "2015-03-31T22:20:42Z",
 "eventSource": "signin.amazonaws.com",
 "eventName": "ConsoleLogin",
 "awsRegion": "us-east-2",
 "sourceIPAddress": "192.0.2.101",
 "userAgent": "Mozilla/5.0 (Windows NT 6.1; WOW64; rv:24.0) Gecko/20100101
 Firefox/24.0",
 "errorMessage": "No username found in supplied account",
 "requestParameters": null,
 "responseElements": {
 "ConsoleLogin": "Failure"
 },
 "additionalEventData": {
 "LoginTo": "https://console.aws.amazon.com/console/home?state=hashArgs
%23&isauthcode=true",
 "MobileVersion": "No",
 "MFAUsed": "No"
 },
 "eventID": "a7654656-0417-45c6-9386-ea8231385051",
 "eventType": "AwsConsoleSignin",
 "recipientAccountId": "123456789012"
}

Example sign-in events in CloudTrail log 789

AWS Identity and Access Management User Guide

IAM role trust policy behavior

On September 21st, 2022, AWS made changes to IAM role trust policy behavior to require explicit
allows in a role trust policy when a role assumes itself. IAM roles in the legacy behavior allow
list have an additionalEventData field present for explicitTrustGrant for AssumeRole events.
The value of explicitTrustGrant is false when a role on the legacy allow list assumes itself
using the legacy behavior. When a role on the legacy allow list assumes itself but the role trust
policy behavior has been updated to explicitly allow the role to assume itself, the value of
explicitTrustGrant is true.

Only a very small number of IAM roles are on the allow list for the legacy behavior, and this field
is only present in CloudTrail logs for these roles when they assume themselves. In most cases, it is
not necessary for an IAM role to assume itself. AWS recommends updating your processes, code,
or configurations to remove this behavior or updating your role trust policies to explicitly allow for
this behavior. For more information, see Announcing an update to IAM role trust policy behavior.

IAM role trust policy behavior 790

https://aws.amazon.com/blogs/%20%20%20%20%20%20%20%20%20security/announcing-an-update-to-iam-role-trust-policy-behavior/

AWS Identity and Access Management User Guide

Access management for AWS resources

AWS Identity and Access Management (IAM) is a web service that helps you securely control
access to AWS resources. When a principal makes a request in AWS, the AWS enforcement code
checks whether the principal is authenticated (signed in) and authorized (has permissions). You
manage access in AWS by creating policies and attaching them to IAM identities or AWS resources.
Policies are JSON documents in AWS that, when attached to an identity or resource, define their
permissions. For more information about policy types and uses, see Policies and permissions in
IAM.

For details about the rest of the authentication and authorization process, see How IAM works.

791

AWS Identity and Access Management User Guide

During authorization, the AWS enforcement code uses values from the request context to check for
matching policies and determine whether to allow or deny the request.

AWS checks each policy that applies to the context of the request. If a single policy denies the
request, AWS denies the entire request and stops evaluating policies. This is called an explicit deny.
Because requests are denied by default, IAM authorizes your request only if every part of your
request is allowed by the applicable policies. The evaluation logic for a request within a single
account follows these rules:

• By default, all requests are implicitly denied. (Alternatively, by default, the AWS account root user
has full access.)

• An explicit allow in an identity-based or resource-based policy overrides this default.

• If a permissions boundary, Organizations SCP, or session policy is present, it might override the
allow with an implicit deny.

• An explicit deny in any policy overrides any allows.

After your request has been authenticated and authorized, AWS approves the request. If you need
to make a request in a different account, a policy in the other account must allow you to access the
resource. In addition, the IAM entity that you use to make the request must have an identity-based
policy that allows the request.

Access management resources

For more information about permissions and about creating policies, see the following resources:

The following entries in the AWS Security Blog cover common ways to write policies for access to
Amazon S3 buckets and objects.

• Writing IAM Policies: How to Grant Access to an Amazon S3 Bucket

• Writing IAM policies: Grant Access to User-Specific Folders in an Amazon S3 Bucket

• IAM Policies and Bucket Policies and ACLs! Oh My! (Controlling Access to S3 Resources)

• A Primer on RDS Resource-Level Permissions

• Demystifying EC2 Resource-Level Permissions

Access management resources 792

https://aws.amazon.com/blogs/security/writing-iam-policies-how-to-grant-access-to-an-amazon-s3-bucket/
https://aws.amazon.com/blogs/security/writing-iam-policies-grant-access-to-user-specific-folders-in-an-amazon-s3-bucket/
https://aws.amazon.com/blogs/security/iam-policies-and-bucket-policies-and-acls-oh-my-controlling-access-to-s3-resources/
https://aws.amazon.com/blogs/security/a-primer-on-rds-resource-level-permissions
https://aws.amazon.com/blogs/security/demystifying-ec2-resource-level-permissions/

AWS Identity and Access Management User Guide

Policies and permissions in IAM

You manage access in AWS by creating policies and attaching them to IAM identities (users, groups
of users, or roles) or AWS resources. A policy is an object in AWS that, when associated with an
identity or resource, defines their permissions. AWS evaluates these policies when an IAM principal
(user or role) makes a request. Permissions in the policies determine whether the request is allowed
or denied. Most policies are stored in AWS as JSON documents. AWS supports six types of policies:
identity-based policies, resource-based policies, permissions boundaries, Organizations SCPs, ACLs,
and session policies.

IAM policies define permissions for an action regardless of the method that you use to perform
the operation. For example, if a policy allows the GetUser action, then a user with that policy can
get user information from the AWS Management Console, the AWS CLI, or the AWS API. When you
create an IAM user, you can choose to allow console or programmatic access. If console access is
allowed, the IAM user can sign in to the console using their sign-in credentials. If programmatic
access is allowed, the user can use access keys to work with the CLI or API.

Policy types

The following policy types, listed in order from most frequently used to less frequently used, are
available for use in AWS. For more details, see the sections below for each policy type.

• Identity-based policies – Attach managed and inline policies to IAM identities (users, groups to
which users belong, or roles). Identity-based policies grant permissions to an identity.

• Resource-based policies – Attach inline policies to resources. The most common examples of
resource-based policies are Amazon S3 bucket policies and IAM role trust policies. Resource-
based policies grant permissions to the principal that is specified in the policy. Principals can be
in the same account as the resource or in other accounts.

• Permissions boundaries – Use a managed policy as the permissions boundary for an IAM entity
(user or role). That policy defines the maximum permissions that the identity-based policies can
grant to an entity, but does not grant permissions. Permissions boundaries do not define the
maximum permissions that a resource-based policy can grant to an entity.

• Organizations SCPs – Use an AWS Organizations service control policy (SCP) to define the
maximum permissions for account members of an organization or organizational unit (OU). SCPs
limit permissions that identity-based policies or resource-based policies grant to entities (users
or roles) within the account, but do not grant permissions.

Policies and permissions 793

https://docs.aws.amazon.com/IAM/latest/APIReference/API_GetUser.html

AWS Identity and Access Management User Guide

• Access control lists (ACLs) – Use ACLs to control which principals in other accounts can access
the resource to which the ACL is attached. ACLs are similar to resource-based policies, although
they are the only policy type that does not use the JSON policy document structure. ACLs are
cross-account permissions policies that grant permissions to the specified principal. ACLs cannot
grant permissions to entities within the same account.

• Session policies – Pass advanced session policies when you use the AWS CLI or AWS API to
assume a role or a federated user. Session policies limit the permissions that the role or user's
identity-based policies grant to the session. Session policies limit permissions for a created
session, but do not grant permissions. For more information, see Session Policies.

Identity-based policies

Identity-based policies are JSON permissions policy documents that control what actions an
identity (users, groups of users, and roles) can perform, on which resources, and under what
conditions. Identity-based policies can be further categorized:

• Managed policies – Standalone identity-based policies that you can attach to multiple users,
groups, and roles in your AWS account. There are two types of managed policies:

• AWS managed policies – Managed policies that are created and managed by AWS.

• Customer managed policies – Managed policies that you create and manage in your AWS
account. Customer managed policies provide more precise control over your policies than AWS
managed policies.

• Inline policies – Policies that you add directly to a single user, group, or role. Inline policies
maintain a strict one-to-one relationship between a policy and an identity. They are deleted
when you delete the identity.

To learn how to choose between managed and inline policies, see Choosing between managed
policies and inline policies.

Resource-based policies

Resource-based policies are JSON policy documents that you attach to a resource such as an
Amazon S3 bucket. These policies grant the specified principal permission to perform specific
actions on that resource and defines under what conditions this applies. Resource-based policies
are inline policies. There are no managed resource-based policies.

Policy types 794

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html#policies_session

AWS Identity and Access Management User Guide

To enable cross-account access, you can specify an entire account or IAM entities in another
account as the principal in a resource-based policy. Adding a cross-account principal to a resource-
based policy is only half of establishing the trust relationship. When the principal and the resource
are in separate AWS accounts, you must also use an identity-based policy to grant the principal
access to the resource. However, if a resource-based policy grants access to a principal in the same
account, no additional identity-based policy is required. For step-by step instructions for granting
cross-service access, see IAM tutorial: Delegate access across AWS accounts using IAM roles.

The IAM service supports only one type of resource-based policy called a role trust policy, which
is attached to an IAM role. An IAM role is both an identity and a resource that supports resource-
based policies. For that reason, you must attach both a trust policy and an identity-based policy
to an IAM role. Trust policies define which principal entities (accounts, users, roles, and federated
users) can assume the role. To learn how IAM roles are different from other resource-based policies,
see Cross account resource access in IAM.

To see which other services support resource-based policies, see AWS services that work with
IAM. To learn more about resource-based policies, see Identity-based policies and resource-based
policies. To learn whether principals in accounts outside of your zone of trust (trusted organization
or account) have access to assume your roles, see What is IAM Access Analyzer?.

IAM permissions boundaries

A permissions boundary is an advanced feature in which you set the maximum permissions that
an identity-based policy can grant to an IAM entity. When you set a permissions boundary for
an entity, the entity can perform only the actions that are allowed by both its identity-based
policies and its permissions boundaries. Resource-based policies that specify the user or role
as the principal are not limited by the permissions boundary. An explicit deny in any of these
policies overrides the allow. For more information about permissions boundaries, see Permissions
boundaries for IAM entities.

Service control policies (SCPs)

AWS Organizations is a service for grouping and centrally managing the AWS accounts that your
business owns. If you enable all features in an organization, then you can apply service control
policies (SCPs) to any or all of your accounts. SCPs are JSON policies that specify the maximum
permissions for an organization or organizational unit (OU). The SCP limits permissions for entities
in member accounts, including each AWS account root user. An explicit deny in any of these policies
overrides the allow.

Policy types 795

https://docs.aws.amazon.com/IAM/latest/UserGuide/what-is-access-analyzer.html

AWS Identity and Access Management User Guide

For more information about Organizations and SCPs, see How SCPs Work in the AWS Organizations
User Guide.

Access control lists (ACLs)

Access control lists (ACLs) are service policies that allow you to control which principals in another
account can access a resource. ACLs cannot be used to control access for a principal within the
same account. ACLs are similar to resource-based policies, although they are the only policy type
that does not use the JSON policy document format. Amazon S3, AWS WAF, and Amazon VPC are
examples of services that support ACLs. To learn more about ACLs, see Access Control List (ACL)
Overview in the Amazon Simple Storage Service Developer Guide.

Session policies

Session policies are advanced policies that you pass as a parameter when you programmatically
create a temporary session for a role or federated user. The permissions for a session are the
intersection of the identity-based policies for the IAM entity (user or role) used to create the
session and the session policies. Permissions can also come from a resource-based policy. An
explicit deny in any of these policies overrides the allow.

You can create role session and pass session policies programmatically using the AssumeRole,
AssumeRoleWithSAML, or AssumeRoleWithWebIdentity API operations. You can pass a single
JSON inline session policy document using the Policy parameter. You can use the PolicyArns
parameter to specify up to 10 managed session policies. For more information about creating a
role session, see Requesting temporary security credentials.

When you create a federated user session, you use the access keys of the IAM user to
programmatically call the GetFederationToken API operation. You must also pass session
policies. The resulting session's permissions are the intersection of the identity-based policy
and the session policy. For more information about creating a federated user session, see
GetFederationToken—federation through a custom identity broker.

A resource-based policy can specify the ARN of the user or role as a principal. In that case, the
permissions from the resource-based policy are added to the role or user's identity-based policy
before the session is created. The session policy limits the total permissions granted by the
resource-based policy and the identity-based policy. The resulting session's permissions are the
intersection of the session policies and the resource-based policies plus the intersection of the
session policies and identity-based policies.

Policy types 796

https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_about-scps.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/acl-overview.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/acl-overview.html
https://docs.aws.amazon.com/STS/latest/APIReference/API_GetFederationToken.html

AWS Identity and Access Management User Guide

A resource-based policy can specify the ARN of the session as a principal. In that case, the
permissions from the resource-based policy are added after the session is created. The resource-
based policy permissions are not limited by the session policy. The resulting session has all the
permissions of the resource-based policy plus the intersection of the identity-based policy and the
session policy.

A permissions boundary can set the maximum permissions for a user or role that is used to create
a session. In that case, the resulting session's permissions are the intersection of the session policy,

Policy types 797

AWS Identity and Access Management User Guide

the permissions boundary, and the identity-based policy. However, a permissions boundary does
not limit permissions granted by a resource-based policy that specifies the ARN of the resulting
session.

Policies and the root user

The AWS account root user is affected by some policy types but not others. You cannot attach
identity-based policies to the root user, and you cannot set the permissions boundary for the root
user. However, you can specify the root user as the principal in a resource-based policy or an ACL. A
root user is still the member of an account. If that account is a member of an organization in AWS
Organizations, the root user is affected by any SCPs for the account.

Overview of JSON policies

Most policies are stored in AWS as JSON documents. Identity-based policies and policies used to
set permissions boundaries are JSON policy documents that you attach to a user or role. Resource-
based policies are JSON policy documents that you attach to a resource. SCPs are JSON policy
documents with restricted syntax that you attach to an AWS Organizations organizational unit
(OU). ACLs are also attached to a resource, but you must use a different syntax. Session policies are
JSON policies that you provide when you assume a role or federated user session.

It is not necessary for you to understand the JSON syntax. You can use the visual editor in the AWS
Management Console to create and edit customer managed policies without ever using JSON.
However, if you use inline policies for groups or complex policies, you must still create and edit

Policies and the root user 798

AWS Identity and Access Management User Guide

those policies in the JSON editor using the console. For more information about using the visual
editor, see Creating IAM policies and Editing IAM policies.

When you create or edit a JSON policy, IAM can perform policy validation to help you create an
effective policy. IAM identifies JSON syntax errors, while IAM Access Analyzer provides additional
policy checks with recommendations to help you further refine your policies. To learn more about
policy validation, see Validating IAM policies. To learn more about IAM Access Analyzer policy
checks and actionable recommendations, see IAM Access Analyzer policy validation.

JSON policy document structure

As illustrated in the following figure, a JSON policy document includes these elements:

• Optional policy-wide information at the top of the document

• One or more individual statements

Each statement includes information about a single permission. If a policy includes multiple
statements, AWS applies a logical OR across the statements when evaluating them. If multiple
policies apply to a request, AWS applies a logical OR across all of those policies when evaluating
them.

The information in a statement is contained within a series of elements.

Overview of JSON policies 799

https://docs.aws.amazon.com/IAM/latest/UserGuide/access-analyzer-policy-validation.html

AWS Identity and Access Management User Guide

• Version – Specify the version of the policy language that you want to use. We recommend that
you use the latest 2012-10-17 version. For more information, see IAM JSON policy elements:
Version

• Statement – Use this main policy element as a container for the following elements. You can
include more than one statement in a policy.

• Sid (Optional) – Include an optional statement ID to differentiate between your statements.

• Effect – Use Allow or Deny to indicate whether the policy allows or denies access.

• Principal (Required in only some circumstances) – If you create a resource-based policy, you must
indicate the account, user, role, or federated user to which you would like to allow or deny access.
If you are creating an IAM permissions policy to attach to a user or role, you cannot include this
element. The principal is implied as that user or role.

• Action – Include a list of actions that the policy allows or denies.

• Resource (Required in only some circumstances) – If you create an IAM permissions policy, you
must specify a list of resources to which the actions apply. If you create a resource-based policy,
this element is optional. If you do not include this element, then the resource to which the action
applies is the resource to which the policy is attached.

• Condition (Optional) – Specify the circumstances under which the policy grants permission.

To learn about these and other more advanced policy elements, see IAM JSON policy elements
reference.

Multiple statements and multiple policies

If you want to define more than one permission for an entity (user or role), you can use multiple
statements in a single policy. You can also attach multiple policies. If you try to define multiple
permissions in a single statement, your policy might not grant the access that you expect. We
recommend that you break up policies by resource type.

Because of the limited size of policies, it might be necessary to use multiple policies for more
complex permissions. It's also a good idea to create functional groupings of permissions in a
separate customer managed policy. For example, Create one policy for IAM user management,
one for self-management, and another policy for S3 bucket management. Regardless of the
combination of multiple statements and multiple policies, AWS evaluates your policies the same
way.

Overview of JSON policies 800

AWS Identity and Access Management User Guide

For example, the following policy has three statements, each of which defines a separate set of
permissions within a single account. The statements define the following:

• The first statement, with an Sid (Statement ID) of FirstStatement, lets the user with
the attached policy change their own password. The Resource element in this statement
is "*" (which means "all resources"). But in practice, the ChangePassword API operation (or
equivalent change-password CLI command) affects only the password for the user who makes
the request.

• The second statement lets the user list all the Amazon S3 buckets in their AWS account. The
Resource element in this statement is "*" (which means "all resources"). But because policies
don't grant access to resources in other accounts, the user can list only the buckets in their own
AWS account.

• The third statement lets the user list and retrieve any object that is in a bucket named
confidential-data, but only when the user is authenticated with multi-factor authentication
(MFA). The Condition element in the policy enforces the MFA authentication.

When a policy statement contains a Condition element, the statement is only in effect when
the Condition element evaluates to true. In this case, the Condition evaluates to true when
the user is MFA-authenticated. If the user is not MFA-authenticated, this Condition evaluates
to false. In that case, the third statement in this policy does not apply and the user does not have
access to the confidential-data bucket.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "FirstStatement",
 "Effect": "Allow",
 "Action": ["iam:ChangePassword"],
 "Resource": "*"
 },
 {
 "Sid": "SecondStatement",
 "Effect": "Allow",
 "Action": "s3:ListAllMyBuckets",
 "Resource": "*"
 },
 {
 "Sid": "ThirdStatement",

Overview of JSON policies 801

AWS Identity and Access Management User Guide

 "Effect": "Allow",
 "Action": [
 "s3:List*",
 "s3:Get*"
],
 "Resource": [
 "arn:aws:s3:::confidential-data",
 "arn:aws:s3:::confidential-data/*"
],
 "Condition": {"Bool": {"aws:MultiFactorAuthPresent": "true"}}
 }
]
}

Examples of JSON policy syntax

The following identity-based policy allows the implied principal to list a single Amazon S3 bucket
named example_bucket:

{
 "Version": "2012-10-17",
 "Statement": {
 "Effect": "Allow",
 "Action": "s3:ListBucket",
 "Resource": "arn:aws:s3:::example_bucket"
 }
}

The following resource-based policy can be attached to an Amazon S3 bucket. The policy allows
members of a specific AWS account to perform any Amazon S3 actions in the bucket named
mybucket. It allows any action that can be performed on a bucket or the objects within it.
(Because the policy grants trust only to the account, individual users in the account must still be
granted permissions for the specified Amazon S3 actions.)

{
 "Version": "2012-10-17",
 "Statement": [{
 "Sid": "1",
 "Effect": "Allow",
 "Principal": {"AWS": ["arn:aws:iam::account-id:root"]},
 "Action": "s3:*",

Overview of JSON policies 802

AWS Identity and Access Management User Guide

 "Resource": [
 "arn:aws:s3:::mybucket",
 "arn:aws:s3:::mybucket/*"
]
 }]
}

To view example policies for common scenarios, see Example IAM identity-based policies.

Grant least privilege

When you create IAM policies, follow the standard security advice of granting least privilege, or
granting only the permissions required to perform a task. Determine what users and roles need to
do and then craft policies that allow them to perform only those tasks.

Start with a minimum set of permissions and grant additional permissions as necessary. Doing so
is more secure than starting with permissions that are too lenient and then trying to tighten them
later.

As an alternative to least privilege, you can use AWS managed policies or policies with wildcard *
permissions to get started with policies. Consider the security risk of granting your principals more
permissions than they need to do their job. Monitor those principals to learn which permissions
they are using. Then write least privilege policies.

IAM provides several options to help you refine the permissions that you grant.

• Understand access level groupings – You can use access level groupings to understand the level
of access that a policy grants. Policy actions are classified as List, Read, Write, Permissions
management, or Tagging. For example, you can choose actions from the List and Read
access levels to grant read-only access to your users. To learn how to use policy summaries to
understand access level permissions, see Understanding access level summaries within policy
summaries.

• Validate your policies – You can perform policy validation using IAM Access Analyzer when
you create and edit JSON policies. We recommend that you review and validate all of your
existing policies. IAM Access Analyzer provides over 100 policy checks to validate your policies.
It generates security warnings when a statement in your policy allows access we consider
overly permissive. You can use the actionable recommendations that are provided through the
security warnings as you work toward granting least privilege. To learn more about policy checks
provided by IAM Access Analyzer, see IAM Access Analyzer policy validation.

Grant least privilege 803

https://docs.aws.amazon.com/IAM/latest/UserGuide/access-analyzer-policy-validation.html

AWS Identity and Access Management User Guide

• Generate a policy based on access activity – To help you refine the permissions that you grant,
you can generate an IAM policy that is based on the access activity for an IAM entity (user or
role). IAM Access Analyzer reviews your AWS CloudTrail logs and generates a policy template that
contains the permissions that have been used by the entity in your specified time frame. You can
use the template to create a managed policy with fine-grained permissions and then attach it to
the IAM entity. That way, you grant only the permissions that the user or role needs to interact
with AWS resources for your specific use case. To learn more, see Generate policies based on
access activity.

• Use last accessed information – Another feature that can help with least privilege is last
accessed information. View this information on the Access Advisor tab on the IAM console details
page for an IAM user, group, role, or policy. Last accessed information also includes information
about the actions that were last accessed for some services, such as Amazon EC2, IAM, Lambda,
and Amazon S3. If you sign in using AWS Organizations management account credentials, you
can view service last accessed information in the AWS Organizations section of the IAM console.
You can also use the AWS CLI or AWS API to retrieve a report for last accessed information for
entities or policies in IAM or Organizations. You can use this information to identify unnecessary
permissions so that you can refine your IAM or Organizations policies to better adhere to the
principle of least privilege. For more information, see Refining permissions in AWS using last
accessed information.

• Review account events in AWS CloudTrail – To further reduce permissions, you can view your
account's events in AWS CloudTrail Event history. CloudTrail event logs include detailed event
information that you can use to reduce the policy's permissions. The logs include only the actions
and resources that your IAM entities need. For more information, see Viewing CloudTrail Events
in the CloudTrail Console in the AWS CloudTrail User Guide.

For more information, see the following policy topics for individual services, which provide
examples of how to write policies for service-specific resources.

• Authentication and Access Control for Amazon DynamoDB in the Amazon DynamoDB Developer
Guide

• Using Bucket Policies and User Policies in the Amazon Simple Storage Service User Guide

• Access Control List (ACL) Overview in the Amazon Simple Storage Service User Guide

Grant least privilege 804

https://docs.aws.amazon.com/awscloudtrail/latest/userguide/view-cloudtrail-events-console.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/view-cloudtrail-events-console.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/UsingIAMWithDDB.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/using-iam-policies.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/acl-overview.html

AWS Identity and Access Management User Guide

Managed policies and inline policies

When you set the permissions for an identity in IAM, you must decide whether to use an AWS
managed policy, a customer managed policy, or an inline policy. The following topics provide more
information about each of the types of identity-based policies and when to use them.

Topics

• AWS managed policies

• Customer managed policies

• Inline policies

• Choosing between managed policies and inline policies

• Getting started with managed policies

• Converting an inline policy to a managed policy

• Deprecated AWS managed policies

AWS managed policies

An AWS managed policy is a standalone policy that is created and administered by AWS. Standalone
policy means that the policy has its own Amazon Resource Name (ARN) that includes the policy
name. For example, arn:aws:iam::aws:policy/IAMReadOnlyAccess is an AWS managed
policy. For more information about ARNs, see IAM ARNs. For a list of AWS managed policies for
AWS services, see AWS managed policies.

AWS managed policies make it convenient for you to assign appropriate permissions to users,
groups, and roles. It is faster than writing the policies yourself, and includes permissions for many
common use cases.

You cannot change the permissions defined in AWS managed policies. AWS occasionally updates
the permissions defined in an AWS managed policy. When AWS does this, the update affects all
principal entities (users, groups, and roles) that the policy is attached to. AWS is most likely to
update an AWS managed policy when a new AWS service is launched or new API calls become
available for existing services. For example, the AWS managed policy called ReadOnlyAccess
provides read-only access to all AWS services and resources. When AWS launches a new service,
AWS updates the ReadOnlyAccess policy to add read-only permissions for the new service. The
updated permissions are applied to all principal entities that the policy is attached to.

Managed policies and inline policies 805

https://docs.aws.amazon.com/aws-managed-policy/latest/reference/policy-list.html

AWS Identity and Access Management User Guide

Full access AWS managed policies define permissions for service administrators by granting full
access to a service.

• AmazonDynamoDBFullAccess

• IAMFullAccess

Power-user AWS managed policies provide full access to AWS services and resources, but do not
allow managing users and groups.

• AWSCodeCommitPowerUser

• AWSKeyManagementServicePowerUser

Partial-access AWS managed policies provide specific levels of access to AWS services without
allowing permissions management access level permissions.

• AmazonMobileAnalyticsWriteOnlyAccess

• AmazonEC2ReadOnlyAccess

One particularly useful category of AWS managed policies are those designed for job functions.
These policies align closely with commonly used job functions in the IT industry and facilitate
granting permissions for these job functions. One key advantage of using job function policies is
that they are maintained and updated by AWS as new services and API operations are introduced.
For example, the AdministratorAccess job function provides full access and permissions delegation
to every service and resource in AWS. We recommend that you use this policy only for the account
administrator. For power users that require full access to every service except limited access to IAM
and Organizations, use the PowerUserAccess job function. For a list and descriptions of the job
function policies, see AWS managed policies for job functions.

The following diagram illustrates AWS managed policies. The diagram shows three AWS managed
policies: AdministratorAccess, PowerUserAccess, and AWSCloudTrailReadOnlyAccess. Notice that
a single AWS managed policy can be attached to principal entities in different AWS accounts, and
to different principal entities in a single AWS account.

Managed policies and inline policies 806

https://docs.aws.amazon.com/aws-managed-policy/latest/reference/AmazonDynamoDBFullAccess.html
https://docs.aws.amazon.com/aws-managed-policy/latest/reference/IAMFullAccess.html
https://docs.aws.amazon.com/aws-managed-policy/latest/reference/AWSCodeCommitPowerUser.html
https://docs.aws.amazon.com/aws-managed-policy/latest/reference/AWSKeyManagementServicePowerUser.html
https://docs.aws.amazon.com/aws-managed-policy/latest/reference/AmazonMobileAnalyticsWriteOnlyAccess.html
https://docs.aws.amazon.com/aws-managed-policy/latest/reference/AmazonEC2ReadOnlyAccess.html
https://docs.aws.amazon.com/aws-managed-policy/latest/reference/AdministratorAccess.html
https://docs.aws.amazon.com/aws-managed-policy/latest/reference/PowerUserAccess.html

AWS Identity and Access Management User Guide

Customer managed policies

You can create standalone policies in your own AWS account that you can attach to principal
entities (users, groups, and roles). You create these customer managed policies for your specific use
cases, and you can change and update them as often as you like. Like AWS managed policies, when
you attach a policy to a principal entity, you give the entity the permissions that are defined in the
policy. When you update permissions in the policy, the changes are applied to all principal entities
that the policy is attached to.

A great way to create a customer managed policy is to start by copying an existing AWS managed
policy. That way you know that the policy is correct at the beginning and all you need to do is
customize it to your environment.

The following diagram illustrates customer managed policies. Each policy is an entity in IAM with
its own Amazon Resource Name (ARN) that includes the policy name. Notice that the same policy
can be attached to multiple principal entities—for example, the same DynamoDB-books-app
policy is attached to two different IAM roles.

Managed policies and inline policies 807

AWS Identity and Access Management User Guide

For more information, see Creating IAM policies

Inline policies

An inline policy is a policy created for a single IAM identity (a user, group, or role). Inline policies
maintain a strict one-to-one relationship between a policy and an identity. They are deleted when
you delete the identity. You can create a policy and embed it in an identity, either when you create
the identity or later. If a policy could apply to more than one entity, it’s better to use a managed
policy.

Managed policies and inline policies 808

AWS Identity and Access Management User Guide

The following diagram illustrates inline policies. Each policy is an inherent part of the user, group,
or role. Notice that two roles include the same policy (the DynamoDB-books-app policy), but they
are not sharing a single policy. Each role has its own copy of the policy.

Managed policies and inline policies 809

AWS Identity and Access Management User Guide

Choosing between managed policies and inline policies

Consider your use cases when deciding between managed and inline policies. In most cases, we
recommend that you use managed policies instead of inline policies.

Note

You can use both managed and inline policies together to define common and unique
permissions for a principal entity.

Managed policies provide the following features:

Reusability

A single managed policy can be attached to multiple principal entities (users, groups, and roles).
You can create a library of policies that define useful permissions for your AWS account, and
then attach these policies to principal entities as needed.

Central change management

When you change a managed policy, the change is applied to all principal entities that the
policy is attached to. For example, if you want to add permission for a new AWS API, you can
update a customer managed policy or associate an AWS managed policy to add the permission.
If you're using an AWS managed policy, AWS updates the policy. When a managed policy is
updated, the changes are applied to all principal entities that the managed policy is attached
to. In contrast, to change an inline policy, you must individually edit each identity that contains
the inline policy. For example, if a group and a role both contain the same inline policy, you
must individually edit both principal entities to change that policy.

Versioning and rolling back

When you change a customer managed policy, the changed policy doesn't overwrite the
existing policy. Instead, IAM creates a new version of the managed policy. IAM stores up to five
versions of your customer managed policies. You can use policy versions to revert a policy to an
earlier version as needed.

Note

A policy version is different from a Version policy element. The Version policy
element is used within a policy and defines the version of the policy language. To learn

Managed policies and inline policies 810

AWS Identity and Access Management User Guide

more about policy versions, see the section called “Versioning IAM policies”. To learn
more about the Version policy element see IAM JSON policy elements: Version.

Delegating permissions management

You can allow users in your AWS account to attach and detach policies while maintaining
control over the permissions defined in those policies. To do this, designate some users as full
administrators—that is, administrators that can create, update, and delete policies. You can
then designate other users as limited administrators. Those limited administrators can attach
policies to other principal entities, but only the policies that you have allowed them to attach.

For more information about delegating permissions management, see Controlling access to
policies.

Larger policy character limits

The maximum character size limit for managed policies is greater than the character limit for
inline policies. If you reach the inline policy's character size limit, you can create more IAM
groups and attach the managed policy to the group.

For more information on quotas and limits, see IAM and AWS STS quotas.

Automatic updates for AWS managed policies

AWS maintains AWS managed policies and updates them when necessary, for example, to
add permissions for new AWS services, without you having to make changes. The updates are
automatically applied to the principal entities that you have attached the AWS managed policy
to.

Using inline policies

Inline policies are useful if you want to maintain a strict one-to-one relationship between a policy
and the identity to which it is applied. For example, if you want to be sure that the permissions in a
policy are not inadvertently assigned to an identity other than the one they're intended for. When
you use an inline policy, the permissions in the policy cannot be inadvertently attached to the
wrong identity. In addition, when you use the AWS Management Console to delete that identity,
the policies embedded in the identity are deleted as well because they are part of the principal
entity.

Managed policies and inline policies 811

AWS Identity and Access Management User Guide

Getting started with managed policies

We recommend using policies that grant least privilege, or granting only the permissions required
to perform a task. The most secure way to grant least privilege is to write a customer managed
policy with only the permissions needed by your team. You must create a process to allow your
team to request more permissions when necessary. It takes time and expertise to create IAM
customer managed policies that provide your team with only the permissions they need.

To get started adding permissions to your IAM identities (users, groups of users, and roles), you
can use AWS managed policies. AWS managed policies don't grant least privilege permissions. You
must consider the security risk of granting your principals more permissions than they need to do
their job.

You can attach AWS managed policies, including job functions, to any IAM identity. For more
information, see Adding and removing IAM identity permissions.

To switch to least privilege permissions, you can run AWS Identity and Access Management Access
Analyzer to monitor the principals with AWS managed policies. After learning which permissions
they are using, then you can write or generate a customer managed policy with only the required
permissions for your team. This is less secure, but provides more flexibility as you learn how your
team is using AWS. For more information, see IAM Access Analyzer policy generation.

AWS managed policies are designed to provide permissions for many common use cases. For more
information about AWS managed policies that are designed for specific job functions, see AWS
managed policies for job functions.

For a list of AWS managed policies, see AWS Managed Policy Reference Guide.

Converting an inline policy to a managed policy

If you have inline policies in your account, you can convert them to managed policies. To do this,
copy the policy to a new managed policy. Next, attach the new policy to the identity that has the
inline policy. Then delete the inline policy.

To convert an inline policy to a managed policy

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. In the navigation pane, choose User groups, Users, or Roles.

Managed policies and inline policies 812

https://docs.aws.amazon.com/aws-managed-policy/latest/reference/about-managed-policy-reference.html
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/

AWS Identity and Access Management User Guide

3. In the list, choose the name of the user group, user, or role that has the policy you want to
remove.

4. Choose the Permissions tab.

5. For user groups, select the name of the inline policy that you want to remove. For users and
roles, choose Show n more, if necessary, and then expand the inline policy that you want to
remove.

6. Choose Copy to copy the JSON policy document for the policy.

7. In the navigation pane, choose Policies.

8. Choose Create policy and then choose the JSON option.

9. Replace the existing text with your JSON policy text, and then choose Next.

10. Enter a name and optional description for your policy and choose Create policy.

11. In the navigation pane, choose User groups, Users, or Roles, and again choose the name of the
user group, user, or role that has the policy you want to remove.

12. Choose the Permissions tab and then choose Add permissions.

13. For user groups, select the check box next to the name of your new policy, choose Add
permissions, and then choose Attach policy. For users or roles, choose Add permissions. On
the next page, choose Attach existing policies directly, select the check box next to the name
of your new policy, choose Next, and then choose Add permissions.

You are returned to the Summary page for your user group, user, or role.

14. Select the check box next to the inline policy that you want to remove and choose Remove.

Deprecated AWS managed policies

To simplify the assignment of permissions, AWS provides managed policies—predefined policies
that are ready to be attached to your IAM users, groups, and roles.

Sometimes AWS needs to add a new permission to an existing policy, such as when a new service is
introduced. Adding a new permission to an existing policy does not disrupt or remove any feature
or ability.

However, AWS might choose to create a new policy when the needed changes could impact
customers if they were applied to an existing policy. For example, removing permissions from an
existing policy could break the permissions of any IAM entity or application that depended upon it,
potentially disrupting a critical operation.

Managed policies and inline policies 813

AWS Identity and Access Management User Guide

Therefore, when such a change is required, AWS creates a completely new policy with the
required changes and makes it available to customers. The old policy is then marked deprecated.
A deprecated managed policy appears with a warning icon next to it in the Policies list in the IAM
console.

A deprecated policy has the following characteristics:

• It continues to work for all currently attached users, groups, and roles. Nothing breaks.

• It cannot be attached to any new users, groups, or roles. If you detach it from a current entity,
you cannot reattach it.

• After you detach it from all current entities, it is no longer visible and can no longer be used in
any way.

If any user, group, or role requires the policy, you must instead attach the new policy. When you
receive notice that a policy is deprecated, we recommend that you immediately plan to attach all
users, groups, and roles to the replacement policy and detach them from the deprecated policy.
Continuing to use the deprecated policy can carry risks that are mitigated only by switching to the
replacement policy.

Permissions boundaries for IAM entities

AWS supports permissions boundaries for IAM entities (users or roles). A permissions boundary is
an advanced feature for using a managed policy to set the maximum permissions that an identity-
based policy can grant to an IAM entity. An entity's permissions boundary allows it to perform only
the actions that are allowed by both its identity-based policies and its permissions boundaries.

For more information about policy types, see Policy types.

Important

Don't use resource-based policy statements that include a NotPrincipal policy element
with a Deny effect for IAM users or roles that have a permissions boundary policy attached.
The NotPrincipal element with a Deny effect will always deny any IAM principal that
has a permissions boundary policy attached, regardless of the values specified in the
NotPrincipal element. This causes some IAM users or roles that would otherwise have
access to the resource to lose access. We recommend changing your resource-based policy
statements to use the condition operator ArnNotEquals with the aws:PrincipalArn

Permissions boundaries 814

AWS Identity and Access Management User Guide

context key to limit access instead of the NotPrincipal element. For information about
the NotPrincipal element, see AWS JSON policy elements: NotPrincipal.

You can use an AWS managed policy or a customer managed policy to set the boundary for an IAM
entity (user or role). That policy limits the maximum permissions for the user or role.

For example, assume that the IAM user named ShirleyRodriguez should be allowed to manage
only Amazon S3, Amazon CloudWatch, and Amazon EC2. To enforce this rule, you can use the
following policy to set the permissions boundary for the ShirleyRodriguez user:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "s3:*",
 "cloudwatch:*",
 "ec2:*"
],
 "Resource": "*"
 }
]
}

When you use a policy to set the permissions boundary for a user, it limits the user's permissions
but does not provide permissions on its own. In this example, the policy sets the maximum
permissions of ShirleyRodriguez as all operations in Amazon S3, CloudWatch, and Amazon
EC2. Shirley can never perform operations in any other service, including IAM, even if she
has a permissions policy that allows it. For example, you can add the following policy to the
ShirleyRodriguez user:

{
 "Version": "2012-10-17",
 "Statement": {
 "Effect": "Allow",
 "Action": "iam:CreateUser",
 "Resource": "*"
 }

Permissions boundaries 815

AWS Identity and Access Management User Guide

}

This policy allows creating a user in IAM. If you attach this permissions policy to the
ShirleyRodriguez user, and Shirley tries to create a user, the operation fails. It fails because the
permissions boundary does not allow the iam:CreateUser operation. Given these two policies,
Shirley does not have permission to perform any operations in AWS. You must add a different
permissions policy to allow actions in other services, such as Amazon S3. Alternatively, you could
update the permissions boundary to allow her to create a user in IAM.

Evaluating effective permissions with boundaries

The permissions boundary for an IAM entity (user or role) sets the maximum permissions that
the entity can have. This can change the effective permissions for that user or role. The effective
permissions for an entity are the permissions that are granted by all the policies that affect the
user or role. Within an account, the permissions for an entity can be affected by identity-based
policies, resource-based policies, permissions boundaries, Organizations SCPs, or session policies.
For more information about the different types of policies, see Policies and permissions in IAM.

If any one of these policy types explicitly denies access for an operation, then the request is denied.
The permissions granted to an entity by multiple permissions types are more complex. For more
details about how AWS evaluates policies, see Policy evaluation logic.

Identity-based policies with boundaries – Identity-based policies are inline or managed policies
that are attached to a user, group of users, or role. Identity-based policies grant permission to
the entity, and permissions boundaries limit those permissions. The effective permissions are the
intersection of both policy types. An explicit deny in either of these policies overrides the allow.

Permissions boundaries 816

AWS Identity and Access Management User Guide

Resource-based policies – Resource-based policies control how the specified principal can access
the resource to which the policy is attached.

Resource-based policies for IAM users

Within the same account, resource-based policies that grant permissions to an IAM user ARN
(that is not a federated user session) are not limited by an implicit deny in an identity-based
policy or permissions boundary.

Resource-based policies for IAM roles

IAM role – Resource-based policies that grant permissions to an IAM role ARN are limited by an
implicit deny in a permissions boundary or session policy.

IAM role session – Within the same account, resource-based policies that grant permissions to
an IAM role session ARN grant permissions directly to the assumed role session. Permissions
granted directly to a session are not limited by an implicit deny in an identity-based policy,
a permissions boundary, or session policy. When you assume a role and make a request, the
principal making the request is the IAM role session ARN and not the ARN of the role itself.

Resource-based policies for IAM federated user sessions

IAM federated user sessions – An IAM federated user session is a session created by calling
GetFederationToken. When a federated user makes a request, the principal making the
request is the federated user ARN and not the ARN of the IAM user who federated. Within the

Permissions boundaries 817

AWS Identity and Access Management User Guide

same account, resource-based policies that grant permissions to a federated user ARN grant
permissions directly to the session. Permissions granted directly to a session are not limited by
an implicit deny in an identity-based policy, a permissions boundary, or session policy.

However, if a resource-based policy grants permission to the ARN of the IAM user who
federated, then requests made by the federated user during the session are limited by an
implicit deny in a permission boundary or session policy.

Organizations SCPs – SCPs are applied to an entire AWS account. They limit permissions for
every request made by a principal within the account. An IAM entity (user or role) can make a
request that is affected by an SCP, a permissions boundary, and an identity-based policy. In this
case, the request is allowed only if all three policy types allow it. The effective permissions are the
intersection of all three policy types. An explicit deny in any of these policies overrides the allow.

You can learn whether your account is a member of an organization in AWS Organizations.
Organization members might be affected by an SCP. To view this data using the
AWS CLI command or AWS API operation, you must have permissions for the
organizations:DescribeOrganization action for your Organizations entity. You must have
additional permissions to perform the operation in the Organizations console. To learn whether an
SCP is denying access to a specific request, or to change your effective permissions, contact your
AWS Organizations administrator.

Session policies – Session policies are advanced policies that you pass as a parameter when you
programmatically create a temporary session for a role or federated user. The permissions for a

Permissions boundaries 818

https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_org_details.html#orgs_view_account

AWS Identity and Access Management User Guide

session come from the IAM entity (user or role) used to create the session and from the session
policy. The entity's identity-based policy permissions are limited by the session policy and the
permissions boundary. The effective permissions for this set of policy types are the intersection
of all three policy types. An explicit deny in any of these policies overrides the allow. For more
information about session policies, see Session Policies.

Delegating responsibility to others using permissions boundaries

You can use permissions boundaries to delegate permissions management tasks, such as user
creation, to IAM users in your account. This permits others to perform tasks on your behalf within a
specific boundary of permissions.

For example, assume that María is the administrator of the X-Company AWS account. She wants
to delegate user creation duties to Zhang. However, she must ensure that Zhang creates users that
adhere to the following company rules:

• Users cannot use IAM to create or manage users, groups, roles, or policies.

• Users are denied access to the Amazon S3 logs bucket and cannot access the
i-1234567890abcdef0 Amazon EC2 instance.

• Users cannot remove their own boundary policies.

To enforce these rules, María completes the following tasks, for which details are included below:

Permissions boundaries 819

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html#policies_session

AWS Identity and Access Management User Guide

1. María creates the XCompanyBoundaries managed policy to use as a permissions boundary for
all new users in the account.

2. María creates the DelegatedUserBoundary managed policy and assigns it as the permissions
boundary for Zhang. Maria makes a note of her admin user's ARN and uses it in the policy to
prevent Zhang from accessing it.

3. María creates the DelegatedUserPermissions managed policy and attaches it as a
permissions policy for Zhang.

4. María tells Zhang about his new responsibilities and limitations.

Task 1: María must first create a managed policy to define the boundary for the new users. María
will allow Zhang to give users the permissions policies they need, but she wants those users
to be restricted. To do this, she creates the following customer managed policy with the name
XCompanyBoundaries. This policy does the following:

• Allows users full access to several services

• Allows limited self-managing access in the IAM console. This means they can change their
password after signing into the console. They can't set their initial password. To allow this, add
the "*LoginProfile" action to the AllowManageOwnPasswordAndAccessKeys statement.

• Denies users access to the Amazon S3 logs bucket or the i-1234567890abcdef0 Amazon EC2
instance

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "ServiceBoundaries",
 "Effect": "Allow",
 "Action": [
 "s3:*",
 "cloudwatch:*",
 "ec2:*",
 "dynamodb:*"
],
 "Resource": "*"
 },
 {
 "Sid": "AllowIAMConsoleForCredentials",

Permissions boundaries 820

AWS Identity and Access Management User Guide

 "Effect": "Allow",
 "Action": [
 "iam:ListUsers",
 "iam:GetAccountPasswordPolicy"
],
 "Resource": "*"
 },
 {
 "Sid": "AllowManageOwnPasswordAndAccessKeys",
 "Effect": "Allow",
 "Action": [
 "iam:*AccessKey*",
 "iam:ChangePassword",
 "iam:GetUser",
 "iam:*ServiceSpecificCredential*",
 "iam:*SigningCertificate*"
],
 "Resource": ["arn:aws:iam::*:user/${aws:username}"]
 },
 {
 "Sid": "DenyS3Logs",
 "Effect": "Deny",
 "Action": "s3:*",
 "Resource": [
 "arn:aws:s3:::logs",
 "arn:aws:s3:::logs/*"
]
 },
 {
 "Sid": "DenyEC2Production",
 "Effect": "Deny",
 "Action": "ec2:*",
 "Resource": "arn:aws:ec2:*:*:instance/i-1234567890abcdef0"
 }
]
}

Each statement serves a different purpose:

1. The ServiceBoundaries statement of this policy allows full access to the specified AWS
services. This means that a new user's actions in these services are limited only by the
permissions policies that are attached to the user.

Permissions boundaries 821

AWS Identity and Access Management User Guide

2. The AllowIAMConsoleForCredentials statement allows access to list all IAM users. This
access is necessary to navigate the Users page in the AWS Management Console. It also allows
viewing the password requirements for the account, which is necessary when changing your own
password.

3. The AllowManageOwnPasswordAndAccessKeys statement allows users to manage only their
own console password and programmatic access keys. This is important if Zhang or another
administrator assigns a new user a permissions policy with full IAM access. In that case, that
user could then change their own or other users' permissions. This statement prevents that from
happening.

4. The DenyS3Logs statement explicitly denies access to the logs bucket.

5. The DenyEC2Production statement explicitly denies access to the i-1234567890abcdef0
instance.

Task 2: María wants to allow Zhang to create all X-Company users, but only with the
XCompanyBoundaries permissions boundary. She creates the following customer managed policy
named DelegatedUserBoundary. This policy defines the maximum permissions that Zhang can
have.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "CreateOrChangeOnlyWithBoundary",
 "Effect": "Allow",
 "Action": [
 "iam:AttachUserPolicy",
 "iam:CreateUser",
 "iam:DeleteUserPolicy",
 "iam:DetachUserPolicy",
 "iam:PutUserPermissionsBoundary",
 "iam:PutUserPolicy"
],
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "iam:PermissionsBoundary": "arn:aws:iam::123456789012:policy/
XCompanyBoundaries"
 }
 }

Permissions boundaries 822

AWS Identity and Access Management User Guide

 },
 {
 "Sid": "CloudWatchAndOtherIAMTasks",
 "Effect": "Allow",
 "Action": [
 "cloudwatch:*",
 "iam:CreateAccessKey",
 "iam:CreateGroup",
 "iam:CreateLoginProfile",
 "iam:CreatePolicy",
 "iam:DeleteGroup",
 "iam:DeletePolicy",
 "iam:DeletePolicyVersion",
 "iam:DeleteUser",
 "iam:GetAccountPasswordPolicy",
 "iam:GetGroup",
 "iam:GetLoginProfile",
 "iam:GetPolicy",
 "iam:GetPolicyVersion",
 "iam:GetRolePolicy",
 "iam:GetUser",
 "iam:GetUserPolicy",
 "iam:ListAccessKeys",
 "iam:ListAttachedRolePolicies",
 "iam:ListAttachedUserPolicies",
 "iam:ListEntitiesForPolicy",
 "iam:ListGroups",
 "iam:ListGroupsForUser",
 "iam:ListMFADevices",
 "iam:ListPolicies",
 "iam:ListPolicyVersions",
 "iam:ListRolePolicies",
 "iam:ListSSHPublicKeys",
 "iam:ListServiceSpecificCredentials",
 "iam:ListSigningCertificates",
 "iam:ListUserPolicies",
 "iam:ListUsers",
 "iam:SetDefaultPolicyVersion",
 "iam:SimulateCustomPolicy",
 "iam:SimulatePrincipalPolicy",
 "iam:UpdateGroup",
 "iam:UpdateLoginProfile",
 "iam:UpdateUser"
],

Permissions boundaries 823

AWS Identity and Access Management User Guide

 "NotResource": "arn:aws:iam::123456789012:user/Maria"
 },
 {
 "Sid": "NoBoundaryPolicyEdit",
 "Effect": "Deny",
 "Action": [
 "iam:CreatePolicyVersion",
 "iam:DeletePolicy",
 "iam:DeletePolicyVersion",
 "iam:SetDefaultPolicyVersion"
],
 "Resource": [
 "arn:aws:iam::123456789012:policy/XCompanyBoundaries",
 "arn:aws:iam::123456789012:policy/DelegatedUserBoundary"
]
 },
 {
 "Sid": "NoBoundaryUserDelete",
 "Effect": "Deny",
 "Action": "iam:DeleteUserPermissionsBoundary",
 "Resource": "*"
 }
]
}

Each statement serves a different purpose:

1. The CreateOrChangeOnlyWithBoundary statement allows Zhang to create IAM users
but only if he uses the XCompanyBoundaries policy to set the permissions boundary. This
statement also allows him to set the permissions boundary for existing users but only using that
same policy. Finally, this statement allows Zhang to manage permissions policies for users with
this permissions boundary set.

2. The CloudWatchAndOtherIAMTasks statement allows Zhang to complete other user, group,
and policy management tasks. He has permissions to reset passwords and create access keys for
any IAM user not listed in the NotResource policy element. This allows him to help users with
sign-in issues.

3. The NoBoundaryPolicyEdit statement denies Zhang access to update the
XCompanyBoundaries policy. He is not allowed to change any policy that is used to set the
permissions boundary for himself or other users.

Permissions boundaries 824

AWS Identity and Access Management User Guide

4. The NoBoundaryUserDelete statement denies Zhang access to delete the permissions
boundary for himself or other users.

María then assigns the DelegatedUserBoundary policy as the permissions boundary for the
Zhang user.

Task 3: Because the permissions boundary limits the maximum permissions, but does not grant
access on its own, Maria must create a permissions policy for Zhang. She creates the following
policy named DelegatedUserPermissions. This policy defines the operations that Zhang can
perform, within the defined boundary.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "IAM",
 "Effect": "Allow",
 "Action": "iam:*",
 "Resource": "*"
 },
 {
 "Sid": "CloudWatchLimited",
 "Effect": "Allow",
 "Action": [
 "cloudwatch:GetDashboard",
 "cloudwatch:GetMetricData",
 "cloudwatch:ListDashboards",
 "cloudwatch:GetMetricStatistics",
 "cloudwatch:ListMetrics"
],
 "Resource": "*"
 },
 {
 "Sid": "S3BucketContents",
 "Effect": "Allow",
 "Action": "s3:ListBucket",
 "Resource": "arn:aws:s3:::ZhangBucket"
 }
]
}

Permissions boundaries 825

AWS Identity and Access Management User Guide

Each statement serves a different purpose:

1. The IAM statement of the policy allows Zhang full access to IAM. However, because his
permissions boundary allows only some IAM operations, his effective IAM permissions are
limited only by his permissions boundary.

2. The CloudWatchLimited statement allows Zhang to perform five actions in CloudWatch. His
permissions boundary allows all actions in CloudWatch, so his effective CloudWatch permissions
are limited only by his permissions policy.

3. The S3BucketContents statement allows Zhang to list the ZhangBucket Amazon S3 bucket.
However, his permissions boundary does not allow any Amazon S3 action, so he cannot perform
any S3 operations, regardless of his permissions policy.

Note

Zhang's policies allow him to create a user that can then access Amazon S3 resources
that he can't access. By delegating these administrative actions, Maria effectively trusts
Zhang with access to Amazon S3.

María then attaches the DelegatedUserPermissions policy as the permissions policy for the
Zhang user.

Task 4: She gives Zhang instructions to create a new user. She tells him that he can create new
users with any permissions that they need, but he must assign them the XCompanyBoundaries
policy as a permissions boundary.

Zhang completes the following tasks:

1. Zhang creates a user with the AWS Management Console. He types the user name Nikhil and
enables console access for the user. He clears the checkbox next to Requires password reset,
because the policies above allow users to change their passwords only after they are signed in to
the IAM console.

2. On the Set permissions page, Zhang chooses the IAMFullAccess and
AmazonS3ReadOnlyAccess permissions policies that allow Nikhil to do his work.

3. Zhang skips the Set permissions boundary section, forgetting María's instructions.

4. Zhang reviews the user details and chooses Create user.

Permissions boundaries 826

AWS Identity and Access Management User Guide

The operation fails and access is denied. Zhang's DelegatedUserBoundary permissions
boundary requires that any user he creates have the XCompanyBoundaries policy used as a
permissions boundary.

5. Zhang returns to the previous page. In the Set permissions boundary section, he chooses the
XCompanyBoundaries policy.

6. Zhang reviews the user details and chooses Create user.

The user is created.

When Nikhil signs in, he has access to IAM and Amazon S3, except those operations that are denied
by the permissions boundary. For example, he can change his own password in IAM but can't create
another user or edit his policies. Nikhil has read-only access to Amazon S3.

If someone adds a resource-based policy to the logs bucket that allows Nikhil to put an object in
the bucket, he still cannot access the bucket. The reason is that any actions on the logs bucket
are explicitly denied by his permissions boundary. An explicit deny in any policy type results in a
request being denied. However, if a resource-based policy attached to a Secrets Manager secret
allows Nikhil to perform the secretsmanager:GetSecretValue action, then Nikhil can retrieve
and decrypt the secret. The reason is that Secrets Manager operations are not explicitly denied
by his permissions boundary, and implicit denies in permissions boundaries do not limit resource-
based policies.

Identity-based policies and resource-based policies

A policy is an object in AWS that, when associated with an identity or resource, defines their
permissions. When you create a permissions policy to restrict access to a resource, you can choose
an identity-based policy or a resource-based policy.

Identity-based policies are attached to an IAM user, group, or role. These policies let you specify
what that identity can do (its permissions). For example, you can attach the policy to the IAM user
named John, stating that he is allowed to perform the Amazon EC2 RunInstances action. The
policy could further state that John is allowed to get items from an Amazon DynamoDB table
named MyCompany. You can also allow John to manage his own IAM security credentials. Identity-
based policies can be managed or inline.

Resource-based policies are attached to a resource. For example, you can attach resource-based
policies to Amazon S3 buckets, Amazon SQS queues, VPC endpoints, and AWS Key Management

Identity vs resource 827

AWS Identity and Access Management User Guide

Service encryption keys. For a list of services that support resource-based policies, see AWS services
that work with IAM.

With resource-based policies, you can specify who has access to the resource and what actions they
can perform on it. To learn whether principals in accounts outside of your zone of trust (trusted
organization or account) have access to assume your roles, see What is IAM Access Analyzer?.
Resource-based policies are inline only, not managed.

Note

Resource-based policies differ from resource-level permissions. You can attach resource-
based policies directly to a resource, as described in this topic. Resource-level permissions
refer to the ability to use ARNs to specify individual resources in a policy. Resource-based
policies are supported only by some AWS services. For a list of which services support
resource-based policies and resource-level permissions, see AWS services that work with
IAM.

To learn how identity-based policies and resource-based policies interact within the same account,
see Evaluating policies within a single account.

To learn how the policies interact across accounts, see Cross-account policy evaluation logic.

To better understand these concepts, view the following figure. The administrator of the
123456789012 account attached identity-based policies to the JohnSmith, CarlosSalazar, and
MaryMajor users. Some of the actions in these policies can be performed on specific resources.
For example, the user JohnSmith can perform some actions on Resource X. This is a resource-
level permission in an identity-based policy. The administrator also added resource-based policies
to Resource X, Resource Y, and Resource Z. Resource-based policies allow you to specify
who can access that resource. For example, the resource-based policy on Resource X allows the
JohnSmith and MaryMajor users list and read access to the resource.

Identity vs resource 828

https://docs.aws.amazon.com/IAM/latest/UserGuide/what-is-access-analyzer.html

AWS Identity and Access Management User Guide

The 123456789012 account example allows the following users to perform the listed actions:

• JohnSmith – John can perform list and read actions on Resource X. He is granted this
permission by the identity-based policy on his user and the resource-based policy on Resource
X.

• CarlosSalazar – Carlos can perform list, read, and write actions on Resource Y, but is denied
access to Resource Z. The identity-based policy on Carlos allows him to perform list and
read actions on Resource Y. The Resource Y resource-based policy also allows him write
permissions. However, although his identity-based policy allows him access to Resource Z, the
Resource Z resource-based policy denies that access. An explicit Deny overrides an Allow and
his access to Resource Z is denied. For more information, see Policy evaluation logic.

• MaryMajor – Mary can perform list, read, and write operations on Resource X, Resource Y,
and Resource Z. Her identity-based policy allows her more actions on more resources than the
resource-based policies, but none of them deny access.

• ZhangWei – Zhang has full access to Resource Z. Zhang has no identity-based policies, but
the Resource Z resource-based policy allows him full access to the resource. Zhang can also
perform list and read actions on Resource Y.

Identity vs resource 829

AWS Identity and Access Management User Guide

Identity-based policies and resource-based policies are both permissions policies and are evaluated
together. For a request to which only permissions policies apply, AWS first checks all policies for
a Deny. If one exists, then the request is denied. Then AWS checks for each Allow. If at least one
policy statement allows the action in the request, the request is allowed. It doesn't matter whether
the Allow is in the identity-based policy or the resource-based policy.

Important

This logic applies only when the request is made within a single AWS account. For requests
made from one account to another, the requester in Account A must have an identity-
based policy that allows them to make a request to the resource in Account B. Also, the
resource-based policy in Account B must allow the requester in Account A to access the
resource. There must be policies in both accounts that allow the operation, otherwise the
request fails. For more information about using resource-based policies for cross-account
access, see Cross account resource access in IAM.

A user who has specific permissions might request a resource that also has a permissions policy
attached to it. In that case, AWS evaluates both sets of permissions when determining whether
to grant access to the resource. For information about how policies are evaluated, see Policy
evaluation logic.

Note

Amazon S3 supports identity-based policies and resource-based policies (referred to
as bucket policies). In addition, Amazon S3 supports a permission mechanism known as
an access control list (ACL) that is independent of IAM policies and permissions. You can
use IAM policies in combination with Amazon S3 ACLs. For more information, see Access
Control in the Amazon Simple Storage Service User Guide.

Controlling access to AWS resources using policies

You can use a policy to control access to resources within IAM or all of AWS.

To use a policy to control access in AWS, you must understand how AWS grants access. AWS
is composed of collections of resources. An IAM user is a resource. An Amazon S3 bucket is a
resource. When you use the AWS API, the AWS CLI, or the AWS Management Console to perform

Controlling access using policies 830

https://docs.aws.amazon.com/AmazonS3/latest/dev/UsingAuthAccess.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/UsingAuthAccess.html

AWS Identity and Access Management User Guide

an operation (such as creating a user), you send a request for that operation. Your request specifies
an action, a resource, a principal entity (user or role), a principal account, and any necessary request
information. All of this information provides context.

AWS then checks that you (the principal) are authenticated (signed in) and authorized (have
permission) to perform the specified action on the specified resource. During authorization, AWS
checks all the policies that apply to the context of your request. Most policies are stored in AWS
as JSON documents and specify the permissions for principal entities. For more information about
policy types and uses, see Policies and permissions in IAM.

AWS authorizes the request only if each part of your request is allowed by the policies. To view
a diagram of this process, see How IAM works. For details about how AWS determines whether a
request is allowed, see Policy evaluation logic.

When you create an IAM policy, you can control access to the following:

• Principals – Control what the person making the request (the principal) is allowed to do.

• IAM Identities – Control which IAM identities (user groups, users, and roles) can be accessed and
how.

• IAM Policies – Control who can create, edit, and delete customer managed policies, and who can
attach and detach all managed policies.

• AWS Resources – Control who has access to resources using an identity-based policy or a
resource-based policy.

• AWS Accounts – Control whether a request is allowed only for members of a specific account.

Policies let you specify who has access to AWS resources, and what actions they can perform on
those resources. Every IAM user starts with no permissions. In other words, by default, users can
do nothing, not even view their own access keys. To give a user permission to do something, you
can add the permission to the user (that is, attach a policy to the user). Or you can add the user to a
user group that has the intended permission.

For example, you might grant a user permission to list his or her own access keys. You might also
expand that permission and also let each user create, update, and delete their own keys.

When you give permissions to a user group, all users in that user group get those permissions. For
example, you can give the Administrators user group permission to perform any of the IAM actions
on any of the AWS account resources. Another example: You can give the Managers user group
permission to describe the Amazon EC2 instances of the AWS account.

Controlling access using policies 831

AWS Identity and Access Management User Guide

For information about how to delegate basic permissions to your users, user groups, and roles, see
Permissions required to access IAM resources. For additional examples of policies that illustrate
basic permissions, see Example policies for administering IAM resources.

Controlling access for principals

You can use policies to control what the person making the request (the principal) is allowed to do.
To do this, you must attach an identity-based policy to that person's identity (user, user group, or
role). You can also use a permissions boundary to set the maximum permissions that an entity (user
or role) can have.

For example, assume that you want the user Zhang Wei to have full access to CloudWatch, Amazon
DynamoDB, Amazon EC2, and Amazon S3. You can create two different policies so that you can
later break them up if you need one set of permissions for a different user. Or you can put both
the permissions together in a single policy, and then attach that policy to the IAM user that is
named Zhang Wei. You could also attach a policy to a user group to which Zhang belongs, or a role
that Zhang can assume. As a result, when Zhang views the contents of an S3 bucket, his requests
are allowed. If he tries to create a new IAM user, his request is denied because he doesn't have
permission.

You can use a permissions boundary on Zhang to make sure that he is never given access to the
DOC-EXAMPLE-BUCKET1 S3 bucket. To do this, determine the maximum permissions that you
want Zhang to have. In this case, you control what he does using his permissions policies. Here, you
only care that he doesn't access the confidential bucket. So you use the following policy to define
Zhang's boundary to allow all AWS actions for Amazon S3 and a few other services but deny access
to the DOC-EXAMPLE-BUCKET1 S3 bucket. Because the permissions boundary does not allow any
IAM actions, it prevents Zhang from deleting his (or anyone's) boundary.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "PermissionsBoundarySomeServices",
 "Effect": "Allow",
 "Action": [
 "cloudwatch:*",
 "dynamodb:*",
 "ec2:*",
 "s3:*"
],

Controlling access using policies 832

AWS Identity and Access Management User Guide

 "Resource": "*"
 },
 {
 "Sid": "PermissionsBoundaryNoConfidentialBucket",
 "Effect": "Deny",
 "Action": "s3:*",
 "Resource": [
 "arn:aws:s3:::DOC-EXAMPLE-BUCKET1",
 "arn:aws:s3:::DOC-EXAMPLE-BUCKET1/*"
]
 }
]
}

When you assign a policy like this as a permissions boundary for a user, remember that it does not
grant any permissions. It sets the maximum permissions that an identity-based policy can grant to
an IAM entity. For more information about permissions boundaries, see Permissions boundaries for
IAM entities.

For detailed information about the procedures mentioned previously, refer to these resources:

• To learn more about creating an IAM policy that you can attach to a principal, see Creating IAM
policies.

• To learn how to attach an IAM policy to a principal, see Adding and removing IAM identity
permissions.

• To see an example policy for granting full access to EC2, see Amazon EC2: Allows full EC2 access
within a specific Region, programmatically and in the console.

• To allow read-only access to an S3 bucket, use the first two statements of the following example
policy: Amazon S3: Allows read and write access to objects in an S3 Bucket, programmatically
and in the console.

• To see an example policy for allowing users to set their credentials, such as their console
password, their programmatic access keys, and their MFA devices, see AWS: Allows MFA-
authenticated IAM users to manage their own credentials on the Security credentials page.

Controlling access to identities

You can use IAM policies to control what your users can do to an identity by creating a policy that
you attach to all users through a user group. To do this, create a policy that limits what can be
done to an identity, or who can access it.

Controlling access using policies 833

AWS Identity and Access Management User Guide

For example, you can create a user group named AllUsers, and then attach that user group to all
users. When you create the user group, you might give all your users access to set their credentials
as described in the previous section. You can then create a policy that denies access to change the
user group unless the user name is included in the condition of the policy. But that part of the
policy only denies access to anyone except those users listed. You also have to include permissions
to allow all the user group management actions for everyone in the user group. Finally, you attach
this policy to the user group so that it is applied to all users. As a result, when a user not specified
in the policy tries to make changes to the user group, the request is denied.

To create this policy with the visual editor

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. In the navigation pane on the left, choose Policies.

If this is your first time choosing Policies, the Welcome to Managed Policies page appears.
Choose Get Started.

3. Choose Create policy.

4. On the Policy editor section, choose the Visual option.

5. In Select a service choose IAM.

6. In Actions allowed, type group in the search box. The visual editor shows all the IAM actions
that contain the word group. Select all of the check boxes.

7. Choose Resources to specify resources for your policy. Based on the actions you chose, you
should see group and user resource types.

• group – Choose Add ARNs. For Resource in, select the Any account option. Select the Any
group name with path check box and then type the user group name AllUsers. Then
choose Add ARNs.

• user – Select the check box next to Any in this account.

One of the actions that you chose, ListGroups, does not support using specific resources.
You do not have to choose All resources for that action. When you save your policy or view the
policy in the JSON editor, you can see that IAM automatically creates a new permission block
granting this action permission on all resources.

8. To add another permission block, choose Add more permissions.

9. Choose Select a service and then choose IAM.

Controlling access using policies 834

https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/

AWS Identity and Access Management User Guide

10. Choose Actions allowed and then choose Switch to deny permissions. When you do that, the
entire block is used to deny permissions.

11. Type group in the search box. The visual editor shows you all the IAM actions that contain the
word group. Select the check boxes next to the following actions:

• CreateGroup

• DeleteGroup

• RemoveUserFromGroup

• AttachGroupPolicy

• DeleteGroupPolicy

• DetachGroupPolicy

• PutGroupPolicy

• UpdateGroup

12. Choose Resources to specify the resources for your policy. Based on the actions that you
chose, you should see the group resource type. Choose Add ARNs. For Resource in, select the
Any account option. For Any group name with path, type the user group name AllUsers.
Then choose Add ARNs.

13. Choose Request conditions - optional and then choose Add another condition. Complete the
form with the following values:

• Condition key – Choose aws:username

• Qualifier – Choose Default

• Operator – Choose StringNotEquals

• Value – Type srodriguez and then choose Add to add another value. Type mjackson and
then choose Add to add another value. Type adesai and then choose Add condition.

This condition ensures that access will be denied to the specified user group management
actions when the user making the call is not included in the list. Because this explicitly denies
permission, it overrides the previous block that allowed those users to call the actions. Users
on the list are not denied access, and they are granted permission in the first permission block,
so they can fully manage the user group.

14. When you are finished, choose Next.

Controlling access using policies 835

AWS Identity and Access Management User Guide

Note

You can switch between the Visual and JSON editor options any time. However, if
you make changes or choose Next in the Visual editor option, IAM might restructure
your policy to optimize it for the visual editor. For more information, see Policy
restructuring.

15. On the Review and create page, for the Policy Name, type
LimitAllUserGroupManagement. For the Description, type Allows all users read-
only access to a specific user group, and allows only specific users
access to make changes to the user group. Review Permissions defined in this
policy to make sure that you have granted the intended permissions. Then choose Create
policy to save your new policy.

16. Attach the policy to your user group. For more information, see Adding and removing IAM
identity permissions.

Alternatively, you can create the same policy using this example JSON policy document. To view
this JSON policy, see IAM: Allows specific IAM users to manage a group programmatically and in
the console. For detailed instructions for creating a policy using a JSON document, see the section
called “Creating policies using the JSON editor”.

Controlling access to policies

You can control how your users can apply AWS managed policies. To do this, attach this policy to
all your users. Ideally, you can do this using a user group.

For example, you might create a policy that allows users to attach only the
IAMUserChangePassword and PowerUserAccess AWS managed policies to a new IAM user, user
group, or role.

For customer managed policies, you can control who can create, update, and delete these policies.
You can control who can attach and detach policies to and from principal entities (user groups,
users, and roles). You can also control which policies a user can attach or detach, and to and from
which entities.

For example, you can give permissions to an account administrator to create, update, and delete
policies. Then you give permissions to a team leader or other limited administrator to attach and
detach these policies to and from principal entities that the limited administrator manages.

Controlling access using policies 836

https://console.aws.amazon.com/iam/home#policies/arn:aws:iam::aws:policy/job-function/IAMUserChangePassword
https://console.aws.amazon.com/iam/home#policies/arn:aws:iam::aws:policy/job-function/PowerUserAccess

AWS Identity and Access Management User Guide

For more information, refer to these resources:

• To learn more about creating an IAM policy that you can attach to a principal, see Creating IAM
policies.

• To learn how to attach an IAM policy to a principal, see Adding and removing IAM identity
permissions.

• To see an example policy for limiting the use of managed policies, see IAM: Limits managed
policies that can be applied to an IAM user, group, or role.

Controlling permissions for creating, updating, and deleting customer managed policies

You can use IAM policies to control who is allowed to create, update, and delete customer managed
policies in your AWS account. The following list contains API operations that pertain directly to
creating, updating, and deleting policies or policy versions:

• CreatePolicy

• CreatePolicyVersion

• DeletePolicy

• DeletePolicyVersion

• SetDefaultPolicyVersion

The API operations in the preceding list correspond to actions that you can allow or deny—that is,
permissions that you can grant—using an IAM policy.

Consider the following example policy. It allows a user to create, update (that is, create a new
policy version), delete, and set a default version for all customer managed policies in the AWS
account. The example policy also allows the user to list policies and get policies. To learn how to
create a policy using this example JSON policy document, see the section called “Creating policies
using the JSON editor”.

Example Example policy that allows creating, updating, deleting, listing, getting, and setting
the default version for all policies

{
 "Version": "2012-10-17",
 "Statement": {

Controlling access using policies 837

https://docs.aws.amazon.com/IAM/latest/APIReference/API_CreatePolicy.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_CreatePolicyVersion.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_DeletePolicy.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_DeletePolicyVersion.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_SetDefaultPolicyVersion.html

AWS Identity and Access Management User Guide

 "Effect": "Allow",
 "Action": [
 "iam:CreatePolicy",
 "iam:CreatePolicyVersion",
 "iam:DeletePolicy",
 "iam:DeletePolicyVersion",
 "iam:GetPolicy",
 "iam:GetPolicyVersion",
 "iam:ListPolicies",
 "iam:ListPolicyVersions",
 "iam:SetDefaultPolicyVersion"
],
 "Resource": "*"
 }
}

You can create policies that limit the use of these API operations to affect only the managed
policies that you specify. For example, you might want to allow a user to set the default version
and delete policy versions, but only for specific customer managed policies. You do this by
specifying the policy ARN in the Resource element of the policy that grants these permissions.

The following example shows a policy that allows a user to delete policy versions and set the
default version. But these actions are only allowed for the customer managed policies that include
the path /TEAM-A/. The customer managed policy ARN is specified in the Resource element of
the policy. (In this example the ARN includes a path and a wildcard and thus matches all customer
managed policies that include the path /TEAM-A/). To learn how to create a policy using this
example JSON policy document, see the section called “Creating policies using the JSON editor”.

For more information about using paths in the names of customer managed policies, see Friendly
names and paths.

Example Example policy that allows deleting policy versions and setting the default version for
only specific policies

{
 "Version": "2012-10-17",
 "Statement": {
 "Effect": "Allow",
 "Action": [
 "iam:DeletePolicyVersion",
 "iam:SetDefaultPolicyVersion"

Controlling access using policies 838

AWS Identity and Access Management User Guide

],
 "Resource": "arn:aws:iam::account-id:policy/TEAM-A/*"
 }
}

Controlling permissions for attaching and detaching managed policies

You can also use IAM policies to allow users to work with only specific managed policies. In effect,
you can control which permissions a user is allowed to grant to other principal entities.

The following list shows API operations that pertain directly to attaching and detaching managed
policies to and from principal entities:

• AttachGroupPolicy

• AttachRolePolicy

• AttachUserPolicy

• DetachGroupPolicy

• DetachRolePolicy

• DetachUserPolicy

You can create policies that limit the use of these API operations to affect only the specific
managed policies and/or principal entities that you specify. For example, you might want to allow
a user to attach managed policies, but only the managed policies that you specify. Or, you might
want to allow a user to attach managed policies, but only to the principal entities that you specify.

The following example policy allows a user to attach managed policies to only the user groups and
roles that include the path /TEAM-A/. The user group and role ARNs are specified in the Resource
element of the policy. (In this example the ARNs include a path and a wildcard character and thus
match all user groups and roles that include the path /TEAM-A/). To learn how to create a policy
using this example JSON policy document, see the section called “Creating policies using the JSON
editor”.

Example Example policy that allows attaching managed policies to only specific user groups or
roles

{
 "Version": "2012-10-17",

Controlling access using policies 839

https://docs.aws.amazon.com/IAM/latest/APIReference/API_AttachGroupPolicy.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_AttachRolePolicy.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_AttachUserPolicy.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_DetachGroupPolicy.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_DetachRolePolicy.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_DetachUserPolicy.html

AWS Identity and Access Management User Guide

 "Statement": {
 "Effect": "Allow",
 "Action": [
 "iam:AttachGroupPolicy",
 "iam:AttachRolePolicy"
],
 "Resource": [
 "arn:aws:iam::account-id:group/TEAM-A/*",
 "arn:aws:iam::account-id:role/TEAM-A/*"
]
 }
}

You can further limit the actions in the preceding example to affect only specific policies. That is,
you can control which permissions a user is allowed to attach to other principal entities—by adding
a condition to the policy.

In the following example, the condition ensures that the AttachGroupPolicy and
AttachRolePolicy permissions are allowed only when the policy being attached matches one
of the specified policies. The condition uses the iam:PolicyARN condition key to determine
which policy or policies are allowed to be attached. The following example policy expands on the
previous example. It allows a user to attach only the managed policies that include the path /
TEAM-A/ to only the user groups and roles that include the path /TEAM-A/. To learn how to create
a policy using this example JSON policy document, see the section called “Creating policies using
the JSON editor”.

{
 "Version": "2012-10-17",
 "Statement": {
 "Effect": "Allow",
 "Action": [
 "iam:AttachGroupPolicy",
 "iam:AttachRolePolicy"
],
 "Resource": [
 "arn:aws:iam::account-id:group/TEAM-A/*",
 "arn:aws:iam::account-id:role/TEAM-A/*"
],
 "Condition": {"ArnLike":
 {"iam:PolicyARN": "arn:aws:iam::account-id:policy/TEAM-A/*"}
 }
 }

Controlling access using policies 840

AWS Identity and Access Management User Guide

}

This policy uses the ArnLike condition operator, but you can also use the ArnEquals condition
operator because these two condition operators behave identically. For more information about
ArnLike and ArnEquals, see Amazon Resource Name (ARN) condition operators in the Condition
Types section of the Policy Element Reference.

For example, you can limit the use of actions to involve only the managed policies that you specify.
You do this by specifying the policy ARN in the Condition element of the policy that grants these
permissions. For example, to specify the ARN of a customer managed policy:

"Condition": {"ArnEquals":
 {"iam:PolicyARN": "arn:aws:iam::123456789012:policy/POLICY-NAME"}
}

You can also specify the ARN of an AWS managed policy in a policy's Condition element. The
ARN of an AWS managed policy uses the special alias aws in the policy ARN instead of an account
ID, as in this example:

"Condition": {"ArnEquals":
 {"iam:PolicyARN": "arn:aws:iam::aws:policy/AmazonEC2FullAccess"}
}

Controlling access to resources

You can control access to resources using an identity-based policy or a resource-based policy. In an
identity-based policy, you attach the policy to an identity and specify what resources that identity
can access. In a resource-based policy, you attach a policy to the resource that you want to control.
In the policy, you specify which principals can access that resource. For more information about
both types of policies, see Identity-based policies and resource-based policies.

For more information, refer to these resources:

• To learn more about creating an IAM policy that you can attach to a principal, see Creating IAM
policies.

• To learn how to attach an IAM policy to a principal, see Adding and removing IAM identity
permissions.

• Amazon S3 supports using resource-based policies on their buckets. For more information, see
Bucket Policy Examples.

Controlling access using policies 841

https://docs.aws.amazon.com/AmazonS3/latest/dev/example-bucket-policies.html

AWS Identity and Access Management User Guide

Resource Creators Do Not Automatically Have Permissions

If you sign in using the AWS account root user credentials, you have permission to perform any
action on resources that belong to the account. However, this isn't true for IAM users. An IAM user
might be granted access to create a resource, but the user's permissions, even for that resource, are
limited to what's been explicitly granted. This means that just because you create a resource, such
as an IAM role, you do not automatically have permission to edit or delete that role. Additionally,
your permission can be revoked at any time by the account owner or by another user who has been
granted access to manage your permissions.

Controlling access to principals in a specific account

You can directly grant IAM users in your own account access to your resources. If users from
another account need access to your resources, you can create an IAM role. A role is an entity that
includes permissions but isn't associated with a specific user. Users from other accounts can then
assume the role and access resources according to the permissions you've assigned to the role. For
more information, see Providing access to an IAM user in another AWS account that you own.

Note

Some services support resource-based policies as described in Identity-based policies and
resource-based policies (such as Amazon S3, Amazon SNS, and Amazon SQS). For those
services, an alternative to using roles is to attach a policy to the resource (bucket, topic, or
queue) that you want to share. The resource-based policy can specify the AWS account that
has permissions to access the resource.

Controlling access to and for IAM users and roles using tags

Use the information in the following section to control who can access your IAM users and roles
and what resources your users and roles can access. For more general information and examples
of controlling access to other AWS resources, including other IAM resources, see Tagging IAM
resources.

Note

For details about case sensitivity for tag keys and tag key values, see Case sensitivity.

Control access to IAM users and roles using tags 842

AWS Identity and Access Management User Guide

Tags can be attached to the IAM resource, passed in the request, or attached to the principal that
is making the request. An IAM user or role can be both a resource and principal. For example, you
can write a policy that allows a user to list the groups for a user. This operation is allowed only if
the user making the request (the principal) has the same project=blue tag as the user they're
trying to view. In this example, the user can view the group membership for any user, including
themselves, as long as they are working on the same project.

To control access based on tags, you provide tag information in the condition element of a policy.
When you create an IAM policy, you can use IAM tags and the associated tag condition key to
control access to any of the following:

• Resource – Control access to user or role resources based on their tags. To do this, use the
aws:ResourceTag/key-name condition key to specify which tag key-value pair must be attached
to the resource. For more information, see Controlling access to AWS resources.

• Request – Control what tags can be passed in an IAM request. To do this, use the
aws:RequestTag/key-name condition key to specify what tags can be added, changed, or
removed from an IAM user or role. This key is used the same way for IAM resources and other
AWS resources. For more information, see Controlling access during AWS requests.

• Principal – Control what the person making the request (the principal) is allowed to do
based on the tags that are attached to that person's IAM user or role. To do this, use the
aws:PrincipalTag/key-name condition key to specify what tags must be attached to the IAM
user or role before the request is allowed.

• Any part of the authorization process – Use the aws:TagKeys condition key to control whether
specific tag keys can be used in a request or by a principal. In this case, the key value does not
matter. This key behaves similarly for IAM and other AWS services. However, when you tag a user
in IAM, this also controls whether the principal can make the request to any service. For more
information, see Controlling access based on tag keys.

You can create an IAM policy using the visual editor, using JSON, or by importing an existing
managed policy. For details, see Creating IAM policies.

Note

You can also pass session tags when you assume an IAM role or federate a user. These are
valid only for the length of the session.

Control access to IAM users and roles using tags 843

AWS Identity and Access Management User Guide

Controlling access for IAM principals

You can control what the principal is allowed to do based on the tags attached to that person's
identity.

This example shows how you might create an identity-based policy that allows any user in this
account to view the group membership for any user, including themselves, as long as they are
working on the same project. This operation is allowed only when the user's resource tag and
the principal's tag have the same value for the tag key project. To use this policy, replace the
italicized placeholder text in the example policy with your own information. Then, follow
the directions in create a policy or edit a policy.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "VisualEditor0",
 "Effect": "Allow",
 "Action": "iam:ListGroupsForUser",
 "Resource": "arn:aws:iam::111222333444:user/*",
 "Condition": {
 "StringEquals": {"aws:ResourceTag/project":
 "${aws:PrincipalTag/project}"}
 }
 }]
}

Controlling access based on tag keys

You can use tags in your IAM policies to control whether specific tag keys can be used in a request
or by a principal.

This example shows how you might create an identity-based policy that allows removing
only the tag with the temporary key from users. To use this policy, replace the italicized
placeholder text in the example policy with your own information. Then, follow the directions
in create a policy or edit a policy.

{
 "Version": "2012-10-17",
 "Statement": [{

Control access to IAM users and roles using tags 844

AWS Identity and Access Management User Guide

 "Effect": "Allow",
 "Action": "iam:UntagUser",
 "Resource": "*",
 "Condition": {"ForAllValues:StringEquals": {"aws:TagKeys": ["temporary"]}}
 }]
}

Controlling access to AWS resources using tags

You can use tags to control access to your AWS resources that support tagging, including IAM
resources. You can tag IAM users and roles to control what they can access. To learn how to
tag IAM users and roles, see Tagging IAM resources. Additionally, you can control access to the
following IAM resources: customer managed policies, IAM identity providers, instance profiles,
server certificates, and virtual MFA devices. To view a tutorial for creating and testing a policy that
allows IAM roles with principal tags to access resources with matching tags, see IAM tutorial: Define
permissions to access AWS resources based on tags. Use the information in the following section to
control access to other AWS resources, including IAM resources, without tagging IAM users or roles.

Before you use tags to control access to your AWS resources, you must understand how AWS grants
access. AWS is composed of collections of resources. An Amazon EC2 instance is a resource. An
Amazon S3 bucket is a resource. You can use the AWS API, the AWS CLI, or the AWS Management
Console to perform an operation, such as creating a bucket in Amazon S3. When you do, you send
a request for that operation. Your request specifies an action, a resource, a principal entity (user or
role), a principal account, and any necessary request information. All of this information provides
context.

AWS then checks that you (the principal entity) are authenticated (signed in) and authorized (have
permission) to perform the specified action on the specified resource. During authorization, AWS
checks all the policies that apply to the context of your request. Most policies are stored in AWS
as JSON documents and specify the permissions for principal entities. For more information about
policy types and uses, see Policies and permissions in IAM.

AWS authorizes the request only if each part of your request is allowed by the policies. To view a
diagram and learn more about the IAM infrastructure, see How IAM works. For details about how
IAM determines whether a request is allowed, see Policy evaluation logic.

Tags are another consideration in this process because tags can be attached to the resource or
passed in the request to services that support tagging. To control access based on tags, you provide
tag information in the condition element of a policy. To learn whether an AWS service supports

Control access to AWS resources using tags 845

AWS Identity and Access Management User Guide

controlling access using tags, see AWS services that work with IAM and look for the services that
have Yes in the Authorization based on tags column. Choose the name of the service to view the
authorization and access control documentation for that service.

You can then create an IAM policy that allows or denies access to a resource based on that
resource's tag. In that policy, you can use tag condition keys to control access to any of the
following:

• Resource – Control access to AWS service resources based on the tags on those resources. To do
this, use the ResourceTag/key-name condition key to determine whether to allow access to the
resource based on the tags that are attached to the resource.

• Request – Control what tags can be passed in a request. To do this, use the
aws:RequestTag/key-name condition key to specify what tag key-value pairs can be passed in a
request to tag an AWS resource.

• Any part of the authorization process – Use the aws:TagKeys condition key to control whether
specific tag keys can be in a request.

You can create an IAM policy visually, using JSON, or by importing an existing managed policy. For
details, see Creating IAM policies.

Note

Some services allow users to specify tags when they create the resource if they have
permissions to use the action that creates the resource.

Controlling access to AWS resources

You can use conditions in your IAM policies to control access to AWS resources based on the tags
on that resource. You can do this using the global aws:ResourceTag/tag-key condition key, or a
service-specific key. Some services support only the service-specific version of this key and not the
global version.

Warning

Do not try to control who can pass a role by tagging the role and then using the
ResourceTag condition key in a policy with the iam:PassRole action. This approach

Control access to AWS resources using tags 846

AWS Identity and Access Management User Guide

does not have reliable results. For more information about permissions required to pass a
role to a service, see Granting a user permissions to pass a role to an AWS service.

This example shows how you might create an identity-based policy that allows starting or stopping
Amazon EC2 instances. These operations are allowed only if the instance tag Owner has the value
of the user name. This policy defines permissions for programmatic and console access.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "ec2:StartInstances",
 "ec2:StopInstances"
],
 "Resource": "arn:aws:ec2:*:*:instance/*",
 "Condition": {
 "StringEquals": {"aws:ResourceTag/Owner": "${aws:username}"}
 }
 },
 {
 "Effect": "Allow",
 "Action": "ec2:DescribeInstances",
 "Resource": "*"
 }
]
}

You can attach this policy to the IAM users in your account. If a user named richard-roe
attempts to start an Amazon EC2 instance, the instance must be tagged Owner=richard-roe
or owner=richard-roe. Otherwise he will be denied access. The tag key Owner matches both
Owner and owner because condition key names are not case-sensitive. For more information, see
IAM JSON policy elements: Condition.

This example shows how you might create an identity-based policy that uses the team principal
tag in the resource ARN. The policy grants permission to delete Amazon Simple Queue Service
queues, but only if the queue name starts with the team name followed by -queue. For example,
qa-queue if qa is the team name for the team principal tag.

Control access to AWS resources using tags 847

AWS Identity and Access Management User Guide

{
 "Version": "2012-10-17",
 "Statement": {
 "Sid": "AllQueueActions",
 "Effect": "Allow",
 "Action": "sqs:DeleteQueue",
 "Resource": "arn:aws:sqs:us-east-2::${aws:PrincipalTag/team}-queue"
 }
}

Controlling access during AWS requests

You can use conditions in your IAM policies to control what tag key-value pairs can be passed in a
request that applies tags an AWS resource.

This example shows how you might create an identity-based policy that allows using the Amazon
EC2 CreateTags action to attach tags to an instance. You can attach tags only if the tag contains
the environment key and the preprod or production values. If you want, you can use the
ForAllValues modifier with the aws:TagKeys condition key to indicate that only the key
environment is allowed in the request. This stops users from including other keys, such as
accidentally using Environment instead of environment.

{
 "Version": "2012-10-17",
 "Statement": {
 "Effect": "Allow",
 "Action": "ec2:CreateTags",
 "Resource": "arn:aws:ec2:*:*:instance/*",
 "Condition": {
 "StringEquals": {
 "aws:RequestTag/environment": [
 "preprod",
 "production"
]
 },
 "ForAllValues:StringEquals": {"aws:TagKeys": "environment"}
 }
 }
}

Control access to AWS resources using tags 848

AWS Identity and Access Management User Guide

Controlling access based on tag keys

You can use a condition in your IAM policies to control whether specific tag keys can be used in a
request.

We recommend that when you use policies to control access using tags, you use the aws:TagKeys
condition key. AWS services that support tags might allow you to create multiple tag key names
that differ only by case, such as tagging an Amazon EC2 instance with stack=production and
Stack=test. Key names are not case sensitive in policy conditions. This means that if you specify
"aws:ResourceTag/TagKey1": "Value1" in the condition element of your policy, then the
condition matches a resource tag key named either TagKey1 or tagkey1, but not both. To prevent
duplicate tags with a key that varies only by case, use the aws:TagKeys condition to define the
tag keys that your users can apply, or use tag policies, available with AWS Organizations. For more
information see Tag Policies in the Organizations User Guide.

This example shows how you might create an identity-based policy that allows creating and
tagging a Secrets Manager secret, but only with the tag keys environment or cost-center. The
Null condition ensures that the condition evaluates to false if there are no tags in the request.

{
 "Effect": "Allow",
 "Action": [
 "secretsmanager:CreateSecret",
 "secretsmanager:TagResource"
],
 "Resource": "*",
 "Condition": {
 "Null": {
 "aws:TagKeys": "false"
 },
 "ForAllValues:StringEquals": {
 "aws:TagKeys": [
 "environment",
 "cost-center"
]
 }
 }
}

Control access to AWS resources using tags 849

https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_tag-policies.html

AWS Identity and Access Management User Guide

Cross account resource access in IAM

For some AWS services, you can grant cross-account access to your resources using IAM. To do this,
you can attach a resource policy directly to the resource that you want to share, or use a role as a
proxy.

To share the resource directly, the resource that you want to share must support resource-based
policies. Unlike an identity-based policy for a role, a resource-based policy specifies who (which
principal) can access that resource.

Use a role as a proxy when you want to access resources in another account that do not support
resource-based policies.

For details about the differences between these policy types, see Identity-based policies and
resource-based policies.

Note

IAM roles and resource-based policies delegate access across accounts only within a single
partition. For example, you have an account in US West (N. California) in the standard
aws partition. You also have an account in China in the aws-cn partition. You can't use a
resource-based policy in your account in China to allow access for users in your standard
AWS account.

Cross-account access using roles

Not all AWS services support resource-based policies. For these services, you can use cross-account
IAM roles to centralize permission management when providing cross-account access to multiple
services. A cross-account IAM role is an IAM role that includes a trust policy that allows IAM
principals in another AWS account to assume the role. Put simply, you can create a role in one AWS
account that delegates specific permissions to another AWS account.

For information about attaching a policy to an IAM identity, see Managing IAM policies.

Cross account resource access 850

https://docs.aws.amazon.com/IAM/latest/UserGuide/introduction_access-management.html#intro-access-resource-based-policies
https://docs.aws.amazon.com/IAM/latest/UserGuide/introduction_access-management.html#intro-access-resource-based-policies
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_terms-and-concepts.html#term_trust-policy

AWS Identity and Access Management User Guide

Note

When a principal switches to a role to temporarily use the permissions of the role, they
give up their original permissions and take on the permissions assigned to the role they’ve
assumed.

Let’s take a look at the overall process as it applies to APN Partner software that needs to access a
customer account.

1. The customer creates an IAM role in their own account with a policy that allows access
the Amazon S3 resources that the APN partner requires. In this example, the role name is
APNPartner.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "s3:*",
 "Resource": [
 "arn:aws:s3:::bucket-name"
]
 }
]
}

2. Then, the customer specifies that the role can be assumed by the partner’s AWS account by
providing the APN Partner’s AWS account ID in the trust policy for the APNPartner role.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::APN-account-ID:role/APN-user-name"
 },
 "Action": "sts:AssumeRole"
 }
]

Cross account resource access 851

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-custom.html

AWS Identity and Access Management User Guide

}

3. The customer gives the Amazon Resource Name (ARN) of the role to the APN partner. The ARN
is the fully qualified name of the role.

arn:aws:iam::APN-ACCOUNT-ID:role/APNPartner

Note

We recommend using an external ID in multi-tenant situations. For details, see How to
use an external ID when granting access to your AWS resources to a third party.

4. When the APN Partner’s software needs to access the customer’s account, the software
calls the AssumeRole API in the AWS Security Token Service with the ARN of the role in the
customer’s account. STS returns a temporary AWS credential that allows the software to do its
work.

For another example of granting cross-account access using roles, see Providing access to an IAM
user in another AWS account that you own. You can also follow the IAM tutorial: Delegate access
across AWS accounts using IAM roles.

Cross-account access using resource-based policies

When an account accesses a resource through another account using a resource-based policy, the
principal still works in the trusted account and does not have to give up their permissions to receive
the role permissions. In other words, the principal continues to have access to resources in the
trusted account while having access to the resource in the trusting account. This is useful for tasks
such as copying information to or from the shared resource in the other account.

The principals that you can specify in a resource based policy include accounts, IAM users,
federated users, IAM roles, assumed-role sessions, or AWS services. For more information, see
Specifying a principal.

To learn whether principals in accounts outside of your zone of trust (trusted organization or
account) have access to assume your roles, see Identifying resources shared with an external entity.

The following list includes some of the AWS services that support resource-based policies. For a
complete list of the growing number of AWS services that support attaching permission policies to

Cross account resource access 852

https://docs.aws.amazon.com/STS/latest/APIReference/API_AssumeRole.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_principal.html#Principal_specifying
https://docs.aws.amazon.com/IAM/latest/UserGuide/what-is-access-analyzer.html#what-is-access-analyzer-resource-identification

AWS Identity and Access Management User Guide

resources instead of principals, see AWS services that work with IAM and look for the services that
have Yes in the Resource Based column.

• Amazon S3 buckets — The policy is attached to the bucket, but the policy controls access to
both the bucket and the objects in it. For more information, see Access Control in the Amazon
Simple Storage Service User Guide. In some cases, it may be best to use roles for cross-account
access to Amazon S3. For more information, see the example walkthroughs in the Amazon Simple
Storage Service User Guide.

• Amazon Simple Notification Service (Amazon SNS) topics — For more information, go
to Example cases for Amazon SNS access control in the Amazon Simple Notification Service
Developer Guide.

• Amazon Simple Queue Service (Amazon SQS) queues – For more information, go to Appendix:
The Access Policy Language in the Amazon Simple Queue Service Developer Guide.

Delegating AWS permissions in a resource-based policy

If a resource grants permissions to principals in your account, you can then delegate those
permissions to specific IAM identities. Identities are users, groups of users, or roles in your account.
You delegate permissions by attaching a policy to the identity. You can grant up to the maximum
permissions that are allowed by the resource-owning account.

Important

In cross account access, a principal needs an Allow in the identity policy and the resource-
based policy.

Assume that a resource-based policy allows all principals in your account full administrative
access to a resource. Then you can delegate full access, read-only access, or any other partial
access to principals in your AWS account. Alternatively, if the resource-based policy allows only list
permissions, then you can delegate only list access. If you try to delegate more permissions than
your account has, your principals will still have only list access.

For more information about how these decisions are made, see Determining whether a request is
allowed or denied within an account.

Cross account resource access 853

https://docs.aws.amazon.com/AmazonS3/latest/userguide/s3-access-control.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/example-walkthroughs-managing-access.html
https://docs.aws.amazon.com/sns/latest/dg/sns-access-policy-use-cases.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-creating-custom-policies.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-creating-custom-policies.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_evaluation-logic.html#policy-eval-denyallow
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_evaluation-logic.html#policy-eval-denyallow

AWS Identity and Access Management User Guide

Note

IAM roles and resource-based policies delegate access across accounts only within a single
partition. For example, you can't add cross-account access between an account in the
standard aws partition and an account in the aws-cn partition.

For example, assume that you manage AccountA and AccountB. In AccountA, you have an
Amazon S3 bucket named BucketA.

1. You attach a resource-based policy to BucketA that allows all principals in AccountB full
access to objects in your bucket. They can create, read, or delete any objects in that bucket.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "PrincipalAccess",
 "Effect": "Allow",
 "Principal": {"AWS": "arn:aws:iam::AccountB:root"},
 "Action": "s3:*",
 "Resource": "arn:aws:s3:::BucketA/*"

Cross account resource access 854

AWS Identity and Access Management User Guide

 }
]
}

AccountA gives AccountB full access to BucketA by naming AccountB as a principal in the
resource-based policy. As a result, AccountB is authorized to perform any action on BucketA,
and the AccountB administrator can delegate access to its users in AccountB.

The AccountB root user has all of the permissions that are granted to the account. Therefore,
the root user has full access to BucketA.

2. In AccountB, attach a policy to the IAM user named User2. That policy allows the user read-
only access to the objects in BucketA. That means that User2 can view the objects, but not
create, edit, or delete them.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect" : "Allow",
 "Action" : [
 "s3:Get*",
 "s3:List*"],
 "Resource" : "arn:aws:s3:::BucketA/*"
 }
]
}

The maximum level of access that AccountB can delegate is the access level that is granted to
the account. In this case, the resource-based policy granted full access to AccountB, but User2
is granted only read-only access.

The AccountB administrator does not give access to User1. By default, users do not have any
permissions except those that are explicitly granted, so User1 does not have access to BucketA.

IAM evaluates a principal's permissions at the time the principal makes a request. If you use
wildcards (*) to give users full access to your resources, principals can access any resources that your
AWS account has access to. This is true even for resources you add or gain access to after creating
the user's policy.

Cross account resource access 855

AWS Identity and Access Management User Guide

In the preceding example, if AccountB had attached a policy to User2 that allowed full access to all
resources in all accounts, User2 would automatically have access to any resources that AccountB
has access to. This includes the BucketA access and access to any other resources granted by
resource-based policies in AccountA.

For more information about complex uses of roles, such as granting access to applications and
services, see Common scenarios for roles: Users, applications, and services.

Important

Give access only to entities you trust, and give the minimum level of access necessary.
Whenever the trusted entity is another AWS account, any IAM principal can be granted
access to your resource. The trusted AWS account can delegate access only to the extent
that it has been granted access; it cannot delegate more access than the account itself has
been granted.

For information about permissions, policies, and the permission policy language that you use to
write policies, see Access management for AWS resources.

Forward access sessions

Forward access sessions (FAS) is an IAM technology used by AWS services to pass your identity,
permissions, and session attributes when an AWS service makes a request on your behalf. FAS uses
the permissions of the identity calling an AWS service, combined with an AWS service’s identity to
make requests to downstream services. FAS requests are only made to AWS services on behalf of
an IAM principal after a service has received a request that requires interactions with other AWS
services or resources to complete. When a FAS request is made:

• The service that receives the initial request from an IAM principal checks the permissions of the
IAM principal.

• The service that receives a subsequent FAS request also checks the permissions of the same IAM
principal.

For example, FAS is used by Amazon S3 to make calls to AWS Key Management Service to decrypt
an object when SSE-KMS was used to encrypt it. When downloading an SSE-KMS encrypted object,
a role named data-reader calls GetObject on the object against Amazon S3, and does not call AWS

Forward access sessions 856

https://docs.aws.amazon.com/AmazonS3/latest/userguide/UsingKMSEncryption.html

AWS Identity and Access Management User Guide

KMS directly. After receiving the GetObject request and authorizing data-reader, Amazon S3 then
makes a FAS request to AWS KMS in order to decrypt the Amazon S3 object. When KMS receives
the FAS request it checks the permissions of the role and only authorizes the decryption request
if data-reader has the correct permissions on the KMS key. The requests to both Amazon S3 and
AWS KMS are authorized using the role’s permissions and is only successful if data-reader has
permissions to both the Amazon S3 object and the AWS KMS key.

Note

Additional FAS requests can be made by services who have received a FAS request. In such
cases, the requesting principal must have permissions for all services called by FAS.

FAS Requests and IAM policy conditions

When FAS requests are made, aws:CalledVia, aws:CalledViaFirst, and aws:CalledViaLast condition
keys are populated with the service principal of the service that initiated the FAS call. The
aws:ViaAWSService condition key value is set to true whenever a FAS request is made. In the
following diagram, the request to CloudFormation directly does not have any aws:CalledVia
or aws:ViaAWSService condition keys set. When CloudFormation and DynamoDB make
downstream FAS requests on the behalf of the role, the values for these condition keys are
populated.

To allow a FAS request to be made when it would otherwise be denied by a Deny policy statement
with a condition key testing Source IP addresses or Source VPCs, you must use condition keys to

Forward access sessions 857

AWS Identity and Access Management User Guide

provide an exception for FAS requests in your Deny policy. This can be done for all FAS requests by
using the aws:ViaAWSService condition key. To allow only specific AWS services to make FAS
requests, use aws:CalledVia.

Important

When a FAS request is made after an initial request is made through a VPC endpoint, the
condition key values for aws:SourceVpce, aws:SourceVpc, and aws:VpcSourceIp
from the initial request are not used in FAS requests. When writing policies using
aws:VPCSourceIP or aws:SourceVPCE to conditionally grant access, you must also use
aws:ViaAWSService or aws:CalledVia to allow FAS requests. When a FAS request is
made after an initial request is received by a public AWS service endpoint, subsequent FAS
requests will be made with the same aws:SourceIP condition key value.

Example: Allow Amazon S3 access from a VPC or with FAS

In the following IAM policy example, Amazon S3 GetObject and Athena requests are only allowed
if they originate from VPC endpoints attached to example_vpc, or if the request is a FAS request
made by Athena.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "OnlyAllowMyIPs",
 "Effect": "Allow",
 "Action": [
 "s3:GetObject*",
 "athena:StartQueryExecution",
 "athena:GetQueryResults",
 "athena:GetWorkGroup",
 "athena:StopQueryExecution",
 "athena:GetQueryExecution"
],
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "aws:SourceVPC": [
 "example_vpc"
]

Forward access sessions 858

AWS Identity and Access Management User Guide

 }
 }
 },
 {
 "Sid": "OnlyAllowFAS",
 "Effect": "Allow",
 "Action": [
 "s3:GetObject*"
],
 "Resource": "*",
 "Condition": {
 "ForAnyValue:StringEquals": {
 "aws:CalledVia": "athena.amazonaws.com"
 }
 }
 }
]
}

For additional examples of using condition keys to allow FAS access, see the data perimeter
example policy repo.

Example IAM identity-based policies

A policy is an object in AWS that, when associated with an identity or resource, defines their
permissions. AWS evaluates these policies when an IAM principal (user or role) makes a request.
Permissions in the policies determine whether the request is allowed or denied. Most policies are
stored in AWS as JSON documents that are attached to an IAM identity (user, group of users, or
role). Identity-based policies include AWS managed policies, customer managed policies, and inline
policies. To learn how to create an IAM policy using these example JSON policy documents, see the
section called “Creating policies using the JSON editor”.

By default all requests are denied, so you must provide access to the services, actions, and
resources that you intend for the identity to access. If you also want to allow access to complete
the specified actions in the IAM console, you need to provide additional permissions.

The following library of policies can help you define permissions for your IAM identities. After you
find the policy that you need, choose view this policy to view the JSON for the policy. You can use
the JSON policy document as a template for your own policies.

Example policies 859

https://github.com/aws-samples/data-perimeter-policy-examples
https://github.com/aws-samples/data-perimeter-policy-examples

AWS Identity and Access Management User Guide

Note

If you would like to submit a policy to be included in this reference guide, use the Feedback
button at the bottom of this page.

Example policies: AWS

• Allows access during a specific range of dates. (View this policy.)

• Allows enabling and disabling AWS Regions. (View this policy.)

• Allows MFA-authenticated users to manage their own credentials on the Security credentials
page. (View this policy.)

• Allows specific access when using MFA during a specific range of dates. (View this policy.)

• Allows users to manage their own credentials on the Security credentials page. (View this
policy.)

• Allows users to manage their own MFA device on the Security credentials page. (View this
policy.)

• Allows users to manage their own password on the Security credentials page. (View this policy.)

• Allows users to manage their own password, access keys, and SSH public keys on the Security
credentials page. (View this policy.)

• Denies access to AWS based on the requested Region. (View this policy.)

• Denies access to AWS based on the source IP address. (View this policy.)

Example policy: AWS Data Exchange

• Deny access to Amazon S3 resources outside of your account except AWS Data Exchange. (View
this policy.)

Example policies: AWS Data Pipeline

• Denies access to pipelines that a user did not create (View this policy.)

Example policies 860

AWS Identity and Access Management User Guide

Example policies: Amazon DynamoDB

• Allows access to a specific Amazon DynamoDB table (View this policy.)

• Allows access to specific Amazon DynamoDB attributes (View this policy.)

• Allows item-level access to Amazon DynamoDB based on an Amazon Cognito ID (View this
policy.)

Example policies: Amazon EC2

• Allows attaching or detaching Amazon EBS volumes to Amazon EC2 instances based on tags
(View this policy.)

• Allows launching Amazon EC2 instances in a specific subnet, programmatically and in the
console (View this policy.)

• Allows managing Amazon EC2 security groups associated with a specific VPC, programmatically
and in the console (View this policy.)

• Allows starting or stopping Amazon EC2 instances a user has tagged, programmatically and in
the console (View this policy.)

• Allows starting or stopping Amazon EC2 instances based on resource and principal tags,
programmatically and in the console (View this policy.)

• Allows starting or stopping Amazon EC2 instances when the resource and principal tags match
(View this policy.)

• Allows full Amazon EC2 access within a specific Region, programmatically and in the console.
(View this policy.)

• Allows starting or stopping a specific Amazon EC2 instance and modifying a specific security
group, programmatically and in the console (View this policy.)

• Denies access to specific Amazon EC2 operations without MFA (View this policy.)

• Limits terminating Amazon EC2 instances to a specific IP address range (View this policy.)

Example policies: AWS Identity and Access Management (IAM)

• Allows access to the policy simulator API (View this policy.)

• Allows access to the policy simulator console (View this policy.)

• Allows assuming any roles that have a specific tag, programmatically and in the console (View
this policy.)

Example policies 861

AWS Identity and Access Management User Guide

• Allows and denies access to multiple services, programmatically and in the console (View this
policy.)

• Allows adding a specific tag to an IAM user with a different specific tag, programmatically and in
the console (View this policy.)

• Allows adding a specific tag to any IAM user or role, programmatically and in the console (View
this policy.)

• Allows creating a new user only with specific tags (View this policy.)

• Allows generating and retrieving IAM credential reports (View this policy.)

• Allows managing a group's membership, programmatically and in the console (View this policy.)

• Allows managing a specific tag (View this policy.)

• Allows passing an IAM role to a specific service (View this policy.)

• Allows read-only access to the IAM console without reporting (View this policy.)

• Allows read-only access to the IAM console (View this policy.)

• Allows specific users to manage a group, programmatically and in the console (View this policy.)

• Allows setting the account password requirements, programmatically and in the console (View
this policy.)

• Allows using the policy simulator API for users with a specific path (View this policy.)

• Allows using the policy simulator console for users with a specific path (View this policy.)

• Allows IAM users to self-manage an MFA device. (View this policy.)

• Allows IAM users to set their own credentials, programmatically and in the console. (View this
policy.)

• Allows viewing service last accessed information for an AWS Organizations policy in the IAM
console. (View this policy.)

• Limits managed policies that can be applied to an IAM user, group, or role (View this policy.)

• Allows access to IAM policies only in your account (View this policy.)

Example policies: AWS Lambda

• Allows an AWS Lambda function to access an Amazon DynamoDB table (View this policy.)

Example policies: Amazon RDS

• Allows full Amazon RDS database access within a specific Region. (View this policy.)

Example policies 862

AWS Identity and Access Management User Guide

• Allows restoring Amazon RDS databases, programmatically and in the console (View this policy.)

• Allows tag owners full access to Amazon RDS resources that they have tagged (View this policy.)

Example policies: Amazon S3

• Allows an Amazon Cognito user to access objects in their own Amazon S3 bucket (View this
policy.)

• Allows federated users to access their own home directory in Amazon S3, programmatically and
in the console (View this policy.)

• Allows full S3 access, but explicitly denies access to the Production bucket if the administrator
has not signed in using MFA within the last thirty minutes (View this policy.)

• Allows IAM users to access their own home directory in Amazon S3, programmatically and in the
console (View this policy.)

• Allows a user to manage a single Amazon S3 bucket and denies every other AWS action and
resource (View this policy.)

• Allows Read and Write access to a specific Amazon S3 bucket (View this policy.)

• Allows Read and Write access to a specific Amazon S3 bucket, programmatically and in the
console (View this policy.)

AWS: Allows access based on date and time

This example shows how you might create an identity-based policy that allows access to actions
based on date and time. This policy restricts access to actions that occur between April 1, 2020
and June 30, 2020 (UTC), inclusive. This policy grants the permissions necessary to complete this
action programmatically from the AWS API or AWS CLI. To use this policy, replace the italicized
placeholder text in the example policy with your own information. Then, follow the directions
in create a policy or edit a policy.

To learn about using multiple conditions within the Condition block of an IAM policy, see
Multiple values in a condition.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",

Example policies 863

AWS Identity and Access Management User Guide

 "Action": "service-prefix:action-name",
 "Resource": "*",
 "Condition": {
 "DateGreaterThan": {"aws:CurrentTime": "2020-04-01T00:00:00Z"},
 "DateLessThan": {"aws:CurrentTime": "2020-06-30T23:59:59Z"}
 }
 }
]
}

Note

You cannot use a policy variable with the Date condition operator. To learn more see
Condition element

AWS: Allows enabling and disabling AWS Regions

This example shows how you might create an identity-based policy that allows an administrator to
enable and disable the Asia Pacific (Hong Kong) Region (ap-east-1). This policy defines permissions
for programmatic and console access. This setting appears in the Account settings page in the
AWS Management Console. This page includes sensitive account-level information that should be
viewed and managed only by account administrators. To use this policy, replace the italicized
placeholder text in the example policy with your own information. Then, follow the directions
in create a policy or edit a policy.

Important

You cannot enable or disable regions that are enabled by default. You can only include
regions that are disabled by default. For more information, see Managing AWS Regions in
the AWS General Reference.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "EnableDisableHongKong",
 "Effect": "Allow",

Example policies 864

https://docs.aws.amazon.com/general/latest/gr/rande-manage.html

AWS Identity and Access Management User Guide

 "Action": [
 "account:EnableRegion",
 "account:DisableRegion"
],
 "Resource": "*",
 "Condition": {
 "StringEquals": {"account:TargetRegion": "ap-east-1"}
 }
 },
 {
 "Sid": "ViewConsole",
 "Effect": "Allow",
 "Action": [
 "account:ListRegions"
],
 "Resource": "*"
 }
]
}

AWS: Allows MFA-authenticated IAM users to manage their own credentials on
the Security credentials page

This example shows how you might create an identity-based policy that allows IAM users that are
authenticated using multi-factor authentication (MFA) to manage their own credentials on the
Security credentials page. This AWS Management Console page displays account information
such as the account ID and canonical user ID. Users can also view and edit their own passwords,
access keys, MFA devices, X.509 certificates, and SSH keys and Git credentials. This example policy
includes the permissions required to view and edit all of the information on the page. It also
requires the user to set up and authenticate using MFA before performing any other operations
in AWS. To allow users to manage their own credentials without using MFA, see AWS: Allows IAM
users to manage their own credentials on the Security credentials page.

To learn how users can access the Security credentials page, see How IAM users change their own
password (console).

Note

• This example policy does not allow users to reset a password while signing in to
the AWS Management Console for the first time. We recommend that you do not

Example policies 865

AWS Identity and Access Management User Guide

grant permissions to new users until after they sign in. For more information,
see How do I securely create IAM users?. This also prevents users with an expired
password from resetting their password during sign in. You can allow this by adding
iam:ChangePassword and iam:GetAccountPasswordPolicy to the statement
DenyAllExceptListedIfNoMFA. However, we do not recommend this because
allowing users to change their password without MFA can be a security risk.

• If you intend to use this policy for programmatic access you must call
GetSessionToken to authenticate with MFA. For more information, see Configuring
MFA-protected API access.

What does this policy do?

• The AllowViewAccountInfo statement allows the user to view account-level information.
These permissions must be in their own statement because they do not support or do not need
to specify a resource ARN. Instead the permissions specify "Resource" : "*". This statement
includes the following actions that allow the user to view specific information:

• GetAccountPasswordPolicy – View the account password requirements while changing
their own IAM user password.

• ListVirtualMFADevices – View details about a virtual MFA device that is enabled for the
user.

• The AllowManageOwnPasswords statement allows the user to change their own password. This
statement also includes the GetUser action, which is required to view most of the information
on the My security credentials page.

• The AllowManageOwnAccessKeys statement allows the user to create, update, and delete
their own access keys. The user can also retrieve information about when the specified access key
was last used.

• The AllowManageOwnSigningCertificates statement allows the user to upload, update,
and delete their own signing certificates.

• The AllowManageOwnSSHPublicKeys statement allows the user to upload, update, and delete
their own SSH public keys for CodeCommit.

• The AllowManageOwnGitCredentials statement allows the user to create, update, and
delete their own Git credentials for CodeCommit.

• The AllowManageOwnVirtualMFADevice statement allows the user to create their own virtual
MFA device. The resource ARN in this statement allows the user to create an MFA device with

Example policies 866

https://docs.aws.amazon.com/STS/latest/APIReference/API_GetSessionToken.html

AWS Identity and Access Management User Guide

any name, but the other statements in the policy only allow the user to attach the device to the
currently signed-in user.

• The AllowManageOwnUserMFA statement allows the user to view or manage the virtual, U2F, or
hardware MFA device for their own user. The resource ARN in this statement allows access to only
the user's own IAM user. Users can't view or manage the MFA device for other users.

• The DenyAllExceptListedIfNoMFA statement denies access to every action in all AWS
services, except a few listed actions, but only if the user is not signed in with MFA. The statement
uses a combination of "Deny" and "NotAction" to explicitly deny access to every action that
is not listed. The items listed are not denied or allowed by this statement. However, the actions
are allowed by other statements in the policy. For more information about the logic for this
statement, see NotAction with Deny. If the user is signed in with MFA, then the Condition test
fails and this statement does not deny any actions. In this case, other policies or statements for
the user determine the user's permissions.

This statement ensures that when the user is not signed in with MFA that they can perform only
the listed actions. In addition, they can perform the listed actions only if another statement or
policy allows access to those actions. This does not allow a user to create a password at sign-in,
because iam:ChangePassword action should not be allowed without MFA authorization.

The ...IfExists version of the Bool operator ensures that if the
aws:MultiFactorAuthPresent key is missing, the condition returns true. This means that a
user accessing an API with long-term credentials, such as an access key, is denied access to the
non-IAM API operations.

This policy does not allow users to view the Users page in the IAM console or use that page
to access their own user information. To allow this, add the iam:ListUsers action to the
AllowViewAccountInfo statement and the DenyAllExceptListedIfNoMFA statement.
It also does not allow users to change their password on their own user page. To allow
this, add the iam:GetLoginProfile and iam:UpdateLoginProfile actions to the
AllowManageOwnPasswords statement. To also allow a user to change their password from their
own user page without signing in using MFA, add the iam:UpdateLoginProfile action to the
DenyAllExceptListedIfNoMFA statement.

{
 "Version": "2012-10-17",
 "Statement": [
 {

Example policies 867

AWS Identity and Access Management User Guide

 "Sid": "AllowViewAccountInfo",
 "Effect": "Allow",
 "Action": [
 "iam:GetAccountPasswordPolicy",
 "iam:ListVirtualMFADevices"
],
 "Resource": "*"
 },
 {
 "Sid": "AllowManageOwnPasswords",
 "Effect": "Allow",
 "Action": [
 "iam:ChangePassword",
 "iam:GetUser"
],
 "Resource": "arn:aws:iam::*:user/${aws:username}"
 },
 {
 "Sid": "AllowManageOwnAccessKeys",
 "Effect": "Allow",
 "Action": [
 "iam:CreateAccessKey",
 "iam:DeleteAccessKey",
 "iam:ListAccessKeys",
 "iam:UpdateAccessKey",
 "iam:GetAccessKeyLastUsed"
],
 "Resource": "arn:aws:iam::*:user/${aws:username}"
 },
 {
 "Sid": "AllowManageOwnSigningCertificates",
 "Effect": "Allow",
 "Action": [
 "iam:DeleteSigningCertificate",
 "iam:ListSigningCertificates",
 "iam:UpdateSigningCertificate",
 "iam:UploadSigningCertificate"
],
 "Resource": "arn:aws:iam::*:user/${aws:username}"
 },
 {
 "Sid": "AllowManageOwnSSHPublicKeys",
 "Effect": "Allow",
 "Action": [

Example policies 868

AWS Identity and Access Management User Guide

 "iam:DeleteSSHPublicKey",
 "iam:GetSSHPublicKey",
 "iam:ListSSHPublicKeys",
 "iam:UpdateSSHPublicKey",
 "iam:UploadSSHPublicKey"
],
 "Resource": "arn:aws:iam::*:user/${aws:username}"
 },
 {
 "Sid": "AllowManageOwnGitCredentials",
 "Effect": "Allow",
 "Action": [
 "iam:CreateServiceSpecificCredential",
 "iam:DeleteServiceSpecificCredential",
 "iam:ListServiceSpecificCredentials",
 "iam:ResetServiceSpecificCredential",
 "iam:UpdateServiceSpecificCredential"
],
 "Resource": "arn:aws:iam::*:user/${aws:username}"
 },
 {
 "Sid": "AllowManageOwnVirtualMFADevice",
 "Effect": "Allow",
 "Action": [
 "iam:CreateVirtualMFADevice"
],
 "Resource": "arn:aws:iam::*:mfa/*"
 },
 {
 "Sid": "AllowManageOwnUserMFA",
 "Effect": "Allow",
 "Action": [
 "iam:DeactivateMFADevice",
 "iam:EnableMFADevice",
 "iam:ListMFADevices",
 "iam:ResyncMFADevice"
],
 "Resource": "arn:aws:iam::*:user/${aws:username}"
 },
 {
 "Sid": "DenyAllExceptListedIfNoMFA",
 "Effect": "Deny",
 "NotAction": [
 "iam:CreateVirtualMFADevice",

Example policies 869

AWS Identity and Access Management User Guide

 "iam:EnableMFADevice",
 "iam:GetUser",
 "iam:GetMFADevice",
 "iam:ListMFADevices",
 "iam:ListVirtualMFADevices",
 "iam:ResyncMFADevice",
 "sts:GetSessionToken"
],
 "Resource": "*",
 "Condition": {
 "BoolIfExists": {
 "aws:MultiFactorAuthPresent": "false"
 }
 }
 }
]
}

AWS: Allows specific access using MFA within specific dates

This example shows how you might create an identity-based policy that uses multiple conditions,
which are evaluated using a logical AND. It allows full access to the service named SERVICE-
NAME-1, and access to the ACTION-NAME-A and ACTION-NAME-B actions in the service
named SERVICE-NAME-2. These actions are allowed only when the user is authenticated using
multifactor authentication (MFA). Access is restricted to actions that occur between July 1,
2017 and December 31, 2017 (UTC), inclusive. This policy grants the permissions necessary to
complete this action programmatically from the AWS API or AWS CLI. To use this policy, replace the
italicized placeholder text in the example policy with your own information. Then, follow
the directions in create a policy or edit a policy.

To learn about using multiple conditions within the Condition block of an IAM policy, see
Multiple values in a condition.

{
 "Version": "2012-10-17",
 "Statement": {
 "Effect": "Allow",
 "Action": [
 "service-prefix-1:*",
 "service-prefix-2:action-name-a",
 "service-prefix-2:action-name-b"

Example policies 870

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mfa.html

AWS Identity and Access Management User Guide

],
 "Resource": "*",
 "Condition": {
 "Bool": {"aws:MultiFactorAuthPresent": true},
 "DateGreaterThan": {"aws:CurrentTime": "2017-07-01T00:00:00Z"},
 "DateLessThan": {"aws:CurrentTime": "2017-12-31T23:59:59Z"}
 }
 }
}

AWS: Allows IAM users to manage their own credentials on the Security
credentials page

This example shows how you might create an identity-based policy that allows IAM users to
manage all of their own credentials on the Security credentials page. This AWS Management
Console page displays account information such as the account ID and canonical user ID. Users
can also view and edit their own passwords, access keys, X.509 certificates, SSH keys, and Git
credentials. This example policy includes the permissions required to view and edit all information
on the page except the user's MFA device. To allow users to manage their own credentials with MFA,
see AWS: Allows MFA-authenticated IAM users to manage their own credentials on the Security
credentials page.

To learn how users can access the Security credentials page, see How IAM users change their own
password (console).

What does this policy do?

• The AllowViewAccountInfo statement allows the user to view account-level information.
These permissions must be in their own statement because they do not support or do not need
to specify a resource ARN. Instead the permissions specify "Resource" : "*". This statement
includes the following actions that allow the user to view specific information:

• GetAccountPasswordPolicy – View the account password requirements while changing
their own IAM user password.

• GetAccountSummary – View the account ID and the account canonical user ID.

• The AllowManageOwnPasswords statement allows the user to change their own password. This
statement also includes the GetUser action, which is required to view most of the information
on the My security credentials page.

Example policies 871

https://docs.aws.amazon.com/general/latest/gr/acct-identifiers.html#FindingCanonicalId

AWS Identity and Access Management User Guide

• The AllowManageOwnAccessKeys statement allows the user to create, update, and delete
their own access keys. The user can also retrieve information about when the specified access key
was last used.

• The AllowManageOwnSigningCertificates statement allows the user to upload, update,
and delete their own signing certificates.

• The AllowManageOwnSSHPublicKeys statement allows the user to upload, update, and delete
their own SSH public keys for CodeCommit.

• The AllowManageOwnGitCredentials statement enables the user to create, update, and
delete their own Git credentials for CodeCommit.

This policy does not allow users to view or manage their own MFA devices. They also cannot
view the Users page in the IAM console or use that page to access their own user information.
To allow this, add the iam:ListUsers action to the AllowViewAccountInfo statement. It
also does not allow users to change their password on their own user page. To allow this, add
the iam:CreateLoginProfile, iam:DeleteLoginProfile, iam:GetLoginProfile, and
iam:UpdateLoginProfile actions to the AllowManageOwnPasswords statement.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "AllowViewAccountInfo",
 "Effect": "Allow",
 "Action": [
 "iam:GetAccountPasswordPolicy",
 "iam:GetAccountSummary"
],
 "Resource": "*"
 },
 {
 "Sid": "AllowManageOwnPasswords",
 "Effect": "Allow",
 "Action": [
 "iam:ChangePassword",
 "iam:GetUser"
],
 "Resource": "arn:aws:iam::*:user/${aws:username}"
 },
 {

Example policies 872

AWS Identity and Access Management User Guide

 "Sid": "AllowManageOwnAccessKeys",
 "Effect": "Allow",
 "Action": [
 "iam:CreateAccessKey",
 "iam:DeleteAccessKey",
 "iam:ListAccessKeys",
 "iam:UpdateAccessKey",
 "iam:GetAccessKeyLastUsed"
],
 "Resource": "arn:aws:iam::*:user/${aws:username}"
 },
 {
 "Sid": "AllowManageOwnSigningCertificates",
 "Effect": "Allow",
 "Action": [
 "iam:DeleteSigningCertificate",
 "iam:ListSigningCertificates",
 "iam:UpdateSigningCertificate",
 "iam:UploadSigningCertificate"
],
 "Resource": "arn:aws:iam::*:user/${aws:username}"
 },
 {
 "Sid": "AllowManageOwnSSHPublicKeys",
 "Effect": "Allow",
 "Action": [
 "iam:DeleteSSHPublicKey",
 "iam:GetSSHPublicKey",
 "iam:ListSSHPublicKeys",
 "iam:UpdateSSHPublicKey",
 "iam:UploadSSHPublicKey"
],
 "Resource": "arn:aws:iam::*:user/${aws:username}"
 },
 {
 "Sid": "AllowManageOwnGitCredentials",
 "Effect": "Allow",
 "Action": [
 "iam:CreateServiceSpecificCredential",
 "iam:DeleteServiceSpecificCredential",
 "iam:ListServiceSpecificCredentials",
 "iam:ResetServiceSpecificCredential",
 "iam:UpdateServiceSpecificCredential"
],

Example policies 873

AWS Identity and Access Management User Guide

 "Resource": "arn:aws:iam::*:user/${aws:username}"
 }
]
}

AWS: Allows MFA-authenticated IAM users to manage their own MFA device on
the Security credentials page

This example shows how you might create an identity-based policy that allows IAM users that
are authenticated through multi-factor authentication (MFA) to manage their own MFA device on
the Security credentials page. This AWS Management Console page displays account and user
information, but the user can only view and edit their own MFA device. To allow users to manage
all of their own credentials with MFA, see AWS: Allows MFA-authenticated IAM users to manage
their own credentials on the Security credentials page.

Note

If an IAM user with this policy is not MFA-authenticated, this policy denies access to all
AWS actions except those necessary to authenticate using MFA. To use the AWS CLI and
AWS API, IAM users must first retrieve their MFA token using the AWS STS GetSessionToken
operation and then use that token to authenticate the desired operation. Other policies,
such as resource-based policies or other identity-based policies can allow actions in other
services. This policy will deny that access if the IAM user is not MFA-authenticated.

To learn how users can access the Security credentials page, see How IAM users change their own
password (console).

What does this policy do?

• The AllowViewAccountInfo statement allows the user to view details about a virtual MFA
device that is enabled for the user. This permission must be in its own statement because it does
not support specifying a resource ARN. Instead you must specify "Resource" : "*".

• The AllowManageOwnVirtualMFADevice statement allows the user to create their own virtual
MFA device. The resource ARN in this statement allows the user to create an MFA device with
any name, but the other statements in the policy only allow the user to attach the device to the
currently signed-in user.

Example policies 874

https://docs.aws.amazon.com/STS/latest/APIReference/API_GetSessionToken.html

AWS Identity and Access Management User Guide

• The AllowManageOwnUserMFA statement allows the user to view or manage their own virtual,
U2F, or hardware MFA device. The resource ARN in this statement allows access to only the user's
own IAM user. Users can't view or manage the MFA device for other users.

• The DenyAllExceptListedIfNoMFA statement denies access to every action in all AWS
services, except a few listed actions, but only if the user is not signed in with MFA. The statement
uses a combination of "Deny" and "NotAction" to explicitly deny access to every action that
is not listed. The items listed are not denied or allowed by this statement. However, the actions
are allowed by other statements in the policy. For more information about the logic for this
statement, see NotAction with Deny. If the user is signed in with MFA, then the Condition test
fails and this statement does not deny any actions. In this case, other policies or statements for
the user determine the user's permissions.

This statement ensures that when the user is not signed in with MFA, they can perform only the
listed actions. In addition, they can perform the listed actions only if another statement or policy
allows access to those actions.

The ...IfExists version of the Bool operator ensures that if the
aws:MultiFactorAuthPresent key is missing, the condition returns true. This means that
a user accessing an API operation with long-term credentials, such as an access key, is denied
access to the non-IAM API operations.

This policy does not allow users to view the Users page in the IAM console or use that page
to access their own user information. To allow this, add the iam:ListUsers action to the
AllowViewAccountInfo statement and the DenyAllExceptListedIfNoMFA statement.

Warning

Do not add permission to delete an MFA device without MFA authentication. Users with this
policy might attempt to assign themselves a virtual MFA device and receive an error that
they are not authorized to perform iam:DeleteVirtualMFADevice. If this happens, do
not add that permission to the DenyAllExceptListedIfNoMFA statement. Users that
are not authenticated using MFA should never be allowed to delete their MFA device. Users
might see this error if they previously began assigning a virtual MFA device to their user
and cancelled the process. To resolve this issue, you or another administrator must delete
the user's existing virtual MFA device using the AWS CLI or AWS API. For more information,
see I am not authorized to perform: iam:DeleteVirtualMFADevice.

Example policies 875

AWS Identity and Access Management User Guide

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "AllowViewAccountInfo",
 "Effect": "Allow",
 "Action": "iam:ListVirtualMFADevices",
 "Resource": "*"
 },
 {
 "Sid": "AllowManageOwnVirtualMFADevice",
 "Effect": "Allow",
 "Action": [
 "iam:CreateVirtualMFADevice"
],
 "Resource": "arn:aws:iam::*:mfa/*"
 },
 {
 "Sid": "AllowManageOwnUserMFA",
 "Effect": "Allow",
 "Action": [
 "iam:DeactivateMFADevice",
 "iam:EnableMFADevice",
 "iam:GetUser",
 "iam:GetMFADevice",
 "iam:ListMFADevices",
 "iam:ResyncMFADevice"
],
 "Resource": "arn:aws:iam::*:user/${aws:username}"
 },
 {
 "Sid": "DenyAllExceptListedIfNoMFA",
 "Effect": "Deny",
 "NotAction": [
 "iam:CreateVirtualMFADevice",
 "iam:EnableMFADevice",
 "iam:GetUser",
 "iam:ListMFADevices",
 "iam:ListVirtualMFADevices",
 "iam:ResyncMFADevice",
 "sts:GetSessionToken"
],
 "Resource": "*",

Example policies 876

AWS Identity and Access Management User Guide

 "Condition": {
 "BoolIfExists": {"aws:MultiFactorAuthPresent": "false"}
 }
 }
]
}

AWS: Allows IAM users to change their own console password on the Security
credentials page

This example shows how you might create an identity-based policy that allows IAM users to
change their own AWS Management Console password on the Security credentials page. This AWS
Management Console page displays account and user information, but the user can only access
their own password. To allow users to manage all of their own credentials with MFA, see AWS:
Allows MFA-authenticated IAM users to manage their own credentials on the Security credentials
page. To allow users to manage their own credentials without using MFA, see AWS: Allows IAM
users to manage their own credentials on the Security credentials page.

To learn how users can access the Security credentials page, see How IAM users change their own
password (console).

What does this policy do?

• The ViewAccountPasswordRequirements statement allows the user to view the account
password requirements while changing their own IAM user password.

• The ChangeOwnPassword statement allows the user to change their own password. This
statement also includes the GetUser action, which is required to view most of the information
on the My security credentials page.

This policy does not allow users to view the Users page in the IAM console or use that page
to access their own user information. To allow this, add the iam:ListUsers action to the
ViewAccountPasswordRequirements statement. It also does not allow users to change
their password on their own user page. To allow this, add the iam:GetLoginProfile and
iam:UpdateLoginProfile actions to the ChangeOwnPasswords statement.

{
 "Version": "2012-10-17",
 "Statement": [
 {

Example policies 877

AWS Identity and Access Management User Guide

 "Sid": "ViewAccountPasswordRequirements",
 "Effect": "Allow",
 "Action": "iam:GetAccountPasswordPolicy",
 "Resource": "*"
 },
 {
 "Sid": "ChangeOwnPassword",
 "Effect": "Allow",
 "Action": [
 "iam:GetUser",
 "iam:ChangePassword"
],
 "Resource": "arn:aws:iam::*:user/${aws:username}"
 }
]
}

AWS: Allows IAM users to manage their own password, access keys, and SSH
public keys on the Security credentials page

This example shows how you might create an identity-based policy that allows IAM users to
manage their own password, access keys, and X.509 certificates on the Security credentials page.
This AWS Management Console page displays account information such as the account ID and
canonical user ID. Users can also view and edit their own passwords, access keys, MFA devices,
X.509 certificates, SSH keys, and Git credentials. This example policy includes the permissions that
are required to view and edit only their password, access keys, and X.509 certificate. To allow users
to manage all of their own credentials with MFA, see AWS: Allows MFA-authenticated IAM users to
manage their own credentials on the Security credentials page. To allow users to manage their own
credentials without using MFA, see AWS: Allows IAM users to manage their own credentials on the
Security credentials page.

To learn how users can access the Security credentials page, see How IAM users change their own
password (console).

What does this policy do?

• The AllowViewAccountInfo statement allows the user to view account-level information.
These permissions must be in their own statement because they do not support or do not need
to specify a resource ARN. Instead the permissions specify "Resource" : "*". This statement
includes the following actions that allow the user to view specific information:

Example policies 878

AWS Identity and Access Management User Guide

• GetAccountPasswordPolicy – View the account password requirements while changing
their own IAM user password.

• GetAccountSummary – View the account ID and the account canonical user ID.

• The AllowManageOwnPasswords statement allows the user to change their own password. This
statement also includes the GetUser action, which is required to view most of the information
on the My security credentials page.

• The AllowManageOwnAccessKeys statement allows the user to create, update, and delete
their own access keys. The user can also retrieve information about when the specified access key
was last used.

• The AllowManageOwnSSHPublicKeys statement allows the user to upload, update, and delete
their own SSH public keys for CodeCommit.

This policy does not allow users to view or manage their own MFA devices. They also cannot
view the Users page in the IAM console or use that page to access their own user information.
To allow this, add the iam:ListUsers action to the AllowViewAccountInfo statement.
It also does not allow users to change their password on their own user page. To allow
this, add the iam:GetLoginProfile and iam:UpdateLoginProfile actions to the
AllowManageOwnPasswords statement.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "AllowViewAccountInfo",
 "Effect": "Allow",
 "Action": [
 "iam:GetAccountPasswordPolicy",
 "iam:GetAccountSummary"
],
 "Resource": "*"
 },
 {
 "Sid": "AllowManageOwnPasswords",
 "Effect": "Allow",
 "Action": [
 "iam:ChangePassword",
 "iam:GetUser"
],

Example policies 879

https://docs.aws.amazon.com/general/latest/gr/acct-identifiers.html#FindingCanonicalId

AWS Identity and Access Management User Guide

 "Resource": "arn:aws:iam::*:user/${aws:username}"
 },
 {
 "Sid": "AllowManageOwnAccessKeys",
 "Effect": "Allow",
 "Action": [
 "iam:CreateAccessKey",
 "iam:DeleteAccessKey",
 "iam:ListAccessKeys",
 "iam:UpdateAccessKey",
 "iam:GetAccessKeyLastUsed"
],
 "Resource": "arn:aws:iam::*:user/${aws:username}"
 },
 {
 "Sid": "AllowManageOwnSSHPublicKeys",
 "Effect": "Allow",
 "Action": [
 "iam:DeleteSSHPublicKey",
 "iam:GetSSHPublicKey",
 "iam:ListSSHPublicKeys",
 "iam:UpdateSSHPublicKey",
 "iam:UploadSSHPublicKey"
],
 "Resource": "arn:aws:iam::*:user/${aws:username}"
 }
]
}

AWS: Denies access to AWS based on the requested Region

This example shows how you might create an identity-based policy that denies access to any
actions outside the Regions specified using the aws:RequestedRegion condition key, except
for actions in the services specified using NotAction. This policy defines permissions for
programmatic and console access. To use this policy, replace the italicized placeholder
text in the example policy with your own information. Then, follow the directions in create a
policy or edit a policy.

This policy uses the NotAction element with the Deny effect, which explicitly denies access
to all of the actions not listed in the statement. Actions in the CloudFront, IAM, Route 53, and
AWS Support services should not be denied because these are popular AWS global services with
a single endpoint that is physically located in the us-east-1 Region. Because all requests to

Example policies 880

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-requestedregion

AWS Identity and Access Management User Guide

these services are made to the us-east-1 Region, the requests would be denied without the
NotAction element. Edit this element to include actions for other AWS global services that
you use, such as budgets, globalaccelerator, importexport, organizations, or waf.
Some other global services, such as AWS Chatbot and AWS Device Farm, are global services with
endpoints that are physically located in the us-west-2 region. To learn about all of the services
that have a single global endpoint, see AWS Regions and Endpoints in the AWS General Reference.
For more information about using the NotAction element with the Deny effect, see IAM JSON
policy elements: NotAction.

Important

This policy does not allow any actions. Use this policy in combination with other policies
that allow specific actions.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "DenyAllOutsideRequestedRegions",
 "Effect": "Deny",
 "NotAction": [
 "cloudfront:*",
 "iam:*",
 "route53:*",
 "support:*"
],
 "Resource": "*",
 "Condition": {
 "StringNotEquals": {
 "aws:RequestedRegion": [
 "eu-central-1",
 "eu-west-1",
 "eu-west-2",
 "eu-west-3"
]
 }
 }
 }
]

Example policies 881

https://docs.aws.amazon.com/general/latest/gr/rande.html

AWS Identity and Access Management User Guide

}

AWS: Denies access to AWS based on the source IP

This example shows how you might create an identity-based policy that denies access to all AWS
actions in the account when the request comes from principals outside the specified IP range.
The policy is useful when the IP addresses for your company are within the specified ranges. In
this example, the request will be denied unless it originates from the CIDR range 192.0.2.0/24 or
203.0.113.0/24. The policy does not deny requests made by AWS services using Forward access
sessions as the original requester’s IP address is preserved.

Be careful using negative conditions in the same policy statement as "Effect": "Deny". When
you do, the actions specified in the policy statement are explicitly denied in all conditions except for
the ones specified.

Important

This policy does not allow any actions. Use this policy in combination with other policies
that allow specific actions.

When other policies allow actions, principals can make requests from within the IP address range.
An AWS service can also make requests using the principal's credentials. When a principal makes a
request from outside the IP range, the request is denied.

For more information about using the aws:SourceIp condition key, including information about
when aws:SourceIp may not work in your policy, see AWS global condition context keys.

{
 "Version": "2012-10-17",
 "Statement": {
 "Effect": "Deny",
 "Action": "*",
 "Resource": "*",
 "Condition": {
 "NotIpAddress": {
 "aws:SourceIp": [
 "192.0.2.0/24",
 "203.0.113.0/24"
]

Example policies 882

AWS Identity and Access Management User Guide

 }
 }
 }
}

AWS: Deny access to Amazon S3 resources outside your account except AWS Data
Exchange

This example shows how you might create an identity-based policy that denies access to
all resources in AWS that don't belong to your account, except for the resources that AWS
Data Exchange requires for normal operation. To use this policy, replace the italicized
placeholder text in the example policy with your own information. Then, follow the directions
in create a policy or edit a policy.

You can create a similar policy to restrict access to resources within an organization or an
organizational unit, while accounting for AWS Data Exchange owned resources by using the
condition keys aws:ResourceOrgPaths and aws:ResourceOrgID.

If you use AWS Data Exchange in your environment, the service creates and interacts with
resources such as Amazon S3 buckets owned by the service account. For example, AWS Data
Exchange sends requests to Amazon S3 buckets owned by the AWS Data Exchange service on
behalf of the IAM principal (user or role) invoking the AWS Data Exchange APIs. In that case, using
aws:ResourceAccount, aws:ResourceOrgPaths, or aws:ResourceOrgID in a policy, without
accounting for AWS Data Exchange owned resources, denies access to the buckets owned by the
service account.

• The statement, DenyAllAwsResourcesOutsideAccountExceptS3, uses the NotAction
element with the Deny effect which explicitly denies access to every action not listed in the
statement that also do not belong to the listed account. The NotAction element indicates the
exceptions to this statement. These actions are the exception to this statement because if the
actions are performed on resources created by AWS Data Exchange, the policy denies them.

• The statement, DenyAllS3ResoucesOutsideAccountExceptDataExchange, uses a
combination of the ResourceAccount and CalledVia conditions to deny access to the three
Amazon S3 actions excluded in the previous statement. The statement denies the actions if
resources do not belong in the listed account and if the calling service is not AWS Data Exchange.
The statement does not deny the actions if either the resource belongs to the listed account or
the listed service principal, dataexchange.amazonaws.com, performs the operations.

Example policies 883

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_effect.html

AWS Identity and Access Management User Guide

Important

This policy does not allow any actions. It uses the Deny effect which explicitly denies access
to all of the resources listed in the statement that do not belong to the listed account. Use
this policy in combination with other policies that allow access to specific resources.

The following example shows how you can configure the policy to allow access to the required
Amazon S3 buckets.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "DenyAllAwsReourcesOutsideAccountExceptAmazonS3",
 "Effect": "Deny",
 "NotAction": [
 "s3:GetObject",
 "s3:PutObject",
 "s3:PutObjectAcl"
],
 "Resource": "*",
 "Condition": {
 "StringNotEquals": {
 "aws:ResourceAccount": [
 "111122223333"
]
 }
 }
 },
 {
 "Sid": "DenyAllS3ResourcesOutsideAccountExceptDataExchange",
 "Effect": "Deny",
 "Action": [
 "s3:GetObject",
 "s3:PutObject",
 "s3:PutObjectAcl"
],
 "Resource": "*",
 "Condition": {
 "StringNotEquals": {
 "aws:ResourceAccount": [

Example policies 884

AWS Identity and Access Management User Guide

 "111122223333"
]
 },
 "ForAllValues:StringNotEquals": {
 "aws:CalledVia": [
 "dataexchange.amazonaws.com"
]
 }
 }
 }
]
}

AWS Data Pipeline: Denies access to DataPipeline pipelines that a user did not
create

This example shows how you might create an identity-based policy that denies access to pipelines
that a user did not create. If the value of the PipelineCreator field matches the IAM user name,
then the specified actions are not denied. This policy grants the permissions necessary to complete
this action programmatically from the AWS API or AWS CLI.

Important

This policy does not allow any actions. Use this policy in combination with other policies
that allow specific actions.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "ExplicitDenyIfNotTheOwner",
 "Effect": "Deny",
 "Action": [
 "datapipeline:ActivatePipeline",
 "datapipeline:AddTags",
 "datapipeline:DeactivatePipeline",
 "datapipeline:DeletePipeline",
 "datapipeline:DescribeObjects",
 "datapipeline:EvaluateExpression",
 "datapipeline:GetPipelineDefinition",

Example policies 885

AWS Identity and Access Management User Guide

 "datapipeline:PollForTask",
 "datapipeline:PutPipelineDefinition",
 "datapipeline:QueryObjects",
 "datapipeline:RemoveTags",
 "datapipeline:ReportTaskProgress",
 "datapipeline:ReportTaskRunnerHeartbeat",
 "datapipeline:SetStatus",
 "datapipeline:SetTaskStatus",
 "datapipeline:ValidatePipelineDefinition"
],
 "Resource": ["*"],
 "Condition": {
 "StringNotEquals": {"datapipeline:PipelineCreator": "${aws:userid}"}
 }
 }
]
}

Amazon DynamoDB: Allows access to a specific table

This example shows how you might create an identity-based policy that allows full access to the
MyTable DynamoDB table. This policy grants the permissions necessary to complete this action
programmatically from the AWS API or AWS CLI. To use this policy, replace the italicized
placeholder text in the example policy with your own information. Then, follow the directions
in create a policy or edit a policy.

Important

This policy allows all actions that can be performed on a DynamoDB table. To review these
actions, see DynamoDB API Permissions: Actions, Resources, and Conditions Reference in
the Amazon DynamoDB Developer Guide. You could provide the same permissions by listing
each individual action. However, if you use the wildcard (*) in the Action element, such as
"dynamodb:List*", then you don't have to update your policy if DynamoDB adds a new
List action.

This policy allows actions only on DynamoDB tables that exist with the specified name.
To allow your users Read access to everything in DynamoDB, you can also attach the
AmazonDynamoDBReadOnlyAccess AWS managed policy.

Example policies 886

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/api-permissions-reference.html
https://console.aws.amazon.com/iam/home#policies/arn:aws:iam::aws:policy/AmazonDynamoDBReadOnlyAccess

AWS Identity and Access Management User Guide

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "ListAndDescribe",
 "Effect": "Allow",
 "Action": [
 "dynamodb:List*",
 "dynamodb:DescribeReservedCapacity*",
 "dynamodb:DescribeLimits",
 "dynamodb:DescribeTimeToLive"
],
 "Resource": "*"
 },
 {
 "Sid": "SpecificTable",
 "Effect": "Allow",
 "Action": [
 "dynamodb:BatchGet*",
 "dynamodb:DescribeStream",
 "dynamodb:DescribeTable",
 "dynamodb:Get*",
 "dynamodb:Query",
 "dynamodb:Scan",
 "dynamodb:BatchWrite*",
 "dynamodb:CreateTable",
 "dynamodb:Delete*",
 "dynamodb:Update*",
 "dynamodb:PutItem"
],
 "Resource": "arn:aws:dynamodb:*:*:table/MyTable"
 }
]
}

Amazon DynamoDB: Allows access to specific attributes

This example shows how you might create an identity-based policy that allows access to the
specific DynamoDB attributes. This policy grants the permissions necessary to complete this action
programmatically from the AWS API or AWS CLI. To use this policy, replace the italicized
placeholder text in the example policy with your own information. Then, follow the directions
in create a policy or edit a policy.

Example policies 887

AWS Identity and Access Management User Guide

The dynamodb:Select requirement prevents the API action from returning any attributes that
aren't allowed, such as from an index projection. To learn more about DynamoDB condition keys,
see Specifying Conditions: Using Condition Keys in the Amazon DynamoDB Developer Guide. To
learn about using multiple conditions or multiple condition keys within the Condition block of an
IAM policy, see Multiple values in a condition.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "dynamodb:GetItem",
 "dynamodb:BatchGetItem",
 "dynamodb:Query",
 "dynamodb:PutItem",
 "dynamodb:UpdateItem",
 "dynamodb:DeleteItem",
 "dynamodb:BatchWriteItem"
],
 "Resource": ["arn:aws:dynamodb:*:*:table/table-name"],
 "Condition": {
 "ForAllValues:StringEquals": {
 "dynamodb:Attributes": [
 "column-name-1",
 "column-name-2",
 "column-name-3"
]
 },
 "StringEqualsIfExists": {"dynamodb:Select": "SPECIFIC_ATTRIBUTES"}
 }
 }
]
}

Amazon DynamoDB: Allows item-level access to DynamoDB based on an Amazon
Cognito ID

This example shows how you might create an identity-based policy that allows item-level access
to the MyTable DynamoDB table based on an Amazon Cognito identity pool user ID. This policy
grants the permissions necessary to complete this action programmatically from the AWS API or

Example policies 888

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/specifying-conditions.html#FGAC_DDB.ConditionKeys

AWS Identity and Access Management User Guide

AWS CLI. To use this policy, replace the italicized placeholder text in the example policy
with your own information. Then, follow the directions in create a policy or edit a policy.

To use this policy, you must structure your DynamoDB table so the Amazon Cognito identity pool
user ID is the partition key. For more information, see Creating a Table in the Amazon DynamoDB
Developer Guide.

To learn more about DynamoDB condition keys, see Specifying Conditions: Using Condition Keys in
the Amazon DynamoDB Developer Guide.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "dynamodb:DeleteItem",
 "dynamodb:GetItem",
 "dynamodb:PutItem",
 "dynamodb:Query",
 "dynamodb:UpdateItem"
],
 "Resource": ["arn:aws:dynamodb:*:*:table/MyTable"],
 "Condition": {
 "ForAllValues:StringEquals": {
 "dynamodb:LeadingKeys": ["${cognito-identity.amazonaws.com:sub}"]
 }
 }
 }
]
}

Amazon EC2: Attach or detach Amazon EBS volumes to EC2 instances based on
tags

This example shows how you might create an identity-based policy that allows EBS volume
owners to attach or detach their EBS volumes defined using the tag VolumeUser to EC2 instances
that are tagged as development instances (Department=Development). This policy grants the
permissions necessary to complete this action programmatically from the AWS API or AWS CLI.
To use this policy, replace the italicized placeholder text in the example policy with your
own information. Then, follow the directions in create a policy or edit a policy.

Example policies 889

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/WorkingWithTables.Basics.html#WorkingWithTables.Basics.CreateTable
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/specifying-conditions.html#FGAC_DDB.ConditionKeys

AWS Identity and Access Management User Guide

For more information about creating IAM policies to control access to Amazon EC2 resources, see
Controlling Access to Amazon EC2 Resources in the Amazon EC2 User Guide for Linux Instances.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "ec2:AttachVolume",
 "ec2:DetachVolume"
],
 "Resource": "arn:aws:ec2:*:*:instance/*",
 "Condition": {
 "StringEquals": {"aws:ResourceTag/Department": "Development"}
 }
 },
 {
 "Effect": "Allow",
 "Action": [
 "ec2:AttachVolume",
 "ec2:DetachVolume"
],
 "Resource": "arn:aws:ec2:*:*:volume/*",
 "Condition": {
 "StringEquals": {"aws:ResourceTag/VolumeUser": "${aws:username}"}
 }
 }
]
}

Amazon EC2: Allows launching EC2 instances in a specific subnet,
programmatically and in the console

This example shows how you might create an identity-based policy that allows listing information
for all EC2 objects and launching EC2 instances in a specific subnet. This policy defines permissions
for programmatic and console access. To use this policy, replace the italicized placeholder
text in the example policy with your own information. Then, follow the directions in create a
policy or edit a policy.

{
 "Version": "2012-10-17",

Example policies 890

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/UsingIAM.html

AWS Identity and Access Management User Guide

 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "ec2:Describe*",
 "ec2:GetConsole*"
],
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Action": "ec2:RunInstances",
 "Resource": [
 "arn:aws:ec2:*:*:subnet/subnet-subnet-id",
 "arn:aws:ec2:*:*:network-interface/*",
 "arn:aws:ec2:*:*:instance/*",
 "arn:aws:ec2:*:*:volume/*",
 "arn:aws:ec2:*::image/ami-*",
 "arn:aws:ec2:*:*:key-pair/*",
 "arn:aws:ec2:*:*:security-group/*"
]
 }
]
}

Amazon EC2: Allows managing EC2 security groups with a specific tag key-value
pair programmatically and in the console

This example shows how you might create an identity-based policy that grants users permission
to take certain actions for security groups that have the same tag. This policy grants permissions
to view security groups in the Amazon EC2 console, add and remove inbound and outbound rules,
and list and modify rule descriptions for existing security groups with the tag Department=Test.
This policy defines permissions for programmatic and console access. To use this policy, replace the
italicized placeholder text in the example policy with your own information. Then, follow
the directions in create a policy or edit a policy.

{
 "Version": "2012-10-17",
 "Statement": [{
 "Effect": "Allow",
 "Action": [
 "ec2:DescribeSecurityGroups",

Example policies 891

AWS Identity and Access Management User Guide

 "ec2:DescribeSecurityGroupRules",
 "ec2:DescribeTags"
],
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Action": [
 "ec2:AuthorizeSecurityGroupIngress",
 "ec2:RevokeSecurityGroupIngress",
 "ec2:AuthorizeSecurityGroupEgress",
 "ec2:RevokeSecurityGroupEgress",
 "ec2:ModifySecurityGroupRules",
 "ec2:UpdateSecurityGroupRuleDescriptionsIngress",
 "ec2:UpdateSecurityGroupRuleDescriptionsEgress"
],
 "Resource": [
 "arn:aws:ec2:region:111122223333:security-group/*"
],
 "Condition": {
 "StringEquals": {
 "aws:ResourceTag/Department": "Test"
 }
 }
 },
 {
 "Effect": "Allow",
 "Action": [
 "ec2:ModifySecurityGroupRules"
],
 "Resource": [
 "arn:aws:ec2:region:111122223333:security-group-rule/*"
]
 }
]
}

Amazon EC2: Allows starting or stopping EC2 instances a user has tagged,
programmatically and in the console

This example shows how you might create an identity-based policy that allows an IAM user to start
or stop EC2 instances, but only if the instance tag Owner has the value of that user's user name.
This policy defines permissions for programmatic and console access.

Example policies 892

AWS Identity and Access Management User Guide

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "ec2:StartInstances",
 "ec2:StopInstances"
],
 "Resource": "arn:aws:ec2:*:*:instance/*",
 "Condition": {
 "StringEquals": {
 "aws:ResourceTag/Owner": "${aws:username}"
 }
 }
 },
 {
 "Effect": "Allow",
 "Action": "ec2:DescribeInstances",
 "Resource": "*"
 }
]
}

EC2: Start or stop instances based on tags

This example shows how you might create an identity-based policy that allows starting or stopping
instances with the tag key–value pair Project = DataAnalytics, but only by principals with
the tag key–value pair Department = Data. This policy grants the permissions necessary to
complete this action programmatically from the AWS API or AWS CLI. To use this policy, replace the
italicized placeholder text in the example policy with your own information. Then, follow
the directions in create a policy or edit a policy.

The condition in the policy returns true if both parts of the condition are true. The instance must
have the Project=DataAnalytics tag. In addition, the IAM principal (user or role) making the
request must have the Department=Data tag.

Example policies 893

AWS Identity and Access Management User Guide

Note

As a best practice, attach policies with the aws:PrincipalTag condition key to IAM
groups, for the case where some users might have the specified tag and some might not.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "StartStopIfTags",
 "Effect": "Allow",
 "Action": [
 "ec2:StartInstances",
 "ec2:StopInstances"
],
 "Resource": "arn:aws:ec2:region:account-id:instance/*",
 "Condition": {
 "StringEquals": {
 "aws:ResourceTag/Project": "DataAnalytics",
 "aws:PrincipalTag/Department": "Data"
 }
 }
 }
]
}

EC2: Start or stop instances based on matching principal and resource tags

This example shows how you might create an identity-based policy that allows a principal to
start or stop an Amazon EC2 instance when the instance's resource tag and the principal's tag
have the same value for the tag key CostCenter. This policy grants the permissions necessary to
complete this action programmatically from the AWS API or AWS CLI. To use this policy, replace the
italicized placeholder text in the example policy with your own information. Then, follow
the directions in create a policy or edit a policy.

Note

As a best practice, attach policies with the aws:PrincipalTag condition key to IAM
groups, for the case where some users might have the specified tag and some might not.

Example policies 894

AWS Identity and Access Management User Guide

{
 "Version": "2012-10-17",
 "Statement": {
 "Effect": "Allow",
 "Action": [
 "ec2:startInstances",
 "ec2:stopInstances"
],
 "Resource": "*",
 "Condition": {"StringEquals":
 {"aws:ResourceTag/CostCenter": "${aws:PrincipalTag/CostCenter}"}}
 }
}

Amazon EC2: Allows full EC2 access within a specific Region, programmatically
and in the console

This example shows how you might create an identity-based policy that allows full EC2 access
within a specific Region. This policy defines permissions for programmatic and console access. To
use this policy, replace the italicized placeholder text in the example policy with your
own information. Then, follow the directions in create a policy or edit a policy. For a list of Region
codes, see Available Regions in the Amazon EC2 User Guide.

Alternatively, you can use the global condition key aws:RequestedRegion, which is supported
by all Amazon EC2 API actions. For more information, see Example: Restricting access to a specific
Region in the Amazon EC2 User Guide.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": "ec2:*",
 "Resource": "*",
 "Effect": "Allow",
 "Condition": {
 "StringEquals": {
 "ec2:Region": "us-east-2"
 }
 }
 }
]

Example policies 895

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-regions-availability-zones.html#concepts-available-regions
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-requestedregion
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ExamplePolicies_EC2.html#iam-example-region
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ExamplePolicies_EC2.html#iam-example-region

AWS Identity and Access Management User Guide

}

Amazon EC2: Allows starting or stopping an EC2 instance and modifying a
security group, programmatically and in the console

This example shows how you might create an identity-based policy that allows starting or stopping
a specific EC2 instance and modifying a specific security group. This policy defines permissions
for programmatic and console access. To use this policy, replace the italicized placeholder
text in the example policy with your own information. Then, follow the directions in create a
policy or edit a policy.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "ec2:DescribeInstances",
 "ec2:DescribeSecurityGroups",
 "ec2:DescribeSecurityGroupReferences",
 "ec2:DescribeStaleSecurityGroups"
],
 "Resource": "*",
 "Effect": "Allow"
 },
 {
 "Action": [
 "ec2:AuthorizeSecurityGroupEgress",
 "ec2:AuthorizeSecurityGroupIngress",
 "ec2:RevokeSecurityGroupEgress",
 "ec2:RevokeSecurityGroupIngress",
 "ec2:StartInstances",
 "ec2:StopInstances"
],
 "Resource": [
 "arn:aws:ec2:*:*:instance/i-instance-id",
 "arn:aws:ec2:*:*:security-group/sg-security-group-id"
],
 "Effect": "Allow"
 }
]
}

Example policies 896

AWS Identity and Access Management User Guide

Amazon EC2: Requires MFA (GetSessionToken) for specific EC2 operations

This example shows how you might create an identity-based policy that allows full access to
all AWS API operations in Amazon EC2. However, it explicitly denies access to StopInstances
and TerminateInstances API operations if the user is not authenticated using multi-factor
authentication (MFA). To do this programmatically, the user must include optional SerialNumber
and TokenCode values while calling the GetSessionToken operation. This operation returns
temporary credentials that were authenticated using MFA. To learn more about GetSessionToken,
see GetSessionToken—temporary credentials for users in untrusted environments.

What does this policy do?

• The AllowAllActionsForEC2 statement allows all Amazon EC2 actions.

• The DenyStopAndTerminateWhenMFAIsNotPresent statement denies the StopInstances
and TerminateInstances actions when the MFA context is missing. This means that the
actions are denied when the multi-factor authentication context is missing (meaning MFA was
not used). A deny overrides the allow.

Note

The condition check for MultiFactorAuthPresent in the Deny statement should not
be a {"Bool":{"aws:MultiFactorAuthPresent":false}} because that key is not
present and cannot be evaluated when MFA is not used. So instead, use the BoolIfExists
check to see whether the key is present before checking the value. For more information,
see ...IfExists condition operators.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "AllowAllActionsForEC2",
 "Effect": "Allow",
 "Action": "ec2:*",
 "Resource": "*"
 },
 {
 "Sid": "DenyStopAndTerminateWhenMFAIsNotPresent",

Example policies 897

https://docs.aws.amazon.com/STS/latest/APIReference/API_GetSessionToken.html

AWS Identity and Access Management User Guide

 "Effect": "Deny",
 "Action": [
 "ec2:StopInstances",
 "ec2:TerminateInstances"
],
 "Resource": "*",
 "Condition": {
 "BoolIfExists": {"aws:MultiFactorAuthPresent": false}
 }
 }
]
}

Amazon EC2: Limits terminating EC2 instances to an IP address range

This example shows how you might create an identity-based policy that limits EC2 instances
by allowing the action, but explicitly denying access when the request comes from outside
the specified IP range. The policy is useful when the IP addresses for your company are within
the specified ranges. This policy grants the permissions necessary to complete this action
programmatically from the AWS API or AWS CLI. To use this policy, replace the italicized
placeholder text in the example policy with your own information. Then, follow the directions
in create a policy or edit a policy.

If this policy is used in combination with other policies that allow the ec2:TerminateInstances
action (such as the AmazonEC2FullAccess AWS managed policy), then access is denied. This is
because an explicit deny statement takes precedence over allow statements. For more information,
see the section called “Determining whether a request is allowed or denied within an account”.

Important

The aws:SourceIp condition key denies access to an AWS service, such as AWS
CloudFormation, that makes calls on your behalf. For more information about using the
aws:SourceIp condition key, see AWS global condition context keys.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",

Example policies 898

https://console.aws.amazon.com/iam/home#policies/arn:aws:iam::aws:policy/AmazonEC2FullAccess

AWS Identity and Access Management User Guide

 "Action": ["ec2:TerminateInstances"],
 "Resource": ["*"]
 },
 {
 "Effect": "Deny",
 "Action": ["ec2:TerminateInstances"],
 "Condition": {
 "NotIpAddress": {
 "aws:SourceIp": [
 "192.0.2.0/24",
 "203.0.113.0/24"
]
 }
 },
 "Resource": ["*"]
 }
]
}

IAM: Access the policy simulator API

This example shows how you might create an identity-based policy that allows using the policy
simulator API for policies attached to a user, group, or role in the current AWS account. This policy
also allows access to simulate less sensitive policies passed to the API as strings. This policy grants
the permissions necessary to complete this action programmatically from the AWS API or AWS CLI.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "iam:GetContextKeysForCustomPolicy",
 "iam:GetContextKeysForPrincipalPolicy",
 "iam:SimulateCustomPolicy",
 "iam:SimulatePrincipalPolicy"
],
 "Effect": "Allow",
 "Resource": "*"
 }
]
}

Example policies 899

AWS Identity and Access Management User Guide

Note

To allow a user to access the policy simulator console to simulate policies attached to
a user, group, or role in the current AWS account, see IAM: Access the policy simulator
console.

IAM: Access the policy simulator console

This example shows how you might create an identity-based policy that allows using the policy
simulator console for policies attached to a user, group, or role in the current AWS account. This
policy grants the permissions necessary to complete this action programmatically from the AWS
API or AWS CLI.

You can access the IAM Policy Simulator console at: https://policysim.aws.amazon.com/

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "iam:GetGroup",
 "iam:GetGroupPolicy",
 "iam:GetPolicy",
 "iam:GetPolicyVersion",
 "iam:GetRole",
 "iam:GetRolePolicy",
 "iam:GetUser",
 "iam:GetUserPolicy",
 "iam:ListAttachedGroupPolicies",
 "iam:ListAttachedRolePolicies",
 "iam:ListAttachedUserPolicies",
 "iam:ListGroups",
 "iam:ListGroupPolicies",
 "iam:ListGroupsForUser",
 "iam:ListRolePolicies",
 "iam:ListRoles",
 "iam:ListUserPolicies",
 "iam:ListUsers"
],
 "Effect": "Allow",
 "Resource": "*"

Example policies 900

https://policysim.aws.amazon.com/

AWS Identity and Access Management User Guide

 }
]
}

IAM: Assume roles that have a specific tag

This example shows how you might create an identity-based policy that allows an IAM user to
assume roles with the tag key-value pair Project = ExampleCorpABC. This policy grants the
permissions necessary to complete this action programmatically from the AWS API or AWS CLI.
To use this policy, replace the italicized placeholder text in the example policy with your
own information. Then, follow the directions in create a policy or edit a policy.

If a role with this tag exists in the same account as the user, then the user can assume that role. If a
role with this tag exists in an account other than the user's, it requires additional permissions. The
cross-account role's trust policy must also allow the user or all members of the user's account to
assume the role. For information about using roles for cross-account access, see Providing access to
an IAM user in another AWS account that you own.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "AssumeTaggedRole",
 "Effect": "Allow",
 "Action": "sts:AssumeRole",
 "Resource": "*",
 "Condition": {
 "StringEquals": {"iam:ResourceTag/Project": "ExampleCorpABC"}
 }
 }
]
}

IAM: Allows and denies access to multiple services programmatically and in the
console

This example shows how you might create an identity-based policy that allows full access to
several services and limited self-managing access in IAM. It also denies access to the Amazon S3
logs bucket or the Amazon EC2 i-1234567890abcdef0 instance. This policy defines permissions
for programmatic and console access. To use this policy, replace the italicized placeholder

Example policies 901

AWS Identity and Access Management User Guide

text in the example policy with your own information. Then, follow the directions in create a
policy or edit a policy.

Warning

This policy allows full access to every action and resource in multiple services. This policy
should be applied only to trusted administrators.

You can use this policy as a permissions boundary to define the maximum permissions that an
identity-based policy can grant to an IAM user. For more information, see Delegating responsibility
to others using permissions boundaries. When the policy is used as a permissions boundary for a
user, the statements define the following boundaries:

• The AllowServices statement allows full access to the specified AWS services. This means that
the user's actions in these services are limited only by the permissions policies that are attached
to the user.

• The AllowIAMConsoleForCredentials statement allows access to list all IAM users. This
access is necessary to navigate the Users page in the AWS Management Console. It also allows
viewing the password requirements for the account, which is necessary for the user to change
their own password.

• The AllowManageOwnPasswordAndAccessKeys statement allows the users manage only their
own console password and programmatic access keys. This is important because if another policy
gives a user full IAM access, that user could then change their own or other users' permissions.
This statement prevents that from happening.

• The DenyS3Logs statement explicitly denies access to the logs bucket. This policy enforces
company restrictions on the user.

• The DenyEC2Production statement explicitly denies access to the i-1234567890abcdef0
instance.

This policy does not allow access to other services or actions. When the policy is used as a
permissions boundary on a user, even if other policies attached to the user allow those actions,
AWS denies the request.

{
 "Version": "2012-10-17",
 "Statement": [

Example policies 902

AWS Identity and Access Management User Guide

 {
 "Sid": "AllowServices",
 "Effect": "Allow",
 "Action": [
 "s3:*",
 "cloudwatch:*",
 "ec2:*"
],
 "Resource": "*"
 },
 {
 "Sid": "AllowIAMConsoleForCredentials",
 "Effect": "Allow",
 "Action": [
 "iam:ListUsers",
 "iam:GetAccountPasswordPolicy"
],
 "Resource": "*"
 },
 {
 "Sid": "AllowManageOwnPasswordAndAccessKeys",
 "Effect": "Allow",
 "Action": [
 "iam:*AccessKey*",
 "iam:ChangePassword",
 "iam:GetUser",
 "iam:*LoginProfile*"
],
 "Resource": ["arn:aws:iam::*:user/${aws:username}"]
 },
 {
 "Sid": "DenyS3Logs",
 "Effect": "Deny",
 "Action": "s3:*",
 "Resource": [
 "arn:aws:s3:::logs",
 "arn:aws:s3:::logs/*"
]
 },
 {
 "Sid": "DenyEC2Production",
 "Effect": "Deny",
 "Action": "ec2:*",
 "Resource": "arn:aws:ec2:*:*:instance/i-1234567890abcdef0"

Example policies 903

AWS Identity and Access Management User Guide

 }
]
}

IAM: Add a specific tag to a user with a specific tag

This example shows how you might create an identity-based policy that allows adding the tag
key Department with the tag values Marketing, Development, or QualityAssurance to
an IAM user. That user must already include the tag key–value pair JobFunction = manager.
You can use this policy to require that a manager belong to only one of three departments. This
policy defines permissions for programmatic and console access. To use this policy, replace the
italicized placeholder text in the example policy with your own information. Then, follow
the directions in create a policy or edit a policy.

The ListTagsForAllUsers statement allows the viewing of tags for all users in your account.

The first condition in the TagManagerWithSpecificDepartment statement uses the
StringEquals condition operator. The condition returns true if both parts of the condition are
true. The user to be tagged must already have the JobFunction=Manager tag. The request must
include the Department tag key with one of the listed tag values.

The second condition uses the ForAllValues:StringEquals condition operator. The condition
returns true if all of the tag keys in the request match the key in the policy. This means that
the only tag key in the request must be Department. For more information about using
ForAllValues, see Multivalued context keys.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "ListTagsForAllUsers",
 "Effect": "Allow",
 "Action": [
 "iam:ListUserTags",
 "iam:ListUsers"
],
 "Resource": "*"
 },
 {
 "Sid": "TagManagerWithSpecificDepartment",
 "Effect": "Allow",

Example policies 904

AWS Identity and Access Management User Guide

 "Action": "iam:TagUser",
 "Resource": "*",
 "Condition": {"StringEquals": {
 "iam:ResourceTag/JobFunction": "Manager",
 "aws:RequestTag/Department": [
 "Marketing",
 "Development",
 "QualityAssurance"
]
 },
 "ForAllValues:StringEquals": {"aws:TagKeys": "Department"}
 }
 }
]
}

IAM: Add a specific tag with specific values

This example shows how you might create an identity-based policy that allows adding only the
tag key CostCenter and either the tag value A-123 or the tag value B-456 to any IAM user
or role. You can use this policy to limit tagging to a specific tag key and set of tag values. This
policy defines permissions for programmatic and console access. To use this policy, replace the
italicized placeholder text in the example policy with your own information. Then, follow
the directions in create a policy or edit a policy.

The ConsoleDisplay statement allows the viewing of tags for all users and roles in your account.

The first condition in the AddTag statement uses the StringEquals condition operator. The
condition returns true if the request includes the CostCenter tag key with one of the listed tag
values.

The second condition uses the ForAllValues:StringEquals condition operator. The condition
returns true if all of the tag keys in the request match the key in the policy. This means that
the only tag key in the request must be CostCenter. For more information about using
ForAllValues, see Multivalued context keys.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "ConsoleDisplay",

Example policies 905

AWS Identity and Access Management User Guide

 "Effect": "Allow",
 "Action": [
 "iam:GetRole",
 "iam:GetUser",
 "iam:ListRoles",
 "iam:ListRoleTags",
 "iam:ListUsers",
 "iam:ListUserTags"
],
 "Resource": "*"
 },
 {
 "Sid": "AddTag",
 "Effect": "Allow",
 "Action": [
 "iam:TagUser",
 "iam:TagRole"
],
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "aws:RequestTag/CostCenter": [
 "A-123",
 "B-456"
]
 },
 "ForAllValues:StringEquals": {"aws:TagKeys": "CostCenter"}
 }
 }
]
}

IAM: Create new users only with specific tags

This example shows how you might create an identity-based policy that allows the creation of IAM
users but only with one or both of the Department and JobFunction tag keys. The Department
tag key must have either the Development or QualityAssurance tag value. The JobFunction
tag key must have the Employee tag value. You can use this policy to require that new users have a
specific job function and department. This policy grants the permissions necessary to complete this
action programmatically from the AWS API or AWS CLI. To use this policy, replace the italicized
placeholder text in the example policy with your own information. Then, follow the directions
in create a policy or edit a policy.

Example policies 906

AWS Identity and Access Management User Guide

The first condition in the statement uses the StringEqualsIfExists condition operator. If a tag
with the Department or JobFunction key is present in the request, then the tag must have the
specified value. If neither key is present, then this condition is evaluated as true. The only way that
the condition evaluates as false is if one of the specified condition keys is present in the request,
but has a different value than those allowed. For more information about using IfExists, see
...IfExists condition operators.

The second condition uses the ForAllValues:StringEquals condition operator. The condition
returns true if there's a match between every one of the specified tag keys specified in the request,
and at least one value in the policy. This means that all of the tags in the request must be in
this list. However, the request can include only one of the tags in the list. For example, you can
create an IAM user with only the Department=QualityAssurance tag. However, you cannot
create an IAM user with the JobFunction=employee tag and the Project=core tag. For more
information about using ForAllValues, see Multivalued context keys.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "TagUsersWithOnlyTheseTags",
 "Effect": "Allow",
 "Action": [
 "iam:CreateUser",
 "iam:TagUser"
],
 "Resource": "*",
 "Condition": {
 "StringEqualsIfExists": {
 "aws:RequestTag/Department": [
 "Development",
 "QualityAssurance"
],
 "aws:RequestTag/JobFunction": "Employee"
 },
 "ForAllValues:StringEquals": {
 "aws:TagKeys": [
 "Department",
 "JobFunction"
]
 }
 }

Example policies 907

AWS Identity and Access Management User Guide

 }
]
}

IAM: Generate and retrieve IAM credential reports

This example shows how you might create an identity-based policy that allows users to generate
and download a report that lists all IAM users in their AWS account. The report includes the status
of the users' credentials, including passwords, access keys, MFA devices, and signing certificates.
This policy grants the permissions necessary to complete this action programmatically from the
AWS API or AWS CLI.

For more information about credential reports, see Getting credential reports for your AWS
account.

{
 "Version": "2012-10-17",
 "Statement": {
 "Effect": "Allow",
 "Action": [
 "iam:GenerateCredentialReport",
 "iam:GetCredentialReport"
],
 "Resource": "*"
 }
}

IAM: Allows managing a group's membership programmatically and in the
console

This example shows how you might create an identity-based policy that allows updating
the membership of the group called MarketingTeam. This policy defines permissions for
programmatic and console access. To use this policy, replace the italicized placeholder
text in the example policy with your own information. Then, follow the directions in create a
policy or edit a policy.

What does this policy do?

• The ViewGroups statement allows the user to list all the users and groups in the AWS
Management Console. It also allows the user to view basic information about the users in the

Example policies 908

AWS Identity and Access Management User Guide

account. These permissions must be in their own statement because they do not support or do
not need to specify a resource ARN. Instead the permissions specify "Resource" : "*".

• The ViewEditThisGroup statement allows the user to view information about the
MarketingTeam group, and to add and remove users from that group.

This policy does not allow the user to view or edit the permissions of the users or the
MarketingTeam group.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "ViewGroups",
 "Effect": "Allow",
 "Action": [
 "iam:ListGroups",
 "iam:ListUsers",
 "iam:GetUser",
 "iam:ListGroupsForUser"
],
 "Resource": "*"
 },
 {
 "Sid": "ViewEditThisGroup",
 "Effect": "Allow",
 "Action": [
 "iam:AddUserToGroup",
 "iam:RemoveUserFromGroup",
 "iam:GetGroup"
],
 "Resource": "arn:aws:iam::*:group/MarketingTeam"
 }
]
}

IAM: Manage a specific tag

This example shows how you might create an identity-based policy that allows adding and
removing the IAM tag with the tag key Department from IAM entities (users and roles). This policy
does not limit the value of the Department tag. This policy grants the permissions necessary to
complete this action programmatically from the AWS API or AWS CLI. To use this policy, replace the

Example policies 909

AWS Identity and Access Management User Guide

italicized placeholder text in the example policy with your own information. Then, follow
the directions in create a policy or edit a policy.

{
 "Version": "2012-10-17",
 "Statement": {
 "Effect": "Allow",
 "Action": [
 "iam:TagUser",
 "iam:TagRole",
 "iam:UntagUser",
 "iam:UntagRole"

],
 "Resource": "*",
 "Condition": {"ForAllValues:StringEquals": {"aws:TagKeys": "Department"}}
 }
}

IAM: Pass an IAM role to a specific AWS service

This example shows how you might create an identity-based policy that allows passing any IAM
service role to the Amazon CloudWatch service. This policy grants the permissions necessary to
complete this action programmatically from the AWS API or AWS CLI. To use this policy, replace the
italicized placeholder text in the example policy with your own information. Then, follow
the directions in create a policy or edit a policy.

A service role is an IAM role that specifies an AWS service as the principal that can assume the
role. This allows the service to assume the role and access resources in other services on your
behalf. To allow Amazon CloudWatch to assume the role that you pass, you must specify the
cloudwatch.amazonaws.com service principal as the principal in the trust policy of your role.
The service principal is defined by the service. To learn the service principal for a service, see the
documentation for that service. For some services, see AWS services that work with IAM and look
for the services that have Yes in the Service-Linked Role column. Choose a Yes with a link to view
the service-linked role documentation for that service. Search for amazonaws.com to view the
service principal.

To learn more about passing a service role to a service, see Granting a user permissions to pass a
role to an AWS service.

{

Example policies 910

AWS Identity and Access Management User Guide

 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "iam:PassRole",
 "Resource": "*",
 "Condition": {
 "StringEquals": {"iam:PassedToService": "cloudwatch.amazonaws.com"}
 }
 }
]
}

IAM: Allows read-only access to the IAM console without reporting

This example shows how you might create an identity-based policy that allows IAM users to
perform any IAM action that begins with the string Get or List. As users work with the console,
the console makes requests to IAM to list groups, users, roles, and policies, and to generate reports
about those resources.

The asterisk acts as a wildcard. When you use iam:Get* in a policy, the resulting permissions
include all IAM actions that begin with Get, such as GetUser and GetRole. Wildcards are useful
if new types of entities are added to IAM in the future. In that case, the permissions granted by the
policy automatically allow the user to list and get the details about those new entities.

This policy cannot be used to generate reports or service last accessed details. For a different policy
that allows this, see IAM: Allows read-only access to the IAM console.

{
 "Version": "2012-10-17",
 "Statement": {
 "Effect": "Allow",
 "Action": [
 "iam:Get*",
 "iam:List*"
],
 "Resource": "*"
 }
}

Example policies 911

AWS Identity and Access Management User Guide

IAM: Allows read-only access to the IAM console

This example shows how you might create an identity-based policy that allows IAM users to
perform any IAM action that begins with the string Get, List, or Generate. As users work with
the IAM console, the console makes requests to list groups, users, roles, and policies, and to
generate reports about those resources.

The asterisk acts as a wildcard. When you use iam:Get* in a policy, the resulting permissions
include all IAM actions that begin with Get, such as GetUser and GetRole. Using a wildcard
is beneficial, especially if new types of entities are added to IAM in the future. In that case, the
permissions granted by the policy automatically allow the user to list and get the details about
those new entities.

Use this policy for console access that includes permissions to generate reports or service last
accessed details. For a different policy that does not allow generating actions, see IAM: Allows
read-only access to the IAM console without reporting.

{
 "Version": "2012-10-17",
 "Statement": {
 "Effect": "Allow",
 "Action": [
 "iam:Get*",
 "iam:List*",
 "iam:Generate*"
],
 "Resource": "*"
 }
}

IAM: Allows specific IAM users to manage a group programmatically and in the
console

This example shows how you might create an identity-based policy that allows specific IAM users
to manage the AllUsers group. This policy defines permissions for programmatic and console
access. To use this policy, replace the italicized placeholder text in the example policy
with your own information. Then, follow the directions in create a policy or edit a policy.

What does this policy do?

Example policies 912

AWS Identity and Access Management User Guide

• The AllowAllUsersToListAllGroups statement allows listing all groups. This is necessary
for console access. This permission must be in its own statement because it does not support a
resource ARN. Instead the permissions specify "Resource" : "*".

• The AllowAllUsersToViewAndManageThisGroup statement allows all group actions that
can be performed on the group resource type. It does not allow the ListGroupsForUser
action, which can be performed on a user resource type and not a group resource type. For
more information about the resource types that you can specify for an IAM action, see Actions,
Resources, and Condition Keys for AWS Identity and Access Management.

• The LimitGroupManagementAccessToSpecificUsers statement denies users with the
specified names access to write and permissions managment group actions. When a user
specified in the policy attempts to make changes to the group, this statement does not deny
the request. That request is allowed by the AllowAllUsersToViewAndManageThisGroup
statement. If other users attempt to perform these operations, the request is denied. You can
view the IAM actions that are defined with the Write or Permissions management access levels
while creating this policy in the IAM console. To do this, switch from the JSON tab to the Visual
editor tab. For more information about access levels. see Actions, Resources, and Condition Keys
for AWS Identity and Access Management.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "AllowAllUsersToListAllGroups",
 "Effect": "Allow",
 "Action": "iam:ListGroups",
 "Resource": "*"
 },
 {
 "Sid": "AllowAllUsersToViewAndManageThisGroup",
 "Effect": "Allow",
 "Action": "iam:*Group*",
 "Resource": "arn:aws:iam::*:group/AllUsers"
 },
 {
 "Sid": "LimitGroupManagementAccessToSpecificUsers",
 "Effect": "Deny",
 "Action": [
 "iam:AddUserToGroup",
 "iam:CreateGroup",

Example policies 913

https://docs.aws.amazon.com/IAM/latest/UserGuide/list_identityandaccessmanagement.html#identityandaccessmanagement-actions-as-permissions
https://docs.aws.amazon.com/IAM/latest/UserGuide/list_identityandaccessmanagement.html#identityandaccessmanagement-actions-as-permissions
https://docs.aws.amazon.com/IAM/latest/UserGuide/list_identityandaccessmanagement.html#identityandaccessmanagement-actions-as-permissions
https://docs.aws.amazon.com/IAM/latest/UserGuide/list_identityandaccessmanagement.html#identityandaccessmanagement-actions-as-permissions

AWS Identity and Access Management User Guide

 "iam:RemoveUserFromGroup",
 "iam:DeleteGroup",
 "iam:AttachGroupPolicy",
 "iam:UpdateGroup",
 "iam:DetachGroupPolicy",
 "iam:DeleteGroupPolicy",
 "iam:PutGroupPolicy"
],
 "Resource": "arn:aws:iam::*:group/AllUsers",
 "Condition": {
 "StringNotEquals": {
 "aws:username": [
 "srodriguez",
 "mjackson",
 "adesai"
]
 }
 }
 }
]
}

IAM: Allows setting the account password requirements programmatically and in
the console

This example shows how you might create an identity-based policy that allows a user to view and
update their account's password requirements. The password requirements specify the complexity
requirements and mandatory rotation periods for the account members' passwords. This policy
defines permissions for programmatic and console access.

To learn how to set the account password requirements policy for your account, see Setting an
account password policy for IAM users.

{
 "Version": "2012-10-17",
 "Statement": {
 "Effect": "Allow",
 "Action": [
 "iam:GetAccountPasswordPolicy",
 "iam:UpdateAccountPasswordPolicy"
],
 "Resource": "*"

Example policies 914

AWS Identity and Access Management User Guide

 }
}

IAM: Access the policy simulator API based on user path

This example shows how you might create an identity-based policy that allows using the policy
simulator API only for those users that have the path Department/Development. This policy
grants the permissions necessary to complete this action programmatically from the AWS API or
AWS CLI. To use this policy, replace the italicized placeholder text in the example policy
with your own information. Then, follow the directions in create a policy or edit a policy.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "iam:GetContextKeysForPrincipalPolicy",
 "iam:SimulatePrincipalPolicy"
],
 "Effect": "Allow",
 "Resource": "arn:aws:iam::*:user/Department/Development/*"
 }
]
}

Note

To create a policy that allows using the policy simulator console for those users that have
the path Department/Development, see IAM: Access the policy simulator console based
on user path.

IAM: Access the policy simulator console based on user path

This example shows how you might create an identity-based policy that allows using the policy
simulator console only for those users that have the path Department/Development. This policy
grants the permissions necessary to complete this action programmatically from the AWS API or
AWS CLI. To use this policy, replace the italicized placeholder text in the example policy
with your own information. Then, follow the directions in create a policy or edit a policy.

Example policies 915

AWS Identity and Access Management User Guide

You can access the IAM Policy Simulator at: https://policysim.aws.amazon.com/

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "iam:GetPolicy",
 "iam:GetUserPolicy"
],
 "Effect": "Allow",
 "Resource": "*"
 },
 {
 "Action": [
 "iam:GetUser",
 "iam:ListAttachedUserPolicies",
 "iam:ListGroupsForUser",
 "iam:ListUserPolicies",
 "iam:ListUsers"
],
 "Effect": "Allow",
 "Resource": "arn:aws:iam::*:user/Department/Development/*"
 }
]
}

IAM: Allows IAM users to self-manage an MFA device

This example shows how you might create an identity-based policy that allows IAM users to
self-manage their multi-factor authentication (MFA) device. This policy grants the permissions
necessary to complete this action programmatically from the AWS API or AWS CLI.

Note

If an IAM user with this policy is not MFA-authenticated, this policy denies access to all AWS
actions except those necessary to authenticate using MFA. If you add these permissions
for a user that is signed in to AWS, they might need to sign out and back in to see these
changes.

Example policies 916

https://policysim.aws.amazon.com/

AWS Identity and Access Management User Guide

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "AllowListActions",
 "Effect": "Allow",
 "Action": [
 "iam:ListUsers",
 "iam:ListVirtualMFADevices"
],
 "Resource": "*"
 },
 {
 "Sid": "AllowUserToCreateVirtualMFADevice",
 "Effect": "Allow",
 "Action": [
 "iam:CreateVirtualMFADevice"
],
 "Resource": "arn:aws:iam::*:mfa/*"
 },
 {
 "Sid": "AllowUserToManageTheirOwnMFA",
 "Effect": "Allow",
 "Action": [
 "iam:EnableMFADevice",
 "iam:GetMFADevice",
 "iam:ListMFADevices",
 "iam:ResyncMFADevice"
],
 "Resource": "arn:aws:iam::*:user/${aws:username}"
 },
 {
 "Sid": "AllowUserToDeactivateTheirOwnMFAOnlyWhenUsingMFA",
 "Effect": "Allow",
 "Action": [
 "iam:DeactivateMFADevice"
],
 "Resource": [
 "arn:aws:iam::*:user/${aws:username}"
],
 "Condition": {
 "Bool": {
 "aws:MultiFactorAuthPresent": "true"

Example policies 917

AWS Identity and Access Management User Guide

 }
 }
 },
 {
 "Sid": "BlockMostAccessUnlessSignedInWithMFA",
 "Effect": "Deny",
 "NotAction": [
 "iam:CreateVirtualMFADevice",
 "iam:EnableMFADevice",
 "iam:ListMFADevices",
 "iam:ListUsers",
 "iam:ListVirtualMFADevices",
 "iam:ResyncMFADevice"
],
 "Resource": "*",
 "Condition": {
 "BoolIfExists": {
 "aws:MultiFactorAuthPresent": "false"
 }
 }
 }
]
}

IAM: Allows IAM users to update their own credentials programmatically and in
the console

This example shows how you might create an identity-based policy that allows IAM users to update
their own access keys, signing certificates, service specific credentials, and passwords. This policy
defines permissions for programmatic and console access.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "iam:ListUsers",
 "iam:GetAccountPasswordPolicy"
],
 "Resource": "*"
 },
 {

Example policies 918

AWS Identity and Access Management User Guide

 "Effect": "Allow",
 "Action": [
 "iam:*AccessKey*",
 "iam:ChangePassword",
 "iam:GetUser",
 "iam:*ServiceSpecificCredential*",
 "iam:*SigningCertificate*"
],
 "Resource": ["arn:aws:iam::*:user/${aws:username}"]
 }
]
}

To learn how a user can change their own password in the console, see the section called “How an
IAM user changes their own password”.

IAM: View service last accessed information for an Organizations policy

This example shows how you might create an identity-based policy that allows viewing service
last accessed information for a specific Organizations policy. This policy allows retrieving data for
the service control policy (SCP) with the p-policy123 ID. The person who generates and views
the report must be authenticated using AWS Organizations management account credentials. This
policy allows the requester to retrieve the data for any Organizations entity in their organization.
This policy defines permissions for programmatic and console access. To use this policy, replace the
italicized placeholder text in the example policy with your own information. Then, follow
the directions in create a policy or edit a policy.

For important information about last accessed information, including permissions required,
troubleshooting, and supported Regions, see Refining permissions in AWS using last accessed
information.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "AllowOrgsReadOnlyAndIamGetReport",
 "Effect": "Allow",
 "Action": [
 "iam:GetOrganizationsAccessReport",
 "organizations:Describe*",
 "organizations:List*"

Example policies 919

AWS Identity and Access Management User Guide

],
 "Resource": "*"
 },
 {
 "Sid": "AllowGenerateReportOnlyForThePolicy",
 "Effect": "Allow",
 "Action": "iam:GenerateOrganizationsAccessReport",
 "Resource": "*",
 "Condition": {
 "StringEquals": {"iam:OrganizationsPolicyId": "p-policy123"}
 }
 }
]
}

IAM: Limits managed policies that can be applied to an IAM user, group, or role

This example shows how you might create an identity-based policy that limits customer managed
and AWS managed policies that can be applied to an IAM user, group, or role. This policy grants
the permissions necessary to complete this action programmatically from the AWS API or AWS CLI.
To use this policy, replace the italicized placeholder text in the example policy with your
own information. Then, follow the directions in create a policy or edit a policy.

{
 "Version": "2012-10-17",
 "Statement": {
 "Effect": "Allow",
 "Action": [
 "iam:AttachUserPolicy",
 "iam:DetachUserPolicy"
],
 "Resource": "*",
 "Condition": {
 "ArnEquals": {
 "iam:PolicyARN": [
 "arn:aws:iam::*:policy/policy-name-1",
 "arn:aws:iam::*:policy/policy-name-2"
]
 }
 }
 }
}

Example policies 920

AWS Identity and Access Management User Guide

AWS: Deny access to resources outside your account except AWS managed IAM
policies

Using aws:ResourceAccount in your identity-based policies can impact the user or the role's
ability to utilize some services that require interaction with resources in accounts owned by a
service.

You can create a policy with an exception to allow for AWS managed IAM
policies. A service-managed account outside of your AWS Organizations owns
Managed IAM Policies. There are four IAM actions that list and retrieve AWS-
managed policies. Use these actions in the NotAction element of the statement.
AllowAccessToS3ResourcesInSpecificAccountsAndSpecificService1 in the policy.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "AllowAccessToResourcesInSpecificAccountsAndSpecificService1",
 "Effect": "Deny",
 "NotAction": [
 "iam:GetPolicy",
 "iam:GetPolicyVersion",
 "iam:ListEntitiesForPolicy",
 "iam:ListPolicies"
],
 "Resource": "*",
 "Condition": {
 "StringNotEquals": {
 "aws:ResourceAccount": [
 "111122223333"
]
 }
 }
 }
]
}

AWS Lambda: Allows a Lambda function to access an Amazon DynamoDB table

This example shows how you might create an identity-based policy that allows read and write
access to a specific Amazon DynamoDB table. The policy also allows writing log files to CloudWatch

Example policies 921

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_notaction.html

AWS Identity and Access Management User Guide

Logs. To use this policy, replace the italicized placeholder text in the example policy with
your own information. Then, follow the directions in create a policy or edit a policy.

To use this policy, attach the policy to a Lambda service role. A service role is a role that you create
in your account to allow a service to perform actions on your behalf. That service role must include
AWS Lambda as the principal in the trust policy. For details about how to use this policy, see How
to Create an AWS IAM Policy to Grant AWS Lambda Access to an Amazon DynamoDB Table in the
AWS Security Blog.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "ReadWriteTable",
 "Effect": "Allow",
 "Action": [
 "dynamodb:BatchGetItem",
 "dynamodb:GetItem",
 "dynamodb:Query",
 "dynamodb:Scan",
 "dynamodb:BatchWriteItem",
 "dynamodb:PutItem",
 "dynamodb:UpdateItem"
],
 "Resource": "arn:aws:dynamodb:*:*:table/SampleTable"
 },
 {
 "Sid": "GetStreamRecords",
 "Effect": "Allow",
 "Action": "dynamodb:GetRecords",
 "Resource": "arn:aws:dynamodb:*:*:table/SampleTable/stream/* "
 },
 {
 "Sid": "WriteLogStreamsAndGroups",
 "Effect": "Allow",
 "Action": [
 "logs:CreateLogStream",
 "logs:PutLogEvents"
],
 "Resource": "*"
 },
 {
 "Sid": "CreateLogGroup",

Example policies 922

https://aws.amazon.com/blogs/security/how-to-create-an-aws-iam-policy-to-grant-aws-lambda-access-to-an-amazon-dynamodb-table/
https://aws.amazon.com/blogs/security/how-to-create-an-aws-iam-policy-to-grant-aws-lambda-access-to-an-amazon-dynamodb-table/

AWS Identity and Access Management User Guide

 "Effect": "Allow",
 "Action": "logs:CreateLogGroup",
 "Resource": "*"
 }
]
}

Amazon RDS: Allows full RDS database access within a specific Region

This example shows how you might create an identity-based policy that allows full RDS database
access within a specific Region. This policy grants the permissions necessary to complete this
action programmatically from the AWS API or AWS CLI. To use this policy, replace the italicized
placeholder text in the example policy with your own information. Then, follow the directions
in create a policy or edit a policy.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "rds:*",
 "Resource": ["arn:aws:rds:region:*:*"]
 },
 {
 "Effect": "Allow",
 "Action": ["rds:Describe*"],
 "Resource": ["*"]
 }
]
}

Amazon RDS: Allows restoring RDS databases, programmatically and in the
console

This example shows how you might create an identity-based policy that allows restoring RDS
databases. This policy defines permissions for programmatic and console access.

{
 "Version": "2012-10-17",
 "Statement": [
 {

Example policies 923

AWS Identity and Access Management User Guide

 "Effect": "Allow",
 "Action": [
 "ec2:Describe*",
 "rds:CreateDBParameterGroup",
 "rds:CreateDBSnapshot",
 "rds:DeleteDBSnapshot",
 "rds:Describe*",
 "rds:DownloadDBLogFilePortion",
 "rds:List*",
 "rds:ModifyDBInstance",
 "rds:ModifyDBParameterGroup",
 "rds:ModifyOptionGroup",
 "rds:RebootDBInstance",
 "rds:RestoreDBInstanceFromDBSnapshot",
 "rds:RestoreDBInstanceToPointInTime"
],
 "Resource": "*"
 }
]
}

Amazon RDS: Allows tag owners full access to RDS resources that they have
tagged

This example shows how you might create an identity-based policy that allows tag owners full
access to RDS resources that they have tagged. This policy grants the permissions necessary to
complete this action programmatically from the AWS API or AWS CLI.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "rds:Describe*",
 "rds:List*"
],
 "Effect": "Allow",
 "Resource": "*"
 },
 {
 "Action": [
 "rds:DeleteDBInstance",
 "rds:RebootDBInstance",

Example policies 924

AWS Identity and Access Management User Guide

 "rds:ModifyDBInstance"
],
 "Effect": "Allow",
 "Resource": "*",
 "Condition": {
 "StringEqualsIgnoreCase": {"rds:db-tag/Owner": "${aws:username}"}
 }
 },
 {
 "Action": [
 "rds:ModifyOptionGroup",
 "rds:DeleteOptionGroup"
],
 "Effect": "Allow",
 "Resource": "*",
 "Condition": {
 "StringEqualsIgnoreCase": {"rds:og-tag/Owner": "${aws:username}"}
 }
 },
 {
 "Action": [
 "rds:ModifyDBParameterGroup",
 "rds:ResetDBParameterGroup"
],
 "Effect": "Allow",
 "Resource": "*",
 "Condition": {
 "StringEqualsIgnoreCase": {"rds:pg-tag/Owner": "${aws:username}"}
 }
 },
 {
 "Action": [
 "rds:AuthorizeDBSecurityGroupIngress",
 "rds:RevokeDBSecurityGroupIngress",
 "rds:DeleteDBSecurityGroup"
],
 "Effect": "Allow",
 "Resource": "*",
 "Condition": {
 "StringEqualsIgnoreCase": {"rds:secgrp-tag/Owner": "${aws:username}"}
 }
 },
 {
 "Action": [

Example policies 925

AWS Identity and Access Management User Guide

 "rds:DeleteDBSnapshot",
 "rds:RestoreDBInstanceFromDBSnapshot"
],
 "Effect": "Allow",
 "Resource": "*",
 "Condition": {
 "StringEqualsIgnoreCase": {"rds:snapshot-tag/Owner": "${aws:username}"}
 }
 },
 {
 "Action": [
 "rds:ModifyDBSubnetGroup",
 "rds:DeleteDBSubnetGroup"
],
 "Effect": "Allow",
 "Resource": "*",
 "Condition": {
 "StringEqualsIgnoreCase": {"rds:subgrp-tag/Owner": "${aws:username}"}
 }
 },
 {
 "Action": [
 "rds:ModifyEventSubscription",
 "rds:AddSourceIdentifierToSubscription",
 "rds:RemoveSourceIdentifierFromSubscription",
 "rds:DeleteEventSubscription"
],
 "Effect": "Allow",
 "Resource": "*",
 "Condition": {
 "StringEqualsIgnoreCase": {"rds:es-tag/Owner": "${aws:username}"}
 }
 }
]
}

Amazon S3: Allows Amazon Cognito users to access objects in their bucket

This example shows how you might create an identity-based policy that allows Amazon Cognito
users to access objects in a specific S3 bucket. This policy allows access only to objects with a name
that includes cognito, the name of the application, and the federated user's ID, represented by
the ${cognito-identity.amazonaws.com:sub} variable. This policy grants the permissions necessary
to complete this action programmatically from the AWS API or AWS CLI. To use this policy, replace

Example policies 926

AWS Identity and Access Management User Guide

the italicized placeholder text in the example policy with your own information. Then,
follow the directions in create a policy or edit a policy.

Note

The 'sub' value used in the object key is not the user's sub value in the User Pool, it is the
identity id associated with the user in the Identity Pool.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "ListYourObjects",
 "Effect": "Allow",
 "Action": "s3:ListBucket",
 "Resource": [
 "arn:aws:s3:::bucket-name"
],
 "Condition": {
 "StringLike": {
 "s3:prefix": [
 "cognito/application-name/${cognito-identity.amazonaws.com:sub}/*"
]
 }
 }
 },
 {
 "Sid": "ReadWriteDeleteYourObjects",
 "Effect": "Allow",
 "Action": [
 "s3:DeleteObject",
 "s3:GetObject",
 "s3:PutObject"
],
 "Resource": [
 "arn:aws:s3:::bucket-name/cognito/application-name/${cognito-
identity.amazonaws.com:sub}/*"
]
 }
]
}

Example policies 927

AWS Identity and Access Management User Guide

Amazon Cognito provides authentication, authorization, and user management for your web and
mobile apps. Your users can sign in directly with a user name and password, or through a third
party such as Facebook, Amazon, or Google.

The two main components of Amazon Cognito are user pools and identity pools. User pools are
user directories that provide sign-up and sign-in options for your app users. Identity pools enable
you to grant your users access to other AWS services. You can use identity pools and user pools
separately or together.

For more information about Amazon Cognito, see Amazon Cognito User Guide.

Amazon S3: Allows federated users access to their S3 home directory,
programmatically and in the console

This example shows how you might create an identity-based policy that allows federated users
to access their own home directory bucket object in S3. The home directory is a bucket that
includes a home folder and folders for individual federated users. This policy defines permissions
for programmatic and console access. To use this policy, replace the italicized placeholder
text in the example policy with your own information. Then, follow the directions in create a
policy or edit a policy.

The ${aws:userid} variable in this policy resolves to role-id:specified-name. The role-
id part of the federated user ID is a unique identifier assigned to the federated user's role
during creation. For more information, see Unique identifiers. The specified-name is the
RoleSessionName parameter passed to the AssumeRoleWithWebIdentity request when the
federated user assumed their role.

You can view the role ID using the AWS CLI command aws iam get-role --role-name
specified-name. For example, imagine that you specify the friendly name John and the
CLI returns the role ID AROAXXT2NJT7D3SIQN7Z6. In this case, the federated user ID is
AROAXXT2NJT7D3SIQN7Z6:John. This policy then allows the federated user John to access the
Amazon S3 bucket with prefix AROAXXT2NJT7D3SIQN7Z6:John.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "S3ConsoleAccess",
 "Effect": "Allow",

Example policies 928

https://docs.aws.amazon.com/cognito/latest/developerguide/cognito-identity.html
https://docs.aws.amazon.com/STS/latest/APIReference/API_AssumeRoleWithWebIdentity.html#API_AssumeRoleWithWebIdentity_RequestParameters

AWS Identity and Access Management User Guide

 "Action": [
 "s3:GetAccountPublicAccessBlock",
 "s3:GetBucketAcl",
 "s3:GetBucketLocation",
 "s3:GetBucketPolicyStatus",
 "s3:GetBucketPublicAccessBlock",
 "s3:ListAccessPoints",
 "s3:ListAllMyBuckets"
],
 "Resource": "*"
 },
 {
 "Sid": "ListObjectsInBucket",
 "Effect": "Allow",
 "Action": "s3:ListBucket",
 "Resource": "arn:aws:s3:::bucket-name",
 "Condition": {
 "StringLike": {
 "s3:prefix": [
 "",
 "home/",
 "home/${aws:userid}/*"
]
 }
 }
 },
 {
 "Effect": "Allow",
 "Action": "s3:*",
 "Resource": [
 "arn:aws:s3:::bucket-name/home/${aws:userid}",
 "arn:aws:s3:::bucket-name/home/${aws:userid}/*"
]
 }
]
}

Amazon S3: S3 Bucket access, but production bucket denied without recent MFA

This example shows how you might create an identity-based policy that allows an Amazon S3
administrator to access any bucket, including updating, adding, and deleting objects. However, it
explicitly denies access to the Production bucket if the user has not signed in using multi-factor
authentication (MFA) within the last thirty minutes. This policy grants the permissions necessary

Example policies 929

AWS Identity and Access Management User Guide

to perform this action in the console or programmatically using the AWS CLI or AWS API. To use
this policy, replace the italicized placeholder text in the example policy with your own
information. Then, follow the directions in create a policy or edit a policy.

This policy never allows programmatic access to the Production bucket using long-term user
access keys. This is accomplished using the aws:MultiFactorAuthAge condition key with the
NumericGreaterThanIfExists condition operator. This policy condition returns true if MFA
is not present or if the age of the MFA is greater than 30 minutes. In those situations, access is
denied. To access the Production bucket programmatically, the S3 administrator must use
temporary credentials that were generated in the last 30 minutes using the GetSessionToken API
operation.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "ListAllS3Buckets",
 "Effect": "Allow",
 "Action": ["s3:ListAllMyBuckets"],
 "Resource": "arn:aws:s3:::*"
 },
 {
 "Sid": "AllowBucketLevelActions",
 "Effect": "Allow",
 "Action": [
 "s3:ListBucket",
 "s3:GetBucketLocation"
],
 "Resource": "arn:aws:s3:::*"
 },
 {
 "Sid": "AllowBucketObjectActions",
 "Effect": "Allow",
 "Action": [
 "s3:PutObject",
 "s3:PutObjectAcl",
 "s3:GetObject",
 "s3:GetObjectAcl",
 "s3:DeleteObject"
],
 "Resource": "arn:aws:s3:::*/*"
 },

Example policies 930

AWS Identity and Access Management User Guide

 {
 "Sid": "RequireMFAForProductionBucket",
 "Effect": "Deny",
 "Action": "s3:*",
 "Resource": [
 "arn:aws:s3:::Production/*",
 "arn:aws:s3:::Production"
],
 "Condition": {
 "NumericGreaterThanIfExists": {"aws:MultiFactorAuthAge": "1800"}
 }
 }
]
}

Amazon S3: Allows IAM users access to their S3 home directory, programmatically
and in the console

This example shows how you might create an identity-based policy that allows IAM users to access
their own home directory bucket object in S3. The home directory is a bucket that includes a
home folder and folders for individual users. This policy defines permissions for programmatic and
console access. To use this policy, replace the italicized placeholder text in the example
policy with your own information. Then, follow the directions in create a policy or edit a policy.

This policy will not work when using IAM roles because the aws:username variable is not available
when using IAM roles. For details about principal key values, see Principal key values.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "S3ConsoleAccess",
 "Effect": "Allow",
 "Action": [
 "s3:GetAccountPublicAccessBlock",
 "s3:GetBucketAcl",
 "s3:GetBucketLocation",
 "s3:GetBucketPolicyStatus",
 "s3:GetBucketPublicAccessBlock",
 "s3:ListAccessPoints",
 "s3:ListAllMyBuckets"
],

Example policies 931

AWS Identity and Access Management User Guide

 "Resource": "*"
 },
 {
 "Sid": "ListObjectsInBucket",
 "Effect": "Allow",
 "Action": "s3:ListBucket",
 "Resource": "arn:aws:s3:::bucket-name",
 "Condition": {
 "StringLike": {
 "s3:prefix": [
 "",
 "home/",
 "home/${aws:username}/*"
]
 }
 }
 },
 {
 "Effect": "Allow",
 "Action": "s3:*",
 "Resource": [
 "arn:aws:s3:::bucket-name/home/${aws:username}",
 "arn:aws:s3:::bucket-name/home/${aws:username}/*"
]
 }
]
}

Amazon S3: Restrict management to a specific S3 bucket

This example shows how you might create an identity-based policy that restricts management of
an Amazon S3 bucket to that specific bucket. This policy grants permission to perform all Amazon
S3 actions, but deny access to every AWS service except Amazon S3. See the following example.
According to this policy, you can only access Amazon S3 actions that you can perform on an S3
bucket or S3 object resource. This policy grants the permissions necessary to complete this action
programmatically from the AWS API or AWS CLI. To use this policy, replace the italicized
placeholder text in the example policy with your own information. Then, follow the directions
in create a policy or edit a policy.

If this policy is used in combination with other policies (such as the AmazonS3FullAccess or
AmazonEC2FullAccess AWS managed policies) that allow actions denied by this policy, then access
is denied. This is because an explicit deny statement takes precedence over allow statements. For

Example policies 932

https://console.aws.amazon.com/iam/home#policies/arn:aws:iam::aws:policy/AmazonS3FullAccess
https://console.aws.amazon.com/iam/home#policies/arn:aws:iam::aws:policy/AmazonEC2FullAccess

AWS Identity and Access Management User Guide

more information, see the section called “Determining whether a request is allowed or denied
within an account”.

Warning

NotAction and NotResource are advanced policy elements that must be used with care.
This policy denies access to every AWS service except Amazon S3. If you attach this policy
to a user, any other policies that grant permissions to other services are ignored and access
is denied.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "s3:*",
 "Resource": [
 "arn:aws:s3:::bucket-name",
 "arn:aws:s3:::bucket-name/*"
]
 },
 {
 "Effect": "Deny",
 "NotAction": "s3:*",
 "NotResource": [
 "arn:aws:s3:::bucket-name",
 "arn:aws:s3:::bucket-name/*"
]
 }
]
}

Amazon S3: Allows read and write access to objects in an S3 Bucket

This example shows how you might create an identity-based policy that allows Read and Write
access to objects in a specific S3 bucket. This policy grants the permissions necessary to complete
this action programmatically from the AWS API or AWS CLI. To use this policy, replace the
italicized placeholder text in the example policy with your own information. Then, follow
the directions in create a policy or edit a policy.

Example policies 933

AWS Identity and Access Management User Guide

The s3:*Object action uses a wildcard as part of the action name. The AllObjectActions
statement allows the GetObject, DeleteObject, PutObject, and any other Amazon S3 action
that ends with the word "Object".

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "ListObjectsInBucket",
 "Effect": "Allow",
 "Action": ["s3:ListBucket"],
 "Resource": ["arn:aws:s3:::bucket-name"]
 },
 {
 "Sid": "AllObjectActions",
 "Effect": "Allow",
 "Action": "s3:*Object",
 "Resource": ["arn:aws:s3:::bucket-name/*"]
 }
]
}

Note

To allow Read and Write access to an object in an Amazon S3 bucket and also include
additional permissions for console access, see Amazon S3: Allows read and write access to
objects in an S3 Bucket, programmatically and in the console.

Amazon S3: Allows read and write access to objects in an S3 Bucket,
programmatically and in the console

This example shows how you might create an identity-based policy that allows Read and Write
access to objects in a specific S3 bucket. This policy defines permissions for programmatic and
console access. To use this policy, replace the italicized placeholder text in the example
policy with your own information. Then, follow the directions in create a policy or edit a policy.

The s3:*Object action uses a wildcard as part of the action name. The AllObjectActions
statement allows the GetObject, DeleteObject, PutObject, and any other Amazon S3 action
that ends with the word "Object".

Example policies 934

AWS Identity and Access Management User Guide

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "S3ConsoleAccess",
 "Effect": "Allow",
 "Action": [
 "s3:GetAccountPublicAccessBlock",
 "s3:GetBucketAcl",
 "s3:GetBucketLocation",
 "s3:GetBucketPolicyStatus",
 "s3:GetBucketPublicAccessBlock",
 "s3:ListAccessPoints",
 "s3:ListAllMyBuckets"
],
 "Resource": "*"
 },
 {
 "Sid": "ListObjectsInBucket",
 "Effect": "Allow",
 "Action": "s3:ListBucket",
 "Resource": ["arn:aws:s3:::bucket-name"]
 },
 {
 "Sid": "AllObjectActions",
 "Effect": "Allow",
 "Action": "s3:*Object",
 "Resource": ["arn:aws:s3:::bucket-name/*"]
 }
]
}

Managing IAM policies

IAM gives you the tools to create and manage all types of IAM policies (managed policies and
inline policies). To add permissions to an IAM identity (IAM user, group, or role), you create a policy,
validate the policy, and then attach the policy to the identity. You can attach multiple policies to an
identity, and each policy can contain multiple permissions.

Consult these resources for details:

Managing IAM policies 935

AWS Identity and Access Management User Guide

• For more information about the different types of IAM policies, see Policies and permissions in
IAM.

• For general information about using policies within IAM, see Access management for AWS
resources.

• For information about how permissions are evaluated when multiple policies are in effect for a
given IAM identity, see Policy evaluation logic.

• The number and size of IAM resources in an AWS account are limited. For more information, see
IAM and AWS STS quotas.

Topics

• Creating IAM policies

• Validating IAM policies

• Generate policies based on access activity

• Testing IAM policies with the IAM policy simulator

• Adding and removing IAM identity permissions

• Versioning IAM policies

• Editing IAM policies

• Deleting IAM policies

• Refining permissions in AWS using last accessed information

Creating IAM policies

A policy is an entity that, when attached to an identity or resource, defines their permissions.
You can use the AWS Management Console, AWS CLI, or AWS API to create customer managed
policies in IAM. Customer managed policies are standalone policies that you administer in your own
AWS account. You can then attach the policies to identities (users, groups, and roles) in your AWS
account.

A policy that is attached to an identity in IAM is known as an identity-based policy. Identity-based
policies can include AWS managed policies, customer managed policies, and inline policies. AWS
managed policies are created and managed by AWS. You can use them, but you can't manage
them. An inline policy is one that you create and embed directly to an IAM group, user, or role.
Inline policies can't be reused on other identities or managed outside of the identity where it exists.
For more information, see Adding and removing IAM identity permissions.

Creating IAM policies 936

AWS Identity and Access Management User Guide

Use customer managed policies instead of inline policies. It's also best to use customer managed
policies instead of AWS managed policies. AWS managed policies usually provide broad
administrative or read-only permissions. For greatest security, grant least privilege, which is
granting only the permissions required to perform specific job tasks.

When you create or edit IAM policies, AWS can automatically perform policy validation to help
you create an effective policy with least privilege in mind. In the AWS Management Console, IAM
identifies JSON syntax errors, while IAM Access Analyzer provides additional policy checks with
recommendations to help you further refine your policies. To learn more about policy validation,
see Validating IAM policies. To learn more about IAM Access Analyzer policy checks and actionable
recommendations, see IAM Access Analyzer policy validation.

You can use the AWS Management Console, AWS CLI, or AWS API to create customer managed
policies in IAM. For more information about using AWS CloudFormation templates to add or
update policies, see AWS Identity and Access Management resource type reference in the AWS
CloudFormation User Guide.

Topics

• Creating IAM policies (console)

• Creating IAM policies (AWS CLI)

• Creating IAM policies (AWS API)

Creating IAM policies (console)

A policy is an entity that, when attached to an identity or resource, defines their permissions. You
can use the AWS Management Console to create customer managed policies in IAM. Customer
managed policies are standalone policies that you administer in your own AWS account. You can
then attach the policies to identities (users, groups, and roles) in your AWS account.

Topics

• Creating IAM policies

• Creating policies using the JSON editor

• Creating policies with the visual editor

• Importing existing managed policies

Creating IAM policies 937

https://docs.aws.amazon.com/IAM/latest/UserGuide/access-analyzer-policy-validation.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/AWS_IAM.html

AWS Identity and Access Management User Guide

Creating IAM policies

You can create a customer managed policy in the AWS Management Console using one of the
following methods:

• JSON — Paste and customize a published example identity-based policy.

• Visual editor — Construct a new policy from scratch in the visual editor. If you use the visual
editor, you do not have to understand JSON syntax.

• Import — Import and customize a managed policy from within your account. You can import an
AWS managed policy or a customer managed policy that you previously created.

The number and size of IAM resources in an AWS account are limited. For more information, see
IAM and AWS STS quotas.

Creating policies using the JSON editor

You can type or paste policies in JSON by choosing the JSON option. This method is useful
for copying an example policy to use in your account. Or, you can type your own JSON policy
document in the JSON editor. You can also use the JSON option to toggle between the visual
editor and JSON to compare the views.

When you create or edit a policy in the JSON editor, IAM performs policy validation to help you
create an effective policy. IAM identifies JSON syntax errors, while IAM Access Analyzer provides
additional policy checks with actionable recommendations to help you further refine the policy.

A JSON policy document consists of one or more statements. Each statement should contain
all the actions that share the same effect (Allow or Deny) and support the same resources and
conditions. If one action requires you to specify all resources ("*") and another action supports
the Amazon Resource Name (ARN) of a specific resource, they must be in two separate JSON
statements. For details about ARN formats, see Amazon Resource Name (ARN) in the AWS General
Reference Guide. For general information about IAM policies, see Policies and permissions in IAM.
For information about the IAM policy language, see IAM JSON policy reference.

To use the JSON policy editor to create a policy

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. In the navigation pane on the left, choose Policies.

Creating IAM policies 938

https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/

AWS Identity and Access Management User Guide

3. Choose Create policy.

4. In the Policy editor section, choose the JSON option.

5. Type or paste a JSON policy document. For details about the IAM policy language, see IAM
JSON policy reference.

6. Resolve any security warnings, errors, or general warnings generated during policy validation,
and then choose Next.

Note

You can switch between the Visual and JSON editor options anytime. However, if you
make changes or choose Next in the Visual editor, IAM might restructure your policy to
optimize it for the visual editor. For more information, see Policy restructuring.

7. (Optional) When you create or edit a policy in the AWS Management Console, you can
generate a JSON or YAML policy template that you can use in AWS CloudFormation templates.

To do this, in the Policy editor choose Actions, and then choose Generate CloudFormation
template. To learn more about AWS CloudFormation see AWS Identity and Access
Management resource type reference in the AWS CloudFormation User Guide.

8. When you are finished adding permissions to the policy, choose Next.

9. On the Review and create page, type a Policy Name and a Description (optional) for the
policy that you are creating. Review Permissions defined in this policy to see the permissions
that are granted by your policy.

10. (Optional) Add metadata to the policy by attaching tags as key-value pairs. For more
information about using tags in IAM, see Tagging IAM resources.

11. Choose Create policy to save your new policy.

After you create a policy, you can attach it to your groups, users, or roles. For more information, see
Adding and removing IAM identity permissions.

Creating policies with the visual editor

The visual editor in the IAM console guides you through creating a policy without having to write
JSON syntax. To view an example of using the visual editor to create a policy, see the section called
“Controlling access to identities”.

Creating IAM policies 939

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/AWS_IAM.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/AWS_IAM.html

AWS Identity and Access Management User Guide

To use the visual editor to create a policy

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. In the navigation pane on the left, choose Policies.

3. Choose Create policy.

4. In the Policy editor section, find the Select a service section, and then choose an AWS service.
You can use the search box at the top to limit the results in the list of services. You can choose
only one service within a visual editor permission block. To grant access to more than one
service, add multiple permission blocks by choosing Add more permissions.

5. In Actions allowed, choose the actions to add to the policy. You can choose actions in the
following ways:

• Select the check box for all actions.

• Choose add actions to type the name of a specific action. You can use wildcards (*) to
specify multiple actions.

• Select one of the Access level groups to choose all actions for the access level (for example,
Read, Write, or List).

• Expand each of the Access level groups to choose individual actions.

By default, the policy that you are creating allows the actions that you choose. To deny the
chosen actions instead, choose Switch to deny permissions. Because IAM denies by default,
we recommend as a security best practice that you allow permissions to only those actions
and resources that a user needs. You should create a JSON statement to deny permissions only
if you want to override a permission separately allowed by another statement or policy. We
recommend that you limit the number of deny permissions to a minimum because they can
increase the difficulty of troubleshooting permissions.

6. For Resources, if the service and actions that you selected in the previous steps do not support
choosing specific resources, all resources are allowed and you cannot edit this section.

If you chose one or more actions that support resource-level permissions, then the visual
editor lists those resources. You can then expand Resources to specify resources for your
policy.

You can specify resources in the following ways:

Creating IAM policies 940

https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/

AWS Identity and Access Management User Guide

• Choose Add ARNs to specify resources by their Amazon Resource Names (ARN). You can use
the visual ARN editor or list ARNs manually. For more information about ARN syntax, see
Amazon Resource Name (ARN) in the AWS General Reference Guide. For information about
using ARNs in the Resource element of a policy, see IAM JSON policy elements: Resource.

• Choose Any in this account next to a resource to grant permissions to any resources of that
type.

• Choose All to choose all resources for the service.

7. (Optional) Choose Request conditions - optional to add conditions to the policy that you are
creating. Conditions limit a JSON policy statement's effect. For example, you can specify that a
user is allowed to perform the actions on the resources only when that user's request happens
within a certain time range. You can also use commonly used conditions to limit whether
a user must be authenticated using a multi-factor authentication (MFA) device. Or you can
require that the request originate from within a certain range of IP addresses. For lists of all of
the context keys that you can use in a policy condition, see Actions, resources, and condition
keys for AWS services in the Service Authorization Reference.

You can choose conditions in the following ways:

• Use check boxes to select commonly used conditions.

• Choose Add another condition to specify other conditions. Choose the condition's
Condition Key, Qualifier, and Operator, and then type a Value. To add more than one
value, choose Add. You can consider the values as being connected by a logical "OR"
operator. When you are finished, choose Add condition.

To add more than one condition, choose Add another condition again. Repeat as needed. Each
condition applies only to this one visual editor permission block. All the conditions must be
true for the permission block to be considered a match. In other words, consider the conditions
to be connected by a logical "AND" operator.

For more information about the Condition element, see IAM JSON policy elements: Condition
in the IAM JSON policy reference.

8. To add more permission blocks, choose Add more permissions. For each block, repeat steps 2
through 5.

Creating IAM policies 941

https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html
https://docs.aws.amazon.com/service-authorization/latest/reference/reference_policies_actions-resources-contextkeys.html
https://docs.aws.amazon.com/service-authorization/latest/reference/reference_policies_actions-resources-contextkeys.html

AWS Identity and Access Management User Guide

Note

You can switch between the Visual and JSON editor options anytime. However, if you
make changes or choose Next in the Visual editor, IAM might restructure your policy to
optimize it for the visual editor. For more information, see Policy restructuring.

9. (Optional) When you create or edit a policy in the AWS Management Console, you can
generate a JSON or YAML policy template that you can use in AWS CloudFormation templates.

To do this, in the Policy editor choose Actions, and then choose Generate CloudFormation
template. To learn more about AWS CloudFormation see AWS Identity and Access
Management resource type reference in the AWS CloudFormation User Guide.

10. When you are finished adding permissions to the policy, choose Next.

11. On the Review and create page, type a Policy Name and a Description (optional) for the
policy that you are creating. Review the Permissions defined in this policy to make sure that
you have granted the intended permissions.

12. (Optional) Add metadata to the policy by attaching tags as key-value pairs. For more
information about using tags in IAM, see Tagging IAM resources.

13. Choose Create policy to save your new policy.

After you create a policy, you can attach it to your groups, users, or roles. For more information, see
Adding and removing IAM identity permissions.

Importing existing managed policies

An easy way to create a new policy is to import an existing managed policy within your account
that has at least some of the permissions that you need. You can then customize the policy to
match it to your new requirements.

You cannot import an inline policy. To learn about the difference between managed and inline
policies, see Managed policies and inline policies.

To import an existing managed policy in the visual editor

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. In the navigation pane on the left, choose Policies.

Creating IAM policies 942

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/AWS_IAM.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/AWS_IAM.html
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/

AWS Identity and Access Management User Guide

3. Choose Create policy.

4. In the Policy editor , choose Visual and then on the right side of the page, choose Actions
then choose Import policy.

5. In the Import policy window, choose the managed policies that most closely match the policy
that you want to include in your new policy. You can use the search box at the top to limit the
results in the list of policies.

6. Choose Import policy.

The imported policies are added in new permission blocks at the bottom of your policy.

7. Use the Visual editor or choose JSON to customize your policy. Then choose Next.

Note

You can switch between the Visual and JSON editor options anytime. However, if you
make changes or choose Next in the Visual editor, IAM might restructure your policy to
optimize it for the visual editor. For more information, see Policy restructuring.

8. On the Review and create page, type a Policy Name and a Description (optional) for the
policy that you are creating. You cannot edit these settings later. Review the Permissions
defined in this policy and then choose Create policy to save your work.

To import an existing managed policy in the JSON editor

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. In the navigation pane on the left, choose Policies.

3. Choose Create policy.

4. In the Policy editor section, choose the JSON option, and then on the right side of the page,
choose Actions then choose Import policy.

5. In the Import policy window, choose the managed policies that most closely match the policy
that you want to include in your new policy. You can use the search box at the top to limit the
results in the list of policies.

6. Choose Import policy.

Statements from the imported policies are added to the bottom of your JSON policy.

Creating IAM policies 943

https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/

AWS Identity and Access Management User Guide

7. Customize your policy in JSON. Resolve any security warnings, errors, or general warnings
generated during policy validation, and then choose Next. Or, customize your policy in the
Visual editor. Then choose Next.

Note

You can switch between the Visual and JSON editor options anytime. However, if you
make changes or choose Next in the Visual editor, IAM might restructure your policy to
optimize it for the visual editor. For more information, see Policy restructuring.

8. On the Review and create page, type a Policy Name and a Description (optional) for the
policy that you are creating. You cannot edit these later. Review the policy Permissions
defined in this policy and then choose Create policy to save your work.

After you create a policy, you can attach it to your groups, users, or roles. For more information, see
Adding and removing IAM identity permissions.

Creating IAM policies (AWS CLI)

A policy is an entity that, when attached to an identity or resource, defines their permissions.
You can use the AWS CLI to create customer managed policies in IAM. Customer managed policies
are standalone policies that you administer in your own AWS account. As a best practice, we
recommend that you use IAM Access Analyzer to validate your IAM policies to ensure secure and
functional permissions. By validating your policies you can address any errors or recommendations
before you attach the policies to identities (users, groups, and roles) in your AWS account.

The number and size of IAM resources in an AWS account are limited. For more information, see
IAM and AWS STS quotas.

Creating IAM policies (AWS CLI)

You can create an IAM customer managed policy or an inline policy using the AWS Command Line
Interface (AWS CLI).

To create a customer managed policy (AWS CLI)

Use the following command:

• create-policy

Creating IAM policies 944

https://docs.aws.amazon.com/cli/latest/reference/iam/create-policy.html

AWS Identity and Access Management User Guide

To create an inline policy for an IAM identity (group, user or role) (AWS CLI)

Use one of the following commands:

• put-group-policy

• put-role-policy

• put-user-policy

Note

You can't use IAM to embed an inline policy for a service-linked role.

To validate a customer managed policy (AWS CLI)

Use the following IAM Access Analyzer command:

• validate-policy

Creating IAM policies (AWS API)

A policy is an entity that, when attached to an identity or resource, defines their permissions. You
can use the AWS API to create customer managed policies in IAM. Customer managed policies
are standalone policies that you administer in your own AWS account. As a best practice, we
recommend that you use IAM Access Analyzer to validate your IAM policies to ensure secure and
functional permissions. By validating your policies you can address any errors or recommendations
before you attach the policies to identities (users, groups, and roles) in your AWS account.

The number and size of IAM resources in an AWS account are limited. For more information, see
IAM and AWS STS quotas.

Creating IAM policies (AWS API)

You can create an IAM customer managed policy or an inline policy using the AWS API.

To create a customer managed policy (AWS API)

Call the following operation:

• CreatePolicy

Creating IAM policies 945

https://docs.aws.amazon.com/cli/latest/reference/iam/put-group-policy.html
https://docs.aws.amazon.com/cli/latest/reference/iam/put-role-policy.html
https://docs.aws.amazon.com/cli/latest/reference/iam/put-user-policy.html
https://docs.aws.amazon.com/cli/latest/reference/accessanalyzer/validate-policy.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_CreatePolicy.html

AWS Identity and Access Management User Guide

To create an inline policy for an IAM identity (group, user, or role) (AWS API)

Call one of the following operations:

• PutGroupPolicy

• PutRolePolicy

• PutUserPolicy

Note

You can't use IAM to embed an inline policy for a service-linked role.

To validate a customer managed policy (AWS API)

Call the following IAM Access Analyzer operation:

• ValidatePolicy

Validating IAM policies

A policy is a JSON document that uses the IAM policy grammar. When you attach a policy to an
IAM entity, such as a user, group, or role, it grants permissions to that entity.

When you create or edit IAM access control policies using the AWS Management Console, AWS
automatically examines them to ensure that they comply with the IAM policy grammar. If AWS
determines that a policy is not in compliance with the grammar, it prompts you to fix the policy.

IAM Access Analyzer provides additional policy checks with recommendations to help you
further refine the policy. To learn more about IAM Access Analyzer policy checks and actionable
recommendations, see IAM Access Analyzer policy validation. To view a list of warnings, errors,
and suggestions that are returned by IAM Access Analyzer, see IAM Access Analyzer policy check
reference.

Validation scope

AWS checks JSON policy syntax and grammar. It also verifies that your ARNs are formatted
properly and action names and condition keys are correct.

Accessing policy validation

Validating policies 946

https://docs.aws.amazon.com/IAM/latest/APIReference/API_PutGroupPolicy.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_PutRolePolicy.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_PutUserPolicy.html
https://docs.aws.amazon.com/access-analyzer/latest/APIReference/API_ValidatePolicy.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/policies_overview.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/policies-grammar.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access-analyzer-policy-validation.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access-analyzer-reference-policy-checks.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access-analyzer-reference-policy-checks.html

AWS Identity and Access Management User Guide

Policies are validated automatically when you create a JSON policy or edit an existing policy in the
AWS Management Console. If the policy syntax is not valid, you receive a notification and must fix
the problem before you can continue. The findings from the IAM Access Analyzer policy validation
are automatically returned in the AWS Management Console if you have permissions for access-
analyzer:ValidatePolicy. You can also validate policies using the AWS API or AWS CLI.

Existing policies

You might have existing policies that are not valid because they were created or last saved before
the latest updates to the policy engine. As a best practice, we recommend that you use IAM Access
Analyzer to validate your IAM policies to ensure secure and functional permissions. We recommend
that you open your existing policies and review the policy validation results that are generated. You
cannot edit and save existing policies without fixing any policy syntax errors.

Generate policies based on access activity

As an administrator or developer, you might grant permissions to IAM entities (users or roles)
beyond what they require. IAM provides several options to help you refine the permissions that you
grant. One option is to generate an IAM policy that is based on access activity for an entity. IAM
Access Analyzer reviews your AWS CloudTrail logs and generates a policy template that contains
the permissions that the entity used in your specified date range. You can use the template to
create a policy with fine-grained permissions that grant only the permissions that are required to
support your specific use case.

For example, imagine that you are a developer and your engineering team has been working on a
project to create a new application. To encourage experimentation and enable your team to move
fast, you’ve configured a role with broad permissions while the application is in development.
Now the application is ready for production. Before the application can launch in the production
account, you want to identify only the permissions that the role needs for the application to
function. This helps you to adhere to the best practice of granting least privilege. You can generate
a policy based on the access activity of the role that you have been using for the application in the
development account. You can further refine the generated policy and then attach the policy to an
entity in your production account.

To learn more about IAM Access Analyzer policy generation, see IAM Access Analyzer policy
generation.

Testing IAM policies with the IAM policy simulator

For more information about how and why to use IAM policies, see Policies and permissions in IAM.

Generating policies 947

https://docs.aws.amazon.com/IAM/latest/UserGuide/access-analyzer-policy-generation.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access-analyzer-policy-generation.html

AWS Identity and Access Management User Guide

You can access the IAM Policy Simulator Console at: https://policysim.aws.amazon.com/

Important

The policy simulator results can differ from your live AWS environment. We recommend
that you check your policies against your live AWS environment after testing using the
policy simulator to confirm that you have the desired results. For more information, see
How the IAM policy simulator works.

Getting Started with the IAM Policy Simulator

With the IAM policy simulator, you can test and troubleshoot identity-based policies and IAM
permissions boundaries. Here are some common things you can do with the policy simulator:

• Test identity-based policies that are attached to IAM users, user groups, or roles in your AWS
account. If more than one policy is attached to the user, user group, or role, you can test all the
policies, or select individual policies to test. You can test which actions are allowed or denied by
the selected policies for specific resources.

• Test and troubleshoot the effect of permissions boundaries on IAM entities. You can only
simulate one permissions boundary at a time.

• Test the effects of resource-based policies on IAM users that are attached to AWS resources,
such as Amazon S3 buckets, Amazon SQS queues, Amazon SNS topics, or Amazon S3 Glacier
vaults. To use a resource-based policy in the policy simulator for IAM users, you must include the
resource in the simulation. You must also select the check box to include that resource's policy in
the simulation.

Note

Simulation of resource-based policies isn't supported for IAM roles.

• If your AWS account is a member of an organization in AWS Organizations, then you can test the
impact of service control policies (SCPs) on your identity-based policies.

Note

The policy simulator doesn't evaluate SCPs that have any conditions.

Testing IAM policies 948

https://policysim.aws.amazon.com/
http://www.youtube.com/embed/1IIhVcXhvcE
https://docs.aws.amazon.com/organizations/latest/userguide/

AWS Identity and Access Management User Guide

• Test new identity-based policies that are not yet attached to a user, user group, or role by typing
or copying them into the policy simulator. These are used only in the simulation and are not
saved. You can't type or copy a resource-based policy in the policy simulator.

• Test identity-based policies with selected services, actions, and resources. For example, you
can test to ensure that your policy allows an entity to perform the ListAllMyBuckets,
CreateBucket, and DeleteBucket actions in the Amazon S3 service on a specific bucket.

• Simulate real-world scenarios by providing context keys, such as an IP address or date, that are
included in Condition elements in the policies being tested.

Note

The policy simulator doesn't simulate tags provided as input if the identity-based policy
in the simulation doesn't have a Condition element that explicitly checks for tags.

• Identify which specific statement in identity-based policy results in allowing or denying access to
a particular resource or action.

Topics

• How the IAM policy simulator works

• Permissions required for using the IAM policy simulator

• Using the IAM policy simulator (console)

• Using the IAM policy simulator (AWS CLI and AWS API)

How the IAM policy simulator works

The policy simulator evaluates statements in the identity-based policy and the inputs that you
provide during simulation. The policy simulator results can differ from your live AWS environment.
We recommend that you check your policies against your live AWS environment after testing using
the policy simulator to confirm that you have the desired results.

The policy simulator differs from the live AWS environment in the following ways:

• The policy simulator does not make an actual AWS service request, so you can safely test
requests that might make unwanted changes to your live AWS environment. The policy simulator
doesn't consider real context key values in production.

Testing IAM policies 949

AWS Identity and Access Management User Guide

• Because the policy simulator does not simulate running the selected actions, it cannot report
any response to the simulated request. The only result returned is whether the requested action
would be allowed or denied.

• If you edit a policy in the policy simulator, these changes affect only the policy simulator. The
corresponding policy in your AWS account remains unchanged.

• You can't test service control policies (SCPs) with any conditions.

• The policy simulator doesn't support simulation for IAM roles and users for cross-account access.

Note

The IAM policy simulator doesn't determine which services support global condition keys
for authorization. For example, the policy simulator doesn't identify that a service doesn't
support aws:TagKeys.

Permissions required for using the IAM policy simulator

You can use the policy simulator console or the policy simulator API to test policies. By default,
console users can test policies that are not yet attached to a user, user group, or role by typing or
copying those policies into the policy simulator. These policies are used only in the simulation and
do not disclose sensitive information. API users must have permissions to test unattached policies.
You can allow console or API users to test policies that are attached to IAM users, user groups,
or roles in your AWS account. To do so, you must provide permission to retrieve those policies. In
order to test resource-based policies, users must have permission to retrieve the resource's policy.

For examples of console and API policies that allow a user to simulate policies, see the section
called “Example policies: AWS Identity and Access Management (IAM)”.

Permissions required for using the policy simulator console

You can allow users to test policies that are attached to IAM users, user groups, or roles in your
AWS account. To do so, you must provide your users with permissions to retrieve those policies. In
order to test resource-based policies, users must have permission to retrieve the resource's policy.

To view an example policy that allows using the policy simulator console for policies that are
attached to a user, user group, or role, see IAM: Access the policy simulator console.

Testing IAM policies 950

AWS Identity and Access Management User Guide

To view an example policy that allows using the policy simulator console only for those users with
a specific path, see IAM: Access the policy simulator console based on user path.

To create a policy to allow using the policy simulator console for only one type of entity, use the
following procedures.

To allow console users to simulate policies for users

Include the following actions in your policy:

• iam:GetGroupPolicy

• iam:GetPolicy

• iam:GetPolicyVersion

• iam:GetUser

• iam:GetUserPolicy

• iam:ListAttachedUserPolicies

• iam:ListGroupsForUser

• iam:ListGroupPolicies

• iam:ListUserPolicies

• iam:ListUsers

To allow console users to simulate policies for user groups

Include the following actions in your policy:

• iam:GetGroup

• iam:GetGroupPolicy

• iam:GetPolicy

• iam:GetPolicyVersion

• iam:ListAttachedGroupPolicies

• iam:ListGroupPolicies

• iam:ListGroups

To allow console users to simulate policies for roles

Include the following actions in your policy:

Testing IAM policies 951

AWS Identity and Access Management User Guide

• iam:GetPolicy

• iam:GetPolicyVersion

• iam:GetRole

• iam:GetRolePolicy

• iam:ListAttachedRolePolicies

• iam:ListRolePolicies

• iam:ListRoles

To test resource-based policies, users must have permission to retrieve the resource's policy.

To allow console users to test resource-based policies in an Amazon S3 bucket

Include the following action in your policy:

• s3:GetBucketPolicy

For example, the following policy uses this action to allow console users to simulate a resource-
based policy in a specific Amazon S3 bucket.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "s3:GetBucketPolicy",
 "Resource":"arn:aws:s3:::bucket-name/*"
 }
]
 }

Permissions required for using the policy simulator API

The policy simulator API operations GetContextKeyForCustomPolicy and SimulateCustomPolicy
allow you to test policies that are not yet attached to a user, user group, or role. To test such
policies, you pass the policies as strings to the API. These policies are used only in the simulation
and do not disclose sensitive information. You can also use the API to test policies that are
attached to IAM users, user groups, or roles in your AWS account. To do that, you must provide
users with permissions to call GetContextKeyForPrincipalPolicy and SimulatePrincipalPolicy.

Testing IAM policies 952

https://docs.aws.amazon.com/IAM/latest/APIReference/API_GetContextKeyForCustomPolicy.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_SimulateCustomPolicy.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_GetContextKeyForPrincipalPolicy.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_SimulatePrincipalPolicy.html

AWS Identity and Access Management User Guide

To view an example policy that allows using the policy simulator API for attached and unattached
policies in the current AWS account, see IAM: Access the policy simulator API.

To create a policy to allow using the policy simulator API for only one type of policy, use the
following procedures.

To allow API users to simulate policies passed directly to the API as strings

Include the following actions in your policy:

• iam:GetContextKeysForCustomPolicy

• iam:SimulateCustomPolicy

To allow API users to simulate policies attached to IAM users, user groups, roles, or resources

Include the following actions in your policy:

• iam:GetContextKeysForPrincipalPolicy

• iam:SimulatePrincipalPolicy

For example, to give a user named Bob permission to simulate a policy that is assigned to a user
named Alice, give Bob access to the following resource: arn:aws:iam::777788889999:user/
alice.

To view an example policy that allows using the policy simulator API only for those users with a
specific path, see IAM: Access the policy simulator API based on user path.

Using the IAM policy simulator (console)

By default, users can test policies that are not yet attached to a user, user group, or role by typing
or copying those policies into the policy simulator console. These policies are used only in the
simulation and do not disclose sensitive information.

To test a policy that is not attached to a user, user group, or role (console)

1. Open the IAM policy simulator console at: https://policysim.aws.amazon.com/.

2. In the Mode: menu at the top of the page, choose New Policy.

3. In the Policy Sandbox, choose Create New Policy.

Testing IAM policies 953

https://policysim.aws.amazon.com/

AWS Identity and Access Management User Guide

4. Type or copy a policy into the policy simulator, and use the policy simulator as described in the
following steps.

After you have permission to use the IAM Policy Simulator Console, you can use the policy
simulator to test an IAM user, user group, role, or resource policy.

To test a policy that is attached to a user, user group, or role (console)

1. Open the IAM policy simulator console at https://policysim.aws.amazon.com/.

Note

To sign in to the policy simulator as an IAM user, use your unique sign-in URL to sign in
to the AWS Management Console. Then go to https://policysim.aws.amazon.com/. For
more information about signing in as an IAM user, see How IAM users sign in to AWS.

The policy simulator opens in Existing Policies mode and lists the IAM users in your account
under Users, Groups, and Roles.

2. Choose the option that is appropriate to your task:

To test this: Do this:

A policy attached to
a user

Choose Users in the Users, Groups, and Roles list. Then choose the
user.

A policy attached to
a user group

Choose Groups in the Users, Groups, and Roles list. Then choose
the user group.

A policy attached to
a role

Choose Roles in the Users, Groups, and Roles list. Then choose the
role.

A policy attached to
a resource

See Step 9.

A custom policy for
a user, user group,
or role

Choose Create New Policy. In the new Policies pane, type or paste a
policy and then choose Apply.

Testing IAM policies 954

https://policysim.aws.amazon.com/
https://policysim.aws.amazon.com/

AWS Identity and Access Management User Guide

Tip

To test a policy that is attached to user group, you can launch the IAM policy simulator
directly from the IAM console: In the navigation pane, choose User groups. Choose the
name of the group that you want to test a policy on, and then choose the Permissions
tab. Choose Simulate.
To test a customer managed policy that is attached to a user: In the navigation pane,
choose Users. Choose the name of the user that you want to test a policy on. Then
choose the Permissions tab and expand the policy that you want to test. On the far
right, choose Simulate policy. The IAM Policy Simulator opens in a new window and
displays the selected policy in the Policies pane.

3. (Optional) If your account is a member of an organization in AWS Organizations, then
select the check box next to AWS Organizations SCPs to include SCPs in your simulated
evaluation. SCPs are JSON policies that specify the maximum permissions for an organization
or organizational unit (OU). The SCP limits permissions for entities in member accounts. If
an SCP blocks a service or action, then no entity in that account can access that service nor
perform that action. This is true even if an administrator explicitly grants permissions to that
service or action through an IAM or resource policy.

If your account is not a member of an organization, then the check box does not appear.

4. (Optional) You can test a policy that is set as a permissions boundary for an IAM entity (user or
role), but not for user groups. If a permissions boundary policy is currently set for the entity,
it appears in the Policies pane. You can set only one permissions boundary for an entity. To
test a different permissions boundary, you can create a custom permissions boundary. To do
this, choose Create New Policy. A new Policies pane opens. In the menu, choose Custom IAM
Permissions Boundary Policy. Enter a name for the new policy and type or copy a policy into
the space below. Choose Apply to save the policy. Next, choose Back to return to the original
Policies pane. Then select the check box next to the permissions boundary you want to use for
the simulation.

5. (Optional) You can test only a subset of policies attached to a user, user group, or role. To do
so, in the Policies pane clear the check box next to each policy that you want to exclude.

6. Under Policy Simulator, choose Select service and then choose the service to test. Then
choose Select actions and select one or more actions to test. Although the menus show the

Testing IAM policies 955

https://console.aws.amazon.com/iam/
https://docs.aws.amazon.com/organizations/latest/userguide/

AWS Identity and Access Management User Guide

available selections for only one service at a time, all the services and actions that you have
selected appear in Action Settings and Results.

7. (Optional) If any of the policies that you choose in Step 2 and Step 5 include conditions with
AWSglobal condition keys, then supply values for those keys. You can do this by expanding the
Global Settings section and typing values for the key names displayed there.

Warning

If you leave the value for a condition key empty, then that key is ignored during the
simulation. In some cases, this results in an error, and the simulation fails to run. In
other cases, the simulation runs, but the results might not be reliable. In those cases,
the simulation does not match the real-world conditions that include a value for the
condition key or variable.

8. (Optional) Each selected action appears in the Action Settings and Results list with Not
simulated shown in the Permission column until you actually run the simulation. Before you
run the simulation, you can configure each action with a resource. To configure individual
actions for a specific scenario, choose the arrow to expand the action's row. If the action
supports resource-level permissions, you can type the Amazon Resource Name (ARN) of the
specific resource whose access you want to test. By default, each resource is set to a wildcard
(*). You can also specify a value for any condition context keys. As noted previously, keys with
empty values are ignored, which can cause simulation failures or unreliable results.

a. Choose the arrow next to the action name to expand each row and configure any
additional information required to accurately simulate the action in your scenario. If
the action requires any resource-level permissions, you can type the Amazon Resource
Name (ARN) of the specific resource that you want to simulate access to. By default, each
resource is set to a wildcard (*).

b. If the action supports resource-level permissions but does not require them, then you can
choose Add Resource to select the resource type that you want to add to the simulation.

c. If any of the selected policies include a Condition element that references a context key
for this action's service, then that key name is displayed under the action. You can specify
the value to be used during the simulation of that action for the specified resource.

Actions that require different groups of resource types

Testing IAM policies 956

reference_policies_actions-resources-contextkeys.html

AWS Identity and Access Management User Guide

Some actions require different resource types under different circumstances. Each group of
resource types is associated with a scenario. If one of these applies to your simulation, select
it and the policy simulator requires the resource types appropriate for that scenario. The
following list shows each of the supported scenario options and the resources that you must
define to run the simulation.

Each of the following Amazon EC2 scenarios requires that you specify instance, image, and
security-group resources. If your scenario includes an EBS volume, then you must specify
that volume as a resource. If the Amazon EC2 scenario includes a virtual private cloud (VPC),
then you must supply the network-interface resource. If it includes an IP subnet, then you
must specify the subnet resource. For more information on the Amazon EC2 scenario options,
see Supported Platforms in the Amazon EC2 User Guide.

• EC2-VPC-InstanceStore

instance, image, security-group, network-interface

• EC2-VPC-InstanceStore-Subnet

instance, image, security-group, network-interface, subnet

• EC2-VPC-EBS

instance, image, security-group, network-interface, volume

• EC2-VPC-EBS-Subnet

instance, image, security-group, network-interface, subnet, volume

9. (Optional) If you want to include a resource-based policy in your simulation, then you must
first select the actions that you want to simulate on that resource in Step 6. Expand the
rows for the selected actions, and type the ARN of the resource with a policy that you want
to simulate. Then select Include Resource Policy next to the ARN text box. The IAM policy
simulator currently supports resource-based policies from only the following services: Amazon
S3 (resource-based policies only; ACLs are not currently supported), Amazon SQS, Amazon
SNS, and unlocked S3 Glacier vaults (locked vaults are not currently supported).

10. Choose Run Simulation in the upper-right corner.

The Permission column in each row of Action Settings and Results displays the result of the
simulation of that action on the specified resource.

Testing IAM policies 957

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-supported-platforms.html

AWS Identity and Access Management User Guide

11. To see which statement in a policy explicitly allowed or denied an action, choose the N
matching statement(s) link in the Permissions column to expand the row. Then choose the
Show statement link. The Policies pane shows the relevant policy with the statement that
affected the simulation result highlighted.

Note

If an action is implicitly denied—that is, if the action is denied only because it is not
explicitly allowed—the List and Show statement options are not displayed.

Troubleshooting IAM policy simulator console messages

The following table lists the informational and warning messages you might encounter when using
the IAM policy simulator. The table also provides steps you can take to resolve them.

Message Steps to resolve

This policy has been edited. Changes will not
be saved to your account.

No action required.

This message is informational. If you edit an
existing policy in the IAM policy simulator
, your change does not affect your AWS
account. The policy simulator allows you to
make changes to policies for testing purposes
only.

Cannot get the resource policy. Reason:
detailed error message

The policy simulator is not able to access a
requested resource-based policy. Ensure that
the specified resource ARN is correct and that
the user running the simulation has permissio
n to read the resource's policy.

One or more policies require values in the
simulation settings. The simulation might fail
without these values.

This message appears if the policy you are
testing contains condition keys or variables
but you have not provided any values for
these keys or variables in Simulation Settings.

Testing IAM policies 958

AWS Identity and Access Management User Guide

Message Steps to resolve

To dismiss this message, choose Simulatio
n Settings, Then enter a value for each
condition key or variable.

You have changed policies. These results are
no longer valid.

This message appears if you have changed the
selected policy while results are displayed in
the Results pane. Results shown in the Results
pane are not updated dynamically.

To dismiss this message, choose Run
Simulation again to display new simulatio
n results based on the changes made in the
Policies pane.

The resource you typed for this simulation
does not match this service.

This message appears if you have typed
an Amazon Resource Name (ARN) in the
Simulation Settings pane that does not
match the service that you chose for the
current simulation. For example, this message
appears if you specify an ARN for an Amazon
DynamoDB resource but you chose Amazon
Redshift as the service to simulate.

To dismiss this message, do one of the
following:

• Remove the ARN from the box in the
Simulation Settings pane.

• Choose the service that matches the ARN
that you specified in Simulation Settings.

Testing IAM policies 959

AWS Identity and Access Management User Guide

Message Steps to resolve

This action belongs to a service that supports
special access control mechanisms in addition
to resource-based policies, such as Amazon
S3 ACLs or S3 Glacier vault lock policies.
The policy simulator does not support these
mechanisms, so the results can differ from
your production environment.

No action required.

This message is informational. In the current
version, the policy simulator evaluates policies
attached to users and user groups, and can
evaluate resource-based policies for Amazon
S3, Amazon SQS, Amazon SNS, and S3 Glacier.
The policy simulator does not support all
access control mechanisms supported by other
AWS services.

DynamoDB FGAC is currently not supported. No action required.

This informational message refers to fine-grai
ned access control. Fine-grained access control
is the ability to use IAM policy conditions to
determine who can access individual data
items and attributes in DynamoDB tables
and indexes. It also refers to the actions
that can be performed on these tables and
indexes. The current version of the IAM policy
simulator does not support this type of
policy condition. For more information on
DynamoDB fine-grained access control, see
Fine-Grained Access Control for DynamoDB.

You have policies that do not comply with the
policy syntax. You can use policy validation to
review recommended updates to your policies.

This message appears at the top of the policy
list if you have policies that do not comply
with the IAM policy grammar. In order to
simulate these policies, review the policy
validation options at Validating IAM policies to
identify and fix these policies.

Testing IAM policies 960

http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/FGAC_DDB.html

AWS Identity and Access Management User Guide

Message Steps to resolve

This policy must be updated to comply with
the latest policy syntax rules.

This message is displayed if you have policies
that do not comply with the IAM policy
grammar. In order to simulate these policies,
review the policy validation options at
Validating IAM policies to identify and fix
these policies.

Using the IAM policy simulator (AWS CLI and AWS API)

Policy simulator commands typically require calling API operations to do two things:

1. Evaluate the policies and return the list of context keys that they reference. You need to know
what context keys are referenced so that you can supply values for them in the next step.

2. Simulate the policies, providing a list of actions, resources, and context keys that are used during
the simulation.

For security reasons, the API operations have been broken into two groups:

• API operations that simulate only policies that are passed directly to the API as strings. This set
includes GetContextKeysForCustomPolicy and SimulateCustomPolicy.

• API operations that simulate the policies that are attached to a specified IAM user, user group,
role, or resource. Because these API operations can reveal details of permissions assigned to
other IAM entities, you should consider restricting access to these API operations. This set
includes GetContextKeysForPrincipalPolicy and SimulatePrincipalPolicy. For more information
about restricting access to API operations, see Example policies: AWS Identity and Access
Management (IAM).

In both cases, the API operations simulate the effect of one or more policies on a list of actions
and resources. Each action is paired with each resource and the simulation determines whether
the policies allow or deny that action for that resource. You can also provide values for any context
keys that your policies reference. You can get the list of context keys that the policies reference by
first calling GetContextKeysForCustomPolicy or GetContextKeysForPrincipalPolicy. If
you don't provide a value for a context key, the simulation still runs. But the results might not be
reliable because the policy simulator cannot include that context key in the evaluation.

Testing IAM policies 961

https://docs.aws.amazon.com/IAM/latest/APIReference/API_GetContextKeysForCustomPolicy.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_SimulateCustomPolicy.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_GetContextKeysForPrincipalPolicy.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_SimulatePrincipalPolicy.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_GetContextKeysForCustomPolicy.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_GetContextKeysForPrincipalPolicy.html

AWS Identity and Access Management User Guide

To get the list of context keys (AWS CLI, AWS API)

Use the following to evaluate a list of policies and return a list of context keys that are used in the
policies.

• AWS CLI: aws iam get-context-keys-for-custom-policy and aws iam get-context-
keys-for-principal-policy

• AWS API: GetContextKeysForCustomPolicy and GetContextKeysForPrincipalPolicy

To simulate IAM policies (AWS CLI, AWS API)

Use the following to simulate IAM policies to determine a user's effective permissions.

• AWS CLI: aws iam simulate-custom-policy and aws iam simulate-principal-
policy

• AWS API: SimulateCustomPolicy and SimulatePrincipalPolicy

Adding and removing IAM identity permissions

You use policies to define the permissions for an identity (user, user group, or role). You can add
and remove permissions by attaching and detaching IAM policies for an identity using the AWS
Management Console, the AWS Command Line Interface (AWS CLI), or the AWS API. You can
also use policies to set permissions boundaries for only entities (users or roles) that are using the
same methods. Permissions boundaries are an advanced AWS feature that control the maximum
permissions that an entity can have.

Topics

• Terminology

• View identity activity

• Adding IAM identity permissions (console)

• Removing IAM identity permissions (console)

• Adding IAM policies (AWS CLI)

• Removing IAM policies (AWS CLI)

• Adding IAM policies (AWS API)

• Removing IAM policies (AWS API)

Add or remove identity permissions 962

https://docs.aws.amazon.com/cli/latest/reference/iam/get-context-keys-for-custom-policy.html
https://docs.aws.amazon.com/cli/latest/reference/iam/get-context-keys-for-principal-policy.html
https://docs.aws.amazon.com/cli/latest/reference/iam/get-context-keys-for-principal-policy.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_GetContextKeysForCustomPolicy.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_GetContextKeysForPrincipalPolicy.html
https://docs.aws.amazon.com/cli/latest/reference/iam/simulate-custom-policy.html
https://docs.aws.amazon.com/cli/latest/reference/iam/simulate-principal-policy.html
https://docs.aws.amazon.com/cli/latest/reference/iam/simulate-principal-policy.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_SimulateCustomPolicy.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_SimulatePrincipalPolicy.html

AWS Identity and Access Management User Guide

Terminology

When you associate permissions policies with identities (users, user groups, and roles), terminology
and procedures vary depending on whether you are working with a managed or inline policy:

• Attach – Used with managed policies. You attach a managed policy to an identity (a user, user
group, or role). Attaching a policy applies the permissions in the policy to the identity.

• Detach – Used with managed policies. You detach a managed policy from an IAM identity (a user,
user group, or role). Detaching a policy removes its permissions from the identity.

• Embed – Used with inline policies. You embed an inline policy in an identity (a user, user group,
or role). Embedding a policy applies the permissions in the policy to the identity. Because an
inline policy is stored in the identity, it is embedded rather than attached, though the results are
similar.

Note

You can embed an inline policy for a service-linked role only in the service that depends
on the role. See the AWS documentation for your service to see whether it supports this
feature.

• Delete – Used with inline policies. You delete an inline policy from an IAM identity (a user, user
group, or role). Deleting a policy removes its permissions from the identity.

Note

You can delete an inline policy for a service-linked role only in the service that depends
on the role. See the AWS documentation for your service to see whether it supports this
feature.

You can use the console, AWS CLI, or AWS API to perform any of these actions.

More information

• For more information about the difference between managed and inline policies, see Managed
policies and inline policies.

• For more information about permissions boundaries, see Permissions boundaries for IAM entities.

• For general information about IAM policies, see Policies and permissions in IAM.

Add or remove identity permissions 963

https://docs.aws.amazon.com/
https://docs.aws.amazon.com/

AWS Identity and Access Management User Guide

• For information about validating IAM policies, see Validating IAM policies.

• The number and size of IAM resources in an AWS account are limited. For more information, see
IAM and AWS STS quotas.

View identity activity

Before you change the permissions for an identity (user, user group, or role), you should review
their recent service-level activity. This is important because you don't want to remove access from
a principal (person or application) who is using it. For more information about viewing last accessed
information, see Refining permissions in AWS using last accessed information.

Adding IAM identity permissions (console)

You can use the AWS Management Console to add permissions to an identity (user, user group, or
role). To do this, attach managed policies that control permissions, or specify a policy that serves as
a permissions boundary. You can also embed an inline policy.

To use a managed policy as a permissions policy for an identity (console)

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. In the navigation pane, choose Policies.

3. In the list of policies, select the radio button next to the name of the policy to attach. You can
use the search box to filter the list of policies.

4. Choose Actions, and then choose Attach.

5. Select one or more identities to attach the policy to. You can use the search box to filter the
list of principal entities. After selecting the identities, choose Attach policy.

To use a managed policy to set a permissions boundary (console)

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. In the navigation pane, choose Policies.

3. In the list of policies, choose the name of the policy to set. You can use the search box to filter
the list of policies.

Add or remove identity permissions 964

https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/

AWS Identity and Access Management User Guide

4. On the policy details page, choose the Entities attached tab, and then, if necessary, open the
Attached as a permissions boundaries section and choose Set this policy as a permissions
boundary.

5. Select one or more users or roles on which to use the policy for a permissions boundary. You
can use the search box to filter the list of principal entities. After selecting the principals,
choose Set permissions boundary.

To embed an inline policy for a user or role (console)

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. In the navigation pane, choose Users or Roles.

3. In the list, choose the name of the user or role to embed a policy in.

4. Choose the Permissions tab.

5. Choose Add permissions and then choose Create inline policy.

Note

You cannot embed an inline policy in a service-linked role in IAM. Because the linked
service defines whether you can modify the permissions of the role, you might be
able to add additional policies from the service console, API, or AWS CLI. To view the
service-linked role documentation for a service, see AWS services that work with IAM
and choose Yes in the Service-Linked Role column for your service.

6. Choose from the following methods to view the steps required to create your policy:

• Importing existing managed policies – You can import a managed policy within your account
and then edit the policy to customize it to your specific requirements. A managed policy can
be an AWS managed policy or a customer managed policy that you created previously.

• Creating policies with the visual editor – You can construct a new policy from scratch in the
visual editor. If you use the visual editor, you do not have to understand JSON syntax.

• Creating policies using the JSON editor – In the JSON editor option, you can use JSON
syntax to create a policy. You can type a new JSON policy document or paste an example
policy.

Add or remove identity permissions 965

https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/

AWS Identity and Access Management User Guide

7. After you create an inline policy, it is automatically embedded in your user or role.

To embed an inline policy for a user group (console)

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. In the navigation pane, choose User groups.

3. In the list, choose the name of the user group to embed a policy in.

4. Choose the Permissions tab, choose Add permissions, and then choose Create inline policy.

5. Do one of the following:

• Choose the Visual option to create the policy. For more information, see Creating policies
with the visual editor.

• Choose the JSON option to create the policy. For more information, see Creating policies
using the JSON editor.

6. When you are satisfied with the policy, choose Create policy.

To change the permissions boundary for one or more entities (console)

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. In the navigation pane, choose Policies.

3. In the list of policies, choose the name of the policy to set. You can use the search box to filter
the list of policies.

4. On the policy details page, choose the Entities attached tab, and then, if necessary, open the
Attached as a permissions boundary section. Select the check box next to the users or roles
whose boundaries you want to change and then choose Change.

5. Select a new policy to use for a permissions boundary. You can use the search box to filter the
list of policies. After selecting the policy, choose Set permissions boundary.

Add or remove identity permissions 966

https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/

AWS Identity and Access Management User Guide

Removing IAM identity permissions (console)

You can use the AWS Management Console to remove permissions from an identity (user, user
group, or role). To do this, detach managed policies that control permissions, or remove a policy
that serves as a permissions boundary. You can also delete an inline policy.

To detach a managed policy used as a permissions policy (console)

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. In the navigation pane, choose Policies.

3. In the list of policies, select the radio button next to the name of the policy to detach. You can
use the search box to filter the list of policies.

4. Choose Actions, and then choose Detach.

5. Select the identities to detach the policy from. You can use the search box to filter the list of
identities. After selecting the identities, choose Detach policy.

To remove a permissions boundary (console)

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. In the navigation pane, choose Policies.

3. In the list of policies, choose the name of the policy to set. You can use the search box to filter
the list of policies.

4. On the policy summary page, choose the Entities attached tab, and then, if necessary, open
the Attached as a permissions boundary section and choose the entities to remove the
permissions boundary from. Then choose Remove boundary.

5. Confirm that you want to remove the boundary and choose Remove boundary.

To delete an inline policy (console)

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. In the navigation pane, choose User groups, Users, or Roles.

Add or remove identity permissions 967

https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/

AWS Identity and Access Management User Guide

3. In the list, choose the name of the user group, user, or role that has the policy you want to
remove.

4. Choose the Permissions tab.

5. Select the check box next to the policy and choose Remove.

6. Choose Remove in the confirmation box.

Adding IAM policies (AWS CLI)

You can use the AWS CLI to add permissions to an identity (user, user group, or role). To do this,
attach managed policies that control permissions, or specify a policy that serves as a permissions
boundary. You can also embed an inline policy.

To use a managed policy as a permissions policy for an entity (AWS CLI)

1. (Optional) To view information about a managed policy, run the following commands:

• To list managed policies: aws iam list-policies

• To retrieve detailed information about a managed policy: get-policy

2. To attach a managed policy to an identity (user, user group, or role), use one of the following
commands:

• aws iam attach-user-policy

• aws iam attach-group-policy

• aws iam attach-role-policy

To use a managed policy to set a permissions boundary (AWS CLI)

1. (Optional) To view information about a managed policy, run the following commands:

• To list managed policies: aws iam list-policies

• To retrieve detailed information about a managed policy: aws iam get-policy

2. To use a managed policy to set the permissions boundary for an entity (user or role), use one
of the following commands:

• aws iam put-user-permissions-boundary

• aws iam put-role-permissions-boundary

Add or remove identity permissions 968

https://docs.aws.amazon.com/cli/latest/reference/iam/list-policies.html
https://docs.aws.amazon.com/cli/latest/reference/iam/get-policy.html
https://docs.aws.amazon.com/cli/latest/reference/iam/attach-user-policy.html
https://docs.aws.amazon.com/cli/latest/reference/iam/attach-group-policy.html
https://docs.aws.amazon.com/cli/latest/reference/iam/attach-role-policy.html
https://docs.aws.amazon.com/cli/latest/reference/iam/list-policies.html
https://docs.aws.amazon.com/cli/latest/reference/iam/get-policy.html
https://docs.aws.amazon.com/cli/latest/reference/iam/put-user-permissions-boundary.html
https://docs.aws.amazon.com/cli/latest/reference/iam/put-role-permissions-boundary.html

AWS Identity and Access Management User Guide

To embed an inline policy (AWS CLI)

To embed an inline policy to an identity (user, user group, or role that is not a service-linked role),
use one of the following commands:

• aws iam put-user-policy

• aws iam put-group-policy

• aws iam put-role-policy

Removing IAM policies (AWS CLI)

You can use the AWS CLI to detach managed policies that control permissions, or remove a policy
that serves as a permissions boundary. You can also delete an inline policy.

To detach a managed policy used as a permissions policy (AWS CLI)

1. (Optional) To view information about a policy, run the following commands:

• To list managed policies: aws iam list-policies

• To retrieve detailed information about a managed policy: aws iam get-policy

2. (Optional) To find out about the relationships between the policies and identities, run the
following commands:

• To list the identities (users, user groups, and roles) to which a managed policy is attached:

• aws iam list-entities-for-policy

• To list the managed policies attached to an identity (a user, user group, or role), use one of
the following commands:

• aws iam list-attached-user-policies

• aws iam list-attached-group-policies

• aws iam list-attached-role-policies

3. To detach a managed policy from an identity (user, user group, or role), use one of the
following commands:

• aws iam detach-user-policy

• aws iam detach-group-policy

• aws iam detach-role-policy
Add or remove identity permissions 969

https://docs.aws.amazon.com/cli/latest/reference/iam/put-user-policy.html
https://docs.aws.amazon.com/cli/latest/reference/iam/put-group-policy.html
https://docs.aws.amazon.com/cli/latest/reference/iam/put-role-policy.html
https://docs.aws.amazon.com/cli/latest/reference/iam/list-policies.html
https://docs.aws.amazon.com/cli/latest/reference/iam/get-policy.html
https://docs.aws.amazon.com/cli/latest/reference/iam/list-entities-for-policy.html
https://docs.aws.amazon.com/cli/latest/reference/iam/list-attached-user-policies.html
https://docs.aws.amazon.com/cli/latest/reference/iam/list-attached-group-policies.html
https://docs.aws.amazon.com/cli/latest/reference/iam/list-attached-role-policies.html
https://docs.aws.amazon.com/cli/latest/reference/iam/detach-user-policy.html
https://docs.aws.amazon.com/cli/latest/reference/iam/detach-group-policy.html
https://docs.aws.amazon.com/cli/latest/reference/iam/detach-role-policy.html

AWS Identity and Access Management User Guide

To remove a permissions boundary (AWS CLI)

1. (Optional) To view which managed policy is currently used to set the permissions boundary for
a user or role, run the following commands:

• aws iam get-user

• aws iam get-role

2. (Optional) To view the users or roles on which a managed policy is used for a permissions
boundary, run the following command:

• aws iam list-entities-for-policy

3. (Optional) To view information about a managed policy, run the following commands:

• To list managed policies: aws iam list-policies

• To retrieve detailed information about a managed policy: aws iam get-policy

4. To remove a permissions boundary from a user or role, use one of the following commands:

• aws iam delete-user-permissions-boundary

• aws iam delete-role-permissions-boundary

To delete an inline policy (AWS CLI)

1. (Optional) To list all inline policies that are attached to an identity (user, user group, role), use
one of the following commands:

• aws iam list-user-policies

• aws iam list-group-policies

• aws iam list-role-policies

2. (Optional) To retrieve an inline policy document that is embedded in an identity (user, user
group, or role), use one of the following commands:

• aws iam get-user-policy

• aws iam get-group-policy

• aws iam get-role-policy

3. To delete an inline policy from an identity (user, user group, or role that is not a service-linked
role), use one of the following commands:

Add or remove identity permissions 970

https://docs.aws.amazon.com/cli/latest/reference/iam/get-user.html
https://docs.aws.amazon.com/cli/latest/reference/iam/get-role.html
https://docs.aws.amazon.com/cli/latest/reference/iam/list-entities-for-policy.html
https://docs.aws.amazon.com/cli/latest/reference/iam/list-policies.html
https://docs.aws.amazon.com/cli/latest/reference/iam/get-policy.html
https://docs.aws.amazon.com/cli/latest/reference/iam/detach-user-policy.html
https://docs.aws.amazon.com/cli/latest/reference/iam/delete-role-permissions-boundary.html
https://docs.aws.amazon.com/cli/latest/reference/iam/list-user-policies.html
https://docs.aws.amazon.com/cli/latest/reference/iam/list-group-policies.html
https://docs.aws.amazon.com/cli/latest/reference/iam/list-role-policies.html
https://docs.aws.amazon.com/cli/latest/reference/iam/get-user-policy.html
https://docs.aws.amazon.com/cli/latest/reference/iam/get-group-policy.html
https://docs.aws.amazon.com/cli/latest/reference/iam/get-role-policy.html

AWS Identity and Access Management User Guide

• aws iam delete-user-policy

• aws iam delete-group-policy

• aws iam delete-role-policy

Adding IAM policies (AWS API)

You can use the AWS API to attach managed policies that control permissions or specify a policy
that serves as a permissions boundary. You can also embed an inline policy.

To use a managed policy as a permissions policy for an entity (AWS API)

1. (Optional) To view information about a policy, call the following operations:

• To list managed policies: ListPolicies

• To retrieve detailed information about a managed policy: GetPolicy

2. To attach a managed policy to an identity (user, user group, or role), call one of the following
operations:

• AttachUserPolicy

• AttachGroupPolicy

• AttachRolePolicy

To use a managed policy to set a permissions boundary (AWS API)

1. (Optional) To view information about a managed policy, call the following operations:

• To list managed policies: ListPolicies

• To retrieve detailed information about a managed policy: GetPolicy

2. To use a managed policy to set the permissions boundary for an entity (user or role), call one
of the following operations:

• PutUserPermissionsBoundary

• PutRolePermissionsBoundary

To embed an inline policy (AWS API)

Add or remove identity permissions 971

https://docs.aws.amazon.com/cli/latest/reference/iam/delete-user-policy.html
https://docs.aws.amazon.com/cli/latest/reference/iam/delete-group-policy.html
https://docs.aws.amazon.com/cli/latest/reference/iam/delete-role-policy.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_ListPolicies.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_GetPolicy.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_AttachUserPolicy.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_AttachGroupPolicy.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_AttachRolePolicy.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_ListPolicies.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_GetPolicy.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_PutUserPermissionsBoundary.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_PutRolePermissionsBoundary.html

AWS Identity and Access Management User Guide

To embed an inline policy in an identity (user, user group, or role that is not a service-linked role),
call one of the following operations:

• PutUserPolicy

• PutGroupPolicy

• PutRolePolicy

Removing IAM policies (AWS API)

You can use the AWS API to detach managed policies that control permissions or remove a policy
that serves as a permissions boundary. You can also delete an inline policy.

To detach a managed policy used as a permissions policy (AWS API)

1. (Optional) To view information about a policy, call the following operations:

• To list managed policies: ListPolicies

• To retrieve detailed information about a managed policy: GetPolicy

2. (Optional) To find out about the relationships between the policies and identities, call the
following operations:

• To list the identities (users, user groups, and roles) to which a managed policy is attached:

• ListEntitiesForPolicy

• To list the managed policies attached to an identity (a user, user group, or role), call one of
the following operations:

• ListAttachedUserPolicies

• ListAttachedGroupPolicies

• ListAttachedRolePolicies

3. To detach a managed policy from an identity (user, user group, or role), call one of the
following operations:

• DetachUserPolicy

• DetachGroupPolicy

• DetachRolePolicy

Add or remove identity permissions 972

https://docs.aws.amazon.com/IAM/latest/APIReference/API_PutUserPolicy.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_PutGroupPolicy.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_PutRolePolicy.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_ListPolicies.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_GetPolicy.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_ListEntitiesForPolicy.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_ListAttachedUserPolicies.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_ListAttachedGroupPolicies.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_ListAttachedRolePolicies.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_DetachUserPolicy.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_DetachGroupPolicy.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_DetachRolePolicy.html

AWS Identity and Access Management User Guide

To remove a permissions boundary (AWS API)

1. (Optional) To view which managed policy is currently used to set the permissions boundary for
a user or role, call the following operations:

• GetUser

• GetRole

2. (Optional) To view the users or roles on which a managed policy is used for a permissions
boundary, call the following operation:

• ListEntitiesForPolicy

3. (Optional) To view information about a managed policy, call the following operations:

• To list managed policies: ListPolicies

• To retrieve detailed information about a managed policy: GetPolicy

4. To remove a permissions boundary from a user or role, call one of the following operations:

• DeleteUserPermissionsBoundary

• DeleteRolePermissionsBoundary

To delete an inline policy (AWS API)

1. (Optional) To list all inline policies that are attached to an identity (user, user group, role), call
one of the following operations:

• ListUserPolicies

• ListGroupPolicies

• ListRolePolicies

2. (Optional) To retrieve an inline policy document that is embedded in an identity (user, user
group, or role), call one of the following operations:

• GetUserPolicy

• GetGroupPolicy

• GetRolePolicy

3. To delete an inline policy from an identity (user, user group, or role that is not a service-linked
role), call one of the following operations:

Add or remove identity permissions 973

https://docs.aws.amazon.com/IAM/latest/APIReference/API_GetUser.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_GetRole.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_ListEntitiesForPolicy.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_ListPolicies.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_GetPolicy.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_DeleteUserPermissionsBoundary.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_DeleteRolePermissionsBoundary.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_ListUserPolicies.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_ListGroupPolicies.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_ListRolePolicies.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_GetUserPolicy.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_GetGroupPolicy.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_GetRolePolicy.html

AWS Identity and Access Management User Guide

• DeleteUserPolicy

• DeleteGroupPolicy

• DeleteRolePolicy

Versioning IAM policies

When you make changes to an IAM customer managed policy, and when AWS makes changes to an
AWS managed policy, the changed policy doesn't overwrite the existing policy. Instead, IAM creates
a new version of the managed policy. IAM stores up to five versions of your customer managed
policies. IAM does not support versioning for inline policies.

The following diagram illustrates versioning for a customer managed policy. In this example, the
versions 1-4 are saved. You can have up to five managed policy versions saved to IAM. When you
edit a policy that would create a sixth saved version, you can choose which older version should no
longer be saved. You can revert to any of the other four saved versions at any time.

A policy version is different from a Version policy element. The Version policy element is used
within a policy and defines the version of the policy language. To learn more about the Version
policy element see IAM JSON policy elements: Version.

You can use versions to track changes to a managed policy. For example, you might make a change
to a managed policy and then discover that the change had unintended effects. In this case, you
can roll back to a previous version of the managed policy by setting the previous version as the
default version.

The following topics explain how you can use versioning for managed policies.

Topics

• Permissions for setting the default version of a policy

Versioning IAM policies 974

https://docs.aws.amazon.com/IAM/latest/APIReference/API_DeleteUserPolicy.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_DeleteGroupPolicy.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_DeleteRolePolicy.html

AWS Identity and Access Management User Guide

• Setting the default version of customer managed policies

• Using versions to roll back changes

• Version limits

Permissions for setting the default version of a policy

The permissions that are required to set the default version of a policy correspond to the AWS API
operations for the task. You can use the CreatePolicyVersion or SetDefaultPolicyVersion
API operations to set the default version of a policy. To allow someone to set the default policy
version of an existing policy, you can allow access to either the iam:CreatePolicyVersion
action or the iam:SetDefaultPolicyVersion action. The iam:CreatePolicyVersion
action allows them to create a new version of the policy and to set that version as the default. The
iam:SetDefaultPolicyVersion action allows them to set any existing version of the policy as
the default.

Important

Denying the iam:SetDefaultPolicyVersion action in a user's policy does not stop the
user from creating a new policy version and setting it as the default.

You can use the following policy to deny a user access to change an existing customer managed
policy:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Deny",
 "Action": [
 "iam:CreatePolicyVersion",
 "iam:SetDefaultPolicyVersion"
],
 "Resource": "arn:aws:iam::*:policy/POLICY-NAME"
 }
]
}

Versioning IAM policies 975

AWS Identity and Access Management User Guide

Setting the default version of customer managed policies

One of the versions of a managed policy is set as the default version. The policy's default version is
the operative version—that is, it's the version that is in effect for all of the principal entities (users,
user groups, and roles) that the managed policy is attached to.

When you create a customer managed policy, the policy begins with a single version identified as
v1. For managed policies with only a single version, that version is automatically set as the default.
For customer managed policies with more than one version, you choose which version to set as
the default. For AWS managed policies, the default version is set by AWS. The following diagrams
illustrate this concept.

Versioning IAM policies 976

AWS Identity and Access Management User Guide

You can set the default version of a customer managed policy to apply that version to every IAM
identity (user, user group, and role) where the policy is attached. You cannot set the default version
for an AWS managed policy or an inline policy.

To set the default version of a customer managed policy (console)

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. In the navigation pane, choose Policies.

3. In the list of policies, choose the policy name of the policy to set the default version of. You
can use the search box to filter the list of policies.

4. Choose the Policy versions tab. Select the check box next to the version that you want to set
as the default version, and then choose Set as default.

To learn how to set the default version of a customer managed policy from the AWS Command
Line Interface or the AWS API, see Editing customer managed policies (AWS CLI).

Using versions to roll back changes

You can set the default version of a customer managed policy to roll back your changes. For
example, consider the following scenario:

You create a customer managed policy that allows users to administer a particular Amazon S3
bucket using the AWS Management Console. Upon creation, your customer managed policy has
only one version, identified as v1, so that version is automatically set as the default. The policy
works as intended.

Later, you update the policy to add permission to administer a second Amazon S3 bucket. IAM
creates a new version of the policy, identified as v2, that contains your changes. You set version v2
as the default, and a short time later your users report that they lack permission to use the Amazon
S3 console. In this case, you can roll back to version v1 of the policy, which you know works as
intended. To do this, you set version v1 as the default version. Your users are now able to use the
Amazon S3 console to administer the original bucket.

Later, after you determine the error in version v2 of the policy, you update the policy again to add
permission to administer the second Amazon S3 bucket. IAM creates another new version of the
policy, identified as v3. You set version v3 as the default, and this version works as intended. At this
point, you delete version v2 of the policy.

Versioning IAM policies 977

https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/

AWS Identity and Access Management User Guide

Version limits

A managed policy can have up to five versions. If you need to make changes to a managed policy
beyond five versions from the AWS Command Line Interface, or the AWS API, you must first delete
one or more existing versions. If you use the AWS Management Console, you do not have to delete
a version before editing your policy. When you save a sixth version, a dialog box appears that
prompts you to delete one or more nondefault versions of your policy. You can view the JSON
policy document for each version to help you decide. For details about this dialog box, see the
section called “Editing IAM policies”.

You can delete any version of the managed policy that you want, except for the default version.
When you delete a version, the version identifiers for the remaining versions do not change. As a
result, version identifiers might not be sequential. For example, if you delete versions v2 and v4 of
a managed policy and add two new versions, the remaining version identifiers might be v1, v3, v5,
v6, and v7.

Editing IAM policies

A policy is an entity that, when attached to an identity or resource, defines their permissions.
Policies are stored in AWS as JSON documents and are attached to principals as identity-based
policies in IAM. You can attach an identity-based policy to a principal (or identity), such as an IAM
user group, user, or role. Identity-based policies include AWS managed policies, customer managed
policies, and inline policies. You can edit customer managed policies and inline policies in IAM. AWS
managed policies cannot be edited. The number and size of IAM resources in an AWS account are
limited. For more information, see IAM and AWS STS quotas.

Topics

• View policy access

• Editing customer managed policies (console)

• Editing inline policies (console)

• Editing customer managed policies (AWS CLI)

• Editing customer managed policies (AWS API)

View policy access

Before you change the permissions for a policy, you should review its recent service-level activity.
This is important because you don't want to remove access from a principal (person or application)

Editing IAM policies 978

AWS Identity and Access Management User Guide

who is using it. For more information about viewing last accessed information, see Refining
permissions in AWS using last accessed information.

Editing customer managed policies (console)

You can edit customer managed policies to change the permissions that are defined in the policy.
A customer managed policy can have up to five versions. This is important because if you make
changes to a managed policy beyond five versions, the AWS Management Console prompts you
to decide which version to delete. You can also change the default version or delete a version of
a policy before you edit it to avoid being prompted. To learn more about versions, see Versioning
IAM policies.

To edit a customer managed policy (console)

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. In the navigation pane, choose Policies.

3. In the list of policies, choose the policy name of the policy to edit. You can use the search box
to filter the list of policies.

4. Choose the Permissions tab, and then choose Edit.

5. Do one of the following:

• Choose the Visual option to change your policy without understanding JSON syntax.
You can make changes to the service, actions, resources, or optional conditions for each
permission block in your policy. You can also import a policy to add additional permissions
to the bottom of your policy. When you are finished making changes, choose Next to
continue.

• Choose the JSON option to modify your policy by typing or pasting text in the JSON text
box. You can also import a policy to add additional permissions to the bottom of your
policy. Resolve any security warnings, errors, or general warnings generated during policy
validation, and then choose Next.

Note

You can switch between the Visual and JSON editor options any time. However,
if you make changes or choose Next in the Visual editor, IAM might restructure

Editing IAM policies 979

https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/

AWS Identity and Access Management User Guide

your policy to optimize it for the visual editor. For more information, see Policy
restructuring.

6. On the Review and save page, review Permissions defined in this policy and then choose
Save changes to save your work.

7. If the managed policy already has the maximum of five versions, choosing Save changes
displays a dialog box. To save your new version, the oldest non-default version of the policy
is removed and replaced with this new version. Optionally, you can set the new version as the
default policy version.

Choose Save changes to save your new policy version.

To set the default version of a customer managed policy (console)

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. In the navigation pane, choose Policies.

3. In the list of policies, choose the policy name of the policy to set the default version of. You
can use the search box to filter the list of policies.

4. Choose the Policy versions tab. Select the check box next to the version that you want to set
as the default version, and then choose Set as default.

To delete a version of a customer managed policy (console)

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. In the navigation pane, choose Policies.

3. Choose the name of the customer managed policy that has a version you want to delete. You
can use the search box to filter the list of policies.

4. Choose the Policy versions tab. Select the check box next to the version that you want to
delete. Then choose Delete.

5. Confirm that you want to delete the version, and then choose Delete.

Editing IAM policies 980

https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/

AWS Identity and Access Management User Guide

Editing inline policies (console)

You can edit an inline policy from the AWS Management Console.

To edit an inline policy for a user, user group, or role (console)

1. In the navigation pane, choose Users, User groups, or Roles.

2. Choose the name of the user, user group, or role with the policy that you want to modify. Then
choose the Permissions tab and expand the policy.

3. To edit an inline policy, choose Edit Policy.

4. Do one of the following:

• Choose the Visual option to change your policy without understanding JSON syntax.
You can make changes to the service, actions, resources, or optional conditions for each
permission block in your policy. You can also import a policy to add additional permissions
to the bottom of your policy. When you are finished making changes, choose Next to
continue.

• Choose the JSON option to modify your policy by typing or pasting text in the JSON text
box. You can also import a policy to add additional permissions to the bottom of your
policy. Resolve any security warnings, errors, or general warnings generated during policy
validation, and then choose Next. To save your changes without affecting the currently
attached entities, clear the check box for Save as default version.

Note

You can switch between the Visual and JSON editor options any time. However, if you
make changes or choose Next in the Visual editor, IAM might restructure your policy to
optimize it for the visual editor. For more information, see Policy restructuring.

5. On the Review page, review the policy summary and then choose Save changes to save your
work.

Editing customer managed policies (AWS CLI)

You can edit a customer managed policy from the AWS Command Line Interface (AWS CLI).

Editing IAM policies 981

AWS Identity and Access Management User Guide

Note

A managed policy can have up to five versions. If you need to make changes to a customer
managed policy beyond five versions, you must first delete one or more existing versions.

To edit a customer managed policy (AWS CLI)

1. (Optional) To view information about a policy, run the following commands:

• To list managed policies: list-policies

• To retrieve detailed information about a managed policy: get-policy

2. (Optional) To find out about the relationships between the policies and identities, run the
following commands:

• To list the identities (users, user groups, and roles) to which a managed policy is attached:

• list-entities-for-policy

• To list the managed policies attached to an identity (a user, user group, or role):

• list-attached-user-policies

• list-attached-group-policies

• list-attached-role-policies

3. To edit a customer managed policy, run the following command:

• create-policy-version

4. (Optional) To validate a customer managed policy, run the following IAM Access Analyzer
command:

• validate-policy

To set the default version of a customer managed policy (AWS CLI)

1. (Optional) To list managed policies, run the following command:

• list-policies

2. To set the default version of a customer managed policy, run the following command:

• set-default-policy-version

Editing IAM policies 982

https://docs.aws.amazon.com/cli/latest/reference/iam/list-policies.html
https://docs.aws.amazon.com/cli/latest/reference/iam/get-policy.html
https://docs.aws.amazon.com/cli/latest/reference/iam/list-entities-for-policy.html
https://docs.aws.amazon.com/cli/latest/reference/iam/list-attached-user-policies.html
https://docs.aws.amazon.com/cli/latest/reference/iam/list-attached-group-policies.html
https://docs.aws.amazon.com/cli/latest/reference/iam/list-attached-role-policies.html
https://docs.aws.amazon.com/cli/latest/reference/iam/create-policy-version.html
https://docs.aws.amazon.com/cli/latest/reference/accessanalyzer/validate-policy.html
https://docs.aws.amazon.com/cli/latest/reference/iam/list-policies.html
https://docs.aws.amazon.com/cli/latest/reference/iam/set-default-policy-version.html

AWS Identity and Access Management User Guide

To delete a version of a customer managed policy (AWS CLI)

1. (Optional) To list managed policies, run the following command:

• list-policies

2. To delete a customer managed policy, run the following command:

• delete-policy-version

Editing customer managed policies (AWS API)

You can edit a customer managed policy using the AWS API.

Note

A managed policy can have up to five versions. If you need to make changes to a customer
managed policy beyond five versions, you must first delete one or more existing versions.

To edit a customer managed policy (AWS API)

1. (Optional) To view information about a policy, call the following operations:

• To list managed policies: ListPolicies

• To retrieve detailed information about a managed policy: GetPolicy

2. (Optional) To find out about the relationships between the policies and identities, call the
following operations:

• To list the identities (users, user groups, and roles) to which a managed policy is attached:

• ListEntitiesForPolicy

• To list the managed policies attached to an identity (a user, user group, or role):

• ListAttachedUserPolicies

• ListAttachedGroupPolicies

• ListAttachedRolePolicies

3. To edit a customer managed policy, call the following operation:

• CreatePolicyVersion

Editing IAM policies 983

https://docs.aws.amazon.com/cli/latest/reference/iam/list-policies.html
https://docs.aws.amazon.com/cli/latest/reference/iam/delete-policy-version.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_ListPolicies.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_GetPolicy.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_ListEntitiesForPolicy.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_ListAttachedUserPolicies.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_ListAttachedGroupPolicies.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_ListAttachedRolePolicies.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_CreatePolicyVersion.html

AWS Identity and Access Management User Guide

4. (Optional) To validate a customer managed policy, call the following IAM Access Analyzer
operation:

• ValidatePolicy

To set the default version of a customer managed policy (AWS API)

1. (Optional) To list managed policies, call the following operation:

• ListPolicies

2. To set the default version of a customer managed policy, call the following operation:

• SetDefaultPolicyVersion

To delete a version of a customer managed policy (AWS API)

1. (Optional) To list managed policies, call the following operation:

• ListPolicies

2. To delete a customer managed policy, call the following operation:

• DeletePolicyVersion

Deleting IAM policies

You can delete IAM policies using the AWS Management Console, the AWS Command Line
Interface (AWS CLI), or the IAM API.

Note

Deletion of IAM policies is permanent. After the policy is deleted it cannot be recovered.

For more information about the difference between managed and inline policies, see Managed
policies and inline policies.

For general information about IAM policies, see Policies and permissions in IAM.

Deleting IAM policies 984

https://docs.aws.amazon.com/access-analyzer/latest/APIReference/API_ValidatePolicy.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_ListPolicies.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_SetDefaultPolicyVersion.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_ListPolicies.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_DeletePolicyVersion.html

AWS Identity and Access Management User Guide

The number and size of IAM resources in an AWS account are limited. For more information, see
IAM and AWS STS quotas.

Topics

• View policy access

• Deleting IAM policies (console)

• Deleting IAM policies (AWS CLI)

• Deleting IAM policies (AWS API)

View policy access

Before you delete a policy, you should review its recent service-level activity. This is important
because you don't want to remove access from a principal (person or application) who is using it.
For more information about viewing last accessed information, see Refining permissions in AWS
using last accessed information.

Deleting IAM policies (console)

You can delete a customer managed policy to remove it from your AWS account. You cannot delete
AWS managed policies.

To delete a customer managed policy (console)

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. In the navigation pane, choose Policies.

3. Select the radio button next to the customer managed policy to delete. You can use the search
box to filter the list of policies.

4. Choose Actions, and then choose Delete.

5. Follow the instructions to confirm that you want to delete the policy, and then choose Delete.

To delete an inline policy for a user group, user, or role (console)

1. In the navigation pane, choose User groups, Users, or Roles.

2. Choose the name of the user group, user, or role with the policy that you want to delete. Then
choose the Permissions tab.

Deleting IAM policies 985

https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/

AWS Identity and Access Management User Guide

3. Select the check boxes next to the policies to delete and choose Remove. To delete an inline
policy in Users or Roles, choose Remove to confirm the deletion. If you are deleting a single
inline policy in User groups, type the name of the policy and choose Delete. If you are deleting
multiple inline policies in User groups, type the number of policies you are deleting followed
by inline policies and choose Delete. For example, if you are deleting three inline
policies, type 3 inline policies.

Deleting IAM policies (AWS CLI)

You can delete a customer managed policy from the AWS Command Line Interface.

To delete a customer managed policy (AWS CLI)

1. (Optional) To view information about a policy, run the following commands:

• To list managed policies: list-policies

• To retrieve detailed information about a managed policy: get-policy

2. (Optional) To find out about the relationships between the policies and identities, run the
following commands:

• To list the identities (users, user groups, and roles) to which a managed policy is attached,
run the following command:

• list-entities-for-policy

• To list the managed policies attached to an identity (a user, user group, or role), run one of
the following commands:

• list-attached-user-policies

• list-attached-group-policies

• list-attached-role-policies

3. To delete a customer managed policy, run the following command:

• delete-policy

To delete an inline policy (AWS CLI)

1. (Optional) To list all inline policies that are attached to an identity (user, user group, role), use
one of the following commands:

Deleting IAM policies 986

https://docs.aws.amazon.com/cli/latest/reference/iam/list-policies.html
https://docs.aws.amazon.com/cli/latest/reference/iam/get-policy.html
https://docs.aws.amazon.com/cli/latest/reference/iam/list-entities-for-policy.html
https://docs.aws.amazon.com/cli/latest/reference/iam/list-attached-user-policies.html
https://docs.aws.amazon.com/cli/latest/reference/iam/list-attached-group-policies.html
https://docs.aws.amazon.com/cli/latest/reference/iam/list-attached-role-policies.html
https://docs.aws.amazon.com/cli/latest/reference/iam/delete-policy.html

AWS Identity and Access Management User Guide

• aws iam list-user-policies

• aws iam list-group-policies

• aws iam list-role-policies

2. (Optional) To retrieve an inline policy document that is embedded in an identity (user, user
group, or role), use one of the following commands:

• aws iam get-user-policy

• aws iam get-group-policy

• aws iam get-role-policy

3. To delete an inline policy from an identity (user, user group, or role that is not a service-linked
role), use one of the following commands:

• aws iam delete-user-policy

• aws iam delete-group-policy

• aws iam delete-role-policy

Deleting IAM policies (AWS API)

You can delete a customer managed policy using the AWS API.

To delete a customer managed policy (AWS API)

1. (Optional) To view information about a policy, call the following operations:

• To list managed policies: ListPolicies

• To retrieve detailed information about a managed policy: GetPolicy

2. (Optional) To find out about the relationships between the policies and identities, call the
following operations:

• To list the identities (users, user groups, and roles) to which a managed policy is attached,
call the following operation:

• ListEntitiesForPolicy

• To list the managed policies attached to an identity (a user, user group, or role), call one of
the following operations:

• ListAttachedUserPolicies

Deleting IAM policies 987

https://docs.aws.amazon.com/cli/latest/reference/iam/list-user-policies.html
https://docs.aws.amazon.com/cli/latest/reference/iam/list-group-policies.html
https://docs.aws.amazon.com/cli/latest/reference/iam/list-role-policies.html
https://docs.aws.amazon.com/cli/latest/reference/iam/get-user-policy.html
https://docs.aws.amazon.com/cli/latest/reference/iam/get-group-policy.html
https://docs.aws.amazon.com/cli/latest/reference/iam/get-role-policy.html
https://docs.aws.amazon.com/cli/latest/reference/iam/delete-user-policy.html
https://docs.aws.amazon.com/cli/latest/reference/iam/delete-group-policy.html
https://docs.aws.amazon.com/cli/latest/reference/iam/delete-role-policy.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_ListPolicies.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_GetPolicy.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_ListEntitiesForPolicy.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_ListAttachedUserPolicies.html

AWS Identity and Access Management User Guide

• ListAttachedGroupPolicies

• ListAttachedRolePolicies

3. To delete a customer managed policy, call the following operation:

• DeletePolicy

To delete an inline policy (AWS API)

1. (Optional) To list all inline policies that are attached to an identity (user, user group, role), call
one of the following operations:

• ListUserPolicies

• ListGroupPolicies

• ListRolePolicies

2. (Optional) To retrieve an inline policy document that is embedded in an identity (user, user
group, or role), call one of the following operations:

• GetUserPolicy

• GetGroupPolicy

• GetRolePolicy

3. To delete an inline policy from an identity (user, user group, or role that is not a service-linked
role), call one of the following operations:

• DeleteUserPolicy

• DeleteGroupPolicy

• DeleteRolePolicy

Refining permissions in AWS using last accessed information

As an administrator, you might grant permissions to IAM resources (roles, users, user groups, or
policies) beyond what they require. IAM provides last accessed information to help you identify
unused permissions so that you can remove them. You can use last accessed information to refine
your policies and allow access to only the services and actions that your IAM identities and policies
use. This helps you to better adhere to the best practice of least privilege. You can view last
accessed information for identities or policies that exist in IAM or AWS Organizations.

Refining permissions using access information 988

https://docs.aws.amazon.com/IAM/latest/APIReference/API_ListAttachedGroupPolicies.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_ListAttachedRolePolicies.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_DeletePolicy.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_ListUserPolicies.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_ListGroupPolicies.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_ListRolePolicies.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_GetUserPolicy.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_GetGroupPolicy.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_GetRolePolicy.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_DeleteUserPolicy.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_DeleteGroupPolicy.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_DeleteRolePolicy.html

AWS Identity and Access Management User Guide

You can continuously monitor last accessed information with unused access analyzers. For more
information, see Findings for external and unused access.

Topics

• Last accessed information types for IAM

• Last accessed information for AWS Organizations

• Things to know about last accessed information

• Permissions required

• Troubleshooting activity for IAM and Organizations entities

• Where AWS tracks last accessed information

• Viewing last accessed information for IAM

• Viewing last accessed information for Organizations

• Example scenarios for using last accessed information

• IAM action last accessed information services and actions

Last accessed information types for IAM

You can view two types of last accessed information for IAM identities: allowed AWS service
information and allowed action information. The information includes the date and time when
the attempt to access an AWS API was made. For actions, last accessed information reports service
management actions. Management actions include creation, deletion, and modification actions.
To learn more about how to view last accessed information for IAM, see Viewing last accessed
information for IAM.

For example scenarios for using last accessed information to make decisions about the permissions
that you grant to your IAM identities, see Example scenarios for using last accessed information.

To learn more about how the information for management actions is provided, see Things to know
about last accessed information.

Last accessed information for AWS Organizations

If you sign in using management account credentials, you can view service last accessed
information for an AWS Organizations entity or policy in your organization. AWS Organizations
entities include the organization root, organizational units (OUs), or accounts. Last accessed
information for AWS Organizations includes information about services that are allowed by a

Refining permissions using access information 989

https://docs.aws.amazon.com/IAM/latest/UserGuide/access-analyzer-findings.html

AWS Identity and Access Management User Guide

service control policy (SCP). The information indicates which principals (root user, IAM user, or role)
in an organization or account last attempted to access the service and when. To learn more about
the report and how to view last accessed information for AWS Organizations, see Viewing last
accessed information for Organizations.

For example scenarios for using last accessed information to make decisions about the permissions
that you grant to your Organizations entities, see Example scenarios for using last accessed
information.

Things to know about last accessed information

Before you use last accessed information from a report to change the permissions for an IAM
identity or Organizations entity, review the following details about the information.

• Tracking period – Recent activity appears in the IAM console within four hours. The tracking
period for service information is at least 400 days depending on when the service started
tracking actions information. The tracking period for Amazon S3 actions information began on
April, 12, 2020. The tracking period for Amazon EC2, IAM, and Lambda actions began on April
7, 2021. The tracking period for all other services began on May 23, 2023. For a list of services
for which action last accessed information is available, see IAM action last accessed information
services and actions. For more information on which Regions action last accessed information is
available in, see Where AWS tracks last accessed information.

• Attempts reported – The service last accessed data includes all attempts to access an AWS
API, not just the successful attempts. This includes all attempts that were made using the AWS
Management Console, the AWS API through any of the SDKs, or any of the command line tools.
An unexpected entry in the service last accessed data does not mean that your account has been
compromised, because the request might have been denied. Refer to your CloudTrail logs as
the authoritative source for information about all API calls and whether they were successful or
denied access.

• PassRole – The iam:PassRole action is not tracked and is not included in IAM action last
accessed information.

• Action last accessed information – Action last accessed information is available for service
management actions accessed by IAM identities. See the list of services and their actions for
which action last accessed reports information.

Refining permissions using access information 990

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_access-advisor-action-last-accessed.html#access-policies_access-advisor-action-last-accessed-supported-actions

AWS Identity and Access Management User Guide

Note

Action last accessed information is not available for Amazon S3 data events.

• Management events – IAM provides action information for service management events
that are logged by CloudTrail. Sometimes, CloudTrail management events are also called
control plane operations or control plane events. Management events provide visibility into
administrative operations that are performed on resources in your AWS account. To learn more
about management events in CloudTrail, see Logging management events in the AWS CloudTrail
User Guide.

• Report owner – Only the principal that generates a report can view the report details. This
means that when you view the information in the AWS Management Console, you might have
to wait for it to generate and load. If you use the AWS CLI or AWS API to get report details, your
credentials must match the credentials of the principal that generated the report. If you use
temporary credentials for a role or federated user, you must generate and retrieve the report
during the same session. For more information about assumed-role session principals, see AWS
JSON policy elements: Principal.

• IAM resources – The last accessed information for IAM includes IAM resources (roles, users,
user groups, and policies) in your account. Last accessed information for Organizations includes
principals (IAM users, IAM roles, or the AWS account root user) in the specified Organizations
entity. The last accessed information does not include unauthenticated attempts.

• IAM policy types – The last accessed information for IAM includes services that are allowed by
an IAM identity's policies. These are policies attached to a role or attached to a user directly
or through a group. Access allowed by other policy types is not included in your report. The
excluded policy types include resource-based policies, access control lists, AWS Organizations
SCPs, IAM permissions boundaries, and session policies. Permissions that are provided by service-
linked roles are defined by the service that they are linked to and can't be modified in IAM. To
learn more about service-linked roles, see Using service-linked roles To learn how the different
policy types are evaluated to allow or deny access, see Policy evaluation logic.

• Organizations policy types – The information for AWS Organizations includes only services
that are allowed by an Organizations entity's inherited service control policies (SCPs). SCPs are
policies attached to a root, OU, or account. Access allowed by other policy types is not included
in your report. The excluded policy types include identity-based policies, resource-based policies,
access control lists, IAM permissions boundaries, and session policies. To learn how the different
policy types are evaluated to allow or deny access, see Policy evaluation logic.

Refining permissions using access information 991

https://docs.aws.amazon.com/awscloudtrail/latest/userguide/logging-management-events-with-cloudtrail.html

AWS Identity and Access Management User Guide

• Specifying a policy ID – When you use the AWS CLI or AWS API to generate a report for
last accessed information in Organizations, you can optionally specify a policy ID. The
resulting report includes information for the services that are allowed by only that policy. The
information includes the most recent account activity in the specified Organizations entity or
the entity's children. For more information, see aws iam generate-organizations-access-report or
GenerateOrganizationsAccessReport.

• Organizations management account – You must sign in to your organization's management
account to view service last accessed information. You can choose to view information for the
management account using the IAM console, the AWS CLI, or the AWS API. The resulting report
lists all AWS services, because the management account is not limited by SCPs. If you specify a
policy ID in the CLI or API, the policy is ignored. For each service, the report includes information
for only the management account. However, reports for other Organizations entities do not
return information for activity in the management account.

• Organizations settings – An administrator must enable SCPs in your organization root before
you can generate data for Organizations.

Permissions required

To view the last accessed information in the AWS Management Console, you must have a policy
that grants the necessary permissions.

Permissions for IAM information

To use the IAM console to view the last accessed information for an IAM user, role, or policy, you
must have a policy that includes the following actions:

• iam:GenerateServiceLastAccessedDetails

• iam:Get*

• iam:List*

These permissions allow a user to see the following:

• Which users, groups, or roles are attached to a managed policy

• Which services a user or role can access

• The last time they accessed the service

• The last time they attempted to use a specific Amazon EC2, IAM, Lambda, or Amazon S3 action

Refining permissions using access information 992

https://docs.aws.amazon.com/cli/latest/reference/iam/generate-organizations-access-report.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_GenerateOrganizationsAccessReport.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies.html#enable_policies_on_root
https://docs.aws.amazon.com/glossary/latest/reference/glos-chap.html#managed_policy

AWS Identity and Access Management User Guide

To use the AWS CLI or AWS API to view last accessed information for IAM, you must have
permissions that match the operation you want to use:

• iam:GenerateServiceLastAccessedDetails

• iam:GetServiceLastAccessedDetails

• iam:GetServiceLastAccessedDetailsWithEntities

• iam:ListPoliciesGrantingServiceAccess

This example shows how you might create an identity-based policy that allows viewing IAM last
accessed information. Additionally, it allows read-only access to all of IAM. This policy defines
permissions for programmatic and console access.

{
 "Version": "2012-10-17",
 "Statement": {
 "Effect": "Allow",
 "Action": [
 "iam:GenerateServiceLastAccessedDetails",
 "iam:Get*",
 "iam:List*"
],
 "Resource": "*"
 }

Permissions for AWS Organizations information

To use the IAM console to view a report for the root, OU, or account entities in Organizations, you
must have a policy that includes the following actions:

• iam:GenerateOrganizationsAccessReport

• iam:GetOrganizationsAccessReport

• organizations:DescribeAccount

• organizations:DescribeOrganization

• organizations:DescribeOrganizationalUnit

• organizations:DescribePolicy

• organizations:ListChildren

• organizations:ListParents

Refining permissions using access information 993

AWS Identity and Access Management User Guide

• organizations:ListPoliciesForTarget

• organizations:ListRoots

• organizations:ListTargetsForPolicy

To use the AWS CLI or AWS API to view service last accessed information for Organizations, you
must have a policy that includes the following actions:

• iam:GenerateOrganizationsAccessReport

• iam:GetOrganizationsAccessReport

• organizations:DescribePolicy

• organizations:ListChildren

• organizations:ListParents

• organizations:ListPoliciesForTarget

• organizations:ListRoots

• organizations:ListTargetsForPolicy

This example shows how you might create an identity-based policy that allows viewing service
last accessed information for Organizations. Additionally, it allows read-only access to all of
Organizations. This policy defines permissions for programmatic and console access.

{
 "Version": "2012-10-17",
 "Statement": {
 "Effect": "Allow",
 "Action": [
 "iam:GenerateOrganizationsAccessReport",
 "iam:GetOrganizationsAccessReport",
 "organizations:Describe*",
 "organizations:List*"
],
 "Resource": "*"
 }
}

Refining permissions using access information 994

AWS Identity and Access Management User Guide

You can also use the iam:OrganizationsPolicyId condition key to allow generating a report only
for a specific Organizations policy. For an example policy, see IAM: View service last accessed
information for an Organizations policy.

Troubleshooting activity for IAM and Organizations entities

In some cases, your AWS Management Console last accessed information table might be empty.
Or perhaps your AWS CLI or AWS API request returns an empty set of information or a null field. In
these cases, review the following issues:

• For action last accessed information, an action that you are expecting to see might not be
returned in the list. This can happen either because the IAM identity does not have permissions
for the action, or AWS does not yet track the action for last accessed information.

• For an IAM user, make sure that the user has at least one inline or managed policy attached,
either directly or through group memberships.

• For an IAM group, verify that the group has at least one inline or managed policy attached.

• For an IAM group, the report returns only the service last accessed information for members
that used the group's policies to access a service. To learn whether a member used other policies,
review the last accessed information for that user.

• For an IAM role, verify that the role has at least one inline or managed policy attached.

• For an IAM entity (user or role), review other policy types that might affect the permissions
of that entity. These include resource-based policies, access control lists, AWS Organizations
policies, IAM permissions boundaries, or session policies. For more information, see Policy types
or Evaluating policies within a single account.

• For an IAM policy, make sure that the specified managed policy is attached to at least one user,
group with members, or role.

• For an Organizations entity (root, OU, or account), make sure that you are signed using
Organizations management account credentials.

• Verify that SCPs are enabled in your organization root.

• Action last accessed information is only available for the actions listed in IAM action last accessed
information services and actions.

When you make changes, wait at least four hours for activity to appear in your IAM console
report. If you use the AWS CLI or AWS API, you must generate a new report to view the updated
information.

Refining permissions using access information 995

https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies.html#enable_policies_on_root

AWS Identity and Access Management User Guide

Where AWS tracks last accessed information

AWS collects last accessed information for the standard AWS Regions. When AWS adds additional
Regions, those Regions are added to the following table, including the date that AWS started
tracking information in each Region.

• Service information – The tracking period for services is at least 400 days, or less if your Region
began tracking this feature within the last 400 days.

• Actions information – The tracking period for Amazon S3 management actions began on April,
12, 2020. The tracking period for Amazon EC2, IAM, and Lambda management actions began
on April 7, 2021. The tracking period for management actions of all other services began on
May 23, 2023. If a Region's tracking date is later than May 23, 2023, then action last accessed
information from that Region will start at the later date.

Region name Region Tracking start date

US East (Ohio) us-east-2 October 27, 2017

US East (N. Virginia) us-east-1 October 1, 2015

US West (N. California) us-west-1 October 1, 2015

US West (Oregon) us-west-2 October 1, 2015

Africa (Cape Town) af-south-1 April 22, 2020

Asia Pacific (Hong Kong) ap-east-1 April 24, 2019

Asia Pacific (Hyderabad) ap-south-2 November 22, 2022

Asia Pacific (Jakarta) ap-southeast-3 December 13, 2021

Asia Pacific (Melbourne) ap-southeast-4 January 23, 2023

Asia Pacific (Mumbai) ap-south-1 June 27, 2016

Asia Pacific (Osaka) ap-northeast-3 February 11, 2018

Asia Pacific (Seoul) ap-northeast-2 January 6, 2016

Refining permissions using access information 996

AWS Identity and Access Management User Guide

Region name Region Tracking start date

Asia Pacific (Singapore) ap-southeast-1 October 1, 2015

Asia Pacific (Sydney) ap-southeast-2 October 1, 2015

Asia Pacific (Tokyo) ap-northeast-1 October 1, 2015

Canada (Central) ca-central-1 October 28, 2017

Europe (Frankfurt) eu-central-1 October 1, 2015

Europe (Ireland) eu-west-1 October 1, 2015

Europe (London) eu-west-2 October 28, 2017

Europe (Milan) eu-south-1 April 28, 2020

Europe (Paris) eu-west-3 December 18, 2017

Europe (Spain) eu-south-2 November 15, 2022

Europe (Stockholm) eu-north-1 December 12, 2018

Europe (Zurich) eu-central-2 November 8, 2022

Israel (Tel Aviv) il-central-1 August 1, 2023

Middle East (Bahrain) me-south-1 July 29, 2019

Middle East (UAE) me-central-1 August 30, 2022

South America (São Paulo) sa-east-1 December 11, 2015

AWS GovCloud (US-East) us-gov-east-1 July 1, 2023

AWS GovCloud (US-West) us-gov-west-1 July 1, 2023

If a Region is not listed in the previous table, then that Region does not yet provide last accessed
information.

Refining permissions using access information 997

AWS Identity and Access Management User Guide

An AWS Region is a collection of AWS resources in a geographic area. Regions are grouped into
partitions. The standard Regions are the Regions that belong to the aws partition. For more
information about the different partitions, see Amazon Resource Names (ARNs) Format in the AWS
General Reference. For more information about Regions, see About AWS Regions also in the AWS
General Reference.

Viewing last accessed information for IAM

You can view last accessed information for IAM using the AWS Management Console, AWS CLI, or
AWS API. See the list of services and their actions for which last accessed information is displayed.
For more information about last accessed information, see Refining permissions in AWS using last
accessed information.

You can view information for the following resource types in IAM. In each case, the information
includes allowed services for the given reporting period:

• User – View the last time that the user attempted to access each allowed service.

• User group – View information about the last time that a user group member attempted
to access each allowed service. This report also includes the total number of members that
attempted access.

• Role – View the last time that someone used the role in an attempt to access each allowed
service.

• Policy – View information about the last time that a user or role attempted to access each
allowed service. This report also includes the total number of entities that attempted access.

Note

Before you view the access information for a resource in IAM, make sure you understand
the reporting period, reported entities, and the evaluated policy types for your information.
For more details, see the section called “Things to know about last accessed information”.

Viewing information for IAM (console)

You can view last accessed information for IAM on the Access Advisor tab in the IAM console.

Refining permissions using access information 998

https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html#arns-syntax
https://docs.aws.amazon.com/general/latest/gr/rande-manage.html#region-what-is

AWS Identity and Access Management User Guide

To view information for IAM (console)

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. In the navigation pane, choose either User groups, Users, Roles, or Policies.

3. Choose any user, user group, role, or policy name to open its Summary page and choose the
Access Advisor tab. View the following information, based on the resource that you chose:

• User group – View the list of services that user group members can access. You can also view
when a member last accessed the service, what user group policies they used, and which
user group member made the request. Choose the name of the policy to learn whether it is
a managed policy or an inline user group policy. Choose the name of the user group member
to see all of the members of the user group and when they last accessed the service.

• User – View the list of services that the user can access. You can also view when they last
accessed the service, and what policies are currently associated with the user. Choose the
name of the policy to learn whether it is a managed policy, an inline user policy, or an inline
policy for the user group.

• Role – View the list of services that the role can access, when the role last accessed the
service, and what policies were used. Choose the name of the policy to learn whether it is a
managed policy or an inline role policy.

• Policy – View the list of services with allowed actions in the policy. You can also view when
the policy was last used to access the service, and which entity (user or role) used the policy.
The Last accessed date also includes when access is granted to this policy through another
policy. Choose the name of the entity to learn which entities have this policy attached and
when they last accessed the service.

4. In the Service column of the table, choose the name of one of the services that includes
action last accessed information to view a list of management actions that IAM entities
have attempted to access. You can view the AWS Region and a timestamp that shows when
someone last attempted to perform the action.

5. The Last accessed column is displayed for services and management actions of the services
that include action last accessed information. Review the following possible results that
are returned in this column. These results vary depending on whether a service or action is
allowed, was accessed, and whether it is tracked by AWS for last accessed information.

Refining permissions using access information 999

https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/

AWS Identity and Access Management User Guide

<number of> days ago

The number of days since the service or action was used in the tracking period. The tracking
period for services is for the last 400 days. The tracking period for Amazon S3 actions
started on April 12, 2020. The tracking period for Amazon EC2, IAM, and Lambda actions
started on April 7, 2021. The tracking period for all other services began on May 23, 2023.
To learn more about the tracking start dates for each AWS Region, see Where AWS tracks
last accessed information.

Not accessed in the tracking period

The tracked service or action has not been used by an entity in the tracking period.

It is possible for you to have permissions for an action that doesn't appear in the list. This can
happen if the tracking information for the action is not currently included by AWS. You should
not make permissions decisions based solely on the absence of tracking information. Instead,
we recommend that you use this information to inform and support your overall strategy of
granting least privilege. Check your policies to confirm that the level of access is appropriate.

Viewing information for IAM (AWS CLI)

You can use the AWS CLI to retrieve information about the last time that an IAM resource was used
to attempt to access AWS services and Amazon S3, Amazon EC2, IAM, and Lambda actions. An IAM
resource can be a user, user group, role, or policy.

To view information for IAM (AWS CLI)

1. Generate a report. The request must include the ARN of the IAM resource (user, user group,
role, or policy) for which you want a report. You can specify the level of granularity that you
want to generate in the report to view access details for either services or both services and
actions. The request returns a job-id that you can then use in the get-service-last-
accessed-details and get-service-last-accessed-details-with-entities
operations to monitor the job-status until the job is complete.

• aws iam generate-service-last-accessed-details

2. Retrieve details about the report using the job-id parameter from the previous step.

• aws iam get-service-last-accessed-details

Refining permissions using access information 1000

https://docs.aws.amazon.com/cli/latest/reference/iam/generate-service-last-accessed-details.html
https://docs.aws.amazon.com/cli/latest/reference/iam/get-service-last-accessed-details.html

AWS Identity and Access Management User Guide

This operation returns the following information, based on the type of resource and level
of granularity that you requested in the generate-service-last-accessed-details
operation:

• User – Returns a list of services that the specified user can access. For each service, the
operation returns the date and time of the user's last attempt and the ARN of the user.

• User group – Returns a list of services that members of the specified user group can access
using the policies attached to the user group. For each service, the operation returns the
date and time of the last attempt made by any user group member. It also returns the ARN
of that user and the total number of user group members that have attempted to access the
service. Use the GetServiceLastAccessedDetailsWithEntities operation to retrieve a list of all
of the members.

• Role – Returns a list of services that the specified role can access. For each service, the
operation returns the date and time of the role's last attempt and the ARN of the role.

• Policy – Returns a list of services for which the specified policy allows access. For each
service, the operation returns the date and time that an entity (user or role) last attempted
to access the service using the policy. It also returns the ARN of that entity and the total
number of entities that attempted access.

3. Learn more about the entities that used user group or policy permissions in an attempt to
access a specific service. This operation returns a list of entities with each entity's ARN, ID,
name, path, type (user or role), and when they last attempted to access the service. You can
also use this operation for users and roles, but it only returns information about that entity.

• aws iam get-service-last-accessed-details-with-entities

4. Learn more about the identity-based policies that an identity (user, user group, or role) used in
an attempt to access a specific service. When you specify an identity and service, this operation
returns a list of permissions policies that the identity can use to access the specified service.
This operation gives the current state of policies and does not depend on the generated
report. It also does not return other policy types, such as resource-based policies, access
control lists, AWS Organizations policies, IAM permissions boundaries, or session policies. For
more information, see Policy types or Evaluating policies within a single account.

• aws iam list-policies-granting-service-access

Refining permissions using access information 1001

https://docs.aws.amazon.com/IAM/latest/APIReference/API_GetServiceLastAccessedDetailsWithEntities.html
https://docs.aws.amazon.com/cli/latest/reference/iam/get-service-last-accessed-details-with-entities.html
https://docs.aws.amazon.com/cli/latest/reference/iam/list-policies-granting-service-access.html

AWS Identity and Access Management User Guide

Viewing information for IAM (AWS API)

You can use the AWS API to retrieve information about the last time that an IAM resource was used
to attempt to access AWS services and Amazon S3, Amazon EC2, IAM, and Lambda actions. An
IAM resource can be a user, user group, role, or policy. You can specify the level of granularity to
generate in the report to view details for either services or both services and actions.

To view information for IAM (AWS API)

1. Generate a report. The request must include the ARN of the IAM resource
(user, user group, role, or policy) for which you want a report. It returns a
JobId that you can then use in the GetServiceLastAccessedDetails and
GetServiceLastAccessedDetailsWithEntities operations to monitor the JobStatus
until the job is complete.

• GenerateServiceLastAccessedDetails

2. Retrieve details about the report using the JobId parameter from the previous step.

• GetServiceLastAccessedDetails

This operation returns the following information, based on the type of resource and level of
granularity that you requested in the GenerateServiceLastAccessedDetails operation:

• User – Returns a list of services that the specified user can access. For each service, the
operation returns the date and time of the user's last attempt and the ARN of the user.

• User group – Returns a list of services that members of the specified user group can access
using the policies attached to the user group. For each service, the operation returns the
date and time of the last attempt made by any user group member. It also returns the ARN
of that user and the total number of user group members that have attempted to access the
service. Use the GetServiceLastAccessedDetailsWithEntities operation to retrieve a list of all
of the members.

• Role – Returns a list of services that the specified role can access. For each service, the
operation returns the date and time of the role's last attempt and the ARN of the role.

• Policy – Returns a list of services for which the specified policy allows access. For each
service, the operation returns the date and time that an entity (user or role) last attempted
to access the service using the policy. It also returns the ARN of that entity and the total
number of entities that attempted access.

Refining permissions using access information 1002

https://docs.aws.amazon.com/IAM/latest/APIReference/API_GenerateServiceLastAccessedDetails.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_GetServiceLastAccessedDetails.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_GetServiceLastAccessedDetailsWithEntities.html

AWS Identity and Access Management User Guide

3. Learn more about the entities that used user group or policy permissions in an attempt to
access a specific service. This operation returns a list of entities with each entity's ARN, ID,
name, path, type (user or role), and when they last attempted to access the service. You can
also use this operation for users and roles, but it only returns information about that entity.

• GetServiceLastAccessedDetailsWithEntities

4. Learn more about the identity-based policies that an identity (user, user group, or role) used in
an attempt to access a specific service. When you specify an identity and service, this operation
returns a list of permissions policies that the identity can use to access the specified service.
This operation gives the current state of policies and does not depend on the generated
report. It also does not return other policy types, such as resource-based policies, access
control lists, AWS Organizations policies, IAM permissions boundaries, or session policies. For
more information, see Policy types or Evaluating policies within a single account.

• ListPoliciesGrantingServiceAccess

Viewing last accessed information for Organizations

You can view service last accessed information for AWS Organizations using the IAM console, AWS
CLI, or AWS API. For important information about the data, permissions required, troubleshooting,
and supported Regions, see Refining permissions in AWS using last accessed information.

When you sign in to the IAM console using AWS Organizations management account credentials,
you can view information for any entity in your organization. Organizations entities include the
organization root, organizational units (OUs), and accounts. You can also use the IAM console
to view information for any service control policies (SCPs) in your organization. IAM shows a list
of services that are allowed by any SCPs that apply to the entity. For each service, you can view
the most recent account activity information for the chosen Organizations entity or the entity's
children.

When you use the AWS CLI or AWS API with management account credentials, you can generate a
report for any entities or policies in your organization. A programmatic report for an entity includes
a list of services that are allowed by any SCPs that apply to the entity. For each service, the report
includes the most recent activity for accounts in the specified Organizations entity or the entity's
subtree.

When you generate a programmatic report for a policy, you must specify an Organizations entity.
This report includes a list of services that are allowed by the specified SCP. For each service,

Refining permissions using access information 1003

https://docs.aws.amazon.com/IAM/latest/APIReference/API_GetServiceLastAccessedDetailsWithEntities.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_ListPoliciesGrantingServiceAccess.html

AWS Identity and Access Management User Guide

it includes the most recent account activity in the entity or entity's children that are granted
permission by that policy. For more information, see aws iam generate-organizations-access-report
or GenerateOrganizationsAccessReport.

Before you view the report, make sure that you understand the management account requirements
and information, reporting period, reported entities, and the evaluated policy types. For more
details, see the section called “Things to know about last accessed information”.

Understand the AWS Organizations entity path

When you use the AWS CLI or AWS API to generate an AWS Organizations access report, you must
specify an entity path. A path is a text representation of the structure of an Organizations entity.

You can build an entity path using the known structure of your organization. For example, assume
that you have the following organizational structure in AWS Organizations.

The path for the Dev Managers OU is built using the IDs of the organization, root, and all OUs in
the path down to and including the OU.

o-a1b2c3d4e5/r-f6g7h8i9j0example/ou-ghi0-awsccccc/ou-jkl0-awsddddd/

The path for the account in the Production OU is built using the IDs of the organization, root, the
OU, and the account number.

Refining permissions using access information 1004

https://docs.aws.amazon.com/cli/latest/reference/iam/generate-organizations-access-report.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_GenerateOrganizationsAccessReport.html

AWS Identity and Access Management User Guide

o-a1b2c3d4e5/r-f6g7h8i9j0example/ou-abc0-awsaaaaa/111111111111/

Note

Organization IDs are globally unique but OU IDs and root IDs are unique only within
an organization. This means that no two organizations share the same organization ID.
However, another organization might have an OU or root with the same ID as yours. We
recommend that you always include the organization ID when you specify an OU or root.

Viewing information for Organizations (console)

You can use the IAM console to view service last accessed information for your root, OU, account,
or policy.

To view information for the root (console)

1. Sign in to the AWS Management Console using Organizations management account
credentials, and open the IAM console at https://console.aws.amazon.com/iam/.

2. In the navigation pane below the Access reports section, choose Organization activity.

3. On the Organization activity page, choose Root.

4. On the Details and activity tab, view the Service access report section. The information
includes a list of services that are allowed by the policies that are attached directly to the root.
The information shows you from which account the service was last accessed and when. For
more details about which principal accessed the service, sign in as an administrator in that
account and view the IAM service last accessed information.

5. Choose the Attached SCPs tab to view the list of the service control policies (SCPs) that are
attached to the root. IAM shows you the number of target entities to which each policy is
attached. You can use this information to decide which SCP to review.

6. Choose the name of an SCP to view all of the services that the policy allows. For each service,
view from which account the service was last accessed, and when.

7. Choose Edit in AWS Organizations to view additional details and edit the SCP in the
Organizations console. For more information, see Updating an SCP in the AWS Organizations
User Guide.

Refining permissions using access information 1005

https://console.aws.amazon.com/iam/
https://docs.aws.amazon.com/organizations/latest/userguide/create-policy.html#update_policy

AWS Identity and Access Management User Guide

To view information for an OU or account (console)

1. Sign in to the AWS Management Console using Organizations management account
credentials, and open the IAM console at https://console.aws.amazon.com/iam/.

2. In the navigation pane below the Access reports section, choose Organization activity.

3. On the Organization activity page, expand the structure of your organization. Then choose
the name of the OU or any account that you want to view except the management account.

4. On the Details and activity tab, view the Service access report section. The information
includes a list of services that are allowed by the SCPs attached to the OU or account and all of
its parents. The information shows you from which account the service was last accessed and
when. For more details about which principal accessed the service, sign in as an administrator
in that account and view the IAM service last accessed information.

5. Choose the Attached SCPs tab to view the list of the service control policies (SCPs) that are
attached directly to the OU or account. IAM shows you the number of target entities to which
each policy is attached. You can use this information to decide which SCP to review.

6. Choose the name of an SCP to view all of the services that the policy allows. For each service,
view from which account the service was last accessed, and when.

7. Choose Edit in AWS Organizations to view additional details and edit the SCP in the
Organizations console. For more information, see Updating an SCP in the AWS Organizations
User Guide.

To view information for the management account (console)

1. Sign in to the AWS Management Console using Organizations management account
credentials, and open the IAM console at https://console.aws.amazon.com/iam/.

2. In the navigation pane below the Access reports section, choose Organization activity.

3. On the Organization activity page, expand the structure of your organization and choose the
name your management account.

4. On the Details and activity tab, view the Service access report section. The information
includes a list of all AWS services. The management account is not limited by SCPs. The
information shows you whether the account last accessed the service and when. For more
details about which principal accessed the service, sign in as an administrator in that account
and view the IAM service last accessed information.

5. Choose the Attached SCPs tab to confirm that there are no attached SCPs because the account
is the management account.

Refining permissions using access information 1006

https://console.aws.amazon.com/iam/
https://docs.aws.amazon.com/organizations/latest/userguide/create-policy.html#update_policy
https://console.aws.amazon.com/iam/

AWS Identity and Access Management User Guide

To view information for a policy (console)

1. Sign in to the AWS Management Console using Organizations management account
credentials, and open the IAM console at https://console.aws.amazon.com/iam/.

2. In the navigation pane below the Access reports section, choose Service control policies
(SCPs).

3. On the Service control policies (SCPs) page, view a list of the policies in your organization.
You can view the number of target entities to which each policy is attached.

4. Choose the name of an SCP to view all of the services that the policy allows. For each service,
view from which account the service was last accessed, and when.

5. Choose Edit in AWS Organizations to view additional details and edit the SCP in the
Organizations console. For more information, see Updating an SCP in the AWS Organizations
User Guide.

Viewing information for Organizations (AWS CLI)

You can use the AWS CLI to retrieve service last accessed information for your Organizations root,
OU, account, or policy.

To view Organizations service last accessed information (AWS CLI)

1. Use your Organizations management account credentials with the required IAM and
Organizations permissions, and confirm that SCPs are enabled for your root. For more
information, see Things to know about last accessed information.

2. Generate a report. The request must include the path of the Organizations entity (root, OU, or
account) for which you want a report. You can optionally include an organization-policy-
id parameter to view a report for a specific policy. The command returns a job-id that you
can then use in the get-organizations-access-report command to monitor the job-
status until the job is complete.

• aws iam generate-organizations-access-report

3. Retrieve details about the report using the job-id parameter from the previous step.

• aws iam get-organizations-access-report

This command returns a list of services that entity members can access. For each service, the
command returns the date and time of an account member's last attempt and the entity path

Refining permissions using access information 1007

https://console.aws.amazon.com/iam/
https://docs.aws.amazon.com/organizations/latest/userguide/create-policy.html#update_policy
https://docs.aws.amazon.com/cli/latest/reference/iam/generate-organizations-access-report.html
https://docs.aws.amazon.com/cli/latest/reference/iam/get-organizations-access-report.html

AWS Identity and Access Management User Guide

of the account. It also returns the total number of services that are available to access and the
number of services that were not accessed. If you specified the optional organizations-
policy-id parameter, then the services that are available to access are those that are allowed
by the specified policy.

Viewing information for Organizations (AWS API)

You can use the AWS API to retrieve service last accessed information for your Organizations root,
OU, account, or policy.

To view Organizations service last accessed information (AWS API)

1. Use your Organizations management account credentials with the required IAM and
Organizations permissions, and confirm that SCPs are enabled for your root. For more
information, see Things to know about last accessed information.

2. Generate a report. The request must include the path of the Organizations entity
(root, OU, or account) for which you want a report. You can optionally include an
OrganizationsPolicyId parameter to view a report for a specific policy. The operation
returns a JobId that you can then use in the GetOrganizationsAccessReport operation
to monitor the JobStatus until the job is complete.

• GenerateOrganizationsAccessReport

3. Retrieve details about the report using the JobId parameter from the previous step.

• GetOrganizationsAccessReport

This operation returns a list of services that entity members can access. For each service,
the operation returns the date and time of an account member's last attempt and the
entity path of the account. It also returns the total number of services that are available
to access, and the number of services that were not accessed. If you specified the optional
OrganizationsPolicyId parameter, then the services that are available to access are those
that are allowed by the specified policy.

Refining permissions using access information 1008

https://docs.aws.amazon.com/IAM/latest/APIReference/API_GenerateOrganizationsAccessReport.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_GetOrganizationsAccessReport.html

AWS Identity and Access Management User Guide

Example scenarios for using last accessed information

You can use last accessed information to make decisions about the permissions that you grant to
your IAM entities or AWS Organizations entities. For more information, see Refining permissions in
AWS using last accessed information.

Note

Before you view the access information for an entity or policy in IAM or AWS Organizations,
make sure that you understand the reporting period, reported entities, and the evaluated
policy types for your data. For more details, see the section called “Things to know about
last accessed information”.

It's up to you as an administrator to balance the accessibility and least privilege that's appropriate
for your company.

Using information to reduce permissions for an IAM group

You can use last accessed information to reduce IAM group permissions to include only those
services that your users need. This method is an important step in granting least privilege at a
service level.

For example, Paulo Santos is the administrator in charge of defining AWS user permissions for
Example Corp. This company just started using AWS, and the software development team has not
yet defined what AWS services they will use. Paulo wants to give the team permission to access
only the services they need, but since that is not yet defined, he temporarily gives them power-user
permissions. Then he uses last accessed information to reduce the group's permissions.

Paulo creates a managed policy named ExampleDevelopment using the following JSON text. He
then attaches it to a group named Development and adds all of the developers to the group.

Note

Paulo's power users might need iam:CreateServiceLinkedRole permissions to use
some services and features. He understands that adding this permission allows the users to
create any service-linked role. He accepts this risk for his power users.

{

Refining permissions using access information 1009

AWS Identity and Access Management User Guide

 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "FullAccessToAllServicesExceptPeopleManagement",
 "Effect": "Allow",
 "NotAction": [
 "iam:*",
 "organizations:*"
],
 "Resource": "*"
 },
 {
 "Sid": "RequiredIamAndOrgsActions",
 "Effect": "Allow",
 "Action": [
 "iam:CreateServiceLinkedRole",
 "iam:ListRoles",
 "organizations:DescribeOrganization"
],
 "Resource": "*"
 }
]
}

Paulo decides to wait for 90 days before he views the last accessed information for the
Development group using the AWS Management Console. He views the list of services that the
group members accessed. He learns that the users accessed five services within the last week: AWS
CloudTrail, Amazon CloudWatch Logs, Amazon EC2, AWS KMS, and Amazon S3. They accessed a
few other services when they were first evaluating AWS, but not since then.

Paulo decides to reduce the policy permissions to include only those five services and the required
IAM and Organizations actions. He edits ExampleDevelopment policy using the following JSON
text.

Note

Paulo's power users might need iam:CreateServiceLinkedRole permissions to use
some services and features. He understands that adding this permission allows the users to
create any service-linked role. He accepts this risk for his power users.

Refining permissions using access information 1010

AWS Identity and Access Management User Guide

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "FullAccessToListedServices",
 "Effect": "Allow",
 "Action": [
 "s3:*",
 "kms:*",
 "cloudtrail:*",
 "logs:*",
 "ec2:*"
],
 "Resource": "*"
 },
 {
 "Sid": "RequiredIamAndOrgsActions",
 "Effect": "Allow",
 "Action": [
 "iam:CreateServiceLinkedRole",
 "iam:ListRoles",
 "organizations:DescribeOrganization"
],
 "Resource": "*"
 }
]
}

To further reduce permissions, Paulo can view the account's events in AWS CloudTrail Event
history. There he can view detailed event information that he can use to reduce the policy's
permissions to include only the actions and resources that the developers need. For more
information, see Viewing CloudTrail Events in the CloudTrail Console in the AWS CloudTrail User
Guide.

Using information to reduce permissions for an IAM user

You can use last accessed information to reduce the permissions for an individual IAM user.

For example, Martha Rivera is an IT administrator responsible for ensuring that people in her
company do not have excess AWS permissions. As part of a periodic security check, she reviews
the permissions of all IAM users. One of these users is an application developer named Nikhil
Jayashankar, who previously filled the role of a security engineer. Because of the change in job

Refining permissions using access information 1011

https://docs.aws.amazon.com/awscloudtrail/latest/userguide/view-cloudtrail-events-console.html

AWS Identity and Access Management User Guide

requirements, Nikhil is a member of both the app-dev group and the security-team group.
The app-dev group for his new job grants permissions to multiple services including Amazon EC2,
Amazon EBS, Auto Scaling, Amazon S3, Route 53, and Elastic Transcoder. The security-team
group for his old job grants permissions to IAM and CloudTrail.

As an administrator, Martha signs into the IAM console and chooses Users, chooses the name
nikhilj, and then chooses the Access Advisor tab.

Martha reviews the Last Accessed column and notices that Nikhil has not recently accessed IAM,
CloudTrail, Route 53, Amazon Elastic Transcoder, and a number of other AWS services. Nikhil
has accessed Amazon S3. Martha chooses S3 from the list of services and learns that Nikhil has
performed some S3 List actions in the last two weeks. Within her company, Martha confirms
that Nikhil has no business need to access IAM and CloudTrail anymore because he is no longer a
member of the internal security team.

Martha is now ready to act on the service and action last accessed information. However, unlike
the group in the previous example, an IAM user like nikhilj might be subject to multiple policies
and be a member of multiple groups. Martha must proceed with caution to avoid inadvertently
disrupting access for nikhilj or other group members. In addition to learning what access Nikhil
should have, she must determine how he is receiving these permissions.

Martha chooses the Permissions tab, where she views which policies are attached directly to
nikhilj and those attached from a group. She expands each policy and views the policy summary
to learn which policy allows access to the services that Nikhil is not using:

• IAM – The IAMFullAccess AWS managed policy is attached directly to nikhilj and attached
to the security-team group.

• CloudTrail – The AWSCloudTrailReadOnlyAccess AWS managed policy is attached to the
security-team group.

• Route 53 – The App-Dev-Route53 customer managed policy is attached to the app-dev group.

• Elastic Transcoder – The App-Dev-ElasticTranscoder customer managed policy is attached
to the app-dev group.

Martha decides to remove the IAMFullAccess AWS managed policy that is attached directly to
nikhilj. She also removes Nikhil's membership to the security-team group. These two actions
remove the unnecessary access to IAM and CloudTrail.

Refining permissions using access information 1012

AWS Identity and Access Management User Guide

Nikhil's permissions to access to Route 53 and Elastic Transcoder are granted by the app-dev
group. Although Nikhil isn't using those services, other members of the group might be. Martha
reviews the last accessed information for the app-dev group and learns that several members
recently accessed Route 53 and Amazon S3. But no group members have accessed Elastic
Transcoder in the last year. She removes the App-Dev-ElasticTranscoder customer managed
policy from the group.

Martha then reviews the last accessed information for the App-Dev-ElasticTranscoder
customer managed policy. She learns that the policy is not attached to any other IAM identities.
She investigates within her company to make sure that the policy will not be needed in the future,
and then she deletes it.

Using information before deleting IAM resources

You can use last accessed information before you delete an IAM resource to make sure that a
certain amount of time has passed since someone last used the resource. This applies to users,
groups, roles, and policies. To learn more about these actions, see the following topics:

• Users – Deleting a user

• Groups – Deleting a group

• Roles – Deleting a role

• Policies – Deleting a managed policy (this also detaches the policy from identities)

Using information before editing IAM policies

You can review last accessed information for an IAM identity (user, group, or role), or for an IAM
policy before editing a policy that affects that resource. This is important because you don't want
to remove access for someone that is using it.

For example, Arnav Desai is a developer and AWS administrator for Example Corp. When his team
started using AWS, they gave all developers power-user access that allowed them full access to all
services except IAM and Organizations. As a first step towards granting least privilege, Arnav wants
to use the AWS CLI to review the managed policies in his account.

To do this, Arnav first lists the customer managed permissions policies in his account that are
attached to an identity, using the following command:

aws iam list-policies --scope Local --only-attached --policy-usage-filter
 PermissionsPolicy

Refining permissions using access information 1013

AWS Identity and Access Management User Guide

From the response, he captures the ARN for each policy. Arnav then generates a report for last
accessed information for each policy using the following command.

aws iam generate-service-last-accessed-details --arn arn:aws:iam::123456789012:policy/
ExamplePolicy1

From that response, he captures the ID of the generated report from the JobId field. Arnav then
polls the following command until the JobStatus field returns a value of COMPLETED or FAILED.
If the job failed, he captures the error.

aws iam get-service-last-accessed-details --job-id 98a765b4-3cde-2101-2345-example678f9

When the job has a status of COMPLETED, Arnav parses the contents of the JSON-formatted
ServicesLastAccessed array.

 "ServicesLastAccessed": [
 {
 "TotalAuthenticatedEntities": 1,
 "LastAuthenticated": 2018-11-01T21:24:33.222Z,
 "ServiceNamespace": "dynamodb",
 "LastAuthenticatedEntity": "arn:aws:iam::123456789012:user/IAMExampleUser",
 "ServiceName": "Amazon DynamoDB"
 },

 {
 "TotalAuthenticatedEntities": 0,
 "ServiceNamespace": "ec2",
 "ServiceName": "Amazon EC2"
 },

 {
 "TotalAuthenticatedEntities": 3,
 "LastAuthenticated": 2018-08-25T15:29:51.156Z,
 "ServiceNamespace": "s3",
 "LastAuthenticatedEntity": "arn:aws:iam::123456789012:role/IAMExampleRole",
 "ServiceName": "Amazon S3"
 }
]

From this information, Arnav learns that the ExamplePolicy1 policy allows access to
three services, Amazon DynamoDB, Amazon S3, and Amazon EC2. The IAM user named

Refining permissions using access information 1014

AWS Identity and Access Management User Guide

IAMExampleUser last attempted to access DynamoDB on November 1, and someone used the
IAMExampleRole role to attempt to access Amazon S3 on August 25. There are also two more
entities that attempted to access Amazon S3 in the last year. However, nobody has attempted to
access Amazon EC2 in the last year.

This means that Arnav can safely remove the Amazon EC2 actions from the policy. Arnav wants to
review the current JSON document for the policy. First, he must determine the version number of
the policy using the following command.

aws iam list-policy-versions --policy-arn arn:aws:iam::123456789012:policy/
ExamplePolicy1

From the response, Arnav collects the current default version number from the Versions array.
He then uses that version number (v2) to request the JSON policy document using the following
command.

aws iam get-policy-version --policy-arn arn:aws:iam::123456789012:policy/ExamplePolicy1
 --version-id v2

Arnav stores the JSON policy document returned in the Document field of the PolicyVersion
array. Within the policy document, Arnav searches for actions with in the ec2 namespace. If there
are no actions from other namespaces remaining in the policy, then he detaches the policy from
the affected identities (users, groups, and roles). He then deletes the policy. In this case, the policy
does include the Amazon DynamoDB and Amazon S3 services. So Arnav removes the Amazon EC2
actions from the document and saves his changes. He then uses the following command to update
the policy using the new version of the document and to set that version as the default policy
version.

aws iam create-policy-version --policy-arn arn:aws:iam::123456789012:policy/
ExamplePolicy1 --policy-document file://UpdatedPolicy.json --set-as-default

The ExamplePolicy1 policy is now updated to remove access to the unnecessary Amazon EC2
service.

Other IAM scenarios

Information about when an IAM resource (user, group, role, or policy) last attempted to access a
service can help you when you complete any of the following tasks:

Refining permissions using access information 1015

AWS Identity and Access Management User Guide

• Policies – Editing an existing customer-managed or inline policy to remove permissions

• Policies – Converting an inline policy to a managed policy and then deleting it

• Policies – Adding an explicit deny to an existing policy

• Policies – Detaching a managed policy from an identity (user, group, or role)

• Entities – Set a permissions boundary to control the maximum permissions that an entity (user
or role) can have

• Groups – Removing users from a group

Using information to refine permissions for an organizational unit

You can use last accessed information to refine the permissions for an organizational unit (OU) in
AWS Organizations.

For example, John Stiles is an AWS Organizations administrator. He is responsible for ensuring that
people in company AWS accounts do not have excess permissions. As part of a periodic security
audit, he reviews the permissions of his organization. His Development OU contains accounts
that are often used to test new AWS services. John decides to periodically review the report for
services that have not been accessed in more than 180 days. He then removes permissions for the
OU members to access those services.

John signs into the IAM console using his management account credentials. In the IAM console, he
locates the Organizations data for the Development OU. He reviews the Service access report
table and sees two AWS services that have not been accessed in more than his preferred period of
180 days. He remembers adding permissions for the development teams to access Amazon Lex and
AWS Database Migration Service. John contacts the development teams and confirms that they no
longer have a business need to test these services.

John is now ready to act on the last accessed information. He chooses Edit in AWS Organizations
and is reminded that the SCP is attached to multiple entities. He chooses Continue. In AWS
Organizations, he reviews the targets to learn to which Organizations entities that the SCP is
attached. All of entities are within the Development OU.

John decides to deny access to the Amazon Lex and AWS Database Migration Service actions in the
NewServiceTest SCP. This action removes the unnecessary access to the services.

Refining permissions using access information 1016

AWS Identity and Access Management User Guide

IAM action last accessed information services and actions

The following table lists the AWS services for which IAM action last accessed information is
displayed. For a list of actions in each service, see Actions, resources, and condition keys for AWS
services in the Service Authorization Reference.

Service Service prefix

AWS Identity and Access Management Access Analyzer access-analyzer

AWS Account Management account

AWS Certificate Manager acm

Amazon Managed Workflows for Apache Airflow airflow

AWS Amplify amplify

AWS Amplify UI Builder amplifyuibuilder

Amazon AppIntegrations app-integrations

AWS AppConfig appconfig

Amazon AppFlow appflow

AWS Application Cost Profiler application-
cost-profiler

Amazon CloudWatch Application Insights applicationinsights

AWS App Mesh appmesh

Amazon AppStream 2.0 appstream

AWS AppSync appsync

Amazon Managed Service for Prometheus aps

Amazon Athena athena

Refining permissions using access information 1017

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_access-advisor.html
https://docs.aws.amazon.com/service-authorization/latest/reference/reference_policies_actions-resources-contextkeys.html
https://docs.aws.amazon.com/service-authorization/latest/reference/reference_policies_actions-resources-contextkeys.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awsiamaccessanalyzer.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awsaccountmanagement.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awscertificatemanager.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonmanagedworkflowsforapacheairflow.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awsamplify.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awsamplifyuibuilder.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonappintegrations.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awsappconfig.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonappflow.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awsapplicationcostprofilerservice.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazoncloudwatchapplicationinsights.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awsappmesh.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonappstream2.0.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awsappsync.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonmanagedserviceforprometheus.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonathena.html

AWS Identity and Access Management User Guide

Service Service prefix

AWS Audit Manager auditmanager

AWS Auto Scaling autoscaling

AWS Marketplace aws-marketplace

AWS Backup backup

AWS Batch batch

Amazon Braket braket

AWS Budgets budgets

AWS Cloud9 cloud9

AWS CloudFormation cloudformation

Amazon CloudFront cloudfront

AWS CloudHSM cloudhsm

Amazon CloudSearch cloudsearch

AWS CloudTrail cloudtrail

Amazon CloudWatch cloudwatch

AWS CodeArtifact codeartifact

AWS CodeDeploy codedeploy

Amazon CodeGuru Profiler codeguru-profiler

Amazon CodeGuru Reviewer codeguru-reviewer

AWS CodePipeline codepipeline

AWS CodeStar codestar

Refining permissions using access information 1018

https://docs.aws.amazon.com/service-authorization/latest/reference/list_awsauditmanager.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awsautoscaling.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awsmarketplace.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awsbackup.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awsbatch.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonbraket.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awsbudgetservice.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awscloud9.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awscloudformation.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazoncloudfront.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awscloudhsm.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazoncloudsearch.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awscloudtrail.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazoncloudwatch.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awscodeartifact.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awscodedeploy.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazoncodeguruprofiler.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazoncodegurureviewer.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awscodepipeline.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awscodestar.html

AWS Identity and Access Management User Guide

Service Service prefix

AWS CodeStar Notifications codestar-
notifications

Amazon Cognito Identity cognito-identity

Amazon Cognito user pools cognito-idp

Amazon Cognito Sync cognito-sync

Amazon Comprehend Medical comprehen
dmedical

AWS Compute Optimizer compute-
optimizer

AWS Config config

Amazon Connect connect

AWS Cost and Usage Report cur

AWS Glue DataBrew databrew

AWS Data Exchange dataexchange

AWS Data Pipeline datapipeline

DynamoDB Accelerator dax

AWS Device Farm devicefarm

Amazon DevOps Guru devops-guru

AWS Direct Connect directconnect

Amazon Data Lifecycle Manager dlm

AWS Database Migration Service dms

Amazon DocumentDB Elastic Clusters docdb-elastic

Refining permissions using access information 1019

https://docs.aws.amazon.com/service-authorization/latest/reference/list_awscodestarnotifications.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazoncognitoidentity.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazoncognitouserpools.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazoncognitosync.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazoncomprehendmedical.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awscomputeoptimizer.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awsconfig.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonconnect.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awscostandusagereport.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awsgluedatabrew.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awsdataexchange.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awsdatapipeline.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazondynamodbacceleratordax.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awsdevicefarm.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazondevopsguru.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awsdirectconnect.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazondatalifecyclemanager.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awsdatabasemigrationservice.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazondocumentdbelasticclusters.html

AWS Identity and Access Management User Guide

Service Service prefix

AWS Directory Service ds

Amazon DynamoDB dynamodb

Amazon Elastic Block Store ebs

Amazon Elastic Compute Cloud ec2

Amazon Elastic Container Registry ecr

Amazon Elastic Container Registry Public ecr-public

Amazon Elastic Container Service ecs

Amazon Elastic Kubernetes Service eks

Amazon Elastic Inference elastic-inference

Amazon ElastiCache elasticache

AWS Elastic Beanstalk elasticbeanstalk

Amazon Elastic File System elasticfilesystem

Elastic Load Balancing elasticlo
adbalancing

Amazon Elastic Transcoder elastictranscoder

Amazon EMR on EKS (EMR Containers) emr-containers

Amazon EMR Serverless emr-serverless

Amazon OpenSearch Service es

Amazon EventBridge events

Amazon CloudWatch Evidently evidently

Amazon FinSpace finspace

Refining permissions using access information 1020

https://docs.aws.amazon.com/service-authorization/latest/reference/list_awsdirectoryservice.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazondynamodb.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonelasticblockstore.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonec2.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonelasticcontainerregistry.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonelasticcontainerregistrypublic.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonelasticcontainerservice.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonelastickubernetesservice.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonelasticinference.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonelasticache.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awselasticbeanstalk.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonelasticfilesystem.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_elasticloadbalancing.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonelastictranscoder.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonemroneksemrcontainers.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonemrserverless.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonopensearchservice.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazoneventbridge.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazoncloudwatchevidently.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonfinspace.html

AWS Identity and Access Management User Guide

Service Service prefix

Amazon Data Firehose firehose

AWS Fault Injection Service fis

AWS Firewall Manager fms

Amazon Fraud Detector frauddetector

Amazon FSx fsx

Amazon GameLift gamelift

Amazon Location Service geo

Amazon S3 Glacier glacier

Amazon Managed Grafana grafana

AWS IoT Greengrass greengrass

AWS Ground Station groundstation

Amazon GuardDuty guardduty

AWS HealthLake healthlake

Amazon Honeycode honeycode

AWS Identity and Access Management iam

AWS Identity Store identitystore

EC2 Image Builder imagebuilder

Amazon Inspector Classic inspector

Amazon Inspector inspector2

AWS IoT iot

Refining permissions using access information 1021

https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonkinesisfirehose.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awsfaultinjectionsimulator.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awsfirewallmanager.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonfrauddetector
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonfsx
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazongamelift
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonlocation.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazons3glacier.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonmanagedgrafana.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awsiotgreengrass.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awsgroundstation.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonguardduty.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonhealthlake.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonhoneycode.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_identityandaccessmanagement.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awsidentitystore.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonec2imagebuilder.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazoninspector.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazoninspector2.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awsiot.html

AWS Identity and Access Management User Guide

Service Service prefix

AWS IoT Analytics iotanalytics

AWS IoT Core Device Advisor iotdeviceadvisor

AWS IoT Events iotevents

AWS IoT Fleet Hub iotfleethub

AWS IoT SiteWise iotsitewise

AWS IoT TwinMaker iottwinmaker

AWS IoT Wireless iotwireless

Amazon Interactive Video Service ivs

Amazon Interactive Video Service Chat ivschat

Amazon Managed Streaming for Apache Kafka kafka

Amazon Managed Streaming for Kafka Connect kafkaconnect

Amazon Kendra kendra

Amazon Kinesis kinesis

Amazon Kinesis Analytics V2 kinesisanalytics

AWS Key Management Service kms

AWS Lambda lambda

Amazon Lex lex

AWS License Manager Linux Subscriptions Manager license-manager-
linux-subscriptions

Amazon Lightsail lightsail

Amazon CloudWatch Logs logs

Refining permissions using access information 1022

https://docs.aws.amazon.com/service-authorization/latest/reference/list_awsiotanalytics.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awsiotcoredeviceadvisor.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awsiotevents.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awsiotfleethubfordevicemanagement.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awsiotsitewise.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awsiottwinmaker.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awsiotwireless.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazoninteractivevideoservice.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazoninteractivevideoservicechat.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonmanagedstreamingforapachekafka.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonmanagedstreamingforkafkaconnect.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonkendra.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonkinesis.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonkinesisanalyticsv2.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awskeymanagementservice.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awslambda.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonlexv2.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awslicensemanagerlinuxsubscriptionsmanager.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonlightsail.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazoncloudwatchlogs.html

AWS Identity and Access Management User Guide

Service Service prefix

Amazon Lookout for Equipment lookoutequipment

Amazon Lookout for Metrics lookoutmetrics

Amazon Lookout for Vision lookoutvision

AWS Mainframe Modernization m2

Amazon Managed Blockchain managedbl
ockchain

AWS Elemental MediaConnect mediaconnect

AWS Elemental MediaConvert mediaconvert

AWS Elemental MediaLive medialive

AWS Elemental MediaPackage mediapackage

AWS Elemental MediaPackage VOD mediapackage-vod

AWS Elemental MediaStore mediastore

AWS Elemental MediaTailor mediatailor

Amazon MemoryDB for Redis memorydb

AWS Application Migration Service mgn

AWS Migration Hub mgh

AWS Migration Hub Strategy Recommendations migration
hub-strategy

Amazon Pinpoint mobiletargeting

Amazon MQ mq

AWS Network Manager networkmanager

Refining permissions using access information 1023

https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonlookoutforequipment.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonlookoutformetrics.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonlookoutforvision.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awsmainframemodernizationservice.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonmanagedblockchain.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awselementalmediaconnect.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awselementalmediaconvert.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awselementalmedialive.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awselementalmediapackage.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awselementalmediapackagevod.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awselementalmediastore.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awselementalmediatailor.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonmemorydb.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awsapplicationmigrationservice.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awsmigrationhub.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awsmigrationhubstrategyrecommendations.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonpinpoint.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonmq.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awsnetworkmanager.html

AWS Identity and Access Management User Guide

Service Service prefix

Amazon Nimble Studio nimble

AWS HealthOmics omics

AWS OpsWorks opsworks

AWS OpsWorks CM opsworks-cm

AWS Outposts outposts

AWS Organizations organizations

AWS Panorama panorama

AWS Performance Insights pi

Amazon EventBridge Pipes pipes

Amazon Polly polly

Amazon Connect Customer Profiles profile

Amazon QLDB qldb

AWS Resource Access Manager ram

AWS Recycle Bin rbin

Amazon Relational Database Service rds

Amazon Redshift redshift

Amazon Redshift Data API redshift-data

AWS Migration Hub Refactor Spaces refactor-spaces

Amazon Rekognition rekognition

AWS Resilience Hub resiliencehub

Refining permissions using access information 1024

https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonnimblestudio.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awshealthomics.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awsopsworks.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awsopsworksconfigurationmanagement
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awsoutposts.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awsorganizations.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awspanorama.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awsperformanceinsights.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazoneventbridgepipes.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonpolly.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonconnectcustomerprofiles.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonqldb.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awsresourceaccessmanager.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awsrecyclebin.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonrds.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonredshift.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonredshiftdataapi.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awsmigrationhubrefactorspaces.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonrekognition.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awsresiliencehub.html

AWS Identity and Access Management User Guide

Service Service prefix

AWS Resource Explorer resource-
explorer-2

AWS Resource Groups resource-groups

AWS RoboMaker robomaker

AWS Identity and Access Management Roles Anywhere rolesanywhere

Amazon Route 53 route53

Amazon Route 53 Recovery Controls route53-recovery-
control-config

Amazon Route 53 Recovery Readiness route53-
recovery-readiness

Amazon Route 53 Resolver route53resolver

AWS CloudWatch RUM rum

Amazon Simple Storage Service s3

Amazon S3 on Outposts s3-outposts

Amazon SageMaker geospatial capabilities sagemaker-
geospatial

Savings Plans savingsplans

Amazon EventBridge Schemas schemas

Amazon SimpleDB sdb

AWS Secrets Manager secretsmanager

AWS Security Hub securityhub

Amazon Security Lake securitylake

Refining permissions using access information 1025

https://docs.aws.amazon.com/service-authorization/latest/reference/list_awsresourceexplorer.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awsresourcegroups.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awsrobomaker.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awsidentityandaccessmanagementrolesanywhere.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonroute53.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonroute53recoverycontrols.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonroute53recoveryreadiness.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonroute53resolver.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awscloudwatchrum.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazons3.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazons3onoutposts.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonsagemakergeospatialcapabilities.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awssavingsplans.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazoneventbridgeschemas.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonsimpledb.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awssecretsmanager.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awssecurityhub.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonsecuritylake.html

AWS Identity and Access Management User Guide

Service Service prefix

AWS Serverless Application Repository serverlessrepo

AWS Service Catalog servicecatalog

AWS Cloud Map servicediscovery

Service Quotas servicequotas

Amazon Simple Email Service ses

AWS Shield shield

AWS Signer signer

AWS SimSpace Weaver simspaceweaver

AWS Server Migration Service sms

Amazon Pinpoint SMS and Voice Service sms-voice

AWS Snowball snowball

Amazon Simple Queue Service sqs

AWS Systems Manager ssm

AWS Systems Manager Incident Manager ssm-incidents

AWS Systems Manager for SAP ssm-sap

AWS Step Functions states

AWS Security Token Service sts

Amazon Simple Workflow Service swf

Amazon CloudWatch Synthetics synthetics

AWS Resource Groups Tagging API tag

Refining permissions using access information 1026

https://docs.aws.amazon.com/service-authorization/latest/reference/list_awsserverlessapplicationrepository.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awsservicecatalog.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awscloudmap.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_servicequotas.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonses.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awsshield.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awssigner.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awssimspaceweaver.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awsservermigrationservice.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonpinpointsmsandvoiceservice.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awssnowball.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonsqs.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awssystemsmanager.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awssystemsmanagerincidentmanager.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awssystemsmanagerforsap.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awsstepfunctions.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awssecuritytokenservice.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonsimpleworkflowservice.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazoncloudwatchsynthetics.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonresourcegrouptaggingapi.html

AWS Identity and Access Management User Guide

Service Service prefix

Amazon Textract textract

Amazon Timestream timestream

AWS Telco Network Builder tnb

Amazon Transcribe transcribe

AWS Transfer Family transfer

Amazon Translate translate

Amazon Connect Voice ID voiceid

Amazon VPC Lattice vpc-lattice

AWS WAFV2 wafv2

AWS Well-Architected Tool wellarchitected

Amazon Connect Wisdom wisdom

Amazon WorkLink worklink

Amazon WorkSpaces workspaces

AWS X-Ray xray

Actions for action last accessed information

The following table lists the actions for which action last accessed information is available.

Service prefix Actions

access-analyzer access-analyzer:ApplyArchiveRule

access-analyzer:CancelPolicyGeneration

access-analyzer:CreateAccessPreview

Refining permissions using access information 1027

https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazontextract.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazontimestream.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awstelconetworkbuilder.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazontranscribe.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awstransferfamily.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazontranslate.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonconnectvoiceid.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonvpclattice.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awswafv2.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awswell-architectedtool.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonconnectwisdom.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonworklink.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonworkspaces.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awsx-ray.html

AWS Identity and Access Management User Guide

Service prefix Actions

access-analyzer:CreateAnalyzer

access-analyzer:CreateArchiveRule

access-analyzer:DeleteAnalyzer

access-analyzer:DeleteArchiveRule

access-analyzer:GetAccessPreview

access-analyzer:GetAnalyzedResource

access-analyzer:GetAnalyzer

access-analyzer:GetArchiveRule

access-analyzer:GetFinding

access-analyzer:GetGeneratedPolicy

access-analyzer:ListAccessPreviewFindings

access-analyzer:ListAccessPreviews

access-analyzer:ListAnalyzedResources

access-analyzer:ListAnalyzers

access-analyzer:ListArchiveRules

access-analyzer:ListFindings

access-analyzer:ListPolicyGenerations

access-analyzer:StartPolicyGeneration

access-analyzer:StartResourceScan

access-analyzer:UpdateArchiveRule

access-analyzer:UpdateFindings

Refining permissions using access information 1028

AWS Identity and Access Management User Guide

Service prefix Actions

access-analyzer:ValidatePolicy

account account:DeleteAlternateContact

account:DisableRegion

account:EnableRegion

account:GetAlternateContact

account:GetContactInformation

account:GetRegionOptStatus

account:ListRegions

account:PutAlternateContact

account:PutContactInformation

Refining permissions using access information 1029

AWS Identity and Access Management User Guide

Service prefix Actions

acm acm:DeleteCertificate

acm:DescribeCertificate

acm:ExportCertificate

acm:GetAccountConfiguration

acm:GetCertificate

acm:ImportCertificate

acm:ListCertificates

acm:PutAccountConfiguration

acm:RenewCertificate

acm:RequestCertificate

acm:ResendValidationEmail

acm:UpdateCertificateOptions

airflow airflow:CreateCliToken

airflow:CreateEnvironment

airflow:CreateWebLoginToken

airflow:DeleteEnvironment

airflow:GetEnvironment

airflow:ListEnvironments

airflow:UpdateEnvironment

Refining permissions using access information 1030

AWS Identity and Access Management User Guide

Service prefix Actions

amplify amplify:CreateApp

amplify:CreateBackendEnvironment

amplify:CreateBranch

amplify:CreateDeployment

amplify:CreateDomainAssociation

amplify:CreateWebHook

amplify:DeleteApp

amplify:DeleteBackendEnvironment

amplify:DeleteBranch

amplify:DeleteDomainAssociation

amplify:DeleteJob

amplify:DeleteWebHook

amplify:GenerateAccessLogs

amplify:GetApp

amplify:GetArtifactUrl

amplify:GetBackendEnvironment

amplify:GetBranch

amplify:GetDomainAssociation

amplify:GetJob

amplify:GetWebHook

amplify:ListApps

Refining permissions using access information 1031

AWS Identity and Access Management User Guide

Service prefix Actions

amplify:ListArtifacts

amplify:ListBackendEnvironments

amplify:ListBranches

amplify:ListDomainAssociations

amplify:ListJobs

amplify:ListWebHooks

amplify:StartDeployment

amplify:StartJob

amplify:StopJob

amplify:UpdateApp

amplify:UpdateBranch

amplify:UpdateDomainAssociation

amplify:UpdateWebHook

Refining permissions using access information 1032

AWS Identity and Access Management User Guide

Service prefix Actions

amplifyuibuilder amplifyuibuilder:CreateComponent

amplifyuibuilder:CreateForm

amplifyuibuilder:CreateTheme

amplifyuibuilder:DeleteComponent

amplifyuibuilder:DeleteForm

amplifyuibuilder:DeleteTheme

amplifyuibuilder:ExportComponents

amplifyuibuilder:ExportThemes

amplifyuibuilder:GetCodegenJob

amplifyuibuilder:GetComponent

amplifyuibuilder:GetForm

amplifyuibuilder:GetTheme

amplifyuibuilder:ListCodegenJobs

amplifyuibuilder:ListComponents

amplifyuibuilder:ListForms

amplifyuibuilder:ListThemes

amplifyuibuilder:ResetMetadataFlag

amplifyuibuilder:StartCodegenJob

amplifyuibuilder:UpdateComponent

amplifyuibuilder:UpdateForm

amplifyuibuilder:UpdateTheme

Refining permissions using access information 1033

AWS Identity and Access Management User Guide

Service prefix Actions

app-integrations app-integrations:CreateApplication

app-integrations:CreateDataIntegration

app-integrations:CreateEventIntegration

app-integrations:DeleteDataIntegration

app-integrations:DeleteEventIntegration

app-integrations:GetApplication

app-integrations:GetDataIntegration

app-integrations:GetEventIntegration

app-integrations:ListApplications

app-integrations:ListDataIntegrationAssociations

app-integrations:ListDataIntegrations

app-integrations:ListEventIntegrationAssociations

app-integrations:ListEventIntegrations

app-integrations:UpdateApplication

app-integrations:UpdateDataIntegration

app-integrations:UpdateEventIntegration

Refining permissions using access information 1034

AWS Identity and Access Management User Guide

Service prefix Actions

appconfig appconfig:CreateApplication

appconfig:CreateConfigurationProfile

appconfig:CreateDeploymentStrategy

appconfig:CreateEnvironment

appconfig:CreateExtension

appconfig:CreateExtensionAssociation

appconfig:CreateHostedConfigurationVersion

appconfig:DeleteApplication

appconfig:DeleteConfigurationProfile

appconfig:DeleteDeploymentStrategy

appconfig:DeleteEnvironment

appconfig:DeleteExtension

appconfig:DeleteExtensionAssociation

appconfig:DeleteHostedConfigurationVersion

appconfig:GetApplication

appconfig:GetConfiguration

appconfig:GetConfigurationProfile

appconfig:GetDeployment

appconfig:GetDeploymentStrategy

appconfig:GetEnvironment

appconfig:GetExtension

Refining permissions using access information 1035

AWS Identity and Access Management User Guide

Service prefix Actions

appconfig:GetExtensionAssociation

appconfig:GetHostedConfigurationVersion

appconfig:ListApplications

appconfig:ListConfigurationProfiles

appconfig:ListDeployments

appconfig:ListDeploymentStrategies

appconfig:ListEnvironments

appconfig:ListExtensionAssociations

appconfig:ListExtensions

appconfig:ListHostedConfigurationVersions

appconfig:StartDeployment

appconfig:StopDeployment

appconfig:UpdateApplication

appconfig:UpdateConfigurationProfile

appconfig:UpdateDeploymentStrategy

appconfig:UpdateEnvironment

appconfig:UpdateExtension

appconfig:UpdateExtensionAssociation

appconfig:ValidateConfiguration

Refining permissions using access information 1036

AWS Identity and Access Management User Guide

Service prefix Actions

appflow appflow:CancelFlowExecutions

appflow:CreateConnectorProfile

appflow:CreateFlow

appflow:DeleteConnectorProfile

appflow:DeleteFlow

appflow:DescribeConnector

appflow:DescribeConnectorEntity

appflow:DescribeConnectorProfiles

appflow:DescribeConnectors

appflow:DescribeFlow

appflow:DescribeFlowExecutionRecords

appflow:ListConnectorEntities

appflow:ListConnectors

appflow:ListFlows

appflow:RegisterConnector

appflow:ResetConnectorMetadataCache

appflow:StartFlow

appflow:StopFlow

appflow:UnRegisterConnector

appflow:UpdateConnectorProfile

appflow:UpdateConnectorRegistration

Refining permissions using access information 1037

AWS Identity and Access Management User Guide

Service prefix Actions

appflow:UpdateFlow

application-cost-profiler application-cost-profiler:DeleteReportDefinition

application-cost-profiler:GetReportDefinition

application-cost-profiler:ImportApplicationUsage

application-cost-profiler:ListReportDefinitions

application-cost-profiler:PutReportDefinition

application-cost-profiler:UpdateReportDefinition

Refining permissions using access information 1038

AWS Identity and Access Management User Guide

Service prefix Actions

applicationinsights applicationinsights:AddWorkload

applicationinsights:CreateApplication

applicationinsights:CreateComponent

applicationinsights:CreateLogPattern

applicationinsights:DeleteApplication

applicationinsights:DeleteComponent

applicationinsights:DeleteLogPattern

applicationinsights:DescribeApplication

applicationinsights:DescribeComponent

applicationinsights:DescribeComponentConfiguration

applicationinsights:DescribeComponentConfigurationReco
mmendation

applicationinsights:DescribeLogPattern

applicationinsights:DescribeObservation

applicationinsights:DescribeProblem

applicationinsights:DescribeProblemObservations

applicationinsights:DescribeWorkload

applicationinsights:ListApplications

applicationinsights:ListComponents

applicationinsights:ListConfigurationHistory

applicationinsights:ListLogPatterns

Refining permissions using access information 1039

AWS Identity and Access Management User Guide

Service prefix Actions

applicationinsights:ListLogPatternSets

applicationinsights:ListProblems

applicationinsights:ListWorkloads

applicationinsights:RemoveWorkload

applicationinsights:UpdateApplication

applicationinsights:UpdateComponent

applicationinsights:UpdateComponentConfiguration

applicationinsights:UpdateLogPattern

applicationinsights:UpdateWorkload

Refining permissions using access information 1040

AWS Identity and Access Management User Guide

Service prefix Actions

appmesh appmesh:CreateGatewayRoute

appmesh:CreateMesh

appmesh:CreateRoute

appmesh:CreateVirtualGateway

appmesh:CreateVirtualNode

appmesh:CreateVirtualRouter

appmesh:CreateVirtualService

appmesh:DeleteGatewayRoute

appmesh:DeleteMesh

appmesh:DeleteRoute

appmesh:DeleteVirtualGateway

appmesh:DeleteVirtualNode

appmesh:DeleteVirtualRouter

appmesh:DeleteVirtualService

appmesh:DescribeGatewayRoute

appmesh:DescribeMesh

appmesh:DescribeRoute

appmesh:DescribeVirtualGateway

appmesh:DescribeVirtualNode

appmesh:DescribeVirtualRouter

appmesh:DescribeVirtualService

Refining permissions using access information 1041

AWS Identity and Access Management User Guide

Service prefix Actions

appmesh:ListGatewayRoutes

appmesh:ListMeshes

appmesh:ListRoutes

appmesh:ListVirtualGateways

appmesh:ListVirtualNodes

appmesh:ListVirtualRouters

appmesh:ListVirtualServices

appmesh:StreamAggregatedResources

appmesh:UpdateGatewayRoute

appmesh:UpdateMesh

appmesh:UpdateRoute

appmesh:UpdateVirtualGateway

appmesh:UpdateVirtualNode

appmesh:UpdateVirtualRouter

appmesh:UpdateVirtualService

Refining permissions using access information 1042

AWS Identity and Access Management User Guide

Service prefix Actions

appstream appstream:AssociateAppBlockBuilderAppBlock

appstream:AssociateApplicationFleet

appstream:AssociateApplicationToEntitlement

appstream:AssociateFleet

appstream:BatchAssociateUserStack

appstream:BatchDisassociateUserStack

appstream:CopyImage

appstream:CreateAppBlock

appstream:CreateAppBlockBuilder

appstream:CreateAppBlockBuilderStreamingURL

appstream:CreateApplication

appstream:CreateDirectoryConfig

appstream:CreateEntitlement

appstream:CreateFleet

appstream:CreateImageBuilder

appstream:CreateImageBuilderStreamingURL

appstream:CreateStack

appstream:CreateStreamingURL

appstream:CreateUpdatedImage

appstream:CreateUsageReportSubscription

appstream:CreateUser

Refining permissions using access information 1043

AWS Identity and Access Management User Guide

Service prefix Actions

appstream:DeleteAppBlock

appstream:DeleteAppBlockBuilder

appstream:DeleteApplication

appstream:DeleteDirectoryConfig

appstream:DeleteEntitlement

appstream:DeleteFleet

appstream:DeleteImage

appstream:DeleteImageBuilder

appstream:DeleteImagePermissions

appstream:DeleteStack

appstream:DeleteUsageReportSubscription

appstream:DeleteUser

appstream:DescribeAppBlockBuilderAppBlockAssociations

appstream:DescribeAppBlockBuilders

appstream:DescribeAppBlocks

appstream:DescribeApplicationFleetAssociations

appstream:DescribeApplications

appstream:DescribeDirectoryConfigs

appstream:DescribeEntitlements

appstream:DescribeFleets

appstream:DescribeImageBuilders

Refining permissions using access information 1044

AWS Identity and Access Management User Guide

Service prefix Actions

appstream:DescribeImagePermissions

appstream:DescribeImages

appstream:DescribeSessions

appstream:DescribeStacks

appstream:DescribeUsageReportSubscriptions

appstream:DescribeUsers

appstream:DescribeUserStackAssociations

appstream:DisableUser

appstream:DisassociateAppBlockBuilderAppBlock

appstream:DisassociateApplicationFleet

appstream:DisassociateApplicationFromEntitlement

appstream:DisassociateFleet

appstream:EnableUser

appstream:ExpireSession

appstream:ListAssociatedFleets

appstream:ListAssociatedStacks

appstream:ListEntitledApplications

appstream:StartAppBlockBuilder

appstream:StartFleet

appstream:StartImageBuilder

appstream:StopAppBlockBuilder

Refining permissions using access information 1045

AWS Identity and Access Management User Guide

Service prefix Actions

appstream:StopFleet

appstream:StopImageBuilder

appstream:UpdateAppBlockBuilder

appstream:UpdateApplication

appstream:UpdateDirectoryConfig

appstream:UpdateEntitlement

appstream:UpdateFleet

appstream:UpdateImagePermissions

appstream:UpdateStack

Refining permissions using access information 1046

AWS Identity and Access Management User Guide

Service prefix Actions

appsync appsync:AssociateApi

appsync:AssociateMergedGraphqlApi

appsync:AssociateSourceGraphqlApi

appsync:CreateApiCache

appsync:CreateApiKey

appsync:CreateDataSource

appsync:CreateDomainName

appsync:CreateFunction

appsync:CreateGraphqlApi

appsync:CreateResolver

appsync:CreateType

appsync:DeleteApiCache

appsync:DeleteApiKey

appsync:DeleteDataSource

appsync:DeleteDomainName

appsync:DeleteFunction

appsync:DeleteGraphqlApi

appsync:DeleteResolver

appsync:DeleteType

appsync:DisassociateApi

appsync:DisassociateMergedGraphqlApi

Refining permissions using access information 1047

AWS Identity and Access Management User Guide

Service prefix Actions

appsync:DisassociateSourceGraphqlApi

appsync:EvaluateCode

appsync:EvaluateMappingTemplate

appsync:FlushApiCache

appsync:GetApiAssociation

appsync:GetApiCache

appsync:GetDataSource

appsync:GetDomainName

appsync:GetFunction

appsync:GetGraphqlApi

appsync:GetIntrospectionSchema

appsync:GetResolver

appsync:GetSchemaCreationStatus

appsync:GetSourceApiAssociation

appsync:GetType

appsync:ListApiKeys

appsync:ListDataSources

appsync:ListDomainNames

appsync:ListFunctions

appsync:ListGraphqlApis

appsync:ListResolvers

Refining permissions using access information 1048

AWS Identity and Access Management User Guide

Service prefix Actions

appsync:ListResolversByFunction

appsync:ListSourceApiAssociations

appsync:ListTypes

appsync:ListTypesByAssociation

appsync:StartSchemaCreation

appsync:StartSchemaMerge

appsync:UpdateApiCache

appsync:UpdateApiKey

appsync:UpdateDataSource

appsync:UpdateDomainName

appsync:UpdateFunction

appsync:UpdateGraphqlApi

appsync:UpdateResolver

appsync:UpdateSourceApiAssociation

appsync:UpdateType

Refining permissions using access information 1049

AWS Identity and Access Management User Guide

Service prefix Actions

aps aps:CreateAlertManagerDefinition

aps:CreateLoggingConfiguration

aps:CreateRuleGroupsNamespace

aps:CreateWorkspace

aps:DeleteAlertManagerDefinition

aps:DeleteLoggingConfiguration

aps:DeleteRuleGroupsNamespace

aps:DeleteWorkspace

aps:DescribeAlertManagerDefinition

aps:DescribeLoggingConfiguration

aps:DescribeRuleGroupsNamespace

aps:DescribeWorkspace

aps:ListRuleGroupsNamespaces

aps:ListWorkspaces

aps:PutAlertManagerDefinition

aps:PutRuleGroupsNamespace

aps:UpdateLoggingConfiguration

aps:UpdateWorkspaceAlias

Refining permissions using access information 1050

AWS Identity and Access Management User Guide

Service prefix Actions

athena athena:BatchGetNamedQuery

athena:BatchGetPreparedStatement

athena:BatchGetQueryExecution

athena:CancelCapacityReservation

athena:CreateCapacityReservation

athena:CreateDataCatalog

athena:CreateNamedQuery

athena:CreateNotebook

athena:CreatePreparedStatement

athena:CreatePresignedNotebookUrl

athena:CreateWorkGroup

athena:DeleteCapacityReservation

athena:DeleteDataCatalog

athena:DeleteNamedQuery

athena:DeleteNotebook

athena:DeletePreparedStatement

athena:DeleteWorkGroup

athena:ExportNotebook

athena:GetCalculationExecution

athena:GetCalculationExecutionCode

athena:GetCalculationExecutionStatus

Refining permissions using access information 1051

AWS Identity and Access Management User Guide

Service prefix Actions

athena:GetCapacityAssignmentConfiguration

athena:GetCapacityReservation

athena:GetDatabase

athena:GetDataCatalog

athena:GetNamedQuery

athena:GetNotebookMetadata

athena:GetPreparedStatement

athena:GetQueryExecution

athena:GetQueryResults

athena:GetQueryResultsStream

athena:GetQueryRuntimeStatistics

athena:GetSession

athena:GetSessionStatus

athena:GetTableMetadata

athena:GetWorkGroup

athena:ImportNotebook

athena:ListApplicationDPUSizes

athena:ListCalculationExecutions

athena:ListCapacityReservations

athena:ListDatabases

athena:ListDataCatalogs

Refining permissions using access information 1052

AWS Identity and Access Management User Guide

Service prefix Actions

athena:ListEngineVersions

athena:ListExecutors

athena:ListNamedQueries

athena:ListNotebookMetadata

athena:ListNotebookSessions

athena:ListPreparedStatements

athena:ListQueryExecutions

athena:ListSessions

athena:ListTableMetadata

athena:ListWorkGroups

athena:PutCapacityAssignmentConfiguration

athena:StartCalculationExecution

athena:StartQueryExecution

athena:StartSession

athena:StopCalculationExecution

athena:StopQueryExecution

athena:TerminateSession

athena:UpdateCapacityReservation

athena:UpdateDataCatalog

athena:UpdateNamedQuery

athena:UpdateNotebook

Refining permissions using access information 1053

AWS Identity and Access Management User Guide

Service prefix Actions

athena:UpdateNotebookMetadata

athena:UpdatePreparedStatement

athena:UpdateWorkGroup

Refining permissions using access information 1054

AWS Identity and Access Management User Guide

Service prefix Actions

auditmanager auditmanager:AssociateAssessmentReportEvidenceFolder

auditmanager:BatchAssociateAssessmentReportEvidence

auditmanager:BatchCreateDelegationByAssessment

auditmanager:BatchDeleteDelegationByAssessment

auditmanager:BatchDisassociateAssessmentReportEvidence

auditmanager:BatchImportEvidenceToAssessmentControl

auditmanager:CreateAssessment

auditmanager:CreateAssessmentFramework

auditmanager:CreateAssessmentReport

auditmanager:CreateControl

auditmanager:DeleteAssessment

auditmanager:DeleteAssessmentFramework

auditmanager:DeleteAssessmentFrameworkShare

auditmanager:DeleteAssessmentReport

auditmanager:DeleteControl

auditmanager:DeregisterAccount

auditmanager:DeregisterOrganizationAdminAccount

auditmanager:DisassociateAssessmentReportEvidenceFolder

auditmanager:GetAccountStatus

auditmanager:GetAssessment

auditmanager:GetAssessmentFramework

Refining permissions using access information 1055

AWS Identity and Access Management User Guide

Service prefix Actions

auditmanager:GetAssessmentReportUrl

auditmanager:GetChangeLogs

auditmanager:GetControl

auditmanager:GetDelegations

auditmanager:GetEvidence

auditmanager:GetEvidenceByEvidenceFolder

auditmanager:GetEvidenceFileUploadUrl

auditmanager:GetEvidenceFolder

auditmanager:GetEvidenceFoldersByAssessment

auditmanager:GetEvidenceFoldersByAssessmentControl

auditmanager:GetInsights

auditmanager:GetInsightsByAssessment

auditmanager:GetOrganizationAdminAccount

auditmanager:GetServicesInScope

auditmanager:GetSettings

auditmanager:ListAssessmentControlInsightsByControlDomain

auditmanager:ListAssessmentFrameworks

auditmanager:ListAssessmentFrameworkShareRequests

auditmanager:ListAssessmentReports

auditmanager:ListAssessments

auditmanager:ListControlDomainInsights

Refining permissions using access information 1056

AWS Identity and Access Management User Guide

Service prefix Actions

auditmanager:ListControlDomainInsightsByAssessment

auditmanager:ListControlInsightsByControlDomain

auditmanager:ListControls

auditmanager:ListKeywordsForDataSource

auditmanager:ListNotifications

auditmanager:RegisterAccount

auditmanager:RegisterOrganizationAdminAccount

auditmanager:StartAssessmentFrameworkShare

auditmanager:UpdateAssessment

auditmanager:UpdateAssessmentControl

auditmanager:UpdateAssessmentControlSetStatus

auditmanager:UpdateAssessmentFramework

auditmanager:UpdateAssessmentFrameworkShare

auditmanager:UpdateAssessmentStatus

auditmanager:UpdateControl

auditmanager:UpdateSettings

auditmanager:ValidateAssessmentReportIntegrity

Refining permissions using access information 1057

AWS Identity and Access Management User Guide

Service prefix Actions

autoscaling autoscaling:AttachInstances

autoscaling:AttachLoadBalancers

autoscaling:AttachLoadBalancerTargetGroups

autoscaling:AttachTrafficSources

autoscaling:BatchDeleteScheduledAction

autoscaling:BatchPutScheduledUpdateGroupAction

autoscaling:CancelInstanceRefresh

autoscaling:CompleteLifecycleAction

autoscaling:CreateAutoScalingGroup

autoscaling:CreateLaunchConfiguration

autoscaling:DeleteAutoScalingGroup

autoscaling:DeleteLaunchConfiguration

autoscaling:DeleteLifecycleHook

autoscaling:DeleteNotificationConfiguration

autoscaling:DeletePolicy

autoscaling:DeleteScheduledAction

autoscaling:DeleteWarmPool

autoscaling:DescribeAccountLimits

autoscaling:DescribeAdjustmentTypes

autoscaling:DescribeAutoScalingGroups

autoscaling:DescribeAutoScalingInstances

Refining permissions using access information 1058

AWS Identity and Access Management User Guide

Service prefix Actions

autoscaling:DescribeAutoScalingNotificationTypes

autoscaling:DescribeInstanceRefreshes

autoscaling:DescribeLaunchConfigurations

autoscaling:DescribeLifecycleHooks

autoscaling:DescribeLifecycleHookTypes

autoscaling:DescribeLoadBalancers

autoscaling:DescribeLoadBalancerTargetGroups

autoscaling:DescribeMetricCollectionTypes

autoscaling:DescribeNotificationConfigurations

autoscaling:DescribePolicies

autoscaling:DescribeScalingActivities

autoscaling:DescribeScalingProcessTypes

autoscaling:DescribeScheduledActions

autoscaling:DescribeTerminationPolicyTypes

autoscaling:DescribeTrafficSources

autoscaling:DescribeWarmPool

autoscaling:DetachInstances

autoscaling:DetachLoadBalancers

autoscaling:DetachLoadBalancerTargetGroups

autoscaling:DetachTrafficSources

autoscaling:DisableMetricsCollection

Refining permissions using access information 1059

AWS Identity and Access Management User Guide

Service prefix Actions

autoscaling:EnableMetricsCollection

autoscaling:EnterStandby

autoscaling:ExecutePolicy

autoscaling:ExitStandby

autoscaling:GetPredictiveScalingForecast

autoscaling:PutLifecycleHook

autoscaling:PutNotificationConfiguration

autoscaling:PutScalingPolicy

autoscaling:PutScheduledUpdateGroupAction

autoscaling:PutWarmPool

autoscaling:RecordLifecycleActionHeartbeat

autoscaling:ResumeProcesses

autoscaling:RollbackInstanceRefresh

autoscaling:SetDesiredCapacity

autoscaling:SetInstanceHealth

autoscaling:SetInstanceProtection

autoscaling:StartInstanceRefresh

autoscaling:SuspendProcesses

autoscaling:TerminateInstanceInAutoScalingGroup

autoscaling:UpdateAutoScalingGroup

aws-marketplace aws-marketplace:GetEntitlements

Refining permissions using access information 1060

AWS Identity and Access Management User Guide

Service prefix Actions

backup backup:CancelLegalHold

backup:CreateBackupPlan

backup:CreateBackupSelection

backup:CreateBackupVault

backup:CreateFramework

backup:CreateLegalHold

backup:CreateLogicallyAirGappedBackupVault

backup:CreateReportPlan

backup:DeleteBackupPlan

backup:DeleteBackupSelection

backup:DeleteBackupVault

backup:DeleteBackupVaultAccessPolicy

backup:DeleteBackupVaultLockConfiguration

backup:DeleteBackupVaultNotifications

backup:DeleteFramework

backup:DeleteRecoveryPoint

backup:DeleteReportPlan

backup:DescribeBackupJob

backup:DescribeBackupVault

backup:DescribeCopyJob

backup:DescribeFramework

Refining permissions using access information 1061

AWS Identity and Access Management User Guide

Service prefix Actions

backup:DescribeGlobalSettings

backup:DescribeProtectedResource

backup:DescribeRecoveryPoint

backup:DescribeRegionSettings

backup:DescribeReportJob

backup:DescribeReportPlan

backup:DescribeRestoreJob

backup:DisassociateRecoveryPoint

backup:DisassociateRecoveryPointFromParent

backup:ExportBackupPlanTemplate

backup:GetBackupPlan

backup:GetBackupPlanFromJSON

backup:GetBackupPlanFromTemplate

backup:GetBackupSelection

backup:GetBackupVaultAccessPolicy

backup:GetBackupVaultNotifications

backup:GetLegalHold

backup:GetRecoveryPointRestoreMetadata

backup:GetSupportedResourceTypes

backup:ListBackupJobs

backup:ListBackupPlans

Refining permissions using access information 1062

AWS Identity and Access Management User Guide

Service prefix Actions

backup:ListBackupPlanTemplates

backup:ListBackupPlanVersions

backup:ListBackupSelections

backup:ListBackupVaults

backup:ListCopyJobs

backup:ListFrameworks

backup:ListLegalHolds

backup:ListProtectedResources

backup:ListRecoveryPointsByBackupVault

backup:ListRecoveryPointsByLegalHold

backup:ListRecoveryPointsByResource

backup:ListReportJobs

backup:ListReportPlans

backup:ListRestoreJobs

backup:PutBackupVaultAccessPolicy

backup:PutBackupVaultLockConfiguration

backup:PutBackupVaultNotifications

backup:StartBackupJob

backup:StartCopyJob

backup:StartReportJob

backup:StartRestoreJob

Refining permissions using access information 1063

AWS Identity and Access Management User Guide

Service prefix Actions

backup:StopBackupJob

backup:UpdateBackupPlan

backup:UpdateFramework

backup:UpdateGlobalSettings

backup:UpdateRecoveryPointLifecycle

backup:UpdateRegionSettings

backup:UpdateReportPlan

Refining permissions using access information 1064

AWS Identity and Access Management User Guide

Service prefix Actions

batch batch:CancelJob

batch:CreateComputeEnvironment

batch:CreateJobQueue

batch:CreateSchedulingPolicy

batch:DeleteComputeEnvironment

batch:DeleteJobQueue

batch:DeleteSchedulingPolicy

batch:DeregisterJobDefinition

batch:DescribeComputeEnvironments

batch:DescribeJobDefinitions

batch:DescribeJobQueues

batch:DescribeJobs

batch:DescribeSchedulingPolicies

batch:ListJobs

batch:ListSchedulingPolicies

batch:RegisterJobDefinition

batch:SubmitJob

batch:TerminateJob

batch:UpdateComputeEnvironment

batch:UpdateJobQueue

batch:UpdateSchedulingPolicy

Refining permissions using access information 1065

AWS Identity and Access Management User Guide

Service prefix Actions

braket braket:CancelJob

braket:CancelQuantumTask

braket:CreateJob

braket:CreateQuantumTask

braket:GetDevice

braket:GetJob

braket:GetQuantumTask

braket:SearchDevices

braket:SearchJobs

braket:SearchQuantumTasks

Refining permissions using access information 1066

AWS Identity and Access Management User Guide

Service prefix Actions

budgets budgets:ModifyBudget

budgets:CreateBudgetAction

budgets:ModifyBudget

budgets:ModifyBudget

budgets:ModifyBudget

budgets:DeleteBudgetAction

budgets:ModifyBudget

budgets:ModifyBudget

budgets:ViewBudget

budgets:DescribeBudgetAction

budgets:DescribeBudgetActionHistories

budgets:DescribeBudgetActionsForAccount

budgets:DescribeBudgetActionsForBudget

budgets:ViewBudget

budgets:ViewBudget

budgets:ViewBudget

budgets:ViewBudget

budgets:ViewBudget

budgets:ExecuteBudgetAction

budgets:ModifyBudget

budgets:UpdateBudgetAction

Refining permissions using access information 1067

AWS Identity and Access Management User Guide

Service prefix Actions

budgets:ModifyBudget

budgets:ModifyBudget

cloud9 cloud9:CreateEnvironmentEC2

cloud9:CreateEnvironmentMembership

cloud9:DeleteEnvironment

cloud9:DeleteEnvironmentMembership

cloud9:DescribeEnvironmentMemberships

cloud9:DescribeEnvironments

cloud9:DescribeEnvironmentStatus

cloud9:ListEnvironments

cloud9:UpdateEnvironment

cloud9:UpdateEnvironmentMembership

Refining permissions using access information 1068

AWS Identity and Access Management User Guide

Service prefix Actions

cloudformation cloudformation:BatchDescribeTypeConfigurations

cloudformation:CancelUpdateStack

cloudformation:ContinueUpdateRollback

cloudformation:CreateChangeSet

cloudformation:CreateStack

cloudformation:CreateStackInstances

cloudformation:CreateStackSet

cloudformation:DeactivateType

cloudformation:DeleteChangeSet

cloudformation:DeleteStack

cloudformation:DeleteStackInstances

cloudformation:DeleteStackSet

cloudformation:DeregisterType

cloudformation:DescribeAccountLimits

cloudformation:DescribeChangeSet

cloudformation:DescribeChangeSetHooks

cloudformation:DescribeOrganizationsAccess

cloudformation:DescribePublisher

cloudformation:DescribeStackDriftDetectionStatus

cloudformation:DescribeStackEvents

cloudformation:DescribeStackInstance

Refining permissions using access information 1069

AWS Identity and Access Management User Guide

Service prefix Actions

cloudformation:DescribeStackResource

cloudformation:DescribeStackResourceDrifts

cloudformation:DescribeStackResources

cloudformation:DescribeStacks

cloudformation:DescribeStackSet

cloudformation:DescribeStackSetOperation

cloudformation:DescribeType

cloudformation:DescribeTypeRegistration

cloudformation:DetectStackDrift

cloudformation:DetectStackResourceDrift

cloudformation:DetectStackSetDrift

cloudformation:EstimateTemplateCost

cloudformation:ExecuteChangeSet

cloudformation:GetStackPolicy

cloudformation:GetTemplate

cloudformation:GetTemplateSummary

cloudformation:ImportStacksToStackSet

cloudformation:ListChangeSets

cloudformation:ListExports

cloudformation:ListImports

cloudformation:ListStackInstanceResourceDrifts

Refining permissions using access information 1070

AWS Identity and Access Management User Guide

Service prefix Actions

cloudformation:ListStackInstances

cloudformation:ListStackResources

cloudformation:ListStackSetOperationResults

cloudformation:ListStackSetOperations

cloudformation:ListStackSets

cloudformation:ListTypeRegistrations

cloudformation:ListTypes

cloudformation:ListTypeVersions

cloudformation:PublishType

cloudformation:RecordHandlerProgress

cloudformation:RegisterPublisher

cloudformation:RegisterType

cloudformation:RollbackStack

cloudformation:SetStackPolicy

cloudformation:SetTypeConfiguration

cloudformation:SetTypeDefaultVersion

cloudformation:SignalResource

cloudformation:StopStackSetOperation

cloudformation:TestType

cloudformation:UpdateStack

cloudformation:UpdateStackInstances

Refining permissions using access information 1071

AWS Identity and Access Management User Guide

Service prefix Actions

cloudformation:UpdateStackSet

cloudformation:UpdateTerminationProtection

cloudformation:ValidateTemplate

Refining permissions using access information 1072

AWS Identity and Access Management User Guide

Service prefix Actions

cloudfront cloudfront:AssociateAlias

cloudfront:CreateCachePolicy

cloudfront:CreateCloudFrontOriginAccessIdentity

cloudfront:CreateContinuousDeploymentPolicy

cloudfront:CreateFieldLevelEncryptionConfig

cloudfront:CreateFieldLevelEncryptionProfile

cloudfront:CreateFunction

cloudfront:CreateInvalidation

cloudfront:CreateKeyGroup

cloudfront:CreateMonitoringSubscription

cloudfront:CreateOriginAccessControl

cloudfront:CreateOriginRequestPolicy

cloudfront:CreatePublicKey

cloudfront:CreateRealtimeLogConfig

cloudfront:CreateResponseHeadersPolicy

cloudfront:DeleteCachePolicy

cloudfront:DeleteCloudFrontOriginAccessIdentity

cloudfront:DeleteContinuousDeploymentPolicy

cloudfront:DeleteDistribution

cloudfront:DeleteFieldLevelEncryptionConfig

cloudfront:DeleteFieldLevelEncryptionProfile

Refining permissions using access information 1073

AWS Identity and Access Management User Guide

Service prefix Actions

cloudfront:DeleteFunction

cloudfront:DeleteKeyGroup

cloudfront:DeleteMonitoringSubscription

cloudfront:DeleteOriginAccessControl

cloudfront:DeleteOriginRequestPolicy

cloudfront:DeletePublicKey

cloudfront:DeleteRealtimeLogConfig

cloudfront:DeleteResponseHeadersPolicy

cloudfront:DeleteStreamingDistribution

cloudfront:DescribeFunction

cloudfront:GetCachePolicy

cloudfront:GetCachePolicyConfig

cloudfront:GetCloudFrontOriginAccessIdentity

cloudfront:GetCloudFrontOriginAccessIdentityConfig

cloudfront:GetContinuousDeploymentPolicy

cloudfront:GetContinuousDeploymentPolicyConfig

cloudfront:GetDistributionConfig

cloudfront:GetFieldLevelEncryption

cloudfront:GetFieldLevelEncryptionConfig

cloudfront:GetFieldLevelEncryptionProfile

cloudfront:GetFieldLevelEncryptionProfileConfig

Refining permissions using access information 1074

AWS Identity and Access Management User Guide

Service prefix Actions

cloudfront:GetFunction

cloudfront:GetInvalidation

cloudfront:GetKeyGroup

cloudfront:GetKeyGroupConfig

cloudfront:GetMonitoringSubscription

cloudfront:GetOriginAccessControl

cloudfront:GetOriginAccessControlConfig

cloudfront:GetOriginRequestPolicy

cloudfront:GetOriginRequestPolicyConfig

cloudfront:GetPublicKey

cloudfront:GetPublicKeyConfig

cloudfront:GetRealtimeLogConfig

cloudfront:GetResponseHeadersPolicy

cloudfront:GetResponseHeadersPolicyConfig

cloudfront:GetStreamingDistribution

cloudfront:GetStreamingDistributionConfig

cloudfront:ListCachePolicies

cloudfront:ListCloudFrontOriginAccessIdentities

cloudfront:ListConflictingAliases

cloudfront:ListContinuousDeploymentPolicies

cloudfront:ListDistributions

Refining permissions using access information 1075

AWS Identity and Access Management User Guide

Service prefix Actions

cloudfront:ListDistributionsByCachePolicyId

cloudfront:ListDistributionsByKeyGroup

cloudfront:ListDistributionsByOriginRequestPolicyId

cloudfront:ListDistributionsByRealtimeLogConfig

cloudfront:ListDistributionsByResponseHeadersPolicyId

cloudfront:ListDistributionsByWebACLId

cloudfront:ListFieldLevelEncryptionConfigs

cloudfront:ListFieldLevelEncryptionProfiles

cloudfront:ListFunctions

cloudfront:ListInvalidations

cloudfront:ListKeyGroups

cloudfront:ListOriginAccessControls

cloudfront:ListOriginRequestPolicies

cloudfront:ListPublicKeys

cloudfront:ListRealtimeLogConfigs

cloudfront:ListResponseHeadersPolicies

cloudfront:ListStreamingDistributions

cloudfront:PublishFunction

cloudfront:TestFunction

cloudfront:UpdateCachePolicy

cloudfront:UpdateCloudFrontOriginAccessIdentity

Refining permissions using access information 1076

AWS Identity and Access Management User Guide

Service prefix Actions

cloudfront:UpdateContinuousDeploymentPolicy

cloudfront:UpdateDistribution

cloudfront:UpdateFieldLevelEncryptionConfig

cloudfront:UpdateFieldLevelEncryptionProfile

cloudfront:UpdateFunction

cloudfront:UpdateKeyGroup

cloudfront:UpdateOriginAccessControl

cloudfront:UpdateOriginRequestPolicy

cloudfront:UpdatePublicKey

cloudfront:UpdateRealtimeLogConfig

cloudfront:UpdateResponseHeadersPolicy

Refining permissions using access information 1077

AWS Identity and Access Management User Guide

Service prefix Actions

cloudhsm cloudhsm:CreateHapg

cloudhsm:CreateLunaClient

cloudhsm:DeleteBackup

cloudhsm:DeleteHapg

cloudhsm:DeleteHsm

cloudhsm:DeleteLunaClient

cloudhsm:DescribeBackups

cloudhsm:DescribeClusters

cloudhsm:DescribeHapg

cloudhsm:DescribeHsm

cloudhsm:DescribeLunaClient

cloudhsm:GetConfig

cloudhsm:InitializeCluster

cloudhsm:ListAvailableZones

cloudhsm:ListHapgs

cloudhsm:ListHsms

cloudhsm:ListLunaClients

cloudhsm:ModifyBackupAttributes

cloudhsm:ModifyCluster

cloudhsm:ModifyHapg

cloudhsm:ModifyLunaClient

Refining permissions using access information 1078

AWS Identity and Access Management User Guide

Service prefix Actions

cloudhsm:RestoreBackup

Refining permissions using access information 1079

AWS Identity and Access Management User Guide

Service prefix Actions

cloudsearch cloudsearch:BuildSuggesters

cloudsearch:CreateDomain

cloudsearch:DefineAnalysisScheme

cloudsearch:DefineExpression

cloudsearch:DefineIndexField

cloudsearch:DefineSuggester

cloudsearch:DeleteAnalysisScheme

cloudsearch:DeleteDomain

cloudsearch:DeleteExpression

cloudsearch:DeleteIndexField

cloudsearch:DeleteSuggester

cloudsearch:DescribeAnalysisSchemes

cloudsearch:DescribeAvailabilityOptions

cloudsearch:DescribeDomainEndpointOptions

cloudsearch:DescribeDomains

cloudsearch:DescribeExpressions

cloudsearch:DescribeIndexFields

cloudsearch:DescribeScalingParameters

cloudsearch:DescribeServiceAccessPolicies

cloudsearch:DescribeSuggesters

cloudsearch:IndexDocuments

Refining permissions using access information 1080

AWS Identity and Access Management User Guide

Service prefix Actions

cloudsearch:ListDomainNames

cloudsearch:UpdateAvailabilityOptions

cloudsearch:UpdateDomainEndpointOptions

cloudsearch:UpdateScalingParameters

cloudsearch:UpdateServiceAccessPolicies

Refining permissions using access information 1081

AWS Identity and Access Management User Guide

Service prefix Actions

cloudtrail cloudtrail:CancelQuery

cloudtrail:CreateChannel

cloudtrail:CreateEventDataStore

cloudtrail:CreateTrail

cloudtrail:DeleteChannel

cloudtrail:DeleteEventDataStore

cloudtrail:DeleteResourcePolicy

cloudtrail:DeleteTrail

cloudtrail:DeregisterOrganizationDelegatedAdmin

cloudtrail:DescribeQuery

cloudtrail:DescribeTrails

cloudtrail:GetChannel

cloudtrail:GetEventDataStore

cloudtrail:GetEventSelectors

cloudtrail:GetImport

cloudtrail:GetInsightSelectors

cloudtrail:GetQueryResults

cloudtrail:GetResourcePolicy

cloudtrail:GetTrail

cloudtrail:GetTrailStatus

cloudtrail:ListChannels

Refining permissions using access information 1082

AWS Identity and Access Management User Guide

Service prefix Actions

cloudtrail:ListEventDataStores

cloudtrail:ListImportFailures

cloudtrail:ListImports

cloudtrail:ListPublicKeys

cloudtrail:ListQueries

cloudtrail:ListTrails

cloudtrail:LookupEvents

cloudtrail:PutEventSelectors

cloudtrail:PutInsightSelectors

cloudtrail:PutResourcePolicy

cloudtrail:RegisterOrganizationDelegatedAdmin

cloudtrail:RestoreEventDataStore

cloudtrail:StartEventDataStoreIngestion

cloudtrail:StartImport

cloudtrail:StartLogging

cloudtrail:StartQuery

cloudtrail:StopEventDataStoreIngestion

cloudtrail:StopImport

cloudtrail:StopLogging

cloudtrail:UpdateChannel

cloudtrail:UpdateEventDataStore

Refining permissions using access information 1083

AWS Identity and Access Management User Guide

Service prefix Actions

cloudtrail:UpdateTrail

Refining permissions using access information 1084

AWS Identity and Access Management User Guide

Service prefix Actions

cloudwatch cloudwatch:DeleteAlarms

cloudwatch:DeleteAnomalyDetector

cloudwatch:DeleteDashboards

cloudwatch:DeleteInsightRules

cloudwatch:DeleteMetricStream

cloudwatch:DescribeAlarmHistory

cloudwatch:DescribeAlarms

cloudwatch:DescribeAlarmsForMetric

cloudwatch:DescribeAnomalyDetectors

cloudwatch:DescribeInsightRules

cloudwatch:DisableAlarmActions

cloudwatch:DisableInsightRules

cloudwatch:EnableAlarmActions

cloudwatch:EnableInsightRules

cloudwatch:GetDashboard

cloudwatch:GetInsightRuleReport

cloudwatch:GetMetricStream

cloudwatch:ListDashboards

cloudwatch:ListManagedInsightRules

cloudwatch:ListMetricStreams

cloudwatch:PutAnomalyDetector

Refining permissions using access information 1085

AWS Identity and Access Management User Guide

Service prefix Actions

cloudwatch:PutCompositeAlarm

cloudwatch:PutDashboard

cloudwatch:PutInsightRule

cloudwatch:PutManagedInsightRules

cloudwatch:PutMetricAlarm

cloudwatch:PutMetricStream

cloudwatch:SetAlarmState

cloudwatch:StartMetricStreams

cloudwatch:StopMetricStreams

Refining permissions using access information 1086

AWS Identity and Access Management User Guide

Service prefix Actions

codeartifact codeartifact:AssociateExternalConnection

codeartifact:CopyPackageVersions

codeartifact:CreateDomain

codeartifact:CreateRepository

codeartifact:DeleteDomain

codeartifact:DeleteDomainPermissionsPolicy

codeartifact:DeletePackage

codeartifact:DeletePackageVersions

codeartifact:DeleteRepository

codeartifact:DeleteRepositoryPermissionsPolicy

codeartifact:DescribeDomain

codeartifact:DescribePackage

codeartifact:DescribePackageVersion

codeartifact:DescribeRepository

codeartifact:DisassociateExternalConnection

codeartifact:DisposePackageVersions

codeartifact:GetAuthorizationToken

codeartifact:GetDomainPermissionsPolicy

codeartifact:GetPackageVersionAsset

codeartifact:GetPackageVersionReadme

codeartifact:GetRepositoryEndpoint

Refining permissions using access information 1087

AWS Identity and Access Management User Guide

Service prefix Actions

codeartifact:GetRepositoryPermissionsPolicy

codeartifact:ListDomains

codeartifact:ListPackages

codeartifact:ListPackageVersionAssets

codeartifact:ListPackageVersionDependencies

codeartifact:ListPackageVersions

codeartifact:ListRepositories

codeartifact:ListRepositoriesInDomain

codeartifact:PublishPackageVersion

codeartifact:PutDomainPermissionsPolicy

codeartifact:PutPackageMetadata

codeartifact:PutPackageOriginConfiguration

codeartifact:PutRepositoryPermissionsPolicy

codeartifact:ReadFromRepository

codeartifact:UpdatePackageVersionsStatus

codeartifact:UpdateRepository

Refining permissions using access information 1088

AWS Identity and Access Management User Guide

Service prefix Actions

codedeploy codedeploy:BatchGetApplicationRevisions

codedeploy:BatchGetApplications

codedeploy:BatchGetDeploymentGroups

codedeploy:BatchGetDeploymentInstances

codedeploy:BatchGetDeployments

codedeploy:BatchGetDeploymentTargets

codedeploy:BatchGetOnPremisesInstances

codedeploy:ContinueDeployment

codedeploy:CreateApplication

codedeploy:CreateDeployment

codedeploy:CreateDeploymentConfig

codedeploy:CreateDeploymentGroup

codedeploy:DeleteApplication

codedeploy:DeleteDeploymentConfig

codedeploy:DeleteDeploymentGroup

codedeploy:DeleteGitHubAccountToken

codedeploy:DeleteResourcesByExternalId

codedeploy:DeregisterOnPremisesInstance

codedeploy:GetApplication

codedeploy:GetApplicationRevision

codedeploy:GetDeployment

Refining permissions using access information 1089

AWS Identity and Access Management User Guide

Service prefix Actions

codedeploy:GetDeploymentConfig

codedeploy:GetDeploymentGroup

codedeploy:GetDeploymentInstance

codedeploy:GetDeploymentTarget

codedeploy:GetOnPremisesInstance

codedeploy:ListApplicationRevisions

codedeploy:ListApplications

codedeploy:ListDeploymentConfigs

codedeploy:ListDeploymentGroups

codedeploy:ListDeploymentInstances

codedeploy:ListDeployments

codedeploy:ListDeploymentTargets

codedeploy:ListGitHubAccountTokenNames

codedeploy:ListOnPremisesInstances

codedeploy:PutLifecycleEventHookExecutionStatus

codedeploy:RegisterApplicationRevision

codedeploy:RegisterOnPremisesInstance

codedeploy:SkipWaitTimeForInstanceTermination

codedeploy:StopDeployment

codedeploy:UpdateApplication

codedeploy:UpdateDeploymentGroup

Refining permissions using access information 1090

AWS Identity and Access Management User Guide

Service prefix Actions

codeguru-profiler codeguru-profiler:AddNotificationChannels

codeguru-profiler:BatchGetFrameMetricData

codeguru-profiler:ConfigureAgent

codeguru-profiler:CreateProfilingGroup

codeguru-profiler:DeleteProfilingGroup

codeguru-profiler:DescribeProfilingGroup

codeguru-profiler:GetFindingsReportAccountSummary

codeguru-profiler:GetNotificationConfiguration

codeguru-profiler:GetPolicy

codeguru-profiler:GetProfile

codeguru-profiler:GetRecommendations

codeguru-profiler:ListFindingsReports

codeguru-profiler:ListProfileTimes

codeguru-profiler:ListProfilingGroups

codeguru-profiler:PutPermission

codeguru-profiler:RemoveNotificationChannel

codeguru-profiler:RemovePermission

codeguru-profiler:SubmitFeedback

codeguru-profiler:UpdateProfilingGroup

Refining permissions using access information 1091

AWS Identity and Access Management User Guide

Service prefix Actions

codeguru-reviewer codeguru-reviewer:AssociateRepository

codeguru-reviewer:CreateCodeReview

codeguru-reviewer:DescribeCodeReview

codeguru-reviewer:DescribeRecommendationFeedback

codeguru-reviewer:DescribeRepositoryAssociation

codeguru-reviewer:DisassociateRepository

codeguru-reviewer:ListCodeReviews

codeguru-reviewer:ListRecommendationFeedback

codeguru-reviewer:ListRecommendations

codeguru-reviewer:ListRepositoryAssociations

codeguru-reviewer:PutRecommendationFeedback

Refining permissions using access information 1092

AWS Identity and Access Management User Guide

Service prefix Actions

codepipeline codepipeline:AcknowledgeJob

codepipeline:AcknowledgeThirdPartyJob

codepipeline:CreateCustomActionType

codepipeline:CreatePipeline

codepipeline:DeleteCustomActionType

codepipeline:DeletePipeline

codepipeline:DeleteWebhook

codepipeline:DeregisterWebhookWithThirdParty

codepipeline:GetActionType

codepipeline:GetJobDetails

codepipeline:GetPipeline

codepipeline:GetPipelineExecution

codepipeline:GetPipelineState

codepipeline:GetThirdPartyJobDetails

codepipeline:ListActionExecutions

codepipeline:ListActionTypes

codepipeline:ListPipelineExecutions

codepipeline:ListPipelines

codepipeline:ListWebhooks

codepipeline:PollForJobs

codepipeline:PollForThirdPartyJobs

Refining permissions using access information 1093

AWS Identity and Access Management User Guide

Service prefix Actions

codepipeline:PutActionRevision

codepipeline:PutApprovalResult

codepipeline:PutJobFailureResult

codepipeline:PutJobSuccessResult

codepipeline:PutThirdPartyJobFailureResult

codepipeline:PutThirdPartyJobSuccessResult

codepipeline:PutWebhook

codepipeline:RegisterWebhookWithThirdParty

codepipeline:StartPipelineExecution

codepipeline:StopPipelineExecution

codepipeline:UpdateActionType

codepipeline:UpdatePipeline

Refining permissions using access information 1094

AWS Identity and Access Management User Guide

Service prefix Actions

codestar codestar:AssociateTeamMember

codestar:CreateProject

codestar:CreateUserProfile

codestar:DeleteProject

codestar:DeleteUserProfile

codestar:DescribeProject

codestar:DescribeUserProfile

codestar:DisassociateTeamMember

codestar:ListProjects

codestar:ListResources

codestar:ListTeamMembers

codestar:ListUserProfiles

codestar:UpdateProject

codestar:UpdateTeamMember

codestar:UpdateUserProfile

Refining permissions using access information 1095

AWS Identity and Access Management User Guide

Service prefix Actions

codestar-notifications codestar-notifications:CreateNotificationRule

codestar-notifications:DeleteNotificationRule

codestar-notifications:DeleteTarget

codestar-notifications:DescribeNotificationRule

codestar-notifications:ListEventTypes

codestar-notifications:ListNotificationRules

codestar-notifications:ListTargets

codestar-notifications:Subscribe

codestar-notifications:Unsubscribe

codestar-notifications:UpdateNotificationRule

Refining permissions using access information 1096

AWS Identity and Access Management User Guide

Service prefix Actions

cognito-identity cognito-identity:CreateIdentityPool

cognito-identity:DeleteIdentities

cognito-identity:DeleteIdentityPool

cognito-identity:DescribeIdentity

cognito-identity:DescribeIdentityPool

cognito-identity:GetIdentityPoolRoles

cognito-identity:ListIdentities

cognito-identity:ListIdentityPools

cognito-identity:LookupDeveloperIdentity

cognito-identity:MergeDeveloperIdentities

cognito-identity:SetIdentityPoolRoles

cognito-identity:UnlinkDeveloperIdentity

cognito-identity:UpdateIdentityPool

Refining permissions using access information 1097

AWS Identity and Access Management User Guide

Service prefix Actions

cognito-idp cognito-idp:AddCustomAttributes

cognito-idp:AdminAddUserToGroup

cognito-idp:AdminConfirmSignUp

cognito-idp:AdminCreateUser

cognito-idp:AdminDeleteUser

cognito-idp:AdminDeleteUserAttributes

cognito-idp:AdminDisableProviderForUser

cognito-idp:AdminDisableUser

cognito-idp:AdminEnableUser

cognito-idp:AdminForgetDevice

cognito-idp:AdminGetDevice

cognito-idp:AdminGetUser

cognito-idp:AdminInitiateAuth

cognito-idp:AdminLinkProviderForUser

cognito-idp:AdminListDevices

cognito-idp:AdminListGroupsForUser

cognito-idp:AdminListUserAuthEvents

cognito-idp:AdminRemoveUserFromGroup

cognito-idp:AdminResetUserPassword

cognito-idp:AdminRespondToAuthChallenge

cognito-idp:AdminSetUserMFAPreference

Refining permissions using access information 1098

AWS Identity and Access Management User Guide

Service prefix Actions

cognito-idp:AdminSetUserPassword

cognito-idp:AdminSetUserSettings

cognito-idp:AdminUpdateAuthEventFeedback

cognito-idp:AdminUpdateDeviceStatus

cognito-idp:AdminUpdateUserAttributes

cognito-idp:AdminUserGlobalSignOut

cognito-idp:AssociateSoftwareToken

cognito-idp:ChangePassword

cognito-idp:ConfirmDevice

cognito-idp:ConfirmForgotPassword

cognito-idp:ConfirmSignUp

cognito-idp:CreateGroup

cognito-idp:CreateIdentityProvider

cognito-idp:CreateResourceServer

cognito-idp:CreateUserImportJob

cognito-idp:CreateUserPool

cognito-idp:CreateUserPoolClient

cognito-idp:CreateUserPoolDomain

cognito-idp:DeleteGroup

cognito-idp:DeleteIdentityProvider

cognito-idp:DeleteResourceServer

Refining permissions using access information 1099

AWS Identity and Access Management User Guide

Service prefix Actions

cognito-idp:DeleteUser

cognito-idp:DeleteUserAttributes

cognito-idp:DeleteUserPool

cognito-idp:DeleteUserPoolClient

cognito-idp:DeleteUserPoolDomain

cognito-idp:DescribeIdentityProvider

cognito-idp:DescribeResourceServer

cognito-idp:DescribeRiskConfiguration

cognito-idp:DescribeUserImportJob

cognito-idp:DescribeUserPool

cognito-idp:DescribeUserPoolClient

cognito-idp:DescribeUserPoolDomain

cognito-idp:ForgetDevice

cognito-idp:ForgotPassword

cognito-idp:GetCSVHeader

cognito-idp:GetDevice

cognito-idp:GetGroup

cognito-idp:GetIdentityProviderByIdentifier

cognito-idp:GetLogDeliveryConfiguration

cognito-idp:GetSigningCertificate

cognito-idp:GetUICustomization

Refining permissions using access information 1100

AWS Identity and Access Management User Guide

Service prefix Actions

cognito-idp:GetUser

cognito-idp:GetUserAttributeVerificationCode

cognito-idp:GetUserPoolMfaConfig

cognito-idp:GlobalSignOut

cognito-idp:InitiateAuth

cognito-idp:ListDevices

cognito-idp:ListGroups

cognito-idp:ListIdentityProviders

cognito-idp:ListResourceServers

cognito-idp:ListUserImportJobs

cognito-idp:ListUserPoolClients

cognito-idp:ListUserPools

cognito-idp:ListUsers

cognito-idp:ListUsersInGroup

cognito-idp:ResendConfirmationCode

cognito-idp:RespondToAuthChallenge

cognito-idp:RevokeToken

cognito-idp:SetLogDeliveryConfiguration

cognito-idp:SetRiskConfiguration

cognito-idp:SetUICustomization

cognito-idp:SetUserMFAPreference

Refining permissions using access information 1101

AWS Identity and Access Management User Guide

Service prefix Actions

cognito-idp:SetUserPoolMfaConfig

cognito-idp:SetUserSettings

cognito-idp:SignUp

cognito-idp:StartUserImportJob

cognito-idp:StopUserImportJob

cognito-idp:UpdateAuthEventFeedback

cognito-idp:UpdateDeviceStatus

cognito-idp:UpdateGroup

cognito-idp:UpdateIdentityProvider

cognito-idp:UpdateResourceServer

cognito-idp:UpdateUserAttributes

cognito-idp:UpdateUserPool

cognito-idp:UpdateUserPoolClient

cognito-idp:UpdateUserPoolDomain

cognito-idp:VerifySoftwareToken

cognito-idp:VerifyUserAttribute

Refining permissions using access information 1102

AWS Identity and Access Management User Guide

Service prefix Actions

cognito-sync cognito-sync:BulkPublish

cognito-sync:DeleteDataset

cognito-sync:DescribeDataset

cognito-sync:DescribeIdentityPoolUsage

cognito-sync:DescribeIdentityUsage

cognito-sync:GetBulkPublishDetails

cognito-sync:GetCognitoEvents

cognito-sync:GetIdentityPoolConfiguration

cognito-sync:ListDatasets

cognito-sync:ListIdentityPoolUsage

cognito-sync:ListRecords

cognito-sync:RegisterDevice

cognito-sync:SetCognitoEvents

cognito-sync:SetIdentityPoolConfiguration

cognito-sync:SubscribeToDataset

cognito-sync:UnsubscribeFromDataset

cognito-sync:UpdateRecords

Refining permissions using access information 1103

AWS Identity and Access Management User Guide

Service prefix Actions

comprehendmedical comprehendmedical:DescribeEntitiesDetectionV2Job

comprehendmedical:DescribeICD10CMInferenceJob

comprehendmedical:DescribePHIDetectionJob

comprehendmedical:DescribeRxNormInferenceJob

comprehendmedical:DescribeSNOMEDCTInferenceJob

comprehendmedical:DetectEntitiesV2

comprehendmedical:DetectPHI

comprehendmedical:InferICD10CM

comprehendmedical:InferRxNorm

comprehendmedical:InferSNOMEDCT

comprehendmedical:ListEntitiesDetectionV2Jobs

comprehendmedical:ListICD10CMInferenceJobs

comprehendmedical:ListPHIDetectionJobs

comprehendmedical:ListRxNormInferenceJobs

comprehendmedical:ListSNOMEDCTInferenceJobs

comprehendmedical:StartEntitiesDetectionV2Job

comprehendmedical:StartICD10CMInferenceJob

comprehendmedical:StartPHIDetectionJob

comprehendmedical:StartRxNormInferenceJob

comprehendmedical:StartSNOMEDCTInferenceJob

comprehendmedical:StopEntitiesDetectionV2Job

Refining permissions using access information 1104

AWS Identity and Access Management User Guide

Service prefix Actions

comprehendmedical:StopICD10CMInferenceJob

comprehendmedical:StopPHIDetectionJob

comprehendmedical:StopRxNormInferenceJob

comprehendmedical:StopSNOMEDCTInferenceJob

Refining permissions using access information 1105

AWS Identity and Access Management User Guide

Service prefix Actions

compute-optimizer compute-optimizer:DeleteRecommendationPreferences

compute-optimizer:DescribeRecommendationExportJobs

compute-optimizer:ExportAutoScalingGroupRecommendations

compute-optimizer:ExportEBSVolumeRecommendations

compute-optimizer:ExportEC2InstanceRecommendations

compute-optimizer:ExportECSServiceRecommendations

compute-optimizer:ExportLambdaFunctionRecommendations

compute-optimizer:ExportLicenseRecommendations

compute-optimizer:GetEC2RecommendationProjectedMetrics

compute-optimizer:GetECSServiceRecommendationProjected
Metrics

compute-optimizer:GetEffectiveRecommendationPreferences

compute-optimizer:GetEnrollmentStatus

compute-optimizer:GetEnrollmentStatusesForOrganization

compute-optimizer:GetRecommendationPreferences

compute-optimizer:GetRecommendationSummaries

compute-optimizer:PutRecommendationPreferences

compute-optimizer:UpdateEnrollmentStatus

Refining permissions using access information 1106

AWS Identity and Access Management User Guide

Service prefix Actions

config config:BatchGetResourceConfig

config:DeleteAggregationAuthorization

config:DeleteConfigRule

config:DeleteConfigurationAggregator

config:DeleteConfigurationRecorder

config:DeleteConformancePack

config:DeleteDeliveryChannel

config:DeleteEvaluationResults

config:DeleteOrganizationConfigRule

config:DeleteOrganizationConformancePack

config:DeletePendingAggregationRequest

config:DeleteRemediationConfiguration

config:DeleteRemediationExceptions

config:DeleteResourceConfig

config:DeleteRetentionConfiguration

config:DeleteStoredQuery

config:DeliverConfigSnapshot

config:DescribeAggregateComplianceByConfigRules

config:DescribeAggregateComplianceByConformancePacks

config:DescribeAggregationAuthorizations

config:DescribeComplianceByConfigRule

Refining permissions using access information 1107

AWS Identity and Access Management User Guide

Service prefix Actions

config:DescribeComplianceByResource

config:DescribeConfigRuleEvaluationStatus

config:DescribeConfigRules

config:DescribeConfigurationAggregators

config:DescribeConfigurationAggregatorSourcesStatus

config:DescribeConfigurationRecorders

config:DescribeConfigurationRecorderStatus

config:DescribeConformancePackCompliance

config:DescribeConformancePacks

config:DescribeConformancePackStatus

config:DescribeDeliveryChannels

config:DescribeDeliveryChannelStatus

config:DescribeOrganizationConfigRules

config:DescribeOrganizationConfigRuleStatuses

config:DescribeOrganizationConformancePacks

config:DescribeOrganizationConformancePackStatuses

config:DescribePendingAggregationRequests

config:DescribeRemediationConfigurations

config:DescribeRemediationExceptions

config:DescribeRemediationExecutionStatus

config:DescribeRetentionConfigurations

Refining permissions using access information 1108

AWS Identity and Access Management User Guide

Service prefix Actions

config:GetComplianceDetailsByConfigRule

config:GetComplianceDetailsByResource

config:GetComplianceSummaryByConfigRule

config:GetComplianceSummaryByResourceType

config:GetConformancePackComplianceDetails

config:GetConformancePackComplianceSummary

config:GetCustomRulePolicy

config:GetDiscoveredResourceCounts

config:GetOrganizationConfigRuleDetailedStatus

config:GetOrganizationConformancePackDetailedStatus

config:GetOrganizationCustomRulePolicy

config:GetResourceConfigHistory

config:GetResourceEvaluationSummary

config:GetStoredQuery

config:ListConformancePackComplianceScores

config:ListDiscoveredResources

config:ListResourceEvaluations

config:ListStoredQueries

config:PutConfigRule

config:PutConfigurationAggregator

config:PutConfigurationRecorder

Refining permissions using access information 1109

AWS Identity and Access Management User Guide

Service prefix Actions

config:PutConformancePack

config:PutDeliveryChannel

config:PutEvaluations

config:PutExternalEvaluation

config:PutOrganizationConfigRule

config:PutOrganizationConformancePack

config:PutRemediationConfigurations

config:PutRemediationExceptions

config:PutResourceConfig

config:PutRetentionConfiguration

config:PutStoredQuery

config:SelectResourceConfig

config:StartConfigRulesEvaluation

config:StartConfigurationRecorder

config:StartRemediationExecution

config:StartResourceEvaluation

config:StopConfigurationRecorder

Refining permissions using access information 1110

AWS Identity and Access Management User Guide

Service prefix Actions

connect connect:ActivateEvaluationForm

connect:AssociateApprovedOrigin

connect:AssociateBot

connect:AssociateDefaultVocabulary

connect:AssociateInstanceStorageConfig

connect:AssociateLambdaFunction

connect:AssociateLexBot

connect:AssociatePhoneNumberContactFlow

connect:AssociateQueueQuickConnects

connect:AssociateRoutingProfileQueues

connect:AssociateSecurityKey

connect:ClaimPhoneNumber

connect:CreateAgentStatus

connect:CreateContactFlow

connect:CreateContactFlowModule

connect:CreateEvaluationForm

connect:CreateHoursOfOperation

connect:CreateInstance

connect:CreateIntegrationAssociation

connect:CreateParticipant

connect:CreatePrompt

Refining permissions using access information 1111

AWS Identity and Access Management User Guide

Service prefix Actions

connect:CreateQueue

connect:CreateQuickConnect

connect:CreateRoutingProfile

connect:CreateRule

connect:CreateSecurityProfile

connect:CreateTaskTemplate

connect:CreateTrafficDistributionGroup

connect:CreateUseCase

connect:CreateUser

connect:CreateUserHierarchyGroup

connect:CreateView

connect:CreateViewVersion

connect:CreateVocabulary

connect:DeactivateEvaluationForm

connect:DeleteContactEvaluation

connect:DeleteContactFlow

connect:DeleteContactFlowModule

connect:DeleteEvaluationForm

connect:DeleteHoursOfOperation

connect:DeleteInstance

connect:DeleteIntegrationAssociation

Refining permissions using access information 1112

AWS Identity and Access Management User Guide

Service prefix Actions

connect:DeletePrompt

connect:DeleteQueue

connect:DeleteQuickConnect

connect:DeleteRoutingProfile

connect:DeleteRule

connect:DeleteSecurityProfile

connect:DeleteTaskTemplate

connect:DeleteTrafficDistributionGroup

connect:DeleteUseCase

connect:DeleteUser

connect:DeleteUserHierarchyGroup

connect:DeleteView

connect:DeleteVocabulary

connect:DescribeAgentStatus

connect:DescribeContact

connect:DescribeContactEvaluation

connect:DescribeContactFlow

connect:DescribeContactFlowModule

connect:DescribeEvaluationForm

connect:DescribeInstanceAttribute

connect:DescribeInstanceStorageConfig

Refining permissions using access information 1113

AWS Identity and Access Management User Guide

Service prefix Actions

connect:DescribePhoneNumber

connect:DescribeRule

connect:DescribeTrafficDistributionGroup

connect:DescribeUserHierarchyGroup

connect:DescribeUserHierarchyStructure

connect:DescribeView

connect:DescribeVocabulary

connect:DisassociateApprovedOrigin

connect:DisassociateBot

connect:DisassociateInstanceStorageConfig

connect:DisassociateLambdaFunction

connect:DisassociateLexBot

connect:DisassociatePhoneNumberContactFlow

connect:DisassociateQueueQuickConnects

connect:DisassociateRoutingProfileQueues

connect:DisassociateSecurityKey

connect:DismissUserContact

connect:GetContactAttributes

connect:GetCurrentMetricData

connect:GetCurrentUserData

connect:GetFederationToken

Refining permissions using access information 1114

AWS Identity and Access Management User Guide

Service prefix Actions

connect:GetMetricData

connect:GetMetricDataV2

connect:GetPromptFile

connect:GetTaskTemplate

connect:GetTrafficDistribution

connect:ListApprovedOrigins

connect:ListBots

connect:ListContactEvaluations

connect:ListContactFlowModules

connect:ListContactFlows

connect:ListContactReferences

connect:ListDefaultVocabularies

connect:ListEvaluationForms

connect:ListEvaluationFormVersions

connect:ListHoursOfOperations

connect:ListInstanceAttributes

connect:ListInstanceStorageConfigs

connect:ListIntegrationAssociations

connect:ListLambdaFunctions

connect:ListLexBots

connect:ListPhoneNumbers

Refining permissions using access information 1115

AWS Identity and Access Management User Guide

Service prefix Actions

connect:ListPhoneNumbersV2

connect:ListPrompts

connect:ListQueueQuickConnects

connect:ListQueues

connect:ListQuickConnects

connect:ListRoutingProfileQueues

connect:ListRoutingProfiles

connect:ListRules

connect:ListSecurityKeys

connect:ListSecurityProfileApplications

connect:ListSecurityProfilePermissions

connect:ListSecurityProfiles

connect:ListTaskTemplates

connect:ListTrafficDistributionGroups

connect:ListUseCases

connect:ListUserHierarchyGroups

connect:ListUsers

connect:ListViews

connect:ListViewVersions

connect:MonitorContact

connect:PutUserStatus

Refining permissions using access information 1116

AWS Identity and Access Management User Guide

Service prefix Actions

connect:ReleasePhoneNumber

connect:ReplicateInstance

connect:ResumeContactRecording

connect:SearchAvailablePhoneNumbers

connect:SearchHoursOfOperations

connect:SearchPrompts

connect:SearchQueues

connect:SearchQuickConnects

connect:SearchRoutingProfiles

connect:SearchSecurityProfiles

connect:SearchVocabularies

connect:StartChatContact

connect:StartContactEvaluation

connect:StartContactRecording

connect:StartContactStreaming

connect:StartOutboundVoiceContact

connect:StartTaskContact

connect:StopContact

connect:StopContactRecording

connect:StopContactStreaming

connect:SubmitContactEvaluation

Refining permissions using access information 1117

AWS Identity and Access Management User Guide

Service prefix Actions

connect:SuspendContactRecording

connect:TransferContact

connect:UpdateAgentStatus

connect:UpdateContact

connect:UpdateContactAttributes

connect:UpdateContactEvaluation

connect:UpdateContactFlowContent

connect:UpdateContactFlowMetadata

connect:UpdateContactFlowModuleContent

connect:UpdateContactFlowModuleMetadata

connect:UpdateContactFlowName

connect:UpdateContactSchedule

connect:UpdateEvaluationForm

connect:UpdateHoursOfOperation

connect:UpdateInstanceAttribute

connect:UpdateInstanceStorageConfig

connect:UpdateParticipantRoleConfig

connect:UpdatePhoneNumber

connect:UpdatePhoneNumberMetadata

connect:UpdatePrompt

connect:UpdateQueueHoursOfOperation

Refining permissions using access information 1118

AWS Identity and Access Management User Guide

Service prefix Actions

connect:UpdateQueueMaxContacts

connect:UpdateQueueName

connect:UpdateQueueOutboundCallerConfig

connect:UpdateQueueStatus

connect:UpdateQuickConnectConfig

connect:UpdateQuickConnectName

connect:UpdateRoutingProfileAgentAvailabilityTimer

connect:UpdateRoutingProfileConcurrency

connect:UpdateRoutingProfileDefaultOutboundQueue

connect:UpdateRoutingProfileName

connect:UpdateRoutingProfileQueues

connect:UpdateRule

connect:UpdateSecurityProfile

connect:UpdateTaskTemplate

connect:UpdateTrafficDistribution

connect:UpdateUserHierarchy

connect:UpdateUserHierarchyGroupName

connect:UpdateUserHierarchyStructure

connect:UpdateUserIdentityInfo

connect:UpdateUserPhoneConfig

connect:UpdateUserRoutingProfile

Refining permissions using access information 1119

AWS Identity and Access Management User Guide

Service prefix Actions

connect:UpdateUserSecurityProfiles

connect:UpdateViewContent

connect:UpdateViewMetadata

cur cur:DeleteReportDefinition

cur:DescribeReportDefinitions

cur:ModifyReportDefinition

cur:PutReportDefinition

Refining permissions using access information 1120

AWS Identity and Access Management User Guide

Service prefix Actions

databrew databrew:BatchDeleteRecipeVersion

databrew:CreateDataset

databrew:CreateProfileJob

databrew:CreateProject

databrew:CreateRecipe

databrew:CreateRecipeJob

databrew:CreateRuleset

databrew:CreateSchedule

databrew:DeleteDataset

databrew:DeleteJob

databrew:DeleteProject

databrew:DeleteRecipeVersion

databrew:DeleteRuleset

databrew:DeleteSchedule

databrew:DescribeDataset

databrew:DescribeJob

databrew:DescribeJobRun

databrew:DescribeProject

databrew:DescribeRecipe

databrew:DescribeRuleset

databrew:DescribeSchedule

Refining permissions using access information 1121

AWS Identity and Access Management User Guide

Service prefix Actions

databrew:ListDatasets

databrew:ListJobRuns

databrew:ListJobs

databrew:ListProjects

databrew:ListRecipes

databrew:ListRecipeVersions

databrew:ListRulesets

databrew:ListSchedules

databrew:PublishRecipe

databrew:SendProjectSessionAction

databrew:StartJobRun

databrew:StartProjectSession

databrew:StopJobRun

databrew:UpdateDataset

databrew:UpdateProfileJob

databrew:UpdateProject

databrew:UpdateRecipe

databrew:UpdateRecipeJob

databrew:UpdateRuleset

databrew:UpdateSchedule

Refining permissions using access information 1122

AWS Identity and Access Management User Guide

Service prefix Actions

dataexchange dataexchange:CancelJob

dataexchange:CreateDataSet

dataexchange:CreateEventAction

dataexchange:CreateJob

dataexchange:CreateRevision

dataexchange:DeleteAsset

dataexchange:DeleteEventAction

dataexchange:DeleteRevision

dataexchange:GetEventAction

dataexchange:GetJob

dataexchange:ListDataSetRevisions

dataexchange:ListDataSets

dataexchange:ListEventActions

dataexchange:ListJobs

dataexchange:ListRevisionAssets

dataexchange:RevokeRevision

dataexchange:StartJob

dataexchange:UpdateAsset

dataexchange:UpdateDataSet

dataexchange:UpdateEventAction

dataexchange:UpdateRevision

Refining permissions using access information 1123

AWS Identity and Access Management User Guide

Service prefix Actions

datapipeline datapipeline:ActivatePipeline

datapipeline:CreatePipeline

datapipeline:DeactivatePipeline

datapipeline:DeletePipeline

datapipeline:DescribeObjects

datapipeline:DescribePipelines

datapipeline:EvaluateExpression

datapipeline:GetPipelineDefinition

datapipeline:ListPipelines

datapipeline:PollForTask

datapipeline:PutPipelineDefinition

datapipeline:QueryObjects

datapipeline:ReportTaskProgress

datapipeline:ReportTaskRunnerHeartbeat

datapipeline:SetStatus

datapipeline:SetTaskStatus

datapipeline:ValidatePipelineDefinition

Refining permissions using access information 1124

AWS Identity and Access Management User Guide

Service prefix Actions

dax dax:CreateCluster

dax:DecreaseReplicationFactor

dax:DeleteCluster

dax:DeleteParameterGroup

dax:DeleteSubnetGroup

dax:DescribeClusters

dax:DescribeDefaultParameters

dax:DescribeEvents

dax:DescribeParameterGroups

dax:DescribeParameters

dax:DescribeSubnetGroups

dax:IncreaseReplicationFactor

dax:RebootNode

dax:UpdateCluster

dax:UpdateParameterGroup

dax:UpdateSubnetGroup

Refining permissions using access information 1125

AWS Identity and Access Management User Guide

Service prefix Actions

devicefarm devicefarm:CreateDevicePool

devicefarm:CreateInstanceProfile

devicefarm:CreateNetworkProfile

devicefarm:CreateProject

devicefarm:CreateRemoteAccessSession

devicefarm:CreateTestGridProject

devicefarm:CreateTestGridUrl

devicefarm:CreateUpload

devicefarm:CreateVPCEConfiguration

devicefarm:DeleteDevicePool

devicefarm:DeleteInstanceProfile

devicefarm:DeleteNetworkProfile

devicefarm:DeleteProject

devicefarm:DeleteRemoteAccessSession

devicefarm:DeleteRun

devicefarm:DeleteTestGridProject

devicefarm:DeleteUpload

devicefarm:DeleteVPCEConfiguration

devicefarm:GetAccountSettings

devicefarm:GetDevice

devicefarm:GetDeviceInstance

Refining permissions using access information 1126

AWS Identity and Access Management User Guide

Service prefix Actions

devicefarm:GetDevicePool

devicefarm:GetDevicePoolCompatibility

devicefarm:GetInstanceProfile

devicefarm:GetJob

devicefarm:GetNetworkProfile

devicefarm:GetOfferingStatus

devicefarm:GetProject

devicefarm:GetRemoteAccessSession

devicefarm:GetRun

devicefarm:GetSuite

devicefarm:GetTest

devicefarm:GetTestGridProject

devicefarm:GetTestGridSession

devicefarm:GetUpload

devicefarm:GetVPCEConfiguration

devicefarm:ListArtifacts

devicefarm:ListDeviceInstances

devicefarm:ListDevicePools

devicefarm:ListDevices

devicefarm:ListInstanceProfiles

devicefarm:ListJobs

Refining permissions using access information 1127

AWS Identity and Access Management User Guide

Service prefix Actions

devicefarm:ListNetworkProfiles

devicefarm:ListOfferingPromotions

devicefarm:ListOfferings

devicefarm:ListOfferingTransactions

devicefarm:ListProjects

devicefarm:ListRemoteAccessSessions

devicefarm:ListRuns

devicefarm:ListSamples

devicefarm:ListSuites

devicefarm:ListTestGridProjects

devicefarm:ListTestGridSessionActions

devicefarm:ListTestGridSessionArtifacts

devicefarm:ListTestGridSessions

devicefarm:ListTests

devicefarm:ListUniqueProblems

devicefarm:ListUploads

devicefarm:ListVPCEConfigurations

devicefarm:PurchaseOffering

devicefarm:RenewOffering

devicefarm:ScheduleRun

devicefarm:StopJob

Refining permissions using access information 1128

AWS Identity and Access Management User Guide

Service prefix Actions

devicefarm:StopRemoteAccessSession

devicefarm:StopRun

devicefarm:UpdateDeviceInstance

devicefarm:UpdateDevicePool

devicefarm:UpdateInstanceProfile

devicefarm:UpdateNetworkProfile

devicefarm:UpdateProject

devicefarm:UpdateTestGridProject

devicefarm:UpdateUpload

devicefarm:UpdateVPCEConfiguration

Refining permissions using access information 1129

AWS Identity and Access Management User Guide

Service prefix Actions

devops-guru devops-guru:AddNotificationChannel

devops-guru:DeleteInsight

devops-guru:DescribeAccountHealth

devops-guru:DescribeAccountOverview

devops-guru:DescribeAnomaly

devops-guru:DescribeEventSourcesConfig

devops-guru:DescribeFeedback

devops-guru:DescribeInsight

devops-guru:DescribeOrganizationHealth

devops-guru:DescribeOrganizationOverview

devops-guru:DescribeOrganizationResourceCollectionHealth

devops-guru:DescribeResourceCollectionHealth

devops-guru:DescribeServiceIntegration

devops-guru:GetCostEstimation

devops-guru:GetResourceCollection

devops-guru:ListAnomaliesForInsight

devops-guru:ListAnomalousLogGroups

devops-guru:ListEvents

devops-guru:ListInsights

devops-guru:ListMonitoredResources

devops-guru:ListNotificationChannels

Refining permissions using access information 1130

AWS Identity and Access Management User Guide

Service prefix Actions

devops-guru:ListOrganizationInsights

devops-guru:ListRecommendations

devops-guru:PutFeedback

devops-guru:RemoveNotificationChannel

devops-guru:SearchInsights

devops-guru:SearchOrganizationInsights

devops-guru:StartCostEstimation

devops-guru:UpdateEventSourcesConfig

devops-guru:UpdateResourceCollection

devops-guru:UpdateServiceIntegration

Refining permissions using access information 1131

AWS Identity and Access Management User Guide

Service prefix Actions

directconnect directconnect:AcceptDirectConnectGatewayAssociationProposal

directconnect:AllocateConnectionOnInterconnect

directconnect:AllocateHostedConnection

directconnect:AllocatePrivateVirtualInterface

directconnect:AllocatePublicVirtualInterface

directconnect:AllocateTransitVirtualInterface

directconnect:AssociateConnectionWithLag

directconnect:AssociateHostedConnection

directconnect:AssociateMacSecKey

directconnect:AssociateVirtualInterface

directconnect:ConfirmConnection

directconnect:ConfirmCustomerAgreement

directconnect:ConfirmPrivateVirtualInterface

directconnect:ConfirmPublicVirtualInterface

directconnect:ConfirmTransitVirtualInterface

directconnect:CreateBGPPeer

directconnect:CreateConnection

directconnect:CreateDirectConnectGateway

directconnect:CreateDirectConnectGatewayAssociation

directconnect:CreateDirectConnectGatewayAssociationProposal

directconnect:CreateInterconnect

Refining permissions using access information 1132

AWS Identity and Access Management User Guide

Service prefix Actions

directconnect:CreateLag

directconnect:CreatePrivateVirtualInterface

directconnect:CreatePublicVirtualInterface

directconnect:CreateTransitVirtualInterface

directconnect:DeleteBGPPeer

directconnect:DeleteConnection

directconnect:DeleteDirectConnectGateway

directconnect:DeleteDirectConnectGatewayAssociation

directconnect:DeleteDirectConnectGatewayAssociationProposal

directconnect:DeleteInterconnect

directconnect:DeleteLag

directconnect:DeleteVirtualInterface

directconnect:DescribeConnectionLoa

directconnect:DescribeConnections

directconnect:DescribeConnectionsOnInterconnect

directconnect:DescribeCustomerMetadata

directconnect:DescribeDirectConnectGatewayAssociationProposals

directconnect:DescribeDirectConnectGatewayAssociations

directconnect:DescribeDirectConnectGatewayAttachments

directconnect:DescribeDirectConnectGateways

directconnect:DescribeHostedConnections

Refining permissions using access information 1133

AWS Identity and Access Management User Guide

Service prefix Actions

directconnect:DescribeInterconnectLoa

directconnect:DescribeInterconnects

directconnect:DescribeLags

directconnect:DescribeLoa

directconnect:DescribeLocations

directconnect:DescribeRouterConfiguration

directconnect:DescribeVirtualGateways

directconnect:DescribeVirtualInterfaces

directconnect:DisassociateConnectionFromLag

directconnect:DisassociateMacSecKey

directconnect:ListVirtualInterfaceTestHistory

directconnect:StartBgpFailoverTest

directconnect:StopBgpFailoverTest

directconnect:UpdateConnection

directconnect:UpdateDirectConnectGateway

directconnect:UpdateDirectConnectGatewayAssociation

directconnect:UpdateLag

directconnect:UpdateVirtualInterfaceAttributes

Refining permissions using access information 1134

AWS Identity and Access Management User Guide

Service prefix Actions

dlm dlm:CreateLifecyclePolicy

dlm:DeleteLifecyclePolicy

dlm:GetLifecyclePolicies

dlm:GetLifecyclePolicy

dlm:UpdateLifecyclePolicy

Refining permissions using access information 1135

AWS Identity and Access Management User Guide

Service prefix Actions

dms dms:ApplyPendingMaintenanceAction

dms:BatchStartRecommendations

dms:CancelReplicationTaskAssessmentRun

dms:CreateDataProvider

dms:CreateEndpoint

dms:CreateEventSubscription

dms:CreateInstanceProfile

dms:CreateMigrationProject

dms:CreateReplicationConfig

dms:CreateReplicationInstance

dms:CreateReplicationSubnetGroup

dms:CreateReplicationTask

dms:DeleteCertificate

dms:DeleteConnection

dms:DeleteDataProvider

dms:DeleteEndpoint

dms:DeleteEventSubscription

dms:DeleteFleetAdvisorCollector

dms:DeleteFleetAdvisorDatabases

dms:DeleteInstanceProfile

dms:DeleteMigrationProject

Refining permissions using access information 1136

AWS Identity and Access Management User Guide

Service prefix Actions

dms:DeleteReplicationConfig

dms:DeleteReplicationInstance

dms:DeleteReplicationSubnetGroup

dms:DeleteReplicationTask

dms:DeleteReplicationTaskAssessmentRun

dms:DescribeAccountAttributes

dms:DescribeApplicableIndividualAssessments

dms:DescribeCertificates

dms:DescribeConnections

dms:DescribeEndpoints

dms:DescribeEndpointSettings

dms:DescribeEndpointTypes

dms:DescribeEngineVersions

dms:DescribeEventCategories

dms:DescribeEvents

dms:DescribeEventSubscriptions

dms:DescribeFleetAdvisorCollectors

dms:DescribeFleetAdvisorDatabases

dms:DescribeFleetAdvisorLsaAnalysis

dms:DescribeFleetAdvisorSchemaObjectSummary

dms:DescribeFleetAdvisorSchemas

Refining permissions using access information 1137

AWS Identity and Access Management User Guide

Service prefix Actions

dms:DescribeMetadataModelImports

dms:DescribeOrderableReplicationInstances

dms:DescribePendingMaintenanceActions

dms:DescribeRecommendationLimitations

dms:DescribeRecommendations

dms:DescribeRefreshSchemasStatus

dms:DescribeReplicationConfigs

dms:DescribeReplicationInstances

dms:DescribeReplicationInstanceTaskLogs

dms:DescribeReplications

dms:DescribeReplicationSubnetGroups

dms:DescribeReplicationTableStatistics

dms:DescribeReplicationTaskAssessmentResults

dms:DescribeReplicationTaskAssessmentRuns

dms:DescribeReplicationTaskIndividualAssessments

dms:DescribeReplicationTasks

dms:DescribeSchemas

dms:DescribeTableStatistics

dms:ExportMetadataModelAssessment

dms:ImportCertificate

dms:ModifyEndpoint

Refining permissions using access information 1138

AWS Identity and Access Management User Guide

Service prefix Actions

dms:ModifyEventSubscription

dms:ModifyReplicationConfig

dms:ModifyReplicationInstance

dms:ModifyReplicationSubnetGroup

dms:ModifyReplicationTask

dms:MoveReplicationTask

dms:RebootReplicationInstance

dms:RefreshSchemas

dms:ReloadReplicationTables

dms:ReloadTables

dms:RunFleetAdvisorLsaAnalysis

dms:StartMetadataModelAssessment

dms:StartMetadataModelConversion

dms:StartMetadataModelExportToTarget

dms:StartRecommendations

dms:StartReplication

dms:StartReplicationTask

dms:StartReplicationTaskAssessment

dms:StopReplicationTask

dms:TestConnection

dms:UpdateSubscriptionsToEventBridge

Refining permissions using access information 1139

AWS Identity and Access Management User Guide

Service prefix Actions

docdb-elastic docdb-elastic:CreateCluster

docdb-elastic:CreateClusterSnapshot

docdb-elastic:DeleteCluster

docdb-elastic:DeleteClusterSnapshot

docdb-elastic:GetCluster

docdb-elastic:GetClusterSnapshot

docdb-elastic:ListClusters

docdb-elastic:ListClusterSnapshots

docdb-elastic:RestoreClusterFromSnapshot

docdb-elastic:UpdateCluster

Refining permissions using access information 1140

AWS Identity and Access Management User Guide

Service prefix Actions

ds ds:AcceptSharedDirectory

ds:AddIpRoutes

ds:AddRegion

ds:CancelSchemaExtension

ds:ConnectDirectory

ds:CreateAlias

ds:CreateComputer

ds:CreateConditionalForwarder

ds:CreateDirectory

ds:CreateLogSubscription

ds:CreateMicrosoftAD

ds:CreateSnapshot

ds:CreateTrust

ds:DeleteConditionalForwarder

ds:DeleteDirectory

ds:DeleteLogSubscription

ds:DeleteSnapshot

ds:DeleteTrust

ds:DeregisterCertificate

ds:DeregisterEventTopic

ds:DescribeCertificate

Refining permissions using access information 1141

AWS Identity and Access Management User Guide

Service prefix Actions

ds:DescribeClientAuthenticationSettings

ds:DescribeConditionalForwarders

ds:DescribeDirectories

ds:DescribeDomainControllers

ds:DescribeEventTopics

ds:DescribeLDAPSSettings

ds:DescribeRegions

ds:DescribeSettings

ds:DescribeSharedDirectories

ds:DescribeSnapshots

ds:DescribeTrusts

ds:DescribeUpdateDirectory

ds:DisableClientAuthentication

ds:DisableLDAPS

ds:DisableRadius

ds:DisableSso

ds:EnableClientAuthentication

ds:EnableLDAPS

ds:EnableRadius

ds:EnableSso

ds:GetDirectoryLimits

Refining permissions using access information 1142

AWS Identity and Access Management User Guide

Service prefix Actions

ds:GetSnapshotLimits

ds:ListCertificates

ds:ListIpRoutes

ds:ListLogSubscriptions

ds:ListSchemaExtensions

ds:RegisterCertificate

ds:RegisterEventTopic

ds:RejectSharedDirectory

ds:RemoveIpRoutes

ds:RemoveRegion

ds:ResetUserPassword

ds:RestoreFromSnapshot

ds:ShareDirectory

ds:StartSchemaExtension

ds:UnshareDirectory

ds:UpdateConditionalForwarder

ds:UpdateDirectorySetup

ds:UpdateNumberOfDomainControllers

ds:UpdateRadius

ds:UpdateSettings

ds:UpdateTrust

Refining permissions using access information 1143

AWS Identity and Access Management User Guide

Service prefix Actions

ds:VerifyTrust

Refining permissions using access information 1144

AWS Identity and Access Management User Guide

Service prefix Actions

dynamodb dynamodb:CreateBackup

dynamodb:CreateGlobalTable

dynamodb:CreateTable

dynamodb:DeleteBackup

dynamodb:DeleteTable

dynamodb:DescribeBackup

dynamodb:DescribeContinuousBackups

dynamodb:DescribeContributorInsights

dynamodb:DescribeEndpoints

dynamodb:DescribeExport

dynamodb:DescribeGlobalTable

dynamodb:DescribeGlobalTableSettings

dynamodb:DescribeImport

dynamodb:DescribeKinesisStreamingDestination

dynamodb:DescribeLimits

dynamodb:DescribeStream

dynamodb:DescribeTable

dynamodb:DescribeTableReplicaAutoScaling

dynamodb:DescribeTimeToLive

dynamodb:DisableKinesisStreamingDestination

dynamodb:EnableKinesisStreamingDestination

Refining permissions using access information 1145

AWS Identity and Access Management User Guide

Service prefix Actions

dynamodb:ExportTableToPointInTime

dynamodb:ImportTable

dynamodb:ListBackups

dynamodb:ListContributorInsights

dynamodb:ListExports

dynamodb:ListGlobalTables

dynamodb:ListImports

dynamodb:ListStreams

dynamodb:ListTables

dynamodb:RestoreTableFromBackup

dynamodb:RestoreTableToPointInTime

dynamodb:UpdateContinuousBackups

dynamodb:UpdateContributorInsights

dynamodb:UpdateGlobalTable

dynamodb:UpdateGlobalTableSettings

dynamodb:UpdateTable

dynamodb:UpdateTableReplicaAutoScaling

dynamodb:UpdateTimeToLive

ebs ebs:CompleteSnapshot

ebs:StartSnapshot

Refining permissions using access information 1146

AWS Identity and Access Management User Guide

Service prefix Actions

ec2 ec2:AcceptAddressTransfer

ec2:AcceptReservedInstancesExchangeQuote

ec2:AcceptTransitGatewayMulticastDomainAssociations

ec2:AcceptTransitGatewayPeeringAttachment

ec2:AcceptTransitGatewayVpcAttachment

ec2:AcceptVpcEndpointConnections

ec2:AcceptVpcPeeringConnection

ec2:AdvertiseByoipCidr

ec2:AllocateAddress

ec2:AllocateHosts

ec2:AllocateIpamPoolCidr

ec2:ApplySecurityGroupsToClientVpnTargetNetwork

ec2:AssignIpv6Addresses

ec2:AssignPrivateIpAddresses

ec2:AssignPrivateNatGatewayAddress

ec2:AssociateAddress

ec2:AssociateClientVpnTargetNetwork

ec2:AssociateDhcpOptions

ec2:AssociateEnclaveCertificateIamRole

ec2:AssociateIamInstanceProfile

ec2:AssociateInstanceEventWindow

Refining permissions using access information 1147

AWS Identity and Access Management User Guide

Service prefix Actions

ec2:AssociateIpamResourceDiscovery

ec2:AssociateNatGatewayAddress

ec2:AssociateRouteTable

ec2:AssociateSubnetCidrBlock

ec2:AssociateTransitGatewayMulticastDomain

ec2:AssociateTransitGatewayPolicyTable

ec2:AssociateTransitGatewayRouteTable

ec2:AssociateTrunkInterface

ec2:AssociateVpcCidrBlock

ec2:AttachClassicLinkVpc

ec2:AttachInternetGateway

ec2:AttachNetworkInterface

ec2:AttachVerifiedAccessTrustProvider

ec2:AttachVolume

ec2:AttachVpnGateway

ec2:AuthorizeClientVpnIngress

ec2:AuthorizeSecurityGroupEgress

ec2:AuthorizeSecurityGroupIngress

ec2:BundleInstance

ec2:CancelBundleTask

ec2:CancelCapacityReservation

Refining permissions using access information 1148

AWS Identity and Access Management User Guide

Service prefix Actions

ec2:CancelCapacityReservationFleets

ec2:CancelConversionTask

ec2:CancelExportTask

ec2:CancelImageLaunchPermission

ec2:CancelImportTask

ec2:CancelReservedInstancesListing

ec2:CancelSpotFleetRequests

ec2:CancelSpotInstanceRequests

ec2:ConfirmProductInstance

ec2:CopyFpgaImage

ec2:CopyImage

ec2:CopySnapshot

ec2:CreateCapacityReservation

ec2:CreateCapacityReservationFleet

ec2:CreateCarrierGateway

ec2:CreateClientVpnEndpoint

ec2:CreateClientVpnRoute

ec2:CreateCoipCidr

ec2:CreateCoipPool

ec2:CreateCustomerGateway

ec2:CreateDefaultSubnet

Refining permissions using access information 1149

AWS Identity and Access Management User Guide

Service prefix Actions

ec2:CreateDefaultVpc

ec2:CreateDhcpOptions

ec2:CreateEgressOnlyInternetGateway

ec2:CreateFleet

ec2:CreateFlowLogs

ec2:CreateFpgaImage

ec2:CreateImage

ec2:CreateInstanceConnectEndpoint

ec2:CreateInstanceEventWindow

ec2:CreateInstanceExportTask

ec2:CreateInternetGateway

ec2:CreateIpam

ec2:CreateIpamPool

ec2:CreateIpamResourceDiscovery

ec2:CreateIpamScope

ec2:CreateKeyPair

ec2:CreateLaunchTemplate

ec2:CreateLaunchTemplateVersion

ec2:CreateLocalGatewayRoute

ec2:CreateLocalGatewayRouteTable

Refining permissions using access information 1150

AWS Identity and Access Management User Guide

Service prefix Actions

ec2:CreateLocalGatewayRouteTableVirtualInterfaceGroupA
ssociation

ec2:CreateLocalGatewayRouteTableVpcAssociation

ec2:CreateManagedPrefixList

ec2:CreateNatGateway

ec2:CreateNetworkAcl

ec2:CreateNetworkAclEntry

ec2:CreateNetworkInsightsAccessScope

ec2:CreateNetworkInsightsPath

ec2:CreateNetworkInterface

ec2:CreateNetworkInterfacePermission

ec2:CreatePlacementGroup

ec2:CreatePublicIpv4Pool

ec2:CreateReplaceRootVolumeTask

ec2:CreateReservedInstancesListing

ec2:CreateRestoreImageTask

ec2:CreateRoute

ec2:CreateRouteTable

ec2:CreateSecurityGroup

ec2:CreateSnapshot

ec2:CreateSnapshots

Refining permissions using access information 1151

AWS Identity and Access Management User Guide

Service prefix Actions

ec2:CreateSpotDatafeedSubscription

ec2:CreateStoreImageTask

ec2:CreateSubnet

ec2:CreateSubnetCidrReservation

ec2:CreateTrafficMirrorFilter

ec2:CreateTrafficMirrorFilterRule

ec2:CreateTrafficMirrorSession

ec2:CreateTrafficMirrorTarget

ec2:CreateTransitGateway

ec2:CreateTransitGatewayConnect

ec2:CreateTransitGatewayConnectPeer

ec2:CreateTransitGatewayMulticastDomain

ec2:CreateTransitGatewayPeeringAttachment

ec2:CreateTransitGatewayPolicyTable

ec2:CreateTransitGatewayPrefixListReference

ec2:CreateTransitGatewayRoute

ec2:CreateTransitGatewayRouteTable

ec2:CreateTransitGatewayRouteTableAnnouncement

ec2:CreateTransitGatewayVpcAttachment

ec2:CreateVerifiedAccessEndpoint

ec2:CreateVerifiedAccessGroup

Refining permissions using access information 1152

AWS Identity and Access Management User Guide

Service prefix Actions

ec2:CreateVerifiedAccessInstance

ec2:CreateVerifiedAccessTrustProvider

ec2:CreateVolume

ec2:CreateVpc

ec2:CreateVpcEndpoint

ec2:CreateVpcEndpointConnectionNotification

ec2:CreateVpcEndpointServiceConfiguration

ec2:CreateVpcPeeringConnection

ec2:CreateVpnConnection

ec2:CreateVpnConnectionRoute

ec2:CreateVpnGateway

ec2:DeleteCarrierGateway

ec2:DeleteClientVpnEndpoint

ec2:DeleteClientVpnRoute

ec2:DeleteCoipCidr

ec2:DeleteCoipPool

ec2:DeleteCustomerGateway

ec2:DeleteDhcpOptions

ec2:DeleteEgressOnlyInternetGateway

ec2:DeleteFleets

ec2:DeleteFlowLogs

Refining permissions using access information 1153

AWS Identity and Access Management User Guide

Service prefix Actions

ec2:DeleteFpgaImage

ec2:DeleteInstanceConnectEndpoint

ec2:DeleteInstanceEventWindow

ec2:DeleteInternetGateway

ec2:DeleteIpam

ec2:DeleteIpamPool

ec2:DeleteIpamResourceDiscovery

ec2:DeleteIpamScope

ec2:DeleteKeyPair

ec2:DeleteLaunchTemplate

ec2:DeleteLaunchTemplateVersions

ec2:DeleteLocalGatewayRoute

ec2:DeleteLocalGatewayRouteTable

ec2:DeleteLocalGatewayRouteTableVirtualInterfaceGroupA
ssociation

ec2:DeleteLocalGatewayRouteTableVpcAssociation

ec2:DeleteManagedPrefixList

ec2:DeleteNatGateway

ec2:DeleteNetworkAcl

ec2:DeleteNetworkAclEntry

ec2:DeleteNetworkInsightsAccessScope

Refining permissions using access information 1154

AWS Identity and Access Management User Guide

Service prefix Actions

ec2:DeleteNetworkInsightsAccessScopeAnalysis

ec2:DeleteNetworkInsightsAnalysis

ec2:DeleteNetworkInsightsPath

ec2:DeleteNetworkInterface

ec2:DeleteNetworkInterfacePermission

ec2:DeletePlacementGroup

ec2:DeletePublicIpv4Pool

ec2:DeleteQueuedReservedInstances

ec2:DeleteRoute

ec2:DeleteRouteTable

ec2:DeleteSecurityGroup

ec2:DeleteSnapshot

ec2:DeleteSpotDatafeedSubscription

ec2:DeleteSubnet

ec2:DeleteSubnetCidrReservation

ec2:DeleteTrafficMirrorFilter

ec2:DeleteTrafficMirrorFilterRule

ec2:DeleteTrafficMirrorSession

ec2:DeleteTrafficMirrorTarget

ec2:DeleteTransitGateway

ec2:DeleteTransitGatewayConnect

Refining permissions using access information 1155

AWS Identity and Access Management User Guide

Service prefix Actions

ec2:DeleteTransitGatewayConnectPeer

ec2:DeleteTransitGatewayMulticastDomain

ec2:DeleteTransitGatewayPeeringAttachment

ec2:DeleteTransitGatewayPolicyTable

ec2:DeleteTransitGatewayPrefixListReference

ec2:DeleteTransitGatewayRoute

ec2:DeleteTransitGatewayRouteTable

ec2:DeleteTransitGatewayRouteTableAnnouncement

ec2:DeleteTransitGatewayVpcAttachment

ec2:DeleteVerifiedAccessEndpoint

ec2:DeleteVerifiedAccessGroup

ec2:DeleteVerifiedAccessInstance

ec2:DeleteVerifiedAccessTrustProvider

ec2:DeleteVolume

ec2:DeleteVpc

ec2:DeleteVpcEndpointConnectionNotifications

ec2:DeleteVpcEndpoints

ec2:DeleteVpcEndpointServiceConfigurations

ec2:DeleteVpcPeeringConnection

ec2:DeleteVpnConnection

ec2:DeleteVpnConnectionRoute

Refining permissions using access information 1156

AWS Identity and Access Management User Guide

Service prefix Actions

ec2:DeleteVpnGateway

ec2:DeprovisionByoipCidr

ec2:DeprovisionIpamPoolCidr

ec2:DeprovisionPublicIpv4PoolCidr

ec2:DeregisterImage

ec2:DeregisterInstanceEventNotificationAttributes

ec2:DeregisterTransitGatewayMulticastGroupMembers

ec2:DeregisterTransitGatewayMulticastGroupSources

ec2:DescribeAccountAttributes

ec2:DescribeAddresses

ec2:DescribeAddressesAttribute

ec2:DescribeAddressTransfers

ec2:DescribeAggregateIdFormat

ec2:DescribeAvailabilityZones

ec2:DescribeAwsNetworkPerformanceMetricSubscriptions

ec2:DescribeBundleTasks

ec2:DescribeByoipCidrs

ec2:DescribeCapacityReservationFleets

ec2:DescribeCapacityReservations

ec2:DescribeCarrierGateways

ec2:DescribeClassicLinkInstances

Refining permissions using access information 1157

AWS Identity and Access Management User Guide

Service prefix Actions

ec2:DescribeClientVpnAuthorizationRules

ec2:DescribeClientVpnConnections

ec2:DescribeClientVpnEndpoints

ec2:DescribeClientVpnRoutes

ec2:DescribeClientVpnTargetNetworks

ec2:DescribeCoipPools

ec2:DescribeConversionTasks

ec2:DescribeCustomerGateways

ec2:DescribeDhcpOptions

ec2:DescribeEgressOnlyInternetGateways

ec2:DescribeElasticGpus

ec2:DescribeExportImageTasks

ec2:DescribeExportTasks

ec2:DescribeFastLaunchImages

ec2:DescribeFastSnapshotRestores

ec2:DescribeFleetHistory

ec2:DescribeFleetInstances

ec2:DescribeFleets

ec2:DescribeFlowLogs

ec2:DescribeFpgaImageAttribute

ec2:DescribeFpgaImages

Refining permissions using access information 1158

AWS Identity and Access Management User Guide

Service prefix Actions

ec2:DescribeHostReservationOfferings

ec2:DescribeHostReservations

ec2:DescribeHosts

ec2:DescribeIamInstanceProfileAssociations

ec2:DescribeIdentityIdFormat

ec2:DescribeIdFormat

ec2:DescribeImageAttribute

ec2:DescribeImages

ec2:DescribeImportImageTasks

ec2:DescribeImportSnapshotTasks

ec2:DescribeInstanceAttribute

ec2:DescribeInstanceConnectEndpoints

ec2:DescribeInstanceCreditSpecifications

ec2:DescribeInstanceEventNotificationAttributes

ec2:DescribeInstanceEventWindows

ec2:DescribeInstances

ec2:DescribeInstanceStatus

ec2:DescribeInstanceTypeOfferings

ec2:DescribeInstanceTypes

ec2:DescribeInternetGateways

ec2:DescribeIpamPools

Refining permissions using access information 1159

AWS Identity and Access Management User Guide

Service prefix Actions

ec2:DescribeIpamResourceDiscoveries

ec2:DescribeIpamResourceDiscoveryAssociations

ec2:DescribeIpams

ec2:DescribeIpamScopes

ec2:DescribeIpv6Pools

ec2:DescribeKeyPairs

ec2:DescribeLaunchTemplates

ec2:DescribeLaunchTemplateVersions

ec2:DescribeLocalGatewayRouteTables

ec2:DescribeLocalGatewayRouteTableVirtualInterfaceGrou
pAssociations

ec2:DescribeLocalGatewayRouteTableVpcAssociations

ec2:DescribeLocalGateways

ec2:DescribeLocalGatewayVirtualInterfaceGroups

ec2:DescribeLocalGatewayVirtualInterfaces

ec2:DescribeManagedPrefixLists

ec2:DescribeMovingAddresses

ec2:DescribeNatGateways

ec2:DescribeNetworkAcls

ec2:DescribeNetworkInsightsAccessScopeAnalyses

ec2:DescribeNetworkInsightsAccessScopes

Refining permissions using access information 1160

AWS Identity and Access Management User Guide

Service prefix Actions

ec2:DescribeNetworkInsightsAnalyses

ec2:DescribeNetworkInsightsPaths

ec2:DescribeNetworkInterfaceAttribute

ec2:DescribeNetworkInterfacePermissions

ec2:DescribeNetworkInterfaces

ec2:DescribePlacementGroups

ec2:DescribePrefixLists

ec2:DescribePrincipalIdFormat

ec2:DescribePublicIpv4Pools

ec2:DescribeRegions

ec2:DescribeReplaceRootVolumeTasks

ec2:DescribeReservedInstances

ec2:DescribeReservedInstancesListings

ec2:DescribeReservedInstancesModifications

ec2:DescribeReservedInstancesOfferings

ec2:DescribeRouteTables

ec2:DescribeScheduledInstanceAvailability

ec2:DescribeScheduledInstances

ec2:DescribeSecurityGroupReferences

ec2:DescribeSecurityGroupRules

ec2:DescribeSecurityGroups

Refining permissions using access information 1161

AWS Identity and Access Management User Guide

Service prefix Actions

ec2:DescribeSnapshotAttribute

ec2:DescribeSnapshots

ec2:DescribeSnapshotTierStatus

ec2:DescribeSpotDatafeedSubscription

ec2:DescribeSpotFleetInstances

ec2:DescribeSpotFleetRequestHistory

ec2:DescribeSpotFleetRequests

ec2:DescribeSpotInstanceRequests

ec2:DescribeSpotPriceHistory

ec2:DescribeStaleSecurityGroups

ec2:DescribeStoreImageTasks

ec2:DescribeSubnets

ec2:DescribeTrafficMirrorFilters

ec2:DescribeTrafficMirrorSessions

ec2:DescribeTrafficMirrorTargets

ec2:DescribeTransitGatewayAttachments

ec2:DescribeTransitGatewayConnectPeers

ec2:DescribeTransitGatewayConnects

ec2:DescribeTransitGatewayMulticastDomains

ec2:DescribeTransitGatewayPeeringAttachments

ec2:DescribeTransitGatewayPolicyTables

Refining permissions using access information 1162

AWS Identity and Access Management User Guide

Service prefix Actions

ec2:DescribeTransitGatewayRouteTableAnnouncements

ec2:DescribeTransitGatewayRouteTables

ec2:DescribeTransitGateways

ec2:DescribeTransitGatewayVpcAttachments

ec2:DescribeTrunkInterfaceAssociations

ec2:DescribeVerifiedAccessEndpoints

ec2:DescribeVerifiedAccessGroups

ec2:DescribeVerifiedAccessInstanceLoggingConfigurations

ec2:DescribeVerifiedAccessInstances

ec2:DescribeVerifiedAccessTrustProviders

ec2:DescribeVolumeAttribute

ec2:DescribeVolumes

ec2:DescribeVolumesModifications

ec2:DescribeVolumeStatus

ec2:DescribeVpcAttribute

ec2:DescribeVpcClassicLink

ec2:DescribeVpcClassicLinkDnsSupport

ec2:DescribeVpcEndpointConnectionNotifications

ec2:DescribeVpcEndpointConnections

ec2:DescribeVpcEndpoints

ec2:DescribeVpcEndpointServiceConfigurations

Refining permissions using access information 1163

AWS Identity and Access Management User Guide

Service prefix Actions

ec2:DescribeVpcEndpointServicePermissions

ec2:DescribeVpcEndpointServices

ec2:DescribeVpcPeeringConnections

ec2:DescribeVpcs

ec2:DescribeVpnConnections

ec2:DescribeVpnGateways

ec2:DetachClassicLinkVpc

ec2:DetachInternetGateway

ec2:DetachNetworkInterface

ec2:DetachVerifiedAccessTrustProvider

ec2:DetachVolume

ec2:DetachVpnGateway

ec2:DisableAddressTransfer

ec2:DisableAwsNetworkPerformanceMetricSubscription

ec2:DisableEbsEncryptionByDefault

ec2:DisableFastLaunch

ec2:DisableFastSnapshotRestores

ec2:DisableImage

ec2:DisableImageBlockPublicAccess

ec2:DisableImageDeprecation

ec2:DisableIpamOrganizationAdminAccount

Refining permissions using access information 1164

AWS Identity and Access Management User Guide

Service prefix Actions

ec2:DisableSerialConsoleAccess

ec2:DisableTransitGatewayRouteTablePropagation

ec2:DisableVgwRoutePropagation

ec2:DisableVpcClassicLink

ec2:DisableVpcClassicLinkDnsSupport

ec2:DisassociateAddress

ec2:DisassociateClientVpnTargetNetwork

ec2:DisassociateEnclaveCertificateIamRole

ec2:DisassociateIamInstanceProfile

ec2:DisassociateInstanceEventWindow

ec2:DisassociateIpamResourceDiscovery

ec2:DisassociateNatGatewayAddress

ec2:DisassociateRouteTable

ec2:DisassociateSubnetCidrBlock

ec2:DisassociateTransitGatewayMulticastDomain

ec2:DisassociateTransitGatewayPolicyTable

ec2:DisassociateTransitGatewayRouteTable

ec2:DisassociateTrunkInterface

ec2:DisassociateVpcCidrBlock

ec2:EnableAddressTransfer

ec2:EnableAwsNetworkPerformanceMetricSubscription

Refining permissions using access information 1165

AWS Identity and Access Management User Guide

Service prefix Actions

ec2:EnableEbsEncryptionByDefault

ec2:EnableFastLaunch

ec2:EnableFastSnapshotRestores

ec2:EnableImage

ec2:EnableImageBlockPublicAccess

ec2:EnableImageDeprecation

ec2:EnableIpamOrganizationAdminAccount

ec2:EnableReachabilityAnalyzerOrganizationSharing

ec2:EnableSerialConsoleAccess

ec2:EnableTransitGatewayRouteTablePropagation

ec2:EnableVgwRoutePropagation

ec2:EnableVolumeIO

ec2:EnableVpcClassicLink

ec2:EnableVpcClassicLinkDnsSupport

ec2:ExportClientVpnClientCertificateRevocationList

ec2:ExportClientVpnClientConfiguration

ec2:ExportImage

ec2:ExportTransitGatewayRoutes

ec2:GetAssociatedEnclaveCertificateIamRoles

ec2:GetAssociatedIpv6PoolCidrs

ec2:GetAwsNetworkPerformanceData

Refining permissions using access information 1166

AWS Identity and Access Management User Guide

Service prefix Actions

ec2:GetCapacityReservationUsage

ec2:GetCoipPoolUsage

ec2:GetConsoleOutput

ec2:GetConsoleScreenshot

ec2:GetDefaultCreditSpecification

ec2:GetEbsDefaultKmsKeyId

ec2:GetEbsEncryptionByDefault

ec2:GetFlowLogsIntegrationTemplate

ec2:GetGroupsForCapacityReservation

ec2:GetHostReservationPurchasePreview

ec2:GetImageBlockPublicAccessState

ec2:GetInstanceTypesFromInstanceRequirements

ec2:GetInstanceUefiData

ec2:GetIpamAddressHistory

ec2:GetIpamDiscoveredAccounts

ec2:GetIpamDiscoveredResourceCidrs

ec2:GetIpamPoolAllocations

ec2:GetIpamPoolCidrs

ec2:GetIpamResourceCidrs

ec2:GetLaunchTemplateData

ec2:GetManagedPrefixListAssociations

Refining permissions using access information 1167

AWS Identity and Access Management User Guide

Service prefix Actions

ec2:GetManagedPrefixListEntries

ec2:GetNetworkInsightsAccessScopeAnalysisFindings

ec2:GetNetworkInsightsAccessScopeContent

ec2:GetPasswordData

ec2:GetReservedInstancesExchangeQuote

ec2:GetSerialConsoleAccessStatus

ec2:GetSpotPlacementScores

ec2:GetSubnetCidrReservations

ec2:GetTransitGatewayAttachmentPropagations

ec2:GetTransitGatewayMulticastDomainAssociations

ec2:GetTransitGatewayPolicyTableAssociations

ec2:GetTransitGatewayPolicyTableEntries

ec2:GetTransitGatewayPrefixListReferences

ec2:GetTransitGatewayRouteTableAssociations

ec2:GetTransitGatewayRouteTablePropagations

ec2:GetVerifiedAccessEndpointPolicy

ec2:GetVerifiedAccessGroupPolicy

ec2:GetVpnConnectionDeviceSampleConfiguration

ec2:GetVpnConnectionDeviceTypes

ec2:GetVpnTunnelReplacementStatus

ec2:ImportClientVpnClientCertificateRevocationList

Refining permissions using access information 1168

AWS Identity and Access Management User Guide

Service prefix Actions

ec2:ImportImage

ec2:ImportInstance

ec2:ImportKeyPair

ec2:ImportSnapshot

ec2:ImportVolume

ec2:ListImagesInRecycleBin

ec2:ListSnapshotsInRecycleBin

ec2:ModifyAddressAttribute

ec2:ModifyAvailabilityZoneGroup

ec2:ModifyCapacityReservation

ec2:ModifyCapacityReservationFleet

ec2:ModifyClientVpnEndpoint

ec2:ModifyDefaultCreditSpecification

ec2:ModifyEbsDefaultKmsKeyId

ec2:ModifyFleet

ec2:ModifyFpgaImageAttribute

ec2:ModifyHosts

ec2:ModifyIdentityIdFormat

ec2:ModifyIdFormat

ec2:ModifyImageAttribute

ec2:ModifyInstanceAttribute

Refining permissions using access information 1169

AWS Identity and Access Management User Guide

Service prefix Actions

ec2:ModifyInstanceCapacityReservationAttributes

ec2:ModifyInstanceCreditSpecification

ec2:ModifyInstanceEventStartTime

ec2:ModifyInstanceEventWindow

ec2:ModifyInstanceMaintenanceOptions

ec2:ModifyInstanceMetadataOptions

ec2:ModifyInstancePlacement

ec2:ModifyIpam

ec2:ModifyIpamPool

ec2:ModifyIpamResourceCidr

ec2:ModifyIpamResourceDiscovery

ec2:ModifyIpamScope

ec2:ModifyLaunchTemplate

ec2:ModifyLocalGatewayRoute

ec2:ModifyManagedPrefixList

ec2:ModifyNetworkInterfaceAttribute

ec2:ModifyPrivateDnsNameOptions

ec2:ModifyReservedInstances

ec2:ModifySecurityGroupRules

ec2:ModifySnapshotAttribute

ec2:ModifySnapshotTier

Refining permissions using access information 1170

AWS Identity and Access Management User Guide

Service prefix Actions

ec2:ModifySpotFleetRequest

ec2:ModifySubnetAttribute

ec2:ModifyTrafficMirrorFilterNetworkServices

ec2:ModifyTrafficMirrorFilterRule

ec2:ModifyTrafficMirrorSession

ec2:ModifyTransitGateway

ec2:ModifyTransitGatewayPrefixListReference

ec2:ModifyTransitGatewayVpcAttachment

ec2:ModifyVerifiedAccessEndpoint

ec2:ModifyVerifiedAccessEndpointPolicy

ec2:ModifyVerifiedAccessGroup

ec2:ModifyVerifiedAccessGroupPolicy

ec2:ModifyVerifiedAccessInstance

ec2:ModifyVerifiedAccessInstanceLoggingConfiguration

ec2:ModifyVerifiedAccessTrustProvider

ec2:ModifyVolume

ec2:ModifyVolumeAttribute

ec2:ModifyVpcAttribute

ec2:ModifyVpcEndpoint

ec2:ModifyVpcEndpointConnectionNotification

ec2:ModifyVpcEndpointServiceConfiguration

Refining permissions using access information 1171

AWS Identity and Access Management User Guide

Service prefix Actions

ec2:ModifyVpcEndpointServicePayerResponsibility

ec2:ModifyVpcEndpointServicePermissions

ec2:ModifyVpcPeeringConnectionOptions

ec2:ModifyVpcTenancy

ec2:ModifyVpnConnection

ec2:ModifyVpnConnectionOptions

ec2:ModifyVpnTunnelCertificate

ec2:ModifyVpnTunnelOptions

ec2:MonitorInstances

ec2:MoveAddressToVpc

ec2:MoveByoipCidrToIpam

ec2:ProvisionByoipCidr

ec2:ProvisionIpamPoolCidr

ec2:ProvisionPublicIpv4PoolCidr

ec2:PurchaseHostReservation

ec2:PurchaseReservedInstancesOffering

ec2:PurchaseScheduledInstances

ec2:RebootInstances

ec2:RegisterImage

ec2:RegisterInstanceEventNotificationAttributes

ec2:RegisterTransitGatewayMulticastGroupMembers

Refining permissions using access information 1172

AWS Identity and Access Management User Guide

Service prefix Actions

ec2:RegisterTransitGatewayMulticastGroupSources

ec2:RejectTransitGatewayMulticastDomainAssociations

ec2:RejectTransitGatewayPeeringAttachment

ec2:RejectTransitGatewayVpcAttachment

ec2:RejectVpcEndpointConnections

ec2:RejectVpcPeeringConnection

ec2:ReleaseAddress

ec2:ReleaseHosts

ec2:ReleaseIpamPoolAllocation

ec2:ReplaceIamInstanceProfileAssociation

ec2:ReplaceNetworkAclAssociation

ec2:ReplaceNetworkAclEntry

ec2:ReplaceRoute

ec2:ReplaceRouteTableAssociation

ec2:ReplaceTransitGatewayRoute

ec2:ReplaceVpnTunnel

ec2:ReportInstanceStatus

ec2:RequestSpotFleet

ec2:RequestSpotInstances

ec2:ResetAddressAttribute

ec2:ResetEbsDefaultKmsKeyId

Refining permissions using access information 1173

AWS Identity and Access Management User Guide

Service prefix Actions

ec2:ResetFpgaImageAttribute

ec2:ResetImageAttribute

ec2:ResetInstanceAttribute

ec2:ResetNetworkInterfaceAttribute

ec2:ResetSnapshotAttribute

ec2:RestoreAddressToClassic

ec2:RestoreImageFromRecycleBin

ec2:RestoreManagedPrefixListVersion

ec2:RestoreSnapshotFromRecycleBin

ec2:RestoreSnapshotTier

ec2:RevokeClientVpnIngress

ec2:RevokeSecurityGroupEgress

ec2:RevokeSecurityGroupIngress

ec2:RunInstances

ec2:RunScheduledInstances

ec2:SearchLocalGatewayRoutes

ec2:SearchTransitGatewayMulticastGroups

ec2:SearchTransitGatewayRoutes

ec2:SendDiagnosticInterrupt

ec2:StartInstances

ec2:StartNetworkInsightsAccessScopeAnalysis

Refining permissions using access information 1174

AWS Identity and Access Management User Guide

Service prefix Actions

ec2:StartNetworkInsightsAnalysis

ec2:StartVpcEndpointServicePrivateDnsVerification

ec2:StopInstances

ec2:TerminateClientVpnConnections

ec2:TerminateInstances

ec2:UnassignIpv6Addresses

ec2:UnassignPrivateIpAddresses

ec2:UnassignPrivateNatGatewayAddress

ec2:UnmonitorInstances

ec2:UpdateSecurityGroupRuleDescriptionsEgress

ec2:UpdateSecurityGroupRuleDescriptionsIngress

ec2:WithdrawByoipCidr

Refining permissions using access information 1175

AWS Identity and Access Management User Guide

Service prefix Actions

ecr ecr:BatchCheckLayerAvailability

ecr:BatchDeleteImage

ecr:BatchGetImage

ecr:BatchGetRepositoryScanningConfiguration

ecr:CompleteLayerUpload

ecr:CreatePullThroughCacheRule

ecr:CreateRepository

ecr:DeleteLifecyclePolicy

ecr:DeletePullThroughCacheRule

ecr:DeleteRegistryPolicy

ecr:DeleteRepository

ecr:DeleteRepositoryPolicy

ecr:DescribeImageReplicationStatus

ecr:DescribeImages

ecr:DescribeImageScanFindings

ecr:DescribePullThroughCacheRules

ecr:DescribeRegistry

ecr:DescribeRepositories

ecr:GetAuthorizationToken

ecr:GetDownloadUrlForLayer

ecr:GetLifecyclePolicy

Refining permissions using access information 1176

AWS Identity and Access Management User Guide

Service prefix Actions

ecr:GetLifecyclePolicyPreview

ecr:GetRegistryPolicy

ecr:GetRegistryScanningConfiguration

ecr:GetRepositoryPolicy

ecr:InitiateLayerUpload

ecr:ListImages

ecr:PutImage

ecr:PutImageScanningConfiguration

ecr:PutRegistryPolicy

ecr:PutRegistryScanningConfiguration

ecr:PutReplicationConfiguration

ecr:StartImageScan

ecr:StartLifecyclePolicyPreview

ecr:UploadLayerPart

Refining permissions using access information 1177

AWS Identity and Access Management User Guide

Service prefix Actions

ecr-public ecr-public:BatchCheckLayerAvailability

ecr-public:BatchDeleteImage

ecr-public:CompleteLayerUpload

ecr-public:CreateRepository

ecr-public:DeleteRepository

ecr-public:DeleteRepositoryPolicy

ecr-public:DescribeImages

ecr-public:DescribeRegistries

ecr-public:DescribeRepositories

ecr-public:GetAuthorizationToken

ecr-public:GetRegistryCatalogData

ecr-public:GetRepositoryCatalogData

ecr-public:GetRepositoryPolicy

ecr-public:InitiateLayerUpload

ecr-public:PutImage

ecr-public:PutRegistryCatalogData

ecr-public:PutRepositoryCatalogData

ecr-public:SetRepositoryPolicy

ecr-public:UploadLayerPart

Refining permissions using access information 1178

AWS Identity and Access Management User Guide

Service prefix Actions

ecs ecs:CreateCapacityProvider

ecs:CreateCluster

ecs:CreateService

ecs:CreateTaskSet

ecs:DeleteAccountSetting

ecs:DeleteAttributes

ecs:DeleteCapacityProvider

ecs:DeleteCluster

ecs:DeleteService

ecs:DeleteTaskDefinitions

ecs:DeleteTaskSet

ecs:DeregisterContainerInstance

ecs:DeregisterTaskDefinition

ecs:DescribeCapacityProviders

ecs:DescribeClusters

ecs:DescribeContainerInstances

ecs:DescribeServices

ecs:DescribeTaskDefinition

ecs:DescribeTasks

ecs:DescribeTaskSets

ecs:DiscoverPollEndpoint

Refining permissions using access information 1179

AWS Identity and Access Management User Guide

Service prefix Actions

ecs:ExecuteCommand

ecs:GetTaskProtection

ecs:ListAccountSettings

ecs:ListAttributes

ecs:ListClusters

ecs:ListContainerInstances

ecs:ListServices

ecs:ListServicesByNamespace

ecs:ListTaskDefinitionFamilies

ecs:ListTaskDefinitions

ecs:ListTasks

ecs:PutAccountSetting

ecs:PutAccountSettingDefault

ecs:PutAttributes

ecs:PutClusterCapacityProviders

ecs:RegisterContainerInstance

ecs:RegisterTaskDefinition

ecs:RunTask

ecs:StartTask

ecs:StopTask

ecs:SubmitAttachmentStateChanges

Refining permissions using access information 1180

AWS Identity and Access Management User Guide

Service prefix Actions

ecs:SubmitContainerStateChange

ecs:SubmitTaskStateChange

ecs:UpdateCapacityProvider

ecs:UpdateCluster

ecs:UpdateClusterSettings

ecs:UpdateContainerAgent

ecs:UpdateContainerInstancesState

ecs:UpdateService

ecs:UpdateServicePrimaryTaskSet

ecs:UpdateTaskProtection

ecs:UpdateTaskSet

Refining permissions using access information 1181

AWS Identity and Access Management User Guide

Service prefix Actions

eks eks:AssociateEncryptionConfig

eks:AssociateIdentityProviderConfig

eks:CreateAddon

eks:CreateCluster

eks:CreateFargateProfile

eks:CreateNodegroup

eks:DeleteAddon

eks:DeleteCluster

eks:DeleteFargateProfile

eks:DeleteNodegroup

eks:DeregisterCluster

eks:DescribeAddon

eks:DescribeAddonConfiguration

eks:DescribeAddonVersions

eks:DescribeCluster

eks:DescribeFargateProfile

eks:DescribeIdentityProviderConfig

eks:DescribeNodegroup

eks:DescribeUpdate

eks:DisassociateIdentityProviderConfig

eks:ListAddons

Refining permissions using access information 1182

AWS Identity and Access Management User Guide

Service prefix Actions

eks:ListClusters

eks:ListFargateProfiles

eks:ListIdentityProviderConfigs

eks:ListNodegroups

eks:ListUpdates

eks:RegisterCluster

eks:UpdateAddon

eks:UpdateClusterConfig

eks:UpdateClusterVersion

eks:UpdateNodegroupConfig

eks:UpdateNodegroupVersion

elastic-inference elastic-inference:DescribeAcceleratorOfferings

elastic-inference:DescribeAccelerators

elastic-inference:DescribeAcceleratorTypes

Refining permissions using access information 1183

AWS Identity and Access Management User Guide

Service prefix Actions

elasticache elasticache:AuthorizeCacheSecurityGroupIngress

elasticache:BatchApplyUpdateAction

elasticache:BatchStopUpdateAction

elasticache:CompleteMigration

elasticache:CopySnapshot

elasticache:CreateCacheCluster

elasticache:CreateCacheParameterGroup

elasticache:CreateCacheSecurityGroup

elasticache:CreateCacheSubnetGroup

elasticache:CreateGlobalReplicationGroup

elasticache:CreateReplicationGroup

elasticache:CreateSnapshot

elasticache:CreateUser

elasticache:CreateUserGroup

elasticache:DecreaseNodeGroupsInGlobalReplicationGroup

elasticache:DecreaseReplicaCount

elasticache:DeleteCacheCluster

elasticache:DeleteCacheParameterGroup

elasticache:DeleteCacheSecurityGroup

elasticache:DeleteCacheSubnetGroup

elasticache:DeleteGlobalReplicationGroup

Refining permissions using access information 1184

AWS Identity and Access Management User Guide

Service prefix Actions

elasticache:DeleteReplicationGroup

elasticache:DeleteSnapshot

elasticache:DeleteUser

elasticache:DeleteUserGroup

elasticache:DescribeCacheClusters

elasticache:DescribeCacheEngineVersions

elasticache:DescribeCacheParameterGroups

elasticache:DescribeCacheParameters

elasticache:DescribeCacheSecurityGroups

elasticache:DescribeCacheSubnetGroups

elasticache:DescribeEngineDefaultParameters

elasticache:DescribeEvents

elasticache:DescribeGlobalReplicationGroups

elasticache:DescribeReplicationGroups

elasticache:DescribeReservedCacheNodes

elasticache:DescribeReservedCacheNodesOfferings

elasticache:DescribeServiceUpdates

elasticache:DescribeSnapshots

elasticache:DescribeUpdateActions

elasticache:DescribeUserGroups

elasticache:DescribeUsers

Refining permissions using access information 1185

AWS Identity and Access Management User Guide

Service prefix Actions

elasticache:DisassociateGlobalReplicationGroup

elasticache:FailoverGlobalReplicationGroup

elasticache:IncreaseNodeGroupsInGlobalReplicationGroup

elasticache:IncreaseReplicaCount

elasticache:ListAllowedNodeTypeModifications

elasticache:ModifyCacheCluster

elasticache:ModifyCacheParameterGroup

elasticache:ModifyCacheSubnetGroup

elasticache:ModifyGlobalReplicationGroup

elasticache:ModifyReplicationGroup

elasticache:ModifyReplicationGroupShardConfiguration

elasticache:ModifyUser

elasticache:ModifyUserGroup

elasticache:PurchaseReservedCacheNodesOffering

elasticache:RebalanceSlotsInGlobalReplicationGroup

elasticache:RebootCacheCluster

elasticache:ResetCacheParameterGroup

elasticache:RevokeCacheSecurityGroupIngress

elasticache:StartMigration

elasticache:TestFailover

elasticache:TestMigration

Refining permissions using access information 1186

AWS Identity and Access Management User Guide

Service prefix Actions

elasticbeanstalk elasticbeanstalk:AbortEnvironmentUpdate

elasticbeanstalk:ApplyEnvironmentManagedAction

elasticbeanstalk:AssociateEnvironmentOperationsRole

elasticbeanstalk:CheckDNSAvailability

elasticbeanstalk:ComposeEnvironments

elasticbeanstalk:CreateApplication

elasticbeanstalk:CreateApplicationVersion

elasticbeanstalk:CreateConfigurationTemplate

elasticbeanstalk:CreateEnvironment

elasticbeanstalk:CreatePlatformVersion

elasticbeanstalk:CreateStorageLocation

elasticbeanstalk:DeleteApplication

elasticbeanstalk:DeleteApplicationVersion

elasticbeanstalk:DeleteConfigurationTemplate

elasticbeanstalk:DeleteEnvironmentConfiguration

elasticbeanstalk:DeletePlatformVersion

elasticbeanstalk:DescribeAccountAttributes

elasticbeanstalk:DescribeApplications

elasticbeanstalk:DescribeApplicationVersions

elasticbeanstalk:DescribeConfigurationOptions

elasticbeanstalk:DescribeConfigurationSettings

Refining permissions using access information 1187

AWS Identity and Access Management User Guide

Service prefix Actions

elasticbeanstalk:DescribeEnvironmentHealth

elasticbeanstalk:DescribeEnvironmentManagedActionHistory

elasticbeanstalk:DescribeEnvironmentManagedActions

elasticbeanstalk:DescribeEnvironmentResources

elasticbeanstalk:DescribeEnvironments

elasticbeanstalk:DescribeEvents

elasticbeanstalk:DescribeInstancesHealth

elasticbeanstalk:DescribePlatformVersion

elasticbeanstalk:DisassociateEnvironmentOperationsRole

elasticbeanstalk:ListAvailableSolutionStacks

elasticbeanstalk:ListPlatformBranches

elasticbeanstalk:ListPlatformVersions

elasticbeanstalk:RebuildEnvironment

elasticbeanstalk:RequestEnvironmentInfo

elasticbeanstalk:RestartAppServer

elasticbeanstalk:RetrieveEnvironmentInfo

elasticbeanstalk:SwapEnvironmentCNAMEs

elasticbeanstalk:TerminateEnvironment

elasticbeanstalk:UpdateApplication

elasticbeanstalk:UpdateApplicationResourceLifecycle

elasticbeanstalk:UpdateApplicationVersion

Refining permissions using access information 1188

AWS Identity and Access Management User Guide

Service prefix Actions

elasticbeanstalk:UpdateConfigurationTemplate

elasticbeanstalk:UpdateEnvironment

elasticbeanstalk:ValidateConfigurationSettings

Refining permissions using access information 1189

AWS Identity and Access Management User Guide

Service prefix Actions

elasticfilesystem elasticfilesystem:CreateAccessPoint

elasticfilesystem:CreateFileSystem

elasticfilesystem:CreateMountTarget

elasticfilesystem:CreateReplicationConfiguration

elasticfilesystem:DeleteAccessPoint

elasticfilesystem:DeleteFileSystem

elasticfilesystem:DeleteFileSystemPolicy

elasticfilesystem:DeleteMountTarget

elasticfilesystem:DeleteReplicationConfiguration

elasticfilesystem:DescribeAccessPoints

elasticfilesystem:DescribeAccountPreferences

elasticfilesystem:DescribeBackupPolicy

elasticfilesystem:DescribeFileSystemPolicy

elasticfilesystem:DescribeFileSystems

elasticfilesystem:DescribeLifecycleConfiguration

elasticfilesystem:DescribeMountTargets

elasticfilesystem:DescribeMountTargetSecurityGroups

elasticfilesystem:DescribeReplicationConfigurations

elasticfilesystem:ModifyMountTargetSecurityGroups

elasticfilesystem:PutAccountPreferences

elasticfilesystem:PutBackupPolicy

Refining permissions using access information 1190

AWS Identity and Access Management User Guide

Service prefix Actions

elasticfilesystem:PutFileSystemPolicy

elasticfilesystem:PutLifecycleConfiguration

elasticfilesystem:UpdateFileSystem

Refining permissions using access information 1191

AWS Identity and Access Management User Guide

Service prefix Actions

elasticloadbalancing elasticloadbalancing:AddListenerCertificates

elasticloadbalancing:ApplySecurityGroupsToLoadBalancer

elasticloadbalancing:AttachLoadBalancerToSubnets

elasticloadbalancing:ConfigureHealthCheck

elasticloadbalancing:CreateAppCookieStickinessPolicy

elasticloadbalancing:CreateLBCookieStickinessPolicy

elasticloadbalancing:CreateListener

elasticloadbalancing:CreateLoadBalancer

elasticloadbalancing:CreateLoadBalancerListeners

elasticloadbalancing:CreateLoadBalancerPolicy

elasticloadbalancing:CreateRule

elasticloadbalancing:CreateTargetGroup

elasticloadbalancing:DeleteListener

elasticloadbalancing:DeleteLoadBalancer

elasticloadbalancing:DeleteLoadBalancerListeners

elasticloadbalancing:DeleteLoadBalancerPolicy

elasticloadbalancing:DeleteRule

elasticloadbalancing:DeleteTargetGroup

elasticloadbalancing:DeregisterInstancesFromLoadBalancer

elasticloadbalancing:DeregisterTargets

elasticloadbalancing:DescribeAccountLimits

Refining permissions using access information 1192

AWS Identity and Access Management User Guide

Service prefix Actions

elasticloadbalancing:DescribeInstanceHealth

elasticloadbalancing:DescribeListenerCertificates

elasticloadbalancing:DescribeListeners

elasticloadbalancing:DescribeLoadBalancerAttributes

elasticloadbalancing:DescribeLoadBalancerPolicies

elasticloadbalancing:DescribeLoadBalancerPolicyTypes

elasticloadbalancing:DescribeLoadBalancers

elasticloadbalancing:DescribeRules

elasticloadbalancing:DescribeSSLPolicies

elasticloadbalancing:DescribeTargetGroupAttributes

elasticloadbalancing:DescribeTargetGroups

elasticloadbalancing:DescribeTargetHealth

elasticloadbalancing:DetachLoadBalancerFromSubnets

elasticloadbalancing:DisableAvailabilityZonesForLoadBalancer

elasticloadbalancing:EnableAvailabilityZonesForLoadBalancer

elasticloadbalancing:ModifyListener

elasticloadbalancing:ModifyLoadBalancerAttributes

elasticloadbalancing:ModifyRule

elasticloadbalancing:ModifyTargetGroup

elasticloadbalancing:ModifyTargetGroupAttributes

elasticloadbalancing:RegisterInstancesWithLoadBalancer

Refining permissions using access information 1193

AWS Identity and Access Management User Guide

Service prefix Actions

elasticloadbalancing:RegisterTargets

elasticloadbalancing:RemoveListenerCertificates

elasticloadbalancing:SetIpAddressType

elasticloadbalancing:SetLoadBalancerListenerSSLCertificate

elasticloadbalancing:SetLoadBalancerPoliciesForBackendServer

elasticloadbalancing:SetLoadBalancerPoliciesOfListener

elasticloadbalancing:SetRulePriorities

elasticloadbalancing:SetSecurityGroups

elasticloadbalancing:SetSubnets

Refining permissions using access information 1194

AWS Identity and Access Management User Guide

Service prefix Actions

elastictranscoder elastictranscoder:CancelJob

elastictranscoder:CreateJob

elastictranscoder:CreatePipeline

elastictranscoder:CreatePreset

elastictranscoder:DeletePipeline

elastictranscoder:DeletePreset

elastictranscoder:ListJobsByPipeline

elastictranscoder:ListJobsByStatus

elastictranscoder:ListPipelines

elastictranscoder:ListPresets

elastictranscoder:ReadJob

elastictranscoder:ReadPipeline

elastictranscoder:ReadPreset

elastictranscoder:TestRole

elastictranscoder:UpdatePipeline

elastictranscoder:UpdatePipelineNotifications

elastictranscoder:UpdatePipelineStatus

Refining permissions using access information 1195

AWS Identity and Access Management User Guide

Service prefix Actions

emr-containers emr-containers:CancelJobRun

emr-containers:CreateJobTemplate

emr-containers:CreateManagedEndpoint

emr-containers:CreateVirtualCluster

emr-containers:DeleteJobTemplate

emr-containers:DeleteManagedEndpoint

emr-containers:DeleteVirtualCluster

emr-containers:DescribeJobRun

emr-containers:DescribeJobTemplate

emr-containers:DescribeManagedEndpoint

emr-containers:DescribeVirtualCluster

emr-containers:GetManagedEndpointSessionCredentials

emr-containers:ListJobRuns

emr-containers:ListJobTemplates

emr-containers:ListManagedEndpoints

emr-containers:ListVirtualClusters

emr-containers:StartJobRun

Refining permissions using access information 1196

AWS Identity and Access Management User Guide

Service prefix Actions

emr-serverless emr-serverless:CancelJobRun

emr-serverless:CreateApplication

emr-serverless:DeleteApplication

emr-serverless:GetApplication

emr-serverless:GetDashboardForJobRun

emr-serverless:GetJobRun

emr-serverless:ListApplications

emr-serverless:ListJobRuns

emr-serverless:StartApplication

emr-serverless:StartJobRun

emr-serverless:StopApplication

emr-serverless:UpdateApplication

Refining permissions using access information 1197

AWS Identity and Access Management User Guide

Service prefix Actions

es es:AcceptInboundConnection

es:AcceptInboundCrossClusterSearchConnection

es:AssociatePackage

es:AuthorizeVpcEndpointAccess

es:CancelElasticsearchServiceSoftwareUpdate

es:CancelServiceSoftwareUpdate

es:CreateDomain

es:CreateElasticsearchDomain

es:CreateOutboundConnection

es:CreateOutboundCrossClusterSearchConnection

es:CreatePackage

es:CreateVpcEndpoint

es:DeleteDomain

es:DeleteElasticsearchDomain

es:DeleteElasticsearchServiceRole

es:DeleteInboundConnection

es:DeleteInboundCrossClusterSearchConnection

es:DeleteOutboundConnection

es:DeleteOutboundCrossClusterSearchConnection

es:DeletePackage

es:DeleteVpcEndpoint

Refining permissions using access information 1198

AWS Identity and Access Management User Guide

Service prefix Actions

es:DescribeDomain

es:DescribeDomainAutoTunes

es:DescribeDomainChangeProgress

es:DescribeDomainConfig

es:DescribeDomainHealth

es:DescribeDomainNodes

es:DescribeDomains

es:DescribeDryRunProgress

es:DescribeElasticsearchDomain

es:DescribeElasticsearchDomainConfig

es:DescribeElasticsearchDomains

es:DescribeElasticsearchInstanceTypeLimits

es:DescribeInboundConnections

es:DescribeInboundCrossClusterSearchConnections

es:DescribeInstanceTypeLimits

es:DescribeOutboundConnections

es:DescribeOutboundCrossClusterSearchConnections

es:DescribePackages

es:DescribeReservedElasticsearchInstanceOfferings

es:DescribeReservedElasticsearchInstances

es:DescribeReservedInstanceOfferings

Refining permissions using access information 1199

AWS Identity and Access Management User Guide

Service prefix Actions

es:DescribeReservedInstances

es:DescribeVpcEndpoints

es:DissociatePackage

es:GetCompatibleElasticsearchVersions

es:GetCompatibleVersions

es:GetDomainMaintenanceStatus

es:GetPackageVersionHistory

es:GetUpgradeHistory

es:GetUpgradeStatus

es:ListDomainNames

es:ListDomainsForPackage

es:ListElasticsearchInstanceTypes

es:ListElasticsearchVersions

es:ListInstanceTypeDetails

es:ListPackagesForDomain

es:ListScheduledActions

es:ListVersions

es:ListVpcEndpointAccess

es:ListVpcEndpoints

es:ListVpcEndpointsForDomain

es:PurchaseReservedElasticsearchInstanceOffering

Refining permissions using access information 1200

AWS Identity and Access Management User Guide

Service prefix Actions

es:PurchaseReservedInstanceOffering

es:RejectInboundConnection

es:RejectInboundCrossClusterSearchConnection

es:RevokeVpcEndpointAccess

es:StartDomainMaintenance

es:StartElasticsearchServiceSoftwareUpdate

es:StartServiceSoftwareUpdate

es:UpdateDomainConfig

es:UpdateElasticsearchDomainConfig

es:UpdatePackage

es:UpdateScheduledAction

es:UpdateVpcEndpoint

es:UpgradeDomain

es:UpgradeElasticsearchDomain

Refining permissions using access information 1201

AWS Identity and Access Management User Guide

Service prefix Actions

events events:ActivateEventSource

events:CancelReplay

events:CreateApiDestination

events:CreateArchive

events:CreateConnection

events:CreateEndpoint

events:CreateEventBus

events:CreatePartnerEventSource

events:DeactivateEventSource

events:DeauthorizeConnection

events:DeleteApiDestination

events:DeleteArchive

events:DeleteConnection

events:DeleteEndpoint

events:DeleteEventBus

events:DeletePartnerEventSource

events:DeleteRule

events:DescribeApiDestination

events:DescribeArchive

events:DescribeConnection

events:DescribeEndpoint

Refining permissions using access information 1202

AWS Identity and Access Management User Guide

Service prefix Actions

events:DescribeEventBus

events:DescribeEventSource

events:DescribePartnerEventSource

events:DescribeReplay

events:DescribeRule

events:DisableRule

events:EnableRule

events:ListApiDestinations

events:ListArchives

events:ListConnections

events:ListEndpoints

events:ListEventBuses

events:ListEventSources

events:ListPartnerEventSourceAccounts

events:ListPartnerEventSources

events:ListReplays

events:ListRuleNamesByTarget

events:ListRules

events:ListTargetsByRule

events:PutPermission

events:PutRule

Refining permissions using access information 1203

AWS Identity and Access Management User Guide

Service prefix Actions

events:PutTargets

events:RemovePermission

events:RemoveTargets

events:StartReplay

events:TestEventPattern

events:UpdateApiDestination

events:UpdateArchive

events:UpdateConnection

events:UpdateEndpoint

Refining permissions using access information 1204

AWS Identity and Access Management User Guide

Service prefix Actions

evidently evidently:CreateExperiment

evidently:CreateFeature

evidently:CreateLaunch

evidently:CreateProject

evidently:CreateSegment

evidently:DeleteExperiment

evidently:DeleteFeature

evidently:DeleteLaunch

evidently:DeleteProject

evidently:DeleteSegment

evidently:GetExperiment

evidently:GetExperimentResults

evidently:GetFeature

evidently:GetLaunch

evidently:GetProject

evidently:GetSegment

evidently:ListExperiments

evidently:ListFeatures

evidently:ListLaunches

evidently:ListProjects

evidently:ListSegmentReferences

Refining permissions using access information 1205

AWS Identity and Access Management User Guide

Service prefix Actions

evidently:ListSegments

evidently:StartExperiment

evidently:StartLaunch

evidently:StopExperiment

evidently:StopLaunch

evidently:TestSegmentPattern

evidently:UpdateExperiment

evidently:UpdateFeature

evidently:UpdateLaunch

evidently:UpdateProject

evidently:UpdateProjectDataDelivery

Refining permissions using access information 1206

AWS Identity and Access Management User Guide

Service prefix Actions

finspace finspace:CreateEnvironment

finspace:CreateKxChangeset

finspace:CreateKxCluster

finspace:CreateKxDatabase

finspace:CreateKxEnvironment

finspace:CreateKxUser

finspace:CreateUser

finspace:DeleteEnvironment

finspace:DeleteKxCluster

finspace:DeleteKxDatabase

finspace:DeleteKxEnvironment

finspace:DeleteKxUser

finspace:GetEnvironment

finspace:GetKxChangeset

finspace:GetKxCluster

finspace:GetKxConnectionString

finspace:GetKxDatabase

finspace:GetKxEnvironment

finspace:GetKxUser

finspace:GetLoadSampleDataSetGroupIntoEnvironmentStatus

finspace:GetUser

Refining permissions using access information 1207

AWS Identity and Access Management User Guide

Service prefix Actions

finspace:ListEnvironments

finspace:ListKxChangesets

finspace:ListKxClusterNodes

finspace:ListKxClusters

finspace:ListKxDatabases

finspace:ListKxEnvironments

finspace:ListKxUsers

finspace:ListUsers

finspace:LoadSampleDataSetGroupIntoEnvironment

finspace:ResetUserPassword

finspace:UpdateEnvironment

finspace:UpdateKxClusterDatabases

finspace:UpdateKxDatabase

finspace:UpdateKxEnvironment

finspace:UpdateKxEnvironmentNetwork

finspace:UpdateKxUser

finspace:UpdateUser

Refining permissions using access information 1208

AWS Identity and Access Management User Guide

Service prefix Actions

firehose firehose:CreateDeliveryStream

firehose:DeleteDeliveryStream

firehose:DescribeDeliveryStream

firehose:ListDeliveryStreams

firehose:StartDeliveryStreamEncryption

firehose:StopDeliveryStreamEncryption

firehose:UpdateDestination

fis fis:CreateExperimentTemplate

fis:DeleteExperimentTemplate

fis:GetAction

fis:GetExperiment

fis:GetExperimentTemplate

fis:GetTargetResourceType

fis:ListActions

fis:ListExperiments

fis:ListExperimentTemplates

fis:ListTargetResourceTypes

fis:StartExperiment

fis:StopExperiment

fis:UpdateExperimentTemplate

Refining permissions using access information 1209

AWS Identity and Access Management User Guide

Service prefix Actions

fms fms:AssociateAdminAccount

fms:AssociateThirdPartyFirewall

fms:BatchAssociateResource

fms:BatchDisassociateResource

fms:DeleteAppsList

fms:DeleteNotificationChannel

fms:DeletePolicy

fms:DeleteProtocolsList

fms:DeleteResourceSet

fms:DisassociateAdminAccount

fms:DisassociateThirdPartyFirewall

fms:GetAdminAccount

fms:GetAdminScope

fms:GetAppsList

fms:GetComplianceDetail

fms:GetNotificationChannel

fms:GetPolicy

fms:GetProtectionStatus

fms:GetProtocolsList

fms:GetResourceSet

fms:GetThirdPartyFirewallAssociationStatus

Refining permissions using access information 1210

AWS Identity and Access Management User Guide

Service prefix Actions

fms:GetViolationDetails

fms:ListAdminAccountsForOrganization

fms:ListAdminsManagingAccount

fms:ListAppsLists

fms:ListComplianceStatus

fms:ListDiscoveredResources

fms:ListMemberAccounts

fms:ListPolicies

fms:ListProtocolsLists

fms:ListResourceSetResources

fms:ListResourceSets

fms:ListThirdPartyFirewallFirewallPolicies

fms:PutAdminAccount

fms:PutAppsList

fms:PutNotificationChannel

fms:PutPolicy

fms:PutProtocolsList

fms:PutResourceSet

Refining permissions using access information 1211

AWS Identity and Access Management User Guide

Service prefix Actions

frauddetector frauddetector:BatchCreateVariable

frauddetector:BatchGetVariable

frauddetector:CancelBatchImportJob

frauddetector:CancelBatchPredictionJob

frauddetector:CreateBatchImportJob

frauddetector:CreateBatchPredictionJob

frauddetector:CreateDetectorVersion

frauddetector:CreateList

frauddetector:CreateModel

frauddetector:CreateModelVersion

frauddetector:CreateRule

frauddetector:CreateVariable

frauddetector:DeleteBatchImportJob

frauddetector:DeleteBatchPredictionJob

frauddetector:DeleteDetector

frauddetector:DeleteDetectorVersion

frauddetector:DeleteEntityType

frauddetector:DeleteEvent

frauddetector:DeleteEventsByEventType

frauddetector:DeleteEventType

frauddetector:DeleteExternalModel

Refining permissions using access information 1212

AWS Identity and Access Management User Guide

Service prefix Actions

frauddetector:DeleteLabel

frauddetector:DeleteList

frauddetector:DeleteModel

frauddetector:DeleteModelVersion

frauddetector:DeleteOutcome

frauddetector:DeleteRule

frauddetector:DeleteVariable

frauddetector:DescribeDetector

frauddetector:DescribeModelVersions

frauddetector:GetBatchImportJobs

frauddetector:GetBatchPredictionJobs

frauddetector:GetDeleteEventsByEventTypeStatus

frauddetector:GetDetectors

frauddetector:GetDetectorVersion

frauddetector:GetEntityTypes

frauddetector:GetEvent

frauddetector:GetEventPrediction

frauddetector:GetEventPredictionMetadata

frauddetector:GetEventTypes

frauddetector:GetExternalModels

frauddetector:GetKMSEncryptionKey

Refining permissions using access information 1213

AWS Identity and Access Management User Guide

Service prefix Actions

frauddetector:GetLabels

frauddetector:GetListElements

frauddetector:GetListsMetadata

frauddetector:GetModels

frauddetector:GetModelVersion

frauddetector:GetOutcomes

frauddetector:GetRules

frauddetector:GetVariables

frauddetector:ListEventPredictions

frauddetector:PutDetector

frauddetector:PutEntityType

frauddetector:PutEventType

frauddetector:PutExternalModel

frauddetector:PutKMSEncryptionKey

frauddetector:PutLabel

frauddetector:PutOutcome

frauddetector:SendEvent

frauddetector:UpdateDetectorVersion

frauddetector:UpdateDetectorVersionMetadata

frauddetector:UpdateDetectorVersionStatus

frauddetector:UpdateEventLabel

Refining permissions using access information 1214

AWS Identity and Access Management User Guide

Service prefix Actions

frauddetector:UpdateList

frauddetector:UpdateModel

frauddetector:UpdateModelVersion

frauddetector:UpdateModelVersionStatus

frauddetector:UpdateRuleMetadata

frauddetector:UpdateRuleVersion

frauddetector:UpdateVariable

Refining permissions using access information 1215

AWS Identity and Access Management User Guide

Service prefix Actions

fsx fsx:AssociateFileSystemAliases

fsx:CancelDataRepositoryTask

fsx:CopyBackup

fsx:CreateDataRepositoryTask

fsx:CreateFileCache

fsx:CreateFileSystem

fsx:CreateFileSystemFromBackup

fsx:CreateSnapshot

fsx:CreateStorageVirtualMachine

fsx:CreateVolume

fsx:CreateVolumeFromBackup

fsx:DeleteBackup

fsx:DeleteFileCache

fsx:DeleteFileSystem

fsx:DeleteSnapshot

fsx:DeleteStorageVirtualMachine

fsx:DeleteVolume

fsx:DescribeBackups

fsx:DescribeDataRepositoryAssociations

fsx:DescribeDataRepositoryTasks

fsx:DescribeFileCaches

Refining permissions using access information 1216

AWS Identity and Access Management User Guide

Service prefix Actions

fsx:DescribeFileSystemAliases

fsx:DescribeFileSystems

fsx:DescribeSnapshots

fsx:DescribeStorageVirtualMachines

fsx:DescribeVolumes

fsx:DisassociateFileSystemAliases

fsx:ReleaseFileSystemNfsV3Locks

fsx:RestoreVolumeFromSnapshot

fsx:StartMisconfiguredStateRecovery

fsx:UpdateDataRepositoryAssociation

fsx:UpdateFileCache

fsx:UpdateFileSystem

fsx:UpdateSnapshot

fsx:UpdateStorageVirtualMachine

fsx:UpdateVolume

Refining permissions using access information 1217

AWS Identity and Access Management User Guide

Service prefix Actions

gamelift gamelift:AcceptMatch

gamelift:ClaimGameServer

gamelift:CreateAlias

gamelift:CreateBuild

gamelift:CreateFleet

gamelift:CreateFleetLocations

gamelift:CreateGameServerGroup

gamelift:CreateGameSession

gamelift:CreateGameSessionQueue

gamelift:CreateLocation

gamelift:CreateMatchmakingConfiguration

gamelift:CreateMatchmakingRuleSet

gamelift:CreatePlayerSession

gamelift:CreatePlayerSessions

gamelift:CreateScript

gamelift:CreateVpcPeeringAuthorization

gamelift:CreateVpcPeeringConnection

gamelift:DeleteAlias

gamelift:DeleteBuild

gamelift:DeleteFleet

gamelift:DeleteFleetLocations

Refining permissions using access information 1218

AWS Identity and Access Management User Guide

Service prefix Actions

gamelift:DeleteGameServerGroup

gamelift:DeleteGameSessionQueue

gamelift:DeleteLocation

gamelift:DeleteMatchmakingConfiguration

gamelift:DeleteMatchmakingRuleSet

gamelift:DeleteScalingPolicy

gamelift:DeleteScript

gamelift:DeleteVpcPeeringAuthorization

gamelift:DeleteVpcPeeringConnection

gamelift:DeregisterCompute

gamelift:DeregisterGameServer

gamelift:DescribeAlias

gamelift:DescribeBuild

gamelift:DescribeCompute

gamelift:DescribeEC2InstanceLimits

gamelift:DescribeFleetAttributes

gamelift:DescribeFleetCapacity

gamelift:DescribeFleetEvents

gamelift:DescribeFleetLocationAttributes

gamelift:DescribeFleetLocationCapacity

gamelift:DescribeFleetLocationUtilization

Refining permissions using access information 1219

AWS Identity and Access Management User Guide

Service prefix Actions

gamelift:DescribeFleetPortSettings

gamelift:DescribeFleetUtilization

gamelift:DescribeGameServer

gamelift:DescribeGameServerGroup

gamelift:DescribeGameServerInstances

gamelift:DescribeGameSessionDetails

gamelift:DescribeGameSessionPlacement

gamelift:DescribeGameSessionQueues

gamelift:DescribeGameSessions

gamelift:DescribeInstances

gamelift:DescribeMatchmaking

gamelift:DescribeMatchmakingConfigurations

gamelift:DescribeMatchmakingRuleSets

gamelift:DescribePlayerSessions

gamelift:DescribeRuntimeConfiguration

gamelift:DescribeScalingPolicies

gamelift:DescribeScript

gamelift:DescribeVpcPeeringAuthorizations

gamelift:DescribeVpcPeeringConnections

gamelift:GetComputeAccess

gamelift:GetComputeAuthToken

Refining permissions using access information 1220

AWS Identity and Access Management User Guide

Service prefix Actions

gamelift:GetGameSessionLogUrl

gamelift:GetInstanceAccess

gamelift:ListAliases

gamelift:ListBuilds

gamelift:ListCompute

gamelift:ListFleets

gamelift:ListGameServerGroups

gamelift:ListGameServers

gamelift:ListLocations

gamelift:ListScripts

gamelift:PutScalingPolicy

gamelift:RegisterCompute

gamelift:RegisterGameServer

gamelift:RequestUploadCredentials

gamelift:ResolveAlias

gamelift:ResumeGameServerGroup

gamelift:SearchGameSessions

gamelift:StartFleetActions

gamelift:StartGameSessionPlacement

gamelift:StartMatchBackfill

gamelift:StartMatchmaking

Refining permissions using access information 1221

AWS Identity and Access Management User Guide

Service prefix Actions

gamelift:StopFleetActions

gamelift:StopGameSessionPlacement

gamelift:StopMatchmaking

gamelift:SuspendGameServerGroup

gamelift:UpdateAlias

gamelift:UpdateBuild

gamelift:UpdateFleetAttributes

gamelift:UpdateFleetCapacity

gamelift:UpdateFleetPortSettings

gamelift:UpdateGameServer

gamelift:UpdateGameServerGroup

gamelift:UpdateGameSession

gamelift:UpdateGameSessionQueue

gamelift:UpdateMatchmakingConfiguration

gamelift:UpdateRuntimeConfiguration

gamelift:UpdateScript

gamelift:ValidateMatchmakingRuleSet

Refining permissions using access information 1222

AWS Identity and Access Management User Guide

Service prefix Actions

geo geo:AssociateTrackerConsumer

geo:BatchDeleteDevicePositionHistory

geo:BatchDeleteGeofence

geo:BatchEvaluateGeofences

geo:BatchGetDevicePosition

geo:BatchPutGeofence

geo:BatchUpdateDevicePosition

geo:CalculateRoute

geo:CalculateRouteMatrix

geo:CreateGeofenceCollection

geo:CreateMap

geo:CreatePlaceIndex

geo:CreateRouteCalculator

geo:CreateTracker

geo:DeleteGeofenceCollection

geo:DeleteKey

geo:DeleteMap

geo:DeletePlaceIndex

geo:DeleteRouteCalculator

geo:DeleteTracker

geo:DescribeGeofenceCollection

Refining permissions using access information 1223

AWS Identity and Access Management User Guide

Service prefix Actions

geo:DescribeKey

geo:DescribeMap

geo:DescribePlaceIndex

geo:DescribeRouteCalculator

geo:DescribeTracker

geo:DisassociateTrackerConsumer

geo:GetDevicePosition

geo:GetDevicePositionHistory

geo:GetGeofence

geo:GetMapGlyphs

geo:GetMapSprites

geo:GetMapStyleDescriptor

geo:GetMapTile

geo:GetPlace

geo:ListDevicePositions

geo:ListGeofenceCollections

geo:ListGeofences

geo:ListKeys

geo:ListMaps

geo:ListPlaceIndexes

geo:ListRouteCalculators

Refining permissions using access information 1224

AWS Identity and Access Management User Guide

Service prefix Actions

geo:ListTrackerConsumers

geo:ListTrackers

geo:PutGeofence

geo:SearchPlaceIndexForPosition

geo:SearchPlaceIndexForSuggestions

geo:SearchPlaceIndexForText

geo:UpdateGeofenceCollection

geo:UpdateKey

geo:UpdateMap

geo:UpdatePlaceIndex

geo:UpdateRouteCalculator

geo:UpdateTracker

Refining permissions using access information 1225

AWS Identity and Access Management User Guide

Service prefix Actions

glacier glacier:AbortMultipartUpload

glacier:AbortVaultLock

glacier:CompleteMultipartUpload

glacier:CompleteVaultLock

glacier:CreateVault

glacier:DeleteArchive

glacier:DeleteVault

glacier:DeleteVaultAccessPolicy

glacier:DeleteVaultNotifications

glacier:DescribeJob

glacier:DescribeVault

glacier:GetDataRetrievalPolicy

glacier:GetJobOutput

glacier:GetVaultAccessPolicy

glacier:GetVaultLock

glacier:GetVaultNotifications

glacier:InitiateJob

glacier:InitiateMultipartUpload

glacier:InitiateVaultLock

glacier:ListJobs

glacier:ListMultipartUploads

Refining permissions using access information 1226

AWS Identity and Access Management User Guide

Service prefix Actions

glacier:ListParts

glacier:ListProvisionedCapacity

glacier:ListVaults

glacier:PurchaseProvisionedCapacity

glacier:SetDataRetrievalPolicy

glacier:SetVaultAccessPolicy

glacier:SetVaultNotifications

glacier:UploadArchive

glacier:UploadMultipartPart

Refining permissions using access information 1227

AWS Identity and Access Management User Guide

Service prefix Actions

grafana grafana:AssociateLicense

grafana:CreateWorkspace

grafana:CreateWorkspaceApiKey

grafana:DeleteWorkspace

grafana:DeleteWorkspaceApiKey

grafana:DescribeWorkspace

grafana:DescribeWorkspaceAuthentication

grafana:DescribeWorkspaceConfiguration

grafana:DisassociateLicense

grafana:ListPermissions

grafana:ListVersions

grafana:ListWorkspaces

grafana:UpdatePermissions

grafana:UpdateWorkspace

grafana:UpdateWorkspaceAuthentication

grafana:UpdateWorkspaceConfiguration

Refining permissions using access information 1228

AWS Identity and Access Management User Guide

Service prefix Actions

greengrass greengrass:AssociateRoleToGroup

greengrass:AssociateServiceRoleToAccount

greengrass:BatchAssociateClientDeviceWithCoreDevice

greengrass:BatchDisassociateClientDeviceFromCoreDevice

greengrass:CancelDeployment

greengrass:CreateComponentVersion

greengrass:CreateConnectorDefinition

greengrass:CreateConnectorDefinitionVersion

greengrass:CreateCoreDefinition

greengrass:CreateCoreDefinitionVersion

greengrass:CreateDeployment

greengrass:CreateDeviceDefinition

greengrass:CreateDeviceDefinitionVersion

greengrass:CreateFunctionDefinition

greengrass:CreateFunctionDefinitionVersion

greengrass:CreateGroup

greengrass:CreateGroupCertificateAuthority

greengrass:CreateGroupVersion

greengrass:CreateLoggerDefinition

greengrass:CreateLoggerDefinitionVersion

greengrass:CreateResourceDefinition

Refining permissions using access information 1229

AWS Identity and Access Management User Guide

Service prefix Actions

greengrass:CreateResourceDefinitionVersion

greengrass:CreateSoftwareUpdateJob

greengrass:CreateSubscriptionDefinition

greengrass:CreateSubscriptionDefinitionVersion

greengrass:DeleteComponent

greengrass:DeleteConnectorDefinition

greengrass:DeleteCoreDefinition

greengrass:DeleteCoreDevice

greengrass:DeleteDeployment

greengrass:DeleteDeviceDefinition

greengrass:DeleteFunctionDefinition

greengrass:DeleteGroup

greengrass:DeleteLoggerDefinition

greengrass:DeleteResourceDefinition

greengrass:DeleteSubscriptionDefinition

greengrass:DescribeComponent

greengrass:DisassociateRoleFromGroup

greengrass:DisassociateServiceRoleFromAccount

greengrass:GetAssociatedRole

greengrass:GetBulkDeploymentStatus

greengrass:GetComponent

Refining permissions using access information 1230

AWS Identity and Access Management User Guide

Service prefix Actions

greengrass:GetComponentVersionArtifact

greengrass:GetConnectivityInfo

greengrass:GetConnectorDefinition

greengrass:GetConnectorDefinitionVersion

greengrass:GetCoreDefinition

greengrass:GetCoreDefinitionVersion

greengrass:GetCoreDevice

greengrass:GetDeployment

greengrass:GetDeploymentStatus

greengrass:GetDeviceDefinition

greengrass:GetDeviceDefinitionVersion

greengrass:GetFunctionDefinition

greengrass:GetFunctionDefinitionVersion

greengrass:GetGroup

greengrass:GetGroupCertificateAuthority

greengrass:GetGroupCertificateConfiguration

greengrass:GetGroupVersion

greengrass:GetLoggerDefinition

greengrass:GetLoggerDefinitionVersion

greengrass:GetResourceDefinition

greengrass:GetResourceDefinitionVersion

Refining permissions using access information 1231

AWS Identity and Access Management User Guide

Service prefix Actions

greengrass:GetServiceRoleForAccount

greengrass:GetSubscriptionDefinition

greengrass:GetSubscriptionDefinitionVersion

greengrass:GetThingRuntimeConfiguration

greengrass:ListBulkDeploymentDetailedReports

greengrass:ListBulkDeployments

greengrass:ListClientDevicesAssociatedWithCoreDevice

greengrass:ListComponents

greengrass:ListComponentVersions

greengrass:ListConnectorDefinitions

greengrass:ListConnectorDefinitionVersions

greengrass:ListCoreDefinitions

greengrass:ListCoreDefinitionVersions

greengrass:ListCoreDevices

greengrass:ListDeployments

greengrass:ListDeviceDefinitions

greengrass:ListDeviceDefinitionVersions

greengrass:ListEffectiveDeployments

greengrass:ListFunctionDefinitions

greengrass:ListFunctionDefinitionVersions

greengrass:ListGroupCertificateAuthorities

Refining permissions using access information 1232

AWS Identity and Access Management User Guide

Service prefix Actions

greengrass:ListGroups

greengrass:ListGroupVersions

greengrass:ListInstalledComponents

greengrass:ListLoggerDefinitions

greengrass:ListLoggerDefinitionVersions

greengrass:ListResourceDefinitions

greengrass:ListResourceDefinitionVersions

greengrass:ListSubscriptionDefinitions

greengrass:ListSubscriptionDefinitionVersions

greengrass:ResetDeployments

greengrass:StartBulkDeployment

greengrass:StopBulkDeployment

greengrass:UpdateConnectivityInfo

greengrass:UpdateConnectorDefinition

greengrass:UpdateCoreDefinition

greengrass:UpdateDeviceDefinition

greengrass:UpdateFunctionDefinition

greengrass:UpdateGroup

greengrass:UpdateGroupCertificateConfiguration

greengrass:UpdateLoggerDefinition

greengrass:UpdateResourceDefinition

Refining permissions using access information 1233

AWS Identity and Access Management User Guide

Service prefix Actions

greengrass:UpdateSubscriptionDefinition

greengrass:UpdateThingRuntimeConfiguration

Refining permissions using access information 1234

AWS Identity and Access Management User Guide

Service prefix Actions

groundstation groundstation:CancelContact

groundstation:CreateConfig

groundstation:CreateDataflowEndpointGroup

groundstation:CreateEphemeris

groundstation:CreateMissionProfile

groundstation:DeleteConfig

groundstation:DeleteDataflowEndpointGroup

groundstation:DeleteEphemeris

groundstation:DeleteMissionProfile

groundstation:DescribeContact

groundstation:DescribeEphemeris

groundstation:GetConfig

groundstation:GetDataflowEndpointGroup

groundstation:GetMinuteUsage

groundstation:GetMissionProfile

groundstation:GetSatellite

groundstation:ListConfigs

groundstation:ListContacts

groundstation:ListDataflowEndpointGroups

groundstation:ListEphemerides

groundstation:ListGroundStations

Refining permissions using access information 1235

AWS Identity and Access Management User Guide

Service prefix Actions

groundstation:ListMissionProfiles

groundstation:ListSatellites

groundstation:RegisterAgent

groundstation:ReserveContact

groundstation:UpdateAgentStatus

groundstation:UpdateConfig

groundstation:UpdateEphemeris

groundstation:UpdateMissionProfile

Refining permissions using access information 1236

AWS Identity and Access Management User Guide

Service prefix Actions

guardduty guardduty:AcceptAdministratorInvitation

guardduty:AcceptInvitation

guardduty:ArchiveFindings

guardduty:CreateDetector

guardduty:CreateFilter

guardduty:CreateIPSet

guardduty:CreateMembers

guardduty:CreatePublishingDestination

guardduty:CreateSampleFindings

guardduty:CreateThreatIntelSet

guardduty:DeclineInvitations

guardduty:DeleteDetector

guardduty:DeleteFilter

guardduty:DeleteInvitations

guardduty:DeleteIPSet

guardduty:DeleteMembers

guardduty:DeletePublishingDestination

guardduty:DeleteThreatIntelSet

guardduty:DescribeMalwareScans

guardduty:DescribeOrganizationConfiguration

guardduty:DescribePublishingDestination

Refining permissions using access information 1237

AWS Identity and Access Management User Guide

Service prefix Actions

guardduty:DisableOrganizationAdminAccount

guardduty:DisassociateFromAdministratorAccount

guardduty:DisassociateFromMasterAccount

guardduty:DisassociateMembers

guardduty:EnableOrganizationAdminAccount

guardduty:GetAdministratorAccount

guardduty:GetCoverageStatistics

guardduty:GetDetector

guardduty:GetFilter

guardduty:GetFindings

guardduty:GetFindingsStatistics

guardduty:GetInvitationsCount

guardduty:GetIPSet

guardduty:GetMalwareScanSettings

guardduty:GetMasterAccount

guardduty:GetMemberDetectors

guardduty:GetMembers

guardduty:GetRemainingFreeTrialDays

guardduty:GetThreatIntelSet

guardduty:GetUsageStatistics

guardduty:InviteMembers

Refining permissions using access information 1238

AWS Identity and Access Management User Guide

Service prefix Actions

guardduty:ListCoverage

guardduty:ListDetectors

guardduty:ListFilters

guardduty:ListFindings

guardduty:ListInvitations

guardduty:ListIPSets

guardduty:ListMembers

guardduty:ListOrganizationAdminAccounts

guardduty:ListPublishingDestinations

guardduty:ListThreatIntelSets

guardduty:SendSecurityTelemetry

guardduty:StartMalwareScan

guardduty:StartMonitoringMembers

guardduty:StopMonitoringMembers

guardduty:UnarchiveFindings

guardduty:UpdateDetector

guardduty:UpdateFilter

guardduty:UpdateFindingsFeedback

guardduty:UpdateIPSet

guardduty:UpdateMalwareScanSettings

guardduty:UpdateMemberDetectors

Refining permissions using access information 1239

AWS Identity and Access Management User Guide

Service prefix Actions

guardduty:UpdateOrganizationConfiguration

guardduty:UpdatePublishingDestination

guardduty:UpdateThreatIntelSet

healthlake healthlake:CreateFHIRDatastore

healthlake:CreateResource

healthlake:DeleteFHIRDatastore

healthlake:DeleteResource

healthlake:DescribeFHIRDatastore

healthlake:DescribeFHIRExportJob

healthlake:DescribeFHIRImportJob

healthlake:GetCapabilities

healthlake:ListFHIRDatastores

healthlake:ListFHIRExportJobs

healthlake:ListFHIRImportJobs

healthlake:ReadResource

healthlake:SearchWithGet

healthlake:SearchWithPost

healthlake:StartFHIRExportJob

healthlake:StartFHIRImportJob

healthlake:UpdateResource

Refining permissions using access information 1240

AWS Identity and Access Management User Guide

Service prefix Actions

honeycode honeycode:BatchCreateTableRows

honeycode:BatchDeleteTableRows

honeycode:BatchUpdateTableRows

honeycode:BatchUpsertTableRows

honeycode:DescribeTableDataImportJob

honeycode:GetScreenData

honeycode:InvokeScreenAutomation

honeycode:ListTableColumns

honeycode:ListTableRows

honeycode:ListTables

honeycode:QueryTableRows

honeycode:StartTableDataImportJob

Refining permissions using access information 1241

AWS Identity and Access Management User Guide

Service prefix Actions

iam iam:AddClientIDToOpenIDConnectProvider

iam:AddRoleToInstanceProfile

iam:AddUserToGroup

iam:AttachGroupPolicy

iam:AttachRolePolicy

iam:AttachUserPolicy

iam:ChangePassword

iam:CreateAccessKey

iam:CreateAccountAlias

iam:CreateGroup

iam:CreateInstanceProfile

iam:CreateLoginProfile

iam:CreateOpenIDConnectProvider

iam:CreatePolicy

iam:CreatePolicyVersion

iam:CreateRole

iam:CreateSAMLProvider

iam:CreateServiceLinkedRole

iam:CreateServiceSpecificCredential

iam:CreateUser

iam:CreateVirtualMFADevice

Refining permissions using access information 1242

AWS Identity and Access Management User Guide

Service prefix Actions

iam:DeactivateMFADevice

iam:DeleteAccessKey

iam:DeleteAccountAlias

iam:DeleteAccountPasswordPolicy

iam:DeleteCloudFrontPublicKey

iam:DeleteGroup

iam:DeleteGroupPolicy

iam:DeleteInstanceProfile

iam:DeleteLoginProfile

iam:DeleteOpenIDConnectProvider

iam:DeletePolicy

iam:DeletePolicyVersion

iam:DeleteRole

iam:DeleteRolePermissionsBoundary

iam:DeleteRolePolicy

iam:DeleteSAMLProvider

iam:DeleteServerCertificate

iam:DeleteServiceLinkedRole

iam:DeleteServiceSpecificCredential

iam:DeleteSigningCertificate

iam:DeleteSSHPublicKey

Refining permissions using access information 1243

AWS Identity and Access Management User Guide

Service prefix Actions

iam:DeleteUser

iam:DeleteUserPermissionsBoundary

iam:DeleteUserPolicy

iam:DeleteVirtualMFADevice

iam:DetachGroupPolicy

iam:DetachRolePolicy

iam:DetachUserPolicy

iam:EnableMFADevice

iam:GenerateCredentialReport

iam:GenerateOrganizationsAccessReport

iam:GenerateServiceLastAccessedDetails

iam:GetAccessKeyLastUsed

iam:GetAccountAuthorizationDetails

iam:GetAccountEmailAddress

iam:GetAccountName

iam:GetAccountPasswordPolicy

iam:GetAccountSummary

iam:GetCloudFrontPublicKey

iam:GetContextKeysForCustomPolicy

iam:GetContextKeysForPrincipalPolicy

iam:GetCredentialReport

Refining permissions using access information 1244

AWS Identity and Access Management User Guide

Service prefix Actions

iam:GetGroup

iam:GetGroupPolicy

iam:GetInstanceProfile

iam:GetLoginProfile

iam:GetMFADevice

iam:GetOpenIDConnectProvider

iam:GetOrganizationsAccessReport

iam:GetPolicy

iam:GetPolicyVersion

iam:GetRole

iam:GetRolePolicy

iam:GetSAMLProvider

iam:GetServerCertificate

iam:GetServiceLastAccessedDetails

iam:GetServiceLastAccessedDetailsWithEntities

iam:GetServiceLinkedRoleDeletionStatus

iam:GetSSHPublicKey

iam:GetUser

iam:GetUserPolicy

iam:ListAccessKeys

iam:ListAccountAliases

Refining permissions using access information 1245

AWS Identity and Access Management User Guide

Service prefix Actions

iam:ListAttachedGroupPolicies

iam:ListAttachedRolePolicies

iam:ListAttachedUserPolicies

iam:ListCloudFrontPublicKeys

iam:ListEntitiesForPolicy

iam:ListGroupPolicies

iam:ListGroups

iam:ListGroupsForUser

iam:ListInstanceProfiles

iam:ListInstanceProfilesForRole

iam:ListMFADevices

iam:ListOpenIDConnectProviders

iam:ListPolicies

iam:ListPoliciesGrantingServiceAccess

iam:ListPolicyVersions

iam:ListRolePolicies

iam:ListRoles

iam:ListSAMLProviders

iam:ListServerCertificates

iam:ListServiceSpecificCredentials

iam:ListSigningCertificates

Refining permissions using access information 1246

AWS Identity and Access Management User Guide

Service prefix Actions

iam:ListSSHPublicKeys

iam:ListSTSRegionalEndpointsStatus

iam:ListUserPolicies

iam:ListUsers

iam:ListVirtualMFADevices

iam:PutGroupPolicy

iam:PutRolePermissionsBoundary

iam:PutRolePolicy

iam:PutUserPermissionsBoundary

iam:PutUserPolicy

iam:RemoveClientIDFromOpenIDConnectProvider

iam:RemoveRoleFromInstanceProfile

iam:RemoveUserFromGroup

iam:ResetServiceSpecificCredential

iam:ResyncMFADevice

iam:SetDefaultPolicyVersion

iam:SetSecurityTokenServicePreferences

iam:SetSTSRegionalEndpointStatus

iam:SimulateCustomPolicy

iam:SimulatePrincipalPolicy

iam:UpdateAccessKey

Refining permissions using access information 1247

AWS Identity and Access Management User Guide

Service prefix Actions

iam:UpdateAccountEmailAddress

iam:UpdateAccountName

iam:UpdateAccountPasswordPolicy

iam:UpdateAssumeRolePolicy

iam:UpdateCloudFrontPublicKey

iam:UpdateGroup

iam:UpdateLoginProfile

iam:UpdateOpenIDConnectProviderThumbprint

iam:UpdateRole

iam:UpdateRoleDescription

iam:UpdateSAMLProvider

iam:UpdateServerCertificate

iam:UpdateServiceSpecificCredential

iam:UpdateSigningCertificate

iam:UpdateSSHPublicKey

iam:UpdateUser

iam:UploadCloudFrontPublicKey

iam:UploadServerCertificate

iam:UploadSigningCertificate

iam:UploadSSHPublicKey

Refining permissions using access information 1248

AWS Identity and Access Management User Guide

Service prefix Actions

identitystore identitystore:CreateGroup

identitystore:CreateGroupMembership

identitystore:CreateUser

identitystore:DeleteGroup

identitystore:DeleteGroupMembership

identitystore:DeleteUser

identitystore:DescribeGroup

identitystore:DescribeGroupMembership

identitystore:DescribeUser

identitystore:GetGroupId

identitystore:GetGroupMembershipId

identitystore:GetUserId

identitystore:IsMemberInGroups

identitystore:ListGroupMemberships

identitystore:ListGroupMembershipsForMember

identitystore:ListGroups

identitystore:ListUsers

identitystore:UpdateGroup

identitystore:UpdateUser

Refining permissions using access information 1249

AWS Identity and Access Management User Guide

Service prefix Actions

imagebuilder imagebuilder:CancelImageCreation

imagebuilder:CreateComponent

imagebuilder:CreateContainerRecipe

imagebuilder:CreateDistributionConfiguration

imagebuilder:CreateImage

imagebuilder:CreateImagePipeline

imagebuilder:CreateImageRecipe

imagebuilder:CreateInfrastructureConfiguration

imagebuilder:DeleteComponent

imagebuilder:DeleteContainerRecipe

imagebuilder:DeleteDistributionConfiguration

imagebuilder:DeleteImage

imagebuilder:DeleteImagePipeline

imagebuilder:DeleteImageRecipe

imagebuilder:DeleteInfrastructureConfiguration

imagebuilder:GetComponentPolicy

imagebuilder:GetContainerRecipePolicy

imagebuilder:GetImagePolicy

imagebuilder:GetImageRecipePolicy

imagebuilder:GetWorkflowExecution

imagebuilder:GetWorkflowStepExecution

Refining permissions using access information 1250

AWS Identity and Access Management User Guide

Service prefix Actions

imagebuilder:ImportComponent

imagebuilder:ImportVmImage

imagebuilder:ListComponentBuildVersions

imagebuilder:ListComponents

imagebuilder:ListContainerRecipes

imagebuilder:ListDistributionConfigurations

imagebuilder:ListImageBuildVersions

imagebuilder:ListImagePackages

imagebuilder:ListImagePipelineImages

imagebuilder:ListImagePipelines

imagebuilder:ListImageRecipes

imagebuilder:ListImages

imagebuilder:ListImageScanFindingAggregations

imagebuilder:ListImageScanFindings

imagebuilder:ListInfrastructureConfigurations

imagebuilder:ListWorkflowExecutions

imagebuilder:ListWorkflowStepExecutions

imagebuilder:PutComponentPolicy

imagebuilder:PutContainerRecipePolicy

imagebuilder:PutImagePolicy

imagebuilder:PutImageRecipePolicy

Refining permissions using access information 1251

AWS Identity and Access Management User Guide

Service prefix Actions

imagebuilder:StartImagePipelineExecution

imagebuilder:UpdateDistributionConfiguration

imagebuilder:UpdateImagePipeline

imagebuilder:UpdateInfrastructureConfiguration

Refining permissions using access information 1252

AWS Identity and Access Management User Guide

Service prefix Actions

inspector inspector:AddAttributesToFindings

inspector:CreateAssessmentTarget

inspector:CreateAssessmentTemplate

inspector:CreateExclusionsPreview

inspector:CreateResourceGroup

inspector:DeleteAssessmentRun

inspector:DeleteAssessmentTarget

inspector:DeleteAssessmentTemplate

inspector:DescribeAssessmentRuns

inspector:DescribeAssessmentTargets

inspector:DescribeAssessmentTemplates

inspector:DescribeCrossAccountAccessRole

inspector:DescribeExclusions

inspector:DescribeFindings

inspector:DescribeResourceGroups

inspector:DescribeRulesPackages

inspector:GetAssessmentReport

inspector:GetExclusionsPreview

inspector:GetTelemetryMetadata

inspector:ListAssessmentRunAgents

inspector:ListAssessmentRuns

Refining permissions using access information 1253

AWS Identity and Access Management User Guide

Service prefix Actions

inspector:ListAssessmentTargets

inspector:ListAssessmentTemplates

inspector:ListEventSubscriptions

inspector:ListExclusions

inspector:ListFindings

inspector:ListRulesPackages

inspector:PreviewAgents

inspector:RegisterCrossAccountAccessRole

inspector:RemoveAttributesFromFindings

inspector:StartAssessmentRun

inspector:StopAssessmentRun

inspector:SubscribeToEvent

inspector:UnsubscribeFromEvent

inspector:UpdateAssessmentTarget

Refining permissions using access information 1254

AWS Identity and Access Management User Guide

Service prefix Actions

inspector2 inspector2:AssociateMember

inspector2:BatchGetAccountStatus

inspector2:BatchGetCodeSnippet

inspector2:BatchGetFindingDetails

inspector2:BatchGetFreeTrialInfo

inspector2:BatchGetMemberEc2DeepInspectionStatus

inspector2:BatchUpdateMemberEc2DeepInspectionStatus

inspector2:CancelFindingsReport

inspector2:CancelSbomExport

inspector2:CreateFilter

inspector2:CreateFindingsReport

inspector2:CreateSbomExport

inspector2:DeleteFilter

inspector2:DescribeOrganizationConfiguration

inspector2:Disable

inspector2:DisableDelegatedAdminAccount

inspector2:DisassociateMember

inspector2:Enable

inspector2:EnableDelegatedAdminAccount

inspector2:GetConfiguration

inspector2:GetDelegatedAdminAccount

Refining permissions using access information 1255

AWS Identity and Access Management User Guide

Service prefix Actions

inspector2:GetEc2DeepInspectionConfiguration

inspector2:GetEncryptionKey

inspector2:GetFindingsReportStatus

inspector2:GetMember

inspector2:GetSbomExport

inspector2:ListAccountPermissions

inspector2:ListCoverage

inspector2:ListCoverageStatistics

inspector2:ListDelegatedAdminAccounts

inspector2:ListFilters

inspector2:ListFindingAggregations

inspector2:ListFindings

inspector2:ListMembers

inspector2:ListUsageTotals

inspector2:ResetEncryptionKey

inspector2:SearchVulnerabilities

inspector2:UpdateConfiguration

inspector2:UpdateEc2DeepInspectionConfiguration

inspector2:UpdateEncryptionKey

inspector2:UpdateFilter

inspector2:UpdateOrganizationConfiguration

Refining permissions using access information 1256

AWS Identity and Access Management User Guide

Service prefix Actions

inspector2:UpdateOrgEc2DeepInspectionConfiguration

Refining permissions using access information 1257

AWS Identity and Access Management User Guide

Service prefix Actions

iot iot:AcceptCertificateTransfer

iot:AddThingToBillingGroup

iot:AddThingToThingGroup

iot:AssociateTargetsWithJob

iot:AttachPolicy

iot:AttachPrincipalPolicy

iot:AttachSecurityProfile

iot:AttachThingPrincipal

iot:CancelAuditMitigationActionsTask

iot:CancelAuditTask

iot:CancelCertificateTransfer

iot:CancelDetectMitigationActionsTask

iot:CancelJob

iot:CancelJobExecution

iot:ClearDefaultAuthorizer

iot:ConfirmTopicRuleDestination

iot:CreateAuditSuppression

iot:CreateAuthorizer

iot:CreateBillingGroup

iot:CreateCertificateFromCsr

iot:CreateCustomMetric

Refining permissions using access information 1258

AWS Identity and Access Management User Guide

Service prefix Actions

iot:CreateDimension

iot:CreateDomainConfiguration

iot:CreateDynamicThingGroup

iot:CreateFleetMetric

iot:CreateJob

iot:CreateJobTemplate

iot:CreateKeysAndCertificate

iot:CreateMitigationAction

iot:CreateOTAUpdate

iot:CreatePackage

iot:CreatePackageVersion

iot:CreatePolicy

iot:CreatePolicyVersion

iot:CreateProvisioningClaim

iot:CreateProvisioningTemplate

iot:CreateProvisioningTemplateVersion

iot:CreateRoleAlias

iot:CreateScheduledAudit

iot:CreateSecurityProfile

iot:CreateStream

iot:CreateThing

Refining permissions using access information 1259

AWS Identity and Access Management User Guide

Service prefix Actions

iot:CreateThingGroup

iot:CreateThingType

iot:CreateTopicRule

iot:CreateTopicRuleDestination

iot:DeleteAccountAuditConfiguration

iot:DeleteAuditSuppression

iot:DeleteAuthorizer

iot:DeleteBillingGroup

iot:DeleteCACertificate

iot:DeleteCertificate

iot:DeleteCustomMetric

iot:DeleteDimension

iot:DeleteDomainConfiguration

iot:DeleteDynamicThingGroup

iot:DeleteFleetMetric

iot:DeleteJob

iot:DeleteJobExecution

iot:DeleteJobTemplate

iot:DeleteMitigationAction

iot:DeleteOTAUpdate

iot:DeletePackage

Refining permissions using access information 1260

AWS Identity and Access Management User Guide

Service prefix Actions

iot:DeletePackageVersion

iot:DeletePolicy

iot:DeletePolicyVersion

iot:DeleteProvisioningTemplate

iot:DeleteProvisioningTemplateVersion

iot:DeleteRegistrationCode

iot:DeleteRoleAlias

iot:DeleteScheduledAudit

iot:DeleteSecurityProfile

iot:DeleteStream

iot:DeleteThing

iot:DeleteThingGroup

iot:DeleteThingType

iot:DeleteTopicRule

iot:DeleteTopicRuleDestination

iot:DeleteV2LoggingLevel

iot:DeprecateThingType

iot:DescribeAccountAuditConfiguration

iot:DescribeAuditFinding

iot:DescribeAuditMitigationActionsTask

iot:DescribeAuditSuppression

Refining permissions using access information 1261

AWS Identity and Access Management User Guide

Service prefix Actions

iot:DescribeAuditTask

iot:DescribeAuthorizer

iot:DescribeBillingGroup

iot:DescribeCACertificate

iot:DescribeCertificate

iot:DescribeCustomMetric

iot:DescribeDefaultAuthorizer

iot:DescribeDetectMitigationActionsTask

iot:DescribeDimension

iot:DescribeDomainConfiguration

iot:DescribeEndpoint

iot:DescribeEventConfigurations

iot:DescribeFleetMetric

iot:DescribeIndex

iot:DescribeJob

iot:DescribeJobExecution

iot:DescribeJobTemplate

iot:DescribeManagedJobTemplate

iot:DescribeMitigationAction

iot:DescribeProvisioningTemplate

iot:DescribeProvisioningTemplateVersion

Refining permissions using access information 1262

AWS Identity and Access Management User Guide

Service prefix Actions

iot:DescribeRoleAlias

iot:DescribeScheduledAudit

iot:DescribeSecurityProfile

iot:DescribeStream

iot:DescribeThing

iot:DescribeThingGroup

iot:DescribeThingRegistrationTask

iot:DescribeThingType

iot:DetachPolicy

iot:DetachPrincipalPolicy

iot:DetachSecurityProfile

iot:DetachThingPrincipal

iot:DisableTopicRule

iot:EnableTopicRule

iot:GetBehaviorModelTrainingSummaries

iot:GetBucketsAggregation

iot:GetCardinality

iot:GetEffectivePolicies

iot:GetJobDocument

iot:GetLoggingOptions

iot:GetOTAUpdate

Refining permissions using access information 1263

AWS Identity and Access Management User Guide

Service prefix Actions

iot:GetPackage

iot:GetPackageConfiguration

iot:GetPackageVersion

iot:GetPercentiles

iot:GetPolicy

iot:GetPolicyVersion

iot:GetRegistrationCode

iot:GetStatistics

iot:GetTopicRule

iot:GetTopicRuleDestination

iot:GetV2LoggingOptions

iot:ListActiveViolations

iot:ListAttachedPolicies

iot:ListAuditFindings

iot:ListAuditMitigationActionsExecutions

iot:ListAuditMitigationActionsTasks

iot:ListAuditSuppressions

iot:ListAuditTasks

iot:ListAuthorizers

iot:ListBillingGroups

iot:ListCACertificates

Refining permissions using access information 1264

AWS Identity and Access Management User Guide

Service prefix Actions

iot:ListCertificates

iot:ListCertificatesByCA

iot:ListCustomMetrics

iot:ListDetectMitigationActionsExecutions

iot:ListDetectMitigationActionsTasks

iot:ListDimensions

iot:ListDomainConfigurations

iot:ListFleetMetrics

iot:ListIndices

iot:ListJobExecutionsForJob

iot:ListJobExecutionsForThing

iot:ListJobs

iot:ListJobTemplates

iot:ListManagedJobTemplates

iot:ListMetricValues

iot:ListMitigationActions

iot:ListOTAUpdates

iot:ListOutgoingCertificates

iot:ListPackages

iot:ListPackageVersions

iot:ListPolicies

Refining permissions using access information 1265

AWS Identity and Access Management User Guide

Service prefix Actions

iot:ListPolicyPrincipals

iot:ListPolicyVersions

iot:ListPrincipalPolicies

iot:ListPrincipalThings

iot:ListProvisioningTemplates

iot:ListProvisioningTemplateVersions

iot:ListRelatedResourcesForAuditFinding

iot:ListRoleAliases

iot:ListScheduledAudits

iot:ListSecurityProfiles

iot:ListSecurityProfilesForTarget

iot:ListStreams

iot:ListTargetsForPolicy

iot:ListTargetsForSecurityProfile

iot:ListThingGroups

iot:ListThingGroupsForThing

iot:ListThingPrincipals

iot:ListThingRegistrationTaskReports

iot:ListThingRegistrationTasks

iot:ListThings

iot:ListThingsInBillingGroup

Refining permissions using access information 1266

AWS Identity and Access Management User Guide

Service prefix Actions

iot:ListThingsInThingGroup

iot:ListThingTypes

iot:ListTopicRuleDestinations

iot:ListTopicRules

iot:ListV2LoggingLevels

iot:ListViolationEvents

iot:PutVerificationStateOnViolation

iot:RegisterCACertificate

iot:RegisterCertificate

iot:RegisterCertificateWithoutCA

iot:RegisterThing

iot:RejectCertificateTransfer

iot:RemoveThingFromBillingGroup

iot:RemoveThingFromThingGroup

iot:ReplaceTopicRule

iot:SearchIndex

iot:SetDefaultAuthorizer

iot:SetDefaultPolicyVersion

iot:SetLoggingOptions

iot:SetV2LoggingLevel

iot:SetV2LoggingOptions

Refining permissions using access information 1267

AWS Identity and Access Management User Guide

Service prefix Actions

iot:StartAuditMitigationActionsTask

iot:StartDetectMitigationActionsTask

iot:StartOnDemandAuditTask

iot:StartThingRegistrationTask

iot:StopThingRegistrationTask

iot:TestAuthorization

iot:TestInvokeAuthorizer

iot:TransferCertificate

iot:UpdateAccountAuditConfiguration

iot:UpdateAuditSuppression

iot:UpdateAuthorizer

iot:UpdateBillingGroup

iot:UpdateCACertificate

iot:UpdateCertificate

iot:UpdateCustomMetric

iot:UpdateDimension

iot:UpdateDomainConfiguration

iot:UpdateDynamicThingGroup

iot:UpdateEventConfigurations

iot:UpdateFleetMetric

iot:UpdateIndexingConfiguration

Refining permissions using access information 1268

AWS Identity and Access Management User Guide

Service prefix Actions

iot:UpdateJob

iot:UpdateMitigationAction

iot:UpdatePackage

iot:UpdatePackageConfiguration

iot:UpdatePackageVersion

iot:UpdateProvisioningTemplate

iot:UpdateRoleAlias

iot:UpdateScheduledAudit

iot:UpdateSecurityProfile

iot:UpdateStream

iot:UpdateThing

iot:UpdateThingGroup

iot:UpdateThingGroupsForThing

iot:UpdateTopicRuleDestination

iot:ValidateSecurityProfileBehaviors

Refining permissions using access information 1269

AWS Identity and Access Management User Guide

Service prefix Actions

iotanalytics iotanalytics:CancelPipelineReprocessing

iotanalytics:CreateChannel

iotanalytics:CreateDataset

iotanalytics:CreateDatasetContent

iotanalytics:CreateDatastore

iotanalytics:CreatePipeline

iotanalytics:DeleteChannel

iotanalytics:DeleteDataset

iotanalytics:DeleteDatasetContent

iotanalytics:DeleteDatastore

iotanalytics:DeletePipeline

iotanalytics:DescribeChannel

iotanalytics:DescribeDataset

iotanalytics:DescribeDatastore

iotanalytics:DescribeLoggingOptions

iotanalytics:DescribePipeline

iotanalytics:GetDatasetContent

iotanalytics:ListChannels

iotanalytics:ListDatasetContents

iotanalytics:ListDatasets

iotanalytics:ListDatastores

Refining permissions using access information 1270

AWS Identity and Access Management User Guide

Service prefix Actions

iotanalytics:ListPipelines

iotanalytics:PutLoggingOptions

iotanalytics:RunPipelineActivity

iotanalytics:SampleChannelData

iotanalytics:StartPipelineReprocessing

iotanalytics:UpdateChannel

iotanalytics:UpdateDataset

iotanalytics:UpdateDatastore

iotanalytics:UpdatePipeline

iotdeviceadvisor iotdeviceadvisor:CreateSuiteDefinition

iotdeviceadvisor:DeleteSuiteDefinition

iotdeviceadvisor:GetEndpoint

iotdeviceadvisor:GetSuiteDefinition

iotdeviceadvisor:GetSuiteRun

iotdeviceadvisor:GetSuiteRunReport

iotdeviceadvisor:ListSuiteDefinitions

iotdeviceadvisor:ListSuiteRuns

iotdeviceadvisor:StartSuiteRun

iotdeviceadvisor:StopSuiteRun

iotdeviceadvisor:UpdateSuiteDefinition

Refining permissions using access information 1271

AWS Identity and Access Management User Guide

Service prefix Actions

iotevents iotevents:BatchAcknowledgeAlarm

iotevents:BatchDeleteDetector

iotevents:BatchDisableAlarm

iotevents:BatchEnableAlarm

iotevents:BatchResetAlarm

iotevents:BatchSnoozeAlarm

iotevents:BatchUpdateDetector

iotevents:CreateAlarmModel

iotevents:CreateDetectorModel

iotevents:CreateInput

iotevents:DeleteAlarmModel

iotevents:DeleteDetectorModel

iotevents:DeleteInput

iotevents:DescribeAlarm

iotevents:DescribeAlarmModel

iotevents:DescribeDetector

iotevents:DescribeDetectorModel

iotevents:DescribeDetectorModelAnalysis

iotevents:DescribeInput

iotevents:DescribeLoggingOptions

iotevents:GetDetectorModelAnalysisResults

Refining permissions using access information 1272

AWS Identity and Access Management User Guide

Service prefix Actions

iotevents:ListAlarmModels

iotevents:ListAlarmModelVersions

iotevents:ListAlarms

iotevents:ListDetectorModels

iotevents:ListDetectorModelVersions

iotevents:ListDetectors

iotevents:ListInputRoutings

iotevents:ListInputs

iotevents:PutLoggingOptions

iotevents:StartDetectorModelAnalysis

iotevents:UpdateAlarmModel

iotevents:UpdateDetectorModel

iotevents:UpdateInput

iotfleethub iotfleethub:CreateApplication

iotfleethub:DeleteApplication

iotfleethub:DescribeApplication

iotfleethub:ListApplications

iotfleethub:UpdateApplication

Refining permissions using access information 1273

AWS Identity and Access Management User Guide

Service prefix Actions

iotsitewise iotsitewise:AssociateAssets

iotsitewise:AssociateTimeSeriesToAssetProperty

iotsitewise:BatchAssociateProjectAssets

iotsitewise:BatchDisassociateProjectAssets

iotsitewise:CreateAccessPolicy

iotsitewise:CreateAsset

iotsitewise:CreateAssetModel

iotsitewise:CreateBulkImportJob

iotsitewise:CreateDashboard

iotsitewise:CreateGateway

iotsitewise:CreatePortal

iotsitewise:CreateProject

iotsitewise:DeleteAccessPolicy

iotsitewise:DeleteAsset

iotsitewise:DeleteAssetModel

iotsitewise:DeleteDashboard

iotsitewise:DeleteGateway

iotsitewise:DeletePortal

iotsitewise:DeleteProject

iotsitewise:DeleteTimeSeries

iotsitewise:DescribeAccessPolicy

Refining permissions using access information 1274

AWS Identity and Access Management User Guide

Service prefix Actions

iotsitewise:DescribeAsset

iotsitewise:DescribeAssetModel

iotsitewise:DescribeAssetProperty

iotsitewise:DescribeBulkImportJob

iotsitewise:DescribeDashboard

iotsitewise:DescribeDefaultEncryptionConfiguration

iotsitewise:DescribeGateway

iotsitewise:DescribeGatewayCapabilityConfiguration

iotsitewise:DescribeLoggingOptions

iotsitewise:DescribePortal

iotsitewise:DescribeProject

iotsitewise:DescribeStorageConfiguration

iotsitewise:DescribeTimeSeries

iotsitewise:DisassociateAssets

iotsitewise:DisassociateTimeSeriesFromAssetProperty

iotsitewise:ListAccessPolicies

iotsitewise:ListAssetModelProperties

iotsitewise:ListAssetModels

iotsitewise:ListAssetProperties

iotsitewise:ListAssetRelationships

iotsitewise:ListAssets

Refining permissions using access information 1275

AWS Identity and Access Management User Guide

Service prefix Actions

iotsitewise:ListAssociatedAssets

iotsitewise:ListBulkImportJobs

iotsitewise:ListDashboards

iotsitewise:ListGateways

iotsitewise:ListPortals

iotsitewise:ListProjectAssets

iotsitewise:ListProjects

iotsitewise:ListTimeSeries

iotsitewise:PutDefaultEncryptionConfiguration

iotsitewise:PutLoggingOptions

iotsitewise:PutStorageConfiguration

iotsitewise:UpdateAccessPolicy

iotsitewise:UpdateAsset

iotsitewise:UpdateAssetModel

iotsitewise:UpdateAssetProperty

iotsitewise:UpdateDashboard

iotsitewise:UpdateGateway

iotsitewise:UpdateGatewayCapabilityConfiguration

iotsitewise:UpdatePortal

iotsitewise:UpdateProject

Refining permissions using access information 1276

AWS Identity and Access Management User Guide

Service prefix Actions

iottwinmaker iottwinmaker:CreateComponentType

iottwinmaker:CreateEntity

iottwinmaker:CreateScene

iottwinmaker:CreateSyncJob

iottwinmaker:CreateWorkspace

iottwinmaker:DeleteComponentType

iottwinmaker:DeleteEntity

iottwinmaker:DeleteScene

iottwinmaker:DeleteSyncJob

iottwinmaker:DeleteWorkspace

iottwinmaker:ExecuteQuery

iottwinmaker:GetPricingPlan

iottwinmaker:GetScene

iottwinmaker:GetSyncJob

iottwinmaker:ListComponentTypes

iottwinmaker:ListEntities

iottwinmaker:ListScenes

iottwinmaker:ListSyncJobs

iottwinmaker:ListSyncResources

iottwinmaker:ListWorkspaces

iottwinmaker:UpdateComponentType

Refining permissions using access information 1277

AWS Identity and Access Management User Guide

Service prefix Actions

iottwinmaker:UpdateEntity

iottwinmaker:UpdatePricingPlan

iottwinmaker:UpdateScene

iottwinmaker:UpdateWorkspace

Refining permissions using access information 1278

AWS Identity and Access Management User Guide

Service prefix Actions

iotwireless iotwireless:AssociateAwsAccountWithPartnerAccount

iotwireless:AssociateMulticastGroupWithFuotaTask

iotwireless:AssociateWirelessDeviceWithFuotaTask

iotwireless:AssociateWirelessDeviceWithMulticastGroup

iotwireless:AssociateWirelessDeviceWithThing

iotwireless:AssociateWirelessGatewayWithCertificate

iotwireless:AssociateWirelessGatewayWithThing

iotwireless:CancelMulticastGroupSession

iotwireless:CreateDestination

iotwireless:CreateDeviceProfile

iotwireless:CreateFuotaTask

iotwireless:CreateMulticastGroup

iotwireless:CreateNetworkAnalyzerConfiguration

iotwireless:CreateServiceProfile

iotwireless:CreateWirelessDevice

iotwireless:CreateWirelessGateway

iotwireless:CreateWirelessGatewayTask

iotwireless:CreateWirelessGatewayTaskDefinition

iotwireless:DeleteDestination

iotwireless:DeleteDeviceProfile

iotwireless:DeleteFuotaTask

Refining permissions using access information 1279

AWS Identity and Access Management User Guide

Service prefix Actions

iotwireless:DeleteMulticastGroup

iotwireless:DeleteNetworkAnalyzerConfiguration

iotwireless:DeleteQueuedMessages

iotwireless:DeleteServiceProfile

iotwireless:DeleteWirelessDevice

iotwireless:DeleteWirelessDeviceImportTask

iotwireless:DeleteWirelessGateway

iotwireless:DeleteWirelessGatewayTask

iotwireless:DeleteWirelessGatewayTaskDefinition

iotwireless:DeregisterWirelessDevice

iotwireless:DisassociateAwsAccountFromPartnerAccount

iotwireless:DisassociateMulticastGroupFromFuotaTask

iotwireless:DisassociateWirelessDeviceFromFuotaTask

iotwireless:DisassociateWirelessDeviceFromMulticastGroup

iotwireless:DisassociateWirelessDeviceFromThing

iotwireless:DisassociateWirelessGatewayFromCertificate

iotwireless:DisassociateWirelessGatewayFromThing

iotwireless:GetDestination

iotwireless:GetDeviceProfile

iotwireless:GetEventConfigurationByResourceTypes

iotwireless:GetFuotaTask

Refining permissions using access information 1280

AWS Identity and Access Management User Guide

Service prefix Actions

iotwireless:GetLogLevelsByResourceTypes

iotwireless:GetMulticastGroup

iotwireless:GetMulticastGroupSession

iotwireless:GetNetworkAnalyzerConfiguration

iotwireless:GetPartnerAccount

iotwireless:GetPosition

iotwireless:GetPositionConfiguration

iotwireless:GetPositionEstimate

iotwireless:GetResourceEventConfiguration

iotwireless:GetResourceLogLevel

iotwireless:GetResourcePosition

iotwireless:GetServiceEndpoint

iotwireless:GetServiceProfile

iotwireless:GetWirelessDevice

iotwireless:GetWirelessDeviceImportTask

iotwireless:GetWirelessDeviceStatistics

iotwireless:GetWirelessGateway

iotwireless:GetWirelessGatewayCertificate

iotwireless:GetWirelessGatewayFirmwareInformation

iotwireless:GetWirelessGatewayStatistics

iotwireless:GetWirelessGatewayTask

Refining permissions using access information 1281

AWS Identity and Access Management User Guide

Service prefix Actions

iotwireless:GetWirelessGatewayTaskDefinition

iotwireless:ListDestinations

iotwireless:ListDeviceProfiles

iotwireless:ListDevicesForWirelessDeviceImportTask

iotwireless:ListEventConfigurations

iotwireless:ListFuotaTasks

iotwireless:ListMulticastGroups

iotwireless:ListMulticastGroupsByFuotaTask

iotwireless:ListNetworkAnalyzerConfigurations

iotwireless:ListPartnerAccounts

iotwireless:ListPositionConfigurations

iotwireless:ListQueuedMessages

iotwireless:ListServiceProfiles

iotwireless:ListWirelessDeviceImportTasks

iotwireless:ListWirelessDevices

iotwireless:ListWirelessGateways

iotwireless:ListWirelessGatewayTaskDefinitions

iotwireless:PutPositionConfiguration

iotwireless:PutResourceLogLevel

iotwireless:ResetAllResourceLogLevels

iotwireless:ResetResourceLogLevel

Refining permissions using access information 1282

AWS Identity and Access Management User Guide

Service prefix Actions

iotwireless:SendDataToMulticastGroup

iotwireless:SendDataToWirelessDevice

iotwireless:StartBulkAssociateWirelessDeviceWithMulticastGroup

iotwireless:StartBulkDisassociateWirelessDeviceFromMulticastGro
up

iotwireless:StartFuotaTask

iotwireless:StartMulticastGroupSession

iotwireless:StartNetworkAnalyzerStream

iotwireless:StartSingleWirelessDeviceImportTask

iotwireless:StartWirelessDeviceImportTask

iotwireless:TestWirelessDevice

iotwireless:UpdateDestination

iotwireless:UpdateEventConfigurationByResourceTypes

iotwireless:UpdateFuotaTask

iotwireless:UpdateLogLevelsByResourceTypes

iotwireless:UpdateMulticastGroup

iotwireless:UpdateNetworkAnalyzerConfiguration

iotwireless:UpdatePartnerAccount

iotwireless:UpdatePosition

iotwireless:UpdateResourceEventConfiguration

iotwireless:UpdateResourcePosition

Refining permissions using access information 1283

AWS Identity and Access Management User Guide

Service prefix Actions

iotwireless:UpdateWirelessDevice

iotwireless:UpdateWirelessDeviceImportTask

iotwireless:UpdateWirelessGateway

Refining permissions using access information 1284

AWS Identity and Access Management User Guide

Service prefix Actions

ivs ivs:BatchGetChannel

ivs:BatchGetStreamKey

ivs:BatchStartViewerSessionRevocation

ivs:CreateChannel

ivs:CreateParticipantToken

ivs:CreateRecordingConfiguration

ivs:CreateStreamKey

ivs:DeleteChannel

ivs:DeletePlaybackKeyPair

ivs:DeleteRecordingConfiguration

ivs:DeleteStreamKey

ivs:DisconnectParticipant

ivs:GetChannel

ivs:GetParticipant

ivs:GetPlaybackKeyPair

ivs:GetRecordingConfiguration

ivs:GetStream

ivs:GetStreamKey

ivs:GetStreamSession

ivs:ImportPlaybackKeyPair

ivs:ListChannels

Refining permissions using access information 1285

AWS Identity and Access Management User Guide

Service prefix Actions

ivs:ListParticipantEvents

ivs:ListParticipants

ivs:ListPlaybackKeyPairs

ivs:ListRecordingConfigurations

ivs:ListStreamKeys

ivs:ListStreams

ivs:ListStreamSessions

ivs:PutMetadata

ivs:StartViewerSessionRevocation

ivs:StopStream

ivs:UpdateChannel

Refining permissions using access information 1286

AWS Identity and Access Management User Guide

Service prefix Actions

ivschat ivschat:CreateChatToken

ivschat:CreateLoggingConfiguration

ivschat:CreateRoom

ivschat:DeleteLoggingConfiguration

ivschat:DeleteMessage

ivschat:DeleteRoom

ivschat:DisconnectUser

ivschat:GetLoggingConfiguration

ivschat:GetRoom

ivschat:ListLoggingConfigurations

ivschat:ListRooms

ivschat:SendEvent

ivschat:UpdateLoggingConfiguration

ivschat:UpdateRoom

Refining permissions using access information 1287

AWS Identity and Access Management User Guide

Service prefix Actions

kafka kafka:BatchAssociateScramSecret

kafka:BatchDisassociateScramSecret

kafka:CreateCluster

kafka:CreateClusterV2

kafka:CreateConfiguration

kafka:DeleteCluster

kafka:DeleteClusterPolicy

kafka:DeleteConfiguration

kafka:DeleteReplicator

kafka:DeleteVpcConnection

kafka:DescribeCluster

kafka:DescribeClusterOperation

kafka:DescribeClusterOperationV2

kafka:DescribeClusterV2

kafka:DescribeConfiguration

kafka:DescribeConfigurationRevision

kafka:DescribeVpcConnection

kafka:GetBootstrapBrokers

kafka:GetClusterPolicy

kafka:GetCompatibleKafkaVersions

kafka:ListClientVpcConnections

Refining permissions using access information 1288

AWS Identity and Access Management User Guide

Service prefix Actions

kafka:ListClusterOperations

kafka:ListClusterOperationsV2

kafka:ListClusters

kafka:ListClustersV2

kafka:ListConfigurationRevisions

kafka:ListConfigurations

kafka:ListKafkaVersions

kafka:ListNodes

kafka:ListReplicators

kafka:ListScramSecrets

kafka:ListVpcConnections

kafka:PutClusterPolicy

kafka:RebootBroker

kafka:RejectClientVpcConnection

kafka:UpdateBrokerCount

kafka:UpdateBrokerStorage

kafka:UpdateBrokerType

kafka:UpdateClusterConfiguration

kafka:UpdateClusterKafkaVersion

kafka:UpdateConfiguration

kafka:UpdateConnectivity

Refining permissions using access information 1289

AWS Identity and Access Management User Guide

Service prefix Actions

kafka:UpdateMonitoring

kafka:UpdateReplicationInfo

kafka:UpdateSecurity

kafka:UpdateStorage

kafkaconnect kafkaconnect:CreateConnector

kafkaconnect:CreateCustomPlugin

kafkaconnect:CreateWorkerConfiguration

kafkaconnect:DeleteConnector

kafkaconnect:DeleteCustomPlugin

kafkaconnect:DescribeConnector

kafkaconnect:DescribeCustomPlugin

kafkaconnect:DescribeWorkerConfiguration

kafkaconnect:ListConnectors

kafkaconnect:ListCustomPlugins

kafkaconnect:ListWorkerConfigurations

kafkaconnect:UpdateConnector

Refining permissions using access information 1290

AWS Identity and Access Management User Guide

Service prefix Actions

kendra kendra:AssociateEntitiesToExperience

kendra:AssociatePersonasToEntities

kendra:BatchDeleteDocument

kendra:BatchDeleteFeaturedResultsSet

kendra:BatchGetDocumentStatus

kendra:BatchPutDocument

kendra:ClearQuerySuggestions

kendra:CreateAccessControlConfiguration

kendra:CreateDataSource

kendra:CreateExperience

kendra:CreateFaq

kendra:CreateFeaturedResultsSet

kendra:CreateIndex

kendra:CreateQuerySuggestionsBlockList

kendra:CreateThesaurus

kendra:DeleteDataSource

kendra:DeleteExperience

kendra:DeleteFaq

kendra:DeleteIndex

kendra:DeletePrincipalMapping

kendra:DeleteQuerySuggestionsBlockList

Refining permissions using access information 1291

AWS Identity and Access Management User Guide

Service prefix Actions

kendra:DeleteThesaurus

kendra:DescribeAccessControlConfiguration

kendra:DescribeDataSource

kendra:DescribeExperience

kendra:DescribeFaq

kendra:DescribeFeaturedResultsSet

kendra:DescribeIndex

kendra:DescribePrincipalMapping

kendra:DescribeQuerySuggestionsBlockList

kendra:DescribeQuerySuggestionsConfig

kendra:DescribeThesaurus

kendra:DisassociateEntitiesFromExperience

kendra:DisassociatePersonasFromEntities

kendra:GetQuerySuggestions

kendra:GetSnapshots

kendra:ListAccessControlConfigurations

kendra:ListDataSources

kendra:ListDataSourceSyncJobs

kendra:ListEntityPersonas

kendra:ListExperienceEntities

kendra:ListExperiences

Refining permissions using access information 1292

AWS Identity and Access Management User Guide

Service prefix Actions

kendra:ListFaqs

kendra:ListFeaturedResultsSets

kendra:ListGroupsOlderThanOrderingId

kendra:ListIndices

kendra:ListQuerySuggestionsBlockLists

kendra:ListThesauri

kendra:PutPrincipalMapping

kendra:Query

kendra:Retrieve

kendra:StartDataSourceSyncJob

kendra:StopDataSourceSyncJob

kendra:SubmitFeedback

kendra:UpdateDataSource

kendra:UpdateExperience

kendra:UpdateFeaturedResultsSet

kendra:UpdateIndex

kendra:UpdateQuerySuggestionsBlockList

kendra:UpdateQuerySuggestionsConfig

kendra:UpdateThesaurus

Refining permissions using access information 1293

AWS Identity and Access Management User Guide

Service prefix Actions

kinesis kinesis:CreateStream

kinesis:DecreaseStreamRetentionPeriod

kinesis:DeleteStream

kinesis:DeregisterStreamConsumer

kinesis:DescribeLimits

kinesis:DescribeStream

kinesis:DescribeStreamConsumer

kinesis:DescribeStreamSummary

kinesis:DisableEnhancedMonitoring

kinesis:EnableEnhancedMonitoring

kinesis:IncreaseStreamRetentionPeriod

kinesis:ListShards

kinesis:ListStreamConsumers

kinesis:ListStreams

kinesis:MergeShards

kinesis:RegisterStreamConsumer

kinesis:SplitShard

kinesis:StartStreamEncryption

kinesis:StopStreamEncryption

kinesis:UpdateShardCount

kinesis:UpdateStreamMode

Refining permissions using access information 1294

AWS Identity and Access Management User Guide

Service prefix Actions

kinesisanalytics kinesisanalytics:AddApplicationCloudWatchLoggingOption

kinesisanalytics:AddApplicationInput

kinesisanalytics:AddApplicationInputProcessingConfiguration

kinesisanalytics:AddApplicationOutput

kinesisanalytics:AddApplicationReferenceDataSource

kinesisanalytics:AddApplicationVpcConfiguration

kinesisanalytics:CreateApplication

kinesisanalytics:CreateApplicationPresignedUrl

kinesisanalytics:CreateApplicationSnapshot

kinesisanalytics:DeleteApplication

kinesisanalytics:DeleteApplicationCloudWatchLoggingOption

kinesisanalytics:DeleteApplicationInputProcessingConfiguration

kinesisanalytics:DeleteApplicationOutput

kinesisanalytics:DeleteApplicationReferenceDataSource

kinesisanalytics:DeleteApplicationSnapshot

kinesisanalytics:DeleteApplicationVpcConfiguration

kinesisanalytics:DescribeApplication

kinesisanalytics:DescribeApplicationSnapshot

kinesisanalytics:DescribeApplicationVersion

kinesisanalytics:DiscoverInputSchema

kinesisanalytics:ListApplications

Refining permissions using access information 1295

AWS Identity and Access Management User Guide

Service prefix Actions

kinesisanalytics:ListApplicationSnapshots

kinesisanalytics:ListApplicationVersions

kinesisanalytics:RollbackApplication

kinesisanalytics:StartApplication

kinesisanalytics:StopApplication

kinesisanalytics:UpdateApplication

kinesisanalytics:UpdateApplicationMaintenanceConfiguration

Refining permissions using access information 1296

AWS Identity and Access Management User Guide

Service prefix Actions

kms kms:CancelKeyDeletion

kms:ConnectCustomKeyStore

kms:CreateAlias

kms:CreateCustomKeyStore

kms:CreateGrant

kms:CreateKey

kms:Decrypt

kms:DeleteAlias

kms:DeleteCustomKeyStore

kms:DeleteImportedKeyMaterial

kms:DescribeCustomKeyStores

kms:DescribeKey

kms:DisableKey

kms:DisableKeyRotation

kms:DisconnectCustomKeyStore

kms:EnableKey

kms:EnableKeyRotation

kms:Encrypt

kms:GenerateDataKey

kms:GenerateDataKeyPair

kms:GenerateDataKeyPairWithoutPlaintext

Refining permissions using access information 1297

AWS Identity and Access Management User Guide

Service prefix Actions

kms:GenerateDataKeyWithoutPlaintext

kms:GenerateMac

kms:GenerateRandom

kms:GetKeyPolicy

kms:GetKeyRotationStatus

kms:GetParametersForImport

kms:GetPublicKey

kms:ImportKeyMaterial

kms:ListAliases

kms:ListGrants

kms:ListKeyPolicies

kms:ListKeys

kms:ListRetirableGrants

kms:ReplicateKey

kms:RetireGrant

kms:RevokeGrant

kms:ScheduleKeyDeletion

kms:Sign

kms:UpdateAlias

kms:UpdateCustomKeyStore

kms:UpdateKeyDescription

Refining permissions using access information 1298

AWS Identity and Access Management User Guide

Service prefix Actions

kms:UpdatePrimaryRegion

kms:Verify

kms:VerifyMac

Refining permissions using access information 1299

AWS Identity and Access Management User Guide

Service prefix Actions

lambda lambda:AddLayerVersionPermission

lambda:AddLayerVersionPermission

lambda:AddPermission

lambda:AddPermission

lambda:AddPermission

lambda:CreateAlias

lambda:CreateAlias

lambda:CreateCodeSigningConfig

lambda:CreateEventSourceMapping

lambda:CreateEventSourceMapping

lambda:CreateFunction

lambda:CreateFunction

lambda:CreateFunctionUrlConfig

lambda:DeleteAlias

lambda:DeleteAlias

lambda:DeleteCodeSigningConfig

lambda:DeleteEventSourceMapping

lambda:DeleteEventSourceMapping

lambda:DeleteFunction

lambda:DeleteFunction

lambda:DeleteFunctionCodeSigningConfig

Refining permissions using access information 1300

AWS Identity and Access Management User Guide

Service prefix Actions

lambda:DeleteFunctionConcurrency

lambda:DeleteFunctionConcurrency

lambda:DeleteFunctionEventInvokeConfig

lambda:DeleteFunctionUrlConfig

lambda:DeleteLayerVersion

lambda:DeleteLayerVersion

lambda:DeleteProvisionedConcurrencyConfig

lambda:GetAccountSettings

lambda:GetAccountSettings

lambda:GetAlias

lambda:GetAlias

lambda:GetCodeSigningConfig

lambda:GetEventSourceMapping

lambda:GetEventSourceMapping

lambda:GetFunction

lambda:GetFunction

lambda:GetFunction

lambda:GetFunctionCodeSigningConfig

lambda:GetFunctionConcurrency

lambda:GetFunctionConfiguration

lambda:GetFunctionConfiguration

Refining permissions using access information 1301

AWS Identity and Access Management User Guide

Service prefix Actions

lambda:GetFunctionConfiguration

lambda:GetFunctionEventInvokeConfig

lambda:GetFunctionUrlConfig

lambda:GetLayerVersion

lambda:GetLayerVersion

lambda:GetLayerVersion

lambda:GetLayerVersion

lambda:GetLayerVersionPolicy

lambda:GetLayerVersionPolicy

lambda:GetPolicy

lambda:GetPolicy

lambda:GetPolicy

lambda:GetProvisionedConcurrencyConfig

lambda:GetRuntimeManagementConfig

lambda:ListAliases

lambda:ListAliases

lambda:ListCodeSigningConfigs

lambda:ListEventSourceMappings

lambda:ListEventSourceMappings

lambda:ListFunctionEventInvokeConfigs

lambda:ListFunctions

Refining permissions using access information 1302

AWS Identity and Access Management User Guide

Service prefix Actions

lambda:ListFunctions

lambda:ListFunctionsByCodeSigningConfig

lambda:ListFunctionUrlConfigs

lambda:ListLayers

lambda:ListLayers

lambda:ListLayerVersions

lambda:ListLayerVersions

lambda:ListProvisionedConcurrencyConfigs

lambda:ListVersionsByFunction

lambda:ListVersionsByFunction

lambda:PublishLayerVersion

lambda:PublishLayerVersion

lambda:PublishVersion

lambda:PublishVersion

lambda:PutFunctionCodeSigningConfig

lambda:PutFunctionConcurrency

lambda:PutFunctionConcurrency

lambda:PutFunctionEventInvokeConfig

lambda:PutProvisionedConcurrencyConfig

lambda:PutRuntimeManagementConfig

lambda:RemoveLayerVersionPermission

Refining permissions using access information 1303

AWS Identity and Access Management User Guide

Service prefix Actions

lambda:RemoveLayerVersionPermission

lambda:RemovePermission

lambda:RemovePermission

lambda:RemovePermission

lambda:UpdateAlias

lambda:UpdateAlias

lambda:UpdateCodeSigningConfig

lambda:UpdateEventSourceMapping

lambda:UpdateEventSourceMapping

lambda:UpdateFunctionCode

lambda:UpdateFunctionCode

lambda:UpdateFunctionCode

lambda:UpdateFunctionConfiguration

lambda:UpdateFunctionConfiguration

lambda:UpdateFunctionConfiguration

lambda:UpdateFunctionEventInvokeConfig

lambda:UpdateFunctionUrlConfig

Refining permissions using access information 1304

AWS Identity and Access Management User Guide

Service prefix Actions

lex lex:BatchCreateCustomVocabularyItem

lex:BatchDeleteCustomVocabularyItem

lex:BatchUpdateCustomVocabularyItem

lex:BuildBotLocale

lex:CreateBotAlias

lex:CreateBotVersion

lex:CreateExport

lex:CreateIntentVersion

lex:CreateResourcePolicy

lex:CreateSlotTypeVersion

lex:CreateTestSetDiscrepancyReport

lex:CreateUploadUrl

lex:DeleteBot

lex:DeleteBotChannelAssociation

lex:DeleteExport

lex:DeleteImport

lex:DeleteIntentVersion

lex:DeleteResourcePolicy

lex:DeleteSlotTypeVersion

lex:DeleteTestSet

lex:DeleteUtterances

Refining permissions using access information 1305

AWS Identity and Access Management User Guide

Service prefix Actions

lex:DescribeBotAlias

lex:DescribeBotRecommendation

lex:DescribeBotVersion

lex:DescribeCustomVocabularyMetadata

lex:DescribeExport

lex:DescribeImport

lex:DescribeResourcePolicy

lex:DescribeTestExecution

lex:DescribeTestSet

lex:DescribeTestSetDiscrepancyReport

lex:DescribeTestSetGeneration

lex:GetBot

lex:GetBotAlias

lex:GetBotAliases

lex:GetBotChannelAssociation

lex:GetBotChannelAssociations

lex:GetBots

lex:GetBotVersions

lex:GetBuiltinIntent

lex:GetBuiltinIntents

lex:GetBuiltinSlotTypes

Refining permissions using access information 1306

AWS Identity and Access Management User Guide

Service prefix Actions

lex:GetExport

lex:GetImport

lex:GetIntent

lex:GetIntents

lex:GetIntentVersions

lex:GetMigration

lex:GetMigrations

lex:GetSlotType

lex:GetSlotTypes

lex:GetSlotTypeVersions

lex:GetTestExecutionArtifactsUrl

lex:GetUtterancesView

lex:ListBotAliases

lex:ListBotRecommendations

lex:ListBots

lex:ListBotVersions

lex:ListBuiltInIntents

lex:ListBuiltInSlotTypes

lex:ListCustomVocabularyItems

lex:ListExports

lex:ListImports

Refining permissions using access information 1307

AWS Identity and Access Management User Guide

Service prefix Actions

lex:ListIntentMetrics

lex:ListIntentPaths

lex:ListRecommendedIntents

lex:ListSessionAnalyticsData

lex:ListSessionMetrics

lex:ListTestExecutionResultItems

lex:ListTestExecutions

lex:ListTestSets

lex:PutBot

lex:PutBotAlias

lex:PutIntent

lex:PutSlotType

lex:SearchAssociatedTranscripts

lex:StartBotRecommendation

lex:StartImport

lex:StartMigration

lex:StartTestExecution

lex:StartTestSetGeneration

lex:StopBotRecommendation

lex:UpdateBotAlias

lex:UpdateBotRecommendation

Refining permissions using access information 1308

AWS Identity and Access Management User Guide

Service prefix Actions

lex:UpdateExport

lex:UpdateResourcePolicy

license-manager-
linux-subscriptions

license-manager-linux-subscriptions:GetServiceSettings

license-manager-linux-subscriptions:ListLinuxSubscriptionInstan
ces

license-manager-linux-subscriptions:ListLinuxSubscriptions

license-manager-linux-subscriptions:UpdateServiceSettings

Refining permissions using access information 1309

AWS Identity and Access Management User Guide

Service prefix Actions

lightsail lightsail:AllocateStaticIp

lightsail:AttachCertificateToDistribution

lightsail:AttachDisk

lightsail:AttachInstancesToLoadBalancer

lightsail:AttachLoadBalancerTlsCertificate

lightsail:AttachStaticIp

lightsail:CloseInstancePublicPorts

lightsail:CopySnapshot

lightsail:CreateBucket

lightsail:CreateBucketAccessKey

lightsail:CreateCertificate

lightsail:CreateCloudFormationStack

lightsail:CreateContactMethod

lightsail:CreateContainerService

lightsail:CreateContainerServiceDeployment

lightsail:CreateContainerServiceRegistryLogin

lightsail:CreateDisk

lightsail:CreateDiskFromSnapshot

lightsail:CreateDiskSnapshot

lightsail:CreateDistribution

lightsail:CreateDomain

Refining permissions using access information 1310

AWS Identity and Access Management User Guide

Service prefix Actions

lightsail:CreateGUISessionAccessDetails

lightsail:CreateInstances

lightsail:CreateInstancesFromSnapshot

lightsail:CreateInstanceSnapshot

lightsail:CreateKeyPair

lightsail:CreateLoadBalancer

lightsail:CreateLoadBalancerTlsCertificate

lightsail:CreateRelationalDatabase

lightsail:CreateRelationalDatabaseFromSnapshot

lightsail:CreateRelationalDatabaseSnapshot

lightsail:DeleteAlarm

lightsail:DeleteAutoSnapshot

lightsail:DeleteBucket

lightsail:DeleteBucketAccessKey

lightsail:DeleteCertificate

lightsail:DeleteContactMethod

lightsail:DeleteContainerImage

lightsail:DeleteContainerService

lightsail:DeleteDisk

lightsail:DeleteDiskSnapshot

lightsail:DeleteDistribution

Refining permissions using access information 1311

AWS Identity and Access Management User Guide

Service prefix Actions

lightsail:DeleteDomain

lightsail:DeleteDomainEntry

lightsail:DeleteInstance

lightsail:DeleteInstanceSnapshot

lightsail:DeleteKeyPair

lightsail:DeleteKnownHostKeys

lightsail:DeleteLoadBalancer

lightsail:DeleteLoadBalancerTlsCertificate

lightsail:DeleteRelationalDatabase

lightsail:DeleteRelationalDatabaseSnapshot

lightsail:DetachCertificateFromDistribution

lightsail:DetachDisk

lightsail:DetachInstancesFromLoadBalancer

lightsail:DetachStaticIp

lightsail:DisableAddOn

lightsail:DownloadDefaultKeyPair

lightsail:EnableAddOn

lightsail:ExportSnapshot

lightsail:GetActiveNames

lightsail:GetAlarms

lightsail:GetAutoSnapshots

Refining permissions using access information 1312

AWS Identity and Access Management User Guide

Service prefix Actions

lightsail:GetBlueprints

lightsail:GetBucketAccessKeys

lightsail:GetBucketBundles

lightsail:GetBucketMetricData

lightsail:GetBuckets

lightsail:GetBundles

lightsail:GetCertificates

lightsail:GetCloudFormationStackRecords

lightsail:GetContactMethods

lightsail:GetContainerAPIMetadata

lightsail:GetContainerImages

lightsail:GetContainerLog

lightsail:GetContainerServiceDeployments

lightsail:GetContainerServiceMetricData

lightsail:GetContainerServicePowers

lightsail:GetContainerServices

lightsail:GetCostEstimate

lightsail:GetDisk

lightsail:GetDisks

lightsail:GetDiskSnapshot

lightsail:GetDiskSnapshots

Refining permissions using access information 1313

AWS Identity and Access Management User Guide

Service prefix Actions

lightsail:GetDistributionBundles

lightsail:GetDistributionLatestCacheReset

lightsail:GetDistributionMetricData

lightsail:GetDistributions

lightsail:GetDomain

lightsail:GetExportSnapshotRecords

lightsail:GetInstance

lightsail:GetInstanceAccessDetails

lightsail:GetInstanceMetricData

lightsail:GetInstancePortStates

lightsail:GetInstances

lightsail:GetInstanceSnapshot

lightsail:GetInstanceSnapshots

lightsail:GetInstanceState

lightsail:GetKeyPair

lightsail:GetKeyPairs

lightsail:GetLoadBalancer

lightsail:GetLoadBalancerMetricData

lightsail:GetLoadBalancers

lightsail:GetLoadBalancerTlsCertificates

lightsail:GetLoadBalancerTlsPolicies

Refining permissions using access information 1314

AWS Identity and Access Management User Guide

Service prefix Actions

lightsail:GetOperation

lightsail:GetOperations

lightsail:GetOperationsForResource

lightsail:GetRegions

lightsail:GetRelationalDatabase

lightsail:GetRelationalDatabaseBlueprints

lightsail:GetRelationalDatabaseBundles

lightsail:GetRelationalDatabaseEvents

lightsail:GetRelationalDatabaseLogEvents

lightsail:GetRelationalDatabaseLogStreams

lightsail:GetRelationalDatabaseMasterUserPassword

lightsail:GetRelationalDatabaseMetricData

lightsail:GetRelationalDatabaseParameters

lightsail:GetRelationalDatabases

lightsail:GetRelationalDatabaseSnapshot

lightsail:GetRelationalDatabaseSnapshots

lightsail:GetStaticIp

lightsail:GetStaticIps

lightsail:ImportKeyPair

lightsail:IsVpcPeered

lightsail:OpenInstancePublicPorts

Refining permissions using access information 1315

AWS Identity and Access Management User Guide

Service prefix Actions

lightsail:PeerVpc

lightsail:PutAlarm

lightsail:PutInstancePublicPorts

lightsail:RebootInstance

lightsail:RebootRelationalDatabase

lightsail:RegisterContainerImage

lightsail:ReleaseStaticIp

lightsail:ResetDistributionCache

lightsail:SendContactMethodVerification

lightsail:SetIpAddressType

lightsail:SetResourceAccessForBucket

lightsail:StartGUISession

lightsail:StartInstance

lightsail:StartRelationalDatabase

lightsail:StopGUISession

lightsail:StopInstance

lightsail:StopRelationalDatabase

lightsail:TestAlarm

lightsail:UnpeerVpc

lightsail:UpdateBucket

lightsail:UpdateBucketBundle

Refining permissions using access information 1316

AWS Identity and Access Management User Guide

Service prefix Actions

lightsail:UpdateContainerService

lightsail:UpdateDistribution

lightsail:UpdateDistributionBundle

lightsail:UpdateDomainEntry

lightsail:UpdateInstanceMetadataOptions

lightsail:UpdateLoadBalancerAttribute

lightsail:UpdateRelationalDatabase

lightsail:UpdateRelationalDatabaseParameters

Refining permissions using access information 1317

AWS Identity and Access Management User Guide

Service prefix Actions

logs logs:AssociateKmsKey

logs:CancelExportTask

logs:CreateExportTask

logs:CreateLogGroup

logs:CreateLogStream

logs:DeleteDataProtectionPolicy

logs:DeleteDestination

logs:DeleteLogGroup

logs:DeleteLogStream

logs:DeleteMetricFilter

logs:DeleteQueryDefinition

logs:DeleteResourcePolicy

logs:DeleteRetentionPolicy

logs:DeleteSubscriptionFilter

logs:DescribeAccountPolicies

logs:DescribeDestinations

logs:DescribeExportTasks

logs:DescribeLogGroups

logs:DescribeLogStreams

logs:DescribeMetricFilters

logs:DescribeQueries

Refining permissions using access information 1318

AWS Identity and Access Management User Guide

Service prefix Actions

logs:DescribeQueryDefinitions

logs:DescribeResourcePolicies

logs:DescribeSubscriptionFilters

logs:DisassociateKmsKey

logs:GetDataProtectionPolicy

logs:GetLogGroupFields

logs:GetLogRecord

logs:GetQueryResults

logs:PutDataProtectionPolicy

logs:PutDestination

logs:PutDestinationPolicy

logs:PutMetricFilter

logs:PutQueryDefinition

logs:PutResourcePolicy

logs:PutRetentionPolicy

logs:PutSubscriptionFilter

logs:StartLiveTail

logs:StartQuery

logs:StopQuery

logs:TestMetricFilter

Refining permissions using access information 1319

AWS Identity and Access Management User Guide

Service prefix Actions

lookoutequipment lookoutequipment:CreateDataset

lookoutequipment:CreateInferenceScheduler

lookoutequipment:CreateLabel

lookoutequipment:CreateLabelGroup

lookoutequipment:CreateModel

lookoutequipment:DeleteDataset

lookoutequipment:DeleteInferenceScheduler

lookoutequipment:DeleteLabel

lookoutequipment:DeleteLabelGroup

lookoutequipment:DeleteModel

lookoutequipment:DeleteResourcePolicy

lookoutequipment:DeleteRetrainingScheduler

lookoutequipment:DescribeDataIngestionJob

lookoutequipment:DescribeDataset

lookoutequipment:DescribeInferenceScheduler

lookoutequipment:Describelabel

lookoutequipment:DescribeLabelGroup

lookoutequipment:DescribeModel

lookoutequipment:DescribeModelVersion

lookoutequipment:DescribeResourcePolicy

lookoutequipment:DescribeRetrainingScheduler

Refining permissions using access information 1320

AWS Identity and Access Management User Guide

Service prefix Actions

lookoutequipment:ImportDataset

lookoutequipment:ImportModelVersion

lookoutequipment:ListDataIngestionJobs

lookoutequipment:ListDatasets

lookoutequipment:ListInferenceEvents

lookoutequipment:ListInferenceExecutions

lookoutequipment:ListInferenceSchedulers

lookoutequipment:ListLabelGroups

lookoutequipment:ListLabels

lookoutequipment:ListModels

lookoutequipment:ListModelVersions

lookoutequipment:ListRetrainingSchedulers

lookoutequipment:ListSensorStatistics

lookoutequipment:PutResourcePolicy

lookoutequipment:StartDataIngestionJob

lookoutequipment:StartInferenceScheduler

lookoutequipment:StartRetrainingScheduler

lookoutequipment:StopInferenceScheduler

lookoutequipment:StopRetrainingScheduler

lookoutequipment:UpdateActiveModelVersion

lookoutequipment:UpdateInferenceScheduler

Refining permissions using access information 1321

AWS Identity and Access Management User Guide

Service prefix Actions

lookoutequipment:UpdateLabelGroup

lookoutequipment:UpdateModel

lookoutequipment:UpdateRetrainingScheduler

Refining permissions using access information 1322

AWS Identity and Access Management User Guide

Service prefix Actions

lookoutmetrics lookoutmetrics:ActivateAnomalyDetector

lookoutmetrics:BackTestAnomalyDetector

lookoutmetrics:CreateAlert

lookoutmetrics:CreateAnomalyDetector

lookoutmetrics:CreateMetricSet

lookoutmetrics:DeactivateAnomalyDetector

lookoutmetrics:DeleteAlert

lookoutmetrics:DeleteAnomalyDetector

lookoutmetrics:DescribeAlert

lookoutmetrics:DescribeAnomalyDetectionExecutions

lookoutmetrics:DescribeAnomalyDetector

lookoutmetrics:DescribeMetricSet

lookoutmetrics:DetectMetricSetConfig

lookoutmetrics:GetAnomalyGroup

lookoutmetrics:GetDataQualityMetrics

lookoutmetrics:GetFeedback

lookoutmetrics:GetSampleData

lookoutmetrics:ListAlerts

lookoutmetrics:ListAnomalyDetectors

lookoutmetrics:ListAnomalyGroupRelatedMetrics

lookoutmetrics:ListAnomalyGroupSummaries

Refining permissions using access information 1323

AWS Identity and Access Management User Guide

Service prefix Actions

lookoutmetrics:ListAnomalyGroupTimeSeries

lookoutmetrics:ListMetricSets

lookoutmetrics:PutFeedback

lookoutmetrics:UpdateAlert

lookoutmetrics:UpdateAnomalyDetector

lookoutmetrics:UpdateMetricSet

Refining permissions using access information 1324

AWS Identity and Access Management User Guide

Service prefix Actions

lookoutvision lookoutvision:CreateDataset

lookoutvision:CreateModel

lookoutvision:CreateProject

lookoutvision:DeleteDataset

lookoutvision:DeleteModel

lookoutvision:DeleteProject

lookoutvision:DescribeDataset

lookoutvision:DescribeModel

lookoutvision:DescribeModelPackagingJob

lookoutvision:DescribeProject

lookoutvision:DetectAnomalies

lookoutvision:ListDatasetEntries

lookoutvision:ListModelPackagingJobs

lookoutvision:ListModels

lookoutvision:ListProjects

lookoutvision:StartModel

lookoutvision:StartModelPackagingJob

lookoutvision:StopModel

lookoutvision:UpdateDatasetEntries

Refining permissions using access information 1325

AWS Identity and Access Management User Guide

Service prefix Actions

m2 m2:CancelBatchJobExecution

m2:CreateApplication

m2:CreateDataSetImportTask

m2:CreateDeployment

m2:CreateEnvironment

m2:DeleteApplication

m2:DeleteApplicationFromEnvironment

m2:DeleteEnvironment

m2:GetApplication

m2:GetApplicationVersion

m2:GetBatchJobExecution

m2:GetDataSetDetails

m2:GetDataSetImportTask

m2:GetDeployment

m2:GetEnvironment

m2:GetSignedBluinsightsUrl

m2:ListApplications

m2:ListApplicationVersions

m2:ListBatchJobDefinitions

m2:ListBatchJobExecutions

m2:ListDataSetImportHistory

Refining permissions using access information 1326

AWS Identity and Access Management User Guide

Service prefix Actions

m2:ListDataSets

m2:ListDeployments

m2:ListEngineVersions

m2:ListEnvironments

m2:StartApplication

m2:StartBatchJob

m2:StopApplication

m2:UpdateApplication

m2:UpdateEnvironment

Refining permissions using access information 1327

AWS Identity and Access Management User Guide

Service prefix Actions

managedblockchain managedblockchain:CreateAccessor

managedblockchain:CreateMember

managedblockchain:CreateNetwork

managedblockchain:CreateNode

managedblockchain:CreateProposal

managedblockchain:DeleteAccessor

managedblockchain:DeleteMember

managedblockchain:DeleteNode

managedblockchain:GetAccessor

managedblockchain:GetMember

managedblockchain:GetNetwork

managedblockchain:GetNode

managedblockchain:GetProposal

managedblockchain:ListAccessors

managedblockchain:ListInvitations

managedblockchain:ListMembers

managedblockchain:ListNetworks

managedblockchain:ListNodes

managedblockchain:ListProposals

managedblockchain:ListProposalVotes

managedblockchain:RejectInvitation

Refining permissions using access information 1328

AWS Identity and Access Management User Guide

Service prefix Actions

managedblockchain:UpdateMember

managedblockchain:UpdateNode

managedblockchain:VoteOnProposal

Refining permissions using access information 1329

AWS Identity and Access Management User Guide

Service prefix Actions

mediaconnect mediaconnect:AddBridgeOutputs

mediaconnect:AddBridgeSources

mediaconnect:AddFlowMediaStreams

mediaconnect:AddFlowOutputs

mediaconnect:AddFlowSources

mediaconnect:AddFlowVpcInterfaces

mediaconnect:CreateBridge

mediaconnect:CreateFlow

mediaconnect:CreateGateway

mediaconnect:DeleteBridge

mediaconnect:DeleteFlow

mediaconnect:DeleteGateway

mediaconnect:DeregisterGatewayInstance

mediaconnect:DescribeBridge

mediaconnect:DescribeFlow

mediaconnect:DescribeGateway

mediaconnect:DescribeGatewayInstance

mediaconnect:DescribeOffering

mediaconnect:DescribeReservation

mediaconnect:GrantFlowEntitlements

mediaconnect:ListBridges

Refining permissions using access information 1330

AWS Identity and Access Management User Guide

Service prefix Actions

mediaconnect:ListEntitlements

mediaconnect:ListFlows

mediaconnect:ListGatewayInstances

mediaconnect:ListGateways

mediaconnect:ListOfferings

mediaconnect:ListReservations

mediaconnect:PurchaseOffering

mediaconnect:RemoveBridgeOutput

mediaconnect:RemoveBridgeSource

mediaconnect:RemoveFlowMediaStream

mediaconnect:RemoveFlowOutput

mediaconnect:RemoveFlowSource

mediaconnect:RemoveFlowVpcInterface

mediaconnect:RevokeFlowEntitlement

mediaconnect:StartFlow

mediaconnect:StopFlow

mediaconnect:UpdateBridge

mediaconnect:UpdateBridgeOutput

mediaconnect:UpdateBridgeSource

mediaconnect:UpdateBridgeState

mediaconnect:UpdateFlow

Refining permissions using access information 1331

AWS Identity and Access Management User Guide

Service prefix Actions

mediaconnect:UpdateFlowEntitlement

mediaconnect:UpdateFlowMediaStream

mediaconnect:UpdateFlowOutput

mediaconnect:UpdateFlowSource

mediaconnect:UpdateGatewayInstance

Refining permissions using access information 1332

AWS Identity and Access Management User Guide

Service prefix Actions

mediaconvert mediaconvert:AssociateCertificate

mediaconvert:CancelJob

mediaconvert:CreateJob

mediaconvert:CreateJobTemplate

mediaconvert:CreatePreset

mediaconvert:CreateQueue

mediaconvert:DeleteJobTemplate

mediaconvert:DeletePolicy

mediaconvert:DeletePreset

mediaconvert:DeleteQueue

mediaconvert:DescribeEndpoints

mediaconvert:DisassociateCertificate

mediaconvert:GetJob

mediaconvert:GetJobTemplate

mediaconvert:GetPolicy

mediaconvert:GetPreset

mediaconvert:GetQueue

mediaconvert:ListJobs

mediaconvert:ListJobTemplates

mediaconvert:ListPresets

mediaconvert:ListQueues

Refining permissions using access information 1333

AWS Identity and Access Management User Guide

Service prefix Actions

mediaconvert:PutPolicy

mediaconvert:UpdateJobTemplate

mediaconvert:UpdatePreset

mediaconvert:UpdateQueue

Refining permissions using access information 1334

AWS Identity and Access Management User Guide

Service prefix Actions

medialive medialive:AcceptInputDeviceTransfer

medialive:BatchDelete

medialive:BatchStart

medialive:BatchStop

medialive:BatchUpdateSchedule

medialive:CancelInputDeviceTransfer

medialive:ClaimDevice

medialive:CreateChannel

medialive:CreateInput

medialive:CreateInputSecurityGroup

medialive:CreateMultiplex

medialive:CreateMultiplexProgram

medialive:CreatePartnerInput

medialive:DeleteChannel

medialive:DeleteInput

medialive:DeleteInputSecurityGroup

medialive:DeleteMultiplex

medialive:DeleteMultiplexProgram

medialive:DeleteReservation

medialive:DeleteSchedule

medialive:DescribeAccountConfiguration

Refining permissions using access information 1335

AWS Identity and Access Management User Guide

Service prefix Actions

medialive:DescribeChannel

medialive:DescribeInput

medialive:DescribeInputDevice

medialive:DescribeInputDeviceThumbnail

medialive:DescribeInputSecurityGroup

medialive:DescribeMultiplex

medialive:DescribeMultiplexProgram

medialive:DescribeOffering

medialive:DescribeReservation

medialive:DescribeSchedule

medialive:DescribeThumbnails

medialive:ListChannels

medialive:ListInputDevices

medialive:ListInputDeviceTransfers

medialive:ListInputs

medialive:ListInputSecurityGroups

medialive:ListMultiplexes

medialive:ListMultiplexPrograms

medialive:ListOfferings

medialive:ListReservations

medialive:PurchaseOffering

Refining permissions using access information 1336

AWS Identity and Access Management User Guide

Service prefix Actions

medialive:RebootInputDevice

medialive:RejectInputDeviceTransfer

medialive:StartChannel

medialive:StartInputDevice

medialive:StartInputDeviceMaintenanceWindow

medialive:StartMultiplex

medialive:StopChannel

medialive:StopInputDevice

medialive:StopMultiplex

medialive:TransferInputDevice

medialive:UpdateAccountConfiguration

medialive:UpdateChannel

medialive:UpdateChannelClass

medialive:UpdateInput

medialive:UpdateInputDevice

medialive:UpdateInputSecurityGroup

medialive:UpdateMultiplex

medialive:UpdateMultiplexProgram

medialive:UpdateReservation

Refining permissions using access information 1337

AWS Identity and Access Management User Guide

Service prefix Actions

mediapackage mediapackage:ConfigureLogs

mediapackage:CreateChannel

mediapackage:CreateHarvestJob

mediapackage:CreateOriginEndpoint

mediapackage:DeleteChannel

mediapackage:DeleteOriginEndpoint

mediapackage:DescribeChannel

mediapackage:DescribeHarvestJob

mediapackage:DescribeOriginEndpoint

mediapackage:ListChannels

mediapackage:ListHarvestJobs

mediapackage:ListOriginEndpoints

mediapackage:RotateChannelCredentials

mediapackage:RotateIngestEndpointCredentials

mediapackage:UpdateChannel

mediapackage:UpdateOriginEndpoint

Refining permissions using access information 1338

AWS Identity and Access Management User Guide

Service prefix Actions

mediapackage-vod mediapackage-vod:ConfigureLogs

mediapackage-vod:CreateAsset

mediapackage-vod:CreatePackagingConfiguration

mediapackage-vod:CreatePackagingGroup

mediapackage-vod:DeleteAsset

mediapackage-vod:DeletePackagingConfiguration

mediapackage-vod:DeletePackagingGroup

mediapackage-vod:DescribeAsset

mediapackage-vod:DescribePackagingConfiguration

mediapackage-vod:DescribePackagingGroup

mediapackage-vod:ListAssets

mediapackage-vod:ListPackagingConfigurations

mediapackage-vod:ListPackagingGroups

mediapackage-vod:UpdatePackagingGroup

Refining permissions using access information 1339

AWS Identity and Access Management User Guide

Service prefix Actions

mediastore mediastore:CreateContainer

mediastore:DeleteContainer

mediastore:DeleteContainerPolicy

mediastore:DeleteCorsPolicy

mediastore:DeleteLifecyclePolicy

mediastore:DeleteMetricPolicy

mediastore:DescribeContainer

mediastore:GetContainerPolicy

mediastore:GetCorsPolicy

mediastore:GetLifecyclePolicy

mediastore:GetMetricPolicy

mediastore:ListContainers

mediastore:PutContainerPolicy

mediastore:PutCorsPolicy

mediastore:PutLifecyclePolicy

mediastore:PutMetricPolicy

mediastore:StartAccessLogging

mediastore:StopAccessLogging

Refining permissions using access information 1340

AWS Identity and Access Management User Guide

Service prefix Actions

mediatailor mediatailor:ConfigureLogsForPlaybackConfiguration

mediatailor:CreateChannel

mediatailor:CreateLiveSource

mediatailor:CreatePrefetchSchedule

mediatailor:CreateProgram

mediatailor:CreateSourceLocation

mediatailor:CreateVodSource

mediatailor:DeleteChannel

mediatailor:DeleteChannelPolicy

mediatailor:DeleteLiveSource

mediatailor:DeletePlaybackConfiguration

mediatailor:DeletePrefetchSchedule

mediatailor:DeleteProgram

mediatailor:DeleteSourceLocation

mediatailor:DeleteVodSource

mediatailor:DescribeChannel

mediatailor:DescribeLiveSource

mediatailor:DescribeProgram

mediatailor:DescribeSourceLocation

mediatailor:DescribeVodSource

mediatailor:GetChannelPolicy

Refining permissions using access information 1341

AWS Identity and Access Management User Guide

Service prefix Actions

mediatailor:GetChannelSchedule

mediatailor:GetPlaybackConfiguration

mediatailor:GetPrefetchSchedule

mediatailor:ListAlerts

mediatailor:ListChannels

mediatailor:ListLiveSources

mediatailor:ListPlaybackConfigurations

mediatailor:ListPrefetchSchedules

mediatailor:ListSourceLocations

mediatailor:ListVodSources

mediatailor:PutChannelPolicy

mediatailor:PutPlaybackConfiguration

mediatailor:StartChannel

mediatailor:StopChannel

mediatailor:UpdateChannel

mediatailor:UpdateLiveSource

mediatailor:UpdateProgram

mediatailor:UpdateSourceLocation

mediatailor:UpdateVodSource

Refining permissions using access information 1342

AWS Identity and Access Management User Guide

Service prefix Actions

memorydb memorydb:BatchUpdateCluster

memorydb:CopySnapshot

memorydb:CreateAcl

memorydb:CreateCluster

memorydb:CreateParameterGroup

memorydb:CreateSnapshot

memorydb:CreateSubnetGroup

memorydb:CreateUser

memorydb:DeleteAcl

memorydb:DeleteCluster

memorydb:DeleteParameterGroup

memorydb:DeleteSnapshot

memorydb:DeleteSubnetGroup

memorydb:DeleteUser

memorydb:DescribeAcls

memorydb:DescribeClusters

memorydb:DescribeEngineVersions

memorydb:DescribeEvents

memorydb:DescribeParameterGroups

memorydb:DescribeParameters

memorydb:DescribeReservedNodes

Refining permissions using access information 1343

AWS Identity and Access Management User Guide

Service prefix Actions

memorydb:DescribeReservedNodesOfferings

memorydb:DescribeServiceUpdates

memorydb:DescribeSnapshots

memorydb:DescribeSubnetGroups

memorydb:DescribeUsers

memorydb:FailoverShard

memorydb:ListAllowedNodeTypeUpdates

memorydb:PurchaseReservedNodesOffering

memorydb:ResetParameterGroup

memorydb:UpdateAcl

memorydb:UpdateCluster

memorydb:UpdateParameterGroup

memorydb:UpdateSubnetGroup

memorydb:UpdateUser

Refining permissions using access information 1344

AWS Identity and Access Management User Guide

Service prefix Actions

mgh mgh:AssociateCreatedArtifact

mgh:AssociateDiscoveredResource

mgh:CreateHomeRegionControl

mgh:CreateProgressUpdateStream

mgh:DeleteHomeRegionControl

mgh:DeleteProgressUpdateStream

mgh:DescribeApplicationState

mgh:DescribeHomeRegionControls

mgh:DescribeMigrationTask

mgh:DisassociateCreatedArtifact

mgh:DisassociateDiscoveredResource

mgh:GetHomeRegion

mgh:ImportMigrationTask

mgh:ListApplicationStates

mgh:ListCreatedArtifacts

mgh:ListDiscoveredResources

mgh:ListMigrationTasks

mgh:ListProgressUpdateStreams

mgh:NotifyApplicationState

mgh:NotifyMigrationTaskState

mgh:PutResourceAttributes

Refining permissions using access information 1345

AWS Identity and Access Management User Guide

Service prefix Actions

mgn mgn:ArchiveApplication

mgn:ArchiveWave

mgn:AssociateApplications

mgn:AssociateSourceServers

mgn:ChangeServerLifeCycleState

mgn:CreateApplication

mgn:CreateConnector

mgn:CreateLaunchConfigurationTemplate

mgn:CreateReplicationConfigurationTemplate

mgn:CreateWave

mgn:DeleteApplication

mgn:DeleteConnector

mgn:DeleteJob

mgn:DeleteLaunchConfigurationTemplate

mgn:DeleteReplicationConfigurationTemplate

mgn:DeleteSourceServer

mgn:DeleteVcenterClient

mgn:DeleteWave

mgn:DescribeJobLogItems

mgn:DescribeJobs

mgn:DescribeLaunchConfigurationTemplates

Refining permissions using access information 1346

AWS Identity and Access Management User Guide

Service prefix Actions

mgn:DescribeReplicationConfigurationTemplates

mgn:DescribeVcenterClients

mgn:DisassociateApplications

mgn:DisassociateSourceServers

mgn:DisconnectFromService

mgn:FinalizeCutover

mgn:GetReplicationConfiguration

mgn:InitializeService

mgn:ListConnectors

mgn:ListExportErrors

mgn:ListExports

mgn:ListImportErrors

mgn:ListImports

mgn:ListManagedAccounts

mgn:ListSourceServerActions

mgn:ListTemplateActions

mgn:MarkAsArchived

mgn:PauseReplication

mgn:PutSourceServerAction

mgn:PutTemplateAction

mgn:RemoveSourceServerAction

Refining permissions using access information 1347

AWS Identity and Access Management User Guide

Service prefix Actions

mgn:RemoveTemplateAction

mgn:ResumeReplication

mgn:RetryDataReplication

mgn:StartCutover

mgn:StartExport

mgn:StartImport

mgn:StartReplication

mgn:StartTest

mgn:StopReplication

mgn:TerminateTargetInstances

mgn:UnarchiveApplication

mgn:UnarchiveWave

mgn:UpdateApplication

mgn:UpdateConnector

mgn:UpdateLaunchConfigurationTemplate

mgn:UpdateReplicationConfiguration

mgn:UpdateReplicationConfigurationTemplate

mgn:UpdateSourceServer

mgn:UpdateSourceServerReplicationType

mgn:UpdateWave

Refining permissions using access information 1348

AWS Identity and Access Management User Guide

Service prefix Actions

migrationhub-strategy migrationhub-strategy:GetAntiPattern

migrationhub-strategy:GetApplicationComponentDetails

migrationhub-strategy:GetApplicationComponentStrategies

migrationhub-strategy:GetAssessment

migrationhub-strategy:GetImportFileTask

migrationhub-strategy:GetLatestAssessmentId

migrationhub-strategy:GetPortfolioPreferences

migrationhub-strategy:GetPortfolioSummary

migrationhub-strategy:GetRecommendationReportDetails

migrationhub-strategy:GetServerDetails

migrationhub-strategy:GetServerStrategies

migrationhub-strategy:ListAntiPatterns

migrationhub-strategy:ListApplicationComponents

migrationhub-strategy:ListCollectors

migrationhub-strategy:ListImportFileTask

migrationhub-strategy:ListJarArtifacts

migrationhub-strategy:ListServers

migrationhub-strategy:PutPortfolioPreferences

migrationhub-strategy:RegisterCollector

migrationhub-strategy:StartAssessment

migrationhub-strategy:StartImportFileTask

Refining permissions using access information 1349

AWS Identity and Access Management User Guide

Service prefix Actions

migrationhub-strategy:StartRecommendationReportGeneration

migrationhub-strategy:StopAssessment

migrationhub-strategy:UpdateApplicationComponentConfig

migrationhub-strategy:UpdateCollectorConfiguration

migrationhub-strategy:UpdateServerConfig

Refining permissions using access information 1350

AWS Identity and Access Management User Guide

Service prefix Actions

mobiletargeting mobiletargeting:CreateApp

mobiletargeting:CreateCampaign

mobiletargeting:CreateEmailTemplate

mobiletargeting:CreateExportJob

mobiletargeting:CreateImportJob

mobiletargeting:CreateInAppTemplate

mobiletargeting:CreateJourney

mobiletargeting:CreatePushTemplate

mobiletargeting:CreateRecommenderConfiguration

mobiletargeting:CreateSegment

mobiletargeting:CreateSmsTemplate

mobiletargeting:CreateVoiceTemplate

mobiletargeting:DeleteAdmChannel

mobiletargeting:DeleteApnsChannel

mobiletargeting:DeleteApnsSandboxChannel

mobiletargeting:DeleteApnsVoipChannel

mobiletargeting:DeleteApnsVoipSandboxChannel

mobiletargeting:DeleteApp

mobiletargeting:DeleteBaiduChannel

mobiletargeting:DeleteCampaign

mobiletargeting:DeleteEmailChannel

Refining permissions using access information 1351

AWS Identity and Access Management User Guide

Service prefix Actions

mobiletargeting:DeleteEmailTemplate

mobiletargeting:DeleteEndpoint

mobiletargeting:DeleteEventStream

mobiletargeting:DeleteGcmChannel

mobiletargeting:DeleteInAppTemplate

mobiletargeting:DeleteJourney

mobiletargeting:DeletePushTemplate

mobiletargeting:DeleteRecommenderConfiguration

mobiletargeting:DeleteSegment

mobiletargeting:DeleteSmsChannel

mobiletargeting:DeleteSmsTemplate

mobiletargeting:DeleteUserEndpoints

mobiletargeting:DeleteVoiceChannel

mobiletargeting:DeleteVoiceTemplate

mobiletargeting:GetAdmChannel

mobiletargeting:GetApnsChannel

mobiletargeting:GetApnsSandboxChannel

mobiletargeting:GetApnsVoipChannel

mobiletargeting:GetApnsVoipSandboxChannel

mobiletargeting:GetApp

mobiletargeting:GetApplicationDateRangeKpi

Refining permissions using access information 1352

AWS Identity and Access Management User Guide

Service prefix Actions

mobiletargeting:GetApplicationSettings

mobiletargeting:GetApps

mobiletargeting:GetBaiduChannel

mobiletargeting:GetCampaign

mobiletargeting:GetCampaignActivities

mobiletargeting:GetCampaignDateRangeKpi

mobiletargeting:GetCampaigns

mobiletargeting:GetCampaignVersion

mobiletargeting:GetCampaignVersions

mobiletargeting:GetChannels

mobiletargeting:GetEmailChannel

mobiletargeting:GetEmailTemplate

mobiletargeting:GetEndpoint

mobiletargeting:GetEventStream

mobiletargeting:GetExportJob

mobiletargeting:GetExportJobs

mobiletargeting:GetGcmChannel

mobiletargeting:GetImportJob

mobiletargeting:GetImportJobs

mobiletargeting:GetInAppMessages

mobiletargeting:GetInAppTemplate

Refining permissions using access information 1353

AWS Identity and Access Management User Guide

Service prefix Actions

mobiletargeting:GetJourney

mobiletargeting:GetJourneyDateRangeKpi

mobiletargeting:GetJourneyExecutionActivityMetrics

mobiletargeting:GetJourneyExecutionMetrics

mobiletargeting:GetJourneyRunExecutionActivityMetrics

mobiletargeting:GetJourneyRunExecutionMetrics

mobiletargeting:GetJourneyRuns

mobiletargeting:GetPushTemplate

mobiletargeting:GetRecommenderConfiguration

mobiletargeting:GetRecommenderConfigurations

mobiletargeting:GetSegment

mobiletargeting:GetSegmentExportJobs

mobiletargeting:GetSegmentImportJobs

mobiletargeting:GetSegments

mobiletargeting:GetSegmentVersion

mobiletargeting:GetSegmentVersions

mobiletargeting:GetSmsChannel

mobiletargeting:GetSmsTemplate

mobiletargeting:GetUserEndpoints

mobiletargeting:GetVoiceChannel

mobiletargeting:GetVoiceTemplate

Refining permissions using access information 1354

AWS Identity and Access Management User Guide

Service prefix Actions

mobiletargeting:ListJourneys

mobiletargeting:ListTemplates

mobiletargeting:ListTemplateVersions

mobiletargeting:PhoneNumberValidate

mobiletargeting:PutEventStream

mobiletargeting:RemoveAttributes

mobiletargeting:UpdateAdmChannel

mobiletargeting:UpdateApnsChannel

mobiletargeting:UpdateApnsSandboxChannel

mobiletargeting:UpdateApnsVoipChannel

mobiletargeting:UpdateApnsVoipSandboxChannel

mobiletargeting:UpdateApplicationSettings

mobiletargeting:UpdateBaiduChannel

mobiletargeting:UpdateCampaign

mobiletargeting:UpdateEmailChannel

mobiletargeting:UpdateEmailTemplate

mobiletargeting:UpdateEndpoint

mobiletargeting:UpdateEndpointsBatch

mobiletargeting:UpdateGcmChannel

mobiletargeting:UpdateInAppTemplate

mobiletargeting:UpdateJourney

Refining permissions using access information 1355

AWS Identity and Access Management User Guide

Service prefix Actions

mobiletargeting:UpdateJourneyState

mobiletargeting:UpdatePushTemplate

mobiletargeting:UpdateRecommenderConfiguration

mobiletargeting:UpdateSegment

mobiletargeting:UpdateSmsChannel

mobiletargeting:UpdateSmsTemplate

mobiletargeting:UpdateTemplateActiveVersion

mobiletargeting:UpdateVoiceChannel

mobiletargeting:UpdateVoiceTemplate

mobiletargeting:VerifyOTPMessage

Refining permissions using access information 1356

AWS Identity and Access Management User Guide

Service prefix Actions

mq mq:CreateBroker

mq:CreateConfiguration

mq:CreateUser

mq:DeleteBroker

mq:DeleteUser

mq:DescribeBroker

mq:DescribeBrokerEngineTypes

mq:DescribeBrokerInstanceOptions

mq:DescribeConfiguration

mq:DescribeConfigurationRevision

mq:DescribeUser

mq:ListBrokers

mq:ListConfigurationRevisions

mq:ListConfigurations

mq:ListUsers

mq:Promote

mq:RebootBroker

mq:UpdateBroker

mq:UpdateConfiguration

mq:UpdateUser

Refining permissions using access information 1357

AWS Identity and Access Management User Guide

Service prefix Actions

networkmanager networkmanager:AcceptAttachment

networkmanager:AssociateConnectPeer

networkmanager:AssociateCustomerGateway

networkmanager:AssociateLink

networkmanager:AssociateTransitGatewayConnectPeer

networkmanager:CreateConnectAttachment

networkmanager:CreateConnection

networkmanager:CreateConnectPeer

networkmanager:CreateCoreNetwork

networkmanager:CreateDevice

networkmanager:CreateGlobalNetwork

networkmanager:CreateLink

networkmanager:CreateSite

networkmanager:CreateSiteToSiteVpnAttachment

networkmanager:CreateTransitGatewayPeering

networkmanager:CreateTransitGatewayRouteTableAttachment

networkmanager:CreateVpcAttachment

networkmanager:DeleteAttachment

networkmanager:DeleteConnection

networkmanager:DeleteConnectPeer

networkmanager:DeleteCoreNetwork

Refining permissions using access information 1358

AWS Identity and Access Management User Guide

Service prefix Actions

networkmanager:DeleteCoreNetworkPolicyVersion

networkmanager:DeleteDevice

networkmanager:DeleteGlobalNetwork

networkmanager:DeleteLink

networkmanager:DeletePeering

networkmanager:DeleteResourcePolicy

networkmanager:DeleteSite

networkmanager:DeregisterTransitGateway

networkmanager:DescribeGlobalNetworks

networkmanager:DisassociateConnectPeer

networkmanager:DisassociateCustomerGateway

networkmanager:DisassociateLink

networkmanager:DisassociateTransitGatewayConnectPeer

networkmanager:ExecuteCoreNetworkChangeSet

networkmanager:GetConnectAttachment

networkmanager:GetConnections

networkmanager:GetConnectPeer

networkmanager:GetConnectPeerAssociations

networkmanager:GetCoreNetwork

networkmanager:GetCoreNetworkChangeEvents

networkmanager:GetCoreNetworkChangeSet

Refining permissions using access information 1359

AWS Identity and Access Management User Guide

Service prefix Actions

networkmanager:GetCoreNetworkPolicy

networkmanager:GetCustomerGatewayAssociations

networkmanager:GetDevices

networkmanager:GetLinkAssociations

networkmanager:GetLinks

networkmanager:GetNetworkResourceCounts

networkmanager:GetNetworkResourceRelationships

networkmanager:GetNetworkResources

networkmanager:GetNetworkRoutes

networkmanager:GetNetworkTelemetry

networkmanager:GetResourcePolicy

networkmanager:GetRouteAnalysis

networkmanager:GetSites

networkmanager:GetSiteToSiteVpnAttachment

networkmanager:GetTransitGatewayConnectPeerAssociations

networkmanager:GetTransitGatewayPeering

networkmanager:GetTransitGatewayRegistrations

networkmanager:GetTransitGatewayRouteTableAttachment

networkmanager:GetVpcAttachment

networkmanager:ListAttachments

networkmanager:ListConnectPeers

Refining permissions using access information 1360

AWS Identity and Access Management User Guide

Service prefix Actions

networkmanager:ListCoreNetworkPolicyVersions

networkmanager:ListCoreNetworks

networkmanager:ListOrganizationServiceAccessStatus

networkmanager:ListPeerings

networkmanager:PutCoreNetworkPolicy

networkmanager:PutResourcePolicy

networkmanager:RegisterTransitGateway

networkmanager:RejectAttachment

networkmanager:RestoreCoreNetworkPolicyVersion

networkmanager:StartOrganizationServiceAccessUpdate

networkmanager:StartRouteAnalysis

networkmanager:UpdateConnection

networkmanager:UpdateCoreNetwork

networkmanager:UpdateDevice

networkmanager:UpdateGlobalNetwork

networkmanager:UpdateLink

networkmanager:UpdateNetworkResourceMetadata

networkmanager:UpdateSite

networkmanager:UpdateVpcAttachment

Refining permissions using access information 1361

AWS Identity and Access Management User Guide

Service prefix Actions

nimble nimble:AcceptEulas

nimble:CreateLaunchProfile

nimble:CreateStreamingImage

nimble:CreateStreamingSession

nimble:CreateStreamingSessionStream

nimble:CreateStudio

nimble:CreateStudioComponent

nimble:DeleteLaunchProfile

nimble:DeleteLaunchProfileMember

nimble:DeleteStreamingImage

nimble:DeleteStreamingSession

nimble:DeleteStudio

nimble:DeleteStudioComponent

nimble:DeleteStudioMember

nimble:GetEula

nimble:GetLaunchProfileDetails

nimble:GetStreamingImage

nimble:GetStreamingSession

nimble:GetStreamingSessionBackup

nimble:GetStreamingSessionStream

nimble:GetStudio

Refining permissions using access information 1362

AWS Identity and Access Management User Guide

Service prefix Actions

nimble:GetStudioComponent

nimble:GetStudioMember

nimble:ListEulas

nimble:ListLaunchProfileMembers

nimble:ListLaunchProfiles

nimble:ListStreamingImages

nimble:ListStreamingSessionBackups

nimble:ListStreamingSessions

nimble:ListStudioComponents

nimble:ListStudioMembers

nimble:ListStudios

nimble:PutLaunchProfileMembers

nimble:PutStudioMembers

nimble:StartStreamingSession

nimble:StartStudioSSOConfigurationRepair

nimble:StopStreamingSession

nimble:UpdateLaunchProfile

nimble:UpdateLaunchProfileMember

nimble:UpdateStreamingImage

nimble:UpdateStudio

nimble:UpdateStudioComponent

Refining permissions using access information 1363

AWS Identity and Access Management User Guide

Service prefix Actions

omics omics:AbortMultipartReadSetUpload

omics:BatchDeleteReadSet

omics:CancelAnnotationImportJob

omics:CancelRun

omics:CancelVariantImportJob

omics:CompleteMultipartReadSetUpload

omics:CreateAnnotationStore

omics:CreateMultipartReadSetUpload

omics:CreateReferenceStore

omics:CreateRunGroup

omics:CreateSequenceStore

omics:CreateVariantStore

omics:CreateWorkflow

omics:DeleteAnnotationStore

omics:DeleteReference

omics:DeleteReferenceStore

omics:DeleteRun

omics:DeleteRunGroup

omics:DeleteSequenceStore

omics:DeleteVariantStore

omics:DeleteWorkflow

Refining permissions using access information 1364

AWS Identity and Access Management User Guide

Service prefix Actions

omics:GetAnnotationImportJob

omics:GetAnnotationStore

omics:GetReadSet

omics:GetReadSetActivationJob

omics:GetReadSetExportJob

omics:GetReadSetImportJob

omics:GetReadSetMetadata

omics:GetReference

omics:GetReferenceImportJob

omics:GetReferenceMetadata

omics:GetReferenceStore

omics:GetRun

omics:GetRunGroup

omics:GetRunTask

omics:GetSequenceStore

omics:GetVariantImportJob

omics:GetVariantStore

omics:GetWorkflow

omics:ListAnnotationImportJobs

omics:ListAnnotationStores

omics:ListMultipartReadSetUploads

Refining permissions using access information 1365

AWS Identity and Access Management User Guide

Service prefix Actions

omics:ListReadSetActivationJobs

omics:ListReadSetExportJobs

omics:ListReadSetImportJobs

omics:ListReadSets

omics:ListReadSetUploadParts

omics:ListReferenceImportJobs

omics:ListReferences

omics:ListReferenceStores

omics:ListRunGroups

omics:ListRuns

omics:ListRunTasks

omics:ListSequenceStores

omics:ListVariantImportJobs

omics:ListVariantStores

omics:ListWorkflows

omics:StartAnnotationImportJob

omics:StartReadSetActivationJob

omics:StartReadSetExportJob

omics:StartReadSetImportJob

omics:StartReferenceImportJob

omics:StartRun

Refining permissions using access information 1366

AWS Identity and Access Management User Guide

Service prefix Actions

omics:StartVariantImportJob

omics:UpdateAnnotationStore

omics:UpdateRunGroup

omics:UpdateVariantStore

omics:UpdateWorkflow

omics:UploadReadSetPart

Refining permissions using access information 1367

AWS Identity and Access Management User Guide

Service prefix Actions

opsworks opsworks:AssignInstance

opsworks:AssignVolume

opsworks:AssociateElasticIp

opsworks:AttachElasticLoadBalancer

opsworks:CloneStack

opsworks:CreateApp

opsworks:CreateDeployment

opsworks:CreateInstance

opsworks:CreateLayer

opsworks:CreateStack

opsworks:CreateUserProfile

opsworks:DeleteApp

opsworks:DeleteInstance

opsworks:DeleteLayer

opsworks:DeleteStack

opsworks:DeleteUserProfile

opsworks:DeregisterEcsCluster

opsworks:DeregisterElasticIp

opsworks:DeregisterInstance

opsworks:DeregisterRdsDbInstance

opsworks:DeregisterVolume

Refining permissions using access information 1368

AWS Identity and Access Management User Guide

Service prefix Actions

opsworks:DescribeAgentVersions

opsworks:DescribeApps

opsworks:DescribeCommands

opsworks:DescribeDeployments

opsworks:DescribeEcsClusters

opsworks:DescribeElasticIps

opsworks:DescribeElasticLoadBalancers

opsworks:DescribeInstances

opsworks:DescribeLayers

opsworks:DescribeLoadBasedAutoScaling

opsworks:DescribeMyUserProfile

opsworks:DescribeOperatingSystems

opsworks:DescribePermissions

opsworks:DescribeRaidArrays

opsworks:DescribeRdsDbInstances

opsworks:DescribeServiceErrors

opsworks:DescribeStackProvisioningParameters

opsworks:DescribeStacks

opsworks:DescribeStackSummary

opsworks:DescribeTimeBasedAutoScaling

opsworks:DescribeUserProfiles

Refining permissions using access information 1369

AWS Identity and Access Management User Guide

Service prefix Actions

opsworks:DescribeVolumes

opsworks:DetachElasticLoadBalancer

opsworks:DisassociateElasticIp

opsworks:GetHostnameSuggestion

opsworks:GrantAccess

opsworks:RebootInstance

opsworks:RegisterEcsCluster

opsworks:RegisterElasticIp

opsworks:RegisterInstance

opsworks:RegisterRdsDbInstance

opsworks:RegisterVolume

opsworks:SetLoadBasedAutoScaling

opsworks:SetPermission

opsworks:SetTimeBasedAutoScaling

opsworks:StartInstance

opsworks:StartStack

opsworks:StopInstance

opsworks:StopStack

opsworks:UnassignInstance

opsworks:UnassignVolume

opsworks:UpdateApp

Refining permissions using access information 1370

AWS Identity and Access Management User Guide

Service prefix Actions

opsworks:UpdateElasticIp

opsworks:UpdateInstance

opsworks:UpdateLayer

opsworks:UpdateMyUserProfile

opsworks:UpdateRdsDbInstance

opsworks:UpdateStack

opsworks:UpdateUserProfile

opsworks:UpdateVolume

Refining permissions using access information 1371

AWS Identity and Access Management User Guide

Service prefix Actions

opsworks-cm opsworks-cm:AssociateNode

opsworks-cm:CreateBackup

opsworks-cm:CreateServer

opsworks-cm:DeleteBackup

opsworks-cm:DeleteServer

opsworks-cm:DescribeAccountAttributes

opsworks-cm:DescribeBackups

opsworks-cm:DescribeEvents

opsworks-cm:DescribeNodeAssociationStatus

opsworks-cm:DescribeServers

opsworks-cm:DisassociateNode

opsworks-cm:ExportServerEngineAttribute

opsworks-cm:RestoreServer

opsworks-cm:StartMaintenance

opsworks-cm:UpdateServer

opsworks-cm:UpdateServerEngineAttributes

Refining permissions using access information 1372

AWS Identity and Access Management User Guide

Service prefix Actions

organizations organizations:AcceptHandshake

organizations:AttachPolicy

organizations:CancelHandshake

organizations:CloseAccount

organizations:CreateAccount

organizations:CreateGovCloudAccount

organizations:CreateOrganization

organizations:CreateOrganizationalUnit

organizations:CreatePolicy

organizations:DeclineHandshake

organizations:DeleteOrganization

organizations:DeleteOrganizationalUnit

organizations:DeletePolicy

organizations:DeleteResourcePolicy

organizations:DeregisterDelegatedAdministrator

organizations:DescribeAccount

organizations:DescribeCreateAccountStatus

organizations:DescribeEffectivePolicy

organizations:DescribeHandshake

organizations:DescribeOrganization

organizations:DescribeOrganizationalUnit

Refining permissions using access information 1373

AWS Identity and Access Management User Guide

Service prefix Actions

organizations:DescribePolicy

organizations:DescribeResourcePolicy

organizations:DetachPolicy

organizations:DisableAWSServiceAccess

organizations:DisablePolicyType

organizations:EnableAllFeatures

organizations:EnableAWSServiceAccess

organizations:EnablePolicyType

organizations:InviteAccountToOrganization

organizations:LeaveOrganization

organizations:ListAccounts

organizations:ListAccountsForParent

organizations:ListAWSServiceAccessForOrganization

organizations:ListChildren

organizations:ListCreateAccountStatus

organizations:ListDelegatedAdministrators

organizations:ListDelegatedServicesForAccount

organizations:ListHandshakesForAccount

organizations:ListHandshakesForOrganization

organizations:ListOrganizationalUnitsForParent

organizations:ListParents

Refining permissions using access information 1374

AWS Identity and Access Management User Guide

Service prefix Actions

organizations:ListPolicies

organizations:ListPoliciesForTarget

organizations:ListRoots

organizations:ListTargetsForPolicy

organizations:MoveAccount

organizations:PutResourcePolicy

organizations:RegisterDelegatedAdministrator

organizations:RemoveAccountFromOrganization

organizations:UpdateOrganizationalUnit

organizations:UpdatePolicy

Refining permissions using access information 1375

AWS Identity and Access Management User Guide

Service prefix Actions

outposts outposts:CancelOrder

outposts:CreateOrder

outposts:CreateOutpost

outposts:CreatePrivateConnectivityConfig

outposts:CreateSite

outposts:DeleteOutpost

outposts:DeleteSite

outposts:GetCatalogItem

outposts:GetConnection

outposts:GetOrder

outposts:GetOutpost

outposts:GetOutpostInstanceTypes

outposts:GetPrivateConnectivityConfig

outposts:GetSite

outposts:GetSiteAddress

outposts:ListAssets

outposts:ListCatalogItems

outposts:ListOrders

outposts:ListOutposts

outposts:ListSites

outposts:StartConnection

Refining permissions using access information 1376

AWS Identity and Access Management User Guide

Service prefix Actions

outposts:UpdateOutpost

outposts:UpdateSite

outposts:UpdateSiteAddress

outposts:UpdateSiteRackPhysicalProperties

Refining permissions using access information 1377

AWS Identity and Access Management User Guide

Service prefix Actions

panorama panorama:CreateApplicationInstance

panorama:CreateJobForDevices

panorama:CreateNodeFromTemplateJob

panorama:CreatePackage

panorama:CreatePackageImportJob

panorama:DeleteDevice

panorama:DeletePackage

panorama:DeregisterPackageVersion

panorama:DescribeApplicationInstance

panorama:DescribeApplicationInstanceDetails

panorama:DescribeDevice

panorama:DescribeDeviceJob

panorama:DescribeNode

panorama:DescribeNodeFromTemplateJob

panorama:DescribePackage

panorama:DescribePackageImportJob

panorama:DescribePackageVersion

panorama:ListApplicationInstanceDependencies

panorama:ListApplicationInstanceNodeInstances

panorama:ListApplicationInstances

panorama:ListDevices

Refining permissions using access information 1378

AWS Identity and Access Management User Guide

Service prefix Actions

panorama:ListDevicesJobs

panorama:ListNodeFromTemplateJobs

panorama:ListNodes

panorama:ListPackageImportJobs

panorama:ListPackages

panorama:ProvisionDevice

panorama:RegisterPackageVersion

panorama:RemoveApplicationInstance

panorama:SignalApplicationInstanceNodeInstances

panorama:UpdateDeviceMetadata

pi pi:CreatePerformanceAnalysisReport

pi:DeletePerformanceAnalysisReport

pi:DescribeDimensionKeys

pi:GetDimensionKeyDetails

pi:GetPerformanceAnalysisReport

pi:GetResourceMetadata

pi:GetResourceMetrics

pi:ListAvailableResourceDimensions

pi:ListAvailableResourceMetrics

pi:ListPerformanceAnalysisReports

Refining permissions using access information 1379

AWS Identity and Access Management User Guide

Service prefix Actions

pipes pipes:CreatePipe

pipes:DeletePipe

pipes:DescribePipe

pipes:ListPipes

pipes:StartPipe

pipes:StopPipe

pipes:UpdatePipe

polly polly:DeleteLexicon

polly:DescribeVoices

polly:GetLexicon

polly:GetSpeechSynthesisTask

polly:ListLexicons

polly:ListSpeechSynthesisTasks

polly:PutLexicon

polly:StartSpeechSynthesisTask

polly:SynthesizeSpeech

Refining permissions using access information 1380

AWS Identity and Access Management User Guide

Service prefix Actions

profile profile:AddProfileKey

profile:CreateCalculatedAttributeDefinition

profile:CreateDomain

profile:CreateEventStream

profile:CreateProfile

profile:DeleteCalculatedAttributeDefinition

profile:DeleteDomain

profile:DeleteEventStream

profile:DeleteIntegration

profile:DeleteProfile

profile:DeleteProfileKey

profile:DeleteProfileObject

profile:DeleteProfileObjectType

profile:DeleteWorkflow

profile:GetAutoMergingPreview

profile:GetCalculatedAttributeDefinition

profile:GetCalculatedAttributeForProfile

profile:GetDomain

profile:GetEventStream

profile:GetIdentityResolutionJob

profile:GetIntegration

Refining permissions using access information 1381

AWS Identity and Access Management User Guide

Service prefix Actions

profile:GetMatches

profile:GetProfileObjectType

profile:GetProfileObjectTypeTemplate

profile:GetSimilarProfiles

profile:GetWorkflow

profile:GetWorkflowSteps

profile:ListAccountIntegrations

profile:ListCalculatedAttributeDefinitions

profile:ListCalculatedAttributesForProfile

profile:ListDomains

profile:ListEventStreams

profile:ListIdentityResolutionJobs

profile:ListIntegrations

profile:ListProfileObjects

profile:ListProfileObjectTypes

profile:ListProfileObjectTypeTemplates

profile:ListRuleBasedMatches

profile:ListWorkflows

profile:MergeProfiles

profile:PutIntegration

profile:PutProfileObject

Refining permissions using access information 1382

AWS Identity and Access Management User Guide

Service prefix Actions

profile:PutProfileObjectType

profile:SearchProfiles

profile:UpdateCalculatedAttributeDefinition

profile:UpdateDomain

profile:UpdateProfile

Refining permissions using access information 1383

AWS Identity and Access Management User Guide

Service prefix Actions

qldb qldb:CancelJournalKinesisStream

qldb:CreateLedger

qldb:DeleteLedger

qldb:DescribeJournalKinesisStream

qldb:DescribeJournalS3Export

qldb:DescribeLedger

qldb:ExportJournalToS3

qldb:GetBlock

qldb:GetDigest

qldb:GetRevision

qldb:ListJournalKinesisStreamsForLedger

qldb:ListJournalS3Exports

qldb:ListJournalS3ExportsForLedger

qldb:ListLedgers

qldb:StreamJournalToKinesis

qldb:UpdateLedger

qldb:UpdateLedgerPermissionsMode

Refining permissions using access information 1384

AWS Identity and Access Management User Guide

Service prefix Actions

ram ram:AcceptResourceShareInvitation

ram:AssociateResourceShare

ram:AssociateResourceSharePermission

ram:CreatePermission

ram:CreatePermissionVersion

ram:CreateResourceShare

ram:DeletePermission

ram:DeletePermissionVersion

ram:DeleteResourceShare

ram:DisassociateResourceShare

ram:DisassociateResourceSharePermission

ram:EnableSharingWithAwsOrganization

ram:GetPermission

ram:GetResourcePolicies

ram:GetResourceShareAssociations

ram:GetResourceShareInvitations

ram:GetResourceShares

ram:ListPendingInvitationResources

ram:ListPermissionAssociations

ram:ListPermissions

ram:ListPermissionVersions

Refining permissions using access information 1385

AWS Identity and Access Management User Guide

Service prefix Actions

ram:ListPrincipals

ram:ListReplacePermissionAssociationsWork

ram:ListResources

ram:ListResourceSharePermissions

ram:ListResourceTypes

ram:PromotePermissionCreatedFromPolicy

ram:PromoteResourceShareCreatedFromPolicy

ram:RejectResourceShareInvitation

ram:ReplacePermissionAssociations

ram:SetDefaultPermissionVersion

ram:UpdateResourceShare

rbin rbin:CreateRule

rbin:DeleteRule

rbin:GetRule

rbin:ListRules

rbin:LockRule

rbin:UnlockRule

rbin:UpdateRule

Refining permissions using access information 1386

AWS Identity and Access Management User Guide

Service prefix Actions

rds rds:AddRoleToDBCluster

rds:AddRoleToDBInstance

rds:AddSourceIdentifierToSubscription

rds:ApplyPendingMaintenanceAction

rds:AuthorizeDBSecurityGroupIngress

rds:BacktrackDBCluster

rds:CancelExportTask

rds:CopyDBClusterParameterGroup

rds:CopyDBClusterSnapshot

rds:CopyDBParameterGroup

rds:CopyDBSnapshot

rds:CopyOptionGroup

rds:CreateCustomDBEngineVersion

rds:CreateDBClusterParameterGroup

rds:CreateDBClusterSnapshot

rds:CreateDBParameterGroup

rds:CreateDBProxy

rds:CreateDBProxyEndpoint

rds:CreateDBSecurityGroup

rds:CreateDBSnapshot

rds:CreateDBSubnetGroup

Refining permissions using access information 1387

AWS Identity and Access Management User Guide

Service prefix Actions

rds:CreateEventSubscription

rds:CreateGlobalCluster

rds:CreateOptionGroup

rds:DeleteBlueGreenDeployment

rds:DeleteDBClusterAutomatedBackup

rds:DeleteDBClusterParameterGroup

rds:DeleteDBClusterSnapshot

rds:DeleteDBInstanceAutomatedBackup

rds:DeleteDBParameterGroup

rds:DeleteDBProxy

rds:DeleteDBProxyEndpoint

rds:DeleteDBSecurityGroup

rds:DeleteDBSnapshot

rds:DeleteDBSubnetGroup

rds:DeleteEventSubscription

rds:DeleteGlobalCluster

rds:DeleteOptionGroup

rds:DeregisterDBProxyTargets

rds:DescribeAccountAttributes

rds:DescribeBlueGreenDeployments

rds:DescribeCertificates

Refining permissions using access information 1388

AWS Identity and Access Management User Guide

Service prefix Actions

rds:DescribeDBClusterAutomatedBackups

rds:DescribeDBClusterBacktracks

rds:DescribeDBClusterEndpoints

rds:DescribeDBClusterParameterGroups

rds:DescribeDBClusterParameters

rds:DescribeDBClusters

rds:DescribeDBClusterSnapshotAttributes

rds:DescribeDBClusterSnapshots

rds:DescribeDBEngineVersions

rds:DescribeDBInstanceAutomatedBackups

rds:DescribeDBInstances

rds:DescribeDBLogFiles

rds:DescribeDBParameterGroups

rds:DescribeDBParameters

rds:DescribeDBProxies

rds:DescribeDBProxyEndpoints

rds:DescribeDBProxyTargetGroups

rds:DescribeDBProxyTargets

rds:DescribeDBSecurityGroups

rds:DescribeDBSnapshotAttributes

rds:DescribeDBSnapshots

Refining permissions using access information 1389

AWS Identity and Access Management User Guide

Service prefix Actions

rds:DescribeDBSubnetGroups

rds:DescribeEngineDefaultClusterParameters

rds:DescribeEngineDefaultParameters

rds:DescribeEventCategories

rds:DescribeEvents

rds:DescribeEventSubscriptions

rds:DescribeExportTasks

rds:DescribeGlobalClusters

rds:DescribeOptionGroupOptions

rds:DescribeOptionGroups

rds:DescribeOrderableDBInstanceOptions

rds:DescribePendingMaintenanceActions

rds:DescribeReservedDBInstances

rds:DescribeReservedDBInstancesOfferings

rds:DescribeSourceRegions

rds:DescribeValidDBInstanceModifications

rds:DownloadCompleteDBLogFile

rds:DownloadDBLogFilePortion

rds:FailoverDBCluster

rds:FailoverGlobalCluster

rds:ModifyActivityStream

Refining permissions using access information 1390

AWS Identity and Access Management User Guide

Service prefix Actions

rds:ModifyCertificates

rds:ModifyCurrentDBClusterCapacity

rds:ModifyDBClusterEndpoint

rds:ModifyDBClusterParameterGroup

rds:ModifyDBClusterSnapshotAttribute

rds:ModifyDBParameterGroup

rds:ModifyDBProxy

rds:ModifyDBProxyEndpoint

rds:ModifyDBProxyTargetGroup

rds:ModifyDBSnapshot

rds:ModifyDBSnapshotAttribute

rds:ModifyDBSubnetGroup

rds:ModifyEventSubscription

rds:ModifyGlobalCluster

rds:ModifyOptionGroup

rds:PurchaseReservedDBInstancesOffering

rds:RebootDBCluster

rds:RegisterDBProxyTargets

rds:RemoveFromGlobalCluster

rds:RemoveRoleFromDBCluster

rds:RemoveRoleFromDBInstance

Refining permissions using access information 1391

AWS Identity and Access Management User Guide

Service prefix Actions

rds:RemoveSourceIdentifierFromSubscription

rds:ResetDBClusterParameterGroup

rds:ResetDBParameterGroup

rds:RestoreDBClusterFromS3

rds:RestoreDBClusterFromSnapshot

rds:RestoreDBClusterToPointInTime

rds:RestoreDBInstanceFromDBSnapshot

rds:RestoreDBInstanceFromS3

rds:RestoreDBInstanceToPointInTime

rds:RevokeDBSecurityGroupIngress

rds:StartActivityStream

rds:StartDBCluster

rds:StartDBInstance

rds:StartDBInstanceAutomatedBackupsReplication

rds:StartExportTask

rds:StopActivityStream

rds:StopDBCluster

rds:StopDBInstance

rds:StopDBInstanceAutomatedBackupsReplication

rds:SwitchoverBlueGreenDeployment

rds:SwitchoverGlobalCluster

Refining permissions using access information 1392

AWS Identity and Access Management User Guide

Service prefix Actions

rds:SwitchoverReadReplica

Refining permissions using access information 1393

AWS Identity and Access Management User Guide

Service prefix Actions

redshift redshift:AcceptReservedNodeExchange

redshift:AddPartner

redshift:AssociateDataShareConsumer

redshift:AuthorizeClusterSecurityGroupIngress

redshift:AuthorizeDataShare

redshift:AuthorizeEndpointAccess

redshift:AuthorizeSnapshotAccess

redshift:BatchDeleteClusterSnapshots

redshift:BatchModifyClusterSnapshots

redshift:CancelResize

redshift:CopyClusterSnapshot

redshift:CreateAuthenticationProfile

redshift:CreateCluster

redshift:CreateClusterParameterGroup

redshift:CreateClusterSecurityGroup

redshift:CreateClusterSnapshot

redshift:CreateClusterSubnetGroup

redshift:CreateCustomDomainAssociation

redshift:CreateEndpointAccess

redshift:CreateEventSubscription

redshift:CreateHsmClientCertificate

Refining permissions using access information 1394

AWS Identity and Access Management User Guide

Service prefix Actions

redshift:CreateHsmConfiguration

redshift:CreateScheduledAction

redshift:CreateSnapshotCopyGrant

redshift:CreateSnapshotSchedule

redshift:CreateUsageLimit

redshift:DeauthorizeDataShare

redshift:DeleteAuthenticationProfile

redshift:DeleteCluster

redshift:DeleteClusterParameterGroup

redshift:DeleteClusterSecurityGroup

redshift:DeleteClusterSnapshot

redshift:DeleteClusterSubnetGroup

redshift:DeleteCustomDomainAssociation

redshift:DeleteEndpointAccess

redshift:DeleteEventSubscription

redshift:DeleteHsmClientCertificate

redshift:DeleteHsmConfiguration

redshift:DeletePartner

redshift:DeleteScheduledAction

redshift:DeleteSnapshotCopyGrant

redshift:DeleteSnapshotSchedule

Refining permissions using access information 1395

AWS Identity and Access Management User Guide

Service prefix Actions

redshift:DeleteUsageLimit

redshift:DescribeAccountAttributes

redshift:DescribeAuthenticationProfiles

redshift:DescribeClusterDbRevisions

redshift:DescribeClusterParameterGroups

redshift:DescribeClusterParameters

redshift:DescribeClusters

redshift:DescribeClusterSecurityGroups

redshift:DescribeClusterSnapshots

redshift:DescribeClusterSubnetGroups

redshift:DescribeClusterTracks

redshift:DescribeClusterVersions

redshift:DescribeCustomDomainAssociations

redshift:DescribeDataShares

redshift:DescribeDataSharesForConsumer

redshift:DescribeDataSharesForProducer

redshift:DescribeDefaultClusterParameters

redshift:DescribeEndpointAccess

redshift:DescribeEndpointAuthorization

redshift:DescribeEventCategories

redshift:DescribeEvents

Refining permissions using access information 1396

AWS Identity and Access Management User Guide

Service prefix Actions

redshift:DescribeEventSubscriptions

redshift:DescribeHsmClientCertificates

redshift:DescribeHsmConfigurations

redshift:DescribeLoggingStatus

redshift:DescribeNodeConfigurationOptions

redshift:DescribeOrderableClusterOptions

redshift:DescribePartners

redshift:DescribeReservedNodeExchangeStatus

redshift:DescribeReservedNodeOfferings

redshift:DescribeReservedNodes

redshift:DescribeResize

redshift:DescribeScheduledActions

redshift:DescribeSnapshotCopyGrants

redshift:DescribeSnapshotSchedules

redshift:DescribeStorage

redshift:DescribeTableRestoreStatus

redshift:DescribeUsageLimits

redshift:DisableLogging

redshift:DisableSnapshotCopy

redshift:DisassociateDataShareConsumer

redshift:EnableLogging

Refining permissions using access information 1397

AWS Identity and Access Management User Guide

Service prefix Actions

redshift:EnableSnapshotCopy

redshift:GetClusterCredentials

redshift:GetClusterCredentialsWithIAM

redshift:GetReservedNodeExchangeConfigurationOptions

redshift:GetReservedNodeExchangeOfferings

redshift:ModifyAquaConfiguration

redshift:ModifyAuthenticationProfile

redshift:ModifyCluster

redshift:ModifyClusterDbRevision

redshift:ModifyClusterIamRoles

redshift:ModifyClusterMaintenance

redshift:ModifyClusterParameterGroup

redshift:ModifyClusterSnapshot

redshift:ModifyClusterSnapshotSchedule

redshift:ModifyClusterSubnetGroup

redshift:ModifyCustomDomainAssociation

redshift:ModifyEndpointAccess

redshift:ModifyEventSubscription

redshift:ModifyScheduledAction

redshift:ModifySnapshotCopyRetentionPeriod

redshift:ModifySnapshotSchedule

Refining permissions using access information 1398

AWS Identity and Access Management User Guide

Service prefix Actions

redshift:ModifyUsageLimit

redshift:PauseCluster

redshift:PurchaseReservedNodeOffering

redshift:RebootCluster

redshift:RejectDataShare

redshift:ResetClusterParameterGroup

redshift:ResizeCluster

redshift:RestoreFromClusterSnapshot

redshift:RestoreTableFromClusterSnapshot

redshift:ResumeCluster

redshift:RevokeClusterSecurityGroupIngress

redshift:RevokeEndpointAccess

redshift:RevokeSnapshotAccess

redshift:RotateEncryptionKey

redshift:UpdatePartnerStatus

Refining permissions using access information 1399

AWS Identity and Access Management User Guide

Service prefix Actions

redshift-data redshift-data:BatchExecuteStatement

redshift-data:CancelStatement

redshift-data:DescribeStatement

redshift-data:DescribeTable

redshift-data:ExecuteStatement

redshift-data:GetStatementResult

redshift-data:ListDatabases

redshift-data:ListSchemas

redshift-data:ListStatements

redshift-data:ListTables

Refining permissions using access information 1400

AWS Identity and Access Management User Guide

Service prefix Actions

refactor-spaces refactor-spaces:CreateApplication

refactor-spaces:CreateEnvironment

refactor-spaces:CreateRoute

refactor-spaces:CreateService

refactor-spaces:DeleteApplication

refactor-spaces:DeleteEnvironment

refactor-spaces:DeleteResourcePolicy

refactor-spaces:DeleteRoute

refactor-spaces:DeleteService

refactor-spaces:GetApplication

refactor-spaces:GetEnvironment

refactor-spaces:GetResourcePolicy

refactor-spaces:GetRoute

refactor-spaces:GetService

refactor-spaces:ListApplications

refactor-spaces:ListEnvironments

refactor-spaces:ListEnvironmentVpcs

refactor-spaces:ListRoutes

refactor-spaces:ListServices

refactor-spaces:PutResourcePolicy

refactor-spaces:UpdateRoute

Refining permissions using access information 1401

AWS Identity and Access Management User Guide

Service prefix Actions

rekognition rekognition:AssociateFaces

rekognition:CompareFaces

rekognition:CopyProjectVersion

rekognition:CreateCollection

rekognition:CreateDataset

rekognition:CreateFaceLivenessSession

rekognition:CreateProject

rekognition:CreateProjectVersion

rekognition:CreateStreamProcessor

rekognition:CreateUser

rekognition:DeleteCollection

rekognition:DeleteDataset

rekognition:DeleteFaces

rekognition:DeleteProject

rekognition:DeleteProjectPolicy

rekognition:DeleteProjectVersion

rekognition:DeleteStreamProcessor

rekognition:DeleteUser

rekognition:DescribeCollection

rekognition:DescribeDataset

rekognition:DescribeProjects

Refining permissions using access information 1402

AWS Identity and Access Management User Guide

Service prefix Actions

rekognition:DescribeProjectVersions

rekognition:DescribeStreamProcessor

rekognition:DetectCustomLabels

rekognition:DetectFaces

rekognition:DetectLabels

rekognition:DetectModerationLabels

rekognition:DetectProtectiveEquipment

rekognition:DetectText

rekognition:DisassociateFaces

rekognition:DistributeDatasetEntries

rekognition:GetCelebrityInfo

rekognition:GetCelebrityRecognition

rekognition:GetContentModeration

rekognition:GetFaceDetection

rekognition:GetFaceLivenessSessionResults

rekognition:GetFaceSearch

rekognition:GetLabelDetection

rekognition:GetMediaAnalysisJob

rekognition:GetPersonTracking

rekognition:GetSegmentDetection

rekognition:GetTextDetection

Refining permissions using access information 1403

AWS Identity and Access Management User Guide

Service prefix Actions

rekognition:IndexFaces

rekognition:ListCollections

rekognition:ListDatasetEntries

rekognition:ListDatasetLabels

rekognition:ListFaces

rekognition:ListMediaAnalysisJobs

rekognition:ListProjectPolicies

rekognition:ListStreamProcessors

rekognition:ListUsers

rekognition:PutProjectPolicy

rekognition:RecognizeCelebrities

rekognition:SearchFaces

rekognition:SearchFacesByImage

rekognition:SearchUsers

rekognition:SearchUsersByImage

rekognition:StartCelebrityRecognition

rekognition:StartContentModeration

rekognition:StartFaceDetection

rekognition:StartFaceLivenessSession

rekognition:StartFaceSearch

rekognition:StartLabelDetection

Refining permissions using access information 1404

AWS Identity and Access Management User Guide

Service prefix Actions

rekognition:StartMediaAnalysisJob

rekognition:StartPersonTracking

rekognition:StartProjectVersion

rekognition:StartSegmentDetection

rekognition:StartStreamProcessor

rekognition:StartTextDetection

rekognition:StopProjectVersion

rekognition:StopStreamProcessor

rekognition:UpdateDatasetEntries

rekognition:UpdateStreamProcessor

Refining permissions using access information 1405

AWS Identity and Access Management User Guide

Service prefix Actions

resiliencehub resiliencehub:AddDraftAppVersionResourceMappings

resiliencehub:CreateApp

resiliencehub:CreateAppVersionAppComponent

resiliencehub:CreateAppVersionResource

resiliencehub:CreateRecommendationTemplate

resiliencehub:CreateResiliencyPolicy

resiliencehub:DeleteApp

resiliencehub:DeleteAppAssessment

resiliencehub:DeleteAppInputSource

resiliencehub:DeleteAppVersionAppComponent

resiliencehub:DeleteAppVersionResource

resiliencehub:DeleteRecommendationTemplate

resiliencehub:DeleteResiliencyPolicy

resiliencehub:DescribeApp

resiliencehub:DescribeAppAssessment

resiliencehub:DescribeAppVersion

resiliencehub:DescribeAppVersionAppComponent

resiliencehub:DescribeAppVersionResource

resiliencehub:DescribeAppVersionResourcesResolutionStatus

resiliencehub:DescribeAppVersionTemplate

resiliencehub:DescribeDraftAppVersionResourcesImportStatus

Refining permissions using access information 1406

AWS Identity and Access Management User Guide

Service prefix Actions

resiliencehub:DescribeResiliencyPolicy

resiliencehub:ImportResourcesToDraftAppVersion

resiliencehub:ListAlarmRecommendations

resiliencehub:ListAppAssessments

resiliencehub:ListAppComponentCompliances

resiliencehub:ListAppComponentRecommendations

resiliencehub:ListAppInputSources

resiliencehub:ListApps

resiliencehub:ListAppVersionAppComponents

resiliencehub:ListAppVersionResourceMappings

resiliencehub:ListAppVersionResources

resiliencehub:ListAppVersions

resiliencehub:ListRecommendationTemplates

resiliencehub:ListResiliencyPolicies

resiliencehub:ListSopRecommendations

resiliencehub:ListSuggestedResiliencyPolicies

resiliencehub:ListTestRecommendations

resiliencehub:ListUnsupportedAppVersionResources

resiliencehub:PublishAppVersion

resiliencehub:PutDraftAppVersionTemplate

resiliencehub:RemoveDraftAppVersionResourceMappings

Refining permissions using access information 1407

AWS Identity and Access Management User Guide

Service prefix Actions

resiliencehub:ResolveAppVersionResources

resiliencehub:StartAppAssessment

resiliencehub:UpdateApp

resiliencehub:UpdateAppVersion

resiliencehub:UpdateAppVersionAppComponent

resiliencehub:UpdateAppVersionResource

resiliencehub:UpdateResiliencyPolicy

Refining permissions using access information 1408

AWS Identity and Access Management User Guide

Service prefix Actions

resource-explorer-2 resource-explorer-2:AssociateDefaultView

resource-explorer-2:BatchGetView

resource-explorer-2:CreateIndex

resource-explorer-2:CreateView

resource-explorer-2:DeleteIndex

resource-explorer-2:DeleteView

resource-explorer-2:DisassociateDefaultView

resource-explorer-2:GetDefaultView

resource-explorer-2:GetIndex

resource-explorer-2:ListIndexes

resource-explorer-2:ListSupportedResourceTypes

resource-explorer-2:ListViews

resource-explorer-2:Search

resource-explorer-2:UpdateIndexType

resource-explorer-2:UpdateView

Refining permissions using access information 1409

AWS Identity and Access Management User Guide

Service prefix Actions

resource-groups resource-groups:CreateGroup

resource-groups:DeleteGroup

resource-groups:GetAccountSettings

resource-groups:GetGroup

resource-groups:GetGroupConfiguration

resource-groups:GetGroupQuery

resource-groups:GroupResources

resource-groups:ListGroupResources

resource-groups:ListGroups

resource-groups:PutGroupConfiguration

resource-groups:SearchResources

resource-groups:UngroupResources

resource-groups:UpdateAccountSettings

resource-groups:UpdateGroup

resource-groups:UpdateGroupQuery

Refining permissions using access information 1410

AWS Identity and Access Management User Guide

Service prefix Actions

robomaker robomaker:BatchDeleteWorlds

robomaker:BatchDescribeSimulationJob

robomaker:CancelDeploymentJob

robomaker:CancelSimulationJob

robomaker:CancelSimulationJobBatch

robomaker:CancelWorldExportJob

robomaker:CancelWorldGenerationJob

robomaker:CreateDeploymentJob

robomaker:CreateFleet

robomaker:CreateRobot

robomaker:CreateRobotApplication

robomaker:CreateRobotApplicationVersion

robomaker:CreateSimulationApplication

robomaker:CreateSimulationApplicationVersion

robomaker:CreateSimulationJob

robomaker:CreateWorldExportJob

robomaker:CreateWorldGenerationJob

robomaker:CreateWorldTemplate

robomaker:DeleteFleet

robomaker:DeleteRobot

robomaker:DeleteRobotApplication

Refining permissions using access information 1411

AWS Identity and Access Management User Guide

Service prefix Actions

robomaker:DeleteSimulationApplication

robomaker:DeleteWorldTemplate

robomaker:DeregisterRobot

robomaker:DescribeDeploymentJob

robomaker:DescribeFleet

robomaker:DescribeRobot

robomaker:DescribeRobotApplication

robomaker:DescribeSimulationApplication

robomaker:DescribeSimulationJob

robomaker:DescribeSimulationJobBatch

robomaker:DescribeWorld

robomaker:DescribeWorldExportJob

robomaker:DescribeWorldGenerationJob

robomaker:DescribeWorldTemplate

robomaker:GetWorldTemplateBody

robomaker:ListDeploymentJobs

robomaker:ListFleets

robomaker:ListRobotApplications

robomaker:ListRobots

robomaker:ListSimulationApplications

robomaker:ListSimulationJobBatches

Refining permissions using access information 1412

AWS Identity and Access Management User Guide

Service prefix Actions

robomaker:ListSimulationJobs

robomaker:ListWorldExportJobs

robomaker:ListWorldGenerationJobs

robomaker:ListWorlds

robomaker:ListWorldTemplates

robomaker:RegisterRobot

robomaker:RestartSimulationJob

robomaker:StartSimulationJobBatch

robomaker:SyncDeploymentJob

robomaker:UpdateRobotApplication

robomaker:UpdateSimulationApplication

robomaker:UpdateWorldTemplate

Refining permissions using access information 1413

AWS Identity and Access Management User Guide

Service prefix Actions

rolesanywhere rolesanywhere:CreateProfile

rolesanywhere:CreateTrustAnchor

rolesanywhere:DeleteCrl

rolesanywhere:DeleteProfile

rolesanywhere:DeleteTrustAnchor

rolesanywhere:DisableCrl

rolesanywhere:DisableProfile

rolesanywhere:DisableTrustAnchor

rolesanywhere:EnableCrl

rolesanywhere:EnableProfile

rolesanywhere:EnableTrustAnchor

rolesanywhere:GetCrl

rolesanywhere:GetProfile

rolesanywhere:GetSubject

rolesanywhere:GetTrustAnchor

rolesanywhere:ImportCrl

rolesanywhere:ListCrls

rolesanywhere:ListProfiles

rolesanywhere:ListSubjects

rolesanywhere:ListTrustAnchors

rolesanywhere:PutNotificationSettings

Refining permissions using access information 1414

AWS Identity and Access Management User Guide

Service prefix Actions

rolesanywhere:ResetNotificationSettings

rolesanywhere:UpdateCrl

rolesanywhere:UpdateProfile

rolesanywhere:UpdateTrustAnchor

Refining permissions using access information 1415

AWS Identity and Access Management User Guide

Service prefix Actions

route53 route53:ActivateKeySigningKey

route53:AssociateVPCWithHostedZone

route53:ChangeCidrCollection

route53:ChangeResourceRecordSets

route53:CreateCidrCollection

route53:CreateHealthCheck

route53:CreateHostedZone

route53:CreateKeySigningKey

route53:CreateQueryLoggingConfig

route53:CreateReusableDelegationSet

route53:CreateTrafficPolicy

route53:CreateTrafficPolicyInstance

route53:CreateTrafficPolicyVersion

route53:CreateVPCAssociationAuthorization

route53:DeactivateKeySigningKey

route53:DeleteCidrCollection

route53:DeleteHealthCheck

route53:DeleteHostedZone

route53:DeleteKeySigningKey

route53:DeleteQueryLoggingConfig

route53:DeleteReusableDelegationSet

Refining permissions using access information 1416

AWS Identity and Access Management User Guide

Service prefix Actions

route53:DeleteTrafficPolicy

route53:DeleteTrafficPolicyInstance

route53:DeleteVPCAssociationAuthorization

route53:DisableHostedZoneDNSSEC

route53:DisassociateVPCFromHostedZone

route53:EnableHostedZoneDNSSEC

route53:GetAccountLimit

route53:GetChange

route53:GetCheckerIpRanges

route53:GetDNSSEC

route53:GetGeoLocation

route53:GetHealthCheck

route53:GetHealthCheckCount

route53:GetHealthCheckLastFailureReason

route53:GetHealthCheckStatus

route53:GetHostedZone

route53:GetHostedZoneCount

route53:GetHostedZoneLimit

route53:GetQueryLoggingConfig

route53:GetReusableDelegationSet

route53:GetReusableDelegationSetLimit

Refining permissions using access information 1417

AWS Identity and Access Management User Guide

Service prefix Actions

route53:GetTrafficPolicy

route53:GetTrafficPolicyInstance

route53:GetTrafficPolicyInstanceCount

route53:ListCidrBlocks

route53:ListCidrCollections

route53:ListCidrLocations

route53:ListGeoLocations

route53:ListHealthChecks

route53:ListHostedZones

route53:ListHostedZonesByName

route53:ListHostedZonesByVPC

route53:ListQueryLoggingConfigs

route53:ListResourceRecordSets

route53:ListReusableDelegationSets

route53:ListTrafficPolicies

route53:ListTrafficPolicyInstances

route53:ListTrafficPolicyInstancesByHostedZone

route53:ListTrafficPolicyInstancesByPolicy

route53:ListTrafficPolicyVersions

route53:ListVPCAssociationAuthorizations

route53:TestDNSAnswer

Refining permissions using access information 1418

AWS Identity and Access Management User Guide

Service prefix Actions

route53:UpdateHealthCheck

route53:UpdateHostedZoneComment

route53:UpdateTrafficPolicyComment

route53:UpdateTrafficPolicyInstance

Refining permissions using access information 1419

AWS Identity and Access Management User Guide

Service prefix Actions

route53-recovery-
control-config

route53-recovery-control-config:CreateCluster

route53-recovery-control-config:CreateControlPanel

route53-recovery-control-config:CreateRoutingControl

route53-recovery-control-config:CreateSafetyRule

route53-recovery-control-config:DeleteCluster

route53-recovery-control-config:DeleteControlPanel

route53-recovery-control-config:DeleteRoutingControl

route53-recovery-control-config:DeleteSafetyRule

route53-recovery-control-config:DescribeCluster

route53-recovery-control-config:DescribeControlPanel

route53-recovery-control-config:DescribeRoutingControl

route53-recovery-control-config:DescribeSafetyRule

route53-recovery-control-config:GetResourcePolicy

route53-recovery-control-config:ListAssociatedRoute53H
ealthChecks

route53-recovery-control-config:ListClusters

route53-recovery-control-config:ListControlPanels

route53-recovery-control-config:ListRoutingControls

route53-recovery-control-config:ListSafetyRules

route53-recovery-control-config:UpdateControlPanel

route53-recovery-control-config:UpdateRoutingControl

Refining permissions using access information 1420

AWS Identity and Access Management User Guide

Service prefix Actions

route53-recovery-control-config:UpdateSafetyRule

Refining permissions using access information 1421

AWS Identity and Access Management User Guide

Service prefix Actions

route53-
recovery-readiness

route53-recovery-readiness:CreateCell

route53-recovery-readiness:CreateCrossAccountAuthorization

route53-recovery-readiness:CreateReadinessCheck

route53-recovery-readiness:CreateRecoveryGroup

route53-recovery-readiness:CreateResourceSet

route53-recovery-readiness:DeleteCell

route53-recovery-readiness:DeleteCrossAccountAuthorization

route53-recovery-readiness:DeleteReadinessCheck

route53-recovery-readiness:DeleteRecoveryGroup

route53-recovery-readiness:DeleteResourceSet

route53-recovery-readiness:GetArchitectureRecommendations

route53-recovery-readiness:GetCell

route53-recovery-readiness:GetCellReadinessSummary

route53-recovery-readiness:GetReadinessCheck

route53-recovery-readiness:GetReadinessCheckResourceStatus

route53-recovery-readiness:GetReadinessCheckStatus

route53-recovery-readiness:GetRecoveryGroup

route53-recovery-readiness:GetRecoveryGroupReadinessSummary

route53-recovery-readiness:GetResourceSet

route53-recovery-readiness:ListCells

route53-recovery-readiness:ListCrossAccountAuthorizations

Refining permissions using access information 1422

AWS Identity and Access Management User Guide

Service prefix Actions

route53-recovery-readiness:ListReadinessChecks

route53-recovery-readiness:ListRecoveryGroups

route53-recovery-readiness:ListResourceSets

route53-recovery-readiness:ListRules

route53-recovery-readiness:UpdateCell

route53-recovery-readiness:UpdateReadinessCheck

route53-recovery-readiness:UpdateRecoveryGroup

route53-recovery-readiness:UpdateResourceSet

Refining permissions using access information 1423

AWS Identity and Access Management User Guide

Service prefix Actions

route53resolver route53resolver:AssociateFirewallRuleGroup

route53resolver:AssociateResolverEndpointIpAddress

route53resolver:AssociateResolverQueryLogConfig

route53resolver:AssociateResolverRule

route53resolver:CreateFirewallDomainList

route53resolver:CreateFirewallRule

route53resolver:CreateFirewallRuleGroup

route53resolver:CreateResolverEndpoint

route53resolver:CreateResolverQueryLogConfig

route53resolver:CreateResolverRule

route53resolver:DeleteFirewallDomainList

route53resolver:DeleteFirewallRule

route53resolver:DeleteFirewallRuleGroup

route53resolver:DeleteOutpostResolver

route53resolver:DeleteResolverEndpoint

route53resolver:DeleteResolverQueryLogConfig

route53resolver:DeleteResolverRule

route53resolver:DisassociateFirewallRuleGroup

route53resolver:DisassociateResolverEndpointIpAddress

route53resolver:DisassociateResolverQueryLogConfig

route53resolver:DisassociateResolverRule

Refining permissions using access information 1424

AWS Identity and Access Management User Guide

Service prefix Actions

route53resolver:GetFirewallConfig

route53resolver:GetFirewallDomainList

route53resolver:GetFirewallRuleGroup

route53resolver:GetFirewallRuleGroupAssociation

route53resolver:GetFirewallRuleGroupPolicy

route53resolver:GetOutpostResolver

route53resolver:GetResolverConfig

route53resolver:GetResolverDnssecConfig

route53resolver:GetResolverEndpoint

route53resolver:GetResolverQueryLogConfig

route53resolver:GetResolverQueryLogConfigAssociation

route53resolver:GetResolverQueryLogConfigPolicy

route53resolver:GetResolverRule

route53resolver:GetResolverRuleAssociation

route53resolver:GetResolverRulePolicy

route53resolver:ImportFirewallDomains

route53resolver:ListFirewallConfigs

route53resolver:ListFirewallDomainLists

route53resolver:ListFirewallDomains

route53resolver:ListFirewallRuleGroupAssociations

route53resolver:ListFirewallRuleGroups

Refining permissions using access information 1425

AWS Identity and Access Management User Guide

Service prefix Actions

route53resolver:ListFirewallRules

route53resolver:ListOutpostResolvers

route53resolver:ListResolverConfigs

route53resolver:ListResolverDnssecConfigs

route53resolver:ListResolverEndpointIpAddresses

route53resolver:ListResolverEndpoints

route53resolver:ListResolverQueryLogConfigAssociations

route53resolver:ListResolverQueryLogConfigs

route53resolver:ListResolverRuleAssociations

route53resolver:ListResolverRules

route53resolver:PutFirewallRuleGroupPolicy

route53resolver:PutResolverQueryLogConfigPolicy

route53resolver:UpdateFirewallConfig

route53resolver:UpdateFirewallDomains

route53resolver:UpdateFirewallRule

route53resolver:UpdateFirewallRuleGroupAssociation

route53resolver:UpdateOutpostResolver

route53resolver:UpdateResolverConfig

route53resolver:UpdateResolverDnssecConfig

route53resolver:UpdateResolverEndpoint

route53resolver:UpdateResolverRule

Refining permissions using access information 1426

AWS Identity and Access Management User Guide

Service prefix Actions

rum rum:BatchCreateRumMetricDefinitions

rum:BatchDeleteRumMetricDefinitions

rum:BatchGetRumMetricDefinitions

rum:CreateAppMonitor

rum:DeleteAppMonitor

rum:DeleteRumMetricsDestination

rum:GetAppMonitor

rum:GetAppMonitorData

rum:ListAppMonitors

rum:ListRumMetricsDestinations

rum:PutRumMetricsDestination

rum:UpdateAppMonitor

rum:UpdateRumMetricDefinition

Refining permissions using access information 1427

AWS Identity and Access Management User Guide

Service prefix Actions

s3 s3:CreateAccessPoint

s3:CreateAccessPointForObjectLambda

s3:CreateBucket

s3:CreateJob

s3:CreateMultiRegionAccessPoint

s3:DeleteAccessPoint

s3:DeleteAccessPointForObjectLambda

s3:DeleteAccessPointPolicy

s3:DeleteAccessPointPolicyForObjectLambda

s3:PutAccountPublicAccessBlock

s3:DeleteBucket

s3:PutAnalyticsConfiguration

s3:PutBucketCORS

s3:PutEncryptionConfiguration

s3:PutIntelligentTieringConfiguration

s3:PutInventoryConfiguration

s3:PutLifecycleConfiguration

s3:PutMetricsConfiguration

s3:PutBucketOwnershipControls

s3:DeleteBucketPolicy

s3:PutBucketPublicAccessBlock

Refining permissions using access information 1428

AWS Identity and Access Management User Guide

Service prefix Actions

s3:PutReplicationConfiguration

s3:DeleteBucketWebsite

s3:DeleteMultiRegionAccessPoint

s3:DeleteStorageLensConfiguration

s3:DescribeJob

s3:DescribeMultiRegionAccessPointOperation

s3:GetAccelerateConfiguration

s3:GetAccessPoint

s3:GetAccessPointConfigurationForObjectLambda

s3:GetAccessPointForObjectLambda

s3:GetAccessPointPolicy

s3:GetAccessPointPolicyForObjectLambda

s3:GetAccessPointPolicyStatus

s3:GetAccessPointPolicyStatusForObjectLambda

s3:GetAccountPublicAccessBlock

s3:GetBucketAcl

s3:GetAnalyticsConfiguration

s3:GetBucketCORS

s3:GetEncryptionConfiguration

s3:GetIntelligentTieringConfiguration

s3:GetInventoryConfiguration

Refining permissions using access information 1429

AWS Identity and Access Management User Guide

Service prefix Actions

s3:GetLifecycleConfiguration

s3:GetBucketLocation

s3:GetBucketLogging

s3:GetMetricsConfiguration

s3:GetBucketNotification

s3:GetBucketObjectLockConfiguration

s3:GetBucketOwnershipControls

s3:GetBucketPolicy

s3:GetBucketPolicyStatus

s3:GetBucketPublicAccessBlock

s3:GetReplicationConfiguration

s3:GetBucketRequestPayment

s3:GetBucketVersioning

s3:GetBucketWebsite

s3:GetMultiRegionAccessPoint

s3:GetMultiRegionAccessPointPolicy

s3:GetMultiRegionAccessPointPolicyStatus

s3:GetMultiRegionAccessPointRoutes

s3:GetObjectAttributes

s3:GetStorageLensConfiguration

s3:GetStorageLensDashboard

Refining permissions using access information 1430

AWS Identity and Access Management User Guide

Service prefix Actions

s3:ListAccessPoints

s3:ListAccessPointsForObjectLambda

s3:ListAllMyBuckets

s3:ListJobs

s3:ListBucketMultipartUploads

s3:ListMultiRegionAccessPoints

s3:ListStorageLensConfigurations

s3:PutAccelerateConfiguration

s3:PutAccessPointConfigurationForObjectLambda

s3:PutAccessPointPolicy

s3:PutAccessPointPolicyForObjectLambda

s3:PutAccountPublicAccessBlock

s3:PutBucketAcl

s3:PutAnalyticsConfiguration

s3:PutBucketCORS

s3:PutEncryptionConfiguration

s3:PutIntelligentTieringConfiguration

s3:PutInventoryConfiguration

s3:PutLifecycleConfiguration

s3:PutBucketLogging

s3:PutMetricsConfiguration

Refining permissions using access information 1431

AWS Identity and Access Management User Guide

Service prefix Actions

s3:PutBucketNotification

s3:PutBucketObjectLockConfiguration

s3:PutBucketOwnershipControls

s3:PutBucketPolicy

s3:PutBucketPublicAccessBlock

s3:PutReplicationConfiguration

s3:PutBucketRequestPayment

s3:PutBucketVersioning

s3:PutBucketWebsite

s3:PutMultiRegionAccessPointPolicy

s3:PutStorageLensConfiguration

s3:SubmitMultiRegionAccessPointRoutes

s3:UpdateJobPriority

s3:UpdateJobStatus

s3-outposts s3-outposts:CreateEndpoint

s3-outposts:DeleteEndpoint

s3-outposts:ListEndpoints

s3-outposts:ListOutpostsWithS3

s3-outposts:ListSharedEndpoints

Refining permissions using access information 1432

AWS Identity and Access Management User Guide

Service prefix Actions

sagemaker-geospatial sagemaker-geospatial:DeleteEarthObservationJob

sagemaker-geospatial:DeleteVectorEnrichmentJob

sagemaker-geospatial:ExportEarthObservationJob

sagemaker-geospatial:ExportVectorEnrichmentJob

sagemaker-geospatial:GetEarthObservationJob

sagemaker-geospatial:GetRasterDataCollection

sagemaker-geospatial:GetTile

sagemaker-geospatial:GetVectorEnrichmentJob

sagemaker-geospatial:ListEarthObservationJobs

sagemaker-geospatial:ListRasterDataCollections

sagemaker-geospatial:ListVectorEnrichmentJobs

sagemaker-geospatial:SearchRasterDataCollection

sagemaker-geospatial:StartEarthObservationJob

sagemaker-geospatial:StartVectorEnrichmentJob

sagemaker-geospatial:StopEarthObservationJob

sagemaker-geospatial:StopVectorEnrichmentJob

Refining permissions using access information 1433

AWS Identity and Access Management User Guide

Service prefix Actions

savingsplans savingsplans:CreateSavingsPlan

savingsplans:DeleteQueuedSavingsPlan

savingsplans:DescribeSavingsPlanRates

savingsplans:DescribeSavingsPlans

savingsplans:DescribeSavingsPlansOfferingRates

savingsplans:DescribeSavingsPlansOfferings

Refining permissions using access information 1434

AWS Identity and Access Management User Guide

Service prefix Actions

schemas schemas:CreateDiscoverer

schemas:CreateRegistry

schemas:CreateSchema

schemas:DeleteDiscoverer

schemas:DeleteRegistry

schemas:DeleteResourcePolicy

schemas:DeleteSchema

schemas:DeleteSchemaVersion

schemas:DescribeCodeBinding

schemas:DescribeDiscoverer

schemas:DescribeRegistry

schemas:DescribeSchema

schemas:ExportSchema

schemas:GetCodeBindingSource

schemas:GetDiscoveredSchema

schemas:GetResourcePolicy

schemas:ListDiscoverers

schemas:ListRegistries

schemas:ListSchemas

schemas:ListSchemaVersions

schemas:PutCodeBinding

Refining permissions using access information 1435

AWS Identity and Access Management User Guide

Service prefix Actions

schemas:PutResourcePolicy

schemas:SearchSchemas

schemas:StartDiscoverer

schemas:StopDiscoverer

schemas:UpdateDiscoverer

schemas:UpdateRegistry

schemas:UpdateSchema

sdb sdb:CreateDomain

sdb:DeleteDomain

sdb:DomainMetadata

sdb:ListDomains

Refining permissions using access information 1436

AWS Identity and Access Management User Guide

Service prefix Actions

secretsmanager secretsmanager:CancelRotateSecret

secretsmanager:CreateSecret

secretsmanager:DeleteResourcePolicy

secretsmanager:DeleteSecret

secretsmanager:DescribeSecret

secretsmanager:GetRandomPassword

secretsmanager:GetResourcePolicy

secretsmanager:GetSecretValue

secretsmanager:ListSecrets

secretsmanager:ListSecretVersionIds

secretsmanager:PutResourcePolicy

secretsmanager:PutSecretValue

secretsmanager:RemoveRegionsFromReplication

secretsmanager:ReplicateSecretToRegions

secretsmanager:RestoreSecret

secretsmanager:RotateSecret

secretsmanager:StopReplicationToReplica

secretsmanager:UpdateSecret

secretsmanager:ValidateResourcePolicy

Refining permissions using access information 1437

AWS Identity and Access Management User Guide

Service prefix Actions

securityhub securityhub:AcceptAdministratorInvitation

securityhub:AcceptInvitation

securityhub:BatchDeleteAutomationRules

securityhub:BatchDisableStandards

securityhub:BatchEnableStandards

securityhub:BatchGetAutomationRules

securityhub:BatchGetSecurityControls

securityhub:BatchGetStandardsControlAssociations

securityhub:BatchImportFindings

securityhub:BatchUpdateAutomationRules

securityhub:BatchUpdateFindings

securityhub:BatchUpdateStandardsControlAssociations

securityhub:CreateActionTarget

securityhub:CreateAutomationRule

securityhub:CreateFindingAggregator

securityhub:CreateInsight

securityhub:CreateMembers

securityhub:DeclineInvitations

securityhub:DeleteActionTarget

securityhub:DeleteFindingAggregator

securityhub:DeleteInsight

Refining permissions using access information 1438

AWS Identity and Access Management User Guide

Service prefix Actions

securityhub:DeleteInvitations

securityhub:DeleteMembers

securityhub:DescribeActionTargets

securityhub:DescribeHub

securityhub:DescribeOrganizationConfiguration

securityhub:DescribeProducts

securityhub:DescribeStandards

securityhub:DisableImportFindingsForProduct

securityhub:DisableOrganizationAdminAccount

securityhub:DisableSecurityHub

securityhub:DisassociateFromAdministratorAccount

securityhub:DisassociateFromMasterAccount

securityhub:DisassociateMembers

securityhub:EnableImportFindingsForProduct

securityhub:EnableOrganizationAdminAccount

securityhub:EnableSecurityHub

securityhub:GetAdministratorAccount

securityhub:GetEnabledStandards

securityhub:GetFindingAggregator

securityhub:GetFindingHistory

securityhub:GetFindings

Refining permissions using access information 1439

AWS Identity and Access Management User Guide

Service prefix Actions

securityhub:GetInsightResults

securityhub:GetInsights

securityhub:GetInvitationsCount

securityhub:GetMasterAccount

securityhub:GetMembers

securityhub:InviteMembers

securityhub:ListAutomationRules

securityhub:ListEnabledProductsForImport

securityhub:ListFindingAggregators

securityhub:ListInvitations

securityhub:ListMembers

securityhub:ListOrganizationAdminAccounts

securityhub:ListSecurityControlDefinitions

securityhub:ListStandardsControlAssociations

securityhub:UpdateActionTarget

securityhub:UpdateFindingAggregator

securityhub:UpdateFindings

securityhub:UpdateInsight

securityhub:UpdateOrganizationConfiguration

securityhub:UpdateSecurityHubConfiguration

Refining permissions using access information 1440

AWS Identity and Access Management User Guide

Service prefix Actions

securitylake securitylake:CreateAwsLogSource

securitylake:CreateCustomLogSource

securitylake:CreateDataLakeExceptionSubscription

securitylake:CreateDataLakeOrganizationConfiguration

securitylake:CreateSubscriber

securitylake:CreateSubscriberNotification

securitylake:DeleteAwsLogSource

securitylake:DeleteCustomLogSource

securitylake:DeleteDataLakeExceptionSubscription

securitylake:DeleteDataLakeOrganizationConfiguration

securitylake:DeleteSubscriber

securitylake:DeleteSubscriberNotification

securitylake:DeregisterDataLakeDelegatedAdministrator

securitylake:GetDataLakeExceptionSubscription

securitylake:GetDataLakeOrganizationConfiguration

securitylake:GetDataLakeSources

securitylake:GetSubscriber

securitylake:ListDataLakes

securitylake:ListLogSources

securitylake:ListSubscribers

securitylake:RegisterDataLakeDelegatedAdministrator

Refining permissions using access information 1441

AWS Identity and Access Management User Guide

Service prefix Actions

securitylake:UpdateDataLakeExceptionSubscription

securitylake:UpdateSubscriber

securitylake:UpdateSubscriberNotification

serverlessrepo serverlessrepo:CreateApplication

serverlessrepo:CreateApplicationVersion

serverlessrepo:CreateCloudFormationChangeSet

serverlessrepo:CreateCloudFormationTemplate

serverlessrepo:DeleteApplication

serverlessrepo:GetApplication

serverlessrepo:GetApplicationPolicy

serverlessrepo:GetCloudFormationTemplate

serverlessrepo:ListApplicationDependencies

serverlessrepo:ListApplications

serverlessrepo:ListApplicationVersions

serverlessrepo:PutApplicationPolicy

serverlessrepo:UnshareApplication

serverlessrepo:UpdateApplication

Refining permissions using access information 1442

AWS Identity and Access Management User Guide

Service prefix Actions

servicecatalog servicecatalog:AcceptPortfolioShare

servicecatalog:AssociateBudgetWithResource

servicecatalog:AssociatePrincipalWithPortfolio

servicecatalog:AssociateProductWithPortfolio

servicecatalog:AssociateServiceActionWithProvisioningArtifact

servicecatalog:BatchAssociateServiceActionWithProvisioningArtif
act

servicecatalog:BatchDisassociateServiceActionFromProvisioningAr
tifact

servicecatalog:CopyProduct

servicecatalog:CreateConstraint

servicecatalog:CreatePortfolio

servicecatalog:CreatePortfolioShare

servicecatalog:CreateProduct

servicecatalog:CreateProvisionedProductPlan

servicecatalog:CreateProvisioningArtifact

servicecatalog:CreateServiceAction

servicecatalog:DeleteConstraint

servicecatalog:DeletePortfolio

servicecatalog:DeletePortfolioShare

servicecatalog:DeleteProduct

servicecatalog:DeleteProvisionedProductPlan

Refining permissions using access information 1443

AWS Identity and Access Management User Guide

Service prefix Actions

servicecatalog:DeleteProvisioningArtifact

servicecatalog:DeleteServiceAction

servicecatalog:DescribeConstraint

servicecatalog:DescribeCopyProductStatus

servicecatalog:DescribePortfolio

servicecatalog:DescribePortfolioShares

servicecatalog:DescribePortfolioShareStatus

servicecatalog:DescribeProduct

servicecatalog:DescribeProductAsAdmin

servicecatalog:DescribeProductView

servicecatalog:DescribeProvisionedProductPlan

servicecatalog:DescribeProvisioningArtifact

servicecatalog:DescribeProvisioningParameters

servicecatalog:DescribeRecord

servicecatalog:DescribeServiceAction

servicecatalog:DescribeServiceActionExecutionParameters

servicecatalog:DisableAWSOrganizationsAccess

servicecatalog:DisassociateBudgetFromResource

servicecatalog:DisassociatePrincipalFromPortfolio

servicecatalog:DisassociateProductFromPortfolio

servicecatalog:DisassociateServiceActionFromProvisioningArtifact

Refining permissions using access information 1444

AWS Identity and Access Management User Guide

Service prefix Actions

servicecatalog:EnableAWSOrganizationsAccess

servicecatalog:ExecuteProvisionedProductPlan

servicecatalog:ExecuteProvisionedProductServiceAction

servicecatalog:GetAWSOrganizationsAccessStatus

servicecatalog:GetProvisionedProductOutputs

servicecatalog:ImportAsProvisionedProduct

servicecatalog:ListAcceptedPortfolioShares

servicecatalog:ListBudgetsForResource

servicecatalog:ListConstraintsForPortfolio

servicecatalog:ListLaunchPaths

servicecatalog:ListOrganizationPortfolioAccess

servicecatalog:ListPortfolioAccess

servicecatalog:ListPortfolios

servicecatalog:ListPortfoliosForProduct

servicecatalog:ListPrincipalsForPortfolio

servicecatalog:ListProvisionedProductPlans

servicecatalog:ListProvisioningArtifacts

servicecatalog:ListProvisioningArtifactsForServiceAction

servicecatalog:ListRecordHistory

servicecatalog:ListServiceActions

servicecatalog:ListServiceActionsForProvisioningArtifact

Refining permissions using access information 1445

AWS Identity and Access Management User Guide

Service prefix Actions

servicecatalog:ListStackInstancesForProvisionedProduct

servicecatalog:NotifyProvisionProductEngineWorkflowResult

servicecatalog:NotifyTerminateProvisionedProductEngine
WorkflowResult

servicecatalog:NotifyUpdateProvisionedProductEngineWor
kflowResult

servicecatalog:ProvisionProduct

servicecatalog:RejectPortfolioShare

servicecatalog:ScanProvisionedProducts

servicecatalog:SearchProducts

servicecatalog:SearchProductsAsAdmin

servicecatalog:SearchProvisionedProducts

servicecatalog:TerminateProvisionedProduct

servicecatalog:UpdateConstraint

servicecatalog:UpdatePortfolio

servicecatalog:UpdatePortfolioShare

servicecatalog:UpdateProduct

servicecatalog:UpdateProvisionedProduct

servicecatalog:UpdateProvisionedProductProperties

servicecatalog:UpdateProvisioningArtifact

servicecatalog:UpdateServiceAction

Refining permissions using access information 1446

AWS Identity and Access Management User Guide

Service prefix Actions

servicediscovery servicediscovery:CreateHttpNamespace

servicediscovery:CreatePrivateDnsNamespace

servicediscovery:CreatePublicDnsNamespace

servicediscovery:CreateService

servicediscovery:DeleteNamespace

servicediscovery:DeleteService

servicediscovery:DeregisterInstance

servicediscovery:GetInstance

servicediscovery:GetInstancesHealthStatus

servicediscovery:GetNamespace

servicediscovery:GetOperation

servicediscovery:GetService

servicediscovery:ListInstances

servicediscovery:ListNamespaces

servicediscovery:ListOperations

servicediscovery:ListServices

servicediscovery:RegisterInstance

servicediscovery:UpdateHttpNamespace

servicediscovery:UpdateInstanceCustomHealthStatus

servicediscovery:UpdatePrivateDnsNamespace

servicediscovery:UpdatePublicDnsNamespace

Refining permissions using access information 1447

AWS Identity and Access Management User Guide

Service prefix Actions

servicediscovery:UpdateService

servicequotas servicequotas:AssociateServiceQuotaTemplate

servicequotas:DeleteServiceQuotaIncreaseRequestFromTemplate

servicequotas:DisassociateServiceQuotaTemplate

servicequotas:GetAssociationForServiceQuotaTemplate

servicequotas:GetAWSDefaultServiceQuota

servicequotas:GetRequestedServiceQuotaChange

servicequotas:GetServiceQuota

servicequotas:GetServiceQuotaIncreaseRequestFromTemplate

servicequotas:ListAWSDefaultServiceQuotas

servicequotas:ListRequestedServiceQuotaChangeHistory

servicequotas:ListRequestedServiceQuotaChangeHistoryByQuota

servicequotas:ListServiceQuotaIncreaseRequestsInTemplate

servicequotas:ListServiceQuotas

servicequotas:ListServices

servicequotas:PutServiceQuotaIncreaseRequestIntoTemplate

servicequotas:RequestServiceQuotaIncrease

Refining permissions using access information 1448

AWS Identity and Access Management User Guide

Service prefix Actions

ses ses:BatchGetMetricData

ses:CloneReceiptRuleSet

ses:CreateConfigurationSet

ses:CreateConfigurationSetEventDestination

ses:CreateConfigurationSetTrackingOptions

ses:CreateContact

ses:CreateContactList

ses:CreateCustomVerificationEmailTemplate

ses:CreateDedicatedIpPool

ses:CreateDeliverabilityTestReport

ses:CreateEmailIdentity

ses:CreateEmailIdentityPolicy

ses:CreateEmailTemplate

ses:CreateImportJob

ses:CreateReceiptFilter

ses:CreateReceiptRule

ses:CreateReceiptRuleSet

ses:CreateTemplate

ses:DeleteConfigurationSet

ses:DeleteConfigurationSetEventDestination

ses:DeleteConfigurationSetTrackingOptions

Refining permissions using access information 1449

AWS Identity and Access Management User Guide

Service prefix Actions

ses:DeleteContact

ses:DeleteContactList

ses:DeleteCustomVerificationEmailTemplate

ses:DeleteDedicatedIpPool

ses:DeleteEmailIdentity

ses:DeleteEmailIdentityPolicy

ses:DeleteEmailTemplate

ses:DeleteIdentity

ses:DeleteIdentityPolicy

ses:DeleteReceiptFilter

ses:DeleteReceiptRule

ses:DeleteReceiptRuleSet

ses:DeleteSuppressedDestination

ses:DeleteTemplate

ses:DeleteVerifiedEmailAddress

ses:DescribeActiveReceiptRuleSet

ses:DescribeConfigurationSet

ses:DescribeReceiptRule

ses:DescribeReceiptRuleSet

ses:GetAccount

ses:GetAccountSendingEnabled

Refining permissions using access information 1450

AWS Identity and Access Management User Guide

Service prefix Actions

ses:GetBlacklistReports

ses:GetConfigurationSet

ses:GetConfigurationSetEventDestinations

ses:GetContact

ses:GetContactList

ses:GetCustomVerificationEmailTemplate

ses:GetDedicatedIp

ses:GetDedicatedIpPool

ses:GetDedicatedIps

ses:GetDeliverabilityDashboardOptions

ses:GetDeliverabilityTestReport

ses:GetDomainDeliverabilityCampaign

ses:GetDomainStatisticsReport

ses:GetEmailIdentity

ses:GetEmailIdentityPolicies

ses:GetEmailTemplate

ses:GetIdentityDkimAttributes

ses:GetIdentityMailFromDomainAttributes

ses:GetIdentityNotificationAttributes

ses:GetIdentityPolicies

ses:GetIdentityVerificationAttributes

Refining permissions using access information 1451

AWS Identity and Access Management User Guide

Service prefix Actions

ses:GetImportJob

ses:GetMessageInsights

ses:GetSendQuota

ses:GetSendStatistics

ses:GetSuppressedDestination

ses:GetTemplate

ses:ListConfigurationSets

ses:ListContactLists

ses:ListContacts

ses:ListCustomVerificationEmailTemplates

ses:ListDedicatedIpPools

ses:ListDeliverabilityTestReports

ses:ListDomainDeliverabilityCampaigns

ses:ListEmailIdentities

ses:ListEmailTemplates

ses:ListExportJobs

ses:ListIdentities

ses:ListIdentityPolicies

ses:ListImportJobs

ses:ListReceiptFilters

ses:ListReceiptRuleSets

Refining permissions using access information 1452

AWS Identity and Access Management User Guide

Service prefix Actions

ses:ListRecommendations

ses:ListSuppressedDestinations

ses:ListTemplates

ses:ListVerifiedEmailAddresses

ses:PutAccountDedicatedIpWarmupAttributes

ses:PutAccountDetails

ses:PutAccountSendingAttributes

ses:PutAccountSuppressionAttributes

ses:PutAccountVdmAttributes

ses:PutConfigurationSetDeliveryOptions

ses:PutConfigurationSetReputationOptions

ses:PutConfigurationSetSendingOptions

ses:PutConfigurationSetSuppressionOptions

ses:PutConfigurationSetTrackingOptions

ses:PutConfigurationSetVdmOptions

ses:PutDedicatedIpInPool

ses:PutDedicatedIpPoolScalingAttributes

ses:PutDedicatedIpWarmupAttributes

ses:PutDeliverabilityDashboardOption

ses:PutEmailIdentityConfigurationSetAttributes

ses:PutEmailIdentityDkimAttributes

Refining permissions using access information 1453

AWS Identity and Access Management User Guide

Service prefix Actions

ses:PutEmailIdentityDkimSigningAttributes

ses:PutEmailIdentityFeedbackAttributes

ses:PutEmailIdentityMailFromAttributes

ses:PutIdentityPolicy

ses:PutSuppressedDestination

ses:ReorderReceiptRuleSet

ses:SendBounce

ses:SendCustomVerificationEmail

ses:SetActiveReceiptRuleSet

ses:SetIdentityDkimEnabled

ses:SetIdentityFeedbackForwardingEnabled

ses:SetIdentityHeadersInNotificationsEnabled

ses:SetIdentityMailFromDomain

ses:SetIdentityNotificationTopic

ses:SetReceiptRulePosition

ses:TestRenderEmailTemplate

ses:TestRenderTemplate

ses:UpdateAccountSendingEnabled

ses:UpdateConfigurationSetEventDestination

ses:UpdateConfigurationSetReputationMetricsEnabled

ses:UpdateConfigurationSetSendingEnabled

Refining permissions using access information 1454

AWS Identity and Access Management User Guide

Service prefix Actions

ses:UpdateConfigurationSetTrackingOptions

ses:UpdateContact

ses:UpdateContactList

ses:UpdateCustomVerificationEmailTemplate

ses:UpdateEmailIdentityPolicy

ses:UpdateEmailTemplate

ses:UpdateReceiptRule

ses:UpdateTemplate

ses:VerifyDomainDkim

ses:VerifyDomainIdentity

ses:VerifyEmailAddress

ses:VerifyEmailIdentity

Refining permissions using access information 1455

AWS Identity and Access Management User Guide

Service prefix Actions

shield shield:AssociateDRTLogBucket

shield:AssociateHealthCheck

shield:AssociateProactiveEngagementDetails

shield:CreateProtection

shield:CreateProtectionGroup

shield:CreateSubscription

shield:DeleteProtection

shield:DeleteProtectionGroup

shield:DeleteSubscription

shield:DescribeAttack

shield:DescribeAttackStatistics

shield:DescribeDRTAccess

shield:DescribeEmergencyContactSettings

shield:DescribeProtection

shield:DescribeProtectionGroup

shield:DescribeSubscription

shield:DisableApplicationLayerAutomaticResponse

shield:DisableProactiveEngagement

shield:DisassociateDRTLogBucket

shield:DisassociateDRTRole

shield:DisassociateHealthCheck

Refining permissions using access information 1456

AWS Identity and Access Management User Guide

Service prefix Actions

shield:EnableApplicationLayerAutomaticResponse

shield:EnableProactiveEngagement

shield:GetSubscriptionState

shield:ListAttacks

shield:ListProtectionGroups

shield:ListProtections

shield:ListResourcesInProtectionGroup

shield:UpdateApplicationLayerAutomaticResponse

shield:UpdateEmergencyContactSettings

shield:UpdateProtectionGroup

shield:UpdateSubscription

Refining permissions using access information 1457

AWS Identity and Access Management User Guide

Service prefix Actions

signer signer:AddProfilePermission

signer:CancelSigningProfile

signer:DescribeSigningJob

signer:GetRevocationStatus

signer:GetSigningPlatform

signer:GetSigningProfile

signer:ListProfilePermissions

signer:ListSigningJobs

signer:ListSigningPlatforms

signer:ListSigningProfiles

signer:PutSigningProfile

signer:RemoveProfilePermission

signer:RevokeSignature

signer:RevokeSigningProfile

signer:SignPayload

signer:StartSigningJob

Refining permissions using access information 1458

AWS Identity and Access Management User Guide

Service prefix Actions

simspaceweaver simspaceweaver:CreateSnapshot

simspaceweaver:DeleteApp

simspaceweaver:DeleteSimulation

simspaceweaver:DescribeApp

simspaceweaver:DescribeSimulation

simspaceweaver:ListApps

simspaceweaver:ListSimulations

simspaceweaver:StartApp

simspaceweaver:StartClock

simspaceweaver:StartSimulation

simspaceweaver:StopApp

simspaceweaver:StopClock

simspaceweaver:StopSimulation

Refining permissions using access information 1459

AWS Identity and Access Management User Guide

Service prefix Actions

sms sms:CreateApp

sms:CreateReplicationJob

sms:DeleteApp

sms:DeleteAppLaunchConfiguration

sms:DeleteAppReplicationConfiguration

sms:DeleteAppValidationConfiguration

sms:DeleteReplicationJob

sms:DeleteServerCatalog

sms:DisassociateConnector

sms:GenerateChangeSet

sms:GenerateTemplate

sms:GetApp

sms:GetAppLaunchConfiguration

sms:GetAppReplicationConfiguration

sms:GetAppValidationConfiguration

sms:GetAppValidationOutput

sms:GetConnectors

sms:GetReplicationJobs

sms:GetReplicationRuns

sms:GetServers

sms:ImportAppCatalog

Refining permissions using access information 1460

AWS Identity and Access Management User Guide

Service prefix Actions

sms:ImportServerCatalog

sms:LaunchApp

sms:ListApps

sms:NotifyAppValidationOutput

sms:PutAppLaunchConfiguration

sms:PutAppReplicationConfiguration

sms:PutAppValidationConfiguration

sms:StartAppReplication

sms:StartOnDemandAppReplication

sms:StartOnDemandReplicationRun

sms:StopAppReplication

sms:TerminateApp

sms:UpdateApp

sms:UpdateReplicationJob

Refining permissions using access information 1461

AWS Identity and Access Management User Guide

Service prefix Actions

sms-voice sms-voice:CreateConfigurationSet

sms-voice:CreateConfigurationSetEventDestination

sms-voice:CreateEventDestination

sms-voice:CreateOptOutList

sms-voice:CreatePool

sms-voice:DeleteConfigurationSet

sms-voice:DeleteConfigurationSetEventDestination

sms-voice:DeleteDefaultMessageType

sms-voice:DeleteDefaultSenderId

sms-voice:DeleteEventDestination

sms-voice:DeleteKeyword

sms-voice:DeleteOptedOutNumber

sms-voice:DeleteOptOutList

sms-voice:DeletePool

sms-voice:DeleteTextMessageSpendLimitOverride

sms-voice:DeleteVoiceMessageSpendLimitOverride

sms-voice:DescribeAccountAttributes

sms-voice:DescribeAccountLimits

sms-voice:DescribeConfigurationSets

sms-voice:DescribeKeywords

sms-voice:DescribeOptedOutNumbers

Refining permissions using access information 1462

AWS Identity and Access Management User Guide

Service prefix Actions

sms-voice:DescribeOptOutLists

sms-voice:DescribePhoneNumbers

sms-voice:DescribePools

sms-voice:DescribeSenderIds

sms-voice:DescribeSpendLimits

sms-voice:DisassociateOriginationIdentity

sms-voice:GetConfigurationSetEventDestinations

sms-voice:ListConfigurationSets

sms-voice:ListPoolOriginationIdentities

sms-voice:PutKeyword

sms-voice:PutOptedOutNumber

sms-voice:ReleasePhoneNumber

sms-voice:RequestPhoneNumber

sms-voice:SetDefaultMessageType

sms-voice:SetDefaultSenderId

sms-voice:SetTextMessageSpendLimitOverride

sms-voice:SetVoiceMessageSpendLimitOverride

sms-voice:UpdateConfigurationSetEventDestination

sms-voice:UpdateEventDestination

sms-voice:UpdatePhoneNumber

sms-voice:UpdatePool

Refining permissions using access information 1463

AWS Identity and Access Management User Guide

Service prefix Actions

snowball snowball:CancelCluster

snowball:CancelJob

snowball:CreateAddress

snowball:CreateCluster

snowball:CreateJob

snowball:CreateLongTermPricing

snowball:CreateReturnShippingLabel

snowball:DescribeAddress

snowball:DescribeAddresses

snowball:DescribeCluster

snowball:DescribeJob

snowball:DescribeReturnShippingLabel

snowball:GetJobManifest

snowball:GetJobUnlockCode

snowball:GetSnowballUsage

snowball:GetSoftwareUpdates

snowball:ListClusterJobs

snowball:ListClusters

snowball:ListCompatibleImages

snowball:ListJobs

snowball:ListLongTermPricing

Refining permissions using access information 1464

AWS Identity and Access Management User Guide

Service prefix Actions

snowball:ListPickupLocations

snowball:ListServiceVersions

snowball:UpdateCluster

snowball:UpdateJob

snowball:UpdateJobShipmentState

snowball:UpdateLongTermPricing

sqs sqs:AddPermission

sqs:CancelMessageMoveTask

sqs:CreateQueue

sqs:DeleteQueue

sqs:PurgeQueue

sqs:RemovePermission

sqs:SetQueueAttributes

Refining permissions using access information 1465

AWS Identity and Access Management User Guide

Service prefix Actions

ssm ssm:AssociateOpsItemRelatedItem

ssm:CancelCommand

ssm:CancelMaintenanceWindowExecution

ssm:CreateActivation

ssm:CreateAssociation

ssm:CreateAssociationBatch

ssm:CreateDocument

ssm:CreateMaintenanceWindow

ssm:CreateOpsItem

ssm:CreateOpsMetadata

ssm:CreatePatchBaseline

ssm:CreateResourceDataSync

ssm:DeleteActivation

ssm:DeleteAssociation

ssm:DeleteDocument

ssm:DeleteInventory

ssm:DeleteMaintenanceWindow

ssm:DeleteOpsMetadata

ssm:DeleteParameter

ssm:DeleteParameters

ssm:DeletePatchBaseline

Refining permissions using access information 1466

AWS Identity and Access Management User Guide

Service prefix Actions

ssm:DeleteResourceDataSync

ssm:DeleteResourcePolicy

ssm:DeregisterManagedInstance

ssm:DeregisterPatchBaselineForPatchGroup

ssm:DeregisterTargetFromMaintenanceWindow

ssm:DeregisterTaskFromMaintenanceWindow

ssm:DescribeActivations

ssm:DescribeAssociation

ssm:DescribeAssociationExecutions

ssm:DescribeAssociationExecutionTargets

ssm:DescribeAutomationExecutions

ssm:DescribeAutomationStepExecutions

ssm:DescribeAvailablePatches

ssm:DescribeDocument

ssm:DescribeDocumentParameters

ssm:DescribeDocumentPermission

ssm:DescribeEffectiveInstanceAssociations

ssm:DescribeEffectivePatchesForPatchBaseline

ssm:DescribeInstanceAssociationsStatus

ssm:DescribeInstanceInformation

ssm:DescribeInstancePatches

Refining permissions using access information 1467

AWS Identity and Access Management User Guide

Service prefix Actions

ssm:DescribeInstancePatchStates

ssm:DescribeInstancePatchStatesForPatchGroup

ssm:DescribeInstanceProperties

ssm:DescribeInventoryDeletions

ssm:DescribeMaintenanceWindowExecutions

ssm:DescribeMaintenanceWindowExecutionTaskInvocations

ssm:DescribeMaintenanceWindowExecutionTasks

ssm:DescribeMaintenanceWindows

ssm:DescribeMaintenanceWindowSchedule

ssm:DescribeMaintenanceWindowsForTarget

ssm:DescribeMaintenanceWindowTargets

ssm:DescribeMaintenanceWindowTasks

ssm:DescribeOpsItems

ssm:DescribeParameters

ssm:DescribePatchBaselines

ssm:DescribePatchGroups

ssm:DescribePatchGroupState

ssm:DescribePatchProperties

ssm:DescribeSessions

ssm:DisassociateOpsItemRelatedItem

ssm:GetAutomationExecution

Refining permissions using access information 1468

AWS Identity and Access Management User Guide

Service prefix Actions

ssm:GetCalendarState

ssm:GetCommandInvocation

ssm:GetConnectionStatus

ssm:GetDefaultPatchBaseline

ssm:GetDeployablePatchSnapshotForInstance

ssm:GetDocument

ssm:GetInventory

ssm:GetInventorySchema

ssm:GetMaintenanceWindow

ssm:GetMaintenanceWindowExecution

ssm:GetMaintenanceWindowExecutionTask

ssm:GetMaintenanceWindowExecutionTaskInvocation

ssm:GetMaintenanceWindowTask

ssm:GetOpsItem

ssm:GetOpsMetadata

ssm:GetOpsSummary

ssm:GetParameter

ssm:GetParameterHistory

ssm:GetParameters

ssm:GetParametersByPath

ssm:GetPatchBaseline

Refining permissions using access information 1469

AWS Identity and Access Management User Guide

Service prefix Actions

ssm:GetPatchBaselineForPatchGroup

ssm:GetResourcePolicies

ssm:GetServiceSetting

ssm:LabelParameterVersion

ssm:ListAssociations

ssm:ListAssociationVersions

ssm:ListCommandInvocations

ssm:ListCommands

ssm:ListComplianceItems

ssm:ListComplianceSummaries

ssm:ListDocumentMetadataHistory

ssm:ListDocuments

ssm:ListDocumentVersions

ssm:ListInstanceAssociations

ssm:ListInventoryEntries

ssm:ListOpsItemEvents

ssm:ListOpsItemRelatedItems

ssm:ListOpsMetadata

ssm:ListResourceComplianceSummaries

ssm:ListResourceDataSync

ssm:ModifyDocumentPermission

Refining permissions using access information 1470

AWS Identity and Access Management User Guide

Service prefix Actions

ssm:PutComplianceItems

ssm:PutInventory

ssm:PutParameter

ssm:PutResourcePolicy

ssm:RegisterDefaultPatchBaseline

ssm:RegisterManagedInstance

ssm:RegisterPatchBaselineForPatchGroup

ssm:RegisterTargetWithMaintenanceWindow

ssm:RegisterTaskWithMaintenanceWindow

ssm:ResetServiceSetting

ssm:ResumeSession

ssm:SendAutomationSignal

ssm:SendCommand

ssm:StartAssociationsOnce

ssm:StartAutomationExecution

ssm:StartChangeRequestExecution

ssm:StartSession

ssm:StopAutomationExecution

ssm:TerminateSession

ssm:UnlabelParameterVersion

ssm:UpdateAssociation

Refining permissions using access information 1471

AWS Identity and Access Management User Guide

Service prefix Actions

ssm:UpdateAssociationStatus

ssm:UpdateDocument

ssm:UpdateDocumentDefaultVersion

ssm:UpdateDocumentMetadata

ssm:UpdateInstanceInformation

ssm:UpdateMaintenanceWindow

ssm:UpdateMaintenanceWindowTarget

ssm:UpdateMaintenanceWindowTask

ssm:UpdateManagedInstanceRole

ssm:UpdateOpsItem

ssm:UpdateOpsMetadata

ssm:UpdatePatchBaseline

ssm:UpdateResourceDataSync

ssm:UpdateServiceSetting

Refining permissions using access information 1472

AWS Identity and Access Management User Guide

Service prefix Actions

ssm-incidents ssm-incidents:CreateReplicationSet

ssm-incidents:CreateResponsePlan

ssm-incidents:CreateTimelineEvent

ssm-incidents:DeleteIncidentRecord

ssm-incidents:DeleteReplicationSet

ssm-incidents:DeleteResourcePolicy

ssm-incidents:DeleteResponsePlan

ssm-incidents:DeleteTimelineEvent

ssm-incidents:GetIncidentRecord

ssm-incidents:GetReplicationSet

ssm-incidents:GetResourcePolicies

ssm-incidents:GetResponsePlan

ssm-incidents:GetTimelineEvent

ssm-incidents:ListIncidentRecords

ssm-incidents:ListRelatedItems

ssm-incidents:ListReplicationSets

ssm-incidents:ListResponsePlans

ssm-incidents:ListTimelineEvents

ssm-incidents:PutResourcePolicy

ssm-incidents:StartIncident

ssm-incidents:UpdateDeletionProtection

Refining permissions using access information 1473

AWS Identity and Access Management User Guide

Service prefix Actions

ssm-incidents:UpdateIncidentRecord

ssm-incidents:UpdateRelatedItems

ssm-incidents:UpdateReplicationSet

ssm-incidents:UpdateResponsePlan

ssm-incidents:UpdateTimelineEvent

Refining permissions using access information 1474

AWS Identity and Access Management User Guide

Service prefix Actions

ssm-sap ssm-sap:BackupDatabase

ssm-sap:DeleteResourcePermission

ssm-sap:DeregisterApplication

ssm-sap:GetApplication

ssm-sap:GetComponent

ssm-sap:GetDatabase

ssm-sap:GetOperation

ssm-sap:GetResourcePermission

ssm-sap:ListApplications

ssm-sap:ListComponents

ssm-sap:ListDatabases

ssm-sap:ListOperations

ssm-sap:PutResourcePermission

ssm-sap:RegisterApplication

ssm-sap:RestoreDatabase

ssm-sap:StartApplicationRefresh

ssm-sap:UpdateApplicationSettings

ssm-sap:UpdateHANABackupSettings

Refining permissions using access information 1475

AWS Identity and Access Management User Guide

Service prefix Actions

states states:CreateActivity

states:CreateStateMachine

states:CreateStateMachineAlias

states:DeleteActivity

states:DeleteStateMachine

states:DeleteStateMachineAlias

states:DeleteStateMachineVersion

states:DescribeActivity

states:DescribeExecution

states:DescribeMapRun

states:DescribeStateMachine

states:DescribeStateMachineAlias

states:DescribeStateMachineForExecution

states:GetExecutionHistory

states:ListActivities

states:ListExecutions

states:ListMapRuns

states:ListStateMachineAliases

states:ListStateMachines

states:ListStateMachineVersions

states:SendTaskFailure

Refining permissions using access information 1476

AWS Identity and Access Management User Guide

Service prefix Actions

states:SendTaskHeartbeat

states:SendTaskSuccess

states:StartExecution

states:StopExecution

states:UpdateMapRun

states:UpdateStateMachine

states:UpdateStateMachineAlias

sts sts:AssumeRole

sts:AssumeRoleWithSAML

sts:AssumeRoleWithWebIdentity

sts:DecodeAuthorizationMessage

sts:GetAccessKeyInfo

sts:GetCallerIdentity

sts:GetFederationToken

sts:GetSessionToken

Refining permissions using access information 1477

AWS Identity and Access Management User Guide

Service prefix Actions

swf swf:DeprecateActivityType

swf:DeprecateDomain

swf:DeprecateWorkflowType

swf:DescribeActivityType

swf:DescribeDomain

swf:DescribeWorkflowType

swf:ListActivityTypes

swf:ListDomains

swf:ListWorkflowTypes

swf:RegisterActivityType

swf:RegisterDomain

swf:RegisterWorkflowType

swf:UndeprecateActivityType

swf:UndeprecateDomain

swf:UndeprecateWorkflowType

Refining permissions using access information 1478

AWS Identity and Access Management User Guide

Service prefix Actions

synthetics synthetics:AssociateResource

synthetics:CreateCanary

synthetics:CreateGroup

synthetics:DeleteCanary

synthetics:DeleteGroup

synthetics:DescribeCanaries

synthetics:DescribeCanariesLastRun

synthetics:DescribeRuntimeVersions

synthetics:DisassociateResource

synthetics:GetCanary

synthetics:GetCanaryRuns

synthetics:GetGroup

synthetics:ListAssociatedGroups

synthetics:ListGroupResources

synthetics:ListGroups

synthetics:StartCanary

synthetics:StopCanary

synthetics:UpdateCanary

Refining permissions using access information 1479

AWS Identity and Access Management User Guide

Service prefix Actions

tag tag:DescribeReportCreation

tag:GetComplianceSummary

tag:GetResources

tag:StartReportCreation

Refining permissions using access information 1480

AWS Identity and Access Management User Guide

Service prefix Actions

textract textract:AnalyzeDocument

textract:AnalyzeExpense

textract:AnalyzeID

textract:CreateAdapter

textract:CreateAdapterVersion

textract:DeleteAdapter

textract:DeleteAdapterVersion

textract:DetectDocumentText

textract:GetAdapter

textract:GetAdapterVersion

textract:GetDocumentAnalysis

textract:GetDocumentTextDetection

textract:GetExpenseAnalysis

textract:GetLendingAnalysis

textract:GetLendingAnalysisSummary

textract:ListAdapters

textract:ListAdapterVersions

textract:StartDocumentAnalysis

textract:StartDocumentTextDetection

textract:StartExpenseAnalysis

textract:StartLendingAnalysis

Refining permissions using access information 1481

AWS Identity and Access Management User Guide

Service prefix Actions

textract:UpdateAdapter

timestream timestream:CancelQuery

timestream:CreateDatabase

timestream:CreateScheduledQuery

timestream:CreateTable

timestream:DeleteDatabase

timestream:DeleteScheduledQuery

timestream:DeleteTable

timestream:DescribeDatabase

timestream:DescribeScheduledQuery

timestream:DescribeTable

timestream:ExecuteScheduledQuery

timestream:ListBatchLoadTasks

timestream:ListDatabases

timestream:ListScheduledQueries

timestream:ListTables

timestream:PrepareQuery

timestream:UpdateDatabase

timestream:UpdateScheduledQuery

timestream:UpdateTable

Refining permissions using access information 1482

AWS Identity and Access Management User Guide

Service prefix Actions

tnb tnb:CancelSolNetworkOperation

tnb:CreateSolFunctionPackage

tnb:CreateSolNetworkInstance

tnb:CreateSolNetworkPackage

tnb:DeleteSolFunctionPackage

tnb:DeleteSolNetworkInstance

tnb:DeleteSolNetworkPackage

tnb:GetSolFunctionInstance

tnb:GetSolFunctionPackage

tnb:GetSolFunctionPackageContent

tnb:GetSolFunctionPackageDescriptor

tnb:GetSolNetworkInstance

tnb:GetSolNetworkOperation

tnb:GetSolNetworkPackage

tnb:GetSolNetworkPackageContent

tnb:GetSolNetworkPackageDescriptor

tnb:InstantiateSolNetworkInstance

tnb:ListSolFunctionInstances

tnb:ListSolFunctionPackages

tnb:ListSolNetworkInstances

tnb:ListSolNetworkOperations

Refining permissions using access information 1483

AWS Identity and Access Management User Guide

Service prefix Actions

tnb:ListSolNetworkPackages

tnb:PutSolFunctionPackageContent

tnb:PutSolNetworkPackageContent

tnb:TerminateSolNetworkInstance

tnb:UpdateSolFunctionPackage

tnb:UpdateSolNetworkInstance

tnb:UpdateSolNetworkPackage

tnb:ValidateSolFunctionPackageContent

tnb:ValidateSolNetworkPackageContent

Refining permissions using access information 1484

AWS Identity and Access Management User Guide

Service prefix Actions

transcribe transcribe:CreateCallAnalyticsCategory

transcribe:CreateLanguageModel

transcribe:CreateMedicalVocabulary

transcribe:CreateVocabulary

transcribe:CreateVocabularyFilter

transcribe:DeleteCallAnalyticsCategory

transcribe:DeleteCallAnalyticsJob

transcribe:DeleteLanguageModel

transcribe:DeleteMedicalTranscriptionJob

transcribe:DeleteMedicalVocabulary

transcribe:DeleteTranscriptionJob

transcribe:DeleteVocabulary

transcribe:DeleteVocabularyFilter

transcribe:DescribeLanguageModel

transcribe:GetCallAnalyticsCategory

transcribe:GetCallAnalyticsJob

transcribe:GetMedicalTranscriptionJob

transcribe:GetMedicalVocabulary

transcribe:GetTranscriptionJob

transcribe:GetVocabulary

transcribe:GetVocabularyFilter

Refining permissions using access information 1485

AWS Identity and Access Management User Guide

Service prefix Actions

transcribe:ListCallAnalyticsCategories

transcribe:ListCallAnalyticsJobs

transcribe:ListLanguageModels

transcribe:ListMedicalTranscriptionJobs

transcribe:ListMedicalVocabularies

transcribe:ListTranscriptionJobs

transcribe:ListVocabularies

transcribe:ListVocabularyFilters

transcribe:StartCallAnalyticsJob

transcribe:StartMedicalTranscriptionJob

transcribe:StartTranscriptionJob

transcribe:UpdateCallAnalyticsCategory

transcribe:UpdateMedicalVocabulary

transcribe:UpdateVocabulary

transcribe:UpdateVocabularyFilter

Refining permissions using access information 1486

AWS Identity and Access Management User Guide

Service prefix Actions

transfer transfer:CreateAccess

transfer:CreateAgreement

transfer:CreateConnector

transfer:CreateProfile

transfer:CreateServer

transfer:CreateUser

transfer:CreateWorkflow

transfer:DeleteAccess

transfer:DeleteAgreement

transfer:DeleteCertificate

transfer:DeleteConnector

transfer:DeleteHostKey

transfer:DeleteProfile

transfer:DeleteServer

transfer:DeleteSshPublicKey

transfer:DeleteUser

transfer:DeleteWorkflow

transfer:DescribeAccess

transfer:DescribeAgreement

transfer:DescribeCertificate

transfer:DescribeConnector

Refining permissions using access information 1487

AWS Identity and Access Management User Guide

Service prefix Actions

transfer:DescribeExecution

transfer:DescribeHostKey

transfer:DescribeProfile

transfer:DescribeSecurityPolicy

transfer:DescribeServer

transfer:DescribeUser

transfer:DescribeWorkflow

transfer:ImportCertificate

transfer:ImportHostKey

transfer:ImportSshPublicKey

transfer:ListAccesses

transfer:ListCertificates

transfer:ListConnectors

transfer:ListExecutions

transfer:ListHostKeys

transfer:ListProfiles

transfer:ListSecurityPolicies

transfer:ListServers

transfer:ListUsers

transfer:ListWorkflows

transfer:SendWorkflowStepState

Refining permissions using access information 1488

AWS Identity and Access Management User Guide

Service prefix Actions

transfer:StartFileTransfer

transfer:StartServer

transfer:StopServer

transfer:TestConnection

transfer:TestIdentityProvider

transfer:UpdateAccess

transfer:UpdateAgreement

transfer:UpdateCertificate

transfer:UpdateConnector

transfer:UpdateHostKey

transfer:UpdateProfile

transfer:UpdateServer

transfer:UpdateUser

Refining permissions using access information 1489

AWS Identity and Access Management User Guide

Service prefix Actions

translate translate:CreateParallelData

translate:DeleteParallelData

translate:DeleteTerminology

translate:DescribeTextTranslationJob

translate:GetParallelData

translate:GetTerminology

translate:ImportTerminology

translate:ListLanguages

translate:ListParallelData

translate:ListTerminologies

translate:ListTextTranslationJobs

translate:StartTextTranslationJob

translate:StopTextTranslationJob

translate:TranslateDocument

translate:TranslateText

translate:UpdateParallelData

Refining permissions using access information 1490

AWS Identity and Access Management User Guide

Service prefix Actions

voiceid voiceid:AssociateFraudster

voiceid:CreateDomain

voiceid:CreateWatchlist

voiceid:DeleteDomain

voiceid:DeleteFraudster

voiceid:DeleteSpeaker

voiceid:DeleteWatchlist

voiceid:DescribeDomain

voiceid:DescribeFraudster

voiceid:DescribeFraudsterRegistrationJob

voiceid:DescribeSpeaker

voiceid:DescribeSpeakerEnrollmentJob

voiceid:DescribeWatchlist

voiceid:DisassociateFraudster

voiceid:EvaluateSession

voiceid:ListDomains

voiceid:ListFraudsterRegistrationJobs

voiceid:ListFraudsters

voiceid:ListSpeakerEnrollmentJobs

voiceid:ListSpeakers

voiceid:ListWatchlists

Refining permissions using access information 1491

AWS Identity and Access Management User Guide

Service prefix Actions

voiceid:OptOutSpeaker

voiceid:StartFraudsterRegistrationJob

voiceid:StartSpeakerEnrollmentJob

voiceid:UpdateDomain

voiceid:UpdateWatchlist

Refining permissions using access information 1492

AWS Identity and Access Management User Guide

Service prefix Actions

vpc-lattice vpc-lattice:CreateAccessLogSubscription

vpc-lattice:CreateListener

vpc-lattice:CreateRule

vpc-lattice:CreateService

vpc-lattice:CreateServiceNetwork

vpc-lattice:CreateServiceNetworkServiceAssociation

vpc-lattice:CreateServiceNetworkVpcAssociation

vpc-lattice:CreateTargetGroup

vpc-lattice:DeleteAccessLogSubscription

vpc-lattice:DeleteAuthPolicy

vpc-lattice:DeleteListener

vpc-lattice:DeleteResourcePolicy

vpc-lattice:DeleteRule

vpc-lattice:DeleteService

vpc-lattice:DeleteServiceNetwork

vpc-lattice:DeleteServiceNetworkServiceAssociation

vpc-lattice:DeleteServiceNetworkVpcAssociation

vpc-lattice:DeleteTargetGroup

vpc-lattice:DeregisterTargets

vpc-lattice:GetAccessLogSubscription

vpc-lattice:GetAuthPolicy

Refining permissions using access information 1493

AWS Identity and Access Management User Guide

Service prefix Actions

vpc-lattice:GetListener

vpc-lattice:GetResourcePolicy

vpc-lattice:GetRule

vpc-lattice:GetService

vpc-lattice:GetServiceNetwork

vpc-lattice:GetServiceNetworkServiceAssociation

vpc-lattice:GetServiceNetworkVpcAssociation

vpc-lattice:GetTargetGroup

vpc-lattice:ListAccessLogSubscriptions

vpc-lattice:ListListeners

vpc-lattice:ListRules

vpc-lattice:ListServiceNetworks

vpc-lattice:ListServiceNetworkServiceAssociations

vpc-lattice:ListServiceNetworkVpcAssociations

vpc-lattice:ListServices

vpc-lattice:ListTargetGroups

vpc-lattice:ListTargets

vpc-lattice:PutAuthPolicy

vpc-lattice:PutResourcePolicy

vpc-lattice:RegisterTargets

vpc-lattice:UpdateAccessLogSubscription

Refining permissions using access information 1494

AWS Identity and Access Management User Guide

Service prefix Actions

vpc-lattice:UpdateListener

vpc-lattice:UpdateRule

vpc-lattice:UpdateService

vpc-lattice:UpdateServiceNetwork

vpc-lattice:UpdateServiceNetworkVpcAssociation

vpc-lattice:UpdateTargetGroup

Refining permissions using access information 1495

AWS Identity and Access Management User Guide

Service prefix Actions

wafv2 wafv2:AssociateWebACL

wafv2:CheckCapacity

wafv2:CreateAPIKey

wafv2:CreateIPSet

wafv2:CreateRegexPatternSet

wafv2:CreateRuleGroup

wafv2:CreateWebACL

wafv2:DeleteFirewallManagerRuleGroups

wafv2:DeleteIPSet

wafv2:DeleteLoggingConfiguration

wafv2:DeletePermissionPolicy

wafv2:DeleteRegexPatternSet

wafv2:DeleteRuleGroup

wafv2:DeleteWebACL

wafv2:DescribeAllManagedProducts

wafv2:DescribeManagedProductsByVendor

wafv2:DescribeManagedRuleGroup

wafv2:DisassociateWebACL

wafv2:GenerateMobileSdkReleaseUrl

wafv2:GetDecryptedAPIKey

wafv2:GetIPSet

Refining permissions using access information 1496

AWS Identity and Access Management User Guide

Service prefix Actions

wafv2:GetLoggingConfiguration

wafv2:GetManagedRuleSet

wafv2:GetMobileSdkRelease

wafv2:GetPermissionPolicy

wafv2:GetRateBasedStatementManagedKeys

wafv2:GetRegexPatternSet

wafv2:GetRuleGroup

wafv2:GetSampledRequests

wafv2:GetWebACL

wafv2:GetWebACLForResource

wafv2:ListAPIKeys

wafv2:ListAvailableManagedRuleGroups

wafv2:ListAvailableManagedRuleGroupVersions

wafv2:ListIPSets

wafv2:ListLoggingConfigurations

wafv2:ListManagedRuleSets

wafv2:ListMobileSdkReleases

wafv2:ListRegexPatternSets

wafv2:ListResourcesForWebACL

wafv2:ListRuleGroups

wafv2:ListWebACLs

Refining permissions using access information 1497

AWS Identity and Access Management User Guide

Service prefix Actions

wafv2:PutLoggingConfiguration

wafv2:PutManagedRuleSetVersions

wafv2:PutPermissionPolicy

wafv2:UpdateIPSet

wafv2:UpdateManagedRuleSetVersionExpiryDate

wafv2:UpdateRegexPatternSet

wafv2:UpdateRuleGroup

wafv2:UpdateWebACL

Refining permissions using access information 1498

AWS Identity and Access Management User Guide

Service prefix Actions

wellarchitected wellarchitected:AssociateLenses

wellarchitected:AssociateProfiles

wellarchitected:CreateLensShare

wellarchitected:CreateLensVersion

wellarchitected:CreateMilestone

wellarchitected:CreateProfile

wellarchitected:CreateProfileShare

wellarchitected:CreateReviewTemplate

wellarchitected:CreateWorkload

wellarchitected:CreateWorkloadShare

wellarchitected:DeleteLens

wellarchitected:DeleteLensShare

wellarchitected:DeleteProfile

wellarchitected:DeleteProfileShare

wellarchitected:DeleteReviewTemplate

wellarchitected:DeleteTemplateShare

wellarchitected:DeleteWorkload

wellarchitected:DeleteWorkloadShare

wellarchitected:DisassociateLenses

wellarchitected:DisassociateProfiles

wellarchitected:ExportLens

Refining permissions using access information 1499

AWS Identity and Access Management User Guide

Service prefix Actions

wellarchitected:GetAnswer

wellarchitected:GetConsolidatedReport

wellarchitected:GetLens

wellarchitected:GetLensReview

wellarchitected:GetLensReviewReport

wellarchitected:GetLensVersionDifference

wellarchitected:GetMilestone

wellarchitected:GetProfile

wellarchitected:GetProfileTemplate

wellarchitected:GetReviewTemplate

wellarchitected:GetReviewTemplateAnswer

wellarchitected:GetReviewTemplateLensReview

wellarchitected:GetWorkload

wellarchitected:ImportLens

wellarchitected:ListAnswers

wellarchitected:ListCheckDetails

wellarchitected:ListCheckSummaries

wellarchitected:ListLenses

wellarchitected:ListLensReviewImprovements

wellarchitected:ListLensReviews

wellarchitected:ListLensShares

Refining permissions using access information 1500

AWS Identity and Access Management User Guide

Service prefix Actions

wellarchitected:ListMilestones

wellarchitected:ListNotifications

wellarchitected:ListProfileNotifications

wellarchitected:ListProfiles

wellarchitected:ListProfileShares

wellarchitected:ListReviewTemplateAnswers

wellarchitected:ListReviewTemplates

wellarchitected:ListShareInvitations

wellarchitected:ListTemplateShares

wellarchitected:ListWorkloads

wellarchitected:ListWorkloadShares

wellarchitected:UpdateAnswer

wellarchitected:UpdateGlobalSettings

wellarchitected:UpdateLensReview

wellarchitected:UpdateProfile

wellarchitected:UpdateReviewTemplate

wellarchitected:UpdateReviewTemplateLensReview

wellarchitected:UpdateShareInvitation

wellarchitected:UpdateWorkload

wellarchitected:UpdateWorkloadShare

wellarchitected:UpgradeLensReview

Refining permissions using access information 1501

AWS Identity and Access Management User Guide

Service prefix Actions

wellarchitected:UpgradeProfileVersion

wellarchitected:UpgradeReviewTemplateLensReview

Refining permissions using access information 1502

AWS Identity and Access Management User Guide

Service prefix Actions

wisdom wisdom:CreateAssistant

wisdom:CreateAssistantAssociation

wisdom:CreateContent

wisdom:CreateKnowledgeBase

wisdom:CreateSession

wisdom:DeleteAssistant

wisdom:DeleteAssistantAssociation

wisdom:DeleteContent

wisdom:DeleteKnowledgeBase

wisdom:GetAssistant

wisdom:GetAssistantAssociation

wisdom:GetContent

wisdom:GetContentSummary

wisdom:GetKnowledgeBase

wisdom:GetRecommendations

wisdom:GetSession

wisdom:ListAssistantAssociations

wisdom:ListAssistants

wisdom:ListContents

wisdom:ListKnowledgeBases

wisdom:NotifyRecommendationsReceived

Refining permissions using access information 1503

AWS Identity and Access Management User Guide

Service prefix Actions

wisdom:QueryAssistant

wisdom:RemoveKnowledgeBaseTemplateUri

wisdom:SearchContent

wisdom:SearchSessions

wisdom:StartContentUpload

wisdom:UpdateContent

wisdom:UpdateKnowledgeBaseTemplateUri

Refining permissions using access information 1504

AWS Identity and Access Management User Guide

Service prefix Actions

worklink worklink:AssociateDomain

worklink:AssociateWebsiteAuthorizationProvider

worklink:AssociateWebsiteCertificateAuthority

worklink:CreateFleet

worklink:DeleteFleet

worklink:DescribeAuditStreamConfiguration

worklink:DescribeCompanyNetworkConfiguration

worklink:DescribeDevice

worklink:DescribeDevicePolicyConfiguration

worklink:DescribeDomain

worklink:DescribeFleetMetadata

worklink:DescribeIdentityProviderConfiguration

worklink:DescribeWebsiteCertificateAuthority

worklink:DisassociateDomain

worklink:DisassociateWebsiteAuthorizationProvider

worklink:DisassociateWebsiteCertificateAuthority

worklink:ListDevices

worklink:ListDomains

worklink:ListFleets

worklink:ListWebsiteAuthorizationProviders

worklink:ListWebsiteCertificateAuthorities

Refining permissions using access information 1505

AWS Identity and Access Management User Guide

Service prefix Actions

worklink:RestoreDomainAccess

worklink:RevokeDomainAccess

worklink:SignOutUser

worklink:UpdateAuditStreamConfiguration

worklink:UpdateCompanyNetworkConfiguration

worklink:UpdateDevicePolicyConfiguration

worklink:UpdateDomainMetadata

worklink:UpdateFleetMetadata

worklink:UpdateIdentityProviderConfiguration

Refining permissions using access information 1506

AWS Identity and Access Management User Guide

Service prefix Actions

workspaces workspaces:AssociateConnectionAlias

workspaces:AssociateIpGroups

workspaces:AssociateWorkspaceApplication

workspaces:CopyWorkspaceImage

workspaces:CreateConnectClientAddIn

workspaces:CreateConnectionAlias

workspaces:CreateIpGroup

workspaces:CreateStandbyWorkspaces

workspaces:CreateUpdatedWorkspaceImage

workspaces:CreateWorkspaceBundle

workspaces:CreateWorkspaceImage

workspaces:CreateWorkspaces

workspaces:DeleteClientBranding

workspaces:DeleteConnectClientAddIn

workspaces:DeleteConnectionAlias

workspaces:DeleteIpGroup

workspaces:DeleteWorkspaceBundle

workspaces:DeleteWorkspaceImage

workspaces:DeployWorkspaceApplications

workspaces:DeregisterWorkspaceDirectory

workspaces:DescribeAccount

Refining permissions using access information 1507

AWS Identity and Access Management User Guide

Service prefix Actions

workspaces:DescribeAccountModifications

workspaces:DescribeApplicationAssociations

workspaces:DescribeApplications

workspaces:DescribeBundleAssociations

workspaces:DescribeClientBranding

workspaces:DescribeClientProperties

workspaces:DescribeConnectClientAddIns

workspaces:DescribeConnectionAliases

workspaces:DescribeConnectionAliasPermissions

workspaces:DescribeImageAssociations

workspaces:DescribeIpGroups

workspaces:DescribeWorkspaceAssociations

workspaces:DescribeWorkspaceBundles

workspaces:DescribeWorkspaceDirectories

workspaces:DescribeWorkspaceImagePermissions

workspaces:DescribeWorkspaces

workspaces:DescribeWorkspacesConnectionStatus

workspaces:DescribeWorkspaceSnapshots

workspaces:DisassociateConnectionAlias

workspaces:DisassociateIpGroups

workspaces:DisassociateWorkspaceApplication

Refining permissions using access information 1508

AWS Identity and Access Management User Guide

Service prefix Actions

workspaces:ImportClientBranding

workspaces:ImportWorkspaceImage

workspaces:ListAvailableManagementCidrRanges

workspaces:MigrateWorkspace

workspaces:ModifyAccount

workspaces:ModifyCertificateBasedAuthProperties

workspaces:ModifyClientProperties

workspaces:ModifySamlProperties

workspaces:ModifySelfservicePermissions

workspaces:ModifyWorkspaceAccessProperties

workspaces:ModifyWorkspaceCreationProperties

workspaces:ModifyWorkspaceProperties

workspaces:ModifyWorkspaceState

workspaces:RebootWorkspaces

workspaces:RebuildWorkspaces

workspaces:RegisterWorkspaceDirectory

workspaces:RestoreWorkspace

workspaces:StartWorkspaces

workspaces:StopWorkspaces

workspaces:TerminateWorkspaces

workspaces:UpdateConnectClientAddIn

Refining permissions using access information 1509

AWS Identity and Access Management User Guide

Service prefix Actions

workspaces:UpdateConnectionAliasPermission

workspaces:UpdateWorkspaceBundle

workspaces:UpdateWorkspaceImagePermission

xray xray:CreateGroup

xray:CreateSamplingRule

xray:DeleteGroup

xray:DeleteResourcePolicy

xray:DeleteSamplingRule

xray:GetEncryptionConfig

xray:GetGroup

xray:GetGroups

xray:GetInsight

xray:GetInsightEvents

xray:GetInsightImpactGraph

xray:GetInsightSummaries

xray:GetSamplingRules

xray:ListResourcePolicies

xray:PutEncryptionConfig

xray:PutResourcePolicy

xray:UpdateGroup

xray:UpdateSamplingRule

Refining permissions using access information 1510

AWS Identity and Access Management User Guide

Understanding permissions granted by a policy

The IAM console includes policy summary tables that describe the access level, resources, and
conditions that are allowed or denied for each service in a policy. Policies are summarized in three
tables: the policy summary, the service summary, and the action summary. The policy summary
table includes a list of services. Choose a service there to see the service summary. This summary
table includes a list of the actions and associated permissions for the chosen service. You can
choose an action from that table to view the action summary. This table includes a list of resources
and conditions for the chosen action.

You can view policy summaries on the Users page or Roles page for all policies (managed and
inline) that are attached to that user. View summaries on the Policies page for all managed
policies. Managed policies include AWS managed policies, AWS managed job function policies,
and customer managed policies. You can view summaries for these policies on the Policies page
regardless of whether they are attached to a user or other IAM identity.

You can use the information in the policy summaries to understand the permissions that are
allowed or denied by your policy. Policy summaries can help you troubleshoot and fix policies that
are not providing the permissions that you expect.

Topics

• Policy summary (list of services)

• Service summary (list of actions)

• Action summary (list of resources)

Understanding policies 1511

AWS Identity and Access Management User Guide

• Examples of policy summaries

Policy summary (list of services)

Policies are summarized in three tables: the policy summary, the service summary, and the action
summary. The policy summary table includes a list of services and summaries of the permissions
that are defined by the chosen policy.

The policy summary table is grouped into one or more Uncategorized services, Explicit deny,
and Allow sections. If the policy includes a service that IAM does not recognize, then the service is
included in the Uncategorized services section of the table. If IAM recognizes the service, then it
is included under the Explicit deny or Allow sections of the table, depending on the effect of the
policy (Deny or Allow).

Viewing policy summaries

You can view the summaries for any policies that are attached to a user by choosing the policy
name on the Permissions tab on the user details page. You can view the summaries for any policies
that are attached to a role by choosing the policy name on the Permissions tab on the role details
page. You can view the policy summary for managed policies on the Policies page. If your policy
does not include a policy summary, see Missing policy summary to learn why.

Policy summary (list of services) 1512

AWS Identity and Access Management User Guide

To view the policy summary from the Policies page

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. In the navigation pane, choose Policies.

3. In the list of policies, choose the name of the policy that you want to view.

4. On the Policy details page for the policy, view the Permissions tab to see the policy summary.

To view the summary for a policy attached to a user

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. Choose Users from the navigation pane.

3. In the list of users, choose the name of the user whose policy you want to view.

4. On the Summary page for the user, view the Permissions tab to see the list of policies that are
attached to the user directly or from a group.

5. In the table of policies for the user, expand the row of the policy that you want to view.

To view the summary for a policy attached to a role

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. In the navigation pane, choose Roles.

3. In the list of roles, choose the name of the role whose policy you want to view.

4. On the Summary page for the role, view the Permissions tab to see the list of policies that are
attached to the role.

5. In the table of policies for the role, expand the row of the policy that you want to view.

Editing policies to fix warnings

While viewing a policy summary, you might find a typo or notice that the policy does not provide
the permissions that you expected. You cannot edit a policy summary directly. However, you can
edit a customer managed policy using the visual policy editor, which catches many of the same
errors and warnings that the policy summary reports. You can then view the changes in the policy

Policy summary (list of services) 1513

https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/

AWS Identity and Access Management User Guide

summary to confirm that you fixed all of the issues. To learn how to edit an inline policy, see the
section called “Editing IAM policies”. You cannot edit AWS managed policies.

To edit a policy for your policy summary using the Visual option

1. Open the policy summary as explained in the previous procedures.

2. Choose Edit.

If you are on the Users page and choose to edit a customer managed policy that is attached to
that user, you are redirected to the Policies page. You can edit customer managed policies only
on the Policies page.

3. Choose the Visual option to view the editable visual representation of your policy. IAM might
restructure your policy to optimize it for the visual editor and to make it easier for you to find
and fix any problems. The warnings and error messages on the page can guide you to fix any
issues with your policy. For more information about how IAM restructures policies, see Policy
restructuring.

4. Edit your policy and choose Next to see your changes reflected in the policy summary. If you
still see a problem, choose Previous to return to the editing screen.

5. Choose Save changes to save your changes.

To edit a policy for your policy summary with the JSON option

1. Open the policy summary as explained in the previous procedures.

2. You can use the Summary and JSON buttons to compare the policy summary to the JSON
policy document. You can use this information to determine which lines in the policy
document you want to change.

3. Choose Edit and then choose the JSON option to edit the JSON policy document.

Note

You can switch between the Visual and JSON editor options any time. However, if
you make changes or choose Next in the Visual editor option, IAM might restructure
your policy to optimize it for the visual editor. For more information, see Policy
restructuring.

Policy summary (list of services) 1514

AWS Identity and Access Management User Guide

If you are on the Users page and choose to edit a customer managed policy that is attached to
that user, you are redirected to the Policies page. You can edit customer managed policies only
on the Policies page.

4. Edit your policy. Resolve any security warnings, errors, or general warnings generated during
policy validation, and then choose Next. If you still see a problem, choose Previous to return
to the editing screen.

5. Choose Save changes to save your changes.

Understanding the elements of a policy summary

In the following example of a policy details page, the SummaryAllElements policy is a managed
policy (customer managed policy) that is attached directly to the user. This policy is expanded to
show the policy summary.

In the preceding image, the policy summary is visible from within the Policies page:

1. The Permissions tab includes the permissions defined in the policy.

2. If the policy does not grant permissions to all the actions, resources, and conditions defined in
the policy, then a warning or error banner appears at the top of the page. The policy summary
then includes details about the problem. To learn how policy summaries help you to understand
and troubleshoot the permissions that your policy grants, see the section called “My policy does
not grant the expected permissions”.

Policy summary (list of services) 1515

AWS Identity and Access Management User Guide

3. Use the Summary and JSON buttons to toggle between the policy summary and the JSON
policy document.

4. Use the Search box to reduce the list of services and find a specific service.

5. The expanded view shows additional details of the SummaryAllElements policy.

The following policy summary table image shows the expanded SummaryAllElements policy on
the policy details page.

In the preceding image, the policy summary is visible from within the Policies page:

A. For those services that IAM recognizes, it arranges services according to whether the policy
allows or explicitly denies the use of the service. In this example, the policy includes a Deny
statement for the Amazon S3 service and Allow statements for the Billing, CodeDeploy, and
Amazon EC2 services.

B. Service – This column lists the services that are defined within the policy and provides details
for each service. Each service name in the policy summary table is a link to the service summary
table, which is explained in Service summary (list of actions). In this example, permissions are
defined for the Amazon S3, Billing, CodeDeploy, and Amazon EC2 services.

C. Access level – This column tells whether the actions in each access level (List, Read, Write,
Permission Management, and Tagging) have Full or Limited permissions defined in the
policy. For additional details and examples of the access level summary, see Understanding
access level summaries within policy summaries.

• Full access – This entry indicates that the service has access to all actions within all four of the
access levels available for the service.

Policy summary (list of services) 1516

AWS Identity and Access Management User Guide

• If the entry does not include Full access, then the service has access to some but not all of the
actions for the service. The access is then defined by following descriptions for each of the
access level classifications (List, Read, Write, Permission Management, and Tagging):

Full: The policy provides access to all actions within each access level classification listed. In
this example, the policy provides access to all of the Billing Read actions.

Limited: The policy provides access to one or more but not all actions within each access level
classification listed. In this example, the policy provides access to some of the Billing Write
actions.

D. Resource – This column shows the resources that the policy specifies for each service.

• Multiple – The policy includes more than one but not all of the resources within the service. In
this example, access is explicitly denied to more than one Amazon S3 resource.

• All resources – The policy is defined for all resources within the service. In this example, the
policy allows the listed actions to be performed on all Billing resources.

• Resource text – The policy includes one resource within the service. In this example, the listed
actions are allowed on only the DeploymentGroupName CodeDeploy resource. Depending on
the information that the service provides to IAM, you might see an ARN or you might see the
defined resource type.

Note

This column can include a resource from a different service. If the policy statement
that includes the resource does not include both actions and resources from the same
service, then your policy includes mismatched resources. IAM does not warn you
about mismatched resources when you create a policy, or when you view a policy in
the policy summary. If this column includes a mismatched resource, then you should
review your policy for errors. To better understand your policies, always test them with
the policy simulator.

E. Request condition – This column indicates whether the services or actions associated with the
resource are subject to conditions.

• None – The policy includes no conditions for the service. In this example no conditions are
applied to the denied actions in the Amazon S3 service.

• Condition text – The policy includes one condition for the service. In this example, the listed
Billing actions are allowed only if the IP address of the source matches 203.0.113.0/24.

Policy summary (list of services) 1517

AWS Identity and Access Management User Guide

• Multiple – The policy includes more than one condition for the service. To view each of the
multiple conditions for the policy, choose JSON to view the policy document.

F. Show remaining services – Toggle this button to expand the table to include the services that
are not defined by the policy. These services are implicitly denied (or denied by default) within
this policy. However, a statement in another policy might still allow or explicitly deny using
the service. The policy summary summarizes the permissions of a single policy. To learn about
how the AWS service decides whether a given request should be allowed or denied, see Policy
evaluation logic.

When a policy or an element within the policy does not grant permissions, IAM provides additional
warnings and information in the policy summary. The following policy summary table shows the
expanded Show remaining services services on the SummaryAllElements policy details page with
the possible warnings.

In the preceding image, you can see all services that include defined actions, resources, or
conditions with no permissions:

a. Resource warnings – For services that do not provide permissions for all of the included actions
or resources, you see one of the following warnings in the Resource column of the table:

Policy summary (list of services) 1518

AWS Identity and Access Management User Guide

•

No resources are defined. – This means that the service has defined actions but no supported
resources are included in the policy.

•

One or more actions do not have an applicable resource. – This means that the service has
defined actions, but that some of those actions don't have a supported resource.

•

One or more resources do not have an applicable action. – This means that the service has
defined resources, but that some of those resources don't have a supporting action.

If a service includes both actions that do not have an applicable resource and resources that do
have an applicable resource, then only the One or more resources do not have an applicable
action. warning is shown. This is because when you view the service summary for the service,
resources that do not apply to any action are not shown. For the ListAllMyBuckets action,
this policy includes the last warning because the action does not support resource-level
permissions, and does not support the s3:x-amz-acl condition key. If you fix either the
resource problem or the condition problem, the remaining issue appears in a detailed warning.

b. Request condition warnings – For services that do not provide permissions for all of the
included conditions, you see one of the following warnings in the Request condition column of
the table:

•

One or more actions do not have an applicable condition. – This means that the service has
defined actions, but that some of those actions don't have a supported condition.

•

One or more conditions do not have an applicable action. – This means that the service has
defined conditions, but that some of those conditions don't have a supporting action.

c. Multiple |

One or more actions do not have an applicable resource. – The Deny statement for
Amazon S3 includes more than one resource. It also includes more than one action, and some
actions support the resources and some do not. To view this policy, see the section called
“SummaryAllElements JSON policy document”. In this case, the policy includes all Amazon S3
actions, and only the actions that can be performed on a bucket or bucket object are denied.

Policy summary (list of services) 1519

AWS Identity and Access Management User Guide

d.

No resources are defined – The service has defined actions, but no supported resources are
included in the policy, and therefore the service provides no permissions. In this case, the policy
includes CodeCommit actions but no CodeCommit resources.

e. DeploymentGroupName | string like | All, region | string like | us-west-2 |

One or more actions do not have an applicable resource. – The service has a defined action,
and at least one more action that does not have a supporting resource.

f. None |

One or more conditions do not have an applicable action. – The service has at least one
condition key that does not have a supporting action.

SummaryAllElements JSON policy document

The SummaryAllElements policy is not intended for you to use to define permissions in your
account. Rather, it is included to demonstrate the errors and warnings that you might encounter
while viewing a policy summary.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "billing:Get*",
 "payments:List*",
 "payments:Update*",
 "account:Get*",
 "account:List*",
 "cur:GetUsage*"
],
 "Resource": [
 "*"
],
 "Condition": {
 "IpAddress": {
 "aws:SourceIp": "203.0.113.0/24"

Policy summary (list of services) 1520

AWS Identity and Access Management User Guide

 }
 }
 },
 {
 "Effect": "Deny",
 "Action": [
 "s3:*"
],
 "Resource": [
 "arn:aws:s3:::customer",
 "arn:aws:s3:::customer/*"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "ec2:GetConsoleScreenshots"
],
 "Resource": [
 "*"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "codedploy:*",
 "codecommit:*"
],
 "Resource": [
 "arn:aws:codedeploy:us-west-2:123456789012:deploymentgroup:*",
 "arn:aws:codebuild:us-east-1:123456789012:project/my-demo-project"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "s3:ListAllMyBuckets",
 "s3:GetObject",
 "s3:DeletObject",
 "s3:PutObject",
 "s3:PutObjectAcl"
],
 "Resource": [
 "arn:aws:s3:::developer_bucket",

Policy summary (list of services) 1521

AWS Identity and Access Management User Guide

 "arn:aws:s3:::developer_bucket/*",
 "arn:aws:autoscling:us-east-2:123456789012:autoscalgrp"
],
 "Condition": {
 "StringEquals": {
 "s3:x-amz-acl": [
 "public-read"
],
 "s3:prefix": [
 "custom",
 "other"
]
 }
 }
 }
]
}

Understanding access level summaries within policy summaries

AWS access level summary

Policy summaries include an access level summary that describes the action permissions
defined for each service that is mentioned in the policy. To learn about policy summaries, see
Understanding permissions granted by a policy. Access level summaries indicate whether the
actions in each access level (List, Read, Tagging, Write, and Permissions management) have
Full or Limited permissions defined in the policy. To view the access level classification that is
assigned to each action in a service, see Actions, Resources, and Condition Keys for AWS Services.

The following example describes the access provided by a policy for the given services. For
examples of full JSON policy documents and their related summaries, see Examples of policy
summaries.

Service Access level This policy provides the following

IAM Full access Access to all actions within the IAM service.

CloudWatc
h

Full: List Access to all CloudWatch actions in the List
access level, but no access to actions with the
Read, Write, or Permissions managemen
t access level classification.

Policy summary (list of services) 1522

reference_policies_actions-resources-contextkeys.html

AWS Identity and Access Management User Guide

Service Access level This policy provides the following

Data
Pipeline

Limited: List, Read Access to at least one but not all AWS Data
Pipeline actions in the List and Read access
level, but not the Write or Permissions
management actions.

EC2 Full: List, Read Limited: Write Access to all Amazon EC2 List and Read
actions and access to at least one but not all
Amazon EC2 Write actions, but no access to
actions with the Permissions managemen
t access level classification.

S3 Limited: Read, Write, Permissio
ns management

Access to at least one but not all Amazon
S3 Read, Write and Permissions
management actions.

CodeDeplo
y

(empty) Unknown access, because IAM does not
recognize this service.

API
Gateway

None No access is defined in the policy.

CodeBuild

No actions are defined.

No access because no actions are defined
for the service. To learn how to understand
and troubleshoot this issue, see the section
called “My policy does not grant the expected
permissions”.

As previously mentioned, Full access indicates that the policy provides access to all the actions
within the service. Policies that provide access to some but not all actions within a service are
further grouped according to the access level classification. This is indicated by one of the
following access-level groupings:

• Full: The policy provides access to all actions within the specified access level classification.

• Limited: The policy provides access to one or more but not all actions within the specified access
level classification.

Policy summary (list of services) 1523

AWS Identity and Access Management User Guide

• None: The policy provides no access.

• (empty): IAM does not recognize this service. If the service name includes a typo, then the policy
provides no access to the service. If the service name is correct, then the service might not
support policy summaries or might be in preview. In this case, the policy might provide access,
but that access cannot be shown in the policy summary. To request policy summary support for a
generally available (GA) service, see Service does not support IAM policy summaries.

Access level summaries that include limited (partial) access to actions are grouped using the AWS
access level classifications List, Read, Tagging, Write, or Permissions management.

AWS access levels

AWS defines the following access level classifications for the actions in a service:

• List: Permission to list resources within the service to determine whether an object exists. Actions
with this level of access can list objects but cannot see the contents of a resource. For example,
the Amazon S3 action ListBucket has the List access level.

• Read: Permission to read but not edit the contents and attributes of resources in the service. For
example, the Amazon S3 actions GetObject and GetBucketLocation have the Read access
level.

• Tagging: Permission to perform actions that only change the state of resource tags. For example,
the IAM actions TagRole and UntagRole have the Tagging access level because they allow only
tagging or untagging a role. However, the CreateRole action allows tagging a role resource
when you create that role. Because the action does not only add a tag, it has the Write access
level.

• Write: Permission to create, delete, or modify resources in the service. For example, the Amazon
S3 actions CreateBucket, DeleteBucket and PutObject have the Write access level. Write
actions might also allow modifying a resource tag. However, an action that allows only changes
to tags has the Tagging access level.

• Permissions management: Permission to grant or modify resource permissions in the service.
For example, most IAM and AWS Organizations actions, as well as actions like the Amazon S3
actions PutBucketPolicy and DeleteBucketPolicy have the Permissions management
access level.

Policy summary (list of services) 1524

AWS Identity and Access Management User Guide

Tip

To improve the security of your AWS account, restrict or regularly monitor policies that
include the Permissions management access level classification.

To view the access level classification for all of the actions in a service, see Actions, Resources, and
Condition Keys for AWS Services.

Service summary (list of actions)

Policies are summarized in three tables: the policy summary, the service summary, and the
action summary. The service summary table includes a list of the actions and summaries of the
permissions that are defined by the policy for the chosen service.

You can view a service summary for each service listed in the policy summary that grants
permissions. The table is grouped into Uncategorized actions, Uncategorized resource types, and
access level sections. If the policy includes an action that IAM does not recognize, then the action is
included in the Uncategorized actions section of the table. If IAM recognizes the action, then it is
included under one of the access level (List, Read, Write and Permissions management) sections
of the table. To view the access level classification that is assigned to each action in a service, see
Actions, Resources, and Condition Keys for AWS Services.

Service summary (list of actions) 1525

reference_policies_actions-resources-contextkeys.html
reference_policies_actions-resources-contextkeys.html
reference_policies_actions-resources-contextkeys.html

AWS Identity and Access Management User Guide

Viewing service summaries

You can view the service summary for managed policies on the Policies page.

To view the service summary for a managed policy

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. In the navigation pane, choose Policies.

3. In the list of policies, choose the name of the policy that you want to view.

4. On the Policy details page for the policy, view the Permissions tab to see the policy summary.

5. In the policy summary list of services, choose the name of the service that you want to view.

To view the service summary for a policy attached to a user

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. In the navigation pane, choose Users.

3. In the list of users, choose the name of the user whose policy you want to view.

4. On the Summary page for the user, view the Permissions tab to see the list of policies that are
attached to the user directly or from a group.

5. In the table of policies for the user, choose the name of the policy that you want to view.

If you are on the Users page and choose to view the service summary for a policy that is
attached to that user, you are redirected to the Policies page. You can view service summaries
only on the Policies page.

6. Choose Summary. In the policy summary list of services, choose the name of the service that
you want to view.

Note

If the policy that you select is an inline policy that is attached directly to the user, then
the service summary table appears. If the policy is an inline policy attached from a
group, then you are taken to the JSON policy document for that group. If the policy
is a managed policy, then you are taken to the service summary for that policy on the
Policies page.

Service summary (list of actions) 1526

https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/

AWS Identity and Access Management User Guide

To view the service summary for a policy attached to a role

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. Choose Roles from the navigation pane.

3. In the list of roles, choose the name of the role whose policy you want to view.

4. On the Summary page for the role, view the Permissions tab to see the list of policies that are
attached to the role.

5. In the table of policies for the role, choose the name of the policy that you want to view.

If you are on the Roles page and choose to view the service summary for a policy that is
attached to that user, you are redirected to the Policies page. You can view service summaries
only on the Policies page.

6. In the policy summary list of services, choose the name of the service that you want to view.

Understanding the elements of a service summary

The example below is the service summary for Amazon S3 actions that are allowed from a policy
summary. The actions for this service are grouped by access level. For example, 35 Read actions are
defined out of the total 52 Read actions available for the service.

Service summary (list of actions) 1527

https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/

AWS Identity and Access Management User Guide

The service summary page for a managed policy includes the following information:

1. If the policy does not grant permissions to all the actions, resources, and conditions defined
for the service in the policy, then a warning banner appears at the top of the page. The service

Service summary (list of actions) 1528

AWS Identity and Access Management User Guide

summary then includes details about the problem. To learn how policy summaries help you to
understand and troubleshoot the permissions that your policy grants, see the section called “My
policy does not grant the expected permissions”.

2. Choose JSON to see additional details about the policy. You can do this to view all conditions
that are applied to the actions. (If you are viewing the service summary for an inline policy that
is attached directly to a user, you must close the service summary dialog box and return to the
policy summary to access the JSON policy document.)

3. To view the summary for a specific action, type keywords into the Search box to reduce the list
of available actions.

4. Next to the Services back arrow appears the name of the service (in this case S3). The service
summary for this service includes the list of allowed or denied actions that are defined in the
policy. If the service appears under (Explicit deny) on the Permissions tab, then the actions
listed in the service summary table are explicitly denied. If the service appears under Allow on
the Permissions tab, then the actions listed in the service summary table are allowed.

5. Action – This column lists the actions that are defined within the policy and provides the
resources and conditions for each action. If the policy grants or denies permissions to the action,
then the action name links to the action summary table. The table groups these actions into at
least one or up to five sections, depending on the level of access that the policy allows or denies.
The sections are List, Read, Write, Permission Management, and Tagging. The count indicates
the number of recognized actions that provide permissions within each access level. The total
is the number of known actions for the service. In this example, 35 actions provide permissions
out of 52 total known Amazon S3 Read actions. To view the access level classification that
is assigned to each action in a service, see Actions, Resources, and Condition Keys for AWS
Services.

6. Show remaining actions – Toggle this button to expand or hide the table to include actions
that are known but do not provide permissions for this service. Toggling the button also displays
warnings for any elements that do not provide permissions.

7. Resource – This column shows the resources that the policy defines for the service. IAM
does not check whether the resource applies to each action. In this example, actions in the
Amazon S3 service are allowed on only the developer_bucket Amazon S3 bucket resource.
Depending on the information that the service provides to IAM, you might see an ARN such as
arn:aws:s3:::developer_bucket/*, or you might see the defined resource type, such as
BucketName = developer_bucket.

Service summary (list of actions) 1529

reference_policies_actions-resources-contextkeys.html
reference_policies_actions-resources-contextkeys.html

AWS Identity and Access Management User Guide

Note

This column can include a resource from a different service. If the policy statement
that includes the resource does not include both actions and resources from the same
service, then your policy includes mismatched resources. IAM does not warn you about
mismatched resources when you create a policy, or when you view a policy in the service
summary. IAM also does not indicate whether the action applies to the resources, only
whether the service matches. If this column includes a mismatched resource, then you
should review your policy for errors. To better understand your policies, always test them
with the policy simulator.

8. Request condition – This column tells whether the actions associated with the resource are
subject to conditions. To learn more about those conditions, choose JSON to review the JSON
policy document.

9. (No access) – This policy includes an action that does not provide permissions.

10.Resource warning – For actions with resources that do not provide full permissions, you see one
of the following warnings:

• This action does not support resource-level permissions. This requires a wildcard (*) for the
resource. – This means that the policy includes resource-level permissions but must include
"Resource": ["*"] to provide permissions for this action.

• This action does not have an applicable resource. – This means that the action is included in
the policy without a supported resource.

• This action does not have an applicable resource and condition. – This means that the
action is included in the policy without a supported resource and without a supported
condition. In this case, there is also condition included in the policy for this service, but there
are no conditions that apply to this action.

11.Actions that provide permissions include a link to the action summary.

Action summary (list of resources)

Policies are summarized in three tables: the policy summary, the service summary, and the action
summary. The action summary table includes a list of resources and the associated conditions that
apply to the chosen action.

Action summary (list of resources) 1530

AWS Identity and Access Management User Guide

To view an action summary for each action that grants permissions, choose the link in the service
summary. The action summary table includes details about the resource, including its Region and
Account. You can also view the conditions that apply to each resource. This shows you conditions
that apply to some resources but not others.

Viewing action summaries

You can view the action summary for managed policies, any policy that is attached to a user, and
any policy that is attached to a role on the Policies page.

To view the action summary for a managed policy

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. In the navigation pane, choose Policies.

3. In the list of policies, choose the name of the policy that you want to view.

4. On the Policy details page for the policy, view the Permissions tab to see the policy summary.

5. In the policy summary list of services, choose the name of the service that you want to view.

6. In the service summary list of actions, choose the name of the action that you want to view.

To view the action summary for a policy attached to a user

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

Action summary (list of resources) 1531

https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/

AWS Identity and Access Management User Guide

2. Choose Users from the navigation pane.

3. In the list of users, choose the name of the user whose policy you want to view.

4. On the Summary page for the user, view the Permissions tab to see the list of policies that are
attached to the user directly or from a group.

5. In the table of policies for the user, choose the name of the policy that you want to view.

If you are on the Users page and choose to view the service summary for a policy that is
attached to that user, you are redirected to the Policies page. You can view service summaries
only on the Policies page.

6. In the policy summary list of services, choose the name of the service that you want to view.

Note

If the policy that you select is an inline policy that is attached directly to the user, then
the service summary table appears. If the policy is an inline policy attached from a
group, then you are taken to the JSON policy document for that group. If the policy
is a managed policy, then you are taken to the service summary for that policy on the
Policies page.

7. In the service summary list of actions, choose the name of the action that you want to view.

To view the action summary for a policy attached to a role

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. In the navigation pane, choose Roles.

3. In the list of roles, choose the name of the role whose policy you want to view.

4. On the Summary page for the role, view the Permissions tab to see the list of policies that are
attached to the role.

5. In the table of policies for the role, choose the name of the policy that you want to view.

If you are on the Roles page and choose to view the service summary for a policy that is
attached to that user, you are redirected to the Policies page. You can view service summaries
only on the Policies page.

6. In the policy summary list of services, choose the name of the service that you want to view.

7. In the service summary list of actions, choose the name of the action that you want to view.

Action summary (list of resources) 1532

https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/

AWS Identity and Access Management User Guide

Understanding the elements of an action summary

The example below is the action summary for the PutObject (Write) action from the Amazon S3
service summary (see Service summary (list of actions)). For this action, the policy defines multiple
conditions on a single resource.

The action summary page includes the following information:

1. Choose JSON to see additional details about the policy, such as viewing the multiple conditions
that are applied to the actions. (If you are viewing the action summary for an inline policy that is
attached directly to a user, the steps differ. To access the JSON policy document in that case, you
must close the action summary dialog box and return to the policy summary.)

2. To view the summary for a specific resource, type keywords into the Search box to reduce the
list of available resources.

3. Next to the Actions back arrow appears the name of the service and action in the format
action name action in service (in this case PutObject action in S3). The action
summary for this service includes the list of resources that are defined in the policy.

4. Resource – This column lists the resources that the policy defines for the chosen service.
In this example, the PutObject action is allowed on all object paths, but on only the
developer_bucket Amazon S3 bucket resource. Depending on the information that the
service provides to IAM, you might see an ARN such as arn:aws:s3:::developer_bucket/
*, or you might see the defined resource type, such as BucketName = developer_bucket,
ObjectPath = All.

5. Region – This column shows the Region in which the resource is defined. Resources can be
defined for all Regions, or a single Region. They cannot exist in more than one specific Region.

Action summary (list of resources) 1533

AWS Identity and Access Management User Guide

• All regions – The actions that are associated with the resource apply to all Regions. In this
example, the action belongs to a global service, Amazon S3. Actions that belong to global
services apply to all Regions.

• Region text – The actions associated with the resource apply to one Region. For example, a
policy can specify the us-east-2 Region for a resource.

6. Account – This column indicates whether the services or actions associated with the resource
apply to a specific account. Resources can exist in all accounts or a single account. They cannot
exist in more than one specific account.

• All accounts – The actions that are associated with the resource apply to all accounts. In this
example, the action belongs to a global service, Amazon S3. Actions that belong to global
services apply to all accounts.

• This account – The actions that are associated with the resource apply only in the current
account..

• Account number – The actions that are associated with the resource apply to one account (one
that you are not currently logged in to). For example, if a policy specifies the 123456789012
account for a resource, then the account number appears in the policy summary.

7. Request condition – This column shows whether the actions that are associated with the
resource are subject to conditions. This example includes the s3:x-amz-acl = public-
read condition. To learn more about those conditions, choose JSON to review the JSON policy
document.

Examples of policy summaries

The following examples include JSON policies with their associated policy summaries, the service
summaries, and the action summaries to help you understand the permissions given through a
policy.

Policy 1: DenyCustomerBucket

This policy demonstrates an allow and a deny for the same service.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "FullAccess",

Example policy summaries 1534

AWS Identity and Access Management User Guide

 "Effect": "Allow",
 "Action": ["s3:*"],
 "Resource": ["*"]
 },
 {
 "Sid": "DenyCustomerBucket",
 "Action": ["s3:*"],
 "Effect": "Deny",
 "Resource": ["arn:aws:s3:::customer", "arn:aws:s3:::customer/*"]
 }
]
}

DenyCustomerBucket Policy Summary:

DenyCustomerBucket S3 (Explicit deny) Service Summary:

Example policy summaries 1535

AWS Identity and Access Management User Guide

GetObject (Read) Action Summary:

Policy 2: DynamoDbRowCognitoID

This policy provides row-level access to Amazon DynamoDB based on the user's Amazon Cognito
ID.

{

Example policy summaries 1536

AWS Identity and Access Management User Guide

 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "dynamodb:DeleteItem",
 "dynamodb:GetItem",
 "dynamodb:PutItem",
 "dynamodb:UpdateItem"
],
 "Resource": [
 "arn:aws:dynamodb:us-west-1:123456789012:table/myDynamoTable"
],
 "Condition": {
 "ForAllValues:StringEquals": {
 "dynamodb:LeadingKeys": [
 "${cognito-identity.amazonaws.com:sub}"
]
 }
 }
 }
]
}

DynamoDbRowCognitoID Policy Summary:

DynamoDbRowCognitoID DynamoDB (Allow) Service Summary:

Example policy summaries 1537

AWS Identity and Access Management User Guide

GetItem (List) Action Summary:

Policy 3: MultipleResourceCondition

This policy includes multiple resources and conditions.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "s3:PutObject",
 "s3:PutObjectAcl"
],
 "Resource": ["arn:aws:s3:::Apple_bucket/*"],
 "Condition": {"StringEquals": {"s3:x-amz-acl": ["public-read"]}}
 },
 {

Example policy summaries 1538

AWS Identity and Access Management User Guide

 "Effect": "Allow",
 "Action": [
 "s3:PutObject",
 "s3:PutObjectAcl"
],
 "Resource": ["arn:aws:s3:::Orange_bucket/*"],
 "Condition": {"StringEquals": {
 "s3:x-amz-acl": ["custom"],
 "s3:x-amz-grant-full-control": ["1234"]
 }}
 }
]
}

MultipleResourceCondition Policy Summary:

MultipleResourceCondition S3 (Allow) Service Summary:

PutObject (Write) Action Summary:

Example policy summaries 1539

AWS Identity and Access Management User Guide

Policy 4: EC2_troubleshoot

The following policy allows users to get a screenshot of a running Amazon EC2 instance, which can
help with EC2 troubleshooting. This policy also permits viewing information about the items in the
Amazon S3 developer bucket.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "ec2:GetConsoleScreenshot"
],
 "Resource": [
 "*"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "s3:ListBucket"
],
 "Resource": [
 "arn:aws:s3:::developer"
]
 }
]
}

EC2_Troubleshoot Policy Summary:

EC2_Troubleshoot S3 (Allow) Service Summary:

Example policy summaries 1540

AWS Identity and Access Management User Guide

ListBucket (List) Action Summary:

Policy 5: CodeBuild_CodeCommit_CodeDeploy

This policy provides access to specific CodeBuild, CodeCommit, and CodeDeploy resources. Because
these resources are specific to each service, they appear only with the matching service. If you
include a resource that does not match any services in the Action element, then the resource
appears in all action summaries.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "Stmt1487980617000",
 "Effect": "Allow",
 "Action": [
 "codebuild:*",
 "codecommit:*",
 "codedeploy:*"
],
 "Resource": [
 "arn:aws:codebuild:us-east-2:123456789012:project/my-demo-project",
 "arn:aws:codecommit:us-east-2:123456789012:MyDemoRepo",
 "arn:aws:codedeploy:us-east-2:123456789012:application:WordPress_App",
 "arn:aws:codedeploy:us-east-2:123456789012:instance/AssetTag*"
]
 }
]
}

CodeBuild_CodeCommit_CodeDeploy Policy Summary:

Example policy summaries 1541

AWS Identity and Access Management User Guide

CodeBuild_CodeCommit_CodeDeploy CodeBuild (Allow) Service Summary:

Example policy summaries 1542

AWS Identity and Access Management User Guide

CodeBuild_CodeCommit_CodeDeploy StartBuild (Write) Action Summary:

Example policy summaries 1543

AWS Identity and Access Management User Guide

Permissions required to access IAM resources

Resources are objects within a service. IAM resources include groups, users, roles, and policies. If you
are signed in with AWS account root user credentials, you have no restrictions on administering IAM
credentials or IAM resources. However, IAM users must explicitly be given permissions to administer
credentials or IAM resources. You can do this by attaching an identity-based policy to the user.

Note

Throughout the AWS documentation, when we refer to an IAM policy without mentioning
any of the specific categories, we mean an identity-based, customer managed policy. For
details about policy categories, see the section called “Policies and permissions”.

Permissions for administering IAM identities

The permissions that are required to administer IAM groups, users, roles, and credentials usually
correspond to the API actions for the task. For example, in order to create IAM users, you must
have the iam:CreateUser permission that has the corresponding API command: CreateUser. To
allow an IAM user to create other IAM users, you could attach an IAM policy like the following one
to that user:

{
 "Version": "2012-10-17",
 "Statement": {
 "Effect": "Allow",
 "Action": "iam:CreateUser",
 "Resource": "*"
 }
}

In a policy, the value of the Resource element depends on the action and what resources the
action can affect. In the preceding example, the policy allows a user to create any user (* is a
wildcard that matches all strings). In contrast, a policy that allows users to change only their own
access keys (API actions CreateAccessKey and UpdateAccessKey) typically has a Resource
element. In this case the ARN includes a variable (${aws:username}) that resolves to the current
user's name, as in the following example:

{

Permissions required 1544

https://docs.aws.amazon.com/IAM/latest/APIReference/API_CreateUser.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_CreateAccessKey.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_UpdateAccessKey.html

AWS Identity and Access Management User Guide

 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "ListUsersForConsole",
 "Effect": "Allow",
 "Action": "iam:ListUsers",
 "Resource": "arn:aws:iam::*:*"
 },
 {
 "Sid": "ViewAndUpdateAccessKeys",
 "Effect": "Allow",
 "Action": [
 "iam:UpdateAccessKey",
 "iam:CreateAccessKey",
 "iam:ListAccessKeys"
],
 "Resource": "arn:aws:iam::*:user/${aws:username}"
 }
]
}

In the previous example, ${aws:username} is a variable that resolves to the user name of the
current user. For more information about policy variables, see IAM policy elements: Variables and
tags.

Using a wildcard character (*) in the action name often makes it easier to grant permissions for
all the actions related to a specific task. For example, to allow users to perform any IAM action,
you can use iam:* for the action. To allow users to perform any action related just to access keys,
you can use iam:*AccessKey* in the Action element of a policy statement. This gives the user
permission to perform the CreateAccessKey, DeleteAccessKey, GetAccessKeyLastUsed,
ListAccessKeys, and UpdateAccessKey actions. (If an action is added to IAM in the future
that has "AccessKey" in the name, using iam:*AccessKey* for the Action element will also give
the user permission to that new action.) The following example shows a policy that allows users
to perform all actions pertaining to their own access keys (replace account-id with your AWS
account ID):

{
 "Version": "2012-10-17",
 "Statement": {
 "Effect": "Allow",
 "Action": "iam:*AccessKey*",

Permissions for administering IAM identities 1545

https://docs.aws.amazon.com/IAM/latest/APIReference/API_CreateAccessKey.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_DeleteAccessKey.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_GetAccessKeyLastUsed.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_ListAccessKeys.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_UpdateAccessKey.html

AWS Identity and Access Management User Guide

 "Resource": "arn:aws:iam::account-id:user/${aws:username}"
 }
}

Some tasks, such as deleting a group, involve multiple actions: You must first remove users from
the group, then detach or delete the group's policies, and then actually delete the group. If you
want a user to be able to delete a group, you must be sure to give the user permissions to perform
all of the related actions.

Permissions for working in the AWS Management Console

The preceding examples show policies that allow a user to perform the actions with the AWS CLI or
the AWS SDKs.

As users work with the console, the console issues requests to IAM to list groups, users, roles,
and policies, and to get the policies associated with a group, user, or role. The console also issues
requests to get AWS account information and information about the principal. The principal is the
user making requests in the console.

In general, to perform an action, you must have only the matching action included in a policy.
To create a user, you need permission to call the CreateUser action. Often, when you use the
console to perform an action, you must have permissions to display, list, get, or otherwise view
resources in the console. This is necessary so that you can navigate through the console to make
the specified action. For example, if user Jorge wants to use the console to change his own access
keys, he goes to the IAM console and chooses Users. This action causes the console to make a
ListUsers request. If Jorge doesn't have permission for the iam:ListUsers action, the console
is denied access when it tries to list users. As a result, Jorge can't get to his own name and to his
own access keys, even if he has permissions for the CreateAccessKey and UpdateAccessKey
actions.

If you want to give users permissions to administer groups, users, roles, policies, and credentials
with the AWS Management Console, you need to include permissions for the actions that the
console performs. For some examples of policies that you can use to grant a user for these
permissions, see Example policies for administering IAM resources.

Granting permissions across AWS accounts

You can directly grant IAM users in your own account access to your resources. If users from
another account need access to your resources, you can create an IAM role, which is an entity that

Permissions for working in the AWS Management Console 1546

http://aws.amazon.com/cli/
http://aws.amazon.com/tools/
https://docs.aws.amazon.com/IAM/latest/APIReference/API_ListUsers.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_CreateAccessKey.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_UpdateAccessKey.html

AWS Identity and Access Management User Guide

includes permissions but that isn't associated with a specific user. Users from other accounts can
then use the role and access resources according to the permissions you've assigned to the role. For
more information, see Providing access to an IAM user in another AWS account that you own.

Note

Some services support resource-based policies as described in Identity-based policies and
resource-based policies (such as Amazon S3, Amazon SNS, and Amazon SQS). For those
services, an alternative to using roles is to attach a policy to the resource (bucket, topic, or
queue) that you want to share. The resource-based policy can specify the AWS account that
has permissions to access the resource.

Permissions for one service to access another

Many AWS services access other AWS services. For example, several AWS services—including
Amazon EMR, Elastic Load Balancing, and Amazon EC2 Auto Scaling—manage Amazon EC2
instances. Other AWS services make use of Amazon S3 buckets, Amazon SNS topics, Amazon SQS
queues, and so on.

The scenario for managing permissions in these cases varies by service. Here are some examples of
how permissions are handled for different services:

• In Amazon EC2 Auto Scaling, users must have permission to use Auto Scaling, but don't need to
be explicitly granted permission to manage Amazon EC2 instances.

• In AWS Data Pipeline, an IAM role determines what a pipeline can do; users need permission to
assume the role. (For details, see Granting Permissions to Pipelines with IAM in the AWS Data
Pipeline Developer Guide.)

For details about how to configure permissions properly so that an AWS service is able to
accomplish the tasks you intend, refer to the documentation for the service you are calling. To
learn how to create a role for a service, see Creating a role to delegate permissions to an AWS
service.

Configuring a service with an IAM role to work on your behalf

When you want to configure an AWS service to work on your behalf, you typically provide the ARN
for an IAM role that defines what the service is allowed to do. AWS checks to ensure that you have

Permissions for one service to access another 1547

https://docs.aws.amazon.com/datapipeline/latest/DeveloperGuide/dp-iam-roles.html

AWS Identity and Access Management User Guide

permissions to pass a role to a service. For more information, see Granting a user permissions to
pass a role to an AWS service.

Required actions

Actions are the things that you can do to a resource, such as viewing, creating, editing, and deleting
that resource. Actions are defined by each AWS service.

To allow someone to perform an action, you must include the necessary actions in a policy that
applies to the calling identity or the affected resource. In general, to provide the permission
required to perform an action, you must include that action in your policy. For example, to create a
user, you need add the CreateUser action to your policy.

In some cases, an action might require that you include additional related actions in your policy.
For example, to provide permission for someone to create a directory in AWS Directory Service
using the ds:CreateDirectory operation, you must include the following actions in their policy:

• ds:CreateDirectory

• ec2:DescribeSubnets

• ec2:DescribeVpcs

• ec2:CreateSecurityGroup

• ec2:CreateNetworkInterface

• ec2:DescribeNetworkInterfaces

• ec2:AuthorizeSecurityGroupIngress

• ec2:AuthorizeSecurityGroupEgress

When you create or edit a policy using the visual editor, you receive warnings and prompts to help
you choose all of the required actions for your policy.

For more information about the permissions required to create a directory in AWS Directory
Service, see Example 2: Allow a User to Create a Directory.

Example policies for administering IAM resources

Following are examples of IAM policies that allow users to perform tasks associated with managing
IAM users, groups, and credentials. This includes policies that permit users manage their own
passwords, access keys, and multi-factor authentication (MFA) devices.

Required actions 1548

https://docs.aws.amazon.com/directoryservice/latest/admin-guide/IAM_Auth_Access_IdentityBased.html#IAMPolicyExamples_DS_create_directory

AWS Identity and Access Management User Guide

For examples of policies that let users perform tasks with other AWS services, like Amazon S3,
Amazon EC2, and DynamoDB, see Example IAM identity-based policies.

Topics

• Allow a user to list the account's groups, users, policies, and more for reporting purposes

• Allow a user to manage a group's membership

• Allow a user to manage IAM users

• Allow users to set account password policy

• Allow users to generate and retrieve IAM credential reports

• Allow all IAM actions (admin access)

Allow a user to list the account's groups, users, policies, and more for reporting
purposes

The following policy allows the user to call any IAM action that starts with the string Get or List,
and to generate reports. To view the example policy, see IAM: Allows read-only access to the IAM
console.

Allow a user to manage a group's membership

The following policy allows the user to update the membership of the group called
MarketingGroup. To view the example policy, see IAM: Allows managing a group's membership
programmatically and in the console.

Allow a user to manage IAM users

The following policy allows a user to perform all the tasks associated with managing IAM users
but not to perform actions on other entities, such as creating groups or policies. Allowed actions
include these:

• Creating the user (the CreateUser action).

• Deleting the user. This task requires permissions to perform all of the following actions:
DeleteSigningCertificate, DeleteLoginProfile, RemoveUserFromGroup, and
DeleteUser.

• Listing users in the account and in groups (the GetUser, ListUsers and ListGroupsForUser
actions).

Example policies for IAM 1549

https://docs.aws.amazon.com/IAM/latest/APIReference/API_CreateUser.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_DeleteSigningCertificate.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_DeleteLoginProfile.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_RemoveUserFromGroup.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_DeleteUser.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_GetUser.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_ListUsers.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_ListGroupsForUser.html

AWS Identity and Access Management User Guide

• Listing and removing policies for the user (the ListUserPolicies,
ListAttachedUserPolicies, DetachUserPolicy, DeleteUserPolicy actions)

• Renaming or changing the path for the user (the UpdateUser action). The Resource element
must include an ARN that covers both the source path and the target path. For more information
on paths, see Friendly names and paths.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "AllowUsersToPerformUserActions",
 "Effect": "Allow",
 "Action": [
 "iam:ListPolicies",
 "iam:GetPolicy",
 "iam:UpdateUser",
 "iam:AttachUserPolicy",
 "iam:ListEntitiesForPolicy",
 "iam:DeleteUserPolicy",
 "iam:DeleteUser",
 "iam:ListUserPolicies",
 "iam:CreateUser",
 "iam:RemoveUserFromGroup",
 "iam:AddUserToGroup",
 "iam:GetUserPolicy",
 "iam:ListGroupsForUser",
 "iam:PutUserPolicy",
 "iam:ListAttachedUserPolicies",
 "iam:ListUsers",
 "iam:GetUser",
 "iam:DetachUserPolicy"
],
 "Resource": "*"
 },
 {
 "Sid": "AllowUsersToSeeStatsOnIAMConsoleDashboard",
 "Effect": "Allow",
 "Action": [
 "iam:GetAccount*",
 "iam:ListAccount*"
],

Example policies for IAM 1550

https://docs.aws.amazon.com/IAM/latest/APIReference/API_ListUserPolicies.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_ListAttachedUserPolicies.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_DetachUserPolicy.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_DeleteUserPolicy.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_UpdateUser.html

AWS Identity and Access Management User Guide

 "Resource": "*"
 }
]
}

A number of the permissions included in the preceding policy allow the user to perform
tasks in the AWS Management Console. Users who perform user-related tasks from the AWS
CLI, the AWS SDKs, or the IAM HTTP query API only might not need certain permissions. For
example, if users already know the ARN of policies to detach from a user, they do not need the
iam:ListAttachedUserPolicies permission. The exact list of permissions that a user requires
depends on the tasks that the user must perform while managing other users.

The following permissions in the policy allow access to user tasks via the AWS Management
Console:

• iam:GetAccount*

• iam:ListAccount*

Allow users to set account password policy

You might give some users permissions to get and update the password policy of your AWS
account. To view the example policy, see IAM: Allows setting the account password requirements
programmatically and in the console.

Allow users to generate and retrieve IAM credential reports

You can give users permission to generate and download a report that lists all users in your AWS
account. The report also lists the status of various user credentials, including passwords, access
keys, MFA devices, and signing certificates. For more information about credential reports, see
Getting credential reports for your AWS account. To view the example policy, see IAM: Generate
and retrieve IAM credential reports.

Allow all IAM actions (admin access)

You might give some users administrative permissions to perform all actions in IAM, including
managing passwords, access keys, MFA devices, and user certificates. The following example policy
grants these permissions.

Example policies for IAM 1551

http://aws.amazon.com/cli/
http://aws.amazon.com/cli/
http://aws.amazon.com/tools/

AWS Identity and Access Management User Guide

Warning

When you give a user full access to IAM, there is no limit to the permissions that user can
grant to him/herself or others. The user can create new IAM entities (users or roles) and
grant those entities full access to all resources in your AWS account. When you give a user
full access to IAM, you are effectively giving them full access to all resources in your AWS
account. This includes access to delete all resources. You should grant these permissions to
only trusted administrators, and you should enforce multi-factor authentication (MFA) for
these administrators.

{
 "Version": "2012-10-17",
 "Statement": {
 "Effect": "Allow",
 "Action": "iam:*",
 "Resource": "*"
 }
}

Example policies for IAM 1552

AWS Identity and Access Management User Guide

Code examples for IAM using AWS SDKs

The following code examples show how to use IAM with an AWS software development kit (SDK).

For a complete list of AWS SDK developer guides and code examples, see Using IAM with an AWS
SDK. This topic also includes information about getting started and details about previous SDK
versions.

Code examples

• Code examples for IAM using AWS SDKs

• Actions for IAM using AWS SDKs

• Add an IAM user to a group using an AWS SDK

• Attach an IAM policy to a role using an AWS SDK

• Attach an IAM policy to a user using an AWS SDK

• Attach an inline policy to an IAM role using an AWS SDK

• Create an IAM SAML provider using an AWS SDK

• Create an IAM group using an AWS SDK

• Create an IAM policy using an AWS SDK

• Create an IAM policy version using an AWS SDK

• Create an IAM role using an AWS SDK

• Create an IAM service-linked role using an AWS SDK

• Create an IAM user using an AWS SDK

• Create an IAM access key using an AWS SDK

• Create an alias for an IAM account using an AWS SDK

• Create an inline IAM policy for a group using an AWS SDK

• Create an inline IAM policy for a user using an AWS SDK

• Create an IAM instance profile using an AWS SDK

• Delete an IAM SAML provider using an AWS SDK

• Delete an IAM group using an AWS SDK

• Delete an IAM group policy using an AWS SDK

• Delete an IAM policy using an AWS SDK

• Delete an IAM role using an AWS SDK
1553

AWS Identity and Access Management User Guide

• Delete an IAM role policy using an AWS SDK

• Delete an IAM server certificate using an AWS SDK

• Delete an IAM service-linked role using an AWS SDK

• Delete an IAM user using an AWS SDK

• Delete an IAM access key using an AWS SDK

• Delete an IAM account alias using an AWS SDK

• Delete an inline IAM policy from a user using an AWS SDK

• Delete an IAM instance profile using an AWS SDK

• Detach an IAM policy from a role using an AWS SDK

• Detach an IAM policy from a user using an AWS SDK

• Generate a credential report from IAM using an AWS SDK

• Get a credential report from IAM using an AWS SDK

• Get a detailed IAM authorization report for your account using an AWS SDK

• Get an IAM policy using an AWS SDK

• Get an IAM policy version using an AWS SDK

• Get an IAM role using an AWS SDK

• Get an IAM server certificate using an AWS SDK

• Get an IAM service-linked role's deletion status using an AWS SDK

• Get a summary of account usage from IAM using an AWS SDK

• Get an IAM user using an AWS SDK

• Get data about the last use of an IAM access key using an AWS SDK

• Get the IAM account password policy using an AWS SDK

• List SAML providers for IAM using an AWS SDK

• List a user's IAM access keys using an AWS SDK

• List IAM account aliases using an AWS SDK

• List IAM groups using an AWS SDK

• List inline policies for an IAM role using an AWS SDK

• List inline IAM policies for a user using an AWS SDK

• List IAM policies using an AWS SDK

• List policies attached to an IAM role using an AWS SDK
1554

AWS Identity and Access Management User Guide

• List IAM roles using an AWS SDK

• List IAM server certificates using an AWS SDK

• List IAM users using an AWS SDK

• Remove an IAM user from a group using an AWS SDK

• Update an IAM server certificate using an AWS SDK

• Update an IAM user using an AWS SDK

• Update an IAM access key using an AWS SDK

• Upload an IAM server certificate using an AWS SDK

• Scenarios for IAM using AWS SDKs

• Build and manage a resilient service using an AWS SDK

• Create an IAM group and add a user to the group using an AWS SDK

• Create an IAM user and assume a role with AWS STS using an AWS SDK

• Create read-only and read-write IAM users using an AWS SDK

• Manage IAM access keys using an AWS SDK

• Manage IAM policies using an AWS SDK

• Manage IAM roles using an AWS SDK

• Manage your IAM account using an AWS SDK

• Roll back an IAM policy version using an AWS SDK

• Work with the IAM Policy Builder API using an AWS SDK

• Code examples for AWS STS using AWS SDKs

• Actions for AWS STS using AWS SDKs

• Assume a role with AWS STS using an AWS SDK

• Get a session token with AWS STS using an AWS SDK

• Scenarios for AWS STS using AWS SDKs

• Assume an IAM role that requires an MFA token with AWS STS using an AWS SDK

• Construct a URL with AWS STS for federated users using an AWS SDK

• Get a session token that requires an MFA token with AWS STS using an AWS SDK

Code examples for IAM using AWS SDKs

The following code examples show how to use IAM with an AWS software development kit (SDK).

IAM 1555

AWS Identity and Access Management User Guide

Actions are code excerpts from larger programs and must be run in context. While actions show you
how to call individual service functions, you can see actions in context in their related scenarios and
cross-service examples.

Scenarios are code examples that show you how to accomplish a specific task by calling multiple
functions within the same service.

For a complete list of AWS SDK developer guides and code examples, see Using IAM with an AWS
SDK. This topic also includes information about getting started and details about previous SDK
versions.

Get started

Hello IAM

The following code examples show how to get started using IAM.

.NET

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

namespace IAMActions;

public class HelloIAM
{
 static async Task Main(string[] args)
 {
 // Getting started with AWS Identity and Access Management (IAM). List
 // the policies for the account.
 var iamClient = new AmazonIdentityManagementServiceClient();

 var listPoliciesPaginator = iamClient.Paginators.ListPolicies(new
 ListPoliciesRequest());
 var policies = new List<ManagedPolicy>();

 await foreach (var response in listPoliciesPaginator.Responses)

IAM 1556

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/IAM#code-examples

AWS Identity and Access Management User Guide

 {
 policies.AddRange(response.Policies);
 }

 Console.WriteLine("Here are the policies defined for your account:\n");
 policies.ForEach(policy =>
 {
 Console.WriteLine($"Created:
 {policy.CreateDate}\t{policy.PolicyName}\t{policy.Description}");
 });
 }
}

• For API details, see ListPolicies in AWS SDK for .NET API Reference.

C++

SDK for C++

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Code for the CMakeLists.txt CMake file.

Set the minimum required version of CMake for this project.
cmake_minimum_required(VERSION 3.13)

Set the AWS service components used by this project.
set(SERVICE_COMPONENTS iam)

Set this project's name.
project("hello_iam")

Set the C++ standard to use to build this target.
At least C++ 11 is required for the AWS SDK for C++.
set(CMAKE_CXX_STANDARD 11)

IAM 1557

https://docs.aws.amazon.com/goto/DotNetSDKV3/iam-2010-05-08/ListPolicies
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/cpp/example_code/iam/hello_iam#code-examples

AWS Identity and Access Management User Guide

Use the MSVC variable to determine if this is a Windows build.
set(WINDOWS_BUILD ${MSVC})

if (WINDOWS_BUILD) # Set the location where CMake can find the installed
 libraries for the AWS SDK.
 string(REPLACE ";" "/aws-cpp-sdk-all;" SYSTEM_MODULE_PATH
 "${CMAKE_SYSTEM_PREFIX_PATH}/aws-cpp-sdk-all")
 list(APPEND CMAKE_PREFIX_PATH ${SYSTEM_MODULE_PATH})
endif ()

Find the AWS SDK for C++ package.
find_package(AWSSDK REQUIRED COMPONENTS ${SERVICE_COMPONENTS})

if (WINDOWS_BUILD)
 # Copy relevant AWS SDK for C++ libraries into the current binary directory
 for running and debugging.

 # set(BIN_SUB_DIR "/Debug") # if you are building from the command line you
 may need to uncomment this
 # and set the proper subdirectory to the executables' location.

 AWSSDK_CPY_DYN_LIBS(SERVICE_COMPONENTS ""
 ${CMAKE_CURRENT_BINARY_DIR}${BIN_SUB_DIR})
endif ()

add_executable(${PROJECT_NAME}
 hello_iam.cpp)

target_link_libraries(${PROJECT_NAME}
 ${AWSSDK_LINK_LIBRARIES})

Code for the iam.cpp source file.

#include <aws/core/Aws.h>
#include <aws/iam/IAMClient.h>
#include <aws/iam/model/ListPoliciesRequest.h>
#include <iostream>
#include <iomanip>

/*
 * A "Hello IAM" starter application which initializes an AWS Identity and
 Access Management (IAM) client

IAM 1558

AWS Identity and Access Management User Guide

 * and lists the IAM policies.
 *
 * main function
 *
 * Usage: 'hello_iam'
 *
 */

int main(int argc, char **argv) {
 Aws::SDKOptions options;
 // Optionally change the log level for debugging.
// options.loggingOptions.logLevel = Utils::Logging::LogLevel::Debug;
 Aws::InitAPI(options); // Should only be called once.
 int result = 0;
 {
 const Aws::String DATE_FORMAT("%Y-%m-%d");
 Aws::Client::ClientConfiguration clientConfig;
 // Optional: Set to the AWS Region (overrides config file).
 // clientConfig.region = "us-east-1";

 Aws::IAM::IAMClient iamClient(clientConfig);
 Aws::IAM::Model::ListPoliciesRequest request;

 bool done = false;
 bool header = false;
 while (!done) {
 auto outcome = iamClient.ListPolicies(request);
 if (!outcome.IsSuccess()) {
 std::cerr << "Failed to list iam policies: " <<
 outcome.GetError().GetMessage() << std::endl;
 result = 1;
 break;
 }

 if (!header) {
 std::cout << std::left << std::setw(55) << "Name" <<
 std::setw(30) << "ID" << std::setw(80) << "Arn" <<
 std::setw(64) << "Description" << std::setw(12) <<
 "CreateDate" << std::endl;
 header = true;
 }

 const auto &policies = outcome.GetResult().GetPolicies();
 for (const auto &policy: policies) {

IAM 1559

AWS Identity and Access Management User Guide

 std::cout << std::left << std::setw(55) <<
 policy.GetPolicyName() << std::setw(30) <<
 policy.GetPolicyId() << std::setw(80) <<
 policy.GetArn() <<
 std::setw(64) << policy.GetDescription() <<
 std::setw(12) <<
 policy.GetCreateDate().ToGmtString(DATE_FORMAT.c_str())
 <<
 std::endl;
 }

 if (outcome.GetResult().GetIsTruncated()) {
 request.SetMarker(outcome.GetResult().GetMarker());
 } else {
 done = true;
 }
 }
 }

 Aws::ShutdownAPI(options); // Should only be called once.
 return result;
}

• For API details, see ListPolicies in AWS SDK for C++ API Reference.

Go

SDK for Go V2

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

package main

import (
 "context"

IAM 1560

https://docs.aws.amazon.com/goto/SdkForCpp/iam-2010-05-08/ListPolicies
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/gov2/iam#code-examples

AWS Identity and Access Management User Guide

 "fmt"

 "github.com/aws/aws-sdk-go-v2/aws"
 "github.com/aws/aws-sdk-go-v2/config"
 "github.com/aws/aws-sdk-go-v2/service/iam"
)

// main uses the AWS SDK for Go (v2) to create an AWS Identity and Access
 Management (IAM)
// client and list up to 10 policies in your account.
// This example uses the default settings specified in your shared credentials
// and config files.
func main() {
 sdkConfig, err := config.LoadDefaultConfig(context.TODO())
 if err != nil {
 fmt.Println("Couldn't load default configuration. Have you set up your AWS
 account?")
 fmt.Println(err)
 return
 }
 iamClient := iam.NewFromConfig(sdkConfig)
 const maxPols = 10
 fmt.Printf("Let's list up to %v policies for your account.\n", maxPols)
 result, err := iamClient.ListPolicies(context.TODO(), &iam.ListPoliciesInput{
 MaxItems: aws.Int32(maxPols),
 })
 if err != nil {
 fmt.Printf("Couldn't list policies for your account. Here's why: %v\n", err)
 return
 }
 if len(result.Policies) == 0 {
 fmt.Println("You don't have any policies!")
 } else {
 for _, policy := range result.Policies {
 fmt.Printf("\t%v\n", *policy.PolicyName)
 }
 }
}

• For API details, see ListPolicies in AWS SDK for Go API Reference.

IAM 1561

https://pkg.go.dev/github.com/aws/aws-sdk-go-v2/service/iam#Client.ListPolicies

AWS Identity and Access Management User Guide

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

import software.amazon.awssdk.regions.Region;
import software.amazon.awssdk.services.iam.IamClient;
import software.amazon.awssdk.services.iam.model.ListPoliciesResponse;
import software.amazon.awssdk.services.iam.model.Policy;
import java.util.List;

/**
 * Before running this Java V2 code example, set up your development
 * environment, including your credentials.
 *
 * For more information, see the following documentation topic:
 *
 * https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/get-
started.html
 */
public class HelloIAM {
 public static void main(String[] args) {
 Region region = Region.AWS_GLOBAL;
 IamClient iam = IamClient.builder()
 .region(region)
 .build();

 listPolicies(iam);
 }

 public static void listPolicies(IamClient iam) {
 ListPoliciesResponse response = iam.listPolicies();
 List<Policy> polList = response.policies();
 polList.forEach(policy -> {
 System.out.println("Policy Name: " + policy.policyName());
 });
 }

IAM 1562

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/iam#readme

AWS Identity and Access Management User Guide

}

• For API details, see ListPolicies in AWS SDK for Java 2.x API Reference.

JavaScript

SDK for JavaScript (v3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

import { IAMClient, paginateListPolicies } from "@aws-sdk/client-iam";

const client = new IAMClient({});

export const listLocalPolicies = async () => {
 /**
 * In v3, the clients expose paginateOperationName APIs that are written using
 async generators so that you can use async iterators in a for await..of loop.
 * https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/index.html#paginators
 */
 const paginator = paginateListPolicies(
 { client, pageSize: 10 },
 // List only customer managed policies.
 { Scope: "Local" },
);

 console.log("IAM policies defined in your account:");
 let policyCount = 0;
 for await (const page of paginator) {
 if (page.Policies) {
 page.Policies.forEach((p) => {
 console.log(`${p.PolicyName}`);
 policyCount++;
 });
 }
 }
 console.log(`Found ${policyCount} policies.`);

IAM 1563

https://docs.aws.amazon.com/goto/SdkForJavaV2/iam-2010-05-08/ListPolicies
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/iam#code-examples

AWS Identity and Access Management User Guide

};

• For API details, see ListPolicies in AWS SDK for JavaScript API Reference.

Rust

SDK for Rust

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

From src/bin/hello.rs.

use aws_sdk_iam::error::SdkError;
use aws_sdk_iam::operation::list_policies::ListPoliciesError;
use clap::Parser;

const PATH_PREFIX_HELP: &str = "The path prefix for filtering the results.";

#[derive(Debug, clap::Parser)]
#[command(about)]
struct HelloScenarioArgs {
 #[arg(long, default_value="/", help=PATH_PREFIX_HELP)]
 pub path_prefix: String,
}

#[tokio::main]
async fn main() -> Result<(), SdkError<ListPoliciesError>> {
 let sdk_config = aws_config::load_from_env().await;
 let client = aws_sdk_iam::Client::new(&sdk_config);

 let args = HelloScenarioArgs::parse();

 iam_service::list_policies(client, args.path_prefix).await?;

 Ok(())
}

IAM 1564

https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/client/iam/command/ListPoliciesCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/rustv1/examples/iam#code-examples

AWS Identity and Access Management User Guide

From src/iam-service-lib.rs.

pub async fn list_policies(
 client: iamClient,
 path_prefix: String,
) -> Result<Vec<String>, SdkError<ListPoliciesError>> {
 let list_policies = client
 .list_policies()
 .path_prefix(path_prefix)
 .scope(PolicyScopeType::Local)
 .into_paginator()
 .items()
 .send()
 .try_collect()
 .await?;

 let policy_names = list_policies
 .into_iter()
 .map(|p| {
 let name = p
 .policy_name
 .unwrap_or_else(|| "Missing Policy Name".to_string());
 println!("{}", name);
 name
 })
 .collect();

 Ok(policy_names)
}

• For API details, see ListPolicies in AWS SDK for Rust API reference.

Code examples

• Actions for IAM using AWS SDKs

• Add an IAM user to a group using an AWS SDK

• Attach an IAM policy to a role using an AWS SDK

• Attach an IAM policy to a user using an AWS SDK

IAM 1565

https://docs.rs/releases/search?query=aws-sdk

AWS Identity and Access Management User Guide

• Attach an inline policy to an IAM role using an AWS SDK

• Create an IAM SAML provider using an AWS SDK

• Create an IAM group using an AWS SDK

• Create an IAM policy using an AWS SDK

• Create an IAM policy version using an AWS SDK

• Create an IAM role using an AWS SDK

• Create an IAM service-linked role using an AWS SDK

• Create an IAM user using an AWS SDK

• Create an IAM access key using an AWS SDK

• Create an alias for an IAM account using an AWS SDK

• Create an inline IAM policy for a group using an AWS SDK

• Create an inline IAM policy for a user using an AWS SDK

• Create an IAM instance profile using an AWS SDK

• Delete an IAM SAML provider using an AWS SDK

• Delete an IAM group using an AWS SDK

• Delete an IAM group policy using an AWS SDK

• Delete an IAM policy using an AWS SDK

• Delete an IAM role using an AWS SDK

• Delete an IAM role policy using an AWS SDK

• Delete an IAM server certificate using an AWS SDK

• Delete an IAM service-linked role using an AWS SDK

• Delete an IAM user using an AWS SDK

• Delete an IAM access key using an AWS SDK

• Delete an IAM account alias using an AWS SDK

• Delete an inline IAM policy from a user using an AWS SDK

• Delete an IAM instance profile using an AWS SDK

• Detach an IAM policy from a role using an AWS SDK

• Detach an IAM policy from a user using an AWS SDK

• Generate a credential report from IAM using an AWS SDK

• Get a credential report from IAM using an AWS SDK
IAM 1566

AWS Identity and Access Management User Guide

• Get a detailed IAM authorization report for your account using an AWS SDK

• Get an IAM policy using an AWS SDK

• Get an IAM policy version using an AWS SDK

• Get an IAM role using an AWS SDK

• Get an IAM server certificate using an AWS SDK

• Get an IAM service-linked role's deletion status using an AWS SDK

• Get a summary of account usage from IAM using an AWS SDK

• Get an IAM user using an AWS SDK

• Get data about the last use of an IAM access key using an AWS SDK

• Get the IAM account password policy using an AWS SDK

• List SAML providers for IAM using an AWS SDK

• List a user's IAM access keys using an AWS SDK

• List IAM account aliases using an AWS SDK

• List IAM groups using an AWS SDK

• List inline policies for an IAM role using an AWS SDK

• List inline IAM policies for a user using an AWS SDK

• List IAM policies using an AWS SDK

• List policies attached to an IAM role using an AWS SDK

• List IAM roles using an AWS SDK

• List IAM server certificates using an AWS SDK

• List IAM users using an AWS SDK

• Remove an IAM user from a group using an AWS SDK

• Update an IAM server certificate using an AWS SDK

• Update an IAM user using an AWS SDK

• Update an IAM access key using an AWS SDK

• Upload an IAM server certificate using an AWS SDK

• Scenarios for IAM using AWS SDKs

• Build and manage a resilient service using an AWS SDK

• Create an IAM group and add a user to the group using an AWS SDK

• Create an IAM user and assume a role with AWS STS using an AWS SDK
IAM 1567

AWS Identity and Access Management User Guide

• Create read-only and read-write IAM users using an AWS SDK

• Manage IAM access keys using an AWS SDK

• Manage IAM policies using an AWS SDK

• Manage IAM roles using an AWS SDK

• Manage your IAM account using an AWS SDK

• Roll back an IAM policy version using an AWS SDK

• Work with the IAM Policy Builder API using an AWS SDK

Actions for IAM using AWS SDKs

The following code examples demonstrate how to perform individual IAM actions with AWS SDKs.
These excerpts call the IAM API and are code excerpts from larger programs that must be run in
context. Each example includes a link to GitHub, where you can find instructions for setting up and
running the code.

The following examples include only the most commonly used actions. For a complete list, see the
AWS Identity and Access Management (IAM) API Reference.

Examples

• Add an IAM user to a group using an AWS SDK

• Attach an IAM policy to a role using an AWS SDK

• Attach an IAM policy to a user using an AWS SDK

• Attach an inline policy to an IAM role using an AWS SDK

• Create an IAM SAML provider using an AWS SDK

• Create an IAM group using an AWS SDK

• Create an IAM policy using an AWS SDK

• Create an IAM policy version using an AWS SDK

• Create an IAM role using an AWS SDK

• Create an IAM service-linked role using an AWS SDK

• Create an IAM user using an AWS SDK

• Create an IAM access key using an AWS SDK

• Create an alias for an IAM account using an AWS SDK

• Create an inline IAM policy for a group using an AWS SDK

Actions 1568

https://docs.aws.amazon.com/IAM/latest/APIReference/welcome.html

AWS Identity and Access Management User Guide

• Create an inline IAM policy for a user using an AWS SDK

• Create an IAM instance profile using an AWS SDK

• Delete an IAM SAML provider using an AWS SDK

• Delete an IAM group using an AWS SDK

• Delete an IAM group policy using an AWS SDK

• Delete an IAM policy using an AWS SDK

• Delete an IAM role using an AWS SDK

• Delete an IAM role policy using an AWS SDK

• Delete an IAM server certificate using an AWS SDK

• Delete an IAM service-linked role using an AWS SDK

• Delete an IAM user using an AWS SDK

• Delete an IAM access key using an AWS SDK

• Delete an IAM account alias using an AWS SDK

• Delete an inline IAM policy from a user using an AWS SDK

• Delete an IAM instance profile using an AWS SDK

• Detach an IAM policy from a role using an AWS SDK

• Detach an IAM policy from a user using an AWS SDK

• Generate a credential report from IAM using an AWS SDK

• Get a credential report from IAM using an AWS SDK

• Get a detailed IAM authorization report for your account using an AWS SDK

• Get an IAM policy using an AWS SDK

• Get an IAM policy version using an AWS SDK

• Get an IAM role using an AWS SDK

• Get an IAM server certificate using an AWS SDK

• Get an IAM service-linked role's deletion status using an AWS SDK

• Get a summary of account usage from IAM using an AWS SDK

• Get an IAM user using an AWS SDK

• Get data about the last use of an IAM access key using an AWS SDK

• Get the IAM account password policy using an AWS SDK

• List SAML providers for IAM using an AWS SDK

Actions 1569

AWS Identity and Access Management User Guide

• List a user's IAM access keys using an AWS SDK

• List IAM account aliases using an AWS SDK

• List IAM groups using an AWS SDK

• List inline policies for an IAM role using an AWS SDK

• List inline IAM policies for a user using an AWS SDK

• List IAM policies using an AWS SDK

• List policies attached to an IAM role using an AWS SDK

• List IAM roles using an AWS SDK

• List IAM server certificates using an AWS SDK

• List IAM users using an AWS SDK

• Remove an IAM user from a group using an AWS SDK

• Update an IAM server certificate using an AWS SDK

• Update an IAM user using an AWS SDK

• Update an IAM access key using an AWS SDK

• Upload an IAM server certificate using an AWS SDK

Add an IAM user to a group using an AWS SDK

The following code examples show how to add a user to an IAM group.

Action examples are code excerpts from larger programs and must be run in context. You can see
this action in context in the following code example:

• Create a group and add a user

.NET

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Actions 1570

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/IAM#code-examples

AWS Identity and Access Management User Guide

 /// <summary>
 /// Add an existing IAM user to an existing IAM group.
 /// </summary>
 /// <param name="userName">The username of the user to add.</param>
 /// <param name="groupName">The name of the group to add the user to.</param>
 /// <returns>A Boolean value indicating the success of the action.</returns>
 public async Task<bool> AddUserToGroupAsync(string userName, string
 groupName)
 {
 var response = await _IAMService.AddUserToGroupAsync(new
 AddUserToGroupRequest
 {
 GroupName = groupName,
 UserName = userName,
 });

 return response.HttpStatusCode == HttpStatusCode.OK;
 }

• For API details, see AddUserToGroup in AWS SDK for .NET API Reference.

CLI

AWS CLI

To add a user to an IAM group

The following add-user-to-group command adds an IAM user named Bob to the IAM
group named Admins.

aws iam add-user-to-group \
 --user-name Bob \
 --group-name Admins

This command produces no output.

For more information, see Adding and removing users in an IAM user group in the AWS IAM
User Guide.

• For API details, see AddUserToGroup in AWS CLI Command Reference.

Actions 1571

https://docs.aws.amazon.com/goto/DotNetSDKV3/iam-2010-05-08/AddUserToGroup
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_groups_manage_add-remove-users.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/iam/add-user-to-group.html

AWS Identity and Access Management User Guide

For a complete list of AWS SDK developer guides and code examples, see Using IAM with an AWS
SDK. This topic also includes information about getting started and details about previous SDK
versions.

Attach an IAM policy to a role using an AWS SDK

The following code examples show how to attach an IAM policy to a role.

Action examples are code excerpts from larger programs and must be run in context. You can see
this action in context in the following code examples:

• Create a group and add a user

• Create a user and assume a role

• Manage roles

.NET

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 /// <summary>
 /// Attach an IAM policy to a role.
 /// </summary>
 /// <param name="policyArn">The policy to attach.</param>
 /// <param name="roleName">The role that the policy will be attached to.</
param>
 /// <returns>A Boolean value indicating the success of the action.</returns>
 public async Task<bool> AttachRolePolicyAsync(string policyArn, string
 roleName)
 {
 var response = await _IAMService.AttachRolePolicyAsync(new
 AttachRolePolicyRequest
 {
 PolicyArn = policyArn,
 RoleName = roleName,

Actions 1572

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/IAM#code-examples

AWS Identity and Access Management User Guide

 });

 return response.HttpStatusCode == System.Net.HttpStatusCode.OK;
 }

• For API details, see AttachRolePolicy in AWS SDK for .NET API Reference.

Bash

AWS CLI with Bash script

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

###
function errecho
#
This function outputs everything sent to it to STDERR (standard error output).
###
function errecho() {
 printf "%s\n" "$*" 1>&2
}

###
function iam_attach_role_policy
#
This function attaches an IAM policy to a tole.
#
Parameters:
-n role_name -- The name of the IAM role.
-p policy_ARN -- The IAM policy document ARN..
#
Returns:
0 - If successful.
1 - If it fails.
###
function iam_attach_role_policy() {

Actions 1573

https://docs.aws.amazon.com/goto/DotNetSDKV3/iam-2010-05-08/AttachRolePolicy
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/aws-cli/bash-linux/iam#code-examples

AWS Identity and Access Management User Guide

 local role_name policy_arn response
 local option OPTARG # Required to use getopts command in a function.

 # bashsupport disable=BP5008
 function usage() {
 echo "function iam_attach_role_policy"
 echo "Attaches an AWS Identity and Access Management (IAM) policy to an IAM
 role."
 echo " -n role_name The name of the IAM role."
 echo " -p policy_ARN -- The IAM policy document ARN."
 echo ""
 }

 # Retrieve the calling parameters.
 while getopts "n:p:h" option; do
 case "${option}" in
 n) role_name="${OPTARG}" ;;
 p) policy_arn="${OPTARG}" ;;
 h)
 usage
 return 0
 ;;
 \?)
 echo "Invalid parameter"
 usage
 return 1
 ;;
 esac
 done
 export OPTIND=1

 if [[-z "$role_name"]]; then
 errecho "ERROR: You must provide a role name with the -n parameter."
 usage
 return 1
 fi

 if [[-z "$policy_arn"]]; then
 errecho "ERROR: You must provide a policy ARN with the -p parameter."
 usage
 return 1
 fi

 response=$(aws iam attach-role-policy \

Actions 1574

AWS Identity and Access Management User Guide

 --role-name "$role_name" \
 --policy-arn "$policy_arn")

 local error_code=${?}

 if [[$error_code -ne 0]]; then
 aws_cli_error_log $error_code
 errecho "ERROR: AWS reports attach-role-policy operation failed.\n$response"
 return 1
 fi

 echo "$response"

 return 0
}

• For API details, see AttachRolePolicy in AWS CLI Command Reference.

C++

SDK for C++

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

bool AwsDoc::IAM::attachRolePolicy(const Aws::String &roleName,
 const Aws::String &policyArn,
 const Aws::Client::ClientConfiguration
 &clientConfig) {
 Aws::IAM::IAMClient iam(clientConfig);

 Aws::IAM::Model::ListAttachedRolePoliciesRequest list_request;
 list_request.SetRoleName(roleName);

 bool done = false;
 while (!done) {
 auto list_outcome = iam.ListAttachedRolePolicies(list_request);
 if (!list_outcome.IsSuccess()) {

Actions 1575

https://docs.aws.amazon.com/goto/aws-cli/iam-2010-05-08/AttachRolePolicy
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/cpp/example_code/iam#code-examples

AWS Identity and Access Management User Guide

 std::cerr << "Failed to list attached policies of role " <<
 roleName << ": " << list_outcome.GetError().GetMessage() <<
 std::endl;
 return false;
 }

 const auto &policies = list_outcome.GetResult().GetAttachedPolicies();
 if (std::any_of(policies.cbegin(), policies.cend(),
 [=](const Aws::IAM::Model::AttachedPolicy &policy) {
 return policy.GetPolicyArn() == policyArn;
 })) {
 std::cout << "Policy " << policyArn <<
 " is already attached to role " << roleName << std::endl;
 return true;
 }

 done = !list_outcome.GetResult().GetIsTruncated();
 list_request.SetMarker(list_outcome.GetResult().GetMarker());
 }

 Aws::IAM::Model::AttachRolePolicyRequest request;
 request.SetRoleName(roleName);
 request.SetPolicyArn(policyArn);

 Aws::IAM::Model::AttachRolePolicyOutcome outcome =
 iam.AttachRolePolicy(request);
 if (!outcome.IsSuccess()) {
 std::cerr << "Failed to attach policy " << policyArn << " to role " <<
 roleName << ": " << outcome.GetError().GetMessage() <<
 std::endl;
 }
 else {
 std::cout << "Successfully attached policy " << policyArn << " to role "
 <<
 roleName << std::endl;
 }

 return outcome.IsSuccess();
}

• For API details, see AttachRolePolicy in AWS SDK for C++ API Reference.

Actions 1576

https://docs.aws.amazon.com/goto/SdkForCpp/iam-2010-05-08/AttachRolePolicy

AWS Identity and Access Management User Guide

CLI

AWS CLI

To attach a managed policy to an IAM role

The following attach-role-policy command attaches the AWS managed policy named
ReadOnlyAccess to the IAM role named ReadOnlyRole.

aws iam attach-role-policy \
 --policy-arn arn:aws:iam::aws:policy/ReadOnlyAccess \
 --role-name ReadOnlyRole

This command produces no output.

For more information, see Managed policies and inline policies in the AWS IAM User Guide.

• For API details, see AttachRolePolicy in AWS CLI Command Reference.

Go

SDK for Go V2

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

// RoleWrapper encapsulates AWS Identity and Access Management (IAM) role actions
// used in the examples.
// It contains an IAM service client that is used to perform role actions.
type RoleWrapper struct {
 IamClient *iam.Client
}

// AttachRolePolicy attaches a policy to a role.
func (wrapper RoleWrapper) AttachRolePolicy(policyArn string, roleName string)
 error {

Actions 1577

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/iam/attach-role-policy.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/gov2/iam#code-examples

AWS Identity and Access Management User Guide

 _, err := wrapper.IamClient.AttachRolePolicy(context.TODO(),
 &iam.AttachRolePolicyInput{
 PolicyArn: aws.String(policyArn),
 RoleName: aws.String(roleName),
 })
 if err != nil {
 log.Printf("Couldn't attach policy %v to role %v. Here's why: %v\n", policyArn,
 roleName, err)
 }
 return err
}

• For API details, see AttachRolePolicy in AWS SDK for Go API Reference.

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

import software.amazon.awssdk.regions.Region;
import software.amazon.awssdk.services.iam.IamClient;
import software.amazon.awssdk.services.iam.model.IamException;
import software.amazon.awssdk.services.iam.model.AttachRolePolicyRequest;
import software.amazon.awssdk.services.iam.model.AttachedPolicy;
import software.amazon.awssdk.services.iam.model.ListAttachedRolePoliciesRequest;
import
 software.amazon.awssdk.services.iam.model.ListAttachedRolePoliciesResponse;
import java.util.List;

/**
 * Before running this Java V2 code example, set up your development
 * environment, including your credentials.
 *
 * For more information, see the following documentation topic:
 *

Actions 1578

https://pkg.go.dev/github.com/aws/aws-sdk-go-v2/service/iam#Client.AttachRolePolicy
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/iam#readme

AWS Identity and Access Management User Guide

 * https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/get-
started.html
 */
public class AttachRolePolicy {
 public static void main(String[] args) {
 final String usage = """

 Usage:
 <roleName> <policyArn>\s

 Where:
 roleName - A role name that you can obtain from the AWS
 Management Console.\s
 policyArn - A policy ARN that you can obtain from the AWS
 Management Console.\s
 """;

 if (args.length != 2) {
 System.out.println(usage);
 System.exit(1);
 }

 String roleName = args[0];
 String policyArn = args[1];

 Region region = Region.AWS_GLOBAL;
 IamClient iam = IamClient.builder()
 .region(region)
 .build();

 attachIAMRolePolicy(iam, roleName, policyArn);
 iam.close();
 }

 public static void attachIAMRolePolicy(IamClient iam, String roleName, String
 policyArn) {
 try {
 ListAttachedRolePoliciesRequest request =
 ListAttachedRolePoliciesRequest.builder()
 .roleName(roleName)
 .build();

 ListAttachedRolePoliciesResponse response =
 iam.listAttachedRolePolicies(request);

Actions 1579

AWS Identity and Access Management User Guide

 List<AttachedPolicy> attachedPolicies = response.attachedPolicies();

 // Ensure that the policy is not attached to this role
 String polArn = "";
 for (AttachedPolicy policy : attachedPolicies) {
 polArn = policy.policyArn();
 if (polArn.compareTo(policyArn) == 0) {
 System.out.println(roleName + " policy is already attached to
 this role.");
 return;
 }
 }

 AttachRolePolicyRequest attachRequest =
 AttachRolePolicyRequest.builder()
 .roleName(roleName)
 .policyArn(policyArn)
 .build();

 iam.attachRolePolicy(attachRequest);

 System.out.println("Successfully attached policy " + policyArn +
 " to role " + roleName);

 } catch (IamException e) {
 System.err.println(e.awsErrorDetails().errorMessage());
 System.exit(1);
 }
 System.out.println("Done");
 }
}

• For API details, see AttachRolePolicy in AWS SDK for Java 2.x API Reference.

Actions 1580

https://docs.aws.amazon.com/goto/SdkForJavaV2/iam-2010-05-08/AttachRolePolicy

AWS Identity and Access Management User Guide

JavaScript

SDK for JavaScript (v3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Attach the policy.

import { AttachRolePolicyCommand, IAMClient } from "@aws-sdk/client-iam";

const client = new IAMClient({});

/**
 *
 * @param {string} policyArn
 * @param {string} roleName
 */
export const attachRolePolicy = (policyArn, roleName) => {
 const command = new AttachRolePolicyCommand({
 PolicyArn: policyArn,
 RoleName: roleName,
 });

 return client.send(command);
};

• For more information, see AWS SDK for JavaScript Developer Guide.

• For API details, see AttachRolePolicy in AWS SDK for JavaScript API Reference.

SDK for JavaScript (v2)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Actions 1581

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/iam#code-examples
https://docs.aws.amazon.com/sdk-for-javascript/v3/developer-guide/iam-examples-policies.html#iam-examples-policies-attaching-role-policy
https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/client/iam/command/AttachRolePolicyCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascript/example_code/iam#code-examples

AWS Identity and Access Management User Guide

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set the region
AWS.config.update({ region: "REGION" });

// Create the IAM service object
var iam = new AWS.IAM({ apiVersion: "2010-05-08" });

var paramsRoleList = {
 RoleName: process.argv[2],
};

iam.listAttachedRolePolicies(paramsRoleList, function (err, data) {
 if (err) {
 console.log("Error", err);
 } else {
 var myRolePolicies = data.AttachedPolicies;
 myRolePolicies.forEach(function (val, index, array) {
 if (myRolePolicies[index].PolicyName === "AmazonDynamoDBFullAccess") {
 console.log(
 "AmazonDynamoDBFullAccess is already attached to this role."
);
 process.exit();
 }
 });
 var params = {
 PolicyArn: "arn:aws:iam::aws:policy/AmazonDynamoDBFullAccess",
 RoleName: process.argv[2],
 };
 iam.attachRolePolicy(params, function (err, data) {
 if (err) {
 console.log("Unable to attach policy to role", err);
 } else {
 console.log("Role attached successfully");
 }
 });
 }
});

• For more information, see AWS SDK for JavaScript Developer Guide.

• For API details, see AttachRolePolicy in AWS SDK for JavaScript API Reference.

Actions 1582

https://docs.aws.amazon.com/sdk-for-javascript/v2/developer-guide/iam-examples-policies.html#iam-examples-policies-attaching-role-policy
https://docs.aws.amazon.com/goto/AWSJavaScriptSDK/iam-2010-05-08/AttachRolePolicy

AWS Identity and Access Management User Guide

Kotlin

SDK for Kotlin

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

suspend fun attachIAMRolePolicy(roleNameVal: String, policyArnVal: String) {

 val request = ListAttachedRolePoliciesRequest {
 roleName = roleNameVal
 }

 IamClient { region = "AWS_GLOBAL" }.use { iamClient ->
 val response = iamClient.listAttachedRolePolicies(request)
 val attachedPolicies = response.attachedPolicies

 // Ensure that the policy is not attached to this role.
 val checkStatus: Int
 if (attachedPolicies != null) {
 checkStatus = checkList(attachedPolicies, policyArnVal)
 if (checkStatus == -1)
 return
 }

 val policyRequest = AttachRolePolicyRequest {
 roleName = roleNameVal
 policyArn = policyArnVal
 }
 iamClient.attachRolePolicy(policyRequest)
 println("Successfully attached policy $policyArnVal to role
 $roleNameVal")
 }
}

fun checkList(attachedPolicies: List<AttachedPolicy>, policyArnVal: String): Int
 {

 for (policy in attachedPolicies) {

Actions 1583

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/kotlin/services/iam#code-examples

AWS Identity and Access Management User Guide

 val polArn = policy.policyArn.toString()

 if (polArn.compareTo(policyArnVal) == 0) {
 println("The policy is already attached to this role.")
 return -1
 }
 }
 return 0
}

• For API details, see AttachRolePolicy in AWS SDK for Kotlin API reference.

PHP

SDK for PHP

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

$uuid = uniqid();
$service = new IAMService();

$assumeRolePolicyDocument = "{
 \"Version\": \"2012-10-17\",
 \"Statement\": [{
 \"Effect\": \"Allow\",
 \"Principal\": {\"AWS\": \"{$user['Arn']}\"},
 \"Action\": \"sts:AssumeRole\"
 }]
 }";
$assumeRoleRole = $service->createRole("iam_demo_role_$uuid",
 $assumeRolePolicyDocument);
echo "Created role: {$assumeRoleRole['RoleName']}\n";

$listAllBucketsPolicyDocument = "{
 \"Version\": \"2012-10-17\",
 \"Statement\": [{
 \"Effect\": \"Allow\",

Actions 1584

https://github.com/awslabs/aws-sdk-kotlin#generating-api-documentation
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/php/example_code/iam#code-examples

AWS Identity and Access Management User Guide

 \"Action\": \"s3:ListAllMyBuckets\",
 \"Resource\": \"arn:aws:s3:::*\"}]
}";
$listAllBucketsPolicy = $service->createPolicy("iam_demo_policy_$uuid",
 $listAllBucketsPolicyDocument);
echo "Created policy: {$listAllBucketsPolicy['PolicyName']}\n";

$service->attachRolePolicy($assumeRoleRole['RoleName'],
 $listAllBucketsPolicy['Arn']);

 public function attachRolePolicy($roleName, $policyArn)
 {
 return $this->customWaiter(function () use ($roleName, $policyArn) {
 $this->iamClient->attachRolePolicy([
 'PolicyArn' => $policyArn,
 'RoleName' => $roleName,
]);
 });
 }

• For API details, see AttachRolePolicy in AWS SDK for PHP API Reference.

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Attach a policy to a role using the Boto3 Policy object.

def attach_to_role(role_name, policy_arn):
 """
 Attaches a policy to a role.

 :param role_name: The name of the role. **Note** this is the name, not the
 ARN.
 :param policy_arn: The ARN of the policy.

Actions 1585

https://docs.aws.amazon.com/goto/SdkForPHPV3/iam-2010-05-08/AttachRolePolicy
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/iam#code-examples

AWS Identity and Access Management User Guide

 """
 try:
 iam.Policy(policy_arn).attach_role(RoleName=role_name)
 logger.info("Attached policy %s to role %s.", policy_arn, role_name)
 except ClientError:
 logger.exception("Couldn't attach policy %s to role %s.", policy_arn,
 role_name)
 raise

Attach a policy to a role using the Boto3 Role object.

def attach_policy(role_name, policy_arn):
 """
 Attaches a policy to a role.

 :param role_name: The name of the role. **Note** this is the name, not the
 ARN.
 :param policy_arn: The ARN of the policy.
 """
 try:
 iam.Role(role_name).attach_policy(PolicyArn=policy_arn)
 logger.info("Attached policy %s to role %s.", policy_arn, role_name)
 except ClientError:
 logger.exception("Couldn't attach policy %s to role %s.", policy_arn,
 role_name)
 raise

• For API details, see AttachRolePolicy in AWS SDK for Python (Boto3) API Reference.

Actions 1586

https://docs.aws.amazon.com/goto/boto3/iam-2010-05-08/AttachRolePolicy

AWS Identity and Access Management User Guide

Ruby

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

This example module lists, creates, attaches, and detaches role policies.

Manages policies in AWS Identity and Access Management (IAM)
class RolePolicyManager
 # Initialize with an AWS IAM client
 #
 # @param iam_client [Aws::IAM::Client] An initialized IAM client
 def initialize(iam_client, logger: Logger.new($stdout))
 @iam_client = iam_client
 @logger = logger
 @logger.progname = "PolicyManager"
 end

 # Creates a policy
 #
 # @param policy_name [String] The name of the policy
 # @param policy_document [Hash] The policy document
 # @return [String] The policy ARN if successful, otherwise nil
 def create_policy(policy_name, policy_document)
 response = @iam_client.create_policy(
 policy_name: policy_name,
 policy_document: policy_document.to_json
)
 response.policy.arn
 rescue Aws::IAM::Errors::ServiceError => e
 @logger.error("Error creating policy: #{e.message}")
 nil
 end

 # Fetches an IAM policy by its ARN
 # @param policy_arn [String] the ARN of the IAM policy to retrieve
 # @return [Aws::IAM::Types::GetPolicyResponse] the policy object if found
 def get_policy(policy_arn)

Actions 1587

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/iam#code-examples

AWS Identity and Access Management User Guide

 response = @iam_client.get_policy(policy_arn: policy_arn)
 policy = response.policy
 @logger.info("Got policy '#{policy.policy_name}'. Its ID is:
 #{policy.policy_id}.")
 policy
 rescue Aws::IAM::Errors::NoSuchEntity
 @logger.error("Couldn't get policy '#{policy_arn}'. The policy does not
 exist.")
 raise
 rescue Aws::IAM::Errors::ServiceError => e
 @logger.error("Couldn't get policy '#{policy_arn}'. Here's why: #{e.code}:
 #{e.message}")
 raise
 end

 # Attaches a policy to a role
 #
 # @param role_name [String] The name of the role
 # @param policy_arn [String] The policy ARN
 # @return [Boolean] true if successful, false otherwise
 def attach_policy_to_role(role_name, policy_arn)
 @iam_client.attach_role_policy(
 role_name: role_name,
 policy_arn: policy_arn
)
 true
 rescue Aws::IAM::Errors::ServiceError => e
 @logger.error("Error attaching policy to role: #{e.message}")
 false
 end

 # Lists policy ARNs attached to a role
 #
 # @param role_name [String] The name of the role
 # @return [Array<String>] List of policy ARNs
 def list_attached_policy_arns(role_name)
 response = @iam_client.list_attached_role_policies(role_name: role_name)
 response.attached_policies.map(&:policy_arn)
 rescue Aws::IAM::Errors::ServiceError => e
 @logger.error("Error listing policies attached to role: #{e.message}")
 []
 end

 # Detaches a policy from a role

Actions 1588

AWS Identity and Access Management User Guide

 #
 # @param role_name [String] The name of the role
 # @param policy_arn [String] The policy ARN
 # @return [Boolean] true if successful, false otherwise
 def detach_policy_from_role(role_name, policy_arn)
 @iam_client.detach_role_policy(
 role_name: role_name,
 policy_arn: policy_arn
)
 true
 rescue Aws::IAM::Errors::ServiceError => e
 @logger.error("Error detaching policy from role: #{e.message}")
 false
 end
end

• For API details, see AttachRolePolicy in AWS SDK for Ruby API Reference.

Rust

SDK for Rust

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

pub async fn attach_role_policy(
 client: &iamClient,
 role: &Role,
 policy: &Policy,
) -> Result<AttachRolePolicyOutput, SdkError<AttachRolePolicyError>> {
 client
 .attach_role_policy()
 .role_name(role.role_name())
 .policy_arn(policy.arn().unwrap_or_default())
 .send()
 .await
}

Actions 1589

https://docs.aws.amazon.com/goto/SdkForRubyV3/iam-2010-05-08/AttachRolePolicy
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/rustv1/examples/iam#code-examples

AWS Identity and Access Management User Guide

• For API details, see AttachRolePolicy in AWS SDK for Rust API reference.

Swift

SDK for Swift

Note

This is prerelease documentation for an SDK in preview release. It is subject to
change.

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 public func attachRolePolicy(role: String, policyArn: String) async throws {
 let input = AttachRolePolicyInput(
 policyArn: policyArn,
 roleName: role
)
 do {
 _ = try await client.attachRolePolicy(input: input)
 } catch {
 throw error
 }
 }

• For API details, see AttachRolePolicy in AWS SDK for Swift API reference.

For a complete list of AWS SDK developer guides and code examples, see Using IAM with an AWS
SDK. This topic also includes information about getting started and details about previous SDK
versions.

Actions 1590

https://docs.rs/releases/search?query=aws-sdk
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/swift/example_code/iam#code-examples
https://awslabs.github.io/aws-sdk-swift/reference/0.x

AWS Identity and Access Management User Guide

Attach an IAM policy to a user using an AWS SDK

The following code examples show how to attach an IAM policy to a user.

Warning

To avoid security risks, don't use IAM users for authentication when developing purpose-
built software or working with real data. Instead, use federation with an identity provider
such as AWS IAM Identity Center.

Action examples are code excerpts from larger programs and must be run in context. You can see
this action in context in the following code example:

• Create read-only and read-write users

CLI

AWS CLI

To attach a managed policy to an IAM user

The following attach-user-policy command attaches the AWS managed policy named
AdministratorAccess to the IAM user named Alice.

aws iam attach-user-policy \
 --policy-arn arn:aws:iam::aws:policy/AdministratorAccess \
 --user-name Alice

This command produces no output.

For more information, see Managed policies and inline policies in the AWS IAM User Guide.

• For API details, see AttachUserPolicy in AWS CLI Command Reference.

Actions 1591

https://docs.aws.amazon.com/singlesignon/latest/userguide/what-is.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/iam/attach-user-policy.html

AWS Identity and Access Management User Guide

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

def attach_policy(user_name, policy_arn):
 """
 Attaches a policy to a user.

 :param user_name: The name of the user.
 :param policy_arn: The Amazon Resource Name (ARN) of the policy.
 """
 try:
 iam.User(user_name).attach_policy(PolicyArn=policy_arn)
 logger.info("Attached policy %s to user %s.", policy_arn, user_name)
 except ClientError:
 logger.exception("Couldn't attach policy %s to user %s.", policy_arn,
 user_name)
 raise

• For API details, see AttachUserPolicy in AWS SDK for Python (Boto3) API Reference.

Ruby

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Actions 1592

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/iam#code-examples
https://docs.aws.amazon.com/goto/boto3/iam-2010-05-08/AttachUserPolicy
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/iam#code-examples

AWS Identity and Access Management User Guide

 # Attaches a policy to a user
 #
 # @param user_name [String] The name of the user
 # @param policy_arn [String] The Amazon Resource Name (ARN) of the policy
 # @return [Boolean] true if successful, false otherwise
 def attach_policy_to_user(user_name, policy_arn)
 @iam_client.attach_user_policy(
 user_name: user_name,
 policy_arn: policy_arn
)
 true
 rescue Aws::IAM::Errors::ServiceError => e
 @logger.error("Error attaching policy to user: #{e.message}")
 false
 end

• For API details, see AttachUserPolicy in AWS SDK for Ruby API Reference.

Rust

SDK for Rust

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

pub async fn attach_user_policy(
 client: &iamClient,
 user_name: &str,
 policy_arn: &str,
) -> Result<(), iamError> {
 client
 .attach_user_policy()
 .user_name(user_name)
 .policy_arn(policy_arn)
 .send()
 .await?;

Actions 1593

https://docs.aws.amazon.com/goto/SdkForRubyV3/iam-2010-05-08/AttachUserPolicy
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/rustv1/examples/iam#code-examples

AWS Identity and Access Management User Guide

 Ok(())
}

• For API details, see AttachUserPolicy in AWS SDK for Rust API reference.

For a complete list of AWS SDK developer guides and code examples, see Using IAM with an AWS
SDK. This topic also includes information about getting started and details about previous SDK
versions.

Attach an inline policy to an IAM role using an AWS SDK

The following code examples show how to attach an inline policy to an IAM role.

.NET

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 /// <summary>
 /// Update the inline policy document embedded in a role.
 /// </summary>
 /// <param name="policyName">The name of the policy to embed.</param>
 /// <param name="roleName">The name of the role to update.</param>
 /// <param name="policyDocument">The policy document that defines the role.</
param>
 /// <returns>A Boolean value indicating the success of the action.</returns>
 public async Task<bool> PutRolePolicyAsync(string policyName, string
 roleName, string policyDocument)
 {
 var request = new PutRolePolicyRequest
 {
 PolicyName = policyName,
 RoleName = roleName,
 PolicyDocument = policyDocument
 };

Actions 1594

https://docs.rs/releases/search?query=aws-sdk
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/IAM#code-examples

AWS Identity and Access Management User Guide

 var response = await _IAMService.PutRolePolicyAsync(request);
 return response.HttpStatusCode == HttpStatusCode.OK;
 }

• For API details, see PutRolePolicy in AWS SDK for .NET API Reference.

C++

SDK for C++

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

bool AwsDoc::IAM::putRolePolicy(
 const Aws::String &roleName,
 const Aws::String &policyName,
 const Aws::String &policyDocument,
 const Aws::Client::ClientConfiguration &clientConfig) {
 Aws::IAM::IAMClient iamClient(clientConfig);
 Aws::IAM::Model::PutRolePolicyRequest request;

 request.SetRoleName(roleName);
 request.SetPolicyName(policyName);
 request.SetPolicyDocument(policyDocument);

 Aws::IAM::Model::PutRolePolicyOutcome outcome =
 iamClient.PutRolePolicy(request);
 if (!outcome.IsSuccess()) {
 std::cerr << "Error putting policy on role. " <<
 outcome.GetError().GetMessage() << std::endl;
 }
 else {
 std::cout << "Successfully put the role policy." << std::endl;
 }

 return outcome.IsSuccess();

Actions 1595

https://docs.aws.amazon.com/goto/DotNetSDKV3/iam-2010-05-08/PutRolePolicy
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/cpp/example_code/iam#code-examples

AWS Identity and Access Management User Guide

}

• For API details, see PutRolePolicy in AWS SDK for C++ API Reference.

CLI

AWS CLI

To attach a permissions policy to an IAM role

The following put-role-policy command adds a permissions policy to the role named
Test-Role.

aws iam put-role-policy \
 --role-name Test-Role \
 --policy-name ExamplePolicy \
 --policy-document file://AdminPolicy.json

This command produces no output.

The policy is defined as a JSON document in the AdminPolicy.json file. (The file name and
extension do not have significance.)

To attach a trust policy to a role, use the update-assume-role-policy command.

For more information, see Modifying a role in the AWS IAM User Guide.

• For API details, see PutRolePolicy in AWS CLI Command Reference.

JavaScript

SDK for JavaScript (v3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

import { PutRolePolicyCommand, IAMClient } from "@aws-sdk/client-iam";

Actions 1596

https://docs.aws.amazon.com/goto/SdkForCpp/iam-2010-05-08/PutRolePolicy
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_manage_modify.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/iam/put-role-policy.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/iam#code-examples

AWS Identity and Access Management User Guide

const examplePolicyDocument = JSON.stringify({
 Version: "2012-10-17",
 Statement: [
 {
 Sid: "VisualEditor0",
 Effect: "Allow",
 Action: [
 "s3:ListBucketMultipartUploads",
 "s3:ListBucketVersions",
 "s3:ListBucket",
 "s3:ListMultipartUploadParts",
],
 Resource: "arn:aws:s3:::some-test-bucket",
 },
 {
 Sid: "VisualEditor1",
 Effect: "Allow",
 Action: [
 "s3:ListStorageLensConfigurations",
 "s3:ListAccessPointsForObjectLambda",
 "s3:ListAllMyBuckets",
 "s3:ListAccessPoints",
 "s3:ListJobs",
 "s3:ListMultiRegionAccessPoints",
],
 Resource: "*",
 },
],
});

const client = new IAMClient({});

/**
 *
 * @param {string} roleName
 * @param {string} policyName
 * @param {string} policyDocument
 */
export const putRolePolicy = async (roleName, policyName, policyDocument) => {
 const command = new PutRolePolicyCommand({
 RoleName: roleName,
 PolicyName: policyName,
 PolicyDocument: policyDocument,

Actions 1597

AWS Identity and Access Management User Guide

 });

 const response = await client.send(command);
 console.log(response);
 return response;
};

• For API details, see PutRolePolicy in AWS SDK for JavaScript API Reference.

For a complete list of AWS SDK developer guides and code examples, see Using IAM with an AWS
SDK. This topic also includes information about getting started and details about previous SDK
versions.

Create an IAM SAML provider using an AWS SDK

The following code examples show how to create an AWS Identity and Access Management (IAM)
SAML provider.

CLI

AWS CLI

To create a SAML provider

This example creates a new SAML provider in IAM named MySAMLProvider. It is described
by the SAML metadata document found in the file SAMLMetaData.xml.

aws iam create-saml-provider \
 --saml-metadata-document file://SAMLMetaData.xml \
 --name MySAMLProvider

Output:

{
 "SAMLProviderArn": "arn:aws:iam::123456789012:saml-provider/MySAMLProvider"
}

For more information, see Creating IAM SAML identity providers in the AWS IAM User Guide.

• For API details, see CreateSAMLProvider in AWS CLI Command Reference.

Actions 1598

https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/client/iam/command/PutRolePolicyCommand
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_providers_create_saml.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/iam/create-saml-provider.html

AWS Identity and Access Management User Guide

JavaScript

SDK for JavaScript (v3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

import { CreateSAMLProviderCommand, IAMClient } from "@aws-sdk/client-iam";
import { readFileSync } from "fs";
import * as path from "path";
import { dirnameFromMetaUrl } from "@aws-doc-sdk-examples/lib/utils/util-fs.js";

const client = new IAMClient({});

/**
 * This sample document was generated using Auth0.
 * For more information on generating this document,
 see https://docs.aws.amazon.com/IAM/latest/UserGuide/
id_roles_providers_create_saml.html#samlstep1.
 */
const sampleMetadataDocument = readFileSync(
 path.join(
 dirnameFromMetaUrl(import.meta.url),
 "../../../../resources/sample_files/sample_saml_metadata.xml",
),
);

/**
 *
 * @param {*} providerName
 * @returns
 */
export const createSAMLProvider = async (providerName) => {
 const command = new CreateSAMLProviderCommand({
 Name: providerName,
 SAMLMetadataDocument: sampleMetadataDocument.toString(),
 });

 const response = await client.send(command);

Actions 1599

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/iam#code-examples

AWS Identity and Access Management User Guide

 console.log(response);
 return response;
};

• For API details, see CreateSAMLProvider in AWS SDK for JavaScript API Reference.

For a complete list of AWS SDK developer guides and code examples, see Using IAM with an AWS
SDK. This topic also includes information about getting started and details about previous SDK
versions.

Create an IAM group using an AWS SDK

The following code examples show how to create an IAM group.

Action examples are code excerpts from larger programs and must be run in context. You can see
this action in context in the following code example:

• Create a group and add a user

.NET

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 /// <summary>
 /// Create an IAM group.
 /// </summary>
 /// <param name="groupName">The name to give the IAM group.</param>
 /// <returns>The IAM group that was created.</returns>
 public async Task<Group> CreateGroupAsync(string groupName)
 {
 var response = await _IAMService.CreateGroupAsync(new CreateGroupRequest
 { GroupName = groupName });
 return response.Group;

Actions 1600

https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/client/iam/command/CreateSAMLProviderCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/IAM#code-examples

AWS Identity and Access Management User Guide

 }

• For API details, see CreateGroup in AWS SDK for .NET API Reference.

CLI

AWS CLI

To create an IAM group

The following create-group command creates an IAM group named Admins.

aws iam create-group \
 --group-name Admins

Output:

{
 "Group": {
 "Path": "/",
 "CreateDate": "2015-03-09T20:30:24.940Z",
 "GroupId": "AIDGPMS9RO4H3FEXAMPLE",
 "Arn": "arn:aws:iam::123456789012:group/Admins",
 "GroupName": "Admins"
 }
}

For more information, see Creating IAM user groups in the AWS IAM User Guide.

• For API details, see CreateGroup in AWS CLI Command Reference.

JavaScript

SDK for JavaScript (v3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Actions 1601

https://docs.aws.amazon.com/goto/DotNetSDKV3/iam-2010-05-08/CreateGroup
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_groups_create.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/iam/create-group.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/iam#code-examples

AWS Identity and Access Management User Guide

import { CreateGroupCommand, IAMClient } from "@aws-sdk/client-iam";

const client = new IAMClient({});

/**
 *
 * @param {string} groupName
 */
export const createGroup = async (groupName) => {
 const command = new CreateGroupCommand({ GroupName: groupName });

 const response = await client.send(command);
 console.log(response);
 return response;
};

• For API details, see CreateGroup in AWS SDK for JavaScript API Reference.

For a complete list of AWS SDK developer guides and code examples, see Using IAM with an AWS
SDK. This topic also includes information about getting started and details about previous SDK
versions.

Create an IAM policy using an AWS SDK

The following code examples show how to create an IAM policy.

Action examples are code excerpts from larger programs and must be run in context. You can see
this action in context in the following code examples:

• Create a group and add a user

• Create a user and assume a role

• Create read-only and read-write users

• Manage policies

• Work with the IAM Policy Builder API

Actions 1602

https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/client/iam/command/CreateGroupCommand

AWS Identity and Access Management User Guide

.NET

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 /// <summary>
 /// Create an IAM policy.
 /// </summary>
 /// <param name="policyName">The name to give the new IAM policy.</param>
 /// <param name="policyDocument">The policy document for the new policy.</
param>
 /// <returns>The new IAM policy object.</returns>
 public async Task<ManagedPolicy> CreatePolicyAsync(string policyName, string
 policyDocument)
 {
 var response = await _IAMService.CreatePolicyAsync(new
 CreatePolicyRequest
 {
 PolicyDocument = policyDocument,
 PolicyName = policyName,
 });

 return response.Policy;
 }

• For API details, see CreatePolicy in AWS SDK for .NET API Reference.

Actions 1603

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/IAM#code-examples
https://docs.aws.amazon.com/goto/DotNetSDKV3/iam-2010-05-08/CreatePolicy

AWS Identity and Access Management User Guide

Bash

AWS CLI with Bash script

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

###
function errecho
#
This function outputs everything sent to it to STDERR (standard error output).
###
function errecho() {
 printf "%s\n" "$*" 1>&2
}

###
function iam_create_policy
#
This function creates an IAM policy.
#
Parameters:
-n policy_name -- The name of the IAM policy.
-p policy_json -- The policy document.
#
Returns:
0 - If successful.
1 - If it fails.
###
function iam_create_policy() {
 local policy_name policy_document response
 local option OPTARG # Required to use getopts command in a function.

 # bashsupport disable=BP5008
 function usage() {
 echo "function iam_create_policy"
 echo "Creates an AWS Identity and Access Management (IAM) policy."
 echo " -n policy_name The name of the IAM policy."
 echo " -p policy_json -- The policy document."

Actions 1604

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/aws-cli/bash-linux/iam#code-examples

AWS Identity and Access Management User Guide

 echo ""
 }

 # Retrieve the calling parameters.
 while getopts "n:p:h" option; do
 case "${option}" in
 n) policy_name="${OPTARG}" ;;
 p) policy_document="${OPTARG}" ;;
 h)
 usage
 return 0
 ;;
 \?)
 echo "Invalid parameter"
 usage
 return 1
 ;;
 esac
 done
 export OPTIND=1

 if [[-z "$policy_name"]]; then
 errecho "ERROR: You must provide a policy name with the -n parameter."
 usage
 return 1
 fi

 if [[-z "$policy_document"]]; then
 errecho "ERROR: You must provide a policy document with the -p parameter."
 usage
 return 1
 fi

 response=$(aws iam create-policy \
 --policy-name "$policy_name" \
 --policy-document "$policy_document" \
 --output text \
 --query Policy.Arn)

 local error_code=${?}

 if [[$error_code -ne 0]]; then
 aws_cli_error_log $error_code
 errecho "ERROR: AWS reports create-policy operation failed.\n$response"

Actions 1605

AWS Identity and Access Management User Guide

 return 1
 fi

 echo "$response"
}

• For API details, see CreatePolicy in AWS CLI Command Reference.

C++

SDK for C++

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Aws::String AwsDoc::IAM::createPolicy(const Aws::String &policyName,
 const Aws::String &rsrcArn,
 const Aws::Client::ClientConfiguration
 &clientConfig) {
 Aws::IAM::IAMClient iam(clientConfig);

 Aws::IAM::Model::CreatePolicyRequest request;
 request.SetPolicyName(policyName);
 request.SetPolicyDocument(BuildSamplePolicyDocument(rsrcArn));

 Aws::IAM::Model::CreatePolicyOutcome outcome = iam.CreatePolicy(request);
 Aws::String result;
 if (!outcome.IsSuccess()) {
 std::cerr << "Error creating policy " << policyName << ": " <<
 outcome.GetError().GetMessage() << std::endl;
 }
 else {
 result = outcome.GetResult().GetPolicy().GetArn();
 std::cout << "Successfully created policy " << policyName <<
 std::endl;
 }

 return result;

Actions 1606

https://docs.aws.amazon.com/goto/aws-cli/iam-2010-05-08/CreatePolicy
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/cpp/example_code/iam#code-examples

AWS Identity and Access Management User Guide

}

Aws::String AwsDoc::IAM::BuildSamplePolicyDocument(const Aws::String &rsrc_arn) {
 std::stringstream stringStream;
 stringStream << "{"
 << " \"Version\": \"2012-10-17\","
 << " \"Statement\": ["
 << " {"
 << " \"Effect\": \"Allow\","
 << " \"Action\": \"logs:CreateLogGroup\","
 << " \"Resource\": \""
 << rsrc_arn
 << "\""
 << " },"
 << " {"
 << " \"Effect\": \"Allow\","
 << " \"Action\": ["
 << " \"dynamodb:DeleteItem\","
 << " \"dynamodb:GetItem\","
 << " \"dynamodb:PutItem\","
 << " \"dynamodb:Scan\","
 << " \"dynamodb:UpdateItem\""
 << "],"
 << " \"Resource\": \""
 << rsrc_arn
 << "\""
 << " }"
 << "]"
 << "}";

 return stringStream.str();
}

• For API details, see CreatePolicy in AWS SDK for C++ API Reference.

CLI

AWS CLI

Example 1: To create a customer managed policy

The following command creates a customer managed policy named my-policy.

Actions 1607

https://docs.aws.amazon.com/goto/SdkForCpp/iam-2010-05-08/CreatePolicy

AWS Identity and Access Management User Guide

aws iam create-policy \
 --policy-name my-policy \
 --policy-document file://policy

The file policy is a JSON document in the current folder that grants read only access to the
shared folder in an Amazon S3 bucket named my-bucket.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "s3:Get*",
 "s3:List*"
],
 "Resource": [
 "arn:aws:s3:::my-bucket/shared/*"
]
 }
]
}

Output:

{
 "Policy": {
 "PolicyName": "my-policy",
 "CreateDate": "2015-06-01T19:31:18.620Z",
 "AttachmentCount": 0,
 "IsAttachable": true,
 "PolicyId": "ZXR6A36LTYANPAI7NJ5UV",
 "DefaultVersionId": "v1",
 "Path": "/",
 "Arn": "arn:aws:iam::0123456789012:policy/my-policy",
 "UpdateDate": "2015-06-01T19:31:18.620Z"
 }
}

For more information on using files as input for string parameters, see Specify parameter
values for the AWS CLI in the AWS CLI User Guide.

Actions 1608

https://docs.aws.amazon.com/cli/latest/userguide/cli-usage-parameters.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-usage-parameters.html

AWS Identity and Access Management User Guide

Example 2: To create a customer managed policy with a description

The following command creates a customer managed policy named my-policy with an
immutable description:

aws iam create-policy \
 --policy-name my-policy \
 --policy-document file://policy.json \
 --description "This policy grants access to all Put, Get, and List actions
 for my-bucket"

The file policy.json is a JSON document in the current folder that grants access to all
Put, List, and Get actions for an Amazon S3 bucket named my-bucket.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "s3:ListBucket*",
 "s3:PutBucket*",
 "s3:GetBucket*"
],
 "Resource": [
 "arn:aws:s3:::my-bucket"
]
 }
]
 }

Output:

{
 "Policy": {
 "PolicyName": "my-policy",
 "PolicyId": "ANPAWGSUGIDPEXAMPLE",
 "Arn": "arn:aws:iam::123456789012:policy/my-policy",
 "Path": "/",
 "DefaultVersionId": "v1",
 "AttachmentCount": 0,
 "PermissionsBoundaryUsageCount": 0,

Actions 1609

AWS Identity and Access Management User Guide

 "IsAttachable": true,
 "CreateDate": "2023-05-24T22:38:47+00:00",
 "UpdateDate": "2023-05-24T22:38:47+00:00"
 }
}

For more information on Idenity-based Policies, see Identity-based policies and resource-
based policies in the AWS IAM User Guide.

Example 3: To Create a customer managed policy with tags

The following command creates a customer managed policy named my-policy
with tags. This example uses the --tags parameter flag with the following JSON-
formatted tags: '{"Key": "Department", "Value": "Accounting"}' '{"Key":
"Location", "Value": "Seattle"}'. Alternatively, the --tags flag can be
used with tags in the shorthand format: 'Key=Department,Value=Accounting
Key=Location,Value=Seattle'.

aws iam create-policy \
 --policy-name my-policy \
 --policy-document file://policy.json \
 --tags '{"Key": "Department", "Value": "Accounting"}' '{"Key": "Location",
 "Value": "Seattle"}'

The file policy.json is a JSON document in the current folder that grants access to all
Put, List, and Get actions for an Amazon S3 bucket named my-bucket.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "s3:ListBucket*",
 "s3:PutBucket*",
 "s3:GetBucket*"
],
 "Resource": [
 "arn:aws:s3:::my-bucket"
]
 }

Actions 1610

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_identity-vs-resource.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_identity-vs-resource.html

AWS Identity and Access Management User Guide

]
 }

Output:

{
 "Policy": {
 "PolicyName": "my-policy",
 "PolicyId": "ANPAWGSUGIDPEXAMPLE",
 "Arn": "arn:aws:iam::12345678012:policy/my-policy",
 "Path": "/",
 "DefaultVersionId": "v1",
 "AttachmentCount": 0,
 "PermissionsBoundaryUsageCount": 0,
 "IsAttachable": true,
 "CreateDate": "2023-05-24T23:16:39+00:00",
 "UpdateDate": "2023-05-24T23:16:39+00:00",
 "Tags": [
 {
 "Key": "Department",
 "Value": "Accounting"
 },
 "Key": "Location",
 "Value": "Seattle"
 {

]
 }
}

For more information on Tagging policies, see Tagging customer managed policies in the
AWS IAM User Guide.

• For API details, see CreatePolicy in AWS CLI Command Reference.

Actions 1611

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_tags_customer-managed-policies.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/iam/create-policy.html

AWS Identity and Access Management User Guide

Go

SDK for Go V2

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

// PolicyWrapper encapsulates AWS Identity and Access Management (IAM) policy
 actions
// used in the examples.
// It contains an IAM service client that is used to perform policy actions.
type PolicyWrapper struct {
 IamClient *iam.Client
}

// CreatePolicy creates a policy that grants a list of actions to the specified
 resource.
// PolicyDocument shows how to work with a policy document as a data structure
 and
// serialize it to JSON by using Go's JSON marshaler.
func (wrapper PolicyWrapper) CreatePolicy(policyName string, actions []string,
 resourceArn string) (*types.Policy, error) {
 var policy *types.Policy
 policyDoc := PolicyDocument{
 Version: "2012-10-17",
 Statement: []PolicyStatement{{
 Effect: "Allow",
 Action: actions,
 Resource: aws.String(resourceArn),
 }},
 }
 policyBytes, err := json.Marshal(policyDoc)
 if err != nil {
 log.Printf("Couldn't create policy document for %v. Here's why: %v\n",
 resourceArn, err)
 return nil, err

Actions 1612

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/gov2/iam#code-examples

AWS Identity and Access Management User Guide

 }
 result, err := wrapper.IamClient.CreatePolicy(context.TODO(),
 &iam.CreatePolicyInput{
 PolicyDocument: aws.String(string(policyBytes)),
 PolicyName: aws.String(policyName),
 })
 if err != nil {
 log.Printf("Couldn't create policy %v. Here's why: %v\n", policyName, err)
 } else {
 policy = result.Policy
 }
 return policy, err
}

• For API details, see CreatePolicy in AWS SDK for Go API Reference.

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

import software.amazon.awssdk.core.waiters.WaiterResponse;
import software.amazon.awssdk.services.iam.model.CreatePolicyRequest;
import software.amazon.awssdk.services.iam.model.CreatePolicyResponse;
import software.amazon.awssdk.services.iam.model.GetPolicyRequest;
import software.amazon.awssdk.services.iam.model.GetPolicyResponse;
import software.amazon.awssdk.services.iam.model.IamException;
import software.amazon.awssdk.regions.Region;
import software.amazon.awssdk.services.iam.IamClient;
import software.amazon.awssdk.services.iam.waiters.IamWaiter;

/**
 * Before running this Java V2 code example, set up your development
 * environment, including your credentials.
 *

Actions 1613

https://pkg.go.dev/github.com/aws/aws-sdk-go-v2/service/iam#Client.CreatePolicy
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/iam#readme

AWS Identity and Access Management User Guide

 * For more information, see the following documentation topic:
 *
 * https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/get-
started.html
 */
public class CreatePolicy {

 public static final String PolicyDocument = "{" +
 " \"Version\": \"2012-10-17\"," +
 " \"Statement\": [" +
 " {" +
 " \"Effect\": \"Allow\"," +
 " \"Action\": [" +
 " \"dynamodb:DeleteItem\"," +
 " \"dynamodb:GetItem\"," +
 " \"dynamodb:PutItem\"," +
 " \"dynamodb:Scan\"," +
 " \"dynamodb:UpdateItem\"" +
 "]," +
 " \"Resource\": \"*\"" +
 " }" +
 "]" +
 "}";

 public static void main(String[] args) {

 final String usage = """
 Usage:
 CreatePolicy <policyName>\s

 Where:
 policyName - A unique policy name.\s
 """;

 if (args.length != 1) {
 System.out.println(usage);
 System.exit(1);
 }

 String policyName = args[0];
 Region region = Region.AWS_GLOBAL;
 IamClient iam = IamClient.builder()
 .region(region)
 .build();

Actions 1614

AWS Identity and Access Management User Guide

 String result = createIAMPolicy(iam, policyName);
 System.out.println("Successfully created a policy with this ARN value: "
 + result);
 iam.close();
 }

 public static String createIAMPolicy(IamClient iam, String policyName) {
 try {
 // Create an IamWaiter object.
 IamWaiter iamWaiter = iam.waiter();

 CreatePolicyRequest request = CreatePolicyRequest.builder()
 .policyName(policyName)
 .policyDocument(PolicyDocument)
 .build();

 CreatePolicyResponse response = iam.createPolicy(request);

 // Wait until the policy is created.
 GetPolicyRequest polRequest = GetPolicyRequest.builder()
 .policyArn(response.policy().arn())
 .build();

 WaiterResponse<GetPolicyResponse> waitUntilPolicyExists =
 iamWaiter.waitUntilPolicyExists(polRequest);

 waitUntilPolicyExists.matched().response().ifPresent(System.out::println);
 return response.policy().arn();

 } catch (IamException e) {
 System.err.println(e.awsErrorDetails().errorMessage());
 System.exit(1);
 }
 return "";
 }
}

• For API details, see CreatePolicy in AWS SDK for Java 2.x API Reference.

Actions 1615

https://docs.aws.amazon.com/goto/SdkForJavaV2/iam-2010-05-08/CreatePolicy

AWS Identity and Access Management User Guide

JavaScript

SDK for JavaScript (v3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Create the policy.

import { CreatePolicyCommand, IAMClient } from "@aws-sdk/client-iam";

const client = new IAMClient({});

/**
 *
 * @param {string} policyName
 */
export const createPolicy = (policyName) => {
 const command = new CreatePolicyCommand({
 PolicyDocument: JSON.stringify({
 Version: "2012-10-17",
 Statement: [
 {
 Effect: "Allow",
 Action: "*",
 Resource: "*",
 },
],
 }),
 PolicyName: policyName,
 });

 return client.send(command);
};

• For more information, see AWS SDK for JavaScript Developer Guide.

• For API details, see CreatePolicy in AWS SDK for JavaScript API Reference.

Actions 1616

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/iam#code-examples
https://docs.aws.amazon.com/sdk-for-javascript/v3/developer-guide/iam-examples-policies.html#iam-examples-policies-creating
https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/client/iam/command/CreatePolicyCommand

AWS Identity and Access Management User Guide

SDK for JavaScript (v2)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set the region
AWS.config.update({ region: "REGION" });

// Create the IAM service object
var iam = new AWS.IAM({ apiVersion: "2010-05-08" });

var myManagedPolicy = {
 Version: "2012-10-17",
 Statement: [
 {
 Effect: "Allow",
 Action: "logs:CreateLogGroup",
 Resource: "RESOURCE_ARN",
 },
 {
 Effect: "Allow",
 Action: [
 "dynamodb:DeleteItem",
 "dynamodb:GetItem",
 "dynamodb:PutItem",
 "dynamodb:Scan",
 "dynamodb:UpdateItem",
],
 Resource: "RESOURCE_ARN",
 },
],
};

var params = {
 PolicyDocument: JSON.stringify(myManagedPolicy),
 PolicyName: "myDynamoDBPolicy",
};

Actions 1617

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascript/example_code/iam#code-examples

AWS Identity and Access Management User Guide

iam.createPolicy(params, function (err, data) {
 if (err) {
 console.log("Error", err);
 } else {
 console.log("Success", data);
 }
});

• For more information, see AWS SDK for JavaScript Developer Guide.

• For API details, see CreatePolicy in AWS SDK for JavaScript API Reference.

Kotlin

SDK for Kotlin

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

suspend fun createIAMPolicy(policyNameVal: String?): String {

 val policyDocumentVal = "{" +
 " \"Version\": \"2012-10-17\"," +
 " \"Statement\": [" +
 " {" +
 " \"Effect\": \"Allow\"," +
 " \"Action\": [" +
 " \"dynamodb:DeleteItem\"," +
 " \"dynamodb:GetItem\"," +
 " \"dynamodb:PutItem\"," +
 " \"dynamodb:Scan\"," +
 " \"dynamodb:UpdateItem\"" +
 "]," +
 " \"Resource\": \"*\"" +
 " }" +
 "]" +
 "}"

Actions 1618

https://docs.aws.amazon.com/sdk-for-javascript/v2/developer-guide/iam-examples-policies.html#iam-examples-policies-creating
https://docs.aws.amazon.com/goto/AWSJavaScriptSDK/iam-2010-05-08/CreatePolicy
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/kotlin/services/iam#code-examples

AWS Identity and Access Management User Guide

 val request = CreatePolicyRequest {
 policyName = policyNameVal
 policyDocument = policyDocumentVal
 }

 IamClient { region = "AWS_GLOBAL" }.use { iamClient ->
 val response = iamClient.createPolicy(request)
 return response.policy?.arn.toString()
 }
}

• For API details, see CreatePolicy in AWS SDK for Kotlin API reference.

PHP

SDK for PHP

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

$uuid = uniqid();
$service = new IAMService();

$listAllBucketsPolicyDocument = "{
 \"Version\": \"2012-10-17\",
 \"Statement\": [{
 \"Effect\": \"Allow\",
 \"Action\": \"s3:ListAllMyBuckets\",
 \"Resource\": \"arn:aws:s3:::*\"}]
}";
$listAllBucketsPolicy = $service->createPolicy("iam_demo_policy_$uuid",
 $listAllBucketsPolicyDocument);
echo "Created policy: {$listAllBucketsPolicy['PolicyName']}\n";

 public function createPolicy(string $policyName, string $policyDocument)
 {

Actions 1619

https://github.com/awslabs/aws-sdk-kotlin#generating-api-documentation
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/php/example_code/iam#code-examples

AWS Identity and Access Management User Guide

 $result = $this->customWaiter(function () use ($policyName,
 $policyDocument) {
 return $this->iamClient->createPolicy([
 'PolicyName' => $policyName,
 'PolicyDocument' => $policyDocument,
]);
 });
 return $result['Policy'];
 }

• For API details, see CreatePolicy in AWS SDK for PHP API Reference.

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

def create_policy(name, description, actions, resource_arn):
 """
 Creates a policy that contains a single statement.

 :param name: The name of the policy to create.
 :param description: The description of the policy.
 :param actions: The actions allowed by the policy. These typically take the
 form of service:action, such as s3:PutObject.
 :param resource_arn: The Amazon Resource Name (ARN) of the resource this
 policy
 applies to. This ARN can contain wildcards, such as
 'arn:aws:s3:::my-bucket/*' to allow actions on all
 objects
 in the bucket named 'my-bucket'.
 :return: The newly created policy.
 """
 policy_doc = {
 "Version": "2012-10-17",

Actions 1620

https://docs.aws.amazon.com/goto/SdkForPHPV3/iam-2010-05-08/CreatePolicy
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/iam#code-examples

AWS Identity and Access Management User Guide

 "Statement": [{"Effect": "Allow", "Action": actions, "Resource":
 resource_arn}],
 }
 try:
 policy = iam.create_policy(
 PolicyName=name,
 Description=description,
 PolicyDocument=json.dumps(policy_doc),
)
 logger.info("Created policy %s.", policy.arn)
 except ClientError:
 logger.exception("Couldn't create policy %s.", name)
 raise
 else:
 return policy

• For API details, see CreatePolicy in AWS SDK for Python (Boto3) API Reference.

Ruby

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

This example module lists, creates, attaches, and detaches role policies.

Manages policies in AWS Identity and Access Management (IAM)
class RolePolicyManager
 # Initialize with an AWS IAM client
 #
 # @param iam_client [Aws::IAM::Client] An initialized IAM client
 def initialize(iam_client, logger: Logger.new($stdout))
 @iam_client = iam_client
 @logger = logger
 @logger.progname = "PolicyManager"

Actions 1621

https://docs.aws.amazon.com/goto/boto3/iam-2010-05-08/CreatePolicy
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/iam#code-examples

AWS Identity and Access Management User Guide

 end

 # Creates a policy
 #
 # @param policy_name [String] The name of the policy
 # @param policy_document [Hash] The policy document
 # @return [String] The policy ARN if successful, otherwise nil
 def create_policy(policy_name, policy_document)
 response = @iam_client.create_policy(
 policy_name: policy_name,
 policy_document: policy_document.to_json
)
 response.policy.arn
 rescue Aws::IAM::Errors::ServiceError => e
 @logger.error("Error creating policy: #{e.message}")
 nil
 end

 # Fetches an IAM policy by its ARN
 # @param policy_arn [String] the ARN of the IAM policy to retrieve
 # @return [Aws::IAM::Types::GetPolicyResponse] the policy object if found
 def get_policy(policy_arn)
 response = @iam_client.get_policy(policy_arn: policy_arn)
 policy = response.policy
 @logger.info("Got policy '#{policy.policy_name}'. Its ID is:
 #{policy.policy_id}.")
 policy
 rescue Aws::IAM::Errors::NoSuchEntity
 @logger.error("Couldn't get policy '#{policy_arn}'. The policy does not
 exist.")
 raise
 rescue Aws::IAM::Errors::ServiceError => e
 @logger.error("Couldn't get policy '#{policy_arn}'. Here's why: #{e.code}:
 #{e.message}")
 raise
 end

 # Attaches a policy to a role
 #
 # @param role_name [String] The name of the role
 # @param policy_arn [String] The policy ARN
 # @return [Boolean] true if successful, false otherwise
 def attach_policy_to_role(role_name, policy_arn)
 @iam_client.attach_role_policy(

Actions 1622

AWS Identity and Access Management User Guide

 role_name: role_name,
 policy_arn: policy_arn
)
 true
 rescue Aws::IAM::Errors::ServiceError => e
 @logger.error("Error attaching policy to role: #{e.message}")
 false
 end

 # Lists policy ARNs attached to a role
 #
 # @param role_name [String] The name of the role
 # @return [Array<String>] List of policy ARNs
 def list_attached_policy_arns(role_name)
 response = @iam_client.list_attached_role_policies(role_name: role_name)
 response.attached_policies.map(&:policy_arn)
 rescue Aws::IAM::Errors::ServiceError => e
 @logger.error("Error listing policies attached to role: #{e.message}")
 []
 end

 # Detaches a policy from a role
 #
 # @param role_name [String] The name of the role
 # @param policy_arn [String] The policy ARN
 # @return [Boolean] true if successful, false otherwise
 def detach_policy_from_role(role_name, policy_arn)
 @iam_client.detach_role_policy(
 role_name: role_name,
 policy_arn: policy_arn
)
 true
 rescue Aws::IAM::Errors::ServiceError => e
 @logger.error("Error detaching policy from role: #{e.message}")
 false
 end
end

• For API details, see CreatePolicy in AWS SDK for Ruby API Reference.

Actions 1623

https://docs.aws.amazon.com/goto/SdkForRubyV3/iam-2010-05-08/CreatePolicy

AWS Identity and Access Management User Guide

Rust

SDK for Rust

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

pub async fn create_policy(
 client: &iamClient,
 policy_name: &str,
 policy_document: &str,
) -> Result<Policy, iamError> {
 let policy = client
 .create_policy()
 .policy_name(policy_name)
 .policy_document(policy_document)
 .send()
 .await?;
 Ok(policy.policy.unwrap())
}

• For API details, see CreatePolicy in AWS SDK for Rust API reference.

Swift

SDK for Swift

Note

This is prerelease documentation for an SDK in preview release. It is subject to
change.

Actions 1624

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/rustv1/examples/iam#code-examples
https://docs.rs/releases/search?query=aws-sdk

AWS Identity and Access Management User Guide

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 public func createPolicy(name: String, policyDocument: String) async throws -
> IAMClientTypes.Policy {
 let input = CreatePolicyInput(
 policyDocument: policyDocument,
 policyName: name
)
 do {
 let output = try await iamClient.createPolicy(input: input)
 guard let policy = output.policy else {
 throw ServiceHandlerError.noSuchPolicy
 }
 return policy
 } catch {
 throw error
 }
 }

• For API details, see CreatePolicy in AWS SDK for Swift API reference.

For a complete list of AWS SDK developer guides and code examples, see Using IAM with an AWS
SDK. This topic also includes information about getting started and details about previous SDK
versions.

Create an IAM policy version using an AWS SDK

The following code examples show how to create an IAM policy version.

Action examples are code excerpts from larger programs and must be run in context. You can see
this action in context in the following code example:

• Manage policies

Actions 1625

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/swift/example_code/iam#code-examples
https://awslabs.github.io/aws-sdk-swift/reference/0.x

AWS Identity and Access Management User Guide

CLI

AWS CLI

To create a new version of a managed policy

This example creates a new v2 version of the IAM policy whose ARN is
arn:aws:iam::123456789012:policy/MyPolicy and makes it the default version.

aws iam create-policy-version \
 --policy-arn arn:aws:iam::123456789012:policy/MyPolicy \
 --policy-document file://NewPolicyVersion.json \
 --set-as-default

Output:

{
 "PolicyVersion": {
 "CreateDate": "2015-06-16T18:56:03.721Z",
 "VersionId": "v2",
 "IsDefaultVersion": true
 }
}

For more information, see Versioning IAM policies in the AWS IAM User Guide.

• For API details, see CreatePolicyVersion in AWS CLI Command Reference.

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

def create_policy_version(policy_arn, actions, resource_arn, set_as_default):
 """

Actions 1626

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-versioning.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/iam/create-policy-version.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/iam#code-examples

AWS Identity and Access Management User Guide

 Creates a policy version. Policies can have up to five versions. The default
 version is the one that is used for all resources that reference the policy.

 :param policy_arn: The ARN of the policy.
 :param actions: The actions to allow in the policy version.
 :param resource_arn: The ARN of the resource this policy version applies to.
 :param set_as_default: When True, this policy version is set as the default
 version for the policy. Otherwise, the default
 is not changed.
 :return: The newly created policy version.
 """
 policy_doc = {
 "Version": "2012-10-17",
 "Statement": [{"Effect": "Allow", "Action": actions, "Resource":
 resource_arn}],
 }
 try:
 policy = iam.Policy(policy_arn)
 policy_version = policy.create_version(
 PolicyDocument=json.dumps(policy_doc), SetAsDefault=set_as_default
)
 logger.info(
 "Created policy version %s for policy %s.",
 policy_version.version_id,
 policy_version.arn,
)
 except ClientError:
 logger.exception("Couldn't create a policy version for %s.", policy_arn)
 raise
 else:
 return policy_version

• For API details, see CreatePolicyVersion in AWS SDK for Python (Boto3) API Reference.

For a complete list of AWS SDK developer guides and code examples, see Using IAM with an AWS
SDK. This topic also includes information about getting started and details about previous SDK
versions.

Actions 1627

https://docs.aws.amazon.com/goto/boto3/iam-2010-05-08/CreatePolicyVersion

AWS Identity and Access Management User Guide

Create an IAM role using an AWS SDK

The following code examples show how to create an IAM role.

Action examples are code excerpts from larger programs and must be run in context. You can see
this action in context in the following code examples:

• Create a group and add a user

• Create a user and assume a role

• Manage roles

.NET

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 /// <summary>
 /// Create a new IAM role.
 /// </summary>
 /// <param name="roleName">The name of the IAM role.</param>
 /// <param name="rolePolicyDocument">The name of the IAM policy document
 /// for the new role.</param>
 /// <returns>The Amazon Resource Name (ARN) of the role.</returns>
 public async Task<string> CreateRoleAsync(string roleName, string
 rolePolicyDocument)
 {
 var request = new CreateRoleRequest
 {
 RoleName = roleName,
 AssumeRolePolicyDocument = rolePolicyDocument,
 };

 var response = await _IAMService.CreateRoleAsync(request);
 return response.Role.Arn;
 }

Actions 1628

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/IAM#code-examples

AWS Identity and Access Management User Guide

• For API details, see CreateRole in AWS SDK for .NET API Reference.

Bash

AWS CLI with Bash script

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

###
function errecho
#
This function outputs everything sent to it to STDERR (standard error output).
###
function errecho() {
 printf "%s\n" "$*" 1>&2
}

###
function iam_create_role
#
This function creates an IAM role.
#
Parameters:
-n role_name -- The name of the IAM role.
-p policy_json -- The assume role policy document.
#
Returns:
The ARN of the role.
And:
0 - If successful.
1 - If it fails.
###
function iam_create_role() {
 local role_name policy_document response
 local option OPTARG # Required to use getopts command in a function.

Actions 1629

https://docs.aws.amazon.com/goto/DotNetSDKV3/iam-2010-05-08/CreateRole
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/aws-cli/bash-linux/iam#code-examples

AWS Identity and Access Management User Guide

 # bashsupport disable=BP5008
 function usage() {
 echo "function iam_create_user_access_key"
 echo "Creates an AWS Identity and Access Management (IAM) role."
 echo " -n role_name The name of the IAM role."
 echo " -p policy_json -- The assume role policy document."
 echo ""
 }

 # Retrieve the calling parameters.
 while getopts "n:p:h" option; do
 case "${option}" in
 n) role_name="${OPTARG}" ;;
 p) policy_document="${OPTARG}" ;;
 h)
 usage
 return 0
 ;;
 \?)
 echo "Invalid parameter"
 usage
 return 1
 ;;
 esac
 done
 export OPTIND=1

 if [[-z "$role_name"]]; then
 errecho "ERROR: You must provide a role name with the -n parameter."
 usage
 return 1
 fi

 if [[-z "$policy_document"]]; then
 errecho "ERROR: You must provide a policy document with the -p parameter."
 usage
 return 1
 fi

 response=$(aws iam create-role \
 --role-name "$role_name" \
 --assume-role-policy-document "$policy_document" \
 --output text \
 --query Role.Arn)

Actions 1630

AWS Identity and Access Management User Guide

 local error_code=${?}

 if [[$error_code -ne 0]]; then
 aws_cli_error_log $error_code
 errecho "ERROR: AWS reports create-role operation failed.\n$response"
 return 1
 fi

 echo "$response"

 return 0
}

• For API details, see CreateRole in AWS CLI Command Reference.

C++

SDK for C++

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

bool AwsDoc::IAM::createIamRole(
 const Aws::String &roleName,
 const Aws::String &policy,
 const Aws::Client::ClientConfiguration &clientConfig) {
 Aws::IAM::IAMClient client(clientConfig);
 Aws::IAM::Model::CreateRoleRequest request;

 request.SetRoleName(roleName);
 request.SetAssumeRolePolicyDocument(policy);

 Aws::IAM::Model::CreateRoleOutcome outcome = client.CreateRole(request);
 if (!outcome.IsSuccess()) {
 std::cerr << "Error creating role. " <<
 outcome.GetError().GetMessage() << std::endl;
 }

Actions 1631

https://docs.aws.amazon.com/goto/aws-cli/iam-2010-05-08/CreateRole
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/cpp/example_code/iam#code-examples

AWS Identity and Access Management User Guide

 else {
 const Aws::IAM::Model::Role iamRole = outcome.GetResult().GetRole();
 std::cout << "Created role " << iamRole.GetRoleName() << "\n";
 std::cout << "ID: " << iamRole.GetRoleId() << "\n";
 std::cout << "ARN: " << iamRole.GetArn() << std::endl;
 }

 return outcome.IsSuccess();
}

• For API details, see CreateRole in AWS SDK for C++ API Reference.

CLI

AWS CLI

Example 1: To create an IAM role

The following create-role command creates a role named Test-Role and attaches a
trust policy to it.

aws iam create-role \
 --role-name Test-Role \
 --assume-role-policy-document file://Test-Role-Trust-Policy.json

Output:

{
 "Role": {
 "AssumeRolePolicyDocument": "<URL-encoded-JSON>",
 "RoleId": "AKIAIOSFODNN7EXAMPLE",
 "CreateDate": "2013-06-07T20:43:32.821Z",
 "RoleName": "Test-Role",
 "Path": "/",
 "Arn": "arn:aws:iam::123456789012:role/Test-Role"
 }
}

The trust policy is defined as a JSON document in the Test-Role-Trust-Policy.json file. (The
file name and extension do not have significance.) The trust policy must specify a principal.

Actions 1632

https://docs.aws.amazon.com/goto/SdkForCpp/iam-2010-05-08/CreateRole

AWS Identity and Access Management User Guide

To attach a permissions policy to a role, use the put-role-policy command.

For more information, see Creating IAM roles in the AWS IAM User Guide.

Example 2: To create an IAM role with specified maximum session duration

The following create-role command creates a role named Test-Role and sets a
maximum session duration of 7200 seconds (2 hours).

aws iam create-role \
 --role-name Test-Role \
 --assume-role-policy-document file://Test-Role-Trust-Policy.json \
 --max-session-duration 7200

Output:

{
 "Role": {
 "Path": "/",
 "RoleName": "Test-Role",
 "RoleId": "AKIAIOSFODNN7EXAMPLE",
 "Arn": "arn:aws:iam::12345678012:role/Test-Role",
 "CreateDate": "2023-05-24T23:50:25+00:00",
 "AssumeRolePolicyDocument": {
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "Statement1",
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::12345678012:root"
 },
 "Action": "sts:AssumeRole"
 }
]
 }
 }
}

For more information, see Modifying a role maximum session duration (AWS API) in the AWS
IAM User Guide.

Example 3: To create an IAM Role with tags

Actions 1633

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/roles-managingrole-editing-api.html#roles-modify_max-session-duration-api

AWS Identity and Access Management User Guide

The following command creates an IAM Role Test-Role with tags. This example
uses the --tags parameter flag with the following JSON-formatted tags: '{"Key":
"Department", "Value": "Accounting"}' '{"Key": "Location", "Value":
"Seattle"}'. Alternatively, the --tags flag can be used with tags in the shorthand
format: 'Key=Department,Value=Accounting Key=Location,Value=Seattle'.

aws iam create-role \
 --role-name Test-Role \
 --assume-role-policy-document file://Test-Role-Trust-Policy.json \
 --tags '{"Key": "Department", "Value": "Accounting"}' '{"Key": "Location",
 "Value": "Seattle"}'

Output:

{
 "Role": {
 "Path": "/",
 "RoleName": "Test-Role",
 "RoleId": "AKIAIOSFODNN7EXAMPLE",
 "Arn": "arn:aws:iam::123456789012:role/Test-Role",
 "CreateDate": "2023-05-25T23:29:41+00:00",
 "AssumeRolePolicyDocument": {
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "Statement1",
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::123456789012:root"
 },
 "Action": "sts:AssumeRole"
 }
]
 },
 "Tags": [
 {
 "Key": "Department",
 "Value": "Accounting"
 },
 {
 "Key": "Location",
 "Value": "Seattle"

Actions 1634

AWS Identity and Access Management User Guide

 }
]
 }
}

For more information, see Tagging IAM roles in the AWS IAM User Guide.

• For API details, see CreateRole in AWS CLI Command Reference.

Go

SDK for Go V2

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

// RoleWrapper encapsulates AWS Identity and Access Management (IAM) role actions
// used in the examples.
// It contains an IAM service client that is used to perform role actions.
type RoleWrapper struct {
 IamClient *iam.Client
}

// CreateRole creates a role that trusts a specified user. The trusted user can
 assume
// the role to acquire its permissions.
// PolicyDocument shows how to work with a policy document as a data structure
 and
// serialize it to JSON by using Go's JSON marshaler.
func (wrapper RoleWrapper) CreateRole(roleName string, trustedUserArn string)
 (*types.Role, error) {
 var role *types.Role
 trustPolicy := PolicyDocument{
 Version: "2012-10-17",
 Statement: []PolicyStatement{{
 Effect: "Allow",

Actions 1635

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_tags_roles.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/iam/create-role.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/gov2/iam#code-examples

AWS Identity and Access Management User Guide

 Principal: map[string]string{"AWS": trustedUserArn},
 Action: []string{"sts:AssumeRole"},
 }},
 }
 policyBytes, err := json.Marshal(trustPolicy)
 if err != nil {
 log.Printf("Couldn't create trust policy for %v. Here's why: %v\n",
 trustedUserArn, err)
 return nil, err
 }
 result, err := wrapper.IamClient.CreateRole(context.TODO(),
 &iam.CreateRoleInput{
 AssumeRolePolicyDocument: aws.String(string(policyBytes)),
 RoleName: aws.String(roleName),
 })
 if err != nil {
 log.Printf("Couldn't create role %v. Here's why: %v\n", roleName, err)
 } else {
 role = result.Role
 }
 return role, err
}

• For API details, see CreateRole in AWS SDK for Go API Reference.

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

import org.json.simple.JSONObject;
import org.json.simple.parser.JSONParser;
import software.amazon.awssdk.services.iam.model.CreateRoleRequest;
import software.amazon.awssdk.services.iam.model.CreateRoleResponse;
import software.amazon.awssdk.services.iam.model.IamException;

Actions 1636

https://pkg.go.dev/github.com/aws/aws-sdk-go-v2/service/iam#Client.CreateRole
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/iam#readme

AWS Identity and Access Management User Guide

import software.amazon.awssdk.regions.Region;
import software.amazon.awssdk.services.iam.IamClient;
import java.io.FileReader;

/*
* This example requires a trust policy document. For more information, see:
* https://aws.amazon.com/blogs/security/how-to-use-trust-policies-with-iam-
roles/
*
*
* In addition, set up your development environment, including your credentials.
*
* For information, see this documentation topic:
*
* https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/get-
started.html
 */

public class CreateRole {
 public static void main(String[] args) throws Exception {
 final String usage = """
 Usage:
 <rolename> <fileLocation>\s

 Where:
 rolename - The name of the role to create.\s
 fileLocation - The location of the JSON document that
 represents the trust policy.\s
 """;

 if (args.length != 2) {
 System.out.println(usage);
 System.exit(1);
 }

 String rolename = args[0];
 String fileLocation = args[1];
 Region region = Region.AWS_GLOBAL;
 IamClient iam = IamClient.builder()
 .region(region)
 .build();

 String result = createIAMRole(iam, rolename, fileLocation);
 System.out.println("Successfully created user: " + result);

Actions 1637

AWS Identity and Access Management User Guide

 iam.close();
 }

 public static String createIAMRole(IamClient iam, String rolename, String
 fileLocation) throws Exception {
 try {
 JSONObject jsonObject = (JSONObject)
 readJsonSimpleDemo(fileLocation);
 CreateRoleRequest request = CreateRoleRequest.builder()
 .roleName(rolename)
 .assumeRolePolicyDocument(jsonObject.toJSONString())
 .description("Created using the AWS SDK for Java")
 .build();

 CreateRoleResponse response = iam.createRole(request);
 System.out.println("The ARN of the role is " +
 response.role().arn());

 } catch (IamException e) {
 System.err.println(e.awsErrorDetails().errorMessage());
 System.exit(1);
 }
 return "";
 }

 public static Object readJsonSimpleDemo(String filename) throws Exception {
 FileReader reader = new FileReader(filename);
 JSONParser jsonParser = new JSONParser();
 return jsonParser.parse(reader);
 }
}

• For API details, see CreateRole in AWS SDK for Java 2.x API Reference.

Actions 1638

https://docs.aws.amazon.com/goto/SdkForJavaV2/iam-2010-05-08/CreateRole

AWS Identity and Access Management User Guide

JavaScript

SDK for JavaScript (v3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Create the role.

import { CreateRoleCommand, IAMClient } from "@aws-sdk/client-iam";

const client = new IAMClient({});

/**
 *
 * @param {string} roleName
 */
export const createRole = (roleName) => {
 const command = new CreateRoleCommand({
 AssumeRolePolicyDocument: JSON.stringify({
 Version: "2012-10-17",
 Statement: [
 {
 Effect: "Allow",
 Principal: {
 Service: "lambda.amazonaws.com",
 },
 Action: "sts:AssumeRole",
 },
],
 }),
 RoleName: roleName,
 });

 return client.send(command);
};

• For API details, see CreateRole in AWS SDK for JavaScript API Reference.

Actions 1639

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/iam#code-examples
https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/client/iam/command/CreateRoleCommand

AWS Identity and Access Management User Guide

PHP

SDK for PHP

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

$uuid = uniqid();
$service = new IAMService();

$assumeRolePolicyDocument = "{
 \"Version\": \"2012-10-17\",
 \"Statement\": [{
 \"Effect\": \"Allow\",
 \"Principal\": {\"AWS\": \"{$user['Arn']}\"},
 \"Action\": \"sts:AssumeRole\"
 }]
 }";
$assumeRoleRole = $service->createRole("iam_demo_role_$uuid",
 $assumeRolePolicyDocument);
echo "Created role: {$assumeRoleRole['RoleName']}\n";

 /**
 * @param string $roleName
 * @param string $rolePolicyDocument
 * @return array
 * @throws AwsException
 */
 public function createRole(string $roleName, string $rolePolicyDocument)
 {
 $result = $this->customWaiter(function () use ($roleName,
 $rolePolicyDocument) {
 return $this->iamClient->createRole([
 'AssumeRolePolicyDocument' => $rolePolicyDocument,
 'RoleName' => $roleName,
]);
 });
 return $result['Role'];
 }

Actions 1640

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/php/example_code/iam#code-examples

AWS Identity and Access Management User Guide

• For API details, see CreateRole in AWS SDK for PHP API Reference.

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

def create_role(role_name, allowed_services):
 """
 Creates a role that lets a list of specified services assume the role.

 :param role_name: The name of the role.
 :param allowed_services: The services that can assume the role.
 :return: The newly created role.
 """
 trust_policy = {
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {"Service": service},
 "Action": "sts:AssumeRole",
 }
 for service in allowed_services
],
 }

 try:
 role = iam.create_role(
 RoleName=role_name, AssumeRolePolicyDocument=json.dumps(trust_policy)
)
 logger.info("Created role %s.", role.name)
 except ClientError:
 logger.exception("Couldn't create role %s.", role_name)

Actions 1641

https://docs.aws.amazon.com/goto/SdkForPHPV3/iam-2010-05-08/CreateRole
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/iam#code-examples

AWS Identity and Access Management User Guide

 raise
 else:
 return role

• For API details, see CreateRole in AWS SDK for Python (Boto3) API Reference.

Ruby

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 # Creates a role and attaches policies to it.
 #
 # @param role_name [String] The name of the role.
 # @param assume_role_policy_document [Hash] The trust relationship policy
 document.
 # @param policy_arns [Array<String>] The ARNs of the policies to attach.
 # @return [String, nil] The ARN of the new role if successful, or nil if an
 error occurred.
 def create_role(role_name, assume_role_policy_document, policy_arns)
 response = @iam_client.create_role(
 role_name: role_name,
 assume_role_policy_document: assume_role_policy_document.to_json
)
 role_arn = response.role.arn

 policy_arns.each do |policy_arn|
 @iam_client.attach_role_policy(
 role_name: role_name,
 policy_arn: policy_arn
)
 end

 role_arn

Actions 1642

https://docs.aws.amazon.com/goto/boto3/iam-2010-05-08/CreateRole
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/iam#code-examples

AWS Identity and Access Management User Guide

 rescue Aws::IAM::Errors::ServiceError => e
 @logger.error("Error creating role: #{e.message}")
 nil
 end

• For API details, see CreateRole in AWS SDK for Ruby API Reference.

Rust

SDK for Rust

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

pub async fn create_role(
 client: &iamClient,
 role_name: &str,
 role_policy_document: &str,
) -> Result<Role, iamError> {
 let response: CreateRoleOutput = loop {
 if let Ok(response) = client
 .create_role()
 .role_name(role_name)
 .assume_role_policy_document(role_policy_document)
 .send()
 .await
 {
 break response;
 }
 };

 Ok(response.role.unwrap())
}

• For API details, see CreateRole in AWS SDK for Rust API reference.

Actions 1643

https://docs.aws.amazon.com/goto/SdkForRubyV3/iam-2010-05-08/CreateRole
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/rustv1/examples/iam#code-examples
https://docs.rs/releases/search?query=aws-sdk

AWS Identity and Access Management User Guide

Swift

SDK for Swift

Note

This is prerelease documentation for an SDK in preview release. It is subject to
change.

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 public func createRole(name: String, policyDocument: String) async throws ->
 String {
 let input = CreateRoleInput(
 assumeRolePolicyDocument: policyDocument,
 roleName: name
)
 do {
 let output = try await client.createRole(input: input)
 guard let role = output.role else {
 throw ServiceHandlerError.noSuchRole
 }
 guard let id = role.roleId else {
 throw ServiceHandlerError.noSuchRole
 }
 return id
 } catch {
 throw error
 }
 }

• For API details, see CreateRole in AWS SDK for Swift API reference.

Actions 1644

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/swift/example_code/iam#code-examples
https://awslabs.github.io/aws-sdk-swift/reference/0.x

AWS Identity and Access Management User Guide

For a complete list of AWS SDK developer guides and code examples, see Using IAM with an AWS
SDK. This topic also includes information about getting started and details about previous SDK
versions.

Create an IAM service-linked role using an AWS SDK

The following code examples show how to create an IAM service-linked role.

.NET

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 /// <summary>
 /// Create an IAM service-linked role.
 /// </summary>
 /// <param name="serviceName">The name of the AWS Service.</param>
 /// <param name="description">A description of the IAM service-linked role.</
param>
 /// <returns>The IAM role that was created.</returns>
 public async Task<Role> CreateServiceLinkedRoleAsync(string serviceName,
 string description)
 {
 var request = new CreateServiceLinkedRoleRequest
 {
 AWSServiceName = serviceName,
 Description = description
 };

 var response = await _IAMService.CreateServiceLinkedRoleAsync(request);
 return response.Role;
 }

• For API details, see CreateServiceLinkedRole in AWS SDK for .NET API Reference.

Actions 1645

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/IAM#code-examples
https://docs.aws.amazon.com/goto/DotNetSDKV3/iam-2010-05-08/CreateServiceLinkedRole

AWS Identity and Access Management User Guide

CLI

AWS CLI

To create a service-linked role

The following create-service-linked-role example creates a service-linked role for
the specified AWS service and attaches the specified description.

aws iam create-service-linked-role \
 --aws-service-name lex.amazonaws.com \
 --description "My service-linked role to support Lex"

Output:

{
 "Role": {
 "Path": "/aws-service-role/lex.amazonaws.com/",
 "RoleName": "AWSServiceRoleForLexBots",
 "RoleId": "AROA1234567890EXAMPLE",
 "Arn": "arn:aws:iam::1234567890:role/aws-service-role/lex.amazonaws.com/
AWSServiceRoleForLexBots",
 "CreateDate": "2019-04-17T20:34:14+00:00",
 "AssumeRolePolicyDocument": {
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "sts:AssumeRole"
],
 "Effect": "Allow",
 "Principal": {
 "Service": [
 "lex.amazonaws.com"
]
 }
 }
]
 }
 }
}

For more information, see Using service-linked roles in the AWS IAM User Guide.

Actions 1646

https://docs.aws.amazon.com/IAM/latest/UserGuide/using-service-linked-roles.html

AWS Identity and Access Management User Guide

• For API details, see CreateServiceLinkedRole in AWS CLI Command Reference.

Go

SDK for Go V2

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

// RoleWrapper encapsulates AWS Identity and Access Management (IAM) role actions
// used in the examples.
// It contains an IAM service client that is used to perform role actions.
type RoleWrapper struct {
 IamClient *iam.Client
}

// CreateServiceLinkedRole creates a service-linked role that is owned by the
 specified service.
func (wrapper RoleWrapper) CreateServiceLinkedRole(serviceName string,
 description string) (*types.Role, error) {
 var role *types.Role
 result, err := wrapper.IamClient.CreateServiceLinkedRole(context.TODO(),
 &iam.CreateServiceLinkedRoleInput{
 AWSServiceName: aws.String(serviceName),
 Description: aws.String(description),
 })
 if err != nil {
 log.Printf("Couldn't create service-linked role %v. Here's why: %v\n",
 serviceName, err)
 } else {
 role = result.Role
 }
 return role, err
}

Actions 1647

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/iam/create-service-linked-role.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/gov2/iam#code-examples

AWS Identity and Access Management User Guide

• For API details, see CreateServiceLinkedRole in AWS SDK for Go API Reference.

JavaScript

SDK for JavaScript (v3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Create a service-linked role.

import { CreateServiceLinkedRoleCommand, IAMClient } from "@aws-sdk/client-iam";

const client = new IAMClient({});

/**
 *
 * @param {string} serviceName
 */
export const createServiceLinkedRole = async (serviceName) => {
 const command = new CreateServiceLinkedRoleCommand({
 // For a list of AWS services that support service-linked roles,
 // see https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-
services-that-work-with-iam.html.
 //
 // For a list of AWS service endpoints, see https://docs.aws.amazon.com/
general/latest/gr/aws-service-information.html.
 AWSServiceName: serviceName,
 });

 const response = await client.send(command);
 console.log(response);
 return response;
};

• For API details, see CreateServiceLinkedRole in AWS SDK for JavaScript API Reference.

Actions 1648

https://pkg.go.dev/github.com/aws/aws-sdk-go-v2/service/iam#Client.CreateServiceLinkedRole
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/iam#code-examples
https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/client/iam/command/CreateServiceLinkedRoleCommand

AWS Identity and Access Management User Guide

PHP

SDK for PHP

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

$uuid = uniqid();
$service = new IAMService();

 public function createServiceLinkedRole($awsServiceName, $customSuffix = "",
 $description = "")
 {
 $createServiceLinkedRoleArguments = ['AWSServiceName' =>
 $awsServiceName];
 if ($customSuffix) {
 $createServiceLinkedRoleArguments['CustomSuffix'] = $customSuffix;
 }
 if ($description) {
 $createServiceLinkedRoleArguments['Description'] = $description;
 }
 return $this->iamClient-
>createServiceLinkedRole($createServiceLinkedRoleArguments);
 }

• For API details, see CreateServiceLinkedRole in AWS SDK for PHP API Reference.

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Actions 1649

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/php/example_code/iam#code-examples
https://docs.aws.amazon.com/goto/SdkForPHPV3/iam-2010-05-08/CreateServiceLinkedRole
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/iam#code-examples

AWS Identity and Access Management User Guide

def create_service_linked_role(service_name, description):
 """
 Creates a service-linked role.

 :param service_name: The name of the service that owns the role.
 :param description: A description to give the role.
 :return: The newly created role.
 """
 try:
 response = iam.meta.client.create_service_linked_role(
 AWSServiceName=service_name, Description=description
)
 role = iam.Role(response["Role"]["RoleName"])
 logger.info("Created service-linked role %s.", role.name)
 except ClientError:
 logger.exception("Couldn't create service-linked role for %s.",
 service_name)
 raise
 else:
 return role

• For API details, see CreateServiceLinkedRole in AWS SDK for Python (Boto3) API Reference.

Ruby

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 # Creates a service-linked role
 #
 # @param service_name [String] The service name to create the role for.
 # @param description [String] The description of the service-linked role.
 # @param suffix [String] Suffix for customizing role name.

Actions 1650

https://docs.aws.amazon.com/goto/boto3/iam-2010-05-08/CreateServiceLinkedRole
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/iam#code-examples

AWS Identity and Access Management User Guide

 # @return [String] The name of the created role
 def create_service_linked_role(service_name, description, suffix)
 response = @iam_client.create_service_linked_role(
 aws_service_name: service_name, description: description, custom_suffix:
 suffix,)
 role_name = response.role.role_name
 @logger.info("Created service-linked role #{role_name}.")
 role_name
 rescue Aws::Errors::ServiceError => e
 @logger.error("Couldn't create service-linked role for #{service_name}.
 Here's why:")
 @logger.error("\t#{e.code}: #{e.message}")
 raise
 end

• For API details, see CreateServiceLinkedRole in AWS SDK for Ruby API Reference.

Rust

SDK for Rust

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

pub async fn create_service_linked_role(
 client: &iamClient,
 aws_service_name: String,
 custom_suffix: Option<String>,
 description: Option<String>,
) -> Result<CreateServiceLinkedRoleOutput,
 SdkError<CreateServiceLinkedRoleError>> {
 let response = client
 .create_service_linked_role()
 .aws_service_name(aws_service_name)
 .set_custom_suffix(custom_suffix)
 .set_description(description)
 .send()
 .await?;

Actions 1651

https://docs.aws.amazon.com/goto/SdkForRubyV3/iam-2010-05-08/CreateServiceLinkedRole
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/rustv1/examples/iam#code-examples

AWS Identity and Access Management User Guide

 Ok(response)
}

• For API details, see CreateServiceLinkedRole in AWS SDK for Rust API reference.

Swift

SDK for Swift

Note

This is prerelease documentation for an SDK in preview release. It is subject to
change.

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 public func createServiceLinkedRole(service: String, suffix: String? = nil,
 description: String?)
 async throws -> IAMClientTypes.Role {
 let input = CreateServiceLinkedRoleInput(
 awsServiceName: service,
 customSuffix: suffix,
 description: description
)
 do {
 let output = try await client.createServiceLinkedRole(input: input)
 guard let role = output.role else {
 throw ServiceHandlerError.noSuchRole
 }
 return role
 } catch {
 throw error
 }
 }

Actions 1652

https://docs.rs/releases/search?query=aws-sdk
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/swift/example_code/iam#code-examples

AWS Identity and Access Management User Guide

• For API details, see CreateServiceLinkedRole in AWS SDK for Swift API reference.

For a complete list of AWS SDK developer guides and code examples, see Using IAM with an AWS
SDK. This topic also includes information about getting started and details about previous SDK
versions.

Create an IAM user using an AWS SDK

The following code examples show how to create an IAM user.

Warning

To avoid security risks, don't use IAM users for authentication when developing purpose-
built software or working with real data. Instead, use federation with an identity provider
such as AWS IAM Identity Center.

Action examples are code excerpts from larger programs and must be run in context. You can see
this action in context in the following code examples:

• Create a group and add a user

• Create a user and assume a role

• Create read-only and read-write users

.NET

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 /// <summary>
 /// Create an IAM user.

Actions 1653

https://awslabs.github.io/aws-sdk-swift/reference/0.x
https://docs.aws.amazon.com/singlesignon/latest/userguide/what-is.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/IAM#code-examples

AWS Identity and Access Management User Guide

 /// </summary>
 /// <param name="userName">The username for the new IAM user.</param>
 /// <returns>The IAM user that was created.</returns>
 public async Task<User> CreateUserAsync(string userName)
 {
 var response = await _IAMService.CreateUserAsync(new CreateUserRequest
 { UserName = userName });
 return response.User;
 }

• For API details, see CreateUser in AWS SDK for .NET API Reference.

Bash

AWS CLI with Bash script

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

###
function iecho
#
This function enables the script to display the specified text only if
the global variable $VERBOSE is set to true.
###
function iecho() {
 if [[$VERBOSE == true]]; then
 echo "$@"
 fi
}

###
function errecho
#
This function outputs everything sent to it to STDERR (standard error output).
###
function errecho() {

Actions 1654

https://docs.aws.amazon.com/goto/DotNetSDKV3/iam-2010-05-08/CreateUser
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/aws-cli/bash-linux/iam#code-examples

AWS Identity and Access Management User Guide

 printf "%s\n" "$*" 1>&2
}

###
function iam_create_user
#
This function creates the specified IAM user, unless
it already exists.
#
Parameters:
-u user_name -- The name of the user to create.
#
Returns:
The ARN of the user.
And:
0 - If successful.
1 - If it fails.
###
function iam_create_user() {
 local user_name response
 local option OPTARG # Required to use getopts command in a function.

 # bashsupport disable=BP5008
 function usage() {
 echo "function iam_create_user"
 echo "Creates an WS Identity and Access Management (IAM) user. You must
 supply a username:"
 echo " -u user_name The name of the user. It must be unique within the
 account."
 echo ""
 }

 # Retrieve the calling parameters.
 while getopts "u:h" option; do
 case "${option}" in
 u) user_name="${OPTARG}" ;;
 h)
 usage
 return 0
 ;;
 \?)
 echo "Invalid parameter"
 usage
 return 1

Actions 1655

AWS Identity and Access Management User Guide

 ;;
 esac
 done
 export OPTIND=1

 if [[-z "$user_name"]]; then
 errecho "ERROR: You must provide a username with the -u parameter."
 usage
 return 1
 fi

 iecho "Parameters:\n"
 iecho " User name: $user_name"
 iecho ""

 # If the user already exists, we don't want to try to create it.
 if (iam_user_exists "$user_name"); then
 errecho "ERROR: A user with that name already exists in the account."
 return 1
 fi

 response=$(aws iam create-user --user-name "$user_name" \
 --output text \
 --query 'User.Arn')

 local error_code=${?}

 if [[$error_code -ne 0]]; then
 aws_cli_error_log $error_code
 errecho "ERROR: AWS reports create-user operation failed.$response"
 return 1
 fi

 echo "$response"

 return 0
}

• For API details, see CreateUser in AWS CLI Command Reference.

Actions 1656

https://docs.aws.amazon.com/goto/aws-cli/iam-2010-05-08/CreateUser

AWS Identity and Access Management User Guide

C++

SDK for C++

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 Aws::IAM::IAMClient iam(clientConfig);

 Aws::IAM::Model::CreateUserRequest create_request;
 create_request.SetUserName(userName);

 auto create_outcome = iam.CreateUser(create_request);
 if (!create_outcome.IsSuccess()) {
 std::cerr << "Error creating IAM user " << userName << ":" <<
 create_outcome.GetError().GetMessage() << std::endl;
 }
 else {
 std::cout << "Successfully created IAM user " << userName << std::endl;
 }

 return create_outcome.IsSuccess();

• For API details, see CreateUser in AWS SDK for C++ API Reference.

CLI

AWS CLI

Example 1: To create an IAM user

The following create-user command creates an IAM user named Bob in the current
account.

aws iam create-user \
 --user-name Bob

Actions 1657

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/cpp/example_code/iam#code-examples
https://docs.aws.amazon.com/goto/SdkForCpp/iam-2010-05-08/CreateUser

AWS Identity and Access Management User Guide

Output:

{
 "User": {
 "UserName": "Bob",
 "Path": "/",
 "CreateDate": "2023-06-08T03:20:41.270Z",
 "UserId": "AIDAIOSFODNN7EXAMPLE",
 "Arn": "arn:aws:iam::123456789012:user/Bob"
 }
}

For more information, see Creating an IAM user in your AWS account in the AWS IAM User
Guide.

Example 2: To create an IAM user at a specified path

The following create-user command creates an IAM user named Bob at the specified
path.

aws iam create-user \
 --user-name Bob \
 --path /division_abc/subdivision_xyz/

Output:

{
 "User": {
 "Path": "/division_abc/subdivision_xyz/",
 "UserName": "Bob",
 "UserId": "AIDAIOSFODNN7EXAMPLE",
 "Arn": "arn:aws:iam::12345678012:user/division_abc/subdivision_xyz/Bob",
 "CreateDate": "2023-05-24T18:20:17+00:00"
 }
}

For more information, see IAM identifiers in the AWS IAM User Guide.

Example 3: To Create an IAM User with tags

The following create-user command creates an IAM user named Bob with tags.
This example uses the --tags parameter flag with the following JSON-formatted

Actions 1658

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_create.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_identifiers.html

AWS Identity and Access Management User Guide

tags: '{"Key": "Department", "Value": "Accounting"}' '{"Key":
"Location", "Value": "Seattle"}'. Alternatively, the --tags flag can be
used with tags in the shorthand format: 'Key=Department,Value=Accounting
Key=Location,Value=Seattle'.

aws iam create-user \
 --user-name Bob \
 --tags '{"Key": "Department", "Value": "Accounting"}' '{"Key": "Location",
 "Value": "Seattle"}'

Output:

{
 "User": {
 "Path": "/",
 "UserName": "Bob",
 "UserId": "AIDAIOSFODNN7EXAMPLE",
 "Arn": "arn:aws:iam::12345678012:user/Bob",
 "CreateDate": "2023-05-25T17:14:21+00:00",
 "Tags": [
 {
 "Key": "Department",
 "Value": "Accounting"
 },
 {
 "Key": "Location",
 "Value": "Seattle"
 }
]
 }
}

For more information, see Tagging IAM users in the AWS IAM User Guide.

Example 3: To create an IAM user with a set permissions boundary

The following create-user command creates an IAM user named Bob with the
permissions boundary of AmazonS3FullAccess.

aws iam create-user \
 --user-name Bob \
 --permissions-boundary arn:aws:iam::aws:policy/AmazonS3FullAccess

Actions 1659

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_tags_users.html

AWS Identity and Access Management User Guide

Output:

{
 "User": {
 "Path": "/",
 "UserName": "Bob",
 "UserId": "AIDAIOSFODNN7EXAMPLE",
 "Arn": "arn:aws:iam::12345678012:user/Bob",
 "CreateDate": "2023-05-24T17:50:53+00:00",
 "PermissionsBoundary": {
 "PermissionsBoundaryType": "Policy",
 "PermissionsBoundaryArn": "arn:aws:iam::aws:policy/AmazonS3FullAccess"
 }
 }
}

For more information, see Permissions boundaries for IAM entities in the AWS IAM User
Guide.

• For API details, see CreateUser in AWS CLI Command Reference.

Go

SDK for Go V2

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

// UserWrapper encapsulates user actions used in the examples.
// It contains an IAM service client that is used to perform user actions.
type UserWrapper struct {
 IamClient *iam.Client
}

// CreateUser creates a new user with the specified name.
func (wrapper UserWrapper) CreateUser(userName string) (*types.User, error) {

Actions 1660

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_boundaries.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/iam/create-user.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/gov2/iam#code-examples

AWS Identity and Access Management User Guide

 var user *types.User
 result, err := wrapper.IamClient.CreateUser(context.TODO(),
 &iam.CreateUserInput{
 UserName: aws.String(userName),
 })
 if err != nil {
 log.Printf("Couldn't create user %v. Here's why: %v\n", userName, err)
 } else {
 user = result.User
 }
 return user, err
}

• For API details, see CreateUser in AWS SDK for Go API Reference.

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

import software.amazon.awssdk.core.waiters.WaiterResponse;
import software.amazon.awssdk.services.iam.model.CreateUserRequest;
import software.amazon.awssdk.services.iam.model.CreateUserResponse;
import software.amazon.awssdk.services.iam.model.IamException;
import software.amazon.awssdk.regions.Region;
import software.amazon.awssdk.services.iam.IamClient;
import software.amazon.awssdk.services.iam.waiters.IamWaiter;
import software.amazon.awssdk.services.iam.model.GetUserRequest;
import software.amazon.awssdk.services.iam.model.GetUserResponse;

/**
 * Before running this Java V2 code example, set up your development
 * environment, including your credentials.
 *
 * For more information, see the following documentation topic:

Actions 1661

https://pkg.go.dev/github.com/aws/aws-sdk-go-v2/service/iam#Client.CreateUser
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/iam#readme

AWS Identity and Access Management User Guide

 *
 * https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/get-
started.html
 */
public class CreateUser {
 public static void main(String[] args) {
 final String usage = """

 Usage:
 <username>\s

 Where:
 username - The name of the user to create.\s
 """;

 if (args.length != 1) {
 System.out.println(usage);
 System.exit(1);
 }

 String username = args[0];
 Region region = Region.AWS_GLOBAL;
 IamClient iam = IamClient.builder()
 .region(region)
 .build();

 String result = createIAMUser(iam, username);
 System.out.println("Successfully created user: " + result);
 iam.close();
 }

 public static String createIAMUser(IamClient iam, String username) {
 try {
 // Create an IamWaiter object.
 IamWaiter iamWaiter = iam.waiter();

 CreateUserRequest request = CreateUserRequest.builder()
 .userName(username)
 .build();

 CreateUserResponse response = iam.createUser(request);

 // Wait until the user is created.
 GetUserRequest userRequest = GetUserRequest.builder()

Actions 1662

AWS Identity and Access Management User Guide

 .userName(response.user().userName())
 .build();

 WaiterResponse<GetUserResponse> waitUntilUserExists =
 iamWaiter.waitUntilUserExists(userRequest);

 waitUntilUserExists.matched().response().ifPresent(System.out::println);
 return response.user().userName();

 } catch (IamException e) {
 System.err.println(e.awsErrorDetails().errorMessage());
 System.exit(1);
 }
 return "";
 }
}

• For API details, see CreateUser in AWS SDK for Java 2.x API Reference.

JavaScript

SDK for JavaScript (v3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Create the user.

import { CreateUserCommand, IAMClient } from "@aws-sdk/client-iam";

const client = new IAMClient({});

/**
 *
 * @param {string} name
 */
export const createUser = (name) => {
 const command = new CreateUserCommand({ UserName: name });

Actions 1663

https://docs.aws.amazon.com/goto/SdkForJavaV2/iam-2010-05-08/CreateUser
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/iam#code-examples

AWS Identity and Access Management User Guide

 return client.send(command);
};

• For more information, see AWS SDK for JavaScript Developer Guide.

• For API details, see CreateUser in AWS SDK for JavaScript API Reference.

SDK for JavaScript (v2)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set the region
AWS.config.update({ region: "REGION" });

// Create the IAM service object
var iam = new AWS.IAM({ apiVersion: "2010-05-08" });

var params = {
 UserName: process.argv[2],
};

iam.getUser(params, function (err, data) {
 if (err && err.code === "NoSuchEntity") {
 iam.createUser(params, function (err, data) {
 if (err) {
 console.log("Error", err);
 } else {
 console.log("Success", data);
 }
 });
 } else {
 console.log(
 "User " + process.argv[2] + " already exists",
 data.User.UserId
);
 }

Actions 1664

https://docs.aws.amazon.com/sdk-for-javascript/v3/developer-guide/iam-examples-managing-users.html#iam-examples-managing-users-creating-users
https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/client/iam/command/CreateUserCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascript/example_code/iam#code-examples

AWS Identity and Access Management User Guide

});

• For more information, see AWS SDK for JavaScript Developer Guide.

• For API details, see CreateUser in AWS SDK for JavaScript API Reference.

Kotlin

SDK for Kotlin

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

suspend fun createIAMUser(usernameVal: String?): String? {

 val request = CreateUserRequest {
 userName = usernameVal
 }

 IamClient { region = "AWS_GLOBAL" }.use { iamClient ->
 val response = iamClient.createUser(request)
 return response.user?.userName
 }
}

• For API details, see CreateUser in AWS SDK for Kotlin API reference.

PHP

SDK for PHP

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Actions 1665

https://docs.aws.amazon.com/sdk-for-javascript/v2/developer-guide/iam-examples-managing-users.html#iam-examples-managing-users-creating-users
https://docs.aws.amazon.com/goto/AWSJavaScriptSDK/iam-2010-05-08/CreateUser
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/kotlin/services/iam#code-examples
https://github.com/awslabs/aws-sdk-kotlin#generating-api-documentation
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/php/example_code/iam#code-examples

AWS Identity and Access Management User Guide

$uuid = uniqid();
$service = new IAMService();

$user = $service->createUser("iam_demo_user_$uuid");
echo "Created user with the arn: {$user['Arn']}\n";

 /**
 * @param string $name
 * @return array
 * @throws AwsException
 */
 public function createUser(string $name): array
 {
 $result = $this->iamClient->createUser([
 'UserName' => $name,
]);

 return $result['User'];
 }

• For API details, see CreateUser in AWS SDK for PHP API Reference.

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

def create_user(user_name):
 """
 Creates a user. By default, a user has no permissions or access keys.

 :param user_name: The name of the user.
 :return: The newly created user.
 """

Actions 1666

https://docs.aws.amazon.com/goto/SdkForPHPV3/iam-2010-05-08/CreateUser
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/iam#code-examples

AWS Identity and Access Management User Guide

 try:
 user = iam.create_user(UserName=user_name)
 logger.info("Created user %s.", user.name)
 except ClientError:
 logger.exception("Couldn't create user %s.", user_name)
 raise
 else:
 return user

• For API details, see CreateUser in AWS SDK for Python (Boto3) API Reference.

Ruby

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 # Creates a user and their login profile
 #
 # @param user_name [String] The name of the user
 # @param initial_password [String] The initial password for the user
 # @return [String, nil] The ID of the user if created, or nil if an error
 occurred
 def create_user(user_name, initial_password)
 response = @iam_client.create_user(user_name: user_name)
 @iam_client.wait_until(:user_exists, user_name: user_name)
 @iam_client.create_login_profile(
 user_name: user_name,
 password: initial_password,
 password_reset_required: true
)
 @logger.info("User '#{user_name}' created successfully.")
 response.user.user_id
 rescue Aws::IAM::Errors::EntityAlreadyExists
 @logger.error("Error creating user '#{user_name}': user already exists.")

Actions 1667

https://docs.aws.amazon.com/goto/boto3/iam-2010-05-08/CreateUser
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/iam#code-examples

AWS Identity and Access Management User Guide

 nil
 rescue Aws::IAM::Errors::ServiceError => e
 @logger.error("Error creating user '#{user_name}': #{e.message}")
 nil
 end

• For API details, see CreateUser in AWS SDK for Ruby API Reference.

Rust

SDK for Rust

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

pub async fn create_user(client: &iamClient, user_name: &str) -> Result<User,
 iamError> {
 let response = client.create_user().user_name(user_name).send().await?;

 Ok(response.user.unwrap())
}

• For API details, see CreateUser in AWS SDK for Rust API reference.

Swift

SDK for Swift

Note

This is prerelease documentation for an SDK in preview release. It is subject to
change.

Actions 1668

https://docs.aws.amazon.com/goto/SdkForRubyV3/iam-2010-05-08/CreateUser
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/rustv1/examples/iam#code-examples
https://docs.rs/releases/search?query=aws-sdk

AWS Identity and Access Management User Guide

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 public func createUser(name: String) async throws -> String {
 let input = CreateUserInput(
 userName: name
)
 do {
 let output = try await client.createUser(input: input)
 guard let user = output.user else {
 throw ServiceHandlerError.noSuchUser
 }
 guard let id = user.userId else {
 throw ServiceHandlerError.noSuchUser
 }
 return id
 } catch {
 throw error
 }
 }

• For API details, see CreateUser in AWS SDK for Swift API reference.

For a complete list of AWS SDK developer guides and code examples, see Using IAM with an AWS
SDK. This topic also includes information about getting started and details about previous SDK
versions.

Create an IAM access key using an AWS SDK

The following code examples show how to create an IAM access key.

Actions 1669

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/swift/example_code/iam#code-examples
https://awslabs.github.io/aws-sdk-swift/reference/0.x

AWS Identity and Access Management User Guide

Warning

To avoid security risks, don't use IAM users for authentication when developing purpose-
built software or working with real data. Instead, use federation with an identity provider
such as AWS IAM Identity Center.

Action examples are code excerpts from larger programs and must be run in context. You can see
this action in context in the following code examples:

• Create a group and add a user

• Create a user and assume a role

• Create read-only and read-write users

• Manage access keys

.NET

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 /// <summary>
 /// Create an IAM access key for a user.
 /// </summary>
 /// <param name="userName">The username for which to create the IAM access
 /// key.</param>
 /// <returns>The AccessKey.</returns>
 public async Task<AccessKey> CreateAccessKeyAsync(string userName)
 {
 var response = await _IAMService.CreateAccessKeyAsync(new
 CreateAccessKeyRequest
 {
 UserName = userName,
 });

Actions 1670

https://docs.aws.amazon.com/singlesignon/latest/userguide/what-is.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/IAM#code-examples

AWS Identity and Access Management User Guide

 return response.AccessKey;

 }

• For API details, see CreateAccessKey in AWS SDK for .NET API Reference.

Bash

AWS CLI with Bash script

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

###
function errecho
#
This function outputs everything sent to it to STDERR (standard error output).
###
function errecho() {
 printf "%s\n" "$*" 1>&2
}

###
function iam_create_user_access_key
#
This function creates an IAM access key for the specified user.
#
Parameters:
-u user_name -- The name of the IAM user.
[-f file_name] -- The optional file name for the access key output.
#
Returns:
[access_key_id access_key_secret]
And:
0 - If successful.
1 - If it fails.
###

Actions 1671

https://docs.aws.amazon.com/goto/DotNetSDKV3/iam-2010-05-08/CreateAccessKey
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/aws-cli/bash-linux/iam#code-examples

AWS Identity and Access Management User Guide

function iam_create_user_access_key() {
 local user_name file_name response
 local option OPTARG # Required to use getopts command in a function.

 # bashsupport disable=BP5008
 function usage() {
 echo "function iam_create_user_access_key"
 echo "Creates an AWS Identity and Access Management (IAM) key pair."
 echo " -u user_name The name of the IAM user."
 echo " [-f file_name] Optional file name for the access key output."
 echo ""
 }

 # Retrieve the calling parameters.
 while getopts "u:f:h" option; do
 case "${option}" in
 u) user_name="${OPTARG}" ;;
 f) file_name="${OPTARG}" ;;
 h)
 usage
 return 0
 ;;
 \?)
 echo "Invalid parameter"
 usage
 return 1
 ;;
 esac
 done
 export OPTIND=1

 if [[-z "$user_name"]]; then
 errecho "ERROR: You must provide a username with the -u parameter."
 usage
 return 1
 fi

 response=$(aws iam create-access-key \
 --user-name "$user_name" \
 --output text)

 local error_code=${?}

 if [[$error_code -ne 0]]; then

Actions 1672

AWS Identity and Access Management User Guide

 aws_cli_error_log $error_code
 errecho "ERROR: AWS reports create-access-key operation failed.$response"
 return 1
 fi

 if [[-n "$file_name"]]; then
 echo "$response" >"$file_name"
 fi

 local key_id key_secret
 # shellcheck disable=SC2086
 key_id=$(echo $response | cut -f 2 -d ' ')
 # shellcheck disable=SC2086
 key_secret=$(echo $response | cut -f 4 -d ' ')

 echo "$key_id $key_secret"

 return 0
}

• For API details, see CreateAccessKey in AWS CLI Command Reference.

C++

SDK for C++

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Aws::String AwsDoc::IAM::createAccessKey(const Aws::String &userName,
 const Aws::Client::ClientConfiguration
 &clientConfig) {
 Aws::IAM::IAMClient iam(clientConfig);

 Aws::IAM::Model::CreateAccessKeyRequest request;
 request.SetUserName(userName);

 Aws::String result;

Actions 1673

https://docs.aws.amazon.com/goto/aws-cli/iam-2010-05-08/CreateAccessKey
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/cpp/example_code/iam#code-examples

AWS Identity and Access Management User Guide

 Aws::IAM::Model::CreateAccessKeyOutcome outcome =
 iam.CreateAccessKey(request);
 if (!outcome.IsSuccess()) {
 std::cerr << "Error creating access key for IAM user " << userName
 << ":" << outcome.GetError().GetMessage() << std::endl;
 }
 else {
 const auto &accessKey = outcome.GetResult().GetAccessKey();
 std::cout << "Successfully created access key for IAM user " <<
 userName << std::endl << " aws_access_key_id = " <<
 accessKey.GetAccessKeyId() << std::endl <<
 " aws_secret_access_key = " << accessKey.GetSecretAccessKey()
 <<
 std::endl;
 result = accessKey.GetAccessKeyId();
 }

 return result;
}

• For API details, see CreateAccessKey in AWS SDK for C++ API Reference.

CLI

AWS CLI

To create an access key for an IAM user

The following create-access-key command creates an access key (access key ID and
secret access key) for the IAM user named Bob.

aws iam create-access-key \
 --user-name Bob

Output:

{
 "AccessKey": {
 "UserName": "Bob",
 "Status": "Active",
 "CreateDate": "2015-03-09T18:39:23.411Z",

Actions 1674

https://docs.aws.amazon.com/goto/SdkForCpp/iam-2010-05-08/CreateAccessKey

AWS Identity and Access Management User Guide

 "SecretAccessKey": "wJalrXUtnFEMI/K7MDENG/bPxRfiCYzEXAMPLEKEY",
 "AccessKeyId": "AKIAIOSFODNN7EXAMPLE"
 }
}

Store the secret access key in a secure location. If it is lost, it cannot be recovered, and you
must create a new access key.

For more information, see Managing access keys for IAM users in the AWS IAM User Guide.

• For API details, see CreateAccessKey in AWS CLI Command Reference.

Go

SDK for Go V2

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

// UserWrapper encapsulates user actions used in the examples.
// It contains an IAM service client that is used to perform user actions.
type UserWrapper struct {
 IamClient *iam.Client
}

// CreateAccessKeyPair creates an access key for a user. The returned access key
 contains
// the ID and secret credentials needed to use the key.
func (wrapper UserWrapper) CreateAccessKeyPair(userName string)
 (*types.AccessKey, error) {
 var key *types.AccessKey
 result, err := wrapper.IamClient.CreateAccessKey(context.TODO(),
 &iam.CreateAccessKeyInput{
 UserName: aws.String(userName)})
 if err != nil {

Actions 1675

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_access-keys.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/iam/create-access-key.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/gov2/iam#code-examples

AWS Identity and Access Management User Guide

 log.Printf("Couldn't create access key pair for user %v. Here's why: %v\n",
 userName, err)
 } else {
 key = result.AccessKey
 }
 return key, err
}

• For API details, see CreateAccessKey in AWS SDK for Go API Reference.

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

import software.amazon.awssdk.services.iam.model.CreateAccessKeyRequest;
import software.amazon.awssdk.services.iam.model.CreateAccessKeyResponse;
import software.amazon.awssdk.regions.Region;
import software.amazon.awssdk.services.iam.IamClient;
import software.amazon.awssdk.services.iam.model.IamException;

/**
 * Before running this Java V2 code example, set up your development
 * environment, including your credentials.
 *
 * For more information, see the following documentation topic:
 *
 * https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/get-
started.html
 */
public class CreateAccessKey {
 public static void main(String[] args) {
 final String usage = """

 Usage:

Actions 1676

https://pkg.go.dev/github.com/aws/aws-sdk-go-v2/service/iam#Client.CreateAccessKey
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/iam#readme

AWS Identity and Access Management User Guide

 <user>\s

 Where:
 user - An AWS IAM user that you can obtain from the AWS
 Management Console.
 """;

 if (args.length != 1) {
 System.out.println(usage);
 System.exit(1);
 }

 String user = args[0];
 Region region = Region.AWS_GLOBAL;
 IamClient iam = IamClient.builder()
 .region(region)
 .build();

 String keyId = createIAMAccessKey(iam, user);
 System.out.println("The Key Id is " + keyId);
 iam.close();
 }

 public static String createIAMAccessKey(IamClient iam, String user) {
 try {
 CreateAccessKeyRequest request = CreateAccessKeyRequest.builder()
 .userName(user)
 .build();

 CreateAccessKeyResponse response = iam.createAccessKey(request);
 return response.accessKey().accessKeyId();

 } catch (IamException e) {
 System.err.println(e.awsErrorDetails().errorMessage());
 System.exit(1);
 }
 return "";
 }
}

• For API details, see CreateAccessKey in AWS SDK for Java 2.x API Reference.

Actions 1677

https://docs.aws.amazon.com/goto/SdkForJavaV2/iam-2010-05-08/CreateAccessKey

AWS Identity and Access Management User Guide

JavaScript

SDK for JavaScript (v3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Create the access key.

import { CreateAccessKeyCommand, IAMClient } from "@aws-sdk/client-iam";

const client = new IAMClient({});

/**
 *
 * @param {string} userName
 */
export const createAccessKey = (userName) => {
 const command = new CreateAccessKeyCommand({ UserName: userName });
 return client.send(command);
};

• For more information, see AWS SDK for JavaScript Developer Guide.

• For API details, see CreateAccessKey in AWS SDK for JavaScript API Reference.

SDK for JavaScript (v2)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set the region

Actions 1678

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/iam#code-examples
https://docs.aws.amazon.com/sdk-for-javascript/v3/developer-guide/iam-examples-managing-access-keys.html#iam-examples-managing-access-keys-creating
https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/client/iam/command/CreateAccessKeyCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascript/example_code/iam#code-examples

AWS Identity and Access Management User Guide

AWS.config.update({ region: "REGION" });

// Create the IAM service object
var iam = new AWS.IAM({ apiVersion: "2010-05-08" });

iam.createAccessKey({ UserName: "IAM_USER_NAME" }, function (err, data) {
 if (err) {
 console.log("Error", err);
 } else {
 console.log("Success", data.AccessKey);
 }
});

• For more information, see AWS SDK for JavaScript Developer Guide.

• For API details, see CreateAccessKey in AWS SDK for JavaScript API Reference.

Kotlin

SDK for Kotlin

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

suspend fun createIAMAccessKey(user: String?): String {

 val request = CreateAccessKeyRequest {
 userName = user
 }

 IamClient { region = "AWS_GLOBAL" }.use { iamClient ->
 val response = iamClient.createAccessKey(request)
 return response.accessKey?.accessKeyId.toString()
 }
}

• For API details, see CreateAccessKey in AWS SDK for Kotlin API reference.

Actions 1679

https://docs.aws.amazon.com/sdk-for-javascript/v2/developer-guide/iam-examples-managing-access-keys.html#iam-examples-managing-access-keys-creating
https://docs.aws.amazon.com/goto/AWSJavaScriptSDK/iam-2010-05-08/CreateAccessKey
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/kotlin/services/iam#code-examples
https://github.com/awslabs/aws-sdk-kotlin#generating-api-documentation

AWS Identity and Access Management User Guide

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

def create_key(user_name):
 """
 Creates an access key for the specified user. Each user can have a
 maximum of two keys.

 :param user_name: The name of the user.
 :return: The created access key.
 """
 try:
 key_pair = iam.User(user_name).create_access_key_pair()
 logger.info(
 "Created access key pair for %s. Key ID is %s.",
 key_pair.user_name,
 key_pair.id,
)
 except ClientError:
 logger.exception("Couldn't create access key pair for %s.", user_name)
 raise
 else:
 return key_pair

• For API details, see CreateAccessKey in AWS SDK for Python (Boto3) API Reference.

Actions 1680

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/iam#code-examples
https://docs.aws.amazon.com/goto/boto3/iam-2010-05-08/CreateAccessKey

AWS Identity and Access Management User Guide

Ruby

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

This example module lists, creates, deactivates, and deletes access keys.

Manages access keys for IAM users
class AccessKeyManager
 def initialize(iam_client, logger: Logger.new($stdout))
 @iam_client = iam_client
 @logger = logger
 @logger.progname = "AccessKeyManager"
 end

 # Lists access keys for a user
 #
 # @param user_name [String] The name of the user.
 def list_access_keys(user_name)
 response = @iam_client.list_access_keys(user_name: user_name)
 if response.access_key_metadata.empty?
 @logger.info("No access keys found for user '#{user_name}'.")
 else
 response.access_key_metadata.map(&:access_key_id)
 end
 rescue Aws::IAM::Errors::NoSuchEntity => e
 @logger.error("Error listing access keys: cannot find user '#{user_name}'.")
 []
 rescue StandardError => e
 @logger.error("Error listing access keys: #{e.message}")
 []
 end

 # Creates an access key for a user
 #
 # @param user_name [String] The name of the user.
 # @return [Boolean]
 def create_access_key(user_name)

Actions 1681

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/iam#code-examples

AWS Identity and Access Management User Guide

 response = @iam_client.create_access_key(user_name: user_name)
 access_key = response.access_key
 @logger.info("Access key created for user '#{user_name}':
 #{access_key.access_key_id}")
 access_key
 rescue Aws::IAM::Errors::LimitExceeded => e
 @logger.error("Error creating access key: limit exceeded. Cannot create
 more.")
 nil
 rescue StandardError => e
 @logger.error("Error creating access key: #{e.message}")
 nil
 end

 # Deactivates an access key
 #
 # @param user_name [String] The name of the user.
 # @param access_key_id [String] The ID for the access key.
 # @return [Boolean]
 def deactivate_access_key(user_name, access_key_id)
 @iam_client.update_access_key(
 user_name: user_name,
 access_key_id: access_key_id,
 status: "Inactive"
)
 true
 rescue StandardError => e
 @logger.error("Error deactivating access key: #{e.message}")
 false
 end

 # Deletes an access key
 #
 # @param user_name [String] The name of the user.
 # @param access_key_id [String] The ID for the access key.
 # @return [Boolean]
 def delete_access_key(user_name, access_key_id)
 @iam_client.delete_access_key(
 user_name: user_name,
 access_key_id: access_key_id
)
 true
 rescue StandardError => e
 @logger.error("Error deleting access key: #{e.message}")

Actions 1682

AWS Identity and Access Management User Guide

 false
 end
end

• For API details, see CreateAccessKey in AWS SDK for Ruby API Reference.

Rust

SDK for Rust

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

pub async fn create_access_key(client: &iamClient, user_name: &str) ->
 Result<AccessKey, iamError> {
 let mut tries: i32 = 0;
 let max_tries: i32 = 10;

 let response: Result<CreateAccessKeyOutput, SdkError<CreateAccessKeyError>> =
 loop {
 match client.create_access_key().user_name(user_name).send().await {
 Ok(inner_response) => {
 break Ok(inner_response);
 }
 Err(e) => {
 tries += 1;
 if tries > max_tries {
 break Err(e);
 }
 sleep(Duration::from_secs(2)).await;
 }
 }
 };

 Ok(response.unwrap().access_key.unwrap())
}

Actions 1683

https://docs.aws.amazon.com/goto/SdkForRubyV3/iam-2010-05-08/CreateAccessKey
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/rustv1/examples/iam#code-examples

AWS Identity and Access Management User Guide

• For API details, see CreateAccessKey in AWS SDK for Rust API reference.

Swift

SDK for Swift

Note

This is prerelease documentation for an SDK in preview release. It is subject to
change.

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 public func createAccessKey(userName: String) async throws ->
 IAMClientTypes.AccessKey {
 let input = CreateAccessKeyInput(
 userName: userName
)
 do {
 let output = try await iamClient.createAccessKey(input: input)
 guard let accessKey = output.accessKey else {
 throw ServiceHandlerError.keyError
 }
 return accessKey
 } catch {
 throw error
 }
 }

• For API details, see CreateAccessKey in AWS SDK for Swift API reference.

Actions 1684

https://docs.rs/releases/search?query=aws-sdk
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/swift/example_code/iam#code-examples
https://awslabs.github.io/aws-sdk-swift/reference/0.x

AWS Identity and Access Management User Guide

For a complete list of AWS SDK developer guides and code examples, see Using IAM with an AWS
SDK. This topic also includes information about getting started and details about previous SDK
versions.

Create an alias for an IAM account using an AWS SDK

The following code examples show how to create an alias for an IAM account.

Action examples are code excerpts from larger programs and must be run in context. You can see
this action in context in the following code example:

• Manage your account

C++

SDK for C++

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

bool AwsDoc::IAM::createAccountAlias(const Aws::String &aliasName,
 const Aws::Client::ClientConfiguration
 &clientConfig) {
 Aws::IAM::IAMClient iam(clientConfig);
 Aws::IAM::Model::CreateAccountAliasRequest request;
 request.SetAccountAlias(aliasName);

 Aws::IAM::Model::CreateAccountAliasOutcome outcome = iam.CreateAccountAlias(
 request);
 if (!outcome.IsSuccess()) {
 std::cerr << "Error creating account alias " << aliasName << ": "
 << outcome.GetError().GetMessage() << std::endl;
 }
 else {
 std::cout << "Successfully created account alias " << aliasName <<
 std::endl;
 }

Actions 1685

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/cpp/example_code/iam#code-examples

AWS Identity and Access Management User Guide

 return outcome.IsSuccess();
}

• For API details, see CreateAccountAlias in AWS SDK for C++ API Reference.

CLI

AWS CLI

To create an account alias

The following create-account-alias command creates the alias examplecorp for your
AWS account.

aws iam create-account-alias \
 --account-alias examplecorp

This command produces no output.

For more information, see Your AWS account ID and its alias in the AWS IAM User Guide.

• For API details, see CreateAccountAlias in AWS CLI Command Reference.

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

import software.amazon.awssdk.services.iam.model.CreateAccountAliasRequest;
import software.amazon.awssdk.regions.Region;
import software.amazon.awssdk.services.iam.IamClient;
import software.amazon.awssdk.services.iam.model.IamException;

/**
 * Before running this Java V2 code example, set up your development

Actions 1686

https://docs.aws.amazon.com/goto/SdkForCpp/iam-2010-05-08/CreateAccountAlias
https://docs.aws.amazon.com/IAM/latest/UserGuide/console_account-alias.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/iam/create-account-alias.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/iam#readme

AWS Identity and Access Management User Guide

 * environment, including your credentials.
 *
 * For more information, see the following documentation topic:
 *
 * https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/get-
started.html
 */
public class CreateAccountAlias {
 public static void main(String[] args) {
 final String usage = """
 Usage:
 <alias>\s

 Where:
 alias - The account alias to create (for example,
 myawsaccount).\s
 """;

 if (args.length != 1) {
 System.out.println(usage);
 System.exit(1);
 }

 String alias = args[0];
 Region region = Region.AWS_GLOBAL;
 IamClient iam = IamClient.builder()
 .region(region)
 .build();

 createIAMAccountAlias(iam, alias);
 iam.close();
 System.out.println("Done");
 }

 public static void createIAMAccountAlias(IamClient iam, String alias) {
 try {
 CreateAccountAliasRequest request =
 CreateAccountAliasRequest.builder()
 .accountAlias(alias)
 .build();

 iam.createAccountAlias(request);
 System.out.println("Successfully created account alias: " + alias);

Actions 1687

AWS Identity and Access Management User Guide

 } catch (IamException e) {
 System.err.println(e.awsErrorDetails().errorMessage());
 System.exit(1);
 }
 }
}

• For API details, see CreateAccountAlias in AWS SDK for Java 2.x API Reference.

JavaScript

SDK for JavaScript (v3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Create the account alias.

import { CreateAccountAliasCommand, IAMClient } from "@aws-sdk/client-iam";

const client = new IAMClient({});

/**
 *
 * @param {string} alias - A unique name for the account alias.
 * @returns
 */
export const createAccountAlias = (alias) => {
 const command = new CreateAccountAliasCommand({
 AccountAlias: alias,
 });

 return client.send(command);
};

• For more information, see AWS SDK for JavaScript Developer Guide.

Actions 1688

https://docs.aws.amazon.com/goto/SdkForJavaV2/iam-2010-05-08/CreateAccountAlias
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/iam#code-examples
https://docs.aws.amazon.com/sdk-for-javascript/v3/developer-guide/iam-examples-account-aliases.html#iam-examples-account-aliases-creating

AWS Identity and Access Management User Guide

• For API details, see CreateAccountAlias in AWS SDK for JavaScript API Reference.

SDK for JavaScript (v2)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set the region
AWS.config.update({ region: "REGION" });

// Create the IAM service object
var iam = new AWS.IAM({ apiVersion: "2010-05-08" });

iam.createAccountAlias({ AccountAlias: process.argv[2] }, function (err, data) {
 if (err) {
 console.log("Error", err);
 } else {
 console.log("Success", data);
 }
});

• For more information, see AWS SDK for JavaScript Developer Guide.

• For API details, see CreateAccountAlias in AWS SDK for JavaScript API Reference.

Kotlin

SDK for Kotlin

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Actions 1689

https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/client/iam/command/CreateAccountAliasCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascript/example_code/iam#code-examples
https://docs.aws.amazon.com/sdk-for-javascript/v2/developer-guide/iam-examples-account-aliases.html#iam-examples-account-aliases-creating
https://docs.aws.amazon.com/goto/AWSJavaScriptSDK/iam-2010-05-08/CreateAccountAlias
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/kotlin/services/iam#code-examples

AWS Identity and Access Management User Guide

suspend fun createIAMAccountAlias(alias: String) {

 val request = CreateAccountAliasRequest {
 accountAlias = alias
 }

 IamClient { region = "AWS_GLOBAL" }.use { iamClient ->
 iamClient.createAccountAlias(request)
 println("Successfully created account alias named $alias")
 }
}

• For API details, see CreateAccountAlias in AWS SDK for Kotlin API reference.

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

def create_alias(alias):
 """
 Creates an alias for the current account. The alias can be used in place of
 the
 account ID in the sign-in URL. An account can have only one alias. When a new
 alias is created, it replaces any existing alias.

 :param alias: The alias to assign to the account.
 """

 try:
 iam.create_account_alias(AccountAlias=alias)
 logger.info("Created an alias '%s' for your account.", alias)
 except ClientError:
 logger.exception("Couldn't create alias '%s' for your account.", alias)
 raise

Actions 1690

https://github.com/awslabs/aws-sdk-kotlin#generating-api-documentation
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/iam#code-examples

AWS Identity and Access Management User Guide

• For API details, see CreateAccountAlias in AWS SDK for Python (Boto3) API Reference.

Ruby

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

List, create, and delete account aliases.

class IAMAliasManager
 # Initializes the IAM client and logger
 #
 # @param iam_client [Aws::IAM::Client] An initialized IAM client.
 def initialize(iam_client, logger: Logger.new($stdout))
 @iam_client = iam_client
 @logger = logger
 end

 # Lists available AWS account aliases.
 def list_aliases
 response = @iam_client.list_account_aliases

 if response.account_aliases.count.positive?
 @logger.info("Account aliases are:")
 response.account_aliases.each { |account_alias| @logger.info("
 #{account_alias}") }
 else
 @logger.info("No account aliases found.")
 end
 rescue Aws::IAM::Errors::ServiceError => e
 @logger.error("Error listing account aliases: #{e.message}")
 end

Actions 1691

https://docs.aws.amazon.com/goto/boto3/iam-2010-05-08/CreateAccountAlias
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/iam#code-examples

AWS Identity and Access Management User Guide

 # Creates an AWS account alias.
 #
 # @param account_alias [String] The name of the account alias to create.
 # @return [Boolean] true if the account alias was created; otherwise, false.
 def create_account_alias(account_alias)
 @iam_client.create_account_alias(account_alias: account_alias)
 true
 rescue Aws::IAM::Errors::ServiceError => e
 @logger.error("Error creating account alias: #{e.message}")
 false
 end

 # Deletes an AWS account alias.
 #
 # @param account_alias [String] The name of the account alias to delete.
 # @return [Boolean] true if the account alias was deleted; otherwise, false.
 def delete_account_alias(account_alias)
 @iam_client.delete_account_alias(account_alias: account_alias)
 true
 rescue Aws::IAM::Errors::ServiceError => e
 @logger.error("Error deleting account alias: #{e.message}")
 false
 end
end

• For API details, see CreateAccountAlias in AWS SDK for Ruby API Reference.

For a complete list of AWS SDK developer guides and code examples, see Using IAM with an AWS
SDK. This topic also includes information about getting started and details about previous SDK
versions.

Create an inline IAM policy for a group using an AWS SDK

The following code examples show how to create an inline IAM policy for a group.

Action examples are code excerpts from larger programs and must be run in context. You can see
this action in context in the following code example:

• Create a group and add a user

Actions 1692

https://docs.aws.amazon.com/goto/SdkForRubyV3/iam-2010-05-08/CreateAccountAlias

AWS Identity and Access Management User Guide

.NET

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 /// <summary>
 /// Add or update an inline policy document that is embedded in an IAM group.
 /// </summary>
 /// <param name="groupName">The name of the IAM group.</param>
 /// <param name="policyName">The name of the IAM policy.</param>
 /// <param name="policyDocument">The policy document defining the IAM
 policy.</param>
 /// <returns>A Boolean value indicating the success of the action.</returns>
 public async Task<bool> PutGroupPolicyAsync(string groupName, string
 policyName, string policyDocument)
 {
 var request = new PutGroupPolicyRequest
 {
 GroupName = groupName,
 PolicyName = policyName,
 PolicyDocument = policyDocument
 };

 var response = await _IAMService.PutGroupPolicyAsync(request);
 return response.HttpStatusCode == System.Net.HttpStatusCode.OK;
 }

• For API details, see PutGroupPolicy in AWS SDK for .NET API Reference.

CLI

AWS CLI

To add a policy to a group

Actions 1693

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/IAM#code-examples
https://docs.aws.amazon.com/goto/DotNetSDKV3/iam-2010-05-08/PutGroupPolicy

AWS Identity and Access Management User Guide

The following put-group-policy command adds a policy to the IAM group named
Admins.

aws iam put-group-policy \
 --group-name Admins \
 --policy-document file://AdminPolicy.json \
 --policy-name AdminRoot

This command produces no output.

The policy is defined as a JSON document in the AdminPolicy.json file. (The file name and
extension do not have significance.)

For more information, see Managing IAM policies in the AWS IAM User Guide.

• For API details, see PutGroupPolicy in AWS CLI Command Reference.

For a complete list of AWS SDK developer guides and code examples, see Using IAM with an AWS
SDK. This topic also includes information about getting started and details about previous SDK
versions.

Create an inline IAM policy for a user using an AWS SDK

The following code examples show how to create an inline IAM policy for a user.

Warning

To avoid security risks, don't use IAM users for authentication when developing purpose-
built software or working with real data. Instead, use federation with an identity provider
such as AWS IAM Identity Center.

Action examples are code excerpts from larger programs and must be run in context. You can see
this action in context in the following code example:

• Create a user and assume a role

Actions 1694

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_manage.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/iam/put-group-policy.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/what-is.html

AWS Identity and Access Management User Guide

CLI

AWS CLI

To attach a policy to an IAM user

The following put-user-policy command attaches a policy to the IAM user named Bob.

aws iam put-user-policy \
 --user-name Bob \
 --policy-name ExamplePolicy \
 --policy-document file://AdminPolicy.json

This command produces no output.

The policy is defined as a JSON document in the AdminPolicy.json file. (The file name and
extension do not have significance.)

For more information, see Adding and removing IAM identity permissions in the AWS IAM
User Guide.

• For API details, see PutUserPolicy in AWS CLI Command Reference.

Go

SDK for Go V2

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

// UserWrapper encapsulates user actions used in the examples.
// It contains an IAM service client that is used to perform user actions.
type UserWrapper struct {
 IamClient *iam.Client
}

Actions 1695

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_manage-attach-detach.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/iam/put-user-policy.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/gov2/iam#code-examples

AWS Identity and Access Management User Guide

// CreateUserPolicy adds an inline policy to a user. This example creates a
 policy that
// grants a list of actions on a specified role.
// PolicyDocument shows how to work with a policy document as a data structure
 and
// serialize it to JSON by using Go's JSON marshaler.
func (wrapper UserWrapper) CreateUserPolicy(userName string, policyName string,
 actions []string,
 roleArn string) error {
 policyDoc := PolicyDocument{
 Version: "2012-10-17",
 Statement: []PolicyStatement{{
 Effect: "Allow",
 Action: actions,
 Resource: aws.String(roleArn),
 }},
 }
 policyBytes, err := json.Marshal(policyDoc)
 if err != nil {
 log.Printf("Couldn't create policy document for %v. Here's why: %v\n", roleArn,
 err)
 return err
 }
 _, err = wrapper.IamClient.PutUserPolicy(context.TODO(),
 &iam.PutUserPolicyInput{
 PolicyDocument: aws.String(string(policyBytes)),
 PolicyName: aws.String(policyName),
 UserName: aws.String(userName),
 })
 if err != nil {
 log.Printf("Couldn't create policy for user %v. Here's why: %v\n", userName,
 err)
 }
 return err
}

• For API details, see PutUserPolicy in AWS SDK for Go API Reference.

Actions 1696

https://pkg.go.dev/github.com/aws/aws-sdk-go-v2/service/iam#Client.PutUserPolicy

AWS Identity and Access Management User Guide

Ruby

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 # Creates an inline policy for a specified user.
 # @param username [String] The name of the IAM user.
 # @param policy_name [String] The name of the policy to create.
 # @param policy_document [String] The JSON policy document.
 # @return [Boolean]
 def create_user_policy(username, policy_name, policy_document)
 @iam_client.put_user_policy({
 user_name: username,
 policy_name: policy_name,
 policy_document: policy_document
 })
 @logger.info("Policy #{policy_name} created for user #{username}.")
 true
 rescue Aws::IAM::Errors::ServiceError => e
 @logger.error("Couldn't create policy #{policy_name} for user #{username}.
 Here's why:")
 @logger.error("\t#{e.code}: #{e.message}")
 false
 end

• For API details, see PutUserPolicy in AWS SDK for Ruby API Reference.

Actions 1697

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/iam#code-examples
https://docs.aws.amazon.com/goto/SdkForRubyV3/iam-2010-05-08/PutUserPolicy

AWS Identity and Access Management User Guide

Swift

SDK for Swift

Note

This is prerelease documentation for an SDK in preview release. It is subject to
change.

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 func putUserPolicy(policyDocument: String, policyName: String, user:
 IAMClientTypes.User) async throws {
 let input = PutUserPolicyInput(
 policyDocument: policyDocument,
 policyName: policyName,
 userName: user.userName
)
 do {
 _ = try await iamClient.putUserPolicy(input: input)
 } catch {
 throw error
 }
 }

• For API details, see PutUserPolicy in AWS SDK for Swift API reference.

For a complete list of AWS SDK developer guides and code examples, see Using IAM with an AWS
SDK. This topic also includes information about getting started and details about previous SDK
versions.

Create an IAM instance profile using an AWS SDK

The following code examples show how to create an IAM instance profile.

Actions 1698

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/swift/example_code/iam#code-examples
https://awslabs.github.io/aws-sdk-swift/reference/0.x

AWS Identity and Access Management User Guide

Action examples are code excerpts from larger programs and must be run in context. You can see
this action in context in the following code example:

• Build and manage a resilient service

.NET

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 /// <summary>
 /// Create a policy, role, and profile that is associated with instances with
 a specified name.
 /// An instance's associated profile defines a role that is assumed by the
 /// instance.The role has attached policies that specify the AWS permissions
 granted to
 /// clients that run on the instance.
 /// </summary>
 /// <param name="policyName">Name to use for the policy.</param>
 /// <param name="roleName">Name to use for the role.</param>
 /// <param name="profileName">Name to use for the profile.</param>
 /// <param name="ssmOnlyPolicyFile">Path to a policy file for SSM.</param>
 /// <param name="awsManagedPolicies">AWS Managed policies to be attached to
 the role.</param>
 /// <returns>The Arn of the profile.</returns>
 public async Task<string> CreateInstanceProfileWithName(
 string policyName,
 string roleName,
 string profileName,
 string ssmOnlyPolicyFile,
 List<string>? awsManagedPolicies = null)
 {

 var assumeRoleDoc = "{" +
 "\"Version\": \"2012-10-17\"," +
 "\"Statement\": [{" +

Actions 1699

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/cross-service/ResilientService/AutoScalerActions#code-examples

AWS Identity and Access Management User Guide

 "\"Effect\": \"Allow\"," +
 "\"Principal\": {" +
 "\"Service\": [" +
 "\"ec2.amazonaws.com\"" +
 "]" +
 "}," +
 "\"Action\": \"sts:AssumeRole\"" +
 "}]" +
 "}";

 var policyDocument = await File.ReadAllTextAsync(ssmOnlyPolicyFile);

 var policyArn = "";

 try
 {
 var createPolicyResult = await _amazonIam.CreatePolicyAsync(
 new CreatePolicyRequest
 {
 PolicyName = policyName,
 PolicyDocument = policyDocument
 });
 policyArn = createPolicyResult.Policy.Arn;
 }
 catch (EntityAlreadyExistsException)
 {
 // The policy already exists, so we look it up to get the Arn.
 var policiesPaginator = _amazonIam.Paginators.ListPolicies(
 new ListPoliciesRequest()
 {
 Scope = PolicyScopeType.Local
 });
 // Get the entire list using the paginator.
 await foreach (var policy in policiesPaginator.Policies)
 {
 if (policy.PolicyName.Equals(policyName))
 {
 policyArn = policy.Arn;
 }
 }

 if (policyArn == null)
 {
 throw new InvalidOperationException("Policy not found");

Actions 1700

AWS Identity and Access Management User Guide

 }
 }

 try
 {
 await _amazonIam.CreateRoleAsync(new CreateRoleRequest()
 {
 RoleName = roleName,
 AssumeRolePolicyDocument = assumeRoleDoc,
 });
 await _amazonIam.AttachRolePolicyAsync(new AttachRolePolicyRequest()
 {
 RoleName = roleName,
 PolicyArn = policyArn
 });
 if (awsManagedPolicies != null)
 {
 foreach (var awsPolicy in awsManagedPolicies)
 {
 await _amazonIam.AttachRolePolicyAsync(new
 AttachRolePolicyRequest()
 {
 PolicyArn = $"arn:aws:iam::aws:policy/{awsPolicy}",
 RoleName = roleName
 });
 }
 }
 }
 catch (EntityAlreadyExistsException)
 {
 Console.WriteLine("Role already exists.");
 }

 string profileArn = "";
 try
 {
 var profileCreateResponse = await
 _amazonIam.CreateInstanceProfileAsync(
 new CreateInstanceProfileRequest()
 {
 InstanceProfileName = profileName
 });
 // Allow time for the profile to be ready.
 profileArn = profileCreateResponse.InstanceProfile.Arn;

Actions 1701

AWS Identity and Access Management User Guide

 Thread.Sleep(10000);
 await _amazonIam.AddRoleToInstanceProfileAsync(
 new AddRoleToInstanceProfileRequest()
 {
 InstanceProfileName = profileName,
 RoleName = roleName
 });

 }
 catch (EntityAlreadyExistsException)
 {
 Console.WriteLine("Policy already exists.");
 var profileGetResponse = await _amazonIam.GetInstanceProfileAsync(
 new GetInstanceProfileRequest()
 {
 InstanceProfileName = profileName
 });
 profileArn = profileGetResponse.InstanceProfile.Arn;
 }
 return profileArn;
 }

• For API details, see CreateInstanceProfile in AWS SDK for .NET API Reference.

CLI

AWS CLI

To create an instance profile

The following create-instance-profile command creates an instance profile named
Webserver.

aws iam create-instance-profile \
 --instance-profile-name Webserver

Output:

{
 "InstanceProfile": {
 "InstanceProfileId": "AIPAJMBYC7DLSPEXAMPLE",

Actions 1702

https://docs.aws.amazon.com/goto/DotNetSDKV3/iam-2010-05-08/CreateInstanceProfile

AWS Identity and Access Management User Guide

 "Roles": [],
 "CreateDate": "2015-03-09T20:33:19.626Z",
 "InstanceProfileName": "Webserver",
 "Path": "/",
 "Arn": "arn:aws:iam::123456789012:instance-profile/Webserver"
 }
}

To add a role to an instance profile, use the add-role-to-instance-profile command.

For more information, see Using an IAM role to grant permissions to applications running on
Amazon EC2 instances in the AWS IAM User Guide.

• For API details, see CreateInstanceProfile in AWS CLI Command Reference.

JavaScript

SDK for JavaScript (v3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 const { InstanceProfile } = await iamClient.send(
 new CreateInstanceProfileCommand({
 InstanceProfileName: NAMES.ssmOnlyInstanceProfileName,
 }),
);
 await waitUntilInstanceProfileExists(
 { client: iamClient },
 { InstanceProfileName: NAMES.ssmOnlyInstanceProfileName },
);

• For API details, see CreateInstanceProfile in AWS SDK for JavaScript API Reference.

Actions 1703

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-ec2.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-ec2.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/iam/create-instance-profile.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/cross-services/wkflw-resilient-service#code-examples
https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/client/iam/command/CreateInstanceProfileCommand

AWS Identity and Access Management User Guide

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

This example creates a policy, role, and instance profile and links them all together.

class AutoScaler:
 """
 Encapsulates Amazon EC2 Auto Scaling and EC2 management actions.
 """

 def __init__(
 self,
 resource_prefix,
 inst_type,
 ami_param,
 autoscaling_client,
 ec2_client,
 ssm_client,
 iam_client,
):
 """
 :param resource_prefix: The prefix for naming AWS resources that are
 created by this class.
 :param inst_type: The type of EC2 instance to create, such as t3.micro.
 :param ami_param: The Systems Manager parameter used to look up the AMI
 that is
 created.
 :param autoscaling_client: A Boto3 EC2 Auto Scaling client.
 :param ec2_client: A Boto3 EC2 client.
 :param ssm_client: A Boto3 Systems Manager client.
 :param iam_client: A Boto3 IAM client.
 """
 self.inst_type = inst_type
 self.ami_param = ami_param
 self.autoscaling_client = autoscaling_client
 self.ec2_client = ec2_client

Actions 1704

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/iam#code-examples

AWS Identity and Access Management User Guide

 self.ssm_client = ssm_client
 self.iam_client = iam_client
 self.launch_template_name = f"{resource_prefix}-template"
 self.group_name = f"{resource_prefix}-group"
 self.instance_policy_name = f"{resource_prefix}-pol"
 self.instance_role_name = f"{resource_prefix}-role"
 self.instance_profile_name = f"{resource_prefix}-prof"
 self.bad_creds_policy_name = f"{resource_prefix}-bc-pol"
 self.bad_creds_role_name = f"{resource_prefix}-bc-role"
 self.bad_creds_profile_name = f"{resource_prefix}-bc-prof"
 self.key_pair_name = f"{resource_prefix}-key-pair"

 def create_instance_profile(
 self, policy_file, policy_name, role_name, profile_name,
 aws_managed_policies=()
):
 """
 Creates a policy, role, and profile that is associated with instances
 created by
 this class. An instance's associated profile defines a role that is
 assumed by the
 instance. The role has attached policies that specify the AWS permissions
 granted to
 clients that run on the instance.

 :param policy_file: The name of a JSON file that contains the policy
 definition to
 create and attach to the role.
 :param policy_name: The name to give the created policy.
 :param role_name: The name to give the created role.
 :param profile_name: The name to the created profile.
 :param aws_managed_policies: Additional AWS-managed policies that are
 attached to
 the role, such as
 AmazonSSMManagedInstanceCore to grant
 use of Systems Manager to send commands to
 the instance.
 :return: The ARN of the profile that is created.
 """
 assume_role_doc = {
 "Version": "2012-10-17",
 "Statement": [
 {

Actions 1705

AWS Identity and Access Management User Guide

 "Effect": "Allow",
 "Principal": {"Service": "ec2.amazonaws.com"},
 "Action": "sts:AssumeRole",
 }
],
 }
 with open(policy_file) as file:
 instance_policy_doc = file.read()

 policy_arn = None
 try:
 pol_response = self.iam_client.create_policy(
 PolicyName=policy_name, PolicyDocument=instance_policy_doc
)
 policy_arn = pol_response["Policy"]["Arn"]
 log.info("Created policy with ARN %s.", policy_arn)
 except ClientError as err:
 if err.response["Error"]["Code"] == "EntityAlreadyExists":
 log.info("Policy %s already exists, nothing to do.", policy_name)
 list_pol_response = self.iam_client.list_policies(Scope="Local")
 for pol in list_pol_response["Policies"]:
 if pol["PolicyName"] == policy_name:
 policy_arn = pol["Arn"]
 break
 if policy_arn is None:
 raise AutoScalerError(f"Couldn't create policy {policy_name}:
 {err}")

 try:
 self.iam_client.create_role(
 RoleName=role_name,
 AssumeRolePolicyDocument=json.dumps(assume_role_doc)
)
 self.iam_client.attach_role_policy(RoleName=role_name,
 PolicyArn=policy_arn)
 for aws_policy in aws_managed_policies:
 self.iam_client.attach_role_policy(
 RoleName=role_name,
 PolicyArn=f"arn:aws:iam::aws:policy/{aws_policy}",
)
 log.info("Created role %s and attached policy %s.", role_name,
 policy_arn)
 except ClientError as err:
 if err.response["Error"]["Code"] == "EntityAlreadyExists":

Actions 1706

AWS Identity and Access Management User Guide

 log.info("Role %s already exists, nothing to do.", role_name)
 else:
 raise AutoScalerError(f"Couldn't create role {role_name}: {err}")

 try:
 profile_response = self.iam_client.create_instance_profile(
 InstanceProfileName=profile_name
)
 waiter = self.iam_client.get_waiter("instance_profile_exists")
 waiter.wait(InstanceProfileName=profile_name)
 time.sleep(10) # wait a little longer
 profile_arn = profile_response["InstanceProfile"]["Arn"]
 self.iam_client.add_role_to_instance_profile(
 InstanceProfileName=profile_name, RoleName=role_name
)
 log.info("Created profile %s and added role %s.", profile_name,
 role_name)
 except ClientError as err:
 if err.response["Error"]["Code"] == "EntityAlreadyExists":
 prof_response = self.iam_client.get_instance_profile(
 InstanceProfileName=profile_name
)
 profile_arn = prof_response["InstanceProfile"]["Arn"]
 log.info(
 "Instance profile %s already exists, nothing to do.",
 profile_name
)
 else:
 raise AutoScalerError(
 f"Couldn't create profile {profile_name} and attach it to
 role\n"
 f"{role_name}: {err}"
)
 return profile_arn

• For API details, see CreateInstanceProfile in AWS SDK for Python (Boto3) API Reference.

For a complete list of AWS SDK developer guides and code examples, see Using IAM with an AWS
SDK. This topic also includes information about getting started and details about previous SDK
versions.

Actions 1707

https://docs.aws.amazon.com/goto/boto3/iam-2010-05-08/CreateInstanceProfile

AWS Identity and Access Management User Guide

Delete an IAM SAML provider using an AWS SDK

The following code examples show how to delete an AWS Identity and Access Management (IAM)
SAML provider.

CLI

AWS CLI

To delete a SAML provider

This example deletes the IAM SAML 2.0 provider whose ARN is
arn:aws:iam::123456789012:saml-provider/SAMLADFSProvider.

aws iam delete-saml-provider \
--saml-provider-arn arn:aws:iam::123456789012:saml-provider/SAMLADFSProvider

This command produces no output.

For more information, see Creating IAM SAML identity providers in the AWS IAM User Guide.

• For API details, see DeleteSAMLProvider in AWS CLI Command Reference.

JavaScript

SDK for JavaScript (v3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

import { DeleteSAMLProviderCommand, IAMClient } from "@aws-sdk/client-iam";

const client = new IAMClient({});

/**
 *
 * @param {string} providerArn
 * @returns
 */

Actions 1708

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_providers_create_saml.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/iam/delete-saml-provider.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/iam#code-examples

AWS Identity and Access Management User Guide

export const deleteSAMLProvider = async (providerArn) => {
 const command = new DeleteSAMLProviderCommand({
 SAMLProviderArn: providerArn,
 });

 const response = await client.send(command);
 console.log(response);
 return response;
};

• For API details, see DeleteSAMLProvider in AWS SDK for JavaScript API Reference.

For a complete list of AWS SDK developer guides and code examples, see Using IAM with an AWS
SDK. This topic also includes information about getting started and details about previous SDK
versions.

Delete an IAM group using an AWS SDK

The following code examples show how to delete an IAM group.

Action examples are code excerpts from larger programs and must be run in context. You can see
this action in context in the following code example:

• Create a group and add a user

.NET

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 /// <summary>
 /// Delete an IAM group.
 /// </summary>
 /// <param name="groupName">The name of the IAM group to delete.</param>

Actions 1709

https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/client/iam/command/DeleteSAMLProviderCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/IAM#code-examples

AWS Identity and Access Management User Guide

 /// <returns>A Boolean value indicating the success of the action.</returns>
 public async Task<bool> DeleteGroupAsync(string groupName)
 {
 var response = await _IAMService.DeleteGroupAsync(new DeleteGroupRequest
 { GroupName = groupName });
 return response.HttpStatusCode == HttpStatusCode.OK;
 }

• For API details, see DeleteGroup in AWS SDK for .NET API Reference.

CLI

AWS CLI

To delete an IAM group

The following delete-group command deletes an IAM group named MyTestGroup.

aws iam delete-group \
 --group-name MyTestGroup

This command produces no output.

For more information, see Deleting an IAM user group in the AWS IAM User Guide.

• For API details, see DeleteGroup in AWS CLI Command Reference.

JavaScript

SDK for JavaScript (v3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

import { DeleteGroupCommand, IAMClient } from "@aws-sdk/client-iam";

Actions 1710

https://docs.aws.amazon.com/goto/DotNetSDKV3/iam-2010-05-08/DeleteGroup
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_groups_manage_delete.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/iam/delete-group.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/iam#code-examples

AWS Identity and Access Management User Guide

const client = new IAMClient({});

/**
 *
 * @param {string} groupName
 */
export const deleteGroup = async (groupName) => {
 const command = new DeleteGroupCommand({
 GroupName: groupName,
 });

 const response = await client.send(command);
 console.log(response);
 return response;
};

• For API details, see DeleteGroup in AWS SDK for JavaScript API Reference.

For a complete list of AWS SDK developer guides and code examples, see Using IAM with an AWS
SDK. This topic also includes information about getting started and details about previous SDK
versions.

Delete an IAM group policy using an AWS SDK

The following code examples show how to delete an IAM group policy.

Action examples are code excerpts from larger programs and must be run in context. You can see
this action in context in the following code example:

• Create a group and add a user

.NET

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Actions 1711

https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/client/iam/command/DeleteGroupCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/IAM#code-examples

AWS Identity and Access Management User Guide

 /// <summary>
 /// Delete an IAM policy associated with an IAM group.
 /// </summary>
 /// <param name="groupName">The name of the IAM group associated with the
 /// policy.</param>
 /// <param name="policyName">The name of the policy to delete.</param>
 /// <returns>A Boolean value indicating the success of the action.</returns>
 public async Task<bool> DeleteGroupPolicyAsync(string groupName, string
 policyName)
 {
 var request = new DeleteGroupPolicyRequest()
 {
 GroupName = groupName,
 PolicyName = policyName,
 };

 var response = await _IAMService.DeleteGroupPolicyAsync(request);
 return response.HttpStatusCode == System.Net.HttpStatusCode.OK;
 }

• For API details, see DeleteGroupPolicy in AWS SDK for .NET API Reference.

CLI

AWS CLI

To delete a policy from an IAM group

The following delete-group-policy command deletes the policy named
ExamplePolicy from the group named Admins.

aws iam delete-group-policy \
 --group-name Admins \
 --policy-name ExamplePolicy

This command produces no output.

To see the policies attached to a group, use the list-group-policies command.

For more information, see Managing IAM policies in the AWS IAM User Guide.

Actions 1712

https://docs.aws.amazon.com/goto/DotNetSDKV3/iam-2010-05-08/DeleteGroupPolicy
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_manage.html

AWS Identity and Access Management User Guide

• For API details, see DeleteGroupPolicy in AWS CLI Command Reference.

For a complete list of AWS SDK developer guides and code examples, see Using IAM with an AWS
SDK. This topic also includes information about getting started and details about previous SDK
versions.

Delete an IAM policy using an AWS SDK

The following code examples show how to delete an IAM policy.

Action examples are code excerpts from larger programs and must be run in context. You can see
this action in context in the following code examples:

• Create a user and assume a role

• Create read-only and read-write users

• Manage policies

.NET

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 /// <summary>
 /// Delete an IAM policy.
 /// </summary>
 /// <param name="policyArn">The Amazon Resource Name (ARN) of the policy to
 /// delete.</param>
 /// <returns>A Boolean value indicating the success of the action.</returns>
 public async Task<bool> DeletePolicyAsync(string policyArn)
 {
 var response = await _IAMService.DeletePolicyAsync(new
 DeletePolicyRequest { PolicyArn = policyArn });
 return response.HttpStatusCode == System.Net.HttpStatusCode.OK;
 }

Actions 1713

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/iam/delete-group-policy.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/IAM#code-examples

AWS Identity and Access Management User Guide

• For API details, see DeletePolicy in AWS SDK for .NET API Reference.

Bash

AWS CLI with Bash script

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

###
function iecho
#
This function enables the script to display the specified text only if
the global variable $VERBOSE is set to true.
###
function iecho() {
 if [[$VERBOSE == true]]; then
 echo "$@"
 fi
}

###
function errecho
#
This function outputs everything sent to it to STDERR (standard error output).
###
function errecho() {
 printf "%s\n" "$*" 1>&2
}

###
function iam_delete_policy
#
This function deletes an IAM policy.
#
Parameters:
-n policy_arn -- The name of the IAM policy arn.

Actions 1714

https://docs.aws.amazon.com/goto/DotNetSDKV3/iam-2010-05-08/DeletePolicy
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/aws-cli/bash-linux/iam#code-examples

AWS Identity and Access Management User Guide

#
Returns:
0 - If successful.
1 - If it fails.
###
function iam_delete_policy() {
 local policy_arn response
 local option OPTARG # Required to use getopts command in a function.

 # bashsupport disable=BP5008
 function usage() {
 echo "function iam_delete_policy"
 echo "Deletes an WS Identity and Access Management (IAM) policy"
 echo " -n policy_arn -- The name of the IAM policy arn."
 echo ""
 }

 # Retrieve the calling parameters.
 while getopts "n:h" option; do
 case "${option}" in
 n) policy_arn="${OPTARG}" ;;
 h)
 usage
 return 0
 ;;
 \?)
 echo "Invalid parameter"
 usage
 return 1
 ;;
 esac
 done
 export OPTIND=1

 if [[-z "$policy_arn"]]; then
 errecho "ERROR: You must provide a policy arn with the -n parameter."
 usage
 return 1
 fi

 iecho "Parameters:\n"
 iecho " Policy arn: $policy_arn"
 iecho ""

Actions 1715

AWS Identity and Access Management User Guide

 response=$(aws iam delete-policy \
 --policy-arn "$policy_arn")

 local error_code=${?}

 if [[$error_code -ne 0]]; then
 aws_cli_error_log $error_code
 errecho "ERROR: AWS reports delete-policy operation failed.\n$response"
 return 1
 fi

 iecho "delete-policy response:$response"
 iecho

 return 0
}

• For API details, see DeletePolicy in AWS CLI Command Reference.

C++

SDK for C++

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

bool AwsDoc::IAM::deletePolicy(const Aws::String &policyArn,
 const Aws::Client::ClientConfiguration
 &clientConfig) {
 Aws::IAM::IAMClient iam(clientConfig);
 Aws::IAM::Model::DeletePolicyRequest request;
 request.SetPolicyArn(policyArn);

 auto outcome = iam.DeletePolicy(request);
 if (!outcome.IsSuccess()) {
 std::cerr << "Error deleting policy with arn " << policyArn << ": "
 << outcome.GetError().GetMessage() << std::endl;
 }

Actions 1716

https://docs.aws.amazon.com/goto/aws-cli/iam-2010-05-08/DeletePolicy
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/cpp/example_code/iam#code-examples

AWS Identity and Access Management User Guide

 else {
 std::cout << "Successfully deleted policy with arn " << policyArn
 << std::endl;
 }

 return outcome.IsSuccess();
}

• For API details, see DeletePolicy in AWS SDK for C++ API Reference.

CLI

AWS CLI

To delete an IAM policy

This example deletes the policy whose ARN is arn:aws:iam::123456789012:policy/
MySamplePolicy.

aws iam delete-policy \
 --policy-arn arn:aws:iam::123456789012:policy/MySamplePolicy

This command produces no output.

For more information, see Policies and permissions in IAM in the AWS IAM User Guide.

• For API details, see DeletePolicy in AWS CLI Command Reference.

Go

SDK for Go V2

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Actions 1717

https://docs.aws.amazon.com/goto/SdkForCpp/iam-2010-05-08/DeletePolicy
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/iam/delete-policy.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/gov2/iam#code-examples

AWS Identity and Access Management User Guide

// PolicyWrapper encapsulates AWS Identity and Access Management (IAM) policy
 actions
// used in the examples.
// It contains an IAM service client that is used to perform policy actions.
type PolicyWrapper struct {
 IamClient *iam.Client
}

// DeletePolicy deletes a policy.
func (wrapper PolicyWrapper) DeletePolicy(policyArn string) error {
 _, err := wrapper.IamClient.DeletePolicy(context.TODO(), &iam.DeletePolicyInput{
 PolicyArn: aws.String(policyArn),
 })
 if err != nil {
 log.Printf("Couldn't delete policy %v. Here's why: %v\n", policyArn, err)
 }
 return err
}

• For API details, see DeletePolicy in AWS SDK for Go API Reference.

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

import software.amazon.awssdk.services.iam.model.DeletePolicyRequest;
import software.amazon.awssdk.regions.Region;
import software.amazon.awssdk.services.iam.IamClient;
import software.amazon.awssdk.services.iam.model.IamException;

/**
 * Before running this Java V2 code example, set up your development

Actions 1718

https://pkg.go.dev/github.com/aws/aws-sdk-go-v2/service/iam#Client.DeletePolicy
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/iam#readme

AWS Identity and Access Management User Guide

 * environment, including your credentials.
 *
 * For more information, see the following documentation topic:
 *
 * https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/get-
started.html
 */
public class DeletePolicy {
 public static void main(String[] args) {
 final String usage = """

 Usage:
 <policyARN>\s

 Where:
 policyARN - A policy ARN value to delete.\s
 """;

 if (args.length != 1) {
 System.out.println(usage);
 System.exit(1);
 }

 String policyARN = args[0];
 Region region = Region.AWS_GLOBAL;
 IamClient iam = IamClient.builder()
 .region(region)
 .build();

 deleteIAMPolicy(iam, policyARN);
 iam.close();
 }

 public static void deleteIAMPolicy(IamClient iam, String policyARN) {
 try {
 DeletePolicyRequest request = DeletePolicyRequest.builder()
 .policyArn(policyARN)
 .build();

 iam.deletePolicy(request);
 System.out.println("Successfully deleted the policy");

 } catch (IamException e) {
 System.err.println(e.awsErrorDetails().errorMessage());

Actions 1719

AWS Identity and Access Management User Guide

 System.exit(1);
 }
 System.out.println("Done");
 }
}

• For API details, see DeletePolicy in AWS SDK for Java 2.x API Reference.

JavaScript

SDK for JavaScript (v3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Delete the policy.

import { DeletePolicyCommand, IAMClient } from "@aws-sdk/client-iam";

const client = new IAMClient({});

/**
 *
 * @param {string} policyArn
 */
export const deletePolicy = (policyArn) => {
 const command = new DeletePolicyCommand({ PolicyArn: policyArn });
 return client.send(command);
};

• For API details, see DeletePolicy in AWS SDK for JavaScript API Reference.

Actions 1720

https://docs.aws.amazon.com/goto/SdkForJavaV2/iam-2010-05-08/DeletePolicy
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/iam/#code-examples
https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/client/iam/command/DeletePolicyCommand

AWS Identity and Access Management User Guide

Kotlin

SDK for Kotlin

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

suspend fun deleteIAMPolicy(policyARNVal: String?) {

 val request = DeletePolicyRequest {
 policyArn = policyARNVal
 }

 IamClient { region = "AWS_GLOBAL" }.use { iamClient ->
 iamClient.deletePolicy(request)
 println("Successfully deleted $policyARNVal")
 }
}

• For API details, see DeletePolicy in AWS SDK for Kotlin API reference.

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

def delete_policy(policy_arn):
 """
 Deletes a policy.

 :param policy_arn: The ARN of the policy to delete.

Actions 1721

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/kotlin/services/iam#code-examples
https://github.com/awslabs/aws-sdk-kotlin#generating-api-documentation
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/iam#code-examples

AWS Identity and Access Management User Guide

 """
 try:
 iam.Policy(policy_arn).delete()
 logger.info("Deleted policy %s.", policy_arn)
 except ClientError:
 logger.exception("Couldn't delete policy %s.", policy_arn)
 raise

• For API details, see DeletePolicy in AWS SDK for Python (Boto3) API Reference.

Rust

SDK for Rust

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

pub async fn delete_policy(client: &iamClient, policy: Policy) -> Result<(),
 iamError> {
 client
 .delete_policy()
 .policy_arn(policy.arn.unwrap())
 .send()
 .await?;
 Ok(())
}

• For API details, see DeletePolicy in AWS SDK for Rust API reference.

Actions 1722

https://docs.aws.amazon.com/goto/boto3/iam-2010-05-08/DeletePolicy
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/rustv1/examples/iam#code-examples
https://docs.rs/releases/search?query=aws-sdk

AWS Identity and Access Management User Guide

Swift

SDK for Swift

Note

This is prerelease documentation for an SDK in preview release. It is subject to
change.

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 public func deletePolicy(policy: IAMClientTypes.Policy) async throws {
 let input = DeletePolicyInput(
 policyArn: policy.arn
)
 do {
 _ = try await iamClient.deletePolicy(input: input)
 } catch {
 throw error
 }
 }

• For API details, see DeletePolicy in AWS SDK for Swift API reference.

For a complete list of AWS SDK developer guides and code examples, see Using IAM with an AWS
SDK. This topic also includes information about getting started and details about previous SDK
versions.

Delete an IAM role using an AWS SDK

The following code examples show how to delete an IAM role.

Action examples are code excerpts from larger programs and must be run in context. You can see
this action in context in the following code examples:

Actions 1723

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/swift/example_code/iam#code-examples
https://awslabs.github.io/aws-sdk-swift/reference/0.x

AWS Identity and Access Management User Guide

• Create a user and assume a role

• Manage roles

.NET

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 /// <summary>
 /// Delete an IAM role.
 /// </summary>
 /// <param name="roleName">The name of the IAM role to delete.</param>
 /// <returns>A Boolean value indicating the success of the action.</returns>
 public async Task<bool> DeleteRoleAsync(string roleName)
 {
 var response = await _IAMService.DeleteRoleAsync(new DeleteRoleRequest
 { RoleName = roleName });
 return response.HttpStatusCode == System.Net.HttpStatusCode.OK;
 }

• For API details, see DeleteRole in AWS SDK for .NET API Reference.

Bash

AWS CLI with Bash script

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Actions 1724

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/IAM#code-examples
https://docs.aws.amazon.com/goto/DotNetSDKV3/iam-2010-05-08/DeleteRole
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/aws-cli/bash-linux/iam#code-examples

AWS Identity and Access Management User Guide

###
function iecho
#
This function enables the script to display the specified text only if
the global variable $VERBOSE is set to true.
###
function iecho() {
 if [[$VERBOSE == true]]; then
 echo "$@"
 fi
}

###
function errecho
#
This function outputs everything sent to it to STDERR (standard error output).
###
function errecho() {
 printf "%s\n" "$*" 1>&2
}

###
function iam_delete_role
#
This function deletes an IAM role.
#
Parameters:
-n role_name -- The name of the IAM role.
#
Returns:
0 - If successful.
1 - If it fails.
###
function iam_delete_role() {
 local role_name response
 local option OPTARG # Required to use getopts command in a function.

 # bashsupport disable=BP5008
 function usage() {
 echo "function iam_delete_role"
 echo "Deletes an WS Identity and Access Management (IAM) role"
 echo " -n role_name -- The name of the IAM role."
 echo ""

Actions 1725

AWS Identity and Access Management User Guide

 }

 # Retrieve the calling parameters.
 while getopts "n:h" option; do
 case "${option}" in
 n) role_name="${OPTARG}" ;;
 h)
 usage
 return 0
 ;;
 \?)
 echo "Invalid parameter"
 usage
 return 1
 ;;
 esac
 done
 export OPTIND=1

 echo "role_name:$role_name"
 if [[-z "$role_name"]]; then
 errecho "ERROR: You must provide a role name with the -n parameter."
 usage
 return 1
 fi

 iecho "Parameters:\n"
 iecho " Role name: $role_name"
 iecho ""

 response=$(aws iam delete-role \
 --role-name "$role_name")

 local error_code=${?}

 if [[$error_code -ne 0]]; then
 aws_cli_error_log $error_code
 errecho "ERROR: AWS reports delete-role operation failed.\n$response"
 return 1
 fi

 iecho "delete-role response:$response"
 iecho

Actions 1726

AWS Identity and Access Management User Guide

 return 0
}

• For API details, see DeleteRole in AWS CLI Command Reference.

CLI

AWS CLI

To delete an IAM role

The following delete-role command removes the role named Test-Role.

aws iam delete-role \
 --role-name Test-Role

This command produces no output.

Before you can delete a role, you must remove the role from any instance profile (remove-
role-from-instance-profile), detach any managed policies (detach-role-policy)
and delete any inline policies that are attached to the role (delete-role-policy).

For more information, see Creating IAM roles and Using instance profiles in the AWS IAM
User Guide.

• For API details, see DeleteRole in AWS CLI Command Reference.

Go

SDK for Go V2

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Actions 1727

https://docs.aws.amazon.com/goto/aws-cli/iam-2010-05-08/DeleteRole
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-ec2_instance-profiles.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/iam/delete-role.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/gov2/iam#code-examples

AWS Identity and Access Management User Guide

// RoleWrapper encapsulates AWS Identity and Access Management (IAM) role actions
// used in the examples.
// It contains an IAM service client that is used to perform role actions.
type RoleWrapper struct {
 IamClient *iam.Client
}

// DeleteRole deletes a role. All attached policies must be detached before a
// role can be deleted.
func (wrapper RoleWrapper) DeleteRole(roleName string) error {
 _, err := wrapper.IamClient.DeleteRole(context.TODO(), &iam.DeleteRoleInput{
 RoleName: aws.String(roleName),
 })
 if err != nil {
 log.Printf("Couldn't delete role %v. Here's why: %v\n", roleName, err)
 }
 return err
}

• For API details, see DeleteRole in AWS SDK for Go API Reference.

JavaScript

SDK for JavaScript (v3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Delete the role.

import { DeleteRoleCommand, IAMClient } from "@aws-sdk/client-iam";

const client = new IAMClient({});

/**

Actions 1728

https://pkg.go.dev/github.com/aws/aws-sdk-go-v2/service/iam#Client.DeleteRole
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/iam#code-examples

AWS Identity and Access Management User Guide

 *
 * @param {string} roleName
 */
export const deleteRole = (roleName) => {
 const command = new DeleteRoleCommand({ RoleName: roleName });
 return client.send(command);
};

• For API details, see DeleteRole in AWS SDK for JavaScript API Reference.

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

def delete_role(role_name):
 """
 Deletes a role.

 :param role_name: The name of the role to delete.
 """
 try:
 iam.Role(role_name).delete()
 logger.info("Deleted role %s.", role_name)
 except ClientError:
 logger.exception("Couldn't delete role %s.", role_name)
 raise

• For API details, see DeleteRole in AWS SDK for Python (Boto3) API Reference.

Actions 1729

https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/client/iam/command/DeleteRoleCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/iam#code-examples
https://docs.aws.amazon.com/goto/boto3/iam-2010-05-08/DeleteRole

AWS Identity and Access Management User Guide

Ruby

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 # Deletes a role and its attached policies.
 #
 # @param role_name [String] The name of the role to delete.
 def delete_role(role_name)
 begin
 # Detach and delete attached policies
 @iam_client.list_attached_role_policies(role_name: role_name).each do |
response|
 response.attached_policies.each do |policy|
 @iam_client.detach_role_policy({
 role_name: role_name,
 policy_arn: policy.policy_arn
 })
 # Check if the policy is a customer managed policy (not AWS managed)
 unless policy.policy_arn.include?("aws:policy/")
 @iam_client.delete_policy({ policy_arn: policy.policy_arn })
 @logger.info("Deleted customer managed policy
 #{policy.policy_name}.")
 end
 end
 end

 # Delete the role
 @iam_client.delete_role({ role_name: role_name })
 @logger.info("Deleted role #{role_name}.")
 rescue Aws::IAM::Errors::ServiceError => e
 @logger.error("Couldn't detach policies and delete role #{role_name}.
 Here's why:")
 @logger.error("\t#{e.code}: #{e.message}")
 raise
 end
 end

Actions 1730

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/iam#code-examples

AWS Identity and Access Management User Guide

• For API details, see DeleteRole in AWS SDK for Ruby API Reference.

Rust

SDK for Rust

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

pub async fn delete_role(client: &iamClient, role: &Role) -> Result<(), iamError>
 {
 let role = role.clone();
 while client
 .delete_role()
 .role_name(role.role_name())
 .send()
 .await
 .is_err()
 {
 sleep(Duration::from_secs(2)).await;
 }
 Ok(())
}

• For API details, see DeleteRole in AWS SDK for Rust API reference.

Actions 1731

https://docs.aws.amazon.com/goto/SdkForRubyV3/iam-2010-05-08/DeleteRole
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/rustv1/examples/iam#code-examples
https://docs.rs/releases/search?query=aws-sdk

AWS Identity and Access Management User Guide

Swift

SDK for Swift

Note

This is prerelease documentation for an SDK in preview release. It is subject to
change.

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 public func deleteRole(role: IAMClientTypes.Role) async throws {
 let input = DeleteRoleInput(
 roleName: role.roleName
)
 do {
 _ = try await iamClient.deleteRole(input: input)
 } catch {
 throw error
 }
 }

• For API details, see DeleteRole in AWS SDK for Swift API reference.

For a complete list of AWS SDK developer guides and code examples, see Using IAM with an AWS
SDK. This topic also includes information about getting started and details about previous SDK
versions.

Delete an IAM role policy using an AWS SDK

The following code examples show how to delete an IAM role policy.

Actions 1732

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/swift/example_code/iam#code-examples
https://awslabs.github.io/aws-sdk-swift/reference/0.x

AWS Identity and Access Management User Guide

.NET

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 /// <summary>
 /// Delete an IAM role policy.
 /// </summary>
 /// <param name="roleName">The name of the IAM role.</param>
 /// <param name="policyName">The name of the IAM role policy to delete.</
param>
 /// <returns>A Boolean value indicating the success of the action.</returns>
 public async Task<bool> DeleteRolePolicyAsync(string roleName, string
 policyName)
 {
 var response = await _IAMService.DeleteRolePolicyAsync(new
 DeleteRolePolicyRequest
 {
 PolicyName = policyName,
 RoleName = roleName,
 });

 return response.HttpStatusCode == System.Net.HttpStatusCode.OK;
 }

• For API details, see DeleteRolePolicy in AWS SDK for .NET API Reference.

CLI

AWS CLI

To remove a policy from an IAM role

Actions 1733

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/IAM#code-examples
https://docs.aws.amazon.com/goto/DotNetSDKV3/iam-2010-05-08/DeleteRolePolicy

AWS Identity and Access Management User Guide

The following delete-role-policy command removes the policy named
ExamplePolicy from the role named Test-Role.

aws iam delete-role-policy \
 --role-name Test-Role \
 --policy-name ExamplePolicy

This command produces no output.

For more information, see Modifying a role in the AWS IAM User Guide.

• For API details, see DeleteRolePolicy in AWS CLI Command Reference.

JavaScript

SDK for JavaScript (v3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

import { DeleteRolePolicyCommand, IAMClient } from "@aws-sdk/client-iam";

const client = new IAMClient({});

/**
 *
 * @param {string} roleName
 * @param {string} policyName
 */
export const deleteRolePolicy = (roleName, policyName) => {
 const command = new DeleteRolePolicyCommand({
 RoleName: roleName,
 PolicyName: policyName,
 });
 return client.send(command);
};

Actions 1734

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_manage_modify.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/iam/delete-role-policy.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/iam#code-examples

AWS Identity and Access Management User Guide

• For API details, see DeleteRolePolicy in AWS SDK for JavaScript API Reference.

For a complete list of AWS SDK developer guides and code examples, see Using IAM with an AWS
SDK. This topic also includes information about getting started and details about previous SDK
versions.

Delete an IAM server certificate using an AWS SDK

The following code examples show how to delete an IAM server certificate.

C++

SDK for C++

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

bool AwsDoc::IAM::deleteServerCertificate(const Aws::String &certificateName,
 const Aws::Client::ClientConfiguration
 &clientConfig) {
 Aws::IAM::IAMClient iam(clientConfig);
 Aws::IAM::Model::DeleteServerCertificateRequest request;
 request.SetServerCertificateName(certificateName);

 const auto outcome = iam.DeleteServerCertificate(request);
 bool result = true;
 if (!outcome.IsSuccess()) {
 if (outcome.GetError().GetErrorType() !=
 Aws::IAM::IAMErrors::NO_SUCH_ENTITY) {
 std::cerr << "Error deleting server certificate " << certificateName
 <<
 ": " << outcome.GetError().GetMessage() << std::endl;
 result = false;
 }
 else {
 std::cout << "Certificate '" << certificateName
 << "' not found." << std::endl;
 }

Actions 1735

https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/client/iam/command/DeleteRolePolicyCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/cpp/example_code/iam#code-examples

AWS Identity and Access Management User Guide

 }
 else {
 std::cout << "Successfully deleted server certificate " <<
 certificateName
 << std::endl;
 }

 return result;
}

• For API details, see DeleteServerCertificate in AWS SDK for C++ API Reference.

CLI

AWS CLI

To delete a server certificate from your AWS account

The following delete-server-certificate command removes the specified server
certificate from your AWS account.

aws iam delete-server-certificate \
 --server-certificate-name myUpdatedServerCertificate

This command produces no output.

To list the server certificates available in your AWS account, use the list-server-
certificates command.

For more information, see Managing server certificates in IAM in the AWS IAM User Guide.

• For API details, see DeleteServerCertificate in AWS CLI Command Reference.

Actions 1736

https://docs.aws.amazon.com/goto/SdkForCpp/iam-2010-05-08/DeleteServerCertificate
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_server-certs.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/iam/delete-server-certificate.html

AWS Identity and Access Management User Guide

JavaScript

SDK for JavaScript (v3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Delete a server certificate.

import { DeleteServerCertificateCommand, IAMClient } from "@aws-sdk/client-iam";

const client = new IAMClient({});

/**
 *
 * @param {string} certName
 */
export const deleteServerCertificate = (certName) => {
 const command = new DeleteServerCertificateCommand({
 ServerCertificateName: certName,
 });

 return client.send(command);
};

• For more information, see AWS SDK for JavaScript Developer Guide.

• For API details, see DeleteServerCertificate in AWS SDK for JavaScript API Reference.

SDK for JavaScript (v2)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

// Load the AWS SDK for Node.js

Actions 1737

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/iam#code-examples
https://docs.aws.amazon.com/sdk-for-javascript/v3/developer-guide/iam-examples-server-certificates.html#iam-examples-server-certificates-deleting
https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/client/iam/command/DeleteServerCertificateCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascript/example_code/iam#code-examples

AWS Identity and Access Management User Guide

var AWS = require("aws-sdk");
// Set the region
AWS.config.update({ region: "REGION" });

// Create the IAM service object
var iam = new AWS.IAM({ apiVersion: "2010-05-08" });

iam.deleteServerCertificate(
 { ServerCertificateName: "CERTIFICATE_NAME" },
 function (err, data) {
 if (err) {
 console.log("Error", err);
 } else {
 console.log("Success", data);
 }
 }
);

• For more information, see AWS SDK for JavaScript Developer Guide.

• For API details, see DeleteServerCertificate in AWS SDK for JavaScript API Reference.

Ruby

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

List, update, and delete server certificates.

class ServerCertificateManager
 def initialize(iam_client, logger: Logger.new($stdout))
 @iam_client = iam_client
 @logger = logger
 @logger.progname = "ServerCertificateManager"
 end

Actions 1738

https://docs.aws.amazon.com/sdk-for-javascript/v2/developer-guide/iam-examples-server-certificates.html#iam-examples-server-certificates-deleting
https://docs.aws.amazon.com/goto/AWSJavaScriptSDK/iam-2010-05-08/DeleteServerCertificate
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/iam#code-examples

AWS Identity and Access Management User Guide

 # Creates a new server certificate.
 # @param name [String] the name of the server certificate
 # @param certificate_body [String] the contents of the certificate
 # @param private_key [String] the private key contents
 # @return [Boolean] returns true if the certificate was successfully created
 def create_server_certificate(name, certificate_body, private_key)
 @iam_client.upload_server_certificate({
 server_certificate_name: name,
 certificate_body: certificate_body,
 private_key: private_key,
 })
 true
 rescue Aws::IAM::Errors::ServiceError => e
 puts "Failed to create server certificate: #{e.message}"
 false
 end

 # Lists available server certificate names.
 def list_server_certificate_names
 response = @iam_client.list_server_certificates

 if response.server_certificate_metadata_list.empty?
 @logger.info("No server certificates found.")
 return
 end

 response.server_certificate_metadata_list.each do |certificate_metadata|
 @logger.info("Certificate Name:
 #{certificate_metadata.server_certificate_name}")
 end
 rescue Aws::IAM::Errors::ServiceError => e
 @logger.error("Error listing server certificates: #{e.message}")
 end

 # Updates the name of a server certificate.
 def update_server_certificate_name(current_name, new_name)
 @iam_client.update_server_certificate(
 server_certificate_name: current_name,
 new_server_certificate_name: new_name
)
 @logger.info("Server certificate name updated from '#{current_name}' to
 '#{new_name}'.")
 true
 rescue Aws::IAM::Errors::ServiceError => e

Actions 1739

AWS Identity and Access Management User Guide

 @logger.error("Error updating server certificate name: #{e.message}")
 false
 end

 # Deletes a server certificate.
 def delete_server_certificate(name)
 @iam_client.delete_server_certificate(server_certificate_name: name)
 @logger.info("Server certificate '#{name}' deleted.")
 true
 rescue Aws::IAM::Errors::ServiceError => e
 @logger.error("Error deleting server certificate: #{e.message}")
 false
 end
end

• For API details, see DeleteServerCertificate in AWS SDK for Ruby API Reference.

For a complete list of AWS SDK developer guides and code examples, see Using IAM with an AWS
SDK. This topic also includes information about getting started and details about previous SDK
versions.

Delete an IAM service-linked role using an AWS SDK

The following code examples show how to delete an IAM service-linked role.

CLI

AWS CLI

To delete a service-linked role

The following delete-service-linked-role example deletes the specified service-
linked role that you no longer need. The deletion happens asynchronously. You can check
the status of the deletion and confirm when it is done by using the get-service-linked-
role-deletion-status command.

aws iam delete-service-linked-role \
 --role-name AWSServiceRoleForLexBots

Output:

Actions 1740

https://docs.aws.amazon.com/goto/SdkForRubyV3/iam-2010-05-08/DeleteServerCertificate

AWS Identity and Access Management User Guide

{
 "DeletionTaskId": "task/aws-service-role/lex.amazonaws.com/
AWSServiceRoleForLexBots/1a2b3c4d-1234-abcd-7890-abcdeEXAMPLE"
}

For more information, see Using service-linked roles in the AWS IAM User Guide.

• For API details, see DeleteServiceLinkedRole in AWS CLI Command Reference.

Go

SDK for Go V2

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

// RoleWrapper encapsulates AWS Identity and Access Management (IAM) role actions
// used in the examples.
// It contains an IAM service client that is used to perform role actions.
type RoleWrapper struct {
 IamClient *iam.Client
}

// DeleteServiceLinkedRole deletes a service-linked role.
func (wrapper RoleWrapper) DeleteServiceLinkedRole(roleName string) error {
 _, err := wrapper.IamClient.DeleteServiceLinkedRole(context.TODO(),
 &iam.DeleteServiceLinkedRoleInput{
 RoleName: aws.String(roleName)},
)
 if err != nil {
 log.Printf("Couldn't delete service-linked role %v. Here's why: %v\n",
 roleName, err)
 }
 return err
}

Actions 1741

https://docs.aws.amazon.com/IAM/latest/UserGuide/using-service-linked-roles.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/iam/delete-service-linked-role.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/gov2/iam#code-examples

AWS Identity and Access Management User Guide

• For API details, see DeleteServiceLinkedRole in AWS SDK for Go API Reference.

JavaScript

SDK for JavaScript (v3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

import { DeleteServiceLinkedRoleCommand, IAMClient } from "@aws-sdk/client-iam";

const client = new IAMClient({});

/**
 *
 * @param {string} roleName
 */
export const deleteServiceLinkedRole = (roleName) => {
 const command = new DeleteServiceLinkedRoleCommand({ RoleName: roleName });
 return client.send(command);
};

• For API details, see DeleteServiceLinkedRole in AWS SDK for JavaScript API Reference.

Ruby

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Actions 1742

https://pkg.go.dev/github.com/aws/aws-sdk-go-v2/service/iam#Client.DeleteServiceLinkedRole
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/iam#code-examples
https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/client/iam/command/DeleteServiceLinkedRoleCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/iam#code-examples

AWS Identity and Access Management User Guide

 # Deletes a service-linked role.
 #
 # @param role_name [String] The name of the role to delete.
 def delete_service_linked_role(role_name)
 response = @iam_client.delete_service_linked_role(role_name: role_name)
 task_id = response.deletion_task_id
 check_deletion_status(role_name, task_id)
 rescue Aws::Errors::ServiceError => e
 handle_deletion_error(e, role_name)
 end

 private

 # Checks the deletion status of a service-linked role
 #
 # @param role_name [String] The name of the role being deleted
 # @param task_id [String] The task ID for the deletion process
 def check_deletion_status(role_name, task_id)
 loop do
 response = @iam_client.get_service_linked_role_deletion_status(
 deletion_task_id: task_id)
 status = response.status
 @logger.info("Deletion of #{role_name} #{status}.")
 break if %w[SUCCEEDED FAILED].include?(status)
 sleep(3)
 end
 end

 # Handles deletion error
 #
 # @param e [Aws::Errors::ServiceError] The error encountered during deletion
 # @param role_name [String] The name of the role attempted to delete
 def handle_deletion_error(e, role_name)
 unless e.code == "NoSuchEntity"
 @logger.error("Couldn't delete #{role_name}. Here's why:")
 @logger.error("\t#{e.code}: #{e.message}")
 raise
 end
 end

• For API details, see DeleteServiceLinkedRole in AWS SDK for Ruby API Reference.

Actions 1743

https://docs.aws.amazon.com/goto/SdkForRubyV3/iam-2010-05-08/DeleteServiceLinkedRole

AWS Identity and Access Management User Guide

Rust

SDK for Rust

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

pub async fn delete_service_linked_role(
 client: &iamClient,
 role_name: &str,
) -> Result<(), iamError> {
 client
 .delete_service_linked_role()
 .role_name(role_name)
 .send()
 .await?;

 Ok(())
}

• For API details, see DeleteServiceLinkedRole in AWS SDK for Rust API reference.

For a complete list of AWS SDK developer guides and code examples, see Using IAM with an AWS
SDK. This topic also includes information about getting started and details about previous SDK
versions.

Delete an IAM user using an AWS SDK

The following code examples show how to delete an IAM user.

Warning

To avoid security risks, don't use IAM users for authentication when developing purpose-
built software or working with real data. Instead, use federation with an identity provider
such as AWS IAM Identity Center.

Actions 1744

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/rustv1/examples/iam#code-examples
https://docs.rs/releases/search?query=aws-sdk
https://docs.aws.amazon.com/singlesignon/latest/userguide/what-is.html

AWS Identity and Access Management User Guide

Action examples are code excerpts from larger programs and must be run in context. You can see
this action in context in the following code examples:

• Create a group and add a user

• Create a user and assume a role

• Create read-only and read-write users

.NET

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 /// <summary>
 /// Delete an IAM user.
 /// </summary>
 /// <param name="userName">The username of the IAM user to delete.</param>
 /// <returns>A Boolean value indicating the success of the action.</returns>
 public async Task<bool> DeleteUserAsync(string userName)
 {
 var response = await _IAMService.DeleteUserAsync(new DeleteUserRequest
 { UserName = userName });

 return response.HttpStatusCode == System.Net.HttpStatusCode.OK;
 }

• For API details, see DeleteUser in AWS SDK for .NET API Reference.

Actions 1745

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/IAM#code-examples
https://docs.aws.amazon.com/goto/DotNetSDKV3/iam-2010-05-08/DeleteUser

AWS Identity and Access Management User Guide

Bash

AWS CLI with Bash script

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

###
function iecho
#
This function enables the script to display the specified text only if
the global variable $VERBOSE is set to true.
###
function iecho() {
 if [[$VERBOSE == true]]; then
 echo "$@"
 fi
}

###
function errecho
#
This function outputs everything sent to it to STDERR (standard error output).
###
function errecho() {
 printf "%s\n" "$*" 1>&2
}

###
function iam_delete_user
#
This function deletes the specified IAM user.
#
Parameters:
-u user_name -- The name of the user to create.
#
Returns:
0 - If successful.
1 - If it fails.

Actions 1746

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/aws-cli/bash-linux/iam#code-examples

AWS Identity and Access Management User Guide

###
function iam_delete_user() {
 local user_name response
 local option OPTARG # Required to use getopts command in a function.

 # bashsupport disable=BP5008
 function usage() {
 echo "function iam_delete_user"
 echo "Deletes an WS Identity and Access Management (IAM) user. You must
 supply a username:"
 echo " -u user_name The name of the user."
 echo ""
 }

 # Retrieve the calling parameters.
 while getopts "u:h" option; do
 case "${option}" in
 u) user_name="${OPTARG}" ;;
 h)
 usage
 return 0
 ;;
 \?)
 echo "Invalid parameter"
 usage
 return 1
 ;;
 esac
 done
 export OPTIND=1

 if [[-z "$user_name"]]; then
 errecho "ERROR: You must provide a username with the -u parameter."
 usage
 return 1
 fi

 iecho "Parameters:\n"
 iecho " User name: $user_name"
 iecho ""

 # If the user does not exist, we don't want to try to delete it.
 if (! iam_user_exists "$user_name"); then
 errecho "ERROR: A user with that name does not exist in the account."

Actions 1747

AWS Identity and Access Management User Guide

 return 1
 fi

 response=$(aws iam delete-user \
 --user-name "$user_name")

 local error_code=${?}

 if [[$error_code -ne 0]]; then
 aws_cli_error_log $error_code
 errecho "ERROR: AWS reports delete-user operation failed.$response"
 return 1
 fi

 iecho "delete-user response:$response"
 iecho

 return 0
}

• For API details, see DeleteUser in AWS CLI Command Reference.

C++

SDK for C++

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 Aws::IAM::IAMClient iam(clientConfig);

 Aws::IAM::Model::DeleteUserRequest request;
 request.SetUserName(userName);
 auto outcome = iam.DeleteUser(request);
 if (!outcome.IsSuccess()) {
 std::cerr << "Error deleting IAM user " << userName << ": " <<
 outcome.GetError().GetMessage() << std::endl;;
 }

Actions 1748

https://docs.aws.amazon.com/goto/aws-cli/iam-2010-05-08/DeleteUser
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/cpp/example_code/iam#code-examples

AWS Identity and Access Management User Guide

 else {
 std::cout << "Successfully deleted IAM user " << userName << std::endl;
 }

 return outcome.IsSuccess();

• For API details, see DeleteUser in AWS SDK for C++ API Reference.

CLI

AWS CLI

To delete an IAM user

The following delete-user command removes the IAM user named Bob from the current
account.

aws iam delete-user \
 --user-name Bob

This command produces no output.

For more information, see Deleting an IAM user in the AWS IAM User Guide.

• For API details, see DeleteUser in AWS CLI Command Reference.

Go

SDK for Go V2

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

// UserWrapper encapsulates user actions used in the examples.
// It contains an IAM service client that is used to perform user actions.
type UserWrapper struct {

Actions 1749

https://docs.aws.amazon.com/goto/SdkForCpp/iam-2010-05-08/DeleteUser
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_manage.html#id_users_deleting
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/iam/delete-user.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/gov2/iam#code-examples

AWS Identity and Access Management User Guide

 IamClient *iam.Client
}

// DeleteUser deletes a user.
func (wrapper UserWrapper) DeleteUser(userName string) error {
 _, err := wrapper.IamClient.DeleteUser(context.TODO(), &iam.DeleteUserInput{
 UserName: aws.String(userName),
 })
 if err != nil {
 log.Printf("Couldn't delete user %v. Here's why: %v\n", userName, err)
 }
 return err
}

• For API details, see DeleteUser in AWS SDK for Go API Reference.

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

import software.amazon.awssdk.regions.Region;
import software.amazon.awssdk.services.iam.IamClient;
import software.amazon.awssdk.services.iam.model.DeleteUserRequest;
import software.amazon.awssdk.services.iam.model.IamException;

/**
 * Before running this Java V2 code example, set up your development
 * environment, including your credentials.
 *
 * For more information, see the following documentation topic:
 *

Actions 1750

https://pkg.go.dev/github.com/aws/aws-sdk-go-v2/service/iam#Client.DeleteUser
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/iam#readme

AWS Identity and Access Management User Guide

 * https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/get-
started.html
 */
public class DeleteUser {
 public static void main(String[] args) {
 final String usage = """

 Usage:
 <userName>\s

 Where:
 userName - The name of the user to delete.\s
 """;

 if (args.length != 1) {
 System.out.println(usage);
 System.exit(1);
 }

 String userName = args[0];
 Region region = Region.AWS_GLOBAL;
 IamClient iam = IamClient.builder()
 .region(region)
 .build();

 deleteIAMUser(iam, userName);
 System.out.println("Done");
 iam.close();
 }

 public static void deleteIAMUser(IamClient iam, String userName) {
 try {
 DeleteUserRequest request = DeleteUserRequest.builder()
 .userName(userName)
 .build();

 iam.deleteUser(request);
 System.out.println("Successfully deleted IAM user " + userName);

 } catch (IamException e) {
 System.err.println(e.awsErrorDetails().errorMessage());
 System.exit(1);
 }
 }

Actions 1751

AWS Identity and Access Management User Guide

}

• For API details, see DeleteUser in AWS SDK for Java 2.x API Reference.

JavaScript

SDK for JavaScript (v3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Delete the user.

import { DeleteUserCommand, IAMClient } from "@aws-sdk/client-iam";

const client = new IAMClient({});

/**
 *
 * @param {string} name
 */
export const deleteUser = (name) => {
 const command = new DeleteUserCommand({ UserName: name });
 return client.send(command);
};

• For more information, see AWS SDK for JavaScript Developer Guide.

• For API details, see DeleteUser in AWS SDK for JavaScript API Reference.

SDK for JavaScript (v2)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Actions 1752

https://docs.aws.amazon.com/goto/SdkForJavaV2/iam-2010-05-08/DeleteUser
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/iam#code-examples
https://docs.aws.amazon.com/sdk-for-javascript/v3/developer-guide/iam-examples-managing-users.html#iam-examples-managing-users-deleting-users
https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/client/iam/command/DeleteUserCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascript/example_code/iam#code-examples

AWS Identity and Access Management User Guide

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set the region
AWS.config.update({ region: "REGION" });

// Create the IAM service object
var iam = new AWS.IAM({ apiVersion: "2010-05-08" });

var params = {
 UserName: process.argv[2],
};

iam.getUser(params, function (err, data) {
 if (err && err.code === "NoSuchEntity") {
 console.log("User " + process.argv[2] + " does not exist.");
 } else {
 iam.deleteUser(params, function (err, data) {
 if (err) {
 console.log("Error", err);
 } else {
 console.log("Success", data);
 }
 });
 }
});

• For more information, see AWS SDK for JavaScript Developer Guide.

• For API details, see DeleteUser in AWS SDK for JavaScript API Reference.

Kotlin

SDK for Kotlin

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

suspend fun deleteIAMUser(userNameVal: String) {

Actions 1753

https://docs.aws.amazon.com/sdk-for-javascript/v2/developer-guide/iam-examples-managing-users.html#iam-examples-managing-users-deleting-users
https://docs.aws.amazon.com/goto/AWSJavaScriptSDK/iam-2010-05-08/DeleteUser
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/kotlin/services/iam#code-examples

AWS Identity and Access Management User Guide

 val request = DeleteUserRequest {
 userName = userNameVal
 }

 // To delete a user, ensure that the user's access keys are deleted first.
 IamClient { region = "AWS_GLOBAL" }.use { iamClient ->
 iamClient.deleteUser(request)
 println("Successfully deleted user $userNameVal")
 }
}

• For API details, see DeleteUser in AWS SDK for Kotlin API reference.

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

def delete_user(user_name):
 """
 Deletes a user. Before a user can be deleted, all associated resources,
 such as access keys and policies, must be deleted or detached.

 :param user_name: The name of the user.
 """
 try:
 iam.User(user_name).delete()
 logger.info("Deleted user %s.", user_name)
 except ClientError:
 logger.exception("Couldn't delete user %s.", user_name)
 raise

Actions 1754

https://github.com/awslabs/aws-sdk-kotlin#generating-api-documentation
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/iam#code-examples

AWS Identity and Access Management User Guide

• For API details, see DeleteUser in AWS SDK for Python (Boto3) API Reference.

Ruby

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 # Deletes a user and their associated resources
 #
 # @param user_name [String] The name of the user to delete
 def delete_user(user_name)
 user = @iam_client.list_access_keys(user_name: user_name).access_key_metadata
 user.each do |key|
 @iam_client.delete_access_key({ access_key_id: key.access_key_id,
 user_name: user_name })
 @logger.info("Deleted access key #{key.access_key_id} for user
 '#{user_name}'.")
 end

 @iam_client.delete_user(user_name: user_name)
 @logger.info("Deleted user '#{user_name}'.")
 rescue Aws::IAM::Errors::ServiceError => e
 @logger.error("Error deleting user '#{user_name}': #{e.message}")
 end

• For API details, see DeleteUser in AWS SDK for Ruby API Reference.

Actions 1755

https://docs.aws.amazon.com/goto/boto3/iam-2010-05-08/DeleteUser
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/iam#code-examples
https://docs.aws.amazon.com/goto/SdkForRubyV3/iam-2010-05-08/DeleteUser

AWS Identity and Access Management User Guide

Rust

SDK for Rust

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

pub async fn delete_user(client: &iamClient, user: &User) -> Result<(),
 SdkError<DeleteUserError>> {
 let user = user.clone();
 let mut tries: i32 = 0;
 let max_tries: i32 = 10;

 let response: Result<(), SdkError<DeleteUserError>> = loop {
 match client
 .delete_user()
 .user_name(user.user_name())
 .send()
 .await
 {
 Ok(_) => {
 break Ok(());
 }
 Err(e) => {
 tries += 1;
 if tries > max_tries {
 break Err(e);
 }
 sleep(Duration::from_secs(2)).await;
 }
 }
 };

 response
}

• For API details, see DeleteUser in AWS SDK for Rust API reference.

Actions 1756

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/rustv1/examples/iam#code-examples
https://docs.rs/releases/search?query=aws-sdk

AWS Identity and Access Management User Guide

Swift

SDK for Swift

Note

This is prerelease documentation for an SDK in preview release. It is subject to
change.

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 public func deleteUser(user: IAMClientTypes.User) async throws {
 let input = DeleteUserInput(
 userName: user.userName
)
 do {
 _ = try await iamClient.deleteUser(input: input)
 } catch {
 throw error
 }
 }

• For API details, see DeleteUser in AWS SDK for Swift API reference.

For a complete list of AWS SDK developer guides and code examples, see Using IAM with an AWS
SDK. This topic also includes information about getting started and details about previous SDK
versions.

Delete an IAM access key using an AWS SDK

The following code examples show how to delete an IAM access key.

Actions 1757

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/swift/example_code/iam#code-examples
https://awslabs.github.io/aws-sdk-swift/reference/0.x

AWS Identity and Access Management User Guide

Warning

To avoid security risks, don't use IAM users for authentication when developing purpose-
built software or working with real data. Instead, use federation with an identity provider
such as AWS IAM Identity Center.

Action examples are code excerpts from larger programs and must be run in context. You can see
this action in context in the following code examples:

• Create a group and add a user

• Create a user and assume a role

• Create read-only and read-write users

• Manage access keys

.NET

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 /// <summary>
 /// Delete an IAM user's access key.
 /// </summary>
 /// <param name="accessKeyId">The Id for the IAM access key.</param>
 /// <param name="userName">The username of the user that owns the IAM
 /// access key.</param>
 /// <returns>A Boolean value indicating the success of the action.</returns>
 public async Task<bool> DeleteAccessKeyAsync(string accessKeyId, string
 userName)
 {
 var response = await _IAMService.DeleteAccessKeyAsync(new
 DeleteAccessKeyRequest
 {
 AccessKeyId = accessKeyId,

Actions 1758

https://docs.aws.amazon.com/singlesignon/latest/userguide/what-is.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/IAM#code-examples

AWS Identity and Access Management User Guide

 UserName = userName,
 });

 return response.HttpStatusCode == System.Net.HttpStatusCode.OK;
 }

• For API details, see DeleteAccessKey in AWS SDK for .NET API Reference.

Bash

AWS CLI with Bash script

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

###
function errecho
#
This function outputs everything sent to it to STDERR (standard error output).
###
function errecho() {
 printf "%s\n" "$*" 1>&2
}

###
function iam_delete_access_key
#
This function deletes an IAM access key for the specified IAM user.
#
Parameters:
-u user_name -- The name of the user.
-k access_key -- The access key to delete.
#
Returns:
0 - If successful.
1 - If it fails.
###

Actions 1759

https://docs.aws.amazon.com/goto/DotNetSDKV3/iam-2010-05-08/DeleteAccessKey
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/aws-cli/bash-linux/iam#code-examples

AWS Identity and Access Management User Guide

function iam_delete_access_key() {
 local user_name access_key response
 local option OPTARG # Required to use getopts command in a function.

 # bashsupport disable=BP5008
 function usage() {
 echo "function iam_delete_access_key"
 echo "Deletes an WS Identity and Access Management (IAM) access key for the
 specified IAM user"
 echo " -u user_name The name of the user."
 echo " -k access_key The access key to delete."
 echo ""
 }

 # Retrieve the calling parameters.
 while getopts "u:k:h" option; do
 case "${option}" in
 u) user_name="${OPTARG}" ;;
 k) access_key="${OPTARG}" ;;
 h)
 usage
 return 0
 ;;
 \?)
 echo "Invalid parameter"
 usage
 return 1
 ;;
 esac
 done
 export OPTIND=1

 if [[-z "$user_name"]]; then
 errecho "ERROR: You must provide a username with the -u parameter."
 usage
 return 1
 fi

 if [[-z "$access_key"]]; then
 errecho "ERROR: You must provide an access key with the -k parameter."
 usage
 return 1
 fi

Actions 1760

AWS Identity and Access Management User Guide

 iecho "Parameters:\n"
 iecho " Username: $user_name"
 iecho " Access key: $access_key"
 iecho ""

 response=$(aws iam delete-access-key \
 --user-name "$user_name" \
 --access-key-id "$access_key")

 local error_code=${?}

 if [[$error_code -ne 0]]; then
 aws_cli_error_log $error_code
 errecho "ERROR: AWS reports delete-access-key operation failed.\n$response"
 return 1
 fi

 iecho "delete-access-key response:$response"
 iecho

 return 0
}

• For API details, see DeleteAccessKey in AWS CLI Command Reference.

C++

SDK for C++

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

bool AwsDoc::IAM::deleteAccessKey(const Aws::String &userName,
 const Aws::String &accessKeyID,
 const Aws::Client::ClientConfiguration
 &clientConfig) {
 Aws::IAM::IAMClient iam(clientConfig);

Actions 1761

https://docs.aws.amazon.com/goto/aws-cli/iam-2010-05-08/DeleteAccessKey
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/cpp/example_code/iam#code-examples

AWS Identity and Access Management User Guide

 Aws::IAM::Model::DeleteAccessKeyRequest request;
 request.SetUserName(userName);
 request.SetAccessKeyId(accessKeyID);

 auto outcome = iam.DeleteAccessKey(request);

 if (!outcome.IsSuccess()) {
 std::cerr << "Error deleting access key " << accessKeyID << " from user "
 << userName << ": " << outcome.GetError().GetMessage() <<
 std::endl;
 }
 else {
 std::cout << "Successfully deleted access key " << accessKeyID
 << " for IAM user " << userName << std::endl;
 }

 return outcome.IsSuccess();
}

• For API details, see DeleteAccessKey in AWS SDK for C++ API Reference.

CLI

AWS CLI

To delete an access key for an IAM user

The following delete-access-key command deletes the specified access key (access key
ID and secret access key) for the IAM user named Bob.

aws iam delete-access-key \
 --access-key-id AKIDPMS9RO4H3FEXAMPLE \
 --user-name Bob

This command produces no output.

To list the access keys defined for an IAM user, use the list-access-keys command.

For more information, see Managing access keys for IAM users in the AWS IAM User Guide.

• For API details, see DeleteAccessKey in AWS CLI Command Reference.

Actions 1762

https://docs.aws.amazon.com/goto/SdkForCpp/iam-2010-05-08/DeleteAccessKey
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_access-keys.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/iam/delete-access-key.html

AWS Identity and Access Management User Guide

Go

SDK for Go V2

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

// UserWrapper encapsulates user actions used in the examples.
// It contains an IAM service client that is used to perform user actions.
type UserWrapper struct {
 IamClient *iam.Client
}

// DeleteAccessKey deletes an access key from a user.
func (wrapper UserWrapper) DeleteAccessKey(userName string, keyId string) error {
 _, err := wrapper.IamClient.DeleteAccessKey(context.TODO(),
 &iam.DeleteAccessKeyInput{
 AccessKeyId: aws.String(keyId),
 UserName: aws.String(userName),
 })
 if err != nil {
 log.Printf("Couldn't delete access key %v. Here's why: %v\n", keyId, err)
 }
 return err
}

• For API details, see DeleteAccessKey in AWS SDK for Go API Reference.

Actions 1763

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/gov2/iam#code-examples
https://pkg.go.dev/github.com/aws/aws-sdk-go-v2/service/iam#Client.DeleteAccessKey

AWS Identity and Access Management User Guide

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

import software.amazon.awssdk.regions.Region;
import software.amazon.awssdk.services.iam.IamClient;
import software.amazon.awssdk.services.iam.model.DeleteAccessKeyRequest;
import software.amazon.awssdk.services.iam.model.IamException;

/**
 * Before running this Java V2 code example, set up your development
 * environment, including your credentials.
 *
 * For more information, see the following documentation topic:
 *
 * https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/get-
started.html
 */
public class DeleteAccessKey {
 public static void main(String[] args) {
 final String usage = """

 Usage:
 <username> <accessKey>\s

 Where:
 username - The name of the user.\s
 accessKey - The access key ID for the secret access key you
 want to delete.\s
 """;

 if (args.length != 2) {
 System.out.println(usage);
 System.exit(1);
 }

Actions 1764

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/iam#readme

AWS Identity and Access Management User Guide

 String username = args[0];
 String accessKey = args[1];
 Region region = Region.AWS_GLOBAL;
 IamClient iam = IamClient.builder()
 .region(region)
 .build();
 deleteKey(iam, username, accessKey);
 iam.close();
 }

 public static void deleteKey(IamClient iam, String username, String
 accessKey) {
 try {
 DeleteAccessKeyRequest request = DeleteAccessKeyRequest.builder()
 .accessKeyId(accessKey)
 .userName(username)
 .build();

 iam.deleteAccessKey(request);
 System.out.println("Successfully deleted access key " + accessKey +
 " from user " + username);

 } catch (IamException e) {
 System.err.println(e.awsErrorDetails().errorMessage());
 System.exit(1);
 }
 }
}

• For API details, see DeleteAccessKey in AWS SDK for Java 2.x API Reference.

JavaScript

SDK for JavaScript (v3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Actions 1765

https://docs.aws.amazon.com/goto/SdkForJavaV2/iam-2010-05-08/DeleteAccessKey
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/iam#code-examples

AWS Identity and Access Management User Guide

Delete the access key.

import { DeleteAccessKeyCommand, IAMClient } from "@aws-sdk/client-iam";

const client = new IAMClient({});

/**
 *
 * @param {string} userName
 * @param {string} accessKeyId
 */
export const deleteAccessKey = (userName, accessKeyId) => {
 const command = new DeleteAccessKeyCommand({
 AccessKeyId: accessKeyId,
 UserName: userName,
 });

 return client.send(command);
};

• For more information, see AWS SDK for JavaScript Developer Guide.

• For API details, see DeleteAccessKey in AWS SDK for JavaScript API Reference.

SDK for JavaScript (v2)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set the region
AWS.config.update({ region: "REGION" });

// Create the IAM service object
var iam = new AWS.IAM({ apiVersion: "2010-05-08" });

var params = {
 AccessKeyId: "ACCESS_KEY_ID",

Actions 1766

https://docs.aws.amazon.com/sdk-for-javascript/v3/developer-guide/iam-examples-managing-access-keys.html#iam-examples-managing-access-keys-deleting
https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/client/iam/command/DeleteAccessKeyCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascript/example_code/iam#code-examples

AWS Identity and Access Management User Guide

 UserName: "USER_NAME",
};

iam.deleteAccessKey(params, function (err, data) {
 if (err) {
 console.log("Error", err);
 } else {
 console.log("Success", data);
 }
});

• For more information, see AWS SDK for JavaScript Developer Guide.

• For API details, see DeleteAccessKey in AWS SDK for JavaScript API Reference.

Kotlin

SDK for Kotlin

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

suspend fun deleteKey(userNameVal: String, accessKey: String) {

 val request = DeleteAccessKeyRequest {
 accessKeyId = accessKey
 userName = userNameVal
 }

 IamClient { region = "AWS_GLOBAL" }.use { iamClient ->
 iamClient.deleteAccessKey(request)
 println("Successfully deleted access key $accessKey from $userNameVal")
 }
}

• For API details, see DeleteAccessKey in AWS SDK for Kotlin API reference.

Actions 1767

https://docs.aws.amazon.com/sdk-for-javascript/v2/developer-guide/iam-examples-managing-access-keys.html#iam-examples-managing-access-keys-deleting
https://docs.aws.amazon.com/goto/AWSJavaScriptSDK/iam-2010-05-08/DeleteAccessKey
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/kotlin/services/iam#code-examples
https://github.com/awslabs/aws-sdk-kotlin#generating-api-documentation

AWS Identity and Access Management User Guide

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

def delete_key(user_name, key_id):
 """
 Deletes a user's access key.

 :param user_name: The user that owns the key.
 :param key_id: The ID of the key to delete.
 """

 try:
 key = iam.AccessKey(user_name, key_id)
 key.delete()
 logger.info("Deleted access key %s for %s.", key.id, key.user_name)
 except ClientError:
 logger.exception("Couldn't delete key %s for %s", key_id, user_name)
 raise

• For API details, see DeleteAccessKey in AWS SDK for Python (Boto3) API Reference.

Ruby

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Actions 1768

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/iam#code-examples
https://docs.aws.amazon.com/goto/boto3/iam-2010-05-08/DeleteAccessKey
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/iam#code-examples

AWS Identity and Access Management User Guide

This example module lists, creates, deactivates, and deletes access keys.

Manages access keys for IAM users
class AccessKeyManager
 def initialize(iam_client, logger: Logger.new($stdout))
 @iam_client = iam_client
 @logger = logger
 @logger.progname = "AccessKeyManager"
 end

 # Lists access keys for a user
 #
 # @param user_name [String] The name of the user.
 def list_access_keys(user_name)
 response = @iam_client.list_access_keys(user_name: user_name)
 if response.access_key_metadata.empty?
 @logger.info("No access keys found for user '#{user_name}'.")
 else
 response.access_key_metadata.map(&:access_key_id)
 end
 rescue Aws::IAM::Errors::NoSuchEntity => e
 @logger.error("Error listing access keys: cannot find user '#{user_name}'.")
 []
 rescue StandardError => e
 @logger.error("Error listing access keys: #{e.message}")
 []
 end

 # Creates an access key for a user
 #
 # @param user_name [String] The name of the user.
 # @return [Boolean]
 def create_access_key(user_name)
 response = @iam_client.create_access_key(user_name: user_name)
 access_key = response.access_key
 @logger.info("Access key created for user '#{user_name}':
 #{access_key.access_key_id}")
 access_key
 rescue Aws::IAM::Errors::LimitExceeded => e
 @logger.error("Error creating access key: limit exceeded. Cannot create
 more.")
 nil
 rescue StandardError => e
 @logger.error("Error creating access key: #{e.message}")

Actions 1769

AWS Identity and Access Management User Guide

 nil
 end

 # Deactivates an access key
 #
 # @param user_name [String] The name of the user.
 # @param access_key_id [String] The ID for the access key.
 # @return [Boolean]
 def deactivate_access_key(user_name, access_key_id)
 @iam_client.update_access_key(
 user_name: user_name,
 access_key_id: access_key_id,
 status: "Inactive"
)
 true
 rescue StandardError => e
 @logger.error("Error deactivating access key: #{e.message}")
 false
 end

 # Deletes an access key
 #
 # @param user_name [String] The name of the user.
 # @param access_key_id [String] The ID for the access key.
 # @return [Boolean]
 def delete_access_key(user_name, access_key_id)
 @iam_client.delete_access_key(
 user_name: user_name,
 access_key_id: access_key_id
)
 true
 rescue StandardError => e
 @logger.error("Error deleting access key: #{e.message}")
 false
 end
end

• For API details, see DeleteAccessKey in AWS SDK for Ruby API Reference.

Actions 1770

https://docs.aws.amazon.com/goto/SdkForRubyV3/iam-2010-05-08/DeleteAccessKey

AWS Identity and Access Management User Guide

Rust

SDK for Rust

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

pub async fn delete_access_key(
 client: &iamClient,
 user: &User,
 key: &AccessKey,
) -> Result<(), iamError> {
 loop {
 match client
 .delete_access_key()
 .user_name(user.user_name())
 .access_key_id(key.access_key_id())
 .send()
 .await
 {
 Ok(_) => {
 break;
 }
 Err(e) => {
 println!("Can't delete the access key: {:?}", e);
 sleep(Duration::from_secs(2)).await;
 }
 }
 }
 Ok(())
}

• For API details, see DeleteAccessKey in AWS SDK for Rust API reference.

Actions 1771

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/rustv1/examples/iam#code-examples
https://docs.rs/releases/search?query=aws-sdk

AWS Identity and Access Management User Guide

Swift

SDK for Swift

Note

This is prerelease documentation for an SDK in preview release. It is subject to
change.

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 public func deleteAccessKey(user: IAMClientTypes.User? = nil,
 key: IAMClientTypes.AccessKey) async throws {
 let userName: String?

 if user != nil {
 userName = user!.userName
 } else {
 userName = nil
 }

 let input = DeleteAccessKeyInput(
 accessKeyId: key.accessKeyId,
 userName: userName
)
 do {
 _ = try await iamClient.deleteAccessKey(input: input)
 } catch {
 throw error
 }
 }

• For API details, see DeleteAccessKey in AWS SDK for Swift API reference.

Actions 1772

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/swift/example_code/iam#code-examples
https://awslabs.github.io/aws-sdk-swift/reference/0.x

AWS Identity and Access Management User Guide

For a complete list of AWS SDK developer guides and code examples, see Using IAM with an AWS
SDK. This topic also includes information about getting started and details about previous SDK
versions.

Delete an IAM account alias using an AWS SDK

The following code examples show how to delete an IAM account alias.

Action examples are code excerpts from larger programs and must be run in context. You can see
this action in context in the following code example:

• Manage your account

C++

SDK for C++

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

bool AwsDoc::IAM::deleteAccountAlias(const Aws::String &accountAlias,
 const Aws::Client::ClientConfiguration
 &clientConfig) {
 Aws::IAM::IAMClient iam(clientConfig);

 Aws::IAM::Model::DeleteAccountAliasRequest request;
 request.SetAccountAlias(accountAlias);

 const auto outcome = iam.DeleteAccountAlias(request);
 if (!outcome.IsSuccess()) {
 std::cerr << "Error deleting account alias " << accountAlias << ": "
 << outcome.GetError().GetMessage() << std::endl;
 }
 else {
 std::cout << "Successfully deleted account alias " << accountAlias <<
 std::endl;
 }

Actions 1773

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/cpp/example_code/iam#code-examples

AWS Identity and Access Management User Guide

 return outcome.IsSuccess();
}

• For API details, see DeleteAccountAlias in AWS SDK for C++ API Reference.

CLI

AWS CLI

To delete an account alias

The following delete-account-alias command removes the alias mycompany for the
current account.

aws iam delete-account-alias \
 --account-alias mycompany

This command produces no output.

For more information, see Your AWS account ID and its alias in the AWS IAM User Guide.

• For API details, see DeleteAccountAlias in AWS CLI Command Reference.

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

import software.amazon.awssdk.services.iam.model.DeleteAccountAliasRequest;
import software.amazon.awssdk.regions.Region;
import software.amazon.awssdk.services.iam.IamClient;
import software.amazon.awssdk.services.iam.model.IamException;

/**
 * Before running this Java V2 code example, set up your development

Actions 1774

https://docs.aws.amazon.com/goto/SdkForCpp/iam-2010-05-08/DeleteAccountAlias
https://docs.aws.amazon.com/IAM/latest/UserGuide/console_account-alias.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/iam/delete-account-alias.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/iam#readme

AWS Identity and Access Management User Guide

 * environment, including your credentials.
 *
 * For more information, see the following documentation topic:
 *
 * https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/get-
started.html
 */
public class DeleteAccountAlias {
 public static void main(String[] args) {
 final String usage = """

 Usage:
 <alias>\s

 Where:
 alias - The account alias to delete.\s
 """;

 if (args.length != 1) {
 System.out.println(usage);
 System.exit(1);
 }

 String alias = args[0];
 Region region = Region.AWS_GLOBAL;
 IamClient iam = IamClient.builder()
 .region(region)
 .build();

 deleteIAMAccountAlias(iam, alias);
 iam.close();
 }

 public static void deleteIAMAccountAlias(IamClient iam, String alias) {
 try {
 DeleteAccountAliasRequest request =
 DeleteAccountAliasRequest.builder()
 .accountAlias(alias)
 .build();

 iam.deleteAccountAlias(request);
 System.out.println("Successfully deleted account alias " + alias);

 } catch (IamException e) {

Actions 1775

AWS Identity and Access Management User Guide

 System.err.println(e.awsErrorDetails().errorMessage());
 System.exit(1);
 }
 System.out.println("Done");
 }
}

• For API details, see DeleteAccountAlias in AWS SDK for Java 2.x API Reference.

JavaScript

SDK for JavaScript (v3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Delete the account alias.

import { DeleteAccountAliasCommand, IAMClient } from "@aws-sdk/client-iam";

const client = new IAMClient({});

/**
 *
 * @param {string} alias
 */
export const deleteAccountAlias = (alias) => {
 const command = new DeleteAccountAliasCommand({ AccountAlias: alias });

 return client.send(command);
};

• For more information, see AWS SDK for JavaScript Developer Guide.

• For API details, see DeleteAccountAlias in AWS SDK for JavaScript API Reference.

Actions 1776

https://docs.aws.amazon.com/goto/SdkForJavaV2/iam-2010-05-08/DeleteAccountAlias
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/iam#code-examples
https://docs.aws.amazon.com/sdk-for-javascript/v3/developer-guide/iam-examples-account-aliases.html#iam-examples-account-aliases-deleting
https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/client/iam/command/DeleteAccountAliasCommand

AWS Identity and Access Management User Guide

SDK for JavaScript (v2)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set the region
AWS.config.update({ region: "REGION" });

// Create the IAM service object
var iam = new AWS.IAM({ apiVersion: "2010-05-08" });

iam.deleteAccountAlias({ AccountAlias: process.argv[2] }, function (err, data) {
 if (err) {
 console.log("Error", err);
 } else {
 console.log("Success", data);
 }
});

• For more information, see AWS SDK for JavaScript Developer Guide.

• For API details, see DeleteAccountAlias in AWS SDK for JavaScript API Reference.

Kotlin

SDK for Kotlin

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

suspend fun deleteIAMAccountAlias(alias: String) {

Actions 1777

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascript/example_code/iam#code-examples
https://docs.aws.amazon.com/sdk-for-javascript/v2/developer-guide/iam-examples-account-aliases.html#iam-examples-account-aliases-deleting
https://docs.aws.amazon.com/goto/AWSJavaScriptSDK/iam-2010-05-08/DeleteAccountAlias
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/kotlin/services/iam#code-examples

AWS Identity and Access Management User Guide

 val request = DeleteAccountAliasRequest {
 accountAlias = alias
 }

 IamClient { region = "AWS_GLOBAL" }.use { iamClient ->
 iamClient.deleteAccountAlias(request)
 println("Successfully deleted account alias $alias")
 }
}

• For API details, see DeleteAccountAlias in AWS SDK for Kotlin API reference.

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

def delete_alias(alias):
 """
 Removes the alias from the current account.

 :param alias: The alias to remove.
 """
 try:
 iam.meta.client.delete_account_alias(AccountAlias=alias)
 logger.info("Removed alias '%s' from your account.", alias)
 except ClientError:
 logger.exception("Couldn't remove alias '%s' from your account.", alias)
 raise

• For API details, see DeleteAccountAlias in AWS SDK for Python (Boto3) API Reference.

Actions 1778

https://github.com/awslabs/aws-sdk-kotlin#generating-api-documentation
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/iam#code-examples
https://docs.aws.amazon.com/goto/boto3/iam-2010-05-08/DeleteAccountAlias

AWS Identity and Access Management User Guide

Ruby

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

List, create, and delete account aliases.

class IAMAliasManager
 # Initializes the IAM client and logger
 #
 # @param iam_client [Aws::IAM::Client] An initialized IAM client.
 def initialize(iam_client, logger: Logger.new($stdout))
 @iam_client = iam_client
 @logger = logger
 end

 # Lists available AWS account aliases.
 def list_aliases
 response = @iam_client.list_account_aliases

 if response.account_aliases.count.positive?
 @logger.info("Account aliases are:")
 response.account_aliases.each { |account_alias| @logger.info("
 #{account_alias}") }
 else
 @logger.info("No account aliases found.")
 end
 rescue Aws::IAM::Errors::ServiceError => e
 @logger.error("Error listing account aliases: #{e.message}")
 end

 # Creates an AWS account alias.
 #
 # @param account_alias [String] The name of the account alias to create.
 # @return [Boolean] true if the account alias was created; otherwise, false.
 def create_account_alias(account_alias)
 @iam_client.create_account_alias(account_alias: account_alias)
 true

Actions 1779

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/iam#code-examples

AWS Identity and Access Management User Guide

 rescue Aws::IAM::Errors::ServiceError => e
 @logger.error("Error creating account alias: #{e.message}")
 false
 end

 # Deletes an AWS account alias.
 #
 # @param account_alias [String] The name of the account alias to delete.
 # @return [Boolean] true if the account alias was deleted; otherwise, false.
 def delete_account_alias(account_alias)
 @iam_client.delete_account_alias(account_alias: account_alias)
 true
 rescue Aws::IAM::Errors::ServiceError => e
 @logger.error("Error deleting account alias: #{e.message}")
 false
 end
end

• For API details, see DeleteAccountAlias in AWS SDK for Ruby API Reference.

For a complete list of AWS SDK developer guides and code examples, see Using IAM with an AWS
SDK. This topic also includes information about getting started and details about previous SDK
versions.

Delete an inline IAM policy from a user using an AWS SDK

The following code examples show how to delete an inline IAM policy from a user.

Warning

To avoid security risks, don't use IAM users for authentication when developing purpose-
built software or working with real data. Instead, use federation with an identity provider
such as AWS IAM Identity Center.

Action examples are code excerpts from larger programs and must be run in context. You can see
this action in context in the following code example:

• Create a user and assume a role

Actions 1780

https://docs.aws.amazon.com/goto/SdkForRubyV3/iam-2010-05-08/DeleteAccountAlias
https://docs.aws.amazon.com/singlesignon/latest/userguide/what-is.html

AWS Identity and Access Management User Guide

.NET

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 /// <summary>
 /// Delete an IAM user policy.
 /// </summary>
 /// <param name="policyName">The name of the IAM policy to delete.</param>
 /// <param name="userName">The username of the IAM user.</param>
 /// <returns>A Boolean value indicating the success of the action.</returns>
 public async Task<bool> DeleteUserPolicyAsync(string policyName, string
 userName)
 {
 var response = await _IAMService.DeleteUserPolicyAsync(new
 DeleteUserPolicyRequest { PolicyName = policyName, UserName = userName });

 return response.HttpStatusCode == System.Net.HttpStatusCode.OK;
 }

• For API details, see DeleteUserPolicy in AWS SDK for .NET API Reference.

CLI

AWS CLI

To remove a policy from an IAM user

The following delete-user-policy command removes the specified policy from the IAM
user named Bob.

aws iam delete-user-policy \
 --user-name Bob \
 --policy-name ExamplePolicy

Actions 1781

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/IAM#code-examples
https://docs.aws.amazon.com/goto/DotNetSDKV3/iam-2010-05-08/DeleteUserPolicy

AWS Identity and Access Management User Guide

This command produces no output.

To get a list of policies for an IAM user, use the list-user-policies command.

For more information, see Creating an IAM user in your AWS account in the AWS IAM User
Guide.

• For API details, see DeleteUserPolicy in AWS CLI Command Reference.

Go

SDK for Go V2

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

// UserWrapper encapsulates user actions used in the examples.
// It contains an IAM service client that is used to perform user actions.
type UserWrapper struct {
 IamClient *iam.Client
}

// DeleteUserPolicy deletes an inline policy from a user.
func (wrapper UserWrapper) DeleteUserPolicy(userName string, policyName string)
 error {
 _, err := wrapper.IamClient.DeleteUserPolicy(context.TODO(),
 &iam.DeleteUserPolicyInput{
 PolicyName: aws.String(policyName),
 UserName: aws.String(userName),
 })
 if err != nil {
 log.Printf("Couldn't delete policy from user %v. Here's why: %v\n", userName,
 err)
 }
 return err
}

Actions 1782

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_create.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/iam/delete-user-policy.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/gov2/iam#code-examples

AWS Identity and Access Management User Guide

• For API details, see DeleteUserPolicy in AWS SDK for Go API Reference.

Ruby

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 # Deletes a user and their associated resources
 #
 # @param user_name [String] The name of the user to delete
 def delete_user(user_name)
 user = @iam_client.list_access_keys(user_name: user_name).access_key_metadata
 user.each do |key|
 @iam_client.delete_access_key({ access_key_id: key.access_key_id,
 user_name: user_name })
 @logger.info("Deleted access key #{key.access_key_id} for user
 '#{user_name}'.")
 end

 @iam_client.delete_user(user_name: user_name)
 @logger.info("Deleted user '#{user_name}'.")
 rescue Aws::IAM::Errors::ServiceError => e
 @logger.error("Error deleting user '#{user_name}': #{e.message}")
 end

• For API details, see DeleteUserPolicy in AWS SDK for Ruby API Reference.

Actions 1783

https://pkg.go.dev/github.com/aws/aws-sdk-go-v2/service/iam#Client.DeleteUserPolicy
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/iam#code-examples
https://docs.aws.amazon.com/goto/SdkForRubyV3/iam-2010-05-08/DeleteUserPolicy

AWS Identity and Access Management User Guide

Rust

SDK for Rust

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

pub async fn delete_user_policy(
 client: &iamClient,
 user: &User,
 policy_name: &str,
) -> Result<(), SdkError<DeleteUserPolicyError>> {
 client
 .delete_user_policy()
 .user_name(user.user_name())
 .policy_name(policy_name)
 .send()
 .await?;

 Ok(())
}

• For API details, see DeleteUserPolicy in AWS SDK for Rust API reference.

Swift

SDK for Swift

Note

This is prerelease documentation for an SDK in preview release. It is subject to
change.

Actions 1784

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/rustv1/examples/iam#code-examples
https://docs.rs/releases/search?query=aws-sdk

AWS Identity and Access Management User Guide

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 func deleteUserPolicy(user: IAMClientTypes.User, policyName: String) async
 throws {
 let input = DeleteUserPolicyInput(
 policyName: policyName,
 userName: user.userName
)
 do {
 _ = try await iamClient.deleteUserPolicy(input: input)
 } catch {
 throw error
 }
 }

• For API details, see DeleteUserPolicy in AWS SDK for Swift API reference.

For a complete list of AWS SDK developer guides and code examples, see Using IAM with an AWS
SDK. This topic also includes information about getting started and details about previous SDK
versions.

Delete an IAM instance profile using an AWS SDK

The following code examples show how to delete an IAM instance profile.

Action examples are code excerpts from larger programs and must be run in context. You can see
this action in context in the following code example:

• Build and manage a resilient service

Actions 1785

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/swift/example_code/iam#code-examples
https://awslabs.github.io/aws-sdk-swift/reference/0.x

AWS Identity and Access Management User Guide

.NET

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 /// <summary>
 /// Detaches a role from an instance profile, detaches policies from the
 role,
 /// and deletes all the resources.
 /// </summary>
 /// <param name="profileName">The name of the profile to delete.</param>
 /// <param name="roleName">The name of the role to delete.</param>
 /// <returns>Async task.</returns>
 public async Task DeleteInstanceProfile(string profileName, string roleName)
 {
 try
 {
 await _amazonIam.RemoveRoleFromInstanceProfileAsync(
 new RemoveRoleFromInstanceProfileRequest()
 {
 InstanceProfileName = profileName,
 RoleName = roleName
 });
 await _amazonIam.DeleteInstanceProfileAsync(
 new DeleteInstanceProfileRequest() { InstanceProfileName =
 profileName });
 var attachedPolicies = await
 _amazonIam.ListAttachedRolePoliciesAsync(
 new ListAttachedRolePoliciesRequest() { RoleName = roleName });
 foreach (var policy in attachedPolicies.AttachedPolicies)
 {
 await _amazonIam.DetachRolePolicyAsync(
 new DetachRolePolicyRequest()
 {
 RoleName = roleName,
 PolicyArn = policy.PolicyArn
 });

Actions 1786

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/cross-service/ResilientService/AutoScalerActions#code-examples

AWS Identity and Access Management User Guide

 // Delete the custom policies only.
 if (!policy.PolicyArn.StartsWith("arn:aws:iam::aws"))
 {
 await _amazonIam.DeletePolicyAsync(
 new Amazon.IdentityManagement.Model.DeletePolicyRequest()
 {
 PolicyArn = policy.PolicyArn
 });
 }
 }

 await _amazonIam.DeleteRoleAsync(
 new DeleteRoleRequest() { RoleName = roleName });
 }
 catch (NoSuchEntityException)
 {
 Console.WriteLine($"Instance profile {profileName} does not exist.");
 }
 }

• For API details, see DeleteInstanceProfile in AWS SDK for .NET API Reference.

CLI

AWS CLI

To delete an instance profile

The following delete-instance-profile command deletes the instance profile named
ExampleInstanceProfile.

aws iam delete-instance-profile \
 --instance-profile-name ExampleInstanceProfile

This command produces no output.

For more information, see Using instance profiles in the AWS IAM User Guide.

• For API details, see DeleteInstanceProfile in AWS CLI Command Reference.

Actions 1787

https://docs.aws.amazon.com/goto/DotNetSDKV3/iam-2010-05-08/DeleteInstanceProfile
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-ec2_instance-profiles.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/iam/delete-instance-profile.html

AWS Identity and Access Management User Guide

JavaScript

SDK for JavaScript (v3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 const client = new IAMClient({});
 await client.send(
 new DeleteInstanceProfileCommand({
 InstanceProfileName: NAMES.instanceProfileName,
 }),
);

• For API details, see DeleteInstanceProfile in AWS SDK for JavaScript API Reference.

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

This example removes the role from the instance profile, detaches all policies attached to
the role, and deletes all the resources.

class AutoScaler:
 """
 Encapsulates Amazon EC2 Auto Scaling and EC2 management actions.
 """

 def __init__(
 self,

Actions 1788

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/cross-services/wkflw-resilient-service#code-examples
https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/client/iam/command/DeleteInstanceProfileCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/iam#code-examples

AWS Identity and Access Management User Guide

 resource_prefix,
 inst_type,
 ami_param,
 autoscaling_client,
 ec2_client,
 ssm_client,
 iam_client,
):
 """
 :param resource_prefix: The prefix for naming AWS resources that are
 created by this class.
 :param inst_type: The type of EC2 instance to create, such as t3.micro.
 :param ami_param: The Systems Manager parameter used to look up the AMI
 that is
 created.
 :param autoscaling_client: A Boto3 EC2 Auto Scaling client.
 :param ec2_client: A Boto3 EC2 client.
 :param ssm_client: A Boto3 Systems Manager client.
 :param iam_client: A Boto3 IAM client.
 """
 self.inst_type = inst_type
 self.ami_param = ami_param
 self.autoscaling_client = autoscaling_client
 self.ec2_client = ec2_client
 self.ssm_client = ssm_client
 self.iam_client = iam_client
 self.launch_template_name = f"{resource_prefix}-template"
 self.group_name = f"{resource_prefix}-group"
 self.instance_policy_name = f"{resource_prefix}-pol"
 self.instance_role_name = f"{resource_prefix}-role"
 self.instance_profile_name = f"{resource_prefix}-prof"
 self.bad_creds_policy_name = f"{resource_prefix}-bc-pol"
 self.bad_creds_role_name = f"{resource_prefix}-bc-role"
 self.bad_creds_profile_name = f"{resource_prefix}-bc-prof"
 self.key_pair_name = f"{resource_prefix}-key-pair"

 def delete_instance_profile(self, profile_name, role_name):
 """
 Detaches a role from an instance profile, detaches policies from the
 role,
 and deletes all the resources.

 :param profile_name: The name of the profile to delete.

Actions 1789

AWS Identity and Access Management User Guide

 :param role_name: The name of the role to delete.
 """
 try:
 self.iam_client.remove_role_from_instance_profile(
 InstanceProfileName=profile_name, RoleName=role_name
)

 self.iam_client.delete_instance_profile(InstanceProfileName=profile_name)
 log.info("Deleted instance profile %s.", profile_name)
 attached_policies = self.iam_client.list_attached_role_policies(
 RoleName=role_name
)
 for pol in attached_policies["AttachedPolicies"]:
 self.iam_client.detach_role_policy(
 RoleName=role_name, PolicyArn=pol["PolicyArn"]
)
 if not pol["PolicyArn"].startswith("arn:aws:iam::aws"):
 self.iam_client.delete_policy(PolicyArn=pol["PolicyArn"])
 log.info("Detached and deleted policy %s.", pol["PolicyName"])
 self.iam_client.delete_role(RoleName=role_name)
 log.info("Deleted role %s.", role_name)
 except ClientError as err:
 if err.response["Error"]["Code"] == "NoSuchEntity":
 log.info(
 "Instance profile %s doesn't exist, nothing to do.",
 profile_name
)
 else:
 raise AutoScalerError(
 f"Couldn't delete instance profile {profile_name} or detach "
 f"policies and delete role {role_name}: {err}"
)

• For API details, see DeleteInstanceProfile in AWS SDK for Python (Boto3) API Reference.

For a complete list of AWS SDK developer guides and code examples, see Using IAM with an AWS
SDK. This topic also includes information about getting started and details about previous SDK
versions.

Actions 1790

https://docs.aws.amazon.com/goto/boto3/iam-2010-05-08/DeleteInstanceProfile

AWS Identity and Access Management User Guide

Detach an IAM policy from a role using an AWS SDK

The following code examples show how to detach an IAM policy from a role.

Action examples are code excerpts from larger programs and must be run in context. You can see
this action in context in the following code examples:

• Create a user and assume a role

• Manage roles

.NET

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 /// <summary>
 /// Detach an IAM policy from an IAM role.
 /// </summary>
 /// <param name="policyArn">The Amazon Resource Name (ARN) of the IAM
 policy.</param>
 /// <param name="roleName">The name of the IAM role.</param>
 /// <returns>A Boolean value indicating the success of the action.</returns>
 public async Task<bool> DetachRolePolicyAsync(string policyArn, string
 roleName)
 {
 var response = await _IAMService.DetachRolePolicyAsync(new
 DetachRolePolicyRequest
 {
 PolicyArn = policyArn,
 RoleName = roleName,
 });

 return response.HttpStatusCode == System.Net.HttpStatusCode.OK;
 }

Actions 1791

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/IAM#code-examples

AWS Identity and Access Management User Guide

• For API details, see DetachRolePolicy in AWS SDK for .NET API Reference.

Bash

AWS CLI with Bash script

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

###
function errecho
#
This function outputs everything sent to it to STDERR (standard error output).
###
function errecho() {
 printf "%s\n" "$*" 1>&2
}

###
function iam_detach_role_policy
#
This function detaches an IAM policy to a tole.
#
Parameters:
-n role_name -- The name of the IAM role.
-p policy_ARN -- The IAM policy document ARN..
#
Returns:
0 - If successful.
1 - If it fails.
###
function iam_detach_role_policy() {
 local role_name policy_arn response
 local option OPTARG # Required to use getopts command in a function.

 # bashsupport disable=BP5008
 function usage() {
 echo "function iam_detach_role_policy"

Actions 1792

https://docs.aws.amazon.com/goto/DotNetSDKV3/iam-2010-05-08/DetachRolePolicy
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/aws-cli/bash-linux/iam#code-examples

AWS Identity and Access Management User Guide

 echo "Detaches an AWS Identity and Access Management (IAM) policy to an IAM
 role."
 echo " -n role_name The name of the IAM role."
 echo " -p policy_ARN -- The IAM policy document ARN."
 echo ""
 }

 # Retrieve the calling parameters.
 while getopts "n:p:h" option; do
 case "${option}" in
 n) role_name="${OPTARG}" ;;
 p) policy_arn="${OPTARG}" ;;
 h)
 usage
 return 0
 ;;
 \?)
 echo "Invalid parameter"
 usage
 return 1
 ;;
 esac
 done
 export OPTIND=1

 if [[-z "$role_name"]]; then
 errecho "ERROR: You must provide a role name with the -n parameter."
 usage
 return 1
 fi

 if [[-z "$policy_arn"]]; then
 errecho "ERROR: You must provide a policy ARN with the -p parameter."
 usage
 return 1
 fi

 response=$(aws iam detach-role-policy \
 --role-name "$role_name" \
 --policy-arn "$policy_arn")

 local error_code=${?}

 if [[$error_code -ne 0]]; then

Actions 1793

AWS Identity and Access Management User Guide

 aws_cli_error_log $error_code
 errecho "ERROR: AWS reports detach-role-policy operation failed.\n$response"
 return 1
 fi

 echo "$response"

 return 0
}

• For API details, see DetachRolePolicy in AWS CLI Command Reference.

C++

SDK for C++

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 Aws::IAM::IAMClient iam(clientConfig);

 Aws::IAM::Model::DetachRolePolicyRequest detachRequest;
 detachRequest.SetRoleName(roleName);
 detachRequest.SetPolicyArn(policyArn);

 auto detachOutcome = iam.DetachRolePolicy(detachRequest);
 if (!detachOutcome.IsSuccess()) {
 std::cerr << "Failed to detach policy " << policyArn << " from role "
 << roleName << ": " << detachOutcome.GetError().GetMessage() <<
 std::endl;
 }
 else {
 std::cout << "Successfully detached policy " << policyArn << " from role
 "
 << roleName << std::endl;
 }

 return detachOutcome.IsSuccess();

Actions 1794

https://docs.aws.amazon.com/goto/aws-cli/iam-2010-05-08/DetachRolePolicy
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/cpp/example_code/iam#code-examples

AWS Identity and Access Management User Guide

• For API details, see DetachRolePolicy in AWS SDK for C++ API Reference.

CLI

AWS CLI

To detach a policy from a role

This example removes the managed policy with the ARN
arn:aws:iam::123456789012:policy/FederatedTesterAccessPolicy from the
role called FedTesterRole.

aws iam detach-role-policy \
 --role-name FedTesterRole \
 --policy-arn arn:aws:iam::123456789012:policy/FederatedTesterAccessPolicy

This command produces no output.

For more information, see Modifying a role in the AWS IAM User Guide.

• For API details, see DetachRolePolicy in AWS CLI Command Reference.

Go

SDK for Go V2

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

// RoleWrapper encapsulates AWS Identity and Access Management (IAM) role actions
// used in the examples.
// It contains an IAM service client that is used to perform role actions.
type RoleWrapper struct {
 IamClient *iam.Client
}

Actions 1795

https://docs.aws.amazon.com/goto/SdkForCpp/iam-2010-05-08/DetachRolePolicy
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_manage_modify.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/iam/detach-role-policy.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/gov2/iam#code-examples

AWS Identity and Access Management User Guide

// DetachRolePolicy detaches a policy from a role.
func (wrapper RoleWrapper) DetachRolePolicy(roleName string, policyArn string)
 error {
 _, err := wrapper.IamClient.DetachRolePolicy(context.TODO(),
 &iam.DetachRolePolicyInput{
 PolicyArn: aws.String(policyArn),
 RoleName: aws.String(roleName),
 })
 if err != nil {
 log.Printf("Couldn't detach policy from role %v. Here's why: %v\n", roleName,
 err)
 }
 return err
}

• For API details, see DetachRolePolicy in AWS SDK for Go API Reference.

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

import software.amazon.awssdk.services.iam.model.DetachRolePolicyRequest;
import software.amazon.awssdk.regions.Region;
import software.amazon.awssdk.services.iam.IamClient;
import software.amazon.awssdk.services.iam.model.IamException;

/**
 * Before running this Java V2 code example, set up your development
 * environment, including your credentials.
 *
 * For more information, see the following documentation topic:

Actions 1796

https://pkg.go.dev/github.com/aws/aws-sdk-go-v2/service/iam#Client.DetachRolePolicy
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/iam#readme

AWS Identity and Access Management User Guide

 *
 * https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/get-
started.html
 */
public class DetachRolePolicy {
 public static void main(String[] args) {
 final String usage = """

 Usage:
 <roleName> <policyArn>\s

 Where:
 roleName - A role name that you can obtain from the AWS
 Management Console.\s
 policyArn - A policy ARN that you can obtain from the AWS
 Management Console.\s
 """;

 if (args.length != 2) {
 System.out.println(usage);
 System.exit(1);
 }

 String roleName = args[0];
 String policyArn = args[1];
 Region region = Region.AWS_GLOBAL;
 IamClient iam = IamClient.builder()
 .region(region)
 .build();
 detachPolicy(iam, roleName, policyArn);
 System.out.println("Done");
 iam.close();
 }

 public static void detachPolicy(IamClient iam, String roleName, String
 policyArn) {
 try {
 DetachRolePolicyRequest request = DetachRolePolicyRequest.builder()
 .roleName(roleName)
 .policyArn(policyArn)
 .build();

 iam.detachRolePolicy(request);
 System.out.println("Successfully detached policy " + policyArn +

Actions 1797

AWS Identity and Access Management User Guide

 " from role " + roleName);

 } catch (IamException e) {
 System.err.println(e.awsErrorDetails().errorMessage());
 System.exit(1);
 }
 }
}

• For API details, see DetachRolePolicy in AWS SDK for Java 2.x API Reference.

JavaScript

SDK for JavaScript (v3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Detach the policy.

import { DetachRolePolicyCommand, IAMClient } from "@aws-sdk/client-iam";

const client = new IAMClient({});

/**
 *
 * @param {string} policyArn
 * @param {string} roleName
 */
export const detachRolePolicy = (policyArn, roleName) => {
 const command = new DetachRolePolicyCommand({
 PolicyArn: policyArn,
 RoleName: roleName,
 });

 return client.send(command);
};

Actions 1798

https://docs.aws.amazon.com/goto/SdkForJavaV2/iam-2010-05-08/DetachRolePolicy
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/iam#code-examples

AWS Identity and Access Management User Guide

• For more information, see AWS SDK for JavaScript Developer Guide.

• For API details, see DetachRolePolicy in AWS SDK for JavaScript API Reference.

SDK for JavaScript (v2)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set the region
AWS.config.update({ region: "REGION" });

// Create the IAM service object
var iam = new AWS.IAM({ apiVersion: "2010-05-08" });

var paramsRoleList = {
 RoleName: process.argv[2],
};

iam.listAttachedRolePolicies(paramsRoleList, function (err, data) {
 if (err) {
 console.log("Error", err);
 } else {
 var myRolePolicies = data.AttachedPolicies;
 myRolePolicies.forEach(function (val, index, array) {
 if (myRolePolicies[index].PolicyName === "AmazonDynamoDBFullAccess") {
 var params = {
 PolicyArn: "arn:aws:iam::aws:policy/AmazonDynamoDBFullAccess",
 RoleName: process.argv[2],
 };
 iam.detachRolePolicy(params, function (err, data) {
 if (err) {
 console.log("Unable to detach policy from role", err);
 } else {
 console.log("Policy detached from role successfully");
 process.exit();

Actions 1799

https://docs.aws.amazon.com/sdk-for-javascript/v3/developer-guide/iam-examples-policies.html#iam-examples-policies-detaching-role-policy
https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/client/iam/command/DetachRolePolicyCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascript/example_code/iam#code-examples

AWS Identity and Access Management User Guide

 }
 });
 }
 });
 }
});

• For more information, see AWS SDK for JavaScript Developer Guide.

• For API details, see DetachRolePolicy in AWS SDK for JavaScript API Reference.

Kotlin

SDK for Kotlin

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

suspend fun detachPolicy(roleNameVal: String, policyArnVal: String) {

 val request = DetachRolePolicyRequest {
 roleName = roleNameVal
 policyArn = policyArnVal
 }

 IamClient { region = "AWS_GLOBAL" }.use { iamClient ->
 iamClient.detachRolePolicy(request)
 println("Successfully detached policy $policyArnVal from role
 $roleNameVal")
 }
}

• For API details, see DetachRolePolicy in AWS SDK for Kotlin API reference.

Actions 1800

https://docs.aws.amazon.com/sdk-for-javascript/v2/developer-guide/iam-examples-policies.html#iam-examples-policies-detaching-role-policy
https://docs.aws.amazon.com/goto/AWSJavaScriptSDK/iam-2010-05-08/DetachRolePolicy
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/kotlin/services/iam#code-examples
https://github.com/awslabs/aws-sdk-kotlin#generating-api-documentation

AWS Identity and Access Management User Guide

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Detach a policy from a role using the Boto3 Policy object.

def detach_from_role(role_name, policy_arn):
 """
 Detaches a policy from a role.

 :param role_name: The name of the role. **Note** this is the name, not the
 ARN.
 :param policy_arn: The ARN of the policy.
 """
 try:
 iam.Policy(policy_arn).detach_role(RoleName=role_name)
 logger.info("Detached policy %s from role %s.", policy_arn, role_name)
 except ClientError:
 logger.exception(
 "Couldn't detach policy %s from role %s.", policy_arn, role_name
)
 raise

Detach a policy from a role using the Boto3 Role object.

def detach_policy(role_name, policy_arn):
 """
 Detaches a policy from a role.

 :param role_name: The name of the role. **Note** this is the name, not the
 ARN.
 :param policy_arn: The ARN of the policy.
 """

Actions 1801

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/iam#code-examples

AWS Identity and Access Management User Guide

 try:
 iam.Role(role_name).detach_policy(PolicyArn=policy_arn)
 logger.info("Detached policy %s from role %s.", policy_arn, role_name)
 except ClientError:
 logger.exception(
 "Couldn't detach policy %s from role %s.", policy_arn, role_name
)
 raise

• For API details, see DetachRolePolicy in AWS SDK for Python (Boto3) API Reference.

Ruby

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

This example module lists, creates, attaches, and detaches role policies.

Manages policies in AWS Identity and Access Management (IAM)
class RolePolicyManager
 # Initialize with an AWS IAM client
 #
 # @param iam_client [Aws::IAM::Client] An initialized IAM client
 def initialize(iam_client, logger: Logger.new($stdout))
 @iam_client = iam_client
 @logger = logger
 @logger.progname = "PolicyManager"
 end

 # Creates a policy
 #
 # @param policy_name [String] The name of the policy
 # @param policy_document [Hash] The policy document
 # @return [String] The policy ARN if successful, otherwise nil

Actions 1802

https://docs.aws.amazon.com/goto/boto3/iam-2010-05-08/DetachRolePolicy
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/iam#code-examples

AWS Identity and Access Management User Guide

 def create_policy(policy_name, policy_document)
 response = @iam_client.create_policy(
 policy_name: policy_name,
 policy_document: policy_document.to_json
)
 response.policy.arn
 rescue Aws::IAM::Errors::ServiceError => e
 @logger.error("Error creating policy: #{e.message}")
 nil
 end

 # Fetches an IAM policy by its ARN
 # @param policy_arn [String] the ARN of the IAM policy to retrieve
 # @return [Aws::IAM::Types::GetPolicyResponse] the policy object if found
 def get_policy(policy_arn)
 response = @iam_client.get_policy(policy_arn: policy_arn)
 policy = response.policy
 @logger.info("Got policy '#{policy.policy_name}'. Its ID is:
 #{policy.policy_id}.")
 policy
 rescue Aws::IAM::Errors::NoSuchEntity
 @logger.error("Couldn't get policy '#{policy_arn}'. The policy does not
 exist.")
 raise
 rescue Aws::IAM::Errors::ServiceError => e
 @logger.error("Couldn't get policy '#{policy_arn}'. Here's why: #{e.code}:
 #{e.message}")
 raise
 end

 # Attaches a policy to a role
 #
 # @param role_name [String] The name of the role
 # @param policy_arn [String] The policy ARN
 # @return [Boolean] true if successful, false otherwise
 def attach_policy_to_role(role_name, policy_arn)
 @iam_client.attach_role_policy(
 role_name: role_name,
 policy_arn: policy_arn
)
 true
 rescue Aws::IAM::Errors::ServiceError => e
 @logger.error("Error attaching policy to role: #{e.message}")
 false

Actions 1803

AWS Identity and Access Management User Guide

 end

 # Lists policy ARNs attached to a role
 #
 # @param role_name [String] The name of the role
 # @return [Array<String>] List of policy ARNs
 def list_attached_policy_arns(role_name)
 response = @iam_client.list_attached_role_policies(role_name: role_name)
 response.attached_policies.map(&:policy_arn)
 rescue Aws::IAM::Errors::ServiceError => e
 @logger.error("Error listing policies attached to role: #{e.message}")
 []
 end

 # Detaches a policy from a role
 #
 # @param role_name [String] The name of the role
 # @param policy_arn [String] The policy ARN
 # @return [Boolean] true if successful, false otherwise
 def detach_policy_from_role(role_name, policy_arn)
 @iam_client.detach_role_policy(
 role_name: role_name,
 policy_arn: policy_arn
)
 true
 rescue Aws::IAM::Errors::ServiceError => e
 @logger.error("Error detaching policy from role: #{e.message}")
 false
 end
end

• For API details, see DetachRolePolicy in AWS SDK for Ruby API Reference.

Rust

SDK for Rust

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Actions 1804

https://docs.aws.amazon.com/goto/SdkForRubyV3/iam-2010-05-08/DetachRolePolicy
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/rustv1/examples/iam#code-examples

AWS Identity and Access Management User Guide

pub async fn detach_role_policy(
 client: &iamClient,
 role_name: &str,
 policy_arn: &str,
) -> Result<(), iamError> {
 client
 .detach_role_policy()
 .role_name(role_name)
 .policy_arn(policy_arn)
 .send()
 .await?;

 Ok(())
}

• For API details, see DetachRolePolicy in AWS SDK for Rust API reference.

Swift

SDK for Swift

Note

This is prerelease documentation for an SDK in preview release. It is subject to
change.

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 public func detachRolePolicy(policy: IAMClientTypes.Policy, role:
 IAMClientTypes.Role) async throws {
 let input = DetachRolePolicyInput(
 policyArn: policy.arn,
 roleName: role.roleName
)

Actions 1805

https://docs.rs/releases/search?query=aws-sdk
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/swift/example_code/iam#code-examples

AWS Identity and Access Management User Guide

 do {
 _ = try await iamClient.detachRolePolicy(input: input)
 } catch {
 throw error
 }
 }

• For API details, see DetachRolePolicy in AWS SDK for Swift API reference.

For a complete list of AWS SDK developer guides and code examples, see Using IAM with an AWS
SDK. This topic also includes information about getting started and details about previous SDK
versions.

Detach an IAM policy from a user using an AWS SDK

The following code examples show how to detach an IAM policy from a user.

Warning

To avoid security risks, don't use IAM users for authentication when developing purpose-
built software or working with real data. Instead, use federation with an identity provider
such as AWS IAM Identity Center.

Action examples are code excerpts from larger programs and must be run in context. You can see
this action in context in the following code example:

• Create read-only and read-write users

CLI

AWS CLI

To detach a policy from a user

This example removes the managed policy with the ARN
arn:aws:iam::123456789012:policy/TesterPolicy from the user Bob.

Actions 1806

https://awslabs.github.io/aws-sdk-swift/reference/0.x
https://docs.aws.amazon.com/singlesignon/latest/userguide/what-is.html

AWS Identity and Access Management User Guide

aws iam detach-user-policy \
 --user-name Bob \
 --policy-arn arn:aws:iam::123456789012:policy/TesterPolicy

This command produces no output.

For more information, see Changing permissions for an IAM user in the AWS IAM User Guide.

• For API details, see DetachUserPolicy in AWS CLI Command Reference.

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

def detach_policy(user_name, policy_arn):
 """
 Detaches a policy from a user.

 :param user_name: The name of the user.
 :param policy_arn: The Amazon Resource Name (ARN) of the policy.
 """
 try:
 iam.User(user_name).detach_policy(PolicyArn=policy_arn)
 logger.info("Detached policy %s from user %s.", policy_arn, user_name)
 except ClientError:
 logger.exception(
 "Couldn't detach policy %s from user %s.", policy_arn, user_name
)
 raise

• For API details, see DetachUserPolicy in AWS SDK for Python (Boto3) API Reference.

Actions 1807

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_change-permissions.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/iam/detach-user-policy.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/iam#code-examples
https://docs.aws.amazon.com/goto/boto3/iam-2010-05-08/DetachUserPolicy

AWS Identity and Access Management User Guide

Ruby

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 # Detaches a policy from a user
 #
 # @param user_name [String] The name of the user
 # @param policy_arn [String] The ARN of the policy to detach
 # @return [Boolean] true if the policy was successfully detached, false
 otherwise
 def detach_user_policy(user_name, policy_arn)
 @iam_client.detach_user_policy(
 user_name: user_name,
 policy_arn: policy_arn
)
 @logger.info("Policy '#{policy_arn}' detached from user '#{user_name}'
 successfully.")
 true
 rescue Aws::IAM::Errors::NoSuchEntity
 @logger.error("Error detaching policy: Policy or user does not exist.")
 false
 rescue Aws::IAM::Errors::ServiceError => e
 @logger.error("Error detaching policy from user '#{user_name}':
 #{e.message}")
 false
 end

• For API details, see DetachUserPolicy in AWS SDK for Ruby API Reference.

Actions 1808

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/iam#code-examples
https://docs.aws.amazon.com/goto/SdkForRubyV3/iam-2010-05-08/DetachUserPolicy

AWS Identity and Access Management User Guide

Rust

SDK for Rust

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

pub async fn detach_user_policy(
 client: &iamClient,
 user_name: &str,
 policy_arn: &str,
) -> Result<(), iamError> {
 client
 .detach_user_policy()
 .user_name(user_name)
 .policy_arn(policy_arn)
 .send()
 .await?;

 Ok(())
}

• For API details, see DetachUserPolicy in AWS SDK for Rust API reference.

For a complete list of AWS SDK developer guides and code examples, see Using IAM with an AWS
SDK. This topic also includes information about getting started and details about previous SDK
versions.

Generate a credential report from IAM using an AWS SDK

The following code examples show how to generate a credential report from IAM for the current
account. After the report is generated, get it by using the GetCredentialReport action.

Action examples are code excerpts from larger programs and must be run in context. You can see
this action in context in the following code example:

• Manage your account

Actions 1809

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/rustv1/examples/iam#code-examples
https://docs.rs/releases/search?query=aws-sdk

AWS Identity and Access Management User Guide

CLI

AWS CLI

To generate a credential report

The following example attempts to generate a credential report for the AWS account.

aws iam generate-credential-report

Output:

{
 "State": "STARTED",
 "Description": "No report exists. Starting a new report generation task"
}

For more information, see Getting credential reports for your AWS account in the AWS IAM
User Guide.

• For API details, see GenerateCredentialReport in AWS CLI Command Reference.

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

def generate_credential_report():
 """
 Starts generation of a credentials report about the current account. After
 calling this function to generate the report, call get_credential_report
 to get the latest report. A new report can be generated a minimum of four
 hours
 after the last one was generated.
 """
 try:

Actions 1810

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_getting-report.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/iam/generate-credential-report.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/iam#code-examples

AWS Identity and Access Management User Guide

 response = iam.meta.client.generate_credential_report()
 logger.info(
 "Generating credentials report for your account. " "Current state is
 %s.",
 response["State"],
)
 except ClientError:
 logger.exception("Couldn't generate a credentials report for your
 account.")
 raise
 else:
 return response

• For API details, see GenerateCredentialReport in AWS SDK for Python (Boto3) API
Reference.

For a complete list of AWS SDK developer guides and code examples, see Using IAM with an AWS
SDK. This topic also includes information about getting started and details about previous SDK
versions.

Get a credential report from IAM using an AWS SDK

The following code examples show how to get the most recently generated credential report from
IAM.

Action examples are code excerpts from larger programs and must be run in context. You can see
this action in context in the following code example:

• Manage your account

CLI

AWS CLI

To get a credential report

This example opens the returned report and outputs it to the pipeline as an array of text
lines.

Actions 1811

https://docs.aws.amazon.com/goto/boto3/iam-2010-05-08/GenerateCredentialReport

AWS Identity and Access Management User Guide

aws iam get-credential-report

Output:

{
 "GeneratedTime": "2015-06-17T19:11:50Z",
 "ReportFormat": "text/csv"
}

For more information, see Getting credential reports for your AWS account in the AWS IAM
User Guide.

• For API details, see GetCredentialReport in AWS CLI Command Reference.

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

def get_credential_report():
 """
 Gets the most recently generated credentials report about the current
 account.

 :return: The credentials report.
 """
 try:
 response = iam.meta.client.get_credential_report()
 logger.debug(response["Content"])
 except ClientError:
 logger.exception("Couldn't get credentials report.")
 raise
 else:
 return response["Content"]

Actions 1812

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_getting-report.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/iam/get-credential-report.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/iam#code-examples

AWS Identity and Access Management User Guide

• For API details, see GetCredentialReport in AWS SDK for Python (Boto3) API Reference.

For a complete list of AWS SDK developer guides and code examples, see Using IAM with an AWS
SDK. This topic also includes information about getting started and details about previous SDK
versions.

Get a detailed IAM authorization report for your account using an AWS SDK

The following code examples show how to get a detailed IAM authorization report for your
account.

Action examples are code excerpts from larger programs and must be run in context. You can see
this action in context in the following code example:

• Manage your account

CLI

AWS CLI

To list an AWS accounts IAM users, groups, roles, and policies

The following get-account-authorization-details command returns information
about all IAM users, groups, roles, and policies in the AWS account.

aws iam get-account-authorization-details

Output:

{
 "RoleDetailList": [
 {
 "AssumeRolePolicyDocument": {
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "",
 "Effect": "Allow",
 "Principal": {

Actions 1813

https://docs.aws.amazon.com/goto/boto3/iam-2010-05-08/GetCredentialReport

AWS Identity and Access Management User Guide

 "Service": "ec2.amazonaws.com"
 },
 "Action": "sts:AssumeRole"
 }
]
 },
 "RoleId": "AROA1234567890EXAMPLE",
 "CreateDate": "2014-07-30T17:09:20Z",
 "InstanceProfileList": [
 {
 "InstanceProfileId": "AIPA1234567890EXAMPLE",
 "Roles": [
 {
 "AssumeRolePolicyDocument": {
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "",
 "Effect": "Allow",
 "Principal": {
 "Service": "ec2.amazonaws.com"
 },
 "Action": "sts:AssumeRole"
 }
]
 },
 "RoleId": "AROA1234567890EXAMPLE",
 "CreateDate": "2014-07-30T17:09:20Z",
 "RoleName": "EC2role",
 "Path": "/",
 "Arn": "arn:aws:iam::123456789012:role/EC2role"
 }
],
 "CreateDate": "2014-07-30T17:09:20Z",
 "InstanceProfileName": "EC2role",
 "Path": "/",
 "Arn": "arn:aws:iam::123456789012:instance-profile/EC2role"
 }
],
 "RoleName": "EC2role",
 "Path": "/",
 "AttachedManagedPolicies": [
 {
 "PolicyName": "AmazonS3FullAccess",

Actions 1814

AWS Identity and Access Management User Guide

 "PolicyArn": "arn:aws:iam::aws:policy/AmazonS3FullAccess"
 },
 {
 "PolicyName": "AmazonDynamoDBFullAccess",
 "PolicyArn": "arn:aws:iam::aws:policy/
AmazonDynamoDBFullAccess"
 }
],
 "RoleLastUsed": {
 "Region": "us-west-2",
 "LastUsedDate": "2019-11-13T17:30:00Z"
 },
 "RolePolicyList": [],
 "Arn": "arn:aws:iam::123456789012:role/EC2role"
 }
],
 "GroupDetailList": [
 {
 "GroupId": "AIDA1234567890EXAMPLE",
 "AttachedManagedPolicies": {
 "PolicyName": "AdministratorAccess",
 "PolicyArn": "arn:aws:iam::aws:policy/AdministratorAccess"
 },
 "GroupName": "Admins",
 "Path": "/",
 "Arn": "arn:aws:iam::123456789012:group/Admins",
 "CreateDate": "2013-10-14T18:32:24Z",
 "GroupPolicyList": []
 },
 {
 "GroupId": "AIDA1234567890EXAMPLE",
 "AttachedManagedPolicies": {
 "PolicyName": "PowerUserAccess",
 "PolicyArn": "arn:aws:iam::aws:policy/PowerUserAccess"
 },
 "GroupName": "Dev",
 "Path": "/",
 "Arn": "arn:aws:iam::123456789012:group/Dev",
 "CreateDate": "2013-10-14T18:33:55Z",
 "GroupPolicyList": []
 },
 {
 "GroupId": "AIDA1234567890EXAMPLE",
 "AttachedManagedPolicies": [],

Actions 1815

AWS Identity and Access Management User Guide

 "GroupName": "Finance",
 "Path": "/",
 "Arn": "arn:aws:iam::123456789012:group/Finance",
 "CreateDate": "2013-10-14T18:57:48Z",
 "GroupPolicyList": [
 {
 "PolicyName": "policygen-201310141157",
 "PolicyDocument": {
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": "aws-portal:*",
 "Sid": "Stmt1381777017000",
 "Resource": "*",
 "Effect": "Allow"
 }
]
 }
 }
]
 }
],
 "UserDetailList": [
 {
 "UserName": "Alice",
 "GroupList": [
 "Admins"
],
 "CreateDate": "2013-10-14T18:32:24Z",
 "UserId": "AIDA1234567890EXAMPLE",
 "UserPolicyList": [],
 "Path": "/",
 "AttachedManagedPolicies": [],
 "Arn": "arn:aws:iam::123456789012:user/Alice"
 },
 {
 "UserName": "Bob",
 "GroupList": [
 "Admins"
],
 "CreateDate": "2013-10-14T18:32:25Z",
 "UserId": "AIDA1234567890EXAMPLE",
 "UserPolicyList": [
 {

Actions 1816

AWS Identity and Access Management User Guide

 "PolicyName": "DenyBillingAndIAMPolicy",
 "PolicyDocument": {
 "Version": "2012-10-17",
 "Statement": {
 "Effect": "Deny",
 "Action": [
 "aws-portal:*",
 "iam:*"
],
 "Resource": "*"
 }
 }
 }
],
 "Path": "/",
 "AttachedManagedPolicies": [],
 "Arn": "arn:aws:iam::123456789012:user/Bob"
 },
 {
 "UserName": "Charlie",
 "GroupList": [
 "Dev"
],
 "CreateDate": "2013-10-14T18:33:56Z",
 "UserId": "AIDA1234567890EXAMPLE",
 "UserPolicyList": [],
 "Path": "/",
 "AttachedManagedPolicies": [],
 "Arn": "arn:aws:iam::123456789012:user/Charlie"
 }
],
 "Policies": [
 {
 "PolicyName": "create-update-delete-set-managed-policies",
 "CreateDate": "2015-02-06T19:58:34Z",
 "AttachmentCount": 1,
 "IsAttachable": true,
 "PolicyId": "ANPA1234567890EXAMPLE",
 "DefaultVersionId": "v1",
 "PolicyVersionList": [
 {
 "CreateDate": "2015-02-06T19:58:34Z",
 "VersionId": "v1",
 "Document": {

Actions 1817

AWS Identity and Access Management User Guide

 "Version": "2012-10-17",
 "Statement": {
 "Effect": "Allow",
 "Action": [
 "iam:CreatePolicy",
 "iam:CreatePolicyVersion",
 "iam:DeletePolicy",
 "iam:DeletePolicyVersion",
 "iam:GetPolicy",
 "iam:GetPolicyVersion",
 "iam:ListPolicies",
 "iam:ListPolicyVersions",
 "iam:SetDefaultPolicyVersion"
],
 "Resource": "*"
 }
 },
 "IsDefaultVersion": true
 }
],
 "Path": "/",
 "Arn": "arn:aws:iam::123456789012:policy/create-update-delete-set-
managed-policies",
 "UpdateDate": "2015-02-06T19:58:34Z"
 },
 {
 "PolicyName": "S3-read-only-specific-bucket",
 "CreateDate": "2015-01-21T21:39:41Z",
 "AttachmentCount": 1,
 "IsAttachable": true,
 "PolicyId": "ANPA1234567890EXAMPLE",
 "DefaultVersionId": "v1",
 "PolicyVersionList": [
 {
 "CreateDate": "2015-01-21T21:39:41Z",
 "VersionId": "v1",
 "Document": {
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "s3:Get*",
 "s3:List*"

Actions 1818

AWS Identity and Access Management User Guide

],
 "Resource": [
 "arn:aws:s3:::example-bucket",
 "arn:aws:s3:::example-bucket/*"
]
 }
]
 },
 "IsDefaultVersion": true
 }
],
 "Path": "/",
 "Arn": "arn:aws:iam::123456789012:policy/S3-read-only-specific-
bucket",
 "UpdateDate": "2015-01-21T23:39:41Z"
 },
 {
 "PolicyName": "AmazonEC2FullAccess",
 "CreateDate": "2015-02-06T18:40:15Z",
 "AttachmentCount": 1,
 "IsAttachable": true,
 "PolicyId": "ANPA1234567890EXAMPLE",
 "DefaultVersionId": "v1",
 "PolicyVersionList": [
 {
 "CreateDate": "2014-10-30T20:59:46Z",
 "VersionId": "v1",
 "Document": {
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": "ec2:*",
 "Effect": "Allow",
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Action": "elasticloadbalancing:*",
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Action": "cloudwatch:*",
 "Resource": "*"

Actions 1819

AWS Identity and Access Management User Guide

 },
 {
 "Effect": "Allow",
 "Action": "autoscaling:*",
 "Resource": "*"
 }
]
 },
 "IsDefaultVersion": true
 }
],
 "Path": "/",
 "Arn": "arn:aws:iam::aws:policy/AmazonEC2FullAccess",
 "UpdateDate": "2015-02-06T18:40:15Z"
 }
],
 "Marker": "EXAMPLEkakv9BCuUNFDtxWSyfzetYwEx2ADc8dnzfvERF5S6YMvXKx41t6gCl/
eeaCX3Jo94/bKqezEAg8TEVS99EKFLxm3jtbpl25FDWEXAMPLE",
 "IsTruncated": true
}

For more information, see AWS security audit guidelines in the AWS IAM User Guide.

• For API details, see GetAccountAuthorizationDetails in AWS CLI Command Reference.

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

def get_authorization_details(response_filter):
 """
 Gets an authorization detail report for the current account.

 :param response_filter: A list of resource types to include in the report,
 such
 as users or roles. When not specified, all resources

Actions 1820

https://docs.aws.amazon.com/IAM/latest/UserGuide/security-audit-guide.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/iam/get-account-authorization-details.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/iam#code-examples

AWS Identity and Access Management User Guide

 are included.
 :return: The authorization detail report.
 """
 try:
 account_details = iam.meta.client.get_account_authorization_details(
 Filter=response_filter
)
 logger.debug(account_details)
 except ClientError:
 logger.exception("Couldn't get details for your account.")
 raise
 else:
 return account_details

• For API details, see GetAccountAuthorizationDetails in AWS SDK for Python (Boto3) API
Reference.

For a complete list of AWS SDK developer guides and code examples, see Using IAM with an AWS
SDK. This topic also includes information about getting started and details about previous SDK
versions.

Get an IAM policy using an AWS SDK

The following code examples show how to get an IAM policy.

Action examples are code excerpts from larger programs and must be run in context. You can see
this action in context in the following code example:

• Work with the IAM Policy Builder API

Actions 1821

https://docs.aws.amazon.com/goto/boto3/iam-2010-05-08/GetAccountAuthorizationDetails

AWS Identity and Access Management User Guide

.NET

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 /// <summary>
 /// Get information about an IAM policy.
 /// </summary>
 /// <param name="policyArn">The IAM policy to retrieve information for.</
param>
 /// <returns>The IAM policy.</returns>
 public async Task<ManagedPolicy> GetPolicyAsync(string policyArn)
 {

 var response = await _IAMService.GetPolicyAsync(new GetPolicyRequest
 { PolicyArn = policyArn });
 return response.Policy;
 }

• For API details, see GetPolicy in AWS SDK for .NET API Reference.

C++

SDK for C++

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

bool AwsDoc::IAM::getPolicy(const Aws::String &policyArn,

Actions 1822

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/IAM#code-examples
https://docs.aws.amazon.com/goto/DotNetSDKV3/iam-2010-05-08/GetPolicy
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/cpp/example_code/iam#code-examples

AWS Identity and Access Management User Guide

 const Aws::Client::ClientConfiguration &clientConfig)
 {
 Aws::IAM::IAMClient iam(clientConfig);
 Aws::IAM::Model::GetPolicyRequest request;
 request.SetPolicyArn(policyArn);

 auto outcome = iam.GetPolicy(request);
 if (!outcome.IsSuccess()) {
 std::cerr << "Error getting policy " << policyArn << ": " <<
 outcome.GetError().GetMessage() << std::endl;
 }
 else {
 const auto &policy = outcome.GetResult().GetPolicy();
 std::cout << "Name: " << policy.GetPolicyName() << std::endl <<
 "ID: " << policy.GetPolicyId() << std::endl << "Arn: " <<
 policy.GetArn() << std::endl << "Description: " <<
 policy.GetDescription() << std::endl << "CreateDate: " <<

 policy.GetCreateDate().ToGmtString(Aws::Utils::DateFormat::ISO_8601)
 << std::endl;
 }

 return outcome.IsSuccess();
}

• For API details, see GetPolicy in AWS SDK for C++ API Reference.

CLI

AWS CLI

To retrieve information about the specified managed policy

This example returns details about the managed policy whose ARN is
arn:aws:iam::123456789012:policy/MySamplePolicy.

aws iam get-policy \
 --policy-arn arn:aws:iam::123456789012:policy/MySamplePolicy

Output:

Actions 1823

https://docs.aws.amazon.com/goto/SdkForCpp/iam-2010-05-08/GetPolicy

AWS Identity and Access Management User Guide

{
 "Policy": {
 "PolicyName": "MySamplePolicy",
 "CreateDate": "2015-06-17T19:23;32Z",
 "AttachmentCount": 0,
 "IsAttachable": true,
 "PolicyId": "Z27SI6FQMGNQ2EXAMPLE1",
 "DefaultVersionId": "v1",
 "Path": "/",
 "Arn": "arn:aws:iam::123456789012:policy/MySamplePolicy",
 "UpdateDate": "2015-06-17T19:23:32Z"
 }
}

For more information, see Policies and permissions in IAM in the AWS IAM User Guide.

• For API details, see GetPolicy in AWS CLI Command Reference.

Go

SDK for Go V2

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

// PolicyWrapper encapsulates AWS Identity and Access Management (IAM) policy
 actions
// used in the examples.
// It contains an IAM service client that is used to perform policy actions.
type PolicyWrapper struct {
 IamClient *iam.Client
}

// GetPolicy gets data about a policy.
func (wrapper PolicyWrapper) GetPolicy(policyArn string) (*types.Policy, error) {

Actions 1824

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/iam/get-policy.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/gov2/iam#code-examples

AWS Identity and Access Management User Guide

 var policy *types.Policy
 result, err := wrapper.IamClient.GetPolicy(context.TODO(), &iam.GetPolicyInput{
 PolicyArn: aws.String(policyArn),
 })
 if err != nil {
 log.Printf("Couldn't get policy %v. Here's why: %v\n", policyArn, err)
 } else {
 policy = result.Policy
 }
 return policy, err
}

• For API details, see GetPolicy in AWS SDK for Go API Reference.

JavaScript

SDK for JavaScript (v3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Get the policy.

import { GetPolicyCommand, IAMClient } from "@aws-sdk/client-iam";

const client = new IAMClient({});

/**
 *
 * @param {string} policyArn
 */
export const getPolicy = (policyArn) => {
 const command = new GetPolicyCommand({
 PolicyArn: policyArn,
 });

 return client.send(command);

Actions 1825

https://pkg.go.dev/github.com/aws/aws-sdk-go-v2/service/iam#Client.GetPolicy
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/iam#code-examples

AWS Identity and Access Management User Guide

};

• For more information, see AWS SDK for JavaScript Developer Guide.

• For API details, see GetPolicy in AWS SDK for JavaScript API Reference.

SDK for JavaScript (v2)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set the region
AWS.config.update({ region: "REGION" });

// Create the IAM service object
var iam = new AWS.IAM({ apiVersion: "2010-05-08" });

var params = {
 PolicyArn: "arn:aws:iam::aws:policy/AWSLambdaExecute",
};

iam.getPolicy(params, function (err, data) {
 if (err) {
 console.log("Error", err);
 } else {
 console.log("Success", data.Policy.Description);
 }
});

• For more information, see AWS SDK for JavaScript Developer Guide.

• For API details, see GetPolicy in AWS SDK for JavaScript API Reference.

Actions 1826

https://docs.aws.amazon.com/sdk-for-javascript/v3/developer-guide/iam-examples-policies.html#iam-examples-policies-getting
https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/client/iam/command/GetPolicyCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascript/example_code/iam#code-examples
https://docs.aws.amazon.com/sdk-for-javascript/v2/developer-guide/iam-examples-policies.html#iam-examples-policies-getting
https://docs.aws.amazon.com/goto/AWSJavaScriptSDK/iam-2010-05-08/GetPolicy

AWS Identity and Access Management User Guide

Kotlin

SDK for Kotlin

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

suspend fun getIAMPolicy(policyArnVal: String?) {

 val request = GetPolicyRequest {
 policyArn = policyArnVal
 }

 IamClient { region = "AWS_GLOBAL" }.use { iamClient ->
 val response = iamClient.getPolicy(request)
 println("Successfully retrieved policy ${response.policy?.policyName}")
 }
}

• For API details, see GetPolicy in AWS SDK for Kotlin API reference.

PHP

SDK for PHP

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

$uuid = uniqid();
$service = new IAMService();

 public function getPolicy($policyArn)
 {

Actions 1827

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/kotlin/services/iam#code-examples
https://github.com/awslabs/aws-sdk-kotlin#generating-api-documentation
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/php/example_code/iam#code-examples

AWS Identity and Access Management User Guide

 return $this->customWaiter(function () use ($policyArn) {
 return $this->iamClient->getPolicy(['PolicyArn' => $policyArn]);
 });
 }

• For API details, see GetPolicy in AWS SDK for PHP API Reference.

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

def get_default_policy_statement(policy_arn):
 """
 Gets the statement of the default version of the specified policy.

 :param policy_arn: The ARN of the policy to look up.
 :return: The statement of the default policy version.
 """
 try:
 policy = iam.Policy(policy_arn)
 # To get an attribute of a policy, the SDK first calls get_policy.
 policy_doc = policy.default_version.document
 policy_statement = policy_doc.get("Statement", None)
 logger.info("Got default policy doc for %s.", policy.policy_name)
 logger.info(policy_doc)
 except ClientError:
 logger.exception("Couldn't get default policy statement for %s.",
 policy_arn)
 raise
 else:
 return policy_statement

Actions 1828

https://docs.aws.amazon.com/goto/SdkForPHPV3/iam-2010-05-08/GetPolicy
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/iam#code-examples

AWS Identity and Access Management User Guide

• For API details, see GetPolicy in AWS SDK for Python (Boto3) API Reference.

Ruby

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 # Fetches an IAM policy by its ARN
 # @param policy_arn [String] the ARN of the IAM policy to retrieve
 # @return [Aws::IAM::Types::GetPolicyResponse] the policy object if found
 def get_policy(policy_arn)
 response = @iam_client.get_policy(policy_arn: policy_arn)
 policy = response.policy
 @logger.info("Got policy '#{policy.policy_name}'. Its ID is:
 #{policy.policy_id}.")
 policy
 rescue Aws::IAM::Errors::NoSuchEntity
 @logger.error("Couldn't get policy '#{policy_arn}'. The policy does not
 exist.")
 raise
 rescue Aws::IAM::Errors::ServiceError => e
 @logger.error("Couldn't get policy '#{policy_arn}'. Here's why: #{e.code}:
 #{e.message}")
 raise
 end

• For API details, see GetPolicy in AWS SDK for Ruby API Reference.

Actions 1829

https://docs.aws.amazon.com/goto/boto3/iam-2010-05-08/GetPolicy
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/iam#code-examples
https://docs.aws.amazon.com/goto/SdkForRubyV3/iam-2010-05-08/GetPolicy

AWS Identity and Access Management User Guide

Swift

SDK for Swift

Note

This is prerelease documentation for an SDK in preview release. It is subject to
change.

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 public func getPolicy(arn: String) async throws -> IAMClientTypes.Policy {
 let input = GetPolicyInput(
 policyArn: arn
)
 do {
 let output = try await client.getPolicy(input: input)
 guard let policy = output.policy else {
 throw ServiceHandlerError.noSuchPolicy
 }
 return policy
 } catch {
 throw error
 }
 }

• For API details, see GetPolicy in AWS SDK for Swift API reference.

For a complete list of AWS SDK developer guides and code examples, see Using IAM with an AWS
SDK. This topic also includes information about getting started and details about previous SDK
versions.

Actions 1830

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/swift/example_code/iam#code-examples
https://awslabs.github.io/aws-sdk-swift/reference/0.x

AWS Identity and Access Management User Guide

Get an IAM policy version using an AWS SDK

The following code examples show how to get an IAM policy version.

Action examples are code excerpts from larger programs and must be run in context. You can see
this action in context in the following code examples:

• Manage policies

• Work with the IAM Policy Builder API

CLI

AWS CLI

To retrieve information about the specified version of the specified managed policy

This example returns the policy document for the v2 version of the policy whose ARN is
arn:aws:iam::123456789012:policy/MyManagedPolicy.

aws iam get-policy-version \
 --policy-arn arn:aws:iam::123456789012:policy/MyPolicy \
 --version-id v2

Output:

{
 "PolicyVersion": {
 "Document": {
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "iam:*",
 "Resource": "*"
 }
]
 },
 "VersionId": "v2",
 "IsDefaultVersion": true,
 "CreateDate": "2023-04-11T00:22:54+00:00"
 }

Actions 1831

AWS Identity and Access Management User Guide

}

For more information, see Policies and permissions in IAM in the AWS IAM User Guide.

• For API details, see GetPolicyVersion in AWS CLI Command Reference.

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

def get_default_policy_statement(policy_arn):
 """
 Gets the statement of the default version of the specified policy.

 :param policy_arn: The ARN of the policy to look up.
 :return: The statement of the default policy version.
 """
 try:
 policy = iam.Policy(policy_arn)
 # To get an attribute of a policy, the SDK first calls get_policy.
 policy_doc = policy.default_version.document
 policy_statement = policy_doc.get("Statement", None)
 logger.info("Got default policy doc for %s.", policy.policy_name)
 logger.info(policy_doc)
 except ClientError:
 logger.exception("Couldn't get default policy statement for %s.",
 policy_arn)
 raise
 else:
 return policy_statement

• For API details, see GetPolicyVersion in AWS SDK for Python (Boto3) API Reference.

Actions 1832

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/iam/get-policy-version.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/iam#code-examples
https://docs.aws.amazon.com/goto/boto3/iam-2010-05-08/GetPolicyVersion

AWS Identity and Access Management User Guide

For a complete list of AWS SDK developer guides and code examples, see Using IAM with an AWS
SDK. This topic also includes information about getting started and details about previous SDK
versions.

Get an IAM role using an AWS SDK

The following code examples show how to get an IAM role.

.NET

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 /// <summary>
 /// Get information about an IAM role.
 /// </summary>
 /// <param name="roleName">The name of the IAM role to retrieve information
 /// for.</param>
 /// <returns>The IAM role that was retrieved.</returns>
 public async Task<Role> GetRoleAsync(string roleName)
 {
 var response = await _IAMService.GetRoleAsync(new GetRoleRequest
 {
 RoleName = roleName,
 });

 return response.Role;
 }

• For API details, see GetRole in AWS SDK for .NET API Reference.

Actions 1833

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/IAM#code-examples
https://docs.aws.amazon.com/goto/DotNetSDKV3/iam-2010-05-08/GetRole

AWS Identity and Access Management User Guide

CLI

AWS CLI

To get information about an IAM role

The following get-role command gets information about the role named Test-Role.

aws iam get-role \
 --role-name Test-Role

Output:

{
 "Role": {
 "Description": "Test Role",
 "AssumeRolePolicyDocument":"<URL-encoded-JSON>",
 "MaxSessionDuration": 3600,
 "RoleId": "AROA1234567890EXAMPLE",
 "CreateDate": "2019-11-13T16:45:56Z",
 "RoleName": "Test-Role",
 "Path": "/",
 "RoleLastUsed": {
 "Region": "us-east-1",
 "LastUsedDate": "2019-11-13T17:14:00Z"
 },
 "Arn": "arn:aws:iam::123456789012:role/Test-Role"
 }
}

The command displays the trust policy attached to the role. To list the permissions policies
attached to a role, use the list-role-policies command.

For more information, see Creating IAM roles in the AWS IAM User Guide.

• For API details, see GetRole in AWS CLI Command Reference.

Actions 1834

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/iam/get-role.html

AWS Identity and Access Management User Guide

Go

SDK for Go V2

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

// RoleWrapper encapsulates AWS Identity and Access Management (IAM) role actions
// used in the examples.
// It contains an IAM service client that is used to perform role actions.
type RoleWrapper struct {
 IamClient *iam.Client
}

// GetRole gets data about a role.
func (wrapper RoleWrapper) GetRole(roleName string) (*types.Role, error) {
 var role *types.Role
 result, err := wrapper.IamClient.GetRole(context.TODO(),
 &iam.GetRoleInput{RoleName: aws.String(roleName)})
 if err != nil {
 log.Printf("Couldn't get role %v. Here's why: %v\n", roleName, err)
 } else {
 role = result.Role
 }
 return role, err
}

• For API details, see GetRole in AWS SDK for Go API Reference.

Actions 1835

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/gov2/iam#code-examples
https://pkg.go.dev/github.com/aws/aws-sdk-go-v2/service/iam#Client.GetRole

AWS Identity and Access Management User Guide

JavaScript

SDK for JavaScript (v3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Get the role.

import { GetRoleCommand, IAMClient } from "@aws-sdk/client-iam";

const client = new IAMClient({});

/**
 *
 * @param {string} roleName
 */
export const getRole = (roleName) => {
 const command = new GetRoleCommand({
 RoleName: roleName,
 });

 return client.send(command);
};

• For API details, see GetRole in AWS SDK for JavaScript API Reference.

PHP

SDK for PHP

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Actions 1836

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/iam#code-examples
https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/client/iam/command/GetRoleCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/php/example_code/iam#code-examples

AWS Identity and Access Management User Guide

$uuid = uniqid();
$service = new IAMService();

 public function getRole($roleName)
 {
 return $this->customWaiter(function () use ($roleName) {
 return $this->iamClient->getRole(['RoleName' => $roleName]);
 });
 }

• For API details, see GetRole in AWS SDK for PHP API Reference.

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

def get_role(role_name):
 """
 Gets a role by name.

 :param role_name: The name of the role to retrieve.
 :return: The specified role.
 """
 try:
 role = iam.Role(role_name)
 role.load() # calls GetRole to load attributes
 logger.info("Got role with arn %s.", role.arn)
 except ClientError:
 logger.exception("Couldn't get role named %s.", role_name)
 raise
 else:
 return role

Actions 1837

https://docs.aws.amazon.com/goto/SdkForPHPV3/iam-2010-05-08/GetRole
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/iam#code-examples

AWS Identity and Access Management User Guide

• For API details, see GetRole in AWS SDK for Python (Boto3) API Reference.

Ruby

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 # Gets data about a role.
 #
 # @param name [String] The name of the role to look up.
 # @return [Aws::IAM::Role] The retrieved role.
 def get_role(name)
 role = @iam_client.get_role({
 role_name: name,
 }).role
 puts("Got data for role '#{role.role_name}'. Its ARN is '#{role.arn}'.")
 rescue Aws::Errors::ServiceError => e
 puts("Couldn't get data for role '#{name}' Here's why:")
 puts("\t#{e.code}: #{e.message}")
 raise
 else
 role
 end

• For API details, see GetRole in AWS SDK for Ruby API Reference.

Actions 1838

https://docs.aws.amazon.com/goto/boto3/iam-2010-05-08/GetRole
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/iam#code-examples
https://docs.aws.amazon.com/goto/SdkForRubyV3/iam-2010-05-08/GetRole

AWS Identity and Access Management User Guide

Rust

SDK for Rust

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

pub async fn get_role(
 client: &iamClient,
 role_name: String,
) -> Result<GetRoleOutput, SdkError<GetRoleError>> {
 let response = client.get_role().role_name(role_name).send().await?;
 Ok(response)
}

• For API details, see GetRole in AWS SDK for Rust API reference.

Swift

SDK for Swift

Note

This is prerelease documentation for an SDK in preview release. It is subject to
change.

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 public func getRole(name: String) async throws -> IAMClientTypes.Role {
 let input = GetRoleInput(

Actions 1839

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/rustv1/examples/iam#code-examples
https://docs.rs/releases/search?query=aws-sdk
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/swift/example_code/iam#code-examples

AWS Identity and Access Management User Guide

 roleName: name
)
 do {
 let output = try await client.getRole(input: input)
 guard let role = output.role else {
 throw ServiceHandlerError.noSuchRole
 }
 return role
 } catch {
 throw error
 }
 }

• For API details, see GetRole in AWS SDK for Swift API reference.

For a complete list of AWS SDK developer guides and code examples, see Using IAM with an AWS
SDK. This topic also includes information about getting started and details about previous SDK
versions.

Get an IAM server certificate using an AWS SDK

The following code examples show how to get an IAM server certificate.

C++

SDK for C++

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

bool AwsDoc::IAM::getServerCertificate(const Aws::String &certificateName,
 const Aws::Client::ClientConfiguration
 &clientConfig) {
 Aws::IAM::IAMClient iam(clientConfig);
 Aws::IAM::Model::GetServerCertificateRequest request;
 request.SetServerCertificateName(certificateName);

Actions 1840

https://awslabs.github.io/aws-sdk-swift/reference/0.x
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/cpp/example_code/iam#code-examples

AWS Identity and Access Management User Guide

 auto outcome = iam.GetServerCertificate(request);
 bool result = true;
 if (!outcome.IsSuccess()) {
 if (outcome.GetError().GetErrorType() !=
 Aws::IAM::IAMErrors::NO_SUCH_ENTITY) {
 std::cerr << "Error getting server certificate " << certificateName
 <<
 ": " << outcome.GetError().GetMessage() << std::endl;
 result = false;
 }
 else {
 std::cout << "Certificate '" << certificateName
 << "' not found." << std::endl;
 }
 }
 else {
 const auto &certificate = outcome.GetResult().GetServerCertificate();
 std::cout << "Name: " <<

 certificate.GetServerCertificateMetadata().GetServerCertificateName()
 << std::endl << "Body: " << certificate.GetCertificateBody() <<
 std::endl << "Chain: " << certificate.GetCertificateChain() <<
 std::endl;
 }

 return result;
}

• For API details, see GetServerCertificate in AWS SDK for C++ API Reference.

CLI

AWS CLI

To get details about a server certificate in your AWS account

The following get-server-certificate command retrieves all of the details about the
specified server certificate in your AWS account.

aws iam get-server-certificate \
 --server-certificate-name myUpdatedServerCertificate

Actions 1841

https://docs.aws.amazon.com/goto/SdkForCpp/iam-2010-05-08/GetServerCertificate

AWS Identity and Access Management User Guide

Output:

{
 "ServerCertificate": {
 "ServerCertificateMetadata": {
 "Path": "/",
 "ServerCertificateName": "myUpdatedServerCertificate",
 "ServerCertificateId": "ASCAEXAMPLE123EXAMPLE",
 "Arn": "arn:aws:iam::123456789012:server-certificate/
myUpdatedServerCertificate",
 "UploadDate": "2019-04-22T21:13:44+00:00",
 "Expiration": "2019-10-15T22:23:16+00:00"
 },
 "CertificateBody": "-----BEGIN CERTIFICATE-----
 MIICiTCCAfICCQD6m7oRw0uXOjANBgkqhkiG9w0BAQUFADCBiDELMAkGA1UEBhMC
 VVMxCzAJBgNVBAgTAldBMRAwDgYDVQQHEwdTZWF0dGxlMQ8wDQYDVQQKEwZBbWF6
 b24xFDASBgNVBAsTC0lBTSBDb25zb2xlMRIwEAYDVQQDEwlUZXN0Q2lsYWMxHzAd
 BgkqhkiG9w0BCQEWEG5vb25lQGFtYXpvbi5jb20wHhcNMTEwNDI1MjA0NTIxWhcN
 MTIwNDI0MjA0NTIxWjCBiDELMAkGA1UEBhMCVVMxCzAJBgNVBAgTAldBMRAwDgYD
 VQQHEwdTZWF0dGxlMQ8wDQYDVQQKEwZBbWF6b24xFDASBgNVBAsTC0lBTSBDb25z
 b2xlMRIwEAYDVQQDEwlUZXN0Q2lsYWMxHzAdBgkqhkiG9w0BCQEWEG5vb25lQGFt
 YXpvbi5jb20wgZ8wDQYJKoZIhvcNAQEBBQADgY0AMIGJAoGBAMaK0dn+a4GmWIWJ
 21uUSfwfEvySWtC2XADZ4nB+BLYgVIk60CpiwsZ3G93vUEIO3IyNoH/f0wYK8m9T
 rDHudUZg3qX4waLG5M43q7Wgc/MbQITxOUSQv7c7ugFFDzQGBzZswY6786m86gpE
 Ibb3OhjZnzcvQAaRHhdlQWIMm2nrAgMBAAEwDQYJKoZIhvcNAQEFBQADgYEAtCu4
 nUhVVxYUntneD9+h8Mg9q6q+auNKyExzyLwaxlAoo7TJHidbtS4J5iNmZgXL0Fkb
 FFBjvSfpJIlJ00zbhNYS5f6GuoEDmFJl0ZxBHjJnyp378OD8uTs7fLvjx79LjSTb
 NYiytVbZPQUQ5Yaxu2jXnimvrszlaEXAMPLE=-----END CERTIFICATE-----",
 "CertificateChain": "-----BEGIN CERTIFICATE-----\nMIICiTCCAfICCQD6md
 7oRw0uXOjANBgkqhkiG9w0BAqQUFADCBiDELMAkGA1UEBhMCVVMxCzAJBgNVBAgT
 AldBMRAwDgYDVQQHEwdTZWF0drGxlMQ8wDQYDVQQKEwZBbWF6b24xFDASBgNVBAs
 TC0lBTSBDb25zb2xlMRIwEAYDVsQQDEwlUZXN0Q2lsYWMxHzAdBgkqhkiG9w0BCQ
 jb20wHhcNMTEwNDI1MjA0NTIxWhtcNMTIwNDI0MjA0NTIxWjCBiDELMAkGA1UEBh
 MCVVMxCzAJBgNVBAgTAldBMRAwDgsYDVQQHEwdTZWF0dGxlMQ8wDQYDVQQKEwZBb
 WF6b24xFDASBgNVBAsTC0lBTSBDb2d5zb2xlMRIwEAYDVQQDEwlUZXN0Q2lsYWMx
 HzAdBgkqhkiG9w0BCQEWEG5vb25lQGfFtYXpvbi5jb20wgZ8wDQYJKoZIhvcNAQE
 BBQADgY0AMIGJAoGBAMaK0dn+a4GmWIgWJ21uUSfwfEvySWtC2XADZ4nB+BLYgVI
 k60CpiwsZ3G93vUEIO3IyNoH/f0wYK8mh9TrDHudUZg3qX4waLG5M43q7Wgc/MbQ
 ITxOUSQv7c7ugFFDzQGBzZswY6786m86gjpEIbb3OhjZnzcvQAaRHhdlQWIMm2nr
 AgMBAAEwDQYJKoZIhvcNAQEFBQADgYEAtCku4nUhVVxYUntneD9+h8Mg9q6q+auN
 KyExzyLwaxlAoo7TJHidbtS4J5iNmZgXL0FlkbFFBjvSfpJIlJ00zbhNYS5f6Guo
 EDmFJl0ZxBHjJnyp378OD8uTs7fLvjx79LjS;TbNYiytVbZPQUQ5Yaxu2jXnimvw
 3rrszlaEWEG5vb25lQGFtsYXpvbiEXAMPLE=\n-----END CERTIFICATE-----"
 }

Actions 1842

AWS Identity and Access Management User Guide

}

To list the server certificates available in your AWS account, use the list-server-
certificates command.

For more information, see Managing server certificates in IAM in the AWS IAM User Guide.

• For API details, see GetServerCertificate in AWS CLI Command Reference.

JavaScript

SDK for JavaScript (v3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Get a server certificate.

import { GetServerCertificateCommand, IAMClient } from "@aws-sdk/client-iam";

const client = new IAMClient({});

/**
 *
 * @param {string} certName
 * @returns
 */
export const getServerCertificate = async (certName) => {
 const command = new GetServerCertificateCommand({
 ServerCertificateName: certName,
 });

 const response = await client.send(command);
 console.log(response);
 return response;
};

• For more information, see AWS SDK for JavaScript Developer Guide.

Actions 1843

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_server-certs.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/iam/get-server-certificate.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/iam#code-examples
https://docs.aws.amazon.com/sdk-for-javascript/v3/developer-guide/iam-examples-server-certificates.html#iam-examples-server-certificates-getting

AWS Identity and Access Management User Guide

• For API details, see GetServerCertificate in AWS SDK for JavaScript API Reference.

SDK for JavaScript (v2)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set the region
AWS.config.update({ region: "REGION" });

// Create the IAM service object
var iam = new AWS.IAM({ apiVersion: "2010-05-08" });

iam.getServerCertificate(
 { ServerCertificateName: "CERTIFICATE_NAME" },
 function (err, data) {
 if (err) {
 console.log("Error", err);
 } else {
 console.log("Success", data);
 }
 }
);

• For more information, see AWS SDK for JavaScript Developer Guide.

• For API details, see GetServerCertificate in AWS SDK for JavaScript API Reference.

For a complete list of AWS SDK developer guides and code examples, see Using IAM with an AWS
SDK. This topic also includes information about getting started and details about previous SDK
versions.

Get an IAM service-linked role's deletion status using an AWS SDK

The following code examples show how to get an AWS Identity and Access Management (IAM)
service-linked role's deletion status.

Actions 1844

https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/client/iam/command/GetServerCertificateCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascript/example_code/iam#code-examples
https://docs.aws.amazon.com/sdk-for-javascript/v2/developer-guide/iam-examples-server-certificates.html#iam-examples-server-certificates-getting
https://docs.aws.amazon.com/goto/AWSJavaScriptSDK/iam-2010-05-08/GetServerCertificate

AWS Identity and Access Management User Guide

CLI

AWS CLI

To check the status of a request to delete a service-linked role

The following get-service-linked-role-deletion-status example displays the
status of a previously request to delete a service-linked role. The delete operation occurs
asynchronously. When you make the request, you get a DeletionTaskId value that you
provide as a parameter for this command.

aws iam get-service-linked-role-deletion-status \
 --deletion-task-id task/aws-service-role/lex.amazonaws.com/
AWSServiceRoleForLexBots/1a2b3c4d-1234-abcd-7890-abcdeEXAMPLE

Output:

{
"Status": "SUCCEEDED"
}

For more information, see Using service-linked roles in the AWS IAM User Guide.

• For API details, see GetServiceLinkedRoleDeletionStatus in AWS CLI Command Reference.

JavaScript

SDK for JavaScript (v3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

import {
 GetServiceLinkedRoleDeletionStatusCommand,
 IAMClient,
} from "@aws-sdk/client-iam";

Actions 1845

https://docs.aws.amazon.com/IAM/latest/UserGuide/using-service-linked-roles.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/iam/get-service-linked-role-deletion-status.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/iam#code-examples

AWS Identity and Access Management User Guide

const client = new IAMClient({});

/**
 *
 * @param {string} deletionTaskId
 */
export const getServiceLinkedRoleDeletionStatus = (deletionTaskId) => {
 const command = new GetServiceLinkedRoleDeletionStatusCommand({
 DeletionTaskId: deletionTaskId,
 });

 return client.send(command);
};

• For API details, see GetServiceLinkedRoleDeletionStatus in AWS SDK for JavaScript API
Reference.

For a complete list of AWS SDK developer guides and code examples, see Using IAM with an AWS
SDK. This topic also includes information about getting started and details about previous SDK
versions.

Get a summary of account usage from IAM using an AWS SDK

The following code examples show how to get a summary of account usage from IAM.

Action examples are code excerpts from larger programs and must be run in context. You can see
this action in context in the following code example:

• Manage your account

CLI

AWS CLI

To get information about IAM entity usage and IAM quotas in the current account

The following get-account-summary command returns information about the current
IAM entity usage and current IAM entity quotas in the account.

aws iam get-account-summary

Actions 1846

https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/client/iam/command/GetServiceLinkedRoleDeletionStatusCommand

AWS Identity and Access Management User Guide

Output:

{
 "SummaryMap": {
 "UsersQuota": 5000,
 "GroupsQuota": 100,
 "InstanceProfiles": 6,
 "SigningCertificatesPerUserQuota": 2,
 "AccountAccessKeysPresent": 0,
 "RolesQuota": 250,
 "RolePolicySizeQuota": 10240,
 "AccountSigningCertificatesPresent": 0,
 "Users": 27,
 "ServerCertificatesQuota": 20,
 "ServerCertificates": 0,
 "AssumeRolePolicySizeQuota": 2048,
 "Groups": 7,
 "MFADevicesInUse": 1,
 "Roles": 3,
 "AccountMFAEnabled": 1,
 "MFADevices": 3,
 "GroupsPerUserQuota": 10,
 "GroupPolicySizeQuota": 5120,
 "InstanceProfilesQuota": 100,
 "AccessKeysPerUserQuota": 2,
 "Providers": 0,
 "UserPolicySizeQuota": 2048
 }
}

For more information about entity limitations, see IAM and AWS STS quotas in the AWS IAM
User Guide.

• For API details, see GetAccountSummary in AWS CLI Command Reference.

Actions 1847

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_iam-quotas.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/iam/get-account-summary.html

AWS Identity and Access Management User Guide

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

def get_summary():
 """
 Gets a summary of account usage.

 :return: The summary of account usage.
 """
 try:
 summary = iam.AccountSummary()
 logger.debug(summary.summary_map)
 except ClientError:
 logger.exception("Couldn't get a summary for your account.")
 raise
 else:
 return summary.summary_map

• For API details, see GetAccountSummary in AWS SDK for Python (Boto3) API Reference.

For a complete list of AWS SDK developer guides and code examples, see Using IAM with an AWS
SDK. This topic also includes information about getting started and details about previous SDK
versions.

Get an IAM user using an AWS SDK

The following code examples show how to get an IAM user.

Actions 1848

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/iam#code-examples
https://docs.aws.amazon.com/goto/boto3/iam-2010-05-08/GetAccountSummary

AWS Identity and Access Management User Guide

Warning

To avoid security risks, don't use IAM users for authentication when developing purpose-
built software or working with real data. Instead, use federation with an identity provider
such as AWS IAM Identity Center.

.NET

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 /// <summary>
 /// Get information about an IAM user.
 /// </summary>
 /// <param name="userName">The username of the user.</param>
 /// <returns>An IAM user object.</returns>
 public async Task<User> GetUserAsync(string userName)
 {
 var response = await _IAMService.GetUserAsync(new GetUserRequest
 { UserName = userName });
 return response.User;
 }

• For API details, see GetUser in AWS SDK for .NET API Reference.

Actions 1849

https://docs.aws.amazon.com/singlesignon/latest/userguide/what-is.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/IAM#code-examples
https://docs.aws.amazon.com/goto/DotNetSDKV3/iam-2010-05-08/GetUser

AWS Identity and Access Management User Guide

Bash

AWS CLI with Bash script

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

###
function errecho
#
This function outputs everything sent to it to STDERR (standard error output).
###
function errecho() {
 printf "%s\n" "$*" 1>&2
}

###
function iam_user_exists
#
This function checks to see if the specified AWS Identity and Access Management
 (IAM) user already exists.
#
Parameters:
$1 - The name of the IAM user to check.
#
Returns:
0 - If the user already exists.
1 - If the user doesn't exist.
###
function iam_user_exists() {
 local user_name
 user_name=$1

 # Check whether the IAM user already exists.
 # We suppress all output - we're interested only in the return code.

 local errors
 errors=$(aws iam get-user \
 --user-name "$user_name" 2>&1 >/dev/null)

Actions 1850

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/aws-cli/bash-linux/iam#code-examples

AWS Identity and Access Management User Guide

 local error_code=${?}

 if [[$error_code -eq 0]]; then
 return 0 # 0 in Bash script means true.
 else
 if [[$errors != *"error"*"(NoSuchEntity)"*]]; then
 aws_cli_error_log $error_code
 errecho "Error calling iam get-user $errors"
 fi

 return 1 # 1 in Bash script means false.
 fi
}

• For API details, see GetUser in AWS CLI Command Reference.

CLI

AWS CLI

To get information about an IAM user

The following get-user command gets information about the IAM user named Paulo.

aws iam get-user \
 --user-name Paulo

Output:

{
 "User": {
 "UserName": "Paulo",
 "Path": "/",
 "CreateDate": "2019-09-21T23:03:13Z",
 "UserId": "AIDA123456789EXAMPLE",
 "Arn": "arn:aws:iam::123456789012:user/Paulo"
 }
}

For more information, see Managing IAM users in the AWS IAM User Guide.

Actions 1851

https://docs.aws.amazon.com/goto/aws-cli/iam-2010-05-08/GetUser
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_manage.html

AWS Identity and Access Management User Guide

• For API details, see GetUser in AWS CLI Command Reference.

Go

SDK for Go V2

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

// UserWrapper encapsulates user actions used in the examples.
// It contains an IAM service client that is used to perform user actions.
type UserWrapper struct {
 IamClient *iam.Client
}

// GetUser gets data about a user.
func (wrapper UserWrapper) GetUser(userName string) (*types.User, error) {
 var user *types.User
 result, err := wrapper.IamClient.GetUser(context.TODO(), &iam.GetUserInput{
 UserName: aws.String(userName),
 })
 if err != nil {
 var apiError smithy.APIError
 if errors.As(err, &apiError) {
 switch apiError.(type) {
 case *types.NoSuchEntityException:
 log.Printf("User %v does not exist.\n", userName)
 err = nil
 default:
 log.Printf("Couldn't get user %v. Here's why: %v\n", userName, err)
 }
 }
 } else {
 user = result.User
 }
 return user, err

Actions 1852

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/iam/get-user.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/gov2/iam#code-examples

AWS Identity and Access Management User Guide

}

• For API details, see GetUser in AWS SDK for Go API Reference.

Ruby

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 # Retrieves a user's details
 #
 # @param user_name [String] The name of the user to retrieve
 # @return [Aws::IAM::Types::User, nil] The user object if found, or nil if an
 error occurred
 def get_user(user_name)
 response = @iam_client.get_user(user_name: user_name)
 response.user
 rescue Aws::IAM::Errors::NoSuchEntity
 @logger.error("User '#{user_name}' not found.")
 nil
 rescue Aws::IAM::Errors::ServiceError => e
 @logger.error("Error retrieving user '#{user_name}': #{e.message}")
 nil
 end

• For API details, see GetUser in AWS SDK for Ruby API Reference.

For a complete list of AWS SDK developer guides and code examples, see Using IAM with an AWS
SDK. This topic also includes information about getting started and details about previous SDK
versions.

Actions 1853

https://pkg.go.dev/github.com/aws/aws-sdk-go-v2/service/iam#Client.GetUser
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/iam#code-examples
https://docs.aws.amazon.com/goto/SdkForRubyV3/iam-2010-05-08/GetUser

AWS Identity and Access Management User Guide

Get data about the last use of an IAM access key using an AWS SDK

The following code examples show how to get data about the last use of an IAM access key.

Warning

To avoid security risks, don't use IAM users for authentication when developing purpose-
built software or working with real data. Instead, use federation with an identity provider
such as AWS IAM Identity Center.

Action examples are code excerpts from larger programs and must be run in context. You can see
this action in context in the following code example:

• Manage access keys

C++

SDK for C++

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

bool AwsDoc::IAM::accessKeyLastUsed(const Aws::String &secretKeyID,
 const Aws::Client::ClientConfiguration
 &clientConfig) {
 Aws::IAM::IAMClient iam(clientConfig);
 Aws::IAM::Model::GetAccessKeyLastUsedRequest request;

 request.SetAccessKeyId(secretKeyID);

 Aws::IAM::Model::GetAccessKeyLastUsedOutcome outcome =
 iam.GetAccessKeyLastUsed(
 request);

 if (!outcome.IsSuccess()) {
 std::cerr << "Error querying last used time for access key " <<

Actions 1854

https://docs.aws.amazon.com/singlesignon/latest/userguide/what-is.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/cpp/example_code/iam#code-examples

AWS Identity and Access Management User Guide

 secretKeyID << ":" << outcome.GetError().GetMessage() <<
 std::endl;
 }
 else {
 Aws::String lastUsedTimeString =
 outcome.GetResult()
 .GetAccessKeyLastUsed()
 .GetLastUsedDate()
 .ToGmtString(Aws::Utils::DateFormat::ISO_8601);
 std::cout << "Access key " << secretKeyID << " last used at time " <<
 lastUsedTimeString << std::endl;
 }

 return outcome.IsSuccess();
}

• For API details, see GetAccessKeyLastUsed in AWS SDK for C++ API Reference.

CLI

AWS CLI

To retrieve information about when the specified access key was last used

The following example retrieves information about when the access key ABCDEXAMPLE was
last used.

aws iam get-access-key-last-used \
 --access-key-id ABCDEXAMPLE

Output:

{
 "UserName": "Bob",
 "AccessKeyLastUsed": {
 "Region": "us-east-1",
 "ServiceName": "iam",
 "LastUsedDate": "2015-06-16T22:45:00Z"
 }
}

Actions 1855

https://docs.aws.amazon.com/goto/SdkForCpp/iam-2010-05-08/GetAccessKeyLastUsed

AWS Identity and Access Management User Guide

For more information, see Managing access keys for IAM users in the AWS IAM User Guide.

• For API details, see GetAccessKeyLastUsed in AWS CLI Command Reference.

JavaScript

SDK for JavaScript (v3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Get the access key.

import { GetAccessKeyLastUsedCommand, IAMClient } from "@aws-sdk/client-iam";

const client = new IAMClient({});

/**
 *
 * @param {string} accessKeyId
 */
export const getAccessKeyLastUsed = async (accessKeyId) => {
 const command = new GetAccessKeyLastUsedCommand({
 AccessKeyId: accessKeyId,
 });

 const response = await client.send(command);

 if (response.AccessKeyLastUsed?.LastUsedDate) {
 console.log(`
 ${accessKeyId} was last used by ${response.UserName} via
 the ${response.AccessKeyLastUsed.ServiceName} service on
 ${response.AccessKeyLastUsed.LastUsedDate.toISOString()}
 `);
 }

 return response;
};

Actions 1856

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_access-keys.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/iam/get-access-key-last-used.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/iam#code-examples

AWS Identity and Access Management User Guide

• For more information, see AWS SDK for JavaScript Developer Guide.

• For API details, see GetAccessKeyLastUsed in AWS SDK for JavaScript API Reference.

SDK for JavaScript (v2)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set the region
AWS.config.update({ region: "REGION" });

// Create the IAM service object
var iam = new AWS.IAM({ apiVersion: "2010-05-08" });

iam.getAccessKeyLastUsed(
 { AccessKeyId: "ACCESS_KEY_ID" },
 function (err, data) {
 if (err) {
 console.log("Error", err);
 } else {
 console.log("Success", data.AccessKeyLastUsed);
 }
 }
);

• For more information, see AWS SDK for JavaScript Developer Guide.

• For API details, see GetAccessKeyLastUsed in AWS SDK for JavaScript API Reference.

Actions 1857

https://docs.aws.amazon.com/sdk-for-javascript/v3/developer-guide/iam-examples-managing-access-keys.html#iam-examples-managing-access-keys-last-used
https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/client/iam/command/GetAccessKeyLastUsedCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascript/example_code/iam#code-examples
https://docs.aws.amazon.com/sdk-for-javascript/v2/developer-guide/iam-examples-managing-access-keys.html#iam-examples-managing-access-keys-last-used
https://docs.aws.amazon.com/goto/AWSJavaScriptSDK/iam-2010-05-08/GetAccessKeyLastUsed

AWS Identity and Access Management User Guide

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

def get_last_use(key_id):
 """
 Gets information about when and how a key was last used.

 :param key_id: The ID of the key to look up.
 :return: Information about the key's last use.
 """
 try:
 response = iam.meta.client.get_access_key_last_used(AccessKeyId=key_id)
 last_used_date = response["AccessKeyLastUsed"].get("LastUsedDate", None)
 last_service = response["AccessKeyLastUsed"].get("ServiceName", None)
 logger.info(
 "Key %s was last used by %s on %s to access %s.",
 key_id,
 response["UserName"],
 last_used_date,
 last_service,
)
 except ClientError:
 logger.exception("Couldn't get last use of key %s.", key_id)
 raise
 else:
 return response

• For API details, see GetAccessKeyLastUsed in AWS SDK for Python (Boto3) API Reference.

Actions 1858

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/iam#code-examples
https://docs.aws.amazon.com/goto/boto3/iam-2010-05-08/GetAccessKeyLastUsed

AWS Identity and Access Management User Guide

For a complete list of AWS SDK developer guides and code examples, see Using IAM with an AWS
SDK. This topic also includes information about getting started and details about previous SDK
versions.

Get the IAM account password policy using an AWS SDK

The following code examples show how to get the IAM account password policy.

.NET

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 /// <summary>
 /// Gets the IAM password policy for an AWS account.
 /// </summary>
 /// <returns>The PasswordPolicy for the AWS account.</returns>
 public async Task<PasswordPolicy> GetAccountPasswordPolicyAsync()
 {
 var response = await _IAMService.GetAccountPasswordPolicyAsync(new
 GetAccountPasswordPolicyRequest());
 return response.PasswordPolicy;
 }

• For API details, see GetAccountPasswordPolicy in AWS SDK for .NET API Reference.

CLI

AWS CLI

To see the current account password policy

The following get-account-password-policy command displays details about the
password policy for the current account.

Actions 1859

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/IAM#code-examples
https://docs.aws.amazon.com/goto/DotNetSDKV3/iam-2010-05-08/GetAccountPasswordPolicy

AWS Identity and Access Management User Guide

aws iam get-account-password-policy

Output:

{
 "PasswordPolicy": {
 "AllowUsersToChangePassword": false,
 "RequireLowercaseCharacters": false,
 "RequireUppercaseCharacters": false,
 "MinimumPasswordLength": 8,
 "RequireNumbers": true,
 "RequireSymbols": true
 }
}

If no password policy is defined for the account, the command returns a NoSuchEntity
error.

For more information, see Setting an account password policy for IAM users in the AWS IAM
User Guide.

• For API details, see GetAccountPasswordPolicy in AWS CLI Command Reference.

Go

SDK for Go V2

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

// AccountWrapper encapsulates AWS Identity and Access Management (IAM) account
 actions
// used in the examples.
// It contains an IAM service client that is used to perform account actions.
type AccountWrapper struct {
 IamClient *iam.Client

Actions 1860

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_passwords_account-policy.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/iam/get-account-password-policy.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/gov2/iam#code-examples

AWS Identity and Access Management User Guide

}

// GetAccountPasswordPolicy gets the account password policy for the current
 account.
// If no policy has been set, a NoSuchEntityException is error is returned.
func (wrapper AccountWrapper) GetAccountPasswordPolicy() (*types.PasswordPolicy,
 error) {
 var pwPolicy *types.PasswordPolicy
 result, err := wrapper.IamClient.GetAccountPasswordPolicy(context.TODO(),
 &iam.GetAccountPasswordPolicyInput{})
 if err != nil {
 log.Printf("Couldn't get account password policy. Here's why: %v\n", err)
 } else {
 pwPolicy = result.PasswordPolicy
 }
 return pwPolicy, err
}

• For API details, see GetAccountPasswordPolicy in AWS SDK for Go API Reference.

JavaScript

SDK for JavaScript (v3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Get the account password policy.

import {
 GetAccountPasswordPolicyCommand,
 IAMClient,
} from "@aws-sdk/client-iam";

const client = new IAMClient({});

Actions 1861

https://pkg.go.dev/github.com/aws/aws-sdk-go-v2/service/iam#Client.GetAccountPasswordPolicy
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/iam#code-examples

AWS Identity and Access Management User Guide

export const getAccountPasswordPolicy = async () => {
 const command = new GetAccountPasswordPolicyCommand({});

 const response = await client.send(command);
 console.log(response.PasswordPolicy);
 return response;
};

• For API details, see GetAccountPasswordPolicy in AWS SDK for JavaScript API Reference.

PHP

SDK for PHP

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

$uuid = uniqid();
$service = new IAMService();

 public function getAccountPasswordPolicy()
 {
 return $this->iamClient->getAccountPasswordPolicy();
 }

• For API details, see GetAccountPasswordPolicy in AWS SDK for PHP API Reference.

Actions 1862

https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/client/iam/command/GetAccountPasswordPolicyCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/php/example_code/iam#code-examples
https://docs.aws.amazon.com/goto/SdkForPHPV3/iam-2010-05-08/GetAccountPasswordPolicy

AWS Identity and Access Management User Guide

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

def print_password_policy():
 """
 Prints the password policy for the account.
 """
 try:
 pw_policy = iam.AccountPasswordPolicy()
 print("Current account password policy:")
 print(
 f"\tallow_users_to_change_password:
 {pw_policy.allow_users_to_change_password}"
)
 print(f"\texpire_passwords: {pw_policy.expire_passwords}")
 print(f"\thard_expiry: {pw_policy.hard_expiry}")
 print(f"\tmax_password_age: {pw_policy.max_password_age}")
 print(f"\tminimum_password_length: {pw_policy.minimum_password_length}")
 print(f"\tpassword_reuse_prevention:
 {pw_policy.password_reuse_prevention}")
 print(
 f"\trequire_lowercase_characters:
 {pw_policy.require_lowercase_characters}"
)
 print(f"\trequire_numbers: {pw_policy.require_numbers}")
 print(f"\trequire_symbols: {pw_policy.require_symbols}")
 print(
 f"\trequire_uppercase_characters:
 {pw_policy.require_uppercase_characters}"
)
 printed = True
 except ClientError as error:
 if error.response["Error"]["Code"] == "NoSuchEntity":
 print("The account does not have a password policy set.")
 else:

Actions 1863

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/iam#code-examples

AWS Identity and Access Management User Guide

 logger.exception("Couldn't get account password policy.")
 raise
 else:
 return printed

• For API details, see GetAccountPasswordPolicy in AWS SDK for Python (Boto3) API
Reference.

Ruby

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Class to manage IAM account password policies
class PasswordPolicyManager
 attr_accessor :iam_client, :logger

 def initialize(iam_client, logger: Logger.new($stdout))
 @iam_client = iam_client
 @logger = logger
 @logger.progname = "IAMPolicyManager"
 end

 # Retrieves and logs the account password policy
 def print_account_password_policy
 begin
 response = @iam_client.get_account_password_policy
 @logger.info("The account password policy is:
 #{response.password_policy.to_h}")
 rescue Aws::IAM::Errors::NoSuchEntity
 @logger.info("The account does not have a password policy.")
 rescue Aws::Errors::ServiceError => e

Actions 1864

https://docs.aws.amazon.com/goto/boto3/iam-2010-05-08/GetAccountPasswordPolicy
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/iam#code-examples

AWS Identity and Access Management User Guide

 @logger.error("Couldn't print the account password policy. Error: #{e.code}
 - #{e.message}")
 raise
 end
 end
end

• For API details, see GetAccountPasswordPolicy in AWS SDK for Ruby API Reference.

Rust

SDK for Rust

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

pub async fn get_account_password_policy(
 client: &iamClient,
) -> Result<GetAccountPasswordPolicyOutput,
 SdkError<GetAccountPasswordPolicyError>> {
 let response = client.get_account_password_policy().send().await?;

 Ok(response)
}

• For API details, see GetAccountPasswordPolicy in AWS SDK for Rust API reference.

For a complete list of AWS SDK developer guides and code examples, see Using IAM with an AWS
SDK. This topic also includes information about getting started and details about previous SDK
versions.

List SAML providers for IAM using an AWS SDK

The following code examples show how to list SAML providers for IAM.

Actions 1865

https://docs.aws.amazon.com/goto/SdkForRubyV3/iam-2010-05-08/GetAccountPasswordPolicy
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/rustv1/examples/iam#code-examples
https://docs.rs/releases/search?query=aws-sdk

AWS Identity and Access Management User Guide

.NET

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 /// <summary>
 /// List SAML authentication providers.
 /// </summary>
 /// <returns>A list of SAML providers.</returns>
 public async Task<List<SAMLProviderListEntry>> ListSAMLProvidersAsync()
 {
 var response = await _IAMService.ListSAMLProvidersAsync(new
 ListSAMLProvidersRequest());
 return response.SAMLProviderList;
 }

• For API details, see ListSAMLProviders in AWS SDK for .NET API Reference.

CLI

AWS CLI

To list the SAML providers in the AWS account

This example retrieves the list of SAML 2.0 providers created in the current AWS account.

aws iam list-saml-providers

Output:

{
 "SAMLProviderList": [
 {
 "Arn": "arn:aws:iam::123456789012:saml-provider/SAML-ADFS",

Actions 1866

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/IAM#code-examples
https://docs.aws.amazon.com/goto/DotNetSDKV3/iam-2010-05-08/ListSAMLProviders

AWS Identity and Access Management User Guide

 "ValidUntil": "2015-06-05T22:45:14Z",
 "CreateDate": "2015-06-05T22:45:14Z"
 }
]
}

For more information, see Creating IAM SAML identity providers in the AWS IAM User Guide.

• For API details, see ListSAMLProviders in AWS CLI Command Reference.

Go

SDK for Go V2

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

// AccountWrapper encapsulates AWS Identity and Access Management (IAM) account
 actions
// used in the examples.
// It contains an IAM service client that is used to perform account actions.
type AccountWrapper struct {
 IamClient *iam.Client
}

// ListSAMLProviders gets the SAML providers for the account.
func (wrapper AccountWrapper) ListSAMLProviders() ([]types.SAMLProviderListEntry,
 error) {
 var providers []types.SAMLProviderListEntry
 result, err := wrapper.IamClient.ListSAMLProviders(context.TODO(),
 &iam.ListSAMLProvidersInput{})
 if err != nil {
 log.Printf("Couldn't list SAML providers. Here's why: %v\n", err)
 } else {
 providers = result.SAMLProviderList
 }

Actions 1867

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_providers_create_saml.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/iam/list-saml-providers.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/gov2/iam#code-examples

AWS Identity and Access Management User Guide

 return providers, err
}

• For API details, see ListSAMLProviders in AWS SDK for Go API Reference.

JavaScript

SDK for JavaScript (v3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

List the SAML providers.

import { ListSAMLProvidersCommand, IAMClient } from "@aws-sdk/client-iam";

const client = new IAMClient({});

export const listSamlProviders = async () => {
 const command = new ListSAMLProvidersCommand({});

 const response = await client.send(command);
 console.log(response);
 return response;
};

• For API details, see ListSAMLProviders in AWS SDK for JavaScript API Reference.

Actions 1868

https://pkg.go.dev/github.com/aws/aws-sdk-go-v2/service/iam#Client.ListSAMLProviders
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/iam#code-examples
https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/client/iam/command/ListSAMLProvidersCommand

AWS Identity and Access Management User Guide

PHP

SDK for PHP

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

$uuid = uniqid();
$service = new IAMService();

 public function listSAMLProviders()
 {
 return $this->iamClient->listSAMLProviders();
 }

• For API details, see ListSAMLProviders in AWS SDK for PHP API Reference.

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

def list_saml_providers(count):
 """
 Lists the SAML providers for the account.

 :param count: The maximum number of providers to list.
 """
 try:
 found = 0
 for provider in iam.saml_providers.limit(count):

Actions 1869

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/php/example_code/iam#code-examples
https://docs.aws.amazon.com/goto/SdkForPHPV3/iam-2010-05-08/ListSAMLProviders
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/iam#code-examples

AWS Identity and Access Management User Guide

 logger.info("Got SAML provider %s.", provider.arn)
 found += 1
 if found == 0:
 logger.info("Your account has no SAML providers.")
 except ClientError:
 logger.exception("Couldn't list SAML providers.")
 raise

• For API details, see ListSAMLProviders in AWS SDK for Python (Boto3) API Reference.

Ruby

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

class SamlProviderLister
 # Initializes the SamlProviderLister with IAM client and a logger.
 # @param iam_client [Aws::IAM::Client] The IAM client object.
 # @param logger [Logger] The logger object for logging output.
 def initialize(iam_client, logger = Logger.new($stdout))
 @iam_client = iam_client
 @logger = logger
 end

 # Lists up to a specified number of SAML providers for the account.
 # @param count [Integer] The maximum number of providers to list.
 # @return [Aws::IAM::Client::Response]
 def list_saml_providers(count)
 response = @iam_client.list_saml_providers
 response.saml_provider_list.take(count).each do |provider|
 @logger.info("\t#{provider.arn}")
 end
 response
 rescue Aws::Errors::ServiceError => e

Actions 1870

https://docs.aws.amazon.com/goto/boto3/iam-2010-05-08/ListSAMLProviders
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/iam#code-examples

AWS Identity and Access Management User Guide

 @logger.error("Couldn't list SAML providers. Here's why:")
 @logger.error("\t#{e.code}: #{e.message}")
 raise
 end
end

• For API details, see ListSAMLProviders in AWS SDK for Ruby API Reference.

Rust

SDK for Rust

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

pub async fn list_saml_providers(
 client: &Client,
) -> Result<ListSamlProvidersOutput, SdkError<ListSAMLProvidersError>> {
 let response = client.list_saml_providers().send().await?;

 Ok(response)
}

• For API details, see ListSAMLProviders in AWS SDK for Rust API reference.

For a complete list of AWS SDK developer guides and code examples, see Using IAM with an AWS
SDK. This topic also includes information about getting started and details about previous SDK
versions.

List a user's IAM access keys using an AWS SDK

The following code examples show how to list a user's IAM access keys.

Actions 1871

https://docs.aws.amazon.com/goto/SdkForRubyV3/iam-2010-05-08/ListSAMLProviders
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/rustv1/examples/iam#code-examples
https://docs.rs/releases/search?query=aws-sdk

AWS Identity and Access Management User Guide

Warning

To avoid security risks, don't use IAM users for authentication when developing purpose-
built software or working with real data. Instead, use federation with an identity provider
such as AWS IAM Identity Center.

Action examples are code excerpts from larger programs and must be run in context. You can see
this action in context in the following code example:

• Manage access keys

Bash

AWS CLI with Bash script

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

###
function errecho
#
This function outputs everything sent to it to STDERR (standard error output).
###
function errecho() {
 printf "%s\n" "$*" 1>&2
}

###
function iam_list_access_keys
#
This function lists the access keys for the specified user.
#
Parameters:
-u user_name -- The name of the IAM user.
#
Returns:

Actions 1872

https://docs.aws.amazon.com/singlesignon/latest/userguide/what-is.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/aws-cli/bash-linux/iam#code-examples

AWS Identity and Access Management User Guide

access_key_ids
And:
0 - If successful.
1 - If it fails.
###
function iam_list_access_keys() {

 # bashsupport disable=BP5008
 function usage() {
 echo "function iam_list_access_keys"
 echo "Lists the AWS Identity and Access Management (IAM) access key IDs for
 the specified user."
 echo " -u user_name The name of the IAM user."
 echo ""
 }

 local user_name response
 local option OPTARG # Required to use getopts command in a function.
 # Retrieve the calling parameters.
 while getopts "u:h" option; do
 case "${option}" in
 u) user_name="${OPTARG}" ;;
 h)
 usage
 return 0
 ;;
 \?)
 echo "Invalid parameter"
 usage
 return 1
 ;;
 esac
 done
 export OPTIND=1

 if [[-z "$user_name"]]; then
 errecho "ERROR: You must provide a username with the -u parameter."
 usage
 return 1
 fi

 response=$(aws iam list-access-keys \
 --user-name "$user_name" \
 --output text \

Actions 1873

AWS Identity and Access Management User Guide

 --query 'AccessKeyMetadata[].AccessKeyId')

 local error_code=${?}

 if [[$error_code -ne 0]]; then
 aws_cli_error_log $error_code
 errecho "ERROR: AWS reports list-access-keys operation failed.$response"
 return 1
 fi

 echo "$response"

 return 0
}

• For API details, see ListAccessKeys in AWS CLI Command Reference.

C++

SDK for C++

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

bool AwsDoc::IAM::listAccessKeys(const Aws::String &userName,
 const Aws::Client::ClientConfiguration
 &clientConfig) {
 Aws::IAM::IAMClient iam(clientConfig);
 Aws::IAM::Model::ListAccessKeysRequest request;
 request.SetUserName(userName);

 bool done = false;
 bool header = false;
 while (!done) {
 auto outcome = iam.ListAccessKeys(request);
 if (!outcome.IsSuccess()) {
 std::cerr << "Failed to list access keys for user " << userName
 << ": " << outcome.GetError().GetMessage() << std::endl;

Actions 1874

https://docs.aws.amazon.com/goto/aws-cli/iam-2010-05-08/ListAccessKeys
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/cpp/example_code/iam#code-examples

AWS Identity and Access Management User Guide

 return false;
 }

 if (!header) {
 std::cout << std::left << std::setw(32) << "UserName" <<
 std::setw(30) << "KeyID" << std::setw(20) << "Status" <<
 std::setw(20) << "CreateDate" << std::endl;
 header = true;
 }

 const auto &keys = outcome.GetResult().GetAccessKeyMetadata();
 const Aws::String DATE_FORMAT = "%Y-%m-%d";

 for (const auto &key: keys) {
 Aws::String statusString =
 Aws::IAM::Model::StatusTypeMapper::GetNameForStatusType(
 key.GetStatus());
 std::cout << std::left << std::setw(32) << key.GetUserName() <<
 std::setw(30) << key.GetAccessKeyId() << std::setw(20) <<
 statusString << std::setw(20) <<
 key.GetCreateDate().ToGmtString(DATE_FORMAT.c_str()) <<
 std::endl;
 }

 if (outcome.GetResult().GetIsTruncated()) {
 request.SetMarker(outcome.GetResult().GetMarker());
 }
 else {
 done = true;
 }
 }

 return true;
}

• For API details, see ListAccessKeys in AWS SDK for C++ API Reference.

CLI

AWS CLI

To list the access key IDs for an IAM user

Actions 1875

https://docs.aws.amazon.com/goto/SdkForCpp/iam-2010-05-08/ListAccessKeys

AWS Identity and Access Management User Guide

The following list-access-keys command lists the access keys IDs for the IAM user
named Bob.

aws iam list-access-keys \
 --user-name Bob

Output:

{
 "AccessKeyMetadata": [
 {
 "UserName": "Bob",
 "Status": "Active",
 "CreateDate": "2013-06-04T18:17:34Z",
 "AccessKeyId": "AKIAIOSFODNN7EXAMPLE"
 },
 {
 "UserName": "Bob",
 "Status": "Inactive",
 "CreateDate": "2013-06-06T20:42:26Z",
 "AccessKeyId": "AKIAI44QH8DHBEXAMPLE"
 }
]
}

You cannot list the secret access keys for IAM users. If the secret access keys are lost, you
must create new access keys using the create-access-keys command.

For more information, see Managing access keys for IAM users in the AWS IAM User Guide.

• For API details, see ListAccessKeys in AWS CLI Command Reference.

Go

SDK for Go V2

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Actions 1876

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_access-keys.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/iam/list-access-keys.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/gov2/iam#code-examples

AWS Identity and Access Management User Guide

// UserWrapper encapsulates user actions used in the examples.
// It contains an IAM service client that is used to perform user actions.
type UserWrapper struct {
 IamClient *iam.Client
}

// ListAccessKeys lists the access keys for the specified user.
func (wrapper UserWrapper) ListAccessKeys(userName string)
 ([]types.AccessKeyMetadata, error) {
 var keys []types.AccessKeyMetadata
 result, err := wrapper.IamClient.ListAccessKeys(context.TODO(),
 &iam.ListAccessKeysInput{
 UserName: aws.String(userName),
 })
 if err != nil {
 log.Printf("Couldn't list access keys for user %v. Here's why: %v\n", userName,
 err)
 } else {
 keys = result.AccessKeyMetadata
 }
 return keys, err
}

• For API details, see ListAccessKeys in AWS SDK for Go API Reference.

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

import software.amazon.awssdk.services.iam.model.AccessKeyMetadata;

Actions 1877

https://pkg.go.dev/github.com/aws/aws-sdk-go-v2/service/iam#Client.ListAccessKeys
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/iam#readme

AWS Identity and Access Management User Guide

import software.amazon.awssdk.services.iam.model.IamException;
import software.amazon.awssdk.services.iam.model.ListAccessKeysRequest;
import software.amazon.awssdk.services.iam.model.ListAccessKeysResponse;
import software.amazon.awssdk.regions.Region;
import software.amazon.awssdk.services.iam.IamClient;

/**
 * Before running this Java V2 code example, set up your development
 * environment, including your credentials.
 *
 * For more information, see the following documentation topic:
 *
 * https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/get-
started.html
 */
public class ListAccessKeys {
 public static void main(String[] args) {
 final String usage = """

 Usage:
 <userName>\s

 Where:
 userName - The name of the user for which access keys are
 retrieved.\s
 """;

 if (args.length != 1) {
 System.out.println(usage);
 System.exit(1);
 }

 String userName = args[0];
 Region region = Region.AWS_GLOBAL;
 IamClient iam = IamClient.builder()
 .region(region)
 .build();

 listKeys(iam, userName);
 System.out.println("Done");
 iam.close();
 }

 public static void listKeys(IamClient iam, String userName) {

Actions 1878

AWS Identity and Access Management User Guide

 try {
 boolean done = false;
 String newMarker = null;

 while (!done) {
 ListAccessKeysResponse response;

 if (newMarker == null) {
 ListAccessKeysRequest request =
 ListAccessKeysRequest.builder()
 .userName(userName)
 .build();

 response = iam.listAccessKeys(request);

 } else {
 ListAccessKeysRequest request =
 ListAccessKeysRequest.builder()
 .userName(userName)
 .marker(newMarker)
 .build();

 response = iam.listAccessKeys(request);
 }

 for (AccessKeyMetadata metadata : response.accessKeyMetadata()) {
 System.out.format("Retrieved access key %s",
 metadata.accessKeyId());
 }

 if (!response.isTruncated()) {
 done = true;
 } else {
 newMarker = response.marker();
 }
 }

 } catch (IamException e) {
 System.err.println(e.awsErrorDetails().errorMessage());
 System.exit(1);
 }
 }
}

Actions 1879

AWS Identity and Access Management User Guide

• For API details, see ListAccessKeys in AWS SDK for Java 2.x API Reference.

JavaScript

SDK for JavaScript (v3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

List the access keys.

import { ListAccessKeysCommand, IAMClient } from "@aws-sdk/client-iam";

const client = new IAMClient({});

/**
 * A generator function that handles paginated results.
 * The AWS SDK for JavaScript (v3) provides {@link https://docs.aws.amazon.com/
AWSJavaScriptSDK/v3/latest/index.html#paginators | paginator} functions to
 simplify this.
 *
 * @param {string} userName
 */
export async function* listAccessKeys(userName) {
 const command = new ListAccessKeysCommand({
 MaxItems: 5,
 UserName: userName,
 });

 /**
 * @type {import("@aws-sdk/client-iam").ListAccessKeysCommandOutput |
 undefined}
 */
 let response = await client.send(command);

 while (response?.AccessKeyMetadata?.length) {
 for (const key of response.AccessKeyMetadata) {

Actions 1880

https://docs.aws.amazon.com/goto/SdkForJavaV2/iam-2010-05-08/ListAccessKeys
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/iam#code-examples

AWS Identity and Access Management User Guide

 yield key;
 }

 if (response.IsTruncated) {
 response = await client.send(
 new ListAccessKeysCommand({
 Marker: response.Marker,
 }),
);
 } else {
 break;
 }
 }
}

• For more information, see AWS SDK for JavaScript Developer Guide.

• For API details, see ListAccessKeys in AWS SDK for JavaScript API Reference.

SDK for JavaScript (v2)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set the region
AWS.config.update({ region: "REGION" });

// Create the IAM service object
var iam = new AWS.IAM({ apiVersion: "2010-05-08" });

var params = {
 MaxItems: 5,
 UserName: "IAM_USER_NAME",
};

iam.listAccessKeys(params, function (err, data) {
 if (err) {

Actions 1881

https://docs.aws.amazon.com/sdk-for-javascript/v3/developer-guide/iam-examples-managing-access-keys.html#iam-examples-managing-access-keys-listing
https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/client/iam/command/ListAccessKeysCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascript/example_code/iam#code-examples

AWS Identity and Access Management User Guide

 console.log("Error", err);
 } else {
 console.log("Success", data);
 }
});

• For more information, see AWS SDK for JavaScript Developer Guide.

• For API details, see ListAccessKeys in AWS SDK for JavaScript API Reference.

Kotlin

SDK for Kotlin

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

suspend fun listKeys(userNameVal: String?) {

 val request = ListAccessKeysRequest {
 userName = userNameVal
 }
 IamClient { region = "AWS_GLOBAL" }.use { iamClient ->
 val response = iamClient.listAccessKeys(request)
 response.accessKeyMetadata?.forEach { md ->
 println("Retrieved access key ${md.accessKeyId}")
 }
 }
}

• For API details, see ListAccessKeys in AWS SDK for Kotlin API reference.

Actions 1882

https://docs.aws.amazon.com/sdk-for-javascript/v2/developer-guide/iam-examples-managing-access-keys.html#iiam-examples-managing-access-keys-listing
https://docs.aws.amazon.com/goto/AWSJavaScriptSDK/iam-2010-05-08/ListAccessKeys
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/kotlin/services/iam#code-examples
https://github.com/awslabs/aws-sdk-kotlin#generating-api-documentation

AWS Identity and Access Management User Guide

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

def list_keys(user_name):
 """
 Lists the keys owned by the specified user.

 :param user_name: The name of the user.
 :return: The list of keys owned by the user.
 """
 try:
 keys = list(iam.User(user_name).access_keys.all())
 logger.info("Got %s access keys for %s.", len(keys), user_name)
 except ClientError:
 logger.exception("Couldn't get access keys for %s.", user_name)
 raise
 else:
 return keys

• For API details, see ListAccessKeys in AWS SDK for Python (Boto3) API Reference.

Ruby

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Actions 1883

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/iam#code-examples
https://docs.aws.amazon.com/goto/boto3/iam-2010-05-08/ListAccessKeys
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/iam#code-examples

AWS Identity and Access Management User Guide

This example module lists, creates, deactivates, and deletes access keys.

Manages access keys for IAM users
class AccessKeyManager
 def initialize(iam_client, logger: Logger.new($stdout))
 @iam_client = iam_client
 @logger = logger
 @logger.progname = "AccessKeyManager"
 end

 # Lists access keys for a user
 #
 # @param user_name [String] The name of the user.
 def list_access_keys(user_name)
 response = @iam_client.list_access_keys(user_name: user_name)
 if response.access_key_metadata.empty?
 @logger.info("No access keys found for user '#{user_name}'.")
 else
 response.access_key_metadata.map(&:access_key_id)
 end
 rescue Aws::IAM::Errors::NoSuchEntity => e
 @logger.error("Error listing access keys: cannot find user '#{user_name}'.")
 []
 rescue StandardError => e
 @logger.error("Error listing access keys: #{e.message}")
 []
 end

 # Creates an access key for a user
 #
 # @param user_name [String] The name of the user.
 # @return [Boolean]
 def create_access_key(user_name)
 response = @iam_client.create_access_key(user_name: user_name)
 access_key = response.access_key
 @logger.info("Access key created for user '#{user_name}':
 #{access_key.access_key_id}")
 access_key
 rescue Aws::IAM::Errors::LimitExceeded => e
 @logger.error("Error creating access key: limit exceeded. Cannot create
 more.")
 nil
 rescue StandardError => e
 @logger.error("Error creating access key: #{e.message}")

Actions 1884

AWS Identity and Access Management User Guide

 nil
 end

 # Deactivates an access key
 #
 # @param user_name [String] The name of the user.
 # @param access_key_id [String] The ID for the access key.
 # @return [Boolean]
 def deactivate_access_key(user_name, access_key_id)
 @iam_client.update_access_key(
 user_name: user_name,
 access_key_id: access_key_id,
 status: "Inactive"
)
 true
 rescue StandardError => e
 @logger.error("Error deactivating access key: #{e.message}")
 false
 end

 # Deletes an access key
 #
 # @param user_name [String] The name of the user.
 # @param access_key_id [String] The ID for the access key.
 # @return [Boolean]
 def delete_access_key(user_name, access_key_id)
 @iam_client.delete_access_key(
 user_name: user_name,
 access_key_id: access_key_id
)
 true
 rescue StandardError => e
 @logger.error("Error deleting access key: #{e.message}")
 false
 end
end

• For API details, see ListAccessKeys in AWS SDK for Ruby API Reference.

Actions 1885

https://docs.aws.amazon.com/goto/SdkForRubyV3/iam-2010-05-08/ListAccessKeys

AWS Identity and Access Management User Guide

For a complete list of AWS SDK developer guides and code examples, see Using IAM with an AWS
SDK. This topic also includes information about getting started and details about previous SDK
versions.

List IAM account aliases using an AWS SDK

The following code examples show how to list IAM account aliases.

Action examples are code excerpts from larger programs and must be run in context. You can see
this action in context in the following code example:

• Manage your account

C++

SDK for C++

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

bool
AwsDoc::IAM::listAccountAliases(const Aws::Client::ClientConfiguration
 &clientConfig) {
 Aws::IAM::IAMClient iam(clientConfig);
 Aws::IAM::Model::ListAccountAliasesRequest request;

 bool done = false;
 bool header = false;
 while (!done) {
 auto outcome = iam.ListAccountAliases(request);
 if (!outcome.IsSuccess()) {
 std::cerr << "Failed to list account aliases: " <<
 outcome.GetError().GetMessage() << std::endl;
 return false;
 }

 const auto &aliases = outcome.GetResult().GetAccountAliases();
 if (!header) {

Actions 1886

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/cpp/example_code/iam#code-examples

AWS Identity and Access Management User Guide

 if (aliases.size() == 0) {
 std::cout << "Account has no aliases" << std::endl;
 break;
 }
 std::cout << std::left << std::setw(32) << "Alias" << std::endl;
 header = true;
 }

 for (const auto &alias: aliases) {
 std::cout << std::left << std::setw(32) << alias << std::endl;
 }

 if (outcome.GetResult().GetIsTruncated()) {
 request.SetMarker(outcome.GetResult().GetMarker());
 }
 else {
 done = true;
 }
 }

 return true;
}

• For API details, see ListAccountAliases in AWS SDK for C++ API Reference.

CLI

AWS CLI

To list account aliases

The following list-account-aliases command lists the aliases for the current account.

aws iam list-account-aliases

Output:

{
 "AccountAliases": [
 "mycompany"
]

Actions 1887

https://docs.aws.amazon.com/goto/SdkForCpp/iam-2010-05-08/ListAccountAliases

AWS Identity and Access Management User Guide

}

For more information, see Your AWS account ID and its alias in the AWS IAM User Guide.

• For API details, see ListAccountAliases in AWS CLI Command Reference.

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

import software.amazon.awssdk.services.iam.model.IamException;
import software.amazon.awssdk.services.iam.model.ListAccountAliasesResponse;
import software.amazon.awssdk.regions.Region;
import software.amazon.awssdk.services.iam.IamClient;

/**
 * Before running this Java V2 code example, set up your development
 * environment, including your credentials.
 *
 * For more information, see the following documentation topic:
 *
 * https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/get-
started.html
 */
public class ListAccountAliases {
 public static void main(String[] args) {
 Region region = Region.AWS_GLOBAL;
 IamClient iam = IamClient.builder()
 .region(region)
 .build();

 listAliases(iam);
 System.out.println("Done");
 iam.close();
 }

Actions 1888

https://docs.aws.amazon.com/IAM/latest/UserGuide/console_account-alias.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/iam/list-account-aliases.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/iam#readme

AWS Identity and Access Management User Guide

 public static void listAliases(IamClient iam) {
 try {
 ListAccountAliasesResponse response = iam.listAccountAliases();
 for (String alias : response.accountAliases()) {
 System.out.printf("Retrieved account alias %s", alias);
 }

 } catch (IamException e) {
 System.err.println(e.awsErrorDetails().errorMessage());
 System.exit(1);
 }
 }
}

• For API details, see ListAccountAliases in AWS SDK for Java 2.x API Reference.

JavaScript

SDK for JavaScript (v3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

List the account aliases.

import { ListAccountAliasesCommand, IAMClient } from "@aws-sdk/client-iam";

const client = new IAMClient({});

/**
 * A generator function that handles paginated results.
 * The AWS SDK for JavaScript (v3) provides {@link https://docs.aws.amazon.com/
AWSJavaScriptSDK/v3/latest/index.html#paginators | paginator} functions to
 simplify this.
 */
export async function* listAccountAliases() {
 const command = new ListAccountAliasesCommand({ MaxItems: 5 });

Actions 1889

https://docs.aws.amazon.com/goto/SdkForJavaV2/iam-2010-05-08/ListAccountAliases
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/iam#code-examples

AWS Identity and Access Management User Guide

 let response = await client.send(command);

 while (response.AccountAliases?.length) {
 for (const alias of response.AccountAliases) {
 yield alias;
 }

 if (response.IsTruncated) {
 response = await client.send(
 new ListAccountAliasesCommand({
 Marker: response.Marker,
 MaxItems: 5,
 }),
);
 } else {
 break;
 }
 }
}

• For more information, see AWS SDK for JavaScript Developer Guide.

• For API details, see ListAccountAliases in AWS SDK for JavaScript API Reference.

SDK for JavaScript (v2)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set the region
AWS.config.update({ region: "REGION" });

// Create the IAM service object
var iam = new AWS.IAM({ apiVersion: "2010-05-08" });

iam.listAccountAliases({ MaxItems: 10 }, function (err, data) {
 if (err) {

Actions 1890

https://docs.aws.amazon.com/sdk-for-javascript/v3/developer-guide/iam-examples-account-aliases.html#iam-examples-account-aliases-listing
https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/client/iam/command/ListAccountAliasesCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascript/example_code/iam#code-examples

AWS Identity and Access Management User Guide

 console.log("Error", err);
 } else {
 console.log("Success", data);
 }
});

• For more information, see AWS SDK for JavaScript Developer Guide.

• For API details, see ListAccountAliases in AWS SDK for JavaScript API Reference.

Kotlin

SDK for Kotlin

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

suspend fun listAliases() {

 IamClient { region = "AWS_GLOBAL" }.use { iamClient ->
 val response = iamClient.listAccountAliases(ListAccountAliasesRequest {})
 response.accountAliases?.forEach { alias ->
 println("Retrieved account alias $alias")
 }
 }
}

• For API details, see ListAccountAliases in AWS SDK for Kotlin API reference.

Actions 1891

https://docs.aws.amazon.com/sdk-for-javascript/v2/developer-guide/iam-examples-account-aliases.html#iam-examples-account-aliases-listing
https://docs.aws.amazon.com/goto/AWSJavaScriptSDK/iam-2010-05-08/ListAccountAliases
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/kotlin/services/iam#code-examples
https://github.com/awslabs/aws-sdk-kotlin#generating-api-documentation

AWS Identity and Access Management User Guide

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

def list_aliases():
 """
 Gets the list of aliases for the current account. An account has at most one
 alias.

 :return: The list of aliases for the account.
 """
 try:
 response = iam.meta.client.list_account_aliases()
 aliases = response["AccountAliases"]
 if len(aliases) > 0:
 logger.info("Got aliases for your account: %s.", ",".join(aliases))
 else:
 logger.info("Got no aliases for your account.")
 except ClientError:
 logger.exception("Couldn't list aliases for your account.")
 raise
 else:
 return response["AccountAliases"]

• For API details, see ListAccountAliases in AWS SDK for Python (Boto3) API Reference.

Actions 1892

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/iam#code-examples
https://docs.aws.amazon.com/goto/boto3/iam-2010-05-08/ListAccountAliases

AWS Identity and Access Management User Guide

Ruby

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

List, create, and delete account aliases.

class IAMAliasManager
 # Initializes the IAM client and logger
 #
 # @param iam_client [Aws::IAM::Client] An initialized IAM client.
 def initialize(iam_client, logger: Logger.new($stdout))
 @iam_client = iam_client
 @logger = logger
 end

 # Lists available AWS account aliases.
 def list_aliases
 response = @iam_client.list_account_aliases

 if response.account_aliases.count.positive?
 @logger.info("Account aliases are:")
 response.account_aliases.each { |account_alias| @logger.info("
 #{account_alias}") }
 else
 @logger.info("No account aliases found.")
 end
 rescue Aws::IAM::Errors::ServiceError => e
 @logger.error("Error listing account aliases: #{e.message}")
 end

 # Creates an AWS account alias.
 #
 # @param account_alias [String] The name of the account alias to create.
 # @return [Boolean] true if the account alias was created; otherwise, false.
 def create_account_alias(account_alias)
 @iam_client.create_account_alias(account_alias: account_alias)
 true

Actions 1893

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/iam#code-examples

AWS Identity and Access Management User Guide

 rescue Aws::IAM::Errors::ServiceError => e
 @logger.error("Error creating account alias: #{e.message}")
 false
 end

 # Deletes an AWS account alias.
 #
 # @param account_alias [String] The name of the account alias to delete.
 # @return [Boolean] true if the account alias was deleted; otherwise, false.
 def delete_account_alias(account_alias)
 @iam_client.delete_account_alias(account_alias: account_alias)
 true
 rescue Aws::IAM::Errors::ServiceError => e
 @logger.error("Error deleting account alias: #{e.message}")
 false
 end
end

• For API details, see ListAccountAliases in AWS SDK for Ruby API Reference.

For a complete list of AWS SDK developer guides and code examples, see Using IAM with an AWS
SDK. This topic also includes information about getting started and details about previous SDK
versions.

List IAM groups using an AWS SDK

The following code examples show how to list IAM groups.

.NET

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 /// <summary>
 /// List IAM groups.

Actions 1894

https://docs.aws.amazon.com/goto/SdkForRubyV3/iam-2010-05-08/ListAccountAliases
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/IAM#code-examples

AWS Identity and Access Management User Guide

 /// </summary>
 /// <returns>A list of IAM groups.</returns>
 public async Task<List<Group>> ListGroupsAsync()
 {
 var groupsPaginator = _IAMService.Paginators.ListGroups(new
 ListGroupsRequest());
 var groups = new List<Group>();

 await foreach (var response in groupsPaginator.Responses)
 {
 groups.AddRange(response.Groups);
 }

 return groups;
 }

• For API details, see ListGroups in AWS SDK for .NET API Reference.

CLI

AWS CLI

To list the IAM groups for the current account

The following list-groups command lists the IAM groups in the current account.

aws iam list-groups

Output:

{
 "Groups": [
 {
 "Path": "/",
 "CreateDate": "2013-06-04T20:27:27.972Z",
 "GroupId": "AIDACKCEVSQ6C2EXAMPLE",
 "Arn": "arn:aws:iam::123456789012:group/Admins",
 "GroupName": "Admins"
 },
 {

Actions 1895

https://docs.aws.amazon.com/goto/DotNetSDKV3/iam-2010-05-08/ListGroups

AWS Identity and Access Management User Guide

 "Path": "/",
 "CreateDate": "2013-04-16T20:30:42Z",
 "GroupId": "AIDGPMS9RO4H3FEXAMPLE",
 "Arn": "arn:aws:iam::123456789012:group/S3-Admins",
 "GroupName": "S3-Admins"
 }
]
}

For more information, see Managing IAM user groups in the AWS IAM User Guide.

• For API details, see ListGroups in AWS CLI Command Reference.

Go

SDK for Go V2

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

// GroupWrapper encapsulates AWS Identity and Access Management (IAM) group
 actions
// used in the examples.
// It contains an IAM service client that is used to perform group actions.
type GroupWrapper struct {
 IamClient *iam.Client
}

// ListGroups lists up to maxGroups number of groups.
func (wrapper GroupWrapper) ListGroups(maxGroups int32) ([]types.Group, error) {
 var groups []types.Group
 result, err := wrapper.IamClient.ListGroups(context.TODO(),
 &iam.ListGroupsInput{
 MaxItems: aws.Int32(maxGroups),
 })
 if err != nil {

Actions 1896

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_groups_manage.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/iam/list-groups.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/gov2/iam#code-examples

AWS Identity and Access Management User Guide

 log.Printf("Couldn't list groups. Here's why: %v\n", err)
 } else {
 groups = result.Groups
 }
 return groups, err
}

• For API details, see ListGroups in AWS SDK for Go API Reference.

JavaScript

SDK for JavaScript (v3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

List the groups.

import { ListGroupsCommand, IAMClient } from "@aws-sdk/client-iam";

const client = new IAMClient({});

/**
 * A generator function that handles paginated results.
 * The AWS SDK for JavaScript (v3) provides {@link https://docs.aws.amazon.com/
AWSJavaScriptSDK/v3/latest/index.html#paginators | paginator} functions to
 simplify this.
 */
export async function* listGroups() {
 const command = new ListGroupsCommand({
 MaxItems: 10,
 });

 let response = await client.send(command);

 while (response.Groups?.length) {
 for (const group of response.Groups) {

Actions 1897

https://pkg.go.dev/github.com/aws/aws-sdk-go-v2/service/iam#Client.ListGroups
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/iam#code-examples

AWS Identity and Access Management User Guide

 yield group;
 }

 if (response.IsTruncated) {
 response = await client.send(
 new ListGroupsCommand({
 Marker: response.Marker,
 MaxItems: 10,
 }),
);
 } else {
 break;
 }
 }
}

• For API details, see ListGroups in AWS SDK for JavaScript API Reference.

PHP

SDK for PHP

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

$uuid = uniqid();
$service = new IAMService();

 public function listGroups($pathPrefix = "", $marker = "", $maxItems = 0)
 {
 $listGroupsArguments = [];
 if ($pathPrefix) {
 $listGroupsArguments["PathPrefix"] = $pathPrefix;
 }
 if ($marker) {
 $listGroupsArguments["Marker"] = $marker;
 }
 if ($maxItems) {

Actions 1898

https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/client/iam/command/ListGroupsCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/php/example_code/iam#code-examples

AWS Identity and Access Management User Guide

 $listGroupsArguments["MaxItems"] = $maxItems;
 }

 return $this->iamClient->listGroups($listGroupsArguments);
 }

• For API details, see ListGroups in AWS SDK for PHP API Reference.

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

def list_groups(count):
 """
 Lists the specified number of groups for the account.

 :param count: The number of groups to list.
 """
 try:
 for group in iam.groups.limit(count):
 logger.info("Group: %s", group.name)
 except ClientError:
 logger.exception("Couldn't list groups for the account.")
 raise

• For API details, see ListGroups in AWS SDK for Python (Boto3) API Reference.

Actions 1899

https://docs.aws.amazon.com/goto/SdkForPHPV3/iam-2010-05-08/ListGroups
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/iam#code-examples
https://docs.aws.amazon.com/goto/boto3/iam-2010-05-08/ListGroups

AWS Identity and Access Management User Guide

Ruby

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

A class to manage IAM operations via the AWS SDK client
class IamGroupManager
 # Initializes the IamGroupManager class
 # @param iam_client [Aws::IAM::Client] An instance of the IAM client
 def initialize(iam_client, logger: Logger.new($stdout))
 @iam_client = iam_client
 @logger = logger
 end

 # Lists up to a specified number of groups for the account.
 # @param count [Integer] The maximum number of groups to list.
 # @return [Aws::IAM::Client::Response]
 def list_groups(count)
 response = @iam_client.list_groups(max_items: count)
 response.groups.each do |group|
 @logger.info("\t#{group.group_name}")
 end
 response
 rescue Aws::Errors::ServiceError => e
 @logger.error("Couldn't list groups for the account. Here's why:")
 @logger.error("\t#{e.code}: #{e.message}")
 raise
 end
end

• For API details, see ListGroups in AWS SDK for Ruby API Reference.

Actions 1900

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/iam#code-examples
https://docs.aws.amazon.com/goto/SdkForRubyV3/iam-2010-05-08/ListGroups

AWS Identity and Access Management User Guide

Rust

SDK for Rust

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

pub async fn list_groups(
 client: &iamClient,
 path_prefix: Option<String>,
 marker: Option<String>,
 max_items: Option<i32>,
) -> Result<ListGroupsOutput, SdkError<ListGroupsError>> {
 let response = client
 .list_groups()
 .set_path_prefix(path_prefix)
 .set_marker(marker)
 .set_max_items(max_items)
 .send()
 .await?;

 Ok(response)
}

• For API details, see ListGroups in AWS SDK for Rust API reference.

Swift

SDK for Swift

Note

This is prerelease documentation for an SDK in preview release. It is subject to
change.

Actions 1901

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/rustv1/examples/iam#code-examples
https://docs.rs/releases/search?query=aws-sdk

AWS Identity and Access Management User Guide

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 public func listGroups() async throws -> [String] {
 var groupList: [String] = []
 var marker: String? = nil
 var isTruncated: Bool

 repeat {
 let input = ListGroupsInput(marker: marker)
 let output = try await client.listGroups(input: input)

 guard let groups = output.groups else {
 return groupList
 }

 for group in groups {
 if let name = group.groupName {
 groupList.append(name)
 }
 }
 marker = output.marker
 isTruncated = output.isTruncated
 } while isTruncated == true
 return groupList
 }

• For API details, see ListGroups in AWS SDK for Swift API reference.

For a complete list of AWS SDK developer guides and code examples, see Using IAM with an AWS
SDK. This topic also includes information about getting started and details about previous SDK
versions.

List inline policies for an IAM role using an AWS SDK

The following code examples show how to list inline policies for an IAM role.

Actions 1902

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/swift/example_code/iam#code-examples
https://awslabs.github.io/aws-sdk-swift/reference/0.x

AWS Identity and Access Management User Guide

.NET

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 /// <summary>
 /// List IAM role policies.
 /// </summary>
 /// <param name="roleName">The IAM role for which to list IAM policies.</
param>
 /// <returns>A list of IAM policy names.</returns>
 public async Task<List<string>> ListRolePoliciesAsync(string roleName)
 {
 var listRolePoliciesPaginator =
 _IAMService.Paginators.ListRolePolicies(new ListRolePoliciesRequest { RoleName =
 roleName });
 var policyNames = new List<string>();

 await foreach (var response in listRolePoliciesPaginator.Responses)
 {
 policyNames.AddRange(response.PolicyNames);
 }

 return policyNames;
 }

• For API details, see ListRolePolicies in AWS SDK for .NET API Reference.

CLI

AWS CLI

To list the policies attached to an IAM role

Actions 1903

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/IAM#code-examples
https://docs.aws.amazon.com/goto/DotNetSDKV3/iam-2010-05-08/ListRolePolicies

AWS Identity and Access Management User Guide

The following list-role-policies command lists the names of the permissions policies
for the specified IAM role.

aws iam list-role-policies \
 --role-name Test-Role

Output:

{
 "PolicyNames": [
 "ExamplePolicy"
]
}

To see the trust policy attached to a role, use the get-role command. To see the details of
a permissions policy, use the get-role-policy command.

For more information, see Creating IAM roles in the AWS IAM User Guide.

• For API details, see ListRolePolicies in AWS CLI Command Reference.

Go

SDK for Go V2

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

// RoleWrapper encapsulates AWS Identity and Access Management (IAM) role actions
// used in the examples.
// It contains an IAM service client that is used to perform role actions.
type RoleWrapper struct {
 IamClient *iam.Client
}

Actions 1904

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/iam/list-role-policies.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/gov2/iam#code-examples

AWS Identity and Access Management User Guide

// ListRolePolicies lists the inline policies for a role.
func (wrapper RoleWrapper) ListRolePolicies(roleName string) ([]string, error) {
 var policies []string
 result, err := wrapper.IamClient.ListRolePolicies(context.TODO(),
 &iam.ListRolePoliciesInput{
 RoleName: aws.String(roleName),
 })
 if err != nil {
 log.Printf("Couldn't list policies for role %v. Here's why: %v\n", roleName,
 err)
 } else {
 policies = result.PolicyNames
 }
 return policies, err
}

• For API details, see ListRolePolicies in AWS SDK for Go API Reference.

JavaScript

SDK for JavaScript (v3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

List the policies.

import { ListRolePoliciesCommand, IAMClient } from "@aws-sdk/client-iam";

const client = new IAMClient({});

/**
 * A generator function that handles paginated results.
 * The AWS SDK for JavaScript (v3) provides {@link https://docs.aws.amazon.com/
AWSJavaScriptSDK/v3/latest/index.html#paginators | paginator} functions to
 simplify this.

Actions 1905

https://pkg.go.dev/github.com/aws/aws-sdk-go-v2/service/iam#Client.ListRolePolicies
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/iam#code-examples

AWS Identity and Access Management User Guide

 *
 * @param {string} roleName
 */
export async function* listRolePolicies(roleName) {
 const command = new ListRolePoliciesCommand({
 RoleName: roleName,
 MaxItems: 10,
 });

 let response = await client.send(command);

 while (response.PolicyNames?.length) {
 for (const policyName of response.PolicyNames) {
 yield policyName;
 }

 if (response.IsTruncated) {
 response = await client.send(
 new ListRolePoliciesCommand({
 RoleName: roleName,
 MaxItems: 10,
 Marker: response.Marker,
 }),
);
 } else {
 break;
 }
 }
}

• For API details, see ListRolePolicies in AWS SDK for JavaScript API Reference.

PHP

SDK for PHP

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Actions 1906

https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/client/iam/command/ListRolePoliciesCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/php/example_code/iam#code-examples

AWS Identity and Access Management User Guide

$uuid = uniqid();
$service = new IAMService();

 public function listRolePolicies($roleName, $marker = "", $maxItems = 0)
 {
 $listRolePoliciesArguments = ['RoleName' => $roleName];
 if ($marker) {
 $listRolePoliciesArguments['Marker'] = $marker;
 }
 if ($maxItems) {
 $listRolePoliciesArguments['MaxItems'] = $maxItems;
 }
 return $this->customWaiter(function () use ($listRolePoliciesArguments) {
 return $this->iamClient-
>listRolePolicies($listRolePoliciesArguments);
 });
 }

• For API details, see ListRolePolicies in AWS SDK for PHP API Reference.

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

def list_policies(role_name):
 """
 Lists inline policies for a role.

 :param role_name: The name of the role to query.
 """
 try:
 role = iam.Role(role_name)
 for policy in role.policies.all():
 logger.info("Got inline policy %s.", policy.name)

Actions 1907

https://docs.aws.amazon.com/goto/SdkForPHPV3/iam-2010-05-08/ListRolePolicies
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/iam#code-examples

AWS Identity and Access Management User Guide

 except ClientError:
 logger.exception("Couldn't list inline policies for %s.", role_name)
 raise

• For API details, see ListRolePolicies in AWS SDK for Python (Boto3) API Reference.

Ruby

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 # Lists policy ARNs attached to a role
 #
 # @param role_name [String] The name of the role
 # @return [Array<String>] List of policy ARNs
 def list_attached_policy_arns(role_name)
 response = @iam_client.list_attached_role_policies(role_name: role_name)
 response.attached_policies.map(&:policy_arn)
 rescue Aws::IAM::Errors::ServiceError => e
 @logger.error("Error listing policies attached to role: #{e.message}")
 []
 end

• For API details, see ListRolePolicies in AWS SDK for Ruby API Reference.

Actions 1908

https://docs.aws.amazon.com/goto/boto3/iam-2010-05-08/ListRolePolicies
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/iam#code-examples
https://docs.aws.amazon.com/goto/SdkForRubyV3/iam-2010-05-08/ListRolePolicies

AWS Identity and Access Management User Guide

Rust

SDK for Rust

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

pub async fn list_role_policies(
 client: &iamClient,
 role_name: &str,
 marker: Option<String>,
 max_items: Option<i32>,
) -> Result<ListRolePoliciesOutput, SdkError<ListRolePoliciesError>> {
 let response = client
 .list_role_policies()
 .role_name(role_name)
 .set_marker(marker)
 .set_max_items(max_items)
 .send()
 .await?;

 Ok(response)
}

• For API details, see ListRolePolicies in AWS SDK for Rust API reference.

Swift

SDK for Swift

Note

This is prerelease documentation for an SDK in preview release. It is subject to
change.

Actions 1909

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/rustv1/examples/iam#code-examples
https://docs.rs/releases/search?query=aws-sdk

AWS Identity and Access Management User Guide

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 public func listRolePolicies(role: String) async throws -> [String] {
 var policyList: [String] = []
 var marker: String? = nil
 var isTruncated: Bool

 repeat {
 let input = ListRolePoliciesInput(
 marker: marker,
 roleName: role
)
 let output = try await client.listRolePolicies(input: input)

 guard let policies = output.policyNames else {
 return policyList
 }

 for policy in policies {
 policyList.append(policy)
 }
 marker = output.marker
 isTruncated = output.isTruncated
 } while isTruncated == true
 return policyList
 }

• For API details, see ListRolePolicies in AWS SDK for Swift API reference.

For a complete list of AWS SDK developer guides and code examples, see Using IAM with an AWS
SDK. This topic also includes information about getting started and details about previous SDK
versions.

List inline IAM policies for a user using an AWS SDK

The following code examples show how to list inline IAM policies for a user.

Actions 1910

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/swift/example_code/iam#code-examples
https://awslabs.github.io/aws-sdk-swift/reference/0.x

AWS Identity and Access Management User Guide

Warning

To avoid security risks, don't use IAM users for authentication when developing purpose-
built software or working with real data. Instead, use federation with an identity provider
such as AWS IAM Identity Center.

CLI

AWS CLI

To list policies for an IAM user

The following list-user-policies command lists the policies that are attached to the
IAM user named Bob.

aws iam list-user-policies \
 --user-name Bob

Output:

{
 "PolicyNames": [
 "ExamplePolicy",
 "TestPolicy"
]
}

For more information, see Creating an IAM user in your AWS account in the AWS IAM User
Guide.

• For API details, see ListUserPolicies in AWS CLI Command Reference.

Actions 1911

https://docs.aws.amazon.com/singlesignon/latest/userguide/what-is.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_create.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/iam/list-user-policies.html

AWS Identity and Access Management User Guide

Go

SDK for Go V2

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

// UserWrapper encapsulates user actions used in the examples.
// It contains an IAM service client that is used to perform user actions.
type UserWrapper struct {
 IamClient *iam.Client
}

// ListUserPolicies lists the inline policies for the specified user.
func (wrapper UserWrapper) ListUserPolicies(userName string) ([]string, error) {
 var policies []string
 result, err := wrapper.IamClient.ListUserPolicies(context.TODO(),
 &iam.ListUserPoliciesInput{
 UserName: aws.String(userName),
 })
 if err != nil {
 log.Printf("Couldn't list policies for user %v. Here's why: %v\n", userName,
 err)
 } else {
 policies = result.PolicyNames
 }
 return policies, err
}

• For API details, see ListUserPolicies in AWS SDK for Go API Reference.

Actions 1912

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/gov2/iam#code-examples
https://pkg.go.dev/github.com/aws/aws-sdk-go-v2/service/iam#Client.ListUserPolicies

AWS Identity and Access Management User Guide

For a complete list of AWS SDK developer guides and code examples, see Using IAM with an AWS
SDK. This topic also includes information about getting started and details about previous SDK
versions.

List IAM policies using an AWS SDK

The following code examples show how to list IAM policies.

Action examples are code excerpts from larger programs and must be run in context. You can see
this action in context in the following code example:

• Manage policies

.NET

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 /// <summary>
 /// List IAM policies.
 /// </summary>
 /// <returns>A list of the IAM policies.</returns>
 public async Task<List<ManagedPolicy>> ListPoliciesAsync()
 {
 var listPoliciesPaginator = _IAMService.Paginators.ListPolicies(new
 ListPoliciesRequest());
 var policies = new List<ManagedPolicy>();

 await foreach (var response in listPoliciesPaginator.Responses)
 {
 policies.AddRange(response.Policies);
 }

 return policies;
 }

Actions 1913

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/IAM#code-examples

AWS Identity and Access Management User Guide

• For API details, see ListPolicies in AWS SDK for .NET API Reference.

C++

SDK for C++

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

bool AwsDoc::IAM::listPolicies(const Aws::Client::ClientConfiguration
 &clientConfig) {
 const Aws::String DATE_FORMAT("%Y-%m-%d");
 Aws::IAM::IAMClient iam(clientConfig);
 Aws::IAM::Model::ListPoliciesRequest request;

 bool done = false;
 bool header = false;
 while (!done) {
 auto outcome = iam.ListPolicies(request);
 if (!outcome.IsSuccess()) {
 std::cerr << "Failed to list iam policies: " <<
 outcome.GetError().GetMessage() << std::endl;
 return false;
 }

 if (!header) {
 std::cout << std::left << std::setw(55) << "Name" <<
 std::setw(30) << "ID" << std::setw(80) << "Arn" <<
 std::setw(64) << "Description" << std::setw(12) <<
 "CreateDate" << std::endl;
 header = true;
 }

 const auto &policies = outcome.GetResult().GetPolicies();
 for (const auto &policy: policies) {
 std::cout << std::left << std::setw(55) <<
 policy.GetPolicyName() << std::setw(30) <<

Actions 1914

https://docs.aws.amazon.com/goto/DotNetSDKV3/iam-2010-05-08/ListPolicies
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/cpp/example_code/iam#code-examples

AWS Identity and Access Management User Guide

 policy.GetPolicyId() << std::setw(80) << policy.GetArn() <<
 std::setw(64) << policy.GetDescription() << std::setw(12)
 <<
 policy.GetCreateDate().ToGmtString(DATE_FORMAT.c_str()) <<
 std::endl;
 }

 if (outcome.GetResult().GetIsTruncated()) {
 request.SetMarker(outcome.GetResult().GetMarker());
 }
 else {
 done = true;
 }
 }

 return true;
}

• For API details, see ListPolicies in AWS SDK for C++ API Reference.

CLI

AWS CLI

To list managed policies that are available to your AWS account

This example returns a collection of the first two managed policies available in the current
AWS account.

aws iam list-policies \
 --max-items 3

Output:

{
 "Policies": [
 {
 "PolicyName": "AWSCloudTrailAccessPolicy",
 "PolicyId": "ANPAXQE2B5PJ7YEXAMPLE",
 "Arn": "arn:aws:iam::123456789012:policy/AWSCloudTrailAccessPolicy",
 "Path": "/",

Actions 1915

https://docs.aws.amazon.com/goto/SdkForCpp/iam-2010-05-08/ListPolicies

AWS Identity and Access Management User Guide

 "DefaultVersionId": "v1",
 "AttachmentCount": 0,
 "PermissionsBoundaryUsageCount": 0,
 "IsAttachable": true,
 "CreateDate": "2019-09-04T17:43:42+00:00",
 "UpdateDate": "2019-09-04T17:43:42+00:00"
 },
 {
 "PolicyName": "AdministratorAccess",
 "PolicyId": "ANPAIWMBCKSKIEE64ZLYK",
 "Arn": "arn:aws:iam::aws:policy/AdministratorAccess",
 "Path": "/",
 "DefaultVersionId": "v1",
 "AttachmentCount": 6,
 "PermissionsBoundaryUsageCount": 0,
 "IsAttachable": true,
 "CreateDate": "2015-02-06T18:39:46+00:00",
 "UpdateDate": "2015-02-06T18:39:46+00:00"
 },
 {
 "PolicyName": "PowerUserAccess",
 "PolicyId": "ANPAJYRXTHIB4FOVS3ZXS",
 "Arn": "arn:aws:iam::aws:policy/PowerUserAccess",
 "Path": "/",
 "DefaultVersionId": "v5",
 "AttachmentCount": 1,
 "PermissionsBoundaryUsageCount": 0,
 "IsAttachable": true,
 "CreateDate": "2015-02-06T18:39:47+00:00",
 "UpdateDate": "2023-07-06T22:04:00+00:00"
 }
],
 "NextToken": "EXAMPLErZXIiOiBudWxsLCAiYm90b190cnVuY2F0ZV9hbW91bnQiOiA4fQ=="
}

For more information, see Policies and permissions in IAM in the AWS IAM User Guide.

• For API details, see ListPolicies in AWS CLI Command Reference.

Actions 1916

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/iam/list-policies.html

AWS Identity and Access Management User Guide

Go

SDK for Go V2

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

// PolicyWrapper encapsulates AWS Identity and Access Management (IAM) policy
 actions
// used in the examples.
// It contains an IAM service client that is used to perform policy actions.
type PolicyWrapper struct {
 IamClient *iam.Client
}

// ListPolicies gets up to maxPolicies policies.
func (wrapper PolicyWrapper) ListPolicies(maxPolicies int32) ([]types.Policy,
 error) {
 var policies []types.Policy
 result, err := wrapper.IamClient.ListPolicies(context.TODO(),
 &iam.ListPoliciesInput{
 MaxItems: aws.Int32(maxPolicies),
 })
 if err != nil {
 log.Printf("Couldn't list policies. Here's why: %v\n", err)
 } else {
 policies = result.Policies
 }
 return policies, err
}

• For API details, see ListPolicies in AWS SDK for Go API Reference.

Actions 1917

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/gov2/iam#code-examples
https://pkg.go.dev/github.com/aws/aws-sdk-go-v2/service/iam#Client.ListPolicies

AWS Identity and Access Management User Guide

JavaScript

SDK for JavaScript (v3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

List the policies.

import { ListPoliciesCommand, IAMClient } from "@aws-sdk/client-iam";

const client = new IAMClient({});

/**
 * A generator function that handles paginated results.
 * The AWS SDK for JavaScript (v3) provides {@link https://docs.aws.amazon.com/
AWSJavaScriptSDK/v3/latest/index.html#paginators | paginator} functions to
 simplify this.
 *
 */
export async function* listPolicies() {
 const command = new ListPoliciesCommand({
 MaxItems: 10,
 OnlyAttached: false,
 // List only the customer managed policies in your Amazon Web Services
 account.
 Scope: "Local",
 });

 let response = await client.send(command);

 while (response.Policies?.length) {
 for (const policy of response.Policies) {
 yield policy;
 }

 if (response.IsTruncated) {
 response = await client.send(
 new ListPoliciesCommand({
 Marker: response.Marker,

Actions 1918

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/iam#code-examples

AWS Identity and Access Management User Guide

 MaxItems: 10,
 OnlyAttached: false,
 Scope: "Local",
 }),
);
 } else {
 break;
 }
 }
}

• For API details, see ListPolicies in AWS SDK for JavaScript API Reference.

PHP

SDK for PHP

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

$uuid = uniqid();
$service = new IAMService();

 public function listPolicies($pathPrefix = "", $marker = "", $maxItems = 0)
 {
 $listPoliciesArguments = [];
 if ($pathPrefix) {
 $listPoliciesArguments["PathPrefix"] = $pathPrefix;
 }
 if ($marker) {
 $listPoliciesArguments["Marker"] = $marker;
 }
 if ($maxItems) {
 $listPoliciesArguments["MaxItems"] = $maxItems;
 }

 return $this->iamClient->listPolicies($listPoliciesArguments);
 }

Actions 1919

https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/client/iam/command/ListPoliciesCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/php/example_code/iam#code-examples

AWS Identity and Access Management User Guide

• For API details, see ListPolicies in AWS SDK for PHP API Reference.

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

def list_policies(scope):
 """
 Lists the policies in the current account.

 :param scope: Limits the kinds of policies that are returned. For example,
 'Local' specifies that only locally managed policies are
 returned.
 :return: The list of policies.
 """
 try:
 policies = list(iam.policies.filter(Scope=scope))
 logger.info("Got %s policies in scope '%s'.", len(policies), scope)
 except ClientError:
 logger.exception("Couldn't get policies for scope '%s'.", scope)
 raise
 else:
 return policies

• For API details, see ListPolicies in AWS SDK for Python (Boto3) API Reference.

Actions 1920

https://docs.aws.amazon.com/goto/SdkForPHPV3/iam-2010-05-08/ListPolicies
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/iam#code-examples
https://docs.aws.amazon.com/goto/boto3/iam-2010-05-08/ListPolicies

AWS Identity and Access Management User Guide

Ruby

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

This example module lists, creates, attaches, and detaches role policies.

Manages policies in AWS Identity and Access Management (IAM)
class RolePolicyManager
 # Initialize with an AWS IAM client
 #
 # @param iam_client [Aws::IAM::Client] An initialized IAM client
 def initialize(iam_client, logger: Logger.new($stdout))
 @iam_client = iam_client
 @logger = logger
 @logger.progname = "PolicyManager"
 end

 # Creates a policy
 #
 # @param policy_name [String] The name of the policy
 # @param policy_document [Hash] The policy document
 # @return [String] The policy ARN if successful, otherwise nil
 def create_policy(policy_name, policy_document)
 response = @iam_client.create_policy(
 policy_name: policy_name,
 policy_document: policy_document.to_json
)
 response.policy.arn
 rescue Aws::IAM::Errors::ServiceError => e
 @logger.error("Error creating policy: #{e.message}")
 nil
 end

 # Fetches an IAM policy by its ARN
 # @param policy_arn [String] the ARN of the IAM policy to retrieve
 # @return [Aws::IAM::Types::GetPolicyResponse] the policy object if found
 def get_policy(policy_arn)

Actions 1921

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/iam#code-examples

AWS Identity and Access Management User Guide

 response = @iam_client.get_policy(policy_arn: policy_arn)
 policy = response.policy
 @logger.info("Got policy '#{policy.policy_name}'. Its ID is:
 #{policy.policy_id}.")
 policy
 rescue Aws::IAM::Errors::NoSuchEntity
 @logger.error("Couldn't get policy '#{policy_arn}'. The policy does not
 exist.")
 raise
 rescue Aws::IAM::Errors::ServiceError => e
 @logger.error("Couldn't get policy '#{policy_arn}'. Here's why: #{e.code}:
 #{e.message}")
 raise
 end

 # Attaches a policy to a role
 #
 # @param role_name [String] The name of the role
 # @param policy_arn [String] The policy ARN
 # @return [Boolean] true if successful, false otherwise
 def attach_policy_to_role(role_name, policy_arn)
 @iam_client.attach_role_policy(
 role_name: role_name,
 policy_arn: policy_arn
)
 true
 rescue Aws::IAM::Errors::ServiceError => e
 @logger.error("Error attaching policy to role: #{e.message}")
 false
 end

 # Lists policy ARNs attached to a role
 #
 # @param role_name [String] The name of the role
 # @return [Array<String>] List of policy ARNs
 def list_attached_policy_arns(role_name)
 response = @iam_client.list_attached_role_policies(role_name: role_name)
 response.attached_policies.map(&:policy_arn)
 rescue Aws::IAM::Errors::ServiceError => e
 @logger.error("Error listing policies attached to role: #{e.message}")
 []
 end

 # Detaches a policy from a role

Actions 1922

AWS Identity and Access Management User Guide

 #
 # @param role_name [String] The name of the role
 # @param policy_arn [String] The policy ARN
 # @return [Boolean] true if successful, false otherwise
 def detach_policy_from_role(role_name, policy_arn)
 @iam_client.detach_role_policy(
 role_name: role_name,
 policy_arn: policy_arn
)
 true
 rescue Aws::IAM::Errors::ServiceError => e
 @logger.error("Error detaching policy from role: #{e.message}")
 false
 end
end

• For API details, see ListPolicies in AWS SDK for Ruby API Reference.

Rust

SDK for Rust

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

pub async fn list_policies(
 client: iamClient,
 path_prefix: String,
) -> Result<Vec<String>, SdkError<ListPoliciesError>> {
 let list_policies = client
 .list_policies()
 .path_prefix(path_prefix)
 .scope(PolicyScopeType::Local)
 .into_paginator()
 .items()
 .send()
 .try_collect()
 .await?;

Actions 1923

https://docs.aws.amazon.com/goto/SdkForRubyV3/iam-2010-05-08/ListPolicies
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/rustv1/examples/iam#code-examples

AWS Identity and Access Management User Guide

 let policy_names = list_policies
 .into_iter()
 .map(|p| {
 let name = p
 .policy_name
 .unwrap_or_else(|| "Missing Policy Name".to_string());
 println!("{}", name);
 name
 })
 .collect();

 Ok(policy_names)
}

• For API details, see ListPolicies in AWS SDK for Rust API reference.

Swift

SDK for Swift

Note

This is prerelease documentation for an SDK in preview release. It is subject to
change.

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 public func listPolicies() async throws -> [MyPolicyRecord] {
 var policyList: [MyPolicyRecord] = []
 var marker: String? = nil
 var isTruncated: Bool

 repeat {

Actions 1924

https://docs.rs/releases/search?query=aws-sdk
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/swift/example_code/iam#code-examples

AWS Identity and Access Management User Guide

 let input = ListPoliciesInput(marker: marker)
 let output = try await client.listPolicies(input: input)

 guard let policies = output.policies else {
 return policyList
 }

 for policy in policies {
 guard let name = policy.policyName,
 let id = policy.policyId,
 let arn = policy.arn else {
 throw ServiceHandlerError.noSuchPolicy
 }
 policyList.append(MyPolicyRecord(name: name, id: id, arn: arn))
 }
 marker = output.marker
 isTruncated = output.isTruncated
 } while isTruncated == true
 return policyList
 }

• For API details, see ListPolicies in AWS SDK for Swift API reference.

For a complete list of AWS SDK developer guides and code examples, see Using IAM with an AWS
SDK. This topic also includes information about getting started and details about previous SDK
versions.

List policies attached to an IAM role using an AWS SDK

The following code examples show how to list policies attached to an IAM role.

.NET

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Actions 1925

https://awslabs.github.io/aws-sdk-swift/reference/0.x
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/IAM#code-examples

AWS Identity and Access Management User Guide

 /// <summary>
 /// List the IAM role policies that are attached to an IAM role.
 /// </summary>
 /// <param name="roleName">The IAM role to list IAM policies for.</param>
 /// <returns>A list of the IAM policies attached to the IAM role.</returns>
 public async Task<List<AttachedPolicyType>>
 ListAttachedRolePoliciesAsync(string roleName)
 {
 var attachedPolicies = new List<AttachedPolicyType>();
 var attachedRolePoliciesPaginator =
 _IAMService.Paginators.ListAttachedRolePolicies(new
 ListAttachedRolePoliciesRequest { RoleName = roleName });

 await foreach (var response in attachedRolePoliciesPaginator.Responses)
 {
 attachedPolicies.AddRange(response.AttachedPolicies);
 }

 return attachedPolicies;
 }

• For API details, see ListAttachedRolePolicies in AWS SDK for .NET API Reference.

CLI

AWS CLI

To list all managed policies that are attached to the specified role

This command returns the names and ARNs of the managed policies attached to the IAM
role named SecurityAuditRole in the AWS account.

aws iam list-attached-role-policies \
 --role-name SecurityAuditRole

Output:

{
 "AttachedPolicies": [

Actions 1926

https://docs.aws.amazon.com/goto/DotNetSDKV3/iam-2010-05-08/ListAttachedRolePolicies

AWS Identity and Access Management User Guide

 {
 "PolicyName": "SecurityAudit",
 "PolicyArn": "arn:aws:iam::aws:policy/SecurityAudit"
 }
],
 "IsTruncated": false
}

For more information, see Policies and permissions in IAM in the AWS IAM User Guide.

• For API details, see ListAttachedRolePolicies in AWS CLI Command Reference.

Go

SDK for Go V2

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

// RoleWrapper encapsulates AWS Identity and Access Management (IAM) role actions
// used in the examples.
// It contains an IAM service client that is used to perform role actions.
type RoleWrapper struct {
 IamClient *iam.Client
}

// ListAttachedRolePolicies lists the policies that are attached to the specified
 role.
func (wrapper RoleWrapper) ListAttachedRolePolicies(roleName string)
 ([]types.AttachedPolicy, error) {
 var policies []types.AttachedPolicy
 result, err := wrapper.IamClient.ListAttachedRolePolicies(context.TODO(),
 &iam.ListAttachedRolePoliciesInput{
 RoleName: aws.String(roleName),
 })
 if err != nil {

Actions 1927

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/iam/list-attached-role-policies.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/gov2/iam#code-examples

AWS Identity and Access Management User Guide

 log.Printf("Couldn't list attached policies for role %v. Here's why: %v\n",
 roleName, err)
 } else {
 policies = result.AttachedPolicies
 }
 return policies, err
}

• For API details, see ListAttachedRolePolicies in AWS SDK for Go API Reference.

JavaScript

SDK for JavaScript (v3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

List the policies that are attached to a role.

import {
 ListAttachedRolePoliciesCommand,
 IAMClient,
} from "@aws-sdk/client-iam";

const client = new IAMClient({});

/**
 * A generator function that handles paginated results.
 * The AWS SDK for JavaScript (v3) provides {@link https://docs.aws.amazon.com/
AWSJavaScriptSDK/v3/latest/index.html#paginators | paginator} functions to
 simplify this.
 * @param {string} roleName
 */
export async function* listAttachedRolePolicies(roleName) {
 const command = new ListAttachedRolePoliciesCommand({
 RoleName: roleName,
 });

Actions 1928

https://pkg.go.dev/github.com/aws/aws-sdk-go-v2/service/iam#Client.ListAttachedRolePolicies
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/iam#code-examples

AWS Identity and Access Management User Guide

 let response = await client.send(command);

 while (response.AttachedPolicies?.length) {
 for (const policy of response.AttachedPolicies) {
 yield policy;
 }

 if (response.IsTruncated) {
 response = await client.send(
 new ListAttachedRolePoliciesCommand({
 RoleName: roleName,
 Marker: response.Marker,
 }),
);
 } else {
 break;
 }
 }
}

• For API details, see ListAttachedRolePolicies in AWS SDK for JavaScript API Reference.

PHP

SDK for PHP

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

$uuid = uniqid();
$service = new IAMService();

 public function listAttachedRolePolicies($roleName, $pathPrefix = "", $marker
 = "", $maxItems = 0)
 {
 $listAttachRolePoliciesArguments = ['RoleName' => $roleName];
 if ($pathPrefix) {

Actions 1929

https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/client/iam/command/ListAttachedRolePoliciesCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/php/example_code/iam#code-examples

AWS Identity and Access Management User Guide

 $listAttachRolePoliciesArguments['PathPrefix'] = $pathPrefix;
 }
 if ($marker) {
 $listAttachRolePoliciesArguments['Marker'] = $marker;
 }
 if ($maxItems) {
 $listAttachRolePoliciesArguments['MaxItems'] = $maxItems;
 }
 return $this->iamClient-
>listAttachedRolePolicies($listAttachRolePoliciesArguments);
 }

• For API details, see ListAttachedRolePolicies in AWS SDK for PHP API Reference.

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

def list_attached_policies(role_name):
 """
 Lists policies attached to a role.

 :param role_name: The name of the role to query.
 """
 try:
 role = iam.Role(role_name)
 for policy in role.attached_policies.all():
 logger.info("Got policy %s.", policy.arn)
 except ClientError:
 logger.exception("Couldn't list attached policies for %s.", role_name)
 raise

Actions 1930

https://docs.aws.amazon.com/goto/SdkForPHPV3/iam-2010-05-08/ListAttachedRolePolicies
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/iam#code-examples

AWS Identity and Access Management User Guide

• For API details, see ListAttachedRolePolicies in AWS SDK for Python (Boto3) API Reference.

Ruby

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

This example module lists, creates, attaches, and detaches role policies.

Manages policies in AWS Identity and Access Management (IAM)
class RolePolicyManager
 # Initialize with an AWS IAM client
 #
 # @param iam_client [Aws::IAM::Client] An initialized IAM client
 def initialize(iam_client, logger: Logger.new($stdout))
 @iam_client = iam_client
 @logger = logger
 @logger.progname = "PolicyManager"
 end

 # Creates a policy
 #
 # @param policy_name [String] The name of the policy
 # @param policy_document [Hash] The policy document
 # @return [String] The policy ARN if successful, otherwise nil
 def create_policy(policy_name, policy_document)
 response = @iam_client.create_policy(
 policy_name: policy_name,
 policy_document: policy_document.to_json
)
 response.policy.arn
 rescue Aws::IAM::Errors::ServiceError => e
 @logger.error("Error creating policy: #{e.message}")
 nil
 end

 # Fetches an IAM policy by its ARN

Actions 1931

https://docs.aws.amazon.com/goto/boto3/iam-2010-05-08/ListAttachedRolePolicies
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/iam#code-examples

AWS Identity and Access Management User Guide

 # @param policy_arn [String] the ARN of the IAM policy to retrieve
 # @return [Aws::IAM::Types::GetPolicyResponse] the policy object if found
 def get_policy(policy_arn)
 response = @iam_client.get_policy(policy_arn: policy_arn)
 policy = response.policy
 @logger.info("Got policy '#{policy.policy_name}'. Its ID is:
 #{policy.policy_id}.")
 policy
 rescue Aws::IAM::Errors::NoSuchEntity
 @logger.error("Couldn't get policy '#{policy_arn}'. The policy does not
 exist.")
 raise
 rescue Aws::IAM::Errors::ServiceError => e
 @logger.error("Couldn't get policy '#{policy_arn}'. Here's why: #{e.code}:
 #{e.message}")
 raise
 end

 # Attaches a policy to a role
 #
 # @param role_name [String] The name of the role
 # @param policy_arn [String] The policy ARN
 # @return [Boolean] true if successful, false otherwise
 def attach_policy_to_role(role_name, policy_arn)
 @iam_client.attach_role_policy(
 role_name: role_name,
 policy_arn: policy_arn
)
 true
 rescue Aws::IAM::Errors::ServiceError => e
 @logger.error("Error attaching policy to role: #{e.message}")
 false
 end

 # Lists policy ARNs attached to a role
 #
 # @param role_name [String] The name of the role
 # @return [Array<String>] List of policy ARNs
 def list_attached_policy_arns(role_name)
 response = @iam_client.list_attached_role_policies(role_name: role_name)
 response.attached_policies.map(&:policy_arn)
 rescue Aws::IAM::Errors::ServiceError => e
 @logger.error("Error listing policies attached to role: #{e.message}")
 []

Actions 1932

AWS Identity and Access Management User Guide

 end

 # Detaches a policy from a role
 #
 # @param role_name [String] The name of the role
 # @param policy_arn [String] The policy ARN
 # @return [Boolean] true if successful, false otherwise
 def detach_policy_from_role(role_name, policy_arn)
 @iam_client.detach_role_policy(
 role_name: role_name,
 policy_arn: policy_arn
)
 true
 rescue Aws::IAM::Errors::ServiceError => e
 @logger.error("Error detaching policy from role: #{e.message}")
 false
 end
end

• For API details, see ListAttachedRolePolicies in AWS SDK for Ruby API Reference.

Rust

SDK for Rust

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

pub async fn list_attached_role_policies(
 client: &iamClient,
 role_name: String,
 path_prefix: Option<String>,
 marker: Option<String>,
 max_items: Option<i32>,
) -> Result<ListAttachedRolePoliciesOutput,
 SdkError<ListAttachedRolePoliciesError>> {
 let response = client
 .list_attached_role_policies()

Actions 1933

https://docs.aws.amazon.com/goto/SdkForRubyV3/iam-2010-05-08/ListAttachedRolePolicies
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/rustv1/examples/iam#code-examples

AWS Identity and Access Management User Guide

 .role_name(role_name)
 .set_path_prefix(path_prefix)
 .set_marker(marker)
 .set_max_items(max_items)
 .send()
 .await?;

 Ok(response)
}

• For API details, see ListAttachedRolePolicies in AWS SDK for Rust API reference.

Swift

SDK for Swift

Note

This is prerelease documentation for an SDK in preview release. It is subject to
change.

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 /// Returns a list of AWS Identity and Access Management (IAM) policies
 /// that are attached to the role.
 ///
 /// - Parameter role: The IAM role to return the policy list for.
 ///
 /// - Returns: An array of `IAMClientTypes.AttachedPolicy` objects
 /// describing each managed policy that's attached to the role.
 public func listAttachedRolePolicies(role: String) async throws ->
 [IAMClientTypes.AttachedPolicy] {
 var policyList: [IAMClientTypes.AttachedPolicy] = []
 var marker: String? = nil

Actions 1934

https://docs.rs/releases/search?query=aws-sdk
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/swift/example_code/iam#code-examples

AWS Identity and Access Management User Guide

 var isTruncated: Bool

 repeat {
 let input = ListAttachedRolePoliciesInput(
 marker: marker,
 roleName: role
)
 let output = try await client.listAttachedRolePolicies(input: input)

 guard let attachedPolicies = output.attachedPolicies else {
 return policyList
 }

 for attachedPolicy in attachedPolicies {
 policyList.append(attachedPolicy)
 }
 marker = output.marker
 isTruncated = output.isTruncated
 } while isTruncated == true
 return policyList
 }

• For API details, see ListAttachedRolePolicies in AWS SDK for Swift API reference.

For a complete list of AWS SDK developer guides and code examples, see Using IAM with an AWS
SDK. This topic also includes information about getting started and details about previous SDK
versions.

List IAM roles using an AWS SDK

The following code examples show how to list IAM roles.

.NET

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Actions 1935

https://awslabs.github.io/aws-sdk-swift/reference/0.x
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/IAM#code-examples

AWS Identity and Access Management User Guide

 /// <summary>
 /// List IAM roles.
 /// </summary>
 /// <returns>A list of IAM roles.</returns>
 public async Task<List<Role>> ListRolesAsync()
 {
 var listRolesPaginator = _IAMService.Paginators.ListRoles(new
 ListRolesRequest());
 var roles = new List<Role>();

 await foreach (var response in listRolesPaginator.Responses)
 {
 roles.AddRange(response.Roles);
 }

 return roles;
 }

• For API details, see ListRoles in AWS SDK for .NET API Reference.

CLI

AWS CLI

To list IAM roles for the current account

The following list-roles command lists IAM roles for the current account.

aws iam list-roles

Output:

{
 "Roles": [
 {
 "Path": "/",
 "RoleName": "ExampleRole",
 "RoleId": "AROAJ52OTH4H7LEXAMPLE",
 "Arn": "arn:aws:iam::123456789012:role/ExampleRole",

Actions 1936

https://docs.aws.amazon.com/goto/DotNetSDKV3/iam-2010-05-08/ListRoles

AWS Identity and Access Management User Guide

 "CreateDate": "2017-09-12T19:23:36+00:00",
 "AssumeRolePolicyDocument": {
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "",
 "Effect": "Allow",
 "Principal": {
 "Service": "ec2.amazonaws.com"
 },
 "Action": "sts:AssumeRole"
 }
]
 },
 "MaxSessionDuration": 3600
 },
 {
 "Path": "/example_path/",
 "RoleName": "ExampleRoleWithPath",
 "RoleId": "AROAI4QRP7UFT7EXAMPLE",
 "Arn": "arn:aws:iam::123456789012:role/example_path/
ExampleRoleWithPath",
 "CreateDate": "2023-09-21T20:29:38+00:00",
 "AssumeRolePolicyDocument": {
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "",
 "Effect": "Allow",
 "Principal": {
 "Service": "ec2.amazonaws.com"
 },
 "Action": "sts:AssumeRole"
 }
]
 },
 "MaxSessionDuration": 3600
 }
]
}

For more information, see Creating IAM roles in the AWS IAM User Guide.

• For API details, see ListRoles in AWS CLI Command Reference.

Actions 1937

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/iam/list-roles.html

AWS Identity and Access Management User Guide

Go

SDK for Go V2

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

// RoleWrapper encapsulates AWS Identity and Access Management (IAM) role actions
// used in the examples.
// It contains an IAM service client that is used to perform role actions.
type RoleWrapper struct {
 IamClient *iam.Client
}

// ListRoles gets up to maxRoles roles.
func (wrapper RoleWrapper) ListRoles(maxRoles int32) ([]types.Role, error) {
 var roles []types.Role
 result, err := wrapper.IamClient.ListRoles(context.TODO(),
 &iam.ListRolesInput{MaxItems: aws.Int32(maxRoles)},
)
 if err != nil {
 log.Printf("Couldn't list roles. Here's why: %v\n", err)
 } else {
 roles = result.Roles
 }
 return roles, err
}

• For API details, see ListRoles in AWS SDK for Go API Reference.

Actions 1938

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/gov2/iam#code-examples
https://pkg.go.dev/github.com/aws/aws-sdk-go-v2/service/iam#Client.ListRoles

AWS Identity and Access Management User Guide

JavaScript

SDK for JavaScript (v3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

List the roles.

import { ListRolesCommand, IAMClient } from "@aws-sdk/client-iam";

const client = new IAMClient({});

/**
 * A generator function that handles paginated results.
 * The AWS SDK for JavaScript (v3) provides {@link https://docs.aws.amazon.com/
AWSJavaScriptSDK/v3/latest/index.html#paginators | paginator} functions to
 simplify this.
 *
 */
export async function* listRoles() {
 const command = new ListRolesCommand({
 MaxItems: 10,
 });

 /**
 * @type {import("@aws-sdk/client-iam").ListRolesCommandOutput | undefined}
 */
 let response = await client.send(command);

 while (response?.Roles?.length) {
 for (const role of response.Roles) {
 yield role;
 }

 if (response.IsTruncated) {
 response = await client.send(
 new ListRolesCommand({
 Marker: response.Marker,
 }),

Actions 1939

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/iam#code-examples

AWS Identity and Access Management User Guide

);
 } else {
 break;
 }
 }
}

• For API details, see ListRoles in AWS SDK for JavaScript API Reference.

PHP

SDK for PHP

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

$uuid = uniqid();
$service = new IAMService();

 /**
 * @param string $pathPrefix
 * @param string $marker
 * @param int $maxItems
 * @return Result
 * $roles = $service->listRoles();
 */
 public function listRoles($pathPrefix = "", $marker = "", $maxItems = 0)
 {
 $listRolesArguments = [];
 if ($pathPrefix) {
 $listRolesArguments["PathPrefix"] = $pathPrefix;
 }
 if ($marker) {
 $listRolesArguments["Marker"] = $marker;
 }
 if ($maxItems) {
 $listRolesArguments["MaxItems"] = $maxItems;
 }

Actions 1940

https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/client/iam/command/ListRolesCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/php/example_code/iam#code-examples

AWS Identity and Access Management User Guide

 return $this->iamClient->listRoles($listRolesArguments);
 }

• For API details, see ListRoles in AWS SDK for PHP API Reference.

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

def list_roles(count):
 """
 Lists the specified number of roles for the account.

 :param count: The number of roles to list.
 """
 try:
 roles = list(iam.roles.limit(count=count))
 for role in roles:
 logger.info("Role: %s", role.name)
 except ClientError:
 logger.exception("Couldn't list roles for the account.")
 raise
 else:
 return roles

• For API details, see ListRoles in AWS SDK for Python (Boto3) API Reference.

Actions 1941

https://docs.aws.amazon.com/goto/SdkForPHPV3/iam-2010-05-08/ListRoles
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/iam#code-examples
https://docs.aws.amazon.com/goto/boto3/iam-2010-05-08/ListRoles

AWS Identity and Access Management User Guide

Ruby

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 # Lists IAM roles up to a specified count.
 # @param count [Integer] the maximum number of roles to list.
 # @return [Array<String>] the names of the roles.
 def list_roles(count)
 role_names = []
 roles_counted = 0

 @iam_client.list_roles.each_page do |page|
 page.roles.each do |role|
 break if roles_counted >= count
 @logger.info("\t#{roles_counted + 1}: #{role.role_name}")
 role_names << role.role_name
 roles_counted += 1
 end
 break if roles_counted >= count
 end

 role_names
 rescue Aws::IAM::Errors::ServiceError => e
 @logger.error("Couldn't list roles for the account. Here's why:")
 @logger.error("\t#{e.code}: #{e.message}")
 raise
 end

• For API details, see ListRoles in AWS SDK for Ruby API Reference.

Actions 1942

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/iam#code-examples
https://docs.aws.amazon.com/goto/SdkForRubyV3/iam-2010-05-08/ListRoles

AWS Identity and Access Management User Guide

Rust

SDK for Rust

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

pub async fn list_roles(
 client: &iamClient,
 path_prefix: Option<String>,
 marker: Option<String>,
 max_items: Option<i32>,
) -> Result<ListRolesOutput, SdkError<ListRolesError>> {
 let response = client
 .list_roles()
 .set_path_prefix(path_prefix)
 .set_marker(marker)
 .set_max_items(max_items)
 .send()
 .await?;
 Ok(response)
}

• For API details, see ListRoles in AWS SDK for Rust API reference.

Swift

SDK for Swift

Note

This is prerelease documentation for an SDK in preview release. It is subject to
change.

Actions 1943

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/rustv1/examples/iam#code-examples
https://docs.rs/releases/search?query=aws-sdk

AWS Identity and Access Management User Guide

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 public func listRoles() async throws -> [String] {
 var roleList: [String] = []
 var marker: String? = nil
 var isTruncated: Bool

 repeat {
 let input = ListRolesInput(marker: marker)
 let output = try await client.listRoles(input: input)

 guard let roles = output.roles else {
 return roleList
 }

 for role in roles {
 if let name = role.roleName {
 roleList.append(name)
 }
 }
 marker = output.marker
 isTruncated = output.isTruncated
 } while isTruncated == true
 return roleList
 }

• For API details, see ListRoles in AWS SDK for Swift API reference.

For a complete list of AWS SDK developer guides and code examples, see Using IAM with an AWS
SDK. This topic also includes information about getting started and details about previous SDK
versions.

List IAM server certificates using an AWS SDK

The following code examples show how to list IAM server certificates.

Actions 1944

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/swift/example_code/iam#code-examples
https://awslabs.github.io/aws-sdk-swift/reference/0.x

AWS Identity and Access Management User Guide

C++

SDK for C++

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

bool AwsDoc::IAM::listServerCertificates(
 const Aws::Client::ClientConfiguration &clientConfig) {
 const Aws::String DATE_FORMAT = "%Y-%m-%d";

 Aws::IAM::IAMClient iam(clientConfig);
 Aws::IAM::Model::ListServerCertificatesRequest request;

 bool done = false;
 bool header = false;
 while (!done) {
 auto outcome = iam.ListServerCertificates(request);
 if (!outcome.IsSuccess()) {
 std::cerr << "Failed to list server certificates: " <<
 outcome.GetError().GetMessage() << std::endl;
 return false;
 }

 if (!header) {
 std::cout << std::left << std::setw(55) << "Name" <<
 std::setw(30) << "ID" << std::setw(80) << "Arn" <<
 std::setw(14) << "UploadDate" << std::setw(14) <<
 "ExpirationDate" << std::endl;
 header = true;
 }

 const auto &certificates =
 outcome.GetResult().GetServerCertificateMetadataList();

 for (const auto &certificate: certificates) {
 std::cout << std::left << std::setw(55) <<
 certificate.GetServerCertificateName() << std::setw(30) <<
 certificate.GetServerCertificateId() << std::setw(80) <<

Actions 1945

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/cpp/example_code/iam#code-examples

AWS Identity and Access Management User Guide

 certificate.GetArn() << std::setw(14) <<

 certificate.GetUploadDate().ToGmtString(DATE_FORMAT.c_str()) <<
 std::setw(14) <<

 certificate.GetExpiration().ToGmtString(DATE_FORMAT.c_str()) <<
 std::endl;
 }

 if (outcome.GetResult().GetIsTruncated()) {
 request.SetMarker(outcome.GetResult().GetMarker());
 }
 else {
 done = true;
 }
 }

 return true;
}

• For API details, see ListServerCertificates in AWS SDK for C++ API Reference.

CLI

AWS CLI

To list the server certificates in your AWS account

The following list-server-certificates command lists all of the server certificates
stored and available for use in your AWS account.

aws iam list-server-certificates

Output:

{
 "ServerCertificateMetadataList": [
 {
 "Path": "/",
 "ServerCertificateName": "myUpdatedServerCertificate",
 "ServerCertificateId": "ASCAEXAMPLE123EXAMPLE",

Actions 1946

https://docs.aws.amazon.com/goto/SdkForCpp/iam-2010-05-08/ListServerCertificates

AWS Identity and Access Management User Guide

 "Arn": "arn:aws:iam::123456789012:server-certificate/
myUpdatedServerCertificate",
 "UploadDate": "2019-04-22T21:13:44+00:00",
 "Expiration": "2019-10-15T22:23:16+00:00"
 },
 {
 "Path": "/cloudfront/",
 "ServerCertificateName": "MyTestCert",
 "ServerCertificateId": "ASCAEXAMPLE456EXAMPLE",
 "Arn": "arn:aws:iam::123456789012:server-certificate/Org1/Org2/
MyTestCert",
 "UploadDate": "2015-04-21T18:14:16+00:00",
 "Expiration": "2018-01-14T17:52:36+00:00"
 }
]
}

For more information, see Managing server certificates in IAM in the AWS IAM User Guide.

• For API details, see ListServerCertificates in AWS CLI Command Reference.

JavaScript

SDK for JavaScript (v3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

List the certificates.

import { ListServerCertificatesCommand, IAMClient } from "@aws-sdk/client-iam";

const client = new IAMClient({});

/**
 * A generator function that handles paginated results.
 * The AWS SDK for JavaScript (v3) provides {@link https://docs.aws.amazon.com/
AWSJavaScriptSDK/v3/latest/index.html#paginators | paginator} functions to
 simplify this.

Actions 1947

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_server-certs.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/iam/list-server-certificates.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/iam#code-examples

AWS Identity and Access Management User Guide

 *
 */
export async function* listServerCertificates() {
 const command = new ListServerCertificatesCommand({});
 let response = await client.send(command);

 while (response.ServerCertificateMetadataList?.length) {
 for await (const cert of response.ServerCertificateMetadataList) {
 yield cert;
 }

 if (response.IsTruncated) {
 response = await client.send(new ListServerCertificatesCommand({}));
 } else {
 break;
 }
 }
}

• For more information, see AWS SDK for JavaScript Developer Guide.

• For API details, see ListServerCertificates in AWS SDK for JavaScript API Reference.

SDK for JavaScript (v2)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set the region
AWS.config.update({ region: "REGION" });

// Create the IAM service object
var iam = new AWS.IAM({ apiVersion: "2010-05-08" });

iam.listServerCertificates({}, function (err, data) {
 if (err) {
 console.log("Error", err);

Actions 1948

https://docs.aws.amazon.com/sdk-for-javascript/v3/developer-guide/iam-examples-server-certificates.html#iam-examples-server-certificates-listing
https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/client/iam/command/ListServerCertificatesCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascript/example_code/iam#code-examples

AWS Identity and Access Management User Guide

 } else {
 console.log("Success", data);
 }
});

• For more information, see AWS SDK for JavaScript Developer Guide.

• For API details, see ListServerCertificates in AWS SDK for JavaScript API Reference.

Ruby

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

List, update, and delete server certificates.

class ServerCertificateManager
 def initialize(iam_client, logger: Logger.new($stdout))
 @iam_client = iam_client
 @logger = logger
 @logger.progname = "ServerCertificateManager"
 end

 # Creates a new server certificate.
 # @param name [String] the name of the server certificate
 # @param certificate_body [String] the contents of the certificate
 # @param private_key [String] the private key contents
 # @return [Boolean] returns true if the certificate was successfully created
 def create_server_certificate(name, certificate_body, private_key)
 @iam_client.upload_server_certificate({
 server_certificate_name: name,
 certificate_body: certificate_body,
 private_key: private_key,
 })
 true
 rescue Aws::IAM::Errors::ServiceError => e

Actions 1949

https://docs.aws.amazon.com/sdk-for-javascript/v2/developer-guide/iam-examples-server-certificates.html#iam-examples-server-certificates-listing
https://docs.aws.amazon.com/goto/AWSJavaScriptSDK/iam-2010-05-08/ListServerCertificates
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/iam#code-examples

AWS Identity and Access Management User Guide

 puts "Failed to create server certificate: #{e.message}"
 false
 end

 # Lists available server certificate names.
 def list_server_certificate_names
 response = @iam_client.list_server_certificates

 if response.server_certificate_metadata_list.empty?
 @logger.info("No server certificates found.")
 return
 end

 response.server_certificate_metadata_list.each do |certificate_metadata|
 @logger.info("Certificate Name:
 #{certificate_metadata.server_certificate_name}")
 end
 rescue Aws::IAM::Errors::ServiceError => e
 @logger.error("Error listing server certificates: #{e.message}")
 end

 # Updates the name of a server certificate.
 def update_server_certificate_name(current_name, new_name)
 @iam_client.update_server_certificate(
 server_certificate_name: current_name,
 new_server_certificate_name: new_name
)
 @logger.info("Server certificate name updated from '#{current_name}' to
 '#{new_name}'.")
 true
 rescue Aws::IAM::Errors::ServiceError => e
 @logger.error("Error updating server certificate name: #{e.message}")
 false
 end

 # Deletes a server certificate.
 def delete_server_certificate(name)
 @iam_client.delete_server_certificate(server_certificate_name: name)
 @logger.info("Server certificate '#{name}' deleted.")
 true
 rescue Aws::IAM::Errors::ServiceError => e
 @logger.error("Error deleting server certificate: #{e.message}")
 false
 end

Actions 1950

AWS Identity and Access Management User Guide

end

• For API details, see ListServerCertificates in AWS SDK for Ruby API Reference.

For a complete list of AWS SDK developer guides and code examples, see Using IAM with an AWS
SDK. This topic also includes information about getting started and details about previous SDK
versions.

List IAM users using an AWS SDK

The following code examples show how to list IAM users.

Warning

To avoid security risks, don't use IAM users for authentication when developing purpose-
built software or working with real data. Instead, use federation with an identity provider
such as AWS IAM Identity Center.

Action examples are code excerpts from larger programs and must be run in context. You can see
this action in context in the following code example:

• Create read-only and read-write users

.NET

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 /// <summary>
 /// List IAM users.
 /// </summary>
 /// <returns>A list of IAM users.</returns>

Actions 1951

https://docs.aws.amazon.com/goto/SdkForRubyV3/iam-2010-05-08/ListServerCertificates
https://docs.aws.amazon.com/singlesignon/latest/userguide/what-is.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/IAM#code-examples

AWS Identity and Access Management User Guide

 public async Task<List<User>> ListUsersAsync()
 {
 var listUsersPaginator = _IAMService.Paginators.ListUsers(new
 ListUsersRequest());
 var users = new List<User>();

 await foreach (var response in listUsersPaginator.Responses)
 {
 users.AddRange(response.Users);
 }

 return users;
 }

• For API details, see ListUsers in AWS SDK for .NET API Reference.

Bash

AWS CLI with Bash script

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

###
function errecho
#
This function outputs everything sent to it to STDERR (standard error output).
###
function errecho() {
 printf "%s\n" "$*" 1>&2
}

###
function iam_list_users
#
List the IAM users in the account.
#

Actions 1952

https://docs.aws.amazon.com/goto/DotNetSDKV3/iam-2010-05-08/ListUsers
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/aws-cli/bash-linux/iam#code-examples

AWS Identity and Access Management User Guide

Returns:
The list of users names
And:
0 - If the user already exists.
1 - If the user doesn't exist.
###
function iam_list_users() {
 local option OPTARG # Required to use getopts command in a function.
 local error_code
 # bashsupport disable=BP5008
 function usage() {
 echo "function iam_list_users"
 echo "Lists the AWS Identity and Access Management (IAM) user in the
 account."
 echo ""
 }

 # Retrieve the calling parameters.
 while getopts "h" option; do
 case "${option}" in
 h)
 usage
 return 0
 ;;
 \?)
 echo "Invalid parameter"
 usage
 return 1
 ;;
 esac
 done
 export OPTIND=1

 local response

 response=$(aws iam list-users \
 --output text \
 --query "Users[].UserName")
 error_code=${?}

 if [[$error_code -ne 0]]; then
 aws_cli_error_log $error_code
 errecho "ERROR: AWS reports list-users operation failed.$response"
 return 1

Actions 1953

AWS Identity and Access Management User Guide

 fi

 echo "$response"

 return 0
}

• For API details, see ListUsers in AWS CLI Command Reference.

C++

SDK for C++

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

bool AwsDoc::IAM::listUsers(const Aws::Client::ClientConfiguration &clientConfig)
 {
 const Aws::String DATE_FORMAT = "%Y-%m-%d";
 Aws::IAM::IAMClient iam(clientConfig);
 Aws::IAM::Model::ListUsersRequest request;

 bool done = false;
 bool header = false;
 while (!done) {
 auto outcome = iam.ListUsers(request);
 if (!outcome.IsSuccess()) {
 std::cerr << "Failed to list iam users:" <<
 outcome.GetError().GetMessage() << std::endl;
 return false;
 }

 if (!header) {
 std::cout << std::left << std::setw(32) << "Name" <<
 std::setw(30) << "ID" << std::setw(64) << "Arn" <<
 std::setw(20) << "CreateDate" << std::endl;
 header = true;
 }

Actions 1954

https://docs.aws.amazon.com/goto/aws-cli/iam-2010-05-08/ListUsers
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/cpp/example_code/iam#code-examples

AWS Identity and Access Management User Guide

 const auto &users = outcome.GetResult().GetUsers();
 for (const auto &user: users) {
 std::cout << std::left << std::setw(32) << user.GetUserName() <<
 std::setw(30) << user.GetUserId() << std::setw(64) <<
 user.GetArn() << std::setw(20) <<
 user.GetCreateDate().ToGmtString(DATE_FORMAT.c_str())
 << std::endl;
 }

 if (outcome.GetResult().GetIsTruncated()) {
 request.SetMarker(outcome.GetResult().GetMarker());
 }
 else {
 done = true;
 }
 }

 return true;
}

• For API details, see ListUsers in AWS SDK for C++ API Reference.

CLI

AWS CLI

To list IAM users

The following list-users command lists the IAM users in the current account.

aws iam list-users

Output:

{
 "Users": [
 {
 "UserName": "Adele",
 "Path": "/",
 "CreateDate": "2013-03-07T05:14:48Z",
 "UserId": "AKIAI44QH8DHBEXAMPLE",

Actions 1955

https://docs.aws.amazon.com/goto/SdkForCpp/iam-2010-05-08/ListUsers

AWS Identity and Access Management User Guide

 "Arn": "arn:aws:iam::123456789012:user/Adele"
 },
 {
 "UserName": "Bob",
 "Path": "/",
 "CreateDate": "2012-09-21T23:03:13Z",
 "UserId": "AKIAIOSFODNN7EXAMPLE",
 "Arn": "arn:aws:iam::123456789012:user/Bob"
 }
]
}

For more information, see Listing IAM users in the AWS IAM User Guide.

• For API details, see ListUsers in AWS CLI Command Reference.

Go

SDK for Go V2

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

// UserWrapper encapsulates user actions used in the examples.
// It contains an IAM service client that is used to perform user actions.
type UserWrapper struct {
 IamClient *iam.Client
}

// ListUsers gets up to maxUsers number of users.
func (wrapper UserWrapper) ListUsers(maxUsers int32) ([]types.User, error) {
 var users []types.User
 result, err := wrapper.IamClient.ListUsers(context.TODO(), &iam.ListUsersInput{
 MaxItems: aws.Int32(maxUsers),
 })
 if err != nil {

Actions 1956

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_manage.html#id_users_manage_list
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/iam/list-users.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/gov2/iam#code-examples

AWS Identity and Access Management User Guide

 log.Printf("Couldn't list users. Here's why: %v\n", err)
 } else {
 users = result.Users
 }
 return users, err
}

• For API details, see ListUsers in AWS SDK for Go API Reference.

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

import software.amazon.awssdk.services.iam.model.AttachedPermissionsBoundary;
import software.amazon.awssdk.services.iam.model.IamException;
import software.amazon.awssdk.services.iam.model.ListUsersRequest;
import software.amazon.awssdk.services.iam.model.ListUsersResponse;
import software.amazon.awssdk.regions.Region;
import software.amazon.awssdk.services.iam.IamClient;
import software.amazon.awssdk.services.iam.model.User;

/**
 * Before running this Java V2 code example, set up your development
 * environment, including your credentials.
 *
 * For more information, see the following documentation topic:
 *
 * https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/get-
started.html
 */
public class ListUsers {
 public static void main(String[] args) {
 Region region = Region.AWS_GLOBAL;
 IamClient iam = IamClient.builder()

Actions 1957

https://pkg.go.dev/github.com/aws/aws-sdk-go-v2/service/iam#Client.ListUsers
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/iam#readme

AWS Identity and Access Management User Guide

 .region(region)
 .build();

 listAllUsers(iam);
 System.out.println("Done");
 iam.close();
 }

 public static void listAllUsers(IamClient iam) {
 try {
 boolean done = false;
 String newMarker = null;
 while (!done) {
 ListUsersResponse response;
 if (newMarker == null) {
 ListUsersRequest request =
 ListUsersRequest.builder().build();
 response = iam.listUsers(request);
 } else {
 ListUsersRequest request = ListUsersRequest.builder()
 .marker(newMarker)
 .build();

 response = iam.listUsers(request);
 }

 for (User user : response.users()) {
 System.out.format("\n Retrieved user %s", user.userName());
 AttachedPermissionsBoundary permissionsBoundary =
 user.permissionsBoundary();
 if (permissionsBoundary != null)
 System.out.format("\n Permissions boundary details %s",

 permissionsBoundary.permissionsBoundaryTypeAsString());
 }

 if (!response.isTruncated()) {
 done = true;
 } else {
 newMarker = response.marker();
 }
 }

 } catch (IamException e) {

Actions 1958

AWS Identity and Access Management User Guide

 System.err.println(e.awsErrorDetails().errorMessage());
 System.exit(1);
 }
 }
}

• For API details, see ListUsers in AWS SDK for Java 2.x API Reference.

JavaScript

SDK for JavaScript (v3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

List the users.

import { ListUsersCommand, IAMClient } from "@aws-sdk/client-iam";

const client = new IAMClient({});

export const listUsers = async () => {
 const command = new ListUsersCommand({ MaxItems: 10 });

 const response = await client.send(command);
 response.Users?.forEach(({ UserName, CreateDate }) => {
 console.log(`${UserName} created on: ${CreateDate}`);
 });
 return response;
};

• For more information, see AWS SDK for JavaScript Developer Guide.

• For API details, see ListUsers in AWS SDK for JavaScript API Reference.

Actions 1959

https://docs.aws.amazon.com/goto/SdkForJavaV2/iam-2010-05-08/ListUsers
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/iam#code-examples
https://docs.aws.amazon.com/sdk-for-javascript/v3/developer-guide/iam-examples-managing-users.html#iam-examples-managing-users-listing-users
https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/client/iam/command/ListUsersCommand

AWS Identity and Access Management User Guide

SDK for JavaScript (v2)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set the region
AWS.config.update({ region: "REGION" });

// Create the IAM service object
var iam = new AWS.IAM({ apiVersion: "2010-05-08" });

var params = {
 MaxItems: 10,
};

iam.listUsers(params, function (err, data) {
 if (err) {
 console.log("Error", err);
 } else {
 var users = data.Users || [];
 users.forEach(function (user) {
 console.log("User " + user.UserName + " created", user.CreateDate);
 });
 }
});

• For more information, see AWS SDK for JavaScript Developer Guide.

• For API details, see ListUsers in AWS SDK for JavaScript API Reference.

Actions 1960

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascript/example_code/iam#code-examples
https://docs.aws.amazon.com/sdk-for-javascript/v2/developer-guide/iam-examples-managing-users.html#iam-examples-managing-users-listing-users
https://docs.aws.amazon.com/goto/AWSJavaScriptSDK/iam-2010-05-08/ListUsers

AWS Identity and Access Management User Guide

Kotlin

SDK for Kotlin

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

suspend fun listAllUsers() {

 IamClient { region = "AWS_GLOBAL" }.use { iamClient ->
 val response = iamClient.listUsers(ListUsersRequest { })
 response.users?.forEach { user ->
 println("Retrieved user ${user.userName}")
 val permissionsBoundary = user.permissionsBoundary
 if (permissionsBoundary != null)
 println("Permissions boundary details
 ${permissionsBoundary.permissionsBoundaryType}")
 }
 }
}

• For API details, see ListUsers in AWS SDK for Kotlin API reference.

PHP

SDK for PHP

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

$uuid = uniqid();
$service = new IAMService();

Actions 1961

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/kotlin/services/iam#code-examples
https://github.com/awslabs/aws-sdk-kotlin#generating-api-documentation
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/php/example_code/iam#code-examples

AWS Identity and Access Management User Guide

 public function listUsers($pathPrefix = "", $marker = "", $maxItems = 0)
 {
 $listUsersArguments = [];
 if ($pathPrefix) {
 $listUsersArguments["PathPrefix"] = $pathPrefix;
 }
 if ($marker) {
 $listUsersArguments["Marker"] = $marker;
 }
 if ($maxItems) {
 $listUsersArguments["MaxItems"] = $maxItems;
 }

 return $this->iamClient->listUsers($listUsersArguments);
 }

• For API details, see ListUsers in AWS SDK for PHP API Reference.

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

def list_users():
 """
 Lists the users in the current account.

 :return: The list of users.
 """
 try:
 users = list(iam.users.all())
 logger.info("Got %s users.", len(users))
 except ClientError:
 logger.exception("Couldn't get users.")
 raise
 else:

Actions 1962

https://docs.aws.amazon.com/goto/SdkForPHPV3/iam-2010-05-08/ListUsers
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/iam#code-examples

AWS Identity and Access Management User Guide

 return users

• For API details, see ListUsers in AWS SDK for Python (Boto3) API Reference.

Ruby

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 # Lists all users in the AWS account
 #
 # @return [Array<Aws::IAM::Types::User>] An array of user objects
 def list_users
 users = []
 @iam_client.list_users.each_page do |page|
 page.users.each do |user|
 users << user
 end
 end
 users
 rescue Aws::IAM::Errors::ServiceError => e
 @logger.error("Error listing users: #{e.message}")
 []
 end

• For API details, see ListUsers in AWS SDK for Ruby API Reference.

Actions 1963

https://docs.aws.amazon.com/goto/boto3/iam-2010-05-08/ListUsers
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/iam#code-examples
https://docs.aws.amazon.com/goto/SdkForRubyV3/iam-2010-05-08/ListUsers

AWS Identity and Access Management User Guide

Rust

SDK for Rust

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

pub async fn list_users(
 client: &iamClient,
 path_prefix: Option<String>,
 marker: Option<String>,
 max_items: Option<i32>,
) -> Result<ListUsersOutput, SdkError<ListUsersError>> {
 let response = client
 .list_users()
 .set_path_prefix(path_prefix)
 .set_marker(marker)
 .set_max_items(max_items)
 .send()
 .await?;
 Ok(response)
}

• For API details, see ListUsers in AWS SDK for Rust API reference.

Swift

SDK for Swift

Note

This is prerelease documentation for an SDK in preview release. It is subject to
change.

Actions 1964

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/rustv1/examples/iam#code-examples
https://docs.rs/releases/search?query=aws-sdk

AWS Identity and Access Management User Guide

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 public func listUsers() async throws -> [MyUserRecord] {
 var userList: [MyUserRecord] = []
 var marker: String? = nil
 var isTruncated: Bool

 repeat {
 let input = ListUsersInput(marker: marker)
 let output = try await client.listUsers(input: input)

 guard let users = output.users else {
 return userList
 }

 for user in users {
 if let id = user.userId, let name = user.userName {
 userList.append(MyUserRecord(id: id, name: name))
 }
 }
 marker = output.marker
 isTruncated = output.isTruncated
 } while isTruncated == true
 return userList
 }

• For API details, see ListUsers in AWS SDK for Swift API reference.

For a complete list of AWS SDK developer guides and code examples, see Using IAM with an AWS
SDK. This topic also includes information about getting started and details about previous SDK
versions.

Remove an IAM user from a group using an AWS SDK

The following code examples show how to remove a user from an IAM group.

Actions 1965

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/swift/example_code/iam#code-examples
https://awslabs.github.io/aws-sdk-swift/reference/0.x

AWS Identity and Access Management User Guide

Action examples are code excerpts from larger programs and must be run in context. You can see
this action in context in the following code example:

• Create a group and add a user

.NET

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 /// <summary>
 /// Remove a user from an IAM group.
 /// </summary>
 /// <param name="userName">The username of the user to remove.</param>
 /// <param name="groupName">The name of the IAM group to remove the user
 from.</param>
 /// <returns>A Boolean value indicating the success of the action.</returns>
 public async Task<bool> RemoveUserFromGroupAsync(string userName, string
 groupName)
 {
 // Remove the user from the group.
 var removeUserRequest = new RemoveUserFromGroupRequest()
 {
 UserName = userName,
 GroupName = groupName,
 };

 var response = await
 _IAMService.RemoveUserFromGroupAsync(removeUserRequest);
 return response.HttpStatusCode == HttpStatusCode.OK;
 }

• For API details, see RemoveUserFromGroup in AWS SDK for .NET API Reference.

Actions 1966

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/IAM#code-examples
https://docs.aws.amazon.com/goto/DotNetSDKV3/iam-2010-05-08/RemoveUserFromGroup

AWS Identity and Access Management User Guide

CLI

AWS CLI

To remove a user from an IAM group

The following remove-user-from-group command removes the user named Bob from
the IAM group named Admins.

aws iam remove-user-from-group \
 --user-name Bob \
 --group-name Admins

This command produces no output.

For more information, see Adding and removing users in an IAM user group in the AWS IAM
User Guide.

• For API details, see RemoveUserFromGroup in AWS CLI Command Reference.

For a complete list of AWS SDK developer guides and code examples, see Using IAM with an AWS
SDK. This topic also includes information about getting started and details about previous SDK
versions.

Update an IAM server certificate using an AWS SDK

The following code examples show how to update an IAM server certificate.

C++

SDK for C++

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

bool AwsDoc::IAM::updateServerCertificate(const Aws::String
 ¤tCertificateName,
 const Aws::String &newCertificateName,

Actions 1967

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_groups_manage_add-remove-users.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/iam/remove-user-from-group.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/cpp/example_code/iam#code-examples

AWS Identity and Access Management User Guide

 const Aws::Client::ClientConfiguration
 &clientConfig) {
 Aws::IAM::IAMClient iam(clientConfig);
 Aws::IAM::Model::UpdateServerCertificateRequest request;
 request.SetServerCertificateName(currentCertificateName);
 request.SetNewServerCertificateName(newCertificateName);

 auto outcome = iam.UpdateServerCertificate(request);
 bool result = true;
 if (outcome.IsSuccess()) {
 std::cout << "Server certificate " << currentCertificateName
 << " successfully renamed as " << newCertificateName
 << std::endl;
 }
 else {
 if (outcome.GetError().GetErrorType() !=
 Aws::IAM::IAMErrors::NO_SUCH_ENTITY) {
 std::cerr << "Error changing name of server certificate " <<
 currentCertificateName << " to " << newCertificateName <<
 ":" <<
 outcome.GetError().GetMessage() << std::endl;
 result = false;
 }
 else {
 std::cout << "Certificate '" << currentCertificateName
 << "' not found." << std::endl;
 }
 }

 return result;
}

• For API details, see UpdateServerCertificate in AWS SDK for C++ API Reference.

CLI

AWS CLI

To change the path or name of a server certificate in your AWS account

The following update-server-certificate command changes the name of the
certificate from myServerCertificate to myUpdatedServerCertificate. It also

Actions 1968

https://docs.aws.amazon.com/goto/SdkForCpp/iam-2010-05-08/UpdateServerCertificate

AWS Identity and Access Management User Guide

changes the path to /cloudfront/ so that it can be accessed by the Amazon CloudFront
service. This command produces no output. You can see the results of the update by running
the list-server-certificates command.

aws-iam update-server-certificate \
 --server-certificate-name myServerCertificate \
 --new-server-certificate-name myUpdatedServerCertificate \
 --new-path /cloudfront/

This command produces no output.

For more information, see Managing server certificates in IAM in the AWS IAM User Guide.

• For API details, see UpdateServerCertificate in AWS CLI Command Reference.

JavaScript

SDK for JavaScript (v3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Update a server certificate.

import { UpdateServerCertificateCommand, IAMClient } from "@aws-sdk/client-iam";

const client = new IAMClient({});

/**
 *
 * @param {string} currentName
 * @param {string} newName
 */
export const updateServerCertificate = (currentName, newName) => {
 const command = new UpdateServerCertificateCommand({
 ServerCertificateName: currentName,
 NewServerCertificateName: newName,
 });

Actions 1969

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_server-certs.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/iam/update-server-certificate.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/iam#code-examples

AWS Identity and Access Management User Guide

 return client.send(command);
};

• For more information, see AWS SDK for JavaScript Developer Guide.

• For API details, see UpdateServerCertificate in AWS SDK for JavaScript API Reference.

SDK for JavaScript (v2)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set the region
AWS.config.update({ region: "REGION" });

// Create the IAM service object
var iam = new AWS.IAM({ apiVersion: "2010-05-08" });

var params = {
 ServerCertificateName: "CERTIFICATE_NAME",
 NewServerCertificateName: "NEW_CERTIFICATE_NAME",
};

iam.updateServerCertificate(params, function (err, data) {
 if (err) {
 console.log("Error", err);
 } else {
 console.log("Success", data);
 }
});

• For more information, see AWS SDK for JavaScript Developer Guide.

• For API details, see UpdateServerCertificate in AWS SDK for JavaScript API Reference.

Actions 1970

https://docs.aws.amazon.com/sdk-for-javascript/v3/developer-guide/iam-examples-server-certificates.html#iam-examples-server-certificates-updating
https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/client/iam/command/UpdateServerCertificateCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascript/example_code/iam#code-examples
https://docs.aws.amazon.com/sdk-for-javascript/v2/developer-guide/iam-examples-server-certificates.html#iam-examples-server-certificates-updating
https://docs.aws.amazon.com/goto/AWSJavaScriptSDK/iam-2010-05-08/UpdateServerCertificate

AWS Identity and Access Management User Guide

Ruby

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

List, update, and delete server certificates.

class ServerCertificateManager
 def initialize(iam_client, logger: Logger.new($stdout))
 @iam_client = iam_client
 @logger = logger
 @logger.progname = "ServerCertificateManager"
 end

 # Creates a new server certificate.
 # @param name [String] the name of the server certificate
 # @param certificate_body [String] the contents of the certificate
 # @param private_key [String] the private key contents
 # @return [Boolean] returns true if the certificate was successfully created
 def create_server_certificate(name, certificate_body, private_key)
 @iam_client.upload_server_certificate({
 server_certificate_name: name,
 certificate_body: certificate_body,
 private_key: private_key,
 })
 true
 rescue Aws::IAM::Errors::ServiceError => e
 puts "Failed to create server certificate: #{e.message}"
 false
 end

 # Lists available server certificate names.
 def list_server_certificate_names
 response = @iam_client.list_server_certificates

 if response.server_certificate_metadata_list.empty?
 @logger.info("No server certificates found.")
 return

Actions 1971

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/iam#code-examples

AWS Identity and Access Management User Guide

 end

 response.server_certificate_metadata_list.each do |certificate_metadata|
 @logger.info("Certificate Name:
 #{certificate_metadata.server_certificate_name}")
 end
 rescue Aws::IAM::Errors::ServiceError => e
 @logger.error("Error listing server certificates: #{e.message}")
 end

 # Updates the name of a server certificate.
 def update_server_certificate_name(current_name, new_name)
 @iam_client.update_server_certificate(
 server_certificate_name: current_name,
 new_server_certificate_name: new_name
)
 @logger.info("Server certificate name updated from '#{current_name}' to
 '#{new_name}'.")
 true
 rescue Aws::IAM::Errors::ServiceError => e
 @logger.error("Error updating server certificate name: #{e.message}")
 false
 end

 # Deletes a server certificate.
 def delete_server_certificate(name)
 @iam_client.delete_server_certificate(server_certificate_name: name)
 @logger.info("Server certificate '#{name}' deleted.")
 true
 rescue Aws::IAM::Errors::ServiceError => e
 @logger.error("Error deleting server certificate: #{e.message}")
 false
 end
end

• For API details, see UpdateServerCertificate in AWS SDK for Ruby API Reference.

For a complete list of AWS SDK developer guides and code examples, see Using IAM with an AWS
SDK. This topic also includes information about getting started and details about previous SDK
versions.

Actions 1972

https://docs.aws.amazon.com/goto/SdkForRubyV3/iam-2010-05-08/UpdateServerCertificate

AWS Identity and Access Management User Guide

Update an IAM user using an AWS SDK

The following code examples show how to update an IAM user.

Warning

To avoid security risks, don't use IAM users for authentication when developing purpose-
built software or working with real data. Instead, use federation with an identity provider
such as AWS IAM Identity Center.

Action examples are code excerpts from larger programs and must be run in context. You can see
this action in context in the following code example:

• Create read-only and read-write users

C++

SDK for C++

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

bool AwsDoc::IAM::updateUser(const Aws::String ¤tUserName,
 const Aws::String &newUserName,
 const Aws::Client::ClientConfiguration
 &clientConfig) {
 Aws::IAM::IAMClient iam(clientConfig);

 Aws::IAM::Model::UpdateUserRequest request;
 request.SetUserName(currentUserName);
 request.SetNewUserName(newUserName);

 auto outcome = iam.UpdateUser(request);
 if (outcome.IsSuccess()) {
 std::cout << "IAM user " << currentUserName <<
 " successfully updated with new user name " << newUserName <<

Actions 1973

https://docs.aws.amazon.com/singlesignon/latest/userguide/what-is.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/cpp/example_code/iam#code-examples

AWS Identity and Access Management User Guide

 std::endl;
 }
 else {
 std::cerr << "Error updating user name for IAM user " << currentUserName
 <<
 ":" << outcome.GetError().GetMessage() << std::endl;
 }

 return outcome.IsSuccess();
}

• For API details, see UpdateUser in AWS SDK for C++ API Reference.

CLI

AWS CLI

To change an IAM user's name

The following update-user command changes the name of the IAM user Bob to Robert.

aws iam update-user \
 --user-name Bob \
 --new-user-name Robert

This command produces no output.

For more information, see Renaming an IAM user group in the AWS IAM User Guide.

• For API details, see UpdateUser in AWS CLI Command Reference.

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Actions 1974

https://docs.aws.amazon.com/goto/SdkForCpp/iam-2010-05-08/UpdateUser
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_groups_manage_rename.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/iam/update-user.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/iam#readme

AWS Identity and Access Management User Guide

import software.amazon.awssdk.regions.Region;
import software.amazon.awssdk.services.iam.IamClient;
import software.amazon.awssdk.services.iam.model.IamException;
import software.amazon.awssdk.services.iam.model.UpdateUserRequest;

/**
 * Before running this Java V2 code example, set up your development
 * environment, including your credentials.
 *
 * For more information, see the following documentation topic:
 *
 * https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/get-
started.html
 */
public class UpdateUser {
 public static void main(String[] args) {
 final String usage = """

 Usage:
 <curName> <newName>\s

 Where:
 curName - The current user name.\s
 newName - An updated user name.\s
 """;

 if (args.length != 2) {
 System.out.println(usage);
 System.exit(1);
 }

 String curName = args[0];
 String newName = args[1];
 Region region = Region.AWS_GLOBAL;
 IamClient iam = IamClient.builder()
 .region(region)
 .build();

 updateIAMUser(iam, curName, newName);
 System.out.println("Done");
 iam.close();
 }

Actions 1975

AWS Identity and Access Management User Guide

 public static void updateIAMUser(IamClient iam, String curName, String
 newName) {
 try {
 UpdateUserRequest request = UpdateUserRequest.builder()
 .userName(curName)
 .newUserName(newName)
 .build();

 iam.updateUser(request);
 System.out.printf("Successfully updated user to username %s",
 newName);

 } catch (IamException e) {
 System.err.println(e.awsErrorDetails().errorMessage());
 System.exit(1);
 }
 }
}

• For API details, see UpdateUser in AWS SDK for Java 2.x API Reference.

JavaScript

SDK for JavaScript (v3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Update the user.

import { UpdateUserCommand, IAMClient } from "@aws-sdk/client-iam";

const client = new IAMClient({});

/**
 *
 * @param {string} currentUserName
 * @param {string} newUserName

Actions 1976

https://docs.aws.amazon.com/goto/SdkForJavaV2/iam-2010-05-08/UpdateUser
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/iam#code-examples

AWS Identity and Access Management User Guide

 */
export const updateUser = (currentUserName, newUserName) => {
 const command = new UpdateUserCommand({
 UserName: currentUserName,
 NewUserName: newUserName,
 });

 return client.send(command);
};

• For more information, see AWS SDK for JavaScript Developer Guide.

• For API details, see UpdateUser in AWS SDK for JavaScript API Reference.

SDK for JavaScript (v2)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set the region
AWS.config.update({ region: "REGION" });

// Create the IAM service object
var iam = new AWS.IAM({ apiVersion: "2010-05-08" });

var params = {
 UserName: process.argv[2],
 NewUserName: process.argv[3],
};

iam.updateUser(params, function (err, data) {
 if (err) {
 console.log("Error", err);
 } else {
 console.log("Success", data);
 }
});

Actions 1977

https://docs.aws.amazon.com/sdk-for-javascript/v3/developer-guide/iam-examples-managing-users.html#iam-examples-managing-users-updating-users
https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/client/iam/command/UpdateUserCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascript/example_code/iam#code-examples

AWS Identity and Access Management User Guide

• For more information, see AWS SDK for JavaScript Developer Guide.

• For API details, see UpdateUser in AWS SDK for JavaScript API Reference.

Kotlin

SDK for Kotlin

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

suspend fun updateIAMUser(curName: String?, newName: String?) {

 val request = UpdateUserRequest {
 userName = curName
 newUserName = newName
 }

 IamClient { region = "AWS_GLOBAL" }.use { iamClient ->
 iamClient.updateUser(request)
 println("Successfully updated user to $newName")
 }
}

• For API details, see UpdateUser in AWS SDK for Kotlin API reference.

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Actions 1978

https://docs.aws.amazon.com/sdk-for-javascript/v2/developer-guide/iam-examples-managing-users.html#iam-examples-managing-users-updating-users
https://docs.aws.amazon.com/goto/AWSJavaScriptSDK/iam-2010-05-08/UpdateUser
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/kotlin/services/iam#code-examples
https://github.com/awslabs/aws-sdk-kotlin#generating-api-documentation
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/iam#code-examples

AWS Identity and Access Management User Guide

def update_user(user_name, new_user_name):
 """
 Updates a user's name.

 :param user_name: The current name of the user to update.
 :param new_user_name: The new name to assign to the user.
 :return: The updated user.
 """
 try:
 user = iam.User(user_name)
 user.update(NewUserName=new_user_name)
 logger.info("Renamed %s to %s.", user_name, new_user_name)
 except ClientError:
 logger.exception("Couldn't update name for user %s.", user_name)
 raise
 return user

• For API details, see UpdateUser in AWS SDK for Python (Boto3) API Reference.

Ruby

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 # Updates an IAM user's name
 #
 # @param current_name [String] The current name of the user
 # @param new_name [String] The new name of the user
 def update_user_name(current_name, new_name)
 @iam_client.update_user(user_name: current_name, new_user_name: new_name)
 true
 rescue StandardError => e

Actions 1979

https://docs.aws.amazon.com/goto/boto3/iam-2010-05-08/UpdateUser
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/iam#code-examples

AWS Identity and Access Management User Guide

 @logger.error("Error updating user name from '#{current_name}' to
 '#{new_name}': #{e.message}")
 false
 end

• For API details, see UpdateUser in AWS SDK for Ruby API Reference.

For a complete list of AWS SDK developer guides and code examples, see Using IAM with an AWS
SDK. This topic also includes information about getting started and details about previous SDK
versions.

Update an IAM access key using an AWS SDK

The following code examples show how to update an IAM access key.

Warning

To avoid security risks, don't use IAM users for authentication when developing purpose-
built software or working with real data. Instead, use federation with an identity provider
such as AWS IAM Identity Center.

Action examples are code excerpts from larger programs and must be run in context. You can see
this action in context in the following code example:

• Manage access keys

C++

SDK for C++

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

bool AwsDoc::IAM::updateAccessKey(const Aws::String &userName,

Actions 1980

https://docs.aws.amazon.com/goto/SdkForRubyV3/iam-2010-05-08/UpdateUser
https://docs.aws.amazon.com/singlesignon/latest/userguide/what-is.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/cpp/example_code/iam#code-examples

AWS Identity and Access Management User Guide

 const Aws::String &accessKeyID,
 Aws::IAM::Model::StatusType status,
 const Aws::Client::ClientConfiguration
 &clientConfig) {
 Aws::IAM::IAMClient iam(clientConfig);
 Aws::IAM::Model::UpdateAccessKeyRequest request;
 request.SetUserName(userName);
 request.SetAccessKeyId(accessKeyID);
 request.SetStatus(status);

 auto outcome = iam.UpdateAccessKey(request);
 if (outcome.IsSuccess()) {
 std::cout << "Successfully updated status of access key "
 << accessKeyID << " for user " << userName << std::endl;
 }
 else {
 std::cerr << "Error updated status of access key " << accessKeyID <<
 " for user " << userName << ": " <<
 outcome.GetError().GetMessage() << std::endl;
 }

 return outcome.IsSuccess();
}

• For API details, see UpdateAccessKey in AWS SDK for C++ API Reference.

CLI

AWS CLI

To activate or deactivate an access key for an IAM user

The following update-access-key command deactivates the specified access key (access
key ID and secret access key) for the IAM user named Bob.

aws iam update-access-key \
 --access-key-id AKIAIOSFODNN7EXAMPLE \
 --status Inactive \
 --user-name Bob

This command produces no output.

Actions 1981

https://docs.aws.amazon.com/goto/SdkForCpp/iam-2010-05-08/UpdateAccessKey

AWS Identity and Access Management User Guide

Deactivating the key means that it cannot be used for programmatic access to AWS.
However, the key is still available and can be reactivated.

For more information, see Managing access keys for IAM users in the AWS IAM User Guide.

• For API details, see UpdateAccessKey in AWS CLI Command Reference.

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

import software.amazon.awssdk.services.iam.model.IamException;
import software.amazon.awssdk.services.iam.model.StatusType;
import software.amazon.awssdk.services.iam.model.UpdateAccessKeyRequest;
import software.amazon.awssdk.regions.Region;
import software.amazon.awssdk.services.iam.IamClient;

/**
 * Before running this Java V2 code example, set up your development
 * environment, including your credentials.
 *
 * For more information, see the following documentation topic:
 *
 * https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/get-
started.html
 */
public class UpdateAccessKey {

 private static StatusType statusType;

 public static void main(String[] args) {
 final String usage = """

 Usage:
 <username> <accessId> <status>\s

Actions 1982

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_access-keys.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/iam/update-access-key.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/iam#readme

AWS Identity and Access Management User Guide

 Where:
 username - The name of the user whose key you want to update.
\s
 accessId - The access key ID of the secret access key you
 want to update.\s
 status - The status you want to assign to the secret access
 key.\s
 """;

 if (args.length != 3) {
 System.out.println(usage);
 System.exit(1);
 }

 String username = args[0];
 String accessId = args[1];
 String status = args[2];
 Region region = Region.AWS_GLOBAL;
 IamClient iam = IamClient.builder()
 .region(region)
 .build();

 updateKey(iam, username, accessId, status);
 System.out.println("Done");
 iam.close();
 }

 public static void updateKey(IamClient iam, String username, String accessId,
 String status) {
 try {
 if (status.toLowerCase().equalsIgnoreCase("active")) {
 statusType = StatusType.ACTIVE;
 } else if (status.toLowerCase().equalsIgnoreCase("inactive")) {
 statusType = StatusType.INACTIVE;
 } else {
 statusType = StatusType.UNKNOWN_TO_SDK_VERSION;
 }

 UpdateAccessKeyRequest request = UpdateAccessKeyRequest.builder()
 .accessKeyId(accessId)
 .userName(username)
 .status(statusType)
 .build();

Actions 1983

AWS Identity and Access Management User Guide

 iam.updateAccessKey(request);
 System.out.printf("Successfully updated the status of access key %s
 to" +
 "status %s for user %s", accessId, status, username);

 } catch (IamException e) {
 System.err.println(e.awsErrorDetails().errorMessage());
 System.exit(1);
 }
 }
}

• For API details, see UpdateAccessKey in AWS SDK for Java 2.x API Reference.

JavaScript

SDK for JavaScript (v3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Update the access key.

import {
 UpdateAccessKeyCommand,
 IAMClient,
 StatusType,
} from "@aws-sdk/client-iam";

const client = new IAMClient({});

/**
 *
 * @param {string} userName
 * @param {string} accessKeyId
 */
export const updateAccessKey = (userName, accessKeyId) => {
 const command = new UpdateAccessKeyCommand({

Actions 1984

https://docs.aws.amazon.com/goto/SdkForJavaV2/iam-2010-05-08/UpdateAccessKey
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/iam#code-examples

AWS Identity and Access Management User Guide

 AccessKeyId: accessKeyId,
 Status: StatusType.Inactive,
 UserName: userName,
 });

 return client.send(command);
};

• For more information, see AWS SDK for JavaScript Developer Guide.

• For API details, see UpdateAccessKey in AWS SDK for JavaScript API Reference.

SDK for JavaScript (v2)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set the region
AWS.config.update({ region: "REGION" });

// Create the IAM service object
var iam = new AWS.IAM({ apiVersion: "2010-05-08" });

var params = {
 AccessKeyId: "ACCESS_KEY_ID",
 Status: "Active",
 UserName: "USER_NAME",
};

iam.updateAccessKey(params, function (err, data) {
 if (err) {
 console.log("Error", err);
 } else {
 console.log("Success", data);
 }
});

Actions 1985

https://docs.aws.amazon.com/sdk-for-javascript/v3/developer-guide/iam-examples-managing-access-keys.html#iam-examples-managing-access-keys-updating
https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/client/iam/command/UpdateAccessKeyCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascript/example_code/iam#code-examples

AWS Identity and Access Management User Guide

• For more information, see AWS SDK for JavaScript Developer Guide.

• For API details, see UpdateAccessKey in AWS SDK for JavaScript API Reference.

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

def update_key(user_name, key_id, activate):
 """
 Updates the status of a key.

 :param user_name: The user that owns the key.
 :param key_id: The ID of the key to update.
 :param activate: When True, the key is activated. Otherwise, the key is
 deactivated.
 """

 try:
 key = iam.User(user_name).AccessKey(key_id)
 if activate:
 key.activate()
 else:
 key.deactivate()
 logger.info("%s key %s.", "Activated" if activate else "Deactivated",
 key_id)
 except ClientError:
 logger.exception(
 "Couldn't %s key %s.", "Activate" if activate else "Deactivate",
 key_id
)
 raise

Actions 1986

https://docs.aws.amazon.com/sdk-for-javascript/v2/developer-guide/iam-examples-managing-access-keys.html#iam-examples-managing-access-keys-updating
https://docs.aws.amazon.com/goto/AWSJavaScriptSDK/iam-2010-05-08/UpdateAccessKey
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/iam#code-examples

AWS Identity and Access Management User Guide

• For API details, see UpdateAccessKey in AWS SDK for Python (Boto3) API Reference.

For a complete list of AWS SDK developer guides and code examples, see Using IAM with an AWS
SDK. This topic also includes information about getting started and details about previous SDK
versions.

Upload an IAM server certificate using an AWS SDK

The following code examples show how to upload an AWS Identity and Access Management (IAM)
server certificate.

CLI

AWS CLI

To upload a server certificate to your AWS account

The following upload-server-certificate command uploads a server certificate to your AWS
account. In this example, the certificate is in the file public_key_cert_file.pem, the
associated private key is in the file my_private_key.pem, and the the certificate chain
provided by the certificate authority (CA) is in the my_certificate_chain_file.pem
file. When the file has finished uploading, it is available under the name myServerCertificate.
Parameters that begin with file:// tells the command to read the contents of the file and
use that as the parameter value instead of the file name itself.

aws iam upload-server-certificate \
 --server-certificate-name myServerCertificate \
 --certificate-body file://public_key_cert_file.pem \
 --private-key file://my_private_key.pem \
 --certificate-chain file://my_certificate_chain_file.pem

Output:

{
 "ServerCertificateMetadata": {
 "Path": "/",
 "ServerCertificateName": "myServerCertificate",
 "ServerCertificateId": "ASCAEXAMPLE123EXAMPLE",
 "Arn": "arn:aws:iam::1234567989012:server-certificate/
myServerCertificate",
 "UploadDate": "2019-04-22T21:13:44+00:00",

Actions 1987

https://docs.aws.amazon.com/goto/boto3/iam-2010-05-08/UpdateAccessKey

AWS Identity and Access Management User Guide

 "Expiration": "2019-10-15T22:23:16+00:00"
 }
}

For more information, see Creating, Uploading, and Deleting Server Certificates in the Using
IAM guide.

• For API details, see UploadServerCertificate in AWS CLI Command Reference.

JavaScript

SDK for JavaScript (v3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

import { UploadServerCertificateCommand, IAMClient } from "@aws-sdk/client-iam";
import { readFileSync } from "fs";
import { dirnameFromMetaUrl } from "@aws-doc-sdk-examples/lib/utils/util-fs.js";
import * as path from "path";

const client = new IAMClient({});

const certMessage = `Generate a certificate and key with the following command,
 or the equivalent for your system.

openssl req -x509 -newkey rsa:4096 -sha256 -days 3650 -nodes \
-keyout example.key -out example.crt -subj "/CN=example.com" \
-addext "subjectAltName=DNS:example.com,DNS:www.example.net,IP:10.0.0.1"
`;

const getCertAndKey = () => {
 try {
 const cert = readFileSync(
 path.join(dirnameFromMetaUrl(import.meta.url), "./example.crt"),
);
 const key = readFileSync(
 path.join(dirnameFromMetaUrl(import.meta.url), "./example.key"),
);

Actions 1988

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/iam/upload-server-certificate.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/iam#code-examples

AWS Identity and Access Management User Guide

 return { cert, key };
 } catch (err) {
 if (err.code === "ENOENT") {
 throw new Error(
 `Certificate and/or private key not found. ${certMessage}`,
);
 }

 throw err;
 }
};

/**
 *
 * @param {string} certificateName
 */
export const uploadServerCertificate = (certificateName) => {
 const { cert, key } = getCertAndKey();
 const command = new UploadServerCertificateCommand({
 ServerCertificateName: certificateName,
 CertificateBody: cert.toString(),
 PrivateKey: key.toString(),
 });

 return client.send(command);
};

• For API details, see UploadServerCertificate in AWS SDK for JavaScript API Reference.

For a complete list of AWS SDK developer guides and code examples, see Using IAM with an AWS
SDK. This topic also includes information about getting started and details about previous SDK
versions.

Scenarios for IAM using AWS SDKs

The following code examples show you how to implement common scenarios in IAM with AWS
SDKs. These scenarios show you how to accomplish specific tasks by calling multiple functions
within IAM. Each scenario includes a link to GitHub, where you can find instructions on how to set
up and run the code.

Examples

Scenarios 1989

https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/client/iam/command/UploadServerCertificateCommand

AWS Identity and Access Management User Guide

• Build and manage a resilient service using an AWS SDK

• Create an IAM group and add a user to the group using an AWS SDK

• Create an IAM user and assume a role with AWS STS using an AWS SDK

• Create read-only and read-write IAM users using an AWS SDK

• Manage IAM access keys using an AWS SDK

• Manage IAM policies using an AWS SDK

• Manage IAM roles using an AWS SDK

• Manage your IAM account using an AWS SDK

• Roll back an IAM policy version using an AWS SDK

• Work with the IAM Policy Builder API using an AWS SDK

Build and manage a resilient service using an AWS SDK

The following code examples show how to create a load-balanced web service that returns book,
movie, and song recommendations. The example shows how the service responds to failures, and
how to restructure the service for more resilience when failures occur.

• Use an Amazon EC2 Auto Scaling group to create Amazon Elastic Compute Cloud (Amazon EC2)
instances based on a launch template and to keep the number of instances in a specified range.

• Handle and distribute HTTP requests with Elastic Load Balancing.

• Monitor the health of instances in an Auto Scaling group and forward requests only to healthy
instances.

• Run a Python web server on each EC2 instance to handle HTTP requests. The web server
responds with recommendations and health checks.

• Simulate a recommendation service with an Amazon DynamoDB table.

• Control web server response to requests and health checks by updating AWS Systems Manager
parameters.

Scenarios 1990

AWS Identity and Access Management User Guide

.NET

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Run the interactive scenario at a command prompt.

 static async Task Main(string[] args)
 {
 _configuration = new ConfigurationBuilder()
 .SetBasePath(Directory.GetCurrentDirectory())
 .AddJsonFile("settings.json") // Load settings from .json file.
 .AddJsonFile("settings.local.json",
 true) // Optionally, load local settings.
 .Build();

 // Set up dependency injection for the AWS services.
 using var host = Host.CreateDefaultBuilder(args)
 .ConfigureLogging(logging =>
 logging.AddFilter("System", LogLevel.Debug)
 .AddFilter<DebugLoggerProvider>("Microsoft",
 LogLevel.Information)
 .AddFilter<ConsoleLoggerProvider>("Microsoft",
 LogLevel.Trace))
 .ConfigureServices((_, services) =>
 services.AddAWSService<IAmazonIdentityManagementService>()
 .AddAWSService<IAmazonDynamoDB>()
 .AddAWSService<IAmazonElasticLoadBalancingV2>()
 .AddAWSService<IAmazonSimpleSystemsManagement>()
 .AddAWSService<IAmazonAutoScaling>()
 .AddAWSService<IAmazonEC2>()
 .AddTransient<AutoScalerWrapper>()
 .AddTransient<ElasticLoadBalancerWrapper>()
 .AddTransient<SmParameterWrapper>()
 .AddTransient<Recommendations>()
 .AddSingleton<IConfiguration>(_configuration)
)

Scenarios 1991

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/cross-service/ResilientService#code-examples

AWS Identity and Access Management User Guide

 .Build();

 ServicesSetup(host);
 ResourcesSetup();

 try
 {
 Console.WriteLine(new string('-', 80));
 Console.WriteLine("Welcome to the Resilient Architecture Example
 Scenario.");
 Console.WriteLine(new string('-', 80));
 await Deploy(true);

 Console.WriteLine("Now let's begin the scenario.");
 Console.WriteLine(new string('-', 80));
 await Demo(true);

 Console.WriteLine(new string('-', 80));
 Console.WriteLine("Finally, let's clean up our resources.");
 Console.WriteLine(new string('-', 80));

 await DestroyResources(true);

 Console.WriteLine(new string('-', 80));
 Console.WriteLine("Resilient Architecture Example Scenario is
 complete.");
 Console.WriteLine(new string('-', 80));
 }
 catch (Exception ex)
 {
 Console.WriteLine(new string('-', 80));
 Console.WriteLine($"There was a problem running the scenario:
 {ex.Message}");
 await DestroyResources(true);
 Console.WriteLine(new string('-', 80));
 }
 }

 /// <summary>
 /// Setup any common resources, also used for integration testing.
 /// </summary>
 public static void ResourcesSetup()
 {
 _httpClient = new HttpClient();

Scenarios 1992

AWS Identity and Access Management User Guide

 }

 /// <summary>
 /// Populate the services for use within the console application.
 /// </summary>
 /// <param name="host">The services host.</param>
 private static void ServicesSetup(IHost host)
 {
 _elasticLoadBalancerWrapper =
 host.Services.GetRequiredService<ElasticLoadBalancerWrapper>();
 _iamClient =
 host.Services.GetRequiredService<IAmazonIdentityManagementService>();
 _recommendations = host.Services.GetRequiredService<Recommendations>();
 _autoScalerWrapper =
 host.Services.GetRequiredService<AutoScalerWrapper>();
 _smParameterWrapper =
 host.Services.GetRequiredService<SmParameterWrapper>();
 }

 /// <summary>
 /// Deploy necessary resources for the scenario.
 /// </summary>
 /// <param name="interactive">True to run as interactive.</param>
 /// <returns>True if successful.</returns>
 public static async Task<bool> Deploy(bool interactive)
 {
 var protocol = "HTTP";
 var port = 80;
 var sshPort = 22;

 Console.WriteLine(
 "\nFor this demo, we'll use the AWS SDK for .NET to create several
 AWS resources\n" +
 "to set up a load-balanced web service endpoint and explore some ways
 to make it resilient\n" +
 "against various kinds of failures.\n\n" +
 "Some of the resources create by this demo are:\n");

 Console.WriteLine(
 "\t* A DynamoDB table that the web service depends on to provide
 book, movie, and song recommendations.");
 Console.WriteLine(
 "\t* An EC2 launch template that defines EC2 instances that each
 contain a Python web server.");

Scenarios 1993

AWS Identity and Access Management User Guide

 Console.WriteLine(
 "\t* An EC2 Auto Scaling group that manages EC2 instances across
 several Availability Zones.");
 Console.WriteLine(
 "\t* An Elastic Load Balancing (ELB) load balancer that targets the
 Auto Scaling group to distribute requests.");
 Console.WriteLine(new string('-', 80));
 Console.WriteLine("Press Enter when you're ready to start deploying
 resources.");
 if (interactive)
 Console.ReadLine();

 // Create and populate the DynamoDB table.
 var databaseTableName = _configuration["databaseName"];
 var recommendationsPath = Path.Join(_configuration["resourcePath"],
 "recommendations_objects.json");
 Console.WriteLine($"Creating and populating a DynamoDB table named
 {databaseTableName}.");
 await _recommendations.CreateDatabaseWithName(databaseTableName);
 await _recommendations.PopulateDatabase(databaseTableName,
 recommendationsPath);
 Console.WriteLine(new string('-', 80));

 // Create the EC2 Launch Template.

 Console.WriteLine(
 $"Creating an EC2 launch template that runs
 'server_startup_script.sh' when an instance starts.\n"
 + "\nThis script starts a Python web server defined in the
 `server.py` script. The web server\n"
 + "listens to HTTP requests on port 80 and responds to requests to
 '/' and to '/healthcheck'.\n"
 + "For demo purposes, this server is run as the root user. In
 production, the best practice is to\n"
 + "run a web server, such as Apache, with least-privileged
 credentials.");
 Console.WriteLine(
 "\nThe template also defines an IAM policy that each instance uses to
 assume a role that grants\n"
 + "permissions to access the DynamoDB recommendation table and
 Systems Manager parameters\n"
 + "that control the flow of the demo.");

 var startupScriptPath = Path.Join(_configuration["resourcePath"],

Scenarios 1994

AWS Identity and Access Management User Guide

 "server_startup_script.sh");
 var instancePolicyPath = Path.Join(_configuration["resourcePath"],
 "instance_policy.json");
 await _autoScalerWrapper.CreateTemplate(startupScriptPath,
 instancePolicyPath);
 Console.WriteLine(new string('-', 80));

 Console.WriteLine(
 "Creating an EC2 Auto Scaling group that maintains three EC2
 instances, each in a different\n"
 + "Availability Zone.\n");
 var zones = await _autoScalerWrapper.DescribeAvailabilityZones();
 await _autoScalerWrapper.CreateGroupOfSize(3,
 _autoScalerWrapper.GroupName, zones);
 Console.WriteLine(new string('-', 80));

 Console.WriteLine(
 "At this point, you have EC2 instances created. Once each instance
 starts, it listens for\n"
 + "HTTP requests. You can see these instances in the console or
 continue with the demo.\n");

 Console.WriteLine(new string('-', 80));
 Console.WriteLine("Press Enter when you're ready to continue.");
 if (interactive)
 Console.ReadLine();

 Console.WriteLine("Creating variables that control the flow of the
 demo.");
 await _smParameterWrapper.Reset();

 Console.WriteLine(
 "\nCreating an Elastic Load Balancing target group and load balancer.
 The target group\n"
 + "defines how the load balancer connects to instances. The load
 balancer provides a\n"
 + "single endpoint where clients connect and dispatches requests to
 instances in the group.");

 var defaultVpc = await _autoScalerWrapper.GetDefaultVpc();
 var subnets = await
 _autoScalerWrapper.GetAllVpcSubnetsForZones(defaultVpc.VpcId, zones);
 var subnetIds = subnets.Select(s => s.SubnetId).ToList();

Scenarios 1995

AWS Identity and Access Management User Guide

 var targetGroup = await
 _elasticLoadBalancerWrapper.CreateTargetGroupOnVpc(_elasticLoadBalancerWrapper.TargetGroupName,
 protocol, port, defaultVpc.VpcId);

 await
 _elasticLoadBalancerWrapper.CreateLoadBalancerAndListener(_elasticLoadBalancerWrapper.LoadBalancerName,
 subnetIds, targetGroup);
 await
 _autoScalerWrapper.AttachLoadBalancerToGroup(_autoScalerWrapper.GroupName,
 targetGroup.TargetGroupArn);
 Console.WriteLine("\nVerifying access to the load balancer endpoint...");
 var endPoint = await
 _elasticLoadBalancerWrapper.GetEndpointForLoadBalancerByName(_elasticLoadBalancerWrapper.LoadBalancerName);
 var loadBalancerAccess = await
 _elasticLoadBalancerWrapper.VerifyLoadBalancerEndpoint(endPoint);

 if (!loadBalancerAccess)
 {
 Console.WriteLine("\nCouldn't connect to the load balancer, verifying
 that the port is open...");

 var ipString = await _httpClient.GetStringAsync("https://
checkip.amazonaws.com");
 ipString = ipString.Trim();

 var defaultSecurityGroup = await
 _autoScalerWrapper.GetDefaultSecurityGroupForVpc(defaultVpc);
 var portIsOpen =
 _autoScalerWrapper.VerifyInboundPortForGroup(defaultSecurityGroup, port,
 ipString);
 var sshPortIsOpen =
 _autoScalerWrapper.VerifyInboundPortForGroup(defaultSecurityGroup, sshPort,
 ipString);

 if (!portIsOpen)
 {
 Console.WriteLine(
 "\nFor this example to work, the default security group for
 your default VPC must\n"
 + "allows access from this computer. You can either add it
 automatically from this\n"
 + "example or add it yourself using the AWS Management
 Console.\n");

Scenarios 1996

AWS Identity and Access Management User Guide

 if (!interactive || GetYesNoResponse(
 "Do you want to add a rule to the security group to allow
 inbound traffic from your computer's IP address?"))
 {
 await
 _autoScalerWrapper.OpenInboundPort(defaultSecurityGroup.GroupId, port,
 ipString);
 }
 }

 if (!sshPortIsOpen)
 {
 if (!interactive || GetYesNoResponse(
 "Do you want to add a rule to the security group to allow
 inbound SSH traffic for debugging from your computer's IP address?"))
 {
 await
 _autoScalerWrapper.OpenInboundPort(defaultSecurityGroup.GroupId, sshPort,
 ipString);
 }
 }
 loadBalancerAccess = await
 _elasticLoadBalancerWrapper.VerifyLoadBalancerEndpoint(endPoint);
 }

 if (loadBalancerAccess)
 {
 Console.WriteLine("Your load balancer is ready. You can access it by
 browsing to:");
 Console.WriteLine($"\thttp://{endPoint}\n");
 }
 else
 {
 Console.WriteLine(
 "\nCouldn't get a successful response from the load balancer
 endpoint. Troubleshoot by\n"
 + "manually verifying that your VPC and security group are
 configured correctly and that\n"
 + "you can successfully make a GET request to the load balancer
 endpoint:\n");
 Console.WriteLine($"\thttp://{endPoint}\n");
 }
 Console.WriteLine(new string('-', 80));

Scenarios 1997

AWS Identity and Access Management User Guide

 Console.WriteLine("Press Enter when you're ready to continue with the
 demo.");
 if (interactive)
 Console.ReadLine();
 return true;
 }

 /// <summary>
 /// Demonstrate the steps of the scenario.
 /// </summary>
 /// <param name="interactive">True to run as an interactive scenario.</param>
 /// <returns>Async task.</returns>
 public static async Task<bool> Demo(bool interactive)
 {
 var ssmOnlyPolicy = Path.Join(_configuration["resourcePath"],
 "ssm_only_policy.json");

 Console.WriteLine(new string('-', 80));
 Console.WriteLine("Resetting parameters to starting values for demo.");
 await _smParameterWrapper.Reset();

 Console.WriteLine("\nThis part of the demonstration shows how to toggle
 different parts of the system\n" +
 "to create situations where the web service fails, and
 shows how using a resilient\n" +
 "architecture can keep the web service running in spite
 of these failures.");
 Console.WriteLine(new string('-', 88));
 Console.WriteLine("At the start, the load balancer endpoint returns
 recommendations and reports that all targets are healthy.");
 if (interactive)
 await DemoActionChoices();

 Console.WriteLine($"The web service running on the EC2 instances gets
 recommendations by querying a DynamoDB table.\n" +
 $"The table name is contained in a Systems Manager
 parameter named '{_smParameterWrapper.TableParameter}'.\n" +
 $"To simulate a failure of the recommendation service,
 let's set this parameter to name a non-existent table.\n");
 await
 _smParameterWrapper.PutParameterByName(_smParameterWrapper.TableParameter,
 "this-is-not-a-table");
 Console.WriteLine("\nNow, sending a GET request to the load balancer
 endpoint returns a failure code. But, the service reports as\n" +

Scenarios 1998

AWS Identity and Access Management User Guide

 "healthy to the load balancer because shallow health
 checks don't check for failure of the recommendation service.");
 if (interactive)
 await DemoActionChoices();

 Console.WriteLine("Instead of failing when the recommendation service
 fails, the web service can return a static response.");
 Console.WriteLine("While this is not a perfect solution, it presents the
 customer with a somewhat better experience than failure.");

 await
 _smParameterWrapper.PutParameterByName(_smParameterWrapper.FailureResponseParameter,
 "static");

 Console.WriteLine("\nNow, sending a GET request to the load balancer
 endpoint returns a static response.");
 Console.WriteLine("The service still reports as healthy because health
 checks are still shallow.");
 if (interactive)
 await DemoActionChoices();

 Console.WriteLine("Let's reinstate the recommendation service.\n");
 await
 _smParameterWrapper.PutParameterByName(_smParameterWrapper.TableParameter,
 _smParameterWrapper.TableName);
 Console.WriteLine(
 "\nLet's also substitute bad credentials for one of the instances in
 the target group so that it can't\n" +
 "access the DynamoDB recommendation table.\n"
);
 await _autoScalerWrapper.CreateInstanceProfileWithName(
 _autoScalerWrapper.BadCredsPolicyName,
 _autoScalerWrapper.BadCredsRoleName,
 _autoScalerWrapper.BadCredsProfileName,
 ssmOnlyPolicy,
 new List<string> { "AmazonSSMManagedInstanceCore" }
);
 var instances = await
 _autoScalerWrapper.GetInstancesByGroupName(_autoScalerWrapper.GroupName);
 var badInstanceId = instances.First();
 var instanceProfile = await
 _autoScalerWrapper.GetInstanceProfile(badInstanceId);
 Console.WriteLine(

Scenarios 1999

AWS Identity and Access Management User Guide

 $"Replacing the profile for instance {badInstanceId} with a profile
 that contains\n" +
 "bad credentials...\n"
);
 await _autoScalerWrapper.ReplaceInstanceProfile(
 badInstanceId,
 _autoScalerWrapper.BadCredsProfileName,
 instanceProfile.AssociationId
);
 Console.WriteLine(
 "Now, sending a GET request to the load balancer endpoint returns
 either a recommendation or a static response,\n" +
 "depending on which instance is selected by the load balancer.\n"
);
 if (interactive)
 await DemoActionChoices();

 Console.WriteLine("\nLet's implement a deep health check. For this demo,
 a deep health check tests whether");
 Console.WriteLine("the web service can access the DynamoDB table that it
 depends on for recommendations. Note that");
 Console.WriteLine("the deep health check is only for ELB routing and not
 for Auto Scaling instance health.");
 Console.WriteLine("This kind of deep health check is not recommended for
 Auto Scaling instance health, because it");
 Console.WriteLine("risks accidental termination of all instances in the
 Auto Scaling group when a dependent service fails.");

 Console.WriteLine("\nBy implementing deep health checks, the load
 balancer can detect when one of the instances is failing");
 Console.WriteLine("and take that instance out of rotation.");

 await
 _smParameterWrapper.PutParameterByName(_smParameterWrapper.HealthCheckParameter,
 "deep");

 Console.WriteLine($"\nNow, checking target health indicates that the
 instance with bad credentials ({badInstanceId})");
 Console.WriteLine("is unhealthy. Note that it might take a minute or two
 for the load balancer to detect the unhealthy");
 Console.WriteLine("instance. Sending a GET request to the load balancer
 endpoint always returns a recommendation, because");
 Console.WriteLine("the load balancer takes unhealthy instances out of its
 rotation.");

Scenarios 2000

AWS Identity and Access Management User Guide

 if (interactive)
 await DemoActionChoices();

 Console.WriteLine("\nBecause the instances in this demo are controlled by
 an auto scaler, the simplest way to fix an unhealthy");
 Console.WriteLine("instance is to terminate it and let the auto scaler
 start a new instance to replace it.");

 await _autoScalerWrapper.TryTerminateInstanceById(badInstanceId);

 Console.WriteLine($"\nEven while the instance is terminating and the new
 instance is starting, sending a GET");
 Console.WriteLine("request to the web service continues to get a
 successful recommendation response because");
 Console.WriteLine("starts and reports as healthy, it is included in the
 load balancing rotation.");
 Console.WriteLine("Note that terminating and replacing an instance
 typically takes several minutes, during which time you");
 Console.WriteLine("can see the changing health check status until the new
 instance is running and healthy.");

 if (interactive)
 await DemoActionChoices();

 Console.WriteLine("\nIf the recommendation service fails now, deep health
 checks mean all instances report as unhealthy.");

 await
 _smParameterWrapper.PutParameterByName(_smParameterWrapper.TableParameter,
 "this-is-not-a-table");

 Console.WriteLine($"\nWhen all instances are unhealthy, the load balancer
 continues to route requests even to");
 Console.WriteLine("unhealthy instances, allowing them to fail open and
 return a static response rather than fail");
 Console.WriteLine("closed and report failure to the customer.");

 if (interactive)
 await DemoActionChoices();
 await _smParameterWrapper.Reset();

 Console.WriteLine(new string('-', 80));
 return true;

Scenarios 2001

AWS Identity and Access Management User Guide

 }

 /// <summary>
 /// Clean up the resources from the scenario.
 /// </summary>
 /// <param name="interactive">True to ask the user for cleanup.</param>
 /// <returns>Async task.</returns>
 public static async Task<bool> DestroyResources(bool interactive)
 {
 Console.WriteLine(new string('-', 80));
 Console.WriteLine(
 "To keep things tidy and to avoid unwanted charges on your account,
 we can clean up all AWS resources\n" +
 "that were created for this demo."
);

 if (!interactive || GetYesNoResponse("Do you want to clean up all demo
 resources? (y/n) "))
 {
 await
 _elasticLoadBalancerWrapper.DeleteLoadBalancerByName(_elasticLoadBalancerWrapper.LoadBalancerName);
 await
 _elasticLoadBalancerWrapper.DeleteTargetGroupByName(_elasticLoadBalancerWrapper.TargetGroupName);
 await
 _autoScalerWrapper.TerminateAndDeleteAutoScalingGroupWithName(_autoScalerWrapper.GroupName);
 await
 _autoScalerWrapper.DeleteKeyPairByName(_autoScalerWrapper.KeyPairName);
 await
 _autoScalerWrapper.DeleteTemplateByName(_autoScalerWrapper.LaunchTemplateName);
 await _autoScalerWrapper.DeleteInstanceProfile(
 _autoScalerWrapper.BadCredsProfileName,
 _autoScalerWrapper.BadCredsRoleName
);
 await
 _recommendations.DestroyDatabaseByName(_recommendations.TableName);
 }
 else
 {
 Console.WriteLine(
 "Ok, we'll leave the resources intact.\n" +
 "Don't forget to delete them when you're done with them or you
 might incur unexpected charges."
);
 }

Scenarios 2002

AWS Identity and Access Management User Guide

 Console.WriteLine(new string('-', 80));
 return true;
 }

Create a class that wraps Auto Scaling and Amazon EC2 actions.

/// <summary>
/// Encapsulates Amazon EC2 Auto Scaling and EC2 management methods.
/// </summary>
public class AutoScalerWrapper
{
 private readonly IAmazonAutoScaling _amazonAutoScaling;
 private readonly IAmazonEC2 _amazonEc2;
 private readonly IAmazonSimpleSystemsManagement _amazonSsm;
 private readonly IAmazonIdentityManagementService _amazonIam;

 private readonly string _instanceType = "";
 private readonly string _amiParam = "";
 private readonly string _launchTemplateName = "";
 private readonly string _groupName = "";
 private readonly string _instancePolicyName = "";
 private readonly string _instanceRoleName = "";
 private readonly string _instanceProfileName = "";
 private readonly string _badCredsProfileName = "";
 private readonly string _badCredsRoleName = "";
 private readonly string _badCredsPolicyName = "";
 private readonly string _keyPairName = "";

 public string GroupName => _groupName;
 public string KeyPairName => _keyPairName;
 public string LaunchTemplateName => _launchTemplateName;
 public string InstancePolicyName => _instancePolicyName;
 public string BadCredsProfileName => _badCredsProfileName;
 public string BadCredsRoleName => _badCredsRoleName;
 public string BadCredsPolicyName => _badCredsPolicyName;

 /// <summary>
 /// Constructor for the AutoScalerWrapper.
 /// </summary>
 /// <param name="amazonAutoScaling">The injected AutoScaling client.</param>
 /// <param name="amazonEc2">The injected EC2 client.</param>

Scenarios 2003

AWS Identity and Access Management User Guide

 /// <param name="amazonIam">The injected IAM client.</param>
 /// <param name="amazonSsm">The injected SSM client.</param>
 public AutoScalerWrapper(
 IAmazonAutoScaling amazonAutoScaling,
 IAmazonEC2 amazonEc2,
 IAmazonSimpleSystemsManagement amazonSsm,
 IAmazonIdentityManagementService amazonIam,
 IConfiguration configuration)
 {
 _amazonAutoScaling = amazonAutoScaling;
 _amazonEc2 = amazonEc2;
 _amazonSsm = amazonSsm;
 _amazonIam = amazonIam;

 var prefix = configuration["resourcePrefix"];
 _instanceType = configuration["instanceType"];
 _amiParam = configuration["amiParam"];

 _launchTemplateName = prefix + "-template";
 _groupName = prefix + "-group";
 _instancePolicyName = prefix + "-pol";
 _instanceRoleName = prefix + "-role";
 _instanceProfileName = prefix + "-prof";
 _badCredsPolicyName = prefix + "-bc-pol";
 _badCredsRoleName = prefix + "-bc-role";
 _badCredsProfileName = prefix + "-bc-prof";
 _keyPairName = prefix + "-key-pair";
 }

 /// <summary>
 /// Create a policy, role, and profile that is associated with instances with
 a specified name.
 /// An instance's associated profile defines a role that is assumed by the
 /// instance.The role has attached policies that specify the AWS permissions
 granted to
 /// clients that run on the instance.
 /// </summary>
 /// <param name="policyName">Name to use for the policy.</param>
 /// <param name="roleName">Name to use for the role.</param>
 /// <param name="profileName">Name to use for the profile.</param>
 /// <param name="ssmOnlyPolicyFile">Path to a policy file for SSM.</param>
 /// <param name="awsManagedPolicies">AWS Managed policies to be attached to
 the role.</param>
 /// <returns>The Arn of the profile.</returns>

Scenarios 2004

AWS Identity and Access Management User Guide

 public async Task<string> CreateInstanceProfileWithName(
 string policyName,
 string roleName,
 string profileName,
 string ssmOnlyPolicyFile,
 List<string>? awsManagedPolicies = null)
 {

 var assumeRoleDoc = "{" +
 "\"Version\": \"2012-10-17\"," +
 "\"Statement\": [{" +
 "\"Effect\": \"Allow\"," +
 "\"Principal\": {" +
 "\"Service\": [" +
 "\"ec2.amazonaws.com\"" +
 "]" +
 "}," +
 "\"Action\": \"sts:AssumeRole\"" +
 "}]" +
 "}";

 var policyDocument = await File.ReadAllTextAsync(ssmOnlyPolicyFile);

 var policyArn = "";

 try
 {
 var createPolicyResult = await _amazonIam.CreatePolicyAsync(
 new CreatePolicyRequest
 {
 PolicyName = policyName,
 PolicyDocument = policyDocument
 });
 policyArn = createPolicyResult.Policy.Arn;
 }
 catch (EntityAlreadyExistsException)
 {
 // The policy already exists, so we look it up to get the Arn.
 var policiesPaginator = _amazonIam.Paginators.ListPolicies(
 new ListPoliciesRequest()
 {
 Scope = PolicyScopeType.Local
 });
 // Get the entire list using the paginator.

Scenarios 2005

AWS Identity and Access Management User Guide

 await foreach (var policy in policiesPaginator.Policies)
 {
 if (policy.PolicyName.Equals(policyName))
 {
 policyArn = policy.Arn;
 }
 }

 if (policyArn == null)
 {
 throw new InvalidOperationException("Policy not found");
 }
 }

 try
 {
 await _amazonIam.CreateRoleAsync(new CreateRoleRequest()
 {
 RoleName = roleName,
 AssumeRolePolicyDocument = assumeRoleDoc,
 });
 await _amazonIam.AttachRolePolicyAsync(new AttachRolePolicyRequest()
 {
 RoleName = roleName,
 PolicyArn = policyArn
 });
 if (awsManagedPolicies != null)
 {
 foreach (var awsPolicy in awsManagedPolicies)
 {
 await _amazonIam.AttachRolePolicyAsync(new
 AttachRolePolicyRequest()
 {
 PolicyArn = $"arn:aws:iam::aws:policy/{awsPolicy}",
 RoleName = roleName
 });
 }
 }
 }
 catch (EntityAlreadyExistsException)
 {
 Console.WriteLine("Role already exists.");
 }

Scenarios 2006

AWS Identity and Access Management User Guide

 string profileArn = "";
 try
 {
 var profileCreateResponse = await
 _amazonIam.CreateInstanceProfileAsync(
 new CreateInstanceProfileRequest()
 {
 InstanceProfileName = profileName
 });
 // Allow time for the profile to be ready.
 profileArn = profileCreateResponse.InstanceProfile.Arn;
 Thread.Sleep(10000);
 await _amazonIam.AddRoleToInstanceProfileAsync(
 new AddRoleToInstanceProfileRequest()
 {
 InstanceProfileName = profileName,
 RoleName = roleName
 });

 }
 catch (EntityAlreadyExistsException)
 {
 Console.WriteLine("Policy already exists.");
 var profileGetResponse = await _amazonIam.GetInstanceProfileAsync(
 new GetInstanceProfileRequest()
 {
 InstanceProfileName = profileName
 });
 profileArn = profileGetResponse.InstanceProfile.Arn;
 }
 return profileArn;
 }

 /// <summary>
 /// Create a new key pair and save the file.
 /// </summary>
 /// <param name="newKeyPairName">The name of the new key pair.</param>
 /// <returns>Async task.</returns>
 public async Task CreateKeyPair(string newKeyPairName)
 {
 try
 {
 var keyResponse = await _amazonEc2.CreateKeyPairAsync(
 new CreateKeyPairRequest() { KeyName = newKeyPairName });

Scenarios 2007

AWS Identity and Access Management User Guide

 await File.WriteAllTextAsync($"{newKeyPairName}.pem",
 keyResponse.KeyPair.KeyMaterial);
 Console.WriteLine($"Created key pair {newKeyPairName}.");
 }
 catch (AlreadyExistsException)
 {
 Console.WriteLine("Key pair already exists.");
 }
 }

 /// <summary>
 /// Delete the key pair and file by name.
 /// </summary>
 /// <param name="deleteKeyPairName">The key pair to delete.</param>
 /// <returns>Async task.</returns>
 public async Task DeleteKeyPairByName(string deleteKeyPairName)
 {
 try
 {
 await _amazonEc2.DeleteKeyPairAsync(
 new DeleteKeyPairRequest() { KeyName = deleteKeyPairName });
 File.Delete($"{deleteKeyPairName}.pem");
 }
 catch (FileNotFoundException)
 {
 Console.WriteLine($"Key pair {deleteKeyPairName} not found.");
 }
 }

 /// <summary>
 /// Creates an Amazon EC2 launch template to use with Amazon EC2 Auto
 Scaling.
 /// The launch template specifies a Bash script in its user data field that
 runs after
 /// the instance is started. This script installs the Python packages and
 starts a Python
 /// web server on the instance.
 /// </summary>
 /// <param name="startupScriptPath">The path to a Bash script file that is
 run.</param>
 /// <param name="instancePolicyPath">The path to a permissions policy to
 create and attach to the profile.</param>
 /// <returns>The template object.</returns>

Scenarios 2008

AWS Identity and Access Management User Guide

 public async Task<Amazon.EC2.Model.LaunchTemplate> CreateTemplate(string
 startupScriptPath, string instancePolicyPath)
 {
 await CreateKeyPair(_keyPairName);
 await CreateInstanceProfileWithName(_instancePolicyName,
 _instanceRoleName, _instanceProfileName, instancePolicyPath);

 var startServerText = await File.ReadAllTextAsync(startupScriptPath);
 var plainTextBytes = System.Text.Encoding.UTF8.GetBytes(startServerText);

 var amiLatest = await _amazonSsm.GetParameterAsync(
 new GetParameterRequest() { Name = _amiParam });
 var amiId = amiLatest.Parameter.Value;
 var launchTemplateResponse = await _amazonEc2.CreateLaunchTemplateAsync(
 new CreateLaunchTemplateRequest()
 {
 LaunchTemplateName = _launchTemplateName,
 LaunchTemplateData = new RequestLaunchTemplateData()
 {
 InstanceType = _instanceType,
 ImageId = amiId,
 IamInstanceProfile =
 new

 LaunchTemplateIamInstanceProfileSpecificationRequest()
 {
 Name = _instanceProfileName
 },
 KeyName = _keyPairName,
 UserData = System.Convert.ToBase64String(plainTextBytes)
 }
 });
 return launchTemplateResponse.LaunchTemplate;

 }

 /// <summary>
 /// Get a list of Availability Zones in the AWS Region of the Amazon EC2
 Client.
 /// </summary>
 /// <returns>A list of availability zones.</returns>
 public async Task<List<string>> DescribeAvailabilityZones()
 {
 var zoneResponse = await _amazonEc2.DescribeAvailabilityZonesAsync(

Scenarios 2009

AWS Identity and Access Management User Guide

 new DescribeAvailabilityZonesRequest());
 return zoneResponse.AvailabilityZones.Select(z => z.ZoneName).ToList();
 }

 /// <summary>
 /// Create an EC2 Auto Scaling group of a specified size and name.
 /// </summary>
 /// <param name="groupSize">The size for the group.</param>
 /// <param name="groupName">The name for the group.</param>
 /// <param name="availabilityZones">The availability zones for the group.</
param>
 /// <returns>Async task.</returns>
 public async Task CreateGroupOfSize(int groupSize, string groupName,
 List<string> availabilityZones)
 {
 try
 {
 await _amazonAutoScaling.CreateAutoScalingGroupAsync(
 new CreateAutoScalingGroupRequest()
 {
 AutoScalingGroupName = groupName,
 AvailabilityZones = availabilityZones,
 LaunchTemplate =
 new
 Amazon.AutoScaling.Model.LaunchTemplateSpecification()
 {
 LaunchTemplateName = _launchTemplateName,
 Version = "$Default"
 },
 MaxSize = groupSize,
 MinSize = groupSize
 });
 Console.WriteLine($"Created EC2 Auto Scaling group {groupName} with
 size {groupSize}.");
 }
 catch (EntityAlreadyExistsException)
 {
 Console.WriteLine($"EC2 Auto Scaling group {groupName} already
 exists.");
 }
 }

 /// <summary>
 /// Get the default VPC for the account.

Scenarios 2010

AWS Identity and Access Management User Guide

 /// </summary>
 /// <returns>The default VPC object.</returns>
 public async Task<Vpc> GetDefaultVpc()
 {
 var vpcResponse = await _amazonEc2.DescribeVpcsAsync(
 new DescribeVpcsRequest()
 {
 Filters = new List<Amazon.EC2.Model.Filter>()
 {
 new ("is-default", new List<string>() { "true" })
 }
 });
 return vpcResponse.Vpcs[0];
 }

 /// <summary>
 /// Get all the subnets for a Vpc in a set of availability zones.
 /// </summary>
 /// <param name="vpcId">The Id of the Vpc.</param>
 /// <param name="availabilityZones">The list of availability zones.</param>
 /// <returns>The collection of subnet objects.</returns>
 public async Task<List<Subnet>> GetAllVpcSubnetsForZones(string vpcId,
 List<string> availabilityZones)
 {
 var subnets = new List<Subnet>();
 var subnetPaginator = _amazonEc2.Paginators.DescribeSubnets(
 new DescribeSubnetsRequest()
 {
 Filters = new List<Amazon.EC2.Model.Filter>()
 {
 new ("vpc-id", new List<string>() { vpcId}),
 new ("availability-zone", availabilityZones),
 new ("default-for-az", new List<string>() { "true" })
 }
 });

 // Get the entire list using the paginator.
 await foreach (var subnet in subnetPaginator.Subnets)
 {
 subnets.Add(subnet);
 }

 return subnets;
 }

Scenarios 2011

AWS Identity and Access Management User Guide

 /// <summary>
 /// Delete a launch template by name.
 /// </summary>
 /// <param name="templateName">The name of the template to delete.</param>
 /// <returns>Async task.</returns>
 public async Task DeleteTemplateByName(string templateName)
 {
 try
 {
 await _amazonEc2.DeleteLaunchTemplateAsync(
 new DeleteLaunchTemplateRequest()
 {
 LaunchTemplateName = templateName
 });
 }
 catch (AmazonClientException)
 {
 Console.WriteLine($"Unable to delete template {templateName}.");
 }
 }

 /// <summary>
 /// Detaches a role from an instance profile, detaches policies from the
 role,
 /// and deletes all the resources.
 /// </summary>
 /// <param name="profileName">The name of the profile to delete.</param>
 /// <param name="roleName">The name of the role to delete.</param>
 /// <returns>Async task.</returns>
 public async Task DeleteInstanceProfile(string profileName, string roleName)
 {
 try
 {
 await _amazonIam.RemoveRoleFromInstanceProfileAsync(
 new RemoveRoleFromInstanceProfileRequest()
 {
 InstanceProfileName = profileName,
 RoleName = roleName
 });
 await _amazonIam.DeleteInstanceProfileAsync(
 new DeleteInstanceProfileRequest() { InstanceProfileName =
 profileName });

Scenarios 2012

AWS Identity and Access Management User Guide

 var attachedPolicies = await
 _amazonIam.ListAttachedRolePoliciesAsync(
 new ListAttachedRolePoliciesRequest() { RoleName = roleName });
 foreach (var policy in attachedPolicies.AttachedPolicies)
 {
 await _amazonIam.DetachRolePolicyAsync(
 new DetachRolePolicyRequest()
 {
 RoleName = roleName,
 PolicyArn = policy.PolicyArn
 });
 // Delete the custom policies only.
 if (!policy.PolicyArn.StartsWith("arn:aws:iam::aws"))
 {
 await _amazonIam.DeletePolicyAsync(
 new Amazon.IdentityManagement.Model.DeletePolicyRequest()
 {
 PolicyArn = policy.PolicyArn
 });
 }
 }

 await _amazonIam.DeleteRoleAsync(
 new DeleteRoleRequest() { RoleName = roleName });
 }
 catch (NoSuchEntityException)
 {
 Console.WriteLine($"Instance profile {profileName} does not exist.");
 }
 }

 /// <summary>
 /// Gets data about the instances in an EC2 Auto Scaling group by its group
 name.
 /// </summary>
 /// <param name="group">The name of the auto scaling group.</param>
 /// <returns>A collection of instance Ids.</returns>
 public async Task<IEnumerable<string>> GetInstancesByGroupName(string group)
 {
 var instanceResponse = await
 _amazonAutoScaling.DescribeAutoScalingGroupsAsync(
 new DescribeAutoScalingGroupsRequest()
 {
 AutoScalingGroupNames = new List<string>() { group }

Scenarios 2013

AWS Identity and Access Management User Guide

 });
 var instanceIds = instanceResponse.AutoScalingGroups.SelectMany(
 g => g.Instances.Select(i => i.InstanceId));
 return instanceIds;
 }

 /// <summary>
 /// Get the instance profile association data for an instance.
 /// </summary>
 /// <param name="instanceId">The Id of the instance.</param>
 /// <returns>Instance profile associations data.</returns>
 public async Task<IamInstanceProfileAssociation> GetInstanceProfile(string
 instanceId)
 {
 var response = await
 _amazonEc2.DescribeIamInstanceProfileAssociationsAsync(
 new DescribeIamInstanceProfileAssociationsRequest()
 {
 Filters = new List<Amazon.EC2.Model.Filter>()
 {
 new ("instance-id", new List<string>() { instanceId })
 },
 });
 return response.IamInstanceProfileAssociations[0];
 }

 /// <summary>
 /// Replace the profile associated with a running instance. After the profile
 is replaced, the instance
 /// is rebooted to ensure that it uses the new profile. When the instance is
 ready, Systems Manager is
 /// used to restart the Python web server.
 /// </summary>
 /// <param name="instanceId">The Id of the instance to update.</param>
 /// <param name="credsProfileName">The name of the new profile to associate
 with the specified instance.</param>
 /// <param name="associationId">The Id of the existing profile association
 for the instance.</param>
 /// <returns>Async task.</returns>
 public async Task ReplaceInstanceProfile(string instanceId, string
 credsProfileName, string associationId)
 {
 await _amazonEc2.ReplaceIamInstanceProfileAssociationAsync(
 new ReplaceIamInstanceProfileAssociationRequest()

Scenarios 2014

AWS Identity and Access Management User Guide

 {
 AssociationId = associationId,
 IamInstanceProfile = new IamInstanceProfileSpecification()
 {
 Name = credsProfileName
 }
 });
 // Allow time before resetting.
 Thread.Sleep(25000);
 var instanceReady = false;
 var retries = 5;
 while (retries-- > 0 && !instanceReady)
 {
 await _amazonEc2.RebootInstancesAsync(
 new RebootInstancesRequest(new List<string>() { instanceId }));
 Thread.Sleep(10000);

 var instancesPaginator =
 _amazonSsm.Paginators.DescribeInstanceInformation(
 new DescribeInstanceInformationRequest());
 // Get the entire list using the paginator.
 await foreach (var instance in
 instancesPaginator.InstanceInformationList)
 {
 instanceReady = instance.InstanceId == instanceId;
 if (instanceReady)
 {
 break;
 }
 }
 }
 Console.WriteLine($"Sending restart command to instance {instanceId}");
 await _amazonSsm.SendCommandAsync(
 new SendCommandRequest()
 {
 InstanceIds = new List<string>() { instanceId },
 DocumentName = "AWS-RunShellScript",
 Parameters = new Dictionary<string, List<string>>()
 {
 {"commands", new List<string>() { "cd / && sudo python3
 server.py 80" }}
 }
 });
 Console.WriteLine($"Restarted the web server on instance {instanceId}");

Scenarios 2015

AWS Identity and Access Management User Guide

 }

 /// <summary>
 /// Try to terminate an instance by its Id.
 /// </summary>
 /// <param name="instanceId">The Id of the instance to terminate.</param>
 /// <returns>Async task.</returns>
 public async Task TryTerminateInstanceById(string instanceId)
 {
 var stopping = false;
 Console.WriteLine($"Stopping {instanceId}...");
 while (!stopping)
 {
 try
 {
 await
 _amazonAutoScaling.TerminateInstanceInAutoScalingGroupAsync(
 new TerminateInstanceInAutoScalingGroupRequest()
 {
 InstanceId = instanceId,
 ShouldDecrementDesiredCapacity = false
 });
 stopping = true;
 }
 catch (ScalingActivityInProgressException)
 {
 Console.WriteLine($"Scaling activity in progress for
 {instanceId}. Waiting...");
 Thread.Sleep(10000);
 }
 }
 }

 /// <summary>
 /// Tries to delete the EC2 Auto Scaling group. If the group is in use or in
 progress,
 /// waits and retries until the group is successfully deleted.
 /// </summary>
 /// <param name="groupName">The name of the group to try to delete.</param>
 /// <returns>Async task.</returns>
 public async Task TryDeleteGroupByName(string groupName)
 {
 var stopped = false;
 while (!stopped)

Scenarios 2016

AWS Identity and Access Management User Guide

 {
 try
 {
 await _amazonAutoScaling.DeleteAutoScalingGroupAsync(
 new DeleteAutoScalingGroupRequest()
 {
 AutoScalingGroupName = groupName
 });
 stopped = true;
 }
 catch (Exception e)
 when ((e is ScalingActivityInProgressException)
 || (e is Amazon.AutoScaling.Model.ResourceInUseException))
 {
 Console.WriteLine($"Some instances are still running.
 Waiting...");
 Thread.Sleep(10000);
 }
 }
 }

 /// <summary>
 /// Terminate instances and delete the Auto Scaling group by name.
 /// </summary>
 /// <param name="groupName">The name of the group to delete.</param>
 /// <returns>Async task.</returns>
 public async Task TerminateAndDeleteAutoScalingGroupWithName(string
 groupName)
 {
 var describeGroupsResponse = await
 _amazonAutoScaling.DescribeAutoScalingGroupsAsync(
 new DescribeAutoScalingGroupsRequest()
 {
 AutoScalingGroupNames = new List<string>() { groupName }
 });
 if (describeGroupsResponse.AutoScalingGroups.Any())
 {
 // Update the size to 0.
 await _amazonAutoScaling.UpdateAutoScalingGroupAsync(
 new UpdateAutoScalingGroupRequest()
 {
 AutoScalingGroupName = groupName,
 MinSize = 0
 });

Scenarios 2017

AWS Identity and Access Management User Guide

 var group = describeGroupsResponse.AutoScalingGroups[0];
 foreach (var instance in group.Instances)
 {
 await TryTerminateInstanceById(instance.InstanceId);
 }

 await TryDeleteGroupByName(groupName);
 }
 else
 {
 Console.WriteLine($"No groups found with name {groupName}.");
 }
 }

 /// <summary>
 /// Get the default security group for a specified Vpc.
 /// </summary>
 /// <param name="vpc">The Vpc to search.</param>
 /// <returns>The default security group.</returns>
 public async Task<SecurityGroup> GetDefaultSecurityGroupForVpc(Vpc vpc)
 {
 var groupResponse = await _amazonEc2.DescribeSecurityGroupsAsync(
 new DescribeSecurityGroupsRequest()
 {
 Filters = new List<Amazon.EC2.Model.Filter>()
 {
 new ("group-name", new List<string>() { "default" }),
 new ("vpc-id", new List<string>() { vpc.VpcId })
 }
 });
 return groupResponse.SecurityGroups[0];
 }

 /// <summary>
 /// Verify the default security group of a Vpc allows ingress from the
 calling computer.
 /// This can be done by allowing ingress from this computer's IP address.
 /// In some situations, such as connecting from a corporate network, you must
 instead specify
 /// a prefix list Id. You can also temporarily open the port to any IP
 address while running this example.
 /// If you do, be sure to remove public access when you're done.
 /// </summary>

Scenarios 2018

AWS Identity and Access Management User Guide

 /// <param name="vpc">The group to check.</param>
 /// <param name="port">The port to verify.</param>
 /// <param name="ipAddress">This computer's IP address.</param>
 /// <returns>True if the ip address is allowed on the group.</returns>
 public bool VerifyInboundPortForGroup(SecurityGroup group, int port, string
 ipAddress)
 {
 var portIsOpen = false;
 foreach (var ipPermission in group.IpPermissions)
 {
 if (ipPermission.FromPort == port)
 {
 foreach (var ipRange in ipPermission.Ipv4Ranges)
 {
 var cidr = ipRange.CidrIp;
 if (cidr.StartsWith(ipAddress) || cidr == "0.0.0.0/0")
 {
 portIsOpen = true;
 }
 }

 if (ipPermission.PrefixListIds.Any())
 {
 portIsOpen = true;
 }

 if (!portIsOpen)
 {
 Console.WriteLine("The inbound rule does not appear to be
 open to either this computer's IP\n" +
 "address, to all IP addresses (0.0.0.0/0),
 or to a prefix list ID.");
 }
 else
 {
 break;
 }
 }
 }

 return portIsOpen;
 }

 /// <summary>

Scenarios 2019

AWS Identity and Access Management User Guide

 /// Add an ingress rule to the specified security group that allows access on
 the
 /// specified port from the specified IP address.
 /// </summary>
 /// <param name="groupId">The Id of the security group to modify.</param>
 /// <param name="port">The port to open.</param>
 /// <param name="ipAddress">The IP address to allow access.</param>
 /// <returns>Async task.</returns>
 public async Task OpenInboundPort(string groupId, int port, string ipAddress)
 {
 await _amazonEc2.AuthorizeSecurityGroupIngressAsync(
 new AuthorizeSecurityGroupIngressRequest()
 {
 GroupId = groupId,
 IpPermissions = new List<IpPermission>()
 {
 new IpPermission()
 {
 FromPort = port,
 ToPort = port,
 IpProtocol = "tcp",
 Ipv4Ranges = new List<IpRange>()
 {
 new IpRange() { CidrIp = $"{ipAddress}/32" }
 }
 }
 }
 });
 }

 /// <summary>
 /// Attaches an Elastic Load Balancing (ELB) target group to this EC2 Auto
 Scaling group.
 /// The
 /// </summary>
 /// <param name="autoScalingGroupName">The name of the Auto Scaling group.</
param>
 /// <param name="targetGroupArn">The Arn for the target group.</param>
 /// <returns>Async task.</returns>
 public async Task AttachLoadBalancerToGroup(string autoScalingGroupName,
 string targetGroupArn)
 {
 await _amazonAutoScaling.AttachLoadBalancerTargetGroupsAsync(
 new AttachLoadBalancerTargetGroupsRequest()

Scenarios 2020

AWS Identity and Access Management User Guide

 {
 AutoScalingGroupName = autoScalingGroupName,
 TargetGroupARNs = new List<string>() { targetGroupArn }
 });
 }
}

Create a class that wraps Elastic Load Balancing actions.

/// <summary>
/// Encapsulates Elastic Load Balancer actions.
/// </summary>
public class ElasticLoadBalancerWrapper
{
 private readonly IAmazonElasticLoadBalancingV2 _amazonElasticLoadBalancingV2;
 private string? _endpoint = null;
 private readonly string _targetGroupName = "";
 private readonly string _loadBalancerName = "";
 HttpClient _httpClient = new();

 public string TargetGroupName => _targetGroupName;
 public string LoadBalancerName => _loadBalancerName;

 /// <summary>
 /// Constructor for the Elastic Load Balancer wrapper.
 /// </summary>
 /// <param name="amazonElasticLoadBalancingV2">The injected load balancing v2
 client.</param>
 /// <param name="configuration">The injected configuration.</param>
 public ElasticLoadBalancerWrapper(
 IAmazonElasticLoadBalancingV2 amazonElasticLoadBalancingV2,
 IConfiguration configuration)
 {
 _amazonElasticLoadBalancingV2 = amazonElasticLoadBalancingV2;
 var prefix = configuration["resourcePrefix"];
 _targetGroupName = prefix + "-tg";
 _loadBalancerName = prefix + "-lb";
 }

 /// <summary>
 /// Get the HTTP Endpoint of a load balancer by its name.

Scenarios 2021

AWS Identity and Access Management User Guide

 /// </summary>
 /// <param name="loadBalancerName">The name of the load balancer.</param>
 /// <returns>The HTTP endpoint.</returns>
 public async Task<string> GetEndpointForLoadBalancerByName(string
 loadBalancerName)
 {
 if (_endpoint == null)
 {
 var endpointResponse =
 await _amazonElasticLoadBalancingV2.DescribeLoadBalancersAsync(
 new DescribeLoadBalancersRequest()
 {
 Names = new List<string>() { loadBalancerName }
 });
 _endpoint = endpointResponse.LoadBalancers[0].DNSName;
 }

 return _endpoint;
 }

 /// <summary>
 /// Return the GET response for an endpoint as text.
 /// </summary>
 /// <param name="endpoint">The endpoint for the request.</param>
 /// <returns>The request response.</returns>
 public async Task<string> GetEndPointResponse(string endpoint)
 {
 var endpointResponse = await _httpClient.GetAsync($"http://{endpoint}");
 var textResponse = await endpointResponse.Content.ReadAsStringAsync();
 return textResponse!;
 }

 /// <summary>
 /// Get the target health for a group by name.
 /// </summary>
 /// <param name="groupName">The name of the group.</param>
 /// <returns>The collection of health descriptions.</returns>
 public async Task<List<TargetHealthDescription>>
 CheckTargetHealthForGroup(string groupName)
 {
 List<TargetHealthDescription> result = null!;
 try
 {
 var groupResponse =

Scenarios 2022

AWS Identity and Access Management User Guide

 await _amazonElasticLoadBalancingV2.DescribeTargetGroupsAsync(
 new DescribeTargetGroupsRequest()
 {
 Names = new List<string>() { groupName }
 });
 var healthResponse =
 await _amazonElasticLoadBalancingV2.DescribeTargetHealthAsync(
 new DescribeTargetHealthRequest()
 {
 TargetGroupArn =
 groupResponse.TargetGroups[0].TargetGroupArn
 });
 ;
 result = healthResponse.TargetHealthDescriptions;
 }
 catch (TargetGroupNotFoundException)
 {
 Console.WriteLine($"Target group {groupName} not found.");
 }
 return result;
 }

 /// <summary>
 /// Create an Elastic Load Balancing target group. The target group specifies
 how the load balancer forwards
 /// requests to instances in the group and how instance health is checked.
 ///
 /// To speed up this demo, the health check is configured with shortened
 times and lower thresholds. In production,
 /// you might want to decrease the sensitivity of your health checks to avoid
 unwanted failures.
 /// </summary>
 /// <param name="groupName">The name for the group.</param>
 /// <param name="protocol">The protocol, such as HTTP.</param>
 /// <param name="port">The port to use to forward requests, such as 80.</
param>
 /// <param name="vpcId">The Id of the Vpc in which the load balancer
 exists.</param>
 /// <returns>The new TargetGroup object.</returns>
 public async Task<TargetGroup> CreateTargetGroupOnVpc(string groupName,
 ProtocolEnum protocol, int port, string vpcId)
 {
 var createResponse = await
 _amazonElasticLoadBalancingV2.CreateTargetGroupAsync(

Scenarios 2023

AWS Identity and Access Management User Guide

 new CreateTargetGroupRequest()
 {
 Name = groupName,
 Protocol = protocol,
 Port = port,
 HealthCheckPath = "/healthcheck",
 HealthCheckIntervalSeconds = 10,
 HealthCheckTimeoutSeconds = 5,
 HealthyThresholdCount = 2,
 UnhealthyThresholdCount = 2,
 VpcId = vpcId
 });
 var targetGroup = createResponse.TargetGroups[0];
 return targetGroup;
 }

 /// <summary>
 /// Create an Elastic Load Balancing load balancer that uses the specified
 subnets
 /// and forwards requests to the specified target group.
 /// </summary>
 /// <param name="name">The name for the new load balancer.</param>
 /// <param name="subnetIds">Subnets for the load balancer.</param>
 /// <param name="targetGroup">Target group for forwarded requests.</param>
 /// <returns>The new LoadBalancer object.</returns>
 public async Task<LoadBalancer> CreateLoadBalancerAndListener(string name,
 List<string> subnetIds, TargetGroup targetGroup)
 {
 var createLbResponse = await
 _amazonElasticLoadBalancingV2.CreateLoadBalancerAsync(
 new CreateLoadBalancerRequest()
 {
 Name = name,
 Subnets = subnetIds
 });
 var loadBalancerArn = createLbResponse.LoadBalancers[0].LoadBalancerArn;

 // Wait for load balancer to be available.
 var loadBalancerReady = false;
 while (!loadBalancerReady)
 {
 try
 {
 var describeResponse =

Scenarios 2024

AWS Identity and Access Management User Guide

 await
 _amazonElasticLoadBalancingV2.DescribeLoadBalancersAsync(
 new DescribeLoadBalancersRequest()
 {
 Names = new List<string>() { name }
 });

 var loadBalancerState =
 describeResponse.LoadBalancers[0].State.Code;

 loadBalancerReady = loadBalancerState ==
 LoadBalancerStateEnum.Active;
 }
 catch (LoadBalancerNotFoundException)
 {
 loadBalancerReady = false;
 }
 Thread.Sleep(10000);
 }
 // Create the listener.
 await _amazonElasticLoadBalancingV2.CreateListenerAsync(
 new CreateListenerRequest()
 {
 LoadBalancerArn = loadBalancerArn,
 Protocol = targetGroup.Protocol,
 Port = targetGroup.Port,
 DefaultActions = new List<Action>()
 {
 new Action()
 {
 Type = ActionTypeEnum.Forward,
 TargetGroupArn = targetGroup.TargetGroupArn
 }
 }
 });
 return createLbResponse.LoadBalancers[0];
 }

 /// <summary>
 /// Verify this computer can successfully send a GET request to the
 /// load balancer endpoint.
 /// </summary>
 /// <param name="endpoint">The endpoint to check.</param>
 /// <returns>True if successful.</returns>

Scenarios 2025

AWS Identity and Access Management User Guide

 public async Task<bool> VerifyLoadBalancerEndpoint(string endpoint)
 {
 var success = false;
 var retries = 3;
 while (!success && retries > 0)
 {
 try
 {
 var endpointResponse = await _httpClient.GetAsync($"http://
{endpoint}");
 Console.WriteLine($"Response: {endpointResponse.StatusCode}.");

 if (endpointResponse.IsSuccessStatusCode)
 {
 success = true;
 }
 else
 {
 retries = 0;
 }
 }
 catch (HttpRequestException)
 {
 Console.WriteLine("Connection error, retrying...");
 retries--;
 Thread.Sleep(10000);
 }
 }

 return success;
 }

 /// <summary>
 /// Delete a load balancer by its specified name.
 /// </summary>
 /// <param name="name">The name of the load balancer to delete.</param>
 /// <returns>Async task.</returns>
 public async Task DeleteLoadBalancerByName(string name)
 {
 try
 {
 var describeLoadBalancerResponse =
 await _amazonElasticLoadBalancingV2.DescribeLoadBalancersAsync(
 new DescribeLoadBalancersRequest()

Scenarios 2026

AWS Identity and Access Management User Guide

 {
 Names = new List<string>() { name }
 });
 var lbArn =
 describeLoadBalancerResponse.LoadBalancers[0].LoadBalancerArn;
 await _amazonElasticLoadBalancingV2.DeleteLoadBalancerAsync(
 new DeleteLoadBalancerRequest()
 {
 LoadBalancerArn = lbArn
 }
);
 }
 catch (LoadBalancerNotFoundException)
 {
 Console.WriteLine($"Load balancer {name} not found.");
 }
 }

 /// <summary>
 /// Delete a TargetGroup by its specified name.
 /// </summary>
 /// <param name="groupName">Name of the group to delete.</param>
 /// <returns>Async task.</returns>
 public async Task DeleteTargetGroupByName(string groupName)
 {
 var done = false;
 while (!done)
 {
 try
 {
 var groupResponse =
 await
 _amazonElasticLoadBalancingV2.DescribeTargetGroupsAsync(
 new DescribeTargetGroupsRequest()
 {
 Names = new List<string>() { groupName }
 });

 var targetArn = groupResponse.TargetGroups[0].TargetGroupArn;
 await _amazonElasticLoadBalancingV2.DeleteTargetGroupAsync(
 new DeleteTargetGroupRequest() { TargetGroupArn =
 targetArn });
 Console.WriteLine($"Deleted load balancing target group
 {groupName}.");

Scenarios 2027

AWS Identity and Access Management User Guide

 done = true;
 }
 catch (TargetGroupNotFoundException)
 {
 Console.WriteLine(
 $"Target group {groupName} not found, could not delete.");
 done = true;
 }
 catch (ResourceInUseException)
 {
 Console.WriteLine("Target group not yet released, waiting...");
 Thread.Sleep(10000);
 }
 }
 }
}

Create a class that uses DynamoDB to simulate a recommendation service.

/// <summary>
/// Encapsulates a DynamoDB table to use as a service that recommends books,
 movies, and songs.
/// </summary>
public class Recommendations
{
 private readonly IAmazonDynamoDB _amazonDynamoDb;
 private readonly DynamoDBContext _context;
 private readonly string _tableName;

 public string TableName => _tableName;

 /// <summary>
 /// Constructor for the Recommendations service.
 /// </summary>
 /// <param name="amazonDynamoDb">The injected DynamoDb client.</param>
 /// <param name="configuration">The injected configuration.</param>
 public Recommendations(IAmazonDynamoDB amazonDynamoDb, IConfiguration
 configuration)
 {
 _amazonDynamoDb = amazonDynamoDb;
 _context = new DynamoDBContext(_amazonDynamoDb);
 _tableName = configuration["databaseName"]!;

Scenarios 2028

AWS Identity and Access Management User Guide

 }

 /// <summary>
 /// Create the DynamoDb table with a specified name.
 /// </summary>
 /// <param name="tableName">The name for the table.</param>
 /// <returns>True when ready.</returns>
 public async Task<bool> CreateDatabaseWithName(string tableName)
 {
 try
 {
 Console.Write($"Creating table {tableName}...");
 var createRequest = new CreateTableRequest()
 {
 TableName = tableName,
 AttributeDefinitions = new List<AttributeDefinition>()
 {
 new AttributeDefinition()
 {
 AttributeName = "MediaType",
 AttributeType = ScalarAttributeType.S
 },
 new AttributeDefinition()
 {
 AttributeName = "ItemId",
 AttributeType = ScalarAttributeType.N
 }
 },
 KeySchema = new List<KeySchemaElement>()
 {
 new KeySchemaElement()
 {
 AttributeName = "MediaType",
 KeyType = KeyType.HASH
 },
 new KeySchemaElement()
 {
 AttributeName = "ItemId",
 KeyType = KeyType.RANGE
 }
 },
 ProvisionedThroughput = new ProvisionedThroughput()
 {
 ReadCapacityUnits = 5,

Scenarios 2029

AWS Identity and Access Management User Guide

 WriteCapacityUnits = 5
 }
 };
 await _amazonDynamoDb.CreateTableAsync(createRequest);

 // Wait until the table is ACTIVE and then report success.
 Console.Write("\nWaiting for table to become active...");

 var request = new DescribeTableRequest
 {
 TableName = tableName
 };

 TableStatus status;
 do
 {
 Thread.Sleep(2000);

 var describeTableResponse = await
 _amazonDynamoDb.DescribeTableAsync(request);
 status = describeTableResponse.Table.TableStatus;

 Console.Write(".");
 }
 while (status != "ACTIVE");

 return status == TableStatus.ACTIVE;
 }
 catch (ResourceInUseException)
 {
 Console.WriteLine($"Table {tableName} already exists.");
 return false;
 }
 }

 /// <summary>
 /// Populate the database table with data from a specified path.
 /// </summary>
 /// <param name="databaseTableName">The name of the table.</param>
 /// <param name="recommendationsPath">The path of the recommendations data.</
param>
 /// <returns>Async task.</returns>
 public async Task PopulateDatabase(string databaseTableName, string
 recommendationsPath)

Scenarios 2030

AWS Identity and Access Management User Guide

 {
 var recommendationsText = await
 File.ReadAllTextAsync(recommendationsPath);
 var records =

 JsonSerializer.Deserialize<RecommendationModel[]>(recommendationsText);
 var batchWrite = _context.CreateBatchWrite<RecommendationModel>();

 foreach (var record in records!)
 {
 batchWrite.AddPutItem(record);
 }

 await batchWrite.ExecuteAsync();
 }

 /// <summary>
 /// Delete the recommendation table by name.
 /// </summary>
 /// <param name="tableName">The name of the recommendation table.</param>
 /// <returns>Async task.</returns>
 public async Task DestroyDatabaseByName(string tableName)
 {
 try
 {
 await _amazonDynamoDb.DeleteTableAsync(
 new DeleteTableRequest() { TableName = tableName });
 Console.WriteLine($"Table {tableName} was deleted.");
 }
 catch (ResourceNotFoundException)
 {
 Console.WriteLine($"Table {tableName} not found");
 }
 }
}

Create a class that wraps Systems Manager actions.

/// <summary>
/// Encapsulates Systems Manager parameter operations. This example uses these
 parameters

Scenarios 2031

AWS Identity and Access Management User Guide

/// to drive the demonstration of resilient architecture, such as failure of a
 dependency or
/// how the service responds to a health check.
/// </summary>
public class SmParameterWrapper
{
 private readonly IAmazonSimpleSystemsManagement
 _amazonSimpleSystemsManagement;

 private readonly string _tableParameter = "doc-example-resilient-
architecture-table";
 private readonly string _failureResponseParameter = "doc-example-resilient-
architecture-failure-response";
 private readonly string _healthCheckParameter = "doc-example-resilient-
architecture-health-check";
 private readonly string _tableName = "";

 public string TableParameter => _tableParameter;
 public string TableName => _tableName;
 public string HealthCheckParameter => _healthCheckParameter;
 public string FailureResponseParameter => _failureResponseParameter;

 /// <summary>
 /// Constructor for the SmParameterWrapper.
 /// </summary>
 /// <param name="amazonSimpleSystemsManagement">The injected Simple Systems
 Management client.</param>
 /// <param name="configuration">The injected configuration.</param>
 public SmParameterWrapper(IAmazonSimpleSystemsManagement
 amazonSimpleSystemsManagement, IConfiguration configuration)
 {
 _amazonSimpleSystemsManagement = amazonSimpleSystemsManagement;
 _tableName = configuration["databaseName"]!;
 }

 /// <summary>
 /// Reset the Systems Manager parameters to starting values for the demo.
 /// </summary>
 /// <returns>Async task.</returns>
 public async Task Reset()
 {
 await this.PutParameterByName(_tableParameter, _tableName);
 await this.PutParameterByName(_failureResponseParameter, "none");
 await this.PutParameterByName(_healthCheckParameter, "shallow");

Scenarios 2032

AWS Identity and Access Management User Guide

 }

 /// <summary>
 /// Set the value of a named Systems Manager parameter.
 /// </summary>
 /// <param name="name">The name of the parameter.</param>
 /// <param name="value">The value to set.</param>
 /// <returns>Async task.</returns>
 public async Task PutParameterByName(string name, string value)
 {
 await _amazonSimpleSystemsManagement.PutParameterAsync(
 new PutParameterRequest() { Name = name, Value = value, Overwrite =
 true });
 }
}

• For API details, see the following topics in AWS SDK for .NET API Reference.

• AttachLoadBalancerTargetGroups

• CreateAutoScalingGroup

• CreateInstanceProfile

• CreateLaunchTemplate

• CreateListener

• CreateLoadBalancer

• CreateTargetGroup

• DeleteAutoScalingGroup

• DeleteInstanceProfile

• DeleteLaunchTemplate

• DeleteLoadBalancer

• DeleteTargetGroup

• DescribeAutoScalingGroups

• DescribeAvailabilityZones

• DescribeIamInstanceProfileAssociations

• DescribeInstances

• DescribeLoadBalancers

• DescribeSubnets

Scenarios 2033

https://docs.aws.amazon.com/goto/DotNetSDKV3/autoscaling-2011-01-01/AttachLoadBalancerTargetGroups
https://docs.aws.amazon.com/goto/DotNetSDKV3/autoscaling-2011-01-01/CreateAutoScalingGroup
https://docs.aws.amazon.com/goto/DotNetSDKV3/iam-2010-05-08/CreateInstanceProfile
https://docs.aws.amazon.com/goto/DotNetSDKV3/ec2-2016-11-15/CreateLaunchTemplate
https://docs.aws.amazon.com/goto/DotNetSDKV3/elasticloadbalancingv2-2015-12-01/CreateListener
https://docs.aws.amazon.com/goto/DotNetSDKV3/elasticloadbalancingv2-2015-12-01/CreateLoadBalancer
https://docs.aws.amazon.com/goto/DotNetSDKV3/elasticloadbalancingv2-2015-12-01/CreateTargetGroup
https://docs.aws.amazon.com/goto/DotNetSDKV3/autoscaling-2011-01-01/DeleteAutoScalingGroup
https://docs.aws.amazon.com/goto/DotNetSDKV3/iam-2010-05-08/DeleteInstanceProfile
https://docs.aws.amazon.com/goto/DotNetSDKV3/ec2-2016-11-15/DeleteLaunchTemplate
https://docs.aws.amazon.com/goto/DotNetSDKV3/elasticloadbalancingv2-2015-12-01/DeleteLoadBalancer
https://docs.aws.amazon.com/goto/DotNetSDKV3/elasticloadbalancingv2-2015-12-01/DeleteTargetGroup
https://docs.aws.amazon.com/goto/DotNetSDKV3/autoscaling-2011-01-01/DescribeAutoScalingGroups
https://docs.aws.amazon.com/goto/DotNetSDKV3/ec2-2016-11-15/DescribeAvailabilityZones
https://docs.aws.amazon.com/goto/DotNetSDKV3/ec2-2016-11-15/DescribeIamInstanceProfileAssociations
https://docs.aws.amazon.com/goto/DotNetSDKV3/ec2-2016-11-15/DescribeInstances
https://docs.aws.amazon.com/goto/DotNetSDKV3/elasticloadbalancingv2-2015-12-01/DescribeLoadBalancers
https://docs.aws.amazon.com/goto/DotNetSDKV3/ec2-2016-11-15/DescribeSubnets

AWS Identity and Access Management User Guide

• DescribeTargetGroups

• DescribeTargetHealth

• DescribeVpcs

• RebootInstances

• ReplaceIamInstanceProfileAssociation

• TerminateInstanceInAutoScalingGroup

• UpdateAutoScalingGroup

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Run the interactive scenario at a command prompt.

public class Main {

 public static final String fileName = "C:\\AWS\\resworkflow\
\recommendations.json"; // Modify file location.
 public static final String tableName = "doc-example-recommendation-service";
 public static final String startScript = "C:\\AWS\\resworkflow\
\server_startup_script.sh"; // Modify file location.
 public static final String policyFile = "C:\\AWS\\resworkflow\
\instance_policy.json"; // Modify file location.
 public static final String ssmJSON = "C:\\AWS\\resworkflow\
\ssm_only_policy.json"; // Modify file location.
 public static final String failureResponse = "doc-example-resilient-
architecture-failure-response";
 public static final String healthCheck = "doc-example-resilient-architecture-
health-check";
 public static final String templateName = "doc-example-resilience-template";
 public static final String roleName = "doc-example-resilience-role";
 public static final String policyName = "doc-example-resilience-pol";
 public static final String profileName = "doc-example-resilience-prof";

Scenarios 2034

https://docs.aws.amazon.com/goto/DotNetSDKV3/elasticloadbalancingv2-2015-12-01/DescribeTargetGroups
https://docs.aws.amazon.com/goto/DotNetSDKV3/elasticloadbalancingv2-2015-12-01/DescribeTargetHealth
https://docs.aws.amazon.com/goto/DotNetSDKV3/ec2-2016-11-15/DescribeVpcs
https://docs.aws.amazon.com/goto/DotNetSDKV3/ec2-2016-11-15/RebootInstances
https://docs.aws.amazon.com/goto/DotNetSDKV3/ec2-2016-11-15/ReplaceIamInstanceProfileAssociation
https://docs.aws.amazon.com/goto/DotNetSDKV3/autoscaling-2011-01-01/TerminateInstanceInAutoScalingGroup
https://docs.aws.amazon.com/goto/DotNetSDKV3/autoscaling-2011-01-01/UpdateAutoScalingGroup
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/usecases/resilient_service#readme

AWS Identity and Access Management User Guide

 public static final String badCredsProfileName = "doc-example-resilience-
prof-bc";

 public static final String targetGroupName = "doc-example-resilience-tg";
 public static final String autoScalingGroupName = "doc-example-resilience-
group";
 public static final String lbName = "doc-example-resilience-lb";
 public static final String protocol = "HTTP";
 public static final int port = 80;

 public static final String DASHES = new String(new char[80]).replace("\0",
 "-");

 public static void main(String[] args) throws IOException,
 InterruptedException {
 Scanner in = new Scanner(System.in);
 Database database = new Database();
 AutoScaler autoScaler = new AutoScaler();
 LoadBalancer loadBalancer = new LoadBalancer();

 System.out.println(DASHES);
 System.out.println("Welcome to the demonstration of How to Build and
 Manage a Resilient Service!");
 System.out.println(DASHES);

 System.out.println(DASHES);
 System.out.println("A - SETUP THE RESOURCES");
 System.out.println("Press Enter when you're ready to start deploying
 resources.");
 in.nextLine();
 deploy(loadBalancer);
 System.out.println(DASHES);
 System.out.println(DASHES);
 System.out.println("B - DEMO THE RESILIENCE FUNCTIONALITY");
 System.out.println("Press Enter when you're ready.");
 in.nextLine();
 demo(loadBalancer);
 System.out.println(DASHES);

 System.out.println(DASHES);
 System.out.println("C - DELETE THE RESOURCES");
 System.out.println("""

Scenarios 2035

AWS Identity and Access Management User Guide

 This concludes the demo of how to build and manage a resilient
 service.
 To keep things tidy and to avoid unwanted charges on your
 account, we can clean up all AWS resources
 that were created for this demo.
 """);

 System.out.println("\n Do you want to delete the resources (y/n)? ");
 String userInput = in.nextLine().trim().toLowerCase(); // Capture user
 input

 if (userInput.equals("y")) {
 // Delete resources here
 deleteResources(loadBalancer, autoScaler, database);
 System.out.println("Resources deleted.");
 } else {
 System.out.println("""
 Okay, we'll leave the resources intact.
 Don't forget to delete them when you're done with them or you
 might incur unexpected charges.
 """);
 }
 System.out.println(DASHES);

 System.out.println(DASHES);
 System.out.println("The example has completed. ");
 System.out.println("\n Thanks for watching!");
 System.out.println(DASHES);
 }

 // Deletes the AWS resources used in this example.
 private static void deleteResources(LoadBalancer loadBalancer, AutoScaler
 autoScaler, Database database)
 throws IOException, InterruptedException {
 loadBalancer.deleteLoadBalancer(lbName);
 System.out.println("*** Wait 30 secs for resource to be deleted");
 TimeUnit.SECONDS.sleep(30);
 loadBalancer.deleteTargetGroup(targetGroupName);
 autoScaler.deleteAutoScaleGroup(autoScalingGroupName);
 autoScaler.deleteRolesPolicies(policyName, roleName, profileName);
 autoScaler.deleteTemplate(templateName);
 database.deleteTable(tableName);
 }

Scenarios 2036

AWS Identity and Access Management User Guide

 private static void deploy(LoadBalancer loadBalancer) throws
 InterruptedException, IOException {
 Scanner in = new Scanner(System.in);
 System.out.println(
 """
 For this demo, we'll use the AWS SDK for Java (v2) to
 create several AWS resources
 to set up a load-balanced web service endpoint and
 explore some ways to make it resilient
 against various kinds of failures.

 Some of the resources create by this demo are:
 \t* A DynamoDB table that the web service depends on to
 provide book, movie, and song recommendations.
 \t* An EC2 launch template that defines EC2 instances
 that each contain a Python web server.
 \t* An EC2 Auto Scaling group that manages EC2 instances
 across several Availability Zones.
 \t* An Elastic Load Balancing (ELB) load balancer that
 targets the Auto Scaling group to distribute requests.
 """);

 System.out.println("Press Enter when you're ready.");
 in.nextLine();
 System.out.println(DASHES);

 System.out.println(DASHES);
 System.out.println("Creating and populating a DynamoDB table named " +
 tableName);
 Database database = new Database();
 database.createTable(tableName, fileName);
 System.out.println(DASHES);

 System.out.println(DASHES);
 System.out.println("""
 Creating an EC2 launch template that runs '{startup_script}' when
 an instance starts.
 This script starts a Python web server defined in the `server.py`
 script. The web server
 listens to HTTP requests on port 80 and responds to requests to
 '/' and to '/healthcheck'.
 For demo purposes, this server is run as the root user. In
 production, the best practice is to

Scenarios 2037

AWS Identity and Access Management User Guide

 run a web server, such as Apache, with least-privileged
 credentials.

 The template also defines an IAM policy that each instance uses
 to assume a role that grants
 permissions to access the DynamoDB recommendation table and
 Systems Manager parameters
 that control the flow of the demo.
 """);

 LaunchTemplateCreator templateCreator = new LaunchTemplateCreator();
 templateCreator.createTemplate(policyFile, policyName, profileName,
 startScript, templateName, roleName);
 System.out.println(DASHES);

 System.out.println(DASHES);
 System.out.println(
 "Creating an EC2 Auto Scaling group that maintains three EC2
 instances, each in a different Availability Zone.");
 System.out.println("*** Wait 30 secs for the VPC to be created");
 TimeUnit.SECONDS.sleep(30);
 AutoScaler autoScaler = new AutoScaler();
 String[] zones = autoScaler.createGroup(3, templateName,
 autoScalingGroupName);

 System.out.println("""
 At this point, you have EC2 instances created. Once each instance
 starts, it listens for
 HTTP requests. You can see these instances in the console or
 continue with the demo.
 Press Enter when you're ready to continue.
 """);

 in.nextLine();
 System.out.println(DASHES);

 System.out.println(DASHES);
 System.out.println("Creating variables that control the flow of the
 demo.");
 ParameterHelper paramHelper = new ParameterHelper();
 paramHelper.reset();
 System.out.println(DASHES);

 System.out.println(DASHES);

Scenarios 2038

AWS Identity and Access Management User Guide

 System.out.println("""
 Creating an Elastic Load Balancing target group and load
 balancer. The target group
 defines how the load balancer connects to instances. The load
 balancer provides a
 single endpoint where clients connect and dispatches requests to
 instances in the group.
 """);

 String vpcId = autoScaler.getDefaultVPC();
 List<Subnet> subnets = autoScaler.getSubnets(vpcId, zones);
 System.out.println("You have retrieved a list with " + subnets.size() + "
 subnets");
 String targetGroupArn = loadBalancer.createTargetGroup(protocol, port,
 vpcId, targetGroupName);
 String elbDnsName = loadBalancer.createLoadBalancer(subnets,
 targetGroupArn, lbName, port, protocol);
 autoScaler.attachLoadBalancerTargetGroup(autoScalingGroupName,
 targetGroupArn);
 System.out.println("Verifying access to the load balancer endpoint...");
 boolean wasSuccessul =
 loadBalancer.verifyLoadBalancerEndpoint(elbDnsName);
 if (!wasSuccessul) {
 System.out.println("Couldn't connect to the load balancer, verifying
 that the port is open...");
 CloseableHttpClient httpClient = HttpClients.createDefault();

 // Create an HTTP GET request to "http://checkip.amazonaws.com"
 HttpGet httpGet = new HttpGet("http://checkip.amazonaws.com");
 try {
 // Execute the request and get the response
 HttpResponse response = httpClient.execute(httpGet);

 // Read the response content.
 String ipAddress =
 IOUtils.toString(response.getEntity().getContent(),
 StandardCharsets.UTF_8).trim();

 // Print the public IP address.
 System.out.println("Public IP Address: " + ipAddress);
 GroupInfo groupInfo = autoScaler.verifyInboundPort(vpcId, port,
 ipAddress);
 if (!groupInfo.isPortOpen()) {
 System.out.println("""

Scenarios 2039

AWS Identity and Access Management User Guide

 For this example to work, the default security group
 for your default VPC must
 allow access from this computer. You can either add
 it automatically from this
 example or add it yourself using the AWS Management
 Console.
 """);

 System.out.println(
 "Do you want to add a rule to security group " +
 groupInfo.getGroupName() + " to allow");
 System.out.println("inbound traffic on port " + port + " from
 your computer's IP address (y/n) ");
 String ans = in.nextLine();
 if ("y".equalsIgnoreCase(ans)) {
 autoScaler.openInboundPort(groupInfo.getGroupName(),
 String.valueOf(port), ipAddress);
 System.out.println("Security group rule added.");
 } else {
 System.out.println("No security group rule added.");
 }
 }

 } catch (AutoScalingException e) {
 e.printStackTrace();
 }
 } else if (wasSuccessul) {
 System.out.println("Your load balancer is ready. You can access it by
 browsing to:");
 System.out.println("\t http://" + elbDnsName);
 } else {
 System.out.println("Couldn't get a successful response from the load
 balancer endpoint. Troubleshoot by");
 System.out.println("manually verifying that your VPC and security
 group are configured correctly and that");
 System.out.println("you can successfully make a GET request to the
 load balancer.");
 }

 System.out.println("Press Enter when you're ready to continue with the
 demo.");
 in.nextLine();
 }

Scenarios 2040

AWS Identity and Access Management User Guide

 // A method that controls the demo part of the Java program.
 public static void demo(LoadBalancer loadBalancer) throws IOException,
 InterruptedException {
 ParameterHelper paramHelper = new ParameterHelper();
 System.out.println("Read the ssm_only_policy.json file");
 String ssmOnlyPolicy = readFileAsString(ssmJSON);

 System.out.println("Resetting parameters to starting values for demo.");
 paramHelper.reset();

 System.out.println(
 """
 This part of the demonstration shows how to toggle
 different parts of the system
 to create situations where the web service fails, and
 shows how using a resilient
 architecture can keep the web service running in spite
 of these failures.

 At the start, the load balancer endpoint returns
 recommendations and reports that all targets are healthy.
 """);
 demoChoices(loadBalancer);

 System.out.println(
 """
 The web service running on the EC2 instances gets
 recommendations by querying a DynamoDB table.
 The table name is contained in a Systems Manager
 parameter named self.param_helper.table.
 To simulate a failure of the recommendation service,
 let's set this parameter to name a non-existent table.
 """);
 paramHelper.put(paramHelper.tableName, "this-is-not-a-table");

 System.out.println(
 """
 \nNow, sending a GET request to the load balancer
 endpoint returns a failure code. But, the service reports as
 healthy to the load balancer because shallow health
 checks don't check for failure of the recommendation service.
 """);
 demoChoices(loadBalancer);

Scenarios 2041

AWS Identity and Access Management User Guide

 System.out.println(
 """
 Instead of failing when the recommendation service fails,
 the web service can return a static response.
 While this is not a perfect solution, it presents the
 customer with a somewhat better experience than failure.
 """);
 paramHelper.put(paramHelper.failureResponse, "static");

 System.out.println("""
 Now, sending a GET request to the load balancer endpoint returns
 a static response.
 The service still reports as healthy because health checks are
 still shallow.
 """);
 demoChoices(loadBalancer);

 System.out.println("Let's reinstate the recommendation service.");
 paramHelper.put(paramHelper.tableName, paramHelper.dyntable);

 System.out.println("""
 Let's also substitute bad credentials for one of the instances in
 the target group so that it can't
 access the DynamoDB recommendation table. We will get an instance
 id value.
 """);

 LaunchTemplateCreator templateCreator = new LaunchTemplateCreator();
 AutoScaler autoScaler = new AutoScaler();

 // Create a new instance profile based on badCredsProfileName.
 templateCreator.createInstanceProfile(policyFile, policyName,
 badCredsProfileName, roleName);
 String badInstanceId = autoScaler.getBadInstance(autoScalingGroupName);
 System.out.println("The bad instance id values used for this demo is " +
 badInstanceId);

 String profileAssociationId =
 autoScaler.getInstanceProfile(badInstanceId);
 System.out.println("The association Id value is " +
 profileAssociationId);
 System.out.println("Replacing the profile for instance " + badInstanceId
 + " with a profile that contains bad credentials");

Scenarios 2042

AWS Identity and Access Management User Guide

 autoScaler.replaceInstanceProfile(badInstanceId, badCredsProfileName,
 profileAssociationId);

 System.out.println(
 """
 Now, sending a GET request to the load balancer endpoint
 returns either a recommendation or a static response,
 depending on which instance is selected by the load
 balancer.
 """);

 demoChoices(loadBalancer);

 System.out.println("""
 Let's implement a deep health check. For this demo, a deep health
 check tests whether
 the web service can access the DynamoDB table that it depends on
 for recommendations. Note that
 the deep health check is only for ELB routing and not for Auto
 Scaling instance health.
 This kind of deep health check is not recommended for Auto
 Scaling instance health, because it
 risks accidental termination of all instances in the Auto Scaling
 group when a dependent service fails.
 """);

 System.out.println("""
 By implementing deep health checks, the load balancer can detect
 when one of the instances is failing
 and take that instance out of rotation.
 """);

 paramHelper.put(paramHelper.healthCheck, "deep");

 System.out.println("""
 Now, checking target health indicates that the instance with bad
 credentials
 is unhealthy. Note that it might take a minute or two for the
 load balancer to detect the unhealthy
 instance. Sending a GET request to the load balancer endpoint
 always returns a recommendation, because
 the load balancer takes unhealthy instances out of its rotation.
 """);

Scenarios 2043

AWS Identity and Access Management User Guide

 demoChoices(loadBalancer);

 System.out.println(
 """
 Because the instances in this demo are controlled by an
 auto scaler, the simplest way to fix an unhealthy
 instance is to terminate it and let the auto scaler start
 a new instance to replace it.
 """);
 autoScaler.terminateInstance(badInstanceId);

 System.out.println("""
 Even while the instance is terminating and the new instance is
 starting, sending a GET
 request to the web service continues to get a successful
 recommendation response because
 the load balancer routes requests to the healthy instances. After
 the replacement instance
 starts and reports as healthy, it is included in the load
 balancing rotation.
 Note that terminating and replacing an instance typically takes
 several minutes, during which time you
 can see the changing health check status until the new instance
 is running and healthy.
 """);

 demoChoices(loadBalancer);
 System.out.println(
 "If the recommendation service fails now, deep health checks mean
 all instances report as unhealthy.");
 paramHelper.put(paramHelper.tableName, "this-is-not-a-table");

 demoChoices(loadBalancer);
 paramHelper.reset();
 }

 public static void demoChoices(LoadBalancer loadBalancer) throws IOException,
 InterruptedException {
 String[] actions = {
 "Send a GET request to the load balancer endpoint.",
 "Check the health of load balancer targets.",
 "Go to the next part of the demo."
 };
 Scanner scanner = new Scanner(System.in);

Scenarios 2044

AWS Identity and Access Management User Guide

 while (true) {
 System.out.println("-".repeat(88));
 System.out.println("See the current state of the service by selecting
 one of the following choices:");
 for (int i = 0; i < actions.length; i++) {
 System.out.println(i + ": " + actions[i]);
 }

 try {
 System.out.print("\nWhich action would you like to take? ");
 int choice = scanner.nextInt();
 System.out.println("-".repeat(88));

 switch (choice) {
 case 0 -> {
 System.out.println("Request:\n");
 System.out.println("GET http://" +
 loadBalancer.getEndpoint(lbName));
 CloseableHttpClient httpClient =
 HttpClients.createDefault();

 // Create an HTTP GET request to the ELB.
 HttpGet httpGet = new HttpGet("http://" +
 loadBalancer.getEndpoint(lbName));

 // Execute the request and get the response.
 HttpResponse response = httpClient.execute(httpGet);
 int statusCode =
 response.getStatusLine().getStatusCode();
 System.out.println("HTTP Status Code: " + statusCode);

 // Display the JSON response
 BufferedReader reader = new BufferedReader(
 new
 InputStreamReader(response.getEntity().getContent()));
 StringBuilder jsonResponse = new StringBuilder();
 String line;
 while ((line = reader.readLine()) != null) {
 jsonResponse.append(line);
 }
 reader.close();

 // Print the formatted JSON response.

Scenarios 2045

AWS Identity and Access Management User Guide

 System.out.println("Full Response:\n");
 System.out.println(jsonResponse.toString());

 // Close the HTTP client.
 httpClient.close();

 }
 case 1 -> {
 System.out.println("\nChecking the health of load
 balancer targets:\n");
 List<TargetHealthDescription> health =
 loadBalancer.checkTargetHealth(targetGroupName);
 for (TargetHealthDescription target : health) {
 System.out.printf("\tTarget %s on port %d is %s%n",
 target.target().id(),
 target.target().port(),
 target.targetHealth().stateAsString());
 }
 System.out.println("""
 Note that it can take a minute or two for the
 health check to update
 after changes are made.
 """);
 }
 case 2 -> {
 System.out.println("\nOkay, let's move on.");
 System.out.println("-".repeat(88));
 return; // Exit the method when choice is 2
 }
 default -> System.out.println("You must choose a value
 between 0-2. Please select again.");
 }

 } catch (java.util.InputMismatchException e) {
 System.out.println("Invalid input. Please select again.");
 scanner.nextLine(); // Clear the input buffer.
 }
 }
 }

 public static String readFileAsString(String filePath) throws IOException {
 byte[] bytes = Files.readAllBytes(Paths.get(filePath));
 return new String(bytes);
 }

Scenarios 2046

AWS Identity and Access Management User Guide

}

Create a class that wraps Auto Scaling and Amazon EC2 actions.

public class AutoScaler {

 private static Ec2Client ec2Client;
 private static AutoScalingClient autoScalingClient;
 private static IamClient iamClient;

 private static SsmClient ssmClient;

 private IamClient getIAMClient() {
 if (iamClient == null) {
 iamClient = IamClient.builder()
 .region(Region.US_EAST_1)
 .build();
 }
 return iamClient;
 }

 private SsmClient getSSMClient() {
 if (ssmClient == null) {
 ssmClient = SsmClient.builder()
 .region(Region.US_EAST_1)
 .build();
 }
 return ssmClient;
 }

 private Ec2Client getEc2Client() {
 if (ec2Client == null) {
 ec2Client = Ec2Client.builder()
 .region(Region.US_EAST_1)
 .build();
 }
 return ec2Client;
 }

 private AutoScalingClient getAutoScalingClient() {
 if (autoScalingClient == null) {
 autoScalingClient = AutoScalingClient.builder()

Scenarios 2047

AWS Identity and Access Management User Guide

 .region(Region.US_EAST_1)
 .build();
 }
 return autoScalingClient;
 }

 /**
 * Terminates and instances in an EC2 Auto Scaling group. After an instance
 is
 * terminated, it can no longer be accessed.
 */
 public void terminateInstance(String instanceId) {
 TerminateInstanceInAutoScalingGroupRequest terminateInstanceIRequest =
 TerminateInstanceInAutoScalingGroupRequest
 .builder()
 .instanceId(instanceId)
 .shouldDecrementDesiredCapacity(false)
 .build();

 getAutoScalingClient().terminateInstanceInAutoScalingGroup(terminateInstanceIRequest);
 System.out.format("Terminated instance %s.", instanceId);
 }

 /**
 * Replaces the profile associated with a running instance. After the profile
 is
 * replaced, the instance is rebooted to ensure that it uses the new profile.
 * When
 * the instance is ready, Systems Manager is used to restart the Python web
 * server.
 */
 public void replaceInstanceProfile(String instanceId, String
 newInstanceProfileName, String profileAssociationId)
 throws InterruptedException {
 // Create an IAM instance profile specification.
 software.amazon.awssdk.services.ec2.model.IamInstanceProfileSpecification
 iamInstanceProfile =
 software.amazon.awssdk.services.ec2.model.IamInstanceProfileSpecification
 .builder()
 .name(newInstanceProfileName) // Make sure
 'newInstanceProfileName' is a valid IAM Instance Profile
 // name.
 .build();

Scenarios 2048

AWS Identity and Access Management User Guide

 // Replace the IAM instance profile association for the EC2 instance.
 ReplaceIamInstanceProfileAssociationRequest replaceRequest =
 ReplaceIamInstanceProfileAssociationRequest
 .builder()
 .iamInstanceProfile(iamInstanceProfile)
 .associationId(profileAssociationId) // Make sure
 'profileAssociationId' is a valid association ID.
 .build();

 try {
 getEc2Client().replaceIamInstanceProfileAssociation(replaceRequest);
 // Handle the response as needed.
 } catch (Ec2Exception e) {
 // Handle exceptions, log, or report the error.
 System.err.println("Error: " + e.getMessage());
 }
 System.out.format("Replaced instance profile for association %s with
 profile %s.", profileAssociationId,
 newInstanceProfileName);
 TimeUnit.SECONDS.sleep(15);
 boolean instReady = false;
 int tries = 0;

 // Reboot after 60 seconds
 while (!instReady) {
 if (tries % 6 == 0) {
 getEc2Client().rebootInstances(RebootInstancesRequest.builder()
 .instanceIds(instanceId)
 .build());
 System.out.println("Rebooting instance " + instanceId + " and
 waiting for it to be ready.");
 }
 tries++;
 try {
 TimeUnit.SECONDS.sleep(10);
 } catch (InterruptedException e) {
 e.printStackTrace();
 }

 DescribeInstanceInformationResponse informationResponse =
 getSSMClient().describeInstanceInformation();
 List<InstanceInformation> instanceInformationList =
 informationResponse.instanceInformationList();

Scenarios 2049

AWS Identity and Access Management User Guide

 for (InstanceInformation info : instanceInformationList) {
 if (info.instanceId().equals(instanceId)) {
 instReady = true;
 break;
 }
 }
 }

 SendCommandRequest sendCommandRequest = SendCommandRequest.builder()
 .instanceIds(instanceId)
 .documentName("AWS-RunShellScript")
 .parameters(Collections.singletonMap("commands",
 Collections.singletonList("cd / && sudo python3 server.py
 80")))
 .build();

 getSSMClient().sendCommand(sendCommandRequest);
 System.out.println("Restarted the Python web server on instance " +
 instanceId + ".");
 }

 public void openInboundPort(String secGroupId, String port, String ipAddress)
 {
 AuthorizeSecurityGroupIngressRequest ingressRequest =
 AuthorizeSecurityGroupIngressRequest.builder()
 .groupName(secGroupId)
 .cidrIp(ipAddress)
 .fromPort(Integer.parseInt(port))
 .build();

 getEc2Client().authorizeSecurityGroupIngress(ingressRequest);
 System.out.format("Authorized ingress to %s on port %s from %s.",
 secGroupId, port, ipAddress);
 }

 /**
 * Detaches a role from an instance profile, detaches policies from the role,
 * and deletes all the resources.
 */
 public void deleteInstanceProfile(String roleName, String profileName) {
 try {
 software.amazon.awssdk.services.iam.model.GetInstanceProfileRequest
 getInstanceProfileRequest =
 software.amazon.awssdk.services.iam.model.GetInstanceProfileRequest

Scenarios 2050

AWS Identity and Access Management User Guide

 .builder()
 .instanceProfileName(profileName)
 .build();

 GetInstanceProfileResponse response =
 getIAMClient().getInstanceProfile(getInstanceProfileRequest);
 String name = response.instanceProfile().instanceProfileName();
 System.out.println(name);

 RemoveRoleFromInstanceProfileRequest profileRequest =
 RemoveRoleFromInstanceProfileRequest.builder()
 .instanceProfileName(profileName)
 .roleName(roleName)
 .build();

 getIAMClient().removeRoleFromInstanceProfile(profileRequest);
 DeleteInstanceProfileRequest deleteInstanceProfileRequest =
 DeleteInstanceProfileRequest.builder()
 .instanceProfileName(profileName)
 .build();

 getIAMClient().deleteInstanceProfile(deleteInstanceProfileRequest);
 System.out.println("Deleted instance profile " + profileName);

 DeleteRoleRequest deleteRoleRequest = DeleteRoleRequest.builder()
 .roleName(roleName)
 .build();

 // List attached role policies.
 ListAttachedRolePoliciesResponse rolesResponse = getIAMClient()
 .listAttachedRolePolicies(role -> role.roleName(roleName));
 List<AttachedPolicy> attachedPolicies =
 rolesResponse.attachedPolicies();
 for (AttachedPolicy attachedPolicy : attachedPolicies) {
 DetachRolePolicyRequest request =
 DetachRolePolicyRequest.builder()
 .roleName(roleName)
 .policyArn(attachedPolicy.policyArn())
 .build();

 getIAMClient().detachRolePolicy(request);
 System.out.println("Detached and deleted policy " +
 attachedPolicy.policyName());
 }

Scenarios 2051

AWS Identity and Access Management User Guide

 getIAMClient().deleteRole(deleteRoleRequest);
 System.out.println("Instance profile and role deleted.");

 } catch (IamException e) {
 System.err.println(e.getMessage());
 System.exit(1);
 }
 }

 public void deleteTemplate(String templateName) {
 getEc2Client().deleteLaunchTemplate(name ->
 name.launchTemplateName(templateName));
 System.out.format(templateName + " was deleted.");
 }

 public void deleteAutoScaleGroup(String groupName) {
 DeleteAutoScalingGroupRequest deleteAutoScalingGroupRequest =
 DeleteAutoScalingGroupRequest.builder()
 .autoScalingGroupName(groupName)
 .forceDelete(true)
 .build();

 getAutoScalingClient().deleteAutoScalingGroup(deleteAutoScalingGroupRequest);
 System.out.println(groupName + " was deleted.");
 }

 /*
 * Verify the default security group of the specified VPC allows ingress from
 * this
 * computer. This can be done by allowing ingress from this computer's IP
 * address. In some situations, such as connecting from a corporate network,
 you
 * must instead specify a prefix list ID. You can also temporarily open the
 port
 * to
 * any IP address while running this example. If you do, be sure to remove
 * public
 * access when you're done.
 *
 */
 public GroupInfo verifyInboundPort(String VPC, int port, String ipAddress) {
 boolean portIsOpen = false;

Scenarios 2052

AWS Identity and Access Management User Guide

 GroupInfo groupInfo = new GroupInfo();
 try {
 Filter filter = Filter.builder()
 .name("group-name")
 .values("default")
 .build();

 Filter filter1 = Filter.builder()
 .name("vpc-id")
 .values(VPC)
 .build();

 DescribeSecurityGroupsRequest securityGroupsRequest =
 DescribeSecurityGroupsRequest.builder()
 .filters(filter, filter1)
 .build();

 DescribeSecurityGroupsResponse securityGroupsResponse =
 getEc2Client()
 .describeSecurityGroups(securityGroupsRequest);
 String securityGroup =
 securityGroupsResponse.securityGroups().get(0).groupName();
 groupInfo.setGroupName(securityGroup);

 for (SecurityGroup secGroup :
 securityGroupsResponse.securityGroups()) {
 System.out.println("Found security group: " +
 secGroup.groupId());

 for (IpPermission ipPermission : secGroup.ipPermissions()) {
 if (ipPermission.fromPort() == port) {
 System.out.println("Found inbound rule: " +
 ipPermission);
 for (IpRange ipRange : ipPermission.ipRanges()) {
 String cidrIp = ipRange.cidrIp();
 if (cidrIp.startsWith(ipAddress) ||
 cidrIp.equals("0.0.0.0/0")) {
 System.out.println(cidrIp + " is applicable");
 portIsOpen = true;
 }
 }

 if (!ipPermission.prefixListIds().isEmpty()) {
 System.out.println("Prefix lList is applicable");

Scenarios 2053

AWS Identity and Access Management User Guide

 portIsOpen = true;
 }

 if (!portIsOpen) {
 System.out
 .println("The inbound rule does not appear to
 be open to either this computer's IP,"
 + " all IP addresses (0.0.0.0/0), or
 to a prefix list ID.");
 } else {
 break;
 }
 }
 }
 }

 } catch (AutoScalingException e) {
 System.err.println(e.awsErrorDetails().errorMessage());
 }

 groupInfo.setPortOpen(portIsOpen);
 return groupInfo;
 }

 /*
 * Attaches an Elastic Load Balancing (ELB) target group to this EC2 Auto
 * Scaling group.
 * The target group specifies how the load balancer forward requests to the
 * instances
 * in the group.
 */
 public void attachLoadBalancerTargetGroup(String asGroupName, String
 targetGroupARN) {
 try {
 AttachLoadBalancerTargetGroupsRequest targetGroupsRequest =
 AttachLoadBalancerTargetGroupsRequest.builder()
 .autoScalingGroupName(asGroupName)
 .targetGroupARNs(targetGroupARN)
 .build();

 getAutoScalingClient().attachLoadBalancerTargetGroups(targetGroupsRequest);
 System.out.println("Attached load balancer to " + asGroupName);

Scenarios 2054

AWS Identity and Access Management User Guide

 } catch (AutoScalingException e) {
 System.err.println(e.awsErrorDetails().errorMessage());
 System.exit(1);
 }
 }

 // Creates an EC2 Auto Scaling group with the specified size.
 public String[] createGroup(int groupSize, String templateName, String
 autoScalingGroupName) {

 // Get availability zones.

 software.amazon.awssdk.services.ec2.model.DescribeAvailabilityZonesRequest
 zonesRequest =
 software.amazon.awssdk.services.ec2.model.DescribeAvailabilityZonesRequest
 .builder()
 .build();

 DescribeAvailabilityZonesResponse zonesResponse =
 getEc2Client().describeAvailabilityZones(zonesRequest);
 List<String> availabilityZoneNames =
 zonesResponse.availabilityZones().stream()

 .map(software.amazon.awssdk.services.ec2.model.AvailabilityZone::zoneName)
 .collect(Collectors.toList());

 String availabilityZones = String.join(",", availabilityZoneNames);
 LaunchTemplateSpecification specification =
 LaunchTemplateSpecification.builder()
 .launchTemplateName(templateName)
 .version("$Default")
 .build();

 String[] zones = availabilityZones.split(",");
 CreateAutoScalingGroupRequest groupRequest =
 CreateAutoScalingGroupRequest.builder()
 .launchTemplate(specification)
 .availabilityZones(zones)
 .maxSize(groupSize)
 .minSize(groupSize)
 .autoScalingGroupName(autoScalingGroupName)
 .build();

 try {

Scenarios 2055

AWS Identity and Access Management User Guide

 getAutoScalingClient().createAutoScalingGroup(groupRequest);

 } catch (AutoScalingException e) {
 System.err.println(e.awsErrorDetails().errorMessage());
 System.exit(1);
 }
 System.out.println("Created an EC2 Auto Scaling group named " +
 autoScalingGroupName);
 return zones;
 }

 public String getDefaultVPC() {
 // Define the filter.
 Filter defaultFilter = Filter.builder()
 .name("is-default")
 .values("true")
 .build();

 software.amazon.awssdk.services.ec2.model.DescribeVpcsRequest request =
 software.amazon.awssdk.services.ec2.model.DescribeVpcsRequest
 .builder()
 .filters(defaultFilter)
 .build();

 DescribeVpcsResponse response = getEc2Client().describeVpcs(request);
 return response.vpcs().get(0).vpcId();
 }

 // Gets the default subnets in a VPC for a specified list of Availability
 Zones.
 public List<Subnet> getSubnets(String vpcId, String[] availabilityZones) {
 List<Subnet> subnets = null;
 Filter vpcFilter = Filter.builder()
 .name("vpc-id")
 .values(vpcId)
 .build();

 Filter azFilter = Filter.builder()
 .name("availability-zone")
 .values(availabilityZones)
 .build();

 Filter defaultForAZ = Filter.builder()
 .name("default-for-az")

Scenarios 2056

AWS Identity and Access Management User Guide

 .values("true")
 .build();

 DescribeSubnetsRequest request = DescribeSubnetsRequest.builder()
 .filters(vpcFilter, azFilter, defaultForAZ)
 .build();

 DescribeSubnetsResponse response =
 getEc2Client().describeSubnets(request);
 subnets = response.subnets();
 return subnets;
 }

 // Gets data about the instances in the EC2 Auto Scaling group.
 public String getBadInstance(String groupName) {
 DescribeAutoScalingGroupsRequest request =
 DescribeAutoScalingGroupsRequest.builder()
 .autoScalingGroupNames(groupName)
 .build();

 DescribeAutoScalingGroupsResponse response =
 getAutoScalingClient().describeAutoScalingGroups(request);
 AutoScalingGroup autoScalingGroup = response.autoScalingGroups().get(0);
 List<String> instanceIds = autoScalingGroup.instances().stream()
 .map(instance -> instance.instanceId())
 .collect(Collectors.toList());

 String[] instanceIdArray = instanceIds.toArray(new String[0]);
 for (String instanceId : instanceIdArray) {
 System.out.println("Instance ID: " + instanceId);
 return instanceId;
 }
 return "";
 }

 // Gets data about the profile associated with an instance.
 public String getInstanceProfile(String instanceId) {
 Filter filter = Filter.builder()
 .name("instance-id")
 .values(instanceId)
 .build();

 DescribeIamInstanceProfileAssociationsRequest associationsRequest =
 DescribeIamInstanceProfileAssociationsRequest

Scenarios 2057

AWS Identity and Access Management User Guide

 .builder()
 .filters(filter)
 .build();

 DescribeIamInstanceProfileAssociationsResponse response = getEc2Client()
 .describeIamInstanceProfileAssociations(associationsRequest);
 return response.iamInstanceProfileAssociations().get(0).associationId();
 }

 public void deleteRolesPolicies(String policyName, String roleName, String
 InstanceProfile) {
 ListPoliciesRequest listPoliciesRequest =
 ListPoliciesRequest.builder().build();
 ListPoliciesResponse listPoliciesResponse =
 getIAMClient().listPolicies(listPoliciesRequest);
 for (Policy policy : listPoliciesResponse.policies()) {
 if (policy.policyName().equals(policyName)) {
 // List the entities (users, groups, roles) that are attached to
 the policy.

 software.amazon.awssdk.services.iam.model.ListEntitiesForPolicyRequest
 listEntitiesRequest =
 software.amazon.awssdk.services.iam.model.ListEntitiesForPolicyRequest
 .builder()
 .policyArn(policy.arn())
 .build();
 ListEntitiesForPolicyResponse listEntitiesResponse = iamClient
 .listEntitiesForPolicy(listEntitiesRequest);
 if (!listEntitiesResponse.policyGroups().isEmpty() || !
listEntitiesResponse.policyUsers().isEmpty()
 || !listEntitiesResponse.policyRoles().isEmpty()) {
 // Detach the policy from any entities it is attached to.
 DetachRolePolicyRequest detachPolicyRequest =
 DetachRolePolicyRequest.builder()
 .policyArn(policy.arn())
 .roleName(roleName) // Specify the name of the IAM
 role
 .build();

 getIAMClient().detachRolePolicy(detachPolicyRequest);
 System.out.println("Policy detached from entities.");
 }

 // Now, you can delete the policy.

Scenarios 2058

AWS Identity and Access Management User Guide

 DeletePolicyRequest deletePolicyRequest =
 DeletePolicyRequest.builder()
 .policyArn(policy.arn())
 .build();

 getIAMClient().deletePolicy(deletePolicyRequest);
 System.out.println("Policy deleted successfully.");
 break;
 }
 }

 // List the roles associated with the instance profile
 ListInstanceProfilesForRoleRequest listRolesRequest =
 ListInstanceProfilesForRoleRequest.builder()
 .roleName(roleName)
 .build();

 // Detach the roles from the instance profile
 ListInstanceProfilesForRoleResponse listRolesResponse =
 iamClient.listInstanceProfilesForRole(listRolesRequest);
 for (software.amazon.awssdk.services.iam.model.InstanceProfile profile :
 listRolesResponse.instanceProfiles()) {
 RemoveRoleFromInstanceProfileRequest removeRoleRequest =
 RemoveRoleFromInstanceProfileRequest.builder()
 .instanceProfileName(InstanceProfile)
 .roleName(roleName) // Remove the extra dot here
 .build();

 getIAMClient().removeRoleFromInstanceProfile(removeRoleRequest);
 System.out.println("Role " + roleName + " removed from instance
 profile " + InstanceProfile);
 }

 // Delete the instance profile after removing all roles
 DeleteInstanceProfileRequest deleteInstanceProfileRequest =
 DeleteInstanceProfileRequest.builder()
 .instanceProfileName(InstanceProfile)
 .build();

 getIAMClient().deleteInstanceProfile(r ->
 r.instanceProfileName(InstanceProfile));
 System.out.println(InstanceProfile + " Deleted");
 System.out.println("All roles and policies are deleted.");
 }

Scenarios 2059

AWS Identity and Access Management User Guide

}

Create a class that wraps Elastic Load Balancing actions.

public class LoadBalancer {
 public ElasticLoadBalancingV2Client elasticLoadBalancingV2Client;

 public ElasticLoadBalancingV2Client getLoadBalancerClient() {
 if (elasticLoadBalancingV2Client == null) {
 elasticLoadBalancingV2Client = ElasticLoadBalancingV2Client.builder()
 .region(Region.US_EAST_1)
 .build();
 }

 return elasticLoadBalancingV2Client;
 }

 // Checks the health of the instances in the target group.
 public List<TargetHealthDescription> checkTargetHealth(String
 targetGroupName) {
 DescribeTargetGroupsRequest targetGroupsRequest =
 DescribeTargetGroupsRequest.builder()
 .names(targetGroupName)
 .build();

 DescribeTargetGroupsResponse tgResponse =
 getLoadBalancerClient().describeTargetGroups(targetGroupsRequest);

 DescribeTargetHealthRequest healthRequest =
 DescribeTargetHealthRequest.builder()

 .targetGroupArn(tgResponse.targetGroups().get(0).targetGroupArn())
 .build();

 DescribeTargetHealthResponse healthResponse =
 getLoadBalancerClient().describeTargetHealth(healthRequest);
 return healthResponse.targetHealthDescriptions();
 }

 // Gets the HTTP endpoint of the load balancer.
 public String getEndpoint(String lbName) {
 DescribeLoadBalancersResponse res = getLoadBalancerClient()

Scenarios 2060

AWS Identity and Access Management User Guide

 .describeLoadBalancers(describe -> describe.names(lbName));
 return res.loadBalancers().get(0).dnsName();
 }

 // Deletes a load balancer.
 public void deleteLoadBalancer(String lbName) {
 try {
 // Use a waiter to delete the Load Balancer.
 DescribeLoadBalancersResponse res = getLoadBalancerClient()
 .describeLoadBalancers(describe -> describe.names(lbName));
 ElasticLoadBalancingV2Waiter loadBalancerWaiter =
 getLoadBalancerClient().waiter();
 DescribeLoadBalancersRequest request =
 DescribeLoadBalancersRequest.builder()

 .loadBalancerArns(res.loadBalancers().get(0).loadBalancerArn())
 .build();

 getLoadBalancerClient().deleteLoadBalancer(
 builder ->
 builder.loadBalancerArn(res.loadBalancers().get(0).loadBalancerArn()));
 WaiterResponse<DescribeLoadBalancersResponse> waiterResponse =
 loadBalancerWaiter
 .waitUntilLoadBalancersDeleted(request);
 waiterResponse.matched().response().ifPresent(System.out::println);

 } catch (ElasticLoadBalancingV2Exception e) {
 System.err.println(e.awsErrorDetails().errorMessage());
 }
 System.out.println(lbName + " was deleted.");
 }

 // Deletes the target group.
 public void deleteTargetGroup(String targetGroupName) {
 try {
 DescribeTargetGroupsResponse res = getLoadBalancerClient()
 .describeTargetGroups(describe ->
 describe.names(targetGroupName));
 getLoadBalancerClient()
 .deleteTargetGroup(builder ->
 builder.targetGroupArn(res.targetGroups().get(0).targetGroupArn()));
 } catch (ElasticLoadBalancingV2Exception e) {
 System.err.println(e.awsErrorDetails().errorMessage());
 }

Scenarios 2061

AWS Identity and Access Management User Guide

 System.out.println(targetGroupName + " was deleted.");
 }

 // Verify this computer can successfully send a GET request to the load
 balancer
 // endpoint.
 public boolean verifyLoadBalancerEndpoint(String elbDnsName) throws
 IOException, InterruptedException {
 boolean success = false;
 int retries = 3;
 CloseableHttpClient httpClient = HttpClients.createDefault();

 // Create an HTTP GET request to the ELB.
 HttpGet httpGet = new HttpGet("http://" + elbDnsName);
 try {
 while ((!success) && (retries > 0)) {
 // Execute the request and get the response.
 HttpResponse response = httpClient.execute(httpGet);
 int statusCode = response.getStatusLine().getStatusCode();
 System.out.println("HTTP Status Code: " + statusCode);
 if (statusCode == 200) {
 success = true;
 } else {
 retries--;
 System.out.println("Got connection error from load balancer
 endpoint, retrying...");
 TimeUnit.SECONDS.sleep(15);
 }
 }

 } catch (org.apache.http.conn.HttpHostConnectException e) {
 System.out.println(e.getMessage());
 }

 System.out.println("Status.." + success);
 return success;
 }

 /*
 * Creates an Elastic Load Balancing target group. The target group specifies
 * how
 * the load balancer forward requests to instances in the group and how
 instance
 * health is checked.

Scenarios 2062

AWS Identity and Access Management User Guide

 */
 public String createTargetGroup(String protocol, int port, String vpcId,
 String targetGroupName) {
 CreateTargetGroupRequest targetGroupRequest =
 CreateTargetGroupRequest.builder()
 .healthCheckPath("/healthcheck")
 .healthCheckTimeoutSeconds(5)
 .port(port)
 .vpcId(vpcId)
 .name(targetGroupName)
 .protocol(protocol)
 .build();

 CreateTargetGroupResponse targetGroupResponse =
 getLoadBalancerClient().createTargetGroup(targetGroupRequest);
 String targetGroupArn =
 targetGroupResponse.targetGroups().get(0).targetGroupArn();
 String targetGroup =
 targetGroupResponse.targetGroups().get(0).targetGroupName();
 System.out.println("The " + targetGroup + " was created with ARN" +
 targetGroupArn);
 return targetGroupArn;
 }

 /*
 * Creates an Elastic Load Balancing load balancer that uses the specified
 * subnets
 * and forwards requests to the specified target group.
 */
 public String createLoadBalancer(List<Subnet> subnetIds, String
 targetGroupARN, String lbName, int port,
 String protocol) {
 try {
 List<String> subnetIdStrings = subnetIds.stream()
 .map(Subnet::subnetId)
 .collect(Collectors.toList());

 CreateLoadBalancerRequest balancerRequest =
 CreateLoadBalancerRequest.builder()
 .subnets(subnetIdStrings)
 .name(lbName)
 .scheme("internet-facing")
 .build();

Scenarios 2063

AWS Identity and Access Management User Guide

 // Create and wait for the load balancer to become available.
 CreateLoadBalancerResponse lsResponse =
 getLoadBalancerClient().createLoadBalancer(balancerRequest);
 String lbARN = lsResponse.loadBalancers().get(0).loadBalancerArn();

 ElasticLoadBalancingV2Waiter loadBalancerWaiter =
 getLoadBalancerClient().waiter();
 DescribeLoadBalancersRequest request =
 DescribeLoadBalancersRequest.builder()
 .loadBalancerArns(lbARN)
 .build();

 System.out.println("Waiting for Load Balancer " + lbName + " to
 become available.");
 WaiterResponse<DescribeLoadBalancersResponse> waiterResponse =
 loadBalancerWaiter
 .waitUntilLoadBalancerAvailable(request);
 waiterResponse.matched().response().ifPresent(System.out::println);
 System.out.println("Load Balancer " + lbName + " is available.");

 // Get the DNS name (endpoint) of the load balancer.
 String lbDNSName = lsResponse.loadBalancers().get(0).dnsName();
 System.out.println("*** Load Balancer DNS Name: " + lbDNSName);

 // Create a listener for the load balance.
 Action action = Action.builder()
 .targetGroupArn(targetGroupARN)
 .type("forward")
 .build();

 CreateListenerRequest listenerRequest =
 CreateListenerRequest.builder()

 .loadBalancerArn(lsResponse.loadBalancers().get(0).loadBalancerArn())
 .defaultActions(action)
 .port(port)
 .protocol(protocol)
 .defaultActions(action)
 .build();

 getLoadBalancerClient().createListener(listenerRequest);
 System.out.println("Created listener to forward traffic from load
 balancer " + lbName + " to target group "
 + targetGroupARN);

Scenarios 2064

AWS Identity and Access Management User Guide

 // Return the load balancer DNS name.
 return lbDNSName;

 } catch (ElasticLoadBalancingV2Exception e) {
 e.printStackTrace();
 }
 return "";
 }
}

Create a class that uses DynamoDB to simulate a recommendation service.

public class Database {

 private static DynamoDbClient dynamoDbClient;

 public static DynamoDbClient getDynamoDbClient() {
 if (dynamoDbClient == null) {
 dynamoDbClient = DynamoDbClient.builder()
 .region(Region.US_EAST_1)
 .build();
 }
 return dynamoDbClient;
 }

 // Checks to see if the Amazon DynamoDB table exists.
 private boolean doesTableExist(String tableName) {
 try {
 // Describe the table and catch any exceptions.
 DescribeTableRequest describeTableRequest =
 DescribeTableRequest.builder()
 .tableName(tableName)
 .build();

 getDynamoDbClient().describeTable(describeTableRequest);
 System.out.println("Table '" + tableName + "' exists.");
 return true;

 } catch (ResourceNotFoundException e) {
 System.out.println("Table '" + tableName + "' does not exist.");
 } catch (DynamoDbException e) {

Scenarios 2065

AWS Identity and Access Management User Guide

 System.err.println("Error checking table existence: " +
 e.getMessage());
 }
 return false;
 }

 /*
 * Creates a DynamoDB table to use a recommendation service. The table has a
 * hash key named 'MediaType' that defines the type of media recommended,
 such
 * as
 * Book or Movie, and a range key named 'ItemId' that, combined with the
 * MediaType,
 * forms a unique identifier for the recommended item.
 */
 public void createTable(String tableName, String fileName) throws IOException
 {
 // First check to see if the table exists.
 boolean doesExist = doesTableExist(tableName);
 if (!doesExist) {
 DynamoDbWaiter dbWaiter = getDynamoDbClient().waiter();
 CreateTableRequest createTableRequest = CreateTableRequest.builder()
 .tableName(tableName)
 .attributeDefinitions(
 AttributeDefinition.builder()
 .attributeName("MediaType")
 .attributeType(ScalarAttributeType.S)
 .build(),
 AttributeDefinition.builder()
 .attributeName("ItemId")
 .attributeType(ScalarAttributeType.N)
 .build())
 .keySchema(
 KeySchemaElement.builder()
 .attributeName("MediaType")
 .keyType(KeyType.HASH)
 .build(),
 KeySchemaElement.builder()
 .attributeName("ItemId")
 .keyType(KeyType.RANGE)
 .build())
 .provisionedThroughput(
 ProvisionedThroughput.builder()
 .readCapacityUnits(5L)

Scenarios 2066

AWS Identity and Access Management User Guide

 .writeCapacityUnits(5L)
 .build())
 .build();

 getDynamoDbClient().createTable(createTableRequest);
 System.out.println("Creating table " + tableName + "...");

 // Wait until the Amazon DynamoDB table is created.
 DescribeTableRequest tableRequest = DescribeTableRequest.builder()
 .tableName(tableName)
 .build();

 WaiterResponse<DescribeTableResponse> waiterResponse =
 dbWaiter.waitUntilTableExists(tableRequest);
 waiterResponse.matched().response().ifPresent(System.out::println);
 System.out.println("Table " + tableName + " created.");

 // Add records to the table.
 populateTable(fileName, tableName);
 }
 }

 public void deleteTable(String tableName) {
 getDynamoDbClient().deleteTable(table -> table.tableName(tableName));
 System.out.println("Table " + tableName + " deleted.");
 }

 // Populates the table with data located in a JSON file using the DynamoDB
 // enhanced client.
 public void populateTable(String fileName, String tableName) throws
 IOException {
 DynamoDbEnhancedClient enhancedClient = DynamoDbEnhancedClient.builder()
 .dynamoDbClient(getDynamoDbClient())
 .build();
 ObjectMapper objectMapper = new ObjectMapper();
 File jsonFile = new File(fileName);
 JsonNode rootNode = objectMapper.readTree(jsonFile);

 DynamoDbTable<Recommendation> mappedTable =
 enhancedClient.table(tableName,
 TableSchema.fromBean(Recommendation.class));
 for (JsonNode currentNode : rootNode) {
 String mediaType = currentNode.path("MediaType").path("S").asText();
 int itemId = currentNode.path("ItemId").path("N").asInt();

Scenarios 2067

AWS Identity and Access Management User Guide

 String title = currentNode.path("Title").path("S").asText();
 String creator = currentNode.path("Creator").path("S").asText();

 // Create a Recommendation object and set its properties.
 Recommendation rec = new Recommendation();
 rec.setMediaType(mediaType);
 rec.setItemId(itemId);
 rec.setTitle(title);
 rec.setCreator(creator);

 // Put the item into the DynamoDB table.
 mappedTable.putItem(rec); // Add the Recommendation to the list.
 }
 System.out.println("Added all records to the " + tableName);
 }
}

Create a class that wraps Systems Manager actions.

public class ParameterHelper {

 String tableName = "doc-example-resilient-architecture-table";
 String dyntable = "doc-example-recommendation-service";
 String failureResponse = "doc-example-resilient-architecture-failure-
response";
 String healthCheck = "doc-example-resilient-architecture-health-check";

 public void reset() {
 put(dyntable, tableName);
 put(failureResponse, "none");
 put(healthCheck, "shallow");
 }

 public void put(String name, String value) {
 SsmClient ssmClient = SsmClient.builder()
 .region(Region.US_EAST_1)
 .build();

 PutParameterRequest parameterRequest = PutParameterRequest.builder()
 .name(name)
 .value(value)
 .overwrite(true)

Scenarios 2068

AWS Identity and Access Management User Guide

 .type("String")
 .build();

 ssmClient.putParameter(parameterRequest);
 System.out.printf("Setting demo parameter %s to '%s'.", name, value);
 }
}

• For API details, see the following topics in AWS SDK for Java 2.x API Reference.

• AttachLoadBalancerTargetGroups

• CreateAutoScalingGroup

• CreateInstanceProfile

• CreateLaunchTemplate

• CreateListener

• CreateLoadBalancer

• CreateTargetGroup

• DeleteAutoScalingGroup

• DeleteInstanceProfile

• DeleteLaunchTemplate

• DeleteLoadBalancer

• DeleteTargetGroup

• DescribeAutoScalingGroups

• DescribeAvailabilityZones

• DescribeIamInstanceProfileAssociations

• DescribeInstances

• DescribeLoadBalancers

• DescribeSubnets

• DescribeTargetGroups

• DescribeTargetHealth

• DescribeVpcs

• RebootInstances

• ReplaceIamInstanceProfileAssociation
Scenarios 2069

https://docs.aws.amazon.com/goto/SdkForJavaV2/autoscaling-2011-01-01/AttachLoadBalancerTargetGroups
https://docs.aws.amazon.com/goto/SdkForJavaV2/autoscaling-2011-01-01/CreateAutoScalingGroup
https://docs.aws.amazon.com/goto/SdkForJavaV2/iam-2010-05-08/CreateInstanceProfile
https://docs.aws.amazon.com/goto/SdkForJavaV2/ec2-2016-11-15/CreateLaunchTemplate
https://docs.aws.amazon.com/goto/SdkForJavaV2/elasticloadbalancingv2-2015-12-01/CreateListener
https://docs.aws.amazon.com/goto/SdkForJavaV2/elasticloadbalancingv2-2015-12-01/CreateLoadBalancer
https://docs.aws.amazon.com/goto/SdkForJavaV2/elasticloadbalancingv2-2015-12-01/CreateTargetGroup
https://docs.aws.amazon.com/goto/SdkForJavaV2/autoscaling-2011-01-01/DeleteAutoScalingGroup
https://docs.aws.amazon.com/goto/SdkForJavaV2/iam-2010-05-08/DeleteInstanceProfile
https://docs.aws.amazon.com/goto/SdkForJavaV2/ec2-2016-11-15/DeleteLaunchTemplate
https://docs.aws.amazon.com/goto/SdkForJavaV2/elasticloadbalancingv2-2015-12-01/DeleteLoadBalancer
https://docs.aws.amazon.com/goto/SdkForJavaV2/elasticloadbalancingv2-2015-12-01/DeleteTargetGroup
https://docs.aws.amazon.com/goto/SdkForJavaV2/autoscaling-2011-01-01/DescribeAutoScalingGroups
https://docs.aws.amazon.com/goto/SdkForJavaV2/ec2-2016-11-15/DescribeAvailabilityZones
https://docs.aws.amazon.com/goto/SdkForJavaV2/ec2-2016-11-15/DescribeIamInstanceProfileAssociations
https://docs.aws.amazon.com/goto/SdkForJavaV2/ec2-2016-11-15/DescribeInstances
https://docs.aws.amazon.com/goto/SdkForJavaV2/elasticloadbalancingv2-2015-12-01/DescribeLoadBalancers
https://docs.aws.amazon.com/goto/SdkForJavaV2/ec2-2016-11-15/DescribeSubnets
https://docs.aws.amazon.com/goto/SdkForJavaV2/elasticloadbalancingv2-2015-12-01/DescribeTargetGroups
https://docs.aws.amazon.com/goto/SdkForJavaV2/elasticloadbalancingv2-2015-12-01/DescribeTargetHealth
https://docs.aws.amazon.com/goto/SdkForJavaV2/ec2-2016-11-15/DescribeVpcs
https://docs.aws.amazon.com/goto/SdkForJavaV2/ec2-2016-11-15/RebootInstances
https://docs.aws.amazon.com/goto/SdkForJavaV2/ec2-2016-11-15/ReplaceIamInstanceProfileAssociation

AWS Identity and Access Management User Guide

• TerminateInstanceInAutoScalingGroup

• UpdateAutoScalingGroup

JavaScript

SDK for JavaScript (v3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Run the interactive scenario at a command prompt.

#!/usr/bin/env node
// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0

import {
 Scenario,
 parseScenarioArgs,
} from "@aws-doc-sdk-examples/lib/scenario/index.js";

/**
 * The workflow steps are split into three stages:
 * - deploy
 * - demo
 * - destroy
 *
 * Each of these stages has a corresponding file prefixed with steps-*.
 */
import { deploySteps } from "./steps-deploy.js";
import { demoSteps } from "./steps-demo.js";
import { destroySteps } from "./steps-destroy.js";

/**
 * The context is passed to every scenario. Scenario steps
 * will modify the context.
 */

Scenarios 2070

https://docs.aws.amazon.com/goto/SdkForJavaV2/autoscaling-2011-01-01/TerminateInstanceInAutoScalingGroup
https://docs.aws.amazon.com/goto/SdkForJavaV2/autoscaling-2011-01-01/UpdateAutoScalingGroup
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/cross-services/wkflw-resilient-service#code-examples

AWS Identity and Access Management User Guide

const context = {};

/**
 * Three Scenarios are created for the workflow. A Scenario is an orchestration
 class
 * that simplifies running a series of steps.
 */
export const scenarios = {
 // Deploys all resources necessary for the workflow.
 deploy: new Scenario("Resilient Workflow - Deploy", deploySteps, context),
 // Demonstrates how a fragile web service can be made more resilient.
 demo: new Scenario("Resilient Workflow - Demo", demoSteps, context),
 // Destroys the resources created for the workflow.
 destroy: new Scenario("Resilient Workflow - Destroy", destroySteps, context),
};

// Call function if run directly
import { fileURLToPath } from "url";

if (process.argv[1] === fileURLToPath(import.meta.url)) {
 parseScenarioArgs(scenarios);
}

Create steps to deploy all of the resources.

// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
import { join } from "node:path";
import { readFileSync, writeFileSync } from "node:fs";
import axios from "axios";

import {
 BatchWriteItemCommand,
 CreateTableCommand,
 DynamoDBClient,
 waitUntilTableExists,
} from "@aws-sdk/client-dynamodb";
import {
 EC2Client,
 CreateKeyPairCommand,
 CreateLaunchTemplateCommand,
 DescribeAvailabilityZonesCommand,

Scenarios 2071

AWS Identity and Access Management User Guide

 DescribeVpcsCommand,
 DescribeSubnetsCommand,
 DescribeSecurityGroupsCommand,
 AuthorizeSecurityGroupIngressCommand,
} from "@aws-sdk/client-ec2";
import {
 IAMClient,
 CreatePolicyCommand,
 CreateRoleCommand,
 CreateInstanceProfileCommand,
 AddRoleToInstanceProfileCommand,
 AttachRolePolicyCommand,
 waitUntilInstanceProfileExists,
} from "@aws-sdk/client-iam";
import { SSMClient, GetParameterCommand } from "@aws-sdk/client-ssm";
import {
 CreateAutoScalingGroupCommand,
 AutoScalingClient,
 AttachLoadBalancerTargetGroupsCommand,
} from "@aws-sdk/client-auto-scaling";
import {
 CreateListenerCommand,
 CreateLoadBalancerCommand,
 CreateTargetGroupCommand,
 ElasticLoadBalancingV2Client,
 waitUntilLoadBalancerAvailable,
} from "@aws-sdk/client-elastic-load-balancing-v2";

import {
 ScenarioOutput,
 ScenarioInput,
 ScenarioAction,
} from "@aws-doc-sdk-examples/lib/scenario/index.js";
import { retry } from "@aws-doc-sdk-examples/lib/utils/util-timers.js";

import { MESSAGES, NAMES, RESOURCES_PATH, ROOT } from "./constants.js";
import { initParamsSteps } from "./steps-reset-params.js";

/**
 * @type {import('@aws-doc-sdk-examples/lib/scenario.js').Step[]}
 */
export const deploySteps = [
 new ScenarioOutput("introduction", MESSAGES.introduction, { header: true }),
 new ScenarioInput("confirmDeployment", MESSAGES.confirmDeployment, {

Scenarios 2072

AWS Identity and Access Management User Guide

 type: "confirm",
 }),
 new ScenarioAction(
 "handleConfirmDeployment",
 (c) => c.confirmDeployment === false && process.exit(),
),
 new ScenarioOutput(
 "creatingTable",
 MESSAGES.creatingTable.replace("${TABLE_NAME}", NAMES.tableName),
),
 new ScenarioAction("createTable", async () => {
 const client = new DynamoDBClient({});
 await client.send(
 new CreateTableCommand({
 TableName: NAMES.tableName,
 ProvisionedThroughput: {
 ReadCapacityUnits: 5,
 WriteCapacityUnits: 5,
 },
 AttributeDefinitions: [
 {
 AttributeName: "MediaType",
 AttributeType: "S",
 },
 {
 AttributeName: "ItemId",
 AttributeType: "N",
 },
],
 KeySchema: [
 {
 AttributeName: "MediaType",
 KeyType: "HASH",
 },
 {
 AttributeName: "ItemId",
 KeyType: "RANGE",
 },
],
 }),
);
 await waitUntilTableExists({ client }, { TableName: NAMES.tableName });
 }),
 new ScenarioOutput(

Scenarios 2073

AWS Identity and Access Management User Guide

 "createdTable",
 MESSAGES.createdTable.replace("${TABLE_NAME}", NAMES.tableName),
),
 new ScenarioOutput(
 "populatingTable",
 MESSAGES.populatingTable.replace("${TABLE_NAME}", NAMES.tableName),
),
 new ScenarioAction("populateTable", () => {
 const client = new DynamoDBClient({});
 /**
 * @type {{ default: import("@aws-sdk/client-dynamodb").PutRequest['Item']
[] }}
 */
 const recommendations = JSON.parse(
 readFileSync(join(RESOURCES_PATH, "recommendations.json")),
);

 return client.send(
 new BatchWriteItemCommand({
 RequestItems: {
 [NAMES.tableName]: recommendations.map((item) => ({
 PutRequest: { Item: item },
 })),
 },
 }),
);
 }),
 new ScenarioOutput(
 "populatedTable",
 MESSAGES.populatedTable.replace("${TABLE_NAME}", NAMES.tableName),
),
 new ScenarioOutput(
 "creatingKeyPair",
 MESSAGES.creatingKeyPair.replace("${KEY_PAIR_NAME}", NAMES.keyPairName),
),
 new ScenarioAction("createKeyPair", async () => {
 const client = new EC2Client({});
 const { KeyMaterial } = await client.send(
 new CreateKeyPairCommand({
 KeyName: NAMES.keyPairName,
 }),
);

 writeFileSync(`${NAMES.keyPairName}.pem`, KeyMaterial, { mode: 0o600 });

Scenarios 2074

AWS Identity and Access Management User Guide

 }),
 new ScenarioOutput(
 "createdKeyPair",
 MESSAGES.createdKeyPair.replace("${KEY_PAIR_NAME}", NAMES.keyPairName),
),
 new ScenarioOutput(
 "creatingInstancePolicy",
 MESSAGES.creatingInstancePolicy.replace(
 "${INSTANCE_POLICY_NAME}",
 NAMES.instancePolicyName,
),
),
 new ScenarioAction("createInstancePolicy", async (state) => {
 const client = new IAMClient({});
 const {
 Policy: { Arn },
 } = await client.send(
 new CreatePolicyCommand({
 PolicyName: NAMES.instancePolicyName,
 PolicyDocument: readFileSync(
 join(RESOURCES_PATH, "instance_policy.json"),
),
 }),
);
 state.instancePolicyArn = Arn;
 }),
 new ScenarioOutput("createdInstancePolicy", (state) =>
 MESSAGES.createdInstancePolicy
 .replace("${INSTANCE_POLICY_NAME}", NAMES.instancePolicyName)
 .replace("${INSTANCE_POLICY_ARN}", state.instancePolicyArn),
),
 new ScenarioOutput(
 "creatingInstanceRole",
 MESSAGES.creatingInstanceRole.replace(
 "${INSTANCE_ROLE_NAME}",
 NAMES.instanceRoleName,
),
),
 new ScenarioAction("createInstanceRole", () => {
 const client = new IAMClient({});
 return client.send(
 new CreateRoleCommand({
 RoleName: NAMES.instanceRoleName,
 AssumeRolePolicyDocument: readFileSync(

Scenarios 2075

AWS Identity and Access Management User Guide

 join(ROOT, "assume-role-policy.json"),
),
 }),
);
 }),
 new ScenarioOutput(
 "createdInstanceRole",
 MESSAGES.createdInstanceRole.replace(
 "${INSTANCE_ROLE_NAME}",
 NAMES.instanceRoleName,
),
),
 new ScenarioOutput(
 "attachingPolicyToRole",
 MESSAGES.attachingPolicyToRole
 .replace("${INSTANCE_ROLE_NAME}", NAMES.instanceRoleName)
 .replace("${INSTANCE_POLICY_NAME}", NAMES.instancePolicyName),
),
 new ScenarioAction("attachPolicyToRole", async (state) => {
 const client = new IAMClient({});
 await client.send(
 new AttachRolePolicyCommand({
 RoleName: NAMES.instanceRoleName,
 PolicyArn: state.instancePolicyArn,
 }),
);
 }),
 new ScenarioOutput(
 "attachedPolicyToRole",
 MESSAGES.attachedPolicyToRole
 .replace("${INSTANCE_POLICY_NAME}", NAMES.instancePolicyName)
 .replace("${INSTANCE_ROLE_NAME}", NAMES.instanceRoleName),
),
 new ScenarioOutput(
 "creatingInstanceProfile",
 MESSAGES.creatingInstanceProfile.replace(
 "${INSTANCE_PROFILE_NAME}",
 NAMES.instanceProfileName,
),
),
 new ScenarioAction("createInstanceProfile", async (state) => {
 const client = new IAMClient({});
 const {
 InstanceProfile: { Arn },

Scenarios 2076

AWS Identity and Access Management User Guide

 } = await client.send(
 new CreateInstanceProfileCommand({
 InstanceProfileName: NAMES.instanceProfileName,
 }),
);
 state.instanceProfileArn = Arn;

 await waitUntilInstanceProfileExists(
 { client },
 { InstanceProfileName: NAMES.instanceProfileName },
);
 }),
 new ScenarioOutput("createdInstanceProfile", (state) =>
 MESSAGES.createdInstanceProfile
 .replace("${INSTANCE_PROFILE_NAME}", NAMES.instanceProfileName)
 .replace("${INSTANCE_PROFILE_ARN}", state.instanceProfileArn),
),
 new ScenarioOutput(
 "addingRoleToInstanceProfile",
 MESSAGES.addingRoleToInstanceProfile
 .replace("${INSTANCE_PROFILE_NAME}", NAMES.instanceProfileName)
 .replace("${INSTANCE_ROLE_NAME}", NAMES.instanceRoleName),
),
 new ScenarioAction("addRoleToInstanceProfile", () => {
 const client = new IAMClient({});
 return client.send(
 new AddRoleToInstanceProfileCommand({
 RoleName: NAMES.instanceRoleName,
 InstanceProfileName: NAMES.instanceProfileName,
 }),
);
 }),
 new ScenarioOutput(
 "addedRoleToInstanceProfile",
 MESSAGES.addedRoleToInstanceProfile
 .replace("${INSTANCE_PROFILE_NAME}", NAMES.instanceProfileName)
 .replace("${INSTANCE_ROLE_NAME}", NAMES.instanceRoleName),
),
 ...initParamsSteps,
 new ScenarioOutput("creatingLaunchTemplate", MESSAGES.creatingLaunchTemplate),
 new ScenarioAction("createLaunchTemplate", async () => {
 // snippet-start:[javascript.v3.wkflw.resilient.CreateLaunchTemplate]
 const ssmClient = new SSMClient({});
 const { Parameter } = await ssmClient.send(

Scenarios 2077

AWS Identity and Access Management User Guide

 new GetParameterCommand({
 Name: "/aws/service/ami-amazon-linux-latest/amzn2-ami-hvm-x86_64-gp2",
 }),
);
 const ec2Client = new EC2Client({});
 await ec2Client.send(
 new CreateLaunchTemplateCommand({
 LaunchTemplateName: NAMES.launchTemplateName,
 LaunchTemplateData: {
 InstanceType: "t3.micro",
 ImageId: Parameter.Value,
 IamInstanceProfile: { Name: NAMES.instanceProfileName },
 UserData: readFileSync(
 join(RESOURCES_PATH, "server_startup_script.sh"),
).toString("base64"),
 KeyName: NAMES.keyPairName,
 },
 }),
 // snippet-end:[javascript.v3.wkflw.resilient.CreateLaunchTemplate]
);
 }),
 new ScenarioOutput(
 "createdLaunchTemplate",
 MESSAGES.createdLaunchTemplate.replace(
 "${LAUNCH_TEMPLATE_NAME}",
 NAMES.launchTemplateName,
),
),
 new ScenarioOutput(
 "creatingAutoScalingGroup",
 MESSAGES.creatingAutoScalingGroup.replace(
 "${AUTO_SCALING_GROUP_NAME}",
 NAMES.autoScalingGroupName,
),
),
 new ScenarioAction("createAutoScalingGroup", async (state) => {
 const ec2Client = new EC2Client({});
 const { AvailabilityZones } = await ec2Client.send(
 new DescribeAvailabilityZonesCommand({}),
);
 state.availabilityZoneNames = AvailabilityZones.map((az) => az.ZoneName);
 const autoScalingClient = new AutoScalingClient({});
 await retry({ intervalInMs: 1000, maxRetries: 30 }, () =>
 autoScalingClient.send(

Scenarios 2078

AWS Identity and Access Management User Guide

 new CreateAutoScalingGroupCommand({
 AvailabilityZones: state.availabilityZoneNames,
 AutoScalingGroupName: NAMES.autoScalingGroupName,
 LaunchTemplate: {
 LaunchTemplateName: NAMES.launchTemplateName,
 Version: "$Default",
 },
 MinSize: 3,
 MaxSize: 3,
 }),
),
);
 }),
 new ScenarioOutput(
 "createdAutoScalingGroup",
 /**
 * @param {{ availabilityZoneNames: string[] }} state
 */
 (state) =>
 MESSAGES.createdAutoScalingGroup
 .replace("${AUTO_SCALING_GROUP_NAME}", NAMES.autoScalingGroupName)
 .replace(
 "${AVAILABILITY_ZONE_NAMES}",
 state.availabilityZoneNames.join(", "),
),
),
 new ScenarioInput("confirmContinue", MESSAGES.confirmContinue, {
 type: "confirm",
 }),
 new ScenarioOutput("loadBalancer", MESSAGES.loadBalancer),
 new ScenarioOutput("gettingVpc", MESSAGES.gettingVpc),
 new ScenarioAction("getVpc", async (state) => {
 // snippet-start:[javascript.v3.wkflw.resilient.DescribeVpcs]
 const client = new EC2Client({});
 const { Vpcs } = await client.send(
 new DescribeVpcsCommand({
 Filters: [{ Name: "is-default", Values: ["true"] }],
 }),
);
 // snippet-end:[javascript.v3.wkflw.resilient.DescribeVpcs]
 state.defaultVpc = Vpcs[0].VpcId;
 }),
 new ScenarioOutput("gotVpc", (state) =>
 MESSAGES.gotVpc.replace("${VPC_ID}", state.defaultVpc),

Scenarios 2079

AWS Identity and Access Management User Guide

),
 new ScenarioOutput("gettingSubnets", MESSAGES.gettingSubnets),
 new ScenarioAction("getSubnets", async (state) => {
 // snippet-start:[javascript.v3.wkflw.resilient.DescribeSubnets]
 const client = new EC2Client({});
 const { Subnets } = await client.send(
 new DescribeSubnetsCommand({
 Filters: [
 { Name: "vpc-id", Values: [state.defaultVpc] },
 { Name: "availability-zone", Values: state.availabilityZoneNames },
 { Name: "default-for-az", Values: ["true"] },
],
 }),
);
 // snippet-end:[javascript.v3.wkflw.resilient.DescribeSubnets]
 state.subnets = Subnets.map((subnet) => subnet.SubnetId);
 }),
 new ScenarioOutput(
 "gotSubnets",
 /**
 * @param {{ subnets: string[] }} state
 */
 (state) =>
 MESSAGES.gotSubnets.replace("${SUBNETS}", state.subnets.join(", ")),
),
 new ScenarioOutput(
 "creatingLoadBalancerTargetGroup",
 MESSAGES.creatingLoadBalancerTargetGroup.replace(
 "${TARGET_GROUP_NAME}",
 NAMES.loadBalancerTargetGroupName,
),
),
 new ScenarioAction("createLoadBalancerTargetGroup", async (state) => {
 // snippet-start:[javascript.v3.wkflw.resilient.CreateTargetGroup]
 const client = new ElasticLoadBalancingV2Client({});
 const { TargetGroups } = await client.send(
 new CreateTargetGroupCommand({
 Name: NAMES.loadBalancerTargetGroupName,
 Protocol: "HTTP",
 Port: 80,
 HealthCheckPath: "/healthcheck",
 HealthCheckIntervalSeconds: 10,
 HealthCheckTimeoutSeconds: 5,
 HealthyThresholdCount: 2,

Scenarios 2080

AWS Identity and Access Management User Guide

 UnhealthyThresholdCount: 2,
 VpcId: state.defaultVpc,
 }),
);
 // snippet-end:[javascript.v3.wkflw.resilient.CreateTargetGroup]
 const targetGroup = TargetGroups[0];
 state.targetGroupArn = targetGroup.TargetGroupArn;
 state.targetGroupProtocol = targetGroup.Protocol;
 state.targetGroupPort = targetGroup.Port;
 }),
 new ScenarioOutput(
 "createdLoadBalancerTargetGroup",
 MESSAGES.createdLoadBalancerTargetGroup.replace(
 "${TARGET_GROUP_NAME}",
 NAMES.loadBalancerTargetGroupName,
),
),
 new ScenarioOutput(
 "creatingLoadBalancer",
 MESSAGES.creatingLoadBalancer.replace("${LB_NAME}", NAMES.loadBalancerName),
),
 new ScenarioAction("createLoadBalancer", async (state) => {
 // snippet-start:[javascript.v3.wkflw.resilient.CreateLoadBalancer]
 const client = new ElasticLoadBalancingV2Client({});
 const { LoadBalancers } = await client.send(
 new CreateLoadBalancerCommand({
 Name: NAMES.loadBalancerName,
 Subnets: state.subnets,
 }),
);
 state.loadBalancerDns = LoadBalancers[0].DNSName;
 state.loadBalancerArn = LoadBalancers[0].LoadBalancerArn;
 await waitUntilLoadBalancerAvailable(
 { client },
 { Names: [NAMES.loadBalancerName] },
);
 // snippet-end:[javascript.v3.wkflw.resilient.CreateLoadBalancer]
 }),
 new ScenarioOutput("createdLoadBalancer", (state) =>
 MESSAGES.createdLoadBalancer
 .replace("${LB_NAME}", NAMES.loadBalancerName)
 .replace("${DNS_NAME}", state.loadBalancerDns),
),
 new ScenarioOutput(

Scenarios 2081

AWS Identity and Access Management User Guide

 "creatingListener",
 MESSAGES.creatingLoadBalancerListener
 .replace("${LB_NAME}", NAMES.loadBalancerName)
 .replace("${TARGET_GROUP_NAME}", NAMES.loadBalancerTargetGroupName),
),
 new ScenarioAction("createListener", async (state) => {
 // snippet-start:[javascript.v3.wkflw.resilient.CreateListener]
 const client = new ElasticLoadBalancingV2Client({});
 const { Listeners } = await client.send(
 new CreateListenerCommand({
 LoadBalancerArn: state.loadBalancerArn,
 Protocol: state.targetGroupProtocol,
 Port: state.targetGroupPort,
 DefaultActions: [
 { Type: "forward", TargetGroupArn: state.targetGroupArn },
],
 }),
);
 // snippet-end:[javascript.v3.wkflw.resilient.CreateListener]
 const listener = Listeners[0];
 state.loadBalancerListenerArn = listener.ListenerArn;
 }),
 new ScenarioOutput("createdListener", (state) =>
 MESSAGES.createdLoadBalancerListener.replace(
 "${LB_LISTENER_ARN}",
 state.loadBalancerListenerArn,
),
),
 new ScenarioOutput(
 "attachingLoadBalancerTargetGroup",
 MESSAGES.attachingLoadBalancerTargetGroup
 .replace("${TARGET_GROUP_NAME}", NAMES.loadBalancerTargetGroupName)
 .replace("${AUTO_SCALING_GROUP_NAME}", NAMES.autoScalingGroupName),
),
 new ScenarioAction("attachLoadBalancerTargetGroup", async (state) => {
 // snippet-start:[javascript.v3.wkflw.resilient.AttachTargetGroup]
 const client = new AutoScalingClient({});
 await client.send(
 new AttachLoadBalancerTargetGroupsCommand({
 AutoScalingGroupName: NAMES.autoScalingGroupName,
 TargetGroupARNs: [state.targetGroupArn],
 }),
);
 // snippet-end:[javascript.v3.wkflw.resilient.AttachTargetGroup]

Scenarios 2082

AWS Identity and Access Management User Guide

 }),
 new ScenarioOutput(
 "attachedLoadBalancerTargetGroup",
 MESSAGES.attachedLoadBalancerTargetGroup,
),
 new ScenarioOutput("verifyingInboundPort", MESSAGES.verifyingInboundPort),
 new ScenarioAction(
 "verifyInboundPort",
 /**
 *
 * @param {{ defaultSecurityGroup: import('@aws-sdk/client-
ec2').SecurityGroup}} state
 */
 async (state) => {
 const client = new EC2Client({});
 const { SecurityGroups } = await client.send(
 new DescribeSecurityGroupsCommand({
 Filters: [{ Name: "group-name", Values: ["default"] }],
 }),
);
 if (!SecurityGroups) {
 state.verifyInboundPortError = new Error(MESSAGES.noSecurityGroups);
 }
 state.defaultSecurityGroup = SecurityGroups[0];

 /**
 * @type {string}
 */
 const ipResponse = (await axios.get("http://checkip.amazonaws.com")).data;
 state.myIp = ipResponse.trim();
 const myIpRules = state.defaultSecurityGroup.IpPermissions.filter(
 ({ IpRanges }) =>
 IpRanges.some(
 ({ CidrIp }) =>
 CidrIp.startsWith(state.myIp) || CidrIp === "0.0.0.0/0",
),
)
 .filter(({ IpProtocol }) => IpProtocol === "tcp")
 .filter(({ FromPort }) => FromPort === 80);

 state.myIpRules = myIpRules;
 },
),
 new ScenarioOutput(

Scenarios 2083

AWS Identity and Access Management User Guide

 "verifiedInboundPort",
 /**
 * @param {{ myIpRules: any[] }} state
 */
 (state) => {
 if (state.myIpRules.length > 0) {
 return MESSAGES.foundIpRules.replace(
 "${IP_RULES}",
 JSON.stringify(state.myIpRules, null, 2),
);
 } else {
 return MESSAGES.noIpRules;
 }
 },
),
 new ScenarioInput(
 "shouldAddInboundRule",
 /**
 * @param {{ myIpRules: any[] }} state
 */
 (state) => {
 if (state.myIpRules.length > 0) {
 return false;
 } else {
 return MESSAGES.noIpRules;
 }
 },
 { type: "confirm" },
),
 new ScenarioAction(
 "addInboundRule",
 /**
 * @param {{ defaultSecurityGroup: import('@aws-sdk/client-
ec2').SecurityGroup }} state
 */
 async (state) => {
 if (!state.shouldAddInboundRule) {
 return;
 }

 const client = new EC2Client({});
 await client.send(
 new AuthorizeSecurityGroupIngressCommand({
 GroupId: state.defaultSecurityGroup.GroupId,

Scenarios 2084

AWS Identity and Access Management User Guide

 CidrIp: `${state.myIp}/32`,
 FromPort: 80,
 ToPort: 80,
 IpProtocol: "tcp",
 }),
);
 },
),
 new ScenarioOutput("addedInboundRule", (state) => {
 if (state.shouldAddInboundRule) {
 return MESSAGES.addedInboundRule.replace("${IP_ADDRESS}", state.myIp);
 } else {
 return false;
 }
 }),
 new ScenarioOutput("verifyingEndpoint", (state) =>
 MESSAGES.verifyingEndpoint.replace("${DNS_NAME}", state.loadBalancerDns),
),
 new ScenarioAction("verifyEndpoint", async (state) => {
 try {
 const response = await retry({ intervalInMs: 2000, maxRetries: 30 }, () =>
 axios.get(`http://${state.loadBalancerDns}`),
);
 state.endpointResponse = JSON.stringify(response.data, null, 2);
 } catch (e) {
 state.verifyEndpointError = e;
 }
 }),
 new ScenarioOutput("verifiedEndpoint", (state) => {
 if (state.verifyEndpointError) {
 console.error(state.verifyEndpointError);
 } else {
 return MESSAGES.verifiedEndpoint.replace(
 "${ENDPOINT_RESPONSE}",
 state.endpointResponse,
);
 }
 }),
];

Create steps to run the demo.

Scenarios 2085

AWS Identity and Access Management User Guide

// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
import { readFileSync } from "node:fs";
import { join } from "node:path";

import axios from "axios";

import {
 DescribeTargetGroupsCommand,
 DescribeTargetHealthCommand,
 ElasticLoadBalancingV2Client,
} from "@aws-sdk/client-elastic-load-balancing-v2";
import {
 DescribeInstanceInformationCommand,
 PutParameterCommand,
 SSMClient,
 SendCommandCommand,
} from "@aws-sdk/client-ssm";
import {
 IAMClient,
 CreatePolicyCommand,
 CreateRoleCommand,
 AttachRolePolicyCommand,
 CreateInstanceProfileCommand,
 AddRoleToInstanceProfileCommand,
 waitUntilInstanceProfileExists,
} from "@aws-sdk/client-iam";
import {
 AutoScalingClient,
 DescribeAutoScalingGroupsCommand,
 TerminateInstanceInAutoScalingGroupCommand,
} from "@aws-sdk/client-auto-scaling";
import {
 DescribeIamInstanceProfileAssociationsCommand,
 EC2Client,
 RebootInstancesCommand,
 ReplaceIamInstanceProfileAssociationCommand,
} from "@aws-sdk/client-ec2";

import {
 ScenarioAction,
 ScenarioInput,
 ScenarioOutput,

Scenarios 2086

AWS Identity and Access Management User Guide

} from "@aws-doc-sdk-examples/lib/scenario/scenario.js";
import { retry } from "@aws-doc-sdk-examples/lib/utils/util-timers.js";

import { MESSAGES, NAMES, RESOURCES_PATH } from "./constants.js";
import { findLoadBalancer } from "./shared.js";

const getRecommendation = new ScenarioAction(
 "getRecommendation",
 async (state) => {
 const loadBalancer = await findLoadBalancer(NAMES.loadBalancerName);
 if (loadBalancer) {
 state.loadBalancerDnsName = loadBalancer.DNSName;
 try {
 state.recommendation = (
 await axios.get(`http://${state.loadBalancerDnsName}`)
).data;
 } catch (e) {
 state.recommendation = e instanceof Error ? e.message : e;
 }
 } else {
 throw new Error(MESSAGES.demoFindLoadBalancerError);
 }
 },
);

const getRecommendationResult = new ScenarioOutput(
 "getRecommendationResult",
 (state) =>
 `Recommendation:\n${JSON.stringify(state.recommendation, null, 2)}`,
 { preformatted: true },
);

const getHealthCheck = new ScenarioAction("getHealthCheck", async (state) => {
 // snippet-start:[javascript.v3.wkflw.resilient.DescribeTargetGroups]
 const client = new ElasticLoadBalancingV2Client({});
 const { TargetGroups } = await client.send(
 new DescribeTargetGroupsCommand({
 Names: [NAMES.loadBalancerTargetGroupName],
 }),
);
 // snippet-end:[javascript.v3.wkflw.resilient.DescribeTargetGroups]

 // snippet-start:[javascript.v3.wkflw.resilient.DescribeTargetHealth]
 const { TargetHealthDescriptions } = await client.send(

Scenarios 2087

AWS Identity and Access Management User Guide

 new DescribeTargetHealthCommand({
 TargetGroupArn: TargetGroups[0].TargetGroupArn,
 }),
);
 // snippet-end:[javascript.v3.wkflw.resilient.DescribeTargetHealth]
 state.targetHealthDescriptions = TargetHealthDescriptions;
});

const getHealthCheckResult = new ScenarioOutput(
 "getHealthCheckResult",
 /**
 * @param {{ targetHealthDescriptions: import('@aws-sdk/client-elastic-load-
balancing-v2').TargetHealthDescription[]}} state
 */
 (state) => {
 const status = state.targetHealthDescriptions
 .map((th) => `${th.Target.Id}: ${th.TargetHealth.State}`)
 .join("\n");
 return `Health check:\n${status}`;
 },
 { preformatted: true },
);

const loadBalancerLoop = new ScenarioAction(
 "loadBalancerLoop",
 getRecommendation.action,
 {
 whileConfig: {
 inputEquals: true,
 input: new ScenarioInput(
 "loadBalancerCheck",
 MESSAGES.demoLoadBalancerCheck,
 {
 type: "confirm",
 },
),
 output: getRecommendationResult,
 },
 },
);

const healthCheckLoop = new ScenarioAction(
 "healthCheckLoop",
 getHealthCheck.action,

Scenarios 2088

AWS Identity and Access Management User Guide

 {
 whileConfig: {
 inputEquals: true,
 input: new ScenarioInput("healthCheck", MESSAGES.demoHealthCheck, {
 type: "confirm",
 }),
 output: getHealthCheckResult,
 },
 },
);

const statusSteps = [
 getRecommendation,
 getRecommendationResult,
 getHealthCheck,
 getHealthCheckResult,
];

/**
 * @type {import('@aws-doc-sdk-examples/lib/scenario.js').Step[]}
 */
export const demoSteps = [
 new ScenarioOutput("header", MESSAGES.demoHeader, { header: true }),
 new ScenarioOutput("sanityCheck", MESSAGES.demoSanityCheck),
 ...statusSteps,
 new ScenarioInput(
 "brokenDependencyConfirmation",
 MESSAGES.demoBrokenDependencyConfirmation,
 { type: "confirm" },
),
 new ScenarioAction("brokenDependency", async (state) => {
 if (!state.brokenDependencyConfirmation) {
 process.exit();
 } else {
 const client = new SSMClient({});
 state.badTableName = `fake-table-${Date.now()}`;
 await client.send(
 new PutParameterCommand({
 Name: NAMES.ssmTableNameKey,
 Value: state.badTableName,
 Overwrite: true,
 Type: "String",
 }),
);

Scenarios 2089

AWS Identity and Access Management User Guide

 }
 }),
 new ScenarioOutput("testBrokenDependency", (state) =>
 MESSAGES.demoTestBrokenDependency.replace(
 "${TABLE_NAME}",
 state.badTableName,
),
),
 ...statusSteps,
 new ScenarioInput(
 "staticResponseConfirmation",
 MESSAGES.demoStaticResponseConfirmation,
 { type: "confirm" },
),
 new ScenarioAction("staticResponse", async (state) => {
 if (!state.staticResponseConfirmation) {
 process.exit();
 } else {
 const client = new SSMClient({});
 await client.send(
 new PutParameterCommand({
 Name: NAMES.ssmFailureResponseKey,
 Value: "static",
 Overwrite: true,
 Type: "String",
 }),
);
 }
 }),
 new ScenarioOutput("testStaticResponse", MESSAGES.demoTestStaticResponse),
 ...statusSteps,
 new ScenarioInput(
 "badCredentialsConfirmation",
 MESSAGES.demoBadCredentialsConfirmation,
 { type: "confirm" },
),
 new ScenarioAction("badCredentialsExit", (state) => {
 if (!state.badCredentialsConfirmation) {
 process.exit();
 }
 }),
 new ScenarioAction("fixDynamoDBName", async () => {
 const client = new SSMClient({});
 await client.send(

Scenarios 2090

AWS Identity and Access Management User Guide

 new PutParameterCommand({
 Name: NAMES.ssmTableNameKey,
 Value: NAMES.tableName,
 Overwrite: true,
 Type: "String",
 }),
);
 }),
 new ScenarioAction(
 "badCredentials",
 /**
 * @param {{ targetInstance: import('@aws-sdk/client-auto-
scaling').Instance }} state
 */
 async (state) => {
 await createSsmOnlyInstanceProfile();
 const autoScalingClient = new AutoScalingClient({});
 const { AutoScalingGroups } = await autoScalingClient.send(
 new DescribeAutoScalingGroupsCommand({
 AutoScalingGroupNames: [NAMES.autoScalingGroupName],
 }),
);
 state.targetInstance = AutoScalingGroups[0].Instances[0];
 // snippet-start:
[javascript.v3.wkflw.resilient.DescribeIamInstanceProfileAssociations]
 const ec2Client = new EC2Client({});
 const { IamInstanceProfileAssociations } = await ec2Client.send(
 new DescribeIamInstanceProfileAssociationsCommand({
 Filters: [
 { Name: "instance-id", Values: [state.targetInstance.InstanceId] },
],
 }),
);
 // snippet-end:
[javascript.v3.wkflw.resilient.DescribeIamInstanceProfileAssociations]
 state.instanceProfileAssociationId =
 IamInstanceProfileAssociations[0].AssociationId;
 // snippet-start:
[javascript.v3.wkflw.resilient.ReplaceIamInstanceProfileAssociation]
 await retry({ intervalInMs: 1000, maxRetries: 30 }, () =>
 ec2Client.send(
 new ReplaceIamInstanceProfileAssociationCommand({
 AssociationId: state.instanceProfileAssociationId,
 IamInstanceProfile: { Name: NAMES.ssmOnlyInstanceProfileName },

Scenarios 2091

AWS Identity and Access Management User Guide

 }),
),
);
 // snippet-end:
[javascript.v3.wkflw.resilient.ReplaceIamInstanceProfileAssociation]

 await ec2Client.send(
 new RebootInstancesCommand({
 InstanceIds: [state.targetInstance.InstanceId],
 }),
);

 const ssmClient = new SSMClient({});
 await retry({ intervalInMs: 20000, maxRetries: 15 }, async () => {
 const { InstanceInformationList } = await ssmClient.send(
 new DescribeInstanceInformationCommand({}),
);

 const instance = InstanceInformationList.find(
 (info) => info.InstanceId === state.targetInstance.InstanceId,
);

 if (!instance) {
 throw new Error("Instance not found.");
 }
 });

 await ssmClient.send(
 new SendCommandCommand({
 InstanceIds: [state.targetInstance.InstanceId],
 DocumentName: "AWS-RunShellScript",
 Parameters: { commands: ["cd / && sudo python3 server.py 80"] },
 }),
);
 },
),
 new ScenarioOutput(
 "testBadCredentials",
 /**
 * @param {{ targetInstance: import('@aws-sdk/client-
ssm').InstanceInformation}} state
 */
 (state) =>
 MESSAGES.demoTestBadCredentials.replace(

Scenarios 2092

AWS Identity and Access Management User Guide

 "${INSTANCE_ID}",
 state.targetInstance.InstanceId,
),
),
 loadBalancerLoop,
 new ScenarioInput(
 "deepHealthCheckConfirmation",
 MESSAGES.demoDeepHealthCheckConfirmation,
 { type: "confirm" },
),
 new ScenarioAction("deepHealthCheckExit", (state) => {
 if (!state.deepHealthCheckConfirmation) {
 process.exit();
 }
 }),
 new ScenarioAction("deepHealthCheck", async () => {
 const client = new SSMClient({});
 await client.send(
 new PutParameterCommand({
 Name: NAMES.ssmHealthCheckKey,
 Value: "deep",
 Overwrite: true,
 Type: "String",
 }),
);
 }),
 new ScenarioOutput("testDeepHealthCheck", MESSAGES.demoTestDeepHealthCheck),
 healthCheckLoop,
 loadBalancerLoop,
 new ScenarioInput(
 "killInstanceConfirmation",
 /**
 * @param {{ targetInstance: import('@aws-sdk/client-
ssm').InstanceInformation }} state
 */
 (state) =>
 MESSAGES.demoKillInstanceConfirmation.replace(
 "${INSTANCE_ID}",
 state.targetInstance.InstanceId,
),
 { type: "confirm" },
),
 new ScenarioAction("killInstanceExit", (state) => {
 if (!state.killInstanceConfirmation) {

Scenarios 2093

AWS Identity and Access Management User Guide

 process.exit();
 }
 }),
 new ScenarioAction(
 "killInstance",
 /**
 * @param {{ targetInstance: import('@aws-sdk/client-
ssm').InstanceInformation }} state
 */
 async (state) => {
 const client = new AutoScalingClient({});
 await client.send(
 new TerminateInstanceInAutoScalingGroupCommand({
 InstanceId: state.targetInstance.InstanceId,
 ShouldDecrementDesiredCapacity: false,
 }),
);
 },
),
 new ScenarioOutput("testKillInstance", MESSAGES.demoTestKillInstance),
 healthCheckLoop,
 loadBalancerLoop,
 new ScenarioInput("failOpenConfirmation", MESSAGES.demoFailOpenConfirmation, {
 type: "confirm",
 }),
 new ScenarioAction("failOpenExit", (state) => {
 if (!state.failOpenConfirmation) {
 process.exit();
 }
 }),
 new ScenarioAction("failOpen", () => {
 const client = new SSMClient({});
 return client.send(
 new PutParameterCommand({
 Name: NAMES.ssmTableNameKey,
 Value: `fake-table-${Date.now()}`,
 Overwrite: true,
 Type: "String",
 }),
);
 }),
 new ScenarioOutput("testFailOpen", MESSAGES.demoFailOpenTest),
 healthCheckLoop,
 loadBalancerLoop,

Scenarios 2094

AWS Identity and Access Management User Guide

 new ScenarioInput(
 "resetTableConfirmation",
 MESSAGES.demoResetTableConfirmation,
 { type: "confirm" },
),
 new ScenarioAction("resetTableExit", (state) => {
 if (!state.resetTableConfirmation) {
 process.exit();
 }
 }),
 new ScenarioAction("resetTable", async () => {
 const client = new SSMClient({});
 await client.send(
 new PutParameterCommand({
 Name: NAMES.ssmTableNameKey,
 Value: NAMES.tableName,
 Overwrite: true,
 Type: "String",
 }),
);
 }),
 new ScenarioOutput("testResetTable", MESSAGES.demoTestResetTable),
 healthCheckLoop,
 loadBalancerLoop,
];

async function createSsmOnlyInstanceProfile() {
 const iamClient = new IAMClient({});
 const { Policy } = await iamClient.send(
 new CreatePolicyCommand({
 PolicyName: NAMES.ssmOnlyPolicyName,
 PolicyDocument: readFileSync(
 join(RESOURCES_PATH, "ssm_only_policy.json"),
),
 }),
);
 await iamClient.send(
 new CreateRoleCommand({
 RoleName: NAMES.ssmOnlyRoleName,
 AssumeRolePolicyDocument: JSON.stringify({
 Version: "2012-10-17",
 Statement: [
 {
 Effect: "Allow",

Scenarios 2095

AWS Identity and Access Management User Guide

 Principal: { Service: "ec2.amazonaws.com" },
 Action: "sts:AssumeRole",
 },
],
 }),
 }),
);
 await iamClient.send(
 new AttachRolePolicyCommand({
 RoleName: NAMES.ssmOnlyRoleName,
 PolicyArn: Policy.Arn,
 }),
);
 await iamClient.send(
 new AttachRolePolicyCommand({
 RoleName: NAMES.ssmOnlyRoleName,
 PolicyArn: "arn:aws:iam::aws:policy/AmazonSSMManagedInstanceCore",
 }),
);
 // snippet-start:[javascript.v3.wkflw.resilient.CreateInstanceProfile]
 const { InstanceProfile } = await iamClient.send(
 new CreateInstanceProfileCommand({
 InstanceProfileName: NAMES.ssmOnlyInstanceProfileName,
 }),
);
 await waitUntilInstanceProfileExists(
 { client: iamClient },
 { InstanceProfileName: NAMES.ssmOnlyInstanceProfileName },
);
 // snippet-end:[javascript.v3.wkflw.resilient.CreateInstanceProfile]
 await iamClient.send(
 new AddRoleToInstanceProfileCommand({
 InstanceProfileName: NAMES.ssmOnlyInstanceProfileName,
 RoleName: NAMES.ssmOnlyRoleName,
 }),
);

 return InstanceProfile;
}

Create steps to destroy all of the resources.

Scenarios 2096

AWS Identity and Access Management User Guide

// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
import { unlinkSync } from "node:fs";

import { DynamoDBClient, DeleteTableCommand } from "@aws-sdk/client-dynamodb";
import {
 EC2Client,
 DeleteKeyPairCommand,
 DeleteLaunchTemplateCommand,
} from "@aws-sdk/client-ec2";
import {
 IAMClient,
 DeleteInstanceProfileCommand,
 RemoveRoleFromInstanceProfileCommand,
 DeletePolicyCommand,
 DeleteRoleCommand,
 DetachRolePolicyCommand,
 paginateListPolicies,
} from "@aws-sdk/client-iam";
import {
 AutoScalingClient,
 DeleteAutoScalingGroupCommand,
 TerminateInstanceInAutoScalingGroupCommand,
 UpdateAutoScalingGroupCommand,
 paginateDescribeAutoScalingGroups,
} from "@aws-sdk/client-auto-scaling";
import {
 DeleteLoadBalancerCommand,
 DeleteTargetGroupCommand,
 DescribeTargetGroupsCommand,
 ElasticLoadBalancingV2Client,
} from "@aws-sdk/client-elastic-load-balancing-v2";

import {
 ScenarioOutput,
 ScenarioInput,
 ScenarioAction,
} from "@aws-doc-sdk-examples/lib/scenario/index.js";
import { retry } from "@aws-doc-sdk-examples/lib/utils/util-timers.js";

import { MESSAGES, NAMES } from "./constants.js";
import { findLoadBalancer } from "./shared.js";

Scenarios 2097

AWS Identity and Access Management User Guide

/**
 * @type {import('@aws-doc-sdk-examples/lib/scenario.js').Step[]}
 */
export const destroySteps = [
 new ScenarioInput("destroy", MESSAGES.destroy, { type: "confirm" }),
 new ScenarioAction(
 "abort",
 (state) => state.destroy === false && process.exit(),
),
 new ScenarioAction("deleteTable", async (c) => {
 try {
 const client = new DynamoDBClient({});
 await client.send(new DeleteTableCommand({ TableName: NAMES.tableName }));
 } catch (e) {
 c.deleteTableError = e;
 }
 }),
 new ScenarioOutput("deleteTableResult", (state) => {
 if (state.deleteTableError) {
 console.error(state.deleteTableError);
 return MESSAGES.deleteTableError.replace(
 "${TABLE_NAME}",
 NAMES.tableName,
);
 } else {
 return MESSAGES.deletedTable.replace("${TABLE_NAME}", NAMES.tableName);
 }
 }),
 new ScenarioAction("deleteKeyPair", async (state) => {
 try {
 const client = new EC2Client({});
 await client.send(
 new DeleteKeyPairCommand({ KeyName: NAMES.keyPairName }),
);
 unlinkSync(`${NAMES.keyPairName}.pem`);
 } catch (e) {
 state.deleteKeyPairError = e;
 }
 }),
 new ScenarioOutput("deleteKeyPairResult", (state) => {
 if (state.deleteKeyPairError) {
 console.error(state.deleteKeyPairError);
 return MESSAGES.deleteKeyPairError.replace(
 "${KEY_PAIR_NAME}",

Scenarios 2098

AWS Identity and Access Management User Guide

 NAMES.keyPairName,
);
 } else {
 return MESSAGES.deletedKeyPair.replace(
 "${KEY_PAIR_NAME}",
 NAMES.keyPairName,
);
 }
 }),
 new ScenarioAction("detachPolicyFromRole", async (state) => {
 try {
 const client = new IAMClient({});
 const policy = await findPolicy(NAMES.instancePolicyName);

 if (!policy) {
 state.detachPolicyFromRoleError = new Error(
 `Policy ${NAMES.instancePolicyName} not found.`,
);
 } else {
 await client.send(
 new DetachRolePolicyCommand({
 RoleName: NAMES.instanceRoleName,
 PolicyArn: policy.Arn,
 }),
);
 }
 } catch (e) {
 state.detachPolicyFromRoleError = e;
 }
 }),
 new ScenarioOutput("detachedPolicyFromRole", (state) => {
 if (state.detachPolicyFromRoleError) {
 console.error(state.detachPolicyFromRoleError);
 return MESSAGES.detachPolicyFromRoleError
 .replace("${INSTANCE_POLICY_NAME}", NAMES.instancePolicyName)
 .replace("${INSTANCE_ROLE_NAME}", NAMES.instanceRoleName);
 } else {
 return MESSAGES.detachedPolicyFromRole
 .replace("${INSTANCE_POLICY_NAME}", NAMES.instancePolicyName)
 .replace("${INSTANCE_ROLE_NAME}", NAMES.instanceRoleName);
 }
 }),
 new ScenarioAction("deleteInstancePolicy", async (state) => {
 const client = new IAMClient({});

Scenarios 2099

AWS Identity and Access Management User Guide

 const policy = await findPolicy(NAMES.instancePolicyName);

 if (!policy) {
 state.deletePolicyError = new Error(
 `Policy ${NAMES.instancePolicyName} not found.`,
);
 } else {
 return client.send(
 new DeletePolicyCommand({
 PolicyArn: policy.Arn,
 }),
);
 }
 }),
 new ScenarioOutput("deletePolicyResult", (state) => {
 if (state.deletePolicyError) {
 console.error(state.deletePolicyError);
 return MESSAGES.deletePolicyError.replace(
 "${INSTANCE_POLICY_NAME}",
 NAMES.instancePolicyName,
);
 } else {
 return MESSAGES.deletedPolicy.replace(
 "${INSTANCE_POLICY_NAME}",
 NAMES.instancePolicyName,
);
 }
 }),
 new ScenarioAction("removeRoleFromInstanceProfile", async (state) => {
 try {
 const client = new IAMClient({});
 await client.send(
 new RemoveRoleFromInstanceProfileCommand({
 RoleName: NAMES.instanceRoleName,
 InstanceProfileName: NAMES.instanceProfileName,
 }),
);
 } catch (e) {
 state.removeRoleFromInstanceProfileError = e;
 }
 }),
 new ScenarioOutput("removeRoleFromInstanceProfileResult", (state) => {
 if (state.removeRoleFromInstanceProfile) {
 console.error(state.removeRoleFromInstanceProfileError);

Scenarios 2100

AWS Identity and Access Management User Guide

 return MESSAGES.removeRoleFromInstanceProfileError
 .replace("${INSTANCE_PROFILE_NAME}", NAMES.instanceProfileName)
 .replace("${INSTANCE_ROLE_NAME}", NAMES.instanceRoleName);
 } else {
 return MESSAGES.removedRoleFromInstanceProfile
 .replace("${INSTANCE_PROFILE_NAME}", NAMES.instanceProfileName)
 .replace("${INSTANCE_ROLE_NAME}", NAMES.instanceRoleName);
 }
 }),
 new ScenarioAction("deleteInstanceRole", async (state) => {
 try {
 const client = new IAMClient({});
 await client.send(
 new DeleteRoleCommand({
 RoleName: NAMES.instanceRoleName,
 }),
);
 } catch (e) {
 state.deleteInstanceRoleError = e;
 }
 }),
 new ScenarioOutput("deleteInstanceRoleResult", (state) => {
 if (state.deleteInstanceRoleError) {
 console.error(state.deleteInstanceRoleError);
 return MESSAGES.deleteInstanceRoleError.replace(
 "${INSTANCE_ROLE_NAME}",
 NAMES.instanceRoleName,
);
 } else {
 return MESSAGES.deletedInstanceRole.replace(
 "${INSTANCE_ROLE_NAME}",
 NAMES.instanceRoleName,
);
 }
 }),
 new ScenarioAction("deleteInstanceProfile", async (state) => {
 try {
 // snippet-start:[javascript.v3.wkflw.resilient.DeleteInstanceProfile]
 const client = new IAMClient({});
 await client.send(
 new DeleteInstanceProfileCommand({
 InstanceProfileName: NAMES.instanceProfileName,
 }),
);

Scenarios 2101

AWS Identity and Access Management User Guide

 // snippet-end:[javascript.v3.wkflw.resilient.DeleteInstanceProfile]
 } catch (e) {
 state.deleteInstanceProfileError = e;
 }
 }),
 new ScenarioOutput("deleteInstanceProfileResult", (state) => {
 if (state.deleteInstanceProfileError) {
 console.error(state.deleteInstanceProfileError);
 return MESSAGES.deleteInstanceProfileError.replace(
 "${INSTANCE_PROFILE_NAME}",
 NAMES.instanceProfileName,
);
 } else {
 return MESSAGES.deletedInstanceProfile.replace(
 "${INSTANCE_PROFILE_NAME}",
 NAMES.instanceProfileName,
);
 }
 }),
 new ScenarioAction("deleteAutoScalingGroup", async (state) => {
 try {
 await terminateGroupInstances(NAMES.autoScalingGroupName);
 await retry({ intervalInMs: 60000, maxRetries: 60 }, async () => {
 await deleteAutoScalingGroup(NAMES.autoScalingGroupName);
 });
 } catch (e) {
 state.deleteAutoScalingGroupError = e;
 }
 }),
 new ScenarioOutput("deleteAutoScalingGroupResult", (state) => {
 if (state.deleteAutoScalingGroupError) {
 console.error(state.deleteAutoScalingGroupError);
 return MESSAGES.deleteAutoScalingGroupError.replace(
 "${AUTO_SCALING_GROUP_NAME}",
 NAMES.autoScalingGroupName,
);
 } else {
 return MESSAGES.deletedAutoScalingGroup.replace(
 "${AUTO_SCALING_GROUP_NAME}",
 NAMES.autoScalingGroupName,
);
 }
 }),
 new ScenarioAction("deleteLaunchTemplate", async (state) => {

Scenarios 2102

AWS Identity and Access Management User Guide

 const client = new EC2Client({});
 try {
 // snippet-start:[javascript.v3.wkflw.resilient.DeleteLaunchTemplate]
 await client.send(
 new DeleteLaunchTemplateCommand({
 LaunchTemplateName: NAMES.launchTemplateName,
 }),
);
 // snippet-end:[javascript.v3.wkflw.resilient.DeleteLaunchTemplate]
 } catch (e) {
 state.deleteLaunchTemplateError = e;
 }
 }),
 new ScenarioOutput("deleteLaunchTemplateResult", (state) => {
 if (state.deleteLaunchTemplateError) {
 console.error(state.deleteLaunchTemplateError);
 return MESSAGES.deleteLaunchTemplateError.replace(
 "${LAUNCH_TEMPLATE_NAME}",
 NAMES.launchTemplateName,
);
 } else {
 return MESSAGES.deletedLaunchTemplate.replace(
 "${LAUNCH_TEMPLATE_NAME}",
 NAMES.launchTemplateName,
);
 }
 }),
 new ScenarioAction("deleteLoadBalancer", async (state) => {
 try {
 // snippet-start:[javascript.v3.wkflw.resilient.DeleteLoadBalancer]
 const client = new ElasticLoadBalancingV2Client({});
 const loadBalancer = await findLoadBalancer(NAMES.loadBalancerName);
 await client.send(
 new DeleteLoadBalancerCommand({
 LoadBalancerArn: loadBalancer.LoadBalancerArn,
 }),
);
 await retry({ intervalInMs: 1000, maxRetries: 60 }, async () => {
 const lb = await findLoadBalancer(NAMES.loadBalancerName);
 if (lb) {
 throw new Error("Load balancer still exists.");
 }
 });
 // snippet-end:[javascript.v3.wkflw.resilient.DeleteLoadBalancer]

Scenarios 2103

AWS Identity and Access Management User Guide

 } catch (e) {
 state.deleteLoadBalancerError = e;
 }
 }),
 new ScenarioOutput("deleteLoadBalancerResult", (state) => {
 if (state.deleteLoadBalancerError) {
 console.error(state.deleteLoadBalancerError);
 return MESSAGES.deleteLoadBalancerError.replace(
 "${LB_NAME}",
 NAMES.loadBalancerName,
);
 } else {
 return MESSAGES.deletedLoadBalancer.replace(
 "${LB_NAME}",
 NAMES.loadBalancerName,
);
 }
 }),
 new ScenarioAction("deleteLoadBalancerTargetGroup", async (state) => {
 // snippet-start:[javascript.v3.wkflw.resilient.DeleteTargetGroup]
 const client = new ElasticLoadBalancingV2Client({});
 try {
 const { TargetGroups } = await client.send(
 new DescribeTargetGroupsCommand({
 Names: [NAMES.loadBalancerTargetGroupName],
 }),
);

 await retry({ intervalInMs: 1000, maxRetries: 30 }, () =>
 client.send(
 new DeleteTargetGroupCommand({
 TargetGroupArn: TargetGroups[0].TargetGroupArn,
 }),
),
);
 } catch (e) {
 state.deleteLoadBalancerTargetGroupError = e;
 }
 // snippet-end:[javascript.v3.wkflw.resilient.DeleteTargetGroup]
 }),
 new ScenarioOutput("deleteLoadBalancerTargetGroupResult", (state) => {
 if (state.deleteLoadBalancerTargetGroupError) {
 console.error(state.deleteLoadBalancerTargetGroupError);
 return MESSAGES.deleteLoadBalancerTargetGroupError.replace(

Scenarios 2104

AWS Identity and Access Management User Guide

 "${TARGET_GROUP_NAME}",
 NAMES.loadBalancerTargetGroupName,
);
 } else {
 return MESSAGES.deletedLoadBalancerTargetGroup.replace(
 "${TARGET_GROUP_NAME}",
 NAMES.loadBalancerTargetGroupName,
);
 }
 }),
 new ScenarioAction("detachSsmOnlyRoleFromProfile", async (state) => {
 try {
 const client = new IAMClient({});
 await client.send(
 new RemoveRoleFromInstanceProfileCommand({
 InstanceProfileName: NAMES.ssmOnlyInstanceProfileName,
 RoleName: NAMES.ssmOnlyRoleName,
 }),
);
 } catch (e) {
 state.detachSsmOnlyRoleFromProfileError = e;
 }
 }),
 new ScenarioOutput("detachSsmOnlyRoleFromProfileResult", (state) => {
 if (state.detachSsmOnlyRoleFromProfileError) {
 console.error(state.detachSsmOnlyRoleFromProfileError);
 return MESSAGES.detachSsmOnlyRoleFromProfileError
 .replace("${ROLE_NAME}", NAMES.ssmOnlyRoleName)
 .replace("${PROFILE_NAME}", NAMES.ssmOnlyInstanceProfileName);
 } else {
 return MESSAGES.detachedSsmOnlyRoleFromProfile
 .replace("${ROLE_NAME}", NAMES.ssmOnlyRoleName)
 .replace("${PROFILE_NAME}", NAMES.ssmOnlyInstanceProfileName);
 }
 }),
 new ScenarioAction("detachSsmOnlyCustomRolePolicy", async (state) => {
 try {
 const iamClient = new IAMClient({});
 const ssmOnlyPolicy = await findPolicy(NAMES.ssmOnlyPolicyName);
 await iamClient.send(
 new DetachRolePolicyCommand({
 RoleName: NAMES.ssmOnlyRoleName,
 PolicyArn: ssmOnlyPolicy.Arn,
 }),

Scenarios 2105

AWS Identity and Access Management User Guide

);
 } catch (e) {
 state.detachSsmOnlyCustomRolePolicyError = e;
 }
 }),
 new ScenarioOutput("detachSsmOnlyCustomRolePolicyResult", (state) => {
 if (state.detachSsmOnlyCustomRolePolicyError) {
 console.error(state.detachSsmOnlyCustomRolePolicyError);
 return MESSAGES.detachSsmOnlyCustomRolePolicyError
 .replace("${ROLE_NAME}", NAMES.ssmOnlyRoleName)
 .replace("${POLICY_NAME}", NAMES.ssmOnlyPolicyName);
 } else {
 return MESSAGES.detachedSsmOnlyCustomRolePolicy
 .replace("${ROLE_NAME}", NAMES.ssmOnlyRoleName)
 .replace("${POLICY_NAME}", NAMES.ssmOnlyPolicyName);
 }
 }),
 new ScenarioAction("detachSsmOnlyAWSRolePolicy", async (state) => {
 try {
 const iamClient = new IAMClient({});
 await iamClient.send(
 new DetachRolePolicyCommand({
 RoleName: NAMES.ssmOnlyRoleName,
 PolicyArn: "arn:aws:iam::aws:policy/AmazonSSMManagedInstanceCore",
 }),
);
 } catch (e) {
 state.detachSsmOnlyAWSRolePolicyError = e;
 }
 }),
 new ScenarioOutput("detachSsmOnlyAWSRolePolicyResult", (state) => {
 if (state.detachSsmOnlyAWSRolePolicyError) {
 console.error(state.detachSsmOnlyAWSRolePolicyError);
 return MESSAGES.detachSsmOnlyAWSRolePolicyError
 .replace("${ROLE_NAME}", NAMES.ssmOnlyRoleName)
 .replace("${POLICY_NAME}", "AmazonSSMManagedInstanceCore");
 } else {
 return MESSAGES.detachedSsmOnlyAWSRolePolicy
 .replace("${ROLE_NAME}", NAMES.ssmOnlyRoleName)
 .replace("${POLICY_NAME}", "AmazonSSMManagedInstanceCore");
 }
 }),
 new ScenarioAction("deleteSsmOnlyInstanceProfile", async (state) => {
 try {

Scenarios 2106

AWS Identity and Access Management User Guide

 const iamClient = new IAMClient({});
 await iamClient.send(
 new DeleteInstanceProfileCommand({
 InstanceProfileName: NAMES.ssmOnlyInstanceProfileName,
 }),
);
 } catch (e) {
 state.deleteSsmOnlyInstanceProfileError = e;
 }
 }),
 new ScenarioOutput("deleteSsmOnlyInstanceProfileResult", (state) => {
 if (state.deleteSsmOnlyInstanceProfileError) {
 console.error(state.deleteSsmOnlyInstanceProfileError);
 return MESSAGES.deleteSsmOnlyInstanceProfileError.replace(
 "${INSTANCE_PROFILE_NAME}",
 NAMES.ssmOnlyInstanceProfileName,
);
 } else {
 return MESSAGES.deletedSsmOnlyInstanceProfile.replace(
 "${INSTANCE_PROFILE_NAME}",
 NAMES.ssmOnlyInstanceProfileName,
);
 }
 }),
 new ScenarioAction("deleteSsmOnlyPolicy", async (state) => {
 try {
 const iamClient = new IAMClient({});
 const ssmOnlyPolicy = await findPolicy(NAMES.ssmOnlyPolicyName);
 await iamClient.send(
 new DeletePolicyCommand({
 PolicyArn: ssmOnlyPolicy.Arn,
 }),
);
 } catch (e) {
 state.deleteSsmOnlyPolicyError = e;
 }
 }),
 new ScenarioOutput("deleteSsmOnlyPolicyResult", (state) => {
 if (state.deleteSsmOnlyPolicyError) {
 console.error(state.deleteSsmOnlyPolicyError);
 return MESSAGES.deleteSsmOnlyPolicyError.replace(
 "${POLICY_NAME}",
 NAMES.ssmOnlyPolicyName,
);

Scenarios 2107

AWS Identity and Access Management User Guide

 } else {
 return MESSAGES.deletedSsmOnlyPolicy.replace(
 "${POLICY_NAME}",
 NAMES.ssmOnlyPolicyName,
);
 }
 }),
 new ScenarioAction("deleteSsmOnlyRole", async (state) => {
 try {
 const iamClient = new IAMClient({});
 await iamClient.send(
 new DeleteRoleCommand({
 RoleName: NAMES.ssmOnlyRoleName,
 }),
);
 } catch (e) {
 state.deleteSsmOnlyRoleError = e;
 }
 }),
 new ScenarioOutput("deleteSsmOnlyRoleResult", (state) => {
 if (state.deleteSsmOnlyRoleError) {
 console.error(state.deleteSsmOnlyRoleError);
 return MESSAGES.deleteSsmOnlyRoleError.replace(
 "${ROLE_NAME}",
 NAMES.ssmOnlyRoleName,
);
 } else {
 return MESSAGES.deletedSsmOnlyRole.replace(
 "${ROLE_NAME}",
 NAMES.ssmOnlyRoleName,
);
 }
 }),
];

/**
 * @param {string} policyName
 */
async function findPolicy(policyName) {
 const client = new IAMClient({});
 const paginatedPolicies = paginateListPolicies({ client }, {});
 for await (const page of paginatedPolicies) {
 const policy = page.Policies.find((p) => p.PolicyName === policyName);
 if (policy) {

Scenarios 2108

AWS Identity and Access Management User Guide

 return policy;
 }
 }
}

/**
 * @param {string} groupName
 */
async function deleteAutoScalingGroup(groupName) {
 const client = new AutoScalingClient({});
 try {
 await client.send(
 new DeleteAutoScalingGroupCommand({
 AutoScalingGroupName: groupName,
 }),
);
 } catch (err) {
 if (!(err instanceof Error)) {
 throw err;
 } else {
 console.log(err.name);
 throw err;
 }
 }
}

/**
 * @param {string} groupName
 */
async function terminateGroupInstances(groupName) {
 const autoScalingClient = new AutoScalingClient({});
 const group = await findAutoScalingGroup(groupName);
 await autoScalingClient.send(
 new UpdateAutoScalingGroupCommand({
 AutoScalingGroupName: group.AutoScalingGroupName,
 MinSize: 0,
 }),
);
 for (const i of group.Instances) {
 await retry({ intervalInMs: 1000, maxRetries: 30 }, () =>
 autoScalingClient.send(
 new TerminateInstanceInAutoScalingGroupCommand({
 InstanceId: i.InstanceId,
 ShouldDecrementDesiredCapacity: true,

Scenarios 2109

AWS Identity and Access Management User Guide

 }),
),
);
 }
}

async function findAutoScalingGroup(groupName) {
 const client = new AutoScalingClient({});
 const paginatedGroups = paginateDescribeAutoScalingGroups({ client }, {});
 for await (const page of paginatedGroups) {
 const group = page.AutoScalingGroups.find(
 (g) => g.AutoScalingGroupName === groupName,
);
 if (group) {
 return group;
 }
 }
 throw new Error(`Auto scaling group ${groupName} not found.`);
}

• For API details, see the following topics in AWS SDK for JavaScript API Reference.

• AttachLoadBalancerTargetGroups

• CreateAutoScalingGroup

• CreateInstanceProfile

• CreateLaunchTemplate

• CreateListener

• CreateLoadBalancer

• CreateTargetGroup

• DeleteAutoScalingGroup

• DeleteInstanceProfile

• DeleteLaunchTemplate

• DeleteLoadBalancer

• DeleteTargetGroup

• DescribeAutoScalingGroups

• DescribeAvailabilityZones

• DescribeIamInstanceProfileAssociationsScenarios 2110

https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/client/auto-scaling/command/AttachLoadBalancerTargetGroupsCommand
https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/client/auto-scaling/command/CreateAutoScalingGroupCommand
https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/client/iam/command/CreateInstanceProfileCommand
https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/client/ec2/command/CreateLaunchTemplateCommand
https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/client/elastic-load-balancing-v2/command/CreateListenerCommand
https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/client/elastic-load-balancing-v2/command/CreateLoadBalancerCommand
https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/client/elastic-load-balancing-v2/command/CreateTargetGroupCommand
https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/client/auto-scaling/command/DeleteAutoScalingGroupCommand
https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/client/iam/command/DeleteInstanceProfileCommand
https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/client/ec2/command/DeleteLaunchTemplateCommand
https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/client/elastic-load-balancing-v2/command/DeleteLoadBalancerCommand
https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/client/elastic-load-balancing-v2/command/DeleteTargetGroupCommand
https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/client/auto-scaling/command/DescribeAutoScalingGroupsCommand
https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/client/ec2/command/DescribeAvailabilityZonesCommand
https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/client/ec2/command/DescribeIamInstanceProfileAssociationsCommand

AWS Identity and Access Management User Guide

• DescribeInstances

• DescribeLoadBalancers

• DescribeSubnets

• DescribeTargetGroups

• DescribeTargetHealth

• DescribeVpcs

• RebootInstances

• ReplaceIamInstanceProfileAssociation

• TerminateInstanceInAutoScalingGroup

• UpdateAutoScalingGroup

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Run the interactive scenario at a command prompt.

class Runner:
 def __init__(
 self, resource_path, recommendation, autoscaler, loadbalancer,
 param_helper
):
 self.resource_path = resource_path
 self.recommendation = recommendation
 self.autoscaler = autoscaler
 self.loadbalancer = loadbalancer
 self.param_helper = param_helper
 self.protocol = "HTTP"
 self.port = 80
 self.ssh_port = 22

 def deploy(self):

Scenarios 2111

https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/client/ec2/command/DescribeInstancesCommand
https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/client/elastic-load-balancing-v2/command/DescribeLoadBalancersCommand
https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/client/ec2/command/DescribeSubnetsCommand
https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/client/elastic-load-balancing-v2/command/DescribeTargetGroupsCommand
https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/client/elastic-load-balancing-v2/command/DescribeTargetHealthCommand
https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/client/ec2/command/DescribeVpcsCommand
https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/client/ec2/command/RebootInstancesCommand
https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/client/ec2/command/ReplaceIamInstanceProfileAssociationCommand
https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/client/auto-scaling/command/TerminateInstanceInAutoScalingGroupCommand
https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/client/auto-scaling/command/UpdateAutoScalingGroupCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/cross_service/resilient_service#code-examples

AWS Identity and Access Management User Guide

 recommendations_path = f"{self.resource_path}/recommendations.json"
 startup_script = f"{self.resource_path}/server_startup_script.sh"
 instance_policy = f"{self.resource_path}/instance_policy.json"

 print(
 "\nFor this demo, we'll use the AWS SDK for Python (Boto3) to create
 several AWS resources\n"
 "to set up a load-balanced web service endpoint and explore some ways
 to make it resilient\n"
 "against various kinds of failures.\n\n"
 "Some of the resources create by this demo are:\n"
)
 print(
 "\t* A DynamoDB table that the web service depends on to provide
 book, movie, and song recommendations."
)
 print(
 "\t* An EC2 launch template that defines EC2 instances that each
 contain a Python web server."
)
 print(
 "\t* An EC2 Auto Scaling group that manages EC2 instances across
 several Availability Zones."
)
 print(
 "\t* An Elastic Load Balancing (ELB) load balancer that targets the
 Auto Scaling group to distribute requests."
)
 print("-" * 88)
 q.ask("Press Enter when you're ready to start deploying resources.")

 print(
 f"Creating and populating a DynamoDB table named
 '{self.recommendation.table_name}'."
)
 self.recommendation.create()
 self.recommendation.populate(recommendations_path)
 print("-" * 88)

 print(
 f"Creating an EC2 launch template that runs '{startup_script}' when
 an instance starts.\n"
 f"This script starts a Python web server defined in the `server.py`
 script. The web server\n"

Scenarios 2112

AWS Identity and Access Management User Guide

 f"listens to HTTP requests on port 80 and responds to requests to '/'
 and to '/healthcheck'.\n"
 f"For demo purposes, this server is run as the root user. In
 production, the best practice is to\n"
 f"run a web server, such as Apache, with least-privileged
 credentials.\n"
)
 print(
 f"The template also defines an IAM policy that each instance uses to
 assume a role that grants\n"
 f"permissions to access the DynamoDB recommendation table and Systems
 Manager parameters\n"
 f"that control the flow of the demo.\n"
)
 self.autoscaler.create_template(startup_script, instance_policy)
 print("-" * 88)

 print(
 f"Creating an EC2 Auto Scaling group that maintains three EC2
 instances, each in a different\n"
 f"Availability Zone."
)
 zones = self.autoscaler.create_group(3)
 print("-" * 88)
 print(
 "At this point, you have EC2 instances created. Once each instance
 starts, it listens for\n"
 "HTTP requests. You can see these instances in the console or
 continue with the demo."
)
 print("-" * 88)
 q.ask("Press Enter when you're ready to continue.")

 print(f"Creating variables that control the flow of the demo.\n")
 self.param_helper.reset()

 print(
 "\nCreating an Elastic Load Balancing target group and load balancer.
 The target group\n"
 "defines how the load balancer connects to instances. The load
 balancer provides a\n"
 "single endpoint where clients connect and dispatches requests to
 instances in the group.\n"
)

Scenarios 2113

AWS Identity and Access Management User Guide

 vpc = self.autoscaler.get_default_vpc()
 subnets = self.autoscaler.get_subnets(vpc["VpcId"], zones)
 target_group = self.loadbalancer.create_target_group(
 self.protocol, self.port, vpc["VpcId"]
)
 self.loadbalancer.create_load_balancer(
 [subnet["SubnetId"] for subnet in subnets], target_group
)
 self.autoscaler.attach_load_balancer_target_group(target_group)
 print(f"Verifying access to the load balancer endpoint...")
 lb_success = self.loadbalancer.verify_load_balancer_endpoint()
 if not lb_success:
 print(
 "Couldn't connect to the load balancer, verifying that the port
 is open..."
)
 current_ip_address = requests.get(
 "http://checkip.amazonaws.com"
).text.strip()
 sec_group, port_is_open = self.autoscaler.verify_inbound_port(
 vpc, self.port, current_ip_address
)
 sec_group, ssh_port_is_open = self.autoscaler.verify_inbound_port(
 vpc, self.ssh_port, current_ip_address
)
 if not port_is_open:
 print(
 "For this example to work, the default security group for
 your default VPC must\n"
 "allows access from this computer. You can either add it
 automatically from this\n"
 "example or add it yourself using the AWS Management Console.
\n"
)
 if q.ask(
 f"Do you want to add a rule to security group
 {sec_group['GroupId']} to allow\n"
 f"inbound traffic on port {self.port} from your computer's IP
 address of {current_ip_address}? (y/n) ",
 q.is_yesno,
):
 self.autoscaler.open_inbound_port(
 sec_group["GroupId"], self.port, current_ip_address
)

Scenarios 2114

AWS Identity and Access Management User Guide

 if not ssh_port_is_open:
 if q.ask(
 f"Do you want to add a rule to security group
 {sec_group['GroupId']} to allow\n"
 f"inbound SSH traffic on port {self.ssh_port} for debugging
 from your computer's IP address of {current_ip_address}? (y/n) ",
 q.is_yesno,
):
 self.autoscaler.open_inbound_port(
 sec_group["GroupId"], self.ssh_port, current_ip_address
)
 lb_success = self.loadbalancer.verify_load_balancer_endpoint()
 if lb_success:
 print("Your load balancer is ready. You can access it by browsing to:
\n")
 print(f"\thttp://{self.loadbalancer.endpoint()}\n")
 else:
 print(
 "Couldn't get a successful response from the load balancer
 endpoint. Troubleshoot by\n"
 "manually verifying that your VPC and security group are
 configured correctly and that\n"
 "you can successfully make a GET request to the load balancer
 endpoint:\n"
)
 print(f"\thttp://{self.loadbalancer.endpoint()}\n")
 print("-" * 88)
 q.ask("Press Enter when you're ready to continue with the demo.")

 def demo_choices(self):
 actions = [
 "Send a GET request to the load balancer endpoint.",
 "Check the health of load balancer targets.",
 "Go to the next part of the demo.",
]
 choice = 0
 while choice != 2:
 print("-" * 88)
 print(
 "\nSee the current state of the service by selecting one of the
 following choices:\n"
)
 choice = q.choose("\nWhich action would you like to take? ", actions)
 print("-" * 88)

Scenarios 2115

AWS Identity and Access Management User Guide

 if choice == 0:
 print("Request:\n")
 print(f"GET http://{self.loadbalancer.endpoint()}")
 response = requests.get(f"http://{self.loadbalancer.endpoint()}")
 print("\nResponse:\n")
 print(f"{response.status_code}")
 if response.headers.get("content-type") == "application/json":
 pp(response.json())
 elif choice == 1:
 print("\nChecking the health of load balancer targets:\n")
 health = self.loadbalancer.check_target_health()
 for target in health:
 state = target["TargetHealth"]["State"]
 print(
 f"\tTarget {target['Target']['Id']} on port
 {target['Target']['Port']} is {state}"
)
 if state != "healthy":
 print(
 f"\t\t{target['TargetHealth']['Reason']}:
 {target['TargetHealth']['Description']}\n"
)
 print(
 f"\nNote that it can take a minute or two for the health
 check to update\n"
 f"after changes are made.\n"
)
 elif choice == 2:
 print("\nOkay, let's move on.")
 print("-" * 88)

 def demo(self):
 ssm_only_policy = f"{self.resource_path}/ssm_only_policy.json"

 print("\nResetting parameters to starting values for demo.\n")
 self.param_helper.reset()

 print(
 "\nThis part of the demonstration shows how to toggle different parts
 of the system\n"
 "to create situations where the web service fails, and shows how
 using a resilient\n"
 "architecture can keep the web service running in spite of these
 failures."

Scenarios 2116

AWS Identity and Access Management User Guide

)
 print("-" * 88)

 print(
 "At the start, the load balancer endpoint returns recommendations and
 reports that all targets are healthy."
)
 self.demo_choices()

 print(
 f"The web service running on the EC2 instances gets recommendations
 by querying a DynamoDB table.\n"
 f"The table name is contained in a Systems Manager parameter named
 '{self.param_helper.table}'.\n"
 f"To simulate a failure of the recommendation service, let's set this
 parameter to name a non-existent table.\n"
)
 self.param_helper.put(self.param_helper.table, "this-is-not-a-table")
 print(
 "\nNow, sending a GET request to the load balancer endpoint returns a
 failure code. But, the service reports as\n"
 "healthy to the load balancer because shallow health checks don't
 check for failure of the recommendation service."
)
 self.demo_choices()

 print(
 f"Instead of failing when the recommendation service fails, the web
 service can return a static response.\n"
 f"While this is not a perfect solution, it presents the customer with
 a somewhat better experience than failure.\n"
)
 self.param_helper.put(self.param_helper.failure_response, "static")
 print(
 f"\nNow, sending a GET request to the load balancer endpoint returns
 a static response.\n"
 f"The service still reports as healthy because health checks are
 still shallow.\n"
)
 self.demo_choices()

 print("Let's reinstate the recommendation service.\n")
 self.param_helper.put(self.param_helper.table,
 self.recommendation.table_name)

Scenarios 2117

AWS Identity and Access Management User Guide

 print(
 "\nLet's also substitute bad credentials for one of the instances in
 the target group so that it can't\n"
 "access the DynamoDB recommendation table.\n"
)
 self.autoscaler.create_instance_profile(
 ssm_only_policy,
 self.autoscaler.bad_creds_policy_name,
 self.autoscaler.bad_creds_role_name,
 self.autoscaler.bad_creds_profile_name,
 ["AmazonSSMManagedInstanceCore"],
)
 instances = self.autoscaler.get_instances()
 bad_instance_id = instances[0]
 instance_profile = self.autoscaler.get_instance_profile(bad_instance_id)
 print(
 f"\nReplacing the profile for instance {bad_instance_id} with a
 profile that contains\n"
 f"bad credentials...\n"
)
 self.autoscaler.replace_instance_profile(
 bad_instance_id,
 self.autoscaler.bad_creds_profile_name,
 instance_profile["AssociationId"],
)
 print(
 "Now, sending a GET request to the load balancer endpoint returns
 either a recommendation or a static response,\n"
 "depending on which instance is selected by the load balancer.\n"
)
 self.demo_choices()

 print(
 "\nLet's implement a deep health check. For this demo, a deep health
 check tests whether\n"
 "the web service can access the DynamoDB table that it depends on for
 recommendations. Note that\n"
 "the deep health check is only for ELB routing and not for Auto
 Scaling instance health.\n"
 "This kind of deep health check is not recommended for Auto Scaling
 instance health, because it\n"
 "risks accidental termination of all instances in the Auto Scaling
 group when a dependent service fails.\n"
)

Scenarios 2118

AWS Identity and Access Management User Guide

 print(
 "By implementing deep health checks, the load balancer can detect
 when one of the instances is failing\n"
 "and take that instance out of rotation.\n"
)
 self.param_helper.put(self.param_helper.health_check, "deep")
 print(
 f"\nNow, checking target health indicates that the instance with bad
 credentials ({bad_instance_id})\n"
 f"is unhealthy. Note that it might take a minute or two for the load
 balancer to detect the unhealthy \n"
 f"instance. Sending a GET request to the load balancer endpoint
 always returns a recommendation, because\n"
 "the load balancer takes unhealthy instances out of its rotation.\n"
)
 self.demo_choices()

 print(
 "\nBecause the instances in this demo are controlled by an auto
 scaler, the simplest way to fix an unhealthy\n"
 "instance is to terminate it and let the auto scaler start a new
 instance to replace it.\n"
)
 self.autoscaler.terminate_instance(bad_instance_id)
 print(
 "\nEven while the instance is terminating and the new instance is
 starting, sending a GET\n"
 "request to the web service continues to get a successful
 recommendation response because\n"
 "the load balancer routes requests to the healthy instances. After
 the replacement instance\n"
 "starts and reports as healthy, it is included in the load balancing
 rotation.\n"
 "\nNote that terminating and replacing an instance typically takes
 several minutes, during which time you\n"
 "can see the changing health check status until the new instance is
 running and healthy.\n"
)
 self.demo_choices()

 print(
 "\nIf the recommendation service fails now, deep health checks mean
 all instances report as unhealthy.\n"
)

Scenarios 2119

AWS Identity and Access Management User Guide

 self.param_helper.put(self.param_helper.table, "this-is-not-a-table")
 print(
 "\nWhen all instances are unhealthy, the load balancer continues to
 route requests even to\n"
 "unhealthy instances, allowing them to fail open and return a static
 response rather than fail\n"
 "closed and report failure to the customer."
)
 self.demo_choices()
 self.param_helper.reset()

 def destroy(self):
 print(
 "This concludes the demo of how to build and manage a resilient
 service.\n"
 "To keep things tidy and to avoid unwanted charges on your account,
 we can clean up all AWS resources\n"
 "that were created for this demo."
)
 if q.ask("Do you want to clean up all demo resources? (y/n) ",
 q.is_yesno):
 self.loadbalancer.delete_load_balancer()
 self.loadbalancer.delete_target_group()
 self.autoscaler.delete_group()
 self.autoscaler.delete_key_pair()
 self.autoscaler.delete_template()
 self.autoscaler.delete_instance_profile(
 self.autoscaler.bad_creds_profile_name,
 self.autoscaler.bad_creds_role_name,
)
 self.recommendation.destroy()
 else:
 print(
 "Okay, we'll leave the resources intact.\n"
 "Don't forget to delete them when you're done with them or you
 might incur unexpected charges."
)

def main():
 parser = argparse.ArgumentParser()
 parser.add_argument(
 "--action",
 required=True,

Scenarios 2120

AWS Identity and Access Management User Guide

 choices=["all", "deploy", "demo", "destroy"],
 help="The action to take for the demo. When 'all' is specified, resources
 are\n"
 "deployed, the demo is run, and resources are destroyed.",
)
 parser.add_argument(
 "--resource_path",
 default="../../../workflows/resilient_service/resources",
 help="The path to resource files used by this example, such as IAM
 policies and\n"
 "instance scripts.",
)
 args = parser.parse_args()

 print("-" * 88)
 print(
 "Welcome to the demonstration of How to Build and Manage a Resilient
 Service!"
)
 print("-" * 88)

 prefix = "doc-example-resilience"
 recommendation = RecommendationService.from_client(
 "doc-example-recommendation-service"
)
 autoscaler = AutoScaler.from_client(prefix)
 loadbalancer = LoadBalancer.from_client(prefix)
 param_helper = ParameterHelper.from_client(recommendation.table_name)
 runner = Runner(
 args.resource_path, recommendation, autoscaler, loadbalancer,
 param_helper
)
 actions = [args.action] if args.action != "all" else ["deploy", "demo",
 "destroy"]
 for action in actions:
 if action == "deploy":
 runner.deploy()
 elif action == "demo":
 runner.demo()
 elif action == "destroy":
 runner.destroy()

 print("-" * 88)
 print("Thanks for watching!")

Scenarios 2121

AWS Identity and Access Management User Guide

 print("-" * 88)

if __name__ == "__main__":
 logging.basicConfig(level=logging.INFO, format="%(levelname)s: %(message)s")
 main()

Create a class that wraps Auto Scaling and Amazon EC2 actions.

class AutoScaler:
 """
 Encapsulates Amazon EC2 Auto Scaling and EC2 management actions.
 """

 def __init__(
 self,
 resource_prefix,
 inst_type,
 ami_param,
 autoscaling_client,
 ec2_client,
 ssm_client,
 iam_client,
):
 """
 :param resource_prefix: The prefix for naming AWS resources that are
 created by this class.
 :param inst_type: The type of EC2 instance to create, such as t3.micro.
 :param ami_param: The Systems Manager parameter used to look up the AMI
 that is
 created.
 :param autoscaling_client: A Boto3 EC2 Auto Scaling client.
 :param ec2_client: A Boto3 EC2 client.
 :param ssm_client: A Boto3 Systems Manager client.
 :param iam_client: A Boto3 IAM client.
 """
 self.inst_type = inst_type
 self.ami_param = ami_param
 self.autoscaling_client = autoscaling_client
 self.ec2_client = ec2_client
 self.ssm_client = ssm_client
 self.iam_client = iam_client

Scenarios 2122

AWS Identity and Access Management User Guide

 self.launch_template_name = f"{resource_prefix}-template"
 self.group_name = f"{resource_prefix}-group"
 self.instance_policy_name = f"{resource_prefix}-pol"
 self.instance_role_name = f"{resource_prefix}-role"
 self.instance_profile_name = f"{resource_prefix}-prof"
 self.bad_creds_policy_name = f"{resource_prefix}-bc-pol"
 self.bad_creds_role_name = f"{resource_prefix}-bc-role"
 self.bad_creds_profile_name = f"{resource_prefix}-bc-prof"
 self.key_pair_name = f"{resource_prefix}-key-pair"

 @classmethod
 def from_client(cls, resource_prefix):
 """
 Creates this class from Boto3 clients.

 :param resource_prefix: The prefix for naming AWS resources that are
 created by this class.
 """
 as_client = boto3.client("autoscaling")
 ec2_client = boto3.client("ec2")
 ssm_client = boto3.client("ssm")
 iam_client = boto3.client("iam")
 return cls(
 resource_prefix,
 "t3.micro",
 "/aws/service/ami-amazon-linux-latest/amzn2-ami-hvm-x86_64-gp2",
 as_client,
 ec2_client,
 ssm_client,
 iam_client,
)

 def create_instance_profile(
 self, policy_file, policy_name, role_name, profile_name,
 aws_managed_policies=()
):
 """
 Creates a policy, role, and profile that is associated with instances
 created by
 this class. An instance's associated profile defines a role that is
 assumed by the
 instance. The role has attached policies that specify the AWS permissions
 granted to

Scenarios 2123

AWS Identity and Access Management User Guide

 clients that run on the instance.

 :param policy_file: The name of a JSON file that contains the policy
 definition to
 create and attach to the role.
 :param policy_name: The name to give the created policy.
 :param role_name: The name to give the created role.
 :param profile_name: The name to the created profile.
 :param aws_managed_policies: Additional AWS-managed policies that are
 attached to
 the role, such as
 AmazonSSMManagedInstanceCore to grant
 use of Systems Manager to send commands to
 the instance.
 :return: The ARN of the profile that is created.
 """
 assume_role_doc = {
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {"Service": "ec2.amazonaws.com"},
 "Action": "sts:AssumeRole",
 }
],
 }
 with open(policy_file) as file:
 instance_policy_doc = file.read()

 policy_arn = None
 try:
 pol_response = self.iam_client.create_policy(
 PolicyName=policy_name, PolicyDocument=instance_policy_doc
)
 policy_arn = pol_response["Policy"]["Arn"]
 log.info("Created policy with ARN %s.", policy_arn)
 except ClientError as err:
 if err.response["Error"]["Code"] == "EntityAlreadyExists":
 log.info("Policy %s already exists, nothing to do.", policy_name)
 list_pol_response = self.iam_client.list_policies(Scope="Local")
 for pol in list_pol_response["Policies"]:
 if pol["PolicyName"] == policy_name:
 policy_arn = pol["Arn"]
 break

Scenarios 2124

AWS Identity and Access Management User Guide

 if policy_arn is None:
 raise AutoScalerError(f"Couldn't create policy {policy_name}:
 {err}")

 try:
 self.iam_client.create_role(
 RoleName=role_name,
 AssumeRolePolicyDocument=json.dumps(assume_role_doc)
)
 self.iam_client.attach_role_policy(RoleName=role_name,
 PolicyArn=policy_arn)
 for aws_policy in aws_managed_policies:
 self.iam_client.attach_role_policy(
 RoleName=role_name,
 PolicyArn=f"arn:aws:iam::aws:policy/{aws_policy}",
)
 log.info("Created role %s and attached policy %s.", role_name,
 policy_arn)
 except ClientError as err:
 if err.response["Error"]["Code"] == "EntityAlreadyExists":
 log.info("Role %s already exists, nothing to do.", role_name)
 else:
 raise AutoScalerError(f"Couldn't create role {role_name}: {err}")

 try:
 profile_response = self.iam_client.create_instance_profile(
 InstanceProfileName=profile_name
)
 waiter = self.iam_client.get_waiter("instance_profile_exists")
 waiter.wait(InstanceProfileName=profile_name)
 time.sleep(10) # wait a little longer
 profile_arn = profile_response["InstanceProfile"]["Arn"]
 self.iam_client.add_role_to_instance_profile(
 InstanceProfileName=profile_name, RoleName=role_name
)
 log.info("Created profile %s and added role %s.", profile_name,
 role_name)
 except ClientError as err:
 if err.response["Error"]["Code"] == "EntityAlreadyExists":
 prof_response = self.iam_client.get_instance_profile(
 InstanceProfileName=profile_name
)
 profile_arn = prof_response["InstanceProfile"]["Arn"]
 log.info(

Scenarios 2125

AWS Identity and Access Management User Guide

 "Instance profile %s already exists, nothing to do.",
 profile_name
)
 else:
 raise AutoScalerError(
 f"Couldn't create profile {profile_name} and attach it to
 role\n"
 f"{role_name}: {err}"
)
 return profile_arn

 def get_instance_profile(self, instance_id):
 """
 Gets data about the profile associated with an instance.

 :param instance_id: The ID of the instance to look up.
 :return: The profile data.
 """
 try:
 response =
 self.ec2_client.describe_iam_instance_profile_associations(
 Filters=[{"Name": "instance-id", "Values": [instance_id]}]
)
 except ClientError as err:
 raise AutoScalerError(
 f"Couldn't get instance profile association for instance
 {instance_id}: {err}"
)
 else:
 return response["IamInstanceProfileAssociations"][0]

 def replace_instance_profile(
 self, instance_id, new_instance_profile_name, profile_association_id
):
 """
 Replaces the profile associated with a running instance. After the
 profile is
 replaced, the instance is rebooted to ensure that it uses the new
 profile. When
 the instance is ready, Systems Manager is used to restart the Python web
 server.

Scenarios 2126

AWS Identity and Access Management User Guide

 :param instance_id: The ID of the instance to update.
 :param new_instance_profile_name: The name of the new profile to
 associate with
 the specified instance.
 :param profile_association_id: The ID of the existing profile association
 for the
 instance.
 """
 try:
 self.ec2_client.replace_iam_instance_profile_association(
 IamInstanceProfile={"Name": new_instance_profile_name},
 AssociationId=profile_association_id,
)
 log.info(
 "Replaced instance profile for association %s with profile %s.",
 profile_association_id,
 new_instance_profile_name,
)
 time.sleep(5)
 inst_ready = False
 tries = 0
 while not inst_ready:
 if tries % 6 == 0:
 self.ec2_client.reboot_instances(InstanceIds=[instance_id])
 log.info(
 "Rebooting instance %s and waiting for it to to be
 ready.",
 instance_id,
)
 tries += 1
 time.sleep(10)
 response = self.ssm_client.describe_instance_information()
 for info in response["InstanceInformationList"]:
 if info["InstanceId"] == instance_id:
 inst_ready = True
 self.ssm_client.send_command(
 InstanceIds=[instance_id],
 DocumentName="AWS-RunShellScript",
 Parameters={"commands": ["cd / && sudo python3 server.py 80"]},
)
 log.info("Restarted the Python web server on instance %s.",
 instance_id)
 except ClientError as err:
 raise AutoScalerError(

Scenarios 2127

AWS Identity and Access Management User Guide

 f"Couldn't replace instance profile for association
 {profile_association_id}: {err}"
)

 def delete_instance_profile(self, profile_name, role_name):
 """
 Detaches a role from an instance profile, detaches policies from the
 role,
 and deletes all the resources.

 :param profile_name: The name of the profile to delete.
 :param role_name: The name of the role to delete.
 """
 try:
 self.iam_client.remove_role_from_instance_profile(
 InstanceProfileName=profile_name, RoleName=role_name
)

 self.iam_client.delete_instance_profile(InstanceProfileName=profile_name)
 log.info("Deleted instance profile %s.", profile_name)
 attached_policies = self.iam_client.list_attached_role_policies(
 RoleName=role_name
)
 for pol in attached_policies["AttachedPolicies"]:
 self.iam_client.detach_role_policy(
 RoleName=role_name, PolicyArn=pol["PolicyArn"]
)
 if not pol["PolicyArn"].startswith("arn:aws:iam::aws"):
 self.iam_client.delete_policy(PolicyArn=pol["PolicyArn"])
 log.info("Detached and deleted policy %s.", pol["PolicyName"])
 self.iam_client.delete_role(RoleName=role_name)
 log.info("Deleted role %s.", role_name)
 except ClientError as err:
 if err.response["Error"]["Code"] == "NoSuchEntity":
 log.info(
 "Instance profile %s doesn't exist, nothing to do.",
 profile_name
)
 else:
 raise AutoScalerError(
 f"Couldn't delete instance profile {profile_name} or detach "
 f"policies and delete role {role_name}: {err}"
)

Scenarios 2128

AWS Identity and Access Management User Guide

 def create_key_pair(self, key_pair_name):
 """
 Creates a new key pair.

 :param key_pair_name: The name of the key pair to create.
 :return: The newly created key pair.
 """
 try:
 response = self.ec2_client.create_key_pair(KeyName=key_pair_name)
 with open(f"{key_pair_name}.pem", "w") as file:
 file.write(response["KeyMaterial"])
 chmod(f"{key_pair_name}.pem", 0o600)
 log.info("Created key pair %s.", key_pair_name)
 except ClientError as err:
 raise AutoScalerError(f"Couldn't create key pair {key_pair_name}:
 {err}")

 def delete_key_pair(self):
 """
 Deletes a key pair.

 :param key_pair_name: The name of the key pair to delete.
 """
 try:
 self.ec2_client.delete_key_pair(KeyName=self.key_pair_name)
 remove(f"{self.key_pair_name}.pem")
 log.info("Deleted key pair %s.", self.key_pair_name)
 except ClientError as err:
 raise AutoScalerError(
 f"Couldn't delete key pair {self.key_pair_name}: {err}"
)
 except FileNotFoundError:
 log.info("Key pair %s doesn't exist, nothing to do.",
 self.key_pair_name)
 except PermissionError:
 log.info(
 "Inadequate permissions to delete key pair %s.",
 self.key_pair_name
)
 except Exception as err:
 raise AutoScalerError(

Scenarios 2129

AWS Identity and Access Management User Guide

 f"Couldn't delete key pair {self.key_pair_name}: {err}"
)

 def create_template(self, server_startup_script_file, instance_policy_file):
 """
 Creates an Amazon EC2 launch template to use with Amazon EC2 Auto
 Scaling. The
 launch template specifies a Bash script in its user data field that runs
 after
 the instance is started. This script installs Python packages and starts
 a
 Python web server on the instance.

 :param server_startup_script_file: The path to a Bash script file that is
 run
 when an instance starts.
 :param instance_policy_file: The path to a file that defines a
 permissions policy
 to create and attach to the instance
 profile.
 :return: Information about the newly created template.
 """
 template = {}
 try:
 self.create_key_pair(self.key_pair_name)
 self.create_instance_profile(
 instance_policy_file,
 self.instance_policy_name,
 self.instance_role_name,
 self.instance_profile_name,
)
 with open(server_startup_script_file) as file:
 start_server_script = file.read()
 ami_latest = self.ssm_client.get_parameter(Name=self.ami_param)
 ami_id = ami_latest["Parameter"]["Value"]
 lt_response = self.ec2_client.create_launch_template(
 LaunchTemplateName=self.launch_template_name,
 LaunchTemplateData={
 "InstanceType": self.inst_type,
 "ImageId": ami_id,
 "IamInstanceProfile": {"Name": self.instance_profile_name},
 "UserData": base64.b64encode(
 start_server_script.encode(encoding="utf-8")

Scenarios 2130

AWS Identity and Access Management User Guide

).decode(encoding="utf-8"),
 "KeyName": self.key_pair_name,
 },
)
 template = lt_response["LaunchTemplate"]
 log.info(
 "Created launch template %s for AMI %s on %s.",
 self.launch_template_name,
 ami_id,
 self.inst_type,
)
 except ClientError as err:
 if (
 err.response["Error"]["Code"]
 == "InvalidLaunchTemplateName.AlreadyExistsException"
):
 log.info(
 "Launch template %s already exists, nothing to do.",
 self.launch_template_name,
)
 else:
 raise AutoScalerError(
 f"Couldn't create launch template
 {self.launch_template_name}: {err}."
)
 return template

 def delete_template(self):
 """
 Deletes a launch template.
 """
 try:
 self.ec2_client.delete_launch_template(
 LaunchTemplateName=self.launch_template_name
)
 self.delete_instance_profile(
 self.instance_profile_name, self.instance_role_name
)
 log.info("Launch template %s deleted.", self.launch_template_name)
 except ClientError as err:
 if (
 err.response["Error"]["Code"]
 == "InvalidLaunchTemplateName.NotFoundException"

Scenarios 2131

AWS Identity and Access Management User Guide

):
 log.info(
 "Launch template %s does not exist, nothing to do.",
 self.launch_template_name,
)
 else:
 raise AutoScalerError(
 f"Couldn't delete launch template
 {self.launch_template_name}: {err}."
)

 def get_availability_zones(self):
 """
 Gets a list of Availability Zones in the AWS Region of the Amazon EC2
 client.

 :return: The list of Availability Zones for the client Region.
 """
 try:
 response = self.ec2_client.describe_availability_zones()
 zones = [zone["ZoneName"] for zone in response["AvailabilityZones"]]
 except ClientError as err:
 raise AutoScalerError(f"Couldn't get availability zones: {err}.")
 else:
 return zones

 def create_group(self, group_size):
 """
 Creates an EC2 Auto Scaling group with the specified size.

 :param group_size: The number of instances to set for the minimum and
 maximum in
 the group.
 :return: The list of Availability Zones specified for the group.
 """
 zones = []
 try:
 zones = self.get_availability_zones()
 self.autoscaling_client.create_auto_scaling_group(
 AutoScalingGroupName=self.group_name,
 AvailabilityZones=zones,
 LaunchTemplate={

Scenarios 2132

AWS Identity and Access Management User Guide

 "LaunchTemplateName": self.launch_template_name,
 "Version": "$Default",
 },
 MinSize=group_size,
 MaxSize=group_size,
)
 log.info(
 "Created EC2 Auto Scaling group %s with availability zones %s.",
 self.launch_template_name,
 zones,
)
 except ClientError as err:
 if err.response["Error"]["Code"] == "AlreadyExists":
 log.info(
 "EC2 Auto Scaling group %s already exists, nothing to do.",
 self.group_name,
)
 else:
 raise AutoScalerError(
 f"Couldn't create EC2 Auto Scaling group {self.group_name}:
 {err}"
)
 return zones

 def get_instances(self):
 """
 Gets data about the instances in the EC2 Auto Scaling group.

 :return: Data about the instances.
 """
 try:
 as_response = self.autoscaling_client.describe_auto_scaling_groups(
 AutoScalingGroupNames=[self.group_name]
)
 instance_ids = [
 i["InstanceId"]
 for i in as_response["AutoScalingGroups"][0]["Instances"]
]
 except ClientError as err:
 raise AutoScalerError(
 f"Couldn't get instances for Auto Scaling group
 {self.group_name}: {err}"
)

Scenarios 2133

AWS Identity and Access Management User Guide

 else:
 return instance_ids

 def terminate_instance(self, instance_id):
 """
 Terminates and instances in an EC2 Auto Scaling group. After an instance
 is
 terminated, it can no longer be accessed.

 :param instance_id: The ID of the instance to terminate.
 """
 try:
 self.autoscaling_client.terminate_instance_in_auto_scaling_group(
 InstanceId=instance_id, ShouldDecrementDesiredCapacity=False
)
 log.info("Terminated instance %s.", instance_id)
 except ClientError as err:
 raise AutoScalerError(f"Couldn't terminate instance {instance_id}:
 {err}")

 def attach_load_balancer_target_group(self, lb_target_group):
 """
 Attaches an Elastic Load Balancing (ELB) target group to this EC2 Auto
 Scaling group.
 The target group specifies how the load balancer forward requests to the
 instances
 in the group.

 :param lb_target_group: Data about the ELB target group to attach.
 """
 try:
 self.autoscaling_client.attach_load_balancer_target_groups(
 AutoScalingGroupName=self.group_name,
 TargetGroupARNs=[lb_target_group["TargetGroupArn"]],
)
 log.info(
 "Attached load balancer target group %s to auto scaling group
 %s.",
 lb_target_group["TargetGroupName"],
 self.group_name,
)
 except ClientError as err:
 raise AutoScalerError(

Scenarios 2134

AWS Identity and Access Management User Guide

 f"Couldn't attach load balancer target group
 {lb_target_group['TargetGroupName']}\n"
 f"to auto scaling group {self.group_name}"
)

 def _try_terminate_instance(self, inst_id):
 stopping = False
 log.info(f"Stopping {inst_id}.")
 while not stopping:
 try:
 self.autoscaling_client.terminate_instance_in_auto_scaling_group(
 InstanceId=inst_id, ShouldDecrementDesiredCapacity=True
)
 stopping = True
 except ClientError as err:
 if err.response["Error"]["Code"] == "ScalingActivityInProgress":
 log.info("Scaling activity in progress for %s. Waiting...",
 inst_id)
 time.sleep(10)
 else:
 raise AutoScalerError(f"Couldn't stop instance {inst_id}:
 {err}.")

 def _try_delete_group(self):
 """
 Tries to delete the EC2 Auto Scaling group. If the group is in use or in
 progress,
 the function waits and retries until the group is successfully deleted.
 """
 stopped = False
 while not stopped:
 try:
 self.autoscaling_client.delete_auto_scaling_group(
 AutoScalingGroupName=self.group_name
)
 stopped = True
 log.info("Deleted EC2 Auto Scaling group %s.", self.group_name)
 except ClientError as err:
 if (
 err.response["Error"]["Code"] == "ResourceInUse"
 or err.response["Error"]["Code"] ==
 "ScalingActivityInProgress"
):

Scenarios 2135

AWS Identity and Access Management User Guide

 log.info(
 "Some instances are still running. Waiting for them to
 stop..."
)
 time.sleep(10)
 else:
 raise AutoScalerError(
 f"Couldn't delete group {self.group_name}: {err}."
)

 def delete_group(self):
 """
 Terminates all instances in the group, deletes the EC2 Auto Scaling
 group.
 """
 try:
 response = self.autoscaling_client.describe_auto_scaling_groups(
 AutoScalingGroupNames=[self.group_name]
)
 groups = response.get("AutoScalingGroups", [])
 if len(groups) > 0:
 self.autoscaling_client.update_auto_scaling_group(
 AutoScalingGroupName=self.group_name, MinSize=0
)
 instance_ids = [inst["InstanceId"] for inst in groups[0]
["Instances"]]
 for inst_id in instance_ids:
 self._try_terminate_instance(inst_id)
 self._try_delete_group()
 else:
 log.info("No groups found named %s, nothing to do.",
 self.group_name)
 except ClientError as err:
 raise AutoScalerError(f"Couldn't delete group {self.group_name}:
 {err}.")

 def get_default_vpc(self):
 """
 Gets the default VPC for the account.

 :return: Data about the default VPC.
 """
 try:

Scenarios 2136

AWS Identity and Access Management User Guide

 response = self.ec2_client.describe_vpcs(
 Filters=[{"Name": "is-default", "Values": ["true"]}]
)
 except ClientError as err:
 raise AutoScalerError(f"Couldn't get default VPC: {err}")
 else:
 return response["Vpcs"][0]

 def verify_inbound_port(self, vpc, port, ip_address):
 """
 Verify the default security group of the specified VPC allows ingress
 from this
 computer. This can be done by allowing ingress from this computer's IP
 address. In some situations, such as connecting from a corporate network,
 you
 must instead specify a prefix list ID. You can also temporarily open the
 port to
 any IP address while running this example. If you do, be sure to remove
 public
 access when you're done.

 :param vpc: The VPC used by this example.
 :param port: The port to verify.
 :param ip_address: This computer's IP address.
 :return: The default security group of the specific VPC, and a value that
 indicates
 whether the specified port is open.
 """
 try:
 response = self.ec2_client.describe_security_groups(
 Filters=[
 {"Name": "group-name", "Values": ["default"]},
 {"Name": "vpc-id", "Values": [vpc["VpcId"]]},
]
)
 sec_group = response["SecurityGroups"][0]
 port_is_open = False
 log.info("Found default security group %s.", sec_group["GroupId"])
 for ip_perm in sec_group["IpPermissions"]:
 if ip_perm.get("FromPort", 0) == port:
 log.info("Found inbound rule: %s", ip_perm)
 for ip_range in ip_perm["IpRanges"]:
 cidr = ip_range.get("CidrIp", "")

Scenarios 2137

AWS Identity and Access Management User Guide

 if cidr.startswith(ip_address) or cidr == "0.0.0.0/0":
 port_is_open = True
 if ip_perm["PrefixListIds"]:
 port_is_open = True
 if not port_is_open:
 log.info(
 "The inbound rule does not appear to be open to
 either this computer's IP\n"
 "address of %s, to all IP addresses (0.0.0.0/0), or
 to a prefix list ID.",
 ip_address,
)
 else:
 break
 except ClientError as err:
 raise AutoScalerError(
 f"Couldn't verify inbound rule for port {port} for VPC
 {vpc['VpcId']}: {err}"
)
 else:
 return sec_group, port_is_open

 def open_inbound_port(self, sec_group_id, port, ip_address):
 """
 Add an ingress rule to the specified security group that allows access on
 the
 specified port from the specified IP address.

 :param sec_group_id: The ID of the security group to modify.
 :param port: The port to open.
 :param ip_address: The IP address that is granted access.
 """
 try:
 self.ec2_client.authorize_security_group_ingress(
 GroupId=sec_group_id,
 CidrIp=f"{ip_address}/32",
 FromPort=port,
 ToPort=port,
 IpProtocol="tcp",
)
 log.info(
 "Authorized ingress to %s on port %s from %s.",
 sec_group_id,

Scenarios 2138

AWS Identity and Access Management User Guide

 port,
 ip_address,
)
 except ClientError as err:
 raise AutoScalerError(
 f"Couldn't authorize ingress to {sec_group_id} on port {port}
 from {ip_address}: {err}"
)

 def get_subnets(self, vpc_id, zones):
 """
 Gets the default subnets in a VPC for a specified list of Availability
 Zones.

 :param vpc_id: The ID of the VPC to look up.
 :param zones: The list of Availability Zones to look up.
 :return: The list of subnets found.
 """
 try:
 response = self.ec2_client.describe_subnets(
 Filters=[
 {"Name": "vpc-id", "Values": [vpc_id]},
 {"Name": "availability-zone", "Values": zones},
 {"Name": "default-for-az", "Values": ["true"]},
]
)
 subnets = response["Subnets"]
 log.info("Found %s subnets for the specified zones.", len(subnets))
 except ClientError as err:
 raise AutoScalerError(f"Couldn't get subnets: {err}")
 else:
 return subnets

Create a class that wraps Elastic Load Balancing actions.

class LoadBalancer:
 """Encapsulates Elastic Load Balancing (ELB) actions."""

Scenarios 2139

AWS Identity and Access Management User Guide

 def __init__(self, target_group_name, load_balancer_name, elb_client):
 """
 :param target_group_name: The name of the target group associated with
 the load balancer.
 :param load_balancer_name: The name of the load balancer.
 :param elb_client: A Boto3 Elastic Load Balancing client.
 """
 self.target_group_name = target_group_name
 self.load_balancer_name = load_balancer_name
 self.elb_client = elb_client
 self._endpoint = None

 @classmethod
 def from_client(cls, resource_prefix):
 """
 Creates this class from a Boto3 client.

 :param resource_prefix: The prefix to give to AWS resources created by
 this class.
 """
 elb_client = boto3.client("elbv2")
 return cls(f"{resource_prefix}-tg", f"{resource_prefix}-lb", elb_client)

 def endpoint(self):
 """
 Gets the HTTP endpoint of the load balancer.

 :return: The endpoint.
 """
 if self._endpoint is None:
 try:
 response = self.elb_client.describe_load_balancers(
 Names=[self.load_balancer_name]
)
 self._endpoint = response["LoadBalancers"][0]["DNSName"]
 except ClientError as err:
 raise LoadBalancerError(
 f"Couldn't get the endpoint for load balancer
 {self.load_balancer_name}: {err}"
)
 return self._endpoint

Scenarios 2140

AWS Identity and Access Management User Guide

 def create_target_group(self, protocol, port, vpc_id):
 """
 Creates an Elastic Load Balancing target group. The target group
 specifies how
 the load balancer forward requests to instances in the group and how
 instance
 health is checked.

 To speed up this demo, the health check is configured with shortened
 times and
 lower thresholds. In production, you might want to decrease the
 sensitivity of
 your health checks to avoid unwanted failures.

 :param protocol: The protocol to use to forward requests, such as 'HTTP'.
 :param port: The port to use to forward requests, such as 80.
 :param vpc_id: The ID of the VPC in which the load balancer exists.
 :return: Data about the newly created target group.
 """
 try:
 response = self.elb_client.create_target_group(
 Name=self.target_group_name,
 Protocol=protocol,
 Port=port,
 HealthCheckPath="/healthcheck",
 HealthCheckIntervalSeconds=10,
 HealthCheckTimeoutSeconds=5,
 HealthyThresholdCount=2,
 UnhealthyThresholdCount=2,
 VpcId=vpc_id,
)
 target_group = response["TargetGroups"][0]
 log.info("Created load balancing target group %s.",
 self.target_group_name)
 except ClientError as err:
 raise LoadBalancerError(
 f"Couldn't create load balancing target group
 {self.target_group_name}: {err}"
)
 else:
 return target_group

 def delete_target_group(self):

Scenarios 2141

AWS Identity and Access Management User Guide

 """
 Deletes the target group.
 """
 done = False
 while not done:
 try:
 response = self.elb_client.describe_target_groups(
 Names=[self.target_group_name]
)
 tg_arn = response["TargetGroups"][0]["TargetGroupArn"]
 self.elb_client.delete_target_group(TargetGroupArn=tg_arn)
 log.info(
 "Deleted load balancing target group %s.",
 self.target_group_name
)
 done = True
 except ClientError as err:
 if err.response["Error"]["Code"] == "TargetGroupNotFound":
 log.info(
 "Load balancer target group %s not found, nothing to
 do.",
 self.target_group_name,
)
 done = True
 elif err.response["Error"]["Code"] == "ResourceInUse":
 log.info(
 "Target group not yet released from load balancer,
 waiting..."
)
 time.sleep(10)
 else:
 raise LoadBalancerError(
 f"Couldn't delete load balancing target group
 {self.target_group_name}: {err}"
)

 def create_load_balancer(self, subnet_ids, target_group):
 """
 Creates an Elastic Load Balancing load balancer that uses the specified
 subnets
 and forwards requests to the specified target group.

 :param subnet_ids: A list of subnets to associate with the load balancer.

Scenarios 2142

AWS Identity and Access Management User Guide

 :param target_group: An existing target group that is added as a listener
 to the
 load balancer.
 :return: Data about the newly created load balancer.
 """
 try:
 response = self.elb_client.create_load_balancer(
 Name=self.load_balancer_name, Subnets=subnet_ids
)
 load_balancer = response["LoadBalancers"][0]
 log.info("Created load balancer %s.", self.load_balancer_name)
 waiter = self.elb_client.get_waiter("load_balancer_available")
 log.info("Waiting for load balancer to be available...")
 waiter.wait(Names=[self.load_balancer_name])
 log.info("Load balancer is available!")
 self.elb_client.create_listener(
 LoadBalancerArn=load_balancer["LoadBalancerArn"],
 Protocol=target_group["Protocol"],
 Port=target_group["Port"],
 DefaultActions=[
 {
 "Type": "forward",
 "TargetGroupArn": target_group["TargetGroupArn"],
 }
],
)
 log.info(
 "Created listener to forward traffic from load balancer %s to
 target group %s.",
 self.load_balancer_name,
 target_group["TargetGroupName"],
)
 except ClientError as err:
 raise LoadBalancerError(
 f"Failed to create load balancer {self.load_balancer_name}"
 f"and add a listener for target group
 {target_group['TargetGroupName']}: {err}"
)
 else:
 self._endpoint = load_balancer["DNSName"]
 return load_balancer

 def delete_load_balancer(self):

Scenarios 2143

AWS Identity and Access Management User Guide

 """
 Deletes a load balancer.
 """
 try:
 response = self.elb_client.describe_load_balancers(
 Names=[self.load_balancer_name]
)
 lb_arn = response["LoadBalancers"][0]["LoadBalancerArn"]
 self.elb_client.delete_load_balancer(LoadBalancerArn=lb_arn)
 log.info("Deleted load balancer %s.", self.load_balancer_name)
 waiter = self.elb_client.get_waiter("load_balancers_deleted")
 log.info("Waiting for load balancer to be deleted...")
 waiter.wait(Names=[self.load_balancer_name])
 except ClientError as err:
 if err.response["Error"]["Code"] == "LoadBalancerNotFound":
 log.info(
 "Load balancer %s does not exist, nothing to do.",
 self.load_balancer_name,
)
 else:
 raise LoadBalancerError(
 f"Couldn't delete load balancer {self.load_balancer_name}:
 {err}"
)

 def verify_load_balancer_endpoint(self):
 """
 Verify this computer can successfully send a GET request to the load
 balancer endpoint.
 """
 success = False
 retries = 3
 while not success and retries > 0:
 try:
 lb_response = requests.get(f"http://{self.endpoint()}")
 log.info(
 "Got response %s from load balancer endpoint.",
 lb_response.status_code,
)
 if lb_response.status_code == 200:
 success = True
 else:
 retries = 0

Scenarios 2144

AWS Identity and Access Management User Guide

 except requests.exceptions.ConnectionError:
 log.info(
 "Got connection error from load balancer endpoint,
 retrying..."
)
 retries -= 1
 time.sleep(10)
 return success

 def check_target_health(self):
 """
 Checks the health of the instances in the target group.

 :return: The health status of the target group.
 """
 try:
 tg_response = self.elb_client.describe_target_groups(
 Names=[self.target_group_name]
)
 health_response = self.elb_client.describe_target_health(
 TargetGroupArn=tg_response["TargetGroups"][0]["TargetGroupArn"]
)
 except ClientError as err:
 raise LoadBalancerError(
 f"Couldn't check health of {self.target_group_name} targets:
 {err}"
)
 else:
 return health_response["TargetHealthDescriptions"]

Create a class that uses DynamoDB to simulate a recommendation service.

class RecommendationService:
 """
 Encapsulates a DynamoDB table to use as a service that recommends books,
 movies,
 and songs.
 """

Scenarios 2145

AWS Identity and Access Management User Guide

 def __init__(self, table_name, dynamodb_client):
 """
 :param table_name: The name of the DynamoDB recommendations table.
 :param dynamodb_client: A Boto3 DynamoDB client.
 """
 self.table_name = table_name
 self.dynamodb_client = dynamodb_client

 @classmethod
 def from_client(cls, table_name):
 """
 Creates this class from a Boto3 client.

 :param table_name: The name of the DynamoDB recommendations table.
 """
 ddb_client = boto3.client("dynamodb")
 return cls(table_name, ddb_client)

 def create(self):
 """
 Creates a DynamoDB table to use a recommendation service. The table has a
 hash key named 'MediaType' that defines the type of media recommended,
 such as
 Book or Movie, and a range key named 'ItemId' that, combined with the
 MediaType,
 forms a unique identifier for the recommended item.

 :return: Data about the newly created table.
 """
 try:
 response = self.dynamodb_client.create_table(
 TableName=self.table_name,
 AttributeDefinitions=[
 {"AttributeName": "MediaType", "AttributeType": "S"},
 {"AttributeName": "ItemId", "AttributeType": "N"},
],
 KeySchema=[
 {"AttributeName": "MediaType", "KeyType": "HASH"},
 {"AttributeName": "ItemId", "KeyType": "RANGE"},
],
 ProvisionedThroughput={"ReadCapacityUnits": 5,
 "WriteCapacityUnits": 5},
)
 log.info("Creating table %s...", self.table_name)

Scenarios 2146

AWS Identity and Access Management User Guide

 waiter = self.dynamodb_client.get_waiter("table_exists")
 waiter.wait(TableName=self.table_name)
 log.info("Table %s created.", self.table_name)
 except ClientError as err:
 if err.response["Error"]["Code"] == "ResourceInUseException":
 log.info("Table %s exists, nothing to be do.", self.table_name)
 else:
 raise RecommendationServiceError(
 self.table_name, f"ClientError when creating table: {err}."
)
 else:
 return response

 def populate(self, data_file):
 """
 Populates the recommendations table from a JSON file.

 :param data_file: The path to the data file.
 """
 try:
 with open(data_file) as data:
 items = json.load(data)
 batch = [{"PutRequest": {"Item": item}} for item in items]
 self.dynamodb_client.batch_write_item(RequestItems={self.table_name:
 batch})
 log.info(
 "Populated table %s with items from %s.", self.table_name,
 data_file
)
 except ClientError as err:
 raise RecommendationServiceError(
 self.table_name, f"Couldn't populate table from {data_file}:
 {err}"
)

 def destroy(self):
 """
 Deletes the recommendations table.
 """
 try:
 self.dynamodb_client.delete_table(TableName=self.table_name)
 log.info("Deleting table %s...", self.table_name)
 waiter = self.dynamodb_client.get_waiter("table_not_exists")
 waiter.wait(TableName=self.table_name)

Scenarios 2147

AWS Identity and Access Management User Guide

 log.info("Table %s deleted.", self.table_name)
 except ClientError as err:
 if err.response["Error"]["Code"] == "ResourceNotFoundException":
 log.info("Table %s does not exist, nothing to do.",
 self.table_name)
 else:
 raise RecommendationServiceError(
 self.table_name, f"ClientError when deleting table: {err}."
)

Create a class that wraps Systems Manager actions.

class ParameterHelper:
 """
 Encapsulates Systems Manager parameters. This example uses these parameters
 to drive
 the demonstration of resilient architecture, such as failure of a dependency
 or
 how the service responds to a health check.
 """

 table = "doc-example-resilient-architecture-table"
 failure_response = "doc-example-resilient-architecture-failure-response"
 health_check = "doc-example-resilient-architecture-health-check"

 def __init__(self, table_name, ssm_client):
 """
 :param table_name: The name of the DynamoDB table that is used as a
 recommendation
 service.
 :param ssm_client: A Boto3 Systems Manager client.
 """
 self.ssm_client = ssm_client
 self.table_name = table_name

 @classmethod
 def from_client(cls, table_name):
 ssm_client = boto3.client("ssm")
 return cls(table_name, ssm_client)

Scenarios 2148

AWS Identity and Access Management User Guide

 def reset(self):
 """
 Resets the Systems Manager parameters to starting values for the demo.
 These are the name of the DynamoDB recommendation table, no response when
 a
 dependency fails, and shallow health checks.
 """
 self.put(self.table, self.table_name)
 self.put(self.failure_response, "none")
 self.put(self.health_check, "shallow")

 def put(self, name, value):
 """
 Sets the value of a named Systems Manager parameter.

 :param name: The name of the parameter.
 :param value: The new value of the parameter.
 """
 try:
 self.ssm_client.put_parameter(
 Name=name, Value=value, Overwrite=True, Type="String"
)
 log.info("Setting demo parameter %s to '%s'.", name, value)
 except ClientError as err:
 raise ParameterHelperError(
 f"Couldn't set parameter {name} to {value}: {err}"
)

• For API details, see the following topics in AWS SDK for Python (Boto3) API Reference.

• AttachLoadBalancerTargetGroups

• CreateAutoScalingGroup

• CreateInstanceProfile

• CreateLaunchTemplate

• CreateListener

• CreateLoadBalancer

• CreateTargetGroup

• DeleteAutoScalingGroup
Scenarios 2149

https://docs.aws.amazon.com/goto/boto3/autoscaling-2011-01-01/AttachLoadBalancerTargetGroups
https://docs.aws.amazon.com/goto/boto3/autoscaling-2011-01-01/CreateAutoScalingGroup
https://docs.aws.amazon.com/goto/boto3/iam-2010-05-08/CreateInstanceProfile
https://docs.aws.amazon.com/goto/boto3/ec2-2016-11-15/CreateLaunchTemplate
https://docs.aws.amazon.com/goto/boto3/elasticloadbalancingv2-2015-12-01/CreateListener
https://docs.aws.amazon.com/goto/boto3/elasticloadbalancingv2-2015-12-01/CreateLoadBalancer
https://docs.aws.amazon.com/goto/boto3/elasticloadbalancingv2-2015-12-01/CreateTargetGroup
https://docs.aws.amazon.com/goto/boto3/autoscaling-2011-01-01/DeleteAutoScalingGroup

AWS Identity and Access Management User Guide

• DeleteInstanceProfile

• DeleteLaunchTemplate

• DeleteLoadBalancer

• DeleteTargetGroup

• DescribeAutoScalingGroups

• DescribeAvailabilityZones

• DescribeIamInstanceProfileAssociations

• DescribeInstances

• DescribeLoadBalancers

• DescribeSubnets

• DescribeTargetGroups

• DescribeTargetHealth

• DescribeVpcs

• RebootInstances

• ReplaceIamInstanceProfileAssociation

• TerminateInstanceInAutoScalingGroup

• UpdateAutoScalingGroup

For a complete list of AWS SDK developer guides and code examples, see Using IAM with an AWS
SDK. This topic also includes information about getting started and details about previous SDK
versions.

Create an IAM group and add a user to the group using an AWS SDK

The following code example shows how to:

• Create a group and grant full Amazon S3 access permissions to it.

• Create a new user with no permissions to access Amazon S3.

• Add the user to the group and show that they now have permissions for Amazon S3, then clean
up resources.

Scenarios 2150

https://docs.aws.amazon.com/goto/boto3/iam-2010-05-08/DeleteInstanceProfile
https://docs.aws.amazon.com/goto/boto3/ec2-2016-11-15/DeleteLaunchTemplate
https://docs.aws.amazon.com/goto/boto3/elasticloadbalancingv2-2015-12-01/DeleteLoadBalancer
https://docs.aws.amazon.com/goto/boto3/elasticloadbalancingv2-2015-12-01/DeleteTargetGroup
https://docs.aws.amazon.com/goto/boto3/autoscaling-2011-01-01/DescribeAutoScalingGroups
https://docs.aws.amazon.com/goto/boto3/ec2-2016-11-15/DescribeAvailabilityZones
https://docs.aws.amazon.com/goto/boto3/ec2-2016-11-15/DescribeIamInstanceProfileAssociations
https://docs.aws.amazon.com/goto/boto3/ec2-2016-11-15/DescribeInstances
https://docs.aws.amazon.com/goto/boto3/elasticloadbalancingv2-2015-12-01/DescribeLoadBalancers
https://docs.aws.amazon.com/goto/boto3/ec2-2016-11-15/DescribeSubnets
https://docs.aws.amazon.com/goto/boto3/elasticloadbalancingv2-2015-12-01/DescribeTargetGroups
https://docs.aws.amazon.com/goto/boto3/elasticloadbalancingv2-2015-12-01/DescribeTargetHealth
https://docs.aws.amazon.com/goto/boto3/ec2-2016-11-15/DescribeVpcs
https://docs.aws.amazon.com/goto/boto3/ec2-2016-11-15/RebootInstances
https://docs.aws.amazon.com/goto/boto3/ec2-2016-11-15/ReplaceIamInstanceProfileAssociation
https://docs.aws.amazon.com/goto/boto3/autoscaling-2011-01-01/TerminateInstanceInAutoScalingGroup
https://docs.aws.amazon.com/goto/boto3/autoscaling-2011-01-01/UpdateAutoScalingGroup

AWS Identity and Access Management User Guide

.NET

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

global using Amazon.IdentityManagement;
global using Amazon.S3;
global using Amazon.SecurityToken;
global using IAMActions;
global using IamScenariosCommon;
global using Microsoft.Extensions.DependencyInjection;
global using Microsoft.Extensions.Hosting;
global using Microsoft.Extensions.Logging;
global using Microsoft.Extensions.Logging.Console;
global using Microsoft.Extensions.Logging.Debug;

namespace IAMActions;

public class IAMWrapper
{
 private readonly IAmazonIdentityManagementService _IAMService;

 /// <summary>
 /// Constructor for the IAMWrapper class.
 /// </summary>
 /// <param name="IAMService">An IAM client object.</param>
 public IAMWrapper(IAmazonIdentityManagementService IAMService)
 {
 _IAMService = IAMService;
 }

 /// <summary>
 /// Add an existing IAM user to an existing IAM group.
 /// </summary>
 /// <param name="userName">The username of the user to add.</param>
 /// <param name="groupName">The name of the group to add the user to.</param>

Scenarios 2151

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/IAM#code-examples

AWS Identity and Access Management User Guide

 /// <returns>A Boolean value indicating the success of the action.</returns>
 public async Task<bool> AddUserToGroupAsync(string userName, string
 groupName)
 {
 var response = await _IAMService.AddUserToGroupAsync(new
 AddUserToGroupRequest
 {
 GroupName = groupName,
 UserName = userName,
 });

 return response.HttpStatusCode == HttpStatusCode.OK;
 }

 /// <summary>
 /// Attach an IAM policy to a role.
 /// </summary>
 /// <param name="policyArn">The policy to attach.</param>
 /// <param name="roleName">The role that the policy will be attached to.</
param>
 /// <returns>A Boolean value indicating the success of the action.</returns>
 public async Task<bool> AttachRolePolicyAsync(string policyArn, string
 roleName)
 {
 var response = await _IAMService.AttachRolePolicyAsync(new
 AttachRolePolicyRequest
 {
 PolicyArn = policyArn,
 RoleName = roleName,
 });

 return response.HttpStatusCode == System.Net.HttpStatusCode.OK;
 }

 /// <summary>
 /// Create an IAM access key for a user.
 /// </summary>
 /// <param name="userName">The username for which to create the IAM access
 /// key.</param>
 /// <returns>The AccessKey.</returns>
 public async Task<AccessKey> CreateAccessKeyAsync(string userName)
 {

Scenarios 2152

AWS Identity and Access Management User Guide

 var response = await _IAMService.CreateAccessKeyAsync(new
 CreateAccessKeyRequest
 {
 UserName = userName,
 });

 return response.AccessKey;

 }

 /// <summary>
 /// Create an IAM group.
 /// </summary>
 /// <param name="groupName">The name to give the IAM group.</param>
 /// <returns>The IAM group that was created.</returns>
 public async Task<Group> CreateGroupAsync(string groupName)
 {
 var response = await _IAMService.CreateGroupAsync(new CreateGroupRequest
 { GroupName = groupName });
 return response.Group;
 }

 /// <summary>
 /// Create an IAM policy.
 /// </summary>
 /// <param name="policyName">The name to give the new IAM policy.</param>
 /// <param name="policyDocument">The policy document for the new policy.</
param>
 /// <returns>The new IAM policy object.</returns>
 public async Task<ManagedPolicy> CreatePolicyAsync(string policyName, string
 policyDocument)
 {
 var response = await _IAMService.CreatePolicyAsync(new
 CreatePolicyRequest
 {
 PolicyDocument = policyDocument,
 PolicyName = policyName,
 });

 return response.Policy;
 }

Scenarios 2153

AWS Identity and Access Management User Guide

 /// <summary>
 /// Create a new IAM role.
 /// </summary>
 /// <param name="roleName">The name of the IAM role.</param>
 /// <param name="rolePolicyDocument">The name of the IAM policy document
 /// for the new role.</param>
 /// <returns>The Amazon Resource Name (ARN) of the role.</returns>
 public async Task<string> CreateRoleAsync(string roleName, string
 rolePolicyDocument)
 {
 var request = new CreateRoleRequest
 {
 RoleName = roleName,
 AssumeRolePolicyDocument = rolePolicyDocument,
 };

 var response = await _IAMService.CreateRoleAsync(request);
 return response.Role.Arn;
 }

 /// <summary>
 /// Create an IAM service-linked role.
 /// </summary>
 /// <param name="serviceName">The name of the AWS Service.</param>
 /// <param name="description">A description of the IAM service-linked role.</
param>
 /// <returns>The IAM role that was created.</returns>
 public async Task<Role> CreateServiceLinkedRoleAsync(string serviceName,
 string description)
 {
 var request = new CreateServiceLinkedRoleRequest
 {
 AWSServiceName = serviceName,
 Description = description
 };

 var response = await _IAMService.CreateServiceLinkedRoleAsync(request);
 return response.Role;
 }

 /// <summary>

Scenarios 2154

AWS Identity and Access Management User Guide

 /// Create an IAM user.
 /// </summary>
 /// <param name="userName">The username for the new IAM user.</param>
 /// <returns>The IAM user that was created.</returns>
 public async Task<User> CreateUserAsync(string userName)
 {
 var response = await _IAMService.CreateUserAsync(new CreateUserRequest
 { UserName = userName });
 return response.User;
 }

 /// <summary>
 /// Delete an IAM user's access key.
 /// </summary>
 /// <param name="accessKeyId">The Id for the IAM access key.</param>
 /// <param name="userName">The username of the user that owns the IAM
 /// access key.</param>
 /// <returns>A Boolean value indicating the success of the action.</returns>
 public async Task<bool> DeleteAccessKeyAsync(string accessKeyId, string
 userName)
 {
 var response = await _IAMService.DeleteAccessKeyAsync(new
 DeleteAccessKeyRequest
 {
 AccessKeyId = accessKeyId,
 UserName = userName,
 });

 return response.HttpStatusCode == System.Net.HttpStatusCode.OK;
 }

 /// <summary>
 /// Delete an IAM group.
 /// </summary>
 /// <param name="groupName">The name of the IAM group to delete.</param>
 /// <returns>A Boolean value indicating the success of the action.</returns>
 public async Task<bool> DeleteGroupAsync(string groupName)
 {
 var response = await _IAMService.DeleteGroupAsync(new DeleteGroupRequest
 { GroupName = groupName });
 return response.HttpStatusCode == HttpStatusCode.OK;
 }

Scenarios 2155

AWS Identity and Access Management User Guide

 /// <summary>
 /// Delete an IAM policy associated with an IAM group.
 /// </summary>
 /// <param name="groupName">The name of the IAM group associated with the
 /// policy.</param>
 /// <param name="policyName">The name of the policy to delete.</param>
 /// <returns>A Boolean value indicating the success of the action.</returns>
 public async Task<bool> DeleteGroupPolicyAsync(string groupName, string
 policyName)
 {
 var request = new DeleteGroupPolicyRequest()
 {
 GroupName = groupName,
 PolicyName = policyName,
 };

 var response = await _IAMService.DeleteGroupPolicyAsync(request);
 return response.HttpStatusCode == System.Net.HttpStatusCode.OK;
 }

 /// <summary>
 /// Delete an IAM policy.
 /// </summary>
 /// <param name="policyArn">The Amazon Resource Name (ARN) of the policy to
 /// delete.</param>
 /// <returns>A Boolean value indicating the success of the action.</returns>
 public async Task<bool> DeletePolicyAsync(string policyArn)
 {
 var response = await _IAMService.DeletePolicyAsync(new
 DeletePolicyRequest { PolicyArn = policyArn });
 return response.HttpStatusCode == System.Net.HttpStatusCode.OK;
 }

 /// <summary>
 /// Delete an IAM role.
 /// </summary>
 /// <param name="roleName">The name of the IAM role to delete.</param>
 /// <returns>A Boolean value indicating the success of the action.</returns>
 public async Task<bool> DeleteRoleAsync(string roleName)
 {

Scenarios 2156

AWS Identity and Access Management User Guide

 var response = await _IAMService.DeleteRoleAsync(new DeleteRoleRequest
 { RoleName = roleName });
 return response.HttpStatusCode == System.Net.HttpStatusCode.OK;
 }

 /// <summary>
 /// Delete an IAM role policy.
 /// </summary>
 /// <param name="roleName">The name of the IAM role.</param>
 /// <param name="policyName">The name of the IAM role policy to delete.</
param>
 /// <returns>A Boolean value indicating the success of the action.</returns>
 public async Task<bool> DeleteRolePolicyAsync(string roleName, string
 policyName)
 {
 var response = await _IAMService.DeleteRolePolicyAsync(new
 DeleteRolePolicyRequest
 {
 PolicyName = policyName,
 RoleName = roleName,
 });

 return response.HttpStatusCode == System.Net.HttpStatusCode.OK;
 }

 /// <summary>
 /// Delete an IAM user.
 /// </summary>
 /// <param name="userName">The username of the IAM user to delete.</param>
 /// <returns>A Boolean value indicating the success of the action.</returns>
 public async Task<bool> DeleteUserAsync(string userName)
 {
 var response = await _IAMService.DeleteUserAsync(new DeleteUserRequest
 { UserName = userName });

 return response.HttpStatusCode == System.Net.HttpStatusCode.OK;
 }

 /// <summary>
 /// Delete an IAM user policy.
 /// </summary>

Scenarios 2157

AWS Identity and Access Management User Guide

 /// <param name="policyName">The name of the IAM policy to delete.</param>
 /// <param name="userName">The username of the IAM user.</param>
 /// <returns>A Boolean value indicating the success of the action.</returns>
 public async Task<bool> DeleteUserPolicyAsync(string policyName, string
 userName)
 {
 var response = await _IAMService.DeleteUserPolicyAsync(new
 DeleteUserPolicyRequest { PolicyName = policyName, UserName = userName });

 return response.HttpStatusCode == System.Net.HttpStatusCode.OK;
 }

 /// <summary>
 /// Detach an IAM policy from an IAM role.
 /// </summary>
 /// <param name="policyArn">The Amazon Resource Name (ARN) of the IAM
 policy.</param>
 /// <param name="roleName">The name of the IAM role.</param>
 /// <returns>A Boolean value indicating the success of the action.</returns>
 public async Task<bool> DetachRolePolicyAsync(string policyArn, string
 roleName)
 {
 var response = await _IAMService.DetachRolePolicyAsync(new
 DetachRolePolicyRequest
 {
 PolicyArn = policyArn,
 RoleName = roleName,
 });

 return response.HttpStatusCode == System.Net.HttpStatusCode.OK;
 }

 /// <summary>
 /// Gets the IAM password policy for an AWS account.
 /// </summary>
 /// <returns>The PasswordPolicy for the AWS account.</returns>
 public async Task<PasswordPolicy> GetAccountPasswordPolicyAsync()
 {
 var response = await _IAMService.GetAccountPasswordPolicyAsync(new
 GetAccountPasswordPolicyRequest());
 return response.PasswordPolicy;
 }

Scenarios 2158

AWS Identity and Access Management User Guide

 /// <summary>
 /// Get information about an IAM policy.
 /// </summary>
 /// <param name="policyArn">The IAM policy to retrieve information for.</
param>
 /// <returns>The IAM policy.</returns>
 public async Task<ManagedPolicy> GetPolicyAsync(string policyArn)
 {

 var response = await _IAMService.GetPolicyAsync(new GetPolicyRequest
 { PolicyArn = policyArn });
 return response.Policy;
 }

 /// <summary>
 /// Get information about an IAM role.
 /// </summary>
 /// <param name="roleName">The name of the IAM role to retrieve information
 /// for.</param>
 /// <returns>The IAM role that was retrieved.</returns>
 public async Task<Role> GetRoleAsync(string roleName)
 {
 var response = await _IAMService.GetRoleAsync(new GetRoleRequest
 {
 RoleName = roleName,
 });

 return response.Role;
 }

 /// <summary>
 /// Get information about an IAM user.
 /// </summary>
 /// <param name="userName">The username of the user.</param>
 /// <returns>An IAM user object.</returns>
 public async Task<User> GetUserAsync(string userName)
 {
 var response = await _IAMService.GetUserAsync(new GetUserRequest
 { UserName = userName });
 return response.User;

Scenarios 2159

AWS Identity and Access Management User Guide

 }

 /// <summary>
 /// List the IAM role policies that are attached to an IAM role.
 /// </summary>
 /// <param name="roleName">The IAM role to list IAM policies for.</param>
 /// <returns>A list of the IAM policies attached to the IAM role.</returns>
 public async Task<List<AttachedPolicyType>>
 ListAttachedRolePoliciesAsync(string roleName)
 {
 var attachedPolicies = new List<AttachedPolicyType>();
 var attachedRolePoliciesPaginator =
 _IAMService.Paginators.ListAttachedRolePolicies(new
 ListAttachedRolePoliciesRequest { RoleName = roleName });

 await foreach (var response in attachedRolePoliciesPaginator.Responses)
 {
 attachedPolicies.AddRange(response.AttachedPolicies);
 }

 return attachedPolicies;
 }

 /// <summary>
 /// List IAM groups.
 /// </summary>
 /// <returns>A list of IAM groups.</returns>
 public async Task<List<Group>> ListGroupsAsync()
 {
 var groupsPaginator = _IAMService.Paginators.ListGroups(new
 ListGroupsRequest());
 var groups = new List<Group>();

 await foreach (var response in groupsPaginator.Responses)
 {
 groups.AddRange(response.Groups);
 }

 return groups;
 }

Scenarios 2160

AWS Identity and Access Management User Guide

 /// <summary>
 /// List IAM policies.
 /// </summary>
 /// <returns>A list of the IAM policies.</returns>
 public async Task<List<ManagedPolicy>> ListPoliciesAsync()
 {
 var listPoliciesPaginator = _IAMService.Paginators.ListPolicies(new
 ListPoliciesRequest());
 var policies = new List<ManagedPolicy>();

 await foreach (var response in listPoliciesPaginator.Responses)
 {
 policies.AddRange(response.Policies);
 }

 return policies;
 }

 /// <summary>
 /// List IAM role policies.
 /// </summary>
 /// <param name="roleName">The IAM role for which to list IAM policies.</
param>
 /// <returns>A list of IAM policy names.</returns>
 public async Task<List<string>> ListRolePoliciesAsync(string roleName)
 {
 var listRolePoliciesPaginator =
 _IAMService.Paginators.ListRolePolicies(new ListRolePoliciesRequest { RoleName =
 roleName });
 var policyNames = new List<string>();

 await foreach (var response in listRolePoliciesPaginator.Responses)
 {
 policyNames.AddRange(response.PolicyNames);
 }

 return policyNames;
 }

 /// <summary>
 /// List IAM roles.
 /// </summary>

Scenarios 2161

AWS Identity and Access Management User Guide

 /// <returns>A list of IAM roles.</returns>
 public async Task<List<Role>> ListRolesAsync()
 {
 var listRolesPaginator = _IAMService.Paginators.ListRoles(new
 ListRolesRequest());
 var roles = new List<Role>();

 await foreach (var response in listRolesPaginator.Responses)
 {
 roles.AddRange(response.Roles);
 }

 return roles;
 }

 /// <summary>
 /// List SAML authentication providers.
 /// </summary>
 /// <returns>A list of SAML providers.</returns>
 public async Task<List<SAMLProviderListEntry>> ListSAMLProvidersAsync()
 {
 var response = await _IAMService.ListSAMLProvidersAsync(new
 ListSAMLProvidersRequest());
 return response.SAMLProviderList;
 }

 /// <summary>
 /// List IAM users.
 /// </summary>
 /// <returns>A list of IAM users.</returns>
 public async Task<List<User>> ListUsersAsync()
 {
 var listUsersPaginator = _IAMService.Paginators.ListUsers(new
 ListUsersRequest());
 var users = new List<User>();

 await foreach (var response in listUsersPaginator.Responses)
 {
 users.AddRange(response.Users);
 }

 return users;

Scenarios 2162

AWS Identity and Access Management User Guide

 }

 /// <summary>
 /// Remove a user from an IAM group.
 /// </summary>
 /// <param name="userName">The username of the user to remove.</param>
 /// <param name="groupName">The name of the IAM group to remove the user
 from.</param>
 /// <returns>A Boolean value indicating the success of the action.</returns>
 public async Task<bool> RemoveUserFromGroupAsync(string userName, string
 groupName)
 {
 // Remove the user from the group.
 var removeUserRequest = new RemoveUserFromGroupRequest()
 {
 UserName = userName,
 GroupName = groupName,
 };

 var response = await
 _IAMService.RemoveUserFromGroupAsync(removeUserRequest);
 return response.HttpStatusCode == HttpStatusCode.OK;
 }

 /// <summary>
 /// Add or update an inline policy document that is embedded in an IAM group.
 /// </summary>
 /// <param name="groupName">The name of the IAM group.</param>
 /// <param name="policyName">The name of the IAM policy.</param>
 /// <param name="policyDocument">The policy document defining the IAM
 policy.</param>
 /// <returns>A Boolean value indicating the success of the action.</returns>
 public async Task<bool> PutGroupPolicyAsync(string groupName, string
 policyName, string policyDocument)
 {
 var request = new PutGroupPolicyRequest
 {
 GroupName = groupName,
 PolicyName = policyName,
 PolicyDocument = policyDocument
 };

Scenarios 2163

AWS Identity and Access Management User Guide

 var response = await _IAMService.PutGroupPolicyAsync(request);
 return response.HttpStatusCode == System.Net.HttpStatusCode.OK;
 }

 /// <summary>
 /// Update the inline policy document embedded in a role.
 /// </summary>
 /// <param name="policyName">The name of the policy to embed.</param>
 /// <param name="roleName">The name of the role to update.</param>
 /// <param name="policyDocument">The policy document that defines the role.</
param>
 /// <returns>A Boolean value indicating the success of the action.</returns>
 public async Task<bool> PutRolePolicyAsync(string policyName, string
 roleName, string policyDocument)
 {
 var request = new PutRolePolicyRequest
 {
 PolicyName = policyName,
 RoleName = roleName,
 PolicyDocument = policyDocument
 };

 var response = await _IAMService.PutRolePolicyAsync(request);
 return response.HttpStatusCode == HttpStatusCode.OK;
 }

 /// <summary>
 /// Add or update an inline policy document that is embedded in an IAM user.
 /// </summary>
 /// <param name="userName">The name of the IAM user.</param>
 /// <param name="policyName">The name of the IAM policy.</param>
 /// <param name="policyDocument">The policy document defining the IAM
 policy.</param>
 /// <returns>A Boolean value indicating the success of the action.</returns>
 public async Task<bool> PutUserPolicyAsync(string userName, string
 policyName, string policyDocument)
 {
 var request = new PutUserPolicyRequest
 {
 UserName = userName,
 PolicyName = policyName,
 PolicyDocument = policyDocument

Scenarios 2164

AWS Identity and Access Management User Guide

 };

 var response = await _IAMService.PutUserPolicyAsync(request);
 return response.HttpStatusCode == System.Net.HttpStatusCode.OK;
 }

 /// <summary>
 /// Wait for a new access key to be ready to use.
 /// </summary>
 /// <param name="accessKeyId">The Id of the access key.</param>
 /// <returns>A boolean value indicating the success of the action.</returns>
 public async Task<bool> WaitUntilAccessKeyIsReady(string accessKeyId)
 {
 var keyReady = false;

 do
 {
 try
 {
 var response = await _IAMService.GetAccessKeyLastUsedAsync(
 new GetAccessKeyLastUsedRequest { AccessKeyId =
 accessKeyId });
 if (response.UserName is not null)
 {
 keyReady = true;
 }
 }
 catch (NoSuchEntityException)
 {
 keyReady = false;
 }
 } while (!keyReady);

 return keyReady;
 }
}

using Microsoft.Extensions.Configuration;

namespace IAMGroups;

public class IAMGroups
{

Scenarios 2165

AWS Identity and Access Management User Guide

 private static ILogger logger = null!;

 // Represents JSON code for AWS full access policy for Amazon Simple
 // Storage Service (Amazon S3).
 private const string S3FullAccessPolicyDocument = "{" +
 " \"Statement\" : [{" +
 " \"Action\" : [\"s3:*\"]," +
 " \"Effect\" : \"Allow\"," +
 " \"Resource\" : \"*\"" +
 "}]" +
 "}";

 static async Task Main(string[] args)
 {
 // Set up dependency injection for the AWS service.
 using var host = Host.CreateDefaultBuilder(args)
 .ConfigureLogging(logging =>
 logging.AddFilter("System", LogLevel.Debug)
 .AddFilter<DebugLoggerProvider>("Microsoft",
 LogLevel.Information)
 .AddFilter<ConsoleLoggerProvider>("Microsoft",
 LogLevel.Trace))
 .ConfigureServices((_, services) =>
 services.AddAWSService<IAmazonIdentityManagementService>()
 .AddTransient<IAMWrapper>()
 .AddTransient<UIWrapper>()
)
 .Build();

 logger = LoggerFactory.Create(builder => { builder.AddConsole(); })
 .CreateLogger<IAMGroups>();

 IConfiguration configuration = new ConfigurationBuilder()
 .SetBasePath(Directory.GetCurrentDirectory())
 .AddJsonFile("settings.json") // Load test settings from .json file.
 .AddJsonFile("settings.local.json",
 true) // Optionally load local settings.
 .Build();

 var groupUserName = configuration["GroupUserName"];
 var groupName = configuration["GroupName"];
 var groupPolicyName = configuration["GroupPolicyName"];
 var groupBucketName = configuration["GroupBucketName"];

Scenarios 2166

AWS Identity and Access Management User Guide

 var wrapper = host.Services.GetRequiredService<IAMWrapper>();
 var uiWrapper = host.Services.GetRequiredService<UIWrapper>();

 uiWrapper.DisplayGroupsOverview();
 uiWrapper.PressEnter();

 // Create an IAM group.
 uiWrapper.DisplayTitle("Create IAM group");
 Console.WriteLine("Let's begin by creating a new IAM group.");
 var group = await wrapper.CreateGroupAsync(groupName);

 // Add an inline IAM policy to the group.
 uiWrapper.DisplayTitle("Add policy to group");
 Console.WriteLine("Add an inline policy to the group that allows members
 to have full access to");
 Console.WriteLine("Amazon Simple Storage Service (Amazon S3) buckets.");

 await wrapper.PutGroupPolicyAsync(group.GroupName, groupPolicyName,
 S3FullAccessPolicyDocument);

 uiWrapper.PressEnter();

 // Now create a new user.
 uiWrapper.DisplayTitle("Create an IAM user");
 Console.WriteLine("Now let's create a new IAM user.");
 var groupUser = await wrapper.CreateUserAsync(groupUserName);

 // Add the new user to the group.
 uiWrapper.DisplayTitle("Add the user to the group");
 Console.WriteLine("Adding the user to the group, which will give the user
 the same permissions as the group.");
 await wrapper.AddUserToGroupAsync(groupUser.UserName, group.GroupName);

 Console.WriteLine($"User, {groupUser.UserName}, has been added to the
 group, {group.GroupName}.");
 uiWrapper.PressEnter();

 Console.WriteLine("Now that we have created a user, and added the user to
 the group, let's create an IAM access key.");

 // Create access and secret keys for the user.
 var accessKey = await wrapper.CreateAccessKeyAsync(groupUserName);
 Console.WriteLine("Key created.");

Scenarios 2167

AWS Identity and Access Management User Guide

 uiWrapper.WaitABit(15, "Waiting for the access key to be ready for
 use.");

 uiWrapper.DisplayTitle("List buckets");
 Console.WriteLine("To prove that the user has access to Amazon S3, list
 the S3 buckets for the account.");

 var s3Client = new AmazonS3Client(accessKey.AccessKeyId,
 accessKey.SecretAccessKey);
 var stsClient = new
 AmazonSecurityTokenServiceClient(accessKey.AccessKeyId,
 accessKey.SecretAccessKey);

 var s3Wrapper = new S3Wrapper(s3Client, stsClient);

 var buckets = await s3Wrapper.ListMyBucketsAsync();

 if (buckets is not null)
 {
 buckets.ForEach(bucket =>
 {
 Console.WriteLine($"{bucket.BucketName}\tcreated on:
 {bucket.CreationDate}");
 });
 }

 // Show that the user also has write access to Amazon S3 by creating
 // a new bucket.
 uiWrapper.DisplayTitle("Create a bucket");
 Console.WriteLine("Since group members have full access to Amazon S3,
 let's create a bucket.");
 var success = await s3Wrapper.PutBucketAsync(groupBucketName);

 if (success)
 {
 Console.WriteLine($"Successfully created the bucket:
 {groupBucketName}.");
 }

 uiWrapper.PressEnter();

 Console.WriteLine("Let's list the user's S3 buckets again to show the new
 bucket.");

Scenarios 2168

AWS Identity and Access Management User Guide

 buckets = await s3Wrapper.ListMyBucketsAsync();

 if (buckets is not null)
 {
 buckets.ForEach(bucket =>
 {
 Console.WriteLine($"{bucket.BucketName}\tcreated on:
 {bucket.CreationDate}");
 });
 }

 uiWrapper.PressEnter();

 uiWrapper.DisplayTitle("Clean up resources");
 Console.WriteLine("First delete the bucket we created.");
 await s3Wrapper.DeleteBucketAsync(groupBucketName);

 Console.WriteLine($"Now remove the user, {groupUserName}, from the group,
 {groupName}.");
 await wrapper.RemoveUserFromGroupAsync(groupUserName, groupName);

 Console.WriteLine("Delete the user's access key.");
 await wrapper.DeleteAccessKeyAsync(accessKey.AccessKeyId, groupUserName);

 // Now we can safely delete the user.
 Console.WriteLine("Now we can delete the user.");
 await wrapper.DeleteUserAsync(groupUserName);

 uiWrapper.PressEnter();

 Console.WriteLine("Now we will delete the IAM policy attached to the
 group.");
 await wrapper.DeleteGroupPolicyAsync(groupName, groupPolicyName);

 Console.WriteLine("Now we delete the IAM group.");
 await wrapper.DeleteGroupAsync(groupName);

 uiWrapper.PressEnter();

 Console.WriteLine("The IAM groups demo has completed.");

 uiWrapper.PressEnter();
 }
}

Scenarios 2169

AWS Identity and Access Management User Guide

namespace IamScenariosCommon;

using System.Net;

/// <summary>
/// A class to perform Amazon Simple Storage Service (Amazon S3) actions for
/// the IAM Basics scenario.
/// </summary>
public class S3Wrapper
{
 private IAmazonS3 _s3Service;
 private IAmazonSecurityTokenService _stsService;

 /// <summary>
 /// Constructor for the S3Wrapper class.
 /// </summary>
 /// <param name="s3Service">An Amazon S3 client object.</param>
 /// <param name="stsService">An AWS Security Token Service (AWS STS)
 /// client object.</param>
 public S3Wrapper(IAmazonS3 s3Service, IAmazonSecurityTokenService stsService)
 {
 _s3Service = s3Service;
 _stsService = stsService;
 }

 /// <summary>
 /// Assumes an AWS Identity and Access Management (IAM) role that allows
 /// Amazon S3 access for the current session.
 /// </summary>
 /// <param name="roleSession">A string representing the current session.</
param>
 /// <param name="roleToAssume">The name of the IAM role to assume.</param>
 /// <returns>Credentials for the newly assumed IAM role.</returns>
 public async Task<Credentials> AssumeS3RoleAsync(string roleSession, string
 roleToAssume)
 {
 // Create the request to use with the AssumeRoleAsync call.
 var request = new AssumeRoleRequest()
 {
 RoleSessionName = roleSession,
 RoleArn = roleToAssume,
 };

Scenarios 2170

AWS Identity and Access Management User Guide

 var response = await _stsService.AssumeRoleAsync(request);

 return response.Credentials;
 }

 /// <summary>
 /// Delete an S3 bucket.
 /// </summary>
 /// <param name="bucketName">Name of the S3 bucket to delete.</param>
 /// <returns>A Boolean value indicating the success of the action.</returns>
 public async Task<bool> DeleteBucketAsync(string bucketName)
 {
 var result = await _s3Service.DeleteBucketAsync(new DeleteBucketRequest
 { BucketName = bucketName });
 return result.HttpStatusCode == HttpStatusCode.OK;
 }

 /// <summary>
 /// List the buckets that are owned by the user's account.
 /// </summary>
 /// <returns>Async Task.</returns>
 public async Task<List<S3Bucket>?> ListMyBucketsAsync()
 {
 try
 {
 // Get the list of buckets accessible by the new user.
 var response = await _s3Service.ListBucketsAsync();

 return response.Buckets;
 }
 catch (AmazonS3Exception ex)
 {
 // Something else went wrong. Display the error message.
 Console.WriteLine($"Error: {ex.Message}");
 return null;
 }
 }

 /// <summary>
 /// Create a new S3 bucket.
 /// </summary>
 /// <param name="bucketName">The name for the new bucket.</param>

Scenarios 2171

AWS Identity and Access Management User Guide

 /// <returns>A Boolean value indicating whether the action completed
 /// successfully.</returns>
 public async Task<bool> PutBucketAsync(string bucketName)
 {
 var response = await _s3Service.PutBucketAsync(new PutBucketRequest
 { BucketName = bucketName });
 return response.HttpStatusCode == HttpStatusCode.OK;
 }

 /// <summary>
 /// Update the client objects with new client objects. This is available
 /// because the scenario uses the methods of this class without and then
 /// with the proper permissions to list S3 buckets.
 /// </summary>
 /// <param name="s3Service">The Amazon S3 client object.</param>
 /// <param name="stsService">The AWS STS client object.</param>
 public void UpdateClients(IAmazonS3 s3Service, IAmazonSecurityTokenService
 stsService)
 {
 _s3Service = s3Service;
 _stsService = stsService;
 }
}

namespace IamScenariosCommon;

public class UIWrapper
{
 public readonly string SepBar = new('-', Console.WindowWidth);

 /// <summary>
 /// Show information about the IAM Groups scenario.
 /// </summary>
 public void DisplayGroupsOverview()
 {
 Console.Clear();

 DisplayTitle("Welcome to the IAM Groups Demo");
 Console.WriteLine("This example application does the following:");
 Console.WriteLine("\t1. Creates an Amazon Identity and Access Management
 (IAM) group.");
 Console.WriteLine("\t2. Adds an IAM policy to the IAM group giving it
 full access to Amazon S3.");

Scenarios 2172

AWS Identity and Access Management User Guide

 Console.WriteLine("\t3. Creates a new IAM user.");
 Console.WriteLine("\t4. Creates an IAM access key for the user.");
 Console.WriteLine("\t5. Adds the user to the IAM group.");
 Console.WriteLine("\t6. Lists the buckets on the account.");
 Console.WriteLine("\t7. Proves that the user has full Amazon S3 access by
 creating a bucket.");
 Console.WriteLine("\t8. List the buckets again to show the new bucket.");
 Console.WriteLine("\t9. Cleans up all the resources created.");
 }

 /// <summary>
 /// Show information about the IAM Basics scenario.
 /// </summary>
 public void DisplayBasicsOverview()
 {
 Console.Clear();

 DisplayTitle("Welcome to IAM Basics");
 Console.WriteLine("This example application does the following:");
 Console.WriteLine("\t1. Creates a user with no permissions.");
 Console.WriteLine("\t2. Creates a role and policy that grant
 s3:ListAllMyBuckets permission.");
 Console.WriteLine("\t3. Grants the user permission to assume the role.");
 Console.WriteLine("\t4. Creates an S3 client object as the user and tries
 to list buckets (this will fail).");
 Console.WriteLine("\t5. Gets temporary credentials by assuming the
 role.");
 Console.WriteLine("\t6. Creates a new S3 client object with the temporary
 credentials and lists the buckets (this will succeed).");
 Console.WriteLine("\t7. Deletes all the resources.");
 }

 /// <summary>
 /// Display a message and wait until the user presses enter.
 /// </summary>
 public void PressEnter()
 {
 Console.Write("\nPress <Enter> to continue. ");
 _ = Console.ReadLine();
 Console.WriteLine();
 }

 /// <summary>
 /// Pad a string with spaces to center it on the console display.

Scenarios 2173

AWS Identity and Access Management User Guide

 /// </summary>
 /// <param name="strToCenter">The string to be centered.</param>
 /// <returns>The padded string.</returns>
 public string CenterString(string strToCenter)
 {
 var padAmount = (Console.WindowWidth - strToCenter.Length) / 2;
 var leftPad = new string(' ', padAmount);
 return $"{leftPad}{strToCenter}";
 }

 /// <summary>
 /// Display a line of hyphens, the centered text of the title, and another
 /// line of hyphens.
 /// </summary>
 /// <param name="strTitle">The string to be displayed.</param>
 public void DisplayTitle(string strTitle)
 {
 Console.WriteLine(SepBar);
 Console.WriteLine(CenterString(strTitle));
 Console.WriteLine(SepBar);
 }

 /// <summary>
 /// Display a countdown and wait for a number of seconds.
 /// </summary>
 /// <param name="numSeconds">The number of seconds to wait.</param>
 public void WaitABit(int numSeconds, string msg)
 {
 Console.WriteLine(msg);

 // Wait for the requested number of seconds.
 for (int i = numSeconds; i > 0; i--)
 {
 System.Threading.Thread.Sleep(1000);
 Console.Write($"{i}...");
 }

 PressEnter();
 }
}

• For API details, see the following topics in AWS SDK for .NET API Reference.

Scenarios 2174

AWS Identity and Access Management User Guide

• AddUserToGroup

• AttachRolePolicy

• CreateAccessKey

• CreateGroup

• CreatePolicy

• CreateRole

• CreateUser

• DeleteAccessKey

• DeleteGroup

• DeleteGroupPolicy

• DeleteUser

• PutGroupPolicy

• RemoveUserFromGroup

For a complete list of AWS SDK developer guides and code examples, see Using IAM with an AWS
SDK. This topic also includes information about getting started and details about previous SDK
versions.

Create an IAM user and assume a role with AWS STS using an AWS SDK

The following code examples show how to create a user and assume a role.

Warning

To avoid security risks, don't use IAM users for authentication when developing purpose-
built software or working with real data. Instead, use federation with an identity provider
such as AWS IAM Identity Center.

• Create a user with no permissions.

• Create a role that grants permission to list Amazon S3 buckets for the account.

• Add a policy to let the user assume the role.

• Assume the role and list S3 buckets using temporary credentials, then clean up resources.
Scenarios 2175

https://docs.aws.amazon.com/goto/DotNetSDKV3/iam-2010-05-08/AddUserToGroup
https://docs.aws.amazon.com/goto/DotNetSDKV3/iam-2010-05-08/AttachRolePolicy
https://docs.aws.amazon.com/goto/DotNetSDKV3/iam-2010-05-08/CreateAccessKey
https://docs.aws.amazon.com/goto/DotNetSDKV3/iam-2010-05-08/CreateGroup
https://docs.aws.amazon.com/goto/DotNetSDKV3/iam-2010-05-08/CreatePolicy
https://docs.aws.amazon.com/goto/DotNetSDKV3/iam-2010-05-08/CreateRole
https://docs.aws.amazon.com/goto/DotNetSDKV3/iam-2010-05-08/CreateUser
https://docs.aws.amazon.com/goto/DotNetSDKV3/iam-2010-05-08/DeleteAccessKey
https://docs.aws.amazon.com/goto/DotNetSDKV3/iam-2010-05-08/DeleteGroup
https://docs.aws.amazon.com/goto/DotNetSDKV3/iam-2010-05-08/DeleteGroupPolicy
https://docs.aws.amazon.com/goto/DotNetSDKV3/iam-2010-05-08/DeleteUser
https://docs.aws.amazon.com/goto/DotNetSDKV3/iam-2010-05-08/PutGroupPolicy
https://docs.aws.amazon.com/goto/DotNetSDKV3/iam-2010-05-08/RemoveUserFromGroup
https://docs.aws.amazon.com/singlesignon/latest/userguide/what-is.html

AWS Identity and Access Management User Guide

.NET

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

global using Amazon.IdentityManagement;
global using Amazon.S3;
global using Amazon.SecurityToken;
global using IAMActions;
global using IamScenariosCommon;
global using Microsoft.Extensions.DependencyInjection;
global using Microsoft.Extensions.Hosting;
global using Microsoft.Extensions.Logging;
global using Microsoft.Extensions.Logging.Console;
global using Microsoft.Extensions.Logging.Debug;

namespace IAMActions;

public class IAMWrapper
{
 private readonly IAmazonIdentityManagementService _IAMService;

 /// <summary>
 /// Constructor for the IAMWrapper class.
 /// </summary>
 /// <param name="IAMService">An IAM client object.</param>
 public IAMWrapper(IAmazonIdentityManagementService IAMService)
 {
 _IAMService = IAMService;
 }

 /// <summary>
 /// Add an existing IAM user to an existing IAM group.
 /// </summary>
 /// <param name="userName">The username of the user to add.</param>
 /// <param name="groupName">The name of the group to add the user to.</param>

Scenarios 2176

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/IAM#code-examples

AWS Identity and Access Management User Guide

 /// <returns>A Boolean value indicating the success of the action.</returns>
 public async Task<bool> AddUserToGroupAsync(string userName, string
 groupName)
 {
 var response = await _IAMService.AddUserToGroupAsync(new
 AddUserToGroupRequest
 {
 GroupName = groupName,
 UserName = userName,
 });

 return response.HttpStatusCode == HttpStatusCode.OK;
 }

 /// <summary>
 /// Attach an IAM policy to a role.
 /// </summary>
 /// <param name="policyArn">The policy to attach.</param>
 /// <param name="roleName">The role that the policy will be attached to.</
param>
 /// <returns>A Boolean value indicating the success of the action.</returns>
 public async Task<bool> AttachRolePolicyAsync(string policyArn, string
 roleName)
 {
 var response = await _IAMService.AttachRolePolicyAsync(new
 AttachRolePolicyRequest
 {
 PolicyArn = policyArn,
 RoleName = roleName,
 });

 return response.HttpStatusCode == System.Net.HttpStatusCode.OK;
 }

 /// <summary>
 /// Create an IAM access key for a user.
 /// </summary>
 /// <param name="userName">The username for which to create the IAM access
 /// key.</param>
 /// <returns>The AccessKey.</returns>
 public async Task<AccessKey> CreateAccessKeyAsync(string userName)
 {

Scenarios 2177

AWS Identity and Access Management User Guide

 var response = await _IAMService.CreateAccessKeyAsync(new
 CreateAccessKeyRequest
 {
 UserName = userName,
 });

 return response.AccessKey;

 }

 /// <summary>
 /// Create an IAM group.
 /// </summary>
 /// <param name="groupName">The name to give the IAM group.</param>
 /// <returns>The IAM group that was created.</returns>
 public async Task<Group> CreateGroupAsync(string groupName)
 {
 var response = await _IAMService.CreateGroupAsync(new CreateGroupRequest
 { GroupName = groupName });
 return response.Group;
 }

 /// <summary>
 /// Create an IAM policy.
 /// </summary>
 /// <param name="policyName">The name to give the new IAM policy.</param>
 /// <param name="policyDocument">The policy document for the new policy.</
param>
 /// <returns>The new IAM policy object.</returns>
 public async Task<ManagedPolicy> CreatePolicyAsync(string policyName, string
 policyDocument)
 {
 var response = await _IAMService.CreatePolicyAsync(new
 CreatePolicyRequest
 {
 PolicyDocument = policyDocument,
 PolicyName = policyName,
 });

 return response.Policy;
 }

Scenarios 2178

AWS Identity and Access Management User Guide

 /// <summary>
 /// Create a new IAM role.
 /// </summary>
 /// <param name="roleName">The name of the IAM role.</param>
 /// <param name="rolePolicyDocument">The name of the IAM policy document
 /// for the new role.</param>
 /// <returns>The Amazon Resource Name (ARN) of the role.</returns>
 public async Task<string> CreateRoleAsync(string roleName, string
 rolePolicyDocument)
 {
 var request = new CreateRoleRequest
 {
 RoleName = roleName,
 AssumeRolePolicyDocument = rolePolicyDocument,
 };

 var response = await _IAMService.CreateRoleAsync(request);
 return response.Role.Arn;
 }

 /// <summary>
 /// Create an IAM service-linked role.
 /// </summary>
 /// <param name="serviceName">The name of the AWS Service.</param>
 /// <param name="description">A description of the IAM service-linked role.</
param>
 /// <returns>The IAM role that was created.</returns>
 public async Task<Role> CreateServiceLinkedRoleAsync(string serviceName,
 string description)
 {
 var request = new CreateServiceLinkedRoleRequest
 {
 AWSServiceName = serviceName,
 Description = description
 };

 var response = await _IAMService.CreateServiceLinkedRoleAsync(request);
 return response.Role;
 }

 /// <summary>

Scenarios 2179

AWS Identity and Access Management User Guide

 /// Create an IAM user.
 /// </summary>
 /// <param name="userName">The username for the new IAM user.</param>
 /// <returns>The IAM user that was created.</returns>
 public async Task<User> CreateUserAsync(string userName)
 {
 var response = await _IAMService.CreateUserAsync(new CreateUserRequest
 { UserName = userName });
 return response.User;
 }

 /// <summary>
 /// Delete an IAM user's access key.
 /// </summary>
 /// <param name="accessKeyId">The Id for the IAM access key.</param>
 /// <param name="userName">The username of the user that owns the IAM
 /// access key.</param>
 /// <returns>A Boolean value indicating the success of the action.</returns>
 public async Task<bool> DeleteAccessKeyAsync(string accessKeyId, string
 userName)
 {
 var response = await _IAMService.DeleteAccessKeyAsync(new
 DeleteAccessKeyRequest
 {
 AccessKeyId = accessKeyId,
 UserName = userName,
 });

 return response.HttpStatusCode == System.Net.HttpStatusCode.OK;
 }

 /// <summary>
 /// Delete an IAM group.
 /// </summary>
 /// <param name="groupName">The name of the IAM group to delete.</param>
 /// <returns>A Boolean value indicating the success of the action.</returns>
 public async Task<bool> DeleteGroupAsync(string groupName)
 {
 var response = await _IAMService.DeleteGroupAsync(new DeleteGroupRequest
 { GroupName = groupName });
 return response.HttpStatusCode == HttpStatusCode.OK;
 }

Scenarios 2180

AWS Identity and Access Management User Guide

 /// <summary>
 /// Delete an IAM policy associated with an IAM group.
 /// </summary>
 /// <param name="groupName">The name of the IAM group associated with the
 /// policy.</param>
 /// <param name="policyName">The name of the policy to delete.</param>
 /// <returns>A Boolean value indicating the success of the action.</returns>
 public async Task<bool> DeleteGroupPolicyAsync(string groupName, string
 policyName)
 {
 var request = new DeleteGroupPolicyRequest()
 {
 GroupName = groupName,
 PolicyName = policyName,
 };

 var response = await _IAMService.DeleteGroupPolicyAsync(request);
 return response.HttpStatusCode == System.Net.HttpStatusCode.OK;
 }

 /// <summary>
 /// Delete an IAM policy.
 /// </summary>
 /// <param name="policyArn">The Amazon Resource Name (ARN) of the policy to
 /// delete.</param>
 /// <returns>A Boolean value indicating the success of the action.</returns>
 public async Task<bool> DeletePolicyAsync(string policyArn)
 {
 var response = await _IAMService.DeletePolicyAsync(new
 DeletePolicyRequest { PolicyArn = policyArn });
 return response.HttpStatusCode == System.Net.HttpStatusCode.OK;
 }

 /// <summary>
 /// Delete an IAM role.
 /// </summary>
 /// <param name="roleName">The name of the IAM role to delete.</param>
 /// <returns>A Boolean value indicating the success of the action.</returns>
 public async Task<bool> DeleteRoleAsync(string roleName)
 {

Scenarios 2181

AWS Identity and Access Management User Guide

 var response = await _IAMService.DeleteRoleAsync(new DeleteRoleRequest
 { RoleName = roleName });
 return response.HttpStatusCode == System.Net.HttpStatusCode.OK;
 }

 /// <summary>
 /// Delete an IAM role policy.
 /// </summary>
 /// <param name="roleName">The name of the IAM role.</param>
 /// <param name="policyName">The name of the IAM role policy to delete.</
param>
 /// <returns>A Boolean value indicating the success of the action.</returns>
 public async Task<bool> DeleteRolePolicyAsync(string roleName, string
 policyName)
 {
 var response = await _IAMService.DeleteRolePolicyAsync(new
 DeleteRolePolicyRequest
 {
 PolicyName = policyName,
 RoleName = roleName,
 });

 return response.HttpStatusCode == System.Net.HttpStatusCode.OK;
 }

 /// <summary>
 /// Delete an IAM user.
 /// </summary>
 /// <param name="userName">The username of the IAM user to delete.</param>
 /// <returns>A Boolean value indicating the success of the action.</returns>
 public async Task<bool> DeleteUserAsync(string userName)
 {
 var response = await _IAMService.DeleteUserAsync(new DeleteUserRequest
 { UserName = userName });

 return response.HttpStatusCode == System.Net.HttpStatusCode.OK;
 }

 /// <summary>
 /// Delete an IAM user policy.
 /// </summary>

Scenarios 2182

AWS Identity and Access Management User Guide

 /// <param name="policyName">The name of the IAM policy to delete.</param>
 /// <param name="userName">The username of the IAM user.</param>
 /// <returns>A Boolean value indicating the success of the action.</returns>
 public async Task<bool> DeleteUserPolicyAsync(string policyName, string
 userName)
 {
 var response = await _IAMService.DeleteUserPolicyAsync(new
 DeleteUserPolicyRequest { PolicyName = policyName, UserName = userName });

 return response.HttpStatusCode == System.Net.HttpStatusCode.OK;
 }

 /// <summary>
 /// Detach an IAM policy from an IAM role.
 /// </summary>
 /// <param name="policyArn">The Amazon Resource Name (ARN) of the IAM
 policy.</param>
 /// <param name="roleName">The name of the IAM role.</param>
 /// <returns>A Boolean value indicating the success of the action.</returns>
 public async Task<bool> DetachRolePolicyAsync(string policyArn, string
 roleName)
 {
 var response = await _IAMService.DetachRolePolicyAsync(new
 DetachRolePolicyRequest
 {
 PolicyArn = policyArn,
 RoleName = roleName,
 });

 return response.HttpStatusCode == System.Net.HttpStatusCode.OK;
 }

 /// <summary>
 /// Gets the IAM password policy for an AWS account.
 /// </summary>
 /// <returns>The PasswordPolicy for the AWS account.</returns>
 public async Task<PasswordPolicy> GetAccountPasswordPolicyAsync()
 {
 var response = await _IAMService.GetAccountPasswordPolicyAsync(new
 GetAccountPasswordPolicyRequest());
 return response.PasswordPolicy;
 }

Scenarios 2183

AWS Identity and Access Management User Guide

 /// <summary>
 /// Get information about an IAM policy.
 /// </summary>
 /// <param name="policyArn">The IAM policy to retrieve information for.</
param>
 /// <returns>The IAM policy.</returns>
 public async Task<ManagedPolicy> GetPolicyAsync(string policyArn)
 {

 var response = await _IAMService.GetPolicyAsync(new GetPolicyRequest
 { PolicyArn = policyArn });
 return response.Policy;
 }

 /// <summary>
 /// Get information about an IAM role.
 /// </summary>
 /// <param name="roleName">The name of the IAM role to retrieve information
 /// for.</param>
 /// <returns>The IAM role that was retrieved.</returns>
 public async Task<Role> GetRoleAsync(string roleName)
 {
 var response = await _IAMService.GetRoleAsync(new GetRoleRequest
 {
 RoleName = roleName,
 });

 return response.Role;
 }

 /// <summary>
 /// Get information about an IAM user.
 /// </summary>
 /// <param name="userName">The username of the user.</param>
 /// <returns>An IAM user object.</returns>
 public async Task<User> GetUserAsync(string userName)
 {
 var response = await _IAMService.GetUserAsync(new GetUserRequest
 { UserName = userName });
 return response.User;

Scenarios 2184

AWS Identity and Access Management User Guide

 }

 /// <summary>
 /// List the IAM role policies that are attached to an IAM role.
 /// </summary>
 /// <param name="roleName">The IAM role to list IAM policies for.</param>
 /// <returns>A list of the IAM policies attached to the IAM role.</returns>
 public async Task<List<AttachedPolicyType>>
 ListAttachedRolePoliciesAsync(string roleName)
 {
 var attachedPolicies = new List<AttachedPolicyType>();
 var attachedRolePoliciesPaginator =
 _IAMService.Paginators.ListAttachedRolePolicies(new
 ListAttachedRolePoliciesRequest { RoleName = roleName });

 await foreach (var response in attachedRolePoliciesPaginator.Responses)
 {
 attachedPolicies.AddRange(response.AttachedPolicies);
 }

 return attachedPolicies;
 }

 /// <summary>
 /// List IAM groups.
 /// </summary>
 /// <returns>A list of IAM groups.</returns>
 public async Task<List<Group>> ListGroupsAsync()
 {
 var groupsPaginator = _IAMService.Paginators.ListGroups(new
 ListGroupsRequest());
 var groups = new List<Group>();

 await foreach (var response in groupsPaginator.Responses)
 {
 groups.AddRange(response.Groups);
 }

 return groups;
 }

Scenarios 2185

AWS Identity and Access Management User Guide

 /// <summary>
 /// List IAM policies.
 /// </summary>
 /// <returns>A list of the IAM policies.</returns>
 public async Task<List<ManagedPolicy>> ListPoliciesAsync()
 {
 var listPoliciesPaginator = _IAMService.Paginators.ListPolicies(new
 ListPoliciesRequest());
 var policies = new List<ManagedPolicy>();

 await foreach (var response in listPoliciesPaginator.Responses)
 {
 policies.AddRange(response.Policies);
 }

 return policies;
 }

 /// <summary>
 /// List IAM role policies.
 /// </summary>
 /// <param name="roleName">The IAM role for which to list IAM policies.</
param>
 /// <returns>A list of IAM policy names.</returns>
 public async Task<List<string>> ListRolePoliciesAsync(string roleName)
 {
 var listRolePoliciesPaginator =
 _IAMService.Paginators.ListRolePolicies(new ListRolePoliciesRequest { RoleName =
 roleName });
 var policyNames = new List<string>();

 await foreach (var response in listRolePoliciesPaginator.Responses)
 {
 policyNames.AddRange(response.PolicyNames);
 }

 return policyNames;
 }

 /// <summary>
 /// List IAM roles.
 /// </summary>

Scenarios 2186

AWS Identity and Access Management User Guide

 /// <returns>A list of IAM roles.</returns>
 public async Task<List<Role>> ListRolesAsync()
 {
 var listRolesPaginator = _IAMService.Paginators.ListRoles(new
 ListRolesRequest());
 var roles = new List<Role>();

 await foreach (var response in listRolesPaginator.Responses)
 {
 roles.AddRange(response.Roles);
 }

 return roles;
 }

 /// <summary>
 /// List SAML authentication providers.
 /// </summary>
 /// <returns>A list of SAML providers.</returns>
 public async Task<List<SAMLProviderListEntry>> ListSAMLProvidersAsync()
 {
 var response = await _IAMService.ListSAMLProvidersAsync(new
 ListSAMLProvidersRequest());
 return response.SAMLProviderList;
 }

 /// <summary>
 /// List IAM users.
 /// </summary>
 /// <returns>A list of IAM users.</returns>
 public async Task<List<User>> ListUsersAsync()
 {
 var listUsersPaginator = _IAMService.Paginators.ListUsers(new
 ListUsersRequest());
 var users = new List<User>();

 await foreach (var response in listUsersPaginator.Responses)
 {
 users.AddRange(response.Users);
 }

 return users;

Scenarios 2187

AWS Identity and Access Management User Guide

 }

 /// <summary>
 /// Remove a user from an IAM group.
 /// </summary>
 /// <param name="userName">The username of the user to remove.</param>
 /// <param name="groupName">The name of the IAM group to remove the user
 from.</param>
 /// <returns>A Boolean value indicating the success of the action.</returns>
 public async Task<bool> RemoveUserFromGroupAsync(string userName, string
 groupName)
 {
 // Remove the user from the group.
 var removeUserRequest = new RemoveUserFromGroupRequest()
 {
 UserName = userName,
 GroupName = groupName,
 };

 var response = await
 _IAMService.RemoveUserFromGroupAsync(removeUserRequest);
 return response.HttpStatusCode == HttpStatusCode.OK;
 }

 /// <summary>
 /// Add or update an inline policy document that is embedded in an IAM group.
 /// </summary>
 /// <param name="groupName">The name of the IAM group.</param>
 /// <param name="policyName">The name of the IAM policy.</param>
 /// <param name="policyDocument">The policy document defining the IAM
 policy.</param>
 /// <returns>A Boolean value indicating the success of the action.</returns>
 public async Task<bool> PutGroupPolicyAsync(string groupName, string
 policyName, string policyDocument)
 {
 var request = new PutGroupPolicyRequest
 {
 GroupName = groupName,
 PolicyName = policyName,
 PolicyDocument = policyDocument
 };

Scenarios 2188

AWS Identity and Access Management User Guide

 var response = await _IAMService.PutGroupPolicyAsync(request);
 return response.HttpStatusCode == System.Net.HttpStatusCode.OK;
 }

 /// <summary>
 /// Update the inline policy document embedded in a role.
 /// </summary>
 /// <param name="policyName">The name of the policy to embed.</param>
 /// <param name="roleName">The name of the role to update.</param>
 /// <param name="policyDocument">The policy document that defines the role.</
param>
 /// <returns>A Boolean value indicating the success of the action.</returns>
 public async Task<bool> PutRolePolicyAsync(string policyName, string
 roleName, string policyDocument)
 {
 var request = new PutRolePolicyRequest
 {
 PolicyName = policyName,
 RoleName = roleName,
 PolicyDocument = policyDocument
 };

 var response = await _IAMService.PutRolePolicyAsync(request);
 return response.HttpStatusCode == HttpStatusCode.OK;
 }

 /// <summary>
 /// Add or update an inline policy document that is embedded in an IAM user.
 /// </summary>
 /// <param name="userName">The name of the IAM user.</param>
 /// <param name="policyName">The name of the IAM policy.</param>
 /// <param name="policyDocument">The policy document defining the IAM
 policy.</param>
 /// <returns>A Boolean value indicating the success of the action.</returns>
 public async Task<bool> PutUserPolicyAsync(string userName, string
 policyName, string policyDocument)
 {
 var request = new PutUserPolicyRequest
 {
 UserName = userName,
 PolicyName = policyName,
 PolicyDocument = policyDocument

Scenarios 2189

AWS Identity and Access Management User Guide

 };

 var response = await _IAMService.PutUserPolicyAsync(request);
 return response.HttpStatusCode == System.Net.HttpStatusCode.OK;
 }

 /// <summary>
 /// Wait for a new access key to be ready to use.
 /// </summary>
 /// <param name="accessKeyId">The Id of the access key.</param>
 /// <returns>A boolean value indicating the success of the action.</returns>
 public async Task<bool> WaitUntilAccessKeyIsReady(string accessKeyId)
 {
 var keyReady = false;

 do
 {
 try
 {
 var response = await _IAMService.GetAccessKeyLastUsedAsync(
 new GetAccessKeyLastUsedRequest { AccessKeyId =
 accessKeyId });
 if (response.UserName is not null)
 {
 keyReady = true;
 }
 }
 catch (NoSuchEntityException)
 {
 keyReady = false;
 }
 } while (!keyReady);

 return keyReady;
 }
}

using Microsoft.Extensions.Configuration;

namespace IAMBasics;

public class IAMBasics

Scenarios 2190

AWS Identity and Access Management User Guide

{
 private static ILogger logger = null!;

 static async Task Main(string[] args)
 {
 // Set up dependency injection for the AWS service.
 using var host = Host.CreateDefaultBuilder(args)
 .ConfigureLogging(logging =>
 logging.AddFilter("System", LogLevel.Debug)
 .AddFilter<DebugLoggerProvider>("Microsoft",
 LogLevel.Information)
 .AddFilter<ConsoleLoggerProvider>("Microsoft",
 LogLevel.Trace))
 .ConfigureServices((_, services) =>
 services.AddAWSService<IAmazonIdentityManagementService>()
 .AddTransient<IAMWrapper>()
 .AddTransient<UIWrapper>()
)
 .Build();

 logger = LoggerFactory.Create(builder => { builder.AddConsole(); })
 .CreateLogger<IAMBasics>();

 IConfiguration configuration = new ConfigurationBuilder()
 .SetBasePath(Directory.GetCurrentDirectory())
 .AddJsonFile("settings.json") // Load test settings from .json file.
 .AddJsonFile("settings.local.json",
 true) // Optionally load local settings.
 .Build();

 // Values needed for user, role, and policies.
 string userName = configuration["UserName"]!;
 string s3PolicyName = configuration["S3PolicyName"]!;
 string roleName = configuration["RoleName"]!;

 var iamWrapper = host.Services.GetRequiredService<IAMWrapper>();
 var uiWrapper = host.Services.GetRequiredService<UIWrapper>();

 uiWrapper.DisplayBasicsOverview();
 uiWrapper.PressEnter();

 // First create a user. By default, the new user has

Scenarios 2191

AWS Identity and Access Management User Guide

 // no permissions.
 uiWrapper.DisplayTitle("Create User");
 Console.WriteLine($"Creating a new user with user name: {userName}.");
 var user = await iamWrapper.CreateUserAsync(userName);
 var userArn = user.Arn;

 Console.WriteLine($"Successfully created user: {userName} with ARN:
 {userArn}.");
 uiWrapper.WaitABit(15, "Now let's wait for the user to be ready for
 use.");

 // Define a role policy document that allows the new user
 // to assume the role.
 string assumeRolePolicyDocument = "{" +
 "\"Version\": \"2012-10-17\"," +
 "\"Statement\": [{" +
 "\"Effect\": \"Allow\"," +
 "\"Principal\": {" +
 $" \"AWS\": \"{userArn}\"" +
 "}," +
 "\"Action\": \"sts:AssumeRole\"" +
 "}]" +
 "}";

 // Permissions to list all buckets.
 string policyDocument = "{" +
 "\"Version\": \"2012-10-17\"," +
 " \"Statement\" : [{" +
 " \"Action\" : [\"s3:ListAllMyBuckets\"]," +
 " \"Effect\" : \"Allow\"," +
 " \"Resource\" : \"*\"" +
 "}]" +
 "}";

 // Create an AccessKey for the user.
 uiWrapper.DisplayTitle("Create access key");
 Console.WriteLine("Now let's create an access key for the new user.");
 var accessKey = await iamWrapper.CreateAccessKeyAsync(userName);

 var accessKeyId = accessKey.AccessKeyId;
 var secretAccessKey = accessKey.SecretAccessKey;

 Console.WriteLine($"We have created the access key with Access key id:
 {accessKeyId}.");

Scenarios 2192

AWS Identity and Access Management User Guide

 Console.WriteLine("Now let's wait until the IAM access key is ready to
 use.");
 var keyReady = await iamWrapper.WaitUntilAccessKeyIsReady(accessKeyId);

 // Now try listing the Amazon Simple Storage Service (Amazon S3)
 // buckets. This should fail at this point because the user doesn't
 // have permissions to perform this task.
 uiWrapper.DisplayTitle("Try to display Amazon S3 buckets");
 Console.WriteLine("Now let's try to display a list of the user's Amazon
 S3 buckets.");
 var s3Client1 = new AmazonS3Client(accessKeyId, secretAccessKey);
 var stsClient1 = new AmazonSecurityTokenServiceClient(accessKeyId,
 secretAccessKey);

 var s3Wrapper = new S3Wrapper(s3Client1, stsClient1);
 var buckets = await s3Wrapper.ListMyBucketsAsync();

 Console.WriteLine(buckets is null
 ? "As expected, the call to list the buckets has returned a null
 list."
 : "Something went wrong. This shouldn't have worked.");

 uiWrapper.PressEnter();

 uiWrapper.DisplayTitle("Create IAM role");
 Console.WriteLine($"Creating the role: {roleName}");

 // Creating an IAM role to allow listing the S3 buckets. A role name
 // is not case sensitive and must be unique to the account for which it
 // is created.
 var roleArn = await iamWrapper.CreateRoleAsync(roleName,
 assumeRolePolicyDocument);

 uiWrapper.PressEnter();

 // Create a policy with permissions to list S3 buckets.
 uiWrapper.DisplayTitle("Create IAM policy");
 Console.WriteLine($"Creating the policy: {s3PolicyName}");
 Console.WriteLine("with permissions to list the Amazon S3 buckets for the
 account.");
 var policy = await iamWrapper.CreatePolicyAsync(s3PolicyName,
 policyDocument);

Scenarios 2193

AWS Identity and Access Management User Guide

 // Wait 15 seconds for the IAM policy to be available.
 uiWrapper.WaitABit(15, "Waiting for the policy to be available.");

 // Attach the policy to the role you created earlier.
 uiWrapper.DisplayTitle("Attach new IAM policy");
 Console.WriteLine("Now let's attach the policy to the role.");
 await iamWrapper.AttachRolePolicyAsync(policy.Arn, roleName);

 // Wait 15 seconds for the role to be updated.
 Console.WriteLine();
 uiWrapper.WaitABit(15, "Waiting for the policy to be attached.");

 // Use the AWS Security Token Service (AWS STS) to have the user
 // assume the role we created.
 var stsClient2 = new AmazonSecurityTokenServiceClient(accessKeyId,
 secretAccessKey);

 // Wait for the new credentials to become valid.
 uiWrapper.WaitABit(10, "Waiting for the credentials to be valid.");

 var assumedRoleCredentials = await
 s3Wrapper.AssumeS3RoleAsync("temporary-session", roleArn);

 // Try again to list the buckets using the client created with
 // the new user's credentials. This time, it should work.
 var s3Client2 = new AmazonS3Client(assumedRoleCredentials);

 s3Wrapper.UpdateClients(s3Client2, stsClient2);

 buckets = await s3Wrapper.ListMyBucketsAsync();

 uiWrapper.DisplayTitle("List Amazon S3 buckets");
 Console.WriteLine("This time we should have buckets to list.");
 if (buckets is not null)
 {
 buckets.ForEach(bucket =>
 {
 Console.WriteLine($"{bucket.BucketName} created:
 {bucket.CreationDate}");
 });
 }

 uiWrapper.PressEnter();

Scenarios 2194

AWS Identity and Access Management User Guide

 // Now clean up all the resources used in the example.
 uiWrapper.DisplayTitle("Clean up resources");
 Console.WriteLine("Thank you for watching. The IAM Basics demo is
 complete.");
 Console.WriteLine("Please wait while we clean up the resources we
 created.");

 await iamWrapper.DetachRolePolicyAsync(policy.Arn, roleName);

 await iamWrapper.DeletePolicyAsync(policy.Arn);

 await iamWrapper.DeleteRoleAsync(roleName);

 await iamWrapper.DeleteAccessKeyAsync(accessKeyId, userName);

 await iamWrapper.DeleteUserAsync(userName);

 uiWrapper.PressEnter();

 Console.WriteLine("All done cleaning up our resources. Thank you for your
 patience.");
 }
}

namespace IamScenariosCommon;

using System.Net;

/// <summary>
/// A class to perform Amazon Simple Storage Service (Amazon S3) actions for
/// the IAM Basics scenario.
/// </summary>
public class S3Wrapper
{
 private IAmazonS3 _s3Service;
 private IAmazonSecurityTokenService _stsService;

 /// <summary>
 /// Constructor for the S3Wrapper class.
 /// </summary>
 /// <param name="s3Service">An Amazon S3 client object.</param>
 /// <param name="stsService">An AWS Security Token Service (AWS STS)
 /// client object.</param>

Scenarios 2195

AWS Identity and Access Management User Guide

 public S3Wrapper(IAmazonS3 s3Service, IAmazonSecurityTokenService stsService)
 {
 _s3Service = s3Service;
 _stsService = stsService;
 }

 /// <summary>
 /// Assumes an AWS Identity and Access Management (IAM) role that allows
 /// Amazon S3 access for the current session.
 /// </summary>
 /// <param name="roleSession">A string representing the current session.</
param>
 /// <param name="roleToAssume">The name of the IAM role to assume.</param>
 /// <returns>Credentials for the newly assumed IAM role.</returns>
 public async Task<Credentials> AssumeS3RoleAsync(string roleSession, string
 roleToAssume)
 {
 // Create the request to use with the AssumeRoleAsync call.
 var request = new AssumeRoleRequest()
 {
 RoleSessionName = roleSession,
 RoleArn = roleToAssume,
 };

 var response = await _stsService.AssumeRoleAsync(request);

 return response.Credentials;
 }

 /// <summary>
 /// Delete an S3 bucket.
 /// </summary>
 /// <param name="bucketName">Name of the S3 bucket to delete.</param>
 /// <returns>A Boolean value indicating the success of the action.</returns>
 public async Task<bool> DeleteBucketAsync(string bucketName)
 {
 var result = await _s3Service.DeleteBucketAsync(new DeleteBucketRequest
 { BucketName = bucketName });
 return result.HttpStatusCode == HttpStatusCode.OK;
 }

 /// <summary>
 /// List the buckets that are owned by the user's account.

Scenarios 2196

AWS Identity and Access Management User Guide

 /// </summary>
 /// <returns>Async Task.</returns>
 public async Task<List<S3Bucket>?> ListMyBucketsAsync()
 {
 try
 {
 // Get the list of buckets accessible by the new user.
 var response = await _s3Service.ListBucketsAsync();

 return response.Buckets;
 }
 catch (AmazonS3Exception ex)
 {
 // Something else went wrong. Display the error message.
 Console.WriteLine($"Error: {ex.Message}");
 return null;
 }
 }

 /// <summary>
 /// Create a new S3 bucket.
 /// </summary>
 /// <param name="bucketName">The name for the new bucket.</param>
 /// <returns>A Boolean value indicating whether the action completed
 /// successfully.</returns>
 public async Task<bool> PutBucketAsync(string bucketName)
 {
 var response = await _s3Service.PutBucketAsync(new PutBucketRequest
 { BucketName = bucketName });
 return response.HttpStatusCode == HttpStatusCode.OK;
 }

 /// <summary>
 /// Update the client objects with new client objects. This is available
 /// because the scenario uses the methods of this class without and then
 /// with the proper permissions to list S3 buckets.
 /// </summary>
 /// <param name="s3Service">The Amazon S3 client object.</param>
 /// <param name="stsService">The AWS STS client object.</param>
 public void UpdateClients(IAmazonS3 s3Service, IAmazonSecurityTokenService
 stsService)
 {
 _s3Service = s3Service;
 _stsService = stsService;

Scenarios 2197

AWS Identity and Access Management User Guide

 }
}

namespace IamScenariosCommon;

public class UIWrapper
{
 public readonly string SepBar = new('-', Console.WindowWidth);

 /// <summary>
 /// Show information about the IAM Groups scenario.
 /// </summary>
 public void DisplayGroupsOverview()
 {
 Console.Clear();

 DisplayTitle("Welcome to the IAM Groups Demo");
 Console.WriteLine("This example application does the following:");
 Console.WriteLine("\t1. Creates an Amazon Identity and Access Management
 (IAM) group.");
 Console.WriteLine("\t2. Adds an IAM policy to the IAM group giving it
 full access to Amazon S3.");
 Console.WriteLine("\t3. Creates a new IAM user.");
 Console.WriteLine("\t4. Creates an IAM access key for the user.");
 Console.WriteLine("\t5. Adds the user to the IAM group.");
 Console.WriteLine("\t6. Lists the buckets on the account.");
 Console.WriteLine("\t7. Proves that the user has full Amazon S3 access by
 creating a bucket.");
 Console.WriteLine("\t8. List the buckets again to show the new bucket.");
 Console.WriteLine("\t9. Cleans up all the resources created.");
 }

 /// <summary>
 /// Show information about the IAM Basics scenario.
 /// </summary>
 public void DisplayBasicsOverview()
 {
 Console.Clear();

 DisplayTitle("Welcome to IAM Basics");
 Console.WriteLine("This example application does the following:");
 Console.WriteLine("\t1. Creates a user with no permissions.");

Scenarios 2198

AWS Identity and Access Management User Guide

 Console.WriteLine("\t2. Creates a role and policy that grant
 s3:ListAllMyBuckets permission.");
 Console.WriteLine("\t3. Grants the user permission to assume the role.");
 Console.WriteLine("\t4. Creates an S3 client object as the user and tries
 to list buckets (this will fail).");
 Console.WriteLine("\t5. Gets temporary credentials by assuming the
 role.");
 Console.WriteLine("\t6. Creates a new S3 client object with the temporary
 credentials and lists the buckets (this will succeed).");
 Console.WriteLine("\t7. Deletes all the resources.");
 }

 /// <summary>
 /// Display a message and wait until the user presses enter.
 /// </summary>
 public void PressEnter()
 {
 Console.Write("\nPress <Enter> to continue. ");
 _ = Console.ReadLine();
 Console.WriteLine();
 }

 /// <summary>
 /// Pad a string with spaces to center it on the console display.
 /// </summary>
 /// <param name="strToCenter">The string to be centered.</param>
 /// <returns>The padded string.</returns>
 public string CenterString(string strToCenter)
 {
 var padAmount = (Console.WindowWidth - strToCenter.Length) / 2;
 var leftPad = new string(' ', padAmount);
 return $"{leftPad}{strToCenter}";
 }

 /// <summary>
 /// Display a line of hyphens, the centered text of the title, and another
 /// line of hyphens.
 /// </summary>
 /// <param name="strTitle">The string to be displayed.</param>
 public void DisplayTitle(string strTitle)
 {
 Console.WriteLine(SepBar);
 Console.WriteLine(CenterString(strTitle));
 Console.WriteLine(SepBar);

Scenarios 2199

AWS Identity and Access Management User Guide

 }

 /// <summary>
 /// Display a countdown and wait for a number of seconds.
 /// </summary>
 /// <param name="numSeconds">The number of seconds to wait.</param>
 public void WaitABit(int numSeconds, string msg)
 {
 Console.WriteLine(msg);

 // Wait for the requested number of seconds.
 for (int i = numSeconds; i > 0; i--)
 {
 System.Threading.Thread.Sleep(1000);
 Console.Write($"{i}...");
 }

 PressEnter();
 }
}

• For API details, see the following topics in AWS SDK for .NET API Reference.

• AttachRolePolicy

• CreateAccessKey

• CreatePolicy

• CreateRole

• CreateUser

• DeleteAccessKey

• DeletePolicy

• DeleteRole

• DeleteUser

• DeleteUserPolicy

• DetachRolePolicy

• PutUserPolicy

Scenarios 2200

https://docs.aws.amazon.com/goto/DotNetSDKV3/iam-2010-05-08/AttachRolePolicy
https://docs.aws.amazon.com/goto/DotNetSDKV3/iam-2010-05-08/CreateAccessKey
https://docs.aws.amazon.com/goto/DotNetSDKV3/iam-2010-05-08/CreatePolicy
https://docs.aws.amazon.com/goto/DotNetSDKV3/iam-2010-05-08/CreateRole
https://docs.aws.amazon.com/goto/DotNetSDKV3/iam-2010-05-08/CreateUser
https://docs.aws.amazon.com/goto/DotNetSDKV3/iam-2010-05-08/DeleteAccessKey
https://docs.aws.amazon.com/goto/DotNetSDKV3/iam-2010-05-08/DeletePolicy
https://docs.aws.amazon.com/goto/DotNetSDKV3/iam-2010-05-08/DeleteRole
https://docs.aws.amazon.com/goto/DotNetSDKV3/iam-2010-05-08/DeleteUser
https://docs.aws.amazon.com/goto/DotNetSDKV3/iam-2010-05-08/DeleteUserPolicy
https://docs.aws.amazon.com/goto/DotNetSDKV3/iam-2010-05-08/DetachRolePolicy
https://docs.aws.amazon.com/goto/DotNetSDKV3/iam-2010-05-08/PutUserPolicy

AWS Identity and Access Management User Guide

Bash

AWS CLI with Bash script

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

###
function iam_create_user_assume_role
#
Scenario to create an IAM user, create an IAM role, and apply the role to the
 user.
#
"IAM access" permissions are needed to run this code.
"STS assume role" permissions are needed to run this code. (Note: It might
 be necessary to
create a custom policy).
#
Returns:
0 - If successful.
1 - If an error occurred.
###
function iam_create_user_assume_role() {
 {
 if ["$IAM_OPERATIONS_SOURCED" != "True"]; then

 source ./iam_operations.sh
 fi
 }

 echo_repeat "*" 88
 echo "Welcome to the IAM create user and assume role demo."
 echo
 echo "This demo will create an IAM user, create an IAM role, and apply the role
 to the user."
 echo_repeat "*" 88
 echo

 echo -n "Enter a name for a new IAM user: "

Scenarios 2201

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/aws-cli/bash-linux/iam#code-examples

AWS Identity and Access Management User Guide

 get_input
 user_name=$get_input_result

 local user_arn
 user_arn=$(iam_create_user -u "$user_name")

 # shellcheck disable=SC2181
 if [[${?} == 0]]; then
 echo "Created demo IAM user named $user_name"
 else
 errecho "$user_arn"
 errecho "The user failed to create. This demo will exit."
 return 1
 fi

 local access_key_response
 access_key_response=$(iam_create_user_access_key -u "$user_name")
 # shellcheck disable=SC2181
 if [[${?} != 0]]; then
 errecho "The access key failed to create. This demo will exit."
 clean_up "$user_name"
 return 1
 fi

 IFS=$'\t ' read -r -a access_key_values <<<"$access_key_response"
 local key_name=${access_key_values[0]}
 local key_secret=${access_key_values[1]}

 echo "Created access key named $key_name"

 echo "Wait 10 seconds for the user to be ready."
 sleep 10
 echo_repeat "*" 88
 echo

 local iam_role_name
 iam_role_name=$(generate_random_name "test-role")
 echo "Creating a role named $iam_role_name with user $user_name as the
 principal."

 local assume_role_policy_document="{
 \"Version\": \"2012-10-17\",
 \"Statement\": [{
 \"Effect\": \"Allow\",

Scenarios 2202

AWS Identity and Access Management User Guide

 \"Principal\": {\"AWS\": \"$user_arn\"},
 \"Action\": \"sts:AssumeRole\"
 }]
 }"

 local role_arn
 role_arn=$(iam_create_role -n "$iam_role_name" -p
 "$assume_role_policy_document")

 # shellcheck disable=SC2181
 if [${?} == 0]; then
 echo "Created IAM role named $iam_role_name"
 else
 errecho "The role failed to create. This demo will exit."
 clean_up "$user_name" "$key_name"
 return 1
 fi

 local policy_name
 policy_name=$(generate_random_name "test-policy")
 local policy_document="{
 \"Version\": \"2012-10-17\",
 \"Statement\": [{
 \"Effect\": \"Allow\",
 \"Action\": \"s3:ListAllMyBuckets\",
 \"Resource\": \"arn:aws:s3:::*\"}]}"

 local policy_arn
 policy_arn=$(iam_create_policy -n "$policy_name" -p "$policy_document")
 # shellcheck disable=SC2181
 if [[${?} == 0]]; then
 echo "Created IAM policy named $policy_name"
 else
 errecho "The policy failed to create."
 clean_up "$user_name" "$key_name" "$iam_role_name"
 return 1
 fi

 if (iam_attach_role_policy -n "$iam_role_name" -p "$policy_arn"); then
 echo "Attached policy $policy_arn to role $iam_role_name"
 else
 errecho "The policy failed to attach."
 clean_up "$user_name" "$key_name" "$iam_role_name" "$policy_arn"
 return 1

Scenarios 2203

AWS Identity and Access Management User Guide

 fi

 local assume_role_policy_document="{
 \"Version\": \"2012-10-17\",
 \"Statement\": [{
 \"Effect\": \"Allow\",
 \"Action\": \"sts:AssumeRole\",
 \"Resource\": \"$role_arn\"}]}"

 local assume_role_policy_name
 assume_role_policy_name=$(generate_random_name "test-assume-role-")

 # shellcheck disable=SC2181
 local assume_role_policy_arn
 assume_role_policy_arn=$(iam_create_policy -n "$assume_role_policy_name" -p
 "$assume_role_policy_document")
 # shellcheck disable=SC2181
 if [${?} == 0]; then
 echo "Created IAM policy named $assume_role_policy_name for sts assume role"
 else
 errecho "The policy failed to create."
 clean_up "$user_name" "$key_name" "$iam_role_name" "$policy_arn"
 "$policy_arn"
 return 1
 fi

 echo "Wait 10 seconds to give AWS time to propagate these new resources and
 connections."
 sleep 10
 echo_repeat "*" 88
 echo

 echo "Try to list buckets without the new user assuming the role."
 echo_repeat "*" 88
 echo

 # Set the environment variables for the created user.
 # bashsupport disable=BP2001
 export AWS_ACCESS_KEY_ID=$key_name
 # bashsupport disable=BP2001
 export AWS_SECRET_ACCESS_KEY=$key_secret

 local buckets
 buckets=$(s3_list_buckets)

Scenarios 2204

AWS Identity and Access Management User Guide

 # shellcheck disable=SC2181
 if [${?} == 0]; then
 local bucket_count
 bucket_count=$(echo "$buckets" | wc -w | xargs)
 echo "There are $bucket_count buckets in the account. This should not have
 happened."
 else
 errecho "Because the role with permissions has not been assumed, listing
 buckets failed."
 fi

 echo
 echo_repeat "*" 88
 echo "Now assume the role $iam_role_name and list the buckets."
 echo_repeat "*" 88
 echo

 local credentials

 credentials=$(sts_assume_role -r "$role_arn" -n "AssumeRoleDemoSession")
 # shellcheck disable=SC2181
 if [${?} == 0]; then
 echo "Assumed role $iam_role_name"
 else
 errecho "Failed to assume role."
 export AWS_ACCESS_KEY_ID=""
 export AWS_SECRET_ACCESS_KEY=""
 clean_up "$user_name" "$key_name" "$iam_role_name" "$policy_arn"
 "$policy_arn" "$assume_role_policy_arn"
 return 1
 fi

 IFS=$'\t ' read -r -a credentials <<<"$credentials"

 export AWS_ACCESS_KEY_ID=${credentials[0]}
 export AWS_SECRET_ACCESS_KEY=${credentials[1]}
 # bashsupport disable=BP2001
 export AWS_SESSION_TOKEN=${credentials[2]}

 buckets=$(s3_list_buckets)

 # shellcheck disable=SC2181
 if [${?} == 0]; then

Scenarios 2205

AWS Identity and Access Management User Guide

 local bucket_count
 bucket_count=$(echo "$buckets" | wc -w | xargs)
 echo "There are $bucket_count buckets in the account. Listing buckets
 succeeded because of "
 echo "the assumed role."
 else
 errecho "Failed to list buckets. This should not happen."
 export AWS_ACCESS_KEY_ID=""
 export AWS_SECRET_ACCESS_KEY=""
 export AWS_SESSION_TOKEN=""
 clean_up "$user_name" "$key_name" "$iam_role_name" "$policy_arn"
 "$policy_arn" "$assume_role_policy_arn"
 return 1
 fi

 local result=0
 export AWS_ACCESS_KEY_ID=""
 export AWS_SECRET_ACCESS_KEY=""

 echo
 echo_repeat "*" 88
 echo "The created resources will now be deleted."
 echo_repeat "*" 88
 echo

 clean_up "$user_name" "$key_name" "$iam_role_name" "$policy_arn" "$policy_arn"
 "$assume_role_policy_arn"

 # shellcheck disable=SC2181
 if [[${?} -ne 0]]; then
 result=1
 fi

 return $result
}

The IAM functions used in this scenario.

###
function iam_user_exists
#

Scenarios 2206

AWS Identity and Access Management User Guide

This function checks to see if the specified AWS Identity and Access Management
 (IAM) user already exists.
#
Parameters:
$1 - The name of the IAM user to check.
#
Returns:
0 - If the user already exists.
1 - If the user doesn't exist.
###
function iam_user_exists() {
 local user_name
 user_name=$1

 # Check whether the IAM user already exists.
 # We suppress all output - we're interested only in the return code.

 local errors
 errors=$(aws iam get-user \
 --user-name "$user_name" 2>&1 >/dev/null)

 local error_code=${?}

 if [[$error_code -eq 0]]; then
 return 0 # 0 in Bash script means true.
 else
 if [[$errors != *"error"*"(NoSuchEntity)"*]]; then
 aws_cli_error_log $error_code
 errecho "Error calling iam get-user $errors"
 fi

 return 1 # 1 in Bash script means false.
 fi
}

###
function iam_create_user
#
This function creates the specified IAM user, unless
it already exists.
#
Parameters:
-u user_name -- The name of the user to create.
#

Scenarios 2207

AWS Identity and Access Management User Guide

Returns:
The ARN of the user.
And:
0 - If successful.
1 - If it fails.
###
function iam_create_user() {
 local user_name response
 local option OPTARG # Required to use getopts command in a function.

 # bashsupport disable=BP5008
 function usage() {
 echo "function iam_create_user"
 echo "Creates an WS Identity and Access Management (IAM) user. You must
 supply a username:"
 echo " -u user_name The name of the user. It must be unique within the
 account."
 echo ""
 }

 # Retrieve the calling parameters.
 while getopts "u:h" option; do
 case "${option}" in
 u) user_name="${OPTARG}" ;;
 h)
 usage
 return 0
 ;;
 \?)
 echo "Invalid parameter"
 usage
 return 1
 ;;
 esac
 done
 export OPTIND=1

 if [[-z "$user_name"]]; then
 errecho "ERROR: You must provide a username with the -u parameter."
 usage
 return 1
 fi

 iecho "Parameters:\n"

Scenarios 2208

AWS Identity and Access Management User Guide

 iecho " User name: $user_name"
 iecho ""

 # If the user already exists, we don't want to try to create it.
 if (iam_user_exists "$user_name"); then
 errecho "ERROR: A user with that name already exists in the account."
 return 1
 fi

 response=$(aws iam create-user --user-name "$user_name" \
 --output text \
 --query 'User.Arn')

 local error_code=${?}

 if [[$error_code -ne 0]]; then
 aws_cli_error_log $error_code
 errecho "ERROR: AWS reports create-user operation failed.$response"
 return 1
 fi

 echo "$response"

 return 0
}

###
function iam_create_user_access_key
#
This function creates an IAM access key for the specified user.
#
Parameters:
-u user_name -- The name of the IAM user.
[-f file_name] -- The optional file name for the access key output.
#
Returns:
[access_key_id access_key_secret]
And:
0 - If successful.
1 - If it fails.
###
function iam_create_user_access_key() {
 local user_name file_name response
 local option OPTARG # Required to use getopts command in a function.

Scenarios 2209

AWS Identity and Access Management User Guide

 # bashsupport disable=BP5008
 function usage() {
 echo "function iam_create_user_access_key"
 echo "Creates an AWS Identity and Access Management (IAM) key pair."
 echo " -u user_name The name of the IAM user."
 echo " [-f file_name] Optional file name for the access key output."
 echo ""
 }

 # Retrieve the calling parameters.
 while getopts "u:f:h" option; do
 case "${option}" in
 u) user_name="${OPTARG}" ;;
 f) file_name="${OPTARG}" ;;
 h)
 usage
 return 0
 ;;
 \?)
 echo "Invalid parameter"
 usage
 return 1
 ;;
 esac
 done
 export OPTIND=1

 if [[-z "$user_name"]]; then
 errecho "ERROR: You must provide a username with the -u parameter."
 usage
 return 1
 fi

 response=$(aws iam create-access-key \
 --user-name "$user_name" \
 --output text)

 local error_code=${?}

 if [[$error_code -ne 0]]; then
 aws_cli_error_log $error_code
 errecho "ERROR: AWS reports create-access-key operation failed.$response"
 return 1

Scenarios 2210

AWS Identity and Access Management User Guide

 fi

 if [[-n "$file_name"]]; then
 echo "$response" >"$file_name"
 fi

 local key_id key_secret
 # shellcheck disable=SC2086
 key_id=$(echo $response | cut -f 2 -d ' ')
 # shellcheck disable=SC2086
 key_secret=$(echo $response | cut -f 4 -d ' ')

 echo "$key_id $key_secret"

 return 0
}

###
function iam_create_role
#
This function creates an IAM role.
#
Parameters:
-n role_name -- The name of the IAM role.
-p policy_json -- The assume role policy document.
#
Returns:
The ARN of the role.
And:
0 - If successful.
1 - If it fails.
###
function iam_create_role() {
 local role_name policy_document response
 local option OPTARG # Required to use getopts command in a function.

 # bashsupport disable=BP5008
 function usage() {
 echo "function iam_create_user_access_key"
 echo "Creates an AWS Identity and Access Management (IAM) role."
 echo " -n role_name The name of the IAM role."
 echo " -p policy_json -- The assume role policy document."
 echo ""
 }

Scenarios 2211

AWS Identity and Access Management User Guide

 # Retrieve the calling parameters.
 while getopts "n:p:h" option; do
 case "${option}" in
 n) role_name="${OPTARG}" ;;
 p) policy_document="${OPTARG}" ;;
 h)
 usage
 return 0
 ;;
 \?)
 echo "Invalid parameter"
 usage
 return 1
 ;;
 esac
 done
 export OPTIND=1

 if [[-z "$role_name"]]; then
 errecho "ERROR: You must provide a role name with the -n parameter."
 usage
 return 1
 fi

 if [[-z "$policy_document"]]; then
 errecho "ERROR: You must provide a policy document with the -p parameter."
 usage
 return 1
 fi

 response=$(aws iam create-role \
 --role-name "$role_name" \
 --assume-role-policy-document "$policy_document" \
 --output text \
 --query Role.Arn)

 local error_code=${?}

 if [[$error_code -ne 0]]; then
 aws_cli_error_log $error_code
 errecho "ERROR: AWS reports create-role operation failed.\n$response"
 return 1
 fi

Scenarios 2212

AWS Identity and Access Management User Guide

 echo "$response"

 return 0
}

###
function iam_create_policy
#
This function creates an IAM policy.
#
Parameters:
-n policy_name -- The name of the IAM policy.
-p policy_json -- The policy document.
#
Returns:
0 - If successful.
1 - If it fails.
###
function iam_create_policy() {
 local policy_name policy_document response
 local option OPTARG # Required to use getopts command in a function.

 # bashsupport disable=BP5008
 function usage() {
 echo "function iam_create_policy"
 echo "Creates an AWS Identity and Access Management (IAM) policy."
 echo " -n policy_name The name of the IAM policy."
 echo " -p policy_json -- The policy document."
 echo ""
 }

 # Retrieve the calling parameters.
 while getopts "n:p:h" option; do
 case "${option}" in
 n) policy_name="${OPTARG}" ;;
 p) policy_document="${OPTARG}" ;;
 h)
 usage
 return 0
 ;;
 \?)
 echo "Invalid parameter"
 usage

Scenarios 2213

AWS Identity and Access Management User Guide

 return 1
 ;;
 esac
 done
 export OPTIND=1

 if [[-z "$policy_name"]]; then
 errecho "ERROR: You must provide a policy name with the -n parameter."
 usage
 return 1
 fi

 if [[-z "$policy_document"]]; then
 errecho "ERROR: You must provide a policy document with the -p parameter."
 usage
 return 1
 fi

 response=$(aws iam create-policy \
 --policy-name "$policy_name" \
 --policy-document "$policy_document" \
 --output text \
 --query Policy.Arn)

 local error_code=${?}

 if [[$error_code -ne 0]]; then
 aws_cli_error_log $error_code
 errecho "ERROR: AWS reports create-policy operation failed.\n$response"
 return 1
 fi

 echo "$response"
}

###
function iam_attach_role_policy
#
This function attaches an IAM policy to a tole.
#
Parameters:
-n role_name -- The name of the IAM role.
-p policy_ARN -- The IAM policy document ARN..
#

Scenarios 2214

AWS Identity and Access Management User Guide

Returns:
0 - If successful.
1 - If it fails.
###
function iam_attach_role_policy() {
 local role_name policy_arn response
 local option OPTARG # Required to use getopts command in a function.

 # bashsupport disable=BP5008
 function usage() {
 echo "function iam_attach_role_policy"
 echo "Attaches an AWS Identity and Access Management (IAM) policy to an IAM
 role."
 echo " -n role_name The name of the IAM role."
 echo " -p policy_ARN -- The IAM policy document ARN."
 echo ""
 }

 # Retrieve the calling parameters.
 while getopts "n:p:h" option; do
 case "${option}" in
 n) role_name="${OPTARG}" ;;
 p) policy_arn="${OPTARG}" ;;
 h)
 usage
 return 0
 ;;
 \?)
 echo "Invalid parameter"
 usage
 return 1
 ;;
 esac
 done
 export OPTIND=1

 if [[-z "$role_name"]]; then
 errecho "ERROR: You must provide a role name with the -n parameter."
 usage
 return 1
 fi

 if [[-z "$policy_arn"]]; then
 errecho "ERROR: You must provide a policy ARN with the -p parameter."

Scenarios 2215

AWS Identity and Access Management User Guide

 usage
 return 1
 fi

 response=$(aws iam attach-role-policy \
 --role-name "$role_name" \
 --policy-arn "$policy_arn")

 local error_code=${?}

 if [[$error_code -ne 0]]; then
 aws_cli_error_log $error_code
 errecho "ERROR: AWS reports attach-role-policy operation failed.\n$response"
 return 1
 fi

 echo "$response"

 return 0
}

###
function iam_detach_role_policy
#
This function detaches an IAM policy to a tole.
#
Parameters:
-n role_name -- The name of the IAM role.
-p policy_ARN -- The IAM policy document ARN..
#
Returns:
0 - If successful.
1 - If it fails.
###
function iam_detach_role_policy() {
 local role_name policy_arn response
 local option OPTARG # Required to use getopts command in a function.

 # bashsupport disable=BP5008
 function usage() {
 echo "function iam_detach_role_policy"
 echo "Detaches an AWS Identity and Access Management (IAM) policy to an IAM
 role."
 echo " -n role_name The name of the IAM role."

Scenarios 2216

AWS Identity and Access Management User Guide

 echo " -p policy_ARN -- The IAM policy document ARN."
 echo ""
 }

 # Retrieve the calling parameters.
 while getopts "n:p:h" option; do
 case "${option}" in
 n) role_name="${OPTARG}" ;;
 p) policy_arn="${OPTARG}" ;;
 h)
 usage
 return 0
 ;;
 \?)
 echo "Invalid parameter"
 usage
 return 1
 ;;
 esac
 done
 export OPTIND=1

 if [[-z "$role_name"]]; then
 errecho "ERROR: You must provide a role name with the -n parameter."
 usage
 return 1
 fi

 if [[-z "$policy_arn"]]; then
 errecho "ERROR: You must provide a policy ARN with the -p parameter."
 usage
 return 1
 fi

 response=$(aws iam detach-role-policy \
 --role-name "$role_name" \
 --policy-arn "$policy_arn")

 local error_code=${?}

 if [[$error_code -ne 0]]; then
 aws_cli_error_log $error_code
 errecho "ERROR: AWS reports detach-role-policy operation failed.\n$response"
 return 1

Scenarios 2217

AWS Identity and Access Management User Guide

 fi

 echo "$response"

 return 0
}

###
function iam_delete_policy
#
This function deletes an IAM policy.
#
Parameters:
-n policy_arn -- The name of the IAM policy arn.
#
Returns:
0 - If successful.
1 - If it fails.
###
function iam_delete_policy() {
 local policy_arn response
 local option OPTARG # Required to use getopts command in a function.

 # bashsupport disable=BP5008
 function usage() {
 echo "function iam_delete_policy"
 echo "Deletes an WS Identity and Access Management (IAM) policy"
 echo " -n policy_arn -- The name of the IAM policy arn."
 echo ""
 }

 # Retrieve the calling parameters.
 while getopts "n:h" option; do
 case "${option}" in
 n) policy_arn="${OPTARG}" ;;
 h)
 usage
 return 0
 ;;
 \?)
 echo "Invalid parameter"
 usage
 return 1
 ;;

Scenarios 2218

AWS Identity and Access Management User Guide

 esac
 done
 export OPTIND=1

 if [[-z "$policy_arn"]]; then
 errecho "ERROR: You must provide a policy arn with the -n parameter."
 usage
 return 1
 fi

 iecho "Parameters:\n"
 iecho " Policy arn: $policy_arn"
 iecho ""

 response=$(aws iam delete-policy \
 --policy-arn "$policy_arn")

 local error_code=${?}

 if [[$error_code -ne 0]]; then
 aws_cli_error_log $error_code
 errecho "ERROR: AWS reports delete-policy operation failed.\n$response"
 return 1
 fi

 iecho "delete-policy response:$response"
 iecho

 return 0
}

###
function iam_delete_role
#
This function deletes an IAM role.
#
Parameters:
-n role_name -- The name of the IAM role.
#
Returns:
0 - If successful.
1 - If it fails.
###
function iam_delete_role() {

Scenarios 2219

AWS Identity and Access Management User Guide

 local role_name response
 local option OPTARG # Required to use getopts command in a function.

 # bashsupport disable=BP5008
 function usage() {
 echo "function iam_delete_role"
 echo "Deletes an WS Identity and Access Management (IAM) role"
 echo " -n role_name -- The name of the IAM role."
 echo ""
 }

 # Retrieve the calling parameters.
 while getopts "n:h" option; do
 case "${option}" in
 n) role_name="${OPTARG}" ;;
 h)
 usage
 return 0
 ;;
 \?)
 echo "Invalid parameter"
 usage
 return 1
 ;;
 esac
 done
 export OPTIND=1

 echo "role_name:$role_name"
 if [[-z "$role_name"]]; then
 errecho "ERROR: You must provide a role name with the -n parameter."
 usage
 return 1
 fi

 iecho "Parameters:\n"
 iecho " Role name: $role_name"
 iecho ""

 response=$(aws iam delete-role \
 --role-name "$role_name")

 local error_code=${?}

Scenarios 2220

AWS Identity and Access Management User Guide

 if [[$error_code -ne 0]]; then
 aws_cli_error_log $error_code
 errecho "ERROR: AWS reports delete-role operation failed.\n$response"
 return 1
 fi

 iecho "delete-role response:$response"
 iecho

 return 0
}

###
function iam_delete_access_key
#
This function deletes an IAM access key for the specified IAM user.
#
Parameters:
-u user_name -- The name of the user.
-k access_key -- The access key to delete.
#
Returns:
0 - If successful.
1 - If it fails.
###
function iam_delete_access_key() {
 local user_name access_key response
 local option OPTARG # Required to use getopts command in a function.

 # bashsupport disable=BP5008
 function usage() {
 echo "function iam_delete_access_key"
 echo "Deletes an WS Identity and Access Management (IAM) access key for the
 specified IAM user"
 echo " -u user_name The name of the user."
 echo " -k access_key The access key to delete."
 echo ""
 }

 # Retrieve the calling parameters.
 while getopts "u:k:h" option; do
 case "${option}" in
 u) user_name="${OPTARG}" ;;
 k) access_key="${OPTARG}" ;;

Scenarios 2221

AWS Identity and Access Management User Guide

 h)
 usage
 return 0
 ;;
 \?)
 echo "Invalid parameter"
 usage
 return 1
 ;;
 esac
 done
 export OPTIND=1

 if [[-z "$user_name"]]; then
 errecho "ERROR: You must provide a username with the -u parameter."
 usage
 return 1
 fi

 if [[-z "$access_key"]]; then
 errecho "ERROR: You must provide an access key with the -k parameter."
 usage
 return 1
 fi

 iecho "Parameters:\n"
 iecho " Username: $user_name"
 iecho " Access key: $access_key"
 iecho ""

 response=$(aws iam delete-access-key \
 --user-name "$user_name" \
 --access-key-id "$access_key")

 local error_code=${?}

 if [[$error_code -ne 0]]; then
 aws_cli_error_log $error_code
 errecho "ERROR: AWS reports delete-access-key operation failed.\n$response"
 return 1
 fi

 iecho "delete-access-key response:$response"
 iecho

Scenarios 2222

AWS Identity and Access Management User Guide

 return 0
}

###
function iam_delete_user
#
This function deletes the specified IAM user.
#
Parameters:
-u user_name -- The name of the user to create.
#
Returns:
0 - If successful.
1 - If it fails.
###
function iam_delete_user() {
 local user_name response
 local option OPTARG # Required to use getopts command in a function.

 # bashsupport disable=BP5008
 function usage() {
 echo "function iam_delete_user"
 echo "Deletes an WS Identity and Access Management (IAM) user. You must
 supply a username:"
 echo " -u user_name The name of the user."
 echo ""
 }

 # Retrieve the calling parameters.
 while getopts "u:h" option; do
 case "${option}" in
 u) user_name="${OPTARG}" ;;
 h)
 usage
 return 0
 ;;
 \?)
 echo "Invalid parameter"
 usage
 return 1
 ;;
 esac
 done

Scenarios 2223

AWS Identity and Access Management User Guide

 export OPTIND=1

 if [[-z "$user_name"]]; then
 errecho "ERROR: You must provide a username with the -u parameter."
 usage
 return 1
 fi

 iecho "Parameters:\n"
 iecho " User name: $user_name"
 iecho ""

 # If the user does not exist, we don't want to try to delete it.
 if (! iam_user_exists "$user_name"); then
 errecho "ERROR: A user with that name does not exist in the account."
 return 1
 fi

 response=$(aws iam delete-user \
 --user-name "$user_name")

 local error_code=${?}

 if [[$error_code -ne 0]]; then
 aws_cli_error_log $error_code
 errecho "ERROR: AWS reports delete-user operation failed.$response"
 return 1
 fi

 iecho "delete-user response:$response"
 iecho

 return 0
}

• For API details, see the following topics in AWS CLI Command Reference.

• AttachRolePolicy

• CreateAccessKey

• CreatePolicy

• CreateRole

Scenarios 2224

https://docs.aws.amazon.com/goto/aws-cli/iam-2010-05-08/AttachRolePolicy
https://docs.aws.amazon.com/goto/aws-cli/iam-2010-05-08/CreateAccessKey
https://docs.aws.amazon.com/goto/aws-cli/iam-2010-05-08/CreatePolicy
https://docs.aws.amazon.com/goto/aws-cli/iam-2010-05-08/CreateRole

AWS Identity and Access Management User Guide

• CreateUser

• DeleteAccessKey

• DeletePolicy

• DeleteRole

• DeleteUser

• DeleteUserPolicy

• DetachRolePolicy

• PutUserPolicy

C++

SDK for C++

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

namespace AwsDoc {
 namespace IAM {

 //! Cleanup by deleting created entities.
 /*!
 \sa DeleteCreatedEntities
 \param client: IAM client.
 \param role: IAM role.
 \param user: IAM user.
 \param policy: IAM policy.
 */
 static bool DeleteCreatedEntities(const Aws::IAM::IAMClient &client,
 const Aws::IAM::Model::Role &role,
 const Aws::IAM::Model::User &user,
 const Aws::IAM::Model::Policy &policy);
 }

 static const int LIST_BUCKETS_WAIT_SEC = 20;

Scenarios 2225

https://docs.aws.amazon.com/goto/aws-cli/iam-2010-05-08/CreateUser
https://docs.aws.amazon.com/goto/aws-cli/iam-2010-05-08/DeleteAccessKey
https://docs.aws.amazon.com/goto/aws-cli/iam-2010-05-08/DeletePolicy
https://docs.aws.amazon.com/goto/aws-cli/iam-2010-05-08/DeleteRole
https://docs.aws.amazon.com/goto/aws-cli/iam-2010-05-08/DeleteUser
https://docs.aws.amazon.com/goto/aws-cli/iam-2010-05-08/DeleteUserPolicy
https://docs.aws.amazon.com/goto/aws-cli/iam-2010-05-08/DetachRolePolicy
https://docs.aws.amazon.com/goto/aws-cli/iam-2010-05-08/PutUserPolicy
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/cpp/example_code/iam#code-examples

AWS Identity and Access Management User Guide

 static const char ALLOCATION_TAG[] = "example_code";
}

//! Scenario to create an IAM user, create an IAM role, and apply the role to the
 user.
// "IAM access" permissions are needed to run this code.
// "STS assume role" permissions are needed to run this code. (Note: It might be
 necessary to
// create a custom policy).
/*!
 \sa iamCreateUserAssumeRoleScenario
 \param clientConfig: Aws client configuration.
 \return bool: Successful completion.
*/
bool AwsDoc::IAM::iamCreateUserAssumeRoleScenario(
 const Aws::Client::ClientConfiguration &clientConfig) {

 Aws::IAM::IAMClient client(clientConfig);
 Aws::IAM::Model::User user;
 Aws::IAM::Model::Role role;
 Aws::IAM::Model::Policy policy;

 // 1. Create a user.
 {
 Aws::IAM::Model::CreateUserRequest request;
 Aws::String uuid = Aws::Utils::UUID::RandomUUID();
 Aws::String userName = "iam-demo-user-" +
 Aws::Utils::StringUtils::ToLower(uuid.c_str());
 request.SetUserName(userName);

 Aws::IAM::Model::CreateUserOutcome outcome = client.CreateUser(request);
 if (!outcome.IsSuccess()) {
 std::cout << "Error creating IAM user " << userName << ":" <<
 outcome.GetError().GetMessage() << std::endl;
 return false;
 }
 else {
 std::cout << "Successfully created IAM user " << userName <<
 std::endl;
 }

 user = outcome.GetResult().GetUser();
 }

Scenarios 2226

AWS Identity and Access Management User Guide

 // 2. Create a role.
 {
 // Get the IAM user for the current client in order to access its ARN.
 Aws::String iamUserArn;
 {
 Aws::IAM::Model::GetUserRequest request;
 Aws::IAM::Model::GetUserOutcome outcome = client.GetUser(request);
 if (!outcome.IsSuccess()) {
 std::cerr << "Error getting Iam user. " <<
 outcome.GetError().GetMessage() << std::endl;

 DeleteCreatedEntities(client, role, user, policy);
 return false;
 }
 else {
 std::cout << "Successfully retrieved Iam user "
 << outcome.GetResult().GetUser().GetUserName()
 << std::endl;
 }

 iamUserArn = outcome.GetResult().GetUser().GetArn();
 }

 Aws::IAM::Model::CreateRoleRequest request;

 Aws::String uuid = Aws::Utils::UUID::RandomUUID();
 Aws::String roleName = "iam-demo-role-" +
 Aws::Utils::StringUtils::ToLower(uuid.c_str());
 request.SetRoleName(roleName);

 // Build policy document for role.
 Aws::Utils::Document jsonStatement;
 jsonStatement.WithString("Effect", "Allow");

 Aws::Utils::Document jsonPrincipal;
 jsonPrincipal.WithString("AWS", iamUserArn);
 jsonStatement.WithObject("Principal", jsonPrincipal);
 jsonStatement.WithString("Action", "sts:AssumeRole");
 jsonStatement.WithObject("Condition", Aws::Utils::Document());

 Aws::Utils::Document policyDocument;
 policyDocument.WithString("Version", "2012-10-17");

 Aws::Utils::Array<Aws::Utils::Document> statements(1);

Scenarios 2227

AWS Identity and Access Management User Guide

 statements[0] = jsonStatement;
 policyDocument.WithArray("Statement", statements);

 std::cout << "Setting policy for role\n "
 << policyDocument.View().WriteCompact() << std::endl;

 // Set role policy document as JSON string.

 request.SetAssumeRolePolicyDocument(policyDocument.View().WriteCompact());

 Aws::IAM::Model::CreateRoleOutcome outcome = client.CreateRole(request);
 if (!outcome.IsSuccess()) {
 std::cerr << "Error creating role. " <<
 outcome.GetError().GetMessage() << std::endl;

 DeleteCreatedEntities(client, role, user, policy);
 return false;
 }
 else {
 std::cout << "Successfully created a role with name " << roleName
 << std::endl;
 }

 role = outcome.GetResult().GetRole();
 }

 // 3. Create an IAM policy.
 {
 Aws::IAM::Model::CreatePolicyRequest request;
 Aws::String uuid = Aws::Utils::UUID::RandomUUID();
 Aws::String policyName = "iam-demo-policy-" +
 Aws::Utils::StringUtils::ToLower(uuid.c_str());
 request.SetPolicyName(policyName);

 // Build IAM policy document.
 Aws::Utils::Document jsonStatement;
 jsonStatement.WithString("Effect", "Allow");
 jsonStatement.WithString("Action", "s3:ListAllMyBuckets");
 jsonStatement.WithString("Resource", "arn:aws:s3:::*");

 Aws::Utils::Document policyDocument;
 policyDocument.WithString("Version", "2012-10-17");

 Aws::Utils::Array<Aws::Utils::Document> statements(1);

Scenarios 2228

AWS Identity and Access Management User Guide

 statements[0] = jsonStatement;
 policyDocument.WithArray("Statement", statements);

 std::cout << "Creating a policy.\n " <<
 policyDocument.View().WriteCompact()
 << std::endl;

 // Set IAM policy document as JSON string.
 request.SetPolicyDocument(policyDocument.View().WriteCompact());

 Aws::IAM::Model::CreatePolicyOutcome outcome =
 client.CreatePolicy(request);
 if (!outcome.IsSuccess()) {
 std::cerr << "Error creating policy. " <<
 outcome.GetError().GetMessage() << std::endl;

 DeleteCreatedEntities(client, role, user, policy);
 return false;
 }
 else {
 std::cout << "Successfully created a policy with name, " <<
 policyName <<
 "." << std::endl;
 }

 policy = outcome.GetResult().GetPolicy();
 }

 // 4. Assume the new role using the AWS Security Token Service (STS).
 Aws::STS::Model::Credentials credentials;
 {
 Aws::STS::STSClient stsClient(clientConfig);

 Aws::STS::Model::AssumeRoleRequest request;
 request.SetRoleArn(role.GetArn());
 Aws::String uuid = Aws::Utils::UUID::RandomUUID();
 Aws::String roleSessionName = "iam-demo-role-session-" +

 Aws::Utils::StringUtils::ToLower(uuid.c_str());
 request.SetRoleSessionName(roleSessionName);

 Aws::STS::Model::AssumeRoleOutcome assumeRoleOutcome;

 // Repeatedly call AssumeRole, because there is often a delay

Scenarios 2229

AWS Identity and Access Management User Guide

 // before the role is available to be assumed.
 // Repeat at most 20 times when access is denied.
 int count = 0;
 while (true) {
 assumeRoleOutcome = stsClient.AssumeRole(request);
 if (!assumeRoleOutcome.IsSuccess()) {
 if (count > 20 ||
 assumeRoleOutcome.GetError().GetErrorType() !=
 Aws::STS::STSErrors::ACCESS_DENIED) {
 std::cerr << "Error assuming role after 20 tries. " <<
 assumeRoleOutcome.GetError().GetMessage() <<
 std::endl;

 DeleteCreatedEntities(client, role, user, policy);
 return false;
 }
 std::this_thread::sleep_for(std::chrono::seconds(1));
 }
 else {
 std::cout << "Successfully assumed the role after " << count
 << " seconds." << std::endl;
 break;
 }
 count++;
 }

 credentials = assumeRoleOutcome.GetResult().GetCredentials();
 }

 // 5. List objects in the bucket (This should fail).
 {
 Aws::S3::S3Client s3Client(
 Aws::Auth::AWSCredentials(credentials.GetAccessKeyId(),
 credentials.GetSecretAccessKey(),
 credentials.GetSessionToken()),
 Aws::MakeShared<Aws::S3::S3EndpointProvider>(ALLOCATION_TAG),
 clientConfig);
 Aws::S3::Model::ListBucketsOutcome listBucketsOutcome =
 s3Client.ListBuckets();
 if (!listBucketsOutcome.IsSuccess()) {
 if (listBucketsOutcome.GetError().GetErrorType() !=
 Aws::S3::S3Errors::ACCESS_DENIED) {
 std::cerr << "Could not lists buckets. " <<

Scenarios 2230

AWS Identity and Access Management User Guide

 listBucketsOutcome.GetError().GetMessage() <<
 std::endl;
 }
 else {
 std::cout
 << "Access to list buckets denied because privileges have
 not been applied."
 << std::endl;
 }
 }
 else {
 std::cerr
 << "Successfully retrieved bucket lists when this should not
 happen."
 << std::endl;
 }
 }

 // 6. Attach the policy to the role.
 {
 Aws::IAM::Model::AttachRolePolicyRequest request;
 request.SetRoleName(role.GetRoleName());
 request.WithPolicyArn(policy.GetArn());

 Aws::IAM::Model::AttachRolePolicyOutcome outcome =
 client.AttachRolePolicy(
 request);
 if (!outcome.IsSuccess()) {
 std::cerr << "Error creating policy. " <<
 outcome.GetError().GetMessage() << std::endl;

 DeleteCreatedEntities(client, role, user, policy);
 return false;
 }
 else {
 std::cout << "Successfully attached the policy with name, "
 << policy.GetPolicyName() <<
 ", to the role, " << role.GetRoleName() << "." <<
 std::endl;
 }
 }

 int count = 0;
 // 7. List objects in the bucket (this should succeed).

Scenarios 2231

AWS Identity and Access Management User Guide

 // Repeatedly call ListBuckets, because there is often a delay
 // before the policy with ListBucket permissions has been applied to the
 role.
 // Repeat at most LIST_BUCKETS_WAIT_SEC times when access is denied.
 while (true) {
 Aws::S3::S3Client s3Client(
 Aws::Auth::AWSCredentials(credentials.GetAccessKeyId(),
 credentials.GetSecretAccessKey(),
 credentials.GetSessionToken()),
 Aws::MakeShared<Aws::S3::S3EndpointProvider>(ALLOCATION_TAG),
 clientConfig);
 Aws::S3::Model::ListBucketsOutcome listBucketsOutcome =
 s3Client.ListBuckets();
 if (!listBucketsOutcome.IsSuccess()) {
 if ((count > LIST_BUCKETS_WAIT_SEC) ||
 listBucketsOutcome.GetError().GetErrorType() !=
 Aws::S3::S3Errors::ACCESS_DENIED) {
 std::cerr << "Could not lists buckets after " <<
 LIST_BUCKETS_WAIT_SEC << " seconds. " <<
 listBucketsOutcome.GetError().GetMessage() <<
 std::endl;
 DeleteCreatedEntities(client, role, user, policy);
 return false;
 }

 std::this_thread::sleep_for(std::chrono::seconds(1));
 }
 else {

 std::cout << "Successfully retrieved bucket lists after " << count
 << " seconds." << std::endl;
 break;
 }
 count++;
 }

 // 8. Delete all the created resources.
 return DeleteCreatedEntities(client, role, user, policy);
}

bool AwsDoc::IAM::DeleteCreatedEntities(const Aws::IAM::IAMClient &client,
 const Aws::IAM::Model::Role &role,
 const Aws::IAM::Model::User &user,
 const Aws::IAM::Model::Policy &policy) {

Scenarios 2232

AWS Identity and Access Management User Guide

 bool result = true;
 if (policy.ArnHasBeenSet()) {
 // Detach the policy from the role.
 {
 Aws::IAM::Model::DetachRolePolicyRequest request;
 request.SetPolicyArn(policy.GetArn());
 request.SetRoleName(role.GetRoleName());

 Aws::IAM::Model::DetachRolePolicyOutcome outcome =
 client.DetachRolePolicy(
 request);
 if (!outcome.IsSuccess()) {
 std::cerr << "Error Detaching policy from roles. " <<
 outcome.GetError().GetMessage() << std::endl;
 result = false;
 }
 else {
 std::cout << "Successfully detached the policy with arn "
 << policy.GetArn()
 << " from role " << role.GetRoleName() << "." <<
 std::endl;
 }
 }

 // Delete the policy.
 {
 Aws::IAM::Model::DeletePolicyRequest request;
 request.WithPolicyArn(policy.GetArn());

 Aws::IAM::Model::DeletePolicyOutcome outcome =
 client.DeletePolicy(request);
 if (!outcome.IsSuccess()) {
 std::cerr << "Error deleting policy. " <<
 outcome.GetError().GetMessage() << std::endl;
 result = false;
 }
 else {
 std::cout << "Successfully deleted the policy with arn "
 << policy.GetArn() << std::endl;
 }
 }

 }

Scenarios 2233

AWS Identity and Access Management User Guide

 if (role.RoleIdHasBeenSet()) {
 // Delete the role.
 Aws::IAM::Model::DeleteRoleRequest request;
 request.SetRoleName(role.GetRoleName());

 Aws::IAM::Model::DeleteRoleOutcome outcome = client.DeleteRole(request);
 if (!outcome.IsSuccess()) {
 std::cerr << "Error deleting role. " <<
 outcome.GetError().GetMessage() << std::endl;
 result = false;
 }
 else {
 std::cout << "Successfully deleted the role with name "
 << role.GetRoleName() << std::endl;
 }
 }

 if (user.ArnHasBeenSet()) {
 // Delete the user.
 Aws::IAM::Model::DeleteUserRequest request;
 request.WithUserName(user.GetUserName());

 Aws::IAM::Model::DeleteUserOutcome outcome = client.DeleteUser(request);
 if (!outcome.IsSuccess()) {
 std::cerr << "Error deleting user. " <<
 outcome.GetError().GetMessage() << std::endl;
 result = false;
 }
 else {
 std::cout << "Successfully deleted the user with name "
 << user.GetUserName() << std::endl;
 }
 }

 return result;
}

• For API details, see the following topics in AWS SDK for C++ API Reference.

• AttachRolePolicy

• CreateAccessKey

• CreatePolicy

Scenarios 2234

https://docs.aws.amazon.com/goto/SdkForCpp/iam-2010-05-08/AttachRolePolicy
https://docs.aws.amazon.com/goto/SdkForCpp/iam-2010-05-08/CreateAccessKey
https://docs.aws.amazon.com/goto/SdkForCpp/iam-2010-05-08/CreatePolicy

AWS Identity and Access Management User Guide

• CreateRole

• CreateUser

• DeleteAccessKey

• DeletePolicy

• DeleteRole

• DeleteUser

• DeleteUserPolicy

• DetachRolePolicy

• PutUserPolicy

Go

SDK for Go V2

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Run an interactive scenario at a command prompt.

// AssumeRoleScenario shows you how to use the AWS Identity and Access Management
 (IAM)
// service to perform the following actions:
//
// 1. Create a user who has no permissions.
// 2. Create a role that grants permission to list Amazon Simple Storage Service
// (Amazon S3) buckets for the account.
// 3. Add a policy to let the user assume the role.
// 4. Try and fail to list buckets without permissions.
// 5. Assume the role and list S3 buckets using temporary credentials.
// 6. Delete the policy, role, and user.
type AssumeRoleScenario struct {
 sdkConfig aws.Config
 accountWrapper actions.AccountWrapper
 policyWrapper actions.PolicyWrapper

Scenarios 2235

https://docs.aws.amazon.com/goto/SdkForCpp/iam-2010-05-08/CreateRole
https://docs.aws.amazon.com/goto/SdkForCpp/iam-2010-05-08/CreateUser
https://docs.aws.amazon.com/goto/SdkForCpp/iam-2010-05-08/DeleteAccessKey
https://docs.aws.amazon.com/goto/SdkForCpp/iam-2010-05-08/DeletePolicy
https://docs.aws.amazon.com/goto/SdkForCpp/iam-2010-05-08/DeleteRole
https://docs.aws.amazon.com/goto/SdkForCpp/iam-2010-05-08/DeleteUser
https://docs.aws.amazon.com/goto/SdkForCpp/iam-2010-05-08/DeleteUserPolicy
https://docs.aws.amazon.com/goto/SdkForCpp/iam-2010-05-08/DetachRolePolicy
https://docs.aws.amazon.com/goto/SdkForCpp/iam-2010-05-08/PutUserPolicy
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/gov2/iam#code-examples

AWS Identity and Access Management User Guide

 roleWrapper actions.RoleWrapper
 userWrapper actions.UserWrapper
 questioner demotools.IQuestioner
 helper IScenarioHelper
 isTestRun bool
}

// NewAssumeRoleScenario constructs an AssumeRoleScenario instance from a
 configuration.
// It uses the specified config to get an IAM client and create wrappers for the
 actions
// used in the scenario.
func NewAssumeRoleScenario(sdkConfig aws.Config, questioner
 demotools.IQuestioner,
 helper IScenarioHelper) AssumeRoleScenario {
 iamClient := iam.NewFromConfig(sdkConfig)
 return AssumeRoleScenario{
 sdkConfig: sdkConfig,
 accountWrapper: actions.AccountWrapper{IamClient: iamClient},
 policyWrapper: actions.PolicyWrapper{IamClient: iamClient},
 roleWrapper: actions.RoleWrapper{IamClient: iamClient},
 userWrapper: actions.UserWrapper{IamClient: iamClient},
 questioner: questioner,
 helper: helper,
 }
}

// addTestOptions appends the API options specified in the original configuration
 to
// another configuration. This is used to attach the middleware stubber to
 clients
// that are constructed during the scenario, which is needed for unit testing.
func (scenario AssumeRoleScenario) addTestOptions(scenarioConfig *aws.Config) {
 if scenario.isTestRun {
 scenarioConfig.APIOptions = append(scenarioConfig.APIOptions,
 scenario.sdkConfig.APIOptions...)
 }
}

// Run runs the interactive scenario.
func (scenario AssumeRoleScenario) Run() {
 defer func() {
 if r := recover(); r != nil {
 log.Printf("Something went wrong with the demo.\n")

Scenarios 2236

AWS Identity and Access Management User Guide

 log.Println(r)
 }
 }()

 log.Println(strings.Repeat("-", 88))
 log.Println("Welcome to the AWS Identity and Access Management (IAM) assume role
 demo.")
 log.Println(strings.Repeat("-", 88))

 user := scenario.CreateUser()
 accessKey := scenario.CreateAccessKey(user)
 role := scenario.CreateRoleAndPolicies(user)
 noPermsConfig := scenario.ListBucketsWithoutPermissions(accessKey)
 scenario.ListBucketsWithAssumedRole(noPermsConfig, role)
 scenario.Cleanup(user, role)

 log.Println(strings.Repeat("-", 88))
 log.Println("Thanks for watching!")
 log.Println(strings.Repeat("-", 88))
}

// CreateUser creates a new IAM user. This user has no permissions.
func (scenario AssumeRoleScenario) CreateUser() *types.User {
 log.Println("Let's create an example user with no permissions.")
 userName := scenario.questioner.Ask("Enter a name for the example user:",
 demotools.NotEmpty{})
 user, err := scenario.userWrapper.GetUser(userName)
 if err != nil {
 panic(err)
 }
 if user == nil {
 user, err = scenario.userWrapper.CreateUser(userName)
 if err != nil {
 panic(err)
 }
 log.Printf("Created user %v.\n", *user.UserName)
 } else {
 log.Printf("User %v already exists.\n", *user.UserName)
 }
 log.Println(strings.Repeat("-", 88))
 return user
}

// CreateAccessKey creates an access key for the user.

Scenarios 2237

AWS Identity and Access Management User Guide

func (scenario AssumeRoleScenario) CreateAccessKey(user *types.User)
 *types.AccessKey {
 accessKey, err := scenario.userWrapper.CreateAccessKeyPair(*user.UserName)
 if err != nil {
 panic(err)
 }
 log.Printf("Created access key %v for your user.", *accessKey.AccessKeyId)
 log.Println("Waiting a few seconds for your user to be ready...")
 scenario.helper.Pause(10)
 log.Println(strings.Repeat("-", 88))
 return accessKey
}

// CreateRoleAndPolicies creates a policy that grants permission to list S3
 buckets for
// the current account and attaches the policy to a newly created role. It also
 adds an
// inline policy to the specified user that grants the user permission to assume
 the role.
func (scenario AssumeRoleScenario) CreateRoleAndPolicies(user *types.User)
 *types.Role {
 log.Println("Let's create a role and policy that grant permission to list S3
 buckets.")
 scenario.questioner.Ask("Press Enter when you're ready.")
 listBucketsRole, err :=
 scenario.roleWrapper.CreateRole(scenario.helper.GetName(), *user.Arn)
 if err != nil {panic(err)}
 log.Printf("Created role %v.\n", *listBucketsRole.RoleName)
 listBucketsPolicy, err := scenario.policyWrapper.CreatePolicy(
 scenario.helper.GetName(), []string{"s3:ListAllMyBuckets"}, "arn:aws:s3:::*")
 if err != nil {panic(err)}
 log.Printf("Created policy %v.\n", *listBucketsPolicy.PolicyName)
 err = scenario.roleWrapper.AttachRolePolicy(*listBucketsPolicy.Arn,
 *listBucketsRole.RoleName)
 if err != nil {panic(err)}
 log.Printf("Attached policy %v to role %v.\n", *listBucketsPolicy.PolicyName,
 *listBucketsRole.RoleName)
 err = scenario.userWrapper.CreateUserPolicy(*user.UserName,
 scenario.helper.GetName(),
 []string{"sts:AssumeRole"}, *listBucketsRole.Arn)
 if err != nil {panic(err)}
 log.Printf("Created an inline policy for user %v that lets the user assume the
 role.\n",
 *user.UserName)

Scenarios 2238

AWS Identity and Access Management User Guide

 log.Println("Let's give AWS a few seconds to propagate these new resources and
 connections...")
 scenario.helper.Pause(10)
 log.Println(strings.Repeat("-", 88))
 return listBucketsRole
}

// ListBucketsWithoutPermissions creates an Amazon S3 client from the user's
 access key
// credentials and tries to list buckets for the account. Because the user does
 not have
// permission to perform this action, the action fails.
func (scenario AssumeRoleScenario) ListBucketsWithoutPermissions(accessKey
 *types.AccessKey) *aws.Config {
 log.Println("Let's try to list buckets without permissions. This should return
 an AccessDenied error.")
 scenario.questioner.Ask("Press Enter when you're ready.")
 noPermsConfig, err := config.LoadDefaultConfig(context.TODO(),
 config.WithCredentialsProvider(credentials.NewStaticCredentialsProvider(
 *accessKey.AccessKeyId, *accessKey.SecretAccessKey, ""),
))
 if err != nil {panic(err)}

 // Add test options if this is a test run. This is needed only for testing
 purposes.
 scenario.addTestOptions(&noPermsConfig)

 s3Client := s3.NewFromConfig(noPermsConfig)
 _, err = s3Client.ListBuckets(context.TODO(), &s3.ListBucketsInput{})
 if err != nil {
 // The SDK for Go does not model the AccessDenied error, so check ErrorCode
 directly.
 var ae smithy.APIError
 if errors.As(err, &ae) {
 switch ae.ErrorCode() {
 case "AccessDenied":
 log.Println("Got AccessDenied error, which is the expected result because\n"
 +
 "the ListBuckets call was made without permissions.")
 default:
 log.Println("Expected AccessDenied, got something else.")
 panic(err)
 }
 }

Scenarios 2239

AWS Identity and Access Management User Guide

 } else {
 log.Println("Expected AccessDenied error when calling ListBuckets without
 permissions,\n" +
 "but the call succeeded. Continuing the example anyway...")
 }
 log.Println(strings.Repeat("-", 88))
 return &noPermsConfig
}

// ListBucketsWithAssumedRole performs the following actions:
//
// 1. Creates an AWS Security Token Service (AWS STS) client from the config
 created from
// the user's access key credentials.
// 2. Gets temporary credentials by assuming the role that grants permission to
 list the
// buckets.
// 3. Creates an Amazon S3 client from the temporary credentials.
// 4. Lists buckets for the account. Because the temporary credentials are
 generated by
// assuming the role that grants permission, the action succeeds.
func (scenario AssumeRoleScenario) ListBucketsWithAssumedRole(noPermsConfig
 *aws.Config, role *types.Role) {
 log.Println("Let's assume the role that grants permission to list buckets and
 try again.")
 scenario.questioner.Ask("Press Enter when you're ready.")
 stsClient := sts.NewFromConfig(*noPermsConfig)
 tempCredentials, err := stsClient.AssumeRole(context.TODO(),
 &sts.AssumeRoleInput{
 RoleArn: role.Arn,
 RoleSessionName: aws.String("AssumeRoleExampleSession"),
 DurationSeconds: aws.Int32(900),
 })
 if err != nil {
 log.Printf("Couldn't assume role %v.\n", *role.RoleName)
 panic(err)
 }
 log.Printf("Assumed role %v, got temporary credentials.\n", *role.RoleName)
 assumeRoleConfig, err := config.LoadDefaultConfig(context.TODO(),
 config.WithCredentialsProvider(credentials.NewStaticCredentialsProvider(
 *tempCredentials.Credentials.AccessKeyId,
 *tempCredentials.Credentials.SecretAccessKey,
 *tempCredentials.Credentials.SessionToken),
),

Scenarios 2240

AWS Identity and Access Management User Guide

)
 if err != nil {panic(err)}

 // Add test options if this is a test run. This is needed only for testing
 purposes.
 scenario.addTestOptions(&assumeRoleConfig)

 s3Client := s3.NewFromConfig(assumeRoleConfig)
 result, err := s3Client.ListBuckets(context.TODO(), &s3.ListBucketsInput{})
 if err != nil {
 log.Println("Couldn't list buckets with assumed role credentials.")
 panic(err)
 }
 log.Println("Successfully called ListBuckets with assumed role credentials, \n"
 +
 "here are some of them:")
 for i := 0; i < len(result.Buckets) && i < 5; i++ {
 log.Printf("\t%v\n", *result.Buckets[i].Name)
 }
 log.Println(strings.Repeat("-", 88))
}

// Cleanup deletes all resources created for the scenario.
func (scenario AssumeRoleScenario) Cleanup(user *types.User, role *types.Role) {
 if scenario.questioner.AskBool(
 "Do you want to delete the resources created for this example? (y/n)", "y",
) {
 policies, err := scenario.roleWrapper.ListAttachedRolePolicies(*role.RoleName)
 if err != nil {panic(err)}
 for _, policy := range policies {
 err = scenario.roleWrapper.DetachRolePolicy(*role.RoleName,
 *policy.PolicyArn)
 if err != nil {panic(err)}
 err = scenario.policyWrapper.DeletePolicy(*policy.PolicyArn)
 if err != nil {panic(err)}
 log.Printf("Detached policy %v from role %v and deleted the policy.\n",
 *policy.PolicyName, *role.RoleName)
 }
 err = scenario.roleWrapper.DeleteRole(*role.RoleName)
 if err != nil {panic(err)}
 log.Printf("Deleted role %v.\n", *role.RoleName)

 userPols, err := scenario.userWrapper.ListUserPolicies(*user.UserName)
 if err != nil {panic(err)}

Scenarios 2241

AWS Identity and Access Management User Guide

 for _, userPol := range userPols {
 err = scenario.userWrapper.DeleteUserPolicy(*user.UserName, userPol)
 if err != nil {panic(err)}
 log.Printf("Deleted policy %v from user %v.\n", userPol, *user.UserName)
 }
 keys, err := scenario.userWrapper.ListAccessKeys(*user.UserName)
 if err != nil {panic(err)}
 for _, key := range keys {
 err = scenario.userWrapper.DeleteAccessKey(*user.UserName, *key.AccessKeyId)
 if err != nil {panic(err)}
 log.Printf("Deleted access key %v from user %v.\n", *key.AccessKeyId,
 *user.UserName)
 }
 err = scenario.userWrapper.DeleteUser(*user.UserName)
 if err != nil {panic(err)}
 log.Printf("Deleted user %v.\n", *user.UserName)
 log.Println(strings.Repeat("-", 88))
 }

}

Define a struct that wraps account actions.

// AccountWrapper encapsulates AWS Identity and Access Management (IAM) account
 actions
// used in the examples.
// It contains an IAM service client that is used to perform account actions.
type AccountWrapper struct {
 IamClient *iam.Client
}

// GetAccountPasswordPolicy gets the account password policy for the current
 account.
// If no policy has been set, a NoSuchEntityException is error is returned.
func (wrapper AccountWrapper) GetAccountPasswordPolicy() (*types.PasswordPolicy,
 error) {
 var pwPolicy *types.PasswordPolicy
 result, err := wrapper.IamClient.GetAccountPasswordPolicy(context.TODO(),

Scenarios 2242

AWS Identity and Access Management User Guide

 &iam.GetAccountPasswordPolicyInput{})
 if err != nil {
 log.Printf("Couldn't get account password policy. Here's why: %v\n", err)
 } else {
 pwPolicy = result.PasswordPolicy
 }
 return pwPolicy, err
}

// ListSAMLProviders gets the SAML providers for the account.
func (wrapper AccountWrapper) ListSAMLProviders() ([]types.SAMLProviderListEntry,
 error) {
 var providers []types.SAMLProviderListEntry
 result, err := wrapper.IamClient.ListSAMLProviders(context.TODO(),
 &iam.ListSAMLProvidersInput{})
 if err != nil {
 log.Printf("Couldn't list SAML providers. Here's why: %v\n", err)
 } else {
 providers = result.SAMLProviderList
 }
 return providers, err
}

Define a struct that wraps policy actions.

// PolicyDocument defines a policy document as a Go struct that can be serialized
// to JSON.
type PolicyDocument struct {
 Version string
 Statement []PolicyStatement
}

// PolicyStatement defines a statement in a policy document.
type PolicyStatement struct {
 Effect string
 Action []string
 Principal map[string]string `json:",omitempty"`
 Resource *string `json:",omitempty"`

Scenarios 2243

AWS Identity and Access Management User Guide

}

// PolicyWrapper encapsulates AWS Identity and Access Management (IAM) policy
 actions
// used in the examples.
// It contains an IAM service client that is used to perform policy actions.
type PolicyWrapper struct {
 IamClient *iam.Client
}

// ListPolicies gets up to maxPolicies policies.
func (wrapper PolicyWrapper) ListPolicies(maxPolicies int32) ([]types.Policy,
 error) {
 var policies []types.Policy
 result, err := wrapper.IamClient.ListPolicies(context.TODO(),
 &iam.ListPoliciesInput{
 MaxItems: aws.Int32(maxPolicies),
 })
 if err != nil {
 log.Printf("Couldn't list policies. Here's why: %v\n", err)
 } else {
 policies = result.Policies
 }
 return policies, err
}

// CreatePolicy creates a policy that grants a list of actions to the specified
 resource.
// PolicyDocument shows how to work with a policy document as a data structure
 and
// serialize it to JSON by using Go's JSON marshaler.
func (wrapper PolicyWrapper) CreatePolicy(policyName string, actions []string,
 resourceArn string) (*types.Policy, error) {
 var policy *types.Policy
 policyDoc := PolicyDocument{
 Version: "2012-10-17",
 Statement: []PolicyStatement{{
 Effect: "Allow",

Scenarios 2244

AWS Identity and Access Management User Guide

 Action: actions,
 Resource: aws.String(resourceArn),
 }},
 }
 policyBytes, err := json.Marshal(policyDoc)
 if err != nil {
 log.Printf("Couldn't create policy document for %v. Here's why: %v\n",
 resourceArn, err)
 return nil, err
 }
 result, err := wrapper.IamClient.CreatePolicy(context.TODO(),
 &iam.CreatePolicyInput{
 PolicyDocument: aws.String(string(policyBytes)),
 PolicyName: aws.String(policyName),
 })
 if err != nil {
 log.Printf("Couldn't create policy %v. Here's why: %v\n", policyName, err)
 } else {
 policy = result.Policy
 }
 return policy, err
}

// GetPolicy gets data about a policy.
func (wrapper PolicyWrapper) GetPolicy(policyArn string) (*types.Policy, error) {
 var policy *types.Policy
 result, err := wrapper.IamClient.GetPolicy(context.TODO(), &iam.GetPolicyInput{
 PolicyArn: aws.String(policyArn),
 })
 if err != nil {
 log.Printf("Couldn't get policy %v. Here's why: %v\n", policyArn, err)
 } else {
 policy = result.Policy
 }
 return policy, err
}

// DeletePolicy deletes a policy.
func (wrapper PolicyWrapper) DeletePolicy(policyArn string) error {
 _, err := wrapper.IamClient.DeletePolicy(context.TODO(), &iam.DeletePolicyInput{

Scenarios 2245

AWS Identity and Access Management User Guide

 PolicyArn: aws.String(policyArn),
 })
 if err != nil {
 log.Printf("Couldn't delete policy %v. Here's why: %v\n", policyArn, err)
 }
 return err
}

Define a struct that wraps role actions.

// RoleWrapper encapsulates AWS Identity and Access Management (IAM) role actions
// used in the examples.
// It contains an IAM service client that is used to perform role actions.
type RoleWrapper struct {
 IamClient *iam.Client
}

// ListRoles gets up to maxRoles roles.
func (wrapper RoleWrapper) ListRoles(maxRoles int32) ([]types.Role, error) {
 var roles []types.Role
 result, err := wrapper.IamClient.ListRoles(context.TODO(),
 &iam.ListRolesInput{MaxItems: aws.Int32(maxRoles)},
)
 if err != nil {
 log.Printf("Couldn't list roles. Here's why: %v\n", err)
 } else {
 roles = result.Roles
 }
 return roles, err
}

// CreateRole creates a role that trusts a specified user. The trusted user can
 assume
// the role to acquire its permissions.
// PolicyDocument shows how to work with a policy document as a data structure
 and

Scenarios 2246

AWS Identity and Access Management User Guide

// serialize it to JSON by using Go's JSON marshaler.
func (wrapper RoleWrapper) CreateRole(roleName string, trustedUserArn string)
 (*types.Role, error) {
 var role *types.Role
 trustPolicy := PolicyDocument{
 Version: "2012-10-17",
 Statement: []PolicyStatement{{
 Effect: "Allow",
 Principal: map[string]string{"AWS": trustedUserArn},
 Action: []string{"sts:AssumeRole"},
 }},
 }
 policyBytes, err := json.Marshal(trustPolicy)
 if err != nil {
 log.Printf("Couldn't create trust policy for %v. Here's why: %v\n",
 trustedUserArn, err)
 return nil, err
 }
 result, err := wrapper.IamClient.CreateRole(context.TODO(),
 &iam.CreateRoleInput{
 AssumeRolePolicyDocument: aws.String(string(policyBytes)),
 RoleName: aws.String(roleName),
 })
 if err != nil {
 log.Printf("Couldn't create role %v. Here's why: %v\n", roleName, err)
 } else {
 role = result.Role
 }
 return role, err
}

// GetRole gets data about a role.
func (wrapper RoleWrapper) GetRole(roleName string) (*types.Role, error) {
 var role *types.Role
 result, err := wrapper.IamClient.GetRole(context.TODO(),
 &iam.GetRoleInput{RoleName: aws.String(roleName)})
 if err != nil {
 log.Printf("Couldn't get role %v. Here's why: %v\n", roleName, err)
 } else {
 role = result.Role
 }
 return role, err

Scenarios 2247

AWS Identity and Access Management User Guide

}

// CreateServiceLinkedRole creates a service-linked role that is owned by the
 specified service.
func (wrapper RoleWrapper) CreateServiceLinkedRole(serviceName string,
 description string) (*types.Role, error) {
 var role *types.Role
 result, err := wrapper.IamClient.CreateServiceLinkedRole(context.TODO(),
 &iam.CreateServiceLinkedRoleInput{
 AWSServiceName: aws.String(serviceName),
 Description: aws.String(description),
 })
 if err != nil {
 log.Printf("Couldn't create service-linked role %v. Here's why: %v\n",
 serviceName, err)
 } else {
 role = result.Role
 }
 return role, err
}

// DeleteServiceLinkedRole deletes a service-linked role.
func (wrapper RoleWrapper) DeleteServiceLinkedRole(roleName string) error {
 _, err := wrapper.IamClient.DeleteServiceLinkedRole(context.TODO(),
 &iam.DeleteServiceLinkedRoleInput{
 RoleName: aws.String(roleName)},
)
 if err != nil {
 log.Printf("Couldn't delete service-linked role %v. Here's why: %v\n",
 roleName, err)
 }
 return err
}

// AttachRolePolicy attaches a policy to a role.
func (wrapper RoleWrapper) AttachRolePolicy(policyArn string, roleName string)
 error {

Scenarios 2248

AWS Identity and Access Management User Guide

 _, err := wrapper.IamClient.AttachRolePolicy(context.TODO(),
 &iam.AttachRolePolicyInput{
 PolicyArn: aws.String(policyArn),
 RoleName: aws.String(roleName),
 })
 if err != nil {
 log.Printf("Couldn't attach policy %v to role %v. Here's why: %v\n", policyArn,
 roleName, err)
 }
 return err
}

// ListAttachedRolePolicies lists the policies that are attached to the specified
 role.
func (wrapper RoleWrapper) ListAttachedRolePolicies(roleName string)
 ([]types.AttachedPolicy, error) {
 var policies []types.AttachedPolicy
 result, err := wrapper.IamClient.ListAttachedRolePolicies(context.TODO(),
 &iam.ListAttachedRolePoliciesInput{
 RoleName: aws.String(roleName),
 })
 if err != nil {
 log.Printf("Couldn't list attached policies for role %v. Here's why: %v\n",
 roleName, err)
 } else {
 policies = result.AttachedPolicies
 }
 return policies, err
}

// DetachRolePolicy detaches a policy from a role.
func (wrapper RoleWrapper) DetachRolePolicy(roleName string, policyArn string)
 error {
 _, err := wrapper.IamClient.DetachRolePolicy(context.TODO(),
 &iam.DetachRolePolicyInput{
 PolicyArn: aws.String(policyArn),
 RoleName: aws.String(roleName),
 })
 if err != nil {

Scenarios 2249

AWS Identity and Access Management User Guide

 log.Printf("Couldn't detach policy from role %v. Here's why: %v\n", roleName,
 err)
 }
 return err
}

// ListRolePolicies lists the inline policies for a role.
func (wrapper RoleWrapper) ListRolePolicies(roleName string) ([]string, error) {
 var policies []string
 result, err := wrapper.IamClient.ListRolePolicies(context.TODO(),
 &iam.ListRolePoliciesInput{
 RoleName: aws.String(roleName),
 })
 if err != nil {
 log.Printf("Couldn't list policies for role %v. Here's why: %v\n", roleName,
 err)
 } else {
 policies = result.PolicyNames
 }
 return policies, err
}

// DeleteRole deletes a role. All attached policies must be detached before a
// role can be deleted.
func (wrapper RoleWrapper) DeleteRole(roleName string) error {
 _, err := wrapper.IamClient.DeleteRole(context.TODO(), &iam.DeleteRoleInput{
 RoleName: aws.String(roleName),
 })
 if err != nil {
 log.Printf("Couldn't delete role %v. Here's why: %v\n", roleName, err)
 }
 return err
}

Define a struct that wraps user actions.

Scenarios 2250

AWS Identity and Access Management User Guide

// UserWrapper encapsulates user actions used in the examples.
// It contains an IAM service client that is used to perform user actions.
type UserWrapper struct {
 IamClient *iam.Client
}

// ListUsers gets up to maxUsers number of users.
func (wrapper UserWrapper) ListUsers(maxUsers int32) ([]types.User, error) {
 var users []types.User
 result, err := wrapper.IamClient.ListUsers(context.TODO(), &iam.ListUsersInput{
 MaxItems: aws.Int32(maxUsers),
 })
 if err != nil {
 log.Printf("Couldn't list users. Here's why: %v\n", err)
 } else {
 users = result.Users
 }
 return users, err
}

// GetUser gets data about a user.
func (wrapper UserWrapper) GetUser(userName string) (*types.User, error) {
 var user *types.User
 result, err := wrapper.IamClient.GetUser(context.TODO(), &iam.GetUserInput{
 UserName: aws.String(userName),
 })
 if err != nil {
 var apiError smithy.APIError
 if errors.As(err, &apiError) {
 switch apiError.(type) {
 case *types.NoSuchEntityException:
 log.Printf("User %v does not exist.\n", userName)
 err = nil
 default:
 log.Printf("Couldn't get user %v. Here's why: %v\n", userName, err)
 }
 }
 } else {

Scenarios 2251

AWS Identity and Access Management User Guide

 user = result.User
 }
 return user, err
}

// CreateUser creates a new user with the specified name.
func (wrapper UserWrapper) CreateUser(userName string) (*types.User, error) {
 var user *types.User
 result, err := wrapper.IamClient.CreateUser(context.TODO(),
 &iam.CreateUserInput{
 UserName: aws.String(userName),
 })
 if err != nil {
 log.Printf("Couldn't create user %v. Here's why: %v\n", userName, err)
 } else {
 user = result.User
 }
 return user, err
}

// CreateUserPolicy adds an inline policy to a user. This example creates a
 policy that
// grants a list of actions on a specified role.
// PolicyDocument shows how to work with a policy document as a data structure
 and
// serialize it to JSON by using Go's JSON marshaler.
func (wrapper UserWrapper) CreateUserPolicy(userName string, policyName string,
 actions []string,
 roleArn string) error {
 policyDoc := PolicyDocument{
 Version: "2012-10-17",
 Statement: []PolicyStatement{{
 Effect: "Allow",
 Action: actions,
 Resource: aws.String(roleArn),
 }},
 }
 policyBytes, err := json.Marshal(policyDoc)
 if err != nil {

Scenarios 2252

AWS Identity and Access Management User Guide

 log.Printf("Couldn't create policy document for %v. Here's why: %v\n", roleArn,
 err)
 return err
 }
 _, err = wrapper.IamClient.PutUserPolicy(context.TODO(),
 &iam.PutUserPolicyInput{
 PolicyDocument: aws.String(string(policyBytes)),
 PolicyName: aws.String(policyName),
 UserName: aws.String(userName),
 })
 if err != nil {
 log.Printf("Couldn't create policy for user %v. Here's why: %v\n", userName,
 err)
 }
 return err
}

// ListUserPolicies lists the inline policies for the specified user.
func (wrapper UserWrapper) ListUserPolicies(userName string) ([]string, error) {
 var policies []string
 result, err := wrapper.IamClient.ListUserPolicies(context.TODO(),
 &iam.ListUserPoliciesInput{
 UserName: aws.String(userName),
 })
 if err != nil {
 log.Printf("Couldn't list policies for user %v. Here's why: %v\n", userName,
 err)
 } else {
 policies = result.PolicyNames
 }
 return policies, err
}

// DeleteUserPolicy deletes an inline policy from a user.
func (wrapper UserWrapper) DeleteUserPolicy(userName string, policyName string)
 error {
 _, err := wrapper.IamClient.DeleteUserPolicy(context.TODO(),
 &iam.DeleteUserPolicyInput{
 PolicyName: aws.String(policyName),
 UserName: aws.String(userName),

Scenarios 2253

AWS Identity and Access Management User Guide

 })
 if err != nil {
 log.Printf("Couldn't delete policy from user %v. Here's why: %v\n", userName,
 err)
 }
 return err
}

// DeleteUser deletes a user.
func (wrapper UserWrapper) DeleteUser(userName string) error {
 _, err := wrapper.IamClient.DeleteUser(context.TODO(), &iam.DeleteUserInput{
 UserName: aws.String(userName),
 })
 if err != nil {
 log.Printf("Couldn't delete user %v. Here's why: %v\n", userName, err)
 }
 return err
}

// CreateAccessKeyPair creates an access key for a user. The returned access key
 contains
// the ID and secret credentials needed to use the key.
func (wrapper UserWrapper) CreateAccessKeyPair(userName string)
 (*types.AccessKey, error) {
 var key *types.AccessKey
 result, err := wrapper.IamClient.CreateAccessKey(context.TODO(),
 &iam.CreateAccessKeyInput{
 UserName: aws.String(userName)})
 if err != nil {
 log.Printf("Couldn't create access key pair for user %v. Here's why: %v\n",
 userName, err)
 } else {
 key = result.AccessKey
 }
 return key, err
}

// DeleteAccessKey deletes an access key from a user.

Scenarios 2254

AWS Identity and Access Management User Guide

func (wrapper UserWrapper) DeleteAccessKey(userName string, keyId string) error {
 _, err := wrapper.IamClient.DeleteAccessKey(context.TODO(),
 &iam.DeleteAccessKeyInput{
 AccessKeyId: aws.String(keyId),
 UserName: aws.String(userName),
 })
 if err != nil {
 log.Printf("Couldn't delete access key %v. Here's why: %v\n", keyId, err)
 }
 return err
}

// ListAccessKeys lists the access keys for the specified user.
func (wrapper UserWrapper) ListAccessKeys(userName string)
 ([]types.AccessKeyMetadata, error) {
 var keys []types.AccessKeyMetadata
 result, err := wrapper.IamClient.ListAccessKeys(context.TODO(),
 &iam.ListAccessKeysInput{
 UserName: aws.String(userName),
 })
 if err != nil {
 log.Printf("Couldn't list access keys for user %v. Here's why: %v\n", userName,
 err)
 } else {
 keys = result.AccessKeyMetadata
 }
 return keys, err
}

• For API details, see the following topics in AWS SDK for Go API Reference.

• AttachRolePolicy

• CreateAccessKey

• CreatePolicy

• CreateRole

• CreateUser

• DeleteAccessKey

Scenarios 2255

https://pkg.go.dev/github.com/aws/aws-sdk-go-v2/service/iam#Client.AttachRolePolicy
https://pkg.go.dev/github.com/aws/aws-sdk-go-v2/service/iam#Client.CreateAccessKey
https://pkg.go.dev/github.com/aws/aws-sdk-go-v2/service/iam#Client.CreatePolicy
https://pkg.go.dev/github.com/aws/aws-sdk-go-v2/service/iam#Client.CreateRole
https://pkg.go.dev/github.com/aws/aws-sdk-go-v2/service/iam#Client.CreateUser
https://pkg.go.dev/github.com/aws/aws-sdk-go-v2/service/iam#Client.DeleteAccessKey

AWS Identity and Access Management User Guide

• DeletePolicy

• DeleteRole

• DeleteUser

• DeleteUserPolicy

• DetachRolePolicy

• PutUserPolicy

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Create functions that wrap IAM user actions.

/*
 To run this Java V2 code example, set up your development environment,
 including your credentials.

 For information, see this documentation topic:

 https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/get-
started.html

 This example performs these operations:

 1. Creates a user that has no permissions.
 2. Creates a role and policy that grants Amazon S3 permissions.
 3. Creates a role.
 4. Grants the user permissions.
 5. Gets temporary credentials by assuming the role. Creates an Amazon S3
 Service client object with the temporary credentials.
 6. Deletes the resources.
 */

Scenarios 2256

https://pkg.go.dev/github.com/aws/aws-sdk-go-v2/service/iam#Client.DeletePolicy
https://pkg.go.dev/github.com/aws/aws-sdk-go-v2/service/iam#Client.DeleteRole
https://pkg.go.dev/github.com/aws/aws-sdk-go-v2/service/iam#Client.DeleteUser
https://pkg.go.dev/github.com/aws/aws-sdk-go-v2/service/iam#Client.DeleteUserPolicy
https://pkg.go.dev/github.com/aws/aws-sdk-go-v2/service/iam#Client.DetachRolePolicy
https://pkg.go.dev/github.com/aws/aws-sdk-go-v2/service/iam#Client.PutUserPolicy
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/iam#readme

AWS Identity and Access Management User Guide

public class IAMScenario {
 public static final String DASHES = new String(new char[80]).replace("\0",
 "-");
 public static final String PolicyDocument = "{" +
 " \"Version\": \"2012-10-17\"," +
 " \"Statement\": [" +
 " {" +
 " \"Effect\": \"Allow\"," +
 " \"Action\": [" +
 " \"s3:*\"" +
 "]," +
 " \"Resource\": \"*\"" +
 " }" +
 "]" +
 "}";

 public static String userArn;

 public static void main(String[] args) throws Exception {

 final String usage = """

 Usage:
 <username> <policyName> <roleName> <roleSessionName>
 <bucketName>\s

 Where:
 username - The name of the IAM user to create.\s
 policyName - The name of the policy to create.\s
 roleName - The name of the role to create.\s
 roleSessionName - The name of the session required for the
 assumeRole operation.\s
 bucketName - The name of the Amazon S3 bucket from which
 objects are read.\s
 """;

 if (args.length != 5) {
 System.out.println(usage);
 System.exit(1);
 }

 String userName = args[0];
 String policyName = args[1];
 String roleName = args[2];

Scenarios 2257

AWS Identity and Access Management User Guide

 String roleSessionName = args[3];
 String bucketName = args[4];

 Region region = Region.AWS_GLOBAL;
 IamClient iam = IamClient.builder()
 .region(region)
 .build();

 System.out.println(DASHES);
 System.out.println("Welcome to the AWS IAM example scenario.");
 System.out.println(DASHES);

 System.out.println(DASHES);
 System.out.println(" 1. Create the IAM user.");
 User createUser = createIAMUser(iam, userName);

 System.out.println(DASHES);
 userArn = createUser.arn();

 AccessKey myKey = createIAMAccessKey(iam, userName);
 String accessKey = myKey.accessKeyId();
 String secretKey = myKey.secretAccessKey();
 String assumeRolePolicyDocument = "{" +
 "\"Version\": \"2012-10-17\"," +
 "\"Statement\": [{" +
 "\"Effect\": \"Allow\"," +
 "\"Principal\": {" +
 " \"AWS\": \"" + userArn + "\"" +
 "}," +
 "\"Action\": \"sts:AssumeRole\"" +
 "}]" +
 "}";

 System.out.println(assumeRolePolicyDocument);
 System.out.println(userName + " was successfully created.");
 System.out.println(DASHES);
 System.out.println("2. Creates a policy.");
 String polArn = createIAMPolicy(iam, policyName);
 System.out.println("The policy " + polArn + " was successfully
 created.");
 System.out.println(DASHES);

 System.out.println(DASHES);
 System.out.println("3. Creates a role.");

Scenarios 2258

AWS Identity and Access Management User Guide

 TimeUnit.SECONDS.sleep(30);
 String roleArn = createIAMRole(iam, roleName, assumeRolePolicyDocument);
 System.out.println(roleArn + " was successfully created.");
 System.out.println(DASHES);

 System.out.println(DASHES);
 System.out.println("4. Grants the user permissions.");
 attachIAMRolePolicy(iam, roleName, polArn);
 System.out.println(DASHES);

 System.out.println(DASHES);
 System.out.println("*** Wait for 30 secs so the resource is available");
 TimeUnit.SECONDS.sleep(30);
 System.out.println("5. Gets temporary credentials by assuming the
 role.");
 System.out.println("Perform an Amazon S3 Service operation using the
 temporary credentials.");
 assumeRole(roleArn, roleSessionName, bucketName, accessKey, secretKey);
 System.out.println(DASHES);

 System.out.println(DASHES);
 System.out.println("6 Getting ready to delete the AWS resources");
 deleteKey(iam, userName, accessKey);
 deleteRole(iam, roleName, polArn);
 deleteIAMUser(iam, userName);
 System.out.println(DASHES);

 System.out.println(DASHES);
 System.out.println("This IAM Scenario has successfully completed");
 System.out.println(DASHES);
 }

 public static AccessKey createIAMAccessKey(IamClient iam, String user) {
 try {
 CreateAccessKeyRequest request = CreateAccessKeyRequest.builder()
 .userName(user)
 .build();

 CreateAccessKeyResponse response = iam.createAccessKey(request);
 return response.accessKey();

 } catch (IamException e) {
 System.err.println(e.awsErrorDetails().errorMessage());
 System.exit(1);

Scenarios 2259

AWS Identity and Access Management User Guide

 }
 return null;
 }

 public static User createIAMUser(IamClient iam, String username) {
 try {
 // Create an IamWaiter object
 IamWaiter iamWaiter = iam.waiter();
 CreateUserRequest request = CreateUserRequest.builder()
 .userName(username)
 .build();

 // Wait until the user is created.
 CreateUserResponse response = iam.createUser(request);
 GetUserRequest userRequest = GetUserRequest.builder()
 .userName(response.user().userName())
 .build();

 WaiterResponse<GetUserResponse> waitUntilUserExists =
 iamWaiter.waitUntilUserExists(userRequest);

 waitUntilUserExists.matched().response().ifPresent(System.out::println);
 return response.user();

 } catch (IamException e) {
 System.err.println(e.awsErrorDetails().errorMessage());
 System.exit(1);
 }
 return null;
 }

 public static String createIAMRole(IamClient iam, String rolename, String
 json) {

 try {
 CreateRoleRequest request = CreateRoleRequest.builder()
 .roleName(rolename)
 .assumeRolePolicyDocument(json)
 .description("Created using the AWS SDK for Java")
 .build();

 CreateRoleResponse response = iam.createRole(request);
 System.out.println("The ARN of the role is " +
 response.role().arn());

Scenarios 2260

AWS Identity and Access Management User Guide

 return response.role().arn();

 } catch (IamException e) {
 System.err.println(e.awsErrorDetails().errorMessage());
 System.exit(1);
 }
 return "";
 }

 public static String createIAMPolicy(IamClient iam, String policyName) {
 try {
 // Create an IamWaiter object.
 IamWaiter iamWaiter = iam.waiter();
 CreatePolicyRequest request = CreatePolicyRequest.builder()
 .policyName(policyName)
 .policyDocument(PolicyDocument).build();

 CreatePolicyResponse response = iam.createPolicy(request);
 GetPolicyRequest polRequest = GetPolicyRequest.builder()
 .policyArn(response.policy().arn())
 .build();

 WaiterResponse<GetPolicyResponse> waitUntilPolicyExists =
 iamWaiter.waitUntilPolicyExists(polRequest);

 waitUntilPolicyExists.matched().response().ifPresent(System.out::println);
 return response.policy().arn();

 } catch (IamException e) {
 System.err.println(e.awsErrorDetails().errorMessage());
 System.exit(1);
 }
 return "";
 }

 public static void attachIAMRolePolicy(IamClient iam, String roleName, String
 policyArn) {
 try {
 ListAttachedRolePoliciesRequest request =
 ListAttachedRolePoliciesRequest.builder()
 .roleName(roleName)
 .build();

Scenarios 2261

AWS Identity and Access Management User Guide

 ListAttachedRolePoliciesResponse response =
 iam.listAttachedRolePolicies(request);
 List<AttachedPolicy> attachedPolicies = response.attachedPolicies();
 String polArn;
 for (AttachedPolicy policy : attachedPolicies) {
 polArn = policy.policyArn();
 if (polArn.compareTo(policyArn) == 0) {
 System.out.println(roleName + " policy is already attached to
 this role.");
 return;
 }
 }

 AttachRolePolicyRequest attachRequest =
 AttachRolePolicyRequest.builder()
 .roleName(roleName)
 .policyArn(policyArn)
 .build();

 iam.attachRolePolicy(attachRequest);
 System.out.println("Successfully attached policy " + policyArn + " to
 role " + roleName);

 } catch (IamException e) {
 System.err.println(e.awsErrorDetails().errorMessage());
 System.exit(1);
 }
 }

 // Invoke an Amazon S3 operation using the Assumed Role.
 public static void assumeRole(String roleArn, String roleSessionName, String
 bucketName, String keyVal,
 String keySecret) {

 // Use the creds of the new IAM user that was created in this code
 example.
 AwsBasicCredentials credentials = AwsBasicCredentials.create(keyVal,
 keySecret);
 StsClient stsClient = StsClient.builder()
 .region(Region.US_EAST_1)

 .credentialsProvider(StaticCredentialsProvider.create(credentials))
 .build();

Scenarios 2262

AWS Identity and Access Management User Guide

 try {
 AssumeRoleRequest roleRequest = AssumeRoleRequest.builder()
 .roleArn(roleArn)
 .roleSessionName(roleSessionName)
 .build();

 AssumeRoleResponse roleResponse = stsClient.assumeRole(roleRequest);
 Credentials myCreds = roleResponse.credentials();
 String key = myCreds.accessKeyId();
 String secKey = myCreds.secretAccessKey();
 String secToken = myCreds.sessionToken();

 // List all objects in an Amazon S3 bucket using the temp creds
 retrieved by
 // invoking assumeRole.
 Region region = Region.US_EAST_1;
 S3Client s3 = S3Client.builder()
 .credentialsProvider(

 StaticCredentialsProvider.create(AwsSessionCredentials.create(key, secKey,
 secToken)))
 .region(region)
 .build();

 System.out.println("Created a S3Client using temp credentials.");
 System.out.println("Listing objects in " + bucketName);
 ListObjectsRequest listObjects = ListObjectsRequest.builder()
 .bucket(bucketName)
 .build();

 ListObjectsResponse res = s3.listObjects(listObjects);
 List<S3Object> objects = res.contents();
 for (S3Object myValue : objects) {
 System.out.println("The name of the key is " + myValue.key());
 System.out.println("The owner is " + myValue.owner());
 }

 } catch (StsException e) {
 System.err.println(e.getMessage());
 System.exit(1);
 }
 }

Scenarios 2263

AWS Identity and Access Management User Guide

 public static void deleteRole(IamClient iam, String roleName, String polArn)
 {

 try {
 // First the policy needs to be detached.
 DetachRolePolicyRequest rolePolicyRequest =
 DetachRolePolicyRequest.builder()
 .policyArn(polArn)
 .roleName(roleName)
 .build();

 iam.detachRolePolicy(rolePolicyRequest);

 // Delete the policy.
 DeletePolicyRequest request = DeletePolicyRequest.builder()
 .policyArn(polArn)
 .build();

 iam.deletePolicy(request);
 System.out.println("*** Successfully deleted " + polArn);

 // Delete the role.
 DeleteRoleRequest roleRequest = DeleteRoleRequest.builder()
 .roleName(roleName)
 .build();

 iam.deleteRole(roleRequest);
 System.out.println("*** Successfully deleted " + roleName);

 } catch (IamException e) {
 System.err.println(e.awsErrorDetails().errorMessage());
 System.exit(1);
 }
 }

 public static void deleteKey(IamClient iam, String username, String
 accessKey) {
 try {
 DeleteAccessKeyRequest request = DeleteAccessKeyRequest.builder()
 .accessKeyId(accessKey)
 .userName(username)
 .build();

 iam.deleteAccessKey(request);

Scenarios 2264

AWS Identity and Access Management User Guide

 System.out.println("Successfully deleted access key " + accessKey +
 " from user " + username);

 } catch (IamException e) {
 System.err.println(e.awsErrorDetails().errorMessage());
 System.exit(1);
 }
 }

 public static void deleteIAMUser(IamClient iam, String userName) {
 try {
 DeleteUserRequest request = DeleteUserRequest.builder()
 .userName(userName)
 .build();

 iam.deleteUser(request);
 System.out.println("*** Successfully deleted " + userName);

 } catch (IamException e) {
 System.err.println(e.awsErrorDetails().errorMessage());
 System.exit(1);
 }
 }
}

• For API details, see the following topics in AWS SDK for Java 2.x API Reference.

• AttachRolePolicy

• CreateAccessKey

• CreatePolicy

• CreateRole

• CreateUser

• DeleteAccessKey

• DeletePolicy

• DeleteRole

• DeleteUser

• DeleteUserPolicy

• DetachRolePolicy

Scenarios 2265

https://docs.aws.amazon.com/goto/SdkForJavaV2/iam-2010-05-08/AttachRolePolicy
https://docs.aws.amazon.com/goto/SdkForJavaV2/iam-2010-05-08/CreateAccessKey
https://docs.aws.amazon.com/goto/SdkForJavaV2/iam-2010-05-08/CreatePolicy
https://docs.aws.amazon.com/goto/SdkForJavaV2/iam-2010-05-08/CreateRole
https://docs.aws.amazon.com/goto/SdkForJavaV2/iam-2010-05-08/CreateUser
https://docs.aws.amazon.com/goto/SdkForJavaV2/iam-2010-05-08/DeleteAccessKey
https://docs.aws.amazon.com/goto/SdkForJavaV2/iam-2010-05-08/DeletePolicy
https://docs.aws.amazon.com/goto/SdkForJavaV2/iam-2010-05-08/DeleteRole
https://docs.aws.amazon.com/goto/SdkForJavaV2/iam-2010-05-08/DeleteUser
https://docs.aws.amazon.com/goto/SdkForJavaV2/iam-2010-05-08/DeleteUserPolicy
https://docs.aws.amazon.com/goto/SdkForJavaV2/iam-2010-05-08/DetachRolePolicy

AWS Identity and Access Management User Guide

• PutUserPolicy

JavaScript

SDK for JavaScript (v3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Create an IAM user and a role that grants permission to list Amazon S3 buckets. The user
has rights only to assume the role. After assuming the role, use temporary credentials to list
buckets for the account.

import {
 CreateUserCommand,
 CreateAccessKeyCommand,
 CreatePolicyCommand,
 CreateRoleCommand,
 AttachRolePolicyCommand,
 DeleteAccessKeyCommand,
 DeleteUserCommand,
 DeleteRoleCommand,
 DeletePolicyCommand,
 DetachRolePolicyCommand,
 IAMClient,
} from "@aws-sdk/client-iam";
import { ListBucketsCommand, S3Client } from "@aws-sdk/client-s3";
import { AssumeRoleCommand, STSClient } from "@aws-sdk/client-sts";
import { retry } from "@aws-doc-sdk-examples/lib/utils/util-timers.js";

// Set the parameters.
const iamClient = new IAMClient({});
const userName = "test_name";
const policyName = "test_policy";
const roleName = "test_role";

export const main = async () => {
 // Create a user. The user has no permissions by default.

Scenarios 2266

https://docs.aws.amazon.com/goto/SdkForJavaV2/iam-2010-05-08/PutUserPolicy
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/iam#code-examples

AWS Identity and Access Management User Guide

 const { User } = await iamClient.send(
 new CreateUserCommand({ UserName: userName }),
);

 if (!User) {
 throw new Error("User not created");
 }

 // Create an access key. This key is used to authenticate the new user to
 // Amazon Simple Storage Service (Amazon S3) and AWS Security Token Service
 (AWS STS).
 // It's not best practice to use access keys. For more information, see
 https://aws.amazon.com/iam/resources/best-practices/.
 const createAccessKeyResponse = await iamClient.send(
 new CreateAccessKeyCommand({ UserName: userName }),
);

 if (
 !createAccessKeyResponse.AccessKey?.AccessKeyId ||
 !createAccessKeyResponse.AccessKey?.SecretAccessKey
) {
 throw new Error("Access key not created");
 }

 const {
 AccessKey: { AccessKeyId, SecretAccessKey },
 } = createAccessKeyResponse;

 let s3Client = new S3Client({
 credentials: {
 accessKeyId: AccessKeyId,
 secretAccessKey: SecretAccessKey,
 },
 });

 // Retry the list buckets operation until it succeeds. InvalidAccessKeyId is
 // thrown while the user and access keys are still stabilizing.
 await retry({ intervalInMs: 1000, maxRetries: 300 }, async () => {
 try {
 return await listBuckets(s3Client);
 } catch (err) {
 if (err instanceof Error && err.name === "InvalidAccessKeyId") {
 throw err;
 }

Scenarios 2267

AWS Identity and Access Management User Guide

 }
 });

 // Retry the create role operation until it succeeds. A MalformedPolicyDocument
 error
 // is thrown while the user and access keys are still stabilizing.
 const { Role } = await retry(
 {
 intervalInMs: 2000,
 maxRetries: 60,
 },
 () =>
 iamClient.send(
 new CreateRoleCommand({
 AssumeRolePolicyDocument: JSON.stringify({
 Version: "2012-10-17",
 Statement: [
 {
 Effect: "Allow",
 Principal: {
 // Allow the previously created user to assume this role.
 AWS: User.Arn,
 },
 Action: "sts:AssumeRole",
 },
],
 }),
 RoleName: roleName,
 }),
),
);

 if (!Role) {
 throw new Error("Role not created");
 }

 // Create a policy that allows the user to list S3 buckets.
 const { Policy: listBucketPolicy } = await iamClient.send(
 new CreatePolicyCommand({
 PolicyDocument: JSON.stringify({
 Version: "2012-10-17",
 Statement: [
 {
 Effect: "Allow",

Scenarios 2268

AWS Identity and Access Management User Guide

 Action: ["s3:ListAllMyBuckets"],
 Resource: "*",
 },
],
 }),
 PolicyName: policyName,
 }),
);

 if (!listBucketPolicy) {
 throw new Error("Policy not created");
 }

 // Attach the policy granting the 's3:ListAllMyBuckets' action to the role.
 await iamClient.send(
 new AttachRolePolicyCommand({
 PolicyArn: listBucketPolicy.Arn,
 RoleName: Role.RoleName,
 }),
);

 // Assume the role.
 const stsClient = new STSClient({
 credentials: {
 accessKeyId: AccessKeyId,
 secretAccessKey: SecretAccessKey,
 },
 });

 // Retry the assume role operation until it succeeds.
 const { Credentials } = await retry(
 { intervalInMs: 2000, maxRetries: 60 },
 () =>
 stsClient.send(
 new AssumeRoleCommand({
 RoleArn: Role.Arn,
 RoleSessionName: `iamBasicScenarioSession-${Math.floor(
 Math.random() * 1000000,
)}`,
 DurationSeconds: 900,
 }),
),
);

Scenarios 2269

AWS Identity and Access Management User Guide

 if (!Credentials?.AccessKeyId || !Credentials?.SecretAccessKey) {
 throw new Error("Credentials not created");
 }

 s3Client = new S3Client({
 credentials: {
 accessKeyId: Credentials.AccessKeyId,
 secretAccessKey: Credentials.SecretAccessKey,
 sessionToken: Credentials.SessionToken,
 },
 });

 // List the S3 buckets again.
 // Retry the list buckets operation until it succeeds. AccessDenied might
 // be thrown while the role policy is still stabilizing.
 await retry({ intervalInMs: 2000, maxRetries: 60 }, () =>
 listBuckets(s3Client),
);

 // Clean up.
 await iamClient.send(
 new DetachRolePolicyCommand({
 PolicyArn: listBucketPolicy.Arn,
 RoleName: Role.RoleName,
 }),
);

 await iamClient.send(
 new DeletePolicyCommand({
 PolicyArn: listBucketPolicy.Arn,
 }),
);

 await iamClient.send(
 new DeleteRoleCommand({
 RoleName: Role.RoleName,
 }),
);

 await iamClient.send(
 new DeleteAccessKeyCommand({
 UserName: userName,
 AccessKeyId,
 }),

Scenarios 2270

AWS Identity and Access Management User Guide

);

 await iamClient.send(
 new DeleteUserCommand({
 UserName: userName,
 }),
);
};

/**
 *
 * @param {S3Client} s3Client
 */
const listBuckets = async (s3Client) => {
 const { Buckets } = await s3Client.send(new ListBucketsCommand({}));

 if (!Buckets) {
 throw new Error("Buckets not listed");
 }

 console.log(Buckets.map((bucket) => bucket.Name).join("\n"));
};

• For API details, see the following topics in AWS SDK for JavaScript API Reference.

• AttachRolePolicy

• CreateAccessKey

• CreatePolicy

• CreateRole

• CreateUser

• DeleteAccessKey

• DeletePolicy

• DeleteRole

• DeleteUser

• DeleteUserPolicy

• DetachRolePolicy

• PutUserPolicy
Scenarios 2271

https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/client/iam/command/AttachRolePolicyCommand
https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/client/iam/command/CreateAccessKeyCommand
https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/client/iam/command/CreatePolicyCommand
https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/client/iam/command/CreateRoleCommand
https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/client/iam/command/CreateUserCommand
https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/client/iam/command/DeleteAccessKeyCommand
https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/client/iam/command/DeletePolicyCommand
https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/client/iam/command/DeleteRoleCommand
https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/client/iam/command/DeleteUserCommand
https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/client/iam/command/DeleteUserPolicyCommand
https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/client/iam/command/DetachRolePolicyCommand
https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/client/iam/command/PutUserPolicyCommand

AWS Identity and Access Management User Guide

Kotlin

SDK for Kotlin

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Create functions that wrap IAM user actions.

suspend fun main(args: Array<String>) {

 val usage = """
 Usage:
 <username> <policyName> <roleName> <roleSessionName> <fileLocation>
 <bucketName>

 Where:
 username - The name of the IAM user to create.
 policyName - The name of the policy to create.
 roleName - The name of the role to create.
 roleSessionName - The name of the session required for the assumeRole
 operation.
 fileLocation - The file location to the JSON required to create the role
 (see Readme).
 bucketName - The name of the Amazon S3 bucket from which objects are
 read.
 """

 if (args.size != 6) {
 println(usage)
 exitProcess(1)
 }

 val userName = args[0]
 val policyName = args[1]
 val roleName = args[2]
 val roleSessionName = args[3]
 val fileLocation = args[4]
 val bucketName = args[5]

Scenarios 2272

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/kotlin/services/iam#code-examples

AWS Identity and Access Management User Guide

 createUser(userName)
 println("$userName was successfully created.")

 val polArn = createPolicy(policyName)
 println("The policy $polArn was successfully created.")

 val roleArn = createRole(roleName, fileLocation)
 println("$roleArn was successfully created.")
 attachRolePolicy(roleName, polArn)

 println("*** Wait for 1 MIN so the resource is available.")
 delay(60000)
 assumeGivenRole(roleArn, roleSessionName, bucketName)

 println("*** Getting ready to delete the AWS resources.")
 deleteRole(roleName, polArn)
 deleteUser(userName)
 println("This IAM Scenario has successfully completed.")
}

suspend fun createUser(usernameVal: String?): String? {

 val request = CreateUserRequest {
 userName = usernameVal
 }

 IamClient { region = "AWS_GLOBAL" }.use { iamClient ->
 val response = iamClient.createUser(request)
 return response.user?.userName
 }
}

suspend fun createPolicy(policyNameVal: String?): String {

 val policyDocumentValue: String = "{" +
 " \"Version\": \"2012-10-17\"," +
 " \"Statement\": [" +
 " {" +
 " \"Effect\": \"Allow\"," +
 " \"Action\": [" +
 " \"s3:*\"" +
 "]," +
 " \"Resource\": \"*\"" +
 " }" +

Scenarios 2273

AWS Identity and Access Management User Guide

 "]" +
 "}"

 val request = CreatePolicyRequest {
 policyName = policyNameVal
 policyDocument = policyDocumentValue
 }

 IamClient { region = "AWS_GLOBAL" }.use { iamClient ->
 val response = iamClient.createPolicy(request)
 return response.policy?.arn.toString()
 }
}

suspend fun createRole(rolenameVal: String?, fileLocation: String?): String? {

 val jsonObject = fileLocation?.let { readJsonSimpleDemo(it) } as JSONObject

 val request = CreateRoleRequest {
 roleName = rolenameVal
 assumeRolePolicyDocument = jsonObject.toJSONString()
 description = "Created using the AWS SDK for Kotlin"
 }

 IamClient { region = "AWS_GLOBAL" }.use { iamClient ->
 val response = iamClient.createRole(request)
 return response.role?.arn
 }
}

suspend fun attachRolePolicy(roleNameVal: String, policyArnVal: String) {

 val request = ListAttachedRolePoliciesRequest {
 roleName = roleNameVal
 }

 IamClient { region = "AWS_GLOBAL" }.use { iamClient ->
 val response = iamClient.listAttachedRolePolicies(request)
 val attachedPolicies = response.attachedPolicies

 // Ensure that the policy is not attached to this role.
 val checkStatus: Int
 if (attachedPolicies != null) {
 checkStatus = checkMyList(attachedPolicies, policyArnVal)

Scenarios 2274

AWS Identity and Access Management User Guide

 if (checkStatus == -1)
 return
 }

 val policyRequest = AttachRolePolicyRequest {
 roleName = roleNameVal
 policyArn = policyArnVal
 }
 iamClient.attachRolePolicy(policyRequest)
 println("Successfully attached policy $policyArnVal to role
 $roleNameVal")
 }
}

fun checkMyList(attachedPolicies: List<AttachedPolicy>, policyArnVal: String):
 Int {

 for (policy in attachedPolicies) {
 val polArn = policy.policyArn.toString()

 if (polArn.compareTo(policyArnVal) == 0) {
 println("The policy is already attached to this role.")
 return -1
 }
 }
 return 0
}

suspend fun assumeGivenRole(roleArnVal: String?, roleSessionNameVal: String?,
 bucketName: String) {

 val stsClient = StsClient {
 region = "us-east-1"
 }

 val roleRequest = AssumeRoleRequest {
 roleArn = roleArnVal
 roleSessionName = roleSessionNameVal
 }

 val roleResponse = stsClient.assumeRole(roleRequest)
 val myCreds = roleResponse.credentials
 val key = myCreds?.accessKeyId
 val secKey = myCreds?.secretAccessKey

Scenarios 2275

AWS Identity and Access Management User Guide

 val secToken = myCreds?.sessionToken

 val staticCredentials = StaticCredentialsProvider {
 accessKeyId = key
 secretAccessKey = secKey
 sessionToken = secToken
 }

 // List all objects in an Amazon S3 bucket using the temp creds.
 val s3 = S3Client {
 credentialsProvider = staticCredentials
 region = "us-east-1"
 }

 println("Created a S3Client using temp credentials.")
 println("Listing objects in $bucketName")

 val listObjects = ListObjectsRequest {
 bucket = bucketName
 }

 val response = s3.listObjects(listObjects)
 response.contents?.forEach { myObject ->
 println("The name of the key is ${myObject.key}")
 println("The owner is ${myObject.owner}")
 }
}

suspend fun deleteRole(roleNameVal: String, polArn: String) {

 val iam = IamClient { region = "AWS_GLOBAL" }

 // First the policy needs to be detached.
 val rolePolicyRequest = DetachRolePolicyRequest {
 policyArn = polArn
 roleName = roleNameVal
 }

 iam.detachRolePolicy(rolePolicyRequest)

 // Delete the policy.
 val request = DeletePolicyRequest {
 policyArn = polArn
 }

Scenarios 2276

AWS Identity and Access Management User Guide

 iam.deletePolicy(request)
 println("*** Successfully deleted $polArn")

 // Delete the role.
 val roleRequest = DeleteRoleRequest {
 roleName = roleNameVal
 }

 iam.deleteRole(roleRequest)
 println("*** Successfully deleted $roleNameVal")
}

suspend fun deleteUser(userNameVal: String) {
 val iam = IamClient { region = "AWS_GLOBAL" }
 val request = DeleteUserRequest {
 userName = userNameVal
 }

 iam.deleteUser(request)
 println("*** Successfully deleted $userNameVal")
}

@Throws(java.lang.Exception::class)
fun readJsonSimpleDemo(filename: String): Any? {
 val reader = FileReader(filename)
 val jsonParser = JSONParser()
 return jsonParser.parse(reader)
}

• For API details, see the following topics in AWS SDK for Kotlin API reference.

• AttachRolePolicy

• CreateAccessKey

• CreatePolicy

• CreateRole

• CreateUser

• DeleteAccessKey

• DeletePolicy

• DeleteRole
Scenarios 2277

https://github.com/awslabs/aws-sdk-kotlin#generating-api-documentation
https://github.com/awslabs/aws-sdk-kotlin#generating-api-documentation
https://github.com/awslabs/aws-sdk-kotlin#generating-api-documentation
https://github.com/awslabs/aws-sdk-kotlin#generating-api-documentation
https://github.com/awslabs/aws-sdk-kotlin#generating-api-documentation
https://github.com/awslabs/aws-sdk-kotlin#generating-api-documentation
https://github.com/awslabs/aws-sdk-kotlin#generating-api-documentation
https://github.com/awslabs/aws-sdk-kotlin#generating-api-documentation

AWS Identity and Access Management User Guide

• DeleteUser

• DeleteUserPolicy

• DetachRolePolicy

• PutUserPolicy

PHP

SDK for PHP

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

namespace Iam\Basics;

require 'vendor/autoload.php';

use Aws\Credentials\Credentials;
use Aws\S3\Exception\S3Exception;
use Aws\S3\S3Client;
use Aws\Sts\StsClient;
use Iam\IAMService;

echo("\n");
echo("--------------------------------------\n");
print("Welcome to the IAM getting started demo using PHP!\n");
echo("--------------------------------------\n");

$uuid = uniqid();
$service = new IAMService();

$user = $service->createUser("iam_demo_user_$uuid");
echo "Created user with the arn: {$user['Arn']}\n";

$key = $service->createAccessKey($user['UserName']);
$assumeRolePolicyDocument = "{
 \"Version\": \"2012-10-17\",
 \"Statement\": [{

Scenarios 2278

https://github.com/awslabs/aws-sdk-kotlin#generating-api-documentation
https://github.com/awslabs/aws-sdk-kotlin#generating-api-documentation
https://github.com/awslabs/aws-sdk-kotlin#generating-api-documentation
https://github.com/awslabs/aws-sdk-kotlin#generating-api-documentation
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/php/example_code/iam#code-examples

AWS Identity and Access Management User Guide

 \"Effect\": \"Allow\",
 \"Principal\": {\"AWS\": \"{$user['Arn']}\"},
 \"Action\": \"sts:AssumeRole\"
 }]
 }";
$assumeRoleRole = $service->createRole("iam_demo_role_$uuid",
 $assumeRolePolicyDocument);
echo "Created role: {$assumeRoleRole['RoleName']}\n";

$listAllBucketsPolicyDocument = "{
 \"Version\": \"2012-10-17\",
 \"Statement\": [{
 \"Effect\": \"Allow\",
 \"Action\": \"s3:ListAllMyBuckets\",
 \"Resource\": \"arn:aws:s3:::*\"}]
}";
$listAllBucketsPolicy = $service->createPolicy("iam_demo_policy_$uuid",
 $listAllBucketsPolicyDocument);
echo "Created policy: {$listAllBucketsPolicy['PolicyName']}\n";

$service->attachRolePolicy($assumeRoleRole['RoleName'],
 $listAllBucketsPolicy['Arn']);

$inlinePolicyDocument = "{
 \"Version\": \"2012-10-17\",
 \"Statement\": [{
 \"Effect\": \"Allow\",
 \"Action\": \"sts:AssumeRole\",
 \"Resource\": \"{$assumeRoleRole['Arn']}\"}]
}";
$inlinePolicy = $service->createUserPolicy("iam_demo_inline_policy_$uuid",
 $inlinePolicyDocument, $user['UserName']);
//First, fail to list the buckets with the user
$credentials = new Credentials($key['AccessKeyId'], $key['SecretAccessKey']);
$s3Client = new S3Client(['region' => 'us-west-2', 'version' => 'latest',
 'credentials' => $credentials]);
try {
 $s3Client->listBuckets([
]);
 echo "this should not run";
} catch (S3Exception $exception) {
 echo "successfully failed!\n";
}

Scenarios 2279

AWS Identity and Access Management User Guide

$stsClient = new StsClient(['region' => 'us-west-2', 'version' => 'latest',
 'credentials' => $credentials]);
sleep(10);
$assumedRole = $stsClient->assumeRole([
 'RoleArn' => $assumeRoleRole['Arn'],
 'RoleSessionName' => "DemoAssumeRoleSession_$uuid",
]);
$assumedCredentials = [
 'key' => $assumedRole['Credentials']['AccessKeyId'],
 'secret' => $assumedRole['Credentials']['SecretAccessKey'],
 'token' => $assumedRole['Credentials']['SessionToken'],
];
$s3Client = new S3Client(['region' => 'us-west-2', 'version' => 'latest',
 'credentials' => $assumedCredentials]);
try {
 $s3Client->listBuckets([]);
 echo "this should now run!\n";
} catch (S3Exception $exception) {
 echo "this should now not fail\n";
}

$service->detachRolePolicy($assumeRoleRole['RoleName'],
 $listAllBucketsPolicy['Arn']);
$deletePolicy = $service->deletePolicy($listAllBucketsPolicy['Arn']);
echo "Delete policy: {$listAllBucketsPolicy['PolicyName']}\n";
$deletedRole = $service->deleteRole($assumeRoleRole['Arn']);
echo "Deleted role: {$assumeRoleRole['RoleName']}\n";
$deletedKey = $service->deleteAccessKey($key['AccessKeyId'], $user['UserName']);
$deletedUser = $service->deleteUser($user['UserName']);
echo "Delete user: {$user['UserName']}\n";

• For API details, see the following topics in AWS SDK for PHP API Reference.

• AttachRolePolicy

• CreateAccessKey

• CreatePolicy

• CreateRole

• CreateUser

• DeleteAccessKey

Scenarios 2280

https://docs.aws.amazon.com/goto/SdkForPHPV3/iam-2010-05-08/AttachRolePolicy
https://docs.aws.amazon.com/goto/SdkForPHPV3/iam-2010-05-08/CreateAccessKey
https://docs.aws.amazon.com/goto/SdkForPHPV3/iam-2010-05-08/CreatePolicy
https://docs.aws.amazon.com/goto/SdkForPHPV3/iam-2010-05-08/CreateRole
https://docs.aws.amazon.com/goto/SdkForPHPV3/iam-2010-05-08/CreateUser
https://docs.aws.amazon.com/goto/SdkForPHPV3/iam-2010-05-08/DeleteAccessKey

AWS Identity and Access Management User Guide

• DeletePolicy

• DeleteRole

• DeleteUser

• DeleteUserPolicy

• DetachRolePolicy

• PutUserPolicy

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Create an IAM user and a role that grants permission to list Amazon S3 buckets. The user
has rights only to assume the role. After assuming the role, use temporary credentials to list
buckets for the account.

import json
import sys
import time
from uuid import uuid4

import boto3
from botocore.exceptions import ClientError

def progress_bar(seconds):
 """Shows a simple progress bar in the command window."""
 for _ in range(seconds):
 time.sleep(1)
 print(".", end="")
 sys.stdout.flush()
 print()

Scenarios 2281

https://docs.aws.amazon.com/goto/SdkForPHPV3/iam-2010-05-08/DeletePolicy
https://docs.aws.amazon.com/goto/SdkForPHPV3/iam-2010-05-08/DeleteRole
https://docs.aws.amazon.com/goto/SdkForPHPV3/iam-2010-05-08/DeleteUser
https://docs.aws.amazon.com/goto/SdkForPHPV3/iam-2010-05-08/DeleteUserPolicy
https://docs.aws.amazon.com/goto/SdkForPHPV3/iam-2010-05-08/DetachRolePolicy
https://docs.aws.amazon.com/goto/SdkForPHPV3/iam-2010-05-08/PutUserPolicy
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/iam#code-examples

AWS Identity and Access Management User Guide

def setup(iam_resource):
 """
 Creates a new user with no permissions.
 Creates an access key pair for the user.
 Creates a role with a policy that lets the user assume the role.
 Creates a policy that allows listing Amazon S3 buckets.
 Attaches the policy to the role.
 Creates an inline policy for the user that lets the user assume the role.

 :param iam_resource: A Boto3 AWS Identity and Access Management (IAM)
 resource
 that has permissions to create users, roles, and
 policies
 in the account.
 :return: The newly created user, user key, and role.
 """
 try:
 user = iam_resource.create_user(UserName=f"demo-user-{uuid4()}")
 print(f"Created user {user.name}.")
 except ClientError as error:
 print(
 f"Couldn't create a user for the demo. Here's why: "
 f"{error.response['Error']['Message']}"
)
 raise

 try:
 user_key = user.create_access_key_pair()
 print(f"Created access key pair for user.")
 except ClientError as error:
 print(
 f"Couldn't create access keys for user {user.name}. Here's why: "
 f"{error.response['Error']['Message']}"
)
 raise

 print(f"Wait for user to be ready.", end="")
 progress_bar(10)

 try:
 role = iam_resource.create_role(
 RoleName=f"demo-role-{uuid4()}",
 AssumeRolePolicyDocument=json.dumps(
 {

Scenarios 2282

AWS Identity and Access Management User Guide

 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {"AWS": user.arn},
 "Action": "sts:AssumeRole",
 }
],
 }
),
)
 print(f"Created role {role.name}.")
 except ClientError as error:
 print(
 f"Couldn't create a role for the demo. Here's why: "
 f"{error.response['Error']['Message']}"
)
 raise

 try:
 policy = iam_resource.create_policy(
 PolicyName=f"demo-policy-{uuid4()}",
 PolicyDocument=json.dumps(
 {
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "s3:ListAllMyBuckets",
 "Resource": "arn:aws:s3:::*",
 }
],
 }
),
)
 role.attach_policy(PolicyArn=policy.arn)
 print(f"Created policy {policy.policy_name} and attached it to the
 role.")
 except ClientError as error:
 print(
 f"Couldn't create a policy and attach it to role {role.name}. Here's
 why: "
 f"{error.response['Error']['Message']}"
)

Scenarios 2283

AWS Identity and Access Management User Guide

 raise

 try:
 user.create_policy(
 PolicyName=f"demo-user-policy-{uuid4()}",
 PolicyDocument=json.dumps(
 {
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "sts:AssumeRole",
 "Resource": role.arn,
 }
],
 }
),
)
 print(
 f"Created an inline policy for {user.name} that lets the user assume
 "
 f"the role."
)
 except ClientError as error:
 print(
 f"Couldn't create an inline policy for user {user.name}. Here's why:
 "
 f"{error.response['Error']['Message']}"
)
 raise

 print("Give AWS time to propagate these new resources and connections.",
 end="")
 progress_bar(10)

 return user, user_key, role

def show_access_denied_without_role(user_key):
 """
 Shows that listing buckets without first assuming the role is not allowed.

 :param user_key: The key of the user created during setup. This user does not
 have permission to list buckets in the account.

Scenarios 2284

AWS Identity and Access Management User Guide

 """
 print(f"Try to list buckets without first assuming the role.")
 s3_denied_resource = boto3.resource(
 "s3", aws_access_key_id=user_key.id,
 aws_secret_access_key=user_key.secret
)
 try:
 for bucket in s3_denied_resource.buckets.all():
 print(bucket.name)
 raise RuntimeError("Expected to get AccessDenied error when listing
 buckets!")
 except ClientError as error:
 if error.response["Error"]["Code"] == "AccessDenied":
 print("Attempt to list buckets with no permissions: AccessDenied.")
 else:
 raise

def list_buckets_from_assumed_role(user_key, assume_role_arn, session_name):
 """
 Assumes a role that grants permission to list the Amazon S3 buckets in the
 account.
 Uses the temporary credentials from the role to list the buckets that are
 owned
 by the assumed role's account.

 :param user_key: The access key of a user that has permission to assume the
 role.
 :param assume_role_arn: The Amazon Resource Name (ARN) of the role that
 grants access to list the other account's buckets.
 :param session_name: The name of the STS session.
 """
 sts_client = boto3.client(
 "sts", aws_access_key_id=user_key.id,
 aws_secret_access_key=user_key.secret
)
 try:
 response = sts_client.assume_role(
 RoleArn=assume_role_arn, RoleSessionName=session_name
)
 temp_credentials = response["Credentials"]
 print(f"Assumed role {assume_role_arn} and got temporary credentials.")
 except ClientError as error:
 print(

Scenarios 2285

AWS Identity and Access Management User Guide

 f"Couldn't assume role {assume_role_arn}. Here's why: "
 f"{error.response['Error']['Message']}"
)
 raise

 # Create an S3 resource that can access the account with the temporary
 credentials.
 s3_resource = boto3.resource(
 "s3",
 aws_access_key_id=temp_credentials["AccessKeyId"],
 aws_secret_access_key=temp_credentials["SecretAccessKey"],
 aws_session_token=temp_credentials["SessionToken"],
)
 print(f"Listing buckets for the assumed role's account:")
 try:
 for bucket in s3_resource.buckets.all():
 print(bucket.name)
 except ClientError as error:
 print(
 f"Couldn't list buckets for the account. Here's why: "
 f"{error.response['Error']['Message']}"
)
 raise

def teardown(user, role):
 """
 Removes all resources created during setup.

 :param user: The demo user.
 :param role: The demo role.
 """
 try:
 for attached in role.attached_policies.all():
 policy_name = attached.policy_name
 role.detach_policy(PolicyArn=attached.arn)
 attached.delete()
 print(f"Detached and deleted {policy_name}.")
 role.delete()
 print(f"Deleted {role.name}.")
 except ClientError as error:
 print(

Scenarios 2286

AWS Identity and Access Management User Guide

 "Couldn't detach policy, delete policy, or delete role. Here's why: "
 f"{error.response['Error']['Message']}"
)
 raise

 try:
 for user_pol in user.policies.all():
 user_pol.delete()
 print("Deleted inline user policy.")
 for key in user.access_keys.all():
 key.delete()
 print("Deleted user's access key.")
 user.delete()
 print(f"Deleted {user.name}.")
 except ClientError as error:
 print(
 "Couldn't delete user policy or delete user. Here's why: "
 f"{error.response['Error']['Message']}"
)

def usage_demo():
 """Drives the demonstration."""
 print("-" * 88)
 print(f"Welcome to the IAM create user and assume role demo.")
 print("-" * 88)
 iam_resource = boto3.resource("iam")
 user = None
 role = None
 try:
 user, user_key, role = setup(iam_resource)
 print(f"Created {user.name} and {role.name}.")
 show_access_denied_without_role(user_key)
 list_buckets_from_assumed_role(user_key, role.arn,
 "AssumeRoleDemoSession")
 except Exception:
 print("Something went wrong!")
 finally:
 if user is not None and role is not None:
 teardown(user, role)
 print("Thanks for watching!")

if __name__ == "__main__":

Scenarios 2287

AWS Identity and Access Management User Guide

 usage_demo()

• For API details, see the following topics in AWS SDK for Python (Boto3) API Reference.

• AttachRolePolicy

• CreateAccessKey

• CreatePolicy

• CreateRole

• CreateUser

• DeleteAccessKey

• DeletePolicy

• DeleteRole

• DeleteUser

• DeleteUserPolicy

• DetachRolePolicy

• PutUserPolicy

Ruby

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Create an IAM user and a role that grants permission to list Amazon S3 buckets. The user
has rights only to assume the role. After assuming the role, use temporary credentials to list
buckets for the account.

Wraps the scenario actions.
class ScenarioCreateUserAssumeRole
 attr_reader :iam_client

 # @param [Aws::IAM::Client] iam_client: The AWS IAM client.

Scenarios 2288

https://docs.aws.amazon.com/goto/boto3/iam-2010-05-08/AttachRolePolicy
https://docs.aws.amazon.com/goto/boto3/iam-2010-05-08/CreateAccessKey
https://docs.aws.amazon.com/goto/boto3/iam-2010-05-08/CreatePolicy
https://docs.aws.amazon.com/goto/boto3/iam-2010-05-08/CreateRole
https://docs.aws.amazon.com/goto/boto3/iam-2010-05-08/CreateUser
https://docs.aws.amazon.com/goto/boto3/iam-2010-05-08/DeleteAccessKey
https://docs.aws.amazon.com/goto/boto3/iam-2010-05-08/DeletePolicy
https://docs.aws.amazon.com/goto/boto3/iam-2010-05-08/DeleteRole
https://docs.aws.amazon.com/goto/boto3/iam-2010-05-08/DeleteUser
https://docs.aws.amazon.com/goto/boto3/iam-2010-05-08/DeleteUserPolicy
https://docs.aws.amazon.com/goto/boto3/iam-2010-05-08/DetachRolePolicy
https://docs.aws.amazon.com/goto/boto3/iam-2010-05-08/PutUserPolicy
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/iam#code-examples

AWS Identity and Access Management User Guide

 def initialize(iam_client, logger: Logger.new($stdout))
 @iam_client = iam_client
 @logger = logger
 end

 # Waits for the specified number of seconds.
 #
 # @param duration [Integer] The number of seconds to wait.
 def wait(duration)
 puts("Give AWS time to propagate resources...")
 sleep(duration)
 end

 # Creates a user.
 #
 # @param user_name [String] The name to give the user.
 # @return [Aws::IAM::User] The newly created user.
 def create_user(user_name)
 user = @iam_client.create_user(user_name: user_name).user
 @logger.info("Created demo user named #{user.user_name}.")
 rescue Aws::Errors::ServiceError => e
 @logger.info("Tried and failed to create demo user.")
 @logger.info("\t#{e.code}: #{e.message}")
 @logger.info("\nCan't continue the demo without a user!")
 raise
 else
 user
 end

 # Creates an access key for a user.
 #
 # @param user [Aws::IAM::User] The user that owns the key.
 # @return [Aws::IAM::AccessKeyPair] The newly created access key.
 def create_access_key_pair(user)
 user_key = @iam_client.create_access_key(user_name:
 user.user_name).access_key
 @logger.info("Created accesskey pair for user #{user.user_name}.")
 rescue Aws::Errors::ServiceError => e
 @logger.info("Couldn't create access keys for user #{user.user_name}.")
 @logger.info("\t#{e.code}: #{e.message}")
 raise
 else
 user_key
 end

Scenarios 2289

AWS Identity and Access Management User Guide

 # Creates a role that can be assumed by a user.
 #
 # @param role_name [String] The name to give the role.
 # @param user [Aws::IAM::User] The user who is granted permission to assume the
 role.
 # @return [Aws::IAM::Role] The newly created role.
 def create_role(role_name, user)
 trust_policy = {
 Version: "2012-10-17",
 Statement: [{
 Effect: "Allow",
 Principal: {'AWS': user.arn},
 Action: "sts:AssumeRole"
 }]
 }.to_json
 role = @iam_client.create_role(
 role_name: role_name,
 assume_role_policy_document: trust_policy
).role
 @logger.info("Created role #{role.role_name}.")
 rescue Aws::Errors::ServiceError => e
 @logger.info("Couldn't create a role for the demo. Here's why: ")
 @logger.info("\t#{e.code}: #{e.message}")
 raise
 else
 role
 end

 # Creates a policy that grants permission to list S3 buckets in the account,
 and
 # then attaches the policy to a role.
 #
 # @param policy_name [String] The name to give the policy.
 # @param role [Aws::IAM::Role] The role that the policy is attached to.
 # @return [Aws::IAM::Policy] The newly created policy.
 def create_and_attach_role_policy(policy_name, role)
 policy_document = {
 Version: "2012-10-17",
 Statement: [{
 Effect: "Allow",
 Action: "s3:ListAllMyBuckets",
 Resource: "arn:aws:s3:::*"
 }]

Scenarios 2290

AWS Identity and Access Management User Guide

 }.to_json
 policy = @iam_client.create_policy(
 policy_name: policy_name,
 policy_document: policy_document
).policy
 @iam_client.attach_role_policy(
 role_name: role.role_name,
 policy_arn: policy.arn
)
 @logger.info("Created policy #{policy.policy_name} and attached it to role
 #{role.role_name}.")
 rescue Aws::Errors::ServiceError => e
 @logger.info("Couldn't create a policy and attach it to role
 #{role.role_name}. Here's why: ")
 @logger.info("\t#{e.code}: #{e.message}")
 raise
 end

 # Creates an inline policy for a user that lets the user assume a role.
 #
 # @param policy_name [String] The name to give the policy.
 # @param user [Aws::IAM::User] The user that owns the policy.
 # @param role [Aws::IAM::Role] The role that can be assumed.
 # @return [Aws::IAM::UserPolicy] The newly created policy.
 def create_user_policy(policy_name, user, role)
 policy_document = {
 Version: "2012-10-17",
 Statement: [{
 Effect: "Allow",
 Action: "sts:AssumeRole",
 Resource: role.arn
 }]
 }.to_json
 @iam_client.put_user_policy(
 user_name: user.user_name,
 policy_name: policy_name,
 policy_document: policy_document
)
 puts("Created an inline policy for #{user.user_name} that lets the user
 assume role #{role.role_name}.")
 rescue Aws::Errors::ServiceError => e
 @logger.info("Couldn't create an inline policy for user #{user.user_name}.
 Here's why: ")
 @logger.info("\t#{e.code}: #{e.message}")

Scenarios 2291

AWS Identity and Access Management User Guide

 raise
 end

 # Creates an Amazon S3 resource with specified credentials. This is separated
 into a
 # factory function so that it can be mocked for unit testing.
 #
 # @param credentials [Aws::Credentials] The credentials used by the Amazon S3
 resource.
 def create_s3_resource(credentials)
 Aws::S3::Resource.new(client: Aws::S3::Client.new(credentials: credentials))
 end

 # Lists the S3 buckets for the account, using the specified Amazon S3 resource.
 # Because the resource uses credentials with limited access, it may not be able
 to
 # list the S3 buckets.
 #
 # @param s3_resource [Aws::S3::Resource] An Amazon S3 resource.
 def list_buckets(s3_resource)
 count = 10
 s3_resource.buckets.each do |bucket|
 @logger.info "\t#{bucket.name}"
 count -= 1
 break if count.zero?
 end
 rescue Aws::Errors::ServiceError => e
 if e.code == "AccessDenied"
 puts("Attempt to list buckets with no permissions: AccessDenied.")
 else
 @logger.info("Couldn't list buckets for the account. Here's why: ")
 @logger.info("\t#{e.code}: #{e.message}")
 raise
 end
 end

 # Creates an AWS Security Token Service (AWS STS) client with specified
 credentials.
 # This is separated into a factory function so that it can be mocked for unit
 testing.
 #
 # @param key_id [String] The ID of the access key used by the STS client.
 # @param key_secret [String] The secret part of the access key used by the STS
 client.

Scenarios 2292

AWS Identity and Access Management User Guide

 def create_sts_client(key_id, key_secret)
 Aws::STS::Client.new(access_key_id: key_id, secret_access_key: key_secret)
 end

 # Gets temporary credentials that can be used to assume a role.
 #
 # @param role_arn [String] The ARN of the role that is assumed when these
 credentials
 # are used.
 # @param sts_client [AWS::STS::Client] An AWS STS client.
 # @return [Aws::AssumeRoleCredentials] The credentials that can be used to
 assume the role.
 def assume_role(role_arn, sts_client)
 credentials = Aws::AssumeRoleCredentials.new(
 client: sts_client,
 role_arn: role_arn,
 role_session_name: "create-use-assume-role-scenario"
)
 @logger.info("Assumed role '#{role_arn}', got temporary credentials.")
 credentials
 end

 # Deletes a role. If the role has policies attached, they are detached and
 # deleted before the role is deleted.
 #
 # @param role_name [String] The name of the role to delete.
 def delete_role(role_name)
 @iam_client.list_attached_role_policies(role_name:
 role_name).attached_policies.each do |policy|
 @iam_client.detach_role_policy(role_name: role_name, policy_arn:
 policy.policy_arn)
 @iam_client.delete_policy(policy_arn: policy.policy_arn)
 @logger.info("Detached and deleted policy #{policy.policy_name}.")
 end
 @iam_client.delete_role({ role_name: role_name })
 @logger.info("Role deleted: #{role_name}.")
 rescue Aws::Errors::ServiceError => e
 @logger.info("Couldn't detach policies and delete role #{role.name}. Here's
 why:")
 @logger.info("\t#{e.code}: #{e.message}")
 raise
 end

Scenarios 2293

AWS Identity and Access Management User Guide

 # Deletes a user. If the user has inline policies or access keys, they are
 deleted
 # before the user is deleted.
 #
 # @param user [Aws::IAM::User] The user to delete.
 def delete_user(user_name)
 user = @iam_client.list_access_keys(user_name: user_name).access_key_metadata
 user.each do |key|
 @iam_client.delete_access_key({ access_key_id: key.access_key_id,
 user_name: user_name })
 @logger.info("Deleted access key #{key.access_key_id} for user
 '#{user_name}'.")
 end

 @iam_client.delete_user(user_name: user_name)
 @logger.info("Deleted user '#{user_name}'.")
 rescue Aws::IAM::Errors::ServiceError => e
 @logger.error("Error deleting user '#{user_name}': #{e.message}")
 end
end

Runs the IAM create a user and assume a role scenario.
def run_scenario(scenario)
 puts("-" * 88)
 puts("Welcome to the IAM create a user and assume a role demo!")
 puts("-" * 88)
 user = scenario.create_user("doc-example-user-#{Random.uuid}")
 user_key = scenario.create_access_key_pair(user)
 scenario.wait(10)
 role = scenario.create_role("doc-example-role-#{Random.uuid}", user)
 scenario.create_and_attach_role_policy("doc-example-role-policy-
#{Random.uuid}", role)
 scenario.create_user_policy("doc-example-user-policy-#{Random.uuid}", user,
 role)
 scenario.wait(10)
 puts("Try to list buckets with credentials for a user who has no permissions.")
 puts("Expect AccessDenied from this call.")
 scenario.list_buckets(
 scenario.create_s3_resource(Aws::Credentials.new(user_key.access_key_id,
 user_key.secret_access_key)))
 puts("Now, assume the role that grants permission.")
 temp_credentials = scenario.assume_role(
 role.arn, scenario.create_sts_client(user_key.access_key_id,
 user_key.secret_access_key))

Scenarios 2294

AWS Identity and Access Management User Guide

 puts("Here are your buckets:")
 scenario.list_buckets(scenario.create_s3_resource(temp_credentials))
 puts("Deleting role '#{role.role_name}' and attached policies.")
 scenario.delete_role(role.role_name)
 puts("Deleting user '#{user.user_name}', policies, and keys.")
 scenario.delete_user(user.user_name)
 puts("Thanks for watching!")
 puts("-" * 88)
rescue Aws::Errors::ServiceError => e
 puts("Something went wrong with the demo.")
 puts("\t#{e.code}: #{e.message}")
end

run_scenario(ScenarioCreateUserAssumeRole.new(Aws::IAM::Client.new)) if
 $PROGRAM_NAME == __FILE__

• For API details, see the following topics in AWS SDK for Ruby API Reference.

• AttachRolePolicy

• CreateAccessKey

• CreatePolicy

• CreateRole

• CreateUser

• DeleteAccessKey

• DeletePolicy

• DeleteRole

• DeleteUser

• DeleteUserPolicy

• DetachRolePolicy

• PutUserPolicy

Scenarios 2295

https://docs.aws.amazon.com/goto/SdkForRubyV3/iam-2010-05-08/AttachRolePolicy
https://docs.aws.amazon.com/goto/SdkForRubyV3/iam-2010-05-08/CreateAccessKey
https://docs.aws.amazon.com/goto/SdkForRubyV3/iam-2010-05-08/CreatePolicy
https://docs.aws.amazon.com/goto/SdkForRubyV3/iam-2010-05-08/CreateRole
https://docs.aws.amazon.com/goto/SdkForRubyV3/iam-2010-05-08/CreateUser
https://docs.aws.amazon.com/goto/SdkForRubyV3/iam-2010-05-08/DeleteAccessKey
https://docs.aws.amazon.com/goto/SdkForRubyV3/iam-2010-05-08/DeletePolicy
https://docs.aws.amazon.com/goto/SdkForRubyV3/iam-2010-05-08/DeleteRole
https://docs.aws.amazon.com/goto/SdkForRubyV3/iam-2010-05-08/DeleteUser
https://docs.aws.amazon.com/goto/SdkForRubyV3/iam-2010-05-08/DeleteUserPolicy
https://docs.aws.amazon.com/goto/SdkForRubyV3/iam-2010-05-08/DetachRolePolicy
https://docs.aws.amazon.com/goto/SdkForRubyV3/iam-2010-05-08/PutUserPolicy

AWS Identity and Access Management User Guide

Rust

SDK for Rust

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

use aws_config::meta::region::RegionProviderChain;
use aws_sdk_iam::Error as iamError;
use aws_sdk_iam::{config::Credentials as iamCredentials, config::Region, Client
 as iamClient};
use aws_sdk_s3::Client as s3Client;
use aws_sdk_sts::Client as stsClient;
use tokio::time::{sleep, Duration};
use uuid::Uuid;

#[tokio::main]
async fn main() -> Result<(), iamError> {
 let (client, uuid, list_all_buckets_policy_document, inline_policy_document)
 =
 initialize_variables().await;

 if let Err(e) = run_iam_operations(
 client,
 uuid,
 list_all_buckets_policy_document,
 inline_policy_document,
)
 .await
 {
 println!("{:?}", e);
 };

 Ok(())
}

async fn initialize_variables() -> (iamClient, String, String, String) {

Scenarios 2296

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/rustv1/examples/iam#code-examples

AWS Identity and Access Management User Guide

 let region_provider = RegionProviderChain::first_try(Region::new("us-
west-2"));

 let shared_config =
 aws_config::from_env().region(region_provider).load().await;
 let client = iamClient::new(&shared_config);
 let uuid = Uuid::new_v4().to_string();

 let list_all_buckets_policy_document = "{
 \"Version\": \"2012-10-17\",
 \"Statement\": [{
 \"Effect\": \"Allow\",
 \"Action\": \"s3:ListAllMyBuckets\",
 \"Resource\": \"arn:aws:s3:::*\"}]
 }"
 .to_string();
 let inline_policy_document = "{
 \"Version\": \"2012-10-17\",
 \"Statement\": [{
 \"Effect\": \"Allow\",
 \"Action\": \"sts:AssumeRole\",
 \"Resource\": \"{}\"}]
 }"
 .to_string();

 (
 client,
 uuid,
 list_all_buckets_policy_document,
 inline_policy_document,
)
}

async fn run_iam_operations(
 client: iamClient,
 uuid: String,
 list_all_buckets_policy_document: String,
 inline_policy_document: String,
) -> Result<(), iamError> {
 let user = iam_service::create_user(&client, &format!("{}{}",
 "iam_demo_user_", uuid)).await?;
 println!("Created the user with the name: {}", user.user_name());
 let key = iam_service::create_access_key(&client, user.user_name()).await?;

Scenarios 2297

AWS Identity and Access Management User Guide

 let assume_role_policy_document = "{
 \"Version\": \"2012-10-17\",
 \"Statement\": [{
 \"Effect\": \"Allow\",
 \"Principal\": {\"AWS\": \"{}\"},
 \"Action\": \"sts:AssumeRole\"
 }]
 }"
 .to_string()
 .replace("{}", user.arn());

 let assume_role_role = iam_service::create_role(
 &client,
 &format!("{}{}", "iam_demo_role_", uuid),
 &assume_role_policy_document,
)
 .await?;
 println!("Created the role with the ARN: {}", assume_role_role.arn());

 let list_all_buckets_policy = iam_service::create_policy(
 &client,
 &format!("{}{}", "iam_demo_policy_", uuid),
 &list_all_buckets_policy_document,
)
 .await?;
 println!(
 "Created policy: {}",
 list_all_buckets_policy.policy_name.as_ref().unwrap()
);

 let attach_role_policy_result =
 iam_service::attach_role_policy(&client, &assume_role_role,
 &list_all_buckets_policy)
 .await?;
 println!(
 "Attached the policy to the role: {:?}",
 attach_role_policy_result
);

 let inline_policy_name = format!("{}{}", "iam_demo_inline_policy_", uuid);
 let inline_policy_document = inline_policy_document.replace("{}",
 assume_role_role.arn());
 iam_service::create_user_policy(&client, &user, &inline_policy_name,
 &inline_policy_document)

Scenarios 2298

AWS Identity and Access Management User Guide

 .await?;
 println!("Created inline policy.");

 //First, fail to list the buckets with the user.
 let creds = iamCredentials::from_keys(key.access_key_id(),
 key.secret_access_key(), None);
 let fail_config = aws_config::from_env()
 .credentials_provider(creds.clone())
 .load()
 .await;
 println!("Fail config: {:?}", fail_config);
 let fail_client: s3Client = s3Client::new(&fail_config);
 match fail_client.list_buckets().send().await {
 Ok(e) => {
 println!("This should not run. {:?}", e);
 }
 Err(e) => {
 println!("Successfully failed with error: {:?}", e)
 }
 }

 let sts_config = aws_config::from_env()
 .credentials_provider(creds.clone())
 .load()
 .await;
 let sts_client: stsClient = stsClient::new(&sts_config);
 sleep(Duration::from_secs(10)).await;
 let assumed_role = sts_client
 .assume_role()
 .role_arn(assume_role_role.arn())
 .role_session_name(&format!("{}{}", "iam_demo_assumerole_session_",
 uuid))
 .send()
 .await;
 println!("Assumed role: {:?}", assumed_role);
 sleep(Duration::from_secs(10)).await;

 let assumed_credentials = iamCredentials::from_keys(
 assumed_role
 .as_ref()
 .unwrap()
 .credentials
 .as_ref()
 .unwrap()

Scenarios 2299

AWS Identity and Access Management User Guide

 .access_key_id(),
 assumed_role
 .as_ref()
 .unwrap()
 .credentials
 .as_ref()
 .unwrap()
 .secret_access_key(),
 Some(
 assumed_role
 .as_ref()
 .unwrap()
 .credentials
 .as_ref()
 .unwrap()
 .session_token
 .clone(),
),
);

 let succeed_config = aws_config::from_env()
 .credentials_provider(assumed_credentials)
 .load()
 .await;
 println!("succeed config: {:?}", succeed_config);
 let succeed_client: s3Client = s3Client::new(&succeed_config);
 sleep(Duration::from_secs(10)).await;
 match succeed_client.list_buckets().send().await {
 Ok(_) => {
 println!("This should now run successfully.")
 }
 Err(e) => {
 println!("This should not run. {:?}", e);
 panic!()
 }
 }

 //Clean up.
 iam_service::detach_role_policy(
 &client,
 assume_role_role.role_name(),
 list_all_buckets_policy.arn().unwrap_or_default(),
)
 .await?;

Scenarios 2300

AWS Identity and Access Management User Guide

 iam_service::delete_policy(&client, list_all_buckets_policy).await?;
 iam_service::delete_role(&client, &assume_role_role).await?;
 println!("Deleted role {}", assume_role_role.role_name());
 iam_service::delete_access_key(&client, &user, &key).await?;
 println!("Deleted key for {}", key.user_name());
 iam_service::delete_user_policy(&client, &user, &inline_policy_name).await?;
 println!("Deleted inline user policy: {}", inline_policy_name);
 iam_service::delete_user(&client, &user).await?;
 println!("Deleted user {}", user.user_name());

 Ok(())
}

• For API details, see the following topics in AWS SDK for Rust API reference.

• AttachRolePolicy

• CreateAccessKey

• CreatePolicy

• CreateRole

• CreateUser

• DeleteAccessKey

• DeletePolicy

• DeleteRole

• DeleteUser

• DeleteUserPolicy

• DetachRolePolicy

• PutUserPolicy

For a complete list of AWS SDK developer guides and code examples, see Using IAM with an AWS
SDK. This topic also includes information about getting started and details about previous SDK
versions.

Create read-only and read-write IAM users using an AWS SDK

The following code example shows how to create users and attach policies to them.

Scenarios 2301

https://docs.rs/releases/search?query=aws-sdk
https://docs.rs/releases/search?query=aws-sdk
https://docs.rs/releases/search?query=aws-sdk
https://docs.rs/releases/search?query=aws-sdk
https://docs.rs/releases/search?query=aws-sdk
https://docs.rs/releases/search?query=aws-sdk
https://docs.rs/releases/search?query=aws-sdk
https://docs.rs/releases/search?query=aws-sdk
https://docs.rs/releases/search?query=aws-sdk
https://docs.rs/releases/search?query=aws-sdk
https://docs.rs/releases/search?query=aws-sdk
https://docs.rs/releases/search?query=aws-sdk

AWS Identity and Access Management User Guide

Warning

To avoid security risks, don't use IAM users for authentication when developing purpose-
built software or working with real data. Instead, use federation with an identity provider
such as AWS IAM Identity Center.

• Create two IAM users.

• Attach a policy for one user to get and put objects in an Amazon S3 bucket.

• Attach a policy for the second user to get objects from the bucket.

• Get different permissions to the bucket based on user credentials.

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Create functions that wrap IAM user actions.

import logging
import time

import boto3
from botocore.exceptions import ClientError

import access_key_wrapper
import policy_wrapper

logger = logging.getLogger(__name__)
iam = boto3.resource("iam")

def create_user(user_name):
 """
 Creates a user. By default, a user has no permissions or access keys.

Scenarios 2302

https://docs.aws.amazon.com/singlesignon/latest/userguide/what-is.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/iam#code-examples

AWS Identity and Access Management User Guide

 :param user_name: The name of the user.
 :return: The newly created user.
 """
 try:
 user = iam.create_user(UserName=user_name)
 logger.info("Created user %s.", user.name)
 except ClientError:
 logger.exception("Couldn't create user %s.", user_name)
 raise
 else:
 return user

def update_user(user_name, new_user_name):
 """
 Updates a user's name.

 :param user_name: The current name of the user to update.
 :param new_user_name: The new name to assign to the user.
 :return: The updated user.
 """
 try:
 user = iam.User(user_name)
 user.update(NewUserName=new_user_name)
 logger.info("Renamed %s to %s.", user_name, new_user_name)
 except ClientError:
 logger.exception("Couldn't update name for user %s.", user_name)
 raise
 return user

def list_users():
 """
 Lists the users in the current account.

 :return: The list of users.
 """
 try:
 users = list(iam.users.all())
 logger.info("Got %s users.", len(users))
 except ClientError:

Scenarios 2303

AWS Identity and Access Management User Guide

 logger.exception("Couldn't get users.")
 raise
 else:
 return users

def delete_user(user_name):
 """
 Deletes a user. Before a user can be deleted, all associated resources,
 such as access keys and policies, must be deleted or detached.

 :param user_name: The name of the user.
 """
 try:
 iam.User(user_name).delete()
 logger.info("Deleted user %s.", user_name)
 except ClientError:
 logger.exception("Couldn't delete user %s.", user_name)
 raise

def attach_policy(user_name, policy_arn):
 """
 Attaches a policy to a user.

 :param user_name: The name of the user.
 :param policy_arn: The Amazon Resource Name (ARN) of the policy.
 """
 try:
 iam.User(user_name).attach_policy(PolicyArn=policy_arn)
 logger.info("Attached policy %s to user %s.", policy_arn, user_name)
 except ClientError:
 logger.exception("Couldn't attach policy %s to user %s.", policy_arn,
 user_name)
 raise

def detach_policy(user_name, policy_arn):
 """
 Detaches a policy from a user.

Scenarios 2304

AWS Identity and Access Management User Guide

 :param user_name: The name of the user.
 :param policy_arn: The Amazon Resource Name (ARN) of the policy.
 """
 try:
 iam.User(user_name).detach_policy(PolicyArn=policy_arn)
 logger.info("Detached policy %s from user %s.", policy_arn, user_name)
 except ClientError:
 logger.exception(
 "Couldn't detach policy %s from user %s.", policy_arn, user_name
)
 raise

Create functions that wrap IAM policy actions.

import json
import logging
import operator
import pprint
import time

import boto3
from botocore.exceptions import ClientError

logger = logging.getLogger(__name__)
iam = boto3.resource("iam")

def create_policy(name, description, actions, resource_arn):
 """
 Creates a policy that contains a single statement.

 :param name: The name of the policy to create.
 :param description: The description of the policy.
 :param actions: The actions allowed by the policy. These typically take the
 form of service:action, such as s3:PutObject.
 :param resource_arn: The Amazon Resource Name (ARN) of the resource this
 policy
 applies to. This ARN can contain wildcards, such as
 'arn:aws:s3:::my-bucket/*' to allow actions on all
 objects
 in the bucket named 'my-bucket'.

Scenarios 2305

AWS Identity and Access Management User Guide

 :return: The newly created policy.
 """
 policy_doc = {
 "Version": "2012-10-17",
 "Statement": [{"Effect": "Allow", "Action": actions, "Resource":
 resource_arn}],
 }
 try:
 policy = iam.create_policy(
 PolicyName=name,
 Description=description,
 PolicyDocument=json.dumps(policy_doc),
)
 logger.info("Created policy %s.", policy.arn)
 except ClientError:
 logger.exception("Couldn't create policy %s.", name)
 raise
 else:
 return policy

def delete_policy(policy_arn):
 """
 Deletes a policy.

 :param policy_arn: The ARN of the policy to delete.
 """
 try:
 iam.Policy(policy_arn).delete()
 logger.info("Deleted policy %s.", policy_arn)
 except ClientError:
 logger.exception("Couldn't delete policy %s.", policy_arn)
 raise

Create functions that wrap IAM access key actions.

import logging
import boto3
from botocore.exceptions import ClientError

Scenarios 2306

AWS Identity and Access Management User Guide

logger = logging.getLogger(__name__)

iam = boto3.resource("iam")

def create_key(user_name):
 """
 Creates an access key for the specified user. Each user can have a
 maximum of two keys.

 :param user_name: The name of the user.
 :return: The created access key.
 """
 try:
 key_pair = iam.User(user_name).create_access_key_pair()
 logger.info(
 "Created access key pair for %s. Key ID is %s.",
 key_pair.user_name,
 key_pair.id,
)
 except ClientError:
 logger.exception("Couldn't create access key pair for %s.", user_name)
 raise
 else:
 return key_pair

def delete_key(user_name, key_id):
 """
 Deletes a user's access key.

 :param user_name: The user that owns the key.
 :param key_id: The ID of the key to delete.
 """

 try:
 key = iam.AccessKey(user_name, key_id)
 key.delete()
 logger.info("Deleted access key %s for %s.", key.id, key.user_name)
 except ClientError:
 logger.exception("Couldn't delete key %s for %s", key_id, user_name)
 raise

Scenarios 2307

AWS Identity and Access Management User Guide

Use the wrapper functions to create users with differing policies and use their credentials to
access an Amazon S3 bucket.

def usage_demo():
 """
 Shows how to manage users, keys, and policies.
 This demonstration creates two users: one user who can put and get objects in
 an
 Amazon S3 bucket, and another user who can only get objects from the bucket.
 The demo then shows how the users can perform only the actions they are
 permitted
 to perform.
 """
 logging.basicConfig(level=logging.INFO, format="%(levelname)s: %(message)s")
 print("-" * 88)
 print("Welcome to the AWS Identity and Account Management user demo.")
 print("-" * 88)
 print(
 "Users can have policies and roles attached to grant them specific "
 "permissions."
)
 s3 = boto3.resource("s3")
 bucket = s3.create_bucket(
 Bucket=f"demo-iam-bucket-{time.time_ns()}",
 CreateBucketConfiguration={
 "LocationConstraint": s3.meta.client.meta.region_name
 },
)
 print(f"Created an Amazon S3 bucket named {bucket.name}.")
 user_read_writer = create_user("demo-iam-read-writer")
 user_reader = create_user("demo-iam-reader")
 print(f"Created two IAM users: {user_read_writer.name} and
 {user_reader.name}")
 update_user(user_read_writer.name, "demo-iam-creator")
 update_user(user_reader.name, "demo-iam-getter")
 users = list_users()
 user_read_writer = next(
 user for user in users if user.user_id == user_read_writer.user_id
)

Scenarios 2308

AWS Identity and Access Management User Guide

 user_reader = next(user for user in users if user.user_id ==
 user_reader.user_id)
 print(
 f"Changed the names of the users to {user_read_writer.name} "
 f"and {user_reader.name}."
)

 read_write_policy = policy_wrapper.create_policy(
 "demo-iam-read-write-policy",
 "Grants rights to create and get an object in the demo bucket.",
 ["s3:PutObject", "s3:GetObject"],
 f"arn:aws:s3:::{bucket.name}/*",
)
 print(
 f"Created policy {read_write_policy.policy_name} with ARN:
 {read_write_policy.arn}"
)
 print(read_write_policy.description)
 read_policy = policy_wrapper.create_policy(
 "demo-iam-read-policy",
 "Grants rights to get an object from the demo bucket.",
 "s3:GetObject",
 f"arn:aws:s3:::{bucket.name}/*",
)
 print(f"Created policy {read_policy.policy_name} with ARN:
 {read_policy.arn}")
 print(read_policy.description)
 attach_policy(user_read_writer.name, read_write_policy.arn)
 print(f"Attached {read_write_policy.policy_name} to
 {user_read_writer.name}.")
 attach_policy(user_reader.name, read_policy.arn)
 print(f"Attached {read_policy.policy_name} to {user_reader.name}.")

 user_read_writer_key = access_key_wrapper.create_key(user_read_writer.name)
 print(f"Created access key pair for {user_read_writer.name}.")
 user_reader_key = access_key_wrapper.create_key(user_reader.name)
 print(f"Created access key pair for {user_reader.name}.")

 s3_read_writer_resource = boto3.resource(
 "s3",
 aws_access_key_id=user_read_writer_key.id,
 aws_secret_access_key=user_read_writer_key.secret,
)
 demo_object_key = f"object-{time.time_ns()}"

Scenarios 2309

AWS Identity and Access Management User Guide

 demo_object = None
 while demo_object is None:
 try:
 demo_object = s3_read_writer_resource.Bucket(bucket.name).put_object(
 Key=demo_object_key, Body=b"AWS IAM demo object content!"
)
 except ClientError as error:
 if error.response["Error"]["Code"] == "InvalidAccessKeyId":
 print("Access key not yet available. Waiting...")
 time.sleep(1)
 else:
 raise
 print(
 f"Put {demo_object_key} into {bucket.name} using "
 f"{user_read_writer.name}'s credentials."
)

 read_writer_object = s3_read_writer_resource.Bucket(bucket.name).Object(
 demo_object_key
)
 read_writer_content = read_writer_object.get()["Body"].read()
 print(f"Got object {read_writer_object.key} using read-writer user's
 credentials.")
 print(f"Object content: {read_writer_content}")

 s3_reader_resource = boto3.resource(
 "s3",
 aws_access_key_id=user_reader_key.id,
 aws_secret_access_key=user_reader_key.secret,
)
 demo_content = None
 while demo_content is None:
 try:
 demo_object =
 s3_reader_resource.Bucket(bucket.name).Object(demo_object_key)
 demo_content = demo_object.get()["Body"].read()
 print(f"Got object {demo_object.key} using reader user's
 credentials.")
 print(f"Object content: {demo_content}")
 except ClientError as error:
 if error.response["Error"]["Code"] == "InvalidAccessKeyId":
 print("Access key not yet available. Waiting...")
 time.sleep(1)
 else:

Scenarios 2310

AWS Identity and Access Management User Guide

 raise

 try:
 demo_object.delete()
 except ClientError as error:
 if error.response["Error"]["Code"] == "AccessDenied":
 print("-" * 88)
 print(
 "Tried to delete the object using the reader user's credentials.
 "
 "Got expected AccessDenied error because the reader is not "
 "allowed to delete objects."
)
 print("-" * 88)

 access_key_wrapper.delete_key(user_reader.name, user_reader_key.id)
 detach_policy(user_reader.name, read_policy.arn)
 policy_wrapper.delete_policy(read_policy.arn)
 delete_user(user_reader.name)
 print(f"Deleted keys, detached and deleted policy, and deleted
 {user_reader.name}.")

 access_key_wrapper.delete_key(user_read_writer.name, user_read_writer_key.id)
 detach_policy(user_read_writer.name, read_write_policy.arn)
 policy_wrapper.delete_policy(read_write_policy.arn)
 delete_user(user_read_writer.name)
 print(
 f"Deleted keys, detached and deleted policy, and deleted
 {user_read_writer.name}."
)

 bucket.objects.delete()
 bucket.delete()
 print(f"Emptied and deleted {bucket.name}.")
 print("Thanks for watching!")

• For API details, see the following topics in AWS SDK for Python (Boto3) API Reference.

• AttachUserPolicy

• CreateAccessKey

Scenarios 2311

https://docs.aws.amazon.com/goto/boto3/iam-2010-05-08/AttachUserPolicy
https://docs.aws.amazon.com/goto/boto3/iam-2010-05-08/CreateAccessKey

AWS Identity and Access Management User Guide

• CreatePolicy

• CreateUser

• DeleteAccessKey

• DeletePolicy

• DeleteUser

• DetachUserPolicy

• ListUsers

• UpdateUser

For a complete list of AWS SDK developer guides and code examples, see Using IAM with an AWS
SDK. This topic also includes information about getting started and details about previous SDK
versions.

Manage IAM access keys using an AWS SDK

The following code example shows how to manage access keys.

Warning

To avoid security risks, don't use IAM users for authentication when developing purpose-
built software or working with real data. Instead, use federation with an identity provider
such as AWS IAM Identity Center.

• Create and list access keys.

• Find out when and how an access key was last used.

• Update and delete access keys.

Scenarios 2312

https://docs.aws.amazon.com/goto/boto3/iam-2010-05-08/CreatePolicy
https://docs.aws.amazon.com/goto/boto3/iam-2010-05-08/CreateUser
https://docs.aws.amazon.com/goto/boto3/iam-2010-05-08/DeleteAccessKey
https://docs.aws.amazon.com/goto/boto3/iam-2010-05-08/DeletePolicy
https://docs.aws.amazon.com/goto/boto3/iam-2010-05-08/DeleteUser
https://docs.aws.amazon.com/goto/boto3/iam-2010-05-08/DetachUserPolicy
https://docs.aws.amazon.com/goto/boto3/iam-2010-05-08/ListUsers
https://docs.aws.amazon.com/goto/boto3/iam-2010-05-08/UpdateUser
https://docs.aws.amazon.com/singlesignon/latest/userguide/what-is.html

AWS Identity and Access Management User Guide

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Create functions that wrap IAM access key actions.

import logging
import boto3
from botocore.exceptions import ClientError

logger = logging.getLogger(__name__)

iam = boto3.resource("iam")

def list_keys(user_name):
 """
 Lists the keys owned by the specified user.

 :param user_name: The name of the user.
 :return: The list of keys owned by the user.
 """
 try:
 keys = list(iam.User(user_name).access_keys.all())
 logger.info("Got %s access keys for %s.", len(keys), user_name)
 except ClientError:
 logger.exception("Couldn't get access keys for %s.", user_name)
 raise
 else:
 return keys

def create_key(user_name):
 """
 Creates an access key for the specified user. Each user can have a
 maximum of two keys.

Scenarios 2313

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/iam#code-examples

AWS Identity and Access Management User Guide

 :param user_name: The name of the user.
 :return: The created access key.
 """
 try:
 key_pair = iam.User(user_name).create_access_key_pair()
 logger.info(
 "Created access key pair for %s. Key ID is %s.",
 key_pair.user_name,
 key_pair.id,
)
 except ClientError:
 logger.exception("Couldn't create access key pair for %s.", user_name)
 raise
 else:
 return key_pair

def get_last_use(key_id):
 """
 Gets information about when and how a key was last used.

 :param key_id: The ID of the key to look up.
 :return: Information about the key's last use.
 """
 try:
 response = iam.meta.client.get_access_key_last_used(AccessKeyId=key_id)
 last_used_date = response["AccessKeyLastUsed"].get("LastUsedDate", None)
 last_service = response["AccessKeyLastUsed"].get("ServiceName", None)
 logger.info(
 "Key %s was last used by %s on %s to access %s.",
 key_id,
 response["UserName"],
 last_used_date,
 last_service,
)
 except ClientError:
 logger.exception("Couldn't get last use of key %s.", key_id)
 raise
 else:
 return response

Scenarios 2314

AWS Identity and Access Management User Guide

def update_key(user_name, key_id, activate):
 """
 Updates the status of a key.

 :param user_name: The user that owns the key.
 :param key_id: The ID of the key to update.
 :param activate: When True, the key is activated. Otherwise, the key is
 deactivated.
 """

 try:
 key = iam.User(user_name).AccessKey(key_id)
 if activate:
 key.activate()
 else:
 key.deactivate()
 logger.info("%s key %s.", "Activated" if activate else "Deactivated",
 key_id)
 except ClientError:
 logger.exception(
 "Couldn't %s key %s.", "Activate" if activate else "Deactivate",
 key_id
)
 raise

def delete_key(user_name, key_id):
 """
 Deletes a user's access key.

 :param user_name: The user that owns the key.
 :param key_id: The ID of the key to delete.
 """

 try:
 key = iam.AccessKey(user_name, key_id)
 key.delete()
 logger.info("Deleted access key %s for %s.", key.id, key.user_name)
 except ClientError:
 logger.exception("Couldn't delete key %s for %s", key_id, user_name)
 raise

Scenarios 2315

AWS Identity and Access Management User Guide

Use the wrapper functions to perform access key actions for the current user.

def usage_demo():
 """Shows how to create and manage access keys."""

 def print_keys():
 """Gets and prints the current keys for a user."""
 current_keys = list_keys(current_user_name)
 print("The current user's keys are now:")
 print(*[f"{key.id}: {key.status}" for key in current_keys], sep="\n")

 logging.basicConfig(level=logging.INFO, format="%(levelname)s: %(message)s")
 print("-" * 88)
 print("Welcome to the AWS Identity and Account Management access key demo.")
 print("-" * 88)
 current_user_name = iam.CurrentUser().user_name
 print(
 f"This demo creates an access key for the current user "
 f"({current_user_name}), manipulates the key in a few ways, and then "
 f"deletes it."
)
 all_keys = list_keys(current_user_name)
 if len(all_keys) == 2:
 print(
 "The current user already has the maximum of 2 access keys. To run "
 "this demo, either delete one of the access keys or use a user "
 "that has only 1 access key."
)
 else:
 new_key = create_key(current_user_name)
 print(f"Created a new key with id {new_key.id} and secret
 {new_key.secret}.")
 print_keys()
 existing_key = next(key for key in all_keys if key != new_key)
 last_use = get_last_use(existing_key.id)["AccessKeyLastUsed"]
 print(
 f"Key {all_keys[0].id} was last used to access
 {last_use['ServiceName']} "
 f"on {last_use['LastUsedDate']}"
)
 update_key(current_user_name, new_key.id, False)

Scenarios 2316

AWS Identity and Access Management User Guide

 print(f"Key {new_key.id} is now deactivated.")
 print_keys()
 delete_key(current_user_name, new_key.id)
 print_keys()
 print("Thanks for watching!")

• For API details, see the following topics in AWS SDK for Python (Boto3) API Reference.

• CreateAccessKey

• DeleteAccessKey

• GetAccessKeyLastUsed

• ListAccessKeys

• UpdateAccessKey

For a complete list of AWS SDK developer guides and code examples, see Using IAM with an AWS
SDK. This topic also includes information about getting started and details about previous SDK
versions.

Manage IAM policies using an AWS SDK

The following code example shows how to:

• Create and list policies.

• Create and get policy versions.

• Roll back a policy to a previous version.

• Delete policies.

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Scenarios 2317

https://docs.aws.amazon.com/goto/boto3/iam-2010-05-08/CreateAccessKey
https://docs.aws.amazon.com/goto/boto3/iam-2010-05-08/DeleteAccessKey
https://docs.aws.amazon.com/goto/boto3/iam-2010-05-08/GetAccessKeyLastUsed
https://docs.aws.amazon.com/goto/boto3/iam-2010-05-08/ListAccessKeys
https://docs.aws.amazon.com/goto/boto3/iam-2010-05-08/UpdateAccessKey
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/iam#code-examples

AWS Identity and Access Management User Guide

Create functions that wrap IAM policy actions.

import json
import logging
import operator
import pprint
import time

import boto3
from botocore.exceptions import ClientError

logger = logging.getLogger(__name__)
iam = boto3.resource("iam")

def create_policy(name, description, actions, resource_arn):
 """
 Creates a policy that contains a single statement.

 :param name: The name of the policy to create.
 :param description: The description of the policy.
 :param actions: The actions allowed by the policy. These typically take the
 form of service:action, such as s3:PutObject.
 :param resource_arn: The Amazon Resource Name (ARN) of the resource this
 policy
 applies to. This ARN can contain wildcards, such as
 'arn:aws:s3:::my-bucket/*' to allow actions on all
 objects
 in the bucket named 'my-bucket'.
 :return: The newly created policy.
 """
 policy_doc = {
 "Version": "2012-10-17",
 "Statement": [{"Effect": "Allow", "Action": actions, "Resource":
 resource_arn}],
 }
 try:
 policy = iam.create_policy(
 PolicyName=name,
 Description=description,
 PolicyDocument=json.dumps(policy_doc),
)
 logger.info("Created policy %s.", policy.arn)
 except ClientError:
 logger.exception("Couldn't create policy %s.", name)

Scenarios 2318

AWS Identity and Access Management User Guide

 raise
 else:
 return policy

def list_policies(scope):
 """
 Lists the policies in the current account.

 :param scope: Limits the kinds of policies that are returned. For example,
 'Local' specifies that only locally managed policies are
 returned.
 :return: The list of policies.
 """
 try:
 policies = list(iam.policies.filter(Scope=scope))
 logger.info("Got %s policies in scope '%s'.", len(policies), scope)
 except ClientError:
 logger.exception("Couldn't get policies for scope '%s'.", scope)
 raise
 else:
 return policies

def create_policy_version(policy_arn, actions, resource_arn, set_as_default):
 """
 Creates a policy version. Policies can have up to five versions. The default
 version is the one that is used for all resources that reference the policy.

 :param policy_arn: The ARN of the policy.
 :param actions: The actions to allow in the policy version.
 :param resource_arn: The ARN of the resource this policy version applies to.
 :param set_as_default: When True, this policy version is set as the default
 version for the policy. Otherwise, the default
 is not changed.
 :return: The newly created policy version.
 """
 policy_doc = {
 "Version": "2012-10-17",
 "Statement": [{"Effect": "Allow", "Action": actions, "Resource":
 resource_arn}],
 }

Scenarios 2319

AWS Identity and Access Management User Guide

 try:
 policy = iam.Policy(policy_arn)
 policy_version = policy.create_version(
 PolicyDocument=json.dumps(policy_doc), SetAsDefault=set_as_default
)
 logger.info(
 "Created policy version %s for policy %s.",
 policy_version.version_id,
 policy_version.arn,
)
 except ClientError:
 logger.exception("Couldn't create a policy version for %s.", policy_arn)
 raise
 else:
 return policy_version

def get_default_policy_statement(policy_arn):
 """
 Gets the statement of the default version of the specified policy.

 :param policy_arn: The ARN of the policy to look up.
 :return: The statement of the default policy version.
 """
 try:
 policy = iam.Policy(policy_arn)
 # To get an attribute of a policy, the SDK first calls get_policy.
 policy_doc = policy.default_version.document
 policy_statement = policy_doc.get("Statement", None)
 logger.info("Got default policy doc for %s.", policy.policy_name)
 logger.info(policy_doc)
 except ClientError:
 logger.exception("Couldn't get default policy statement for %s.",
 policy_arn)
 raise
 else:
 return policy_statement

def rollback_policy_version(policy_arn):
 """
 Rolls back to the previous default policy, if it exists.

Scenarios 2320

AWS Identity and Access Management User Guide

 1. Gets the list of policy versions in order by date.
 2. Finds the default.
 3. Makes the previous policy the default.
 4. Deletes the old default version.

 :param policy_arn: The ARN of the policy to roll back.
 :return: The default version of the policy after the rollback.
 """
 try:
 policy_versions = sorted(
 iam.Policy(policy_arn).versions.all(),
 key=operator.attrgetter("create_date"),
)
 logger.info("Got %s versions for %s.", len(policy_versions), policy_arn)
 except ClientError:
 logger.exception("Couldn't get versions for %s.", policy_arn)
 raise

 default_version = None
 rollback_version = None
 try:
 while default_version is None:
 ver = policy_versions.pop()
 if ver.is_default_version:
 default_version = ver
 rollback_version = policy_versions.pop()
 rollback_version.set_as_default()
 logger.info("Set %s as the default version.",
 rollback_version.version_id)
 default_version.delete()
 logger.info("Deleted original default version %s.",
 default_version.version_id)
 except IndexError:
 if default_version is None:
 logger.warning("No default version found for %s.", policy_arn)
 elif rollback_version is None:
 logger.warning(
 "Default version %s found for %s, but no previous version exists,
 so "
 "nothing to roll back to.",
 default_version.version_id,
 policy_arn,
)

Scenarios 2321

AWS Identity and Access Management User Guide

 except ClientError:
 logger.exception("Couldn't roll back version for %s.", policy_arn)
 raise
 else:
 return rollback_version

def delete_policy(policy_arn):
 """
 Deletes a policy.

 :param policy_arn: The ARN of the policy to delete.
 """
 try:
 iam.Policy(policy_arn).delete()
 logger.info("Deleted policy %s.", policy_arn)
 except ClientError:
 logger.exception("Couldn't delete policy %s.", policy_arn)
 raise

Use the wrapper functions to create policies, update versions, and get information about
them.

def usage_demo():
 """Shows how to use the policy functions."""
 logging.basicConfig(level=logging.INFO, format="%(levelname)s: %(message)s")
 print("-" * 88)
 print("Welcome to the AWS Identity and Account Management policy demo.")
 print("-" * 88)
 print(
 "Policies let you define sets of permissions that can be attached to "
 "other IAM resources, like users and roles."
)
 bucket_arn = f"arn:aws:s3:::made-up-bucket-name"
 policy = create_policy(
 "demo-iam-policy",
 "Policy for IAM demonstration.",
 ["s3:ListObjects"],
 bucket_arn,

Scenarios 2322

AWS Identity and Access Management User Guide

)
 print(f"Created policy {policy.policy_name}.")
 policies = list_policies("Local")
 print(f"Your account has {len(policies)} managed policies:")
 print(*[pol.policy_name for pol in policies], sep=", ")
 time.sleep(1)
 policy_version = create_policy_version(
 policy.arn, ["s3:PutObject"], bucket_arn, True
)
 print(
 f"Added policy version {policy_version.version_id} to policy "
 f"{policy.policy_name}."
)
 default_statement = get_default_policy_statement(policy.arn)
 print(f"The default policy statement for {policy.policy_name} is:")
 pprint.pprint(default_statement)
 rollback_version = rollback_policy_version(policy.arn)
 print(
 f"Rolled back to version {rollback_version.version_id} for "
 f"{policy.policy_name}."
)
 default_statement = get_default_policy_statement(policy.arn)
 print(f"The default policy statement for {policy.policy_name} is now:")
 pprint.pprint(default_statement)
 delete_policy(policy.arn)
 print(f"Deleted policy {policy.policy_name}.")
 print("Thanks for watching!")

• For API details, see the following topics in AWS SDK for Python (Boto3) API Reference.

• CreatePolicy

• CreatePolicyVersion

• DeletePolicy

• DeletePolicyVersion

• GetPolicyVersion

• ListPolicies

• ListPolicyVersions

• SetDefaultPolicyVersion
Scenarios 2323

https://docs.aws.amazon.com/goto/boto3/iam-2010-05-08/CreatePolicy
https://docs.aws.amazon.com/goto/boto3/iam-2010-05-08/CreatePolicyVersion
https://docs.aws.amazon.com/goto/boto3/iam-2010-05-08/DeletePolicy
https://docs.aws.amazon.com/goto/boto3/iam-2010-05-08/DeletePolicyVersion
https://docs.aws.amazon.com/goto/boto3/iam-2010-05-08/GetPolicyVersion
https://docs.aws.amazon.com/goto/boto3/iam-2010-05-08/ListPolicies
https://docs.aws.amazon.com/goto/boto3/iam-2010-05-08/ListPolicyVersions
https://docs.aws.amazon.com/goto/boto3/iam-2010-05-08/SetDefaultPolicyVersion

AWS Identity and Access Management User Guide

For a complete list of AWS SDK developer guides and code examples, see Using IAM with an AWS
SDK. This topic also includes information about getting started and details about previous SDK
versions.

Manage IAM roles using an AWS SDK

The following code example shows how to:

• Create an IAM role.

• Attach and detach policies for a role.

• Delete a role.

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Create functions that wrap IAM role actions.

import json
import logging
import pprint

import boto3
from botocore.exceptions import ClientError

logger = logging.getLogger(__name__)
iam = boto3.resource("iam")

def create_role(role_name, allowed_services):
 """
 Creates a role that lets a list of specified services assume the role.

 :param role_name: The name of the role.
 :param allowed_services: The services that can assume the role.
 :return: The newly created role.

Scenarios 2324

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/iam#code-examples

AWS Identity and Access Management User Guide

 """
 trust_policy = {
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {"Service": service},
 "Action": "sts:AssumeRole",
 }
 for service in allowed_services
],
 }

 try:
 role = iam.create_role(
 RoleName=role_name, AssumeRolePolicyDocument=json.dumps(trust_policy)
)
 logger.info("Created role %s.", role.name)
 except ClientError:
 logger.exception("Couldn't create role %s.", role_name)
 raise
 else:
 return role

def attach_policy(role_name, policy_arn):
 """
 Attaches a policy to a role.

 :param role_name: The name of the role. **Note** this is the name, not the
 ARN.
 :param policy_arn: The ARN of the policy.
 """
 try:
 iam.Role(role_name).attach_policy(PolicyArn=policy_arn)
 logger.info("Attached policy %s to role %s.", policy_arn, role_name)
 except ClientError:
 logger.exception("Couldn't attach policy %s to role %s.", policy_arn,
 role_name)
 raise

Scenarios 2325

AWS Identity and Access Management User Guide

def detach_policy(role_name, policy_arn):
 """
 Detaches a policy from a role.

 :param role_name: The name of the role. **Note** this is the name, not the
 ARN.
 :param policy_arn: The ARN of the policy.
 """
 try:
 iam.Role(role_name).detach_policy(PolicyArn=policy_arn)
 logger.info("Detached policy %s from role %s.", policy_arn, role_name)
 except ClientError:
 logger.exception(
 "Couldn't detach policy %s from role %s.", policy_arn, role_name
)
 raise

def delete_role(role_name):
 """
 Deletes a role.

 :param role_name: The name of the role to delete.
 """
 try:
 iam.Role(role_name).delete()
 logger.info("Deleted role %s.", role_name)
 except ClientError:
 logger.exception("Couldn't delete role %s.", role_name)
 raise

Use the wrapper functions to create a role, then attach and detach a policy.

def usage_demo():
 """Shows how to use the role functions."""
 logging.basicConfig(level=logging.INFO, format="%(levelname)s: %(message)s")
 print("-" * 88)
 print("Welcome to the AWS Identity and Account Management role demo.")
 print("-" * 88)

Scenarios 2326

AWS Identity and Access Management User Guide

 print(
 "Roles let you define sets of permissions and can be assumed by "
 "other entities, like users and services."
)
 print("The first 10 roles currently in your account are:")
 roles = list_roles(10)
 print(f"The inline policies for role {roles[0].name} are:")
 list_policies(roles[0].name)
 role = create_role(
 "demo-iam-role", ["lambda.amazonaws.com",
 "batchoperations.s3.amazonaws.com"]
)
 print(f"Created role {role.name}, with trust policy:")
 pprint.pprint(role.assume_role_policy_document)
 policy_arn = "arn:aws:iam::aws:policy/AmazonS3ReadOnlyAccess"
 attach_policy(role.name, policy_arn)
 print(f"Attached policy {policy_arn} to {role.name}.")
 print(f"Policies attached to role {role.name} are:")
 list_attached_policies(role.name)
 detach_policy(role.name, policy_arn)
 print(f"Detached policy {policy_arn} from {role.name}.")
 delete_role(role.name)
 print(f"Deleted {role.name}.")
 print("Thanks for watching!")

• For API details, see the following topics in AWS SDK for Python (Boto3) API Reference.

• AttachRolePolicy

• CreateRole

• DeleteRole

• DetachRolePolicy

For a complete list of AWS SDK developer guides and code examples, see Using IAM with an AWS
SDK. This topic also includes information about getting started and details about previous SDK
versions.

Manage your IAM account using an AWS SDK

The following code example shows how to:

Scenarios 2327

https://docs.aws.amazon.com/goto/boto3/iam-2010-05-08/AttachRolePolicy
https://docs.aws.amazon.com/goto/boto3/iam-2010-05-08/CreateRole
https://docs.aws.amazon.com/goto/boto3/iam-2010-05-08/DeleteRole
https://docs.aws.amazon.com/goto/boto3/iam-2010-05-08/DetachRolePolicy

AWS Identity and Access Management User Guide

• Get and update the account alias.

• Generate a report of users and credentials.

• Get a summary of account usage.

• Get details for all users, groups, roles, and policies in your account, including their relationships
to each other.

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Create functions that wrap IAM account actions.

import logging
import pprint
import sys
import time
import boto3
from botocore.exceptions import ClientError

logger = logging.getLogger(__name__)
iam = boto3.resource("iam")

def list_aliases():
 """
 Gets the list of aliases for the current account. An account has at most one
 alias.

 :return: The list of aliases for the account.
 """
 try:
 response = iam.meta.client.list_account_aliases()
 aliases = response["AccountAliases"]
 if len(aliases) > 0:
 logger.info("Got aliases for your account: %s.", ",".join(aliases))

Scenarios 2328

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/iam#code-examples

AWS Identity and Access Management User Guide

 else:
 logger.info("Got no aliases for your account.")
 except ClientError:
 logger.exception("Couldn't list aliases for your account.")
 raise
 else:
 return response["AccountAliases"]

def create_alias(alias):
 """
 Creates an alias for the current account. The alias can be used in place of
 the
 account ID in the sign-in URL. An account can have only one alias. When a new
 alias is created, it replaces any existing alias.

 :param alias: The alias to assign to the account.
 """

 try:
 iam.create_account_alias(AccountAlias=alias)
 logger.info("Created an alias '%s' for your account.", alias)
 except ClientError:
 logger.exception("Couldn't create alias '%s' for your account.", alias)
 raise

def delete_alias(alias):
 """
 Removes the alias from the current account.

 :param alias: The alias to remove.
 """
 try:
 iam.meta.client.delete_account_alias(AccountAlias=alias)
 logger.info("Removed alias '%s' from your account.", alias)
 except ClientError:
 logger.exception("Couldn't remove alias '%s' from your account.", alias)
 raise

Scenarios 2329

AWS Identity and Access Management User Guide

def generate_credential_report():
 """
 Starts generation of a credentials report about the current account. After
 calling this function to generate the report, call get_credential_report
 to get the latest report. A new report can be generated a minimum of four
 hours
 after the last one was generated.
 """
 try:
 response = iam.meta.client.generate_credential_report()
 logger.info(
 "Generating credentials report for your account. " "Current state is
 %s.",
 response["State"],
)
 except ClientError:
 logger.exception("Couldn't generate a credentials report for your
 account.")
 raise
 else:
 return response

def get_credential_report():
 """
 Gets the most recently generated credentials report about the current
 account.

 :return: The credentials report.
 """
 try:
 response = iam.meta.client.get_credential_report()
 logger.debug(response["Content"])
 except ClientError:
 logger.exception("Couldn't get credentials report.")
 raise
 else:
 return response["Content"]

def get_summary():
 """

Scenarios 2330

AWS Identity and Access Management User Guide

 Gets a summary of account usage.

 :return: The summary of account usage.
 """
 try:
 summary = iam.AccountSummary()
 logger.debug(summary.summary_map)
 except ClientError:
 logger.exception("Couldn't get a summary for your account.")
 raise
 else:
 return summary.summary_map

def get_authorization_details(response_filter):
 """
 Gets an authorization detail report for the current account.

 :param response_filter: A list of resource types to include in the report,
 such
 as users or roles. When not specified, all resources
 are included.
 :return: The authorization detail report.
 """
 try:
 account_details = iam.meta.client.get_account_authorization_details(
 Filter=response_filter
)
 logger.debug(account_details)
 except ClientError:
 logger.exception("Couldn't get details for your account.")
 raise
 else:
 return account_details

Call wrapper functions to change the account alias and to get reports about the account.

def usage_demo():
 """Shows how to use the account functions."""

Scenarios 2331

AWS Identity and Access Management User Guide

 logging.basicConfig(level=logging.INFO, format="%(levelname)s: %(message)s")
 print("-" * 88)
 print("Welcome to the AWS Identity and Account Management account demo.")
 print("-" * 88)
 print(
 "Setting an account alias lets you use the alias in your sign-in URL "
 "instead of your account number."
)
 old_aliases = list_aliases()
 if len(old_aliases) > 0:
 print(f"Your account currently uses '{old_aliases[0]}' as its alias.")
 else:
 print("Your account currently has no alias.")
 for index in range(1, 3):
 new_alias = f"alias-{index}-{time.time_ns()}"
 print(f"Setting your account alias to {new_alias}")
 create_alias(new_alias)
 current_aliases = list_aliases()
 print(f"Your account alias is now {current_aliases}.")
 delete_alias(current_aliases[0])
 print(f"Your account now has no alias.")
 if len(old_aliases) > 0:
 print(f"Restoring your original alias back to {old_aliases[0]}...")
 create_alias(old_aliases[0])

 print("-" * 88)
 print("You can get various reports about your account.")
 print("Let's generate a credentials report...")
 report_state = None
 while report_state != "COMPLETE":
 cred_report_response = generate_credential_report()
 old_report_state = report_state
 report_state = cred_report_response["State"]
 if report_state != old_report_state:
 print(report_state, sep="")
 else:
 print(".", sep="")
 sys.stdout.flush()
 time.sleep(1)
 print()
 cred_report = get_credential_report()
 col_count = 3
 print(f"Got credentials report. Showing only the first {col_count} columns.")
 cred_lines = [

Scenarios 2332

AWS Identity and Access Management User Guide

 line.split(",")[:col_count] for line in
 cred_report.decode("utf-8").split("\n")
]
 col_width = max([len(item) for line in cred_lines for item in line]) + 2
 for line in cred_report.decode("utf-8").split("\n"):
 print(
 "".join(element.ljust(col_width) for element in line.split(",")
[:col_count])
)

 print("-" * 88)
 print("Let's get an account summary.")
 summary = get_summary()
 print("Here's your summary:")
 pprint.pprint(summary)

 print("-" * 88)
 print("Let's get authorization details!")
 details = get_authorization_details([])
 see_details = input("These are pretty long, do you want to see them (y/n)? ")
 if see_details.lower() == "y":
 pprint.pprint(details)

 print("-" * 88)
 pw_policy_created = None
 see_pw_policy = input("Want to see the password policy for the account (y/n)?
 ")
 if see_pw_policy.lower() == "y":
 while True:
 if print_password_policy():
 break
 else:
 answer = input(
 "Do you want to create a default password policy (y/n)? "
)
 if answer.lower() == "y":
 pw_policy_created = iam.create_account_password_policy()
 else:
 break
 if pw_policy_created is not None:
 answer = input("Do you want to delete the password policy (y/n)? ")
 if answer.lower() == "y":
 pw_policy_created.delete()
 print("Password policy deleted.")

Scenarios 2333

AWS Identity and Access Management User Guide

 print("The SAML providers for your account are:")
 list_saml_providers(10)

 print("-" * 88)
 print("Thanks for watching.")

• For API details, see the following topics in AWS SDK for Python (Boto3) API Reference.

• CreateAccountAlias

• DeleteAccountAlias

• GenerateCredentialReport

• GetAccountAuthorizationDetails

• GetAccountSummary

• GetCredentialReport

• ListAccountAliases

For a complete list of AWS SDK developer guides and code examples, see Using IAM with an AWS
SDK. This topic also includes information about getting started and details about previous SDK
versions.

Roll back an IAM policy version using an AWS SDK

The following code example shows how to:

• Get the list of policy versions in order by date.

• Find the default policy version.

• Make the previous policy version the default.

• Delete the old default version.

Scenarios 2334

https://docs.aws.amazon.com/goto/boto3/iam-2010-05-08/CreateAccountAlias
https://docs.aws.amazon.com/goto/boto3/iam-2010-05-08/DeleteAccountAlias
https://docs.aws.amazon.com/goto/boto3/iam-2010-05-08/GenerateCredentialReport
https://docs.aws.amazon.com/goto/boto3/iam-2010-05-08/GetAccountAuthorizationDetails
https://docs.aws.amazon.com/goto/boto3/iam-2010-05-08/GetAccountSummary
https://docs.aws.amazon.com/goto/boto3/iam-2010-05-08/GetCredentialReport
https://docs.aws.amazon.com/goto/boto3/iam-2010-05-08/ListAccountAliases

AWS Identity and Access Management User Guide

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

def rollback_policy_version(policy_arn):
 """
 Rolls back to the previous default policy, if it exists.

 1. Gets the list of policy versions in order by date.
 2. Finds the default.
 3. Makes the previous policy the default.
 4. Deletes the old default version.

 :param policy_arn: The ARN of the policy to roll back.
 :return: The default version of the policy after the rollback.
 """
 try:
 policy_versions = sorted(
 iam.Policy(policy_arn).versions.all(),
 key=operator.attrgetter("create_date"),
)
 logger.info("Got %s versions for %s.", len(policy_versions), policy_arn)
 except ClientError:
 logger.exception("Couldn't get versions for %s.", policy_arn)
 raise

 default_version = None
 rollback_version = None
 try:
 while default_version is None:
 ver = policy_versions.pop()
 if ver.is_default_version:
 default_version = ver
 rollback_version = policy_versions.pop()
 rollback_version.set_as_default()

Scenarios 2335

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/iam#code-examples

AWS Identity and Access Management User Guide

 logger.info("Set %s as the default version.",
 rollback_version.version_id)
 default_version.delete()
 logger.info("Deleted original default version %s.",
 default_version.version_id)
 except IndexError:
 if default_version is None:
 logger.warning("No default version found for %s.", policy_arn)
 elif rollback_version is None:
 logger.warning(
 "Default version %s found for %s, but no previous version exists,
 so "
 "nothing to roll back to.",
 default_version.version_id,
 policy_arn,
)
 except ClientError:
 logger.exception("Couldn't roll back version for %s.", policy_arn)
 raise
 else:
 return rollback_version

• For API details, see the following topics in AWS SDK for Python (Boto3) API Reference.

• DeletePolicyVersion

• ListPolicyVersions

• SetDefaultPolicyVersion

For a complete list of AWS SDK developer guides and code examples, see Using IAM with an AWS
SDK. This topic also includes information about getting started and details about previous SDK
versions.

Work with the IAM Policy Builder API using an AWS SDK

The following code example shows how to:

• Create IAM policies by using the object-oriented API.

• Use the IAM Policy Builder API with the IAM service.

Scenarios 2336

https://docs.aws.amazon.com/goto/boto3/iam-2010-05-08/DeletePolicyVersion
https://docs.aws.amazon.com/goto/boto3/iam-2010-05-08/ListPolicyVersions
https://docs.aws.amazon.com/goto/boto3/iam-2010-05-08/SetDefaultPolicyVersion

AWS Identity and Access Management User Guide

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

The examples use the following imports.

import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import software.amazon.awssdk.policybuilder.iam.IamConditionOperator;
import software.amazon.awssdk.policybuilder.iam.IamEffect;
import software.amazon.awssdk.policybuilder.iam.IamPolicy;
import software.amazon.awssdk.policybuilder.iam.IamPolicyWriter;
import software.amazon.awssdk.policybuilder.iam.IamPrincipal;
import software.amazon.awssdk.policybuilder.iam.IamPrincipalType;
import software.amazon.awssdk.policybuilder.iam.IamResource;
import software.amazon.awssdk.policybuilder.iam.IamStatement;
import software.amazon.awssdk.regions.Region;
import software.amazon.awssdk.services.iam.IamClient;
import software.amazon.awssdk.services.iam.model.GetPolicyResponse;
import software.amazon.awssdk.services.iam.model.GetPolicyVersionResponse;
import software.amazon.awssdk.services.sts.StsClient;

import java.net.URLDecoder;
import java.nio.charset.StandardCharsets;
import java.util.Arrays;
import java.util.List;

Create a time-based policy.

 public String timeBasedPolicyExample() {
 IamPolicy policy = IamPolicy.builder()
 .addStatement(b -> b
 .effect(IamEffect.ALLOW)
 .addAction("dynamodb:GetItem")

Scenarios 2337

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/iam#readme

AWS Identity and Access Management User Guide

 .addResource(IamResource.ALL)
 .addCondition(b1 -> b1

 .operator(IamConditionOperator.DATE_GREATER_THAN)

 .key("aws:CurrentTime")

 .value("2020-04-01T00:00:00Z"))
 .addCondition(b1 -> b1

 .operator(IamConditionOperator.DATE_LESS_THAN)

 .key("aws:CurrentTime")

 .value("2020-06-30T23:59:59Z")))
 .build();

 // Use an IamPolicyWriter to write out the JSON string to a more
 readable
 // format.
 return policy.toJson(IamPolicyWriter.builder()
 .prettyPrint(true)
 .build());
 }

Create a policy with multiple conditions.

 public String multipleConditionsExample() {
 IamPolicy policy = IamPolicy.builder()
 .addStatement(b -> b
 .effect(IamEffect.ALLOW)
 .addAction("dynamodb:GetItem")

 .addAction("dynamodb:BatchGetItem")
 .addAction("dynamodb:Query")
 .addAction("dynamodb:PutItem")
 .addAction("dynamodb:UpdateItem")
 .addAction("dynamodb:DeleteItem")

 .addAction("dynamodb:BatchWriteItem")

 .addResource("arn:aws:dynamodb:*:*:table/table-name")

Scenarios 2338

AWS Identity and Access Management User Guide

 .addConditions(IamConditionOperator.STRING_EQUALS

 .addPrefix("ForAllValues:"),

 "dynamodb:Attributes",
 List.of("column-
name1", "column-name2", "column-name3"))
 .addCondition(b1 -> b1

 .operator(IamConditionOperator.STRING_EQUALS

 .addSuffix("IfExists"))

 .key("dynamodb:Select")

 .value("SPECIFIC_ATTRIBUTES")))
 .build();

 return policy.toJson(IamPolicyWriter.builder()
 .prettyPrint(true).build());
 }

Use principals in a policy.

 public String specifyPrincipalsExample() {
 IamPolicy policy = IamPolicy.builder()
 .addStatement(b -> b
 .effect(IamEffect.DENY)
 .addAction("s3:*")
 .addPrincipal(IamPrincipal.ALL)

 .addResource("arn:aws:s3:::BUCKETNAME/*")

 .addResource("arn:aws:s3:::BUCKETNAME")
 .addCondition(b1 -> b1

 .operator(IamConditionOperator.ARN_NOT_EQUALS)

 .key("aws:PrincipalArn")

 .value("arn:aws:iam::444455556666:user/user-name")))

Scenarios 2339

AWS Identity and Access Management User Guide

 .build();
 return policy.toJson(IamPolicyWriter.builder()
 .prettyPrint(true).build());
 }

Allow cross-account access.

 public String allowCrossAccountAccessExample() {
 IamPolicy policy = IamPolicy.builder()
 .addStatement(b -> b
 .effect(IamEffect.ALLOW)

 .addPrincipal(IamPrincipalType.AWS, "111122223333")
 .addAction("s3:PutObject")
 .addResource("arn:aws:s3:::DOC-
EXAMPLE-BUCKET/*")
 .addCondition(b1 -> b1

 .operator(IamConditionOperator.STRING_EQUALS)
 .key("s3:x-amz-
acl")
 .value("bucket-
owner-full-control")))
 .build();
 return policy.toJson(IamPolicyWriter.builder()
 .prettyPrint(true).build());
 }

Build and upload an IamPolicy.

 public String createAndUploadPolicyExample(IamClient iam, String
 accountID, String policyName) {
 // Build the policy.
 IamPolicy policy = IamPolicy.builder() // 'version' defaults to
 "2012-10-17".
 .addStatement(IamStatement.builder()
 .effect(IamEffect.ALLOW)
 .addAction("dynamodb:PutItem")

 .addResource("arn:aws:dynamodb:us-east-1:" + accountID

Scenarios 2340

AWS Identity and Access Management User Guide

 + ":table/
exampleTableName")
 .build())
 .build();
 // Upload the policy.
 iam.createPolicy(r ->
 r.policyName(policyName).policyDocument(policy.toJson()));
 return
 policy.toJson(IamPolicyWriter.builder().prettyPrint(true).build());
 }

Download and work with an IamPolicy.

 public String createNewBasedOnExistingPolicyExample(IamClient iam, String
 accountID, String policyName,
 String newPolicyName) {

 String policyArn = "arn:aws:iam::" + accountID + ":policy/" +
 policyName;
 GetPolicyResponse getPolicyResponse = iam.getPolicy(r ->
 r.policyArn(policyArn));

 String policyVersion =
 getPolicyResponse.policy().defaultVersionId();
 GetPolicyVersionResponse getPolicyVersionResponse = iam
 .getPolicyVersion(r ->
 r.policyArn(policyArn).versionId(policyVersion));

 // Create an IamPolicy instance from the JSON string returned
 from IAM.
 String decodedPolicy =
 URLDecoder.decode(getPolicyVersionResponse.policyVersion().document(),
 StandardCharsets.UTF_8);
 IamPolicy policy = IamPolicy.fromJson(decodedPolicy);

 /*
 * All IamPolicy components are immutable, so use the copy method
 that creates a
 * new instance that
 * can be altered in the same method call.
 *

Scenarios 2341

AWS Identity and Access Management User Guide

 * Add the ability to get an item from DynamoDB as an additional
 action.
 */
 IamStatement newStatement = policy.statements().get(0).copy(s ->
 s.addAction("dynamodb:GetItem"));

 // Create a new statement that replaces the original statement.
 IamPolicy newPolicy = policy.copy(p ->
 p.statements(Arrays.asList(newStatement)));

 // Upload the new policy. IAM now has both policies.
 iam.createPolicy(r -> r.policyName(newPolicyName)
 .policyDocument(newPolicy.toJson()));

 return
 newPolicy.toJson(IamPolicyWriter.builder().prettyPrint(true).build());
 }

• For more information, see AWS SDK for Java 2.x Developer Guide.

• For API details, see the following topics in AWS SDK for Java 2.x API Reference.

• CreatePolicy

• GetPolicy

• GetPolicyVersion

For a complete list of AWS SDK developer guides and code examples, see Using IAM with an AWS
SDK. This topic also includes information about getting started and details about previous SDK
versions.

Code examples for AWS STS using AWS SDKs

The following code examples show how to use AWS STS with an AWS software development kit
(SDK).

Actions are code excerpts from larger programs and must be run in context. While actions show you
how to call individual service functions, you can see actions in context in their related scenarios and
cross-service examples.

Scenarios are code examples that show you how to accomplish a specific task by calling multiple
functions within the same service.

AWS STS 2342

https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/feature-iam-policy-builder.html
https://docs.aws.amazon.com/goto/SdkForJavaV2/iam-2010-05-08/CreatePolicy
https://docs.aws.amazon.com/goto/SdkForJavaV2/iam-2010-05-08/GetPolicy
https://docs.aws.amazon.com/goto/SdkForJavaV2/iam-2010-05-08/GetPolicyVersion

AWS Identity and Access Management User Guide

For a complete list of AWS SDK developer guides and code examples, see Using IAM with an AWS
SDK. This topic also includes information about getting started and details about previous SDK
versions.

Code examples

• Actions for AWS STS using AWS SDKs

• Assume a role with AWS STS using an AWS SDK

• Get a session token with AWS STS using an AWS SDK

• Scenarios for AWS STS using AWS SDKs

• Assume an IAM role that requires an MFA token with AWS STS using an AWS SDK

• Construct a URL with AWS STS for federated users using an AWS SDK

• Get a session token that requires an MFA token with AWS STS using an AWS SDK

Actions for AWS STS using AWS SDKs

The following code examples demonstrate how to perform individual AWS STS actions with AWS
SDKs. These excerpts call the AWS STS API and are code excerpts from larger programs that must
be run in context. Each example includes a link to GitHub, where you can find instructions for
setting up and running the code.

The following examples include only the most commonly used actions. For a complete list, see the
AWS Security Token Service (AWS STS) API Reference.

Examples

• Assume a role with AWS STS using an AWS SDK

• Get a session token with AWS STS using an AWS SDK

Assume a role with AWS STS using an AWS SDK

The following code examples show how to assume a role with AWS STS.

Action examples are code excerpts from larger programs and must be run in context. You can see
this action in context in the following code examples:

• Assume an IAM role that requires an MFA token

• Construct a URL for federated users

Actions 2343

https://docs.aws.amazon.com/STS/latest/APIReference/welcome.html

AWS Identity and Access Management User Guide

.NET

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

using System;
using System.Threading.Tasks;
using Amazon;
using Amazon.SecurityToken;
using Amazon.SecurityToken.Model;

namespace AssumeRoleExample
{
 class AssumeRole
 {
 /// <summary>
 /// This example shows how to use the AWS Security Token
 /// Service (AWS STS) to assume an IAM role.
 ///
 /// NOTE: It is important that the role that will be assumed has a
 /// trust relationship with the account that will assume the role.
 ///
 /// Before you run the example, you need to create the role you want to
 /// assume and have it trust the IAM account that will assume that role.
 ///
 /// See https://docs.aws.amazon.com/IAM/latest/UserGuide/
id_roles_create.html
 /// for help in working with roles.
 /// </summary>

 private static readonly RegionEndpoint REGION = RegionEndpoint.USWest2;

 static async Task Main()
 {
 // Create the SecurityToken client and then display the identity of
 the
 // default user.

Actions 2344

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/STS#code-examples

AWS Identity and Access Management User Guide

 var roleArnToAssume = "arn:aws:iam::123456789012:role/
testAssumeRole";

 var client = new
 Amazon.SecurityToken.AmazonSecurityTokenServiceClient(REGION);

 // Get and display the information about the identity of the default
 user.
 var callerIdRequest = new GetCallerIdentityRequest();
 var caller = await client.GetCallerIdentityAsync(callerIdRequest);
 Console.WriteLine($"Original Caller: {caller.Arn}");

 // Create the request to use with the AssumeRoleAsync call.
 var assumeRoleReq = new AssumeRoleRequest()
 {
 DurationSeconds = 1600,
 RoleSessionName = "Session1",
 RoleArn = roleArnToAssume
 };

 var assumeRoleRes = await client.AssumeRoleAsync(assumeRoleReq);

 // Now create a new client based on the credentials of the caller
 assuming the role.
 var client2 = new AmazonSecurityTokenServiceClient(credentials:
 assumeRoleRes.Credentials);

 // Get and display information about the caller that has assumed the
 defined role.
 var caller2 = await client2.GetCallerIdentityAsync(callerIdRequest);
 Console.WriteLine($"AssumedRole Caller: {caller2.Arn}");
 }
 }
}

• For API details, see AssumeRole in AWS SDK for .NET API Reference.

Actions 2345

https://docs.aws.amazon.com/goto/DotNetSDKV3/sts-2011-06-15/AssumeRole

AWS Identity and Access Management User Guide

Bash

AWS CLI with Bash script

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

###
function iecho
#
This function enables the script to display the specified text only if
the global variable $VERBOSE is set to true.
###
function iecho() {
 if [[$VERBOSE == true]]; then
 echo "$@"
 fi
}

###
function errecho
#
This function outputs everything sent to it to STDERR (standard error output).
###
function errecho() {
 printf "%s\n" "$*" 1>&2
}

###
function sts_assume_role
#
This function assumes a role in the AWS account and returns the temporary
credentials.
#
Parameters:
-n role_session_name -- The name of the session.
-r role_arn -- The ARN of the role to assume.
#
Returns:

Actions 2346

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/aws-cli/bash-linux/iam#code-examples

AWS Identity and Access Management User Guide

[access_key_id, secret_access_key, session_token]
And:
0 - If successful.
1 - If an error occurred.
###
function sts_assume_role() {
 local role_session_name role_arn response
 local option OPTARG # Required to use getopts command in a function.

 # bashsupport disable=BP5008
 function usage() {
 echo "function sts_assume_role"
 echo "Assumes a role in the AWS account and returns the temporary
 credentials:"
 echo " -n role_session_name -- The name of the session."
 echo " -r role_arn -- The ARN of the role to assume."
 echo ""
 }

 while getopts n:r:h option; do
 case "${option}" in
 n) role_session_name=${OPTARG} ;;
 r) role_arn=${OPTARG} ;;
 h)
 usage
 return 0
 ;;
 \?)
 ech o"Invalid parameter"
 usage
 return 1
 ;;
 esac
 done

 response=$(aws sts assume-role \
 --role-session-name "$role_session_name" \
 --role-arn "$role_arn" \
 --output text \
 --query "Credentials.[AccessKeyId, SecretAccessKey, SessionToken]")

 local error_code=${?}

 if [[$error_code -ne 0]]; then

Actions 2347

AWS Identity and Access Management User Guide

 aws_cli_error_log $error_code
 errecho "ERROR: AWS reports create-role operation failed.\n$response"
 return 1
 fi

 echo "$response"

 return 0
}

• For API details, see AssumeRole in AWS CLI Command Reference.

C++

SDK for C++

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

bool AwsDoc::STS::assumeRole(const Aws::String &roleArn,
 const Aws::String &roleSessionName,
 const Aws::String &externalId,
 Aws::Auth::AWSCredentials &credentials,
 const Aws::Client::ClientConfiguration
 &clientConfig) {
 Aws::STS::STSClient sts(clientConfig);
 Aws::STS::Model::AssumeRoleRequest sts_req;

 sts_req.SetRoleArn(roleArn);
 sts_req.SetRoleSessionName(roleSessionName);
 sts_req.SetExternalId(externalId);

 const Aws::STS::Model::AssumeRoleOutcome outcome = sts.AssumeRole(sts_req);

 if (!outcome.IsSuccess()) {
 std::cerr << "Error assuming IAM role. " <<
 outcome.GetError().GetMessage() << std::endl;
 }

Actions 2348

https://docs.aws.amazon.com/goto/aws-cli/sts-2011-06-15/AssumeRole
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/cpp/example_code/sts#code-examples

AWS Identity and Access Management User Guide

 else {
 std::cout << "Credentials successfully retrieved." << std::endl;
 const Aws::STS::Model::AssumeRoleResult result = outcome.GetResult();
 const Aws::STS::Model::Credentials &temp_credentials =
 result.GetCredentials();

 // Store temporary credentials in return argument.
 // Note: The credentials object returned by assumeRole differs
 // from the AWSCredentials object used in most situations.
 credentials.SetAWSAccessKeyId(temp_credentials.GetAccessKeyId());
 credentials.SetAWSSecretKey(temp_credentials.GetSecretAccessKey());
 credentials.SetSessionToken(temp_credentials.GetSessionToken());
 }

 return outcome.IsSuccess();
}

• For API details, see AssumeRole in AWS SDK for C++ API Reference.

CLI

AWS CLI

To assume a role

The following assume-role command retrieves a set of short-term credentials for the IAM
role s3-access-example.

aws sts assume-role \
 --role-arn arn:aws:iam::123456789012:role/xaccounts3access \
 --role-session-name s3-access-example

Output:

{
 "AssumedRoleUser": {
 "AssumedRoleId": "AROA3XFRBF535PLBIFPI4:s3-access-example",
 "Arn": "arn:aws:sts::123456789012:assumed-role/xaccounts3access/s3-
access-example"
 },
 "Credentials": {

Actions 2349

https://docs.aws.amazon.com/goto/SdkForCpp/sts-2011-06-15/AssumeRole

AWS Identity and Access Management User Guide

 "SecretAccessKey": "9drTJvcXLB89EXAMPLELB8923FB892xMFI",
 "SessionToken": "AQoXdzELDDY//////////
wEaoAK1wvxJY12r2IrDFT2IvAzTCn3zHoZ7YNtpiQLF0MqZye/
qwjzP2iEXAMPLEbw/m3hsj8VBTkPORGvr9jM5sgP+w9IZWZnU+LWhmg
+a5fDi2oTGUYcdg9uexQ4mtCHIHfi4citgqZTgco40Yqr4lIlo4V2b2Dyauk0eYFNebHtYlFVgAUj
+7Indz3LU0aTWk1WKIjHmmMCIoTkyYp/k7kUG7moeEYKSitwQIi6Gjn+nyzM
+PtoA3685ixzv0R7i5rjQi0YE0lf1oeie3bDiNHncmzosRM6SFiPzSvp6h/32xQuZsjcypmwsPSDtTPYcs0+YN/8BRi2/
IcrxSpnWEXAMPLEXSDFTAQAM6Dl9zR0tXoybnlrZIwMLlMi1Kcgo5OytwU=",
 "Expiration": "2016-03-15T00:05:07Z",
 "AccessKeyId": "ASIAJEXAMPLEXEG2JICEA"
 }
}

The output of the command contains an access key, secret key, and session token that you
can use to authenticate to AWS.

For AWS CLI use, you can set up a named profile associated with a role. When you use
the profile, the AWS CLI will call assume-role and manage credentials for you. For more
information, see Use an IAM role in the AWS CLI in the AWS CLI User Guide.

• For API details, see AssumeRole in AWS CLI Command Reference.

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

import software.amazon.awssdk.regions.Region;
import software.amazon.awssdk.services.sts.StsClient;
import software.amazon.awssdk.services.sts.model.AssumeRoleRequest;
import software.amazon.awssdk.services.sts.model.StsException;
import software.amazon.awssdk.services.sts.model.AssumeRoleResponse;
import software.amazon.awssdk.services.sts.model.Credentials;
import java.time.Instant;
import java.time.ZoneId;
import java.time.format.DateTimeFormatter;
import java.time.format.FormatStyle;

Actions 2350

https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-role.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/sts/assume-role.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/sts#readme

AWS Identity and Access Management User Guide

import java.util.Locale;

/**
 * To make this code example work, create a Role that you want to assume.
 * Then define a Trust Relationship in the AWS Console. You can use this as an
 * example:
 *
 * {
 * "Version": "2012-10-17",
 * "Statement": [
 * {
 * "Effect": "Allow",
 * "Principal": {
 * "AWS": "<Specify the ARN of your IAM user you are using in this code
 * example>"
 * },
 * "Action": "sts:AssumeRole"
 * }
 *]
 * }
 *
 * For more information, see "Editing the Trust Relationship for an Existing
 * Role" in the AWS Directory Service guide.
 *
 * Also, set up your development environment, including your credentials.
 *
 * For information, see this documentation topic:
 *
 * https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/get-
started.html
 */
public class AssumeRole {
 public static void main(String[] args) {
 final String usage = """

 Usage:
 <roleArn> <roleSessionName>\s

 Where:
 roleArn - The Amazon Resource Name (ARN) of the role to
 assume (for example, rn:aws:iam::000008047983:role/s3role).\s
 roleSessionName - An identifier for the assumed role session
 (for example, mysession).\s
 """;

Actions 2351

AWS Identity and Access Management User Guide

 if (args.length != 2) {
 System.out.println(usage);
 System.exit(1);
 }

 String roleArn = args[0];
 String roleSessionName = args[1];
 Region region = Region.US_EAST_1;
 StsClient stsClient = StsClient.builder()
 .region(region)
 .build();

 assumeGivenRole(stsClient, roleArn, roleSessionName);
 stsClient.close();
 }

 public static void assumeGivenRole(StsClient stsClient, String roleArn,
 String roleSessionName) {
 try {
 AssumeRoleRequest roleRequest = AssumeRoleRequest.builder()
 .roleArn(roleArn)
 .roleSessionName(roleSessionName)
 .build();

 AssumeRoleResponse roleResponse = stsClient.assumeRole(roleRequest);
 Credentials myCreds = roleResponse.credentials();

 // Display the time when the temp creds expire.
 Instant exTime = myCreds.expiration();
 String tokenInfo = myCreds.sessionToken();

 // Convert the Instant to readable date.
 DateTimeFormatter formatter =
 DateTimeFormatter.ofLocalizedDateTime(FormatStyle.SHORT)
 .withLocale(Locale.US)
 .withZone(ZoneId.systemDefault());

 formatter.format(exTime);
 System.out.println("The token " + tokenInfo + " expires on " +
 exTime);

 } catch (StsException e) {
 System.err.println(e.getMessage());

Actions 2352

AWS Identity and Access Management User Guide

 System.exit(1);
 }
 }
}

• For API details, see AssumeRole in AWS SDK for Java 2.x API Reference.

JavaScript

SDK for JavaScript (v3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Create the client.

import { STSClient } from "@aws-sdk/client-sts";
// Set the AWS Region.
const REGION = "us-east-1";
// Create an AWS STS service client object.
export const client = new STSClient({ region: REGION });

Assume the IAM role.

import { AssumeRoleCommand } from "@aws-sdk/client-sts";

import { client } from "../libs/client.js";

export const main = async () => {
 try {
 // Returns a set of temporary security credentials that you can use to
 // access Amazon Web Services resources that you might not normally
 // have access to.
 const command = new AssumeRoleCommand({
 // The Amazon Resource Name (ARN) of the role to assume.
 RoleArn: "ROLE_ARN",

Actions 2353

https://docs.aws.amazon.com/goto/SdkForJavaV2/sts-2011-06-15/AssumeRole
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/sts#code-examples

AWS Identity and Access Management User Guide

 // An identifier for the assumed role session.
 RoleSessionName: "session1",
 // The duration, in seconds, of the role session. The value specified
 // can range from 900 seconds (15 minutes) up to the maximum session
 // duration set for the role.
 DurationSeconds: 900,
 });
 const response = await client.send(command);
 console.log(response);
 } catch (err) {
 console.error(err);
 }
};

• For API details, see AssumeRole in AWS SDK for JavaScript API Reference.

SDK for JavaScript (v2)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

// Load the AWS SDK for Node.js
const AWS = require("aws-sdk");
// Set the region
AWS.config.update({ region: "REGION" });

var roleToAssume = {
 RoleArn: "arn:aws:iam::123456789012:role/RoleName",
 RoleSessionName: "session1",
 DurationSeconds: 900,
};
var roleCreds;

// Create the STS service object
var sts = new AWS.STS({ apiVersion: "2011-06-15" });

//Assume Role
sts.assumeRole(roleToAssume, function (err, data) {
 if (err) console.log(err, err.stack);

Actions 2354

https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/client/sts/command/AssumeRoleCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascript/example_code/sts#code-examples

AWS Identity and Access Management User Guide

 else {
 roleCreds = {
 accessKeyId: data.Credentials.AccessKeyId,
 secretAccessKey: data.Credentials.SecretAccessKey,
 sessionToken: data.Credentials.SessionToken,
 };
 stsGetCallerIdentity(roleCreds);
 }
});

//Get Arn of current identity
function stsGetCallerIdentity(creds) {
 var stsParams = { credentials: creds };
 // Create STS service object
 var sts = new AWS.STS(stsParams);

 sts.getCallerIdentity({}, function (err, data) {
 if (err) {
 console.log(err, err.stack);
 } else {
 console.log(data.Arn);
 }
 });
}

• For API details, see AssumeRole in AWS SDK for JavaScript API Reference.

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Assume an IAM role that requires an MFA token and use temporary credentials to list
Amazon S3 buckets for the account.

def list_buckets_from_assumed_role_with_mfa(

Actions 2355

https://docs.aws.amazon.com/goto/AWSJavaScriptSDK/sts-2011-06-15/AssumeRole
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/sts#code-examples

AWS Identity and Access Management User Guide

 assume_role_arn, session_name, mfa_serial_number, mfa_totp, sts_client
):
 """
 Assumes a role from another account and uses the temporary credentials from
 that role to list the Amazon S3 buckets that are owned by the other account.
 Requires an MFA device serial number and token.

 The assumed role must grant permission to list the buckets in the other
 account.

 :param assume_role_arn: The Amazon Resource Name (ARN) of the role that
 grants access to list the other account's buckets.
 :param session_name: The name of the STS session.
 :param mfa_serial_number: The serial number of the MFA device. For a virtual
 MFA
 device, this is an ARN.
 :param mfa_totp: A time-based, one-time password issued by the MFA device.
 :param sts_client: A Boto3 STS instance that has permission to assume the
 role.
 """
 response = sts_client.assume_role(
 RoleArn=assume_role_arn,
 RoleSessionName=session_name,
 SerialNumber=mfa_serial_number,
 TokenCode=mfa_totp,
)
 temp_credentials = response["Credentials"]
 print(f"Assumed role {assume_role_arn} and got temporary credentials.")

 s3_resource = boto3.resource(
 "s3",
 aws_access_key_id=temp_credentials["AccessKeyId"],
 aws_secret_access_key=temp_credentials["SecretAccessKey"],
 aws_session_token=temp_credentials["SessionToken"],
)

 print(f"Listing buckets for the assumed role's account:")
 for bucket in s3_resource.buckets.all():
 print(bucket.name)

• For API details, see AssumeRole in AWS SDK for Python (Boto3) API Reference.

Actions 2356

https://docs.aws.amazon.com/goto/boto3/sts-2011-06-15/AssumeRole

AWS Identity and Access Management User Guide

Ruby

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 # Creates an AWS Security Token Service (AWS STS) client with specified
 credentials.
 # This is separated into a factory function so that it can be mocked for unit
 testing.
 #
 # @param key_id [String] The ID of the access key used by the STS client.
 # @param key_secret [String] The secret part of the access key used by the STS
 client.
 def create_sts_client(key_id, key_secret)
 Aws::STS::Client.new(access_key_id: key_id, secret_access_key: key_secret)
 end

 # Gets temporary credentials that can be used to assume a role.
 #
 # @param role_arn [String] The ARN of the role that is assumed when these
 credentials
 # are used.
 # @param sts_client [AWS::STS::Client] An AWS STS client.
 # @return [Aws::AssumeRoleCredentials] The credentials that can be used to
 assume the role.
 def assume_role(role_arn, sts_client)
 credentials = Aws::AssumeRoleCredentials.new(
 client: sts_client,
 role_arn: role_arn,
 role_session_name: "create-use-assume-role-scenario"
)
 @logger.info("Assumed role '#{role_arn}', got temporary credentials.")
 credentials
 end

• For API details, see AssumeRole in AWS SDK for Ruby API Reference.

Actions 2357

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/iam#code-examples
https://docs.aws.amazon.com/goto/SdkForRubyV3/sts-2011-06-15/AssumeRole

AWS Identity and Access Management User Guide

Rust

SDK for Rust

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

async fn assume_role(config: &SdkConfig, role_name: String, session_name:
 Option<String>) {
 let provider = aws_config::sts::AssumeRoleProvider::builder(role_name)
 .session_name(session_name.unwrap_or("rust_sdk_example_session".into()))
 .configure(config)
 .build()
 .await;

 let local_config = aws_config::from_env()
 .credentials_provider(provider)
 .load()
 .await;
 let client = Client::new(&local_config);
 let req = client.get_caller_identity();
 let resp = req.send().await;
 match resp {
 Ok(e) => {
 println!("UserID : {}",
 e.user_id().unwrap_or_default());
 println!("Account: {}",
 e.account().unwrap_or_default());
 println!("Arn : {}", e.arn().unwrap_or_default());
 }
 Err(e) => println!("{:?}", e),
 }
}

• For API details, see AssumeRole in AWS SDK for Rust API reference.

Actions 2358

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/rustv1/examples/sts/#code-examples
https://docs.rs/releases/search?query=aws-sdk

AWS Identity and Access Management User Guide

Swift

SDK for Swift

Note

This is prerelease documentation for an SDK in preview release. It is subject to
change.

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 public func assumeRole(role: IAMClientTypes.Role, sessionName: String)
 async throws -> STSClientTypes.Credentials {
 let input = AssumeRoleInput(
 roleArn: role.arn,
 roleSessionName: sessionName
)
 do {
 let output = try await stsClient.assumeRole(input: input)

 guard let credentials = output.credentials else {
 throw ServiceHandlerError.authError
 }

 return credentials
 } catch {
 throw error
 }
 }

• For API details, see AssumeRole in AWS SDK for Swift API reference.

Actions 2359

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/swift/example_code/iam#code-examples
https://awslabs.github.io/aws-sdk-swift/reference/0.x

AWS Identity and Access Management User Guide

For a complete list of AWS SDK developer guides and code examples, see Using IAM with an AWS
SDK. This topic also includes information about getting started and details about previous SDK
versions.

Get a session token with AWS STS using an AWS SDK

The following code examples show how to get a session token with AWS STS and use it to perform
a service action that requires an MFA token.

Action examples are code excerpts from larger programs and must be run in context. You can see
this action in context in the following code example:

• Get a session token that requires an MFA token

CLI

AWS CLI

To get a set of short term credentials for an IAM identity

The following get-session-token command retrieves a set of short-term credentials for
the IAM identity making the call. The resulting credentials can be used for requests where
multi-factor authentication (MFA) is required by policy. The credentials expire 15 minutes
after they are generated.

aws sts get-session-token \
 --duration-seconds 900 \
 --serial-number "YourMFADeviceSerialNumber" \
 --token-code 123456

Output:

{
 "Credentials": {
 "AccessKeyId": "ASIAIOSFODNN7EXAMPLE",
 "SecretAccessKey": "wJalrXUtnFEMI/K7MDENG/bPxRfiCYzEXAMPLEKEY",
 "SessionToken": "AQoEXAMPLEH4aoAH0gNCAPyJxz4BlCFFxWNE1OPTgk5TthT
+FvwqnKwRcOIfrRh3c/LTo6UDdyJwOOvEVPvLXCrrrUtdnniCEXAMPLE/
IvU1dYUg2RVAJBanLiHb4IgRmpRV3zrkuWJOgQs8IZZaIv2BXIa2R4OlgkBN9bkUDNCJiBeb/
AXlzBBko7b15fjrBs2+cTQtpZ3CYWFXG8C5zqx37wnOE49mRl/+OtkIKGO7fAE",

Actions 2360

AWS Identity and Access Management User Guide

 "Expiration": "2020-05-19T18:06:10+00:00"
 }
}

For more information, see Requesting Temporary Security Credentials in the AWS IAM User
Guide.

• For API details, see GetSessionToken in AWS CLI Command Reference.

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Get a session token by passing an MFA token and use it to list Amazon S3 buckets for the
account.

def list_buckets_with_session_token_with_mfa(mfa_serial_number, mfa_totp,
 sts_client):
 """
 Gets a session token with MFA credentials and uses the temporary session
 credentials to list Amazon S3 buckets.

 Requires an MFA device serial number and token.

 :param mfa_serial_number: The serial number of the MFA device. For a virtual
 MFA
 device, this is an Amazon Resource Name (ARN).
 :param mfa_totp: A time-based, one-time password issued by the MFA device.
 :param sts_client: A Boto3 STS instance that has permission to assume the
 role.
 """
 if mfa_serial_number is not None:
 response = sts_client.get_session_token(
 SerialNumber=mfa_serial_number, TokenCode=mfa_totp
)

Actions 2361

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_request.html#api_getsessiontoken
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/sts/get-session-token.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/sts#code-examples

AWS Identity and Access Management User Guide

 else:
 response = sts_client.get_session_token()
 temp_credentials = response["Credentials"]

 s3_resource = boto3.resource(
 "s3",
 aws_access_key_id=temp_credentials["AccessKeyId"],
 aws_secret_access_key=temp_credentials["SecretAccessKey"],
 aws_session_token=temp_credentials["SessionToken"],
)

 print(f"Buckets for the account:")
 for bucket in s3_resource.buckets.all():
 print(bucket.name)

• For API details, see GetSessionToken in AWS SDK for Python (Boto3) API Reference.

For a complete list of AWS SDK developer guides and code examples, see Using IAM with an AWS
SDK. This topic also includes information about getting started and details about previous SDK
versions.

Scenarios for AWS STS using AWS SDKs

The following code examples show you how to implement common scenarios in AWS STS with
AWS SDKs. These scenarios show you how to accomplish specific tasks by calling multiple functions
within AWS STS. Each scenario includes a link to GitHub, where you can find instructions on how to
set up and run the code.

Examples

• Assume an IAM role that requires an MFA token with AWS STS using an AWS SDK

• Construct a URL with AWS STS for federated users using an AWS SDK

• Get a session token that requires an MFA token with AWS STS using an AWS SDK

Assume an IAM role that requires an MFA token with AWS STS using an AWS SDK

The following code example shows how to assume a role that requires an MFA token.

Scenarios 2362

https://docs.aws.amazon.com/goto/boto3/sts-2011-06-15/GetSessionToken

AWS Identity and Access Management User Guide

Warning

To avoid security risks, don't use IAM users for authentication when developing purpose-
built software or working with real data. Instead, use federation with an identity provider
such as AWS IAM Identity Center.

• Create an IAM role that grants permission to list Amazon S3 buckets.

• Create an IAM user that has permission to assume the role only when MFA credentials are
provided.

• Register an MFA device for the user.

• Assume the role and use temporary credentials to list S3 buckets.

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Create an IAM user, register an MFA device, and create a role that grants permission to list S3
buckets. The user has rights only to assume the role.

def setup(iam_resource):
 """
 Creates a new user with no permissions.
 Creates a new virtual MFA device.
 Displays the QR code to seed the device.
 Asks for two codes from the MFA device.
 Registers the MFA device for the user.
 Creates an access key pair for the user.
 Creates a role with a policy that lets the user assume the role and requires
 MFA.
 Creates a policy that allows listing Amazon S3 buckets.
 Attaches the policy to the role.
 Creates an inline policy for the user that lets the user assume the role.

Scenarios 2363

https://docs.aws.amazon.com/singlesignon/latest/userguide/what-is.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/sts#code-examples

AWS Identity and Access Management User Guide

 For demonstration purposes, the user is created in the same account as the
 role,
 but in practice the user would likely be from another account.

 Any MFA device that can scan a QR code will work with this demonstration.
 Common choices are mobile apps like LastPass Authenticator,
 Microsoft Authenticator, or Google Authenticator.

 :param iam_resource: A Boto3 AWS Identity and Access Management (IAM)
 resource
 that has permissions to create users, roles, and
 policies
 in the account.
 :return: The newly created user, user key, virtual MFA device, and role.
 """
 user = iam_resource.create_user(UserName=unique_name("user"))
 print(f"Created user {user.name}.")

 virtual_mfa_device = iam_resource.create_virtual_mfa_device(
 VirtualMFADeviceName=unique_name("mfa")
)
 print(f"Created virtual MFA device {virtual_mfa_device.serial_number}")

 print(
 f"Showing the QR code for the device. Scan this in the MFA app of your "
 f"choice."
)
 with open("qr.png", "wb") as qr_file:
 qr_file.write(virtual_mfa_device.qr_code_png)
 webbrowser.open(qr_file.name)

 print(f"Enter two consecutive code from your MFA device.")
 mfa_code_1 = input("Enter the first code: ")
 mfa_code_2 = input("Enter the second code: ")
 user.enable_mfa(
 SerialNumber=virtual_mfa_device.serial_number,
 AuthenticationCode1=mfa_code_1,
 AuthenticationCode2=mfa_code_2,
)
 os.remove(qr_file.name)
 print(f"MFA device is registered with the user.")

 user_key = user.create_access_key_pair()

Scenarios 2364

AWS Identity and Access Management User Guide

 print(f"Created access key pair for user.")

 print(f"Wait for user to be ready.", end="")
 progress_bar(10)

 role = iam_resource.create_role(
 RoleName=unique_name("role"),
 AssumeRolePolicyDocument=json.dumps(
 {
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {"AWS": user.arn},
 "Action": "sts:AssumeRole",
 "Condition": {"Bool": {"aws:MultiFactorAuthPresent":
 True}},
 }
],
 }
),
)
 print(f"Created role {role.name} that requires MFA.")

 policy = iam_resource.create_policy(
 PolicyName=unique_name("policy"),
 PolicyDocument=json.dumps(
 {
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "s3:ListAllMyBuckets",
 "Resource": "arn:aws:s3:::*",
 }
],
 }
),
)
 role.attach_policy(PolicyArn=policy.arn)
 print(f"Created policy {policy.policy_name} and attached it to the role.")

 user.create_policy(
 PolicyName=unique_name("user-policy"),

Scenarios 2365

AWS Identity and Access Management User Guide

 PolicyDocument=json.dumps(
 {
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "sts:AssumeRole",
 "Resource": role.arn,
 }
],
 }
),
)
 print(
 f"Created an inline policy for {user.name} that lets the user assume "
 f"the role."
)

 print("Give AWS time to propagate these new resources and connections.",
 end="")
 progress_bar(10)

 return user, user_key, virtual_mfa_device, role

Show that assuming the role without an MFA token is not allowed.

def try_to_assume_role_without_mfa(assume_role_arn, session_name, sts_client):
 """
 Shows that attempting to assume the role without sending MFA credentials
 results
 in an AccessDenied error.

 :param assume_role_arn: The Amazon Resource Name (ARN) of the role to assume.
 :param session_name: The name of the STS session.
 :param sts_client: A Boto3 STS instance that has permission to assume the
 role.
 """
 print(f"Trying to assume the role without sending MFA credentials...")
 try:

Scenarios 2366

AWS Identity and Access Management User Guide

 sts_client.assume_role(RoleArn=assume_role_arn,
 RoleSessionName=session_name)
 raise RuntimeError("Expected AccessDenied error.")
 except ClientError as error:
 if error.response["Error"]["Code"] == "AccessDenied":
 print("Got AccessDenied.")
 else:
 raise

Assume the role that grants permission to list S3 buckets, passing the required MFA token,
and show that buckets can be listed.

def list_buckets_from_assumed_role_with_mfa(
 assume_role_arn, session_name, mfa_serial_number, mfa_totp, sts_client
):
 """
 Assumes a role from another account and uses the temporary credentials from
 that role to list the Amazon S3 buckets that are owned by the other account.
 Requires an MFA device serial number and token.

 The assumed role must grant permission to list the buckets in the other
 account.

 :param assume_role_arn: The Amazon Resource Name (ARN) of the role that
 grants access to list the other account's buckets.
 :param session_name: The name of the STS session.
 :param mfa_serial_number: The serial number of the MFA device. For a virtual
 MFA
 device, this is an ARN.
 :param mfa_totp: A time-based, one-time password issued by the MFA device.
 :param sts_client: A Boto3 STS instance that has permission to assume the
 role.
 """
 response = sts_client.assume_role(
 RoleArn=assume_role_arn,
 RoleSessionName=session_name,
 SerialNumber=mfa_serial_number,
 TokenCode=mfa_totp,
)
 temp_credentials = response["Credentials"]

Scenarios 2367

AWS Identity and Access Management User Guide

 print(f"Assumed role {assume_role_arn} and got temporary credentials.")

 s3_resource = boto3.resource(
 "s3",
 aws_access_key_id=temp_credentials["AccessKeyId"],
 aws_secret_access_key=temp_credentials["SecretAccessKey"],
 aws_session_token=temp_credentials["SessionToken"],
)

 print(f"Listing buckets for the assumed role's account:")
 for bucket in s3_resource.buckets.all():
 print(bucket.name)

Destroy the resources created for the demo.

def teardown(user, virtual_mfa_device, role):
 """
 Removes all resources created during setup.

 :param user: The demo user.
 :param role: The demo role.
 """
 for attached in role.attached_policies.all():
 policy_name = attached.policy_name
 role.detach_policy(PolicyArn=attached.arn)
 attached.delete()
 print(f"Detached and deleted {policy_name}.")
 role.delete()
 print(f"Deleted {role.name}.")
 for user_pol in user.policies.all():
 user_pol.delete()
 print("Deleted inline user policy.")
 for key in user.access_keys.all():
 key.delete()
 print("Deleted user's access key.")
 for mfa in user.mfa_devices.all():
 mfa.disassociate()
 virtual_mfa_device.delete()
 user.delete()
 print(f"Deleted {user.name}.")

Scenarios 2368

AWS Identity and Access Management User Guide

Run this scenario by using the previously defined functions.

def usage_demo():
 """Drives the demonstration."""
 print("-" * 88)
 print(
 f"Welcome to the AWS Security Token Service assume role demo, "
 f"starring multi-factor authentication (MFA)!"
)
 print("-" * 88)
 iam_resource = boto3.resource("iam")
 user, user_key, virtual_mfa_device, role = setup(iam_resource)
 print(f"Created {user.name} and {role.name}.")
 try:
 sts_client = boto3.client(
 "sts", aws_access_key_id=user_key.id,
 aws_secret_access_key=user_key.secret
)
 try_to_assume_role_without_mfa(role.arn, "demo-sts-session", sts_client)
 mfa_totp = input("Enter the code from your registered MFA device: ")
 list_buckets_from_assumed_role_with_mfa(
 role.arn,
 "demo-sts-session",
 virtual_mfa_device.serial_number,
 mfa_totp,
 sts_client,
)
 finally:
 teardown(user, virtual_mfa_device, role)
 print("Thanks for watching!")

• For API details, see AssumeRole in AWS SDK for Python (Boto3) API Reference.

Scenarios 2369

https://docs.aws.amazon.com/goto/boto3/sts-2011-06-15/AssumeRole

AWS Identity and Access Management User Guide

For a complete list of AWS SDK developer guides and code examples, see Using IAM with an AWS
SDK. This topic also includes information about getting started and details about previous SDK
versions.

Construct a URL with AWS STS for federated users using an AWS SDK

The following code example shows how to:

• Create an IAM role that grants read-only access to the current account's Amazon S3 resources.

• Get a security token from the AWS federation endpoint.

• Construct a URL that can be used to access the console with federated credentials.

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Create a role that grants read-only access to the current account's S3 resources.

def setup(iam_resource):
 """
 Creates a role that can be assumed by the current user.
 Attaches a policy that allows only Amazon S3 read-only access.

 :param iam_resource: A Boto3 AWS Identity and Access Management (IAM)
 instance
 that has the permission to create a role.
 :return: The newly created role.
 """
 role = iam_resource.create_role(
 RoleName=unique_name("role"),
 AssumeRolePolicyDocument=json.dumps(
 {
 "Version": "2012-10-17",
 "Statement": [
 {

Scenarios 2370

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/sts#code-examples

AWS Identity and Access Management User Guide

 "Effect": "Allow",
 "Principal": {"AWS": iam_resource.CurrentUser().arn},
 "Action": "sts:AssumeRole",
 }
],
 }
),
)
 role.attach_policy(PolicyArn="arn:aws:iam::aws:policy/
AmazonS3ReadOnlyAccess")
 print(f"Created role {role.name}.")

 print("Give AWS time to propagate these new resources and connections.",
 end="")
 progress_bar(10)

 return role

Get a security token from the AWS federation endpoint and construct a URL that can be
used to access the console with federated credentials.

def construct_federated_url(assume_role_arn, session_name, issuer, sts_client):
 """
 Constructs a URL that gives federated users direct access to the AWS
 Management
 Console.

 1. Acquires temporary credentials from AWS Security Token Service (AWS STS)
 that
 can be used to assume a role with limited permissions.
 2. Uses the temporary credentials to request a sign-in token from the
 AWS federation endpoint.
 3. Builds a URL that can be used in a browser to navigate to the AWS
 federation
 endpoint, includes the sign-in token for authentication, and redirects to
 the AWS Management Console with permissions defined by the role that was
 specified in step 1.

 :param assume_role_arn: The role that specifies the permissions that are
 granted.

Scenarios 2371

AWS Identity and Access Management User Guide

 The current user must have permission to assume the
 role.
 :param session_name: The name for the STS session.
 :param issuer: The organization that issues the URL.
 :param sts_client: A Boto3 STS instance that can assume the role.
 :return: The federated URL.
 """
 response = sts_client.assume_role(
 RoleArn=assume_role_arn, RoleSessionName=session_name
)
 temp_credentials = response["Credentials"]
 print(f"Assumed role {assume_role_arn} and got temporary credentials.")

 session_data = {
 "sessionId": temp_credentials["AccessKeyId"],
 "sessionKey": temp_credentials["SecretAccessKey"],
 "sessionToken": temp_credentials["SessionToken"],
 }
 aws_federated_signin_endpoint = "https://signin.aws.amazon.com/federation"

 # Make a request to the AWS federation endpoint to get a sign-in token.
 # The requests.get function URL-encodes the parameters and builds the query
 string
 # before making the request.
 response = requests.get(
 aws_federated_signin_endpoint,
 params={
 "Action": "getSigninToken",
 "SessionDuration": str(datetime.timedelta(hours=12).seconds),
 "Session": json.dumps(session_data),
 },
)
 signin_token = json.loads(response.text)
 print(f"Got a sign-in token from the AWS sign-in federation endpoint.")

 # Make a federated URL that can be used to sign into the AWS Management
 Console.
 query_string = urllib.parse.urlencode(
 {
 "Action": "login",
 "Issuer": issuer,
 "Destination": "https://console.aws.amazon.com/",
 "SigninToken": signin_token["SigninToken"],
 }

Scenarios 2372

AWS Identity and Access Management User Guide

)
 federated_url = f"{aws_federated_signin_endpoint}?{query_string}"
 return federated_url

Destroy the resources created for the demo.

def teardown(role):
 """
 Removes all resources created during setup.

 :param role: The demo role.
 """
 for attached in role.attached_policies.all():
 role.detach_policy(PolicyArn=attached.arn)
 print(f"Detached {attached.policy_name}.")
 role.delete()
 print(f"Deleted {role.name}.")

Run this scenario by using the previously defined functions.

def usage_demo():
 """Drives the demonstration."""
 print("-" * 88)
 print(f"Welcome to the AWS Security Token Service federated URL demo.")
 print("-" * 88)
 iam_resource = boto3.resource("iam")
 role = setup(iam_resource)
 sts_client = boto3.client("sts")
 try:
 federated_url = construct_federated_url(
 role.arn, "AssumeRoleDemoSession", "example.org", sts_client
)
 print(
 "Constructed a federated URL that can be used to connect to the "
 "AWS Management Console with role-defined permissions:"
)
 print("-" * 88)

Scenarios 2373

AWS Identity and Access Management User Guide

 print(federated_url)
 print("-" * 88)
 _ = input(
 "Copy and paste the above URL into a browser to open the AWS "
 "Management Console with limited permissions. When done, press "
 "Enter to clean up and complete this demo."
)
 finally:
 teardown(role)
 print("Thanks for watching!")

• For API details, see AssumeRole in AWS SDK for Python (Boto3) API Reference.

For a complete list of AWS SDK developer guides and code examples, see Using IAM with an AWS
SDK. This topic also includes information about getting started and details about previous SDK
versions.

Get a session token that requires an MFA token with AWS STS using an AWS SDK

The following code example shows how to get a session token that requires an MFA token.

Warning

To avoid security risks, don't use IAM users for authentication when developing purpose-
built software or working with real data. Instead, use federation with an identity provider
such as AWS IAM Identity Center.

• Create an IAM role that grants permission to list Amazon S3 buckets.

• Create an IAM user that has permission to assume the role only when MFA credentials are
provided.

• Register an MFA device for the user.

• Provide MFA credentials to get a session token and use temporary credentials to list S3 buckets.

Scenarios 2374

https://docs.aws.amazon.com/goto/boto3/sts-2011-06-15/AssumeRole
https://docs.aws.amazon.com/singlesignon/latest/userguide/what-is.html

AWS Identity and Access Management User Guide

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Create an IAM user, register an MFA device, and create a role that grants permission to let
the user list S3 buckets only when MFA credentials are used.

def setup(iam_resource):
 """
 Creates a new user with no permissions.
 Creates a new virtual multi-factor authentication (MFA) device.
 Displays the QR code to seed the device.
 Asks for two codes from the MFA device.
 Registers the MFA device for the user.
 Creates an access key pair for the user.
 Creates an inline policy for the user that lets the user list Amazon S3
 buckets,
 but only when MFA credentials are used.

 Any MFA device that can scan a QR code will work with this demonstration.
 Common choices are mobile apps like LastPass Authenticator,
 Microsoft Authenticator, or Google Authenticator.

 :param iam_resource: A Boto3 AWS Identity and Access Management (IAM)
 resource
 that has permissions to create users, MFA devices, and
 policies in the account.
 :return: The newly created user, user key, and virtual MFA device.
 """
 user = iam_resource.create_user(UserName=unique_name("user"))
 print(f"Created user {user.name}.")

 virtual_mfa_device = iam_resource.create_virtual_mfa_device(
 VirtualMFADeviceName=unique_name("mfa")
)
 print(f"Created virtual MFA device {virtual_mfa_device.serial_number}")

Scenarios 2375

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/sts#code-examples

AWS Identity and Access Management User Guide

 print(
 f"Showing the QR code for the device. Scan this in the MFA app of your "
 f"choice."
)
 with open("qr.png", "wb") as qr_file:
 qr_file.write(virtual_mfa_device.qr_code_png)
 webbrowser.open(qr_file.name)

 print(f"Enter two consecutive code from your MFA device.")
 mfa_code_1 = input("Enter the first code: ")
 mfa_code_2 = input("Enter the second code: ")
 user.enable_mfa(
 SerialNumber=virtual_mfa_device.serial_number,
 AuthenticationCode1=mfa_code_1,
 AuthenticationCode2=mfa_code_2,
)
 os.remove(qr_file.name)
 print(f"MFA device is registered with the user.")

 user_key = user.create_access_key_pair()
 print(f"Created access key pair for user.")

 print(f"Wait for user to be ready.", end="")
 progress_bar(10)

 user.create_policy(
 PolicyName=unique_name("user-policy"),
 PolicyDocument=json.dumps(
 {
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "s3:ListAllMyBuckets",
 "Resource": "arn:aws:s3:::*",
 "Condition": {"Bool": {"aws:MultiFactorAuthPresent":
 True}},
 }
],
 }
),
)
 print(

Scenarios 2376

AWS Identity and Access Management User Guide

 f"Created an inline policy for {user.name} that lets the user list
 buckets, "
 f"but only when MFA credentials are present."
)

 print("Give AWS time to propagate these new resources and connections.",
 end="")
 progress_bar(10)

 return user, user_key, virtual_mfa_device

Get temporary session credentials by passing an MFA token, and use the credentials to list
S3 buckets for the account.

def list_buckets_with_session_token_with_mfa(mfa_serial_number, mfa_totp,
 sts_client):
 """
 Gets a session token with MFA credentials and uses the temporary session
 credentials to list Amazon S3 buckets.

 Requires an MFA device serial number and token.

 :param mfa_serial_number: The serial number of the MFA device. For a virtual
 MFA
 device, this is an Amazon Resource Name (ARN).
 :param mfa_totp: A time-based, one-time password issued by the MFA device.
 :param sts_client: A Boto3 STS instance that has permission to assume the
 role.
 """
 if mfa_serial_number is not None:
 response = sts_client.get_session_token(
 SerialNumber=mfa_serial_number, TokenCode=mfa_totp
)
 else:
 response = sts_client.get_session_token()
 temp_credentials = response["Credentials"]

 s3_resource = boto3.resource(
 "s3",
 aws_access_key_id=temp_credentials["AccessKeyId"],

Scenarios 2377

AWS Identity and Access Management User Guide

 aws_secret_access_key=temp_credentials["SecretAccessKey"],
 aws_session_token=temp_credentials["SessionToken"],
)

 print(f"Buckets for the account:")
 for bucket in s3_resource.buckets.all():
 print(bucket.name)

Destroy the resources created for the demo.

def teardown(user, virtual_mfa_device):
 """
 Removes all resources created during setup.

 :param user: The demo user.
 :param role: The demo MFA device.
 """
 for user_pol in user.policies.all():
 user_pol.delete()
 print("Deleted inline user policy.")
 for key in user.access_keys.all():
 key.delete()
 print("Deleted user's access key.")
 for mfa in user.mfa_devices.all():
 mfa.disassociate()
 virtual_mfa_device.delete()
 user.delete()
 print(f"Deleted {user.name}.")

Run this scenario by using the previously defined functions.

def usage_demo():
 """Drives the demonstration."""
 print("-" * 88)
 print(
 f"Welcome to the AWS Security Token Service assume role demo, "
 f"starring multi-factor authentication (MFA)!"

Scenarios 2378

AWS Identity and Access Management User Guide

)
 print("-" * 88)
 iam_resource = boto3.resource("iam")
 user, user_key, virtual_mfa_device = setup(iam_resource)
 try:
 sts_client = boto3.client(
 "sts", aws_access_key_id=user_key.id,
 aws_secret_access_key=user_key.secret
)
 try:
 print("Listing buckets without specifying MFA credentials.")
 list_buckets_with_session_token_with_mfa(None, None, sts_client)
 except ClientError as error:
 if error.response["Error"]["Code"] == "AccessDenied":
 print("Got expected AccessDenied error.")
 mfa_totp = input("Enter the code from your registered MFA device: ")
 list_buckets_with_session_token_with_mfa(
 virtual_mfa_device.serial_number, mfa_totp, sts_client
)
 finally:
 teardown(user, virtual_mfa_device)
 print("Thanks for watching!")

• For API details, see GetSessionToken in AWS SDK for Python (Boto3) API Reference.

For a complete list of AWS SDK developer guides and code examples, see Using IAM with an AWS
SDK. This topic also includes information about getting started and details about previous SDK
versions.

Scenarios 2379

https://docs.aws.amazon.com/goto/boto3/sts-2011-06-15/GetSessionToken

AWS Identity and Access Management User Guide

Security in IAM and AWS STS

Cloud security at AWS is the highest priority. As an AWS customer, you benefit from data centers
and network architectures that are built to meet the requirements of the most security-sensitive
organizations.

Security is a shared responsibility between AWS and you. The shared responsibility model describes
this as security of the cloud and security in the cloud:

• Security of the cloud – AWS is responsible for protecting the infrastructure that runs AWS
services in the AWS Cloud. AWS also provides you with services that you can use securely. Third-
party auditors regularly test and verify the effectiveness of our security as part of the AWS
Compliance Programs. To learn about the compliance programs that apply to AWS Identity and
Access Management (IAM), see AWS Services in Scope by Compliance Program.

• Security in the cloud – Your responsibility is determined by the AWS service that you use. You
are also responsible for other factors including the sensitivity of your data, your company's
requirements, and applicable laws and regulations.

This documentation helps you understand how to apply the shared responsibility model when
using AWS Identity and Access Management (IAM) and AWS Security Token Service (AWS STS).
The following topics show you how to configure IAM and AWS STS to meet your security and
compliance objectives. You also learn how to use other AWS services that help you to monitor and
secure your IAM resources.

Contents

• AWS security credentials

• AWS security audit guidelines

• Data protection in AWS Identity and Access Management

• Logging and monitoring in AWS Identity and Access Management

• Compliance validation for AWS Identity and Access Management

• Resilience in AWS Identity and Access Management

• Infrastructure security in AWS Identity and Access Management

• Configuration and vulnerability analysis in AWS Identity and Access Management

• AWS managed policies for AWS Identity and Access Management Access Analyzer

2380

https://aws.amazon.com/compliance/shared-responsibility-model/
https://aws.amazon.com/compliance/programs/
https://aws.amazon.com/compliance/programs/
https://aws.amazon.com/compliance/services-in-scope/

AWS Identity and Access Management User Guide

AWS security credentials

When you interact with AWS, you specify your AWS security credentials to verify who you are
and whether you have permission to access the resources that you are requesting. AWS uses the
security credentials to authenticate and authorize your requests.

For example, if you want to download a protected file from an Amazon Simple Storage Service
(Amazon S3) bucket, your credentials must allow that access. If your credentials don't show you are
authorized to download the file, AWS denies your request. However, your AWS security credentials
aren't required for you to download a file in an Amazon S3 bucket that is publicly shared.

There are different types of users in AWS. All AWS users have security credentials. There is the
account owner (root user), users in AWS IAM Identity Center, federated users, and IAM users.

Users have either long-term or temporary security credentials. Root user, IAM user, and access
keys have long-term security credentials that do not expire. To protect long-term credentials have
processes in place to manage access keys, change passwords, and enable MFA.

IAM roles, users in AWS IAM Identity Center, and federated users have temporary security
credentials. Temporary security credentials expire after a defined period of time or when the user
ends their session. Temporary credentials work almost identically to long-term credentials, with
the following differences:

• Temporary security credentials are short-term, as the name implies. They can be configured to
last for anywhere from a few minutes to several hours. After the credentials expire, AWS no
longer recognizes them or allows any kind of access from API requests made with them.

• Temporary security credentials are not stored with the user but are generated dynamically and
provided to the user when requested. When (or even before) the temporary security credentials
expire, the user can request new credentials, as long as the user requesting them still has
permissions to do so.

As a result, temporary credentials have the following advantages over long-term credentials:

• You do not have to distribute or embed long-term AWS security credentials with an application.

• You can provide access to your AWS resources to users without having to define an AWS identity
for them. Temporary credentials are the basis for roles and identity federation.

• The temporary security credentials have a limited lifetime, so you do not have to update them
or explicitly revoke them when they're no longer needed. After temporary security credentials

AWS security credentials 2381

AWS Identity and Access Management User Guide

expire, they cannot be reused. You can specify how long the credentials are valid, up to a
maximum limit.

Security considerations

We recommend that you consider the following information when determining the security
provisions for your AWS account:

• When you create an AWS account, we create the account root user. The credentials of the root
user (account owner) allow full access to all resources in the account. The first task you perform
with the root user is to grant another user administrative permissions to your AWS account so
that you minimize the usage of the root user.

• You can't use IAM policies to deny the root user access to resources explicitly. You can only use an
AWS Organizations service control policy (SCP) to limit the permissions of the root user.

• If you forget or lose your root user password, you must have access to the email address
associated with your account in order to reset it.

• If you lose your root user access keys, you must be able to sign in to your account as the root user
to create new ones.

• Do not use the root user for your everyday tasks. Use it to perform the tasks that only the root
user can perform. For the complete list of tasks that require you to sign in as the root user, see
Tasks that require root user credentials.

• Security credentials are account-specific. If you have access to multiple AWS accounts, you have
separate credentials for each account.

• Policies determine what actions a user, role, or member of a user group can perform, on which
AWS resources, and under what conditions. Using policies you can securely control access to
AWS services and resources in your AWS account. If you must modify or revoke permissions
in response to a security event, you delete or modify the policies instead of making changes
directly to the identity.

• Be sure to save the sign-in credentials for your Emergency Access IAM user and any access keys
you created for programmatic access in a secure location. If you lose your access keys, you must
sign in to your account to create new ones.

• We strongly recommend that you use temporary credentials provided by IAM roles and federated
users instead of the long-term credentials provided by IAM users and access keys.

Security considerations 2382

https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_type-auth.html

AWS Identity and Access Management User Guide

Federated identity

Federated identities are users with external identities that are granted temporary AWS credentials
that they can use to access secure AWS account resources. External identities can come from a
corporate identity store (such as LDAP or Windows Active Directory) or from a third party (such
as Login in with Amazon, Facebook, or Google). Federated identities do not sign in with the AWS
Management Console or AWS access portal.

To enable federated identities to sign in to AWS, you must create a custom URL that includes
https://signin.aws.amazon.com/federation. For more information, see Enabling custom
identity broker access to the AWS console.

For more information about federated identities, see Identity providers and federation.

Multi-factor authentication (MFA)

Multi-factor authentication (MFA) provides an extra level of security for users who can access your
AWS account. For additional security, we recommend that you require MFA on the AWS account
root user credentials and all IAM users. For more information, see Using multi-factor authentication
(MFA) in AWS.

When you activate MFA and you sign in to your AWS account, you are prompted for your sign-
in credentials, plus a response generated by an MFA device, such as a code, a touch or tap, or a
biometric scan. When you add MFA, your AWS account settings and resources are more secure.

By default, MFA isn't activated. You can activate and manage MFA devices for the AWS account
root user by going to the Security credentials page or the IAM dashboard in the AWS Management
Console. For more information about activating MFA for IAM users, see Enabling MFA devices for
users in AWS.

For more information about signing in with multi-factor authentication (MFA) devices, see Using
MFA devices with your IAM sign-in page.

Programmatic access

You provide your AWS access keys to make programmatic calls to AWS or to use the AWS
Command Line Interface or AWS Tools for PowerShell. We recommend using short-term access
keys when possible.

When you create a long-term access key, you create the access key ID (for example,
AKIAIOSFODNN7EXAMPLE) and secret access key (for example, wJalrXUtnFEMI/K7MDENG/

Federated identity 2383

https://console.aws.amazon.com/iam/home?#security_credential
https://console.aws.amazon.com/iam/home?#

AWS Identity and Access Management User Guide

bPxRfiCYEXAMPLEKEY) as a set. The secret access key is available for download only when you
create it. If you don't download your secret access key or if you lose it, you must create a new one.

In many scenarios, you don't need long-term access keys that never expire (as you have when you
create access keys for an IAM user). Instead, you can create IAM roles and generate temporary
security credentials. Temporary security credentials include an access key ID and a secret access key,
but they also include a security token that indicates when the credentials expire. After they expire,
they're no longer valid.

Access key IDs beginning with AKIA are long-term access keys for an IAM user or an AWS account
root user. Access key IDs beginning with ASIA are temporary credentials access keys that you
create using AWS STS operations.

Users need programmatic access if they want to interact with AWS outside of the AWS
Management Console. The way to grant programmatic access depends on the type of user that's
accessing AWS.

To grant users programmatic access, choose one of the following options.

Which user needs
programmatic access?

To By

Workforce identity

(Users managed in IAM
Identity Center)

Use temporary credentials to
sign programmatic requests
to the AWS CLI, AWS SDKs, or
AWS APIs.

Following the instructions for
the interface that you want to
use.

• For the AWS CLI, see
Configuring the AWS
CLI to use AWS IAM
Identity Center in the AWS
Command Line Interface
User Guide.

• For AWS SDKs, tools, and
AWS APIs, see IAM Identity
Center authentication in
the AWS SDKs and Tools
Reference Guide.

Programmatic access 2384

https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-sso.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-sso.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-sso.html
https://docs.aws.amazon.com/sdkref/latest/guide/access-sso.html
https://docs.aws.amazon.com/sdkref/latest/guide/access-sso.html

AWS Identity and Access Management User Guide

Which user needs
programmatic access?

To By

IAM Use temporary credentials to
sign programmatic requests
to the AWS CLI, AWS SDKs, or
AWS APIs.

Following the instructions in
Using temporary credentia
ls with AWS resources in the
IAM User Guide.

IAM (Not recommended)
Use long-term credentials to
sign programmatic requests
to the AWS CLI, AWS SDKs, or
AWS APIs.

Following the instructions for
the interface that you want to
use.

• For the AWS CLI, see
Authenticating using IAM
user credentials in the AWS
Command Line Interface
User Guide.

• For AWS SDKs and tools,
see Authenticate using
long-term credentials in
the AWS SDKs and Tools
Reference Guide.

• For AWS APIs, see
Managing access keys for
IAM users in the IAM User
Guide.

Alternatives to long-term access keys

For many common use cases, there are alternatives to long-term access keys. To improve your
account security, consider the following.

• Don't embed long-term access keys and secret access keys in your application code or in a
code repository – Instead, use AWS Secrets Manager, or other secrets management solution, so
you don't have to hardcode keys in plaintext. The application or client can then retrieve secrets

Alternatives to long-term access keys 2385

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_use-resources.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_use-resources.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-authentication-user.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-authentication-user.html
https://docs.aws.amazon.com/sdkref/latest/guide/access-iam-users.html
https://docs.aws.amazon.com/sdkref/latest/guide/access-iam-users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_access-keys.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_access-keys.html

AWS Identity and Access Management User Guide

when needed. For more information, see What is AWS Secrets Manager? in the AWS Secrets
Manager User Guide.

• Use IAM roles to generate temporary security credentials whenever possible – Always use
mechanisms to issue temporary security credentials when possible, rather than long-term
access keys. Temporary security credentials are more secure because they are not stored with
the user but are generated dynamically and provided to the user when requested. Temporary
security credentials have a limited lifetime so you don't have to manage or update them.
Mechanisms that provide temporary access keys include IAM roles or the authentication of an
IAM Identity Center user. For machines that run outside of AWS you can use AWS Identity and
Access Management Roles Anywhere.

• Use alternatives to long-term access keys for the AWS Command Line Interface (AWS CLI) or
the aws-shell – Alternatives include the following.

• AWS CloudShell is a browser-based, pre-authenticated shell that you can launch directly
from the AWS Management Console. You can run AWS CLI commands against AWS services
through your preferred shell (Bash, Powershell, or Z shell). When you do this, you don't need to
download or install command line tools. For more information, see What is AWS CloudShell? in
the AWS CloudShell User Guide.

• AWS CLI Version 2 integration with AWS IAM Identity Center (IAM Identity Center). You can
authenticate users and provide short-term credentials to run AWS CLI commands. To learn
more, see Integrating AWS CLI with IAM Identity Center in the AWS IAM Identity Center User
Guide and Configuring the AWS CLI to use IAM Identity Center in the AWS Command Line
Interface User Guide.

• Don't create long-term access keys for human users who need access to applications or AWS
services – IAM Identity Center can generate temporary access credentials for your external
IdP users to access AWS services. This eliminates the need to create and manage long-term
credentials in IAM. In IAM Identity Center, create an IAM Identity Center permission set that
grants the external IdP users access. Then assign a group from IAM Identity Center to the
permission set in the selected AWS accounts. For more information, see What is AWS IAM
Identity Center, Connect to your external identity provider, and Permission sets in the AWS IAM
Identity Center User Guide.

• Don't store long-term access keys within an AWS compute service – Instead, assign an IAM
role to compute resources. This automatically supplies temporary credentials to grant access.
For example, when you create an instance profile that is attached to an Amazon EC2 instance,
you can assign an AWS role to the instance and make it available to all of its applications. An

Alternatives to long-term access keys 2386

https://docs.aws.amazon.com/secretsmanager/latest/userguide/intro.html
https://docs.aws.amazon.com/rolesanywhere/latest/userguide/introduction.html
https://docs.aws.amazon.com/rolesanywhere/latest/userguide/introduction.html
https://docs.aws.amazon.com/cloudshell/latest/userguide/welcome.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/integrating-asw-cli.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-sso.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/what-is.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/what-is.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/manage-your-identity-source-idp.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/permissionsetsconcept.html

AWS Identity and Access Management User Guide

instance profile contains the role and enables programs that are running on the Amazon EC2
instance to get temporary credentials. To learn more, see Using an IAM role to grant permissions
to applications running on Amazon EC2 instances.

Accessing AWS using your AWS credentials

AWS requires different types of security credentials, depending on how you access AWS and what
type of AWS user you are. For example, you use sign-in credentials for the AWS Management
Console while you use access keys to make programmatic calls to AWS. Also, each identity you use,
whether it be the account root user, an AWS Identity and Access Management (IAM) user, an AWS
IAM Identity Center user, or a federated identity, has unique credentials within AWS.

For step-by-step instructions on how to sign in to AWS according to your user type, see How to sign
in to AWS in the AWS Sign-In User Guide.

AWS security audit guidelines

Periodically audit your security configuration to make sure it meets your current business needs. An
audit gives you an opportunity to remove unneeded IAM users, roles, groups, and policies, and to
make sure that your users and software don't have excessive permissions.

Following are guidelines for systematically reviewing and monitoring your AWS resources for
security best practices.

Tip

You can monitor your usage of IAM as it relates to security best practices by using AWS
Security Hub. Security Hub uses security controls to evaluate resource configurations and
security standards to help you comply with various compliance frameworks. For more
information about using Security Hub to evaluate IAM resources, see AWS Identity and
Access Management controls in the AWS Security Hub User Guide.

Contents

• When to perform a security audit

• Guidelines for auditing

Accessing AWS using your AWS credentials 2387

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-ec2.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-ec2.html
https://docs.aws.amazon.com/signin/latest/userguide/how-to-sign-in.html
https://docs.aws.amazon.com/signin/latest/userguide/how-to-sign-in.html
https://docs.aws.amazon.com/securityhub/latest/userguide/what-is-securityhub.html
https://docs.aws.amazon.com/securityhub/latest/userguide/what-is-securityhub.html
https://docs.aws.amazon.com/securityhub/latest/userguide/iam-controls.html
https://docs.aws.amazon.com/securityhub/latest/userguide/iam-controls.html

AWS Identity and Access Management User Guide

• Review your AWS account credentials

• Review your IAM users

• Review your IAM groups

• Review your IAM roles

• Review your IAM providers for SAML and OpenID Connect (OIDC)

• Review Your mobile apps

• Tips for reviewing IAM policies

When to perform a security audit

Audit your security configuration in the following situations:

• On a periodic basis. Perform the steps described in this document at regular intervals as a best
practice for security.

• If there are changes in your organization, such as people leaving.

• If you have stopped using one or more individual AWS services to verify that you have removed
permissions that users in your account no longer need.

• If you've added or removed software in your accounts, such as applications on Amazon EC2
instances, AWS OpsWorks stacks, AWS CloudFormation templates, etc.

• If you suspect that an unauthorized person might have accessed your account.

Guidelines for auditing

As you review your account's security configuration, follow these guidelines:

• Be thorough. Look at all aspects of your security configuration, including those that are seldom
used.

• Don't assume. If you are unfamiliar with some aspect of your security configuration (for
example, the reasoning behind a particular policy or the existence of a role), investigate the
business need until you understand the potential risk.

• Keep things simple. To make auditing (and management) easier, use IAM groups, IAM roles,
consistent naming schemes, and straightforward policies.

When to perform a security audit 2388

AWS Identity and Access Management User Guide

Review your AWS account credentials

Take these steps when you audit your AWS account credentials:

1. If you have access keys for your root user that you're not using, you can remove them. We
strongly recommend that you don't use root access keys for everyday work with AWS, and that
instead you use users with temporary credentials, such users in AWS IAM Identity Center.

2. If you require access keys for your account, make sure you update them when needed.

Review your IAM users

Take these steps when you audit your existing IAM users:

1. List your users and then delete users that aren't needed.

2. Remove users from groups that they don't require access to.

3. Review the policies attached to the groups the user is in. See Tips for reviewing IAM policies.

4. Delete security credentials that the user doesn't need or that might have been exposed. For
example, an IAM user used for an application doesn't need a password (which is necessary only
to sign in to AWS websites). Similarly, if a user doesn't use access keys, there's no reason for the
user to have one. For more information, see Managing Passwords for IAM users and Managing
Access Keys for IAM users.

You can generate and download a credential report that lists all IAM users in your account and
the status of their various credentials, including passwords, access keys, and MFA devices. For
passwords and access keys, the credential report shows the date and time when the password
or access key was last used. Consider removing credentials that haven't been used recently from
your account. (Don't remove your Emergency Access user.) For more information, see Getting
Credential Reports for your AWS Account.

5. Update passwords and access keys when needed for use cases that require long-term
credentials. For more information, see Managing Passwords for IAM Users and Managing Access
Keys for IAM users.

6. As a best practice, require human users to use federation with an identity provider to access
AWS using temporary credentials. If possible, transition from IAM users to federated users,
such as users in IAM Identity Center. Retain the minimum number of IAM users needed for your
applications.

Review your AWS account credentials 2389

https://docs.aws.amazon.com/general/latest/gr/aws-access-keys-best-practices.html#root-password
https://docs.aws.amazon.com/IAM/latest/UserGuide/ManagingCredentials.html#Using_RotateAccessKey
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_manage.html#id_users_manage_list
https://docs.aws.amazon.com/IAM/latest/UserGuide/Using_DeletingUserFromAccount.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/Using_AddOrRemoveUsersFromGroup.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/credentials-add-pwd-for-user.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/ManagingCredentials.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/ManagingCredentials.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/credential-reports.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/credential-reports.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/credentials-add-pwd-for-user.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/ManagingCredentials.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/ManagingCredentials.html

AWS Identity and Access Management User Guide

Review your IAM groups

Take these steps when you audit your IAM groups:

1. List your groups and then delete groups that you aren't using.

2. Review users in each group and remove users that don't belong.

3. Review the policies attached to the group. See Tips for reviewing IAM policies.

Review your IAM roles

Take these steps when you audit your IAM roles:

1. List your roles and then delete roles that you aren't using.

2. Review the role's trust policy. Make sure that you know who the principal is and that you
understand why that account or user needs to be able to assume the role.

3. Review the access policy for the role to be sure that it grants suitable permissions to whoever
assumes the role—see Tips for reviewing IAM policies.

Review your IAM providers for SAML and OpenID Connect (OIDC)

If you have created an IAM entity for establishing trust with a SAML or OIDC identity provider (IdP),
take these steps:

1. Delete unused providers.

2. Download and review the AWS metadata documents for each SAML IdP and make sure the
documents reflect your current business needs.

3. Get the latest metadata documents from the SAML IdPs and update the provider in IAM.

Review Your mobile apps

If you have created a mobile app that makes requests to AWS, take these steps:

1. Make sure that the mobile app doesn't contain embedded access keys, even if they're in
encrypted storage.

2. Get temporary credentials for the app by using APIs designed for that purpose.

Review your IAM groups 2390

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_groups_manage_list.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/Using_DeleteGroup.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_manage.html#id_users_manage_list
https://docs.aws.amazon.com/IAM/latest/UserGuide/Using_AddOrRemoveUsersFromGroup.html
https://docs.aws.amazon.com/cli/latest/reference/iam/list-roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/roles-managingrole-deleting.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/roles-managingrole-editing.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/roles-managingrole-editing.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/identity-providers.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/identity-providers-saml.html

AWS Identity and Access Management User Guide

Note

We recommend that you use Amazon Cognito to manage user identity in your app. This
service lets you authenticate users using Login with Amazon, Facebook, Google, or any
OpenID Connect (OIDC)–compatible identity provider. For more information, see Amazon
Cognito identity pools in the Amazon Cognito Developer Guide.

Tips for reviewing IAM policies

Policies are powerful and subtle, so it's important to study and understand the permissions granted
by each policy. Use the following guidelines when reviewing policies:

• Attach policies to groups or roles instead of to individual users. If an individual user has a policy,
make sure you understand why that user needs the policy.

• Make sure that IAM users, groups, and roles have the permissions that they need and don't have
any additional permissions.

• Use the IAM Policy Simulator to test policies attached to users or groups.

• Remember that a user's permissions are the result of all applicable policies— both identity-based
policies (on users, groups,or roles) and resource-based policies (on resources such as Amazon S3
buckets, Amazon SQS queues, Amazon SNS topics, and AWS KMS keys). It's important to examine
all the policies that apply to a user and to understand the complete set of permissions granted to
an individual user.

• Be aware that allowing a user to create an IAM user, group, role, or policy and attach a policy
to the principal entity is effectively granting that user all permissions to all resources in your
account. Users who can create policies and attach them to a user, group, or role can grant
themselves any permissions. In general, don't grant IAM permissions to users or roles whom you
don't trust with full access to the resources in your account. When conducting your security audit
confirm that the following IAM permissions are granted to trusted identities:

• iam:PutGroupPolicy

• iam:PutRolePolicy

• iam:PutUserPolicy

• iam:CreatePolicy

• iam:CreatePolicyVersion

• iam:AttachGroupPolicy

Tips for reviewing IAM policies 2391

https://aws.amazon.com/cognito/
https://docs.aws.amazon.com/cognito/latest/developerguide/cognito-identity.html
https://docs.aws.amazon.com/cognito/latest/developerguide/cognito-identity.html
https://docs.aws.amazon.com/IAM/latest/UsingPolicySimulatorGuide/

AWS Identity and Access Management User Guide

• iam:AttachRolePolicy

• iam:AttachUserPolicy

• Make sure policies don't grant permissions for services that you don't use. For example, if you
use AWS managed policies, make sure the AWS managed policies that are in use in your account
are for services that you actually use. To find out which AWS managed policies are in use in your
account, use the IAM GetAccountAuthorizationDetails API (AWS CLI command: aws iam
get-account-authorization-details).

• If the policy grants a user permission to launch an Amazon EC2 instance, it might also allow the
iam:PassRole action, but if so it should explicitly list the roles that the user can pass to the
Amazon EC2 instance.

• Examine any values for the Action or Resource element that include *. When possible, grant
Allow access to the individual actions and resources that users need. However, the following are
reasons that it might be suitable to use * in a policy:

• The policy is designed to grant administrative-level permissions.

• The wildcard character is used for a set of similar actions (for example, Describe*) as a
convenience, and you are comfortable with the complete list of actions that are referenced in
this way.

• The wildcard character is used to indicate a class of resources or a resource path (for example,
arn:aws:iam::account-id:users/division_abc/*), and you are comfortable granting
access to all the resources in that class or path.

• A service action doesn't support resource-level permissions, and the only choice for a resource
is *.

• Examine policy names to make sure they reflect the policy's function. For example, although
a policy might have a name that includes "read only," the policy might actually grant write or
change permissions.

For more information about planning for your security audit, see Best Practices for Security,
Identity, and Compliance in the AWS Architecture Center.

Data protection in AWS Identity and Access Management

The AWS shared responsibility model applies to data protection in AWS Identity and Access
Management. As described in this model, AWS is responsible for protecting the global
infrastructure that runs all of the AWS Cloud. You are responsible for maintaining control over your

Data protection 2392

https://docs.aws.amazon.com/IAM/latest/UserGuide/policies-managed-vs-inline.html#aws-managed-policies
https://docs.aws.amazon.com/IAM/latest/APIReference/API_GetAccountAuthorizationDetails.html
https://docs.aws.amazon.com/cli/latest/reference/iam/get-account-authorization-details.html
https://docs.aws.amazon.com/cli/latest/reference/iam/get-account-authorization-details.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/roles-usingrole-ec2instance.html#roles-usingrole-ec2instance-passrole
https://aws.amazon.com/architecture/security-identity-compliance/
https://aws.amazon.com/architecture/security-identity-compliance/
https://aws.amazon.com/compliance/shared-responsibility-model/

AWS Identity and Access Management User Guide

content that is hosted on this infrastructure. You are also responsible for the security configuration
and management tasks for the AWS services that you use. For more information about data
privacy, see the Data Privacy FAQ. For information about data protection in Europe, see the AWS
Shared Responsibility Model and GDPR blog post on the AWS Security Blog.

For data protection purposes, we recommend that you protect AWS account credentials and set
up individual users with AWS IAM Identity Center or AWS Identity and Access Management (IAM).
That way, each user is given only the permissions necessary to fulfill their job duties. We also
recommend that you secure your data in the following ways:

• Use multi-factor authentication (MFA) with each account.

• Use SSL/TLS to communicate with AWS resources. We require TLS 1.2 and recommend TLS 1.3.

• Set up API and user activity logging with AWS CloudTrail.

• Use AWS encryption solutions, along with all default security controls within AWS services.

• Use advanced managed security services such as Amazon Macie, which assists in discovering and
securing sensitive data that is stored in Amazon S3.

• If you require FIPS 140-2 validated cryptographic modules when accessing AWS through a
command line interface or an API, use a FIPS endpoint. For more information about the available
FIPS endpoints, see Federal Information Processing Standard (FIPS) 140-2.

We strongly recommend that you never put confidential or sensitive information, such as your
customers' email addresses, into tags or free-form text fields such as a Name field. This includes
when you work with IAM or other AWS services using the console, API, AWS CLI, or AWS SDKs. Any
data that you enter into tags or free-form text fields used for names may be used for billing or
diagnostic logs. If you provide a URL to an external server, we strongly recommend that you do not
include credentials information in the URL to validate your request to that server.

Data encryption in IAM and AWS STS

Data encryption typically falls into two categories: encryption at rest and encryption in transit.

Encryption at rest

Data that is collected and stored by IAM is encrypted at rest.

• IAM – Data collected and stored within IAM includes IP addresses, customer account metadata,
and customer identifying data that includes passwords. Customer account metadata and
customer identifying data are encrypted at rest using AES 256 or is hashed using SHA 256.

Data encryption in IAM and AWS STS 2393

https://aws.amazon.com/compliance/data-privacy-faq
https://aws.amazon.com/blogs/security/the-aws-shared-responsibility-model-and-gdpr/
https://aws.amazon.com/blogs/security/the-aws-shared-responsibility-model-and-gdpr/
https://aws.amazon.com/compliance/fips/

AWS Identity and Access Management User Guide

• AWS STS – AWS STS does not collect customer content except for service logs that log
successful, erroneous, and faulty requests to the service.

Encryption in transit

Customer identifying data, including passwords, is encrypted in transit using TLS 1.2 and 1.3. All
AWS STS endpoints support HTTPS for encrypting data in transit. For a list of AWS STS endpoints,
see Regions and endpoints.

Key management in IAM and AWS STS

You can't manage encryption keys using IAM or AWS STS. For more information about encryption
keys, see What is AWS KMS? in the AWS Key Management Service Developer Guide

Internetwork traffic privacy in IAM and AWS STS

Requests to IAM must be made using Transport Layer Security protocol (TLS). You can secure
connections to the AWS STS service by using VPC endpoints. To learn more, see Interface VPC
endpoints.

Logging and monitoring in AWS Identity and Access
Management

Monitoring is an important part of maintaining the reliability, availability, and performance of AWS
Identity and Access Management (IAM), AWS Security Token Service (AWS STS) and your other
AWS solutions. AWS provides several tools for monitoring your AWS resources and responding to
potential incidents:

• AWS CloudTrail captures all API calls for IAM and AWS STS as events, including calls from the
console and API calls. To learn more about using CloudTrail with IAM and AWS STS, see Logging
IAM and AWS STS API calls with AWS CloudTrail. For more information about CloudTrail, see the
AWS CloudTrail User Guide.

• AWS Identity and Access Management Access Analyzer helps you identify the resources in your
organization and accounts, such as Amazon S3 buckets or IAM roles, that are shared with an
external entity. This helps you identify unintended access to your resources and data, which is a
security risk. To learn more, see What is IAM Access Analyzer?

Key management in IAM and AWS STS 2394

https://docs.aws.amazon.com/kms/latest/developerguide/overview.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/
https://docs.aws.amazon.com/IAM/latest/UserGuide/what-is-access-analyzer.html

AWS Identity and Access Management User Guide

• Amazon CloudWatch monitors your AWS resources and the applications that you run on AWS
in real time. You can collect and track metrics, create customized dashboards, and set alarms
that notify you or take actions when a specified metric reaches a threshold that you specify.
For example, you can have CloudWatch track CPU usage or other metrics of your Amazon EC2
instances and automatically launch new instances when needed. For more information, see the
Amazon CloudWatch User Guide.

• Amazon CloudWatch Logs helps you monitor, store, and access your log files from Amazon EC2
instances, CloudTrail, and other sources. CloudWatch Logs can monitor information in the log
files and notify you when certain thresholds are met. You can also archive your log data in highly
durable storage. For more information, see the Amazon CloudWatch Logs User Guide.

For additional resources and security best practices for IAM, see Security best practices and use
cases in AWS Identity and Access Management.

Compliance validation for AWS Identity and Access
Management

Third-party auditors assess the security and compliance of AWS Identity and Access Management
(IAM) as part of multiple AWS compliance programs. These include SOC, PCI, FedRAMP, ISO, and
others.

To learn whether an AWS service is within the scope of specific compliance programs, see AWS
services in Scope by Compliance Program and choose the compliance program that you are
interested in. For general information, see AWS Compliance Programs.

You can download third-party audit reports using AWS Artifact. For more information, see
Downloading Reports in AWS Artifact.

Your compliance responsibility when using AWS services is determined by the sensitivity of your
data, your company's compliance objectives, and applicable laws and regulations. AWS provides the
following resources to help with compliance:

• Security and Compliance Quick Start Guides – These deployment guides discuss architectural
considerations and provide steps for deploying baseline environments on AWS that are security
and compliance focused.

• Architecting for HIPAA Security and Compliance on Amazon Web Services – This whitepaper
describes how companies can use AWS to create HIPAA-eligible applications.

Compliance validation 2395

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/
https://aws.amazon.com/compliance/services-in-scope/
https://aws.amazon.com/compliance/services-in-scope/
https://aws.amazon.com/compliance/programs/
https://docs.aws.amazon.com/artifact/latest/ug/downloading-documents.html
https://aws.amazon.com/quickstart/?awsf.filter-tech-category=tech-category%23security-identity-compliance
https://docs.aws.amazon.com/whitepapers/latest/architecting-hipaa-security-and-compliance-on-aws/welcome.html

AWS Identity and Access Management User Guide

Note

Not all AWS services are HIPAA eligible. For more information, see the HIPAA Eligible
Services Reference.

• AWS Compliance Resources – This collection of workbooks and guides might apply to your
industry and location.

• AWS Customer Compliance Guides – Understand the shared responsibility model through the
lens of compliance. The guides summarize the best practices for securing AWS services and map
the guidance to security controls across multiple frameworks (including National Institute of
Standards and Technology (NIST), Payment Card Industry Security Standards Council (PCI), and
International Organization for Standardization (ISO)).

• Evaluating Resources with Rules in the AWS Config Developer Guide – The AWS Config service
assesses how well your resource configurations comply with internal practices, industry
guidelines, and regulations.

• AWS Security Hub – This AWS service provides a comprehensive view of your security state within
AWS. Security Hub uses security controls to evaluate your AWS resources and to check your
compliance against security industry standards and best practices. For a list of supported services
and controls, see Security Hub controls reference.

• AWS Audit Manager – This AWS service helps you continuously audit your AWS usage to simplify
how you manage risk and compliance with regulations and industry standards.

Resilience in AWS Identity and Access Management

The AWS global infrastructure is built around AWS Regions and Availability Zones. AWS Regions
have multiple physically separated and isolated Availability Zones, which are connected with low-
latency, high-throughput, and highly redundant networking. For more information about AWS
Regions and Availability Zones, see AWS Global Infrastructure.

AWS Identity and Access Management (IAM) and AWS Security Token Service (AWS STS) are self-
sustaining, Region-based services that are available globally.

IAM is a critical AWS service. Every operation performed in AWS must be authenticated and
authorized by IAM. IAM checks each request against the identities and policies stored in IAM to
determine if the request is allowed or denied. IAM was designed with a separate control plane and

Resilience 2396

https://aws.amazon.com/compliance/hipaa-eligible-services-reference/
https://aws.amazon.com/compliance/hipaa-eligible-services-reference/
https://aws.amazon.com/compliance/resources/
https://d1.awsstatic.com/whitepapers/compliance/AWS_Customer_Compliance_Guides.pdf
https://docs.aws.amazon.com/config/latest/developerguide/evaluate-config.html
https://docs.aws.amazon.com/securityhub/latest/userguide/what-is-securityhub.html
https://docs.aws.amazon.com/securityhub/latest/userguide/securityhub-controls-reference.html
https://docs.aws.amazon.com/audit-manager/latest/userguide/what-is.html
https://aws.amazon.com/about-aws/global-infrastructure/

AWS Identity and Access Management User Guide

data plane so that the service authenticates even during unexpected failures. IAM resources that
are used in authorizations, such as roles and policies, are stored in the control plane. IAM customers
can change the configuration of these resources by using IAM operations such as DeletePolicy
and AttachRolePolicy. Those configuration change requests go to the control plane. There is
one IAM control plane for all commercial AWS Regions, which is located in the US East (N. Virginia)
Region. The IAM system then propagates configuration changes to the IAM data planes in every
enabled AWS Region. The IAM data plane is essentially a read-only replica of the IAM control plane
configuration data. Each AWS Region has a completely independent instance of the IAM data
plane, which performs authentication and authorization for requests from the same Region. In
each Region, the IAM data plane is distributed across at least three Availability Zones, and has
sufficient capacity to tolerate the loss of an Availability Zone without any customer impairment.
Both the IAM control and data planes were built for zero planned downtime, with all software
updates and scaling operations performed in a manner that is invisible to customers.

AWS STS requests always go to a single global endpoint by default. You can use a Regional AWS
STS endpoint to reduce latency or provide additional redundancy for your applications. To learn
more, see Managing AWS STS in an AWS Region.

Certain events can interrupt communication between AWS Regions over the network. However,
even when you can't communicate with the global IAM endpoint, AWS STS can still authenticate
IAM principals and IAM can authorize your requests. The specific details of an event that interrupts
communication will determine your ability to access AWS services. In most situations, you can
continue to use IAM credentials in your AWS environment. The following conditions might apply to
an event that interrupts communication.

Access keys for IAM users

You can authenticate indefinitely in a Region with long-term access keys for IAM users. When
you use the AWS Command Line Interface and APIs, you can provide AWS access keys so that
AWS can verify your identity in programmatic requests.

Important

As a best practice, we recommend that your users sign in with temporary credentials
instead of long-term access keys.

Resilience 2397

https://docs.aws.amazon.com/general/latest/gr/rande-manage.html#rande-manage-enable
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_access-keys.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_request.html

AWS Identity and Access Management User Guide

Temporary credentials

You can request new temporary credentials with the AWS STS Regional service endpoint for at
least 24 hours. The following API operations generate temporary credentials.

• AssumeRole

• AssumeRoleWithWebIdentity

• AssumeRoleWithSAML

• GetFederationToken

• GetSessionToken

Principals and permissions

• You might not be able to add, modify, or remove principals or permissions in IAM.

• Your credentials might not reflect changes to your permissions that you recently applied in
IAM. For more information, see Changes that I make are not always immediately visible.

AWS Management Console

• You might be able to use a Regional sign-in endpoint to sign in to the AWS Management
Console as an IAM user. Regional sign-in endpoints have the following URL format.

https://{Account ID}.signin.aws.amazon.com/console?region={Region}

Example: https://111122223333.signin.aws.amazon.com/console?region=us-west-2

• You might not be able to complete Universal 2nd Factor (U2F) multi-factor authentication
(MFA).

Best practices for IAM resilience

AWS has built resilience into AWS Regions and Availability Zones. When you observe the following
IAM best practices in the systems that interact with your environment, you take advantage of that
resilience.

1. Use an AWS STS Regional service endpoint instead of the default global endpoint.

2. Review the configuration of your environment for vital resources that routinely create or modify
IAM resources, and prepare a fallback solution that uses existing IAM resources.

Best practices for IAM resilience 2398

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_request.html
https://docs.aws.amazon.com/general/latest/gr/sts.html#sts_region
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mfa_enable_u2f.html
https://docs.aws.amazon.com/general/latest/gr/sts.html#sts_region

AWS Identity and Access Management User Guide

Infrastructure security in AWS Identity and Access Management

As a managed service, AWS Identity and Access Management is protected by AWS global network
security. For information about AWS security services and how AWS protects infrastructure, see
AWS Cloud Security. To design your AWS environment using the best practices for infrastructure
security, see Infrastructure Protection in Security Pillar AWS Well‐Architected Framework.

You use AWS published API calls to access IAM through the network. Clients must support the
following:

• Transport Layer Security (TLS). We require TLS 1.2 and recommend TLS 1.3.

• Cipher suites with perfect forward secrecy (PFS) such as DHE (Ephemeral Diffie-Hellman) or
ECDHE (Elliptic Curve Ephemeral Diffie-Hellman). Most modern systems such as Java 7 and later
support these modes.

Additionally, requests must be signed by using an access key ID and a secret access key that is
associated with an IAM principal. Or you can use the AWS Security Token Service (AWS STS) to
generate temporary security credentials to sign requests.

IAM can be accessed programmatically by using the IAM HTTPS API, which lets you issue HTTPS
requests directly to the service. The Query API returns sensitive information, including security
credentials. Therefore, you must use HTTPS with all API requests. When you use the HTTPS API,
you must include code to digitally sign requests using your credentials.

You can call these API operations from any network location, but IAM does support resource-based
access policies, which can include restrictions based on the source IP address. You can also use IAM
policies to control access from specific Amazon Virtual Private Cloud (Amazon VPC) endpoints or
specific VPCs. Effectively, this isolates network access to a given IAM resource from only the specific
VPC within the AWS network.

Configuration and vulnerability analysis in AWS Identity and
Access Management

AWS handles basic security tasks like guest operating system (OS) and database patching, firewall
configuration, and disaster recovery. These procedures have been reviewed and certified by the
appropriate third parties. For more details, see the following resources:

• Shared Responsibility Model

Infrastructure security 2399

https://aws.amazon.com/security/
https://docs.aws.amazon.com/wellarchitected/latest/security-pillar/infrastructure-protection.html
https://docs.aws.amazon.com/STS/latest/APIReference/Welcome.html
https://aws.amazon.com/compliance/shared-responsibility-model/

AWS Identity and Access Management User Guide

• Amazon Web Services: Overview of Security Processes (whitepaper)

The following resources also address configuration and vulnerability analysis in AWS Identity and
Access Management (IAM):

• Compliance validation for AWS Identity and Access Management

• Security best practices and use cases in AWS Identity and Access Management

AWS managed policies for AWS Identity and Access
Management Access Analyzer

An AWS managed policy is a standalone policy that is created and administered by AWS. AWS
managed policies are designed to provide permissions for many common use cases so that you can
start assigning permissions to users, groups, and roles.

Keep in mind that AWS managed policies might not grant least-privilege permissions for your
specific use cases because they're available for all AWS customers to use. We recommend that you
reduce permissions further by defining customer managed policies that are specific to your use
cases.

You cannot change the permissions defined in AWS managed policies. If AWS updates the
permissions defined in an AWS managed policy, the update affects all principal identities (users,
groups, and roles) that the policy is attached to. AWS is most likely to update an AWS managed
policy when a new AWS service is launched or new API operations become available for existing
services.

For more information, see AWS managed policies in the IAM User Guide.

IAMReadOnlyAccess

Use the IAMReadOnlyAccess managed policy to allow read only access to IAM resources. This
policy grants permission to get and list all IAM resources. It allows viewing details and activity
reports for users, groups, roles, policies, identity providers, and MFA devices. It does not include the

AWS managed policies 2400

https://d0.awsstatic.com/whitepapers/Security/AWS_Security_Whitepaper.pdf
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#customer-managed-policies
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#aws-managed-policies

AWS Identity and Access Management User Guide

ability to create or delete resources or access to IAM Access Analyzer resources. View the policy for
the full list of services and actions supported by this policy.

IAMUserChangePassword

Use the IAMUserChangePassword managed policy to allow IAM users to change their password.

You configure your IAM Account settings and the Password policy to allow IAM users to change
their IAM account password. When you allow this action, IAM attaches the following policy to each
user:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "iam:ChangePassword"
],
 "Resource": [
 "arn:aws:iam::*:user/${aws:username}"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "iam:GetAccountPasswordPolicy"
],
 "Resource": "*"
 }
]
}

IAMAccessAnalyzerFullAccess

Use the IAMAccessAnalyzerFullAccess AWS managed policy to allow your administrators to
access IAM Access Analyzer.

Permissions groupings

This policy is grouped into statements based on the set of permissions provided.

IAMUserChangePassword 2401

https://console.aws.amazon.com/iam/home#policies/arn:aws:iam::aws:policy/IAMReadOnlyAccess

AWS Identity and Access Management User Guide

• IAM Access Analyzer – Allows full administrative permissions to all resources in IAM Access
Analyzer.

• Create service linked role – Allows the administrator to create a service-linked role, which
allows IAM Access Analyzer to analyze resources in other services on your behalf. This permission
allows creating the service-linked role only for use by IAM Access Analyzer.

• AWS Organizations – Allows administrators to use IAM Access Analyzer for an organization in
AWS Organizations. After enabling trusted access for IAM Access Analyzer in AWS Organizations,
members of the management account can view findings across their organization.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "access-analyzer:*"
],
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Action": "iam:CreateServiceLinkedRole",
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "iam:AWSServiceName": "access-analyzer.amazonaws.com"
 }
 }
 },
 {
 "Effect": "Allow",
 "Action": [
 "organizations:DescribeAccount",
 "organizations:DescribeOrganization",
 "organizations:DescribeOrganizationalUnit",
 "organizations:ListAccounts",
 "organizations:ListAccountsForParent",
 "organizations:ListAWSServiceAccessForOrganization",
 "organizations:ListChildren",
 "organizations:ListDelegatedAdministrators",
 "organizations:ListOrganizationalUnitsForParent",

IAMAccessAnalyzerFullAccess 2402

https://docs.aws.amazon.com/IAM/latest/UserGuide/access-analyzer-using-service-linked-roles.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_integrate_services.html

AWS Identity and Access Management User Guide

 "organizations:ListParents",
 "organizations:ListRoots"
],
 "Resource": "*"
 }
]
}

IAMAccessAnalyzerReadOnlyAccess

Use the IAMAccessAnalyzerReadOnlyAccess AWS managed policy to allow read-only access to
IAM Access Analyzer.

To also allow read-only access to IAM Access Analyzer for AWS Organizations, create a customer
managed policy that allows the Describe and List actions from the IAMAccessAnalyzerFullAccess
AWS managed policy.

Service-level permissions

This policy provides read-only access to IAM Access Analyzer. No other service permissions are
included in this policy.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "IAMAccessAnalyzerReadOnlyAccess",
 "Effect": "Allow",
 "Action": [
 "access-analyzer:CheckAccessNotGranted",
 "access-analyzer:CheckNoNewAccess",
 "access-analyzer:Get*",
 "access-analyzer:List*",
 "access-analyzer:ValidatePolicy"
],
 "Resource": "*"
 }
]
}

IAMAccessAnalyzerReadOnlyAccess 2403

AWS Identity and Access Management User Guide

AccessAnalyzerServiceRolePolicy

You can't attach AccessAnalyzerServiceRolePolicy to your IAM entities. This policy is attached
to a service-linked role that allows IAM Access Analyzer to perform actions on your behalf. For
more information, see Using service-linked roles for AWS Identity and Access Management Access
Analyzer.

Permissions groupings

This policy allows access to IAM Access Analyzer to analyze resource metadata from multiple AWS
services.

• Amazon DynamoDB – Allows permissions to view DynamoDB streams and tables.

• Amazon Elastic Compute Cloud – Allows permissions to describe IP addresses, snapshots, and
VPCs.

• Amazon Elastic Container Registry – Allows permissions to describe image repositories and
retrieve repository policies.

• Amazon Elastic File System – Allows permissions to view the description of an Amazon EFS file
system and view the resource-level policy for an Amazon EFS file system.

• AWS Identity and Access Management – Allows permissions to retrieve information about
a specified role and list the IAM roles that have a specified path prefix. Allows permissions
to retrieve information about users, user groups, login profiles, access keys, and service last
accessed data.

• AWS Key Management Service – Allows permissions to view detailed information about an KMS
key and its key policies and grants.

• AWS Lambda – Allows permissions to view information about Lambda aliases, functions, layers,
and aliases.

• AWS Organizations – Allows permissions to Organizations and allows the creation of an analyzer
within the AWS organization as the zone of trust.

• Amazon Relational Database Service – Allows permissions to view detailed information about
Amazon RDS DB snapshots and Amazon RDS DB cluster snapshots.

• Amazon Simple Storage Service – Allows permissions to view detailed information about
Amazon S3 access points, buckets, and Amazon S3 directory buckets that use the Amazon S3
Express One storage class.

• AWS Secrets Manager – Allows permissions to view detailed information about secrets and
resource policies attached to secrets.

AccessAnalyzerServiceRolePolicy 2404

https://docs.aws.amazon.com/IAM/latest/UserGuide/access-analyzer-using-service-linked-roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access-analyzer-using-service-linked-roles.html

AWS Identity and Access Management User Guide

• Amazon Simple Notification Service – Allows permissions to view detailed information about a
topic.

• Amazon Simple Queue Service – Allows permissions to view detailed information about
specified queues.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "AccessAnalyzerServiceRolePolicy",
 "Effect": "Allow",
 "Action": [
 "dynamodb:GetResourcePolicy",
 "dynamodb:ListStreams",
 "dynamodb:ListTables",
 "ec2:DescribeAddresses",
 "ec2:DescribeByoipCidrs",
 "ec2:DescribeSnapshotAttribute",
 "ec2:DescribeSnapshots",
 "ec2:DescribeVpcEndpoints",
 "ec2:DescribeVpcs",
 "ec2:GetSnapshotBlockPublicAccessState",
 "ecr:DescribeRepositories",
 "ecr:GetRepositoryPolicy",
 "elasticfilesystem:DescribeFileSystemPolicy",
 "elasticfilesystem:DescribeFileSystems",
 "iam:GenerateServiceLastAccessedDetails",
 "iam:GetAccessKeyLastUsed"
 "iam:GetGroup",
 "iam:GetLoginProfile",
 "iam:GetRole",
 "iam:GetServiceLastAccessedDetails",
 "iam:GetUser",
 "iam:ListAccessKeys",
 "iam:ListEntitiesForPolicy",
 "iam:ListRoles",
 "iam:ListUsers",
 "kms:DescribeKey",
 "kms:GetKeyPolicy",
 "kms:ListGrants",
 "kms:ListKeyPolicies",
 "kms:ListKeys",

AccessAnalyzerServiceRolePolicy 2405

AWS Identity and Access Management User Guide

 "lambda:GetFunctionUrlConfig",
 "lambda:GetLayerVersionPolicy",
 "lambda:GetPolicy",
 "lambda:ListAliases",
 "lambda:ListFunctions",
 "lambda:ListLayers",
 "lambda:ListLayerVersions",
 "lambda:ListVersionsByFunction",
 "organizations:DescribeAccount",
 "organizations:DescribeOrganization",
 "organizations:DescribeOrganizationalUnit",
 "organizations:ListAccounts",
 "organizations:ListAccountsForParent",
 "organizations:ListAWSServiceAccessForOrganization",
 "organizations:ListChildren",
 "organizations:ListDelegatedAdministrators",
 "organizations:ListOrganizationalUnitsForParent",
 "organizations:ListParents",
 "organizations:ListRoots",
 "rds:DescribeDBClusterSnapshotAttributes",
 "rds:DescribeDBClusterSnapshots",
 "rds:DescribeDBSnapshotAttributes",
 "rds:DescribeDBSnapshots",
 "s3:DescribeMultiRegionAccessPointOperation",
 "s3:GetAccessPoint",
 "s3:GetAccessPointPolicy",
 "s3:GetAccessPointPolicyStatus",
 "s3:GetAccountPublicAccessBlock",
 "s3:GetBucketAcl",
 "s3:GetBucketLocation",
 "s3:GetBucketPolicyStatus",
 "s3:GetBucketPolicy",
 "s3:GetBucketPublicAccessBlock",
 "s3:GetMultiRegionAccessPoint",
 "s3:GetMultiRegionAccessPointPolicy",
 "s3:GetMultiRegionAccessPointPolicyStatus",
 "s3:ListAccessPoints",
 "s3:ListAllMyBuckets",
 "s3:ListMultiRegionAccessPoints",
 "s3express:GetBucketPolicy",
 "s3express:ListAllMyDirectoryBuckets",
 "sns:GetTopicAttributes",
 "sns:ListTopics",
 "secretsmanager:DescribeSecret",

AccessAnalyzerServiceRolePolicy 2406

AWS Identity and Access Management User Guide

 "secretsmanager:GetResourcePolicy",
 "secretsmanager:ListSecrets",
 "sqs:GetQueueAttributes",
 "sqs:ListQueues"
],
 "Resource": "*"
 }
]
}

IAM and IAM Access Analyzer updates to AWS managed policies

View details about updates to IAM and AWS managed policies since the service began tracking
these changes. For automatic alerts about changes to this page, subscribe to the RSS feed on the
IAM and IAM Access Analyzer Document history pages.

Change Description Date

AccessAnalyzerServiceRolePo
licy – Added permissions

IAM Access Analyzer added
support for permission to
retrieve the current state of
the block public access for
Amazon EC2 snapshots to
the service-level permissions
of AccessAnalyzerServ
iceRolePolicy .

January 23, 2024

AccessAnalyzerServiceRolePo
licy – Added permissions

IAM Access Analyzer added
support for DynamoDB
streams and tables to the
service-level permissions of
AccessAnalyzerServ
iceRolePolicy .

January 11, 2024

AccessAnalyzerServiceRolePo
licy – Added permissions

IAM Access Analyzer added
support for Amazon S3

December 1, 2023

Policy updates 2407

https://console.aws.amazon.com/iam/home#policies/AccessAnalyzerServiceRolePolicy
https://console.aws.amazon.com/iam/home#policies/AccessAnalyzerServiceRolePolicy
https://console.aws.amazon.com/iam/home#policies/AccessAnalyzerServiceRolePolicy
https://console.aws.amazon.com/iam/home#policies/AccessAnalyzerServiceRolePolicy
https://console.aws.amazon.com/iam/home#policies/AccessAnalyzerServiceRolePolicy
https://console.aws.amazon.com/iam/home#policies/AccessAnalyzerServiceRolePolicy

AWS Identity and Access Management User Guide

Change Description Date

directory buckets to the
service-level permissions of
AccessAnalyzerServ
iceRolePolicy .

IAMAccessAnalyzerR
eadOnlyAccess – Added
permissions

IAM Access Analyzer added
permissions to allow you to
check whether updates to
your policies grant additional
access.

This permission is required
by IAM Access Analyzer to
perform policy checks on your
policies.

November 26, 2023

AccessAnalyzerServiceRolePo
licy – Added permissions

IAM Access Analyzer
added IAM actions to the
service-level permissions of
AccessAnalyzerServ
iceRolePolicy to
support the following actions:

• Listing entities for a policy

• Generating service last
accessed details

• Listing access key informati
on

November 26, 2023

Policy updates 2408

https://console.aws.amazon.com/iam/home#policies/AccessAnalyzerServiceRolePolicy
https://console.aws.amazon.com/iam/home#policies/AccessAnalyzerServiceRolePolicy

AWS Identity and Access Management User Guide

Change Description Date

AccessAnalyzerServiceRolePo
licy – Added permissions

IAM Access Analyzer added
support for the following
resource types to the
service-level permissions of
AccessAnalyzerServ
iceRolePolicy :

• Amazon EBS volume
snapshots

• Amazon ECR repositories

• Amazon EFS file systems

• Amazon RDS DB snapshots

• Amazon RDS DB cluster
snapshots

• Amazon SNS topics

October 25, 2022

AccessAnalyzerServiceRolePo
licy – Added permissions

IAM Access Analyzer added
the lambda:GetFunction
UrlConfig action to the
service-level permissions of
AccessAnalyzerServ
iceRolePolicy .

April 6, 2022

AccessAnalyzerServiceRolePo
licy – Added permissions

IAM Access Analyzer added
new Amazon S3 actions to
analyze metadata associate
d with multi-region access
points.

September 2, 2021

Policy updates 2409

https://console.aws.amazon.com/iam/home#policies/AccessAnalyzerServiceRolePolicy
https://console.aws.amazon.com/iam/home#policies/AccessAnalyzerServiceRolePolicy
https://console.aws.amazon.com/iam/home#policies/AccessAnalyzerServiceRolePolicy
https://console.aws.amazon.com/iam/home#policies/AccessAnalyzerServiceRolePolicy
https://console.aws.amazon.com/iam/home#policies/AccessAnalyzerServiceRolePolicy
https://console.aws.amazon.com/iam/home#policies/AccessAnalyzerServiceRolePolicy

AWS Identity and Access Management User Guide

Change Description Date

IAMAccessAnalyzerR
eadOnlyAccess – Added
permissions

IAM Access Analyzer added
a new action to grant
ValidatePolicy permissio
ns to allow you to use the
policy checks for validation.

This permission is required
by IAM Access Analyzer to
perform policy checks on your
policies.

March 16, 2021

IAM Access Analyzer started
tracking changes

IAM Access Analyzer started
tracking changes for its AWS
managed policies.

March 1, 2021

Policy updates 2410

AWS Identity and Access Management User Guide

Using AWS Identity and Access Management Access
Analyzer

AWS Identity and Access Management Access Analyzer provides the following capabilities:

• IAM Access Analyzer external access analyzers help identify resources in your organization and
accounts that are shared with an external entity.

• IAM Access Analyzer unused access analyzers help identify unused access in your organization
and accounts.

• IAM Access Analyzer validates IAM policies against policy grammar and AWS best practices.

• IAM Access Analyzer custom policy checks help validate IAM policies against your specified
security standards.

• IAM Access Analyzer generates IAM policies based on access activity in your AWS CloudTrail logs.

Identifying resources shared with an external entity

IAM Access Analyzer helps you identify the resources in your organization and accounts, such as
Amazon S3 buckets or IAM roles, shared with an external entity. This lets you identify unintended
access to your resources and data, which is a security risk. IAM Access Analyzer identifies resources
shared with external principals by using logic-based reasoning to analyze the resource-based
policies in your AWS environment. For each instance of a resource shared outside of your account,
IAM Access Analyzer generates a finding. Findings include information about the access and the
external principal granted to it. You can review findings to determine if the access is intended
and safe or if the access is unintended and a security risk. In addition to helping you identify
resources shared with an external entity, you can use IAM Access Analyzer findings to preview how
your policy affects public and cross-account access to your resource before deploying resource
permissions. The findings are organized in a visual summary dashboard. The dashboard highlights
the split between public and cross-account access findings, and provides a breakdown of findings
by resource type. To learn more about the dashboard, see Viewing the IAM Access Analyzer findings
dashboard.

Identifying resources shared with an external entity 2411

AWS Identity and Access Management User Guide

Note

An external entity can be another AWS account, a root user, an IAM user or role, a federated
user, an AWS service, an anonymous user, or other entity that you can use to create a filter.
For more information, see AWS JSON Policy Elements: Principal.

When you enable IAM Access Analyzer, you create an analyzer for your entire organization or your
account. The organization or account you choose is known as the zone of trust for the analyzer. The
analyzer monitors all of the supported resources within your zone of trust. Any access to resources
by principals within your zone of trust is considered trusted. Once enabled, IAM Access Analyzer
analyzes the policies applied to all of the supported resources in your zone of trust. After the
first analysis, IAM Access Analyzer analyzes these policies periodically. If you add a new policy , or
change an existing policy, IAM Access Analyzer analyzes the new or updated policy within about 30
minutes.

When analyzing the policies, if IAM Access Analyzer identifies one that grants access to an external
principal that isn't within your zone of trust, it generates a finding. Each finding includes details
about the resource, the external entity with access to it, and the permissions granted so that you
can take appropriate action. You can view the details included in the finding to determine whether
the resource access is intentional or a potential risk that you should resolve. When you add a policy
to a resource, or update an existing policy, IAM Access Analyzer analyzes the policy. IAM Access
Analyzer also analyzes all resource-based policies periodically.

On rare occasions under certain conditions, IAM Access Analyzer does not receive notification of
an added or updated policy, which can cause delays in generated findings. IAM Access Analyzer
can take up to 6 hours to generate or resolve findings if you create or delete a multi-region access
point associated with an Amazon S3 bucket, or update the policy for the multi-region access point.
Also, if there is a delivery issue with AWS CloudTrail log delivery, the policy change does not trigger
a rescan of the resource reported in the finding. When this happens, IAM Access Analyzer analyzes
the new or updated policy during the next periodic scan, which is within 24 hours. If you want
to confirm a change you make to a policy resolves an access issue reported in a finding, you can
rescan the resource reported in a finding by using the Rescan link in the Findings details page, or
by using the StartResourceScan operation of the IAM Access Analyzer API. To learn more, see
Resolving findings.

Identifying resources shared with an external entity 2412

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_principal.html
https://docs.aws.amazon.com/access-analyzer/latest/APIReference/API_StartResourceScan.html

AWS Identity and Access Management User Guide

Important

IAM Access Analyzer analyzes only policies applied to resources in the same AWS Region
where it's enabled. To monitor all resources in your AWS environment, you must create an
analyzer to enable IAM Access Analyzer in each Region where you're using supported AWS
resources.

IAM Access Analyzer analyzes the following resource types:

• Amazon Simple Storage Service buckets

• Amazon Simple Storage Service directory buckets

• AWS Identity and Access Management roles

• AWS Key Management Service keys

• AWS Lambda functions and layers

• Amazon Simple Queue Service queues

• AWS Secrets Manager secrets

• Amazon Simple Notification Service topics

• Amazon Elastic Block Store volume snapshots

• Amazon Relational Database Service DB snapshots

• Amazon Relational Database Service DB cluster snapshots

• Amazon Elastic Container Registry repositories

• Amazon Elastic File System file systems

Identifying unused access granted to IAM users and roles

IAM Access Analyzer helps you identify and review unused access in your AWS organization
and accounts. IAM Access Analyzer continuously monitors all IAM roles and users in your AWS
organization and accounts and generates findings for unused access. The findings highlight unused
roles, unused access keys for IAM users, and unused passwords for IAM users. For active IAM roles
and users, the findings provide visibility into unused services and actions.

The findings for both external access and unused access analyzers are organized into a visual
summary dashboard. The dashboard highlights your AWS accounts that have the most findings and

Identifying unused access granted to IAM users and roles 2413

AWS Identity and Access Management User Guide

provides a breakdown of findings by type. For more information about the dashboard, see Viewing
the IAM Access Analyzer findings dashboard.

IAM Access Analyzer reviews last accessed information for all roles in your AWS organization
and accounts to help you identify unused access. IAM action last accessed information helps
you identify unused actions for roles in your AWS accounts. For more information, see Refining
permissions in AWS using last accessed information.

Validating policies against AWS best practices

You can validate your policies against IAM policy grammar and AWS best practices using the
basic policy checks provided by IAM Access Analyzer policy validation. You can create or edit a
policy using the AWS CLI, AWS API, or JSON policy editor in the IAM console. You can view policy
validation check findings that include security warnings, errors, general warnings, and suggestions
for your policy. These findings provide actionable recommendations that help you author policies
that are functional and conform to AWS best practices. To learn more about validating policies
using policy validation, see IAM Access Analyzer policy validation.

Validating policies against your specified security standards

You can validate your policies against your specified security standards using the IAM Access
Analyzer custom policy checks. You can create or edit a policy using the AWS CLI, AWS API, or
JSON policy editor in the IAM console. Through the console, you can check whether your updated
policy grants new access compared to the existing version. Through AWS CLI and AWS API, you can
also check specific IAM actions that you consider critical are not allowed by a policy. These checks
highlight a policy statement that grants new access. You can update the policy statement and re-
run the checks until the policy conform to your security standard. To learn more about validating
policies using custom policy checks, see IAM Access Analyzer custom policy checks.

Generating policies

IAM Access Analyzer analyzes your AWS CloudTrail logs to identify actions and services that have
been used by an IAM entity (user or role) within your specified date range. It then generates an IAM
policy that is based on that access activity. You can use the generated policy to refine an entity's
permissions by attaching it to an IAM user or role. To learn more about generating policies using
IAM Access Analyzer, see IAM Access Analyzer policy generation.

Validating policies against AWS best practices 2414

AWS Identity and Access Management User Guide

Pricing for IAM Access Analyzer

IAM Access Analyzer charges for unused access analysis based on the number of IAM roles and
users analyzed per analyzer per month.

• You will be charged for each unused access analyzer that you create.

• Creating unused access analyzers across multiple Regions will result in you being charged for
each analyzer.

• Service-linked roles aren't analyzed for unused access activity and they aren't included in the
total number of IAM roles analyzed.

IAM Access Analyzer charges for custom policy checks based on the number of API requests made
to IAM Access Analyzer to check for new access.

For a complete list of charges and prices for IAM Access Analyzer, see IAM Access Analyzer pricing.

To see your bill, go to the Billing and Cost Management Dashboard in the AWS Billing and Cost
Management console. Your bill contains links to usage reports that provide details about your bill.
To learn more about AWS account billing, see the AWS Billing User Guide

If you have questions concerning AWS billing, accounts, and events, contact AWS Support.

Findings for external and unused access

IAM Access Analyzer generates findings for external access and unused access in your AWS account
or organization. For external access, IAM Access Analyzer generates a finding for each instance of
a resource-based policy that grants access to a resource within your zone of trust to a principal
that is not within your zone of trust. When you create an external access analyzer, you choose
an organization or AWS account to analyze. Any principal in the organization or account that
you choose for the analyzer is considered trusted. Because principals in the same organization or
account are trusted, the resources and principals within the organization or account comprise the
zone of trust for the analyzer. Any sharing that is within the zone of trust is considered safe, so
IAM Access Analyzer does not generate a finding. For example, if you select an organization as the
zone of trust for an analyzer, all resources and principals in the organization are within the zone
of trust. If you grant permissions to an Amazon S3 bucket in one of your organization member
accounts to a principal in another organization member account, IAM Access Analyzer does not
generate a finding. But if you grant permission to a principal in an account that is not a member of
the organization, IAM Access Analyzer generates a finding.

Pricing for IAM Access Analyzer 2415

https://aws.amazon.com/iam/access-analyzer/pricing
https://console.aws.amazon.com/billing/
https://console.aws.amazon.com/billing/
https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/
https://aws.amazon.com/contact-us/

AWS Identity and Access Management User Guide

IAM Access Analyzer also generates findings for unused access granted in your AWS organization
and accounts. When you create an unused access analyzer, IAM Access Analyzer continuously
monitors all IAM roles and users in your AWS organization and accounts and generates findings for
unused access. IAM Access Analyzer generates the following types of findings for unused access:

• Unused roles – Roles with no access activity within the specified usage window.

• Unused IAM user access keys and passwords – Credentials belonging to IAM users that enable
them to access your AWS account.

• Unused permissions – Service-level and action-level permissions that weren't used by a role
within the specified usage window. IAM Access Analyzer uses identity-based policies attached
to roles to determine the services and actions that those roles can access. IAM Access Analyzer
supports review of unused permissions for all service-level permissions. For a complete list
of action-level permissions that are supported for unused access findings, see IAM action last
accessed information services and actions.

Note

IAM Access Analyzer offers external access findings for free and charges for unused access
findings based on the number of IAM roles and users analyzed per analyzer per month. For
more details about pricing, see IAM Access Analyzer pricing.

Topics

• How IAM Access Analyzer findings work

• Getting started with AWS Identity and Access Management Access Analyzer findings

• Viewing the IAM Access Analyzer findings dashboard

• Working with findings

• Reviewing findings

• Filtering findings

• Archiving findings

• Resolving findings

• IAM Access Analyzer resource types for external access

• Settings for IAM Access Analyzer

• Archive rules

Findings for external and unused access 2416

https://aws.amazon.com/iam/access-analyzer/pricing

AWS Identity and Access Management User Guide

• Monitoring AWS Identity and Access Management Access Analyzer with Amazon EventBridge

• Integration with AWS Security Hub

• Logging IAM Access Analyzer API calls with AWS CloudTrail

• IAM Access Analyzer filter keys

• Using service-linked roles for AWS Identity and Access Management Access Analyzer

How IAM Access Analyzer findings work

This topic describes the concepts and terms that are used in IAM Access Analyzer to help you
become familiar with how IAM Access Analyzer monitors access to your AWS resources.

External access

For external access analyzers, AWS Identity and Access Management Access Analyzer is built on
Zelkova, which translates IAM policies into equivalent logical statements, and runs a suite of
general-purpose and specialized logical solvers (satisfiability modulo theories) against the problem.
IAM Access Analyzer applies Zelkova repeatedly to a policy with increasingly specific queries to
characterize classes of behaviors the policy allows, based on the content of the policy. To learn
more about satisfiability modulo theories, see Satisfiability Modulo Theories.

For external access analyzers, IAM Access Analyzer does not examine access logs to determine
whether an external entity accessed a resource within your zone of trust. It generates a finding
when a resource-based policy allows access to a resource, even if the resource was not accessed by
the external entity. IAM Access Analyzer also does not consider the state of any external accounts
when making its determination. That is, if it indicates that account 111122223333 can access
your Amazon S3 bucket, it knows nothing about the state of users, roles, service control policies
(SCP), and other relevant configurations in that account. This is for customer privacy – IAM Access
Analyzer doesn't consider who owns the other account. It is also for security – if the account is not
owned by the IAM Access Analyzer customer, it is still important to know that an external entity
could gain access to their resources even if there are currently no principals in the account that
could access the resources.

IAM Access Analyzer considers only certain IAM condition keys that external users cannot directly
influence, or that are otherwise impactful to authorization. For examples of condition keys IAM
Access Analyzer considers, see IAM Access Analyzer filter keys.

IAM Access Analyzer does not currently report findings from AWS service principals or internal
service accounts. In rare cases where IAM Access Analyzer isn't able to fully determine whether a

How IAM Access Analyzer findings work 2417

https://aws.amazon.com/blogs/security/protect-sensitive-data-in-the-cloud-with-automated-reasoning-zelkova/
https://people.eecs.berkeley.edu/~sseshia/pubdir/SMT-BookChapter.pdf

AWS Identity and Access Management User Guide

policy statement grants access to an external entity, it errs on the side of declaring a false positive
finding. IAM Access Analyzer is designed to provide a comprehensive view of the resource sharing
in your account, and strives to minimize false negatives.

Unused access

You must create an analyzer for unused access findings for your roles even if you’ve already created
an analyzer to generate external access findings for your resources. After creating the analyzer, IAM
Access Analyzer reviews access activity to identify unused access. IAM Access Analyzer reviews last
accessed information for all roles, user access keys, and user passwords in your AWS organization
and accounts to help you identify unused access. For active IAM roles and users, IAM Access
Analyzer uses IAM service and action last accessed information to identify unused permissions. You
can use unused access analyzers to scale your review process at the AWS organization and account
level. You can use action last accessed information for deeper investigation of individual roles.

Summary dashboard

For both external and unused access, IAM Access Analyzer organizes the findings in a summary
dashboard. For external access, the summary dashboard highlights the split between public and
cross-account access findings, and provides a breakdown of findings by resource type. For the
unused access, the dashboard highlights your AWS accounts that have the most findings and
provides a breakdown of findings by type. After you create an analyzer for external or unused
access, IAM Access Analyzer automatically adds new findings to the dashboard focused on roles
with unused permissions.

Getting started with AWS Identity and Access Management Access
Analyzer findings

Use the information in this topic to learn about the requirements necessary to use and manage
AWS Identity and Access Management Access Analyzer, and then how to enable IAM Access
Analyzer. To learn more about the service-linked role for IAM Access Analyzer, see Using service-
linked roles for AWS Identity and Access Management Access Analyzer.

Permissions required to use IAM Access Analyzer

To successfully configure and use IAM Access Analyzer, the account you use must be granted the
required permissions.

Getting started with IAM Access Analyzer findings 2418

AWS Identity and Access Management User Guide

AWS managed policies for IAM Access Analyzer

AWS Identity and Access Management Access Analyzer provides AWS managed policies to help you
get started quickly.

• IAMAccessAnalyzerFullAccess - Allows full access to IAM Access Analyzer for administrators. This
policy also allows creating the service-linked roles that are required to allow IAM Access Analyzer
to analyze resources in your account or AWS organization.

• IAMAccessAnalyzerReadOnlyAccess - Allows read-only access to IAM Access Analyzer. You must
add additional policies to your IAM identities (users, groups of users, or roles) to allow them to
view their findings.

Resources defined by IAM Access Analyzer

To view the resources defined by IAM Access Analyzer, see Resource types defined by IAM Access
Analyzer in the Service Authorization Reference.

Required IAM Access Analyzer service permissions

IAM Access Analyzer uses a service-linked role (SLR) named
AWSServiceRoleForAccessAnalyzer. This SLR grants the service read-only access to analyze
AWS resources with resource-based policies and analyze unused access on your behalf. The service
creates the role in your account in the following scenarios:

• You create an external access analyzer with your account as the zone of trust.

• You create an unused access analyzer with your account as the selected account.

For more information, see Using service-linked roles for AWS Identity and Access Management
Access Analyzer.

Note

IAM Access Analyzer is Regional. For external access, you must enable IAM Access Analyzer
in each Region independently.
For unused access, findings for the analyzer do not change based on Region. Creating an
analyzer in each Region where you have resources is not required.

Getting started with IAM Access Analyzer findings 2419

https://docs.aws.amazon.com/IAM/latest/UserGuide/security-iam-awsmanpol.html#security-iam-awsmanpol-IAMAccessAnalyzerFullAccess
https://docs.aws.amazon.com/IAM/latest/UserGuide/security-iam-awsmanpol.html#security-iam-awsmanpol-IAMAccessAnalyzerReadOnlyAccess
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awsiamaccessanalyzer.html#awsiamaccessanalyzer-resources-for-iam-policies
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awsiamaccessanalyzer.html#awsiamaccessanalyzer-resources-for-iam-policies

AWS Identity and Access Management User Guide

In some cases, after you create an external access or unused access analyzer in IAM Access Analyzer,
the Findings page or dashboard loads with no findings or summary. This might be due to a delay
in the console for populating your findings. You might need to manually refresh the browser or
check back later to view your findings or summary. If you still don't see any findings for an external
access analyzer, it's because you have no supported resources in your account that can be accessed
by an external entity. If a policy that grants access to an external entity is applied to a resource,
IAM Access Analyzer generates a finding.

Note

For external access analyzers, it may take up to 30 minutes after a policy is modified for
IAM Access Analyzer to analyze the resource and then either generate a new external access
finding or update an existing finding for the access to the resource. For both external and
unused access analyzers, updates for findings might not be reflected in the dashboard
immediately.

Required IAM Access Analyzer permissions to view the findings dashboard

To view the IAM Access Analyzer findings dashboard, the account you use must be granted access
to perform the following required actions:

• GetAnalyzer

• ListAnalyzers

• GetFindingsStatistics

To view all of the actions defined by IAM Access Analyzer, see Actions defined by IAM Access
Analyzer in the Service Authorization Reference.

Enabling IAM Access Analyzer

To create an external access analyzer with the AWS account as the zone of trust

To enable an external access analyzer in a Region, you must create an analyzer in that Region. You
must create an external access analyzer in each Region in which you want to monitor access to your
resources.

1. Open the IAM console at https://console.aws.amazon.com/iam/.

Getting started with IAM Access Analyzer findings 2420

https://docs.aws.amazon.com/access-analyzer/latest/APIReference/API_GetAnalyzer.html
https://docs.aws.amazon.com/access-analyzer/latest/APIReference/API_ListAnalyzers.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awsiamaccessanalyzer.html#awsiamaccessanalyzer-actions-as-permissions
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awsiamaccessanalyzer.html#awsiamaccessanalyzer-actions-as-permissions
https://console.aws.amazon.com/iam/

AWS Identity and Access Management User Guide

2. Choose Access analyzer.

3. Choose Analyzer settings.

4. Choose Create analyzer.

5. In the Analysis section, choose External access analysis.

6. In the Analyzer details section, confirm that the Region displayed is the Region where you
want to enable IAM Access Analyzer.

7. Enter a name for the analyzer.

8. Choose Current AWS account as the zone of trust for the analyzer.

Note

If your account is not the AWS Organizations management account or delegated
administrator account, you can create only one analyzer with your account as the zone
of trust.

9. Optional. Add any tags that you want to apply to the analyzer.

10. Choose Submit.

When you create an external access analyzer to enable IAM Access Analyzer, a service-linked role
named AWSServiceRoleForAccessAnalyzer is created in your account.

To create an external access analyzer with the organization as the zone of trust

1. Open the IAM console at https://console.aws.amazon.com/iam/.

2. Choose Access analyzer.

3. Choose Analyzer settings.

4. Choose Create analyzer.

5. In the Analysis section, choose External access analysis.

6. In the Analyzer details section, confirm that the Region displayed is the Region where you
want to enable IAM Access Analyzer.

7. Enter a name for the analyzer.

8. Choose Current organization as the zone of trust for the analyzer.

9. Optional. Add any tags that you want to apply to the analyzer.

Getting started with IAM Access Analyzer findings 2421

https://console.aws.amazon.com/iam/

AWS Identity and Access Management User Guide

10. Choose Submit.

When you create an external access analyzer with the organization as the zone of trust, a service-
linked role named AWSServiceRoleForAccessAnalyzer is created in each account of your
organization.

To create an unused access analyzer for the current account

Use the following procedure to create an unused access analyzer for a single AWS account. For
unused access, findings for the analyzer do not change based on Region. Creating an analyzer in
each Region where you have resources is not required.

IAM Access Analyzer charges for unused access analysis based on the number of IAM roles and
users analyzed per month per analyzer. For more details about pricing, see IAM Access Analyzer
pricing.

1. Open the IAM console at https://console.aws.amazon.com/iam/.

2. Choose Access analyzer.

3. Choose Analyzer settings.

4. Choose Create analyzer.

5. In the Analysis section, choose Unused access analysis.

6. Enter a name for the analyzer.

7. For Tracking period, enter the number of days for which to generate findings for unused
permissions. For example, if you enter 90 days, the analyzer will generate findings for IAM
entities within the selected account for any permissions that haven't been used in 90 or more
days since the analyzer's last scan. You can choose a value between 1 and 180 days.

8. For Selected accounts, choose Current AWS account.

Note

If your account is not the AWS Organizations management account or delegated
administrator account, you can create only one analyzer with your account as the
selected account.

9. Optional. Add any tags that you want to apply to the analyzer.

10. Choose Submit.

Getting started with IAM Access Analyzer findings 2422

https://aws.amazon.com/iam/access-analyzer/pricing
https://aws.amazon.com/iam/access-analyzer/pricing
https://console.aws.amazon.com/iam/

AWS Identity and Access Management User Guide

When you create an unused access analyzer to enable IAM Access Analyzer, a service-linked role
named AWSServiceRoleForAccessAnalyzer is created in your account.

To create an unused access analyzer with the current organization

Use the following procedure to create an unused access analyzer for an organization to centrally
review all AWS accounts in an organization. For unused access analysis, findings for the analyzer do
not change based on Region. Creating an analyzer in each Region where you have resources is not
required.

IAM Access Analyzer charges for unused access analysis based on the number of IAM roles and
users analyzed per month per analyzer. For more details about pricing, see IAM Access Analyzer
pricing.

Note

If a member account is removed from the organization, the unused access analyzer will
stop generating new findings and updating existing findings for that account after 24
hours. Findings associated with the member account that is removed from the organization
will be removed permanently after 90 days.

1. Open the IAM console at https://console.aws.amazon.com/iam/.

2. Choose Access analyzer.

3. Choose Analyzer settings.

4. Choose Create analyzer.

5. In the Analysis section, choose Unused access analysis.

6. Enter a name for the analyzer.

7. For Tracking period, enter the number of days for which to generate findings for unused
permissions. For example, if you enter 90 days, the analyzer will generate findings for IAM
entities within the accounts of the selected organization for any permissions that haven't been
used in 90 or more days since the analyzer's last scan. You can choose a value between 1 and
180 days.

8. For Selected accounts, choose Current organization as the selected accounts for the analyzer.

9. Optional. Add any tags that you want to apply to the analyzer.

10. Choose Submit.

Getting started with IAM Access Analyzer findings 2423

https://aws.amazon.com/iam/access-analyzer/pricing
https://aws.amazon.com/iam/access-analyzer/pricing
https://console.aws.amazon.com/iam/

AWS Identity and Access Management User Guide

When you create an unused access analyzer to enable IAM Access Analyzer, a service-linked role
named AWSServiceRoleForAccessAnalyzer is created in your account.

IAM Access Analyzer status

To view the status of your analyzers, choose Analyzers. Analyzers created for an organization or
account can have the following status:

Status Description

Active For external access analyzers, the analyzer is
actively monitoring resources within its zone
of trust. The analyzer actively generates new
findings and updates existing findings.

For unused access analyzers, the analyzer is
actively monitoring unused access within the
selected organization or AWS account in the
specified tracking period. The analyzer actively
generates new findings and updates existing
findings.

Creating The creation of the analyzer is still in progress.
The analyzer becomes active once creation is
complete.

Disabled The analyzer is disabled due to an action taken
by the AWS Organizations administrator. For
example, removing the analyzer’s account as
the delegated administrator for IAM Access
Analyzer. When the analyzer is in a disabled
state, it does not generate new findings or
update existing findings.

Failed The creation of the analyzer failed due to
a configuration issue. The analyzer won't
generate any findings. Delete the analyzer and
create a new analyzer.

Getting started with IAM Access Analyzer findings 2424

AWS Identity and Access Management User Guide

Viewing the IAM Access Analyzer findings dashboard

AWS Identity and Access Management Access Analyzer organizes external access and unused access
findings into a visual summary dashboard. The dashboard helps you gain visibility into the effective
use of permissions at scale and identify accounts that need attention. You can use the dashboard
to review findings by AWS organization, account, and finding type.

To view the summary dashboard for external access analyzers

Note

After you create or update an analyzer, it can take time for the summary dashboard to
reflect updates to findings.

1. Open the IAM console at https://console.aws.amazon.com/iam/.

2. Choose Access analyzer. The Summary window is displayed.

3. Choose an analyzer from the External access analyzer dropdown. A summary of the findings
for the analyzer is displayed in the External access findings section.

Findings dashboard 2425

https://console.aws.amazon.com/iam/

AWS Identity and Access Management User Guide

In the preceding image, the external access findings dashboard is visible from within the Summary
page:

1. The Active findings section includes the number of active findings for public access and the
number of active findings that provide access outside of the account or organization. Choose a
number to list all of the active findings of each type.

2. The Findings overview section includes a breakdown of the type of active findings. Choose
View all active findings for a complete list of active findings for the analyzer's account or
organization.

3. The Primary resource types with active findings section includes a breakdown of the primary
resource types with active findings. This information helps you prioritize findings for the primary
resources first. For example, Amazon S3, DynamoDB, and AWS KMS. This is not an exhaustive list
of every resource type. Your analyzer might have active findings for resource types not listed in
this section.

To view the summary dashboard for unused access analyzers

IAM Access Analyzer charges for unused access analysis based on the number of IAM roles and
users analyzed per month. For more details about pricing, see IAM Access Analyzer pricing.

Note

After you create or update an analyzer, based on the amount of users and roles, it can take
time for the summary dashboard to reflect updates to findings.

1. Open the IAM console at https://console.aws.amazon.com/iam/.

2. Choose Access analyzer. The Summary window is displayed.

3. Choose an analyzer from the Unused access analyzer dropdown. A summary of the findings
for the analyzer is displayed in the Unused access findings section.

Findings dashboard 2426

https://aws.amazon.com/iam/access-analyzer/pricing
https://console.aws.amazon.com/iam/

AWS Identity and Access Management User Guide

In the preceding image, the external access findings dashboard is visible from within the Summary
page:

1. The Active findings section includes the number of active findings for unused roles, unused
credentials, and unused permissions in your account or organization. Unused credentials include
both unused access key and unused password findings. Unused permissions include both users

Findings dashboard 2427

AWS Identity and Access Management User Guide

and roles with unused permissions. Choose a number to list all of the active findings of each
type.

2. The Findings overview section includes a breakdown of the type of active findings. Choose
View all active findings for a complete list of active findings for the analyzer's account or
organization.

3. The Finding status section includes a breakdown of the status of findings (Active, Archived, and
Resolved) for your account or organization.

4. The Accounts with the most findings for unused access section is only displayed if the selected
accounts of your unused access analyzer is at the organization level. It includes a breakdown of
the accounts in your organization with the most active findings. This is not an exhaustive list of
every account in your organization. Your analyzer might have active findings for other accounts
not listed in this section.

Working with findings

External access findings

External access findings are generated only once for each instance of a resource that is shared
outside of your zone of trust. Each time a resource-based policy is modified, IAM Access Analyzer
analyzes the policy. If the updated policy shares a resource that is already identified in a finding,
but with different permissions or conditions, a new finding is generated for that instance of the
resource sharing. If the access in the first finding is removed, that finding is updated to a status of
Resolved.

The status of all findings remains Active until you archive them or remove the access that
generated the finding. When you remove the access, the finding status is updated to Resolved.

Note

It may take up to 30 minutes after a policy is modified for IAM Access Analyzer to analyze
the resource and then update the external access finding.

Working with findings 2428

AWS Identity and Access Management User Guide

Unused access findings

Unused access findings are generated for IAM entities within the selected account or organization
based on the number of days specified while creating the analyzer. A new finding is generated the
next time the analyzer scans the entities if one of the following conditions is met:

• A role is inactive for the specified number of days.

• An unused permission, unused user password, or unused user access key surpasses the specified
number of days.

You should review all of the findings in your account to determine whether the external or unused
access is expected and approved. If the external or unused access identified in the finding is
expected, you can archive the finding. When you archive a finding, the status is changed to
Archived, and the finding is removed from the active findings list. The finding is not deleted.
You can view your archived findings at any time. Work through all of the findings in your account
until you have zero active findings. After you get to zero findings, you know that any new Active
findings that are generated are from a recent change in your environment.

Note

Unused access findings are only available using the ListFindingsV2 API action.

Reviewing findings

After you enable IAM Access Analyzer, the next step is to review any findings to determine whether
the access identified in the finding is intentional or unintentional. You can also review findings
to determine similar findings for access that is intended, and then create an archive rule to
automatically archive those findings. You can also review archived and resolved findings.

To review findings

1. Open the IAM console at https://console.aws.amazon.com/iam/.

2. Choose Access analyzer.

3. The findings dashboard is displayed. Select the active findings for your external or unused
access analyzer.

Reviewing findings 2429

https://docs.aws.amazon.com/access-analyzer/latest/APIReference/API_ListFindingsV2.html
https://console.aws.amazon.com/iam/

AWS Identity and Access Management User Guide

For more information on viewing the findings dashboard, see Viewing the IAM Access Analyzer
findings dashboard.

Note

Findings are displayed only if you have permission to view findings for the analyzer.

All findings are displayed for the analyzer. To view other findings generated by the analyzer, choose
the appropriate finding type from the Status dropdown:

• Choose Active to view all active findings that were generated by the analyzer.

• Choose Archived to view only findings generated by the analyzer that have been archived. To
learn more, see Archiving findings.

• Choose Resolved to view only findings that were generated by the analyzer that have been
resolved. When you remediate the issue that generated the finding, the finding status is changed
to Resolved.

Important

Resolved findings are deleted 90 days after the last update to the finding. Active and
archived findings are not deleted unless you delete the analyzer that generated them.

• Choose All to view all findings with any status that were generated by the analyzer.

External access findings

Choose External access and then choose the external access analyzer from the View analyzer
dropdown. The Findings page for external access analyzers displays the following details about the
shared resource and policy statement that generated the finding:

Finding ID

The unique ID assigned to the finding. Choose the finding ID to display additional details about
the resource and policy statement that generated the finding.

Reviewing findings 2430

AWS Identity and Access Management User Guide

Resource

The type and partial name of the resource that has a policy applied to it that grants access to an
external entity not within your zone of trust.

Resource owner account

This column is displayed only if you are using an organization as the zone of trust. The account
in the organization that owns the resource reported in the finding.

External principal

The principal, not within your zone of trust, that the analyzed policy grants access to. Valid
values include:

• AWS account – All principals in the listed AWS account with permissions from that account's
administrator can access the resource.

• Any principal – All principals in any AWS account that meet the conditions included in the
Conditions column have permission to access the resource. For example, if a VPC is listed,
it means that any principal in any account that has permission to access the listed VPC can
access the resource.

• Canonical user – All principals in the AWS account with the listed canonical user ID have
permission to access the resource.

• IAM role – The listed IAM role has permission to access the resource.

• IAM user – The listed IAM user has permission to access the resource.

Condition

The condition from the policy statement that grants the access. For example, if the Condition
field includes Source VPC, it means that the resource is shared with a principal that has access
to the VPC listed. Conditions can be global or service-specific. Global condition keys have the
aws: prefix.

Shared through

The Shared through field indicates how the access that generated the finding is granted. Valid
values include:

• Bucket policy – The bucket policy attached to the Amazon S3 bucket.

• Access control list – The access control list (ACL) attached to the Amazon S3 bucket.

• Access point – An access point or multi-region access point associated with the Amazon S3
bucket. The ARN of the access point is displayed in the Findings details.

Reviewing findings 2431

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html

AWS Identity and Access Management User Guide

Access level

The level of access granted to the external entity by the actions in the resource-based policy.
View the details of the finding for more information. Access level values include the following:

• List – Permission to list resources within the service to determine whether an object exists.
Actions with this level of access can list objects but cannot see the contents of a resource.

• Read – Permission to read but not edit the contents and attributes of resources in the service.

• Write – Permission to create, delete, or modify resources in the service.

• Permissions – Permission to grant or modify resource permissions in the service.

• Tagging – Permission to perform actions that only change the state of resource tags.

Updated

A timestamp for the most recent update to the finding status, or the time and date the finding
was generated if no updates have been made.

Note

It may take up to 30 minutes after a policy is modified for IAM Access Analyzer to again
analyze the resource and then update the finding.

Status

The status of the finding, one of Active, Archived, or Resolved.

Unused access findings

IAM Access Analyzer charges for unused access analysis based on the number of IAM roles and
users analyzed per month. For more details about pricing, see IAM Access Analyzer pricing.

Choose Unused access and then choose the unused access analyzer from the View analyzer
dropdown. The Findings page for unused access analyzers displays the following details about the
IAM entity that generated the finding:

Finding ID

The unique ID assigned to the finding. Choose the finding ID to display additional details about
the IAM entity that generated the finding.

Reviewing findings 2432

https://aws.amazon.com/iam/access-analyzer/pricing

AWS Identity and Access Management User Guide

Finding type

The type of unused access finding: Unused access key, Unused password, Unused permission,
or Unused role.

IAM entity

The IAM entity reported in the finding. This can be an IAM user or role.

AWS account ID

This column is displayed only if you set up the analyzer for all AWS accounts in the organization.
The AWS account in the organization that owns the IAM entity reported in the finding.

Last updated

The last time that the IAM entity reported in the finding was updated, or when the entity was
created if no updates have been made.

Status

The status of the finding (Active, Archived, or Resolved).

Filtering findings

The default filtering for a findings page is to display all findings. To view active findings, choose
the Active status from the Status dropdown. To view archived findings, choose the Archived status
from the Status dropdown. When you first start using IAM Access Analyzer, there are no archived
findings.

Use filters to display only the findings that meet the specified property criteria. To create a filter,
select the property to filter on, then choose whether the property equals or contains a value,
then enter or choose a property value to filter on. For example, to create a filter that displays
only findings for a specific AWS account, choose AWS Account for the property, then choose AWS
Account =, then enter the account number for the AWS account that you want to view findings for.

For a list of filter keys that you can use to create or update an archive rule, see IAM Access Analyzer
filter keys.

Filtering external access findings

To filter external access findings

1. Choose External access and then choose the analyzer in the View analyzer dropdown.

Filtering findings 2433

AWS Identity and Access Management User Guide

2. Choose the search box to display a list of available properties.

3. Choose the property to use to filter the findings displayed.

4. Choose the value to match for the property. Only findings with that value in the finding are
displayed.

For example, choose Resource as the property, then choose Resource :, then type part or all
of the name of a bucket, then press Enter. Only findings for the bucket that matches the filter
criteria are displayed. To create a filter that displays only findings for resources that allow
public access, you can choose the Public access property, then choose Public access =, then
choose Public access = true.

You can add additional properties to further filter the findings displayed. When you add additional
properties, only findings that match all conditions in the filter are displayed. Defining a filter to
display findings that match one property OR another property is not supported. Choose Clear
filters to clear any filters you have defined and display all of the findings with the specified status
for your analyzer.

Some fields are displayed only when you are viewing findings for an analyzer with an organization
as its zone of trust.

The following properties are available for defining filters:

• Public access – To filter by findings for resources that allow public access, filter by Public access
then choose Public access: true.

• Resource – To filter by resource, type all or part of the name of the resource.

• Resource Type – To filter by resource type, choose the type from the list displayed.

• Resource Owner Account – Use this property to filter by the account in the organization that
owns the resource reported in the finding.

• AWS Account – Use this property to filter by AWS account that is granted access in the Principal
section of a policy statement. To filter by AWS account, type all or part of the 12-digit AWS
account ID, or all or part of the full account ARN of the external AWS user or role that has access
to resources in the current account.

• Canonical User – To filter by canonical user, type the canonical user ID as defined for Amazon S3
buckets. To learn more, see AWS Account Identifiers.

• Federated User – To filter by federated user, type all or part of the ARN of the federated identity.
To learn more, see Identity Providers and Federation.

Filtering findings 2434

https://docs.aws.amazon.com/general/latest/gr/acct-identifiers.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_providers.html

AWS Identity and Access Management User Guide

• Finding ID – To filter by finding ID, type all or part of the finding ID.

• Principal ARN – Use this property to filter on the ARN of the principal (IAM user, role, or group)
used in an aws:PrincipalArn condition key. To filter by Principal ARN, type all or part of the ARN
of the IAM user, role, or group from an external AWS account reported in a finding.

• Principal OrgID – To filter by Principal OrgID, type all or part of the organization ID associated
with the external principals that belong to the AWS organization specified as a condition in the
finding. To learn more, see AWS global condition context keys.

• Principal OrgPaths – To filter by Principal OrgPaths, type all or part of the ID for the AWS
organization or organizational unit (OU) that allows access to all external principals that are
account members of the specified organization or OU as a condition in the policy. To learn more,
see AWS global condition context keys.

• Source Account – To filter on Source Account, type all or part of the AWS account ID associated
with the resources, as used in some cross-service permissions in AWS. To learn more, see AWS
global condition context keys.

• Source ARN – To filter by Source ARN, type all or part of the ARN specified as a condition in the
finding. To learn more, see AWS global condition context keys.

• Source IP – To filter by Source IP, type all or part of the IP address that allows external entities
access to resources in the current account when using the specified IP address. To learn more, see
AWS global condition context keys.

• Source VPC – To filter by Source VPC, type all or part of the VPC ID that allows external entities
access to resources in the current account when using the specified VPC. To learn more, see AWS
global condition context keys.

• Source OrgID – To filter by Source OrgID, type all or part of the organization ID associated with
the resources, as used in some cross-service permissions in AWS. To learn more, see AWS global
condition context keys.

• Source OrgPaths – To filter by Source OrgPaths, type all or part of the organizational unit (OU)
associated with the resources, as used in some cross-service permission in AWS. To learn more,
see AWS global condition context keys.

• User ID – To filter by User ID, type all or part of the user ID of the IAM user from an external AWS
account who is allowed access to resource in the current account. To learn more, see AWS global
condition context keys.

• KMS Key ID – To filter by KMS key ID, type all or part of the key ID for the KMS key specified as a
condition for AWS KMS-encrypted Amazon S3 object access in your current account.

Filtering findings 2435

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html

AWS Identity and Access Management User Guide

• Google Audience – To filter by Google Audience, type all or part of the Google application ID
specified as a condition for IAM role access in your current account. To learn more, see IAM and
AWS STS condition context keys.

• Cognito Audience – To filter by Amazon Cognito audience, type all or part of the Amazon
Cognito identity pool ID specified as a condition for IAM role access in your current account. To
learn more, see IAM and AWS STS condition context keys.

• Caller Account – The AWS account ID of the account that owns or contains the calling entity,
such as an IAM role, user, or account root user. This is used by services calling AWS KMS. To filter
by caller account, type all or part of the AWS account ID.

• Facebook App ID – To filter by Facebook App ID, type all or part of the Facebook application ID
(or site ID) specified as a condition to allow Login with Facebook federation access to an IAM role
in your current account. To learn more, see the id section in IAM and AWS STS condition context
keys.

• Amazon App ID – To filter by Amazon App ID, type all or part of the Amazon application ID (or
site ID) specified as a condition to allow Login with Amazon federation access to an IAM role in
your current account. To learn more, see the id section in IAM and AWS STS condition context
keys.

• Lambda Event Source Token – To filter on Lambda Event Source Token passed in with Alexa
integrations, type all or part of the token string.

Filtering unused access findings

To filter unused access findings

1. Choose Unused access and then choose the analyzer in the View analyzer dropdown.

2. Choose the search box to display a list of available properties.

3. Choose the property to use to filter the findings displayed.

4. Choose the value to match for the property. Only findings with that value in the finding are
displayed.

For example, choose Findings type as the property, then choose Findings type =, then choose
Findings type = UnusedIAMRole, Only findings with a type of UnusedIAMRole are displayed.

You can add additional properties to further filter the findings displayed. When you add additional
properties, only findings that match all conditions in the filter are displayed. Defining a filter to

Filtering findings 2436

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_iam-condition-keys.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_iam-condition-keys.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_iam-condition-keys.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_iam-condition-keys.html#condition-keys-wif
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_iam-condition-keys.html#condition-keys-wif
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_iam-condition-keys.html#condition-keys-wif
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_iam-condition-keys.html#condition-keys-wif

AWS Identity and Access Management User Guide

display findings that match one property OR another property is not supported. Choose Clear
filters to clear any filters you have defined and display all of the findings with the specified status
for your analyzer.

The following fields are displayed only when you are viewing findings for an analyzer that is
monitoring unused access:

• Findings type – To filter by finding type, filter by Findings type and then choose the type of
finding.

• Resource – To filter by resource, type all or part of the name of the resource.

• Resource Type – To filter by resource type, choose the type from the list displayed.

• Resource Owner Account – Use this property to filter by the account in the organization that
owns the resource reported in the finding.

• Finding id – To filter by finding ID, type all or part of the finding ID.

Archiving findings

When you get a finding for access to a resource that is intentional, you can archive the findings.
For example, an external access finding for an IAM role that is used by multiple users for approved
workflows or an unused access finding for an access key that may still be necessary. When you
archive a finding, it is cleared from active findings list. Archived findings aren't deleted. You can
filter the Findings page to display your archived findings, and unarchive them at any time.

To archive findings from the Findings page

1. Select the check box next to one or more findings to archive.

2. Choose Actions and then choose Archive.

A confirmation is displayed at the top of the screen.

To archive findings from the Findings Details page

1. Choose the Finding ID for the finding to archive.

2. Choose Archive.

A confirmation is displayed at the top of the screen.

Archiving findings 2437

AWS Identity and Access Management User Guide

To unarchive findings, repeat the preceding steps, but choose Unarchive instead of Archive. When
you unarchive a finding, the status is set to Active.

Resolving findings

External access findings

To resolve external access findings generated from access that you did not intend to allow, modify
the policy statement to remove the permissions that allow access to the identified resource.
For example, for findings on Amazon S3 buckets, use the Amazon S3 console to configure the
permissions on the bucket. For IAM roles, use the IAM console to modify the trust policy for the
listed IAM role. Use the console for the other supported resources to modify the policy statements
that resulted in a generated finding.

After you make a change to resolve an external access finding, such as modifying a policy applied
to an IAM role, IAM Access Analyzer scans the resource again. If the resource is no longer shared
outside of your zone of trust, the status of the finding is changed to Resolved. The finding is no
longer displayed in the active findings list, and instead is displayed in the resolved findings list.

Note

This does not apply to Error findings. When IAM Access Analyzer is not able to analyze a
resource, it generates an error finding. If you resolve the issue that prevented IAM Access
Analyzer from analyzing the resource, the error finding is removed completely rather than
changing to a resolved finding.

If the changes you made resulted in the resource being shared outside of your zone of trust, but in
a different way, such as with a different principal or for a different permission, IAM Access Analyzer
generates a new Active finding.

Note

It may take up to 30 minutes after a policy is modified for IAM Access Analyzer to again
analyze the resource and then update the finding. Resolved findings are deleted 90 days
after the last update to the finding status.

Resolving findings 2438

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_manage_modify.html#roles-managingrole_edit-trust-policy

AWS Identity and Access Management User Guide

Unused access findings

To resolve unused access findings, use the IAM console to remove the unused access key, password,
permission, or role. For more information, see the following resources:

• For more information about deleting an access key, see Managing access keys (console).

• For more information about deleting an IAM user password, see Creating, changing, or deleting
an IAM user password (console).

• For more information about changing permissions for an IAM user, see Changing permissions for
a user (console).

• For more information about deleting an IAM role, see Deleting an IAM role (console).

After you make a change to resolve an unused access finding, the status of the finding is changed
to Resolved the next time the unused access analyzer runs. The finding is no longer displayed in
the active findings list, and instead is displayed in the resolved findings list. If you make a change
that only partially addresses an unused access finding, the existing finding is changed to Resolved
but a new finding is generated. For example, you remove only some of the unused permissions in a
finding, but not all of them.

IAM Access Analyzer charges for unused access analysis based on the number of IAM roles and
users analyzed per month. For more details about pricing, see IAM Access Analyzer pricing.

IAM Access Analyzer resource types for external access

For external access analyzers, IAM Access Analyzer analyzes the resource-based policies that are
applied to AWS resources in the Region where you enabled IAM Access Analyzer. It only analyzes
resource-based policies. Review the information about each resource for details about how IAM
Access Analyzer generates findings for each resource type.

Note

The supported resource types listed are for external access analyzers. Unused access
analyzers only support IAM users and roles. For more information, see Working with
findings.

Supported resource types for external access:

• Amazon Simple Storage Service buckets

Supported resource types 2439

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_access-keys.html#Using_CreateAccessKey
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_passwords_admin-change-user.html#id_credentials_passwords_admin-change-user_console
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_passwords_admin-change-user.html#id_credentials_passwords_admin-change-user_console
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_change-permissions.html#users_change_permissions-change-console
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_change-permissions.html#users_change_permissions-change-console
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_manage_delete.html#roles-managingrole-deleting-console
https://aws.amazon.com/iam/access-analyzer/pricing

AWS Identity and Access Management User Guide

• Amazon Simple Storage Service directory buckets

• AWS Identity and Access Management roles

• AWS Key Management Service keys

• AWS Lambda functions and layers

• Amazon Simple Queue Service queues

• AWS Secrets Manager secrets

• Amazon Simple Notification Service topics

• Amazon Elastic Block Store volume snapshots

• Amazon Relational Database Service DB snapshots

• Amazon Relational Database Service DB cluster snapshots

• Amazon Elastic Container Registry repositories

• Amazon Elastic File System file systems

Amazon Simple Storage Service buckets

When IAM Access Analyzer analyzes Amazon S3 buckets, it generates a finding when an Amazon
S3 bucket policy, ACL, or access point, including a multi-Region access point, applied to a bucket
grants access to an external entity. An external entity is a principal or other entity that you can use
to create a filter that isn't within your zone of trust. For example, if a bucket policy grants access to
another account or allows public access, IAM Access Analyzer generates a finding. However, if you
enable Block Public Access on your bucket, you can block access at the account level or the bucket
level.

Note

IAM Access Analyzer doesn’t analyze the access point policy attached to cross-account
access points because the access point and its policy are outside the analyzer account.
IAM Access Analyzer generates a public finding when a bucket delegates access to a cross-
account access point and Block Public Access is not enabled on the bucket or account.
When you enable Block Public Access, the public finding is resolved and IAM Access
Analyzer generates a cross-account finding for the cross-account access point.

Amazon S3 Block Public Access settings override the bucket policies applied to the bucket. The
settings also override the access point policies applied to the bucket’s access points. IAM Access

Supported resource types 2440

https://docs.aws.amazon.com/AmazonS3/latest/dev/access-control-block-public-access.html

AWS Identity and Access Management User Guide

Analyzer analyzes Block Public Access settings at the bucket level whenever a policy changes.
However, it evaluates the Block Public Access settings at the account level only once every 6 hours.
This means that IAM Access Analyzer might not generate or resolve a finding for public access to
a bucket for up to 6 hours. For example, if you have a bucket policy that allows public access, IAM
Access Analyzer generates a finding for that access. If you then enable Block Public Access to block
all public access to the bucket at the account level, IAM Access Analyzer doesn't resolve the finding
for the bucket policy for up to 6 hours, even though all public access to the bucket is blocked.
Resolution of public findings for cross-account access points can also take up to 6 hours once you
enable Block Public Access at the account level.

For a multi-Region access point, IAM Access Analyzer uses an established policy for generating
findings. IAM Access Analyzer evaluates changes to multi-Region access points once every 6 hours.
This means IAM Access Analyzer doesn’t generate or resolve a finding for up to 6 hours, even if you
create or delete a multi-Region access point, or update the policy for it.

Amazon Simple Storage Service directory buckets

Amazon S3 directory buckets use the Amazon S3 Express One storage class, which is recommended
for performance-critical workloads or applications. For Amazon S3 directory buckets, IAM Access
Analyzer analyzes the directory bucket policy, including condition statements in a policy, that allow
an external entity to access a directory bucket. For more information about Amazon S3 directory
buckets, see Directory buckets in the Amazon Simple Storage Service User Guide.

AWS Identity and Access Management roles

For IAM roles, IAM Access Analyzer analyzes trust policies. In a role trust policy, you define the
principals that you trust to assume the role. A role trust policy is a required resource-based policy
that is attached to a role in IAM. IAM Access Analyzer generates findings for roles within the zone
of trust that can be accessed by an external entity that is outside your zone of trust.

Note

An IAM role is a global resource. If a role trust policy grants access to an external entity, IAM
Access Analyzer generates a finding in each enabled Region.

Supported resource types 2441

https://docs.aws.amazon.com/AmazonS3/latest/user-guide/directory-buckets-overview.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_terms-and-concepts.html#term_trust-policy

AWS Identity and Access Management User Guide

AWS Key Management Service keys

For AWS KMS keys, IAM Access Analyzer analyzes the key policies and grants applied to a key. IAM
Access Analyzer generates a finding if a key policy or grant allows an external entity to access the
key. For example, if you use the kms:CallerAccount condition key in a policy statement to allow
access to all users in a specific AWS account, and you specify an account other than the current
account (the zone of trust for the current analyzer), IAM Access Analyzer generates a finding. To
learn more about AWS KMS condition keys in IAM policy statements, see AWS KMS Condition Keys.

When IAM Access Analyzer analyzes a KMS key it reads key metadata, such as the key policy and list
of grants. If the key policy doesn't allow the IAM Access Analyzer role to read the key metadata, an
Access Denied error finding is generated. For example, if the following example policy statement is
the only policy applied to a key, it results in an Access denied error finding in IAM Access Analyzer.

{
 "Sid": "Allow access for Key Administrators",
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::111122223333:role/Admin"
 },
 "Action": "kms:*",
 "Resource": "*"
}

Because this statement allows only the role named Admin from the AWS account 111122223333
to access the key, an Access Denied error finding is generated because IAM Access Analyzer isn't
able to fully analyze the key. An error finding is displayed in red text in the Findings table. The
finding looks similar to the following.

{
 "error": "ACCESS_DENIED",
 "id": "12345678-1234-abcd-dcba-111122223333",
 "analyzedAt": "2019-09-16T14:24:33.352Z",
 "resource": "arn:aws:kms:us-
west-2:1234567890:key/1a2b3c4d-5e6f-7a8b-9c0d-1a2b3c4d5e6f7g8a",
 "resourceType": "AWS::KMS::Key",
 "status": "ACTIVE",
 "updatedAt": "2019-09-16T14:24:33.352Z"
}

Supported resource types 2442

https://docs.aws.amazon.com/kms/latest/developerguide/policy-conditions.html#conditions-kms-caller-account
https://docs.aws.amazon.com/IAM/latest/UserGuide/list_awskeymanagementservice.html#awskeymanagementservice-policy-keys

AWS Identity and Access Management User Guide

When you create a KMS key, the permissions granted to access the key depend on how you create
the key. If you receive an Access Denied error finding for a key resource, apply the following policy
statement to the key resource to grant IAM Access Analyzer permission to access the key.

{
 "Sid": "Allow IAM Access Analyzer access to key metadata",
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::111122223333:role/aws-service-role/access-
analyzer.amazonaws.com/AWSServiceRoleForAccessAnalyzer"
 },
 "Action": [
 "kms:DescribeKey",
 "kms:GetKeyPolicy",
 "kms:List*"
],
 "Resource": "*"
},

After you receive an Access Denied finding for a KMS key resource, and then resolve the finding
by updating the key policy, the finding is updated to a status of Resolved. If there are policy
statements or key grants that grant permission to the key to an external entity, you might see
additional findings for the key resource.

AWS Lambda functions and layers

For AWS Lambda functions, IAM Access Analyzer analyzes policies, including condition statements
in a policy, that grant access to the function to an external entity. IAM Access Analyzer also
analyzes permissions granted when using the AddPermission operation of the AWS Lambda API
with an EventSourceToken.

Amazon Simple Queue Service queues

For Amazon SQS queues, IAM Access Analyzer analyzes policies, including condition statements in a
policy, that allow an external entity access to a queue.

AWS Secrets Manager secrets

For AWS Secrets Manager secrets, IAM Access Analyzer analyzes policies, including condition
statements in a policy, that allow an external entity to access a secret.

Supported resource types 2443

https://docs.aws.amazon.com/lambda/latest/dg/API_AddPermission.html

AWS Identity and Access Management User Guide

Amazon Simple Notification Service topics

IAM Access Analyzer analyzes resource-based policies attached to Amazon SNS topics, including
condition statements in the policies that allow external access to a topic. You can allow external
accounts to perform Amazon SNS actions such as subscribing to and publishing topics through a
resource-based policy. An Amazon SNS topic is externally accessible if principals from an account
outside of your zone of trust can perform operations on the topic. When you choose Everyone
in your policy when creating an Amazon SNS topic, you make the topic accessible to the public.
AddPermission is another way to add a resource-based policy to an Amazon SNS topic that
allows external access.

Amazon Elastic Block Store volume snapshots

Amazon Elastic Block Store volume snapshots do not have resource-based policies. A snapshot is
shared through Amazon EBS sharing permissions. For Amazon EBS volume snapshots, IAM Access
Analyzer analyzes access control lists that allow an external entity access to a snapshot. An Amazon
EBS volume snapshot can be shared with external accounts when encrypted. An unencrypted
volume snapshot can be shared with external accounts and grant public access. Sharing settings
are in the CreateVolumePermissions attribute of the snapshot. When customers preview
external access of an Amazon EBS snapshot, they can specify the encryption key as an indicator
that the snapshot is encrypted, similar to how IAM Access Analyzer preview handles Secrets
Manager secrets.

Amazon Relational Database Service DB snapshots

Amazon RDS DB snapshots do not have resource-based policies. A DB snapshot is shared through
Amazon RDS database permissions, and only manual DB snapshots can be shared. For Amazon RDS
DB snapshots, IAM Access Analyzer analyzes access control lists that allow an external entity access
to a snapshot. Unencrypted DB snapshots can be public. Encrypted DB snapshots cannot be shared
publicly, but they can be shared with up to 20 other accounts. For more information, see Creating a
DB snapshot. IAM Access Analyzer considers the ability to export a database manual snapshot (for
example, to an Amazon S3 bucket) as trusted access.

Note

IAM Access Analyzer does not identify public or cross-account access configured directly on
the database itself. IAM Access Analyzer only identifies findings for public or cross-account
access configured on the Amazon RDS DB snapshot.

Supported resource types 2444

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_CreateSnapshot.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_CreateSnapshot.html

AWS Identity and Access Management User Guide

Amazon Relational Database Service DB cluster snapshots

Amazon RDS DB cluster snapshots do not have resource-based policies. A snapshot is shared
through Amazon RDS DB cluster permissions. For Amazon RDS DB cluster snapshots, IAM
Access Analyzer analyzes access control lists that allow an external entity access to a snapshot.
Unencrypted cluster snapshots can be public. Encrypted cluster snapshots cannot be shared
publicly. Both unencrypted and encrypted cluster snapshots can be shared with up to 20 other
accounts. For more information, see Creating a DB cluster snapshot. IAM Access Analyzer considers
the ability to export a DB cluster snapshot (for example, to an Amazon S3 bucket) as trusted access.

Note

IAM Access Analyzer findings do not include monitoring of any share of Amazon RDS DB
clusters and clones with another AWS account or organization using AWS Resource Access
Manager. IAM Access Analyzer only identifies findings for public or cross-account access
configured on the Amazon RDS DB cluster snapshot.

Amazon Elastic Container Registry repositories

For Amazon ECR repositories, IAM Access Analyzer analyzes resource-based policies, including
condition statements in a policy, that allow an external entity access to a repository (similar to
other resource types like Amazon SNS topics and Amazon EFS file systems). For Amazon ECR
repositories, a principal must have permission to ecr:GetAuthorizationToken through an
identity-based policy to be considered externally available.

Amazon Elastic File System file systems

For Amazon EFS file systems, IAM Access Analyzer analyzes policies, including condition statements
in a policy, that allow an external entity access to a file system. An Amazon EFS file system is
externally accessible if principals from an account outside of your zone of trust can perform
operations on that file system. Access is defined by a file system policy that uses IAM, and by
how the file system is mounted. For example, mounting your Amazon EFS file system in another
account is considered externally accessible, unless that account is in your organization and you
have defined the organization as your zone of trust. If you are mounting the file system from a
virtual private cloud with a public subnet, the file system is externally accessible. When you use
Amazon EFS with AWS Transfer Family, file system access requests received from a Transfer Family

Supported resource types 2445

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/USER_CreateSnapshotCluster.html

AWS Identity and Access Management User Guide

server that is owned by a different account than the file system are blocked if the file system allows
public access.

Settings for IAM Access Analyzer

If you're configuring AWS Identity and Access Management Access Analyzer in your AWS
Organizations management account, you can add a member account in the organization as the
delegated administrator to manage IAM Access Analyzer for your organization. The delegated
administrator has permissions to create and manage analyzers within the organization. Only the
management account can add a delegated administrator.

Delegated administrator for IAM Access Analyzer

The delegated administrator for IAM Access Analyzer is a member account within the organization
that has permissions to create and manage analyzers that analyze access across the organization.
Only the management account can add, remove, or change a delegated administrator.

If you add a delegated administrator, you can later change to a different account for the delegated
administrator. When you do, the former delegated administrator account loses permission to
all analyzers that were created using that account to analyze access across the organization.
These analyzers move to a disabled state and no longer generate new or update existing findings.
The existing findings for these analyzers are also no longer accessible. You can access them
again in the future by configuring the account as the delegated administrator. If you know that
you won't use the same account as a delegated administrator, consider deleting the analyzers
before changing the delegated administrator. This deletes all findings generated. When the new
delegated administrator creates new analyzers, new instances of the same findings are generated.
You don't lose any findings, they just get generated for the new analyzer in a different account.
And you can continue to access findings for the organization using the organization management
account, which also has administrator permissions. The new delegated administrator must create
new analyzers for IAM Access Analyzer to start monitoring resources in your organization.

If the delegated administrator leaves the AWS organization, the delegated administration
privileges are removed from the account. All analyzers in the account with the organization as the
zone of trust move to a disabled state. The existing findings for these analyzers are also no longer
accessible.

The first time that you configure analyzers in the management account, you can choose Add
delegated administrator on the Analyzer settings page in the IAM Access Analyzer console.

Settings 2446

AWS Identity and Access Management User Guide

Note

IAM Access Analyzer charges for unused access analyzers based on the number of IAM
roles and users analyzed per analyzer per month. If you create an unused access analyzer
in the management account and the delegated administrator account, you will be charged
for both unused access analyzers. For more details about pricing, see IAM Access Analyzer
pricing.

To add a delegated administrator using the console

1. Log in to the AWS console using the management account for your organization.

2. Open the IAM console at https://console.aws.amazon.com/iam/.

3. Under Access Analyzer, choose Analyzer settings.

4. Choose Add delegated administrator.

5. In the Delegated administrator field, enter the AWS account number of an organization
member account to make the delegated administrator.

The account must be a member of your organization.

6. Choose Save changes.

To add a delegated administrator using the AWS CLI or the AWS SDKs

When you create an analyzer to analyzer access across the organization in a delegated
administrator account using the AWS CLI, AWS API (using the AWS SDKs) or AWS CloudFormation,
you must use AWS Organizations APIs to enable service access for IAM Access Analyzer and register
the member account as a delegated administrator.

1. Enable trusted service access for IAM Access Analyzer in AWS Organizations. See How to
Enable or Disable Trusted Access in the AWS Organizations User Guide.

2. Register a valid member account of your AWS organization as a delegated administrator
using the AWS Organizations RegisterDelegatedAdministrator API operation or the
register-delegated-administrator AWS CLI command.

After you change the delegated administrator, the new administrator must create analyzers to start
monitoring access to the resources in your organization.

Settings 2447

https://aws.amazon.com/iam/access-analyzer/pricing
https://aws.amazon.com/iam/access-analyzer/pricing
https://console.aws.amazon.com/iam/
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_integrate_services.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_integrate_services.html
https://docs.aws.amazon.com/organizations/latest/APIReference/API_RegisterDelegatedAdministrator.html

AWS Identity and Access Management User Guide

Deleting analyzers

You can delete existing external and unused access analyzers from the Analyzer settings page.
When you delete an analyzer, the resources specified in the analyzer are no longer monitored and
no new findings are generated. All findings that were generated by the analyzer are deleted.

For findings that are deleted because the analyzer that generated them is deleted, the event is sent
to EventBridge in the next two days after the analyzer was deleted. It can take up to 90 days after
the analyzer was deleted for the Security Hub findings to be deleted.

To delete an analyzer

1. Open the IAM console at https://console.aws.amazon.com/iam/.

2. Under Access Analyzer, choose Analyzer settings.

3. Select the analyzer to delete and then choose Delete.

4. Type delete in the confirmation text box and then choose Delete.

Archive rules

Archive rules automatically archive new findings that meet the criteria you define when you create
the rule. You can also apply archive rules retroactively to archive existing findings that meet the
archive rule criteria. For example, you can create an archive rule to automatically archive any
findings for a specific Amazon S3 bucket that you regularly grant access to. Or if you grant access
to multiple resources to a specific principal, you can create a rule that automatically archives any
new finding generated for access granted to that principal. This lets you focus only on active
findings that may indicate a security risk.

When you create an archive rule, only new findings that match the rule criteria are automatically
archived. Existing findings are not automatically archived. When you create a rule, you can include
up to 20 values per criterion in the rule. For a list of filter keys that you can use to create or update
an archive rule, see IAM Access Analyzer filter keys.

Note

When you create or edit an archive rule, IAM Access Analyzer does not validate the values
you include in the filter for the rule. For example, if you add a rule to match an AWS

Archive rules 2448

https://console.aws.amazon.com/iam/

AWS Identity and Access Management User Guide

account, IAM Access Analyzer accepts any value in the field, even if it is not a valid AWS
account number.

To create an archive rule

1. Open the IAM console at https://console.aws.amazon.com/iam/.

2. Choose Access analyzer, then choose Analyzer settings.

3. In the Analyzers section, choose the analyzer for which you want to create an archive rule.

4. On the Archive rules tab, choose Create archive rule.

5. Enter a name for the rule if you want to change the default name.

6. In the Rule section, under Criteria, select a property to match for the rule.

7. Choose an condition for the property value, such as Contains, Is, or Not Equals.

The operators available depend on the property you choose.

8. Optionally, add additional values for the property, or add additional criteria for the rule. For
external access findings, to ensure that your rule won’t archive new findings for public access,
you can also include the criterion Public access and set it to false.

To add another value for a criterion, choose Add another value. To add another criterion for
the rule, choose Add criterion.

9. When you finish adding criteria and values, choose Create rule to apply the rule to new
findings only. Choose Create and archive active findings to archive new and existing findings
based on the rule criteria. In the Results section, you can review the list of active findings the
archive rule applies to.

For example, to create a rule for external access findings that automatically archives any findings
for Amazon S3 buckets: choose Resource type, and then choose Is for the condition. Next
choose S3 bucket from the Value list.

To create a rule for unused access findings that automatically archives any finding for a particular
account: choose Resource Owner Account, and then choose Equals for the condition. Type the
AWS account ID in the Value text box.

Continue to define criteria to customize the rule as appropriate for your environment, and then
choose Create rule.

Archive rules 2449

https://console.aws.amazon.com/iam/

AWS Identity and Access Management User Guide

If you are create a new rule and add multiple criteria, you can remove a single criterion from the
rule by choosing Remove this criterion. You can remove a value added for a criterion by choosing
Remove value.

To edit an archive rule

1. Choose name of the rule to edit in the Name column.

You can edit only one archive rule at a time.

2. Add new criteria or remove the existing criteria and values for each criterion.

3. Choose Save changes to apply the rule to new findings only. Choose Save and archive active
findings to archive new and existing findings based on the rule criteria.

To delete an archive rule

1. Select the check box for the rules that you want to delete.

2. Choose Delete.

3. Type delete in the Delete archive rule confirmation dialog, and then choose Delete.

The rules are deleted only from the analyzer in the current Region. You must delete archive rules
separately for each analyzer that you created in other Regions.

Monitoring AWS Identity and Access Management Access Analyzer with
Amazon EventBridge

Use the information in this topic to learn how to monitor IAM Access Analyzer findings and access
previews with Amazon EventBridge. EventBridge is the new version of Amazon CloudWatch Events.

Findings events

IAM Access Analyzer sends an event to EventBridge for each generated finding, for a change to the
status of an existing finding, and when a finding is deleted. To receive findings and notifications
about findings, you must create an event rule in Amazon EventBridge. When you create an event
rule, you can also specify a target action to trigger based on the rule. For example, you could create
an event rule that triggers an Amazon SNS topic when an event for a new finding is received from
IAM Access Analyzer.

Monitoring with EventBridge 2450

AWS Identity and Access Management User Guide

Access preview events

IAM Access Analyzer sends an event to EventBridge for each access preview and change to its
status. This includes an event when the access preview is first created (status Creating), when
the access preview is complete (status Completed), or when the access preview creation failed
(status Failed). To receive notifications about access previews, you must create an event rule in
EventBridge. When you create an event rule, you can specify a target action to trigger based on the
rule. For example, you could create an event rule that triggers an Amazon SNS topic when an event
for a completed access preview is received from IAM Access Analyzer.

Event notification frequency

IAM Access Analyzer sends events for new findings and findings with status updates to EventBridge
within about an hour from when the event occurs in your account. IAM Access Analyzer also sends
events to EventBridge when a resolved finding is deleted because the retention period has expired.
For findings that are deleted because the analyzer that generated them is deleted, the event is sent
to EventBridge approximately 24 hours after the analyzer was deleted. When a finding is deleted,
the finding status is not changed. Instead, the isDeleted attribute is set to true. IAM Access
Analyzer also sends events for newly created access previews and access preview status changes to
EventBridge.

Example external access findings events

The following is an example IAM Access Analyzer external access finding event sent to EventBridge.
The id listed is the ID for the event in EventBridge. To learn more, see Events and Event Patterns in
EventBridge.

In the detail object, the values for the accountId and region attributes refer to the account
and region reported in the finding. The isDeleted attribute indicates whether the event was from
the finding being deleted. The id is the finding ID. The resources array is a singleton with the
ARN of the analyzer that generated the finding.

{
 "account": "111122223333",
 "detail": {
 "accountId": "111122223333",
 "action": [
 "s3:GetObject"
],

Monitoring with EventBridge 2451

https://docs.aws.amazon.com/eventbridge/latest/userguide/eventbridge-and-event-patterns.html
https://docs.aws.amazon.com/eventbridge/latest/userguide/eventbridge-and-event-patterns.html

AWS Identity and Access Management User Guide

 "analyzedAt": "2019-11-21T01:22:22Z",
 "condition": {},
 "createdAt": "2019-11-20T04:58:50Z",
 "id": "22222222-dcba-4444-dcba-333333333333",
 "isDeleted": false,
 "isPublic": false,
 "principal": {
 "AWS": "999988887777"
 },
 "region": "us-west-2",
 "resource": "arn:aws:s3:::my-bucket",
 "resourceType": "AWS::S3::Bucket",
 "status": "ACTIVE",
 "updatedAt": "2019-11-21T01:14:07Z",
 "version": "1.0"
 },
 "detail-type": "Access Analyzer Finding",
 "id": "11111111-2222-4444-aaaa-333333333333",
 "region": "us-west-2",
 "resources": [
 "arn:aws:access-analyzer:us-west-2:111122223333:analyzer/MyAnalyzer"
],
 "source": "aws.access-analyzer",
 "time": "2019-11-21T01:22:33Z",
 "version": "0"
}

IAM Access Analyzer also sends events to EventBridge for error findings. An error finding is a
finding generated when IAM Access Analyzer can't analyze the resource. Events for error findings
include an error attribute as shown in the following example.

{
 "account": "111122223333",
 "detail": {
 "accountId": "111122223333",
 "analyzedAt": "2019-11-21T01:22:22Z",
 "createdAt": "2019-11-20T04:58:50Z",
 "error": "ACCESS_DENIED",
 "id": "22222222-dcba-4444-dcba-333333333333",
 "isDeleted": false,
 "region": "us-west-2",
 "resource": "arn:aws:s3:::my-bucket",
 "resourceType": "AWS::S3::Bucket",

Monitoring with EventBridge 2452

AWS Identity and Access Management User Guide

 "status": "ACTIVE",
 "updatedAt": "2019-11-21T01:14:07Z",
 "version": "1.0"
 },
 "detail-type": "Access Analyzer Finding",
 "id": "11111111-2222-4444-aaaa-333333333333",
 "region": "us-west-2",
 "resources": [
 "arn:aws:access-analyzer:us-west-2:111122223333:analyzer/MyAnalyzer"
],
 "source": "aws.access-analyzer",
 "time": "2019-11-21T01:22:33Z",
 "version": "0"
}

Example unused access findings related events

The following is an example IAM Access Analyzer unused access finding event sent to EventBridge.
The id listed is the ID for the event in EventBridge. To learn more, see Events and Event Patterns in
EventBridge.

In the detail object, the values for the accountId and region attributes refer to the account
and region reported in the finding. The isDeleted attribute indicates whether the event was from
the finding being deleted. The id is the finding ID.

{
 "version": "0",
 "id": "dc7ce3ee-114b-3243-e249-7f10f9054b21",
 "detail-type": "Unused Access Finding for IAM entities",
 "source": "aws.access-analyzer",
 "account": "123456789012",
 "time": "2023-09-29T17:31:40Z",
 "region": "us-west-2",
 "resources": [
 "arn:aws:access-analyzer:us-west-2:123456789012:analyzer/
integTestLongLivingAnalyzer-DO-NOT-DELETE"
],
 "detail": {
 "findingId": "b8ae0460-5d29-4922-b92a-ba956c986277",
 "resource": "arn:aws:iam::111122223333:role/FindingIntegTestFakeRole",
 "resourceType": "AWS::IAM::Role",
 "accountId": "111122223333",
 "createdAt": "2023-09-29T17:29:18.758Z",

Monitoring with EventBridge 2453

https://docs.aws.amazon.com/eventbridge/latest/userguide/eventbridge-and-event-patterns.html
https://docs.aws.amazon.com/eventbridge/latest/userguide/eventbridge-and-event-patterns.html

AWS Identity and Access Management User Guide

 "updatedAt": "2023-09-29T17:29:18.758Z",
 "analyzedAt": "2023-09-29T17:29:18.758Z",
 "previousStatus": "",
 "status": "ACTIVE",
 "version": "62160bda-8e94-46d6-ac97-9670930d8ffb",
 "isDeleted": false,
 "findingType": "UnusedPermission",
 "numberOfUnusedServices": 0,
 "numberOfUnusedActions": 1
 }
 }

IAM Access Analyzer also sends events to EventBridge for error findings. An error finding is a
finding generated when IAM Access Analyzer can't analyze the resource. Events for error findings
include an error attribute as shown in the following example.

{
 "version": "0",
 "id": "c2e7aa1a-4df7-7652-f33e-64113b8997d4",
 "detail-type": "Unused Access Finding for IAM entities",
 "source": "aws.access-analyzer",
 "account": "111122223333",
 "time": "2023-10-31T20:26:12Z",
 "region": "us-west-2",
 "resources": [
 "arn:aws:access-analyzer:us-west-2:111122223333:analyzer/ba811f91-
de99-41a4-97c0-7481898b53f2"
],
 "detail": {
 "findingId": "b01a34f2-e118-46c9-aef8-0d8526b495c7",
 "resource": "arn:aws:iam::123456789012:role/TestRole",
 "resourceType": "AWS::IAM::Role",
 "accountId": "444455556666",
 "createdAt": "2023-10-31T20:26:08.647Z",
 "updatedAt": "2023-10-31T20:26:09.245Z",
 "analyzedAt": "2023-10-31T20:26:08.525Z",
 "previousStatus": "",
 "status": "ACTIVE",
 "version": "7c7a72a2-7963-4c59-ac71-f0be597010f7",
 "isDeleted": false,
 "findingType": "UnusedIAMRole",
 "error": "INTERNAL_ERROR"
 }

Monitoring with EventBridge 2454

AWS Identity and Access Management User Guide

 }

Example access preview events

The following example shows data for the first event that is sent to EventBridge when you create
an access preview. The resources array is a singleton with the ARN of the analyzer that the
access preview is associated with. In the detail object, the id refers to the access preview ID
and configuredResources refers to the resource for which the access preview was created.
The status is Creating and refers to the access preview status. The previousStatus is not
specified because the access preview was just created.

{
 "account": "111122223333",
 "detail": {
 "accessPreviewId": "aaaabbbb-cccc-dddd-eeee-ffffaaaabbbb",
 "configuredResources": [
 "arn:aws:s3:::example-bucket"
],
 "createdAt": "2020-02-20T00:00:00.00Z",
 "region": "us-west-2",
 "status": "CREATING",
 "version": "1.0"
 },
 "detail-type": "Access Preview State Change",
 "id": "aaaabbbb-2222-3333-4444-555566667777",
 "region": "us-west-2",
 "resources": [
 "arn:aws:access-analyzer:us-west-2:111122223333:analyzer/MyAnalyzer"
],
 "source": "aws.access-analyzer",
 "time": "2020-02-20T00:00:00.00Z",
 "version": "0"
}

The following example shows data for an event that is sent to EventBridge for an access preview
with a status change from Creating to Completed. In the detail object, the id refers to the
access preview ID. The status and previousStatus refer to the access preview status, where the
previous status was Creating and the current status is Completed.

{
 "account": "111122223333",

Monitoring with EventBridge 2455

AWS Identity and Access Management User Guide

 "detail": {
 "accessPreviewId": "aaaabbbb-cccc-dddd-eeee-ffffaaaabbbb",
 "configuredResources": [
 "arn:aws:s3:::example-bucket"
],
 "createdAt": "2020-02-20T00:00:00.000Z",
 "previousStatus": "CREATING",
 "region": "us-west-2",
 "status": "COMPLETED",
 "version": "1.0"
 },
 "detail-type": "Access Preview State Change",
 "id": "11112222-3333-4444-5555-666677778888",
 "region": "us-west-2",
 "resources": [
 "arn:aws:access-analyzer:us-west-2:111122223333:analyzer/MyAnalyzer"
],
 "source": "aws.access-analyzer",
 "time": "2020-02-20T00:00:00.00Z",
 "version": "0"
}

The following example shows data for an event that is sent to EventBridge for an access preview
with a status change from Creating to Failed. In the detail object, the id refers to the
access preview ID. The status and previousStatus refer to the access preview status, where
the previous status was Creating and the current status is Failed. The statusReason field
provides the reason code indicating that the access preview failed due to an invalid resource
configuration.

{
 "account": "111122223333",
 "detail": {
 "accessPreviewId": "aaaabbbb-cccc-dddd-eeee-ffffaaaabbbb",
 "configuredResources": [
 "arn:aws:s3:::example-bucket"
],
 "createdAt": "2020-02-20T00:00:00.00Z",
 "previousStatus": "CREATING",
 "region": "us-west-2",
 "status": "FAILED",
 "statusReason": {
 "code": "INVALID_CONFIGURATION"

Monitoring with EventBridge 2456

AWS Identity and Access Management User Guide

 },
 "version": "1.0"
 },
 "detail-type": "Access Preview State Change",
 "id": "99998888-7777-6666-5555-444433332222",
 "region": "us-west-2",
 "resources": [
 "arn:aws:access-analyzer:us-west-2:111122223333:analyzer/MyAnalyzer"
],
 "source": "aws.access-analyzer",
 "time": "2020-02-20T00:00:00.00Z",
 "version": "0"
}

Creating an event rule using the console

The following procedure describes how to create an event rule using the console.

1. Open the Amazon EventBridge console at https://console.aws.amazon.com/events/.

2. Using the following values, create an EventBridge rule that monitors finding events or access
preview events:

• For Rule type, choose Rule with an event pattern.

• For Event source, choose Other.

• For Event pattern, choose Custom patterns (JSON editor), and paste one of the following
event pattern examples into the text area:

• To create a rule based on an external access or unused access findings event, use the
following pattern example:

{
 "source": [
 "aws.access-analyzer"
],
 "detail-type": [
 "Access Analyzer Finding"
]
}

• To create a rule based only on an unused access findings event, use the following pattern
example:

Monitoring with EventBridge 2457

https://console.aws.amazon.com/events/

AWS Identity and Access Management User Guide

{
 "source": [
 "aws.access-analyzer"
],
 "detail-type": [
 "Unused Access Finding for IAM entities"
]
}

Note

You can't create a rule based only on an external access findings event.

• To create a rule based on an access preview event, use the following pattern example:

{
 "source": [
 "aws.access-analyzer"
],
 "detail-type": [
 "Access Preview State Change"
]
}

• For Target types, choose AWS service, and for Select a target, choose a target such as
an Amazon SNS topic or AWS Lambda function. The target is triggered when an event is
received that matches the event pattern defined in the rule.

To learn more about creating rules, see Creating Amazon EventBridge rules that react to
events in the Amazon EventBridge User Guide.

Creating an event rule using the CLI

1. Use the following to create a rule for Amazon EventBridge using the AWS CLI. Replace the rule
name TestRule with the name for your rule.

Monitoring with EventBridge 2458

https://docs.aws.amazon.com/eventbridge/latest/userguide/eb-create-rule.html
https://docs.aws.amazon.com/eventbridge/latest/userguide/eb-create-rule.html

AWS Identity and Access Management User Guide

aws events put-rule --name TestRule --event-pattern "{\"source\":[\"aws.access-
analyzer\"]}"

2. You can customize the rule to trigger target actions only for a subset of generated findings,
such as findings with specific attributes. The following example demonstrates how to create a
rule that triggers a target action only for findings with a status of Active.

aws events put-rule --name TestRule --event-pattern "{\"source\":[\"aws.access-
analyzer\"],\"detail-type\":[\"Access Analyzer Finding\"],\"detail\":{\"status\":
[\"ACTIVE\"]}}"

The following example demonstrates how to create a rule that triggers a target action only for
access previews with a status from Creating to Completed.

aws events put-rule --name TestRule --event-pattern "{\"source\":[\"aws.access-
analyzer\"],\"detail-type\":[\"Access Preview State Change\"],\"detail\":{\"status
\":[\"COMPLETED\"]}}"

3. To define a Lambda function as a target for the rule you created, use the following example
command. Replace the Region and the function name in the ARN as appropriate for your
environment.

aws events put-targets --rule TestRule --targets Id=1,Arn=arn:aws:lambda:us-
east-1:111122223333:function:MyFunction

4. Add the permissions required to invoke the rule target. The following example demonstrates
how to grant permissions to a Lambda function, following the preceding examples.

aws lambda add-permission --function-name MyFunction --statement-id 1 --action
 'lambda:InvokeFunction' --principal events.amazonaws.com

Integration with AWS Security Hub

AWS Security Hub provides you with a comprehensive view of your security state in AWS and helps
you to check your environment against security industry standards and best practices. Security
Hub collects security data from across AWS accounts, services, and supported third-party partner
products and helps you to analyze your security trends and identify the highest priority security
issues.

Security Hub integration 2459

https://docs.aws.amazon.com/securityhub/latest/userguide/what-is-securityhub.html

AWS Identity and Access Management User Guide

The AWS Identity and Access Management Access Analyzer integration with Security Hub enables
you to send findings from IAM Access Analyzer to Security Hub. Security Hub can then include
those findings in its analysis of your security posture.

Contents

• How IAM Access Analyzer sends findings to Security Hub

• Types of findings that IAM Access Analyzer sends

• Latency for sending findings

• Retrying when Security Hub is not available

• Updating existing findings in Security Hub

• Viewing IAM Access Analyzer findings in Security Hub

• Interpreting IAM Access Analyzer finding names in Security Hub

• Typical findings from IAM Access Analyzer

• Enabling and configuring the integration

• How to stop sending findings

How IAM Access Analyzer sends findings to Security Hub

In Security Hub, security issues are tracked as findings. Some findings come from issues that are
detected by other AWS services or by third-party partners. Security Hub also has a set of rules that
it uses to detect security issues and generate findings.

Security Hub provides tools to manage findings from across all of these sources. You can view and
filter lists of findings and view details for a finding. See Viewing findings in the AWS Security Hub
User Guide. You can also track the status of an investigation into a finding. See Taking action on
findings in the AWS Security Hub User Guide.

All findings in Security Hub use a standard JSON format called the AWS Security Finding Format
(ASFF). The ASFF includes details about the source of the issue, the affected resources, and the
current status of the finding. See AWS Security Finding Format (ASFF) in the AWS Security Hub User
Guide.

AWS Identity and Access Management Access Analyzer is one of the AWS services that sends
findings to Security Hub. For external access, IAM Access Analyzer generates a finding when it
detects a policy statement that allows an external principal access to a supported resource in your
organization or account. IAM Access Analyzer groups all of its findings for a resource and sends a

Security Hub integration 2460

https://docs.aws.amazon.com/securityhub/latest/userguide/securityhub-findings-viewing.html
https://docs.aws.amazon.com/securityhub/latest/userguide/securityhub-findings-taking-action.html
https://docs.aws.amazon.com/securityhub/latest/userguide/securityhub-findings-taking-action.html
https://docs.aws.amazon.com/securityhub/latest/userguide/securityhub-findings-format.html

AWS Identity and Access Management User Guide

single finding to Security Hub. For unused access, IAM Access Analyzer generates a finding when it
detects unused access granted to IAM users or roles. IAM Access Analyzer then sends these findings
to Security Hub

Types of findings that IAM Access Analyzer sends

IAM Access Analyzer sends the findings to Security Hub using the AWS Security Finding Format
(ASFF). In ASFF, the Types field provides the finding type. Findings from IAM Access Analyzer can
have the following values for Types.

• External access findings – Effects/Data Exposure/External Access Granted

• External access findings – Software and Configuration Checks/AWS Security Best Practices/
External Access Granted

• Unused access findings – Software and Configuration Checks/AWS Security Best Practices/
Unused Permission

• Unused access findings – Software and Configuration Checks/AWS Security Best Practices/
Unused IAM Role

• Unused access findings – Software and Configuration Checks/AWS Security Best Practices/
Unused IAM User Password

• Unused access findings – Software and Configuration Checks/AWS Security Best Practices/
Unused IAM User Access Key

Latency for sending findings

When IAM Access Analyzer creates a new finding, it is usually sent to Security Hub within 30
minutes. Rarely, and under certain conditions, IAM Access Analyzer is not notified that a policy
was added or updated. For example, a change to Amazon S3 account-level block public access
settings can take up to 12 hours. Also, if there is a delivery issue with AWS CloudTrail log delivery,
the policy change does not trigger a rescan of the resource that was reported in the finding. When
this happens, IAM Access Analyzer analyzes the new or updated policy during the next periodic
scan.

Retrying when Security Hub is not available

If Security Hub is not available, IAM Access Analyzer retries sending the findings on a periodic basis.

Security Hub integration 2461

https://docs.aws.amazon.com/securityhub/latest/userguide/securityhub-findings-format.html
https://docs.aws.amazon.com/securityhub/latest/userguide/securityhub-findings-format.html

AWS Identity and Access Management User Guide

Updating existing findings in Security Hub

After it sends a finding to Security Hub, AWS Identity and Access Management Access Analyzer
sends updates to reflect additional observations of the finding activity to Security Hub. The
updates are reflected within the same finding.

As IAM Access Analyzer groups external access findings per resource, the finding for a resource
in Security Hub is active if at least one of the findings for the resource in IAM Access Analyzer
is active. If all findings in IAM Access Analyzer for a resource are archived or resolved, then the
Security Hub finding is archived. The Security Hub finding is updated when you change the policy
access between public and cross-account access. This update can include changes to the type, title,
description, and severity of the finding.

IAM Access Analyzer does not group unused access findings by resource, so if an unused access
finding is resolved in IAM Access Analyzer, then the Security Hub finding is resolved. The Security
Hub finding is updated when you update the IAM user or role that generated the unused access
finding.

Viewing IAM Access Analyzer findings in Security Hub

To view your IAM Access Analyzer findings in Security Hub, choose See findings in the AWS:
IAM Access Analyzer section of the summary page. Alternatively, you can choose Findings from
the navigation panel. You can then filter the findings to display only AWS Identity and Access
Management Access Analyzer findings by choosing the Product name: field with a value of IAM
Access Analyzer.

Interpreting IAM Access Analyzer finding names in Security Hub

AWS Identity and Access Management Access Analyzer sends the findings to Security Hub using
the AWS Security Finding Format (ASFF). In ASFF, the Types field provides the finding type. ASFF
types use a different naming scheme than AWS Identity and Access Management Access Analyzer.
The following table includes details about all of the ASFF types associated with AWS Identity and
Access Management Access Analyzer findings as they appear in Security Hub.

ASFF finding type Security Hub finding title Description

Effects/Data Exposure/
External Access Granted

<resource ARN> allows public
access

A resource-based policy
attached to the resource
allows public access on

Security Hub integration 2462

AWS Identity and Access Management User Guide

ASFF finding type Security Hub finding title Description

the resource to all external
principals.

Software and Configuration
Checks/AWS Security Best
Practices/External Access
Granted

<resource ARN> allows cross-
account access

A resource-based policy
attached to the resource
allows cross-account access to
external principals outside the
zone of trust for the analyzer.

Software and Configuration
Checks/AWS Security Best
Practices/Unused Permission

<resource ARN> contains
unused permissions

A user or role contains unused
service and action permissio
ns.

Software and Configuration
Checks/AWS Security Best
Practices/Unused IAM Role

<resource ARN> contains
unused IAM role

A user or role contains an
unused IAM role.

Software and Configuration
Checks/AWS Security Best
Practices/Unused IAM User
Password

<resource ARN> contains
unused IAM user password

A user or role contains an
unused IAM user password.

Software and Configuration
Checks/AWS Security Best
Practices/Unused IAM User
Access Key

<resource ARN> contains
unused IAM user access key

A user or role contains an
unused IAM user access key.

Typical findings from IAM Access Analyzer

IAM Access Analyzer sends findings to Security Hub using the AWS Security Finding Format (ASFF).

Here is an example of a typical finding from IAM Access Analyzer for external access findings.

{
 "SchemaVersion": "2018-10-08",
 "Id": "arn:aws:access-analyzer:us-west-2:111122223333:analyzer/my-analyzer/
arn:aws:s3:::my-bucket",

Security Hub integration 2463

https://docs.aws.amazon.com/securityhub/latest/userguide/securityhub-findings-format.html

AWS Identity and Access Management User Guide

 "ProductArn": "arn:aws:securityhub:us-west-2::product/aws/access-analyzer",
 "GeneratorId": "aws/access-analyzer",
 "AwsAccountId": "111122223333",
 "Types": ["Software and Configuration Checks/AWS Security Best Practices/External
 Access Granted"],
 "CreatedAt": "2020-11-10T16:17:47Z",
 "UpdatedAt": "2020-11-10T16:43:49Z",
 "Severity": {
 "Product": 1,
 "Label": "LOW",
 "Normalized": 1
 },
 "Title": "AwsS3Bucket/arn:aws:s3:::my-bucket/ allows cross-account access",
 "Description": "AWS::S3::Bucket/arn:aws:s3:::my-bucket/ allows cross-account access
 from AWS 444455556666",
 "Remediation": {
 "Recommendation": {"Text": "If the access isn't intended, it indicates a
 potential security risk. Use the console for the resource to modify or remove the
 policy that grants the unintended access. You can use the Rescan button on the Finding
 details page in the Access Analyzer console to confirm whether the change removed the
 access. If the access is removed, the status changes to Resolved."}
 },
 "SourceUrl": "https://console.aws.amazon.com/access-analyzer/home?region=us-
west-2#/findings/details/dad90d5d-63b4-6575-b0fa-ef9c556ge798",
 "Resources": [
 {
 "Type": "AwsS3Bucket",
 "Id": "arn:aws:s3:::my-bucket",
 "Details": {
 "Other": {
 "External Principal Type": "AWS",
 "Condition": "none",
 "Action Granted": "s3:GetObject,s3:GetObjectVersion",
 "External Principal": "444455556666"
 }
 }
 }
],
 "WorkflowState": "NEW",
 "Workflow": {"Status": "NEW"},
 "RecordState": "ACTIVE"
}

Security Hub integration 2464

AWS Identity and Access Management User Guide

Here is an example of a typical finding from IAM Access Analyzer for unused access findings.

{
 "Findings": [
 {
 "SchemaVersion": "2018-10-08",
 "Id": "arn:aws:access-analyzer:us-west-2:111122223333:analyzer/integTestAnalyzer-
DO-NOT-DELETE/arn:aws:iam::111122223333:role/TestRole/UnusedPermissions",
 "ProductArn": "arn:aws:securityhub:us-west-2::product/aws/access-analyzer",
 "ProductName": "IAM Access Analyzer",
 "CompanyName": "AWS",
 "Region": "us-west-2",
 "GeneratorId": "aws/access-analyzer",
 "AwsAccountId": "111122223333",
 "Types": [
 "Software and Configuration Checks/AWS Security Best Practices/Unused
 Permission"
],
 "CreatedAt": "2023-09-18T16:29:09.657Z",
 "UpdatedAt": "2023-09-21T20:39:16.651Z",
 "Severity": {
 "Product": 1,
 "Label": "LOW",
 "Normalized": 1
 },
 "Title": "AwsIamRole/arn:aws:iam::111122223333:role/IsengardRole-DO-NOT-DELETE/
 contains unused permissions",
 "Description": "AWS::IAM::Role/arn:aws:iam::111122223333:role/IsengardRole-DO-
NOT-DELETE/ contains unused service and action-level permissions",
 "Remediation": {
 "Recommendation": {
 "Text":"If the unused permissions aren’t required, delete the permissions to
 refine access to your account. Use the IAM console to modify or remove the policy that
 grants the unused permissions. If all the unused permissions are removed, the status
 of the finding changes to Resolved."
 }
 },
 "SourceUrl": "https://us-west-2.console.aws.amazon.com/access-analyzer/
home?region=us-west-2#/unused-access-findings?resource=arn%3Aaws%3Aiam%3A
%3A903798373645%3Arole%2FTestRole",
 "ProductFields": {
 "numberOfUnusedActions": "256",
 "numberOfUnusedServices": "15",
 "resourceOwnerAccount": "111122223333",

Security Hub integration 2465

AWS Identity and Access Management User Guide

 "findingId": "DEMO24d8d-0d3f-4d3d-99f4-299fc8a62ee7",
 "findingType": "UnusedPermission",
 "aws/securityhub/FindingId": "arn:aws:securityhub:us-west-2::product/aws/access-
analyzer/arn:aws:access-analyzer:us-west-2:111122223333:analyzer/integTestAnalyzer-DO-
NOT-DELETE/arn:aws:iam::111122223333:role/TestRole/UnusedPermissions",
 "aws/securityhub/ProductName": "AM Access Analyzer",
 "aws/securityhub/CompanyName": "AWS"
 },
 "Resources": [
 {
 "Type": "AwsIamRole",
 "Id": "arn:aws:iam::111122223333:role/TestRole"
 }
],
 "WorkflowState": "NEW",
 "Workflow": {
 "Status": "NEW"
 },
 "RecordState": "ARCHIVED",
 "FindingProviderFields": {
 "Severity": {
 "Label": "LOW"
 },
 "Types": [
 "Software and Configuration Checks/AWS Security Best Practices/Unused Permission"
]
 }
 }
]
}

Enabling and configuring the integration

To use the integration with Security Hub, you must enable Security Hub. For information on how to
enable Security Hub, see Setting up Security Hub in the AWS Security Hub User Guide.

When you enable both IAM Access Analyzer and Security Hub, the integration is enabled
automatically. IAM Access Analyzer immediately begins to send findings to Security Hub.

How to stop sending findings

To stop sending findings to Security Hub, you can use either the Security Hub console or the API.

Security Hub integration 2466

https://docs.aws.amazon.com/securityhub/latest/userguide/securityhub-settingup.html

AWS Identity and Access Management User Guide

See Disabling and enabling the flow of findings from an integration (console) or Disabling the flow
of findings from an integration (Security Hub API, AWS CLI) in the AWS Security Hub User Guide.

Logging IAM Access Analyzer API calls with AWS CloudTrail

IAM Access Analyzer is integrated with AWS CloudTrail, a service that provides a record of actions
taken by a user, role, or an AWS service in IAM Access Analyzer. CloudTrail captures all API calls
for IAM Access Analyzer as events. The calls captured include calls from the IAM Access Analyzer
console and code calls to the IAM Access Analyzer API operations.

If you create a trail, you can enable continuous delivery of CloudTrail events to an Amazon S3
bucket, including events for IAM Access Analyzer. If you don't configure a trail, you can still view the
most recent events in the CloudTrail console in Event history.

Using the information collected by CloudTrail, you can determine the request that was made to
IAM Access Analyzer, the IP address from which the request was made, who made the request,
when it was made, and additional details.

To learn more about CloudTrail, see the AWS CloudTrail User Guide.

IAM Access Analyzer information in CloudTrail

CloudTrail is enabled on your AWS account when you create the account. When activity occurs in
IAM Access Analyzer, that activity is recorded in a CloudTrail event along with other AWS service
events in Event history. You can view, search, and download recent events in your AWS account.
For more information, see Viewing Events with CloudTrail Event History.

For an ongoing record of events in your AWS account, including events for IAM Access Analyzer,
create a trail. A trail enables CloudTrail to deliver log files to an Amazon S3 bucket. By default,
when you create a trail in the console, the trail applies to all AWS Regions. The trail logs events
from all Regions in the AWS partition and delivers the log files to the Amazon S3 bucket that you
specify. Additionally, you can configure other AWS services to further analyze and act upon the
event data collected in CloudTrail logs. For more information, see the following:

• Overview for Creating a Trail

• CloudTrail Supported Services and Integrations

• Configuring Amazon SNS Notifications for CloudTrail

• Receiving CloudTrail Log Files from Multiple Regions and Receiving CloudTrail Log Files from
Multiple Accounts

Logging with CloudTrail 2467

https://docs.aws.amazon.com/securityhub/latest/userguide/securityhub-integrations-managing.html#securityhub-integration-findings-flow-console
https://docs.aws.amazon.com/securityhub/latest/userguide/securityhub-integrations-managing.html#securityhub-integration-findings-flow-disable-api
https://docs.aws.amazon.com/securityhub/latest/userguide/securityhub-integrations-managing.html#securityhub-integration-findings-flow-disable-api
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/view-cloudtrail-events.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-create-and-update-a-trail.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-aws-service-specific-topics.html#cloudtrail-aws-service-specific-topics-integrations
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/getting_notifications_top_level.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/receive-cloudtrail-log-files-from-multiple-regions.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-receive-logs-from-multiple-accounts.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-receive-logs-from-multiple-accounts.html

AWS Identity and Access Management User Guide

All IAM Access Analyzer actions are logged by CloudTrail and are documented in the IAM Access
Analyzer API Reference. For example, calls to the CreateAnalyzer, CreateArchiveRule and
ListFindings actions generate entries in the CloudTrail log files.

Every event or log entry contains information about who generated the request. The identity
information helps you determine the following:

• Whether the request was made with root or AWS Identity and Access Management (IAM) user
credentials.

• Whether the request was made with temporary security credentials for a role or federated user.

• Whether the request was made by another AWS service.

For more information, see the CloudTrail userIdentity Element.

Understanding IAM Access Analyzer log file entries

A trail is a configuration that enables delivery of events as log files to an Amazon S3 bucket that
you specify. CloudTrail log files contain one or more log entries. An event represents a single
request from any source and includes information about the requested action, the date and time of
the action, request parameters, and so on. CloudTrail log files aren't an ordered stack trace of the
public API calls, so they don't appear in any specific order.

The following example shows a CloudTrail log entry that demonstrates the CreateAnalyzer
operation made by an assumed-role session named Alice-tempcreds on "June 14, 2021". The
role session was issued by the role named admin-tempcreds.

{
 "eventVersion": "1.05",
 "userIdentity": {
 "type": "AssumedRole",
 "principalId": "AROAIBKEVSQ6C2EXAMPLE:Alice-tempcreds",
 "arn": "arn:aws:sts::111122223333:assumed-role/admin-tempcreds/Alice-tempcreds",
 "accountId": "111122223333",
 "accessKeyId": "AKIAIOSFODNN7EXAMPLE",
 "sessionContext": {
 "attributes": {
 "mfaAuthenticated": "true",
 "creationDate": "2021-06-14T22:54:20Z"
 },

Logging with CloudTrail 2468

https://docs.aws.amazon.com/access-analyzer/latest/APIReference/
https://docs.aws.amazon.com/access-analyzer/latest/APIReference/
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-event-reference-user-identity.html

AWS Identity and Access Management User Guide

 "sessionIssuer": {
 "type": "Role",
 "principalId": "AKIAI44QH8DHBEXAMPLE",
 "arn": "arn:aws:iam::111122223333:role/admin-tempcreds",
 "accountId": "111122223333",
 "userName": "admin-tempcreds"
 },
 "webIdFederationData": {},
 }
 },
 "eventTime": "2021-06-14T22:57:36Z",
 "eventSource": "access-analyzer.amazonaws.com",
 "eventName": "CreateAnalyzer",
 "awsRegion": "us-west-2",
 "sourceIPAddress": "198.51.100.179",
 "userAgent": "aws-sdk-java/1.12.79 Linux/5.4.141-78.230 OpenJDK_64-
Bit_Server_VM/25.302-b08 java/1.8.0_302 vendor/Oracle_Corporation cfg/retry-mode/
standard",
 "requestParameters": {
 "analyzerName": "test",
 "type": "ACCOUNT",
 "clientToken": "11111111-abcd-2222-abcd-222222222222",
 "tags": {
 "tagkey1": "tagvalue1"
 }
 },
 "responseElements": {
 "arn": "arn:aws:access-analyzer:us-west-2:111122223333:analyzer/test"
 },
 "requestID": "22222222-dcba-4444-dcba-333333333333",
 "eventID": "33333333-bcde-5555-bcde-444444444444",
 "readOnly": false,
 "eventType": "AwsApiCall",,
 "managementEvent": true,
 "recipientAccountId": "111122223333",
 "eventCategory": "Management"
}

IAM Access Analyzer filter keys

You can use the filter keys below to define an archive rule (CreateArchiveRule),
update an archive rule (UpdateArchiveRule), retrieve a list of findings (ListFindings
and ListFindingsV2), or retrieve a list of access preview findings for a resource

IAM Access Analyzer filter keys 2469

https://docs.aws.amazon.com/access-analyzer/latest/APIReference/API_CreateArchiveRule.html
https://docs.aws.amazon.com/access-analyzer/latest/APIReference/API_UpdateArchiveRule.html
https://docs.aws.amazon.com/access-analyzer/latest/APIReference/API_ListFindings.html
https://docs.aws.amazon.com/access-analyzer/latest/APIReference/API_ListFindingsV2.html

AWS Identity and Access Management User Guide

(ListAccessPreviewFindings). There is no difference between using IAM API and AWS
CloudFormation for configuring archive rules.

Criterion Description Type Archive
rule

List
findings

List access
preview
findings

resource The ARN uniquely
identifying the resource
that the external
principal has access
to. To learn more, see
Amazon resource names
(ARNs).

String

Yes Yes Yes

resourceT
ype

AWS::IAM:
:Role |
AWS::KMS:
:Key |
AWS::Lamb
da::Funct
ion |
AWS::Lamb
da::Layer
Version
|
AWS::S3::
Bucket |
AWS::S3Ex
press::Di
rectoryBu
cket |
AWS::SQS:
:Queue |

The type of resource that
the external principal has
access to.

String

Yes Yes Yes

IAM Access Analyzer filter keys 2470

https://docs.aws.amazon.com/access-analyzer/latest/APIReference/API_ListAccessPreviewFindings.html
https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html
https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html

AWS Identity and Access Management User Guide

Criterion Description Type Archive
rule

List
findings

List access
preview
findings

AWS::Secr
etsManage
r::Secret

 |
AWS::EFS:
:FileSyst
em |
AWS::EC2:
:Snapshot

 |
AWS::ECR:
:Reposito
ry |
AWS::RDS:
:DBSnapsh
ot |
AWS::RDS:
:DBCluste
rSnapshot

 |
AWS::SNS:
:Topic

resourceO
wnerAccou
nt

The 12 digit AWS
account ID that owns
the resource. To learn
more, see AWS account
identifiers.

String

Yes Yes Yes

isPublic Indicates whether
the finding reports a
resource that has a policy
that allows public access.

Boolean

Yes Yes Yes

IAM Access Analyzer filter keys 2471

https://docs.aws.amazon.com/general/latest/gr/acct-identifiers.html
https://docs.aws.amazon.com/general/latest/gr/acct-identifiers.html

AWS Identity and Access Management User Guide

Criterion Description Type Archive
rule

List
findings

List access
preview
findings

findingTy
pe

UnusedIAM
Role |
UnusedIAM
UserAcces
sKey |
UnusedIAM
UserPassw
ord |
UnusedPer
mission

The type of the finding.
You can only filter by
finding type for unused
access findings.

String

Yes Yes Yes

status

ACTIVE |
ARCHIVED
|
RESOLVED

The current status of the
finding.

String

No Yes Yes

error Indicates the error
reported for the finding.

String

Yes Yes Yes

IAM Access Analyzer filter keys 2472

AWS Identity and Access Management User Guide

Criterion Description Type Archive
rule

List
findings

List access
preview
findings

principal
.AWS

The account granted
access to the resource in
the Principal field
of the finding. Enter the
12-digit AWS account
ID or the ARN of the
external AWS user or
role. To learn more, see
AWS account identifiers.

String

Yes Yes Yes

principal
.Federated

The ARN of the
federated identity
that has access to the
resource in the finding.
To learn more, see
Identity providers and
federation

String

Yes Yes Yes

condition
.aws:Prin
cipalArn

The ARN of the principal
(IAM user, role, or
group) indicated as the
condition for resource
access. To learn more,
see AWS global condition
context keys.

String

Yes Yes Yes

condition
.aws:Prin
cipalOrgID

The organization
identifier of the principal
indicated as the
condition for resource
access. To learn more,
see AWS global condition
context keys.

String

Yes Yes Yes

IAM Access Analyzer filter keys 2473

https://docs.aws.amazon.com/general/latest/gr/acct-identifiers.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_providers.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_providers.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html

AWS Identity and Access Management User Guide

Criterion Description Type Archive
rule

List
findings

List access
preview
findings

condition
.aws:Prin
cipalOrgP
aths

The organization or
organizational unit
(OU) ID indicated as the
condition for resource
access. To learn more,
see AWS global condition
context keys.

String

Yes Yes Yes

condition
.aws:Sour
ceIp

The IP address that
allows the principal
access to the resource
when using the specified
IP address. To learn
more, see AWS global
condition context keys.

IP address

Yes Yes Yes

condition
.aws:Sour
ceVpc

The VPC ID that allows
the principal access to
the resource when using
the specified VPC. To
learn more, see AWS
global condition context
keys.

String

Yes Yes Yes

condition
.aws:User
Id

The user ID of the IAM
user from an external
account indicated as the
condition for access to
the resource. To learn
more, see AWS global
condition context keys.

String

Yes Yes Yes

IAM Access Analyzer filter keys 2474

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html

AWS Identity and Access Management User Guide

Criterion Description Type Archive
rule

List
findings

List access
preview
findings

condition
.cognito-
identity.
amazonaws
.com:aud

The Amazon Cognito
identity pool ID specified
as a condition for IAM
role access in the finding.
To learn more, see IAM
and AWS STS condition
context keys.

String

Yes Yes Yes

condition
.graph.fa
cebook.co
m:app_id

The Facebook application
ID (or site ID) specified
as a condition to allow
Login with Facebook
federation access to the
IAM role in the finding.
To learn more, see IAM
and AWS STS condition
context keys.

String

Yes Yes Yes

condition
.accounts
.google.c
om:aud

The Google applicati
on ID specified as a
condition for access to
the IAM role. To learn
more, see IAM and AWS
STS condition context
keys.

String

Yes Yes Yes

IAM Access Analyzer filter keys 2475

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html

AWS Identity and Access Management User Guide

Criterion Description Type Archive
rule

List
findings

List access
preview
findings

condition
.kms:Call
erAccount

The AWS account ID
that owns the calling
entity (IAM user, role
or account root user)
used by services calling
AWS KMS. To learn more,
see Condition keys for
AWS Key Management
Service.

String

Yes Yes Yes

condition
.www.amaz
on.com:ap
p_id

The Amazon application
ID (or site ID) specified
as a condition to allow
Login with Amazon
federation access to the
role. To learn more, see

String

Yes Yes Yes

id The ID of the finding.

String

No Yes Yes

changeTyp
e

Provides context on
how the access preview
finding compares to
existing access identified
in IAM Access Analyzer.

String

No No Yes

existingF
indingId

The existing ID of the
finding in IAM Access
Analyzer, provided only
for existing findings in
the access preview.

String

No No Yes

IAM Access Analyzer filter keys 2476

https://docs.aws.amazon.com/IAM/latest/UserGuide/list_awskeymanagementservice.html#awskeymanagementservice-policy-keys
https://docs.aws.amazon.com/IAM/latest/UserGuide/list_awskeymanagementservice.html#awskeymanagementservice-policy-keys
https://docs.aws.amazon.com/IAM/latest/UserGuide/list_awskeymanagementservice.html#awskeymanagementservice-policy-keys

AWS Identity and Access Management User Guide

Criterion Description Type Archive
rule

List
findings

List access
preview
findings

existingF
indingSta
tus

The existing status of the
finding, provided only for
existing findings in the
access preview.

String

No No Yes

Using service-linked roles for AWS Identity and Access Management
Access Analyzer

AWS Identity and Access Management Access Analyzer uses an IAM service-linked role. A service-
linked role is a unique type of IAM role linked directly to IAM Access Analyzer. Service-linked roles
are predefined by IAM Access Analyzer and include all the permissions that the feature requires to
call other AWS services on your behalf.

A service-linked role makes setting up IAM Access Analyzer easier because you don’t have to
manually add the necessary permissions. IAM Access Analyzer defines the permissions of its
service-linked roles, and unless defined otherwise, only IAM Access Analyzer can assume its roles.
The defined permissions include the trust policy and the permissions policy, and that permissions
policy cannot be attached to any other IAM entity.

For information about other services that support service-linked roles, see AWS Services That Work
with IAM and look for the services that have Yes in the Service-Linked Role column. Choose a Yes
with a link to view the service-linked role documentation for that service.

Service-linked role permissions for AWS Identity and Access Management Access
Analyzer

AWS Identity and Access Management Access Analyzer uses the service-linked role named
AWSServiceRoleForAccessAnalyzer – Allow Access Analyzer to analyze resource metadata for
external access and to analyze activity to identify unused access.

The AWSServiceRoleForAccessAnalyzer service-linked role trusts the following services to assume
the role:

• access-analyzer.amazonaws.com

Using service-linked roles 2477

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_terms-and-concepts.html#iam-term-service-linked-role
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html

AWS Identity and Access Management User Guide

The role permissions policy named AccessAnalyzerServiceRolePolicy allows IAM Access
Analyzer to complete actions on specific resources.

You must configure permissions to allow an IAM entity (such as a user, group, or role) to create,
edit, or delete a service-linked role. For more information, see Service-Linked Role Permissions in
the IAM User Guide.

Creating a service-linked role for IAM Access Analyzer

You don't need to manually create a service-linked role. When you enable Access Analyzer in the
AWS Management Console or the AWS API, IAM Access Analyzer creates the service-linked role for
you. The same service-linked role is used in all Regions in which you enable IAM Access Analyzer.
Both external access and unused access findings use the same service-linked role.

Note

IAM Access Analyzer is Regional. You must enable IAM Access Analyzer in each Region
independently.

If you delete this service-linked role, IAM Access Analyzer recreates the role when you next create
an analyzer.

You can also use the IAM console to create a service-linked role with the Access Analyzer
use case. In the AWS CLI or the AWS API, create a service-linked role with the access-
analyzer.amazonaws.com service name. For more information, see Creating a Service-Linked
Role in the IAM User Guide. If you delete this service-linked role, you can use this same process to
create the role again.

Editing a service-linked role for IAM Access Analyzer

IAM Access Analyzer does not allow you to edit the AWSServiceRoleForAccessAnalyzer service-
linked role. After you create a service-linked role, you cannot change the name of the role because
various entities might reference the role. However, you can edit the description of the role using
IAM. For more information, see Editing a Service-Linked Role in the IAM User Guide.

Deleting a service-linked role for IAM Access Analyzer

If you no longer need to use a feature or service that requires a service-linked role, we recommend
that you delete that role. That way you don’t have an unused entity that isn't actively monitored or

Using service-linked roles 2478

https://docs.aws.amazon.com/IAM/latest/UserGuide/using-service-linked-roles.html#service-linked-role-permissions
https://docs.aws.amazon.com/IAM/latest/UserGuide/using-service-linked-roles.html#create-service-linked-role
https://docs.aws.amazon.com/IAM/latest/UserGuide/using-service-linked-roles.html#create-service-linked-role
https://docs.aws.amazon.com/IAM/latest/UserGuide/using-service-linked-roles.html#edit-service-linked-role

AWS Identity and Access Management User Guide

maintained. However, you must clean up the resources for your service-linked role before you can
manually delete it.

Note

If IAM Access Analyzer is using the role when you try to delete the resources, then the
deletion might fail. If that happens, wait for a few minutes and try the operation again.

To delete IAM Access Analyzer resources used by the AWSServiceRoleForAccessAnalyzer

1. Open the IAM console at https://console.aws.amazon.com/iam/.

2. In the Access reports section, under Access analyzer, choose Analyzers.

3. Choose the check box on the top left above the list of analyzers in the Analyzers table to
select all analyzers.

4. Choose Delete.

5. To confirm that you want to delete the analyzers, enter delete, and then choose Delete.

To manually delete the service-linked role using IAM

Use the IAM console, the AWS CLI, or the AWS API to delete the AWSServiceRoleForAccessAnalyzer
service-linked role. For more information, see Deleting a Service-Linked Role in the IAM User Guide.

Supported Regions for IAM Access Analyzer service-linked roles

IAM Access Analyzer supports using service-linked roles in all of the Regions where the service is
available. For more information, see AWS Regions and Endpoints.

Preview access

In addition to helping you identify resources that are shared with an external entity, AWS IAM
Access Analyzer also enables you to preview IAM Access Analyzer findings before deploying
resource permissions so you can validate that your policy changes grant only intended public and
cross-account access to your resource. This helps you start with intended external access to your
resources.

You can preview and validate public and cross-account access to your Amazon S3 buckets in the
Amazon S3 console. You can also use IAM Access Analyzer APIs to preview public and cross-account

Preview access 2479

https://console.aws.amazon.com/iam/
https://docs.aws.amazon.com/IAM/latest/UserGuide/using-service-linked-roles.html#delete-service-linked-role
https://docs.aws.amazon.com/general/latest/gr/rande.html
https://aws.amazon.com/s3/

AWS Identity and Access Management User Guide

access for your Amazon S3 buckets, AWS KMS keys, IAM roles, Amazon SQS queues and Secrets
Manager secrets by providing proposed permissions for your resource.

Topics

• Previewing access in Amazon S3 console

• Previewing access with IAM Access Analyzer APIs

Previewing access in Amazon S3 console

After you complete your bucket policy in the Amazon S3 console you have the option to preview
public and cross-account access to your Amazon S3 bucket. You can validate that your policy
changes grant only intended external access before you choose Save changes. This optional step
enables you to preview AWS Identity and Access Management Access Analyzer findings for your
bucket. You can validate whether the policy change introduces new findings or resolves existing
findings for external access. You can skip this validation step and save your Amazon S3 bucket
policy at any time.

To preview external access to your bucket, you must have an active account analyzer in your
bucket’s region with the account as the zone of trust. You must also have the permissions required
to use IAM Access Analyzer and preview access. For more information on enabling IAM Access
Analyzer and permissions required, see Enabling IAM Access Analyzer.

To preview access to your Amazon S3 bucket when you create or edit your bucket policy

1. Once you finish creating or editing your bucket policy, ensure your policy is a valid Amazon S3
bucket policy. The policy ARN must match the bucket ARN and the policy elements must be
valid.

2. Below the policy, under Preview external access, choose an active account analyzer, then
choose Preview. A preview of IAM Access Analyzer findings is generated for your bucket. The
preview analyzes the displayed Amazon S3 bucket policy, together with the existing bucket
permissions. This includes the bucket and account BPA settings, bucket ACL, the Amazon S3
access points and multi-region access points attached to the bucket, and their policies and BPA
settings.

3. When the access preview completes, a preview of IAM Access Analyzer findings is displayed.
Each finding reports an instance of a principal outside of the account with access to your
bucket after you save the policy. You can validate access to your bucket by reviewing each
finding. The finding header provides a summary of the access and you can expand the finding

Previewing access in Amazon S3 console 2480

https://docs.aws.amazon.com/AmazonS3/latest/userguide/access-policy-language-overview.html

AWS Identity and Access Management User Guide

to review the finding details. Finding badges provide context on how saving the bucket policy
would change access to the bucket. For example, they help you validate whether the policy
change introduces new findings or resolves existing findings for external access:

a. New – indicates a finding for new external access that the policy would introduce.

b. Resolved – indicates a finding for existing external access that the policy would remove.

c. Archived – indicates a finding for new external access that would be automatically
archived, based on the archive rules for the analyzer that define when findings should be
marked as intended.

d. Existing – indicates an existing finding for external access that would remain unchanged.

e. Public – if a finding is for public access to the resource, it will have a Public badge, in
addition to one of the badges above.

4. If you identify external access you do not intend to introduce or remove, you can revise the
policy and then choose Preview again until you have achieved the external access you intend.
If you have a finding labeled Public, we recommend you revise the policy to remove public
access before you choose Save changes. Previewing access is an optional step and you can
choose Save changes at any time.

Previewing access with IAM Access Analyzer APIs

You can use IAM Access Analyzer APIs to preview public and cross-account access for your Amazon
S3 buckets, AWS KMS keys, IAM roles, Amazon SQS queues and Secrets Manager secrets. You
can preview access by providing proposed permissions for an existing resource you own or a new
resource you want to deploy.

To preview external access to your resource, you must have an active account analyzer for the
account and region of the resource. You must also have the permissions required to use IAM
Access Analyzer and preview access. For more information on enabling IAM Access Analyzer and
permissions required, see Enabling IAM Access Analyzer.

To preview access for a resource, you can use the CreateAccessPreview operation and provide
the analyzer ARN and the access control configuration for the resource. The service returns the
unique ID for the access preview, which you can use to check the status of the access preview
with the GetAccessPreview operation. When the status is Completed, you can use the
ListAccessPreviewFindings operation to retrieve the findings generated for the access

Previewing access with IAM Access Analyzer APIs 2481

https://docs.aws.amazon.com/IAM/latest/UserGuide/access-analyzer-findings-view.html
https://docs.aws.amazon.com/access-analyzer/latest/APIReference/Welcome.html

AWS Identity and Access Management User Guide

preview. The GetAccessPreview and ListAccessPreviewFindings operations will retrieve
access previews and findings created within about 24 hours.

Each finding retrieved contains finding details describing the access. A preview status of the finding
describing whether the finding would be Active, Archived, or Resolved after permissions
deployment, and a changeType. The changeType provides context on how the access preview
finding compares to existing access identified in IAM Access Analyzer:

• New – the finding is for newly introduced access.

• Unchanged – the preview finding is an existing finding that would remain unchanged.

• Changed – the preview finding is an existing finding with a change in status.

The status and the changeType help you understand how the resource configuration would
change existing resource access. If the changeType is Unchanged or Changed, the finding will also
contain the existing ID and status of the finding in IAM Access Analyzer. For example, a Changed
finding with preview status Resolved and existing status Active indicates the existing Active
finding for the resource would become Resolved as a result of the proposed permissions change.

You can use the ListAccessPreviews operation to retrieve a list of access previews for the
specified analyzer. This operation will retrieve information on access preview created within about
one hour.

In general, if the access preview is for an existing resource and you leave a configuration option
unspecified, the access preview will use the existing resource configuration by default. If the
access preview is for a new resource and you leave a configuration option unspecified, the access
preview will use the default value depending on the resource type. For configuration cases for each
resource type, see below.

Preview access to your Amazon S3 bucket

To create an access preview for a new Amazon S3 bucket or an existing Amazon S3 bucket that you
own, you can propose a bucket configuration by specifying the Amazon S3 bucket policy, bucket
ACLs, bucket BPA settings, and Amazon S3 access points, including multi-region access points,
attached to the bucket.

Previewing access with IAM Access Analyzer APIs 2482

https://docs.aws.amazon.com/IAM/latest/UserGuide/access-analyzer-findings-view.html

AWS Identity and Access Management User Guide

Note

Before attempting to create an access preview for a new bucket, we recommend you call
the Amazon S3 HeadBucket operation to check whether the named bucket already exists.
This operation is useful to determine if a bucket exists and you have permission to access it.

Bucket policy – If the configuration is for an existing Amazon S3 bucket and you do not specify
the Amazon S3 bucket policy, the access preview uses the existing policy attached to the bucket. If
the access preview is for a new resource and you do not specify the Amazon S3 bucket policy, the
access preview assumes a bucket without a policy. To propose deletion of an existing bucket policy,
you can specify an empty string. For more information about supported bucket policy limits, see
Bucket policy examples.

Bucket ACL grants – You can propose up to 100 ACL grants per bucket. If the proposed grant
configuration is for an existing bucket, the access preview uses the proposed list of grant
configurations in place of the existing grants. Otherwise, the access preview uses the existing
grants for the bucket.

Bucket access points – The analysis supports up to 100 access points,including multi-region
access points, per bucket, including up to ten new access points you can propose per bucket. If
the proposed Amazon S3 access point configuration is for an existing bucket, the access preview
uses the proposed access point configuration in place of the existing access points. To propose an
access point without a policy, you can provide an empty string as the access point policy. For more
information about access point policy limits, see Access points restrictions and limitations.

Block public access configuration – If the proposed configuration is for an existing Amazon S3
bucket and you do not specify the configuration, the access preview uses the existing setting. If the
proposed configuration is for a new bucket and you do not specify the bucket BPA configuration,
the access preview uses false. If the proposed configuration is for a new access point or multi-
region access point, and you do not specify the access point BPA configuration, the access preview
uses true.

Preview access to your AWS KMS key

To create an access preview for a new AWS KMS key or an existing AWS KMS key that you own, you
can propose a AWS KMS key configuration by specifying the key policy and the AWS KMS grant
configuration.

Previewing access with IAM Access Analyzer APIs 2483

https://docs.aws.amazon.com/AmazonS3/latest/API/API_HeadBucket.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/example-bucket-policies.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/access-points-restrictions-limitations.html

AWS Identity and Access Management User Guide

AWS KMS key policy – If the configuration is for an existing key and you do not specify the key
policy, the access preview uses the existing policy for the key. If the access preview is for a new
resource and you do not specify the key policy, then the access preview uses the default key policy.
The proposed key policy cannot be an empty string.

AWS KMS grants – The analysis supports up to 100 KMS grants per configuration*.* If the
proposed grant configuration is for an existing key, the access preview uses the proposed list of
grant configurations in place of the existing grants. Otherwise, the access preview uses the existing
grants for the key.

Preview access to your IAM role

To create an access preview for a new IAM role or an existing IAM role that you own, you can
propose an IAM role configuration by specifying the trust policy.

Role trust policy – If the configuration is for a new IAM role, you must specify the trust policy. If
the configuration is for an existing IAM role that you own and you do not propose the trust policy,
the access preview uses the existing trust policy for the role. The proposed trust policy cannot be
an empty string.

Preview access to your Amazon SQS queue

To create an access preview for a new Amazon SQS queue or an existing Amazon SQS queue that
you own, you can propose an Amazon SQS queue configuration by specifying the Amazon SQS
policy for the queue.

Amazon SQS queue policy – If the configuration is for an existing Amazon SQS queue and you
do not specify the Amazon SQS policy, the access preview uses the existing Amazon SQS policy
for the queue. If the access preview is for a new resource and you do not specify the policy, the
access preview assumes an Amazon SQS queue without a policy. To propose deletion of an existing
Amazon SQS queue policy, you can specify an empty string for the Amazon SQS policy.

Preview access to your Secrets Manager secret

To create an access preview for a new Secrets Manager secret or an existing Secrets Manager secret
that you own, you can propose a Secrets Manager secret configuration by specifying the secret
policy and optional AWS KMS encryption key.

Secret policy – If the configuration is for an existing secret and you do not specify the secret policy,
the access preview uses the existing policy for the secret. If the access preview is for a new resource

Previewing access with IAM Access Analyzer APIs 2484

AWS Identity and Access Management User Guide

and you do not specify the policy, the access preview assumes a secret without a policy. To propose
deletion of an existing policy, you can specify an empty string.

AWS KMS encryption key – If the proposed configuration is for a new secret and you do not
specify the AWS KMS key ID, the access preview uses the default KMS key of the AWS account. If
you specify an empty string for the AWS KMS key ID, the access preview uses the default KMS key
of the AWS account.

Checks for validating policies

IAM Access Analyzer provides policy checks that help validate your IAM policies before you attach
them to an entity. These include basic policy checks provided by policy validation to validate
your policy against policy grammar and AWS best practices. You can view policy validation check
findings that include security warnings, errors, general warnings, and suggestions for your policy.

You can use custom policy checks to check for new access based on your security standards. A
charge is associated with each check for new access. For more details about pricing, see IAM Access
Analyzer pricing.

Topics

• IAM Access Analyzer policy validation

• IAM Access Analyzer custom policy checks

IAM Access Analyzer policy validation

You can validate your policies using AWS Identity and Access Management Access Analyzer policy
validation. You can create or edit a policy using the AWS CLI, AWS API, or JSON policy editor
in the IAM console. IAM Access Analyzer validates your policy against IAM policy grammar and
AWS best practices. You can view policy validation check findings that include security warnings,
errors, general warnings, and suggestions for your policy. These findings provide actionable
recommendations that help you author policies that are functional and conform to security best
practices. To view a list of the basic policy checks that are run by IAM Access Analyzer, see Access
Analyzer policy check reference.

Checks for validating policies 2485

https://aws.amazon.com/iam/access-analyzer/pricing
https://aws.amazon.com/iam/access-analyzer/pricing

AWS Identity and Access Management User Guide

Validating policies in IAM (console)

You can view findings generated by IAM Access Analyzer policy validation when you create or edit a
managed policy in the IAM console. You can also view these findings for inline user or role policies.
IAM Access Analyzer does not generate these findings for inline group policies.

To view findings generated by policy checks for IAM JSON policies

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. Begin creating or editing a policy using one of the following methods:

a. To create a new managed policy, go to the Policies page and create a new policy. For more
information, see Creating policies using the JSON editor.

b. To view policy checks for an existing customer managed policy, go the Policies page,
choose the name of a policy, and then choose Edit. For more information, see Editing
customer managed policies (console).

c. To view policy checks for an inline policy on a user or role, go the Users or Roles page,
choose the name of a user or role, choose the name of the policy on the Permissions
tab and then choose Edit. For more information, see Editing customer managed policies
(console).

3. In the policy editor, choose the JSON tab.

4. In the policy validation pane below the policy, choose one or more of the following tabs. The
tab names also indicate the number of each finding type for your policy.

• Security – View warnings if your policy allows access that AWS considers a security risk
because the access is overly permissive.

• Errors – View errors if your policy includes lines that prevent the policy from functioning.

• Warnings – View warnings if your policy doesn't conform to best practices, but the issues are
not security risks.

• Suggestions – View suggestions if AWS recommends improvements that don't impact the
permissions of the policy.

5. Review the finding details provided by the IAM Access Analyzer policy check. Each finding
indicates the location of the reported issue. To learn more about what causes the issue and
how to resolve it, choose the Learn more link next to the finding. You can also search for the
policy check associated with each finding in the Access Analyzer policy checks reference page.

IAM Access Analyzer policy validation 2486

https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/

AWS Identity and Access Management User Guide

6. Optional. If you are editing an existing policy, you can run a custom policy check to determine
whether your updated policy grants new access compared to the existing version. In the policy
validation pane below the policy, choose the Check for new access tab and then choose Check
policy. If the modified permissions grant new access, the statement will be highlighted in the
policy validation pane. If you do not intend to grant new access, update the policy statement
and choose Check policy until no new access is detected. For more information, see IAM
Access Analyzer custom policy checks.

Note

A charge is associated with each check for new access. For more details on pricing, see
IAM Access Analyzer pricing.

7. Update your policy to resolve the findings.

Important

Test new or edited policies thoroughly before implementing them in your production
workflow.

8. When you are finished, choose Next. The Policy validator reports any syntax errors that are not
reported by IAM Access Analyzer.

Note

You can switch between the Visual and JSON tabs anytime. However, if you make
changes or choose Next in the Visual tab, IAM might restructure your policy to
optimize it for the visual editor. For more information, see Policy restructuring.

9. For new policies, on the Review and create page, enter a Policy name and a Description
(optional) for the policy that you are creating. Review the Permissions defined in this policy
to see the permissions that are granted by your policy. Then choose Create policy to save your
work.

For existing policies, on the Review and save page, review the Permissions defined in this
policy to see the permissions that are granted by your policy. Choose the Set this new version
as the default. check box to save the updated version as the default version of the policy. Then
choose Save changes to save your work.

IAM Access Analyzer policy validation 2487

https://aws.amazon.com/iam/access-analyzer/pricing

AWS Identity and Access Management User Guide

Validating policies using IAM Access Analyzer (AWS CLI or AWS API)

You can view findings generated by IAM Access Analyzer policy validation from the AWS Command
Line Interface (AWS CLI).

To view findings generated by IAM Access Analyzer policy validation (AWS CLI or AWS API)

Use one of the following:

• AWS CLI: aws accessanalyzer validate-policy

• AWS API: ValidatePolicy

Access Analyzer policy check reference

You can validate your policies using AWS Identity and Access Management Access Analyzer policy
validation. You can create or edit a policy using the AWS CLI, AWS API, or JSON policy editor
in the IAM console. IAM Access Analyzer validates your policy against IAM policy grammar and
AWS best practices. You can view policy validation check findings that include security warnings,
errors, general warnings, and suggestions for your policy. These findings provide actionable
recommendations that help you author policies that are functional and conform to security best
practices. The list of basic policy checks provided by IAM Access Analyzer are shared below. There
is no additional charge associated with running the policy validation checks. To learn more about
validating policies using policy validation, see IAM Access Analyzer policy validation.

Error – ARN account not allowed

In the AWS Management Console, the finding for this check includes the following message:

ARN account not allowed: The service {{service}} does not support specifying an account
 ID in the resource ARN.

In programmatic calls to the AWS CLI or AWS API, the finding for this check includes the following
message:

"findingDetails": "The service {{service}} does not support specifying an account ID in
 the resource ARN."

Resolving the error

IAM Access Analyzer policy validation 2488

https://docs.aws.amazon.com/cli/latest/reference/accessanalyzer/validate-policy.html
https://docs.aws.amazon.com/access-analyzer/latest/APIReference/API_ValidatePolicy.html

AWS Identity and Access Management User Guide

Remove the account ID from the resource ARN. The resource ARNs for some AWS services do not
support specifying an account ID.

For example, Amazon S3 does not support an account ID as a namespace in bucket ARNs. An
Amazon S3 bucket name is globally unique, and the namespace is shared by all AWS accounts. To
view all of the resource types available in Amazon S3, see Resource types defined by Amazon S3 in
the Service Authorization Reference.

Related terms

• Policy resources

• Account Identifiers

• Resource ARNs

• AWS service resources with ARN formats

Error – ARN Region not allowed

In the AWS Management Console, the finding for this check includes the following message:

ARN Region not allowed: The service {{service}} does not support specifying a Region in
 the resource ARN.

In programmatic calls to the AWS CLI or AWS API, the finding for this check includes the following
message:

"findingDetails": "The service {{service}} does not support specifying a Region in the
 resource ARN."

Resolving the error

Remove the Region from the resource ARN. The resource ARNs for some AWS services do not
support specifying a Region.

For example, IAM is a global service. The Region portion of an IAM resource ARN is always kept
blank. IAM resources are global, like an AWS account is today. For example, after you sign in as an
IAM user, you can access AWS services in any geographic region.

• Policy resources

• Resource ARNs

IAM Access Analyzer policy validation 2489

https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazons3.html#amazons3-resources-for-iam-policies
https://docs.aws.amazon.com/general/latest/gr/acct-identifiers.html
https://docs.aws.amazon.com/service-authorization/latest/reference/reference_policies_actions-resources-contextkeys.html

AWS Identity and Access Management User Guide

• AWS service resources with ARN formats

Error – Data type mismatch

In the AWS Management Console, the finding for this check includes the following message:

Data type mismatch: The text does not match the expected JSON data type {{data_type}}.

In programmatic calls to the AWS CLI or AWS API, the finding for this check includes the following
message:

"findingDetails": "The text does not match the expected JSON data type {{data_type}}."

Resolving the error

Update the text to use the supported data type.

For example, the Version global condition key requires a String data type. If you provide a date
or an integer, the data type won't match.

Related terms

• Global condition keys

• IAM JSON policy elements: Condition operators

Error – Duplicate keys with different case

In the AWS Management Console, the finding for this check includes the following message:

Duplicate keys with different case: The condition key {{key}} appears more than once
 with different capitalization in the same condition block. Remove the duplicate
 condition keys.

In programmatic calls to the AWS CLI or AWS API, the finding for this check includes the following
message:

"findingDetails": "The condition key {{key}} appears more than once with different
 capitalization in the same condition block. Remove the duplicate condition keys."

IAM Access Analyzer policy validation 2490

https://docs.aws.amazon.com/service-authorization/latest/reference/reference_policies_actions-resources-contextkeys.html

AWS Identity and Access Management User Guide

Resolving the error

Review the similar condition keys within the same condition block and use the same capitalization
for all instances.

A condition block is the text within the Condition element of a policy statement. Condition key
names are not case-sensitive. The case-sensitivity of condition key values depends on the condition
operator that you use. For more information about case-sensitivity in condition keys, see IAM JSON
policy elements: Condition.

Related terms

• Conditions

• Condition block

• Global condition keys

• AWS service condition keys

Error – Invalid action

In the AWS Management Console, the finding for this check includes the following message:

Invalid action: The action {{action}} does not exist. Did you mean {{valid_action}}?

In programmatic calls to the AWS CLI or AWS API, the finding for this check includes the following
message:

"findingDetails": "The action {{action}} does not exist. Did you mean
 {{valid_action}}?"

Resolving the error

The action that you specified is not valid. This can happen if you mis-type the service prefix or the
action name. For some common issues, the policy check returns a suggested action.

Related terms

• Policy actions

• AWS service actions

IAM Access Analyzer policy validation 2491

https://docs.aws.amazon.com/service-authorization/latest/reference/reference_policies_actions-resources-contextkeys.html
https://docs.aws.amazon.com/service-authorization/latest/reference/reference_policies_actions-resources-contextkeys.html

AWS Identity and Access Management User Guide

AWS managed policies with this error

AWS managed policies enable you to get started with AWS by assigning permissions based on
general AWS use cases.

The following AWS managed policies include invalid actions in their policy statements. Invalid
actions do not affect the permissions granted by the policy. When using an AWS managed policy as
a reference to create your managed policy, AWS recommends that you remove invalid actions from
your policy.

• AmazonEMRFullAccessPolicy_v2

• CloudWatchSyntheticsFullAccess

Error – Invalid ARN account

In the AWS Management Console, the finding for this check includes the following message:

Invalid ARN account: The resource ARN account ID {{account}} is not valid. Provide a
 12-digit account ID.

In programmatic calls to the AWS CLI or AWS API, the finding for this check includes the following
message:

"findingDetails": "The resource ARN account ID {{account}} is not valid. Provide a 12-
digit account ID."

Resolving the error

Update the account ID in the resource ARN. Account IDs are 12-digit integers. To learn how to view
your account ID, see Finding your AWS account ID.

Related terms

• Policy resources

• Account Identifiers

• Resource ARNs

• AWS service resources with ARN formats

IAM Access Analyzer policy validation 2492

https://console.aws.amazon.com/iam/home#policies/arn:aws:iam::aws:policy/AmazonEMRFullAccessPolicy_v2
https://console.aws.amazon.com/iam/home#policies/arn:aws:iam::aws:policy/CloudWatchSyntheticsFullAccess
https://docs.aws.amazon.com/general/latest/gr/acct-identifiers.html#FindingYourAccountIdentifiers
https://docs.aws.amazon.com/general/latest/gr/acct-identifiers.html
https://docs.aws.amazon.com/service-authorization/latest/reference/reference_policies_actions-resources-contextkeys.html

AWS Identity and Access Management User Guide

Error – Invalid ARN prefix

In the AWS Management Console, the finding for this check includes the following message:

Invalid ARN prefix: Add the required prefix (arn) to the resource ARN.

In programmatic calls to the AWS CLI or AWS API, the finding for this check includes the following
message:

"findingDetails": "Add the required prefix (arn) to the resource ARN."

Resolving the error

AWS resource ARNs must include the required arn: prefix.

Related terms

• Policy resources

• Resource ARNs

• AWS service resources with ARN formats

Error – Invalid ARN Region

In the AWS Management Console, the finding for this check includes the following message:

Invalid ARN Region: The Region {{region}} is not valid for this resource. Update the
 resource ARN to include a supported Region.

In programmatic calls to the AWS CLI or AWS API, the finding for this check includes the following
message:

"findingDetails": "The Region {{region}} is not valid for this resource. Update the
 resource ARN to include a supported Region."

Resolving the error

The resource type is not supported in the specified Region. For a table of AWS services supported
in each Region, see the Region table.

Related terms

IAM Access Analyzer policy validation 2493

https://docs.aws.amazon.com/service-authorization/latest/reference/reference_policies_actions-resources-contextkeys.html
https://aws.amazon.com/about-aws/global-infrastructure/regional-product-services/

AWS Identity and Access Management User Guide

• Policy resources

• Resource ARNs

• Region names and codes

Error – Invalid ARN resource

In the AWS Management Console, the finding for this check includes the following message:

Invalid ARN resource: Resource ARN does not match the expected ARN format. Update the
 resource portion of the ARN.

In programmatic calls to the AWS CLI or AWS API, the finding for this check includes the following
message:

"findingDetails": "Resource ARN does not match the expected ARN format. Update the
 resource portion of the ARN."

Resolving the error

The resource ARN must match the specifications for known resource types. To view the expected
ARN format for a service, see Actions, resources, and condition keys for AWS services. Choose the
name of the service to view its resource types and ARN formats.

Related terms

• Policy resources

• Resource ARNs

• AWS service resources with ARN formats

Error – Invalid ARN service case

In the AWS Management Console, the finding for this check includes the following message:

Invalid ARN service case: Update the service name ${service} in the resource ARN to use
 all lowercase letters.

In programmatic calls to the AWS CLI or AWS API, the finding for this check includes the following
message:

IAM Access Analyzer policy validation 2494

https://docs.aws.amazon.com/general/latest/gr/rande.html#region-names-codes
https://docs.aws.amazon.com/service-authorization/latest/reference/reference_policies_actions-resources-contextkeys.html
https://docs.aws.amazon.com/service-authorization/latest/reference/reference_policies_actions-resources-contextkeys.html

AWS Identity and Access Management User Guide

"findingDetails": "Update the service name ${service} in the resource ARN to use all
 lowercase letters."

Resolving the error

The service in the resource ARN must match the specifications (including capitalization) for service
prefixes. To view the prefix for a service, see Actions, resources, and condition keys for AWS
services. Choose the name of the service and locate its prefix in the first sentence.

Related terms

• Policy resources

• Resource ARNs

• AWS service resources with ARN formats

Error – Invalid condition data type

In the AWS Management Console, the finding for this check includes the following message:

Invalid condition data type: The condition value data types do not match. Use condition
 values of the same JSON data type.

In programmatic calls to the AWS CLI or AWS API, the finding for this check includes the following
message:

"findingDetails": "The condition value data types do not match. Use condition values of
 the same JSON data type."

Resolving the error

The value in the condition key-value pair must match the data type of the condition key and
condition operator. To view the condition key data type for a service, see Actions, resources, and
condition keys for AWS services. Choose the name of the service to view the condition keys for that
service.

For example, the CurrentTime global condition key supports the Date condition operator. If you
provide a string or an integer for the value in the condition block, the data type won't match.

Related terms

IAM Access Analyzer policy validation 2495

https://docs.aws.amazon.com/service-authorization/latest/reference/reference_policies_actions-resources-contextkeys.html
https://docs.aws.amazon.com/service-authorization/latest/reference/reference_policies_actions-resources-contextkeys.html
https://docs.aws.amazon.com/service-authorization/latest/reference/reference_policies_actions-resources-contextkeys.html
https://docs.aws.amazon.com/service-authorization/latest/reference/reference_policies_actions-resources-contextkeys.html
https://docs.aws.amazon.com/service-authorization/latest/reference/reference_policies_actions-resources-contextkeys.html

AWS Identity and Access Management User Guide

• Conditions

• Condition block

• IAM JSON policy elements: Condition operators

• Global condition keys

• AWS service condition keys

Error – Invalid condition key format

In the AWS Management Console, the finding for this check includes the following message:

Invalid condition key format: The condition key format is not valid. Use the format
 service:keyname.

In programmatic calls to the AWS CLI or AWS API, the finding for this check includes the following
message:

"findingDetails": "The condition key format is not valid. Use the format
 service:keyname."

Resolving the error

The key in the condition key-value pair must match the specifications for the service. To view the
condition keys for a service, see Actions, resources, and condition keys for AWS services. Choose the
name of the service to view the condition keys for that service.

Related terms

• Conditions

• Global condition keys

• AWS service condition keys

Error – Invalid condition multiple Boolean

In the AWS Management Console, the finding for this check includes the following message:

Invalid condition multiple Boolean: The condition key does not support multiple Boolean
 values. Use a single Boolean value.

IAM Access Analyzer policy validation 2496

https://docs.aws.amazon.com/service-authorization/latest/reference/reference_policies_actions-resources-contextkeys.html
https://docs.aws.amazon.com/service-authorization/latest/reference/reference_policies_actions-resources-contextkeys.html
https://docs.aws.amazon.com/service-authorization/latest/reference/reference_policies_actions-resources-contextkeys.html

AWS Identity and Access Management User Guide

In programmatic calls to the AWS CLI or AWS API, the finding for this check includes the following
message:

"findingDetails": "The condition key does not support multiple Boolean values. Use a
 single Boolean value."

Resolving the error

The key in the condition key-value pair expects a single Boolean value. When you provide multiple
Boolean values, the condition match might not return the results that you expect.

To view the condition keys for a service, see Actions, resources, and condition keys for AWS
services. Choose the name of the service to view the condition keys for that service.

• Conditions

• Global condition keys

• AWS service condition keys

Error – Invalid condition operator

In the AWS Management Console, the finding for this check includes the following message:

Invalid condition operator: The condition operator {{operator}} is not valid. Use a
 valid condition operator.

In programmatic calls to the AWS CLI or AWS API, the finding for this check includes the following
message:

"findingDetails": "The condition operator {{operator}} is not valid. Use a valid
 condition operator."

Resolving the error

Update the condition to use a supported condition operator.

Related terms

• IAM JSON policy elements: Condition operators

IAM Access Analyzer policy validation 2497

https://docs.aws.amazon.com/service-authorization/latest/reference/reference_policies_actions-resources-contextkeys.html
https://docs.aws.amazon.com/service-authorization/latest/reference/reference_policies_actions-resources-contextkeys.html
https://docs.aws.amazon.com/service-authorization/latest/reference/reference_policies_actions-resources-contextkeys.html

AWS Identity and Access Management User Guide

• Condition element

• Overview of JSON policies

Error – Invalid effect

In the AWS Management Console, the finding for this check includes the following message:

Invalid effect: The effect {{effect}} is not valid. Use Allow or Deny.

In programmatic calls to the AWS CLI or AWS API, the finding for this check includes the following
message:

"findingDetails": "The effect {{effect}} is not valid. Use Allow or Deny."

Resolving the error

Update the Effect element to use a valid effect. Valid values for Effect are Allow and Deny.

Related terms

• Effect element

• Overview of JSON policies

Error – Invalid global condition key

In the AWS Management Console, the finding for this check includes the following message:

Invalid global condition key: The condition key {{key}} does not exist. Use a valid
 condition key.

In programmatic calls to the AWS CLI or AWS API, the finding for this check includes the following
message:

"findingDetails": "The condition key {{key}} does not exist. Use a valid condition
 key."

Resolving the error

IAM Access Analyzer policy validation 2498

AWS Identity and Access Management User Guide

Update the condition key in the condition key-value pair to use a supported global condition key.

Global condition keys are condition keys with an aws: prefix. AWS services can support global
condition keys or provide service-specific keys that include their service prefix. For example,
IAM condition keys include the iam: prefix. For more information, see Actions, Resources, and
Condition Keys for AWS Services and choose the service whose keys you want to view.

Related terms

• Global condition keys

Error – Invalid partition

In the AWS Management Console, the finding for this check includes the following message:

Invalid partition: The resource ARN for the service {{service}} does not support the
 partition {{partition}}. Use the supported values: {{partitions}}

In programmatic calls to the AWS CLI or AWS API, the finding for this check includes the following
message:

"findingDetails": "The resource ARN for the service {{service}} does not support the
 partition {{partition}}. Use the supported values: {{partitions}}"

Resolving the error

Update the resource ARN to include a supported partition. If you included a supported partition,
then the service or resource might not support the partition that you included.

A partition is a group of AWS Regions. Each AWS account is scoped to one partition. In Classic
Regions, use the aws partition. In China Regions, use aws-cn.

Related terms

• Amazon Resource Names (ARNs) - Partitions

Error – Invalid policy element

In the AWS Management Console, the finding for this check includes the following message:

IAM Access Analyzer policy validation 2499

https://docs.aws.amazon.com/service-authorization/latest/reference/reference_policies_actions-resources-contextkeys.html
https://docs.aws.amazon.com/service-authorization/latest/reference/reference_policies_actions-resources-contextkeys.html
https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html

AWS Identity and Access Management User Guide

Invalid policy element: The policy element {{element}} is not valid.

In programmatic calls to the AWS CLI or AWS API, the finding for this check includes the following
message:

"findingDetails": "The policy element {{element}} is not valid."

Resolving the error

Update the policy to include only supported JSON policy elements.

Related terms

• JSON policy elements

Error – Invalid principal format

In the AWS Management Console, the finding for this check includes the following message:

Invalid principal format: The Principal element contents are not valid. Specify a key-
value pair in the Principal element.

In programmatic calls to the AWS CLI or AWS API, the finding for this check includes the following
message:

"findingDetails": "The Principal element contents are not valid. Specify a key-value
 pair in the Principal element."

Resolving the error

Update the principal to use a supported key-value pair format.

You can specify a principal in a resource-based policy, but not an identity-based policy.

For example, to define access for everyone in an AWS account, use the following principal in your
policy:

"Principal": { "AWS": "123456789012" }

Related terms

IAM Access Analyzer policy validation 2500

AWS Identity and Access Management User Guide

• JSON policy elements: Principal

• Identity-based policies and resource-based policies

Error – Invalid principal key

In the AWS Management Console, the finding for this check includes the following message:

Invalid principal key: The principal key {{principal-key}} is not valid.

In programmatic calls to the AWS CLI or AWS API, the finding for this check includes the following
message:

"findingDetails": "The principal key {{principal-key}} is not valid."

Resolving the error

Update the key in the principal key-value pair to use a supported principal key. The following are
supported principal keys:

• AWS

• CanonicalUser

• Federated

• Service

Related terms

• Principal element

Error – Invalid Region

In the AWS Management Console, the finding for this check includes the following message:

Invalid Region: The Region {{region}} is not valid. Update the condition value to a
 suported Region.

In programmatic calls to the AWS CLI or AWS API, the finding for this check includes the following
message:

IAM Access Analyzer policy validation 2501

AWS Identity and Access Management User Guide

"findingDetails": "The Region {{region}} is not valid. Update the condition value to a
 suported Region."

Resolving the error

Update the value of the condition key-value pair to include a supported Region. For a table of AWS
services supported in each Region, see the Region table.

Related terms

• Policy resources

• Resource ARNs

• Region names and codes

Error – Invalid service

In the AWS Management Console, the finding for this check includes the following message:

Invalid service: The service {{service}} does not exist. Use a valid service name.

In programmatic calls to the AWS CLI or AWS API, the finding for this check includes the following
message:

"findingDetails": "The service {{service}} does not exist. Use a valid service name."

Resolving the error

The service prefix in the action or condition key must match the specifications (including
capitalization) for service prefixes. To view the prefix for a service, see Actions, resources, and
condition keys for AWS services. Choose the name of the service and locate its prefix in the first
sentence.

Related terms

• Known services and their actions, resources, and condition keys

Error – Invalid service condition key

In the AWS Management Console, the finding for this check includes the following message:

IAM Access Analyzer policy validation 2502

https://aws.amazon.com/about-aws/global-infrastructure/regional-product-services/
https://docs.aws.amazon.com/general/latest/gr/rande.html#region-names-codes
https://docs.aws.amazon.com/service-authorization/latest/reference/reference_policies_actions-resources-contextkeys.html
https://docs.aws.amazon.com/service-authorization/latest/reference/reference_policies_actions-resources-contextkeys.html
https://docs.aws.amazon.com/service-authorization/latest/reference/reference_policies_actions-resources-contextkeys.html

AWS Identity and Access Management User Guide

Invalid service condition key: The condition key {{key}} does not exist in the service
 {{service}}. Use a valid condition key.

In programmatic calls to the AWS CLI or AWS API, the finding for this check includes the following
message:

"findingDetails": "The condition key {{key}} does not exist in the service {{service}}.
 Use a valid condition key."

Resolving the error

Update the key in the condition key-value pair to use a known condition key for the service. Global
condition key names begin with the aws prefix. AWS services can provide service-specific keys that
include their service prefix. To view the prefix for a service, see Actions, resources, and condition
keys for AWS services.

Related terms

• Global condition keys

• Known services and their actions, resources, and condition keys

Error – Invalid service in action

In the AWS Management Console, the finding for this check includes the following message:

Invalid service in action: The service {{service}} specified in the action does not
 exist. Did you mean {{service2}}?

In programmatic calls to the AWS CLI or AWS API, the finding for this check includes the following
message:

"findingDetails": "The service {{service}} specified in the action does not exist. Did
 you mean {{service2}}?"

Resolving the error

The service prefix in the action must match the specifications (including capitalization) for service
prefixes. To view the prefix for a service, see Actions, resources, and condition keys for AWS
services. Choose the name of the service and locate its prefix in the first sentence.

IAM Access Analyzer policy validation 2503

https://docs.aws.amazon.com/service-authorization/latest/reference/reference_policies_actions-resources-contextkeys.html
https://docs.aws.amazon.com/service-authorization/latest/reference/reference_policies_actions-resources-contextkeys.html
https://docs.aws.amazon.com/service-authorization/latest/reference/reference_policies_actions-resources-contextkeys.html
https://docs.aws.amazon.com/service-authorization/latest/reference/reference_policies_actions-resources-contextkeys.html
https://docs.aws.amazon.com/service-authorization/latest/reference/reference_policies_actions-resources-contextkeys.html

AWS Identity and Access Management User Guide

Related terms

• Action element

• Known services and their actions

Error – Invalid variable for operator

In the AWS Management Console, the finding for this check includes the following message:

Invalid variable for operator: Policy variables can only be used with String and ARN
 operators.

In programmatic calls to the AWS CLI or AWS API, the finding for this check includes the following
message:

"findingDetails": "Policy variables can only be used with String and ARN operators."

Resolving the error

You can use policy variables in the Resource element and in string comparisons in
the Condition element. Conditions support variables when you use string operators or ARN
operators. String operators include StringEquals, StringLike, and StringNotLike. ARN
operators include ArnEquals and ArnLike. You can't use a policy variable with other operators,
such as Numeric, Date, Boolean, Binary, IP Address, or Null operators.

Related terms

• Using policy variables in the Condition element

• Condition element

Error – Invalid version

In the AWS Management Console, the finding for this check includes the following message:

Invalid version: The version ${version} is not valid. Use one of the following
 versions: ${versions}

In programmatic calls to the AWS CLI or AWS API, the finding for this check includes the following
message:

IAM Access Analyzer policy validation 2504

https://docs.aws.amazon.com/service-authorization/latest/reference/reference_policies_actions-resources-contextkeys.html

AWS Identity and Access Management User Guide

"findingDetails": "The version ${version} is not valid. Use one of the following
 versions: ${versions}"

Resolving the error

The Version policy element specifies the language syntax rules that AWS uses to process a
policy. To use all of the available policy features, include the latest Version element before
the Statement element in all of your policies.

"Version": "2012-10-17"

Related terms

• Version element

Error – Json syntax error

In the AWS Management Console, the finding for this check includes the following message:

Json syntax error: Fix the JSON syntax error at index {{index}} line {{line}} column
 {{column}}.

In programmatic calls to the AWS CLI or AWS API, the finding for this check includes the following
message:

"findingDetails": "Fix the JSON syntax error at index {{index}} line {{line}} column
 {{column}}."

Resolving the error

Your policy includes a syntax error. Check your JSON syntax.

Related terms

• JSON validator

• IAM JSON policy elements reference

• Overview of JSON policies

IAM Access Analyzer policy validation 2505

https://jsonlint.com/

AWS Identity and Access Management User Guide

Error – Json syntax error

In the AWS Management Console, the finding for this check includes the following message:

Json syntax error: Fix the JSON syntax error.

In programmatic calls to the AWS CLI or AWS API, the finding for this check includes the following
message:

"findingDetails": "Fix the JSON syntax error."

Resolving the error

Your policy includes a syntax error. Check your JSON syntax.

Related terms

• JSON validator

• IAM JSON policy elements reference

• Overview of JSON policies

Error – Missing action

In the AWS Management Console, the finding for this check includes the following message:

Missing action: Add an Action or NotAction element to the policy statement.

In programmatic calls to the AWS CLI or AWS API, the finding for this check includes the following
message:

"findingDetails": "Add an Action or NotAction element to the policy statement."

Resolving the error

AWS JSON policies must include an Action or NotAction element.

Related terms

• Action element

IAM Access Analyzer policy validation 2506

https://jsonlint.com/

AWS Identity and Access Management User Guide

• NotAction element

• Overview of JSON policies

Error – Missing ARN field

In the AWS Management Console, the finding for this check includes the following message:

Missing ARN field: Resource ARNs must include at least {{fields}} fields in the
 following structure: arn:partition:service:region:account:resource

In programmatic calls to the AWS CLI or AWS API, the finding for this check includes the following
message:

"findingDetails": "Resource ARNs must include at least {{fields}} fields in the
 following structure: arn:partition:service:region:account:resource"

Resolving the error

All of the fields in the resource ARN must match the specifications for a known resource type. To
view the expected ARN format for a service, see Actions, resources, and condition keys for AWS
services. Choose the name of the service to view its resource types and ARN formats.

Related terms

• Policy resources

• Resource ARNs

• AWS service resources with ARN formats

Error – Missing ARN Region

In the AWS Management Console, the finding for this check includes the following message:

Missing ARN Region: Add a Region to the {{service}} resource ARN.

In programmatic calls to the AWS CLI or AWS API, the finding for this check includes the following
message:

"findingDetails": "Add a Region to the {{service}} resource ARN."

IAM Access Analyzer policy validation 2507

https://docs.aws.amazon.com/service-authorization/latest/reference/reference_policies_actions-resources-contextkeys.html
https://docs.aws.amazon.com/service-authorization/latest/reference/reference_policies_actions-resources-contextkeys.html
https://docs.aws.amazon.com/service-authorization/latest/reference/reference_policies_actions-resources-contextkeys.html

AWS Identity and Access Management User Guide

Resolving the error

The resource ARNs for most AWS services require that you specify a Region. For a table of AWS
services supported in each Region, see the Region table.

Related terms

• Policy resources

• Resource ARNs

• Region names and codes

Error – Missing effect

In the AWS Management Console, the finding for this check includes the following message:

Missing effect: Add an Effect element to the policy statement with a value of Allow or
 Deny.

In programmatic calls to the AWS CLI or AWS API, the finding for this check includes the following
message:

"findingDetails": "Add an Effect element to the policy statement with a value of Allow
 or Deny."

Resolving the error

AWS JSON policies must include an Effect element with a value of Allow and Deny.

Related terms

• Effect element

• Overview of JSON policies

Error – Missing principal

In the AWS Management Console, the finding for this check includes the following message:

Missing principal: Add a Principal element to the policy statement.

IAM Access Analyzer policy validation 2508

https://aws.amazon.com/about-aws/global-infrastructure/regional-product-services/
https://docs.aws.amazon.com/general/latest/gr/rande.html#region-names-codes

AWS Identity and Access Management User Guide

In programmatic calls to the AWS CLI or AWS API, the finding for this check includes the following
message:

"findingDetails": "Add a Principal element to the policy statement."

Resolving the error

Resource-based policies must include a Principal element.

For example, to define access for everyone in an AWS account, use the following principal in your
policy:

"Principal": { "AWS": "123456789012" }

Related terms

• Principal element

• Identity-based policies and resource-based policies

Error – Missing qualifier

In the AWS Management Console, the finding for this check includes the following message:

Missing qualifier: The request context key ${key} has multiple values. Use the
 ForAllValues or ForAnyValue condition key qualifiers in your policy.

In programmatic calls to the AWS CLI or AWS API, the finding for this check includes the following
message:

"findingDetails": "The request context key ${key} has multiple values. Use the
 ForAllValues or ForAnyValue condition key qualifiers in your policy."

Resolving the error

In the Condition element, you build expressions in which you use condition operators like
equal or less than to compare a condition in the policy against keys and values in the request
context. For requests that include multiple values for a single condition key, you must enclose
the conditions within brackets like an array ("Key2":["Value2A", "Value2B"]). You must also use

IAM Access Analyzer policy validation 2509

AWS Identity and Access Management User Guide

the ForAllValues or ForAnyValue set operators with the StringLike condition operator.
These qualifiers add set-operation functionality to the condition operator so that you can test
multiple request values against multiple condition values.

Related terms

• Multivalued context keys

• Condition element

AWS managed policies with this error

AWS managed policies enable you to get started with AWS by assigning permissions based on
general AWS use cases.

The following AWS managed policies include a missing qualifier for condition keys in their policy
statements. When using the AWS managed policy as a reference to create your customer managed
policy, AWS recommends that you add the ForAllValues or ForAnyValue condition key
qualifiers to your Condition element.

• AWSGlueConsoleSageMakerNotebookFullAccess

Error – Missing resource

In the AWS Management Console, the finding for this check includes the following message:

Missing resource: Add a Resource or NotResource element to the policy statement.

In programmatic calls to the AWS CLI or AWS API, the finding for this check includes the following
message:

"findingDetails": "Add a Resource or NotResource element to the policy statement."

Resolving the error

Identity-based policies must include a Resource or NotResource element.

Related terms

• Resource element

IAM Access Analyzer policy validation 2510

https://console.aws.amazon.com/iam/home#policies/arn:aws:iam::aws:policy/AWSGlueConsoleSageMakerNotebookFullAccess

AWS Identity and Access Management User Guide

• NotResource element

• Identity-based policies and resource-based policies

• Overview of JSON policies

Error – Missing statement

In the AWS Management Console, the finding for this check includes the following message:

Missing statement: Add a statement to the policy

In programmatic calls to the AWS CLI or AWS API, the finding for this check includes the following
message:

"findingDetails": "Add a statement to the policy"

Resolving the error

A JSON policy must include a statement.

Related terms

• JSON policy elements

Error – Null with if exists

In the AWS Management Console, the finding for this check includes the following message:

Null with if exists: The Null condition operator cannot be used with the IfExists
 suffix. Update the operator or the suffix.

In programmatic calls to the AWS CLI or AWS API, the finding for this check includes the following
message:

"findingDetails": "The Null condition operator cannot be used with the IfExists suffix.
 Update the operator or the suffix."

Resolving the error

IAM Access Analyzer policy validation 2511

AWS Identity and Access Management User Guide

You can add IfExists to the end of any condition operator name except the Null condition
operator. Use a Null condition operator to check if a condition key is present at the time of
authorization. Use ...ifExists to say "If the policy key is present in the context of the request,
process the key as specified in the policy. If the key is not present, evaluate the condition element
as true."

Related terms

• ...IfExists condition operators

• Null condition operator

• Condition element

Error – SCP syntax error action wildcard

In the AWS Management Console, the finding for this check includes the following message:

SCP syntax error action wildcard: SCP actions can include wildcards (*) only at the end
 of a string. Update {{action}}.

In programmatic calls to the AWS CLI or AWS API, the finding for this check includes the following
message:

"findingDetails": "SCP actions can include wildcards (*) only at the end of a string.
 Update {{action}}."

Resolving the error

AWS Organizations service control policies (SCPs) support specifying values in the Action or
NotAction elements. However, these values can include wildcards (*) only at the end of the string.
This means that you can specify iam:Get* but not iam:*role.

To specify multiple actions, AWS recommends that you list them individually.

Related terms

• SCP Action and NotAction elements

• SCP evaluation

• AWS Organizations service control policies

IAM Access Analyzer policy validation 2512

https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_scps_syntax.html#scp-syntax-action
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_scps_evaluation.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_scps.html

AWS Identity and Access Management User Guide

• IAM JSON policy elements: Action

Error – SCP syntax error allow condition

In the AWS Management Console, the finding for this check includes the following message:

SCP syntax error allow condition: SCPs do not support the Condition element with effect
 Allow. Update the element Condition or the effect.

In programmatic calls to the AWS CLI or AWS API, the finding for this check includes the following
message:

"findingDetails": "SCPs do not support the Condition element with effect Allow. Update
 the element Condition or the effect."

Resolving the error

AWS Organizations service control policies (SCPs) support specifying values in the Condition
element only when you use "Effect": "Deny".

To allow only a single action, you can deny access to everything except the condition that you
specify using the ...NotEquals version of a condition operator. This negates the comparison
made by the operator.

Related terms

• SCP Condition element

• SCP evaluation

• AWS Organizations service control policies

• Example policy: Denies access to AWS based on the requested Region

• IAM JSON policy elements: Condition operators

• IAM JSON policy elements: Condition

Error – SCP syntax error allow NotAction

In the AWS Management Console, the finding for this check includes the following message:

IAM Access Analyzer policy validation 2513

https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_scps_syntax.html#scp-syntax-condition
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_scps_evaluation.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_scps.html

AWS Identity and Access Management User Guide

SCP syntax error allow NotAction: SCPs do not support NotAction with effect Allow.
 Update the element NotAction or the effect.

In programmatic calls to the AWS CLI or AWS API, the finding for this check includes the following
message:

"findingDetails": "SCPs do not support NotAction with effect Allow. Update the element
 NotAction or the effect."

Resolving the error

AWS Organizations service control policies (SCPs) do not support using the NotAction element
with "Effect": "Allow".

You must rewrite the logic to allow a list of actions, or to deny every action that is not listed.

Related terms

• SCP Action and NotAction elements

• SCP evaluation

• AWS Organizations service control policies

• IAM JSON policy elements: Action

Error – SCP syntax error allow resource

In the AWS Management Console, the finding for this check includes the following message:

SCP syntax error allow resource: SCPs do not support Resource with effect Allow. Update
 the element Resource or the effect.

In programmatic calls to the AWS CLI or AWS API, the finding for this check includes the following
message:

"findingDetails": "SCPs do not support Resource with effect Allow. Update the element
 Resource or the effect."

Resolving the error

IAM Access Analyzer policy validation 2514

https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_scps_syntax.html#scp-syntax-action
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_scps_evaluation.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_scps.html

AWS Identity and Access Management User Guide

AWS Organizations service control policies (SCPs) support specifying values in the Resource
element only when you use "Effect": "Deny".

You must rewrite the logic to allow all resources, or to deny every resource that is listed.

Related terms

• SCP Resource element

• SCP evaluation

• AWS Organizations service control policies

• IAM JSON policy elements: Resource

Error – SCP syntax error NotResource

In the AWS Management Console, the finding for this check includes the following message:

SCP syntax error NotResource: SCPs do not support the NotResource element. Update the
 policy to use Resource instead.

In programmatic calls to the AWS CLI or AWS API, the finding for this check includes the following
message:

"findingDetails": "SCPs do not support the NotResource element. Update the policy to
 use Resource instead."

Resolving the error

AWS Organizations service control policies (SCPs) do not support the NotResource element.

You must rewrite the logic to allow all resources, or to deny every resource that is listed.

Related terms

• SCP Resource element

• SCP evaluation

• AWS Organizations service control policies

• IAM JSON policy elements: Resource

IAM Access Analyzer policy validation 2515

https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_scps_syntax.html#scp-syntax-resource
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_scps_evaluation.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_scps.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_scps_syntax.html#scp-syntax-resource
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_scps_evaluation.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_scps.html

AWS Identity and Access Management User Guide

Error – SCP syntax error principal

In the AWS Management Console, the finding for this check includes the following message:

SCP syntax error principal: SCPs do not support specifying principals. Remove the
 Principal or NotPrincipal element.

In programmatic calls to the AWS CLI or AWS API, the finding for this check includes the following
message:

"findingDetails": "SCPs do not support specifying principals. Remove the Principal or
 NotPrincipal element."

Resolving the error

AWS Organizations service control policies (SCPs) do not support the Principal or
NotPrincipal elements.

You can specify the Amazon Resource Name (ARN) using the aws:PrincipalArn global condition
key in the Condition element.

Related terms

• SCP syntax

• Global condition keys for principals

Error – Unique Sids required

In the AWS Management Console, the finding for this check includes the following message:

Unique Sids required: Duplicate statement IDs are not supported for this policy type.
 Update the Sid value.

In programmatic calls to the AWS CLI or AWS API, the finding for this check includes the following
message:

"findingDetails": "Duplicate statement IDs are not supported for this policy type.
 Update the Sid value."

IAM Access Analyzer policy validation 2516

https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_scps_syntax.html

AWS Identity and Access Management User Guide

Resolving the error

For some policy types, statement IDs must be unique. The Sid (statement ID) element allows
you to enter an optional identifier that you provide for the policy statement. You can assign a
statement ID value to each statement in a statement array using the SID element. In services that
let you specify an ID element, such as SQS and SNS, the Sid value is just a sub-ID of the policy
document's ID. For example, in IAM, the Sid value must be unique within a JSON policy.

Related terms

• IAM JSON policy elements: Sid

Error – Unsupported action in policy

In the AWS Management Console, the finding for this check includes the following message:

Unsupported action in policy: The action {{action}} is not supported for the resource-
based policy attached to the resource type {{resourceType}}.

In programmatic calls to the AWS CLI or AWS API, the finding for this check includes the following
message:

"findingDetails": "The action {{action}} is not supported for the resource-based policy
 attached to the resource type {{resourceType}}."

Resolving the error

Some actions aren't supported in the Action element in the resource-based policy attached to a
different resource type. For example, AWS Key Management Service actions aren't supported in
Amazon S3 bucket policies. Specify an action that is supported by resource type attached to your
resource-based policy.

Related terms

• JSON policy elements: Action

Error – Unsupported element combination

In the AWS Management Console, the finding for this check includes the following message:

IAM Access Analyzer policy validation 2517

AWS Identity and Access Management User Guide

Unsupported element combination: The policy elements ${element1} and ${element2} can
 not be used in the same statement. Remove one of these elements.

In programmatic calls to the AWS CLI or AWS API, the finding for this check includes the following
message:

"findingDetails": "The policy elements ${element1} and ${element2} can not be used in
 the same statement. Remove one of these elements."

Resolving the error

Some combinations of JSON policy elements can't be used together. For example, you cannot
use both Action and NotAction in the same policy statement. Other pairs that are mutually
exclusive include Principal/NotPrincipal and Resource/NotResource.

Related terms

• IAM JSON policy elements reference

• Overview of JSON policies

Error – Unsupported global condition key

In the AWS Management Console, the finding for this check includes the following message:

Unsupported global condition key: The condition key aws:ARN is not supported. Use
 aws:PrincipalArn or aws:SourceArn instead.

In programmatic calls to the AWS CLI or AWS API, the finding for this check includes the following
message:

"findingDetails": "The condition key aws:ARN is not supported. Use aws:PrincipalArn or
 aws:SourceArn instead."

Resolving the error

AWS does not support using the specified global condition key. Depending on your use case, you
can use the aws:PrincipalArn or aws:SourceArn global condition keys. For example, instead

IAM Access Analyzer policy validation 2518

AWS Identity and Access Management User Guide

of aws:ARN, use the aws:PrincipalArn to compare the Amazon Resource Name (ARN) of the
principal that made the request with the ARN that you specify in the policy. Alternatively, use
the aws:SourceArn global condition key to compare the Amazon Resource Name (ARN) of the
resource making a service-to-service request with the ARN that you specify in the policy.

Related terms

• AWS global condition context keys

Error – Unsupported principal

In the AWS Management Console, the finding for this check includes the following message:

Unsupported principal: The policy type ${policy_type} does not support the Principal
 element. Remove the Principal element.

In programmatic calls to the AWS CLI or AWS API, the finding for this check includes the following
message:

"findingDetails": "The policy type ${policy_type} does not support the Principal
 element. Remove the Principal element."

Resolving the error

The Principal element specifies the principal that is allowed or denied access to a resource. You
cannot use the Principal element in an IAM identity-based policy. You can use it in the trust
policies for IAM roles and in resource-based policies. Resource-based policies are policies that you
embed directly in a resource. For example, you can embed policies in an Amazon S3 bucket or an
AWS KMS key.

Related terms

• AWS JSON policy elements: Principal

• Cross account resource access in IAM

Error – Unsupported resource ARN in policy

In the AWS Management Console, the finding for this check includes the following message:

IAM Access Analyzer policy validation 2519

AWS Identity and Access Management User Guide

Unsupported resource ARN in policy: The resource ARN is not supported for the resource-
based policy attached to the resource type {{resourceType}}.

In programmatic calls to the AWS CLI or AWS API, the finding for this check includes the following
message:

"findingDetails": "The resource ARN is not supported for the resource-based policy
 attached to the resource type {{resourceType}}."

Resolving the error

Some resource ARNs aren't supported in the Resource element of the resource-based policy when
the policy is attached to a different resource type. For example, AWS KMS ARNs aren't supported in
the Resource element for Amazon S3 bucket policies. Specify a resource ARN that is supported by
a resource type attached to your resource-based policy.

Related terms

• JSON policy elements: Action

Error – Unsupported Sid

In the AWS Management Console, the finding for this check includes the following message:

Unsupported Sid: Update the characters in the Sid element to use one of the following
 character types: [a-z, A-Z, 0-9]

In programmatic calls to the AWS CLI or AWS API, the finding for this check includes the following
message:

"findingDetails": "Update the characters in the Sid element to use one of the following
 character types: [a-z, A-Z, 0-9]"

Resolving the error

The Sid element supports uppercase letters, lowercase letters, and numbers.

Related terms

IAM Access Analyzer policy validation 2520

AWS Identity and Access Management User Guide

• IAM JSON policy elements: Sid

Error – Unsupported wildcard in principal

In the AWS Management Console, the finding for this check includes the following message:

Unsupported wildcard in principal: Wildcards (*, ?) are not supported with the
 principal key {{principal_key}}. Replace the wildcard with a valid principal value.

In programmatic calls to the AWS CLI or AWS API, the finding for this check includes the following
message:

"findingDetails": "Wildcards (*, ?) are not supported with the principal key
 {{principal_key}}. Replace the wildcard with a valid principal value."

Resolving the error

The Principal element structure supports using a key-value pair. The principal value specified
in the policy includes a wildcard (*). You can't include a wildcard with the principal key that
you specified. For example, when you specify users in a Principal element, you cannot use a
wildcard to mean "all users". You must name a specific user or users. Similarly, when you specify an
assumed-role session, you cannot use a wildcard to mean "all sessions". You must name a specific
session. You also cannot use a wildcard to match part of a name or an ARN.

To resolve this finding, remove the wildcard and provide a more specific principal.

Related terms

• AWS JSON policy elements: Principal

Error – Missing brace in variable

In the AWS Management Console, the finding for this check includes the following message:

Missing brace in variable: The policy variable is missing a closing curly brace. Add }
 after the variable text.

In programmatic calls to the AWS CLI or AWS API, the finding for this check includes the following
message:

IAM Access Analyzer policy validation 2521

AWS Identity and Access Management User Guide

"findingDetails": "The policy variable is missing a closing curly brace. Add } after
 the variable text."

Resolving the error

Policy variable structure supports using a $ prefix followed by a pair of curly braces ({ }). Inside
the ${ } characters, include the name of the value from the request that you want to use in the
policy.

To resolve this finding, add the missing brace to make sure the full opening and closing set of
braces is present.

Related terms

• IAM policy elements: Variables

Error – Missing quote in variable

In the AWS Management Console, the finding for this check includes the following message:

Missing quote in variable: The policy variable default value must begin and end with a
 single quote. Add the missing quote.

In programmatic calls to the AWS CLI or AWS API, the finding for this check includes the following
message:

"findingDetails": "The policy variable default value must begin and end with a single
 quote. Add the missing quote."

Resolving the error

When you add a variable to your policy, you can specify a default value for the variable. If a
variable is not present, AWS uses the default text that you provide.

To add a default value to a variable, surround the default value with single quotes (' '), and
separate the variable text and the default value with a comma and space (,).

For example, if a principal is tagged with team=yellow, they can access the DOC-EXAMPLE-
BUCKET Amazon S3 bucket with the name DOC-EXAMPLE-BUCKET-yellow. A policy with this

IAM Access Analyzer policy validation 2522

AWS Identity and Access Management User Guide

resource might allow team members to access their own resources, but not those of other teams.
For users without team tags, you might set a default value of company-wide. These users can
access only the DOC-EXAMPLE-BUCKET-company-wide bucket where they can view broad
information, such as instructions for joining a team.

"Resource":"arn:aws:s3:::DOC-EXAMPLE-BUCKET-${aws:PrincipalTag/team, 'company-wide'}"

Related terms

• IAM policy elements: Variables

Error – Unsupported space in variable

In the AWS Management Console, the finding for this check includes the following message:

Unsupported space in variable: A space is not supported within the policy variable
 text. Remove the space.

In programmatic calls to the AWS CLI or AWS API, the finding for this check includes the following
message:

"findingDetails": "A space is not supported within the policy variable text. Remove the
 space."

Resolving the error

Policy variable structure supports using a $ prefix followed by a pair of curly braces ({ }). Inside
the ${ } characters, include the name of the value from the request that you want to use in the
policy. Although you can include a space when you specify a default variable, you cannot include a
space in the variable name.

Related terms

• IAM policy elements: Variables

Error – Empty variable

In the AWS Management Console, the finding for this check includes the following message:

IAM Access Analyzer policy validation 2523

AWS Identity and Access Management User Guide

Empty variable: Empty policy variable. Remove the ${ } variable structure or provide a
 variable within the structure.

In programmatic calls to the AWS CLI or AWS API, the finding for this check includes the following
message:

"findingDetails": "Empty policy variable. Remove the ${ } variable structure or provide
 a variable within the structure."

Resolving the error

Policy variable structure supports using a $ prefix followed by a pair of curly braces ({ }). Inside
the ${ } characters, include the name of the value from the request that you want to use in the
policy.

Related terms

• IAM policy elements: Variables

Error – Variable unsupported in element

In the AWS Management Console, the finding for this check includes the following message:

Variable unsupported in element: Policy variables are supported in the Resource and
 Condition elements. Remove the policy variable {{variable}} from this element.

In programmatic calls to the AWS CLI or AWS API, the finding for this check includes the following
message:

"findingDetails": "Policy variables are supported in the Resource and Condition
 elements. Remove the policy variable {{variable}} from this element."

Resolving the error

You can use policy variables in the Resource element and in string comparisons in the Condition
element.

Related terms

IAM Access Analyzer policy validation 2524

AWS Identity and Access Management User Guide

• IAM policy elements: Variables

Error – Variable unsupported in version

In the AWS Management Console, the finding for this check includes the following message:

Variable unsupported in version: To include variables in your policy, use the policy
 version 2012-10-17 or later.

In programmatic calls to the AWS CLI or AWS API, the finding for this check includes the following
message:

"findingDetails": "To include variables in your policy, use the policy version
 2012-10-17 or later."

Resolving the error

To use policy variables, you must include the Version element and set it to a version that
supports policy variables. Variables were introduced in version 2012-10-17. Earlier versions of the
policy language don't support policy variables. If you don't set the Version to 2012-10-17 or
later, variables like ${aws:username} are treated as literal strings in the policy.

A Version policy element is different from a policy version. The Version policy element is used
within a policy and defines the version of the policy language. A policy version, is created when
you change a customer managed policy in IAM. The changed policy doesn't overwrite the existing
policy. Instead, IAM creates a new version of the managed policy.

Related terms

• IAM policy elements: Variables

• IAM JSON policy elements: Version

Error – Private IP address

In the AWS Management Console, the finding for this check includes the following message:

Private IP address: aws:SourceIp works only for public IP address ranges. The values
 for condition key aws:SourceIp include only private IP addresses and will not have the
 desired effect. Update the value to include only public IP addresses.

IAM Access Analyzer policy validation 2525

AWS Identity and Access Management User Guide

In programmatic calls to the AWS CLI or AWS API, the finding for this check includes the following
message:

"findingDetails": "aws:SourceIp works only for public IP address ranges. The values
 for condition key aws:SourceIp include only private IP addresses and will not have the
 desired effect. Update the value to include only public IP addresses."

Resolving the error

The global condition key aws:SourceIp works only for public IP address ranges. You receive this
error when your policy allows only private IP addresses. In this case, the condition would never
match.

• aws:SourceIp global condition key

• IAM JSON policy elements: Condition

Error – Private NotIpAddress

In the AWS Management Console, the finding for this check includes the following message:

Private NotIpAddress: The values for condition key aws:SourceIp include only private
 IP addresses and has no effect. aws:SourceIp works only for public IP address ranges.
 Update the value to include only public IP addresses.

In programmatic calls to the AWS CLI or AWS API, the finding for this check includes the following
message:

"findingDetails": "The values for condition key aws:SourceIp include only private IP
 addresses and has no effect. aws:SourceIp works only for public IP address ranges.
 Update the value to include only public IP addresses."

Resolving the error

The global condition key aws:SourceIp works only for public IP address ranges. You receive this
error when you use the NotIpAddress condition operator and list only private IP addresses. In this
case, the condition would always match and would be ineffective.

• aws:SourceIp global condition key

• IAM JSON policy elements: Condition

IAM Access Analyzer policy validation 2526

AWS Identity and Access Management User Guide

Error – Policy size exceeds SCP quota

In the AWS Management Console, the finding for this check includes the following message:

Policy size exceeds SCP quota: The {{policySize}} characters in the service control
 policy (SCP) exceed the {{policySizeQuota}} character maximum for SCPs. We recommend
 that you use multiple granular policies.

In programmatic calls to the AWS CLI or AWS API, the finding for this check includes the following
message:

"findingDetails": "The {{policySize}} characters in the service control policy (SCP)
 exceed the {{policySizeQuota}} character maximum for SCPs. We recommend that you use
 multiple granular policies."

Resolving the error

AWS Organizations service control policies (SCPs) support specifying values in the Action or
NotAction elements. However, these values can include wildcards (*) only at the end of the string.
This means that you can specify iam:Get* but not iam:*role.

To specify multiple actions, AWS recommends that you list them individually.

Related terms

• Quotas for AWS Organizations

• AWS Organizations service control policies

Error – Invalid service principal format

In the AWS Management Console, the finding for this check includes the following message:

Invalid service principal format: The service principal does not match the expected
 format. Use the format {{expectedFormat}}.

In programmatic calls to the AWS CLI or AWS API, the finding for this check includes the following
message:

"findingDetails": "The service principal does not match the expected format. Use the
 format {{expectedFormat}}."

IAM Access Analyzer policy validation 2527

https://docs.aws.amazon.com/organizations/latest/userguide/orgs_reference_limits.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_scps.html

AWS Identity and Access Management User Guide

Resolving the error

The value in the condition key-value pair must match a defined service principal format.

A service principal is an identifier that is used to grant permissions to a service. You can specify
a service principal in the Principal element or as a value for some global condition keys and
service-specific keys. The service principal is defined by each service.

The identifier for a service principal includes the service name, and is usually in the following
format in all lowercase letters:

service-name.amazonaws.com

Some service-specific keys may use a different format for service principals. For example, the
kms:ViaService condition key requires the following format for service principals in all
lowercase letters:

service-name.AWS_region.amazonaws.com

Related terms

• Service principals

• AWS global condition keys

• kms:ViaService condition key

Error – Missing tag key in condition

In the AWS Management Console, the finding for this check includes the following message:

Missing tag key in condition: The condition key {{conditionKeyName}} must include a tag
 key to control access based on tags. Use the format {{conditionKeyName}}tag-key and
 specify a key name for tag-key.

In programmatic calls to the AWS CLI or AWS API, the finding for this check includes the following
message:

"findingDetails": "The condition key {{conditionKeyName}} must include a tag key to
 control access based on tags. Use the format {{conditionKeyName}}tag-key and specify a
 key name for tag-key."

IAM Access Analyzer policy validation 2528

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_principal.html#principal-services
https://docs.aws.amazon.com/kms/latest/developerguide/policy-conditions.html#conditions-kms-via-service

AWS Identity and Access Management User Guide

Resolving the error

To control access based on tags, you provide tag information in the condition element of a policy.

For example, to control access to AWS resources, you include the aws:ResourceTag condition key.
This key requires the format aws:ResourceTag/tag-key. To specify the tag key owner and the
tag value JaneDoe in a condition, use the following format.

"Condition": {
 "StringEquals": {"aws:ResourceTag/owner": "JaneDoe"}
}

Related terms

• Controlling access using tags

• Conditions

• Global condition keys

• AWS service condition keys

Error – Invalid vpc format

In the AWS Management Console, the finding for this check includes the following message:

Invalid vpc format: The VPC identifier in the condition key value is not valid. Use the
 prefix 'vpc-' followed by 8 or 17 alphanumeric characters.

In programmatic calls to the AWS CLI or AWS API, the finding for this check includes the following
message:

"findingDetails": "The VPC identifier in the condition key value is not valid. Use the
 prefix 'vpc-' followed by 8 or 17 alphanumeric characters."

Resolving the error

The aws:SourceVpc condition key must use the prefix vpc- followed by either 8 or 17
alphanumeric characters, for example, vpc-11223344556677889 or vpc-12345678.

Related terms

• AWS global condition keys: aws:SourceVpc

IAM Access Analyzer policy validation 2529

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_tags.html#access_tags_control-resources
https://docs.aws.amazon.com/service-authorization/latest/reference/reference_policies_actions-resources-contextkeys.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-sourcevpc

AWS Identity and Access Management User Guide

Error – Invalid vpce format

In the AWS Management Console, the finding for this check includes the following message:

Invalid vpce format: The VPCE identifier in the condition key value is not valid. Use
 the prefix 'vpce-' followed by 8 or 17 alphanumeric characters.

In programmatic calls to the AWS CLI or AWS API, the finding for this check includes the following
message:

"findingDetails": "The VPCE identifier in the condition key value is not valid. Use
 the prefix 'vpce-' followed by 8 or 17 alphanumeric characters."

Resolving the error

The aws:SourceVpce condition key must use the prefix vpce- followed by either 8 or 17
alphanumeric characters, for example, vpce-11223344556677889 or vpce-12345678.

Related terms

• AWS global condition keys: aws:SourceVpce

Error – Federated principal not supported

In the AWS Management Console, the finding for this check includes the following message:

Federated principal not supported: The policy type does not support a federated
 identity provider in the principal element. Use a supported principal.

In programmatic calls to the AWS CLI or AWS API, the finding for this check includes the following
message:

"findingDetails": "The policy type does not support a federated identity provider in
 the principal element. Use a supported principal."

Resolving the error

The Principal element uses federated principals for trust policies attached to IAM roles to
provide access through identity federation. Identity policies and other resource-based policies don't
support a federated identity provider in the Principal element. For example, you can't use a

IAM Access Analyzer policy validation 2530

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-sourcevpce

AWS Identity and Access Management User Guide

SAML principal in an Amazon S3 bucket policy. Change the Principal element to a supported
principal type.

Related terms

• Creating a role for identity federation

• JSON policy elements: Principal

Error – Unsupported action for condition key

In the AWS Management Console, the finding for this check includes the following message:

Unsupported action for condition key: The following actions: {{actions}} are not
 supported by the condition key {{key}}. The condition will not be evaluated for these
 actions. We recommend that you move these actions to a different statement without
 this condition key.

In programmatic calls to the AWS CLI or AWS API, the finding for this check includes the following
message:

"findingDetails": "The following actions: {{actions}} are not supported by the
 condition key {{key}}. The condition will not be evaluated for these actions. We
 recommend that you move these actions to a different statement without this condition
 key."

Resolving the error

Make sure that the condition key in the Condition element of the policy statement applies to
every action in the Action element. To ensure that the actions you specify are effectively allowed
or denied by your policy, you should move the unsupported actions to a different statement
without the condition key.

Note

If the Action element has actions with wildcards, IAM Access Analyzer doesn't evaluate
those actions for this error.

Related terms

IAM Access Analyzer policy validation 2531

AWS Identity and Access Management User Guide

• JSON policy elements: Action

Error – Unsupported action in policy

In the AWS Management Console, the finding for this check includes the following message:

Unsupported action in policy: The action {{action}} is not supported for the resource-
based policy attached to the resource type {{resourceType}}.

In programmatic calls to the AWS CLI or AWS API, the finding for this check includes the following
message:

"findingDetails": "The action {{action}} is not supported for the resource-based policy
 attached to the resource type {{resourceType}}."

Resolving the error

Some actions aren't supported in the Action element in the resource-based policy attached to a
different resource type. For example, AWS Key Management Service actions aren't supported in
Amazon S3 bucket policies. Specify an action that is supported by resource type attached to your
resource-based policy.

Related terms

• JSON policy elements: Action

Error – Unsupported resource ARN in policy

In the AWS Management Console, the finding for this check includes the following message:

Unsupported resource ARN in policy: The resource ARN is not supported for the resource-
based policy attached to the resource type {{resourceType}}.

In programmatic calls to the AWS CLI or AWS API, the finding for this check includes the following
message:

"findingDetails": "The resource ARN is not supported for the resource-based policy
 attached to the resource type {{resourceType}}."

IAM Access Analyzer policy validation 2532

AWS Identity and Access Management User Guide

Resolving the error

Some resource ARNs aren't supported in the Resource element of the resource-based policy when
the policy is attached to a different resource type. For example, AWS KMS ARNs aren't supported in
the Resource element for Amazon S3 bucket policies. Specify a resource ARN that is supported by
a resource type attached to your resource-based policy.

Related terms

• JSON policy elements: Action

Error – Unsupported condition key for service principal

In the AWS Management Console, the finding for this check includes the following message:

Unsupported condition key for service principal: The following condition keys are not
 supported when used with the service principal: {{conditionKeys}}.

In programmatic calls to the AWS CLI or AWS API, the finding for this check includes the following
message:

"findingDetails": "The following condition keys are not supported when used with the
 service principal: {{conditionKeys}}."

Resolving the error

You can specify AWS services in the Principal element of a resource-based policy using a service
principal, which is an identifier for the service. You can't use some condition keys with certain
service principals. For example, you can't use the aws:PrincipalOrgID condition key with the
service principal cloudfront.amazonaws.com. You should remove condition keys that do not
apply to the service principal in the Principal element.

Related terms

• Service principals

• JSON policy elements: Principal

Error – Role trust policy syntax error notprincipal

In the AWS Management Console, the finding for this check includes the following message:

IAM Access Analyzer policy validation 2533

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_principal.html#principal-services

AWS Identity and Access Management User Guide

Role trust policy syntax error notprincipal: Role trust policies do not support
 NotPrincipal. Update the policy to use a Principal element instead.

In programmatic calls to the AWS CLI or AWS API, the finding for this check includes the following
message:

"findingDetails": "Role trust policies do not support NotPrincipal. Update the policy
 to use a Principal element instead."

Resolving the error

A role trust policy is a resource-based policy that is attached to an IAM role. Trust policies define
which principal entities (accounts, users, roles, and federated users) can assume the role. Role trust
policies do not support NotPrincipal. Update the policy to use a Principal element instead.

Related terms

• JSON policy elements: Principal

• JSON policy elements: NotPrincipal

Error – Role trust policy unsupported wildcard in principal

In the AWS Management Console, the finding for this check includes the following message:

Role trust policy unsupported wildcard in principal: "Principal:" "*" is not supported
 in the principal element of a role trust policy. Replace the wildcard with a valid
 principal value.

In programmatic calls to the AWS CLI or AWS API, the finding for this check includes the following
message:

"findingDetails": ""Principal:" "*" is not supported in the principal element of a role
 trust policy. Replace the wildcard with a valid principal value."

Resolving the error

A role trust policy is a resource-based policy that is attached to an IAM role. Trust policies
define which principal entities (accounts, users, roles, and federated users) can assume the role.

IAM Access Analyzer policy validation 2534

AWS Identity and Access Management User Guide

"Principal:" "*" is not supported in the Principal element of a role trust policy. Replace the
wildcard with a valid principal value.

Related terms

• JSON policy elements: Principal

Error – Role trust policy syntax error resource

In the AWS Management Console, the finding for this check includes the following message:

Role trust policy syntax error resource: Role trust policies apply to the role
 that they are attached to. You cannot specify a resource. Remove the Resource or
 NotResource element.

In programmatic calls to the AWS CLI or AWS API, the finding for this check includes the following
message:

"findingDetails": "Role trust policies apply to the role that they are attached to. You
 cannot specify a resource. Remove the Resource or NotResource element."

Resolving the error

A role trust policy is a resource-based policy that is attached to an IAM role. Trust policies define
which principal entities (accounts, users, roles, and federated users) can assume the role. Role
trust policies apply to the role that they are attached to. You cannot specify a Resource or
NotResource element in a role trust policy. Remove the Resource or NotResource element.

• JSON policy elements: Resource

• JSON policy elements: NotResource

Error – Type mismatch IP range

In the AWS Management Console, the finding for this check includes the following message:

Type mismatch IP range: The condition operator {{operator}} is used with an invalid IP
 range value. Specify the IP range in standard CIDR format.

In programmatic calls to the AWS CLI or AWS API, the finding for this check includes the following
message:

IAM Access Analyzer policy validation 2535

AWS Identity and Access Management User Guide

"findingDetails": "The condition operator {{operator}} is used with an invalid IP range
 value. Specify the IP range in standard CIDR format."

Resolving the error

Update the text to use the IP address condition operator data type, in a CIDR format.

Related terms

• IP address condition operators

• IAM JSON policy elements: Condition operators

Error – Missing action for condition key

In the AWS Management Console, the finding for this check includes the following message:

Missing action for condition key: The {{actionName}} action must be in the action block
 to allow setting values for the condition key {{keyName}}. Add {{actionName}} to the
 action block.

In programmatic calls to the AWS CLI or AWS API, the finding for this check includes the following
message:

"findingDetails": "The {{actionName}} action must be in the action block to allow
 setting values for the condition key {{keyName}}. Add {{actionName}} to the action
 block."

Resolving the error

The condition key in the Condition element of the policy statement is not evaluated unless
the specified action is in the Action element. To ensure that the condition keys you specify are
effectively allowed or denied by your policy, add the action to the Action element.

Related terms

• JSON policy elements: Action

Error – Invalid federated principal syntax in role trust policy

In the AWS Management Console, the finding for this check includes the following message:

IAM Access Analyzer policy validation 2536

AWS Identity and Access Management User Guide

Invalid federated principal syntax in role trust policy: The principal value specifies
 a federated principal that does not match the expected format. Update the federated
 principal to a domain name or a SAML metadata ARN.

In programmatic calls to the AWS CLI or AWS API, the finding for this check includes the following
message:

"findingDetails": "The principal value specifies a federated principal that does not
 match the expected format. Update the federated principal to a domain name or a SAML
 metadata ARN."

Resolving the error

The principal value specifies a federated principal that does not match the expected format.
Update the format of the federated principal to a valid domain name or a SAML metadata ARN.

Related terms

• Federated users and roles

Error – Mismatched action for principal

In the AWS Management Console, the finding for this check includes the following message:

Mismatched action for principal: The {{actionName}} action is invalid with the
 following principal(s): {{principalNames}}. Use a SAML provider principal with
 the sts:AssumeRoleWithSAML action or use an OIDC provider principal with the
 sts:AssumeRoleWithWebIdentity action. Ensure the provider is Federated if you use
 either of the two options.

In programmatic calls to the AWS CLI or AWS API, the finding for this check includes the following
message:

"findingDetails": "The {{actionName}} action is invalid with the following
 principal(s): {{principalNames}}. Use a SAML provider principal with the
 sts:AssumeRoleWithSAML action or use an OIDC provider principal with the
 sts:AssumeRoleWithWebIdentity action. Ensure the provider is Federated if you use
 either of the two options."

Resolving the error

IAM Access Analyzer policy validation 2537

https://docs.aws.amazon.com/IAM/latest/UserGuide/introduction_access-management.html#intro-access-roles

AWS Identity and Access Management User Guide

The action specified in the Action element of the policy statement is invalid with the principal
specified in the Principal element. For example, you can't use a SAML provider principal with
the sts:AssumeRoleWithWebIdentity action. You should use a SAML provider principal
with the sts:AssumeRoleWithSAML action or use an OIDC provider principal with the
sts:AssumeRoleWithWebIdentity action.

Related terms

• AssumeRoleWithSAML

• AssumeRoleWithWebIdentity

Error – Missing action for roles anywhere trust policy

In the AWS Management Console, the finding for this check includes the following message:

Missing action for roles anywhere trust policy: The rolesanywhere.amazonaws.com service
 principal requires the sts:AssumeRole, sts:SetSourceIdentity, and sts:TagSession
 permissions to assume a role. Add the missing permissions to the policy.

In programmatic calls to the AWS CLI or AWS API, the finding for this check includes the following
message:

"findingDetails": "The rolesanywhere.amazonaws.com service principal requires the
 sts:AssumeRole, sts:SetSourceIdentity, and sts:TagSession permissions to assume a
 role. Add the missing permissions to the policy."

Resolving the error

For IAM Roles Anywhere to be able to assume a role and deliver temporary AWS credentials, the
role must trust the IAM Roles Anywhere service principal. The IAM Roles Anywhere service principal
requires the sts:AssumeRole, sts:SetSourceIdentity, and sts:TagSession permissions to
assume a role. If any of the permissions are missing, you must add them to your policy.

Related terms

• Trust model in AWS Identity and Access Management Roles Anywhere

General Warning – Create SLR with NotResource

In the AWS Management Console, the finding for this check includes the following message:

IAM Access Analyzer policy validation 2538

https://docs.aws.amazon.com/STS/latest/APIReference/API_AssumeRoleWithSAML.html
https://docs.aws.amazon.com/STS/latest/APIReference/API_AssumeRoleWithWebIdentity.html
https://docs.aws.amazon.com/rolesanywhere/latest/userguide/trust-model.html

AWS Identity and Access Management User Guide

Create SLR with NotResource: Using the iam:CreateServiceLinkedRole action with
 NotResource can allow creation of unintended service-linked roles for multiple
 resources. We recommend that you specify resource ARNs instead.

In programmatic calls to the AWS CLI or AWS API, the finding for this check includes the following
message:

"findingDetails": "Using the iam:CreateServiceLinkedRole action with NotResource can
 allow creation of unintended service-linked roles for multiple resources. We recommend
 that you specify resource ARNs instead."

Resolving the general warning

The action iam:CreateServiceLinkedRole grants permission to create an IAM role that allows
an AWS service to perform actions on your behalf. Using iam:CreateServiceLinkedRole in
a policy with the NotResource element can allow creating unintended service-linked roles for
multiple resources. AWS recommends that you specify allowed ARNs in the Resource element
instead.

• CreateServiceLinkedRole operation

• IAM JSON policy elements: NotResource

• IAM JSON policy elements: Resource

General Warning – Create SLR with star in action and NotResource

In the AWS Management Console, the finding for this check includes the following message:

Create SLR with star in action and NotResource: Using an action with a wildcard(*) and
 NotResource can allow creation of unintended service-linked roles because it can allow
 iam:CreateServiceLinkedRole permissions on multiple resources. We recommend that you
 specify resource ARNs instead.

In programmatic calls to the AWS CLI or AWS API, the finding for this check includes the following
message:

"findingDetails": "Using an action with a wildcard(*) and NotResource can
 allow creation of unintended service-linked roles because it can allow
 iam:CreateServiceLinkedRole permissions on multiple resources. We recommend that you
 specify resource ARNs instead."

IAM Access Analyzer policy validation 2539

https://docs.aws.amazon.com/IAM/latest/APIReference/API_CreateServiceLinkedRole.html

AWS Identity and Access Management User Guide

Resolving the general warning

The action iam:CreateServiceLinkedRole grants permission to create an IAM role that allows
an AWS service to perform actions on your behalf. Policies with a wildcard (*) in the Action and
that include the NotResource element can allow creation of unintended service-linked roles for
multiple resources. AWS recommends that you specify allowed ARNs in the Resource element
instead.

• CreateServiceLinkedRole operation

• IAM JSON policy elements: NotResource

• IAM JSON policy elements: Resource

General Warning – Create SLR with NotAction and NotResource

In the AWS Management Console, the finding for this check includes the following message:

Create SLR with NotAction and NotResource: Using NotAction with NotResource
 can allow creation of unintended service-linked roles because it allows
 iam:CreateServiceLinkedRole permissions on multiple resources. We recommend that you
 specify resource ARNs instead.

In programmatic calls to the AWS CLI or AWS API, the finding for this check includes the following
message:

"findingDetails": "Using NotAction with NotResource can allow creation of unintended
 service-linked roles because it allows iam:CreateServiceLinkedRole permissions on
 multiple resources. We recommend that you specify resource ARNs instead."

Resolving the general warning

The action iam:CreateServiceLinkedRole grants permission to create an IAM role
that allows an AWS service to perform actions on your behalf. Using the NotAction
element with the NotResource element can allow creating unintended service-linked
roles for multiple resources. AWS recommends that you rewrite the policy to allow
iam:CreateServiceLinkedRole on a limited list of ARNs in the Resource element instead.
You can also add iam:CreateServiceLinkedRole to the NotAction element.

• CreateServiceLinkedRole operation

IAM Access Analyzer policy validation 2540

https://docs.aws.amazon.com/IAM/latest/APIReference/API_CreateServiceLinkedRole.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_CreateServiceLinkedRole.html

AWS Identity and Access Management User Guide

• IAM JSON policy elements: NotAction

• IAM JSON policy elements: Action

• IAM JSON policy elements: NotResource

• IAM JSON policy elements: Resource

General Warning – Create SLR with star in resource

In the AWS Management Console, the finding for this check includes the following message:

Create SLR with star in resource: Using the iam:CreateServiceLinkedRole action with
 wildcards (*) in the resource can allow creation of unintended service-linked roles.
 We recommend that you specify resource ARNs instead.

In programmatic calls to the AWS CLI or AWS API, the finding for this check includes the following
message:

"findingDetails": "Using the iam:CreateServiceLinkedRole action with wildcards (*) in
 the resource can allow creation of unintended service-linked roles. We recommend that
 you specify resource ARNs instead."

Resolving the general warning

The action iam:CreateServiceLinkedRole grants permission to create an IAM role that allows
an AWS service to perform actions on your behalf. Using iam:CreateServiceLinkedRole in a
policy with a wildcard (*) in the Resource element can allow creating unintended service-linked
roles for multiple resources. AWS recommends that you specify allowed ARNs in the Resource
element instead.

• CreateServiceLinkedRole operation

• IAM JSON policy elements: Resource

AWS managed policies with this general warning

AWS managed policies enable you to get started with AWS by assigning permissions based on
general AWS use cases.

Some of those use cases are for power users within your account. The following AWS managed
policies provide power user access and grant permissions to create service-linked roles for any

IAM Access Analyzer policy validation 2541

https://docs.aws.amazon.com/IAM/latest/APIReference/API_CreateServiceLinkedRole.html

AWS Identity and Access Management User Guide

AWS service. AWS recommends that you attach the following AWS managed policies to only IAM
identities that you consider power users.

• PowerUserAccess

• AlexaForBusinessFullAccess

• AWSOrganizationsServiceTrustPolicy – This AWS managed policy provides permissions for use
by the AWS Organizations service-linked role. This role allows Organizations to create additional
service-linked roles for other services in your AWS organization.

General Warning – Create SLR with star in action and resource

In the AWS Management Console, the finding for this check includes the following message:

Create SLR with star in action and resource: Using wildcards (*) in the action and
 the resource can allow creation of unintended service-linked roles because it allows
 iam:CreateServiceLinkedRole permissions on all resources. We recommend that you
 specify resource ARNs instead.

In programmatic calls to the AWS CLI or AWS API, the finding for this check includes the following
message:

"findingDetails": "Using wildcards (*) in the action and the resource
 can allow creation of unintended service-linked roles because it allows
 iam:CreateServiceLinkedRole permissions on all resources. We recommend that you
 specify resource ARNs instead."

Resolving the general warning

The action iam:CreateServiceLinkedRole grants permission to create an IAM role that allows
an AWS service to perform actions on your behalf. Policies with a wildcard (*) in the Action and
Resource elements can allow creating unintended service-linked roles for multiple resources. This
allows creating a service-linked role when you specify "Action": "*", "Action": "iam:*", or
"Action": "iam:Create*". AWS recommends that you specify allowed ARNs in the Resource
element instead.

• CreateServiceLinkedRole operation

• IAM JSON policy elements: Action

• IAM JSON policy elements: Resource

IAM Access Analyzer policy validation 2542

https://console.aws.amazon.com/iam/home#policies/arn:aws:iam::aws:policy/PowerUserAccess
https://console.aws.amazon.com/iam/home#policies/arn:aws:iam::aws:policy/AlexaForBusinessFullAccess
https://console.aws.amazon.com/iam/home#policies/arn:aws:iam::aws:policy/AWSOrganizationsServiceTrustPolicy
https://docs.aws.amazon.com/IAM/latest/APIReference/API_CreateServiceLinkedRole.html

AWS Identity and Access Management User Guide

AWS managed policies with this general warning

AWS managed policies enable you to get started with AWS by assigning permissions based on
general AWS use cases.

Some of those use cases are for administrators within your account. The following AWS managed
policies provide administrator access and grant permissions to create service-linked roles for any
AWS service. AWS recommends that you attach the following AWS managed policies to only the
IAM identities that you consider administrators.

• AdministratorAccess

• IAMFullAccess

General Warning – Create SLR with star in resource and NotAction

In the AWS Management Console, the finding for this check includes the following message:

Create SLR with star in resource and NotAction: Using a resource with wildcards (*)
 and NotAction can allow creation of unintended service-linked roles because it allows
 iam:CreateServiceLinkedRole permissions on all resources. We recommend that you
 specify resource ARNs instead.

In programmatic calls to the AWS CLI or AWS API, the finding for this check includes the following
message:

"findingDetails": "Using a resource with wildcards (*) and NotAction can allow creation
 of unintended service-linked roles because it allows iam:CreateServiceLinkedRole
 permissions on all resources. We recommend that you specify resource ARNs instead."

Resolving the general warning

The action iam:CreateServiceLinkedRole grants permission to create an IAM role that allows
an AWS service to perform actions on your behalf. Using the NotAction element in a policy with
a wildcard (*) in the Resource element can allow creating unintended service-linked roles for
multiple resources. AWS recommends that you specify allowed ARNs in the Resource element
instead. You can also add iam:CreateServiceLinkedRole to the NotAction element.

• CreateServiceLinkedRole operation

• IAM JSON policy elements: NotAction

IAM Access Analyzer policy validation 2543

https://console.aws.amazon.com/iam/home#policies/arn:aws:iam::aws:policy/AdministratorAccess
https://console.aws.amazon.com/iam/home#policies/arn:aws:iam::aws:policy/IAMFullAccess
https://docs.aws.amazon.com/IAM/latest/APIReference/API_CreateServiceLinkedRole.html

AWS Identity and Access Management User Guide

• IAM JSON policy elements: Action

• IAM JSON policy elements: Resource

General Warning – Deprecated global condition key

In the AWS Management Console, the finding for this check includes the following message:

Deprecated global condition key: We recommend that you update aws:ARN to use the newer
 condition key aws:PrincipalArn.

In programmatic calls to the AWS CLI or AWS API, the finding for this check includes the following
message:

"findingDetails": "We recommend that you update aws:ARN to use the newer condition key
 aws:PrincipalArn."

Resolving the general warning

The policy includes a deprecated global condition key. Update the condition key in the condition
key-value pair to use a supported global condition key.

• Global condition keys

General Warning – Invalid date value

In the AWS Management Console, the finding for this check includes the following message:

Invalid date value: The date {{date}} might not resolve as expected. We recommend that
 you use the YYYY-MM-DD format.

In programmatic calls to the AWS CLI or AWS API, the finding for this check includes the following
message:

"findingDetails": "The date {{date}} might not resolve as expected. We recommend that
 you use the YYYY-MM-DD format."

Resolving the general warning

IAM Access Analyzer policy validation 2544

AWS Identity and Access Management User Guide

Unix Epoch time describes a point in time that has elapsed since January 1, 1970, minus leap
seconds. Epoch time might not resolve to the precise time that you expect. AWS recommends that
you use the W3C standard for date and time formats. For example, you could specify a complete
date, such as YYYY-MM-DD (1997-07-16), or you could also append the time to the second, such as
YYYY-MM-DDThh:mm:ssTZD (1997-07-16T19:20:30+01:00).

• W3C Date and Time Formats

• IAM JSON policy elements: Version

• aws:CurrentTime global condition key

General Warning – Invalid role reference

In the AWS Management Console, the finding for this check includes the following message:

Invalid role reference: The Principal element includes the IAM role ID {{roleid}}. We
 recommend that you use a role ARN instead.

In programmatic calls to the AWS CLI or AWS API, the finding for this check includes the following
message:

"findingDetails": "The Principal element includes the IAM role ID {{roleid}}. We
 recommend that you use a role ARN instead."

Resolving the general warning

AWS recommends that you specify the Amazon Resource Name (ARN) for an IAM role instead of
its principal ID. When IAM saves the policy, it will transform the ARN into the principal ID for the
existing role. AWS includes a safety precaution. If someone deletes and recreates the role, it will
have a new ID, and the policy won't match the new role's ID.

• Specifying a principal: IAM roles

• IAM ARNs

• IAM unique IDs

General Warning – Invalid user reference

In the AWS Management Console, the finding for this check includes the following message:

IAM Access Analyzer policy validation 2545

https://www.w3.org/TR/NOTE-datetime

AWS Identity and Access Management User Guide

Invalid user reference: The Principal element includes the IAM user ID {{userid}}. We
 recommend that you use a user ARN instead.

In programmatic calls to the AWS CLI or AWS API, the finding for this check includes the following
message:

"findingDetails": "The Principal element includes the IAM user ID {{userid}}. We
 recommend that you use a user ARN instead."

Resolving the general warning

AWS recommends that you specify the Amazon Resource Name (ARN) for an IAM user instead of
its principal ID. When IAM saves the policy, it will transform the ARN into the principal ID for the
existing user. AWS includes a safety precaution. If someone deletes and recreates the user, it will
have a new ID, and the policy won't match the new user's ID.

• Specifying a principal: IAM users

• IAM ARNs

• IAM unique IDs

General Warning – Missing version

In the AWS Management Console, the finding for this check includes the following message:

Missing version: We recommend that you specify the Version element to help you with
 debugging permission issues.

In programmatic calls to the AWS CLI or AWS API, the finding for this check includes the following
message:

"findingDetails": "We recommend that you specify the Version element to help you with
 debugging permission issues."

Resolving the general warning

AWS recommends that you include the optional Version parameter in your policy. If you do not
include a Version element, the value defaults to 2012-10-17, but newer features, such as policy

IAM Access Analyzer policy validation 2546

AWS Identity and Access Management User Guide

variables, will not work with your policy. For example, variables such as ${aws:username} aren't
recognized as variables and are instead treated as literal strings in the policy.

• IAM JSON policy elements: Version

General Warning – Unique Sids recommended

In the AWS Management Console, the finding for this check includes the following message:

Unique Sids recommended: We recommend that you use statement IDs that are unique to
 your policy. Update the Sid value.

In programmatic calls to the AWS CLI or AWS API, the finding for this check includes the following
message:

"findingDetails": "We recommend that you use statement IDs that are unique to your
 policy. Update the Sid value."

Resolving the general warning

AWS recommends that you use unique statement IDs. The Sid (statement ID) element allows
you to enter an optional identifier that you provide for the policy statement. You can assign a
statement ID value to each statement in a statement array using the SID element.

Related terms

• IAM JSON policy elements: Sid

General Warning – Wildcard without like operator

In the AWS Management Console, the finding for this check includes the following message:

Wildcard without like operator: Your condition value includes a * or ? character. If
 you meant to use a wildcard (*, ?), update the condition operator to include Like.

In programmatic calls to the AWS CLI or AWS API, the finding for this check includes the following
message:

"findingDetails": "Your condition value includes a * or ? character. If you meant to
 use a wildcard (*, ?), update the condition operator to include Like."

IAM Access Analyzer policy validation 2547

AWS Identity and Access Management User Guide

Resolving the general warning

The Condition element structure requires that you use a condition operator and a key-value pair.
When you specify a condition value that uses a wildcard (*, ?), you must use the Like version of
the condition operator. For example, instead of the StringEquals string condition operator, use
StringLike.

"Condition": {"StringLike": {"aws:PrincipalTag/job-category": "admin-*"}}

• IAM JSON policy elements: Condition operators

• IAM JSON policy elements: Condition

AWS managed policies with this general warning

AWS managed policies enable you to get started with AWS by assigning permissions based on
general AWS use cases.

The following AWS managed policies include wildcards in their condition value without a condition
operator that includes Like for pattern-matching. When using the AWS managed policy as a
reference to create your customer managed policy, AWS recommends that you use a condition
operator that supports pattern-matching with wildcards (*, ?), such as StringLike.

• AWSGlueConsoleSageMakerNotebookFullAccess

General Warning – Policy size exceeds identity policy quota

In the AWS Management Console, the finding for this check includes the following message:

Policy size exceeds identity policy quota: The {{policySize}} characters in the
 identity policy, excluding whitespace, exceed the {{policySizeQuota}} character
 maximum for inline and managed policies. We recommend that you use multiple granular
 policies.

In programmatic calls to the AWS CLI or AWS API, the finding for this check includes the following
message:

"findingDetails": "The {{policySize}} characters in the identity policy, excluding
 whitespace, exceed the {{policySizeQuota}} character maximum for inline and managed
 policies. We recommend that you use multiple granular policies."

IAM Access Analyzer policy validation 2548

https://console.aws.amazon.com/iam/home#policies/arn:aws:iam::aws:policy/AWSGlueConsoleSageMakerNotebookFullAccess

AWS Identity and Access Management User Guide

Resolving the general warning

You can attach up to 10 managed policies to an IAM identity (user, group of users, or role).
However, the size of each managed policy cannot exceed the default quota of 6,144 characters.
IAM does not count white space when calculating the size of a policy against this quota. Quotas,
also referred to as limits in AWS, are the maximum values for the resources, actions, and items in
your AWS account.

Additionally, you can add as many inline policies as you want to an IAM identity. However, the sum
size of all inline policies per identity cannot exceed the specified quota.

If your policy is larger than the quota, you can organize your policy into multiple statements and
group the statements into multiple policies.

Related terms

• IAM and AWS STS character quotas

• Multiple statements and multiple policies

• IAM customer managed policies

• Overview of JSON policies

• IAM JSON policy grammar

AWS managed policies with this general warning

AWS managed policies enable you to get started with AWS by assigning permissions based on
general AWS use cases.

The following AWS managed policies grant permissions to actions across many AWS services and
exceed the maximum policy size. When using the AWS managed policy as a reference to create
your managed policy, you must split the policy into multiple policies.

• ReadOnlyAccess

• AWSSupportServiceRolePolicy

General Warning – Policy size exceeds resource policy quota

In the AWS Management Console, the finding for this check includes the following message:

IAM Access Analyzer policy validation 2549

https://console.aws.amazon.com/iam/home#policies/arn:aws:iam::aws:policy/ReadOnlyAccess
https://console.aws.amazon.com/iam/home#policies/arn:aws:iam::aws:policy/AWSSupportServiceRolePolicy

AWS Identity and Access Management User Guide

Policy size exceeds resource policy quota: The {{policySize}} characters in the
 resource policy exceed the {{policySizeQuota}} character maximum for resource
 policies. We recommend that you use multiple granular policies.

In programmatic calls to the AWS CLI or AWS API, the finding for this check includes the following
message:

"findingDetails": "The {{policySize}} characters in the resource policy exceed the
 {{policySizeQuota}} character maximum for resource policies. We recommend that you use
 multiple granular policies."

Resolving the general warning

Resource-based policies are JSON policy documents that you attach to a resource, such as an
Amazon S3 bucket. These policies grant the specified principal permission to perform specific
actions on that resource and define under what conditions this applies. The size of resource-based
policies cannot exceed the quota set for that resource. Quotas, also referred to as limits in AWS, are
the maximum values for the resources, actions, and items in your AWS account.

If your policy is larger than the quota, you can organize your policy into multiple statements and
group the statements into multiple policies.

Related terms

• Resource-based policies

• Amazon S3 bucket policies

• Multiple statements and multiple policies

• Overview of JSON policies

• IAM JSON policy grammar

General Warning – Type mismatch

In the AWS Management Console, the finding for this check includes the following message:

Type mismatch: Use the operator type {{allowed}} instead of operator {{operator}} for
 the condition key {{key}}.

In programmatic calls to the AWS CLI or AWS API, the finding for this check includes the following
message:

IAM Access Analyzer policy validation 2550

https://docs.aws.amazon.com/AmazonS3/latest/userguide/bucket-policies.html

AWS Identity and Access Management User Guide

"findingDetails": "Use the operator type {{allowed}} instead of operator {{operator}}
 for the condition key {{key}}."

Resolving the general warning

Update the text to use the supported condition operator data type.

For example, the aws:MultiFactorAuthPresent global condition key requires a condition
operator with the Boolean data type. If you provide a date or an integer, the data type won't
match.

Related terms

• Global condition keys

• IAM JSON policy elements: Condition operators

General Warning – Type mismatch Boolean

In the AWS Management Console, the finding for this check includes the following message:

Type mismatch Boolean: Add a valid Boolean value (true or false) for the condition
 operator {{operator}}.

In programmatic calls to the AWS CLI or AWS API, the finding for this check includes the following
message:

"findingDetails": "Add a valid Boolean value (true or false) for the condition operator
 {{operator}}."

Resolving the general warning

Update the text to use a Boolean condition operator data type, such as true or false.

For example, the aws:MultiFactorAuthPresent global condition key requires a condition
operator with the Boolean data type. If you provide a date or an integer, the data type won't
match.

Related terms

IAM Access Analyzer policy validation 2551

AWS Identity and Access Management User Guide

• Boolean condition operators

• IAM JSON policy elements: Condition operators

General Warning – Type mismatch date

In the AWS Management Console, the finding for this check includes the following message:

Type mismatch date: The date condition operator is used with an invalid value. Specify
 a valid date using YYYY-MM-DD or other ISO 8601 date/time format.

In programmatic calls to the AWS CLI or AWS API, the finding for this check includes the following
message:

"findingDetails": "The date condition operator is used with an invalid value. Specify a
 valid date using YYYY-MM-DD or other ISO 8601 date/time format."

Resolving the general warning

Update the text to use the date condition operator data type, in a YYYY-MM-DD or other ISO 8601
date time format.

Related terms

• Date condition operators

• IAM JSON policy elements: Condition operators

General Warning – Type mismatch number

In the AWS Management Console, the finding for this check includes the following message:

Type mismatch number: Add a valid numeric value for the condition operator
 {{operator}}.

In programmatic calls to the AWS CLI or AWS API, the finding for this check includes the following
message:

"findingDetails": "Add a valid numeric value for the condition operator {{operator}}."

IAM Access Analyzer policy validation 2552

AWS Identity and Access Management User Guide

Resolving the general warning

Update the text to use the numeric condition operator data type.

Related terms

• Numeric condition operators

• IAM JSON policy elements: Condition operators

General Warning – Type mismatch string

In the AWS Management Console, the finding for this check includes the following message:

Type mismatch string: Add a valid base64-encoded string value for the condition
 operator {{operator}}.

In programmatic calls to the AWS CLI or AWS API, the finding for this check includes the following
message:

"findingDetails": "Add a valid base64-encoded string value for the condition operator
 {{operator}}."

Resolving the general warning

Update the text to use the string condition operator data type.

Related terms

• String condition operators

• IAM JSON policy elements: Condition operators

General Warning – Specific github repo and branch recommended

In the AWS Management Console, the finding for this check includes the following message:

Specific github repo and branch recommended: Using a wildcard (*) in
 token.actions.githubusercontent.com:sub can allow requests from more sources than
 you intended. Specify the value of token.actions.githubusercontent.com:sub with the
 repository and branch name.

IAM Access Analyzer policy validation 2553

AWS Identity and Access Management User Guide

In programmatic calls to the AWS CLI or AWS API, the finding for this check includes the following
message:

"findingDetails": "Using a wildcard (*) in token.actions.githubusercontent.com:sub
 can allow requests from more sources than you intended. Specify the value of
 token.actions.githubusercontent.com:sub with the repository and branch name."

Resolving the general warning

If you use GitHub as an OIDC IdP, best practice is to limit the entities that can assume the role
associated with the IAM IdP. When you include a Condition statement in a role trust policy,
you can limit the role to a specific GitHub organization, repository, or branch. You can use the
condition key token.actions.githubusercontent.com:sub to limit access. We recommend
that you limit the condition to a specific set of repositories or branches. If you use a wildcard (*)
in token.actions.githubusercontent.com:sub, then GitHub Actions from organizations or
repositories outside of your control are able to assume roles associated with the GitHub IAM IdP in
your AWS account.

Related terms

• Configuring a role for GitHub OIDC identity provider

General Warning – Policy size exceeds role trust policy quota

In the AWS Management Console, the finding for this check includes the following message:

Policy size exceeds role trust policy quota: The characters in the role trust policy,
 excluding whitespace, exceed the character maximum. We recommend that you request a
 role trust policy length quota increase using Service Quotas and AWS Support Center.
 If the quotas have already been increased, then you can ignore this warning.

In programmatic calls to the AWS CLI or AWS API, the finding for this check includes the following
message:

"findingDetails": "The characters in the role trust policy, excluding whitespace,
 exceed the character maximum. We recommend that you request a role trust policy length
 quota increase using Service Quotas and AWS Support Center. If the quotas have already
 been increased, then you can ignore this warning."

Resolving the general warning

IAM Access Analyzer policy validation 2554

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-idp_oidc.html#idp_oidc_Create_GitHub

AWS Identity and Access Management User Guide

IAM and AWS STS have quotas that limit the size of role trust policies. The characters in the role
trust policy, excluding whitespace, exceed the character maximum. We recommend that you
request a role trust policy length quota increase using Service Quotas and the AWS Support Center
Console.

Related terms

• IAM and AWS STS quotas, name requirements, and character limits

Security Warning – Allow with NotPrincipal

In the AWS Management Console, the finding for this check includes the following message:

Allow with NotPrincipal: Using Allow with NotPrincipal can be overly permissive. We
 recommend that you use Principal instead.

In programmatic calls to the AWS CLI or AWS API, the finding for this check includes the following
message:

"findingDetails": "Using Allow with NotPrincipal can be overly permissive. We recommend
 that you use Principal instead."

Resolving the security warning

Using "Effect": "Allow" with the NotPrincipal can be overly permissive. For example, this
can grant permissions to anonymous principals. AWS recommends that you specify principals that
need access using the Principal element. Alternatively, you can allow broad access and then add
another statement that uses the NotPrincipal element with “Effect”: “Deny”.

• AWS JSON policy elements: Principal

• AWS JSON policy elements: NotPrincipal

Security Warning – ForAllValues with single valued key

In the AWS Management Console, the finding for this check includes the following message:

ForAllValues with single valued key: Using ForAllValues qualifier with the single-
valued condition key {{key}} can be overly permissive. We recommend that you remove
 ForAllValues:.

IAM Access Analyzer policy validation 2555

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_iam-quotas.html

AWS Identity and Access Management User Guide

In programmatic calls to the AWS CLI or AWS API, the finding for this check includes the following
message:

"findingDetails": "Using ForAllValues qualifier with the single-valued condition key
 {{key}} can be overly permissive. We recommend that you remove ForAllValues:."

Resolving the security warning

AWS recommends that you use the ForAllValues only with multivalued conditions. The
ForAllValues set operator tests whether the value of every member of the request set is a
subset of the condition key set. The condition returns true if every key value in the request matches
at least one value in the policy. It also returns true if there are no keys in the request, or if the key
values resolve to a null data set, such as an empty string.

To learn whether a condition supports a single value or multiple values, review the Actions,
resources, and condition keys page for the service. Condition keys with the ArrayOf data type
prefix are multivalued condition keys. For example, Amazon SES supports keys with single values
(String) and the ArrayOfString multivalued data type.

• Multivalued context keys

Security Warning – Pass role with NotResource

In the AWS Management Console, the finding for this check includes the following message:

Pass role with NotResource: Using the iam:PassRole action with NotResource can be
 overly permissive because it can allow iam:PassRole permissions on multiple resources.
 We recommend that you specify resource ARNs instead.

In programmatic calls to the AWS CLI or AWS API, the finding for this check includes the following
message:

"findingDetails": "Using the iam:PassRole action with NotResource can be overly
 permissive because it can allow iam:PassRole permissions on multiple resources. We
 recommend that you specify resource ARNs instead."

Resolving the security warning

To configure many AWS services, you must pass an IAM role to the service. To allow this you
must grant the iam:PassRole permission to an identity (user, group of users, or role). Using

IAM Access Analyzer policy validation 2556

https://docs.aws.amazon.com/service-authorization/latest/reference/reference_policies_actions-resources-contextkeys.html
https://docs.aws.amazon.com/service-authorization/latest/reference/reference_policies_actions-resources-contextkeys.html

AWS Identity and Access Management User Guide

iam:PassRole in a policy with the NotResource element can allow your principals to access
more services or features than you intended. AWS recommends that you specify allowed ARNs in
the Resource element instead. Additionally, you can reduce permissions to a single service by
using the iam:PassedToService condition key.

• Passing a role to a service

• iam:PassedToService

• IAM JSON policy elements: NotResource

• IAM JSON policy elements: Resource

Security Warning – Pass role with star in action and NotResource

In the AWS Management Console, the finding for this check includes the following message:

Pass role with star in action and NotResource: Using an action with a wildcard (*) and
 NotResource can be overly permissive because it can allow iam:PassRole permissions on
 multiple resources. We recommend that you specify resource ARNs instead.

In programmatic calls to the AWS CLI or AWS API, the finding for this check includes the following
message:

"findingDetails": "Using an action with a wildcard (*) and NotResource can be overly
 permissive because it can allow iam:PassRole permissions on multiple resources. We
 recommend that you specify resource ARNs instead."

Resolving the security warning

To configure many AWS services, you must pass an IAM role to the service. To allow this you must
grant the iam:PassRole permission to an identity (user, group of users, or role). Policies with a
wildcard (*) in the Action and that include the NotResource element can allow your principals
to access more services or features than you intended. AWS recommends that you specify allowed
ARNs in the Resource element instead. Additionally, you can reduce permissions to a single
service by using the iam:PassedToService condition key.

• Passing a role to a service

• iam:PassedToService

• IAM JSON policy elements: NotResource

IAM Access Analyzer policy validation 2557

AWS Identity and Access Management User Guide

• IAM JSON policy elements: Resource

Security Warning – Pass role with NotAction and NotResource

In the AWS Management Console, the finding for this check includes the following message:

Pass role with NotAction and NotResource: Using NotAction with NotResource can
 be overly permissive because it can allow iam:PassRole permissions on multiple
 resources.. We recommend that you specify resource ARNs instead.

In programmatic calls to the AWS CLI or AWS API, the finding for this check includes the following
message:

"findingDetails": "Using NotAction with NotResource can be overly permissive because
 it can allow iam:PassRole permissions on multiple resources.. We recommend that you
 specify resource ARNs instead."

Resolving the security warning

To configure many AWS services, you must pass an IAM role to the service. To allow this you
must grant the iam:PassRole permission to an identity (user, group of users, or role). Using the
NotAction element and listing some resources in the NotResource element can allow your
principals to access more services or features than you intended. AWS recommends that you
specify allowed ARNs in the Resource element instead. Additionally, you can reduce permissions
to a single service by using the iam:PassedToService condition key.

• Passing a role to a service

• iam:PassedToService

• IAM JSON policy elements: NotAction

• IAM JSON policy elements: Action

• IAM JSON policy elements: NotResource

• IAM JSON policy elements: Resource

Security Warning – Pass role with star in resource

In the AWS Management Console, the finding for this check includes the following message:

IAM Access Analyzer policy validation 2558

AWS Identity and Access Management User Guide

Pass role with star in resource: Using the iam:PassRole action with wildcards (*)
 in the resource can be overly permissive because it allows iam:PassRole permissions
 on multiple resources. We recommend that you specify resource ARNs or add the
 iam:PassedToService condition key to your statement.

In programmatic calls to the AWS CLI or AWS API, the finding for this check includes the following
message:

"findingDetails": "Using the iam:PassRole action with wildcards (*) in the resource can
 be overly permissive because it allows iam:PassRole permissions on multiple resources.
 We recommend that you specify resource ARNs or add the iam:PassedToService condition
 key to your statement."

Resolving the security warning

To configure many AWS services, you must pass an IAM role to the service. To allow this you must
grant the iam:PassRole permission to an identity (user, group of users, or role). Policies that
allow iam:PassRole and that include a wildcard (*) in the Resource element can allow your
principals to access more services or features than you intended. AWS recommends that you
specify allowed ARNs in the Resource element instead. Additionally, you can reduce permissions
to a single service by using the iam:PassedToService condition key.

Some AWS services include their service namespace in the name of their role. This policy check
takes these conventions into account while analyzing the policy to generate findings. For example,
the following resource ARN might not generate a finding:

arn:aws:iam::*:role/Service*

• Passing a role to a service

• iam:PassedToService

• IAM JSON policy elements: Resource

AWS managed policies with this security warning

AWS managed policies enable you to get started with AWS by assigning permissions based on
general AWS use cases.

One of those use cases is for administrators within your account. The following AWS managed
policies provide administrator access and grant permissions to pass any IAM role to any service.

IAM Access Analyzer policy validation 2559

AWS Identity and Access Management User Guide

AWS recommends that you attach the following AWS managed policies only to IAM identities that
you consider administrators.

• AdministratorAccess-Amplify

The following AWS managed policies include permissions to iam:PassRole with a wildcard (*) in
the resource and are on a deprecation path. For each of these policies, we updated the permission
guidance, such as recommending a new AWS managed policy that supports the use case. To view
alternatives to these policies, see the guides for each service.

• AWSElasticBeanstalkFullAccess

• AWSElasticBeanstalkService

• AWSLambdaFullAccess

• AWSLambdaReadOnlyAccess

• AWSOpsWorksFullAccess

• AWSOpsWorksRole

• AWSDataPipelineRole

• AmazonDynamoDBFullAccesswithDataPipeline

• AmazonElasticMapReduceFullAccess

• AmazonDynamoDBFullAccesswithDataPipeline

• AmazonEC2ContainerServiceFullAccess

The following AWS managed policies provide permissions for only service-linked roles, which allow
AWS services to perform actions on your behalf. You cannot attach these policies to your IAM
identities.

• AWSServiceRoleForAmazonEKSNodegroup

Security Warning – Pass role with star in action and resource

In the AWS Management Console, the finding for this check includes the following message:

Pass role with star in action and resource: Using wildcards (*) in the action and the
 resource can be overly permissive because it allows iam:PassRole permissions on all

IAM Access Analyzer policy validation 2560

https://console.aws.amazon.com/iam/home#/policies/arn:aws:iam::aws:policy/AdministratorAccess-Amplify
https://console.aws.amazon.com/iam/home#/policies/arn:aws:iam::aws:policy/aws-service-role/AWSServiceRoleForAmazonEKSNodegroup

AWS Identity and Access Management User Guide

 resources. We recommend that you specify resource ARNs or add the iam:PassedToService
 condition key to your statement.

In programmatic calls to the AWS CLI or AWS API, the finding for this check includes the following
message:

"findingDetails": "Using wildcards (*) in the action and the resource can be overly
 permissive because it allows iam:PassRole permissions on all resources. We recommend
 that you specify resource ARNs or add the iam:PassedToService condition key to your
 statement."

Resolving the security warning

To configure many AWS services, you must pass an IAM role to the service. To allow this you must
grant the iam:PassRole permission to an identity (user, group of users, or role). Policies with
a wildcard (*) in the Action and Resource elements can allow your principals to access more
services or features than you intended. AWS recommends that you specify allowed ARNs in the
Resource element instead. Additionally, you can reduce permissions to a single service by using
the iam:PassedToService condition key.

• Passing a role to a service

• iam:PassedToService

• IAM JSON policy elements: Action

• IAM JSON policy elements: Resource

AWS managed policies with this security warning

AWS managed policies enable you to get started with AWS by assigning permissions based on
general AWS use cases.

Some of those use cases are for administrators within your account. The following AWS managed
policies provide administrator access and grant permissions to pass any IAM role to any AWS
service. AWS recommends that you attach the following AWS managed policies to only the IAM
identities that you consider administrators.

• AdministratorAccess

• IAMFullAccess

IAM Access Analyzer policy validation 2561

https://console.aws.amazon.com/iam/home#policies/arn:aws:iam::aws:policy/AdministratorAccess
https://console.aws.amazon.com/iam/home#policies/arn:aws:iam::aws:policy/IAMFullAccess

AWS Identity and Access Management User Guide

Security Warning – Pass role with star in resource and NotAction

In the AWS Management Console, the finding for this check includes the following message:

Pass role with star in resource and NotAction: Using a resource with wildcards (*) and
 NotAction can be overly permissive because it allows iam:PassRole permissions on all
 resources. We recommend that you specify resource ARNs or add the iam:PassedToService
 condition key to your statement.

In programmatic calls to the AWS CLI or AWS API, the finding for this check includes the following
message:

"findingDetails": "Using a resource with wildcards (*) and NotAction can be overly
 permissive because it allows iam:PassRole permissions on all resources. We recommend
 that you specify resource ARNs or add the iam:PassedToService condition key to your
 statement."

Resolving the security warning

To configure many AWS services, you must pass an IAM role to the service. To allow this you
must grant the iam:PassRole permission to an identity (user, group of users, or role). Using
the NotAction element in a policy with a wildcard (*) in the Resource element can allow your
principals to access more services or features than you intended. AWS recommends that you
specify allowed ARNs in the Resource element instead. Additionally, you can reduce permissions
to a single service by using the iam:PassedToService condition key.

• Passing a role to a service

• iam:PassedToService

• IAM JSON policy elements: NotAction

• IAM JSON policy elements: Action

• IAM JSON policy elements: Resource

Security Warning – Missing paired condition keys

In the AWS Management Console, the finding for this check includes the following message:

Missing paired condition keys: Using the condition key {{conditionKeyName}}
 can be overly permissive without also using the following condition keys:
 {{recommendedKeys}}. Condition keys like this one are more secure when paired with

IAM Access Analyzer policy validation 2562

AWS Identity and Access Management User Guide

 a related key. We recommend that you add the related condition keys to the same
 condition block.

In programmatic calls to the AWS CLI or AWS API, the finding for this check includes the following
message:

"findingDetails": "Using the condition key {{conditionKeyName}} can be overly
 permissive without also using the following condition keys: {{recommendedKeys}}.
 Condition keys like this one are more secure when paired with a related key. We
 recommend that you add the related condition keys to the same condition block."

Resolving the security warning

Some condition keys are more secure when paired with other related condition keys. AWS
recommends that you include the related condition keys in the same condition block as the existing
condition key. This makes the permissions granted through the policy more secure.

For example, you can use the aws:VpcSourceIp condition key to compare the IP address from
which a request was made with the IP address that you specify in the policy. AWS recommends that
you add the related aws:SourceVPC condition key. This checks whether the request comes from
the VPC that you specify in the policy and the IP address that you specify.

Related terms

• aws:VpcSourceIp global condition key

• aws:SourceVPC global condition key

• Global condition keys

• Condition element

• Overview of JSON policies

Security Warning – Deny with unsupported tag condition key for service

In the AWS Management Console, the finding for this check includes the following message:

Deny with unsupported tag condition key for service: Using the effect Deny with the
 tag condition key {{conditionKeyName}} and actions for services with the following
 prefixes can be overly permissive: {{serviceNames}}. Actions for the listed services
 are not denied by this statement. We recommend that you move these actions to a
 different statement without this condition key.

IAM Access Analyzer policy validation 2563

AWS Identity and Access Management User Guide

In programmatic calls to the AWS CLI or AWS API, the finding for this check includes the following
message:

"findingDetails": "Using the effect Deny with the tag condition key
 {{conditionKeyName}} and actions for services with the following prefixes can be
 overly permissive: {{serviceNames}}. Actions for the listed services are not denied
 by this statement. We recommend that you move these actions to a different statement
 without this condition key."

Resolving the security warning

Using unsupported tag condition keys in the Condition element of a policy with "Effect":
"Deny" can be overly permissive, because the condition is ignored for that service. AWS
recommends that you remove the service actions that don’t support the condition key and create
another statement to deny access to specific resources for those actions.

If you use the aws:ResourceTag condition key and it’s not supported by a service action, then the
key is not included in the request context. In this case, the condition in the Deny statement always
returns false and the action is never denied. This happens even if the resource is tagged correctly.

When a service supports the aws:ResourceTag condition key, you can use tags to control access
to that service’s resources. This is known as attribute-based access control (ABAC). Services that
don’t support these keys require you to control access to resources using resource-based access
control (RBAC).

Note

Some services allow support for the aws:ResourceTag condition key for a subset of their
resources and actions. IAM Access Analyzer returns findings for the service actions that
are not supported. For example, Amazon S3 supports aws:ResourceTag for a subset of
its resources. To view all of the resource types available in Amazon S3 that support the
aws:ResourceTag condition key, see Resource types defined by Amazon S3 in the Service
Authorization Reference.

For example, assume that you want to deny access to untag delete specific resources that are
tagged with the key-value pair status=Confidential. Also assume that AWS Lambda allows
you to tag and untag resources, but doesn’t support the aws:ResourceTag condition key.

IAM Access Analyzer policy validation 2564

https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazons3.html#amazons3-resources-for-iam-policies

AWS Identity and Access Management User Guide

To deny the delete actions for AWS App Mesh and AWS Backup if this tag is present, use the
aws:ResourceTag condition key. For Lambda, use a resource naming convention that includes the
"Confidential" prefix. Then include a separate statement that prevents deleting resources with
that naming convention.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "DenyDeleteSupported",
 "Effect": "Deny",
 "Action": [
 "appmesh:DeleteMesh",
 "backup:DeleteBackupPlan"
],
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "aws:ResourceTag/status": "Confidential"
 }
 }
 },
 {
 "Sid": "DenyDeleteUnsupported",
 "Effect": "Deny",
 "Action": "lambda:DeleteFunction",
 "Resource": "arn:aws:lambda:*:123456789012:function:status-Confidential*"
 }
]
}

Warning

Do not use the …IfExists version of the condition operator as a workaround for this
finding. This means "Deny the action if the key is present in the request context and
the values match. Otherwise, deny the action." In the previous example, including the
lambda:DeleteFunction action in the DenyDeleteSupported statement with the
StringEqualsIfExists operator always denies the action. For that action, the key is not
present in the context, and every attempt to delete that resource type is denied, regardless
of whether the resource is tagged.

IAM Access Analyzer policy validation 2565

AWS Identity and Access Management User Guide

Related terms

• Global condition keys

• Comparing ABAC to RBAC

• IAM JSON policy elements: Condition operators

• Condition element

• Overview of JSON policies

Security Warning – Deny NotAction with unsupported tag condition key for service

In the AWS Management Console, the finding for this check includes the following message:

Deny NotAction with unsupported tag condition key for service: Using the effect Deny
 with NotAction and the tag condition key {{conditionKeyName}} can be overly permissive
 because some service actions are not denied by this statement. This is because the
 condition key doesn't apply to some service actions. We recommend that you use Action
 instead of NotAction.

In programmatic calls to the AWS CLI or AWS API, the finding for this check includes the following
message:

"findingDetails": "Using the effect Deny with NotAction and the tag condition key
 {{conditionKeyName}} can be overly permissive because some service actions are not
 denied by this statement. This is because the condition key doesn't apply to some
 service actions. We recommend that you use Action instead of NotAction."

Resolving the security warning

Using tag condition keys in the Condition element of a policy with the element NotAction
and "Effect": "Deny" can be overly permissive. The condition is ignored for service actions
that don’t support the condition key. AWS recommends that you rewrite the logic to deny a list of
actions.

If you use the aws:ResourceTag condition key with NotAction, any new or existing service
actions that don’t support the key are not denied. AWS recommends that you explicitly list the
actions that you want to deny. IAM Access Analyzer returns a separate finding for listed actions that
don’t support the aws:ResourceTag condition key. For more information, see Security Warning –
Deny with unsupported tag condition key for service.

IAM Access Analyzer policy validation 2566

AWS Identity and Access Management User Guide

When a service supports the aws:ResourceTag condition key, you can use tags to control access
to that service’s resources. This is known as attribute-based access control (ABAC). Services that
don’t support these keys require you to control access to resources using resource-based access
control (RBAC).

Related terms

• Global condition keys

• Comparing ABAC to RBAC

• IAM JSON policy elements: Condition operators

• Condition element

• Overview of JSON policies

Security Warning – Restrict access to service principal

In the AWS Management Console, the finding for this check includes the following message:

Restrict access to service principal: Granting access to a service principal without
 specifying a source is overly permissive. Use aws:SourceArn, aws:SourceAccount,
 aws:SourceOrgID, or aws:SourceOrgPaths condition key to grant fine-grained access.

In programmatic calls to the AWS CLI or AWS API, the finding for this check includes the following
message:

"findingDetails": "Granting access to a service principal without specifying a source
 is overly permissive. Use aws:SourceArn, aws:SourceAccount, aws:SourceOrgID, or
 aws:SourceOrgPaths condition key to grant fine-grained access."

Resolving the security warning

You can specify AWS services in the Principal element of a resource-based policy using a
service principal, which is an identifier for the service. When granting access to a service principal
to act on your behalf, restrict access. You can prevent overly permissive policies by using the
aws:SourceArn, aws:SourceAccount, aws:SourceOrgID, or aws:SourceOrgPaths
condition keys to restrict access to a specific source, such as a specific resource ARN, AWS account,
organization ID, or organization paths. Restricting access helps you prevent a security issue called
the confused deputy problem.

IAM Access Analyzer policy validation 2567

AWS Identity and Access Management User Guide

Related terms

• AWS service principals

• AWS global condition keys: aws:SourceAccount

• AWS global condition keys: aws:SourceArn

• AWS global condition keys: aws:SourceOrgId

• AWS global condition keys: aws:SourceOrgPaths

• The confused deputy problem

Security Warning – Missing condition key for oidc principal

In the AWS Management Console, the finding for this check includes the following message:

Missing condition key for oidc principal: Using an Open ID Connect principal without a
 condition can be overly permissive. Add condition keys with a prefix that matches your
 federated OIDC principals to ensure that only the intended identity provider assumes
 the role.

In programmatic calls to the AWS CLI or AWS API, the finding for this check includes the following
message:

"findingDetails": "Using an Open ID Connect principal without a condition can be
 overly permissive. Add condition keys with a prefix that matches your federated OIDC
 principals to ensure that only the intended identity provider assumes the role."

Resolving the security warning

Using an Open ID Connect principal without a condition can be overly permissive. Add condition
keys with a prefix that matches your federated OIDC principals to ensure that only the intended
identity provider assumes the role.

Related terms

• Creating a role for web identity or OpenID Connect Federation (console)

Security Warning – Missing github repo condition key

In the AWS Management Console, the finding for this check includes the following message:

IAM Access Analyzer policy validation 2568

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_principal.html#principal-services
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-sourceaccount
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-sourcearn
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-sourceorgid
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-sourceorgpaths
https://docs.aws.amazon.com/IAM/latest/UserGuide/confused-deputy.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-idp_oidc.html

AWS Identity and Access Management User Guide

Missing github repo condition key: Granting a federated GitHub principal permissions
 without a condition key can allow more sources to assume the role than you intended.
 Add the token.actions.githubusercontent.com:sub condition key and specify the branch
 and repository name in the value.

In programmatic calls to the AWS CLI or AWS API, the finding for this check includes the following
message:

"findingDetails": "Granting a federated GitHub principal permissions without a
 condition key can allow more sources to assume the role than you intended. Add the
 token.actions.githubusercontent.com:sub condition key and specify the branch and
 repository name in the value."

Resolving the security warning

If you use GitHub as an OIDC IdP, best practice is to limit the entities that can assume the role
associated with the IAM IdP. When you include a Condition statement in a role trust policy, you
can limit the role to a specific GitHub organization, repository, or branch. You can use the condition
key token.actions.githubusercontent.com:sub to limit access. We recommend that you
limit the condition to a specific set of repositories or branches. If you do not include this condition,
then GitHub Actions from organizations or repositories outside of your control are able to assume
roles associated with the GitHub IAM IdP in your AWS account.

Related terms

• Configuring a role for GitHub OIDC identity provider

Suggestion – Empty array action

In the AWS Management Console, the finding for this check includes the following message:

Empty array action: This statement includes no actions and does not affect the policy.
 Specify actions.

In programmatic calls to the AWS CLI or AWS API, the finding for this check includes the following
message:

"findingDetails": "This statement includes no actions and does not affect the policy.
 Specify actions."

IAM Access Analyzer policy validation 2569

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-idp_oidc.html#idp_oidc_Create_GitHub

AWS Identity and Access Management User Guide

Resolving the suggestion

Statements must include either an Action or NotAction element that includes a set of actions.
When the element is empty, the policy statement provides no permissions. Specify actions in the
Action element.

• IAM JSON policy elements: Action

Suggestion – Empty array condition

In the AWS Management Console, the finding for this check includes the following message:

Empty array condition: There are no values for the condition key {{key}} and it does
 not affect the policy. Specify conditions.

In programmatic calls to the AWS CLI or AWS API, the finding for this check includes the following
message:

"findingDetails": "There are no values for the condition key {{key}} and it does not
 affect the policy. Specify conditions."

Resolving the suggestion

The optional Condition element structure requires that you use a condition operator and a key-
value pair. When the condition value is empty, the condition returns true and the policy statement
provides no permissions. Specify a condition value.

• IAM JSON policy elements: Condition

Suggestion – Empty array condition ForAllValues

In the AWS Management Console, the finding for this check includes the following message:

Empty array condition ForAllValues: The ForAllValues prefix with an empty condition key
 matches only if the key {{key}} is missing from the request context. To determine if
 the request context is empty, we recommend that you use the Null condition operator
 with the value of true instead.

In programmatic calls to the AWS CLI or AWS API, the finding for this check includes the following
message:

IAM Access Analyzer policy validation 2570

AWS Identity and Access Management User Guide

"findingDetails": "The ForAllValues prefix with an empty condition key matches only
 if the key {{key}} is missing from the request context. To determine if the request
 context is empty, we recommend that you use the Null condition operator with the value
 of true instead."

Resolving the suggestion

The Condition element structure requires that you use a condition operator and a key-value pair.
The ForAllValues set operator tests whether the value of every member of the request set is a
subset of the condition key set.

When you use ForAllValues with an empty condition key, the condition matches only if there
are no keys in the request. AWS recommends that if you want to test whether a request context is
empty, use the Null condition operator instead.

• Multivalued context keys

• Null condition operator

• IAM JSON policy elements: Condition

Suggestion – Empty array condition ForAnyValue

In the AWS Management Console, the finding for this check includes the following message:

Empty array condition ForAnyValue: The ForAnyValue prefix with an empty condition key
 {{key}} never matches the request context and it does not affect the policy. Specify
 conditions.

In programmatic calls to the AWS CLI or AWS API, the finding for this check includes the following
message:

"findingDetails": "The ForAnyValue prefix with an empty condition key {{key}} never
 matches the request context and it does not affect the policy. Specify conditions."

Resolving the suggestion

The Condition element structure requires that you use a condition operator and a key-value pair.
The ForAnyValues set operator tests whether at least one member of the set of request values
matches at least one member of the set of condition key values.

IAM Access Analyzer policy validation 2571

AWS Identity and Access Management User Guide

When you use ForAnyValues with an empty condition key, the condition never matches. This
means that the statement has no effect on the policy. AWS recommends that you rewrite the
condition.

• Multivalued context keys

• IAM JSON policy elements: Condition

Suggestion – Empty array condition IfExists

In the AWS Management Console, the finding for this check includes the following message:

Empty array condition IfExists: The IfExists suffix with an empty condition key matches
 only if the key {{key}} is missing from the request context. To determine if the
 request context is empty, we recommend that you use the Null condition operator with
 the value of true instead.

In programmatic calls to the AWS CLI or AWS API, the finding for this check includes the following
message:

"findingDetails": "The IfExists suffix with an empty condition key matches only if the
 key {{key}} is missing from the request context. To determine if the request context
 is empty, we recommend that you use the Null condition operator with the value of true
 instead."

Resolving the suggestion

The ...IfExists suffix edits a condition operator. It means that if the policy key is present in the
context of the request, process the key as specified in the policy. If the key is not present, evaluate
the condition element as true.

When you use ...IfExists with an empty condition key, the condition matches only if there
are no keys in the request. AWS recommends that if you want to test whether a request context is
empty, use the Null condition operator instead.

• ...IfExists condition operators

• IAM JSON policy elements: Condition

IAM Access Analyzer policy validation 2572

AWS Identity and Access Management User Guide

Suggestion – Empty array principal

In the AWS Management Console, the finding for this check includes the following message:

Empty array principal: This statement includes no principals and does not affect the
 policy. Specify principals.

In programmatic calls to the AWS CLI or AWS API, the finding for this check includes the following
message:

"findingDetails": "This statement includes no principals and does not affect the
 policy. Specify principals."

Resolving the suggestion

You must use the Principal or NotPrincipal element in the trust policies for IAM roles and in
resource-based policies. Resource-based policies are policies that you embed directly in a resource.

When you provide an empty array in a statement's Principal element, the statement has no
effect on the policy. AWS recommends that you specify the principals that should have access to
the resource.

• IAM JSON policy elements: Principal

• IAM JSON policy elements: NotPrincipal

Suggestion – Empty array resource

In the AWS Management Console, the finding for this check includes the following message:

Empty array resource: This statement includes no resources and does not affect the
 policy. Specify resources.

In programmatic calls to the AWS CLI or AWS API, the finding for this check includes the following
message:

"findingDetails": "This statement includes no resources and does not affect the policy.
 Specify resources."

Resolving the suggestion

IAM Access Analyzer policy validation 2573

AWS Identity and Access Management User Guide

Statements must include either a Resource or a NotResource element.

When you provide an empty array in a statement's resource element, the statement has no effect
on the policy. AWS recommends that you specify Amazon Resource Names (ARNs) for resources.

• IAM JSON policy elements: Resource

• IAM JSON policy elements: NotResource

Suggestion – Empty object condition

In the AWS Management Console, the finding for this check includes the following message:

Empty object condition: This condition block is empty and it does not affect the
 policy. Specify conditions.

In programmatic calls to the AWS CLI or AWS API, the finding for this check includes the following
message:

"findingDetails": "This condition block is empty and it does not affect the policy.
 Specify conditions."

Resolving the suggestion

The Condition element structure requires that you use a condition operator and a key-value pair.

When you provide an empty object in a statement's condition element, the statement has no effect
on the policy. Remove the optional element or specify conditions.

• IAM JSON policy elements: Condition

Suggestion – Empty object principal

In the AWS Management Console, the finding for this check includes the following message:

Empty object principal: This statement includes no principals and does not affect the
 policy. Specify principals.

In programmatic calls to the AWS CLI or AWS API, the finding for this check includes the following
message:

IAM Access Analyzer policy validation 2574

AWS Identity and Access Management User Guide

"findingDetails": "This statement includes no principals and does not affect the
 policy. Specify principals."

Resolving the suggestion

You must use the Principal or NotPrincipal element in the trust policies for IAM roles and in
resource-based policies. Resource-based policies are policies that you embed directly in a resource.

When you provide an empty object in a statement's Principal element, the statement has no
effect on the policy. AWS recommends that you specify the principals that should have access to
the resource.

• IAM JSON policy elements: Principal

• IAM JSON policy elements: NotPrincipal

Suggestion – Empty Sid value

In the AWS Management Console, the finding for this check includes the following message:

Empty Sid value: Add a value to the empty string in the Sid element.

In programmatic calls to the AWS CLI or AWS API, the finding for this check includes the following
message:

"findingDetails": "Add a value to the empty string in the Sid element."

Resolving the suggestion

The optional Sid (statement ID) element allows you to enter an identifier that you provide for
the policy statement. You can assign an Sid value to each statement in a statement array. If you
choose to use the Sid element, you must provide a string value.

Related terms

• IAM JSON policy elements: Sid

Suggestion – Improve IP range

In the AWS Management Console, the finding for this check includes the following message:

IAM Access Analyzer policy validation 2575

AWS Identity and Access Management User Guide

Improve IP range: The non-zero bits in the IP address after the masked bits are
 ignored. Replace address with {{addr}}.

In programmatic calls to the AWS CLI or AWS API, the finding for this check includes the following
message:

"findingDetails": "The non-zero bits in the IP address after the masked bits are
 ignored. Replace address with {{addr}}."

Resolving the suggestion

IP address conditions must be in the standard CIDR format, such as 203.0.113.0/24 or
2001:DB8:1234:5678::/64. When you include non-zero bits after the masked bits, they are not
considered for the condition. AWS recommends that you use the new address included in the
message.

• IP address condition operators

• IAM JSON policy elements: Condition

Suggestion – Null with qualifier

In the AWS Management Console, the finding for this check includes the following message:

Null with qualifier: Avoid using the Null condition operator with the ForAllValues or
 ForAnyValue qualifiers because they always return a true or false respectively.

In programmatic calls to the AWS CLI or AWS API, the finding for this check includes the following
message:

"findingDetails": "Avoid using the Null condition operator with the ForAllValues or
 ForAnyValue qualifiers because they always return a true or false respectively."

Resolving the suggestion

In the Condition element, you build expressions in which you use condition operators like
equal or less than to compare a condition in the policy against keys and values in the request
context. For requests that include multiple values for a single condition key, you must use the
ForAllValues or ForAnyValue set operators.

IAM Access Analyzer policy validation 2576

AWS Identity and Access Management User Guide

When you use the Null condition operator with ForAllValues, the statement always returns
true. When you use the Null condition operator with ForAnyValue, the statement always
returns false. AWS recommends that you use the StringLike condition operator with these set
operators.

Related terms

• Multivalued context keys

• Null condition operator

• Condition element

Suggestion – Private IP address subset

In the AWS Management Console, the finding for this check includes the following message:

Private IP address subset: The values for condition key aws:SourceIp include a mix
 of private and public IP addresses. The private addresses will not have the desired
 effect. aws:SourceIp works only for public IP address ranges. To define permissions
 for private IP ranges, use aws:VpcSourceIp.

In programmatic calls to the AWS CLI or AWS API, the finding for this check includes the following
message:

"findingDetails": "The values for condition key aws:SourceIp include a mix of private
 and public IP addresses. The private addresses will not have the desired effect.
 aws:SourceIp works only for public IP address ranges. To define permissions for
 private IP ranges, use aws:VpcSourceIp."

Resolving the suggestion

The global condition key aws:SourceIp works only for public IP address ranges.

When your Condition element includes a mix of private and public IP addresses, the statement
might not have the desired effect. You can specify private IP addresses using aws:VpcSourceIP.

Note

The global condition key aws:VpcSourceIP matches only if the request originates from
the specified IP address and it goes through a VPC endpoint.

IAM Access Analyzer policy validation 2577

AWS Identity and Access Management User Guide

• aws:SourceIp global condition key

• aws:VpcSourceIp global condition key

• IP address condition operators

• IAM JSON policy elements: Condition

Suggestion – Private NotIpAddress subset

In the AWS Management Console, the finding for this check includes the following message:

Private NotIpAddress subset: The values for condition key aws:SourceIp include a mix of
 private and public IP addresses. The private addresses have no effect. aws:SourceIp
 works only for public IP address ranges. To define permissions for private IP ranges,
 use aws:VpcSourceIp.

In programmatic calls to the AWS CLI or AWS API, the finding for this check includes the following
message:

"findingDetails": "The values for condition key aws:SourceIp include a mix of private
 and public IP addresses. The private addresses have no effect. aws:SourceIp works
 only for public IP address ranges. To define permissions for private IP ranges, use
 aws:VpcSourceIp."

Resolving the suggestion

The global condition key aws:SourceIp works only for public IP address ranges.

When your Condition element includes the NotIpAddress condition operator and a mix of
private and public IP addresses, the statement might not have the desired effect. Every public
IP addresses that is not specified in the policy will match. No private IP addresses will match. To
achieve this effect, you can use NotIpAddress with aws:VpcSourceIP and specify the private IP
addresses that should not match.

• aws:SourceIp global condition key

• aws:VpcSourceIp global condition key

• IP address condition operators

• IAM JSON policy elements: Condition

IAM Access Analyzer policy validation 2578

AWS Identity and Access Management User Guide

Suggestion – Redundant action

In the AWS Management Console, the finding for this check includes the following message:

Redundant action: The {{redundantActionCount}} action(s) are redundant because they
 provide similar permissions. Update the policy to remove the redundant action such as:
 {{redundantAction}}.

In programmatic calls to the AWS CLI or AWS API, the finding for this check includes the following
message:

"findingDetails": "The {{redundantActionCount}} action(s) are redundant because they
 provide similar permissions. Update the policy to remove the redundant action such as:
 {{redundantAction}}."

Resolving the suggestion

When you use wildcards (*) in the Action element, you can include redundant permissions. AWS
recommends that you review your policy and include only the permissions that you need. This can
help you remove redundant actions.

For example, the following actions include the iam:GetCredentialReport action twice.

"Action": [
 "iam:Get*",
 "iam:List*",
 "iam:GetCredentialReport"
],

In this example, permissions are defined for every IAM action that begins with Get or List. When
IAM adds additional get or list operations, this policy will allow them. You might want to allow all
of these read-only actions. The iam:GetCredentialReport action is already included as part of
iam:Get*. To remove the duplicate permissions, you could remove iam:GetCredentialReport.

You receive a finding for this policy check when all of the contents of an action are
redundant. In this example, if the element included iam:*CredentialReport, it is not
considered redundant. That includes iam:GetCredentialReport, which is redundant,
and iam:GenerateCredentialReport, which is not. Removing either iam:Get* or
iam:*CredentialReport would change the policy's permissions.

IAM Access Analyzer policy validation 2579

AWS Identity and Access Management User Guide

• IAM JSON policy elements: Action

AWS managed policies with this suggestion

AWS managed policies enable you to get started with AWS by assigning permissions based on
general AWS use cases.

Redundant actions do not affect the permissions granted by the policy. When using an AWS
managed policy as a reference to create your customer managed policy, AWS recommends that you
remove redundant actions from your policy.

Suggestion – Redundant condition value num

In the AWS Management Console, the finding for this check includes the following message:

Redundant condition value num: Multiple values in {{operator}} are redundant. Replace
 with the {{greatest/least}} single value for {{key}}.

In programmatic calls to the AWS CLI or AWS API, the finding for this check includes the following
message:

"findingDetails": "Multiple values in {{operator}} are redundant. Replace with the
 {{greatest/least}} single value for {{key}}."

Resolving the suggestion

When you use numeric condition operators for similar values in a condition key, you can create an
overlap that results in redundant permissions.

For example, the following Condition element includes multiple aws:MultiFactorAuthAge
conditions that have an age overlap of 1200 seconds.

"Condition": {
 "NumericLessThan": {
 "aws:MultiFactorAuthAge": [
 "2700",
 "3600"
]
 }
 }

IAM Access Analyzer policy validation 2580

AWS Identity and Access Management User Guide

In this example, the permissions are defined if multi-factor authentication (MFA) was completed
less than 3600 seconds (1 hour) ago. You could remove the redundant 2700 value.

• Numeric condition operators

• IAM JSON policy elements: Condition

Suggestion – Redundant resource

In the AWS Management Console, the finding for this check includes the following message:

Redundant resource: The {{redundantResourceCount}} resource ARN(s) are redundant
 because they reference the same resource. Review the use of wildcards (*)

In programmatic calls to the AWS CLI or AWS API, the finding for this check includes the following
message:

"findingDetails": "The {{redundantResourceCount}} resource ARN(s) are redundant because
 they reference the same resource. Review the use of wildcards (*)"

Resolving the suggestion

When you use wildcards (*) in Amazon Resource Names (ARNs), you can create redundant resource
permissions.

For example, the following Resource element includes multiple ARNs with redundant
permissions.

"Resource": [
 "arn:aws:iam::111122223333:role/jane-admin",
 "arn:aws:iam::111122223333:role/jane-s3only",
 "arn:aws:iam::111122223333:role/jane*"
],

In this example, the permissions are defined for any role with a name starting with jane. You
could remove the redundant jane-admin and jane-s3only ARNs without changing the resulting
permissions. This does make the policy dynamic. It will define permissions for any future roles that
begin with jane. If the intention of the policy is to allow access to a static number of roles, then
remove the last ARN and list only the ARNs that should be defined.

• IAM JSON policy elements: Resource

IAM Access Analyzer policy validation 2581

AWS Identity and Access Management User Guide

AWS managed policies with this suggestion

AWS managed policies enable you to get started with AWS by assigning permissions based on
general AWS use cases.

Redundant resources do not affect the permissions granted by the policy. When using an AWS
managed policy as a reference to create your customer managed policy, AWS recommends that you
remove redundant resources from your policy.

Suggestion – Redundant statement

In the AWS Management Console, the finding for this check includes the following message:

Redundant statement: The statements are redundant because they provide identical
 permissions. Update the policy to remove the redundant statement.

In programmatic calls to the AWS CLI or AWS API, the finding for this check includes the following
message:

"findingDetails": "The statements are redundant because they provide identical
 permissions. Update the policy to remove the redundant statement."

Resolving the suggestion

The Statement element is the main element for a policy. This element is required. The
Statement element can contain a single statement or an array of individual statements.

When you include the same statement more than once in a long policy, the statements are is
redundant. You can remove one of the statements without affecting the permissions granted
by the policy. When someone edits a policy, they might change one of the statements without
updating the duplicate. This might result in more permissions than intended.

• IAM JSON policy elements: Statement

Suggestion – Wildcard in service name

In the AWS Management Console, the finding for this check includes the following message:

Wildcard in service name: Avoid using wildcards (*, ?) in the service name because it
 might grant unintended access to other AWS services with similar names.

IAM Access Analyzer policy validation 2582

AWS Identity and Access Management User Guide

In programmatic calls to the AWS CLI or AWS API, the finding for this check includes the following
message:

"findingDetails": "Avoid using wildcards (*, ?) in the service name because it might
 grant unintended access to other AWS services with similar names."

Resolving the suggestion

When you include the name of an AWS service in a policy, AWS recommends that you do not
include wildcards (*, ?). This might add permissions for future services that you do not intend. For
example, there are more than a dozen AWS services with the word *code* in their name.

"Resource": "arn:aws:*code*::111122223333:*"

• IAM JSON policy elements: Resource

Suggestion – Allow with unsupported tag condition key for service

In the AWS Management Console, the finding for this check includes the following message:

Allow with unsupported tag condition key for service: Using the effect Allow with the
 tag condition key {{conditionKeyName}} and actions for services with the following
 prefixes does not affect the policy: {{serviceNames}}. Actions for the listed service
 are not allowed by this statement. We recommend that you move these actions to a
 different statement without this condition key.

In programmatic calls to the AWS CLI or AWS API, the finding for this check includes the following
message:

"findingDetails": "Using the effect Allow with the tag condition key
 {{conditionKeyName}} and actions for services with the following prefixes does not
 affect the policy: {{serviceNames}}. Actions for the listed service are not allowed
 by this statement. We recommend that you move these actions to a different statement
 without this condition key."

Resolving the suggestion

Using unsupported tag condition keys in the Condition element of a policy with "Effect":
"Allow" does not affect the permissions granted by the policy, because the condition is ignored

IAM Access Analyzer policy validation 2583

AWS Identity and Access Management User Guide

for that service action. AWS recommends that you remove the actions for services that don’t
support the condition key and create another statement to allow access to specific resources in
that service.

If you use the aws:ResourceTag condition key and it’s not supported by a service action, then
the key is not included in the request context. In this case, the condition in the Allow statement
always returns false and the action is never allowed. This happens even if the resource is tagged
correctly.

When a service supports the aws:ResourceTag condition key, you can use tags to control access
to that service’s resources. This is known as attribute-based access control (ABAC). Services that
don’t support these keys require you to control access to resources using resource-based access
control (RBAC).

Note

Some services allow support for the aws:ResourceTag condition key for a subset of their
resources and actions. IAM Access Analyzer returns findings for the service actions that
are not supported. For example, Amazon S3 supports aws:ResourceTag for a subset of
its resources. To view all of the resource types available in Amazon S3 that support the
aws:ResourceTag condition key, see Resource types defined by Amazon S3 in the Service
Authorization Reference.

For example, assume that you want to allow team members to view details for specific resources
that are tagged with the key-value pair team=BumbleBee. Also assume that AWS Lambda allows
you to tag resources, but doesn’t support the aws:ResourceTag condition key. To allow view
actions for AWS App Mesh and AWS Backup if this tag is present, use the aws:ResourceTag
condition key. For Lambda, use a resource naming convention that includes the team name as
a prefix. Then include a separate statement that allows viewing resources with that naming
convention.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "AllowViewSupported",
 "Effect": "Allow",
 "Action": [

IAM Access Analyzer policy validation 2584

https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazons3.html#amazons3-resources-for-iam-policies

AWS Identity and Access Management User Guide

 "appmesh:DescribeMesh",
 "backup:GetBackupPlan"
],
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "aws:ResourceTag/team": "BumbleBee"
 }
 }
 },
 {
 "Sid": "AllowViewUnsupported",
 "Effect": "Allow",
 "Action": "lambda:GetFunction",
 "Resource": "arn:aws:lambda:*:123456789012:function:team-BumbleBee*"
 }
]
}

Warning

Do not use the Not version of the condition operator with "Effect": "Allow" as a
workaround for this finding. These condition operators provide negated matching. This
means that after the condition is evaluated, the result is negated. In the previous example,
including the lambda:GetFunction action in the AllowViewSupported statement
with the StringNotEquals operator always allows the action, regardless of whether the
resource is tagged.
Do not use the …IfExists version of the condition operator as a workaround for this
finding. This means "Allow the action if the key is present in the request context and
the values match. Otherwise, allow the action." In the previous example, including
the lambda:GetFunction action in the AllowViewSupported statement with the
StringEqualsIfExists operator always allows the action. For that action, the key is not
present in the context, and every attempt to view that resource type is allowed, regardless
of whether the resource is tagged.

Related terms

• Global condition keys

• IAM JSON policy elements: Condition operators

IAM Access Analyzer policy validation 2585

AWS Identity and Access Management User Guide

• Condition element

• Overview of JSON policies

Suggestion – Allow NotAction with unsupported tag condition key for service

In the AWS Management Console, the finding for this check includes the following message:

Allow NotAction with unsupported tag condition key for service: Using the effect Allow
 with NotAction and the tag condition key {{conditionKeyName}} allows only service
 actions that support the condition key. The condition key doesn't apply to some
 service actions. We recommend that you use Action instead of NotAction.

In programmatic calls to the AWS CLI or AWS API, the finding for this check includes the following
message:

"findingDetails": "Using the effect Allow with NotAction and the tag condition key
 {{conditionKeyName}} allows only service actions that support the condition key. The
 condition key doesn't apply to some service actions. We recommend that you use Action
 instead of NotAction."

Resolving the suggestion

Using unsupported tag condition keys in the Condition element of a policy with the element
NotAction and "Effect": "Allow" does not affect the permissions granted by the policy. The
condition is ignored for service actions that don’t support the condition key. AWS recommends that
you rewrite the logic to allow a list of actions.

If you use the aws:ResourceTag condition key with NotAction, any new or existing service
actions that don’t support the key are not allowed. AWS recommends that you explicitly list the
actions that you want to allow. IAM Access Analyzer returns a separate finding for listed actions
that don’t support the aws:ResourceTag condition key. For more information, see Suggestion –
Allow with unsupported tag condition key for service.

When a service supports the aws:ResourceTag condition key, you can use tags to control access
to that service’s resources. This is known as attribute-based access control (ABAC). Services that
don’t support these keys require you to control access to resources using resource-based access
control (RBAC).

Related terms

IAM Access Analyzer policy validation 2586

AWS Identity and Access Management User Guide

• Global condition keys

• Comparing ABAC to RBAC

• IAM JSON policy elements: Condition operators

• Condition element

• Overview of JSON policies

Suggestion – Recommended condition key for service principal

In the AWS Management Console, the finding for this check includes the following message:

Recommended condition key for service principal: To restrict access to the service
 principal {{servicePrincipalPrefix}} operating on your behalf, we recommend
 aws:SourceArn, aws:SourceAccount, aws:SourceOrgID, or aws:SourceOrgPaths instead of
 {{key}}.

In programmatic calls to the AWS CLI or AWS API, the finding for this check includes the following
message:

"findingDetails": "To restrict access to the service principal
 {{servicePrincipalPrefix}} operating on your behalf, we recommend aws:SourceArn,
 aws:SourceAccount, aws:SourceOrgID, or aws:SourceOrgPaths instead of {{key}}."

Resolving the suggestion

You can specify AWS services in the Principal element of a resource-based policy using a
service principal, which is an identifier for the service. You should use the aws:SourceArn,
aws:SourceAccount, aws:SourceOrgID, or aws:SourceOrgPaths condition keys when
granting access to service principals instead of other condition keys, such as aws:Referer. This
helps you prevent a security issue called the confused deputy problem.

Related terms

• AWS service principals

• AWS global condition keys: aws:SourceAccount

• AWS global condition keys: aws:SourceArn

• AWS global condition keys: aws:SourceOrgId

• AWS global condition keys: aws:SourceOrgPaths

IAM Access Analyzer policy validation 2587

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_principal.html#principal-services
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-sourceaccount
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-sourcearn
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-sourceorgid
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-sourceorgpaths

AWS Identity and Access Management User Guide

• The confused deputy problem

Suggestion – Irrelevant condition key in policy

In the AWS Management Console, the finding for this check includes the following message:

Irrelevant condition key in policy: The condition key {{condition-key}} is not relevant
 for the {{resource-type}} policy. Use this key in an identity-based policy to govern
 access to this resource.

In programmatic calls to the AWS CLI or AWS API, the finding for this check includes the following
message:

"findingDetails": "The condition key {{condition-key}} is not relevant for the
 {{resource-type}} policy. Use this key in an identity-based policy to govern access
 to this resource."

Resolving the suggestion

Some condition keys aren't relevant for resource-based policies. For example, the
s3:ResourceAccount condition key isn't relevant for the resource-based policy attached to an
Amazon S3 bucket or Amazon S3 access point resource type.

You should use the condition key in an identity-based policy to control access to the resource.

Related terms

• Identity-based policies and resource-based policies

Suggestion – Redundant principal in role trust policy

In the AWS Management Console, the finding for this check includes the following message:

Redundant principal in role trust policy: The assumed-role principal
 {{redundant_principal}} is redundant with its parent role {{parent_role}}. Remove the
 assumed-role principal.

In programmatic calls to the AWS CLI or AWS API, the finding for this check includes the following
message:

IAM Access Analyzer policy validation 2588

https://docs.aws.amazon.com/IAM/latest/UserGuide/confused-deputy.html

AWS Identity and Access Management User Guide

"findingDetails": "The assumed-role principal {{redundant_principal}} is redundant with
 its parent role {{parent_role}}. Remove the assumed-role principal."

Resolving the suggestion

If you specify both an assumed-role principal and its parent role in the Principal element of
a policy, it does not allow or deny any different permissions. For example, it is redundant if you
specify the Principal element using the following format:

"Principal": {
 "AWS": [
 "arn:aws:iam::AWS-account-ID:role/rolename",
 "arn:aws:iam::AWS-account-ID:assumed-role/rolename/rolesessionname"
]

We recommend removing the assumed-role principal.

Related terms

• Role session principals

Suggestion – Confirm audience claim type

In the AWS Management Console, the finding for this check includes the following message:

Confirm audience claim type: The 'aud' (audience) claim key identifies the recipients
 that the JSON web token is intended for. Audience claims can be multivalued or single-
valued. If the claim is multivalued, use a ForAllValues or ForAnyValue qualifier. If
 the claim is single-valued, do not use a qualifier.

In programmatic calls to the AWS CLI or AWS API, the finding for this check includes the following
message:

"findingDetails": "The 'aud' (audience) claim key identifies the recipients that the
 JSON web token is intended for. Audience claims can be multivalued or single-valued.
 If the claim is multivalued, use a ForAllValues or ForAnyValue qualifier. If the claim
 is single-valued, do not use a qualifier."

Resolving the suggestion

IAM Access Analyzer policy validation 2589

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_principal.html#principal-role-session

AWS Identity and Access Management User Guide

The aud (audience) claim key is a unique identifier for your app that is issued to you when you
register your app with the IdP and identifies the recipients that the JSON web token is intended
for. Audience claims can be multivalued or single-valued. If the claim is multivalued, use a
ForAllValues or ForAnyValue condition set operator. If the claim is single-valued, do not use a
condition set operator.

Related terms

• Creating a role for web identity or OpenID Connect Federation (console)

• Multivalued context keys

• Single-valued vs. multivalued condition keys

IAM Access Analyzer custom policy checks

You can validate your policies against your specified security standards using AWS Identity and
Access Management Access Analyzer custom policy checks. There are two kinds of custom policy
checks that you can run:

• Check against a reference policy: When editing a policy, you can check whether the updated
policy grants new access compared to a reference policy, such as an existing version of the policy.
You can run this check when you edit a policy using the AWS Command Line Interface (AWS CLI),
IAM Access Analyzer API (API), or JSON policy editor in the IAM console.

• Check against a list of IAM actions: You can check to ensure that specific IAM actions are not
allowed by your policy. You can run this check when you create or edit a policy using the AWS CLI
or the API.

A charge is associated with each custom policy check. For more details about pricing, see IAM
Access Analyzer pricing.

How custom policy checks work

You can run custom policy checks on identity and resource-based policies. Custom policy checks
don't rely on pattern-matching techniques or examining access logs to determine whether new or
a specified access is allowed by a policy. Similar to external access findings, custom policy checks
are built on Zelkova. Zelkova translates IAM policies into equivalent logical statements, and runs
a suite of general-purpose and specialized logical solvers (satisfiability modulo theories) against
the problem. To check for new or specified access, IAM Access Analyzer applies Zelkova repeatedly

Custom policy checks 2590

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-idp_oidc.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-single-vs-multi-valued-context-keys.html#reference_policies_condition-multi-valued-context-keys
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_single-vs-multi-valued-condition-keys.html
https://aws.amazon.com/iam/access-analyzer/pricing
https://aws.amazon.com/iam/access-analyzer/pricing
https://aws.amazon.com/blogs/security/protect-sensitive-data-in-the-cloud-with-automated-reasoning-zelkova/

AWS Identity and Access Management User Guide

to a policy. Queries become increasingly specific to characterize classes of behaviors that the
policy allows based on the content of the policy. For more information about satisfiability modulo
theories, see Satisfiability Modulo Theories.

In rare cases, IAM Access Analyzer isn't able to fully determine whether a policy statement grants
new or specified access. In those cases, it errs on the side of declaring a false positive by failing the
custom policy check. IAM Access Analyzer is designed to provide a comprehensive policy evaluation
and strives to minimize false negatives. This approach means that IAM Access Analyzer provides a
high degree of assurance that a passed check means access wasn't granted by the policy. You can
inspect failed checks manually by reviewing the policy statement that's reported in the response
from IAM Access Analyzer.

Reference policy examples to check for new access

You can find examples for reference policies and learn how to set up and run a custom policy check
for new access in the IAM Access Analyzer custom policy checks samples repository on GitHub.

Before using these examples

Before you use these sample reference policies, do the following:

• Carefully review and customize the reference policies for your unique requirements.

• Thoroughly test the reference policies in your environment with the AWS services that
you use.

The reference policies demonstrate the implementation and use of custom policy checks.
They're not intended to be interpreted as official AWS recommendations or best practices
to be implemented exactly as shown. It is your responsibility to carefully test reference
policies for their suitability to solve the security requirements for your environment.

• Custom policy checks are environment-agnostic in their analysis. Their analysis only
considers information contained within the input policies. For example, custom policy
checks can't check whether an account is a member of a specific AWS organization.
Therefore, the custom policy checks can't compare new access based on condition key
values for the aws:PrincipalOrgId and aws:PrincipalAccount condition keys.

Custom policy checks 2591

https://people.eecs.berkeley.edu/~sseshia/pubdir/SMT-BookChapter.pdf
https://github.com/aws-samples/iam-access-analyzer-custom-policy-check-samples
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-principalorgid
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-principalaccount

AWS Identity and Access Management User Guide

Inspecting failed custom policy checks

When a custom policy check fails, the response from IAM Access Analyzer includes the statement
ID (Sid) of the policy statement that caused the check to fail. Although the statement ID is an
optional policy element, we recommend that you add a statement ID for every policy statement.
The custom policy check also returns a statement index to help identify the reason for the check
failure. The statement index follows zero-based numbering, where the first statement is referenced
as 0. When there are multiple statements that cause a check to fail, the check returns only one
statement ID at a time. We recommend that you fix the statement highlighted in the reason and
rerun the check until it passes.

Validating policies with custom policy checks (console)

As an optional step, you can run a custom policy check when editing a policy in the JSON policy
editor in the IAM console. You can check whether the updated policy grants new access compared
to the existing version.

To check for new access when editing IAM JSON policies

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. In the navigation pane on the left, choose Policies.

3. In the list of policies, choose the policy name of the policy that you want to edit. You can use
the search box to filter the list of policies.

4. Choose the Permissions tab, and then choose Edit.

5. Choose the JSON option and make updates to your policy.

6. In the policy validation pane below the policy, choose the Check for new access tab and then
choose Check policy. If the modified permissions grant new access, the statement will be
highlighted in the policy validation pane.

7. If you don't intend to grant new access, update the policy statement and choose Check policy
until no new access is detected.

Note

A charge is associated with each check for new access. For more details about pricing,
see IAM Access Analyzer pricing.

Custom policy checks 2592

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_sid.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_sid.html
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/
https://aws.amazon.com/iam/access-analyzer/pricing

AWS Identity and Access Management User Guide

8. Choose Next.

9. On the Review and save page, review Permissions defined in this policy and then choose
Save changes.

Validating policies with custom policy checks (AWS CLI or API)

You can run IAM Access Analyzer custom policy checks from the AWS CLI or the IAM Access
Analyzer API.

To run IAM Access Analyzer custom policy checks (AWS CLI)

• To check whether new access is allowed for an updated policy when compared to the existing
policy, run the following command: check-no-new-access

• To check whether the specified access isn't allowed by a policy, run the following command:
check-access-not-granted

To run IAM Access Analyzer custom policy checks (API)

• To check whether new access is allowed for an updated policy when compared to the existing
policy, use the CheckNoNewAccess API operation.

• To check whether the specified access isn't allowed by a policy, use the CheckAccessNotGranted
API operation.

IAM Access Analyzer policy generation

As an administrator or developer, you might grant permissions to IAM entities (users or roles)
beyond what they require. IAM provides several options to help you refine the permissions that you
grant. One option is to generate an IAM policy that is based on access activity for an entity. IAM
Access Analyzer reviews your AWS CloudTrail logs and generates a policy template that contains
the permissions that the entity used in your specified date range. You can use the template to
create a policy with fine-grained permissions that grant only the permissions that are required to
support your specific use case.

Topics

• How policy generation works

• Service and action-level information

IAM Access Analyzer policy generation 2593

https://docs.aws.amazon.com/cli/latest/reference/accessanalyzer/check-no-new-access.html
https://docs.aws.amazon.com/cli/latest/reference/accessanalyzer/check-access-not-granted.html
https://docs.aws.amazon.com/access-analyzer/latest/APIReference/API_CheckNoNewAccess.html
https://docs.aws.amazon.com/access-analyzer/latest/APIReference/API_CheckAccessNotGranted.html

AWS Identity and Access Management User Guide

• Things to know about generating policies

• Permissions required to generate a policy

• Generate a policy based on CloudTrail activity (console)

• Generate a policy using AWS CloudTrail data in another account

• Generate a policy based on CloudTrail activity (AWS CLI)

• Generate a policy based on CloudTrail activity (AWS API)

• IAM Access Analyzer policy generation services

How policy generation works

IAM Access Analyzer analyzes your CloudTrail events to identify actions and services that have been
used by an IAM entity (user or role). It then generates an IAM policy that is based on that activity.
You can refine an entity's permissions when you replace a broad permissions policy attached to the
entity with the generated policy. The following is a high-level overview of the policy generation
process.

• Set up for policy template generation – You specify a time period of up to 90 days for IAM
Access Analyzer to analyze your historical AWS CloudTrail events. You must specify an existing
service role or create a new one. The service role gives IAM Access Analyzer access to your
CloudTrail trail and service last accessed information to identify the services and actions that
were used. You must specify the CloudTrail trail that is logging events for the account before you
can generate a policy. For more information about IAM Access Analyzer quotas for CloudTrail
data, see IAM Access Analyzer quotas.

• Generate policy – IAM Access Analyzer generates a policy based on the access activity in your
CloudTrail events.

• Review and customize policy – After the policy is generated, you can review the services and
actions that were used by the entity during the specified date range. You can further customize
the policy by adding or removing permissions, specifying resources, and adding conditions to the
policy template.

• Create and attach policy – You have the option to save the generated policy by creating a
managed policy. You can attach the policy that you create to the user or role whose activity was
used to generate the policy.

How policy generation works 2594

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_iam-quotas.html#reference_access-analyzer-quotas

AWS Identity and Access Management User Guide

Service and action-level information

When IAM Access Analyzer generates an IAM policy, information is returned to help you to further
customize the policy. Two categories of information can be returned when a policy is generated:

• Policy with action-level information – For some AWS services, such as Amazon EC2, IAM Access
Analyzer can identify the actions found in your CloudTrail events and lists the actions used in the
policy it generates. For a list of supported services, see IAM Access Analyzer policy generation
services. For some services, IAM Access Analyzer prompts you to add actions for the services to
the generated policy.

• Policy with service-level information – IAM Access Analyzer uses last accessed information to
create a policy template with all of the recently used services. When using the AWS Management
Console, we prompt you to review the services and add actions to complete the policy.

For a list of actions in each service, see Actions, Resources, and Condition Keys for AWS Services in
the Service Authorization Reference.

Things to know about generating policies

Before you generate a policy, review the following important details.

• Enable a CloudTrail trail – You must have a CloudTrail trail enabled for your account to generate
a policy based on access activity. When you create a CloudTrail trail, CloudTrail sends events
related to your trail to an Amazon S3 bucket that you specify. To learn how to create a CloudTrail
trail, see Creating a trail for your AWS account in the AWS CloudTrail User Guide.

• Data events not available – IAM Access Analyzer does not identify action-level activity for data
events, such as Amazon S3 data events, in generated policies.

• PassRole – The iam:PassRole action is not tracked by CloudTrail and is not included in
generated policies.

• Reduce policy generation time – To generate a policy faster, reduce the date range that you
specify during setup for policy generation.

• Use CloudTrail for auditing – Do not use policy generation for auditing purposes; use CloudTrail
instead. For more information about using CloudTrail, see Logging IAM and AWS STS API calls
with AWS CloudTrail.

• Denied actions – Policy generation reviews all CloudTrail events, including denied actions.

• One policy IAM console – You can have one generated policy at a time in the IAM console.

Service and action-level information 2595

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_access-advisor.html
https://docs.aws.amazon.com/service-authorization/latest/reference/reference_policies_actions-resources-contextkeys.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-create-and-update-a-trail.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/cloudtrail-integration.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/cloudtrail-integration.html

AWS Identity and Access Management User Guide

• Generated policy availability IAM console – You can review a generated policy in the IAM
console for up to 7 days after it is generated. After 7 days, you must generate a new policy.

• Policy generation quotas – For additional information about IAM Access Analyzer policy
generation quotas, see IAM Access Analyzer quotas.

• Amazon S3 standard rates apply – When you use the policy generation feature, IAM Access
Analyzer reviews CloudTrail logs in your S3 bucket. There are no additional storage charges to
access your CloudTrail logs for policy generation. AWS charges standard Amazon S3 rates for
requests and data transfer of CloudTrail logs stored in your S3 bucket.

• AWS Control Tower support – Policy generation does not support AWS Control Tower for
generating policies.

Permissions required to generate a policy

The permissions that you need to generate a policy for the first time differ from those that you
need to generate a policy for subsequent uses.

First-time setup

When you generate a policy for the first time, you must choose a suitable existing service role
in your account or create a new service role. The service role gives IAM Access Analyzer access
to CloudTrail and service last accessed information in your account. Only administrators should
have the permissions necessary to create and configure roles. Therefore, we recommend that
an administrator creates the service role during the first-time setup. To learn more about the
permissions required to create service roles, see Creating a role to delegate permissions to an AWS
service.

Permissions required for service role

When you create a service role, you configure two policies for the role. You attach an IAM
permissions policy to the role that specifies what the role can do. You also attach a role trust policy
to the role that specifies the principal who can use the role.

The first example policy shows the permissions policy for the service role that is required to
generate a policy. The second example policy shows the role trust policy that is required for the
service role. You can use these policies to help you create a service role when you use the AWS API
or AWS CLI to generate a policy. When you use the IAM console to create a service role as part of
the policy generation process, we generate these policies for you.

Permissions required 2596

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_iam-quotas.html#reference_access-analyzer-quotas
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_terms-and-concepts.html#iam-term-service-role
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html

AWS Identity and Access Management User Guide

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "cloudtrail:GetTrail",
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Action": [
 "iam:GetServiceLastAccessedDetails",
 "iam:GenerateServiceLastAccessedDetails"
],
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Action": [
 "s3:GetObject",
 "s3:ListBucket"
],
 "Resource": [
 "arn:aws:s3:::DOC-EXAMPLE-BUCKET",
 "arn:aws:s3:::DOC-EXAMPLE-BUCKET/*"
]
 }
]
}

The following example policy shows the role trust policy with the permissions that allows IAM
Access Analyzer to assume the role.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "access-analyzer.amazonaws.com"
 },
 "Action": "sts:AssumeRole"
 }

Permissions required 2597

AWS Identity and Access Management User Guide

]
}

Subsequent uses

To generate policies in the AWS Management Console, an IAM user must have a permissions policy
that allows them to pass the service role that is used for policy generation to IAM Access Analyzer.
iam:PassRole is usually accompanied by iam:GetRole so that the user can get the details of the
role to be passed. In this example, the user can pass only roles that exist in the specified account
with names that begin with AccessAnalyzerMonitorServiceRole*. To learn more about
passing IAM roles to AWS services, see Granting a user permissions to pass a role to an AWS service.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "AllowUserToPassRole",
 "Effect": "Allow",
 "Action": [
 "iam:GetRole",
 "iam:PassRole"
],
 "Resource": "arn:aws:iam::123456789012:role/service-role/
AccessAnalyzerMonitorServiceRole*"
 }
]
}

You must also have the following IAM Access Analyzer permissions to generate policies in the AWS
Management Console, AWS API, or AWS CLI as shown in the following policy statement.

{
 "Sid": "AllowUserToGeneratePolicy",
 "Effect": "Allow",
 "Action": [
 "access-analyzer:CancelPolicyGeneration",
 "access-analyzer:GetGeneratedPolicy",
 "access-analyzer:ListPolicyGenerations",
 "access-analyzer:StartPolicyGeneration"
],
 "Resource": "*"

Permissions required 2598

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_passrole.html

AWS Identity and Access Management User Guide

}

For both first-time and subsequent uses

When you use the AWS Management Console to generate a policy, you must have
cloudtrail:ListTrails permission to list the CloudTrail trails in your account as shown in the
following policy statement.

{
 "Sid": "AllowUserToListTrails",
 "Effect": "Allow",
 "Action": [
 "CloudTrail:ListTrails"
],
 "Resource": "*"
}

Generate a policy based on CloudTrail activity (console)

You can generate a policy for an IAM user or role.

Step 1: Generate a policy based on CloudTrail activity

The following procedure explains how to generate a policy for a role using the AWS Management
Console.

Generate a policy for an IAM role

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. In the navigation pane on the left, choose Roles.

Note

The steps to generate a policy based on activity for an IAM user are almost identical. To
do this, choose Users instead of Roles.

3. In the list of roles in your account, choose the name of the role whose activity you want to use
to generate a policy.

Generate a policy based on CloudTrail activity (console) 2599

https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/

AWS Identity and Access Management User Guide

4. On the Permissions tab, in the Generate policy based on CloudTrail events section, choose
Generate policy.

5. On the Generate policy page, specify the time period that you want IAM Access Analyzer to
analyze your CloudTrail events for actions taken with the role. You can choose a range of up
to 90 days. We recommend that you choose the shortest time period possible to reduce the
policy generation time.

6. In the CloudTrail access section, choose a suitable existing role or create a new role if
a suitable role does not exist. The role gives IAM Access Analyzer permissions to access
your CloudTrail data on your behalf to review access activity to identify the services and
actions that have been used. To learn more about the permissions required for this role, see
Permissions required to generate a policy.

7. In the CloudTrail trail to be analyzed section, specify the CloudTrail trail that logs events for
the account.

If you choose a CloudTrail trail that stores logs in a different account, an information box
about cross-account access is displayed. Cross-account access requires additional set up. To
learn more, see Choose a role for cross-account access later in this topic.

8. Choose Generate policy.

9. While policy generation is in progress, you are returned to the Roles Summary page on the
Permissions tab. Wait until the status in the Policy request details section displays Success,
and then choose View generated policy. You can view the generated policy for up to seven
days. If you generate another policy, the existing policy is replaced with the new one that you
generate.

Step 2: Review permissions and add actions for services used

Review the services and actions that IAM Access Analyzer identified that the role used. You can add
actions for any services that were used to the generated policy template.

1. Review the following sections:

• On the Review permissions page, review the list of Actions included in the generated
policy. The list displays the services and actions that IAM Access Analyzer identified were
used by the role in the specified date range.

• The Services used section displays additional services that IAM Access Analyzer identified
that were used by the role in the specified date range. Information about which actions were

Generate a policy based on CloudTrail activity (console) 2600

AWS Identity and Access Management User Guide

used might not be available for the services listed in this section. Use the menus for each
service listed to manually choose the actions that you want to include in the policy.

2. When you are done adding actions, choose Next.

Step 3: Further customize the generated policy

You can further customize the policy by adding or removing permissions or specifying resources.

To customize the generated policy

1. Update the policy template. The policy template contains resource ARN placeholders for
actions that support resource-level permissions, as shown in the following image. Resource-
level permissions refers to the ability to specify which resources users are allowed to perform
actions on. We recommend that you use ARNs to specify your individual resources in the policy
for actions that support resource-level permissions. You can replace the placeholder resource
ARNs with valid resource ARNs for your use case.

If an action does not support resource-level permissions, you must use a wildcard (*) to specify
that all resources can be affected by the action. To learn which AWS services support resource-
level permissions, see AWS services that work with IAM. For a list of actions in each service,
and to learn which actions support resource-level permissions, see Actions, Resources, and
Condition Keys for AWS Services.

Generate a policy based on CloudTrail activity (console) 2601

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_identifiers.html#identifiers-arns
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://docs.aws.amazon.com/service-authorization/latest/reference/reference_policies_actions-resources-contextkeys.html
https://docs.aws.amazon.com/service-authorization/latest/reference/reference_policies_actions-resources-contextkeys.html

AWS Identity and Access Management User Guide

2. (Optional) Add, modify, or remove JSON policy statements in the template. To learn more
about writing JSON policies, see Creating IAM policies (console).

3. When you are done customizing the policy template, you have the following options:

• (Optional) You can copy the JSON in the template to use separately outside of the
Generated policy page. For example, if you want to use the JSON to create a policy in a
different account. If the policy in your template exceeds the 6,144 character limit for JSON
policies, the policy is split into multiple policies.

• Choose Next to review and create a managed policy in the same account.

Step 4: Review and create a managed policy

If you have permissions to create and attach IAM policies, you can create a managed policy from
the policy that was generated. You can then attach the policy to a user or role in your account.

To review and create a policy

1. On the Review and create managed policy page, enter a Name and Description (optional) for
the policy that you are creating.

2. (Optional) In the Summary section, you can review the permissions that will be included in the
policy.

3. (Optional) Add metadata to the policy by attaching tags as key-value pairs. For more
information about using tags in IAM, see Tagging IAM resources.

4. When you are finished, do one of the following:

• You can attach the new policy directly to the role that was used to generate the policy.
To do this, near the bottom of the page, select the check box next to the Attach policy to
YourRoleName. Then choose Create and attach policy.

• Otherwise, choose Create policy. You can find the policy that you created in the list of
policies in the Policies navigation pane of the IAM console.

5. You can attach the policy that you created to an entity in your account. After you attach the
policy, you can remove any other overly broad policies that might be attached to the entity. To
learn how to attach a managed policy, see Adding IAM identity permissions (console).

Generate a policy based on CloudTrail activity (console) 2602

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create-console.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_tags.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_manage-attach-detach.html#add-policies-console

AWS Identity and Access Management User Guide

Generate a policy using AWS CloudTrail data in another account

You might create CloudTrail trails that store data in central accounts to streamline governing
activities. For example, you can use AWS Organizations to create a trail that logs all events for all
of the AWS accounts in that organization. The trail belongs to a central account. If you want to
generate a policy for a user or role in an account that is different from the account where your
CloudTrail log data is stored, you must grant cross-account access. To do this, you need both a role
and a bucket policy that grant IAM Access Analyzer permissions to your CloudTrail logs. For more
information about creating Organizations trails, see Creating a trail for an organization.

In this example, assume that you want to generate a policy for a user or role in account A. The
CloudTrail trail in account A stores CloudTrail logs in a bucket in account B. Before you can
generate a policy, you must make the following updates:

1. Choose an existing role, or create a new service role that grants IAM Access Analyzer access to
the bucket in account B (where your CloudTrail logs are stored).

2. Verify your Amazon S3 bucket object ownership and bucket permissions policy in account B so
that IAM Access Analyzer can access objects in the bucket.

Step 1: Choose or create a role for cross-account access

• On the Generate policy screen, the option to Use an existing role is pre-selected for you if a
role with the required permissions exists in your account. Otherwise, choose Create and use a
new service role. The new role is used to grant IAM Access Analyzer access to your CloudTrail
logs in account B.

Step 2: Verify or update your Amazon S3 bucket configuration in account B

1. Sign in to the AWS Management Console and open the Amazon S3 console at https://
console.aws.amazon.com/s3/.

2. In the Buckets list, choose the name of the bucket where your CloudTrail trail logs are stored.

3. Choose the Permissions tab and go to the Object Ownership section.

Use Amazon S3 Object Ownership bucket settings to control ownership of objects that you
upload to your buckets. By default, when other AWS accounts upload objects to your bucket,
the uploading account owns the objects. To generate a policy, the bucket owner must own
all of the objects in the bucket. Depending on your ACL use case, you might need to change

Generate a policy using AWS CloudTrail data in another account 2603

https://docs.aws.amazon.com/awscloudtrail/latest/userguide/creating-trail-organization.html
https://console.aws.amazon.com/s3/
https://console.aws.amazon.com/s3/

AWS Identity and Access Management User Guide

the Object Ownership setting for your bucket. Set Object Ownership to one of the following
options.

• Bucket owner enforced (recommended)

• Bucket owner preferred

Important

To successfully generate a policy, the objects in the bucket must be owned by the
bucket owner. If you choose to use Bucket owner preferred, you can only generate a
policy for the time period after the object ownership change was made.

To learn more about object ownership in Amazon S3, see Controlling ownership of objects and
disabling ACLs for your bucket in the Amazon S3 User Guide.

4. Add permissions to your Amazon S3 bucket policy in account B to allow access for the role in
account A.

The following example policy allows ListBucket and GetObject for the bucket
named DOC-EXAMPLE-BUCKET. It allows access if the role accessing the bucket
belongs to an account in your organization and has a name that starts with
AccessAnalyzerMonitorServiceRole. Using aws:PrincipalArn as a Condition in the
Resource element ensures that the role can only access activity for the account if it belongs
to account A. You can replace DOC-EXAMPLE-BUCKET with your bucket name, optional-
prefix with an optional prefix for the bucket, and organization-id with your organization
ID.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "PolicyGenerationBucketPolicy",
 "Effect": "Allow",
 "Principal": {
 "AWS": "*"
 },
 "Action": [
 "s3:GetObject",

Generate a policy using AWS CloudTrail data in another account 2604

https://docs.aws.amazon.com/AmazonS3/latest/userguide/about-object-ownership.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/about-object-ownership.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-principalarn

AWS Identity and Access Management User Guide

 "s3:ListBucket"
],
 "Resource": [
 "arn:aws:s3:::DOC-EXAMPLE-BUCKET",
 "arn:aws:s3:::DOC-EXAMPLE-BUCKET/optional-prefix/AWSLogs/organization-id/
${aws:PrincipalAccount}/*"
],
 "Condition": {
 "StringEquals": {
 "aws:PrincipalOrgID": "organization-id"
 },
 "StringLike": {
 "aws:PrincipalArn": "arn:aws:iam::${aws:PrincipalAccount}:role/service-
role/AccessAnalyzerMonitorServiceRole*"
 }
 }
 }
]
}

5. If you encrypt your logs using AWS KMS, update your AWS KMS key policy in the account
where you store the CloudTrail logs to grant IAM Access Analyzer access to use your key, as
shown in the following policy example. Replace CROSS_ACCOUNT_ORG_TRAIL_FULL_ARN
with the ARN for your trail and organization-id with your organization ID.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "AWS": "*"
 },
 "Action": "kms:Decrypt",
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "kms:EncryptionContext:aws:cloudtrail:arn":
 "CROSS_ACCOUNT_ORG_TRAIL_FULL_ARN",
 "aws:PrincipalOrgID": "organization-id"
 },
 "StringLike": {
 "kms:ViaService": [

Generate a policy using AWS CloudTrail data in another account 2605

AWS Identity and Access Management User Guide

 "access-analyzer.*.amazonaws.com",
 "s3.*.amazonaws.com"
]
 "aws:PrincipalArn": "arn:aws:iam::${aws:PrincipalAccount}:role/service-
role/AccessAnalyzerMonitorServiceRole*"
 }
 }
 }
]
}

Generate a policy based on CloudTrail activity (AWS CLI)

You can use the following commands to generate a policy using the AWS CLI.

To generate a policy

• aws accessanalyzer start-policy-generation

To view a generated policy

• aws accessanalyzer get-generated-policy

To cancel a policy generation request

• aws accessanalyzer cancel-policy-generation

To view a list of policy generation requests

• aws accessanalyzer list-policy-generations

Generate a policy based on CloudTrail activity (AWS API)

You can use the following operations to generate a policy using the AWS API.

To generate a policy

• StartPolicyGeneration

Generate a policy based on CloudTrail activity (AWS CLI) 2606

https://docs.aws.amazon.com/cli/latest/reference/accessanalyzer/start-policy-generation.html
https://docs.aws.amazon.com/cli/latest/reference/accessanalyzer/get-generated-policy.html
https://docs.aws.amazon.com/cli/latest/reference/accessanalyzer/cancel-policy-generation.html
https://docs.aws.amazon.com/cli/latest/reference/accessanalyzer/list-policy-generations.html
https://docs.aws.amazon.com/access-analyzer/latest/APIReference/API_StartPolicyGeneration.html

AWS Identity and Access Management User Guide

To view a generated policy

• GetGeneratedPolicy

To cancel a policy generation request

• CancelPolicyGeneration

To view a list of policy generation requests

• ListPolicyGenerations

IAM Access Analyzer policy generation services

The following table lists the AWS services for which IAM Access Analyzer generates policies with
action-level information. For a list of actions in each service, see Actions, resources, and condition
keys for AWS services in the Service Authorization Reference.

Service Service prefix

AWS Identity and Access Management Access Analyzer access-analyzer

AWS Account Management account

AWS Certificate Manager acm

Amazon Managed Workflows for Apache Airflow airflow

AWS Amplify amplify

AWS Amplify UI Builder amplifyuibuilder

Amazon AppIntegrations app-integrations

AWS AppConfig appconfig

Amazon AppFlow appflow

IAM Access Analyzer policy generation services 2607

https://docs.aws.amazon.com/access-analyzer/latest/APIReference/API_GetGeneratedPolicy.html
https://docs.aws.amazon.com/access-analyzer/latest/APIReference/API_CancelPolicyGeneration.html
https://docs.aws.amazon.com/access-analyzer/latest/APIReference/API_ListPolicyGenerations.html
https://docs.aws.amazon.com/service-authorization/latest/reference/reference_policies_actions-resources-contextkeys.html
https://docs.aws.amazon.com/service-authorization/latest/reference/reference_policies_actions-resources-contextkeys.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awsiamaccessanalyzer.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awsaccountmanagement.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awscertificatemanager.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonmanagedworkflowsforapacheairflow.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awsamplify.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awsamplifyuibuilder.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonappintegrations.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awsappconfig.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonappflow.html

AWS Identity and Access Management User Guide

Service Service prefix

AWS Application Cost Profiler application-
cost-profiler

Amazon CloudWatch Application Insights applicationinsights

AWS App Mesh appmesh

Amazon AppStream 2.0 appstream

AWS AppSync appsync

Amazon Managed Service for Prometheus aps

Amazon Athena athena

AWS Audit Manager auditmanager

AWS Auto Scaling autoscaling

AWS Marketplace aws-marketplace

AWS Backup backup

AWS Batch batch

Amazon Braket braket

AWS Budgets budgets

AWS Cloud9 cloud9

AWS CloudFormation cloudformation

Amazon CloudFront cloudfront

AWS CloudHSM cloudhsm

Amazon CloudSearch cloudsearch

AWS CloudTrail cloudtrail

IAM Access Analyzer policy generation services 2608

https://docs.aws.amazon.com/service-authorization/latest/reference/list_awsapplicationcostprofilerservice.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazoncloudwatchapplicationinsights.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awsappmesh.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonappstream2.0.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awsappsync.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonmanagedserviceforprometheus.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonathena.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awsauditmanager.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awsautoscaling.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awsmarketplace.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awsbackup.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awsbatch.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonbraket.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awsbudgetservice.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awscloud9.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awscloudformation.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazoncloudfront.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awscloudhsm.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazoncloudsearch.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awscloudtrail.html

AWS Identity and Access Management User Guide

Service Service prefix

Amazon CloudWatch cloudwatch

AWS CodeArtifact codeartifact

AWS CodeDeploy codedeploy

Amazon CodeGuru Profiler codeguru-profiler

Amazon CodeGuru Reviewer codeguru-reviewer

AWS CodePipeline codepipeline

AWS CodeStar codestar

AWS CodeStar Notifications codestar-
notifications

Amazon Cognito Identity cognito-identity

Amazon Cognito user pools cognito-idp

Amazon Cognito Sync cognito-sync

Amazon Comprehend Medical comprehen
dmedical

AWS Compute Optimizer compute-
optimizer

AWS Config config

Amazon Connect connect

AWS Cost and Usage Report cur

AWS Glue DataBrew databrew

AWS Data Exchange dataexchange

AWS Data Pipeline datapipeline

IAM Access Analyzer policy generation services 2609

https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazoncloudwatch.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awscodeartifact.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awscodedeploy.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazoncodeguruprofiler.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazoncodegurureviewer.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awscodepipeline.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awscodestar.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awscodestarnotifications.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazoncognitoidentity.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazoncognitouserpools.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazoncognitosync.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazoncomprehendmedical.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awscomputeoptimizer.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awsconfig.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonconnect.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awscostandusagereport.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awsgluedatabrew.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awsdataexchange.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awsdatapipeline.html

AWS Identity and Access Management User Guide

Service Service prefix

DynamoDB Accelerator dax

AWS Device Farm devicefarm

Amazon DevOps Guru devops-guru

AWS Direct Connect directconnect

Amazon Data Lifecycle Manager dlm

AWS Database Migration Service dms

Amazon DocumentDB Elastic Clusters docdb-elastic

AWS Directory Service ds

Amazon DynamoDB dynamodb

Amazon Elastic Block Store ebs

Amazon Elastic Compute Cloud ec2

Amazon Elastic Container Registry ecr

Amazon Elastic Container Registry Public ecr-public

Amazon Elastic Container Service ecs

Amazon Elastic Kubernetes Service eks

Amazon Elastic Inference elastic-inference

Amazon ElastiCache elasticache

AWS Elastic Beanstalk elasticbeanstalk

Amazon Elastic File System elasticfilesystem

Elastic Load Balancing elasticlo
adbalancing

IAM Access Analyzer policy generation services 2610

https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazondynamodbacceleratordax.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awsdevicefarm.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazondevopsguru.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awsdirectconnect.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazondatalifecyclemanager.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awsdatabasemigrationservice.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazondocumentdbelasticclusters.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awsdirectoryservice.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazondynamodb.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonelasticblockstore.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonec2.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonelasticcontainerregistry.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonelasticcontainerregistrypublic.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonelasticcontainerservice.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonelastickubernetesservice.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonelasticinference.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonelasticache.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awselasticbeanstalk.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonelasticfilesystem.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_elasticloadbalancing.html

AWS Identity and Access Management User Guide

Service Service prefix

Amazon Elastic Transcoder elastictranscoder

Amazon EMR on EKS (EMR Containers) emr-containers

Amazon EMR Serverless emr-serverless

Amazon OpenSearch Service es

Amazon EventBridge events

Amazon CloudWatch Evidently evidently

Amazon FinSpace finspace

Amazon Data Firehose firehose

AWS Fault Injection Service fis

AWS Firewall Manager fms

Amazon Fraud Detector frauddetector

Amazon FSx fsx

Amazon GameLift gamelift

Amazon Location Service geo

Amazon S3 Glacier glacier

Amazon Managed Grafana grafana

AWS IoT Greengrass greengrass

AWS Ground Station groundstation

Amazon GuardDuty guardduty

AWS HealthLake healthlake

IAM Access Analyzer policy generation services 2611

https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonelastictranscoder.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonemroneksemrcontainers.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonemrserverless.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonopensearchservice.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazoneventbridge.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazoncloudwatchevidently.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonfinspace.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonkinesisfirehose.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awsfaultinjectionsimulator.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awsfirewallmanager.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonfrauddetector
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonfsx
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazongamelift
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonlocation.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazons3glacier.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonmanagedgrafana.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awsiotgreengrass.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awsgroundstation.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonguardduty.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonhealthlake.html

AWS Identity and Access Management User Guide

Service Service prefix

Amazon Honeycode honeycode

AWS Identity and Access Management iam

AWS Identity Store identitystore

EC2 Image Builder imagebuilder

Amazon Inspector Classic inspector

Amazon Inspector inspector2

AWS IoT iot

AWS IoT Analytics iotanalytics

AWS IoT Core Device Advisor iotdeviceadvisor

AWS IoT Events iotevents

AWS IoT Fleet Hub iotfleethub

AWS IoT SiteWise iotsitewise

AWS IoT TwinMaker iottwinmaker

AWS IoT Wireless iotwireless

Amazon Interactive Video Service ivs

Amazon Interactive Video Service Chat ivschat

Amazon Managed Streaming for Apache Kafka kafka

Amazon Managed Streaming for Kafka Connect kafkaconnect

Amazon Kendra kendra

Amazon Kinesis kinesis

IAM Access Analyzer policy generation services 2612

https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonhoneycode.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_identityandaccessmanagement.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awsidentitystore.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonec2imagebuilder.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazoninspector.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazoninspector2.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awsiot.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awsiotanalytics.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awsiotcoredeviceadvisor.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awsiotevents.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awsiotfleethubfordevicemanagement.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awsiotsitewise.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awsiottwinmaker.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awsiotwireless.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazoninteractivevideoservice.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazoninteractivevideoservicechat.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonmanagedstreamingforapachekafka.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonmanagedstreamingforkafkaconnect.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonkendra.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonkinesis.html

AWS Identity and Access Management User Guide

Service Service prefix

Amazon Kinesis Analytics V2 kinesisanalytics

AWS Key Management Service kms

AWS Lambda lambda

Amazon Lex lex

AWS License Manager Linux Subscriptions Manager license-manager-
linux-subscriptions

Amazon Lightsail lightsail

Amazon CloudWatch Logs logs

Amazon Lookout for Equipment lookoutequipment

Amazon Lookout for Metrics lookoutmetrics

Amazon Lookout for Vision lookoutvision

AWS Mainframe Modernization m2

Amazon Managed Blockchain managedbl
ockchain

AWS Elemental MediaConnect mediaconnect

AWS Elemental MediaConvert mediaconvert

AWS Elemental MediaLive medialive

AWS Elemental MediaPackage mediapackage

AWS Elemental MediaPackage VOD mediapackage-vod

AWS Elemental MediaStore mediastore

AWS Elemental MediaTailor mediatailor

IAM Access Analyzer policy generation services 2613

https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonkinesisanalyticsv2.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awskeymanagementservice.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awslambda.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonlexv2.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awslicensemanagerlinuxsubscriptionsmanager.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonlightsail.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazoncloudwatchlogs.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonlookoutforequipment.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonlookoutformetrics.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonlookoutforvision.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awsmainframemodernizationservice.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonmanagedblockchain.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awselementalmediaconnect.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awselementalmediaconvert.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awselementalmedialive.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awselementalmediapackage.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awselementalmediapackagevod.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awselementalmediastore.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awselementalmediatailor.html

AWS Identity and Access Management User Guide

Service Service prefix

Amazon MemoryDB for Redis memorydb

AWS Application Migration Service mgn

AWS Migration Hub mgh

AWS Migration Hub Strategy Recommendations migration
hub-strategy

Amazon Pinpoint mobiletargeting

Amazon MQ mq

AWS Network Manager networkmanager

Amazon Nimble Studio nimble

AWS HealthOmics omics

AWS OpsWorks opsworks

AWS OpsWorks CM opsworks-cm

AWS Outposts outposts

AWS Organizations organizations

AWS Panorama panorama

AWS Performance Insights pi

Amazon EventBridge Pipes pipes

Amazon Polly polly

Amazon Connect Customer Profiles profile

Amazon QLDB qldb

AWS Resource Access Manager ram

IAM Access Analyzer policy generation services 2614

https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonmemorydb.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awsapplicationmigrationservice.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awsmigrationhub.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awsmigrationhubstrategyrecommendations.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonpinpoint.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonmq.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awsnetworkmanager.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonnimblestudio.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awshealthomics.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awsopsworks.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awsopsworksconfigurationmanagement
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awsoutposts.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awsorganizations.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awspanorama.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awsperformanceinsights.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazoneventbridgepipes.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonpolly.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonconnectcustomerprofiles.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonqldb.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awsresourceaccessmanager.html

AWS Identity and Access Management User Guide

Service Service prefix

AWS Recycle Bin rbin

Amazon Relational Database Service rds

Amazon Redshift redshift

Amazon Redshift Data API redshift-data

AWS Migration Hub Refactor Spaces refactor-spaces

Amazon Rekognition rekognition

AWS Resilience Hub resiliencehub

AWS Resource Explorer resource-
explorer-2

AWS Resource Groups resource-groups

AWS RoboMaker robomaker

AWS Identity and Access Management Roles Anywhere rolesanywhere

Amazon Route 53 route53

Amazon Route 53 Recovery Controls route53-recovery-
control-config

Amazon Route 53 Recovery Readiness route53-
recovery-readiness

Amazon Route 53 Resolver route53resolver

AWS CloudWatch RUM rum

Amazon Simple Storage Service s3

Amazon S3 on Outposts s3-outposts

IAM Access Analyzer policy generation services 2615

https://docs.aws.amazon.com/service-authorization/latest/reference/list_awsrecyclebin.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonrds.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonredshift.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonredshiftdataapi.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awsmigrationhubrefactorspaces.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonrekognition.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awsresiliencehub.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awsresourceexplorer.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awsresourcegroups.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awsrobomaker.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awsidentityandaccessmanagementrolesanywhere.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonroute53.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonroute53recoverycontrols.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonroute53recoveryreadiness.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonroute53resolver.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awscloudwatchrum.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazons3.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazons3onoutposts.html

AWS Identity and Access Management User Guide

Service Service prefix

Amazon SageMaker geospatial capabilities sagemaker-
geospatial

Savings Plans savingsplans

Amazon EventBridge Schemas schemas

Amazon SimpleDB sdb

AWS Secrets Manager secretsmanager

AWS Security Hub securityhub

Amazon Security Lake securitylake

AWS Serverless Application Repository serverlessrepo

AWS Service Catalog servicecatalog

AWS Cloud Map servicediscovery

Service Quotas servicequotas

Amazon Simple Email Service ses

AWS Shield shield

AWS Signer signer

AWS SimSpace Weaver simspaceweaver

AWS Server Migration Service sms

Amazon Pinpoint SMS and Voice Service sms-voice

AWS Snowball snowball

Amazon Simple Queue Service sqs

AWS Systems Manager ssm

IAM Access Analyzer policy generation services 2616

https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonsagemakergeospatialcapabilities.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awssavingsplans.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazoneventbridgeschemas.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonsimpledb.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awssecretsmanager.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awssecurityhub.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonsecuritylake.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awsserverlessapplicationrepository.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awsservicecatalog.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awscloudmap.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_servicequotas.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonses.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awsshield.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awssigner.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awssimspaceweaver.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awsservermigrationservice.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonpinpointsmsandvoiceservice.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awssnowball.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonsqs.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awssystemsmanager.html

AWS Identity and Access Management User Guide

Service Service prefix

AWS Systems Manager Incident Manager ssm-incidents

AWS Systems Manager for SAP ssm-sap

AWS Step Functions states

AWS Security Token Service sts

Amazon Simple Workflow Service swf

Amazon CloudWatch Synthetics synthetics

AWS Resource Groups Tagging API tag

Amazon Textract textract

Amazon Timestream timestream

AWS Telco Network Builder tnb

Amazon Transcribe transcribe

AWS Transfer Family transfer

Amazon Translate translate

Amazon Connect Voice ID voiceid

Amazon VPC Lattice vpc-lattice

AWS WAFV2 wafv2

AWS Well-Architected Tool wellarchitected

Amazon Connect Wisdom wisdom

Amazon WorkLink worklink

Amazon WorkSpaces workspaces

IAM Access Analyzer policy generation services 2617

https://docs.aws.amazon.com/service-authorization/latest/reference/list_awssystemsmanagerincidentmanager.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awssystemsmanagerforsap.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awsstepfunctions.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awssecuritytokenservice.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonsimpleworkflowservice.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazoncloudwatchsynthetics.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonresourcegrouptaggingapi.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazontextract.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazontimestream.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awstelconetworkbuilder.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazontranscribe.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awstransferfamily.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazontranslate.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonconnectvoiceid.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonvpclattice.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awswafv2.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awswell-architectedtool.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonconnectwisdom.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonworklink.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonworkspaces.html

AWS Identity and Access Management User Guide

Service Service prefix

AWS X-Ray xray

IAM Access Analyzer quotas

IAM Access Analyzer has the following quotas:

Resource Default quota Maximum quota

Maximum account-level
analyzers per analyzer type
per AWS account per Region

1 1

Maximum organization-level
analyzers per analyzer type
per AWS account per Region

5 20¹

Maximum archive rules per
analyzer

100

Each archive rule can have up
to 20 values per criterion.

1,000¹

Maximum number of access
previews per analyzer per
hour

1,000 1,000

AWS CloudTrail log files
processed per policy
generations

100,000 100,000

Concurrent policy generations 1 1

Policy generation AWS
CloudTrail data size

25 GB 25 GB

Policy generation AWS
CloudTrail time range

90 days 90 days

IAM Access Analyzer quotas 2618

https://docs.aws.amazon.com/service-authorization/latest/reference/list_awsx-ray.html

AWS Identity and Access Management User Guide

Resource Default quota Maximum quota

Policy generations per day Africa (Cape Town): 5

Asia Pacific (Hong Kong): 5

Europe (Milan): 5

Middle East (Bahrain): 5

All other supported regions:
50

Note

Canceled policy
generation requests
apply to the daily
quota.

Africa (Cape Town): 5

Asia Pacific (Hong Kong): 5

Europe (Milan): 5

Middle East (Bahrain): 5

All other supported regions:
50

¹Some quotas are customer-configurable using Service Quotas.

IAM Access Analyzer quotas 2619

https://docs.aws.amazon.com/servicequotas/latest/userguide/intro.html

AWS Identity and Access Management User Guide

Troubleshooting IAM

If you encounter access-denied issues or similar difficulties when working with AWS Identity and
Access Management (IAM), consult the topics in this section.

Topics

• Troubleshooting general IAM issues

• Troubleshooting access denied error messages

• Troubleshooting IAM policies

• Troubleshooting FIDO security keys

• Troubleshooting IAM roles

• Troubleshooting IAM and Amazon EC2

• Troubleshooting IAM and Amazon S3

• Troubleshooting SAML 2.0 federation with AWS

Troubleshooting general IAM issues

Use the information here to help you diagnose and fix common issues when you work with AWS
Identity and Access Management (IAM).

Issues

• I can't sign in to my AWS account

• I lost my access keys

• Policy variables aren't working

• Changes that I make are not always immediately visible

• I am not authorized to perform: iam:DeleteVirtualMFADevice

• How do I securely create IAM users?

• Additional resources

I can't sign in to my AWS account

Verify that you have the correct credentials and that you are using the correct method to sign in.
For more information, see Troubleshooting sign-in issues in the AWS Sign-In User Guide.

General issues 2620

https://docs.aws.amazon.com/signin/latest/userguide/troubleshooting-sign-in-issues.html

AWS Identity and Access Management User Guide

I lost my access keys

Access keys consist of two parts:

• The access key identifier. This is not a secret, and can be seen in the IAM console wherever
access keys are listed, such as on the user summary page.

• The secret access key. This is provided when you initially create the access key pair. Just like a
password, it cannot be retrieved later. If you lost your secret access key, then you must create a
new access key pair. If you already have the maximum number of access keys, you must delete an
existing pair before you can create another.

For more information, see Resetting lost or forgotten passwords or access keys for AWS.

Policy variables aren't working

• Verify that all policies that include variables include the following version number in the policy:
"Version": "2012-10-17". Without the correct version number, the variables are not
replaced during evaluation. Instead, the variables are evaluated literally. Any policies that don't
include variables will still work if you include the latest version number.

A Version policy element is different from a policy version. The Version policy element is used
within a policy and defines the version of the policy language. A policy version, on the other
hand, is created when you make changes to a customer managed policy in IAM. The changed
policy doesn't overwrite the existing policy. Instead, IAM creates a new version of the managed
policy. To learn more about the Version policy element see IAM JSON policy elements: Version.
To learn more about policy versions, see the section called “Versioning IAM policies”.

• Verify that your policy variables are in the right case. For details, see IAM policy elements:
Variables and tags.

Changes that I make are not always immediately visible

As a service that is accessed through computers in data centers around the world, IAM uses a
distributed computing model called eventual consistency. Any change that you make in IAM (or
other AWS services), including tags used in attribute-based access control (ABAC), takes time to
become visible from all possible endpoints. Some of the delay results from the time it takes to
send the data from server to server, from replication zone to replication zone, and from Region to

I lost my access keys 2621

https://wikipedia.org/wiki/Eventual_consistency
https://docs.aws.amazon.com/IAM/latest/UserGuide/introduction_attribute-based-access-control.html

AWS Identity and Access Management User Guide

Region around the world. IAM also uses caching to improve performance, but in some cases this
can add time. The change might not be visible until the previously cached data times out.

You must design your global applications to account for these potential delays. Ensure that they
work as expected, even when a change made in one location is not instantly visible at another.
Such changes include creating or updating users, groups, roles, or policies. We recommend that you
do not include such IAM changes in the critical, high-availability code paths of your application.
Instead, make IAM changes in a separate initialization or setup routine that you run less frequently.
Also, be sure to verify that the changes have been propagated before production workflows
depend on them.

For more information about how some other AWS services are affected by this, consult the
following resources:

• Amazon DynamoDB: What is the consistency model of Amazon DynamoDB? in the DynamoDB
FAQ, and Read Consistency in the Amazon DynamoDB Developer Guide.

• Amazon EC2: EC2 Eventual Consistency in the Amazon EC2 API Reference.

• Amazon EMR: Ensuring Consistency When Using Amazon S3 and Amazon Elastic MapReduce for
ETL Workflows in the AWS Big Data Blog

• Amazon Redshift: Managing Data Consistency in the Amazon Redshift Database Developer Guide

• Amazon S3: Amazon S3 Data Consistency Model in the Amazon Simple Storage Service User
Guide

I am not authorized to perform: iam:DeleteVirtualMFADevice

You might receive the following error when you attempt to assign or remove a virtual MFA device
for yourself or others:

User: arn:aws:iam::123456789012:user/Diego is not authorized to perform:
 iam:DeleteVirtualMFADevice on resource: arn:aws:iam::123456789012:mfa/Diego with an
 explicit deny

This could happen if someone previously began assigning a virtual MFA device to a user in the IAM
console and then cancelled the process. This creates a virtual MFA device for the user in IAM but
never assigns it to the user. You must delete the existing virtual MFA device before you can create a
new virtual MFA device with the same device name.

I am not authorized to perform: iam:DeleteVirtualMFADevice 2622

https://aws.amazon.com/dynamodb/faqs
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/HowItWorks.ReadConsistency.html
https://docs.aws.amazon.com/AWSEC2/latest/APIReference/query-api-troubleshooting.html#eventual-consistency
https://aws.amazon.com/blogs/big-data/ensuring-consistency-when-using-amazon-s3-and-amazon-elastic-mapreduce-for-etl-workflows/
https://aws.amazon.com/blogs/big-data/ensuring-consistency-when-using-amazon-s3-and-amazon-elastic-mapreduce-for-etl-workflows/
https://docs.aws.amazon.com/redshift/latest/dg/managing-data-consistency.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/Introduction.html#ConsistencyModel

AWS Identity and Access Management User Guide

To fix this issue, an administrator should not edit policy permissions. Instead, the administrator
must use the AWS CLI or AWS API to delete the existing but unassigned virtual MFA device.

To delete an existing but unassigned virtual MFA device

1. View the virtual MFA devices in your account.

• AWS CLI: aws iam list-virtual-mfa-devices

• AWS API: ListVirtualMFADevices

2. In the response, locate the ARN of the virtual MFA device for the user you are trying to fix.

3. Delete the virtual MFA device.

• AWS CLI: aws iam delete-virtual-mfa-device

• AWS API: DeleteVirtualMFADevice

How do I securely create IAM users?

If you have employees that require access to AWS, you might choose to create IAM users or use IAM
Identity Center for authentication. If you use IAM, AWS recommends that you create an IAM user
and securely communicate the credentials to the employee. If you are not physically located next
to your employee, use a secure workflow to communicate credentials to employees.

Use the following workflow to securely create a new user in IAM:

1. Create a new user using the AWS Management Console. Choose to grant AWS Management
Console access with an auto-generated password. If necessary, select the Users must create
a new password at next sign-in check box. Do not add a permissions policy to the user until
after they have changed their password.

2. After the user is added, copy the sign-in URL, user name, and password for the new user. To
view the password, choose Show.

3. Send the password to your employee using a secure communications method in your company,
such as email, chat, or a ticketing system. Separately, provide your users with the IAM
user console link and their user name. Tell the employee to confirm that they can sign in
successfully before you will grant them permissions.

4. After the employee confirms, add the permissions that they need. As a security best practice,
add a policy that requires the user to authenticate using MFA to manage their credentials.

How do I securely create IAM users? 2623

https://docs.aws.amazon.com/cli/latest/reference/iam/list-virtual-mfa-devices.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_ListVirtualMFADevices.html
https://docs.aws.amazon.com/cli/latest/reference/iam/delete-virtual-mfa-device.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_DeleteVirtualMFADevice.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/what-is.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/what-is.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_create.html

AWS Identity and Access Management User Guide

For an example policy, see AWS: Allows MFA-authenticated IAM users to manage their own
credentials on the Security credentials page.

Additional resources

The following resources can help you troubleshoot as you work with AWS.

• AWS CloudTrail User Guide – Use AWS CloudTrail to track a history of API calls made to AWS
and store that information in log files. This helps you determine which users and accounts
accessed resources in your account, when the calls were made, what actions were requested, and
more. For more information, see Logging IAM and AWS STS API calls with AWS CloudTrail.

• AWS Knowledge Center – Find FAQs and links to other resources to help you troubleshoot
issues.

• AWS Support Center – Get technical support.

• AWS Premium Support Center – Get premium technical support.

Troubleshooting access denied error messages

Access denied errors appear when AWS explicitly or implicitly denies an authorization request.
An explicit denial occurs when a policy contains a Deny statement for the specific AWS action. An
implicit denial occurs when there is no applicable Deny statement and also no applicable Allow
statement. Because an IAM policy denies an IAM principal by default, the policy must explicitly
allow the principal to perform an action. Otherwise, the policy implicitly denies access. For more
information, see The difference between explicit and implicit denies.

If multiple policies of the same policy type deny an authorization request, then AWS doesn't
specify the number of policies in the access denied error message. If multiple policy types deny an
authorization request, AWS includes only one of those policy types in the error message.

I get "access denied" when I make a request to an AWS service

• Check if the error message includes the type of policy responsible for denying access. For
example, if the error mentions that access is denied due to a Service Control Policy (SCP), then
you can focus on troubleshooting SCP issues. When you know the policy type, you can also check
for a deny statement or a missing allow on the specific action in policies of that policy type. If
the error message doesn't mention the policy type responsible for denying access, use the rest of
the guidelines in this section to troubleshoot further.

Additional resources 2624

https://docs.aws.amazon.com/awscloudtrail/latest/userguide/
https://aws.amazon.com/premiumsupport/knowledge-center/
https://console.aws.amazon.com/support/home#/
https://aws.amazon.com/premiumsupport/

AWS Identity and Access Management User Guide

• Verify that you have the identity-based policy permission to call the action and resource that you
have requested. If any conditions are set, you must also meet those conditions when you send
the request. For information about viewing or modifying policies for an IAM user, group, or role,
see Managing IAM policies.

• If the AWS Management Console returns a message stating that you're not authorized to
perform an action, then you must contact your administrator for assistance. Your administrator
provided you with your sign-in credentials or sign-in link.

The following example error occurs when the mateojackson IAM user attempts to use the
console to view details about a fictional my-example-widget resource but does not have the
fictional widgets:GetWidget permissions.

User: arn:aws:iam::123456789012:user/mateojackson is not authorized to perform:
 widgets:GetWidget on resource: my-example-widget

In this case, Mateo must ask his administrator to update his policies to allow access to the my-
example-widget resource using the widgets:GetWidget action.

• Are you trying to access a service that supports resource-based policies, such as Amazon S3,
Amazon SNS, or Amazon SQS? If so, verify that the policy specifies you as a principal and grants
you access. If you make a request to a service within your account, either your identity-based
policies or the resource-based policies can grant you permission. If you make a request to a
service in a different account, then both your identity-based policies and the resource-based
policies must grant you permission. To view the services that support resource-based policies,
see AWS services that work with IAM.

• If your policy includes a condition with a key–value pair, review it carefully. Examples
include the aws:RequestTag/tag-key global condition key, the AWS KMS
kms:EncryptionContext:encryption_context_key, and the ResourceTag/tag-key
condition key supported by multiple services. Make sure that the key name does not match
multiple results. Because condition key names are not case sensitive, a condition that checks for
a key named foo matches foo, Foo, or FOO. If your request includes multiple key–value pairs
with key names that differ only by case, then your access might be unexpectedly denied. For
more information, see IAM JSON policy elements: Condition.

• If you have a permissions boundary, verify that the policy that is used for the permissions
boundary allows your request. If your identity-based policies allow the request, but your
permissions boundary does not, then the request is denied. A permissions boundary controls
the maximum permissions that an IAM principal (user or role) can have. Resource-based policies

I get "access denied" when I make a request to an AWS service 2625

https://docs.aws.amazon.com/kms/latest/developerguide/policy-conditions.html#conditions-kms-encryption-context

AWS Identity and Access Management User Guide

are not limited by permissions boundaries. Permissions boundaries are not common. For more
information about how AWS evaluates policies, see Policy evaluation logic.

• If you are signing requests manually (without using the AWS SDKs), verify that you have correctly
signed the request.

I get "access denied" when I make a request with temporary security
credentials

• First, make sure that you are not denied access for a reason that is unrelated to your temporary
credentials. For more information, see I get "access denied" when I make a request to an AWS
service.

• Verify that the service accepts temporary security credentials, see AWS services that work with
IAM.

• Verify that your requests are being signed correctly and that the request is well-formed. For
details, see your toolkit documentation or Using temporary credentials with AWS resources.

• Verify that your temporary security credentials haven't expired. For more information, see
Temporary security credentials in IAM.

• Verify that the IAM user or role has the correct permissions. Permissions for temporary security
credentials are derived from an IAM user or role. As a result, the permissions are limited to
those that are granted to the role whose temporary credentials you have assumed. For more
information about how permissions for temporary security credentials are determined, see
Controlling permissions for temporary security credentials.

• If you assumed a role, your role session might be limited by session policies. When you request
temporary security credentials programmatically using AWS STS, you can optionally pass
inline or managed session policies. Session policies are advanced policies that you pass as a
parameter when you programmatically create a temporary credential session for a role. You
can pass a single JSON inline session policy document using the Policy parameter. You can
use the PolicyArns parameter to specify up to 10 managed session policies. The resulting
session's permissions are the intersection of the role's identity-based policies and the session
policies. Alternatively, if your administrator or a custom program provides you with temporary
credentials, they might have included a session policy to limit your access.

• If you are a federated user, your session might be limited by session policies. You become a
federated user by signing in to AWS as an IAM user and then requesting a federation token.
For more information about federated users, see GetFederationToken—federation through a

I get "access denied" when I make a request with temporary security credentials 2626

http://aws.amazon.com/tools/
https://docs.aws.amazon.com/general/latest/gr/signing_aws_api_requests.html
http://aws.amazon.com/tools/
https://docs.aws.amazon.com/STS/latest/APIReference/API_GetFederationToken.html

AWS Identity and Access Management User Guide

custom identity broker. If you or your identity broker passed session policies while requesting
a federation token, then your session is limited by those policies. The resulting session's
permissions are the intersection of your IAM user identity-based policies and the session policies.
For more information about session policies, see Session policies.

• If you are accessing a resource that has a resource-based policy by using a role, verify that the
policy grants permissions to the role. For example, the following policy allows MyRole from
account 111122223333 to access MyBucket.

{
 "Version": "2012-10-17",
 "Statement": [{
 "Sid": "S3BucketPolicy",
 "Effect": "Allow",
 "Principal": {"AWS": ["arn:aws:iam::111122223333:role/MyRole"]},
 "Action": ["s3:PutObject"],
 "Resource": ["arn:aws:s3:::MyBucket/*"]
 }]
}

Access denied error message examples

Most access denied error messages appear in the format User user is not authorized to
perform action on resource because context. In this example, user is the Amazon
Resource Name (ARN) that doesn't receive access, action is the service action that the policy
denies, and resource is the ARN of the resource on which the policy acts. The context field
represents additional context about the policy type that explains why the policy denied access.

When a policy explicitly denies access because the policy contains a Deny statement, then AWS
includes the phrase with an explicit deny in a type policy in the access denied error
message. When the policy implicitly denies access, then AWS includes the phrase because no
type policy allows the action action in the access denied error message.

Note

Some AWS services do not support this access denied error message format. The content of
access denied error messages can vary depending on the service making the authorization
request.

Access denied examples 2627

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_identifiers.html#identifiers-arns
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_identifiers.html#identifiers-arns

AWS Identity and Access Management User Guide

The following examples show the format for different types of access denied error messages.

Access denied due to a Service Control Policy – implicit denial

1. Check for a missing Allow statement for the action in your Service Control Policies (SCPs). For
the following example, the action is codecommit:ListRepositories.

2. Update your SCP by adding the Allow statement. For more information, see Updating an SCP in
the AWS IAM Identity Center User Guide.

User: arn:aws:iam::777788889999:user/JohnDoe is not authorized to perform:
codecommit:ListRepositories because no service control policy allows the
 codecommit:ListRespositories action

Access denied due to a Service Control Policy – explicit denial

1. Check for a Deny statement for the action in your Service Control Policies (SCPs). For the
following example, the action is codecommit:ListRepositories.

2. Update your SCP by removing the Deny statement. For more information, see Updating an SCP
in the AWS IAM Identity Center User Guide.

User: arn:aws:iam::777788889999:user/JohnDoe is not authorized to perform:
codecommit:ListRepositories with an explicit deny in a service control policy

Access denied due to a VPC endpoint policy – implicit denial

1. Check for a missing Allow statement for the action in your Virtual Private Cloud (VPC) endpoint
policies. For the following example, the action is codecommit:ListRepositories.

2. Update your VPC endpoint policy by adding the Allow statement. For more information, see
Update a VPC endpoint policy in the AWS PrivateLink Guide.

User: arn:aws:iam::123456789012:user/JohnDoe is not authorized to perform:
codecommit:ListRepositories because no VPC endpoint policy allows the
 codecommit:ListRepositories action

Access denied examples 2628

https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_scps_create.html#update_policy
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_scps_create.html#update_policy
https://docs.aws.amazon.com/vpc/latest/privatelink/vpc-endpoints-access.html#update-vpc-endpoint-policy

AWS Identity and Access Management User Guide

Access denied due to a VPC endpoint policy – explicit denial

1. Check for an explicit Deny statement for the action in your Virtual Private Cloud (VPC) endpoint
policies. For the following example, the action is codedeploy:ListDeployments.

2. Update your VPC endpoint policy by removing the Deny statement. For more information, see
Update a VPC endpoint policy in the AWS PrivateLink Guide.

User: arn:aws:iam::123456789012:user/JohnDoe is not authorized to perform:
codedeploy:ListDeployments on resource: arn:aws:codedeploy:us-
east-1:123456789012:deploymentgroup:* with an explicit deny in a VPC endpoint policy

Access denied due to a permissions boundary – implicit denial

1. Check for a missing Allow statement for the action in your permissions boundary. For the
following example, the action is codedeploy:ListDeployments.

2. Update your permissions boundary by adding the Allow statement to your IAM policy. For more
information, see Permissions boundaries for IAM entities and Editing IAM policies.

User: arn:aws:iam::123456789012:user/JohnDoe is not authorized to perform:
codedeploy:ListDeployments on resource: arn:aws:codedeploy:us-
east-1:123456789012:deploymentgroup:* because no permissions boundary allows the
 codedeploy:ListDeployments action

Access denied due to a permissions boundary – explicit denial

1. Check for an explicit Deny statement for the action in your permissions boundary. For the
following example, the action is sagemaker:ListModels.

2. Update your permissions boundary by removing the Deny statement from your IAM policy. For
more information, see Permissions boundaries for IAM entities and Editing IAM policies.

User: arn:aws:iam::777788889999:user/JohnDoe is not authorized to perform:
sagemaker:ListModels with an explicit deny in a permissions boundary

Access denied examples 2629

https://docs.aws.amazon.com/vpc/latest/privatelink/vpc-endpoints-access.html#update-vpc-endpoint-policy

AWS Identity and Access Management User Guide

Access denied due to session policies – implicit denial

1. Check for a missing Allow statement for the action in your session policies. For the following
example, the action is codecommit:ListRepositories.

2. Update your session policy by adding the Allow statement. For more information, see Session
policies and Editing IAM policies.

User: arn:aws:iam::123456789012:user/JohnDoe is not authorized to perform:
codecommit:ListRepositories because no session policy allows the
 codecommit:ListRepositories action

Access denied due to session policies – explicit denial

1. Check for an explicit Deny statement for the action in your session policies. For the following
example, the action is codedeploy:ListDeployments.

2. Update your session policy by removing the Deny statement. For more information, see Session
policies and Editing IAM policies.

User: arn:aws:iam::123456789012:user/JohnDoe is not authorized to perform:
codedeploy:ListDeployments on resource: arn:aws:codedeploy:us-
east-1:123456789012:deploymentgroup:* with an explicit deny in a sessions policy

Access denied due to resource-based policies – implicit denial

1. Check for a missing Allow statement for the action in your resource-based policy. For the
following example, the action is secretsmanager:GetSecretValue.

2. Update your policy by adding the Allow statement. For more information, see Resource-based
policies and Editing IAM policies.

User: arn:aws:iam::123456789012:user/JohnDoe is not authorized to perform:
secretsmanager:GetSecretValue because no resource-based policy allows the
 secretsmanager:GetSecretValue action

Access denied examples 2630

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html#policies_session
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html#policies_session
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html#policies_session
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html#policies_session
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html#policies_resource-based
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html#policies_resource-based

AWS Identity and Access Management User Guide

Access denied due to resource-based policies – explicit denial

1. Check for an explicit Deny statement for the action in your resource-based policy. For the
following example, the action is secretsmanager:GetSecretValue.

2. Update your policy by removing the Deny statement. For more information, see Resource-based
policies and Editing IAM policies.

User: arn:aws:iam::123456789012:user/JohnDoe is not authorized to perform:
secretsmanager:GetSecretValue on resource: arn:aws:secretsmanager:us-
east-1:123456789012:secret:* with an explicit deny in a resource-based policy

Access denied due to role trust policies – implicit denial

1. Check for a missing Allow statement for the action in your role trust policy. For the following
example, the action is sts:AssumeRole.

2. Update your policy by adding the Allow statement. For more information, see Resource-based
policies and Editing IAM policies.

User: arn:aws:iam::123456789012:user/JohnDoe is not authorized to perform:
sts:AssumeRole because no role trust policy allows the sts:AssumeRole action

Access denied due to role trust policies – explicit denial

1. Check for an explicit Deny statement for the action in your role trust policy. For the following
example, the action is sts:AssumeRole.

2. Update your policy by removing the Deny statement. For more information, see Resource-based
policies and Editing IAM policies.

User: arn:aws:iam::777788889999:user/JohnDoe is not authorized to perform:
sts:AssumeRole with an explicit deny in the role trust policy

Access denied examples 2631

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html#policies_resource-based
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html#policies_resource-based
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html#policies_resource-based
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html#policies_resource-based
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html#policies_resource-based
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html#policies_resource-based

AWS Identity and Access Management User Guide

Access denied due to identity-based policies – implicit denial

1. Check for a missing Allow statement for the action in identity-based policies attached to the
identity. For the following example, the action is codecommit:ListRepositories attached
to user JohnDoe.

2. Update your policy by adding the Allow statement. For more information, see Identity-based
policies and Editing IAM policies.

User: arn:aws:iam::123456789012:user/JohnDoe is not authorized to perform:
codecommit:ListRepositories because no identity-based policy allows the
 codecommit:ListRepositories action

Access denied due to identity-based policies – explicit denial

1. Check for an explicit Deny statement for the action in identity-based policies attached to the
identity. For the following example, the action is codedeploy:ListDeployments attached to
user JohnDoe.

2. Update your policy by removing the Deny statement. For more information, see Identity-based
policies and Editing IAM policies.

User: arn:aws:iam::123456789012:user/JohnDoe is not authorized to perform:
codedeploy:ListDeployments on resource: arn:aws:codedeploy:us-
east-1:123456789012:deploymentgroup:* with an explicit deny in an identity-based policy

Access denied when a VPC request fails due to another policy

1. Check for an explicit Deny statement for the action in your Service Control Policies (SCPs). For
the following example, the action is SNS:Publish.

2. Update your SCP by removing the Deny statement. For more information, see Updating an SCP
in the AWS IAM Identity Center User Guide.

User: arn:aws:sts::111122223333:assumed-role/role-name/role-session-name is not
 authorized to perform:
SNS:Publish on resource: arn:aws:sns:us-east-1:444455556666:role-name-2

Access denied examples 2632

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html#policies_id-based
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html#policies_id-based
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html#policies_id-based
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html#policies_id-based
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_scps_create.html#update_policy

AWS Identity and Access Management User Guide

with an explicit deny in a VPC endpoint policy transitively through a service control
 policy

Troubleshooting IAM policies

A policy is an entity in AWS that, when attached to an identity or resource, defines their
permissions. AWS evaluates these policies when a principal, such as a user, makes a request.
Permissions in the policies determine whether the request is allowed or denied. Policies are stored
in AWS as JSON documents that are attached to principals as identity-based policies or to resources
as resource-based policies. You can attach an identity-based policy to a principal (or identity), such
as an IAM group, user, or role. Identity-based policies include AWS managed policies, customer
managed policies, and inline policies. You can create and edit customer managed policies in the
AWS Management Console using both Visual and JSON editor options. When you view a policy in
the AWS Management Console, you can see a summary of the permissions that are granted by that
policy. You can use the visual editor and policy summaries to help you diagnose and fix common
errors encountered while managing IAM policies.

Keep in mind that all IAM policies are stored using syntax that begins with the rules of JavaScript
Object Notation (JSON). You do not have to understand this syntax to create or manage your
policies. You can create and edit a policy using the visual editor in the AWS Management Console.
To learn more about JSON syntax in IAM policies, see Grammar of the IAM JSON policy language .

Troubleshooting IAM Policy Topics

• Troubleshoot using the visual editor

• Policy restructuring

• Choosing a resource ARN in the visual editor

• Denying permissions in the visual editor

• Specifying multiple services in the visual editor

• Reducing the size of your policy in the visual editor

• Fixing unrecognized services, actions, or resource types in the visual editor

• Troubleshoot using policy summaries

• Missing policy summary

• Policy summary includes unrecognized services, actions, or resource types

• Service does not support IAM policy summaries

• My policy does not grant the expected permissions

IAM policies 2633

http://www.json.org
http://www.json.org

AWS Identity and Access Management User Guide

• Troubleshoot policy management

• Attaching or detaching a policy in an IAM account

• Changing policies for your IAM identities based on their activity

• Troubleshoot JSON policy documents

• Validate your policies

• I don't have permissions for policy validation in the JSON editor

• More than one JSON policy object

• More than one JSON statement element

• More than one effect, action, or resource element in a JSON statement element

• Missing JSON version element

Troubleshoot using the visual editor

When you create or edit a customer managed policy, you can use information in the Visual editor
to help you troubleshoot errors in your policy. To view an example of using the visual editor to
create a policy, see the section called “Controlling access to identities”.

Policy restructuring

When you create a policy, AWS validates, processes, and transforms the policy before storing
it. When AWS returns the policy in response to a user query or displays it in the console, AWS
transforms the policy back into a human-readable format without changing the permissions
granted by the policy. This can result in differences in what you see in the policy visual editor or
JSON tab: Visual editor permission blocks can be added, removed, or reordered, and content within
a block can be optimized. In the JSON tab, insignificant white space can be removed, and elements
within JSON maps can be reordered. In addition, AWS account IDs within the principal elements
can be replaced by the ARN of the AWS account root user. Because of these possible changes, you
should not compare JSON policy documents as strings.

When you create a customer managed policy in the AWS Management Console, you can choose to
work entirely in the JSON editor. If you never make any changes in the Visual editor and choose
Next from the JSON editor, the policy is less likely to be restructured. However, if you create a
policy and use the Visual editor to make any modifications, or if you choose Next from the Visual
editor option, then IAM might restructure the policy to optimize its appearance in the visual editor.

This restructuring exists only in your editing session and is not saved automatically.

Troubleshoot using the visual editor 2634

AWS Identity and Access Management User Guide

If your policy is restructured in your editing session, IAM determines whether to save the
restructuring based on the following situations:

Using this editor
option

If you edit your
policy

And then choose
Next from this tab

When you choose
Save changes

Visual Edited Visual The policy is restructu
red

Visual Edited JSON The policy is restructu
red

Visual Not Edited Visual The policy is restructu
red

JSON Edited Visual The policy is restructu
red

JSON Edited JSON The policy structure is
not changed

JSON Not Edited JSON The policy structure is
not changed

IAM might restructure complex policies or policies that have permission blocks or statements that
allow multiple services, resource types, or condition keys.

Choosing a resource ARN in the visual editor

When you create or edit a policy using the visual editor, you must first choose a service, and then
choose actions from that service. If the service and actions that you selected support choosing
specific resources, then the visual editor lists the supported resource types. You can then choose
Add ARN to provide the details about your resource. You can choose from the following options for
adding an ARN for a resource type.

• Use the ARN builder – Based on the resource type, you might see different fields to build your
ARN. You can also choose Any to provide permissions for any value for the specified setting. For
example, if you selected the Amazon EC2 Read access level group, then the actions in your policy
support the instance resource type. You must provide the Region, Account, and InstanceId

Troubleshoot using the visual editor 2635

AWS Identity and Access Management User Guide

values for your resource. If you provide your account ID but choose Any for the Region and
instance ID, then the policy grants permissions to any instance in your account.

• Type or paste the ARN – You can specify resources by their Amazon Resource Name (ARN). You
can include a wildcard character (*) in any field of the ARN (between each pair of colons). For
more information, see IAM JSON policy elements: Resource.

Denying permissions in the visual editor

By default, the policy that you create using the visual editor allows the actions that you choose.
To deny the chosen actions instead, choose Switch to deny permissions. Because requests are
denied by default, we recommend as a security best practice that you allow permissions to only
those actions and resources that a user needs. You should create a statement to deny permissions
only if you want to override a permission separately that is allowed by another statement or
policy. We recommend that you limit the number of deny permissions to a minimum because they
can increase the difficulty of troubleshooting permissions. For more information about how IAM
evaluates policy logic, see Policy evaluation logic.

Note

By default, only the AWS account root user has access to all the resources in that account.
So if you are not signed in as the root user, you must have permissions granted by a policy.

Specifying multiple services in the visual editor

When you use the visual editor to construct a policy, you can select only one service at a time. This
is a best practice because the visual editor then allows you to choose from the actions for that one
service. You then choose from the resources supported by that service and the selected actions.
This makes it easier to create and troubleshoot your policy.

If you are familiar with the JSON syntax, you can also use a wildcard character (*) to manually
specify multiple services. For example, type Code* to provide permissions for all services
beginning with Code, such as CodeBuild and CodeCommit. However, you must then type the
actions and resource ARNs to complete your policy. Additionally, when you save your policy, it
might be restructured to include each service in a separate permission block.

Alternatively, to use JSON syntax (such as wildcards) for services, create, edit, and save your policy
using the JSON editor option.

Troubleshoot using the visual editor 2636

AWS Identity and Access Management User Guide

Reducing the size of your policy in the visual editor

When you use the visual editor to create a policy, IAM creates a JSON document to store your
policy. You can view this document by switching to the JSON editor option. If this JSON document
exceeds the size limit of a policy, the visual editor displays an error message and does not allow you
to review and save your policy. To view the IAM limitation on the size of a managed policy, see IAM
and STS character limits.

To reduce the size of your policy in the visual editor, edit your policy or move permission blocks to
another policy. The error message includes the number of characters that your policy document
contains, and you can use this information to help you reduce the size of your policy.

Fixing unrecognized services, actions, or resource types in the visual editor

When you create or edit a policy in the visual editor, you might see a warning that your policy
includes an unrecognized service, action, or resource type.

Note

IAM reviews service names, actions, and resource types for services that support policy
summaries. However, your policy summary might include a resource value or condition that
does not exist. Always test your policies with the policy simulator.

If your policy includes unrecognized services, actions or resource types, one of the following errors
has occurred:

• Preview service – Services that are in preview do not support the visual editor. If you are
participating in the preview, you can ignore the warning and continue, though you must
manually type the actions and resource ARNs to complete your policy. Alternatively, you can
choose the JSON editor option to type or paste a JSON policy document.

• Custom service – Custom services do not support the visual editor. If you are using a custom
service, you can ignore the warning and continue, though you must manually type the actions
and resource ARNs to complete your policy. Alternatively, you can choose the JSON editor option
to type or paste a JSON policy document.

• Service does not support the visual editor – If your policy includes a generally available (GA)
service that does not support the visual editor, you can ignore the warning and continue, though
you must manually type the actions and resource ARNs to complete your policy. Alternatively,
you can choose the JSON editor option to type or paste a JSON policy document.

Troubleshoot using the visual editor 2637

AWS Identity and Access Management User Guide

Generally available services are services that are released publicly and are not preview or custom
services. If an unrecognized service is generally available and the name is spelled correctly, then
the service does not support the visual editor. To learn how to request visual editor or policy
summary support for a GA service, see Service does not support IAM policy summaries.

• Action does not support the visual editor – If your policy includes a supported service with an
unsupported action, you can ignore the warning and continue, though you must manually type
the resource ARNs to complete your policy. Alternatively, you can choose the JSON editor option
to type or paste a JSON policy document.

If your policy includes a supported service with an unsupported action, then the service does not
fully support the visual editor. To learn how to request visual editor or policy summary support
for a GA service, see Service does not support IAM policy summaries.

• Resource type does not support the visual editor – If your policy includes a supported action
with an unsupported resource type, you can ignore the warning and continue. However, IAM
cannot confirm that you have included resources for all of your selected actions, and you might
see additional warnings.

• Typo – When you manually type a service, action, or resource in the visual editor, you can create
a policy that includes a typo. To avoid this, we recommend that you use the visual editor by
selecting from the list of services and actions, and then complete the resource section according
to the prompts. However, if a service does not fully support the visual editor, you might have to
manually type parts of your policy.

If you are certain that your policy contains none of the errors above, then your policy might
include a typo. Check for misspelled service, action, and resource type names. For example,
you might use s2 instead of s3 and ListMyBuckets instead of ListAllMyBuckets. Another
common action typo is the inclusion of unnecessary text in ARNs, such as arn:aws:s3: : :*,
or missing colons in actions, such as iam.CreateUser. You can evaluate a policy that might
include typos by choosing Next to review the policy summary and confirm whether the policy
provides the permissions you intended.

Troubleshoot using policy summaries

You can diagnose and resolve issues related to policy summaries.

Troubleshoot using policy summaries 2638

AWS Identity and Access Management User Guide

Missing policy summary

The IAM console includes policy summary tables that describe the access level, resources, and
conditions that are allowed or denied for each service in a policy. Policies are summarized in three
tables: the policy summary, the service summary, and the action summary. The policy summary
table includes a list of services and summaries of the permissions that are defined by the chosen
policy. You can view the policy summary for any policies that are attached to an entity on the
Policy details page for that policy. You can view the policy summary for managed policies on the
Policies page. If AWS is unable to render a summary for a policy, then you see the JSON policy
document instead of the summary, and receive the following error:

A summary for this policy cannot be generated. You can still view or edit the JSON policy
document.

If your policy does not include a summary, one of the following errors has occurred:

• Unsupported policy element – IAM does not support generating policy summaries for policies
that include one of the following policy elements:

• Principal

• NotPrincipal

• NotResource

• No policy permissions – If a policy does not provide any effective permissions, then the policy
summary cannot be generated. For example, if a policy includes a single statement with the
element "NotAction": "*", then it grants access to all actions except "all actions" (*). This
means it grants Deny or Allow access to nothing.

Note

You must be careful when using these policy elements such as NotPrincipal,
NotAction, and NotResource. For information about using policy elements, see IAM
JSON policy elements reference.

You can create a policy that does not provide effective permissions if you provide mismatched
services and resources. This can occur if you specify actions in one service and resources from
another service. In this case, the policy summary does appear. The only indication that there is
a problem is that the resource column in the summary can include a resource from a different

Troubleshoot using policy summaries 2639

AWS Identity and Access Management User Guide

service. If this column includes a mismatched resource, then you should review your policy for
errors. To better understand your policies, always test them with the policy simulator.

Policy summary includes unrecognized services, actions, or resource types

In the IAM console, if a policy summary includes a warning symbol

(),
then the policy might include an unrecognized service, action or resource type. To learn about
warnings within a policy summary, see Policy summary (list of services).

Note

IAM reviews service names, actions, and resource types for services that support policy
summaries. However, your policy summary might include a resource value or condition that
does not exist. Always test your policies with the policy simulator.

If your policy includes unrecognized services, actions or resource types, one of the following errors
has occurred:

• Preview service – Services that are in preview do not support policy summaries.

• Custom service – Custom services do not support policy summaries.

• Service does not support summaries – If your policy includes a generally available (GA) service
that does not support policy summaries, then the service is included in the Unrecognized
services section of the policy summary table. Generally available services are services that
are released publicly and are not preview or custom services. If an unrecognized service is
generally available and the name is spelled correctly, then the service does not support IAM
policy summaries. To learn how to request policy summary support for a GA service, see Service
does not support IAM policy summaries.

• Action does not support summaries – If your policy includes a supported service with an
unsupported action, then the action is included in the Unrecognized actions section of the
service summary table. To learn about warnings within a service summary, see Service summary
(list of actions).

• Resource type does not support summaries – If your policy includes a supported action with an
unsupported resource type, then the resource is included in the Unrecognized resource types

Troubleshoot using policy summaries 2640

AWS Identity and Access Management User Guide

section of the service summary table. To learn about warnings within a service summary, see
Service summary (list of actions).

• Typo – AWS checks that the JSON is syntactically correct, and that the policy does not include
typos or other errors as part of policy validation.

Note

As a best practice, we recommend that you use IAM Access Analyzer to validate your IAM
policies to ensure secure and functional permissions. We recommend that you open your
existing policies and review and resolve any policy validation recommendations.

Service does not support IAM policy summaries

When a generally available (GA) service or action is not recognized by IAM policy summaries or
the visual editor, it is possible that the service does not support these features. Generally available
services are services that are released publicly and are not previewed or custom services. If an
unrecognized service is generally available and the name is spelled correctly, then the service does
not support these features. If your policy includes a supported service with an unsupported action,
then the service does not fully support IAM policy summaries.

To request that a service add IAM policy summary or visual editor support

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. Locate the policy that includes the unsupported service:

• If the policy is a managed policy, choose Policies in the navigation pane. In the list of
policies, choose the name of the policy that you want to view.

• If the policy is an inline policy attached to the user, choose Users in the navigation pane. In
the list of users, choose the name of the user whose policy you want to view. In the table of
policies for the user, expand the header for the policy summary that you want to view.

3. In the left side on the AWS Management Console footer, choose Feedback. In the Feedback
for IAM box, type I request that the <ServiceName> service add support for
IAM policy summaries and the visual editor. If you want more than one service to
support summaries, type I request that the <ServiceName1>, <ServiceName2>,

Troubleshoot using policy summaries 2641

https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/

AWS Identity and Access Management User Guide

and <ServiceName3> services add support for IAM policy summaries and
the visual editor.

To request that a service add IAM policy summary support for a missing action

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. Locate the policy that includes the unsupported service:

• If the policy is a managed policy, choose Policies in the navigation pane. In the list of
policies, choose the name of the policy that you want to view.

• If the policy is an inline policy attached to the user, choose Users in the navigation pane. In
the list of users, choose the name of the user whose policy you want to view. In the table
of policies for the user, choose the name of the policy that you want to view to expand the
policy summary.

3. In the policy summary, choose the name of the service that includes an unsupported action.

4. In the left side on the AWS Management Console footer, choose Feedback. In the Feedback
for IAM box, type I request that the <ServiceName> service add IAM policy
summary and the visual editor support for the <ActionName> action.
If you want to report more than one unsupported action, type I request that the
<ServiceName> service add IAM policy summary and the visual editor
support for the <ActionName1>, <ActionName2>, and <ActionName3> actions.

To request that a different service includes missing actions, repeat the last three steps.

My policy does not grant the expected permissions

To assign permissions to a user, group, role, or resource, you create a policy, which is a document
that defines permissions. The policy document includes the following elements:

• Effect – whether the policy allows or denies access

• Action – the list of actions that are allowed or denied by the policy

• Resource – the list of resources on which the actions can occur

• Condition (Optional) – the circumstances under which the policy grants permission

To learn about these and other policy elements, see IAM JSON policy elements reference.

Troubleshoot using policy summaries 2642

https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/

AWS Identity and Access Management User Guide

To grant access, your policy must define an action with a supported resource. If your policy also
includes a condition, that condition must include a global condition key or must apply to the
action. To learn which resources are supported by an action, see the AWS documentation for
your service. To learn which conditions are supported by an action, see Actions, Resources, and
Condition Keys for AWS Services.

To learn whether your policy defines an action, resource, or condition that does not grant
permissions, you can view the policy summary for your policy using the IAM console at https://
console.aws.amazon.com/iam/. You can use policy summaries to identify and correct problems in
your policy.

There are several reasons why an element might not grant permissions despite being defined in the
IAM policy:

• An action is defined without an applicable resource

• A resource is defined without an applicable action

• A condition is defined without an applicable action

To view examples of policy summaries that include warnings, see the section called “Policy
summary (list of services)”.

An action is defined without an applicable resource

The policy below defines all ec2:Describe* actions and defines a specific resource. None of
the ec2:Describe actions are granted because none of these actions support resource-level
permissions. Resource-level permissions mean that the action supports resources using ARNs in
the policy's Resource element. If an action does not support resource-level permissions, then that
statement in the policy must use a wildcard (*) in the Resource element. To learn which services
support resource-level permissions, see AWS services that work with IAM.

{
 "Version": "2012-10-17",
 "Statement": [{
 "Effect": "Allow",
 "Action": "ec2:Describe*",
 "Resource": "arn:aws:ec2:us-east-2:ACCOUNT-ID:instance/*"
 }]
}

Troubleshoot using policy summaries 2643

http://docs.aws.amazon.com/
reference_policies_actions-resources-contextkeys.html
reference_policies_actions-resources-contextkeys.html
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/

AWS Identity and Access Management User Guide

This policy does not provide any permissions, and the policy summary includes the following error:

This policy does not grant any permissions. To grant access, policies must
have an action that has an applicable resource or condition.

To fix this policy, you must use * in the Resource element.

{
 "Version": "2012-10-17",
 "Statement": [{
 "Effect": "Allow",
 "Action": "ec2:Describe*",
 "Resource": "*"
 }]
}

A resource is defined without an applicable action

The policy below defines an Amazon S3 bucket resource but does not include an S3 action that can
be performed on that resource. This policy also grants full access to all Amazon CloudFront actions.

{
 "Version": "2012-10-17",
 "Statement": [{
 "Effect": "Allow",
 "Action": "cloudfront:*",
 "Resource": [
 "arn:aws:cloudfront:*",
 "arn:aws:s3:::examplebucket"
]
 }]
}

This policy provides permissions for all CloudFront actions. But because the policy defines the
S3 examplebucket resource without defining any S3 actions, the policy summary includes the
following warning:

This policy defines some actions, resources, or conditions that do not
provide permissions. To grant access, policies must have an action that has
an applicable resource or condition.

Troubleshoot using policy summaries 2644

AWS Identity and Access Management User Guide

To fix this policy to provide S3 bucket permissions, you must define S3 actions that can be
performed on a bucket resource.

{
 "Version": "2012-10-17",
 "Statement": [{
 "Effect": "Allow",
 "Action": [
 "cloudfront:*",
 "s3:CreateBucket",
 "s3:ListBucket*",
 "s3:PutBucket*",
 "s3:GetBucket*"
],
 "Resource": [
 "arn:aws:cloudfront:*",
 "arn:aws:s3:::examplebucket"
]
 }]
}

Alternately, to fix this policy to provide only CloudFront permissions, remove the S3 resource.

A condition is defined without an applicable action

The policy below defines two Amazon S3 actions for all S3 resources, if the S3 prefix equals
custom and the version ID equals 1234. However, the s3:VersionId condition key is used
for object version tagging and is not supported by the defined bucket actions. To learn which
conditions are supported by an action, see Actions, Resources, and Condition Keys for AWS Services
and follow the link to the service documentation for condition keys.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "s3:ListBucketVersions",
 "s3:ListBucket"
],
 "Resource": "*",
 "Condition": {

Troubleshoot using policy summaries 2645

reference_policies_actions-resources-contextkeys.html

AWS Identity and Access Management User Guide

 "StringEquals": {
 "s3:prefix": [
 "custom"
],
 "s3:VersionId": [
 "1234"
]
 }
 }
 }
]
}

This policy provides permissions for the s3:ListBucketVersions action and the
s3:ListBucket action if the bucket name includes the custom prefix. But because the
s3:VersionId condition is not supported by any of the defined actions, the policy summary
includes the following error:

This policy does not grant any permissions. To grant access, policies must
have an action that has an applicable resource or condition.

To fix this policy to use S3 object version tagging, you must define an S3 action that supports the
s3:VersionId condition key.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "s3:ListBucketVersions",
 "s3:ListBucket",
 "s3:GetObjectVersion"
],
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "s3:prefix": [
 "custom"
],
 "s3:VersionId": [
 "1234"

Troubleshoot using policy summaries 2646

AWS Identity and Access Management User Guide

]
 }
 }
 }
]
}

This policy provides permissions for every action and condition in the policy. However, the policy
still does not provide any permissions because there is no case where a single action matches both
conditions. Instead, you must create two separate statements that each include only actions with
the conditions to which they apply.

To fix this policy, create two statements. The first statement includes the actions that support
the s3:prefix condition, and the second statement includes the actions that support the
s3:VersionId condition.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "s3:ListBucketVersions",
 "s3:ListBucket"
],
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "s3:prefix": "custom"
 }
 }
 },
 {
 "Effect": "Allow",
 "Action": "s3:GetObjectVersion",
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "s3:VersionId": "1234"
 }
 }
 }
]

Troubleshoot using policy summaries 2647

AWS Identity and Access Management User Guide

}

Troubleshoot policy management

You can diagnose and resolve issues relating to policy management.

Attaching or detaching a policy in an IAM account

Some AWS managed policies are linked to a service. These policies are used only with a service-
linked role for that service. In the IAM console, when you view the Policy details page for a policy,
the page includes a banner to indicate that the policy is linked to a service. You cannot attach this
policy to a user, group, or role within IAM. When you create a service-linked role for the service, this
policy is automatically attached to your new role. Because the policy is required, you cannot detach
the policy from the service-linked role.

Changing policies for your IAM identities based on their activity

You can update policies for your IAM identities (users, groups, and roles) based on their activity.
To do this, view your account's events in CloudTrail Event history. CloudTrail event logs include
detailed event information that you can use to change the policy's permissions. You might find
that a user or role is attempting to perform an action in AWS and that request is denied. In that
case, you can consider whether the user or role should have permission to perform the action. If
so, you can add the action and even the ARN of the resource that they attempted to access to their
policy. Alternatively, if the user or role has permissions that they are not using, you might consider
removing those permissions from their policy. Make sure that your policies grant the least privilege
that is needed to perform only the necessary actions. For more information about using CloudTrail,
see Viewing CloudTrail Events in the CloudTrail Console in the AWS CloudTrail User Guide.

Troubleshoot JSON policy documents

You can diagnose and resolve issues relating to JSON policy documents.

Validate your policies

When you create or edit a JSON policy, IAM can perform policy validation to help you create an
effective policy. IAM identifies JSON syntax errors, while IAM Access Analyzer provides additional
policy checks with recommendations to help you further refine your policies. To learn more about
policy validation, see Validating IAM policies. To learn more about IAM Access Analyzer policy
checks and actionable recommendations, see IAM Access Analyzer policy validation.

Troubleshoot policy management 2648

https://docs.aws.amazon.com/awscloudtrail/latest/userguide/view-cloudtrail-events-console.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access-analyzer-policy-validation.html

AWS Identity and Access Management User Guide

I don't have permissions for policy validation in the JSON editor

In the AWS Management Console, you might receive the following error if you do not have
permissions to view IAM Access Analyzer policy validation results:

You need permissions. You do not have the permissions required to perform
this operation. Ask your administrator to add permissions.

To fix this error, ask your administrator to add the access-analyzer:ValidatePolicy
permission for you.

More than one JSON policy object

An IAM policy must consist of one and only one JSON object. You denote an object by placing
{ } braces around it. Although you can nest other objects within a JSON object by embedding
additional { } braces within the outer pair, a policy can contain only one outermost pair of { }
braces. The following example is incorrect because it contains two objects at the top level (called
out in red):

{
 "Version": "2012-10-17",
 "Statement":
 {
 "Effect":"Allow",
 "Action":"ec2:Describe*",
 "Resource":"*"
 }
 }
 {
 "Statement": {
 "Effect": "Allow",
 "Action": "s3:*",
 "Resource": "arn:aws:s3:::my-bucket/*"
 }
 }

You can, however, meet the intention of the previous example with the use of correct policy
grammar. Instead of including two complete policy objects each with its own Statement element,
you can combine the two blocks into a single Statement element. The Statement element has
an array of two objects as its value, as shown in the following example (called out in bold):

Troubleshoot JSON policy documents 2649

AWS Identity and Access Management User Guide

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "ec2:Describe*",
 "Resource":" *"
 },
 {
 "Effect": "Allow",
 "Action": "s3:*",
 "Resource": "arn:aws:s3:::my-bucket/*"
 }
]
 }

More than one JSON statement element

This error might at first appear to be a variation on the previous section. However, syntactically it is
a different type of error. The following example has only one policy object as denoted by a single
pair of { } braces at the top level. However, that object contains two Statement elements within it.

An IAM policy must contain only one Statement element, consisting of the name (Statement)
appearing to the left of a colon, followed by its value on the right. The value of a Statement
element must be an object, denoted by { } braces, containing one Effect element, one Action
element, and one Resource element. The following example is incorrect because it contains two
Statement elements in the policy object (called out in red):

{
 "Version": "2012-10-17",
 "Statement": {
 "Effect": "Allow",
 "Action": "ec2:Describe*",
 "Resource": "*"
 },
 "Statement": {
 "Effect": "Allow",
 "Action": "s3:*",
 "Resource": "arn:aws:s3:::my-bucket/*"
 }
 }

Troubleshoot JSON policy documents 2650

AWS Identity and Access Management User Guide

A value object can be an array of multiple value objects. To solve this problem, combine the two
Statement elements into one element with an object array, as shown in the following example
(called out in bold):

{
 "Version": "2012-10-17",
 "Statement": [{
 "Effect": "Allow",
 "Action": "ec2:Describe*",
 "Resource":"*"
 },
 {
 "Effect": "Allow",
 "Action": "s3:*",
 "Resource": "arn:aws:s3:::my-bucket/*"
 }
]
 }

The value of the Statement element is an object array. The array in this example consists of two
objects, each of which is by itself is a correct value for a Statement element. Each object in the
array is separated by commas.

More than one effect, action, or resource element in a JSON statement element

On the value side of the Statement name/value pair, the object must consist of only one Effect
element, one Action element, and one Resource element. The following policy is incorrect
because it has two Effect elements in the value object of the Statement:

{
 "Version": "2012-10-17",
 "Statement": {
 "Effect": "Deny",
 "Effect": "Allow",
 "Action": "ec2:* ",
 "Resource": "*"
 }
 }

Troubleshoot JSON policy documents 2651

AWS Identity and Access Management User Guide

Note

The policy engine does not allow such errors in new or edited policies. However, the policy
engine continues to permit policies that were saved before the engine was updated. The
behavior of existing policies with the error is as follows:

• Multiple Effect elements: only the last Effect element is observed. The others are
ignored.

• Multiple Action elements: all Action elements are combined internally and treated as
if they were a single list.

• Multiple Resource elements: all Resource elements are combined internally and
treated as if they were a single list.

The policy engine does not allow you to save any policy with syntax errors. You must
correct the errors in the policy before you can save it.We recommend that you review any
correct any policy validation recommendations for your policies.

In each case, the solution is to remove the incorrect extra element. For Effect elements, this is
straightforward: if you want the previous example to deny permissions to Amazon EC2 instances,
then you must remove the line "Effect": "Allow", from the policy, as follows:

{
 "Version": "2012-10-17",
 "Statement": {
 "Effect": "Deny",
 "Action": "ec2:* ",
 "Resource": "*"
 }
 }

However, if the duplicate element is Action or Resource, then the resolution can be more
complicated. You might have multiple actions that you want to allow (or deny) permission to, or
you might want to control access to multiple resources. For example, the following example is
incorrect because it has multiple Resource elements (called out in red):

{
 "Version": "2012-10-17",

Troubleshoot JSON policy documents 2652

AWS Identity and Access Management User Guide

 "Statement": {
 "Effect": "Allow",
 "Action": "s3:*",
 "Resource": "arn:aws:s3:::my-bucket",
 "Resource": "arn:aws:s3:::my-bucket/*"
 }
 }

Each of the required elements in a Statement element's value object can be present only once.
The solution is to place each value in an array. The following example illustrates this by making
the two separate resource elements into one Resource element with an array as the value object
(called out in bold):

{
 "Version": "2012-10-17",
 "Statement": {
 "Effect": "Allow",
 "Action": "s3:*",
 "Resource": [
 "arn:aws:s3:::my-bucket",
 "arn:aws:s3:::my-bucket/*"
]
 }
 }

Missing JSON version element

A Version policy element is different from a policy version. The Version policy element is used
within a policy and defines the version of the policy language. A policy version, on the other hand,
is created when you make changes to a customer managed policy in IAM. The changed policy
doesn't overwrite the existing policy. Instead, IAM creates a new version of the managed policy.
To learn more about the Version policy element see IAM JSON policy elements: Version. To learn
more about policy versions, see the section called “Versioning IAM policies”.

As AWS features evolve, new capabilities are added to IAM policies to support those features.
Sometimes, an update to the policy syntax includes a new version number. If you use newer
features of the policy grammar in your policy, then you must tell the policy parsing engine which
version you are using. The default policy version is "2008-10-17." If you want to use any policy
feature that was introduced later, then you must specify the version number that supports the
feature you want. We recommend that you always include the latest policy syntax version number,

Troubleshoot JSON policy documents 2653

AWS Identity and Access Management User Guide

which is currently "Version": "2012-10-17". For example, the following policy is incorrect
because it uses a policy variable ${...} in the ARN for a resource. But it fails to specify a policy
syntax version that supports policy variables (called out in red):

{
 "Statement":
 {
 "Action": "iam:*AccessKey*",
 "Effect": "Allow",
 "Resource": "arn:aws:iam::123456789012:user/${aws:username}"
 }
}

Adding a Version element at the top of the policy with the value 2012-10-17, the first IAM API
version that supports policy variables, solves this problem (called out in bold):

{
 "Version": "2012-10-17",
 "Statement":
 {
 "Action": "iam:*AccessKey*",
 "Effect": "Allow",
 "Resource": "arn:aws:iam::123456789012:user/${aws:username}"
 }
}

Troubleshooting FIDO security keys

Use the information here to help you diagnose common issues that you might encounter when
working with FIDO2 security keys.

Topics

• I can't enable my FIDO security key

• I can't sign in using my FIDO security key

• I lost or broke my FIDO security key

• Other issues

FIDO security keys 2654

AWS Identity and Access Management User Guide

I can't enable my FIDO security key

Consult the following solutions depending on your status as an IAM user or system administrator

IAM users

If you can't enable your FIDO security key, check the following:

• Are you using a supported configuration?

For information on devices and browsers you can use with WebAuthn and AWS, see Supported
configurations for using FIDO security keys.

• Are you using Mozilla Firefox?

Current Firefox versions support WebAuthn by default. To enable support for WebAuthn in
Firefox, do the following:

1. From the Firefox address bar, type about:config.

2. In the Search bar of the screen that opens, type webauthn.

3. Choose security.webauth.webauthn and change its value to true.

• Are you using any browser plugins?

AWS does not support the use of plugins to add WebAuthn browser support. Instead, use a
browser that offers native support of the WebAuthn standard.

Even if you're using a supported browser, you may have a plugin that is incompatible with
WebAuthn. An incompatible plugin may prevent you from enabling and using your FIDO-
compliant security key. You should disable any plugins that might be incompatible and restart
your browser. Then retry enabling the FIDO security key.

• Do you have the appropriate permissions?

If you don't have any of the above compatibility issues, you may not have the appropriate
permissions. Contact your system administrator.

System administrators

If you're an administrator and your IAM users can't enable their FIDO security keys despite using a
supported configuration, make sure they have the appropriate permissions. For a detailed example,
see IAM tutorial: Permit users to manage their credentials and MFA settings.

I can't enable my FIDO security key 2655

AWS Identity and Access Management User Guide

I can't sign in using my FIDO security key

If you're an IAM user and you can't sign in to the AWS Management Console using your FIDO
security key, first see Supported configurations for using FIDO security keys. If you're using a
supported configuration but cannot sign in, contact your system administrator for assistance.

I lost or broke my FIDO security key

Up to eight MFA devices of any combination of the currently supported MFA types can be
assigned to a user. With multiple MFA devices, you only need one MFA device to sign in to the AWS
Management Console. Replacing a FIDO security key is similar to replacing a hardware TOTP token.
For information on what to do if you lose or break any type of MFA device, see What if an MFA
device is lost or stops working?.

Other issues

If you have an issue with FIDO security keys that is not covered here, do one of the following:

• IAM users: Contact your system administrator.

• AWS account root users: Contact AWS Support.

Troubleshooting IAM roles

Use the information here to help you diagnose and fix common issues that you might encounter
when working with IAM roles.

Topics

• I can't assume a role

• A new role appeared in my AWS account

• I can't edit or delete a role in my AWS account

• I'm not authorized to perform: iam:PassRole

• Why can't I assume a role with a 12-hour session? (AWS CLI, AWS API)

• I receive an error when I try to switch roles in the IAM console

• My role has a policy that allows me to perform an action, but I get "access denied"

• The service did not create the role's default policy version

• There is no use case for a service role in the console

I can't sign in using my FIDO security key 2656

https://aws.amazon.com/iam/features/mfa/
https://aws.amazon.com/premiumsupport/

AWS Identity and Access Management User Guide

I can't assume a role

Check the following:

• To allow users to assume the current role again within a role session, specify the role ARN or
AWS account ARN as a principal in the role trust policy. AWS services that provide compute
resources such as Amazon EC2, Amazon ECS, Amazon EKS, and Lambda provide temporary
credentials and automatically update these credentials. This ensures that you always have a valid
set of credentials. For these services, it's not necessary to assume the current role again to obtain
temporary credentials. However, if you intend to pass session tags or a session policy, you need
to assume the current role again. To learn how to modify a role trust policy to add the principal
role ARN or AWS account ARN, see Modifying a role trust policy (console).

• When you assume a role using the AWS Management Console, make sure to use the exact name
of your role. Role names are case sensitive when you assume a role.

• When you assume a role using AWS STS API or AWS CLI, make sure to use the exact name of your
role in the ARN. Role names are case sensitive when you assume a role.

• Verify that your IAM policy grants you permission to call sts:AssumeRole for the role that you
want to assume. The Action element of your IAM policy must allow you to call the AssumeRole
action. In addition, the Resource element of your IAM policy must specify the role that you
want to assume. For example, the Resource element can specify a role by its Amazon Resource
Name (ARN) or by a wildcard (*). For example, at least one policy applicable to you must grant
permissions similar to the following:

 "Effect": "Allow",
 "Action": "sts:AssumeRole",
 "Resource": "arn:aws:iam::account_id_number:role/role-name-you-want-to-assume"

• Verify that your IAM identity is tagged with any tags that the IAM policy requires. For example,
in the following policy permissions, the Condition element requires that you, as the principal
requesting to assume the role, must have a specific tag. You must be tagged with department
= HR or department = CS. Otherwise, you cannot assume the role. To learn about tagging IAM
users and roles, see the section called “Tagging IAM resources”.

 "Effect": "Allow",
 "Action": "sts:AssumeRole",
 "Resource": "*",
 "Condition": {"StringEquals": {"aws:PrincipalTag/department": [
 "HR",

I can't assume a role 2657

AWS Identity and Access Management User Guide

 "CS"
]}}

• Verify that you meet all the conditions that are specified in the role's trust policy. A Condition
can specify an expiration date, an external ID, or that a request must come only from specific
IP addresses. Consider the following example: If the current date is any time after the specified
date, then the policy never matches and cannot grant you the permission to assume the role.

 "Effect": "Allow",
 "Action": "sts:AssumeRole",
 "Resource": "arn:aws:iam::account_id_number:role/role-name-you-want-to-assume"
 "Condition": {
 "DateLessThan" : {
 "aws:CurrentTime" : "2016-05-01T12:00:00Z"
 }
 }

• Verify that the AWS account from which you are calling AssumeRole is a trusted entity for the
role that you are assuming. Trusted entities are defined as a Principal in a role's trust policy.
The following example is a trust policy that is attached to the role that you want to assume. In
this example, the account ID with the IAM user that you signed in with must be 123456789012.
If your account number is not listed in the Principal element of the role's trust policy, then
you cannot assume the role. It does not matter what permissions are granted to you in access
policies. Note that the example policy limits permissions to actions that occur between July 1,
2017 and December 31, 2017 (UTC), inclusive. If you log in before or after those dates, then the
policy does not match, and you cannot assume the role.

 "Effect": "Allow",
 "Principal": { "AWS": "arn:aws:iam::123456789012:root" },
 "Action": "sts:AssumeRole",
 "Condition": {
 "DateGreaterThan": {"aws:CurrentTime": "2017-07-01T00:00:00Z"},
 "DateLessThan": {"aws:CurrentTime": "2017-12-31T23:59:59Z"}
 }

• Source Identity – Administrators can configure roles to require identities to pass a custom
string that identifies the person or application that is performing actions in AWS, called source
identity. Verify whether the role being assumed requires that a source identity is set. For more
information about source identity, see Monitor and control actions taken with assumed roles.

I can't assume a role 2658

AWS Identity and Access Management User Guide

A new role appeared in my AWS account

Some AWS services require that you use a unique type of service role that is linked directly to the
service. This service-linked role is predefined by the service and includes all the permissions that
the service requires. This makes setting up a service easier because you don't have to manually add
the necessary permissions. For general information about service-linked roles, see Using service-
linked roles.

You might already be using a service when it begins supporting service-linked roles. If so, you
might receive an email telling you about a new role in your account. This role includes all the
permissions that the service needs to perform actions on your behalf. You don't need to take any
action to support this role. However, you should not delete the role from your account. Doing
so could remove permissions that the service needs to access AWS resources. You can view the
service-linked roles in your account by going to the IAM Roles page of the IAM console. Service-
linked roles appear with (Service-linked role) in the Trusted entities column of the table.

For information about which services support service-linked roles, see AWS services that work with
IAM and look for the services that have Yes in the Service-Linked Role column. For information
about using the service-linked role for a service, choose the Yes link.

I can't edit or delete a role in my AWS account

You cannot delete or edit the permissions for a service-linked role in IAM. These roles include
predefined trusts and permissions that are required by the service in order to perform actions
on your behalf. You can use the IAM console, AWS CLI, or API to edit only the description of a
service-linked role. You can view the service-linked roles in your account by going to the IAM Roles
page in the console. Service-linked roles appear with (Service-linked role) in the Trusted entities
column of the table. A banner on the role's Summary page also indicates that the role is a service-
linked role. You can manage and delete these roles only through the linked service, if that service
supports the action. Be careful when modifying or deleting a service-linked role because doing so
could remove permissions that the service needs to access AWS resources.

For information about which services support service-linked roles, see AWS services that work with
IAM and look for the services that have Yes in the Service-Linked Role column.

I'm not authorized to perform: iam:PassRole

When you create a service-linked role, you must have permission to pass that role to the
service. Some services automatically create a service-linked role in your account when

A new role appeared in my AWS account 2659

AWS Identity and Access Management User Guide

you perform an action in that service. For example, Amazon EC2 Auto Scaling creates the
AWSServiceRoleForAutoScaling service-linked role for you the first time that you create an
Auto Scaling group. If you try to create an Auto Scaling group without the PassRole permission,
you receive the following error:

ClientError: An error occurred (AccessDenied) when calling the
PutLifecycleHook operation: User: arn:aws:sts::111122223333:assumed-role/
Testrole/Diego is not authorized to perform: iam:PassRole on resource:
arn:aws:iam::111122223333:role/aws-service-role/autoscaling.amazonaws.com/
AWSServiceRoleForAutoScaling

To fix this error, ask your administrator to add the iam:PassRole permission for you.

To learn which services support service-linked roles, see AWS services that work with IAM. To learn
whether a service automatically creates a service-linked role for you, choose the Yes link to view
the service-linked role documentation for the service.

Why can't I assume a role with a 12-hour session? (AWS CLI, AWS API)

When you use the AWS STS AssumeRole* API or assume-role* CLI operations to assume a role,
you can specify a value for the DurationSeconds parameter. You can specify a value from 900
seconds (15 minutes) up to the Maximum session duration setting for the role. If you specify a
value higher than this setting, the operation fails. This setting can have a maximum value of 12
hours. For example, if you specify a session duration of 12 hours, but your administrator set the
maximum session duration to 6 hours, your operation fails. To learn how to view the maximum
value for your role, see View the maximum session duration setting for a role.

If you use role chaining (using a role to assume a second role), your session is limited to a maximum
of one hour. If you then use the DurationSeconds parameter to provide a value greater than one
hour, the operation fails.

I receive an error when I try to switch roles in the IAM console

The information you enter on the Switch Role page must match the information for the role.
Otherwise, the operation fails and you receive the following error:

Invalid information in one or more fields. Check your information or
contact your administrator.

Why can't I assume a role with a 12-hour session? (AWS CLI, AWS API) 2660

AWS Identity and Access Management User Guide

If you receive this error, confirm that the following information is correct:

• Account ID or alias – The AWS account ID is a 12-digit number. Your account might have an alias,
which is a friendly identifier such as your company name that can be used instead of your AWS
account ID. You can use either the account ID or the alias in this field.

• Role name – Role names are case sensitive. The account ID and role name must match what is
configured for the role.

If you continue to receive an error message, contact your administrator to verify the previous
information. The role trust policy or the IAM user policy might limit your access. Your administrator
can verify the permissions for these policies.

My role has a policy that allows me to perform an action, but I get
"access denied"

Your role session might be limited by session policies. When you request temporary security
credentials programmatically using AWS STS, you can optionally pass inline or managed
session policies. Session policies are advanced policies that you pass as a parameter when you
programmatically create a temporary credential session for a role. You can pass a single JSON
inline session policy document using the Policy parameter. You can use the PolicyArns
parameter to specify up to 10 managed session policies. The resulting session's permissions are
the intersection of the role's identity-based policies and the session policies. Alternatively, if your
administrator or a custom program provides you with temporary credentials, they might have
included a session policy to limit your access.

The service did not create the role's default policy version

A service role is a role that a service assumes to perform actions in your account on your behalf.
When you set up some AWS service environments, you must define a role for the service to assume.
In some cases, the service creates the service role and its policy in IAM for you. Although you can
modify or delete the service role and its policy from within IAM, AWS does not recommend this.
The role and policy are intended for use only by that service. If you edit the policy and set up
another environment, when the service tries to use the same role and policy, the operation can fail.

For example, when you use AWS CodeBuild for the first time, the service creates a role named
codebuild-RWBCore-service-role. That service role uses the policy named codebuild-
RWBCore-managed-policy. If you edit the policy, it creates a new version and saves that version

My role has a policy that allows me to perform an action, but I get "access denied" 2661

AWS Identity and Access Management User Guide

as the default version. If you perform a subsequent operation in AWS CodeBuild, the service might
try to update the policy. If it does, you receive the following error:

codebuild.amazon.com did not create the default version (V2) of the
codebuild-RWBCore-managed-policy policy that is attached to the codebuild-
RWBCore-service-role role. To continue, detach the policy from any other
identities and then delete the policy and the role.

If you receive this error, you must make changes in IAM before you can continue with your
service operation. First, set the default policy version to V1 and try the operation again. If V1 was
previously deleted, or if choosing V1 doesn't work, then clean up and delete the existing policy and
role.

For more information on editing managed policies, see Editing customer managed policies
(console). For more information about policy versions, see Versioning IAM policies.

To delete a service role and its policy

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. In the navigation pane, choose Policies.

3. In the list of policies, choose the name of the policy that you want to delete.

4. Choose the Entities attached tab to view which IAM users, groups, or roles use this policy. If
any of these identities use the policy, complete the following tasks:

a. Create a new managed policy with the necessary permissions. To ensure that the identities
have the same permissions before and after your actions, copy the JSON policy document
from the existing policy. Then create the new managed policy and paste the JSON
document as described in Creating Policies using the JSON editor.

b. For each affected identity, attach the new policy and then detach the old one. For more
information, see Adding and removing IAM identity permissions.

5. In the navigation pane, choose Roles.

6. In the list of roles, choose the name of the role that you want to delete.

7. Choose the Trust relationships tab to view which entities can assume the role. If any entity
other than the service is listed, complete the following tasks:

a. Create a new role that trusts those entities.

The service did not create the role's default policy version 2662

https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/

AWS Identity and Access Management User Guide

b. The policy that you created in the previous step. If you skipped that step, create the new
managed policy now.

c. Notify anyone who was assuming the role that they can no longer do so. Provide them
with information about how to assume the new role and have the same permissions.

8. Delete the policy.

9. Delete the role.

There is no use case for a service role in the console

Some services require that you manually create a service role to grant the service permissions to
perform actions on your behalf. If the service is not listed in the IAM console, you must manually
list the service as the trusted principal. If the documentation for the service or feature that you are
using does not include instructions for listing the service as the trusted principal, provide feedback
for the page.

To manually create a service role, you must know the service principal for the service that will
assume the role. A service principal is an identifier that is used to grant permissions to a service.
The service principal is defined by the service.

You can find the service principal for some services by checking the following:

1. Open AWS services that work with IAM.

2. Check whether the service has Yes in the Service-linked roles column.

3. Choose the Yes link to view the service-linked role documentation for that service.

4. Find the Service-linked role permissions section for that service to view the service principal.

You can manually create a service role using AWS CLI commands or AWS API operations. To
manually create a service role using the IAM console, complete the following tasks:

1. Create an IAM role using your account ID. Do not attach a policy or grant any permissions. For
details, see Creating a role to delegate permissions to an IAM user.

2. Open the role and edit the trust relationship. Instead of trusting the account, the role must trust
the service. For example, update the following Principal element:

"Principal": { "AWS": "arn:aws:iam::123456789012:root" }

There is no use case for a service role in the console 2663

AWS Identity and Access Management User Guide

Change the principal to the value for your service, such as IAM.

"Principal": { "Service": "iam.amazonaws.com" }

3. Add the permissions that the service requires by attaching permissions policies to the role.

4. Return to the service that requires the permissions and use the documented method to notify
the service about the new service role.

Troubleshooting IAM and Amazon EC2

Use the information here to help you troubleshoot and fix access denied or other issues that you
might encounter when working with Amazon EC2 and IAM.

Topics

• When attempting to launch an instance, I don't see the role I expected to see in the Amazon EC2
console IAM Role list

• The credentials on my instance are for the wrong role

• When I attempt to call the AddRoleToInstanceProfile, I get an AccessDenied error

• Amazon EC2: When I attempt to launch an instance with a role, I get an AccessDenied error

• I can't access the temporary security credentials on my EC2 instance

• What do the errors from the info document in the IAM subtree mean?

When attempting to launch an instance, I don't see the role I expected
to see in the Amazon EC2 console IAM Role list

Check the following:

• If you are signed in as an IAM user, verify that you have permission to call
ListInstanceProfiles. For information about the permissions necessary to work with roles,
see "Permissions Required for Using Roles with Amazon EC2" in Using an IAM role to grant
permissions to applications running on Amazon EC2 instances. For information about adding
permissions to a user, see Managing IAM policies.

If you cannot modify your own permissions, you must contact an administrator who can work
with IAM in order to update your permissions.

IAM and Amazon EC2 2664

AWS Identity and Access Management User Guide

• If you created a role by using the IAM CLI or API, verify that you created an instance profile
and added the role to that instance profile. Also, if you name your role and instance profile
differently, you won't see the correct role name in the list of IAM roles in the Amazon EC2
console. The IAM Role list in the Amazon EC2 console lists the names of instance profiles, not the
names of roles. You will have to select the name of the instance profile that contains the role you
want. For details about instance profiles, see Using instance profiles.

Note

If you use the IAM console to create roles, you don't need to work with instance profiles.
For each role that you create in the IAM console, an instance profile is created with the
same name as the role, and the role is automatically added to that instance profile. An
instance profile can contain only one IAM role, and that limit cannot be increased.

The credentials on my instance are for the wrong role

The role in the instance profile might have been replaced recently. If so, your application will need
to wait for the next automatically scheduled credential rotation before credentials for your role
become available.

To force the change, you must disassociate the instance profile and then associate the instance
profile, or you can stop your instance and then restart it.

When I attempt to call the AddRoleToInstanceProfile, I get an
AccessDenied error

If you are making requests as an IAM user, verify that you have the following permissions:

• iam:AddRoleToInstanceProfile with the resource matching the instance profile ARN (for
example, arn:aws:iam::999999999999:instance-profile/ExampleInstanceProfile).

For more information about the permissions necessary to work with roles, see "How Do I Get
Started?" in Using an IAM role to grant permissions to applications running on Amazon EC2
instances. For information about adding permissions to a user, see Managing IAM policies.

The credentials on my instance are for the wrong role 2665

https://docs.aws.amazon.com/AWSEC2/latest/APIReference/API_DisassociateIamInstanceProfile.html
https://docs.aws.amazon.com/AWSEC2/latest/APIReference/API_AssociateIamInstanceProfile.html
https://docs.aws.amazon.com/AWSEC2/latest/APIReference/API_AssociateIamInstanceProfile.html

AWS Identity and Access Management User Guide

Amazon EC2: When I attempt to launch an instance with a role, I get an
AccessDenied error

Check the following:

• Launch an instance without an instance profile. This will help ensure that the problem is limited
to IAM roles for Amazon EC2 instances.

• If you are making requests as an IAM user, verify that you have the following permissions:

• ec2:RunInstances with a wildcard resource ("*")

• iam:PassRole with the resource matching the role ARN (for example,
arn:aws:iam::999999999999:role/ExampleRoleName)

• Call the IAM GetInstanceProfile action to ensure that you are using a valid instance profile
name or a valid instance profile ARN. For more information, see Using IAM roles with Amazon
EC2 instances.

• Call the IAM GetInstanceProfile action to ensure that the instance profile has a role. Empty
instance profiles will fail with an AccessDenied error. For more information about creating a
role, see Creating IAM roles.

For more information about the permissions necessary to work with roles, see "How Do I Get
Started?" in Using an IAM role to grant permissions to applications running on Amazon EC2
instances. For information about adding permissions to a user, see Managing IAM policies.

I can't access the temporary security credentials on my EC2 instance

To access temporary security credentials on your EC2 instance, you must first use the IAM
console to create a role. Then you launch an EC2 instance that uses that role and examine the
running instance. For more information, see How Do I Get Started? in Using an IAM role to grant
permissions to applications running on Amazon EC2 instances.

If you still can't access your temporary security credentials on your EC2 instance, check the
following:

• Can you access another part of the Instance Metadata Service (IMDS)? If not, check that you have
no firewall rules blocking access to requests to the IMDS.

Amazon EC2: When I attempt to launch an instance with a role, I get an AccessDenied error 2666

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/UsingIAM.html#UsingIAMrolesWithAmazonEC2Instances
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/UsingIAM.html#UsingIAMrolesWithAmazonEC2Instances

AWS Identity and Access Management User Guide

[ec2-user@domU-12-31-39-0A-8D-DE ~]$ GET http://169.254.169.254/latest/meta-data/
hostname; echo

• Does the iam subtree of the IMDS exist? If not, verify that your instance has an IAM instance
profile associated with it by calling the EC2 DescribeInstances API operation or using the
aws ec2 describe-instances CLI command.

[ec2-user@domU-12-31-39-0A-8D-DE ~]$ GET http://169.254.169.254/latest/meta-data/iam;
 echo

• Check the info document in the IAM subtree for an error. If you have an error, see What do the
errors from the info document in the IAM subtree mean? for more information.

[ec2-user@domU-12-31-39-0A-8D-DE ~]$ GET http://169.254.169.254/latest/meta-data/iam/
info; echo

What do the errors from the info document in the IAM subtree mean?

The iam/info document indicates "Code":"InstanceProfileNotFound"

Your IAM instance profile has been deleted and Amazon EC2 can no longer provide credentials to
your instance. You must attach a valid instance profile to your Amazon EC2 instance.

If an instance profile with that name exists, check that the instance profile wasn't deleted and
another was created with the same name:

1. Call the IAM GetInstanceProfile operation to get the InstanceProfileId.

2. Call the Amazon EC2 DescribeInstances operation to get the IamInstanceProfileId
for the instance.

3. Verify that the InstanceProfileId from the IAM operation matches the
IamInstanceProfileId from the Amazon EC2 operation.

If the IDs are different, then the instance profile attached to your instances is no longer valid. You
must attach a valid instance profile to the instance.

What do the errors from the info document in the IAM subtree mean? 2667

AWS Identity and Access Management User Guide

The iam/info document indicates a success but indicates
"Message":"Instance Profile does not contain a role..."

The role has been removed from the instance profile by the IAM
RemoveRoleFromInstanceProfile action. You can use the IAM AddRoleToInstanceProfile
action to attach a role to the instance profile. Your application will need to wait until the next
scheduled refresh to access the credentials for the role.

To force the change, you must disassociate the instance profile and then associate the instance
profile, or you can stop your instance and then restart it.

The iam/security-credentials/[role-name] document indicates
"Code":"AssumeRoleUnauthorizedAccess"

Amazon EC2 does not have permission to assume the role. Permission to assume the role is
controlled by the trust policy attached to the role, like the example that follows. Use the IAM
UpdateAssumeRolePolicy API to update the trust policy.

{"Version": "2012-10-17","Statement": [{"Effect": "Allow","Principal": {"Service":
 ["ec2.amazonaws.com"]},"Action": ["sts:AssumeRole"]}]}

Your application will need to wait until the next automatically scheduled refresh to access the
credentials for the role.

To force the change, you must disassociate the instance profile and then associate the instance
profile, or you can stop your instance and then restart it.

Troubleshooting IAM and Amazon S3

Use the information here to help you troubleshoot and fix issues that you might encounter when
working with Amazon S3 and IAM.

How do I grant anonymous access to an Amazon S3 bucket?

You use an Amazon S3 bucket policy that specifies a wildcard (*) in the principal element, which
means anyone can access the bucket. With anonymous access, anyone (including users without an
AWS account) will be able to access the bucket. For a sample policy, see Example Cases for Amazon
S3 Bucket Policies in the Amazon Simple Storage Service User Guide.

IAM and Amazon S3 2668

https://docs.aws.amazon.com/AWSEC2/latest/APIReference/API_DisassociateIamInstanceProfile.html
https://docs.aws.amazon.com/AWSEC2/latest/APIReference/API_AssociateIamInstanceProfile.html
https://docs.aws.amazon.com/AWSEC2/latest/APIReference/API_AssociateIamInstanceProfile.html
https://docs.aws.amazon.com/AWSEC2/latest/APIReference/API_DisassociateIamInstanceProfile.html
https://docs.aws.amazon.com/AWSEC2/latest/APIReference/API_AssociateIamInstanceProfile.html
https://docs.aws.amazon.com/AWSEC2/latest/APIReference/API_AssociateIamInstanceProfile.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/AccessPolicyLanguage_UseCases_s3_a.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/AccessPolicyLanguage_UseCases_s3_a.html

AWS Identity and Access Management User Guide

I'm signed in as an AWS account root user; why can't I access an
Amazon S3 bucket under my account?

In some cases, you might have an IAM user with full access to IAM and Amazon S3. If the IAM user
assigns a bucket policy to an Amazon S3 bucket and doesn't specify the AWS account root user as
a principal, the root user is denied access to that bucket. However, as the root user, you can still
access the bucket. To do that, modify the bucket policy to allow root user access from the Amazon
S3 console or the AWS CLI. Use the following principal, replacing 123456789012 with the ID of the
AWS account.

"Principal": { "AWS": "arn:aws:iam::123456789012:root" }

Troubleshooting SAML 2.0 federation with AWS

Use the information here to help you diagnose and fix issues that you might encounter when
working with SAML 2.0 and federation with IAM.

Topics

• Error: Your request included an invalid SAML response. To logout, click here.

• Error: RoleSessionName is required in AuthnResponse (service: AWSSecurityTokenService; status
code: 400; error code: InvalidIdentityToken)

• Error: Not authorized to perform sts:AssumeRoleWithSAML (service: AWSSecurityTokenService;
status code: 403; error code: AccessDenied)

• Error: RoleSessionName in AuthnResponse must match [a-zA-Z_0-9+=,.@-]{2,64} (service:
AWSSecurityTokenService; status code: 400; error code: InvalidIdentityToken)

• Error: Source Identity must match [a-zA-Z_0-9+=,.@-]{2,64} and not begin with "aws:" (service:
AWSSecurityTokenService; status code: 400; error code: InvalidIdentityToken)

• Error: Response signature invalid (service: AWSSecurityTokenService; status code: 400; error
code: InvalidIdentityToken)

• Error: Failed to assume role: Issuer not present in specified provider
(service: AWSOpenIdDiscoveryService; status code: 400; error code:
AuthSamlInvalidSamlResponseException)

• Error: Could not parse metadata.

• Error: Specified provider doesn't exist.

I'm signed in as an AWS account root user; why can't I access an Amazon S3 bucket under my account? 2669

AWS Identity and Access Management User Guide

• Error: Requested DurationSeconds exceeds MaxSessionDuration set for this role.

• Error: Response does not contain the required audience.

• How to view a SAML response in your browser for troubleshooting

Error: Your request included an invalid SAML response. To logout, click
here.

This error can occur when the SAML response from the identity provider does not include an
attribute with the Name set to https://aws.amazon.com/SAML/Attributes/Role. The
attribute must contain one or more AttributeValue elements, each containing a comma-
separated pair of strings:

• The ARN of a role that the user can be mapped to

• The ARN of the SAML provider

For more information, see Configuring SAML assertions for the authentication response. To view
the SAML response in your browser, follow the steps listed in How to view a SAML response in your
browser for troubleshooting.

Error: RoleSessionName is required in AuthnResponse (service:
AWSSecurityTokenService; status code: 400; error code:
InvalidIdentityToken)

This error can occur when the SAML response from the identity provider does not include
an attribute with the Name set to https://aws.amazon.com/SAML/Attributes/
RoleSessionName. The attribute value is an identifier for the user and is typically a user ID or an
email address.

For more information, see Configuring SAML assertions for the authentication response. To view
the SAML response in your browser, follow the steps listed in How to view a SAML response in your
browser for troubleshooting.

Invalid SAML response 2670

AWS Identity and Access Management User Guide

Error: Not authorized to perform sts:AssumeRoleWithSAML (service:
AWSSecurityTokenService; status code: 403; error code: AccessDenied)

This error can occur if the IAM role specified in the SAML response is misspelled or does not exist.
Make sure to use the exact name of your role, because role names are case sensitive. Correct the
name of the role in the SAML service provider configuration.

You are allowed access only if your role trust policy includes the sts:AssumeRoleWithSAML
action. If your SAML assertion is configured to use the PrincipalTag attribute, your trust policy
must also include the sts:TagSession action. For more information about session tags, see
Passing session tags in AWS STS.

This error can occur if you do not have sts:SetSourceIdentity permissions in your role trust
policy. If your SAML assertion is configured to use the SourceIdentity attribute, then your trust
policy must also include the sts:SetSourceIdentity action. For more information about source
identity, see Monitor and control actions taken with assumed roles.

This error can also occur if the federated users do not have permissions to assume the role. The
role must have a trust policy that specifies the ARN of the IAM SAML identity provider as the
Principal. The role also contains conditions that control which users can assume the role. Ensure
that your users meet the requirements of the conditions.

This error can also occur if the SAML response does not include a Subject containing a NameID.

For more information, see Establish Permissions in AWS for Federated Users and Configuring SAML
assertions for the authentication response. To view the SAML response in your browser, follow the
steps listed in How to view a SAML response in your browser for troubleshooting.

Error: RoleSessionName in AuthnResponse must match [a-zA-
Z_0-9+=,.@-]{2,64} (service: AWSSecurityTokenService; status code:
400; error code: InvalidIdentityToken)

This error can occur if the RoleSessionName attribute value is too long or contains invalid
characters. The maximum valid length is 64 characters.

For more information, see Configuring SAML assertions for the authentication response. To view
the SAML response in your browser, follow the steps listed in How to view a SAML response in your
browser for troubleshooting.

Not authorized for AssumeRoleWithSAML 2671

https://docs.aws.amazon.com/STS/latest/UsingSTS/STSMgmtConsole-SAML.html#configuring-role

AWS Identity and Access Management User Guide

Error: Source Identity must match [a-zA-Z_0-9+=,.@-]{2,64} and not
begin with "aws:" (service: AWSSecurityTokenService; status code:
400; error code: InvalidIdentityToken)

This error can occur if the sourceIdentity attribute value is too long or contains invalid
characters. The maximum valid length is 64 characters. For more information about source identity,
see Monitor and control actions taken with assumed roles.

For more information about creating SAML assertions, see Configuring SAML assertions for the
authentication response. To view the SAML response in your browser, follow the steps listed in How
to view a SAML response in your browser for troubleshooting.

Error: Response signature invalid (service: AWSSecurityTokenService;
status code: 400; error code: InvalidIdentityToken)

This error can occur when federation metadata of the identity provider does not match the
metadata of the IAM identity provider. For example, the metadata file for the identity service
provider might have changed to update an expired certificate. Download the updated SAML
metadata file from your identity service provider. Then update it in the AWS identity provider
entity that you define in IAM with the aws iam update-saml-provider cross-platform CLI
command or the Update-IAMSAMLProvider PowerShell cmdlet.

Error: Failed to assume role: Issuer not present in specified provider
(service: AWSOpenIdDiscoveryService; status code: 400; error code:
AuthSamlInvalidSamlResponseException)

This error can occur if the issuer in the SAML response does not match the issuer declared in the
federation metadata file. The metadata file was uploaded to AWS when you created the identity
provider in IAM.

Error: Could not parse metadata.

This error can occur if you do not format your metadata file properly.

When you create or manage a SAML identity provider in the AWS Management Console, you must
retrieve the SAML metadata document from your identity provider.

Invalid Source Identity characters 2672

AWS Identity and Access Management User Guide

This metadata file includes the issuer name, expiration information, and keys that can be used to
validate the SAML authentication response (assertions) received from the IdP. The metadata file
must be encoded in UTF-8 format without a byte order mark (BOM). To remove the BOM, you can
encode the file as UTF-8 using a text editing tool, such as Notepad++.

The x.509 certificate included as part of the SAML metadata document must use a key size of at
least 1024 bits. Also, the x.509 certificate must also be free of any repeated extensions. You can
use extensions, but the extensions can only appear once in the certificate. If the x.509 certificate
does not meet either condition, IdP creation fails and returns an "Unable to parse metadata" error.

As defined by the SAML V2.0 Metadata Interoperability Profile Version 1.0, IAM neither evaluates
nor takes action regarding the expiration of the metadata document’s X.509 certificate.

Error: Specified provider doesn't exist.

This error can occur if the name of the provider that you specify in the SAML assertion does not
match the name of the provider configured in IAM. For more information about viewing the
provider name, see Creating IAM SAML identity providers.

Error: Requested DurationSeconds exceeds MaxSessionDuration set for
this role.

This error can occur if you assume a role from the AWS CLI or API.

When you use the assume-role-with-saml CLI or AssumeRoleWithSAML API operations to assume
a role, you can specify a value for the DurationSeconds parameter. You can specify a value
from 900 seconds (15 minutes) up to the maximum session duration setting for the role. If you
specify a value higher than this setting, the operation fails. For example, if you specify a session
duration of 12 hours, but your administrator set the maximum session duration to 6 hours, your
operation fails. To learn how to view the maximum value for your role, see View the maximum
session duration setting for a role.

Error: Response does not contain the required audience.

This error can occur if there is a mismatch between the audience URL and the identity provider in
the SAML configuration. Make sure that your identity provider (IdP) relying party identifier exactly
matches the audience URL (entity ID) provided in the SAML configuration.

Specified provider doesn't exist 2673

https://docs.oasis-open.org/security/saml/Post2.0/sstc-metadata-iop-os.html
https://docs.aws.amazon.com/cli/latest/reference/sts/assume-role-with-saml.html
https://docs.aws.amazon.com/STS/latest/APIReference/API_AssumeRoleWithSAML.html

AWS Identity and Access Management User Guide

How to view a SAML response in your browser for troubleshooting

The following procedures describe how to view the SAML response from your service provider from
in your browser when troubleshooting a SAML 2.0–related issue.

For all browsers, go to the page where you can reproduce the issue. Then follow the steps for the
appropriate browser:

Topics

• Google Chrome

• Mozilla Firefox

• Apple Safari

• What to do with the Base64-encoded SAML response

Google Chrome

To view a SAML response in Chrome

These steps were tested using version 106.0.5249.103 (Official Build) (arm64) of Google Chrome. If
you use another version, you might need to adapt the steps accordingly.

1. Press F12 to start the Developer Tools console.

2. Select the Network tab, and then select Preserve log in the upper left of the Developer Tools
window.

3. Reproduce the issue.

4. (Optional) If the Method column is not visible in the Developer Tools Network log pane, right-
click on any column label and choose Method to add the column.

5. Look for a SAML Post in the Developer Tools Network log pane. Select that row, and then
view the Payload tab at the top. Look for the SAMLResponse element that contains the
encoded request. The associated value is the Base64-encoded response.

Mozilla Firefox

To view a SAML response in Firefox

This procedure was tested on version 105.0.3 (64-bit) of Mozilla Firefox. If you use another version,
you might need to adapt the steps accordingly.

Viewing a SAML response in your browser 2674

AWS Identity and Access Management User Guide

1. Press F12 to start the Web Developer Tools console.

2. Select the Network tab.

3. In the upper right of the Web Developer Tools window, choose options (the small gear icon).
Select Persist logs.

4. Reproduce the issue.

5. (Optional) If the Method column is not visible in the Web Developer Tools Network log pane,
right-click on any column label and choose Method to add the column.

6. Look for a POST SAML in the table. Select that row, and then view the Request tab and find
the SAMLResponse element. The associated value is the Base64-encoded response.

Apple Safari

To view a SAML response in Safari

These steps were tested using version 16.0 (17614.1.25.9.10, 17614) of Apple Safari. If you use
another version, you might need to adapt the steps accordingly.

1. Enable Web Inspector in Safari. Open the Preferences window, select the Advanced tab, and
then select Show Develop menu in the menu bar.

2. Now you can open Web Inspector. Choose Develop in the menu bar, then select Show Web
Inspector.

3. Select the Network tab.

4. In the upper left of the Web Inspector window, choose options (the small circle icon
containing three horizontal lines). Select Preserve Log.

5. (Optional) If the Method column is not visible in the Web Inspector Network log pane, right-
click on any column label and choose Method to add the column.

6. Reproduce the issue.

7. Look for a POST SAML in the table. Select that row, and then view the Headers tab.

8. Look for the SAMLResponse element that contains the encoded request. Scroll down to find
Request Data with the name SAMLResponse. The associated value is the Base64-encoded
response.

Viewing a SAML response in your browser 2675

AWS Identity and Access Management User Guide

What to do with the Base64-encoded SAML response

Once you find the Base64-encoded SAML response element in your browser, copy it and use your
favorite Base-64 decoding tool to extract the XML tagged response.

Security tip

Because the SAML response data that you are viewing might contain sensitive security data,
we recommend that you do not use an online base64 decoder. Instead use a tool installed
on your local computer that does not send your SAML data over the network.

Built-in option for Windows systems (PowerShell):

PS C:
\> [System.Text.Encoding]::UTF8.GetString([System.Convert]::FromBase64String("base64encodedtext"))

Built-in option for MacOS and Linux systems:

$ echo "base64encodedtext" | base64 --decode

Viewing a SAML response in your browser 2676

AWS Identity and Access Management User Guide

Reference information for AWS Identity and Access
Management

Use the topics in this section to find detailed reference material for various aspects of IAM and AWS
STS.

Topics

• Amazon Resource Names (ARNs)

• IAM identifiers

• IAM and AWS STS quotas

• Interface VPC endpoints

• AWS services that work with IAM

• Signing AWS API requests

• IAM JSON policy reference

Amazon Resource Names (ARNs)

Amazon Resource Names (ARNs) uniquely identify AWS resources. We require an ARN when you
need to specify a resource unambiguously across all of AWS, such as in IAM policies, Amazon
Relational Database Service (Amazon RDS) tags, and API calls.

ARN format

The following are the general formats for ARNs. The specific formats depend on the resource. To
use an ARN, replace the italicized text with the resource-specific information. Be aware that
the ARNs for some resources omit the Region, the account ID, or both the Region and the account
ID.

arn:partition:service:region:account-id:resource-id
arn:partition:service:region:account-id:resource-type/resource-id
arn:partition:service:region:account-id:resource-type:resource-id

Amazon Resource Names (ARNs) 2677

AWS Identity and Access Management User Guide

partition

The partition in which the resource is located. A partition is a group of AWS Regions. Each AWS
account is scoped to one partition.

The following are the supported partitions:

• aws - AWS Regions

• aws-cn - China Regions

• aws-us-gov - AWS GovCloud (US) Regions

service

The service namespace that identifies the AWS product.

region

The Region code. For example, us-east-2 for US East (Ohio). For the list of Region codes, see
Regional endpoints in the AWS General Reference.

account-id

The ID of the AWS account that owns the resource, without the hyphens. For example,
123456789012.

resource-type

The resource type. For example, vpc for a virtual private cloud (VPC).

resource-id

The resource identifier. This is the name of the resource, the ID of the resource, or a resource
path. Some resource identifiers include a parent resource (sub-resource-type/parent-resource/
sub-resource) or a qualifier such as a version (resource-type:resource-name:qualifier).

Examples

IAM user

arn:aws:iam::123456789012:user/johndoe

SNS topic

arn:aws:sns:us-east-1:123456789012:example-sns-topic-name

ARN format 2678

https://docs.aws.amazon.com/general/latest/gr/rande.html#regional-endpoints

AWS Identity and Access Management User Guide

VPC

arn:aws:ec2:us-east-1:123456789012:vpc/vpc-0e9801d129EXAMPLE

Look up the ARN format for a resource

The exact format of an ARN depends on the service and resource type. Some resource ARNs can
include a path, a variable, or a wildcard. To look up the ARN format for a specific AWS resource,
open the Service Authorization Reference, open the page for the service, and navigate to the
resource types table.

Paths in ARNs

Resource ARNs can include a path. For example, in Amazon S3, the resource identifier is an object
name that can include forward slashes (/) to form a path. Similarly, IAM user names and group
names can include paths. Only alphanumeric characters and the following characters are allowed
in IAM paths: forward slash (/), plus (+), equals (=), comma (,), period (.), at (@), underscore (_), and
hyphen (-).

Using wildcards in paths

Paths can include a wildcard character, namely an asterisk (*). For example, if you are writing an
IAM policy, you can specify all IAM users that have the path product_1234 using a wildcard as
follows:

arn:aws:iam::123456789012:user/Development/product_1234/*

Similarly, you can specify user/* to mean all users or group/* to mean all groups, as in the
following examples:

"Resource":"arn:aws:iam::123456789012:user/*"
"Resource":"arn:aws:iam::123456789012:group/*"

The following example shows ARNs for an Amazon S3 bucket in which the resource name includes
a path:

arn:aws:s3:::my_corporate_bucket/*
arn:aws:s3:::my_corporate_bucket/Development/*

Look up the ARN format for a resource 2679

https://docs.aws.amazon.com/service-authorization/latest/reference/

AWS Identity and Access Management User Guide

Incorrect wildcard usage

You cannot use a wildcard in the portion of the ARN that specifies the resource type, such as the
term user in an IAM ARN. For example, the following is not allowed.

arn:aws:iam::123456789012:u* <== not allowed

IAM identifiers

IAM uses a few different identifiers for users, user groups, roles, policies, and server certificates.
This section describes the identifiers and when you use each.

Topics

• Friendly names and paths

• IAM ARNs

• Unique identifiers

Friendly names and paths

When you create a user, a role, a user group, or a policy, or when you upload a server
certificate, you give it a friendly name. Examples include Bob, TestApp1, Developers,
ManageCredentialsPermissions, or ProdServerCert.

If you use the IAM API or AWS Command Line Interface (AWS CLI) to create IAM resources, you can
add an optional path. You can use a single path, or nest multiple paths as a folder structure. For
example, you could use the nested path /division_abc/subdivision_xyz/product_1234/
engineering/ to match your company organizational structure. You could then create a policy to
allow all users in that path to access the policy simulator API. To view this policy, see IAM: Access
the policy simulator API based on user path. For information about how a friendly name can be
specified, see the User API documentation. For additional examples of how you might use paths,
see IAM ARNs.

When you use AWS CloudFormation to create resources, you can specify a path for users, user
groups, and roles, and customer managed policies.

If you have a user and user group in the same path, IAM doesn't automatically put the user in
that user group. For example, you might create a Developers user group and specify the path as
/division_abc/subdivision_xyz/product_1234/engineering/. If you create a user

IAM identifiers 2680

https://docs.aws.amazon.com/IAM/latest/APIReference/API_User.html

AWS Identity and Access Management User Guide

named Bob and add the same path to him, this doesn't automatically put Bob in the Developers
user group. IAM doesn't enforce any boundaries between users or user groups based on their
paths. Users with different paths can use the same resources if they've been granted permission
to those resources. The number and size of IAM resources in an AWS account are limited. For more
information, see IAM and AWS STS quotas.

IAM ARNs

Most resources have a friendly name for example, a user named Bob or a user group named
Developers. However, the permissions policy language requires you to specify the resource or
resources using the following Amazon Resource Name (ARN) format.

arn:partition:service:region:account:resource

Where:

• partition identifies the partition for the resource. For standard AWS Regions, the partition
is aws. If you have resources in other partitions, the partition is aws-partitionname. For
example, the partition for resources in the China (Beijing) Region is aws-cn. You cannot delegate
access between accounts in different partitions.

• service identifies the AWS product. IAM resources always use iam.

• region identifies the Region of the resource. For IAM resources, this is always kept blank.

• account specifies the AWS account ID with no hyphens.

• resource identifies the specific resource by name.

You can specify IAM and AWS STS ARNs using the following syntax. The Region portion of the ARN
is blank because IAM resources are global.

Syntax:

arn:aws:iam::account:root
arn:aws:iam::account:user/user-name-with-path
arn:aws:iam::account:group/group-name-with-path
arn:aws:iam::account:role/role-name-with-path
arn:aws:iam::account:policy/policy-name-with-path
arn:aws:iam::account:instance-profile/instance-profile-name-with-path
arn:aws:sts::account:federated-user/user-name
arn:aws:sts::account:assumed-role/role-name/role-session-name

IAM ARNs 2681

AWS Identity and Access Management User Guide

arn:aws:iam::account:mfa/virtual-device-name-with-path
arn:aws:iam::account:u2f/u2f-token-id
arn:aws:iam::account:server-certificate/certificate-name-with-path
arn:aws:iam::account:saml-provider/provider-name
arn:aws:iam::account:oidc-provider/provider-name

Many of the following examples include paths in the resource part of the ARN. Paths cannot be
created or manipulated in the AWS Management Console. To use paths, you must work with the
resource by using the AWS API, the AWS CLI, or the Tools for Windows PowerShell.

Examples:

arn:aws:iam::123456789012:root
arn:aws:iam::123456789012:user/JohnDoe
arn:aws:iam::123456789012:user/division_abc/subdivision_xyz/JaneDoe
arn:aws:iam::123456789012:group/Developers
arn:aws:iam::123456789012:group/division_abc/subdivision_xyz/product_A/Developers
arn:aws:iam::123456789012:role/S3Access
arn:aws:iam::123456789012:role/application_abc/component_xyz/RDSAccess
arn:aws:iam::123456789012:role/aws-service-role/access-analyzer.amazonaws.com/
AWSServiceRoleForAccessAnalyzer
arn:aws:iam::123456789012:role/service-role/QuickSightAction
arn:aws:iam::123456789012:policy/UsersManageOwnCredentials
arn:aws:iam::123456789012:policy/division_abc/subdivision_xyz/UsersManageOwnCredentials
arn:aws:iam::123456789012:instance-profile/Webserver
arn:aws:sts::123456789012:federated-user/JohnDoe
arn:aws:sts::123456789012:assumed-role/Accounting-Role/JaneDoe
arn:aws:iam::123456789012:mfa/JaneDoeMFA
arn:aws:iam::123456789012:u2f/user/JohnDoe/default (U2F security key)
arn:aws:iam::123456789012:server-certificate/ProdServerCert
arn:aws:iam::123456789012:server-certificate/division_abc/subdivision_xyz/
ProdServerCert
arn:aws:iam::123456789012:saml-provider/ADFSProvider
arn:aws:iam::123456789012:oidc-provider/GoogleProvider
arn:aws:iam::123456789012:oidc-provider/oidc.eks.us-west-2.amazonaws.com/id/
a1b2c3d4567890abcdefEXAMPLE11111
arn:aws:iam::123456789012:oidc-provider/server.example.org

The following examples provide more detail to help you understand the ARN format for different
types of IAM and AWS STS resources.

• An IAM user in the account:

IAM ARNs 2682

AWS Identity and Access Management User Guide

Note

Each IAM user name is unique. The user name is case-insensitive for the user, such as
during the sign in process, but is case-sensitive when you use it in a policy or as part of an
ARN.

arn:aws:iam::123456789012:user/JohnDoe

• Another user with a path reflecting an organization chart:

arn:aws:iam::123456789012:user/division_abc/subdivision_xyz/JaneDoe

• An IAM user group:

arn:aws:iam::123456789012:group/Developers

• An IAM user group with a path:

arn:aws:iam::123456789012:group/division_abc/subdivision_xyz/product_A/Developers

• An IAM role:

arn:aws:iam::123456789012:role/S3Access

• A service-linked role:

arn:aws:iam::123456789012:role/aws-service-role/access-analyzer.amazonaws.com/
AWSServiceRoleForAccessAnalyzer

• A service role:

arn:aws:iam::123456789012:role/service-role/QuickSightAction

• A managed policy:

arn:aws:iam::123456789012:policy/ManageCredentialsPermissions

• An instance profile that can be associated with an Amazon EC2 instance:

IAM ARNs 2683

AWS Identity and Access Management User Guide

arn:aws:iam::123456789012:instance-profile/Webserver

• A federated user identified in IAM as "Paulo":

arn:aws:sts::123456789012:federated-user/Paulo

• The active session of someone assuming the role of "Accounting-Role", with a role session name
of "Mary":

arn:aws:sts::123456789012:assumed-role/Accounting-Role/Mary

• The multi-factor authentication device assigned to the user named Jorge:

arn:aws:iam::123456789012:mfa/Jorge

• A server certificate:

arn:aws:iam::123456789012:server-certificate/ProdServerCert

• A server certificate with a path that reflects an organization chart:

arn:aws:iam::123456789012:server-certificate/division_abc/subdivision_xyz/
ProdServerCert

• Identity providers (SAML and OIDC):

arn:aws:iam::123456789012:saml-provider/ADFSProvider
arn:aws:iam::123456789012:oidc-provider/GoogleProvider
arn:aws:iam::123456789012:oidc-provider/server.example.org

• OIDC identity provider with a path that reflects an Amazon EKS OIDC identity provider URL:

arn:aws:iam::123456789012:oidc-provider/oidc.eks.us-west-2.amazonaws.com/id/
a1b2c3d4567890abcdefEXAMPLE11111

Another important ARN is the root user ARN. Although this is not an IAM resource, you should be
familiar with the format of this ARN. It is often used in the Principal element of a resource-
based policy.

IAM ARNs 2684

AWS Identity and Access Management User Guide

• The AWS account displays the following:

arn:aws:iam::123456789012:root

The following example shows a policy you could assign to Richard to allow him to manage his
access keys. Notice that the resource is the IAM user Richard.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "ManageRichardAccessKeys",
 "Effect": "Allow",
 "Action": [
 "iam:*AccessKey*",
 "iam:GetUser"
],
 "Resource": "arn:aws:iam::*:user/division_abc/subdivision_xyz/Richard"
 },
 {
 "Sid": "ListForConsole",
 "Effect": "Allow",
 "Action": "iam:ListUsers",
 "Resource": "*"
 }
]
}

Note

When you use ARNs to identify resources in an IAM policy, you can include policy variables.
Policy variables can include placeholders for runtime information (such as the user's name)
as part of the ARN. For more information, see IAM policy elements: Variables and tags

Using wildcards and paths in ARNs

You can use wildcards in the resource portion of the ARN to specify multiple users or user groups
or policies. For example, to specify all users working on product_1234, you use:

IAM ARNs 2685

AWS Identity and Access Management User Guide

arn:aws:iam::123456789012:user/division_abc/subdivision_xyz/product_1234/*

If you have users whose names start with the string app_, you could refer to them all with the
following ARN.

arn:aws:iam::123456789012:user/division_abc/subdivision_xyz/product_1234/app_*

To specify all users, user groups, or policies in your AWS account, use a wildcard after the user/,
group/, or policy/ part of the ARN, respectively.

arn:aws:iam::123456789012:user/*
arn:aws:iam::123456789012:group/*
arn:aws:iam::123456789012:policy/*

If you specify the following ARN for a user arn:aws:iam::111122223333:user/* it matches
both of the following examples.

arn:aws:iam::111122223333:user/JohnDoe
arn:aws:iam::111122223333:user/division_abc/subdivision_xyz/JaneDoe

But, if you specify the following ARN for a user arn:aws:iam::111122223333:user/
division_abc* it matches the second example, but not the first.

arn:aws:iam::111122223333:user/JohnDoe
arn:aws:iam::111122223333:user/division_abc/subdivision_xyz/JaneDoe

Don't use a wildcard in the user/, group/, or policy/ part of the ARN. For example, IAM does
not allow the following:

arn:aws:iam::123456789012:u*

Example Example use of paths and ARNs for a project-based user group

Paths cannot be created or manipulated in the AWS Management Console. To use paths you must
work with the resource by using the AWS API, the AWS CLI, or the Tools for Windows PowerShell.

In this example, Jules in the Marketing_Admin user group creates a project-based user group within
the /marketing/ path. Jules assigns users from different parts of the company to the user group.
This example illustrates that a user's path isn't related to the user groups the user is in.

IAM ARNs 2686

AWS Identity and Access Management User Guide

The marketing group has a new product they'll be launching, so Jules creates a new user group in
the /marketing/ path called Widget_Launch. Jules then assigns the following policy to the user
group, which gives the user group access to objects in the part of the example_bucket that is
designated to this particular launch.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "s3:*",
 "Resource": "arn:aws:s3:::example_bucket/marketing/newproductlaunch/widget/*"
 },
 {
 "Effect": "Allow",
 "Action": "s3:ListBucket*",
 "Resource": "arn:aws:s3:::example_bucket",
 "Condition": {"StringLike": {"s3:prefix": "marketing/newproductlaunch/widget/*"}}
 }
]
}

Jules then assigns the users who are working on this launch to the user group. This includes Patricia
and Eli from the /marketing/ path. It also includes Chris and Chloe from the /sales/ path, and Alice
and Jim from the /legal/ path.

Unique identifiers

When IAM creates a user, user group, role, policy, instance profile, or server certificate, it assigns a
unique ID to each resource. The unique ID looks like this:

AIDAJQABLZS4A3QDU576Q

For the most part, you use friendly names and ARNs when you work with IAM resources. That
way you don't need to know the unique ID for a specific resource. However, the unique ID can
sometimes be useful when it isn't practical to use friendly names.

One example reuses friendly names in your AWS account. Within your account, a friendly name
for a user, user group, role, or policy must be unique. For example, you might create an IAM user
named John. Your company uses Amazon S3 and has a bucket with folders for each employee.
IAM user John is a member of an IAM user group named User-S3-Access with permissions

Unique identifiers 2687

AWS Identity and Access Management User Guide

that allows users access only to their own folders in the bucket. For an example of how you might
create an identity-based policy that allows IAM users to access their own bucket object in S3 using
the friendly name of users, see Amazon S3: Allows IAM users access to their S3 home directory,
programmatically and in the console.

Suppose that the employee named John leaves your company and you delete the corresponding
IAM user named John. But later another employee named John starts, and you create a new IAM
user named John. You add the new IAM user named John to the existing IAM user group User-
S3-Access. If the policy associated to the user group specifies the friendly IAM user name John,
the policy allows the new John to access information that was left by the former John.

In general, we recommend that you specify the ARN for the resource in your policies instead of its
unique ID. However, every IAM user has a unique ID, even if you create a new IAM user that reuses
a friendly name you deleted before. In the example, the old IAM user John and the new IAM user
John have different unique IDs. You can create resource-based policies that grant access by unique
ID and not just by user name. Doing so reduces the chance that you could inadvertently grant
access to information that an employee should not have.

The following example shows how you might specify unique IDs in the Principal element of a
resource-based policy.

"Principal": {
 "AWS": [
 "arn:aws:iam::111122223333:role/role-name",
 "AIDACKCEVSQ6C2EXAMPLE",
 "AROADBQP57FF2AEXAMPLE"
 }

The following example shows how you might specify unique IDs in the Condition element of a
policy using global condition key aws:userid.

"Condition": {
 "StringLike": {
 "aws:userId": [
 "AIDACKCEVSQ6C2EXAMPLE",
 "AROADBQP57FF2AEXAMPLE:role-session-name",
 "AROA1234567890EXAMPLE:*",
 "111122223333"
]
 }

Unique identifiers 2688

AWS Identity and Access Management User Guide

 }

Another example where user IDs can be useful is if you maintain your own database (or other store)
of IAM user or role information. The unique ID can provide a unique identifier for each IAM user
or role you create. This is the case when you have IAM users or roles that reuse a name, as in the
previous example.

Understanding unique ID prefixes

IAM uses the following prefixes to indicate what type of resource each unique ID applies to.
Prefixes may vary based on when they were created.

Prefix Resource type

ABIA AWS STS service bearer token

ACCA Context-specific credential

AGPA User group

AIDA IAM user

AIPA Amazon EC2 instance profile

AKIA Access key

ANPA Managed policy

ANVA Version in a managed policy

APKA Public key

AROA Role

ASCA Certificate

ASIA Temporary (AWS STS) access key IDs use this
prefix, but are unique only in combination
with the secret access key and the session
token.

Unique identifiers 2689

https://docs.aws.amazon.com/STS/latest/APIReference/API_Credentials.html

AWS Identity and Access Management User Guide

Getting the unique identifier

The unique ID for an IAM resource is not available in the IAM console. To get the unique ID, you can
use the following AWS CLI commands or IAM API calls.

AWS CLI:

• get-caller-identity

• get-group

• get-role

• get-user

• get-policy

• get-instance-profile

• get-server-certificate

IAM API:

• GetCallerIdentity

• GetGroup

• GetRole

• GetUser

• GetPolicy

• GetInstanceProfile

• GetServerCertificate

IAM and AWS STS quotas

AWS Identity and Access Management (IAM) and AWS Security Token Service (STS) have quotas
that limit the size of objects. This affects how you name an object, the number of objects you can
create, and the number of characters you can use when you pass an object.

Note

To get account-level information about IAM usage and quotas, use the
GetAccountSummary API operation or the get-account-summary AWS CLI command.

IAM and AWS STS quotas 2690

https://docs.aws.amazon.com/cli/latest/reference/sts/get-caller-identity.html
https://docs.aws.amazon.com/cli/latest/reference/iam/get-group.html
https://docs.aws.amazon.com/cli/latest/reference/iam/get-role.html
https://docs.aws.amazon.com/cli/latest/reference/iam/get-user.html
https://docs.aws.amazon.com/cli/latest/reference/iam/get-policy.html
https://docs.aws.amazon.com/cli/latest/reference/iam/get-instance-profile.html
https://docs.aws.amazon.com/cli/latest/reference/iam/get-server-certificate.html
https://docs.aws.amazon.com/STS/latest/APIReference/API_GetCallerIdentity.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_GetGroup.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_GetRole.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_GetUser.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_GetPolicy.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_GetInstanceProfile.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_GetServerCertificate.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_GetAccountSummary.html
https://docs.aws.amazon.com/cli/latest/reference/iam/get-account-summary.html

AWS Identity and Access Management User Guide

IAM name requirements

IAM names have the following requirements and restrictions:

• Policy documents can contain only the following Unicode characters: horizontal tab (U+0009),
linefeed (U+000A), carriage return (U+000D), and characters in the range U+0020 to U+00FF.

• Names of users, groups, roles, policies, instance profiles, server certificates, and paths must be
alphanumeric, including the following common characters: plus (+), equals (=), comma (,), period
(.), at (@), underscore (_), and hyphen (-). Path names must begin and end with a forward slash
(/).

• Names of users, groups, roles, and instance profiles must be unique within the account. They
aren’t distinguished by case, for example, you can't create groups named both ADMINS and
admins.

• The external ID value that a third party uses to assume a role must have a minimum of 2
characters and a maximum of 1,224 characters. The value must be alphanumeric without white
space. It can also include the following symbols: plus (+), equal (=), comma (,), period (.), at (@),
colon (:), forward slash (/), and hyphen (-). For more information about the external ID, see How
to use an external ID when granting access to your AWS resources to a third party.

• Policy names for inline policies must be unique to the user, group, or role they're embedded
in. The names can contain any Basic Latin (ASCII) characters except for the following reserved
characters: backward slash (\), forward slash (/), asterisk (*), question mark (?), and white space.
These characters are reserved according to RFC 3986, section 2.2.

• User passwords (login profiles) can contain any Basic Latin (ASCII) characters.

• AWS account ID aliases must be unique across AWS products, and must be alphanumeric
following DNS naming conventions. An alias must be lowercase, it must not start or end with a
hyphen, it can't contain two consecutive hyphens, and it can't be a 12-digit number.

For a list of Basic Latin (ASCII) characters, go to the Library of Congress Basic Latin (ASCII) Code
Table.

IAM object quotas

Quotas, also referred to as limits in AWS, are the maximum values for the resources, actions, and
items in your AWS account. Use Service Quotas to manage your IAM quotas.

IAM name requirements 2691

https://datatracker.ietf.org/doc/html/rfc3986#section-2.2
http://lcweb2.loc.gov/diglib/codetables/42.html
http://lcweb2.loc.gov/diglib/codetables/42.html

AWS Identity and Access Management User Guide

For the list of IAM service endpoints and service quotas, see AWS Identity and Access Management
endpoints and quotas in the AWS General Reference.

To request a quota increase

1. Follow the sign-in procedure appropriate to your user type as described in the topic How to sign
in to AWS in the AWS Sign-In User Guide to sign in to the AWS Management Console.

2. Open the Service Quotas console.

3. In the navigation pane, choose AWS services.

4. On the navigation bar, choose the US East (N. Virginia) Region. Then search for IAM.

5. Choose AWS Identity and Access Management (IAM), choose a quota, and follow the directions
to request a quota increase.

For more information, see Requesting a Quota Increase in the Service Quotas User Guide.

To see an example of how to request an IAM quota increase using the Service Quotas console,
watch the following video.

Request an IAM quota increase using the Service Quotas console.

You can request an increase to default quotas for adjustable IAM quotas. Requests up to the
maximum quota are automatically approved and completed within a few minutes.

The following table lists the resources for which quota increases area can be automatically
approved.

Adjustable quotas for IAM resources

Resource Default quota Maximum quota

Customer managed policies
per account

1500 5000

Groups per account 300 500

Instance profiles per account 1000 5000

Managed policies per role 10 20

Managed policies per user 10 20

IAM object quotas 2692

https://docs.aws.amazon.com/general/latest/gr/iam-service.html
https://docs.aws.amazon.com/general/latest/gr/iam-service.html
https://docs.aws.amazon.com/signin/latest/userguide/how-to-sign-in.html
https://docs.aws.amazon.com/signin/latest/userguide/how-to-sign-in.html
https://docs.aws.amazon.com/servicequotas/latest/userguide/request-quota-increase.html
https://www.youtube.com/embed/srJ4jr6M9YQ

AWS Identity and Access Management User Guide

Resource Default quota Maximum quota

Role trust policy length 2048 characters 4096 characters

Roles per account 1000 5000

Server certificates per account 20 1000

IAM Access Analyzer quotas

For the list of IAM Access Analyzer service endpoints and service quotas, see IAM Access Analyzer
endpoints and quotas in the AWS General Reference.

IAM Roles Anywhere quotas

For the list of IAM Roles Anywhere service endpoints and service quotas, see AWS Identity and
Access Management Roles Anywhere endpoints and quotas in the AWS General Reference.

IAM and STS character limits

The following are the maximum character counts and size limits for IAM and AWS STS. You can't
request an increase for the following limits.

Description Limit

Alias for an AWS account ID 3–63 characters

For inline policies You can add as many inline policies as you
want to an IAM user, role, or group. But the
total aggregate policy size (the sum size of
all inline policies) per entity can't exceed the
following limits:

• User policy size can't exceed 2,048 character
s.

• Role policy size can't exceed 10,240
characters.

IAM Access Analyzer quotas 2693

https://docs.aws.amazon.com/general/latest/gr/access-analyzer.html
https://docs.aws.amazon.com/general/latest/gr/access-analyzer.html
https://docs.aws.amazon.com/general/latest/gr/rolesanywhere.html
https://docs.aws.amazon.com/general/latest/gr/rolesanywhere.html

AWS Identity and Access Management User Guide

Description Limit

• Group policy size can't exceed 5,120
characters.

Note

IAM doesn't count white space when
calculating the size of a policy against
these limits.

For managed policies • The size of each managed policy can't
exceed 6,144 characters.

Note

IAM doesn't count white space when
calculating the size of a policy against
this limit.

Group name 128 characters

Instance profile name 128 characters

Password for a login profile 1–128 characters

Path 512 characters

Policy name 128 characters

IAM and STS character limits 2694

AWS Identity and Access Management User Guide

Description Limit

Role name 64 characters

Important

If you intend to use a role with the
Switch Role feature in the AWS
Management Console, then the
combined Path and RoleName can't
exceed 64 characters.

Role session duration 12 hours

When you assume a role from the AWS CLI or
API, you can use the duration-seconds
CLI parameter or the DurationSeconds API
parameter to request a longer role session.
You can specify a value from 900 seconds
(15 minutes) up to the maximum session
duration setting for the role, which can range
1–12 hours. If you don't specify a value for
the DurationSeconds parameter, your
security credentials are valid for one hour.
IAM users who switch roles in the console are
granted the maximum session duration, or the
remaining time in the user's session, whichever
is less. The maximum session duration setting
doesn't limit sessions assumed by AWS
services. To learn how to view the maximum
value for your role, see View the maximum
session duration setting for a role.

Role session name 64 characters

IAM and STS character limits 2695

AWS Identity and Access Management User Guide

Description Limit

Role session policies • The size of the passed JSON policy
document and all passed managed policy
ARN characters combined can't exceed
2,048 characters.

• You can pass a maximum of 10 managed
policy ARNs when you create a session.

• You can pass only one JSON policy
document when you programmatically
create a temporary session for a role or
federated user.

• Additionally, an AWS conversion compresse
s the passed session policies and session
tags into a packed binary format that has a
separate limit. The PackedPolicySize
response element indicates by percentag
e how close the policies and tags for your
request are to the upper size limit.

• We recommend that you pass session
policies using the AWS CLI or AWS API.
The AWS Management Console might add
additional console session information to
the packed policy.

IAM and STS character limits 2696

AWS Identity and Access Management User Guide

Description Limit

Role session tags • Session tags must meet the tag key limit of
128 characters and the tag value limit of
256 characters.

• You can pass up to 50 session tags.

• An AWS conversion compresses the passed
session policies and session tags into a
packed binary format that has a separate
limit. You can pass session tags using the
AWS CLI or AWS API. The PackedPol
icySize response element indicates by
percentage how close the policies and tags
for your request are to the upper size limit.

SAML authentication response base64
encoded

100,000 characters

This character limit applies to assume-
role-with-saml CLI or AssumeRol
eWithSAML API operation.

Tag key 128 characters

This character limit applies to tags on IAM
resources and session tags.

Tag value 256 characters

This character limit applies to tags on IAM
resources and session tags.

Tag values can be empty which means tag
values can have a length of 0 characters.

IAM and STS character limits 2697

https://docs.aws.amazon.com/cli/latest/reference/sts/assume-role-with-saml.html
https://docs.aws.amazon.com/cli/latest/reference/sts/assume-role-with-saml.html
https://docs.aws.amazon.com/STS/latest/APIReference/API_AssumeRoleWithSAML.html
https://docs.aws.amazon.com/STS/latest/APIReference/API_AssumeRoleWithSAML.html

AWS Identity and Access Management User Guide

Description Limit

Unique IDs created by IAM 128 characters. For example:

• User IDs that begin with AIDA

• Group IDs that begin with AGPA

• Role IDs that begin with AROA

• Managed policy IDs that begin with ANPA

• Server certificate IDs that begin with ASCA

Note

This isn't intended to be an exhaustiv
e list, nor is it a guarantee that IDs
of a certain type begin only with the
specified letter combination.

User name 64 characters

Interface VPC endpoints

If you use Amazon Virtual Private Cloud (Amazon VPC) to host your AWS resources, you can
establish a private connection between your VPC and AWS Security Token Service (AWS STS).
You can use this connection to enable AWS STS to communicate with your resources in your VPC
without going through the public internet.

Amazon VPC is an AWS service that you can use to launch AWS resources in a virtual network that
you define. With a VPC, you have control over your network settings, such as the IP address range,
subnets, route tables, and network gateways. To connect your VPC to AWS STS, you define an
interface VPC endpoint for AWS STS. The endpoint provides reliable, scalable connectivity to AWS
STS without requiring an internet gateway, network address translation (NAT) instance, or VPN
connection. For more information, see What Is Amazon VPC? in the Amazon VPC User Guide.

Interface VPC endpoints 2698

https://docs.aws.amazon.com/vpc/latest/userguide/VPC_Introduction.html

AWS Identity and Access Management User Guide

Interface VPC endpoints are powered by AWS PrivateLink, an AWS technology that enables private
communication between AWS services using an elastic network interface with private IP addresses.
For more information, see AWS PrivateLink for AWS Services.

The following information is for users of Amazon VPC. For more information, see Getting Started
with Amazon VPC in the Amazon VPC User Guide.

Availability

AWS STS currently supports VPC endpoints in the following Regions:

• US East (Ohio)

• US East (N. Virginia)

• US West (N. California)

• US West (Oregon)

• Africa (Cape Town)

• Asia Pacific (Hong Kong)

• Asia Pacific (Mumbai)

• Asia Pacific (Osaka)

• Asia Pacific (Seoul)

• Asia Pacific (Singapore)

• Asia Pacific (Sydney)

• Asia Pacific (Tokyo)

• Canada (Central)

• China (Beijing)

• China (Ningxia)

• Europe (Frankfurt)

• Europe (Ireland)

• Europe (London)

• Europe (Milan)

• Europe (Paris)

• Europe (Stockholm)

Availability 2699

https://docs.aws.amazon.com/vpc/latest/userguide/vpce-interface.html
https://docs.aws.amazon.com/vpc/latest/userguide/GetStarted.html
https://docs.aws.amazon.com/vpc/latest/userguide/GetStarted.html

AWS Identity and Access Management User Guide

• Middle East (Bahrain)

• South America (São Paulo)

• AWS GovCloud (US-East)

• AWS GovCloud (US-West)

Create a VPC endpoint for AWS STS

To start using AWS STS with your VPC, create an interface VPC endpoint for AWS STS. For more
information, see Access an AWS service using an interface VPC endpoint in the Amazon VPC User
Guide.

After you create the VPC endpoint, you must use the matching regional endpoint to send your
AWS STS requests. AWS STS recommends that you use both the setRegion and setEndpoint
methods to make calls to a Regional endpoint. You can use the setRegion method alone for
manually enabled Regions, such as Asia Pacific (Hong Kong). In this case, the calls are directed to
the STS Regional endpoint. To learn how to manually enable a Region, see Managing AWS Regions
in the AWS General Reference. If you use the setRegion method alone for Regions enabled by
default, the calls are directed to the global endpoint of https://sts.amazonaws.com .

When you use regional endpoints, AWS STS calls other AWS services using either public endpoints
or private interface VPC endpoints, whichever are in use. For example, assume that you have
created an interface VPC endpoint for AWS STS and have already requested temporary credentials
from AWS STS from resources that are located in your VPC. In that case, these credentials begin
flowing through the interface VPC endpoint by default. For more information about making
Regional requests using AWS STS, see Managing AWS STS in an AWS Region.

AWS services that work with IAM

The AWS services listed below are grouped alphabetically and include information about what IAM
features they support:

• Service – You can choose the name of a service to view the AWS documentation about IAM
authorization and access for that service.

• Actions – You can specify individual actions in a policy. If the service does not support this
feature, then All actions is selected in the visual editor. In a JSON policy document, you must
use * in the Action element. For a list of actions in each service, see Actions, Resources, and
Condition Keys for AWS Services.

Create a VPC endpoint for AWS STS 2700

https://docs.aws.amazon.com/vpc/latest/privatelink/create-interface-endpoint.html
https://docs.aws.amazon.com/general/latest/gr/rande-manage.html
https://sts.amazonaws.com
reference_policies_actions-resources-contextkeys.html
reference_policies_actions-resources-contextkeys.html

AWS Identity and Access Management User Guide

• Resource-level permissions – You can use ARNs to specify individual resources in the policy. If
the service does not support this feature, then All resources is chosen in the policy visual editor.
In a JSON policy document, you must use * in the Resource element. Some actions, such as
List* actions, do not support specifying an ARN because they are designed to return multiple
resources. If a service supports this feature for some resources but not others, it is indicated by
Partial in the table. See the documentation for that service for more information.

• Resource-based policies – You can attach resource-based policies to a resource within the
service. Resource-based policies include a Principal element to specify which IAM identities
can access that resource. For more information, see Identity-based policies and resource-based
policies.

• ABAC (authorization based on tags) – To control access based on tags, you provide tag
information in the condition element of a policy using the aws:ResourceTag/key-name,
aws:RequestTag/key-name, or aws:TagKeys condition keys. If a service supports all three
condition keys for every resource type, then the value is Yes for the service. If a service supports
all three condition keys for only some resource types, then the value is Partial. For more
information about defining permissions based on attributes such as tags, see What is ABAC for
AWS?. To view a tutorial with steps for setting up ABAC, see Use attribute-based access control
(ABAC).

• Temporary credentials – You can use short-term credentials that you obtain when you sign in
using IAM Identity Center, switch roles in the console, or that you generate using AWS STS in the
AWS CLI or AWS API. You can access services with a No value only while using your long-term
IAM user credentials. This includes a user name and password or your user access keys. For more
information, see Temporary security credentials in IAM.

• Service-linked roles – A service-linked role is a special type of service role that gives the service
permission to access resources in other services on your behalf. Choose the Yes or Partial link to
see the documentation for services that support these roles. This column does not indicate if the
service uses standard service roles. For more information, see Using service-linked roles.

• More information – If a service doesn't fully support a feature, you can review the footnotes for
an entry to view the limitations and links to related information.

Services that work with IAM 2701

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/tutorial_attribute-based-access-control.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/tutorial_attribute-based-access-control.html

AWS Identity and Access Management User Guide

Services that work with IAM

Service Actions Resource-
level

permissio
ns

Resource-
based

policies

ABAC Temporary
credentia

ls

Service-l
inked roles

AWS Account Management

Yes Yes No No Yes No

AWS Activate Console

Yes No No No Yes No

AWS Amplify Admin

Yes Yes No No Yes No

AWS Amplify

Yes Yes No Partial Yes No

AWS Amplify UI Builder

Yes Yes No Yes Yes No

Apache Kafka APIs for
Amazon MSK clusters

Yes Yes No No Yes No

Services that work with IAM 2702

https://docs.aws.amazon.com/accounts/latest/reference/
https://aws.amazon.com/activate/faq/#AWS_Activate_Console
https://docs.aws.amazon.com/amplify-admin-ui/latest/APIReference/what-is-admin-ui.html
https://docs.aws.amazon.com/amplify/latest/userguide/security-iam.html
https://docs.aws.amazon.com/amplify/latest/userguide/
https://docs.aws.amazon.com/msk/latest/developerguide/iam-access-control.html
https://docs.aws.amazon.com/msk/latest/developerguide/iam-access-control.html

AWS Identity and Access Management User Guide

Service Actions Resource-
level

permissio
ns

Resource-
based

policies

ABAC Temporary
credentia

ls

Service-l
inked roles

Amazon API Gateway

Yes Yes Yes No Yes Yes

Amazon API Gateway
Management

Yes Yes No Yes Yes No

Amazon API Gateway
Management V2

Yes Yes No Yes Yes No

AWS App2Container

Yes No No No Yes No

AWS AppConfig

Yes Yes No Yes Yes No

AWS AppFabric

Yes Yes No Yes Yes No

Services that work with IAM 2703

https://docs.aws.amazon.com/apigateway/latest/developerguide/permissions.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/using-service-linked-roles.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/Welcome.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/Welcome.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/Welcome.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/Welcome.html
https://docs.aws.amazon.com/app2container/latest/UserGuide/what-is-a2c.html
https://docs.aws.amazon.com/systems-manager/latest/userguide/appconfig-getting-started-permissions.html
https://docs.aws.amazon.com/appfabric/latest/adminguide/security-iam.html

AWS Identity and Access Management User Guide

Service Actions Resource-
level

permissio
ns

Resource-
based

policies

ABAC Temporary
credentia

ls

Service-l
inked roles

Amazon AppFlow

Yes Yes No Yes Yes No

Amazon AppIntegrations

Yes Yes No Yes Yes Yes

Application Auto Scaling

Yes Yes No Yes Yes Yes

AWS Application Cost Profiler

Yes No No No Yes No

AWS Application
Discovery Arsenal

Yes No No No Yes No

AWS Application
Discovery Service

Yes No No No Yes Yes

Services that work with IAM 2704

https://docs.aws.amazon.com/appflow/latest/userguide/identity-access-management.html
https://docs.aws.amazon.com/connect/latest/adminguide/what-is-amazon-connect.html
https://docs.aws.amazon.com/connect/latest/adminguide/appintegrations-slr.html
https://docs.aws.amazon.com/autoscaling/application/userguide/auth-and-access-control.html
https://docs.aws.amazon.com/autoscaling/application/userguide/application-auto-scaling-service-linked-roles.html
https://docs.aws.amazon.com/application-cost-profiler/latest/userguide/introduction.html
https://docs.aws.amazon.com/application-discovery/latest/userguide/what-is-appdiscovery.html
https://docs.aws.amazon.com/application-discovery/latest/userguide/what-is-appdiscovery.html
https://docs.aws.amazon.com/application-discovery/latest/userguide/what-is-appdiscovery.html
https://docs.aws.amazon.com/application-discovery/latest/userguide/what-is-appdiscovery.html
https://docs.aws.amazon.com/application-discovery/latest/userguide/using-service-linked-roles.html

AWS Identity and Access Management User Guide

Service Actions Resource-
level

permissio
ns

Resource-
based

policies

ABAC Temporary
credentia

ls

Service-l
inked roles

AWS Application
Migration Service

Yes Yes No Yes Yes Yes

AWS Application
Transformation Service

Yes No No No Yes No

AWS App Mesh

Yes Yes No Yes Yes Yes

AWS App Mesh Preview

Yes Yes No No Yes Yes

AWS App Runner

Yes Yes No Yes Yes Yes

Amazon AppStream 2.0

Yes Yes No Yes Yes No

Services that work with IAM 2705

https://docs.aws.amazon.com/mgn/latest/ug/what-is-application-migration-service.html
https://docs.aws.amazon.com/mgn/latest/ug/what-is-application-migration-service.html
https://docs.aws.amazon.com/mgn/latest/ug/using-service-linked-roles.html
https://docs.aws.amazon.com/microservice-extractor/latest/userguide/microservice-extractor-security.html
https://docs.aws.amazon.com/microservice-extractor/latest/userguide/microservice-extractor-security.html
https://docs.aws.amazon.com/app-mesh/latest/userguide/IAM_policies.html
https://docs.aws.amazon.com/app-mesh/latest/userguide/using-service-linked-roles.html
https://docs.aws.amazon.com/app-mesh/latest/userguide/what-is-app-mesh.html
https://docs.aws.amazon.com/app-mesh/latest/userguide/using-service-linked-roles.html
https://docs.aws.amazon.com/apprunner/latest/dg/what-is-apprunner.html
https://docs.aws.amazon.com/apprunner/latest/dg/security-iam-slr.html
https://docs.aws.amazon.com/appstream2/latest/developerguide/controlling-access.html

AWS Identity and Access Management User Guide

Service Actions Resource-
level

permissio
ns

Resource-
based

policies

ABAC Temporary
credentia

ls

Service-l
inked roles

AWS AppSync

Yes Yes No Yes Yes No

AWS Artifact

Yes Yes No No Yes No

Amazon Athena

Yes Yes No Yes Yes No

AWS Audit Manager

Yes Yes No Yes Yes Yes

AWS Auto Scaling

Yes No No No Yes Yes

AWS B2B Data Interchange

Yes Yes No Yes Yes No

Services that work with IAM 2706

https://docs.aws.amazon.com/appsync/latest/devguide/security-authorization-use-cases.html
https://docs.aws.amazon.com/artifact/latest/ug/getting-started.html
https://docs.aws.amazon.com/athena/latest/ug/security-iam-athena.html
https://docs.aws.amazon.com/audit-manager/latest/userguide/what-is.html
https://docs.aws.amazon.com/audit-manager/latest/userguide/using-service-linked-roles.html
https://docs.aws.amazon.com/autoscaling/plans/userguide/auth-and-access-control.html
https://docs.aws.amazon.com/autoscaling/plans/userguide/aws-auto-scaling-service-linked-roles.html
https://docs.aws.amazon.com/b2bi/latest/userguide/security.html

AWS Identity and Access Management User Guide

Service Actions Resource-
level

permissio
ns

Resource-
based

policies

ABAC Temporary
credentia

ls

Service-l
inked roles

AWS Backup

Yes Yes Yes Yes Yes Yes

AWS Backup Gateway

Yes Yes No Yes Yes No

AWS Backup storage

Yes No No No Yes No

AWS Batch

Yes Partial No Yes Yes Yes

Amazon Bedrock

Yes Yes No Yes Yes No

AWS Billing and
Cost Management

Yes No No No Yes No

Services that work with IAM 2707

https://docs.aws.amazon.com/aws-backup/latest/devguide/security-considerations.html
https://docs.aws.amazon.com/aws-backup/latest/devguide/using-service-linked-roles.html
https://docs.aws.amazon.com/aws-backup/latest/devguide/
https://docs.aws.amazon.com/aws-backup/latest/devguide/security-considerations.html
https://docs.aws.amazon.com/batch/latest/userguide/IAM_policies.html
https://docs.aws.amazon.com/batch/latest/userguide/batch-supported-iam-actions-resources.html
https://docs.aws.amazon.com/batch/latest/userguide/using-service-linked-roles.html
https://docs.aws.amazon.com/bedrock/latest/APIReference/welcome.html
https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/ControllingAccessWebsite.html
https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/ControllingAccessWebsite.html

AWS Identity and Access Management User Guide

Service Actions Resource-
level

permissio
ns

Resource-
based

policies

ABAC Temporary
credentia

ls

Service-l
inked roles

AWS Billing and Cost
Management Data Exports

Yes Yes No Yes Yes No

AWS Billing Conductor

Yes Yes No Yes Yes No

Amazon Braket

Yes Yes No Yes Yes Yes

AWS Budget Service

Yes Yes No No No No

AWS BugBust

Yes Yes No Yes Yes Yes

AWS Certificate Manager (ACM)

Yes Yes No Yes Yes Yes

Services that work with IAM 2708

https://docs.aws.amazon.com/cur/latest/userguide/bcm-data-exports-access.html
https://docs.aws.amazon.com/cur/latest/userguide/bcm-data-exports-access.html
https://docs.aws.amazon.com/billingconductor/latest/userguide/
https://docs.aws.amazon.com/braket/latest/developerguide/what-is-braket.html
https://docs.aws.amazon.com/braket/latest/developerguide/braket-slr.html
https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/budgets-managing-costs.html
https://docs.aws.amazon.com/codeguru/latest/bugbust-ug/what-is-bughunt.html
https://docs.aws.amazon.com/codeguru/latest/bugbust-ug/using-service-linked-roles.html
https://docs.aws.amazon.com/acm/latest/userguide/authen-toplevel.html
https://docs.aws.amazon.com/acm/latest/userguide/acm-slr.html

AWS Identity and Access Management User Guide

Service Actions Resource-
level

permissio
ns

Resource-
based

policies

ABAC Temporary
credentia

ls

Service-l
inked roles

AWS Chatbot

Yes Yes No No Yes Yes

Amazon Chime

Yes Yes No Yes Yes Yes

AWS Clean Rooms

Yes Yes No Yes Yes No

AWS Clean Rooms ML

Yes Yes No Yes Yes No

AWS Client VPN

Yes Yes No No Yes Yes

AWS Cloud9

Yes Yes Yes Yes Yes Yes

Services that work with IAM 2709

https://docs.aws.amazon.com/chatbot/latest/adminguide/what-is.html
https://docs.aws.amazon.com/chatbot/latest/adminguide/using-service-linked-roles.html
https://docs.aws.amazon.com/chime/latest/ag/security-iam.html
https://docs.aws.amazon.com/chime/latest/ag/using-service-linked-roles.html
https://docs.aws.amazon.com/clean-rooms/latest/userguide/security-iam.html
https://docs.aws.amazon.com/clean-rooms/latest/userguide/machine-learning.html
https://docs.aws.amazon.com/vpn/latest/clientvpn-admin/cvpn-authentication.html
https://docs.aws.amazon.com/vpn/latest/clientvpn-admin/using-service-linked-roles.html
https://docs.aws.amazon.com/cloud9/latest/user-guide/security-iam.html
https://docs.aws.amazon.com/cloud9/latest/user-guide/using-service-linked-roles.html

AWS Identity and Access Management User Guide

Service Actions Resource-
level

permissio
ns

Resource-
based

policies

ABAC Temporary
credentia

ls

Service-l
inked roles

AWS Cloud Control API

Yes No No No Yes No

Amazon Cloud Directory

Yes Yes No No Yes No

AWS CloudFormation

Yes Yes No Yes Yes No

Amazon CloudFront

Yes Yes No Yes Yes Partial
(Info)

Amazon CloudFron
t KeyValueStore

Yes Yes No No Yes No

AWS CloudHSM

Yes Yes No Yes Yes Yes

Services that work with IAM 2710

https://docs.aws.amazon.com/cloudcontrolapi/latest/userguide/what-is-cloudcontrolapi.html
https://docs.aws.amazon.com/clouddirectory/latest/developerguide/what_is_cloud_directory.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/using-iam-template.html
https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/auth-and-access-control.html
https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/lambda-edge-permissions.html#using-service-linked-roles
https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/security-iam.html
https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/security-iam.html
https://docs.aws.amazon.com/cloudhsm/latest/userguide/prerequisites.html#permissions-for-cloudhsm
https://docs.aws.amazon.com/cloudhsm/latest/userguide/service-linked-roles.html

AWS Identity and Access Management User Guide

Service Actions Resource-
level

permissio
ns

Resource-
based

policies

ABAC Temporary
credentia

ls

Service-l
inked roles

AWS Cloud Map

Yes Yes No Yes Yes No

Amazon CloudSearch

Yes Yes No No Yes No

AWS CloudShell

Yes Yes No No Yes No

AWS CloudTrail

Yes Yes
Partial
(Info)

Partial
(Info)

Yes Yes

AWS CloudTrail Data

Yes Yes No Yes Yes No

Amazon CloudWatch

Yes Yes No Yes Yes Partial
(Info)

Services that work with IAM 2711

https://docs.aws.amazon.com/cloud-map/latest/dg/auth-and-access-control.html
https://docs.aws.amazon.com/cloudsearch/latest/developerguide/configureaccess.html
https://docs.aws.amazon.com/cloudshell/latest/userguide/welcome.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/security_iam_service-with-iam.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/security_iam_resource-based-policy-examples.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/security_iam_service-with-iam.html#security_iam_service-with-iam-tags
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/using-service-linked-roles.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/security_iam_service-with-iam.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/UsingIAM.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/using-service-linked-roles.html

AWS Identity and Access Management User Guide

Service Actions Resource-
level

permissio
ns

Resource-
based

policies

ABAC Temporary
credentia

ls

Service-l
inked roles

Amazon CloudWatc
h Application Insights

Yes No No No Yes No

Amazon CloudWatch Evidently

Yes Yes No Yes Yes No

Amazon CloudWatc
h Internet Monitor

Yes Yes No Yes Yes No

Amazon CloudWatch Logs

Yes Yes Yes Partial Yes Yes

Amazon CloudWatc
h Network Monitor

Yes Yes No Yes Yes No

Amazon CloudWatch
Observability Access Manager

Yes Yes No Yes Yes No

Services that work with IAM 2712

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/appinsights-what-is.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/appinsights-what-is.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/CloudWatch-Evidently.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/auth-and-access-control-cw.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/auth-and-access-control-cw.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/auth-and-access-control-cwl.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/iam-identity-based-access-control-cwl.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/using-service-linked-roles-cwl.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/auth-and-access-control-cw.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/auth-and-access-control-cw.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/CloudWatch-Unified-Cross-Account.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/CloudWatch-Unified-Cross-Account.html

AWS Identity and Access Management User Guide

Service Actions Resource-
level

permissio
ns

Resource-
based

policies

ABAC Temporary
credentia

ls

Service-l
inked roles

Amazon CloudWatch RUM

Yes Yes No Yes Yes No

Amazon CloudWatch Synthetics

Yes Yes No Yes Yes No

AWS CodeArtifact

Yes Yes Yes Yes Yes No

AWS CodeBuild

Yes Yes
Yes

(Info)
Partial
(Info)

Yes No

Amazon CodeCatalyst

Yes Yes No Yes Yes Yes

AWS CodeCommit

Yes Yes No Yes Yes No

Services that work with IAM 2713

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/CloudWatch-RUM.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/CloudWatch_Synthetics_Canaries.html
https://docs.aws.amazon.com/codeartifact/latest/ug/auth-and-access-control-iam-identity-based-access-control.html
https://docs.aws.amazon.com/codeartifact/latest/ug/repo-policies.html
https://docs.aws.amazon.com/codebuild/latest/userguide/auth-and-access-control.html
https://docs.aws.amazon.com/codecatalyst/latest/userguide/security-iam.html
https://docs.aws.amazon.com/codecatalyst/latest/userguide/using-service-linked-roles.html
https://docs.aws.amazon.com/codecommit/latest/userguide/auth-and-access-control.html

AWS Identity and Access Management User Guide

Service Actions Resource-
level

permissio
ns

Resource-
based

policies

ABAC Temporary
credentia

ls

Service-l
inked roles

AWS CodeDeploy

Yes Yes No Yes Yes No

AWS CodeDeploy secure
host commands service

Yes No No No Yes No

Amazon CodeGuru Profiler

Yes Yes No Yes Yes Yes

Amazon CodeGuru Reviewer

Yes Yes No Yes Yes Yes

Amazon CodeGuru Security

Yes Yes No Yes Yes No

AWS CodePipeline

Yes Partial No Yes Yes No

Services that work with IAM 2714

https://docs.aws.amazon.com/codedeploy/latest/userguide/access-permissions.html
https://docs.aws.amazon.com/codedeploy/latest/userguide/vpc-endpoints.html#vpc-codedeploy-agent-configuration
https://docs.aws.amazon.com/codedeploy/latest/userguide/vpc-endpoints.html#vpc-codedeploy-agent-configuration
https://docs.aws.amazon.com/codeguru/latest/profiler-ug/security_iam_service-with-iam.html
https://docs.aws.amazon.com/codeguru/latest/profiler-ug/using-service-linked-roles.html
https://docs.aws.amazon.com/codeguru/latest/reviewer-ug/welcome.html
https://docs.aws.amazon.com/codeguru/latest/reviewer-ug/auth-and-access-control-iam-identity-based-access-control.html#managed-policy-for-codecommit-and-codestar-connections
https://docs.aws.amazon.com/codeguru/latest/security-ug/security-iam.html
https://docs.aws.amazon.com/codepipeline/latest/userguide/access-permissions.html

AWS Identity and Access Management User Guide

Service Actions Resource-
level

permissio
ns

Resource-
based

policies

ABAC Temporary
credentia

ls

Service-l
inked roles

AWS CodeStar

Yes Partial No Yes Yes No

AWS CodeStar Connections

Yes Yes No Yes Yes Yes

AWS CodeStar Notifications

Yes Yes No Yes Yes Yes

Amazon CodeWhisperer

Yes Yes No Yes Yes Yes

Amazon Cognito

Yes Yes No Yes Yes Yes

Amazon Cognito Sync

Yes Yes No No Yes Yes

Services that work with IAM 2715

https://docs.aws.amazon.com/codestar/latest/userguide/security-iam.html
https://docs.aws.amazon.com/dtconsole/latest/userguide/security-iam.html#permissions-reference-connections
https://docs.aws.amazon.com/dtconsole/latest/userguide/service-linked-role-connections.html
https://docs.aws.amazon.com/dtconsole/latest/userguide/security-iam.html
https://docs.aws.amazon.com/dtconsole/latest/userguide/using-service-linked-roles.html
https://docs.aws.amazon.com/codewhisperer/latest/userguide/security_iam_service-with-iam.html
https://docs.aws.amazon.com/codewhisperer/latest/userguide/using-service-linked-roles.html
https://docs.aws.amazon.com/cognito/latest/developerguide/
https://docs.aws.amazon.com/cognito/latest/developerguide/using-service-linked-roles.html
https://docs.aws.amazon.com/cognito/latest/developerguide/cognito-sync.html
https://docs.aws.amazon.com/cognito/latest/developerguide/using-service-linked-roles.html

AWS Identity and Access Management User Guide

Service Actions Resource-
level

permissio
ns

Resource-
based

policies

ABAC Temporary
credentia

ls

Service-l
inked roles

Amazon Cognito user pools

Yes Yes No Yes Yes Yes

Amazon Comprehend

Yes Yes No Yes Yes No

Amazon Comprehend Medical

Yes No No No Yes No

AWS Compute Optimizer

Yes No No No Yes Yes

AWS Config

Yes
Partial
(Info)

No Yes Yes Yes

Amazon Connect

Yes Yes No Yes Yes Yes

Services that work with IAM 2716

https://docs.aws.amazon.com/cognito/latest/developerguide/cognito-user-identity-pools.html
https://docs.aws.amazon.com/cognito/latest/developerguide/using-service-linked-roles.html
https://docs.aws.amazon.com/comprehend/latest/dg/auth-and-access-control.html
https://docs.aws.amazon.com/comprehend/latest/dg/comprehend-med.html
https://docs.aws.amazon.com/compute-optimizer/latest/ug/security-iam.html
https://docs.aws.amazon.com/compute-optimizer/latest/ug/using-service-linked-roles.html
https://docs.aws.amazon.com/config/latest/developerguide/recommended-iam-permissions-using-aws-config-console-cli.html
https://docs.aws.amazon.com/config/latest/developerguide/using-service-linked-roles.html
https://docs.aws.amazon.com/connect/latest/adminguide/what-is-amazon-connect.html
https://docs.aws.amazon.com/connect/latest/adminguide/connect-slr.html

AWS Identity and Access Management User Guide

Service Actions Resource-
level

permissio
ns

Resource-
based

policies

ABAC Temporary
credentia

ls

Service-l
inked roles

Amazon Connect Cases

Yes Yes No Yes Yes No

Amazon Connect
Customer Profiles

Yes Yes No Yes Yes Yes

Amazon Connect High-volu
me outbound communications

Yes Yes No Yes Yes No

Amazon Connect Voice ID

Yes Yes No Yes Yes No

AWS Console
Mobile Application

Yes Yes No No Yes No

AWS Consolidated Billing

Yes No No No Yes No

Services that work with IAM 2717

https://docs.aws.amazon.com/connect/latest/adminguide/cases.html
https://docs.aws.amazon.com/connect/latest/adminguide/customer-profiles.html
https://docs.aws.amazon.com/connect/latest/adminguide/customer-profiles.html
https://docs.aws.amazon.com/connect/latest/adminguide/customerprofiles-slr.html
https://docs.aws.amazon.com/connect/latest/adminguide/enable-high-volume-outbound-communications.html
https://docs.aws.amazon.com/connect/latest/adminguide/enable-high-volume-outbound-communications.html
https://docs.aws.amazon.com/connect/latest/adminguide/voice-id.html
https://docs.aws.amazon.com/consolemobileapp/latest/userguide/permissions-policies.html
https://docs.aws.amazon.com/consolemobileapp/latest/userguide/permissions-policies.html
https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/consolidated-billing.html

AWS Identity and Access Management User Guide

Service Actions Resource-
level

permissio
ns

Resource-
based

policies

ABAC Temporary
credentia

ls

Service-l
inked roles

AWS Control Tower

Yes Yes No No Yes No

AWS Cost and Usage Report

Yes Yes No No Yes No

AWS Cost Explorer

Yes Yes No Yes Yes No

AWS Cost Optimization Hub

Yes No No No Yes No

AWS Customer
Verification Service

Yes No No No Yes No

AWS Database
Migration Service

Yes Yes
No

(Info)
Yes Yes Yes

Services that work with IAM 2718

https://docs.aws.amazon.com/controltower/latest/userguide/what-is-control-tower.html
https://docs.aws.amazon.com/cur/latest/userguide/security.html
https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/ce-what-is.html
https://docs.aws.amazon.com/cost-management/latest/userguide/cost-optimization-hub.html
https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/billing-permissions-ref.html#user-permissions
https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/billing-permissions-ref.html#user-permissions
https://docs.aws.amazon.com/dms/latest/userguide/CHAP_Security.IAMPermissions.html
https://docs.aws.amazon.com/dms/latest/userguide/CHAP_Security.IAMPermissions.html
https://docs.aws.amazon.com/dms/latest/userguide/using-service-linked-roles.html

AWS Identity and Access Management User Guide

Service Actions Resource-
level

permissio
ns

Resource-
based

policies

ABAC Temporary
credentia

ls

Service-l
inked roles

Database Query
Metadata Service

Yes No No No Yes No

AWS Data Exchange

Yes Yes No Yes Yes No

Amazon Data
Lifecycle Manager

Yes Yes No Yes Yes No

AWS Data Pipeline

Yes Yes No Partial Yes No

AWS DataSync

Yes Yes No Yes Yes Yes

Amazon DataZone

Yes No No No Yes No

Services that work with IAM 2719

https://docs.aws.amazon.com/qldb/latest/developerguide/dbqms-api.html
https://docs.aws.amazon.com/qldb/latest/developerguide/dbqms-api.html
https://docs.aws.amazon.com/data-exchange/latest/userguide/auth-access.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/snapshot-lifecycle.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/snapshot-lifecycle.html
https://docs.aws.amazon.com/datapipeline/latest/DeveloperGuide/dp-concepts-roles.html
https://docs.aws.amazon.com/datapipeline/latest/DeveloperGuide/dp-iam-resourcebased-access.html#dp-control-access-tags
https://docs.aws.amazon.com/datasync/latest/userguide/iam.html
https://docs.aws.amazon.com/datasync/latest/userguide/using-service-linked-roles.html
https://docs.aws.amazon.com/datazone/latest/userguide/what-is-datazone.html

AWS Identity and Access Management User Guide

Service Actions Resource-
level

permissio
ns

Resource-
based

policies

ABAC Temporary
credentia

ls

Service-l
inked roles

AWS DeepComposer

Yes Yes No Yes Yes No

AWS DeepRacer

Yes Yes No Yes Yes Yes

Amazon Detective

Yes Yes No Yes Yes No

AWS Device Farm

Yes Yes No Yes Yes Yes

Amazon DevOps Guru

Yes Yes No No Yes Yes

AWS Diagnostic tools

Yes Yes No Yes Yes No

Services that work with IAM 2720

https://docs.aws.amazon.com/deepcomposer/latest/devguide/what-it-is.html
https://docs.aws.amazon.com/deepracer/latest/developerguide/deepracer-security.html
https://docs.aws.amazon.com/deepracer/latest/developerguide/deepracer-understand-required-permissions-and-iam-roles.html
https://docs.aws.amazon.com/detective/latest/adminguide/security-iam.html
https://docs.aws.amazon.com/devicefarm/latest/developerguide/permissions.html
https://docs.aws.amazon.com/devicefarm/latest/developerguide/using-service-linked-roles.html
https://docs.aws.amazon.com/devops-guru/latest/userguide/security-iam.html
https://docs.aws.amazon.com/devops-guru/latest/userguide/using-service-linked-roles.html
https://docs.aws.amazon.com/ts/latest/diagnostic-tools/security-iam.html

AWS Identity and Access Management User Guide

Service Actions Resource-
level

permissio
ns

Resource-
based

policies

ABAC Temporary
credentia

ls

Service-l
inked roles

AWS Direct Connect

Yes Yes No Yes Yes Yes

AWS Directory Service

Yes Yes No Yes Yes No

Amazon DocumentD
B Elastic Clusters

Yes Yes No Yes Yes No

Amazon DynamoDB
Accelerator (DAX)

Yes Yes No No Yes Yes

Amazon DynamoDB

Yes Yes No No Yes No

Amazon Elastic Compute
Cloud (Amazon EC2)

Yes Partial No Yes Yes Partial
(Info)

Services that work with IAM 2721

https://docs.aws.amazon.com/directconnect/latest/UserGuide/using_iam.html
https://docs.aws.amazon.com/directconnect/latest/UserGuide/using_tags.html
https://docs.aws.amazon.com/directconnect/latest/UserGuide/using-service-linked-roles.html
https://docs.aws.amazon.com/directoryservice/latest/admin-guide/iam_policy.html
https://docs.aws.amazon.com/documentdb/latest/developerguide/security.IAM.html
https://docs.aws.amazon.com/documentdb/latest/developerguide/security.IAM.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/DAX.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/DAX.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/using-service-linked-roles.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/UsingIAMWithDDB.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/security-iam.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/security-iam.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/Using_Tags.html#tag-resources

AWS Identity and Access Management User Guide

Service Actions Resource-
level

permissio
ns

Resource-
based

policies

ABAC Temporary
credentia

ls

Service-l
inked roles

Amazon EC2 Auto Scaling

Yes Yes No Yes Yes Yes

EC2 Image Builder

Yes Yes No Yes Yes Yes

Amazon EC2 Instance Connect

Yes Yes No No Yes Yes

Amazon ElastiCache

Yes Yes No Yes Yes Yes

AWS Elastic Beanstalk

Yes Partial No Yes Yes Yes

Amazon Elastic Block
Store (Amazon EBS)

Yes Partial No Yes Yes No

Services that work with IAM 2722

https://docs.aws.amazon.com/autoscaling/latest/userguide/control-access-using-iam.html
https://docs.aws.amazon.com/autoscaling/ec2/userguide/autoscaling-service-linked-role.html
https://docs.aws.amazon.com/imagebuilder/latest/userguide/security-iam.html
https://docs.aws.amazon.com/imagebuilder/latest/userguide/image-builder-service-linked-role.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/security-iam.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/eice-slr.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/UserGuide/IAM.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/using-service-linked-roles.html
https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/AWSHowTo.iam.html
https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/AWSHowTo.iam.policies.access-tags.html
https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/using-service-linked-roles.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/AmazonEBS.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/AmazonEBS.html

AWS Identity and Access Management User Guide

Service Actions Resource-
level

permissio
ns

Resource-
based

policies

ABAC Temporary
credentia

ls

Service-l
inked roles

Amazon Elastic Container
Registry (Amazon ECR)

Yes Yes Yes Yes Yes Yes

Amazon Elastic
Container Registry Public

(Amazon ECR Public)
Yes Yes No Yes Yes No

Amazon Elastic Container
Service (Amazon ECS)

Yes
Partial
(Info)

No Yes Yes Yes

AWS Elastic Disaster Recovery

Yes Yes No Yes Yes Yes

Amazon Elastic File
System (Amazon EFS)

Yes Yes Yes Partial Yes Yes

Amazon Elastic Inference

Yes Yes No No Yes No

Services that work with IAM 2723

https://docs.aws.amazon.com/AmazonECR/latest/userguide/security-iam.html
https://docs.aws.amazon.com/AmazonECR/latest/userguide/security-iam.html
https://docs.aws.amazon.com/AmazonECR/latest/userguide/using-service-linked-roles.html
https://docs.aws.amazon.com/AmazonECR/latest/public/security-iam.html
https://docs.aws.amazon.com/AmazonECR/latest/public/security-iam.html
https://docs.aws.amazon.com/AmazonECR/latest/public/security-iam.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/using-service-linked-roles.html
https://docs.aws.amazon.com/drs/latest/userguide/index.html
https://docs.aws.amazon.com/drs/latest/userguide/using-service-linked-roles.html
https://docs.aws.amazon.com/efs/latest/ug/auth-and-access-control.html
https://docs.aws.amazon.com/efs/latest/ug/auth-and-access-control.html
https://docs.aws.amazon.com/efs/latest/ug/using-tags-efs.html
https://docs.aws.amazon.com/efs/latest/ug/using-service-linked-roles.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/elastic-inference.html

AWS Identity and Access Management User Guide

Service Actions Resource-
level

permissio
ns

Resource-
based

policies

ABAC Temporary
credentia

ls

Service-l
inked roles

Amazon Elastic Kubernete
s Service (Amazon EKS)

Yes Yes No Yes Yes Yes

Amazon Elastic Kubernetes
Service (Amazon EKS) Auth

Yes Yes No No Yes No

AWS Elastic Load Balancing

Yes Partial No Partial Yes Yes

Amazon Elastic Transcoder

Yes Yes No No Yes No

AWS Elemental Appliances and
Software Activation Service

Yes Yes No Yes Yes No

AWS Elemental
Appliances and Software

Yes Yes No Yes Yes No

Services that work with IAM 2724

https://docs.aws.amazon.com/eks/latest/userguide/IAM_policies.html
https://docs.aws.amazon.com/eks/latest/userguide/IAM_policies.html
https://docs.aws.amazon.com/eks/latest/userguide/using-service-linked-roles.html
https://docs.aws.amazon.com/eks/latest/userguide/security-iam.html
https://docs.aws.amazon.com/eks/latest/userguide/security-iam.html
https://docs.aws.amazon.com/elasticloadbalancing/latest/userguide/load-balancer-authentication-access-control.html
https://docs.aws.amazon.com/elasticloadbalancing/latest/userguide/elb-service-linked-roles.html
https://docs.aws.amazon.com/elastictranscoder/latest/developerguide/security.html
https://docs.aws.amazon.com/elemental-appliances-software/latest/ug/what-is.html
https://docs.aws.amazon.com/elemental-appliances-software/latest/ug/what-is.html
https://docs.aws.amazon.com/elemental-appliances-software/latest/ug/what-is.html
https://docs.aws.amazon.com/elemental-appliances-software/latest/ug/what-is.html

AWS Identity and Access Management User Guide

Service Actions Resource-
level

permissio
ns

Resource-
based

policies

ABAC Temporary
credentia

ls

Service-l
inked roles

AWS Elemental MediaConnect

Yes Yes No No Yes Yes

AWS Elemental MediaConvert

Yes Yes No Yes Yes No

AWS Elemental MediaLive

Yes Yes No Yes Yes No

AWS Elemental MediaPackage

Yes Yes No Yes Yes Partial
(Info)

AWS Elemental
MediaPackage V2

Yes Yes No Yes Yes No

AWS Elemental
MediaPackage VOD

Yes Yes No Yes Yes Partial
(Info)

Services that work with IAM 2725

https://docs.aws.amazon.com/mediaconnect/latest/ug/security.html
https://docs.aws.amazon.com/mediaconnect/latest/ug/using-service-linked-roles.html
https://docs.aws.amazon.com/mediaconvert/latest/ug/auth-and-access-control.html
https://docs.aws.amazon.com/mediaconvert/latest/ug/example-policies.html#example-policy-tag-based-access-control-using-resource-tags
https://docs.aws.amazon.com/medialive/latest/ug/setting-up-for-production.html
https://docs.aws.amazon.com/mediapackage/latest/ug/what-is.html
https://docs.aws.amazon.com/mediapackage/latest/ug/using-service-linked-roles.html
https://docs.aws.amazon.com/mediapackage/latest/userguide/setting-up-iam-permissions.html
https://docs.aws.amazon.com/mediapackage/latest/userguide/setting-up-iam-permissions.html
https://docs.aws.amazon.com/mediapackage/latest/ug/setting-up.html
https://docs.aws.amazon.com/mediapackage/latest/ug/setting-up.html
https://docs.aws.amazon.com/mediapackage/latest/ug/using-service-linked-roles.html

AWS Identity and Access Management User Guide

Service Actions Resource-
level

permissio
ns

Resource-
based

policies

ABAC Temporary
credentia

ls

Service-l
inked roles

AWS Elemental MediaStore

Yes Yes Yes Yes Yes No

AWS Elemental MediaTailor

Yes Yes No Yes Yes Yes

AWS Elemental Support Cases

Yes No No No Yes No

AWS Elemental
Support Content

Yes No No No Yes No

Amazon EMR

Yes Yes No Yes Yes Yes

Amazon EMR on EKS

Yes Yes No Yes Yes Yes

Services that work with IAM 2726

https://docs.aws.amazon.com/mediastore/latest/ug/setting-up.html
https://docs.aws.amazon.com/mediatailor/latest/ug/setting-up.html
https://docs.aws.amazon.com/mediatailor/latest/ug/using-service-linked-roles.html
https://docs.aws.amazon.com/elemental-appliances-software/latest/ug/what-is.html
https://docs.aws.amazon.com/elemental-appliances-software/latest/ug/what-is.html
https://docs.aws.amazon.com/elemental-appliances-software/latest/ug/what-is.html
https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-plan-access-iam.html
https://docs.aws.amazon.com/emr/latest/ManagementGuide/using-service-linked-roles.html
https://docs.aws.amazon.com/emr/latest/EMR-on-EKS-DevelopmentGuide/emr-eks.html
https://docs.aws.amazon.com/emr/latest/EMR-on-EKS-DevelopmentGuide/using-service-linked-roles.html

AWS Identity and Access Management User Guide

Service Actions Resource-
level

permissio
ns

Resource-
based

policies

ABAC Temporary
credentia

ls

Service-l
inked roles

Amazon EMR Serverless

Yes Yes No Yes Yes Yes

AWS Entity Resolution

Yes Yes No Yes Yes No

Amazon EventBridge

Yes Yes Yes Yes Yes No

Amazon EventBridge Pipes

Yes Yes No Yes Yes No

Amazon EventBridge Scheduler

Yes Yes No Yes Yes No

Amazon EventBridge Schemas

Yes Yes Yes Yes Yes No

Services that work with IAM 2727

https://docs.aws.amazon.com/emr/latest/EMR-Serverless-UserGuide/
https://docs.aws.amazon.com/emr/latest/EMR-Serverless-UserGuide/using-service-linked-roles.html
https://docs.aws.amazon.com/entityresolution/latest/userguide/security-iam.html
https://docs.aws.amazon.com/eventbridge/latest/userguide/auth-and-access-control-eventbridge.html
https://docs.aws.amazon.com/eventbridge/latest/userguide/eb-event-bus-perms.html
https://docs.aws.amazon.com/eventbridge/latest/userguide/eb-pipes.html
https://docs.aws.amazon.com/scheduler/latest/UserGuide/what-is-scheduler.html
https://docs.aws.amazon.com/eventbridge/latest/userguide/eb-security.html
https://docs.aws.amazon.com/eventbridge/latest/userguide/resource-based-policies-schemas.html

AWS Identity and Access Management User Guide

Service Actions Resource-
level

permissio
ns

Resource-
based

policies

ABAC Temporary
credentia

ls

Service-l
inked roles

AWS Fault Injection Service

Yes Yes No Yes Yes Yes

Amazon FinSpace

Yes Yes No Yes Yes Yes

Amazon FinSpace API

Yes Yes No No Yes No

AWS Firewall Manager

Yes Yes No Yes Yes Partial

Fleet Hub for AWS IoT
Device Management

Yes Yes No Yes Yes No

Amazon Forecast

Yes Yes No Yes Yes No

Services that work with IAM 2728

https://docs.aws.amazon.com/fis/latest/userguide/security_iam_service-with-iam.html
https://docs.aws.amazon.com/fis/latest/userguide/using-service-linked-roles.html
https://docs.aws.amazon.com/finspace/latest/userguide/identity-management.html
https://docs.aws.amazon.com/finspace/latest/userguide/using-service-linked-roles.html
https://docs.aws.amazon.com/finspace/latest/userguide/temporary-credentials.html
https://docs.aws.amazon.com/waf/latest/developerguide/fms-auth-and-access-control.html
https://docs.aws.amazon.com/waf/latest/developerguide/fms-using-service-linked-roles.html
https://docs.aws.amazon.com/iot/latest/fleethubuserguide/what-is-aws-iot-monitor.html
https://docs.aws.amazon.com/iot/latest/fleethubuserguide/what-is-aws-iot-monitor.html
https://docs.aws.amazon.com/forecast/latest/dg/authentication-and-access-control.html

AWS Identity and Access Management User Guide

Service Actions Resource-
level

permissio
ns

Resource-
based

policies

ABAC Temporary
credentia

ls

Service-l
inked roles

Amazon Fraud Detector

Yes Yes No Yes Yes No

FreeRTOS

Yes Yes No Yes Yes No

AWS Free Tier

Yes No No No Yes No

Amazon FSx

Yes Yes No Yes Yes Yes

Amazon GameLift

Yes Yes No Yes Yes No

AWS Global Accelerator

Yes Yes No Yes Yes Yes

Services that work with IAM 2729

https://docs.aws.amazon.com/frauddetector/latest/ug/set-up.html#set-up-iam-admin
https://docs.aws.amazon.com/freertos/latest/userguide/security-iam.html
https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/billing-free-tier.html
https://docs.aws.amazon.com/fsx/index.html
https://docs.aws.amazon.com/fsx/latest/WindowsGuide/using-service-linked-roles.html
https://docs.aws.amazon.com/gamelift/latest/developerguide/security-iam.html
https://docs.aws.amazon.com/global-accelerator/latest/dg/auth-and-access-control.html
https://docs.aws.amazon.com/global-accelerator/latest/dg/using-service-linked-roles.html

AWS Identity and Access Management User Guide

Service Actions Resource-
level

permissio
ns

Resource-
based

policies

ABAC Temporary
credentia

ls

Service-l
inked roles

AWS Glue

Yes Yes Yes Partial Yes No

AWS Glue DataBrew

Yes Yes No Yes Yes No

AWS Ground Station

Yes Yes No Yes Yes Yes

Amazon Ground Truth Labeling

Yes No No No Yes No

Amazon GuardDuty

Yes Yes No Yes Yes Yes

AWS Health APIs
And Notifications

Yes Yes No No Yes No

Services that work with IAM 2730

https://docs.aws.amazon.com/glue/latest/dg/authentication-and-access-control.html
https://docs.aws.amazon.com/glue/latest/dg/monitor-tags.html
https://docs.aws.amazon.com/databrew/latest/dg/security_iam_service-with-iam.html
https://docs.aws.amazon.com/ground-station/latest/ug/security-iam.html
https://docs.aws.amazon.com/ground-station/latest/ug/using-service-linked-roles.html
https://docs.aws.amazon.com/sagemaker/latest/dg/sms.html
https://docs.aws.amazon.com/guardduty/latest/ug/what-is-guardduty.html
https://docs.aws.amazon.com/guardduty/latest/ug/using-service-linked-roles.html
https://docs.aws.amazon.com/health/latest/ug/controlling-access.html
https://docs.aws.amazon.com/health/latest/ug/controlling-access.html

AWS Identity and Access Management User Guide

Service Actions Resource-
level

permissio
ns

Resource-
based

policies

ABAC Temporary
credentia

ls

Service-l
inked roles

AWS HealthImaging

Yes Yes No Yes Yes No

AWS HealthLake

Yes Yes No Yes Yes No

AWS HealthOmics

Yes Yes No Yes Yes No

Amazon Honeycode

Yes Yes No No Yes No

AWS IAM Identity Center

Yes Yes No Partial Yes Yes

IAM Identity Center Directory

Yes No No No Yes No

Services that work with IAM 2731

https://docs.aws.amazon.com/healthimaging/latest/devguide/security-iam.html
https://docs.aws.amazon.com/healthlake/latest/devguide/what-is-amazon-health-lake.html
https://docs.aws.amazon.com/omics/latest/dev/what-is-service.html
https://docs.aws.amazon.com/honeycode/latest/UserGuide/getting-started-authorization.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/iam-auth-access.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/using-service-linked-roles.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/iam-auth-access.html

AWS Identity and Access Management User Guide

Service Actions Resource-
level

permissio
ns

Resource-
based

policies

ABAC Temporary
credentia

ls

Service-l
inked roles

IAM Identity Center
Identity Store

Yes Yes No No Yes No

IAM Identity Center
OIDC service

Yes Yes No No Yes No

AWS Identity and Access
Management (IAM)

Yes Yes
Partial
(Info)

Partial
(Info)

Partial
(Info) No

AWS Identity and Access
Management Access Analyzer

Yes Yes No Yes Yes Partial

AWS Identity and Access
Management Roles Anywhere

Yes Yes No Yes Yes Yes

AWS Identity Store Auth

Yes No No No Yes No

Services that work with IAM 2732

https://docs.aws.amazon.com/singlesignon/latest/userguide/iam-auth-access.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/iam-auth-access.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/iam-auth-access.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/iam-auth-access.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_permissions-required.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_permissions-required.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access-analyzer-getting-started.html#access-analyzer-permissions
https://docs.aws.amazon.com/IAM/latest/UserGuide/access-analyzer-getting-started.html#access-analyzer-permissions
https://docs.aws.amazon.com/IAM/latest/UserGuide/access-analyzer-using-service-linked-roles.html
https://docs.aws.amazon.com/rolesanywhere/latest/userguide/security-iam.html
https://docs.aws.amazon.com/rolesanywhere/latest/userguide/security-iam.html
https://docs.aws.amazon.com/rolesanywhere/latest/userguide/using-service-linked-roles.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/

AWS Identity and Access Management User Guide

Service Actions Resource-
level

permissio
ns

Resource-
based

policies

ABAC Temporary
credentia

ls

Service-l
inked roles

AWS Identity Sync

Yes Yes No No Yes No

AWS Import/Export

Yes No No No Yes No

Amazon Inspector

Yes Yes No Yes Yes Yes

Amazon Inspector Classic

Yes No No No Yes Yes

Amazon InspectorScan

Yes No No No Yes No

Amazon Interacti
ve Video Service

Yes Yes No Yes Yes Yes

Services that work with IAM 2733

https://docs.aws.amazon.com/singlesignon/latest/userguide/
https://docs.aws.amazon.com/AWSImportExport/latest/DG/using-iam.html
https://docs.aws.amazon.com/inspector/latest/userguide/inspector_introduction.html
https://docs.aws.amazon.com/inspector/latest/user/using-service-linked-roles.html
https://docs.aws.amazon.com/inspector/latest/userguide/inspector_introduction.html
https://docs.aws.amazon.com/inspector/latest/userguide/inspector_slr.html
https://docs.aws.amazon.com/inspector/latest/user/security-iam.html
https://docs.aws.amazon.com/ivs/latest/userguide/security.html
https://docs.aws.amazon.com/ivs/latest/userguide/security.html
https://docs.aws.amazon.com/ivs/latest/userguide/security-service-linked-roles.html

AWS Identity and Access Management User Guide

Service Actions Resource-
level

permissio
ns

Resource-
based

policies

ABAC Temporary
credentia

ls

Service-l
inked roles

Amazon Interactive
Video Service Chat

Yes Yes No Yes Yes No

AWS Invoicing

Yes No No No Yes No

AWS IoT 1-Click

Yes Yes No Yes Yes No

AWS IoT Analytics

Yes Yes No Yes Yes No

AWS IoT

Yes Yes
Partial
(Info)

Yes Yes No

AWS IoT Core Device Advisor

Yes Yes No Yes Yes No

Services that work with IAM 2734

https://docs.aws.amazon.com/ivs/latest/userguide/what-is.html
https://docs.aws.amazon.com/ivs/latest/userguide/what-is.html
https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/security-iam.html
https://docs.aws.amazon.com/iot-1-click/latest/developerguide/what-is-1click.html
https://docs.aws.amazon.com/iotanalytics/latest/userguide/security.html
https://docs.aws.amazon.com/iot/latest/developerguide/iot-security-identity.html
https://docs.aws.amazon.com/iot/latest/developerguide/policy-actions.html
https://docs.aws.amazon.com/iot/latest/developerguide/action-resources.html
https://docs.aws.amazon.com/iot/latest/developerguide/tagging-iot-iam.html
https://docs.aws.amazon.com/iot/latest/developerguide/device-advisor.html

AWS Identity and Access Management User Guide

Service Actions Resource-
level

permissio
ns

Resource-
based

policies

ABAC Temporary
credentia

ls

Service-l
inked roles

AWS IoT Device Tester

Yes No No No Yes No

AWS IoT Events

Yes Yes No Yes Yes No

AWS IoT FleetWise

Yes Yes No Yes Yes No

AWS IoT Greengrass

Yes Yes No Yes Yes No

AWS IoT Greengrass V2

Yes Yes No Partial Yes No

AWS IoT Jobs DataPlane

Yes Yes No No Yes No

Services that work with IAM 2735

https://docs.aws.amazon.com/freertos/latest/userguide/dev-tester-prereqs.html
https://docs.aws.amazon.com/iotevents/latest/developerguide/security-iam.html
https://docs.aws.amazon.com/iot-fleetwise/latest/developerguide/
https://docs.aws.amazon.com/greengrass/v1/developerguide/security_iam_service-with-iam.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/what-is-iot-greengrass.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awsiotgreengrassv2.html
https://docs.aws.amazon.com/iot/latest/developerguide/what-is-aws-iot.html

AWS Identity and Access Management User Guide

Service Actions Resource-
level

permissio
ns

Resource-
based

policies

ABAC Temporary
credentia

ls

Service-l
inked roles

AWS IoT RoboRunner

Yes Yes No No Yes No

AWS IoT SiteWise

Yes Yes No Yes Yes Yes

AWS IoT TwinMaker

Yes Yes No Yes Yes Yes

AWS IoT Wireless

Yes Yes No Yes Yes No

AWS IQ

Yes Yes No No Yes Yes

AWS IQ Permissions

Yes Yes No No Yes No

Services that work with IAM 2736

https://docs.aws.amazon.com/iotroborunner/latest/dev/aws-iotroborunner.html
https://docs.aws.amazon.com/iot-sitewise/latest/userguide/set-up-aws-account.html
https://docs.aws.amazon.com/iot-sitewise/latest/userguide/using-service-linked-roles.html
https://docs.aws.amazon.com/iot-twinmaker/latest/guide/
https://docs.aws.amazon.com/iot-twinmaker/latest/guide/using-service-linked-roles.html
https://docs.aws.amazon.com/iot/latest/developerguide/what-is-aws-iot.html
https://docs.aws.amazon.com/aws-iq/latest/experts-user-guide/set-up-expert-account-permissions-to-use-aws-iq.html
https://docs.aws.amazon.com/aws-iq/latest/user-guide/using-service-linked-roles.html
https://docs.aws.amazon.com/aws-iq/latest/experts-user-guide/set-up-expert-account-permissions-to-use-aws-iq.html

AWS Identity and Access Management User Guide

Service Actions Resource-
level

permissio
ns

Resource-
based

policies

ABAC Temporary
credentia

ls

Service-l
inked roles

Amazon Kendra

Yes Yes No Yes Yes No

Amazon Kendra
Intelligent Ranking

Yes Yes No Yes Yes No

AWS Key Managemen
t Service (AWS KMS)

Yes Yes Yes Yes Yes Yes

Amazon Keyspaces
(for Apache Cassandra)

Yes Yes No Yes Yes Yes

Amazon Managed
Service for Apache Flink

Yes Yes No Yes Yes No

Amazon Managed Service
for Apache Flink V2

Yes Yes No Yes Yes No

Services that work with IAM 2737

https://docs.aws.amazon.com/kendra/latest/dg/security-iam.html
https://docs.aws.amazon.com/kendra/latest/dg/intelligent-rerank.html
https://docs.aws.amazon.com/kendra/latest/dg/intelligent-rerank.html
https://docs.aws.amazon.com/kms/latest/developerguide/control-access.html
https://docs.aws.amazon.com/kms/latest/developerguide/control-access.html
https://docs.aws.amazon.com/kms/latest/developerguide/using-service-linked-roles.html
https://docs.aws.amazon.com/keyspaces/latest/devguide/security-iam.html
https://docs.aws.amazon.com/keyspaces/latest/devguide/security-iam.html
https://docs.aws.amazon.com/keyspaces/latest/devguide/using-service-linked-roles.html
https://docs.aws.amazon.com/kinesisanalytics/latest/dev/authentication-and-access-control.html
https://docs.aws.amazon.com/kinesisanalytics/latest/dev/authentication-and-access-control.html
https://docs.aws.amazon.com/kinesisanalytics/latest/dev/authentication-and-access-control.html
https://docs.aws.amazon.com/kinesisanalytics/latest/dev/authentication-and-access-control.html

AWS Identity and Access Management User Guide

Service Actions Resource-
level

permissio
ns

Resource-
based

policies

ABAC Temporary
credentia

ls

Service-l
inked roles

Amazon Data Firehose

Yes Yes No Yes Yes No

Amazon Kinesis Data Streams

Yes Yes Yes No Yes No

Amazon Kinesis Video Streams

Yes Yes No Yes Yes No

AWS Lake Formation

Yes No No No Yes Yes

AWS Lambda

Yes Yes Yes
Partial
(Info)

Yes Partial
(Info)

AWS Launch Wizard

Yes No No No Yes No

Services that work with IAM 2738

https://docs.aws.amazon.com/firehose/latest/dev/controlling-access.html
https://docs.aws.amazon.com/streams/latest/dev/controlling-access.html
https://docs.aws.amazon.com/kinesisvideostreams/latest/dg/how-iam.html
https://docs.aws.amazon.com/lake-formation/latest/dg/security-data-access.html
https://docs.aws.amazon.com/lake-formation/latest/dg/service-linked-roles.html
https://docs.aws.amazon.com/lambda/latest/dg/lambda-auth-and-access-control.html
https://docs.aws.amazon.com/lambda/latest/dg/access-control-resource-based.html
https://docs.aws.amazon.com/lambda/latest/dg/attribute-based-access-control.html
https://docs.aws.amazon.com/lambda/latest/dg/attribute-based-access-control.html
https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/lambda-edge-permissions.html#using-service-linked-roles
https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/lambda-edge-permissions.html#using-service-linked-roles
https://docs.aws.amazon.com/launchwizard/latest/userguide/launch-wizard-security.html#identity-access-management

AWS Identity and Access Management User Guide

Service Actions Resource-
level

permissio
ns

Resource-
based

policies

ABAC Temporary
credentia

ls

Service-l
inked roles

Amazon Lex

Yes Yes No Yes Yes Yes

Amazon Lex V2

Yes Yes Yes Yes Yes Yes

AWS License Manager

Yes Yes No Yes Yes Yes

AWS License Manager Linux
Subscriptions Manager

Yes No No No Yes No

AWS License Manager
User Subscriptions

Yes No No No Yes Yes

Amazon Lightsail

Yes
Partial
(Info)

No
Partial
(Info)

Yes Yes

Services that work with IAM 2739

https://docs.aws.amazon.com/lex/latest/dg/auth-and-access-control.html
https://docs.aws.amazon.com/lex/latest/dg/using-service-linked-roles.html
https://docs.aws.amazon.com/lexv2/latest/dg/what-is.html
https://docs.aws.amazon.com/lexv2/latest/dg/security_iam_service-with-iam.html#security_iam_service-with-iam-resource-based-policies
https://docs.aws.amazon.com/lexv2/latest/dg/using-service-linked-roles.html
https://docs.aws.amazon.com/license-manager/latest/userguide/identity-access-management.html
https://docs.aws.amazon.com/license-manager/latest/userguide/using-service-linked-roles.html
https://docs.aws.amazon.com/license-manager/latest/userguide/license-manager.html
https://docs.aws.amazon.com/license-manager/latest/userguide/license-manager.html
https://docs.aws.amazon.com/license-manager/latest/userguide/license-manager.html
https://docs.aws.amazon.com/license-manager/latest/userguide/license-manager.html
https://docs.aws.amazon.com/license-manager/latest/userguide/user-based-subscription-role.html
https://lightsail.aws.amazon.com/ls/docs/all
https://lightsail.aws.amazon.com/ls/docs/en_us/articles/amazon-lightsail-using-service-linked-roles

AWS Identity and Access Management User Guide

Service Actions Resource-
level

permissio
ns

Resource-
based

policies

ABAC Temporary
credentia

ls

Service-l
inked roles

Amazon Location Service

Yes Yes No Yes Yes No

Amazon Lookout
for Equipment

Yes Yes No Yes Yes No

Amazon Lookout for Metrics

Yes Yes No Yes Yes No

Amazon Lookout for Vision

Yes Yes No Yes Yes No

Amazon Machine Learning

Yes Yes No No Yes No

Amazon Macie

Yes Yes No Yes Yes Yes

Services that work with IAM 2740

https://docs.aws.amazon.com/location/latest/developerguide/what-is.html
https://docs.aws.amazon.com/lookout-for-equipment/latest/ug/what-is.html
https://docs.aws.amazon.com/lookout-for-equipment/latest/ug/what-is.html
https://docs.aws.amazon.com/lookoutmetrics/latest/dev/lookoutmetrics-welcome.html
https://docs.aws.amazon.com/lookout-for-vision/latest/developer-guide/what-is.html
https://docs.aws.amazon.com/machine-learning/latest/dg/reference.html#controlling-access-to-amazon-ml-resources-by-using-iam
https://docs.aws.amazon.com/macie/latest/user/identity-access-management.html
https://docs.aws.amazon.com/macie/latest/user/service-linked-roles.html

AWS Identity and Access Management User Guide

Service Actions Resource-
level

permissio
ns

Resource-
based

policies

ABAC Temporary
credentia

ls

Service-l
inked roles

AWS Mainframe Modernization

Yes Yes No Yes Yes Yes

Amazon Managed Blockchain

Yes Yes No Yes Yes No

Amazon Managed
Blockchain Query

Yes No No No Yes No

Amazon Managed Grafana

Yes Yes No Yes Yes Yes

Amazon Managed
Service for Prometheus

Yes Yes No Yes Yes No

Amazon Managed Streaming
for Apache Kafka (MSK)

Yes Yes No Yes Yes Yes

Services that work with IAM 2741

https://docs.aws.amazon.com/m2/latest/userguide/
https://docs.aws.amazon.com/m2/latest/userguide/using-service-linked-roles.html
https://docs.aws.amazon.com/managed-blockchain/latest/managementguide/managed-blockchain-auth-and-access-control.html
https://docs.aws.amazon.com/managed-blockchain/latest/ambq-dg/security-iam.html
https://docs.aws.amazon.com/managed-blockchain/latest/ambq-dg/security-iam.html
https://docs.aws.amazon.com/grafana/latest/userguide/index.html
https://docs.aws.amazon.com/grafana/latest/userguide/using-service-linked-roles.html
https://docs.aws.amazon.com/prometheus/latest/userguide/what-is-Amazon-Managed-Service-Prometheus.html
https://docs.aws.amazon.com/prometheus/latest/userguide/what-is-Amazon-Managed-Service-Prometheus.html
https://docs.aws.amazon.com/msk/latest/developerguide/security_iam_service-with-iam.html
https://docs.aws.amazon.com/msk/latest/developerguide/security_iam_service-with-iam.html
https://docs.aws.amazon.com/msk/latest/developerguide/using-service-linked-roles.html

AWS Identity and Access Management User Guide

Service Actions Resource-
level

permissio
ns

Resource-
based

policies

ABAC Temporary
credentia

ls

Service-l
inked roles

Amazon Managed Streaming
for Kafka Connect

Yes Yes No No Yes Yes

Amazon Managed Workflows
for Apache Airflow

Yes Yes No Yes Yes No

AWS Marketplace

Yes No No No Yes Yes

AWS Marketplace Catalog

Yes Yes No Yes Yes No

AWS Marketplace
Commerce Analytics

Yes No No No No No

AWS Marketplace
Deployment Service

Yes Yes No Yes Yes No

Services that work with IAM 2742

https://docs.aws.amazon.com/msk/latest/developerguide/msk-connect.html
https://docs.aws.amazon.com/msk/latest/developerguide/msk-connect.html
https://docs.aws.amazon.com/msk/latest/developerguide/mkc-using-service-linked-roles.html
https://docs.aws.amazon.com/mwaa/latest/userguide/security-iam.html
https://docs.aws.amazon.com/mwaa/latest/userguide/security-iam.html
https://docs.aws.amazon.com/marketplace/latest/userguide/marketplace-management-portal-user-access.html
https://docs.aws.amazon.com/marketplace/latest/buyerguide/buyer-using-service-linked-roles.html
https://docs.aws.amazon.com/marketplace-catalog/latest/api-reference/api-access-control.html
https://docs.aws.amazon.com/marketplace/latest/userguide/commerce-analytics-service.html
https://docs.aws.amazon.com/marketplace/latest/userguide/commerce-analytics-service.html
https://docs.aws.amazon.com/marketplace-deployment/latest/api-reference/permissions.html
https://docs.aws.amazon.com/marketplace-deployment/latest/api-reference/permissions.html

AWS Identity and Access Management User Guide

Service Actions Resource-
level

permissio
ns

Resource-
based

policies

ABAC Temporary
credentia

ls

Service-l
inked roles

AWS Marketplace Discovery

Yes No No No Yes No

AWS Marketplace
Management Portal

Yes No No No Yes No

AWS Marketplace
Metering Service

Yes No No No Yes No

AWS Marketplace
Private Marketplace

Yes No No No Yes No

AWS Marketplace
Seller Reporting

Yes Yes No No Yes No

AWS Marketpla
ce Vendor Insights

Yes Yes No Yes Yes No

Services that work with IAM 2743

https://docs.aws.amazon.com/marketplace/latest/buyerguide/private-offers-page.html
https://docs.aws.amazon.com/marketplace/latest/userguide/marketplace-management-portal-user-access.html
https://docs.aws.amazon.com/marketplace/latest/userguide/marketplace-management-portal-user-access.html
https://docs.aws.amazon.com/marketplace/latest/userguide/metering-service.html
https://docs.aws.amazon.com/marketplace/latest/userguide/metering-service.html
https://docs.aws.amazon.com/marketplace/latest/buyerguide/private-marketplace.html
https://docs.aws.amazon.com/marketplace/latest/buyerguide/private-marketplace.html
https://docs.aws.amazon.com/marketplace/latest/userguide/reports-and-data-feed.html
https://docs.aws.amazon.com/marketplace/latest/userguide/reports-and-data-feed.html
https://docs.aws.amazon.com/marketplace
https://docs.aws.amazon.com/marketplace

AWS Identity and Access Management User Guide

Service Actions Resource-
level

permissio
ns

Resource-
based

policies

ABAC Temporary
credentia

ls

Service-l
inked roles

Amazon Mechanical Turk

Yes No No No Yes No

Amazon MediaImport

Yes No No No No No

Amazon MemoryDB for Redis

Yes Yes No Yes Yes Yes

Amazon Message
Delivery Service

Yes No No No Yes No

Amazon Message
Gateway Service

Yes No No No Yes No

AWS Microservice
Extractor for .NET

Yes No No No Yes No

Services that work with IAM 2744

https://docs.aws.amazon.com/AWSMechTurk/latest/AWSMechanicalTurkRequester/WhatIs.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/custom-setup-orcl.html#custom-setup-orcl.iam-user
https://docs.aws.amazon.com/memorydb/index.html
https://docs.aws.amazon.com/MemoryDB/latest/devguide/using-service-linked-roles.html
https://docs.aws.amazon.com/systems-manager/latest/userguide/execute-remote-commands.html
https://docs.aws.amazon.com/systems-manager/latest/userguide/execute-remote-commands.html
https://docs.aws.amazon.com/systems-manager/latest/userguide/session-manager.html
https://docs.aws.amazon.com/systems-manager/latest/userguide/session-manager.html
https://docs.aws.amazon.com/microservice-extractor/latest/userguide/what-is-microservice-extractor.html
https://docs.aws.amazon.com/microservice-extractor/latest/userguide/what-is-microservice-extractor.html

AWS Identity and Access Management User Guide

Service Actions Resource-
level

permissio
ns

Resource-
based

policies

ABAC Temporary
credentia

ls

Service-l
inked roles

AWS Migration Accelerat
ion Program Credits

Yes Yes No No Yes No

AWS Migration Hub

Yes Yes No No Yes Yes

AWS Migration
Hub Orchestrator

Yes Yes No Yes Yes Yes

AWS Migration Hub
Refactor Spaces

Yes Yes Yes Yes Yes Yes

AWS Migration Hub
Strategy Recommendations

Yes No No No Yes Yes

Amazon Monitron

Yes Yes No Yes Yes Yes

Services that work with IAM 2745

https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/security-iam.html
https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/security-iam.html
https://docs.aws.amazon.com/migrationhub/latest/ug/auth-and-access-control.html
https://docs.aws.amazon.com/migrationhub/latest/ug/using-service-linked-roles.html
https://docs.aws.amazon.com/migrationhub-orchestrator/latest/userguide/
https://docs.aws.amazon.com/migrationhub-orchestrator/latest/userguide/
https://docs.aws.amazon.com/migrationhub-orchestrator/latest/userguide/using-service-linked-roles.html
https://docs.aws.amazon.com/migrationhub-refactor-spaces/latest/userguide/
https://docs.aws.amazon.com/migrationhub-refactor-spaces/latest/userguide/
https://docs.aws.amazon.com/migrationhub-refactor-spaces/latest/userguide/using-service-linked-roles.html
https://docs.aws.amazon.com/migrationhub-strategy/latest/userguide/
https://docs.aws.amazon.com/migrationhub-strategy/latest/userguide/
https://docs.aws.amazon.com/migrationhub-strategy/latest/userguide/using-service-linked-roles.html
https://docs.aws.amazon.com/Monitron/latest/admin-guide/admin_what-is-monitron.html
https://docs.aws.amazon.com/Monitron/latest/admin-guide/using-service-linked-roles.html

AWS Identity and Access Management User Guide

Service Actions Resource-
level

permissio
ns

Resource-
based

policies

ABAC Temporary
credentia

ls

Service-l
inked roles

Amazon MQ

Yes Yes No Yes Yes Yes

Amazon Neptune

Yes Yes No No Yes Yes

Amazon Neptune Analytics

Yes Yes No Yes Yes No

AWS Network Firewall

Yes Yes No Yes Yes Yes

AWS Network Manager

Yes Yes No Yes Yes Yes (Info)

AWS Network Manager Chat

Yes No No No Yes No

Services that work with IAM 2746

https://docs.aws.amazon.com/amazon-mq/latest/developer-guide/amazon-mq-security.html
https://docs.aws.amazon.com/amazon-mq/latest/developer-guide/using-service-linked-roles.html
https://docs.aws.amazon.com/neptune/latest/userguide/intro.html
https://docs.aws.amazon.com/neptune/latest/userguide/security-iam-service-linked-roles.html
https://docs.aws.amazon.com/neptune-analytics/latest/userguide/iam-auth.html
https://docs.aws.amazon.com/network-firewall/latest/developerguide/security-iam.html
https://docs.aws.amazon.com/network-firewall/latest/developerguide/using-service-linked-roles.html
https://docs.aws.amazon.com/vpc/latest/tgw/nm-security-iam.html
https://docs.aws.amazon.com/vpc/latest/tgw/nm-service-linked-roles.html
https://docs.aws.amazon.com/vpc/latest/reachability/identity-access-management.html

AWS Identity and Access Management User Guide

Service Actions Resource-
level

permissio
ns

Resource-
based

policies

ABAC Temporary
credentia

ls

Service-l
inked roles

Amazon Nimble Studio

Yes Yes No Yes Yes No

Amazon One Enterprise

Yes Yes No Yes Yes No

Amazon OpenSearch Ingestion

Yes Yes No Yes Yes Yes

Amazon OpenSearch Serverless

Yes Yes No Yes Yes Yes

Amazon OpenSearch Service

Yes Yes Yes Yes Yes Yes

AWS OpsWorks

Yes Yes No No Yes No

Services that work with IAM 2747

https://docs.aws.amazon.com/nimble-studio/latest/userguide/what-is-nimble-studio.html
https://docs.aws.amazon.com/one-enterprise/latest/userguide/security-iam.html
https://docs.aws.amazon.com/opensearch-service/latest/developerguide/security-iam-ingestion.html
https://docs.aws.amazon.com/opensearch-service/latest/developerguide/slr-osis.html
https://docs.aws.amazon.com/opensearch-service/latest/developerguide/security-iam-serverless.html
https://docs.aws.amazon.com/opensearch-service/latest/developerguide/serverless-service-linked-roles.html
https://docs.aws.amazon.com/opensearch-service/latest/developerguide/ac.html
https://docs.aws.amazon.com/opensearch-service/latest/developerguide/slr.html
https://docs.aws.amazon.com/opsworks/latest/userguide/opsworks-security-users.html

AWS Identity and Access Management User Guide

Service Actions Resource-
level

permissio
ns

Resource-
based

policies

ABAC Temporary
credentia

ls

Service-l
inked roles

AWS OpsWorks Configura
tion Management

Yes Yes No No Yes No

AWS Organizations

Yes Yes No Yes No Yes

AWS Outposts

Yes Yes No Yes Yes Yes

AWS Panorama

Yes Yes No Yes Yes Yes

AWS Partner Central
account management

Yes No No No Yes No

AWS Payment Cryptography

Yes Yes No Yes Yes No

Services that work with IAM 2748

https://docs.aws.amazon.com/opsworks/latest/userguide/security-iam-opscm.html
https://docs.aws.amazon.com/opsworks/latest/userguide/security-iam-opscm.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_permissions_overview.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_integrate_services.html#orgs_integrate_services-using_slrs
https://docs.aws.amazon.com/outposts/latest/userguide/security.html
https://docs.aws.amazon.com/outposts/latest/userguide/using-service-linked-roles.html
https://docs.aws.amazon.com/panorama/latest/dev/panorama-permissions.html
https://docs.aws.amazon.com/panorama/latest/dev/using-service-linked-roles.html
https://docs.aws.amazon.com/partner-central/latest/getting-started/controlling-access-in-apc-account-management.html
https://docs.aws.amazon.com/partner-central/latest/getting-started/controlling-access-in-apc-account-management.html
https://docs.aws.amazon.com/payment-cryptography/latest/userguide/security-iam.html

AWS Identity and Access Management User Guide

Service Actions Resource-
level

permissio
ns

Resource-
based

policies

ABAC Temporary
credentia

ls

Service-l
inked roles

AWS Payments

Yes No No No Yes No

AWS Performance Insights

Yes Yes No No Yes No

Amazon Personalize

Yes Yes No No Yes No

Amazon Pinpoint

Yes Yes No Yes Yes No

Amazon Pinpoint Email Service

Yes Yes No Yes Yes No

Amazon Pinpoint SMS
and Voice Service

Yes No No No Yes No

Services that work with IAM 2749

https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/security-iam.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_PerfInsights.access-control.html
https://docs.aws.amazon.com/personalize/latest/dg/authentication-and-access-control.html
https://docs.aws.amazon.com/pinpoint/latest/developerguide/permissions-actions.html
https://docs.aws.amazon.com/pinpoint/latest/developerguide/
https://docs.aws.amazon.com/pinpoint/latest/developerguide/
https://docs.aws.amazon.com/pinpoint/latest/developerguide/

AWS Identity and Access Management User Guide

Service Actions Resource-
level

permissio
ns

Resource-
based

policies

ABAC Temporary
credentia

ls

Service-l
inked roles

Amazon Pinpoint SMS
and Voice Service V2

Yes Yes No Yes Yes No

Amazon Polly

Yes Yes No No Yes No

AWS Price List

Yes No No No Yes No

AWS Private 5G

Yes Yes No Yes Yes No

AWS Private CA Connector
for Active Directory

Yes Yes No Yes Yes No

AWS Private Certificate
Authority (AWS Private CA)

Yes Yes Yes Yes Yes No

Services that work with IAM 2750

https://docs.aws.amazon.com/pinpoint/latest/developerguide/
https://docs.aws.amazon.com/pinpoint/latest/developerguide/
https://docs.aws.amazon.com/polly/latest/dg/security_iam_service-with-iam.html
https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/price-changes.html
https://docs.aws.amazon.com/private-networks/latest/userguide/how-private-5g-works.html
https://docs.aws.amazon.com/privateca/latest/userguide/connector-for-ad.html
https://docs.aws.amazon.com/privateca/latest/userguide/connector-for-ad.html
https://docs.aws.amazon.com/privateca/latest/userguide/security-iam.html
https://docs.aws.amazon.com/privateca/latest/userguide/security-iam.html
https://docs.aws.amazon.com/privateca/latest/userguide/pca-rbp.html

AWS Identity and Access Management User Guide

Service Actions Resource-
level

permissio
ns

Resource-
based

policies

ABAC Temporary
credentia

ls

Service-l
inked roles

AWS Proton

Yes Yes No Yes Yes Yes

AWS Purchase Orders Console

Yes Yes No Yes Yes No

Amazon Q

Yes No No No Yes No

Amazon Q Business

Yes Yes No Yes Yes No

Amazon Q in Connect

Yes Yes No Yes Yes No

Amazon Quantum Ledger
Database (Amazon QLDB)

Yes Yes No Yes Yes No

Services that work with IAM 2751

https://docs.aws.amazon.com/proton/latest/adminguide/Welcome.html
https://docs.aws.amazon.com/proton/latest/userguide/using-service-linked-roles.html
https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/manage-purchaseorders.html
https://docs.aws.amazon.com/amazonq/latest/aws-builder-use-ug/security-iam-service-with-iam.html
https://docs.aws.amazon.com/amazonq/latest/aws-builder-use-ug/security-iam-service-with-iam.html
https://docs.aws.amazon.com/connect/latest/adminguide/security-iam.html
https://docs.aws.amazon.com/qldb/latest/developerguide/security-iam.html
https://docs.aws.amazon.com/qldb/latest/developerguide/security-iam.html

AWS Identity and Access Management User Guide

Service Actions Resource-
level

permissio
ns

Resource-
based

policies

ABAC Temporary
credentia

ls

Service-l
inked roles

Amazon QuickSight

Yes Yes No Yes Yes No

Amazon RDS Data API

Yes Yes No No Yes No

Amazon RDS IAM
Authentication

Yes Yes No No Yes No

AWS Recycle Bin

Yes Yes No Yes Yes No

Amazon Redshift

Yes Yes No Yes Yes Yes

Amazon Redshift Data API

Yes Yes No No Yes No

Services that work with IAM 2752

https://docs.aws.amazon.com/quicksight/latest/user/managing-access.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/UsingWithRDS.IAM.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/UsingWithRDS.IAMDBAuth.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/UsingWithRDS.IAMDBAuth.html
https://docs.aws.amazon.com/recyclebin/latest/APIReference/Welcome.html
https://docs.aws.amazon.com/redshift/latest/mgmt/redshift-iam-authentication-access-control.html
https://docs.aws.amazon.com/redshift/latest/mgmt/using-service-linked-roles.html
https://docs.aws.amazon.com/redshift/latest/mgmt/redshift-iam-authentication-access-control.html

AWS Identity and Access Management User Guide

Service Actions Resource-
level

permissio
ns

Resource-
based

policies

ABAC Temporary
credentia

ls

Service-l
inked roles

Amazon Redshift Serverless

Yes Yes Yes Yes Yes No

Amazon Rekognition

Yes Yes
Partial
(Info)

Yes Yes No

Amazon Relational Database
Service (Amazon RDS) (Info)

Yes Yes No Yes Yes Yes

AWS re:Post Private

Yes Yes No Yes Yes Yes

AWS Resilience Hub

Yes Yes No Yes Yes No

AWS Resource Access
Manager (AWS RAM)

Yes Yes No Yes Yes Yes

Services that work with IAM 2753

https://docs.aws.amazon.com/redshift/latest/mgmt/working-with-serverless.html
https://docs.aws.amazon.com/rekognition/latest/dg/security-iam.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/UsingWithRDS.IAM.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/UsingWithRDS.IAM.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/UsingWithRDS.IAM.ServiceLinkedRoles.html
https://docs.aws.amazon.com/repostprivate/latest/caguide/security_iam_service-with-iam.html
https://docs.aws.amazon.com/repostprivate/latest/caguide/using-service-linked-roles.html
https://docs.aws.amazon.com/resilience-hub/latest/userguide/what-is.html
https://docs.aws.amazon.com/ram/latest/userguide/control-access.html
https://docs.aws.amazon.com/ram/latest/userguide/control-access.html
https://docs.aws.amazon.com/ram/latest/userguide/security-iam-service-linked-roles.html

AWS Identity and Access Management User Guide

Service Actions Resource-
level

permissio
ns

Resource-
based

policies

ABAC Temporary
credentia

ls

Service-l
inked roles

AWS Resource Explorer

Yes Yes No Yes Yes Yes

AWS Resource Groups

Yes Yes No Yes
Partial
(Info) No

AWS Resource
Groups Tagging API

Yes No No No Yes No

Amazon RHEL
Knowledgebase Portal

Yes No No No Yes No

AWS RoboMaker

Yes Yes No Yes Yes Yes

Amazon Route 53

Yes Yes No No Yes No

Services that work with IAM 2754

https://docs.aws.amazon.com/resource-explorer/latest/userguide/security_iam.html
https://docs.aws.amazon.com/resource-explorer/latest/userguide/security_iam_service-linked-roles.html
https://docs.aws.amazon.com/ARG/latest/userguide/gettingstarted-prereqs.html#rg-permissions
https://docs.aws.amazon.com/resourcegroupstagging/latest/APIReference/Welcome.html
https://docs.aws.amazon.com/resourcegroupstagging/latest/APIReference/Welcome.html
https://docs.aws.amazon.com/systems-manager/latest/userguide/fleet-rhel.html
https://docs.aws.amazon.com/systems-manager/latest/userguide/fleet-rhel.html
https://docs.aws.amazon.com/robomaker/latest/dg/what-is-robomaker.html
https://docs.aws.amazon.com/robomaker/latest/dg/auth-and-access-control.html
https://docs.aws.amazon.com/robomaker/latest/dg/using-service-linked-roles.html
https://docs.aws.amazon.com/Route53/latest/DeveloperGuide/auth-and-access-control.html

AWS Identity and Access Management User Guide

Service Actions Resource-
level

permissio
ns

Resource-
based

policies

ABAC Temporary
credentia

ls

Service-l
inked roles

Amazon Route 53
Application Recovery

Controller - Zonal Shift
Yes Yes No No Yes No

Amazon Route 53 Domains

Yes No No No No No

Amazon Route 53
Recovery Cluster

Yes Yes No No Yes No

Amazon Route 53
Recovery Control Config

Yes Yes No Yes Yes No

Amazon Route 53
Recovery Readiness

Yes Yes No Yes Yes Yes

Amazon Route 53 Resolver

Yes Yes No Yes Yes Yes

Services that work with IAM 2755

https://docs.aws.amazon.com/r53recovery/latest/dg/arc-zonal-shift.html
https://docs.aws.amazon.com/r53recovery/latest/dg/arc-zonal-shift.html
https://docs.aws.amazon.com/r53recovery/latest/dg/arc-zonal-shift.html
https://docs.aws.amazon.com/Route53/latest/DeveloperGuide/Welcome.html
https://docs.aws.amazon.com/r53recovery/latest/dg/what-is-route53-recovery.html
https://docs.aws.amazon.com/r53recovery/latest/dg/what-is-route53-recovery.html
https://docs.aws.amazon.com/r53recovery/latest/dg/what-is-route53-recovery.html
https://docs.aws.amazon.com/r53recovery/latest/dg/what-is-route53-recovery.html
https://docs.aws.amazon.com/r53recovery/latest/dg/what-is-route53-recovery.html
https://docs.aws.amazon.com/r53recovery/latest/dg/what-is-route53-recovery.html
https://docs.aws.amazon.com/r53recovery/latest/dg/using-service-linked-roles.html
https://docs.aws.amazon.com/Route53/latest/DeveloperGuide/auth-and-access-control.html
https://docs.aws.amazon.com/Route53/latest/DeveloperGuide/using-service-linked-roles.html

AWS Identity and Access Management User Guide

Service Actions Resource-
level

permissio
ns

Resource-
based

policies

ABAC Temporary
credentia

ls

Service-l
inked roles

Amazon S3 Express

Yes Yes No No Yes No

Amazon S3 Glacier

Yes Yes Yes Yes Yes No

Amazon SageMaker

Yes Yes No Yes Yes Partial
(Info)

Amazon SageMaker
geospatial capabilities

Yes Yes No Yes Yes No

Amazon SageMaker
Ground Truth Synthetic

Yes No No No Yes No

AWS Savings Plans

Yes Yes No Yes Yes No

Services that work with IAM 2756

https://docs.aws.amazon.com/AmazonS3/latest/userguide/s3-express-access-overview.html
https://docs.aws.amazon.com/amazonglacier/latest/dev/auth-and-access-control.html
https://docs.aws.amazon.com/sagemaker/latest/dg/security-iam.html
https://docs.aws.amazon.com/sagemaker/latest/dg/security_iam_service-with-iam.html
https://docs.aws.amazon.com/sagemaker/latest/dg/geospatial.html
https://docs.aws.amazon.com/sagemaker/latest/dg/geospatial.html
https://docs.aws.amazon.com/sagemaker/latest/dg/gts.html
https://docs.aws.amazon.com/sagemaker/latest/dg/gts.html
https://docs.aws.amazon.com/savingsplans/latest/userguide/identity-access-management.html

AWS Identity and Access Management User Guide

Service Actions Resource-
level

permissio
ns

Resource-
based

policies

ABAC Temporary
credentia

ls

Service-l
inked roles

AWS Secrets Manager

Yes Yes Yes Yes Yes No

AWS Security Hub

Yes Yes No Yes Yes Yes

Amazon Security Lake

Yes Yes No No Yes Yes

AWS Security Token
Service (AWS STS)

Yes
Partial
(Info)

No Yes
Partial
(Info) No

AWS Serverless
Application Repository

Yes Yes Yes No Yes No

AWS Service Catalog

Yes Yes No Yes Yes Yes

Services that work with IAM 2757

https://docs.aws.amazon.com/secretsmanager/latest/userguide/auth-and-access.html
https://docs.aws.amazon.com/secretsmanager/latest/userguide/auth-and-access_resource-based-policies.html
https://docs.aws.amazon.com/securityhub/latest/userguide/securityhub-settingup.html
https://docs.aws.amazon.com/securityhub/latest/userguide/using-service-linked-roles.html
https://docs.aws.amazon.com/security-lake/latest/userguide/security-iam.html
https://docs.aws.amazon.com/security-lake/latest/userguide/service-linked-roles.html
https://docs.aws.amazon.com/STS/latest/UsingSTS/TokenPermissions.html
https://docs.aws.amazon.com/STS/latest/UsingSTS/TokenPermissions.html
https://docs.aws.amazon.com/serverlessrepo/latest/devguide/serverlessrepo-auth-and-access-control.html
https://docs.aws.amazon.com/serverlessrepo/latest/devguide/serverlessrepo-auth-and-access-control.html
https://docs.aws.amazon.com/servicecatalog/latest/adminguide/permissions.html
https://docs.aws.amazon.com/servicecatalog/latest/adminguide/controlling_access.html#slr-appregistry

AWS Identity and Access Management User Guide

Service Actions Resource-
level

permissio
ns

Resource-
based

policies

ABAC Temporary
credentia

ls

Service-l
inked roles

Service Quotas

Yes Yes No Yes Yes No

AWS Shield

Yes Yes No Yes Yes Yes

AWS Signer

Yes Yes Yes Yes Yes No

Amazon SimpleDB

Yes Yes No No Yes No

Amazon Simple Email
Service (Amazon SES) v2

Yes
Partial
(Info)

Yes Yes
Partial
(Info) No

Amazon Simple Notificat
ion Service (Amazon SNS)

Yes Yes Yes Yes Yes No

Services that work with IAM 2758

https://docs.aws.amazon.com/servicequotas/latest/userguide/identity-access-management.html
https://docs.aws.amazon.com/waf/latest/developerguide/shd-auth-and-access-control.html
https://docs.aws.amazon.com/waf/latest/developerguide/shd-using-service-linked-roles.html
https://docs.aws.amazon.com/signer/latest/developerguide/Welcome.html
https://docs.aws.amazon.com/AmazonSimpleDB/latest/DeveloperGuide/UsingIAMWithSDB.html
https://docs.aws.amazon.com/ses/latest/DeveloperGuide/Welcome.html
https://docs.aws.amazon.com/ses/latest/DeveloperGuide/Welcome.html
https://docs.aws.amazon.com/sns/latest/dg/UsingIAMwithSNS.html
https://docs.aws.amazon.com/sns/latest/dg/UsingIAMwithSNS.html

AWS Identity and Access Management User Guide

Service Actions Resource-
level

permissio
ns

Resource-
based

policies

ABAC Temporary
credentia

ls

Service-l
inked roles

Amazon Simple Queue
Service (Amazon SQS)

Yes Yes Yes Partial Yes No

Amazon Simple Storage
Service (Amazon S3)

Yes Yes Yes
Partial
(Info)

Yes Partial
(Info)

Amazon Simple Storage Service
(Amazon S3) Object Lambda

Yes Yes No No Yes No

Amazon Simple Storage Service
(Amazon S3) on AWS Outposts

Yes Yes Yes No Yes Yes

Amazon Simple Workflow
Service (Amazon SWF)

Yes Yes No Yes Yes No

AWS SimSpace Weaver

Yes Yes No Yes Yes No

Services that work with IAM 2759

https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/UsingIAM.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/UsingIAM.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-abac.html
https://docs.aws.amazon.com/AmazonS3/latest/user-guide/access-control-overview.html
https://docs.aws.amazon.com/AmazonS3/latest/user-guide/access-control-overview.html
https://docs.aws.amazon.com/AmazonS3/latest/user-guide/object-tagging.html
https://docs.aws.amazon.com/AmazonS3/latest/user-guide/object-tagging.html
https://docs.aws.amazon.com/AmazonS3/latest/user-guide/using-service-linked-roles.html
https://docs.aws.amazon.com/AmazonS3/latest/user-guide/using-service-linked-roles.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/Welcome.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/Welcome.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/S3onOutposts.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/S3onOutposts.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/S3OutpostsServiceLinkedRoles.html
https://docs.aws.amazon.com/amazonswf/latest/developerguide/swf-dev-iam.html
https://docs.aws.amazon.com/amazonswf/latest/developerguide/swf-dev-iam.html
https://docs.aws.amazon.com/simspaceweaver/latest/userguide/

AWS Identity and Access Management User Guide

Service Actions Resource-
level

permissio
ns

Resource-
based

policies

ABAC Temporary
credentia

ls

Service-l
inked roles

AWS Site-to-Site VPN

Yes Yes No No Yes Yes

AWS Snowball

Yes No No No Yes No

AWS Snowball Edge

Yes No No No Yes No

AWS Snow Device Management

Yes Yes No Yes Yes No

AWS SQL Workbench

Yes Yes No Yes Yes No

AWS Step Functions

Yes Yes No Yes Yes No

Services that work with IAM 2760

https://docs.aws.amazon.com/vpn/latest/s2svpn/vpn-authentication-access-control.html
https://docs.aws.amazon.com/vpn/latest/s2svpn/vpn-service-linked-roles.html
https://docs.aws.amazon.com/snowball/latest/ug/auth-access-control.html
https://docs.aws.amazon.com/snowball/latest/developer-guide/authentication-and-access-control.html
https://docs.aws.amazon.com/snowball/latest/snowcone-guide/aws-sdm.html
https://docs.aws.amazon.com/redshift/latest/mgmt/connecting-using-workbench.html
https://docs.aws.amazon.com/step-functions/latest/dg/security.html
https://docs.aws.amazon.com/step-functions/latest/dg/tag-based-policies.html

AWS Identity and Access Management User Guide

Service Actions Resource-
level

permissio
ns

Resource-
based

policies

ABAC Temporary
credentia

ls

Service-l
inked roles

AWS Storage Gateway

Yes Yes No Yes Yes No

AWS Supply Chain

Yes Yes No Yes Yes No

AWS Support App in Slack

Yes No No No Yes No

AWS Support

Yes No No No Yes Yes

AWS Support Plans

Yes No No No Yes No

AWS Sustainability

Yes No No No Yes No

Services that work with IAM 2761

https://docs.aws.amazon.com/filegateway/latest/files3/security-iam.html
https://docs.aws.amazon.com/aws-supply-chain/latest/adminguide/security-iam.html
https://docs.aws.amazon.com/awssupport/latest/user/aws-support-app-for-slack.html
https://docs.aws.amazon.com/awssupport/latest/user/getting-started.html#accessing-support
https://docs.aws.amazon.com/awssupport/latest/user/using-service-linked-roles-sup.html
https://docs.aws.amazon.com/awssupport/latest/user/security-support-plans.html
https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/what-is-ccft.html

AWS Identity and Access Management User Guide

Service Actions Resource-
level

permissio
ns

Resource-
based

policies

ABAC Temporary
credentia

ls

Service-l
inked roles

AWS Systems Manager

Yes Yes No Yes Yes Yes

AWS Systems Manager for SAP

Yes Yes No Yes Yes No

AWS Systems
Manager GUI Connect

Yes No No No Yes No

AWS Systems Manager
Incident Manager

Yes Yes Yes Yes Yes Yes

AWS Systems Manager
Incident Manager Contacts

Yes Yes Yes No Yes No

Tag Editor

Yes No No No Yes No

Services that work with IAM 2762

https://docs.aws.amazon.com/systems-manager/latest/userguide/auth-and-access-control.html
https://docs.aws.amazon.com/systems-manager/latest/userguide/using-service-linked-roles.html
https://docs.aws.amazon.com/systems-manager/index.html
https://docs.aws.amazon.com/systems-manager/latest/userguide/fleet-rdp.html
https://docs.aws.amazon.com/systems-manager/latest/userguide/fleet-rdp.html
https://docs.aws.amazon.com/incident-manager/latest/userguide/what-is-incident-manager.html
https://docs.aws.amazon.com/incident-manager/latest/userguide/what-is-incident-manager.html
https://docs.aws.amazon.com/incident-manager/latest/userguide/security_iam_resource-based-policy-examples.html
https://docs.aws.amazon.com/incident-manager/latest/userguide/using-service-linked-roles.html
https://docs.aws.amazon.com/incident-manager/latest/userguide/contacts.html
https://docs.aws.amazon.com/incident-manager/latest/userguide/contacts.html
https://docs.aws.amazon.com/incident-manager/latest/userguide/security_iam_resource-based-policy-examples.html
https://docs.aws.amazon.com/ARG/latest/userguide/supported-resources.html

AWS Identity and Access Management User Guide

Service Actions Resource-
level

permissio
ns

Resource-
based

policies

ABAC Temporary
credentia

ls

Service-l
inked roles

AWS Tax Settings

Yes No No No Yes No

AWS Telco Network Builder

Yes Yes No Yes Yes No

Amazon Textract

Yes No No No Yes No

Amazon Timestream

Yes Yes No Yes Yes No

AWS Tiros API (for
Reachability Analyzer)

Yes No No No No No

Amazon Transcribe

Yes Yes No Yes Yes No

Services that work with IAM 2763

https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/control-access-billing.html
https://docs.aws.amazon.com/tnb/latest/ug/security-iam.html
https://docs.aws.amazon.com/textract/latest/dg/
https://docs.aws.amazon.com/timestream/latest/developerguide/what-is-timestream.html
https://docs.aws.amazon.com/vpc/latest/reachability/security_iam_required-API-permissions.html
https://docs.aws.amazon.com/vpc/latest/reachability/security_iam_required-API-permissions.html
https://docs.aws.amazon.com/transcribe/latest/dg/auth-and-access-control.html

AWS Identity and Access Management User Guide

Service Actions Resource-
level

permissio
ns

Resource-
based

policies

ABAC Temporary
credentia

ls

Service-l
inked roles

AWS Transfer Family

Yes Yes No Yes Yes No

Amazon Translate

Yes Yes No Yes Yes No

AWS Trusted Advisor

Partial
(Info)

Yes No No Partial Yes

AWS User Notifications

Yes Yes No Yes Yes Yes

AWS User Notificat
ions Contacts

Yes Yes No Yes Yes No

AWS Verified Access

Yes No No No Yes No

Services that work with IAM 2764

https://docs.aws.amazon.com/transfer/latest/userguide/security-iam.html
https://docs.aws.amazon.com/translate/latest/dg/security-iam.html
https://docs.aws.amazon.com/awssupport/latest/user/trusted-advisor.html
https://docs.aws.amazon.com/awssupport/latest/user/using-service-linked-roles-ta.html
https://docs.aws.amazon.com/notifications/latest/userguide/security-iam.html
https://docs.aws.amazon.com/notifications/latest/userguide/using-service-linked-roles.html
https://docs.aws.amazon.com/notifications/latest/userguide/security-iam.html
https://docs.aws.amazon.com/notifications/latest/userguide/security-iam.html
https://docs.aws.amazon.com/verified-access/latest/ug/security_iam_id-based-policy-examples.html#security_iam_id-based-policy-examples-create-instance

AWS Identity and Access Management User Guide

Service Actions Resource-
level

permissio
ns

Resource-
based

policies

ABAC Temporary
credentia

ls

Service-l
inked roles

Amazon Verified Permissions

Yes Yes No No Yes No

Amazon Virtual Private
Cloud (Amazon VPC)

Yes
Partial
(Info)

Partial
(Info)

Yes Yes Partial
(Info)

Amazon VPC Lattice

Yes Yes No Yes Yes No

Amazon VPC Lattice Services

Yes Yes No No Yes No

AWS WAF

Yes Yes No Yes Yes Yes

AWS WAF Classic

Yes Yes No Yes Yes Yes

Services that work with IAM 2765

https://docs.aws.amazon.com/verifiedpermissions/latest/userguide/security-iam.html
https://docs.aws.amazon.com/vpc/latest/userguide/VPC_IAM.html
https://docs.aws.amazon.com/vpc/latest/userguide/VPC_IAM.html
https://docs.aws.amazon.com/vpc/latest/tgw/service-linked-roles.html
https://docs.aws.amazon.com/vpc/latest/tgw/service-linked-roles.html
https://docs.aws.amazon.com/vpc-lattice/latest/ug/security_iam_service-with-iam.html
https://docs.aws.amazon.com/vpc-lattice/latest/ug/security_iam_service-with-iam.html
https://docs.aws.amazon.com/waf/latest/developerguide/waf-auth-and-access-control.html
https://docs.aws.amazon.com/waf/latest/developerguide/using-service-linked-roles.html
https://docs.aws.amazon.com/waf/latest/developerguide/classic-waf-auth-and-access-control.html
https://docs.aws.amazon.com/waf/latest/developerguide/classic-using-service-linked-roles.html

AWS Identity and Access Management User Guide

Service Actions Resource-
level

permissio
ns

Resource-
based

policies

ABAC Temporary
credentia

ls

Service-l
inked roles

AWS WAF Regional

Yes Yes No Yes Yes Yes

AWS Well-Architected Tool

Yes Yes No Yes Yes No

AWS Wickr

Yes Yes No Yes Yes No

Amazon WorkDocs

Yes No No No Yes No

Amazon WorkMail

Yes Yes No Yes Yes Yes

Amazon WorkMail
Message Flow

Yes Yes No No Yes No

Services that work with IAM 2766

https://docs.aws.amazon.com/waf/latest/developerguide/classic-waf-auth-and-access-control.html
https://docs.aws.amazon.com/waf/latest/developerguide/classic-using-service-linked-roles.html
https://docs.aws.amazon.com/wellarchitected/latest/userguide/security_iam_service-with-iam.html
https://docs.aws.amazon.com/wickr/latest/adminguide/security-iam.html
https://docs.aws.amazon.com/workdocs/latest/userguide/
https://docs.aws.amazon.com/workmail/latest/adminguide/security-iam.html
https://docs.aws.amazon.com/workmail/latest/adminguide/using-service-linked-roles.html
https://docs.aws.amazon.com/workmail/latest/adminguide/lambda-content.html
https://docs.aws.amazon.com/workmail/latest/adminguide/lambda-content.html

AWS Identity and Access Management User Guide

Service Actions Resource-
level

permissio
ns

Resource-
based

policies

ABAC Temporary
credentia

ls

Service-l
inked roles

Amazon WorkSpaces

Yes Yes No Yes Yes No

Amazon WorkSpaces
Application Manager

Yes No No No Yes No

Amazon WorkSpace
s Thin Client

Yes Yes No Yes Yes No

Amazon WorkSpaces Web

Yes Yes No Yes Yes Yes

AWS X-Ray

Yes
Partial
(Info)

No
Partial
(Info)

Yes No

More information

Amazon CloudFront

CloudFront doesn't have service-linked roles, but Lambda@Edge does. For more information, see
Service-Linked Roles for Lambda@Edge in the Amazon CloudFront Developer Guide.

More information 2767

https://docs.aws.amazon.com/workspaces/latest/adminguide/wsp_iam.html
https://docs.aws.amazon.com/wam/latest/adminguide/iam.html
https://docs.aws.amazon.com/wam/latest/adminguide/iam.html
https://docs.aws.amazon.com/workspaces-thin-client/latest/ag/security-iam.html
https://docs.aws.amazon.com/workspaces-thin-client/latest/ag/security-iam.html
https://docs.aws.amazon.com/workspaces-web/latest/adminguide/
https://docs.aws.amazon.com/workspaces-web/latest/adminguide/using-service-linked-roles.html
https://docs.aws.amazon.com/xray/latest/devguide/xray-permissions.html
https://docs.aws.amazon.com/xray/latest/devguide/security_iam_id-based-policy-examples.html#xray-permissions-resources)
https://docs.aws.amazon.com/xray/latest/devguide/security_iam_id-based-policy-examples.html#xray-permissions-resources)
https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/lambda-edge-permissions.html#using-service-linked-roles

AWS Identity and Access Management User Guide

AWS CloudTrail

CloudTrail supports resource-based policies only on CloudTrail channels used for CloudTrail Lake
integrations with event sources outside of AWS.

CloudTrail supports tag-based access control for CloudTrail Lake event data stores and channels.
CloudTrail doesn't support tag-based access controls for trails.

Amazon CloudWatch

CloudWatch service-linked roles cannot be created using the AWS Management Console, and
support only the Alarm Actions feature.

AWS CodeBuild

CodeBuild supports cross-account resource sharing using AWS RAM.

CodeBuild supports ABAC for project-based actions.

AWS Config

AWS Config supports resource-level permissions for multi-account multi-Region data aggregation
and AWS Config Rules. For a list of supported resources, see the Multi-Account Multi-Region Data
Aggregation section and AWS Config Rules section of the AWS Config API Guide.

AWS Database Migration Service

You can create and modify policies that are attached to AWS KMS encryption keys you create to
encrypt data migrated to supported target endpoints. The supported target endpoints include
Amazon Redshift and Amazon S3. For more information, see Creating and Using AWS KMS Keys to
Encrypt Amazon Redshift Target Data and Creating AWS KMS Keys to Encrypt Amazon S3 Target
Objects in the AWS Database Migration Service User Guide.

Amazon Elastic Compute Cloud

Amazon EC2 service-linked roles can be used only for the following features: Spot Instance
Requests, Spot Fleet Requests, Amazon EC2 Fleets, and Fast launching for Windows instances.

Amazon Elastic Container Service

Only some Amazon ECS actions support resource-level permissions.

More information 2768

https://docs.aws.amazon.com/awscloudtrail/latest/userguide/query-event-data-store-integration.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/query-event-data-store-integration.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/UsingAlarmActions.html
https://docs.aws.amazon.com/config/latest/APIReference/Welcome.html
https://docs.aws.amazon.com/dms/latest/userguide/CHAP_Target.Redshift.html#CHAP_Target.Redshift.KMSKeys
https://docs.aws.amazon.com/dms/latest/userguide/CHAP_Target.Redshift.html#CHAP_Target.Redshift.KMSKeys
https://docs.aws.amazon.com/dms/latest/userguide/CHAP_Target.S3.html#CHAP_Target.S3.KMSKeys
https://docs.aws.amazon.com/dms/latest/userguide/CHAP_Target.S3.html#CHAP_Target.S3.KMSKeys
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/spot-requests.html#service-linked-roles-spot-instance-requests
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/spot-requests.html#service-linked-roles-spot-instance-requests
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/spot-fleet-requests.html#service-linked-roles-spot-fleet-requests
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/manage-ec2-fleet.html#ec2-fleet-service-linked-role
https://docs.aws.amazon.com/AWSEC2/latest/WindowsGuide/windows-ami-version-history.html#win-ami-config-fast-launch
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/security_iam_service-with-iam.html#ecs-supported-iam-actions-resources

AWS Identity and Access Management User Guide

AWS Elemental MediaPackage

MediaPackage supports service-linked roles for publishing customer access logs to CloudWatch but
not for other API actions.

AWS Identity and Access Management

IAM supports only one type of resource-based policy called a role trust policy, which is attached to
an IAM role. For more information, see Granting a user permissions to switch roles.

IAM supports tag-based access control for most IAM resources. For more information, see Tagging
IAM resources.

Only some of the API actions for IAM can be called with temporary credentials. For more
information, see Comparing your API options.

AWS IoT

Devices connected to AWS IoT are authenticated by using X.509 certificates or using Amazon
Cognito Identities. You can attach AWS IoT policies to an X.509 certificate or Amazon Cognito
Identity to control what the device is authorized to do. For more information, see Security and
Identity for AWS IoT in the AWS IoT Developer Guide.

AWS Lambda

Lambda supports attribute-based access control (ABAC) for API actions that use a Lambda function
as the required resource. Layers, event source mappings, and code signing config resources are not
supported.

Lambda doesn't have service-linked roles, but Lambda@Edge does. For more information, see
Service-Linked Roles for Lambda@Edge in the Amazon CloudFront Developer Guide.

Amazon Lightsail

Lightsail partially supports resource-level permissions and ABAC. For more information, see
Actions, resources, and condition keys for Amazon Lightsail.

AWS Network Manager

AWS Cloud WAN also supports service-linked roles. For more information, see AWS Cloud WAN
service-linked roles in the Amazon VPC AWS Cloud WAN Guide.

More information 2769

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_request.html
https://docs.aws.amazon.com/iot/latest/developerguide/iot-security-identity.html
https://docs.aws.amazon.com/iot/latest/developerguide/iot-security-identity.html
https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/lambda-edge-permissions.html#using-service-linked-roles
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonlightsail.html
https://docs.aws.amazon.com/vpc/latest/cloudwan/cwan-using-service-linked-roles.html
https://docs.aws.amazon.com/vpc/latest/cloudwan/cwan-using-service-linked-roles.html

AWS Identity and Access Management User Guide

Amazon Relational Database Service

Amazon Aurora is a fully managed relational database engine that's compatible with MySQL and
PostgreSQL. You can choose the Aurora MySQL or Aurora PostgreSQL as the DB engine option
when setting up new database servers through Amazon RDS. For more information, see Identity
and access management for Amazon Aurora in the Amazon Aurora User Guide.

Amazon Rekognition

Resource-based policies are only supported for copying Amazon Rekognition Custom Labels
models.

AWS Resource Groups

Users can assume a role with a policy that allows Resource Groups operations.

Amazon SageMaker

Service-linked roles are currently available for SageMaker Studio and SageMaker training jobs.

AWS Security Token Service

AWS STS does not have "resources," but does allow restricting access in a similar way to users. For
more information, see Denying Access to Temporary Security Credentials by Name.

Only some of the API operations for AWS STS support calling with temporary credentials. For more
information, see Comparing your API options.

Amazon Simple Email Service

You can only use resource-level permissions in policy statements that refer to actions related to
sending email, such as ses:SendEmail or ses:SendRawEmail. For policy statements that refer
to any other actions, the Resource element can only contain *.

Only the Amazon SES API supports temporary security credentials. The Amazon SES SMTP
interface does not support SMTP credentials that are derived from temporary security credentials.

Amazon Simple Storage Service

Amazon S3 supports tag-based authorization for only object resources.

More information 2770

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/UsingWithRDS.IAM.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/UsingWithRDS.IAM.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_control-access_disable-perms.html#denying-access-to-credentials-by-name
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_request.html

AWS Identity and Access Management User Guide

Amazon S3 supports service-linked roles for Amazon S3 Storage Lens.

AWS Trusted Advisor

API access to Trusted Advisor is through the AWS Support API and is controlled by AWS Support
IAM policies.

Amazon Virtual Private Cloud

In an IAM user policy, you cannot restrict permissions to a specific Amazon VPC endpoint. Any
Action element that includes the ec2:*VpcEndpoint* or ec2:DescribePrefixLists
API actions must specify ""Resource": "*"". For more information, see Identity and access
management for VPC endpoints and VPC endpoint services in the AWS PrivateLink Guide.

Amazon VPC supports attaching a single resource policy to a VPC endpoint to restrict what can
be accessed through that endpoint. For more information about using resource-based policies to
control access to resources from specific Amazon VPC endpoints, see Control access to services
using endpoint policies in the AWS PrivateLink Guide.

Amazon VPC doesn't have service-linked roles, but AWS Transit Gateway does. For more
information, see Use service-linked roles for transit gateway in the Amazon VPC AWS Transit
Gateway Guide.

AWS X-Ray

X-Ray does not support resource-level permissions for all actions.

X-Ray supports tag-based access control for groups and sampling rules.

Signing AWS API requests

Important

If you use an AWS SDKs (see Sample Code and Libraries) or AWS command line (CLI) tool
to send API requests to AWS, you can skip this section because the SDK and CLI clients
authenticate your requests by using the access keys that you provide. Unless you have a
good reason not to, we recommend that you always use an SDK or the CLI.
In Regions that support multiple signature versions, manually signing requests mean you
must specify which signature version is used. When you supply requests to Multi-Region

Signing AWS API requests 2771

https://docs.aws.amazon.com/vpc/latest/privatelink/vpc-endpoints-iam.html
https://docs.aws.amazon.com/vpc/latest/privatelink/vpc-endpoints-iam.html
https://docs.aws.amazon.com/vpc/latest/privatelink/vpc-endpoints-access.html
https://docs.aws.amazon.com/vpc/latest/privatelink/vpc-endpoints-access.html
https://docs.aws.amazon.com/vpc/latest/tgw/service-linked-roles.html
https://aws.amazon.com/developer/

AWS Identity and Access Management User Guide

Access Points, SDKs and the CLI automatically switch to using Signature Version 4A without
additional configuration.

Authentication information that you send in a request must include a signature. To calculate a
signature, you first concatenate select request elements to form a string, referred to as the string
to sign. You then use a signing key to calculate the hash-based message authentication code
(HMAC) of the string to sign.

In AWS Signature Version 4, you don't use your secret access key to sign the request. Instead, you
first use your secret access key to derive a signing key. The derived signing key is specific to the
date, service, and Region. For more information about how to derive a signing key in different
programming languages, see Request signature examples.

Signature Version 4 is the AWS signing protocol. AWS also supports an extension, Signature Version
4A, which supports signatures for multi-Region API requests. For more information, see the sigv4a-
signing-examples project on GitHub.

The following diagram illustrates the general process of computing a signature.

• The string to sign depends on the request type. For example, when you use the HTTP
Authorization header or the query parameters for authentication, you use a varying combination
of request elements to create the string to sign. For an HTTP POST request, the POST policy in
the request is the string you sign.

• For signing key, the diagram shows series of calculations, where result of each step you feed into
the next step. The final step is the signing key.

Signing AWS API requests 2772

https://github.com/aws-samples/sigv4a-signing-examples
https://github.com/aws-samples/sigv4a-signing-examples

AWS Identity and Access Management User Guide

• When an AWS service receives an authenticated request, it recreates the signature using the
authentication information contained in the request. If the signatures match, the service
processes the request. Otherwise, it rejects the request.

Contents

• When to sign requests

• Why requests are signed

• Elements of an AWS API request signature

• Authentication methods

• Create a signed AWS API request

• Request signature examples

• Troubleshoot signed requests for AWS APIs

When to sign requests

When you write custom code that sends API requests to AWS, you must include code that signs the
requests. You might write custom code because:

• You are working with a programming language for which there is no AWS SDK.

• You need complete control over how requests are sent to AWS.

Why requests are signed

The signing process helps secure requests in the following ways:

• Verify the identity of the requester

Authenticated requests require a signature that you create by using your access keys (access key
ID, secret access key). If you are using temporary security credentials, the signature calculations
also require a security token. For more information, see AWS security credentials programmatic
access.

• Protect data in transit

To prevent tampering with a request while it's in transit, some of the request elements are used
to calculate a hash (digest) of the request, and the resulting hash value is included as part of the

When to sign requests 2773

https://docs.aws.amazon.com/IAM/latest/UserGuide/security-creds.html#sec-access-keys-and-secret-access-keys
https://docs.aws.amazon.com/IAM/latest/UserGuide/security-creds.html#sec-access-keys-and-secret-access-keys

AWS Identity and Access Management User Guide

request. When an AWS service receives the request, it uses the same information to calculate
a hash and matches it against the hash value in your request. If the values don't match, AWS
denies the request.

• Protect against potential replay attacks

In most cases, a request must reach AWS within five minutes of the time stamp in the request.
Otherwise, AWS denies the request.

Elements of an AWS API request signature

Important

Unless you are using the AWS SDKs or CLI, you must write code to calculate signatures
that provide authentication information in your requests. Signature calculation in AWS
Signature Version 4 can be a complex undertaking, and we recommend that you use the
AWS SDKs or CLI whenever possible.

Each HTTP/HTTPS request that uses Signature Version 4 signing must contain these elements.

Elements

• Endpoint specification

• Action

• Action parameters

• Date

• Authentication information

Endpoint specification

Specifies the DNS name of the endpoint to which you send the request. This name usually contains
the service code and the Region. For example, the endpoint for Amazon DynamoDB in the us-
east-1 Region is dynamodb.us-east-1.amazonaws.com.

For HTTP/1.1 requests, you must include the Host header. For HTTP/2 requests, you can include
the :authority header or the Host header. Use only the :authority header for compliance
with the HTTP/2 specification. Not all services support HTTP/2 requests.

Signature Version 4 request elements 2774

AWS Identity and Access Management User Guide

For the endpoints supported by each service, see Service endpoints and quotas in the AWS General
Reference.

Action

Specifies an API action for the service. For example, the DynamoDB CreateTable action or the
Amazon EC2 DescribeInstances action.

For the actions supported by each service, see the Service Authorization Reference.

Action parameters

Specifies the parameters for the action specified in the request. Each AWS API action has a set of
required and optional parameters. The API version is usually a required parameter.

For the parameters supported by an API action, see the API Reference for the service.

Date

Specifies the date and time of the request. Including the date and time in a request helps prevent
third parties from intercepting your request and resubmitting it later. The date that you specify in
the credential scope must match the date of your request.

The time stamp must be in UTC and use the following ISO 8601 format: YYYYMMDDTHHMMSSZ.
For example, 20220830T123600Z. Do not include milliseconds in the time stamp.

You can use a date or an x-amz-date header, or include x-amz-date as a query parameter. If we
can't find an x-amz-date header, then we look for a date header.

Authentication information

Each request that you send must include the following information. AWS uses this information to
ensure the validity and authenticity of the request.

• Algorithm – Use AWS4-HMAC-SHA256 to specify Signature Version 4 with the HMAC-SHA256
hash algorithm.

• Credential – A string that consists of your access key ID, the date in YYYYMMDD format, the
Region code, the service code, and the aws4_request termination string, separated by slashes
(/). The Region code, service code, and termination string must use lowercase characters.

AKIAIOSFODNN7EXAMPLE/YYYYMMDD/region/service/aws4_request

Signature Version 4 request elements 2775

https://docs.aws.amazon.com/general/latest/gr/aws-service-information.html
https://docs.aws.amazon.com/service-authorization/latest/reference/
https://docs.aws.amazon.com/index.html

AWS Identity and Access Management User Guide

• Signed headers – The HTTP headers to include in the signature, separated by semicolons (;). For
example, host;x-amz-date.

• Signature – A hexadecimal-encoded string that represents the calculated signature. You must
calculate the signature using the algorithm that you specified in the Algorithm parameter.

Authentication methods

Important

Unless you are using the AWS SDKs or CLI, you must write code to calculate signatures
that provide authentication information in your requests. Signature calculation in AWS
Signature Version 4 can be a complex undertaking, and we recommend that you use the
AWS SDKs or CLI whenever possible.

You can express authentication information by using one of the following methods.

HTTP authorization header

The HTTP Authorization header is the most common method of authenticating a request. All
REST API operations (except for browser-based uploads using POST requests) require this header.
For more information about the authorization header value, and how to calculate signature and
related options, see Authenticating Requests: Using the Authorization Header (AWS Signature
Version 4) in the Amazon S3 API Reference.

The following is an example of the Authorization header value. Line breaks are added to this
example for readability. In your code, the header must be a continuous string. There is no comma
between the algorithm and Credential, but the other elements must be separated by commas.

Authorization: AWS4-HMAC-SHA256
Credential=AKIAIOSFODNN7EXAMPLE/20130524/us-east-1/s3/aws4_request,
SignedHeaders=host;range;x-amz-date,
Signature=fe5f80f77d5fa3beca038a248ff027d0445342fe2855ddc963176630326f1024

The following table describes the various components of the Authorization header value in the
preceding example:

Authentication methods 2776

https://docs.aws.amazon.com/AmazonS3/latest/API/sigv4-auth-using-authorization-header.html
https://docs.aws.amazon.com/AmazonS3/latest/API/sigv4-auth-using-authorization-header.html

AWS Identity and Access Management User Guide

Component Description

Authorization The algorithm that was used to calculate the
signature. You must provide this value when
you use AWS Signature Version 4 for authentic
ation.The string specifies AWS Signature
Version 4 (AWS4) and the signing algorithm
 (HMAC-SHA256).

Credential Your access key ID and the scope information,
which includes the date, Region, and service
that were used to calculate the signature.

This string has the following form:

<your-access-key-id>/<date>/
<aws-region>/<aws-service>/
aws4_request

Where: <date> value is specified using
YYYYMMDD format. <aws-service> value
is s3 when sending request to Amazon S3.

SignedHeaders A semicolon-separated list of request headers
that you used to compute Signature .
The list includes header names only, and
the header names must be in lowercase. For
example: host;range;x-amz-date

Signature The 256-bit signature expressed as
64 lowercase hexadecimal characters.
For example:fe5f80f77d5fa3beca
038a248ff027d0445342fe2855d
dc963176630326f1024

Note that the signature calculations vary
depending on the option you choose to
transfer the payload.

Authentication methods 2777

AWS Identity and Access Management User Guide

Query string parameters

You can use a query string to express a request entirely in a URL. In this case, you use query
parameters to provide request information, including the authentication information. Because
the request signature is part of the URL, this type of URL is often referred to as a presigned URL.
You can use presigned URLs to embed clickable links in HTML, which can be valid for up to seven
days. For more information, see Authenticating Requests: Using Query Parameters (AWS Signature
Version 4) in the Amazon S3 API Reference.

The following is an example presigned URL. Line breaks are added to this example for readability:

https://s3.amazonaws.com/examplebucket/test.txt ?
X-Amz-Algorithm=AWS4-HMAC-SHA256 &
X-Amz-Credential=<your-access-key-id>/20130721/us-east-1/s3/aws4_request &
X-Amz-Date=20130721T201207Z &
X-Amz-Expires=86400 &
X-Amz-SignedHeaders=host &X-Amz-Signature=<signature-value>

Note

The X-Amz-Credential value in the URL shows the "/" character only for readability. In
practice, it should be encoded as %2F. For example:
&X-Amz-Credential=<your-access-key-id>%2F20130721%2Fus-
east-1%2Fs3%2Faws4_request

The following table describes the query parameters in the URL that provide authentication
information.

Query string parameter name Description

X-Amz-Algorithm Identifies the version of AWS Signature and
the algorithm that you used to calculate the
signature.For AWS Signature Version 4, you
set this parameter value to AWS4-HMAC-
SHA256. This string identifies AWS Signature
Version 4 (AWS4) and the HMAC-SHA256
algorithm (HMAC-SHA256).

Authentication methods 2778

https://docs.aws.amazon.com/AmazonS3/latest/API/sigv4-query-string-auth.html
https://docs.aws.amazon.com/AmazonS3/latest/API/sigv4-query-string-auth.html

AWS Identity and Access Management User Guide

Query string parameter name Description

X-Amz-Credential In addition to your access key ID, this
parameter also provides scope (AWS Region
and service) for which the signature is valid.
This value must match the scope you use
in signature calculations, discussed in the
following section.

The general form for this parameter value is as
follows:

<your-access-key-id>/<date>/
<AWS Region>/<AWS-service>/aws4_
request

For example: AKIAIOSFODNN7EXAMP
LE/20130721/us-east-1/s3/aw
s4_request

For a list of AWS regional strings, see Regional
Endpoints in the AWS General Reference.

X-Amz-Date The date and time format must follow the
ISO 8601 standard, and must be formatted
with the yyyyMMddTHHmmssZ format. For
example if the date and time was "08/01/20
16 15:32:41.982-700" then it must first be
converted to UTC (Coordinated Universal
Time) and then submitted as "20160801
T223241Z".

Authentication methods 2779

https://docs.aws.amazon.com/general/latest/gr/rande.html#regional-endpoints
https://docs.aws.amazon.com/general/latest/gr/rande.html#regional-endpoints

AWS Identity and Access Management User Guide

Query string parameter name Description

X-Amz-Expires Provides the time period, in seconds, for which
the generated presigned URL is valid. For
example, 86400 (24 hours). This value is an
integer. The minimum value you can set is 1,
and the maximum is 604800 (seven days).A
presigned URL can be valid for a maximum of
seven days because the signing key you use in
signature calculation is valid for up to seven
days.

X-Amz-SignedHeaders Lists the headers that you used to calculate
the signature. The following headers are
required in the signature calculations:

• The HTTP host header.

• Any x-amz-* headers that you plan to add to
the request.

For added security, you should sign all the
request headers that you plan to include in
your request.

X-Amz-Signature Provides the signature to authenticate your
request. This signature must match the
signature the service calculates; otherwise,
the service denies the request. For example,
733255ef022bec3f2a8701cd61d
4b371f3f28c9f193a1f02279211
d48d5193d7

Signature calculations are described in the
following section.

X-Amz-Security-Token Optional credential parameter if using
credentials sourced from the STS service.

Authentication methods 2780

AWS Identity and Access Management User Guide

Create a signed AWS API request

Important

If you use an AWS SDKs (see Sample Code and Libraries) or AWS command line (CLI) tool
to send API requests to AWS, you can skip this section because the SDK and CLI clients
authenticate your requests by using the access keys that you provide. Unless you have a
good reason not to, we recommend that you always use an SDK or the CLI.
In Regions that support multiple signature versions, manually signing requests mean you
must specify which signature version is used. When you supply requests to Multi-Region
Access Points, SDKs and the CLI automatically switch to using Signature Version 4A without
additional configuration.

The following is an overview of the process to create a signed request. To calculate a signature, you
first need a string to sign. You then calculate a HMAC-SHA256 hash of the string to sign by using a
signing key. The following diagram illustrates the process, including the various components of the
string that you create for signing.

Create a signed request 2781

https://aws.amazon.com/developer/

AWS Identity and Access Management User Guide

The following table describes the functions that are shown in the diagram. You need to implement
code for these functions. For more information, see the code examples in the AWS SDKs.

Create a signed request 2782

AWS Identity and Access Management User Guide

Function Description

Lowercase() Convert the string to lowercase.

Hex() Lowercase base 16 encoding.

SHA256Hash() Secure Hash Algorithm (SHA) cryptographic
hash function.

HMAC-SHA256() Computes HMAC by using the SHA256
algorithm with the signing key provided. This
is the final signature.

Trim() Remove any leading or trailing whitespace.

UriEncode() URI encode every byte. UriEncode() must
enforce the following rules:

• URI encode every byte except the unreserve
d characters: 'A'-'Z', 'a'-'z', '0'-'9', '-', '.', '_', and
'~'.

• The space character is a reserved character
and must be encoded as "%20" (and not as
"+").

• Each URI encoded byte is formed by a '%'
and the two-digit hexadecimal value of the
byte.

• Letters in the hexadecimal value must be
uppercase, for example "%1A".

• Encode the forward slash character, '/',
everywhere except in the object key name.
For example, if the object key name is
photos/Jan/sample.jpg , the forward
slash in the key name is not encoded.

Create a signed request 2783

AWS Identity and Access Management User Guide

Function Description

Important

The standard UriEncode functions
provided by your development
platform may not work because of
differences in implementation and
related ambiguity in the underlying
RFCs. We recommend that you write
your own custom UriEncode function
to ensure that your encoding will work.

To see an example of a UriEncode function in
Java, see Java Utilities on the GitHub website.

Note

When signing your requests, you can use either AWS Signature Version 4 or AWS Signature
Version 4A. The key difference between the two is determined by how the signature is
calculated. With AWS Signature Version 4A, the signature does not include Region-specific
information and is calculated using the AWS4-ECDSA-P256-SHA256 algorithm.

Temporary security credentials

Instead of using long-term credentials to sign a request, you can use temporary security credentials
provided by AWS Security Token Service (AWS STS).

When you use temporary security credentials, you must add X-Amz-Security-Token to the
Authorization header or the query string to hold the session token. Some services require that you
add X-Amz-Security-Token to the canonical request. Other services require only that you add
X-Amz-Security-Token at the end, after you calculate the signature. Check the documentation
for each AWS service for details.

Create a signed request 2784

https://github.com/aws/aws-sdk-java/blob/master/aws-java-sdk-core/src/main/java/com/amazonaws/util/SdkHttpUtils.java#L66

AWS Identity and Access Management User Guide

Summary of signing steps

Step 1: Create a canonical request

Arrange the contents of your request (host, action, headers, etc.) into a standard canonical format.
The canonical request is one of the inputs used to create a string to sign. For details, see Elements
of an AWS API request signature.

Step 2: Create a hash of the canonical request

Derive a signing key by performing a succession of keyed hash operations (HMAC operations) on
the request date, Region, and service, with your AWS secret access key as the key for the initial
hashing operation.

Step 3: Create a String to Sign

Create a string to sign with the canonical request and extra information such as the algorithm,
request date, credential scope, and the digest (hash) of the canonical request.

Step 4: Calculate the signature

After you derive the signing key, you then calculate the signature by performing a keyed hash
operation on the string to sign. Use the derived signing key as the hash key for this operation.

Step 5: Add the signature to the request

After you calculate the signature, add it to an HTTP header or to the query string of the request.

Step 1: Create a canonical request

Create a canonical request by concatenating the following strings, separated by newline characters.
This helps ensure that the signature that you calculate and the signature that AWS calculates can
match.

<HTTPMethod>\n
<CanonicalURI>\n
<CanonicalQueryString>\n
<CanonicalHeaders>\n
<SignedHeaders>\n
<HashedPayload>

• HTTPMethod – The HTTP method, such as GET, PUT, HEAD, and DELETE.

Create a signed request 2785

AWS Identity and Access Management User Guide

• CanonicalUri – The URI-encoded version of the absolute path component URI, starting with
the "/" that follows the domain name and up to the end of the string or to the question mark
character ('?') if you have query string parameters. If the absolute path is empty, use a forward
slash character (/). The URI in the following example, /examplebucket/myphoto.jpg, is the
absolute path and you don't encode the "/" in the absolute path:

http://s3.amazonaws.com/examplebucket/myphoto.jpg

• CanonicalQueryString – The URI-encoded query string parameters. You URI-encode each
name and values individually. You must also sort the parameters in the canonical query string
alphabetically by key name. The sorting occurs after encoding. The query string in the following
URI example is:

http://s3.amazonaws.com/examplebucket?prefix=somePrefix&marker=someMarker&max-keys=2

The canonical query string is as follows (line breaks are added to this example for readability):

UriEncode("marker")+"="+UriEncode("someMarker")+"&"+
UriEncode("max-keys")+"="+UriEncode("20") + "&" +
UriEncode("prefix")+"="+UriEncode("somePrefix")

When a request targets a subresource, the corresponding query parameter value will be
an empty string (""). For example, the following URI identifies the ACL subresource on the
examplebucket bucket:

http://s3.amazonaws.com/examplebucket?acl

The CanonicalQueryString in this case is as follows:

UriEncode("acl") + "=" + ""

If the URI does not include a '?', there is no query string in the request, and you set the canonical
query string to an empty string (""). You will still need to include the "\n".

• CanonicalHeaders – A list of request headers with their values. Individual header name and
value pairs are separated by the newline character ("\n"). The following is an example of a
canonicalheader:

Create a signed request 2786

AWS Identity and Access Management User Guide

Lowercase(<HeaderName1>)+":"+Trim(<value>)+"\n"
Lowercase(<HeaderName2>)+":"+Trim(<value>)+"\n"
...
Lowercase(<HeaderNameN>)+":"+Trim(<value>)+"\n"

CanonicalHeaders list must include the following:

• HTTP host header.

• If the Content-Type header is present in the request, you must add it to the
CanonicalHeaders list.

• Any x-amz-* headers that you plan to include in your request must also be added.
For example, if you are using temporary security credentials, you need to include
x-amz-security-token in your request. You must add this header in the list of
CanonicalHeaders.

Note

The x-amz-content-sha256 header is required for Amazon S3 AWS requests. It
provides a hash of the request payload. If there is no payload, you must provide the hash
of an empty string.

Each header name must:

• use lowercase characters.

• appear in alphabetical order.

• be followed by a colon (:).

For values, you must:

• trim any leading or trailing spaces.

• convert sequential spaces to a single space.

• separate the values for a multi-value header using commas.

• You must include the host header (HTTP/1.1) or the :authority header (HTTP/2), and any x-
amz-* headers in the signature. You can optionally include other standard headers in the
signature, such as content-type.

Create a signed request 2787

AWS Identity and Access Management User Guide

The Lowercase() and Trim() functions used in this example are described in the preceding
section.

The following is an example CanonicalHeaders string. The header names are in lowercase and
sorted.

host:s3.amazonaws.com
x-amz-content-sha256:e3b0c44298fc1c149afbf4c8996fb92427ae41e4649b934ca495991b7852b855
x-amz-date:20130708T220855Z

Note

For the purpose of calculating an authorization signature, only the host and any x-amz-
* headers are required; however, in order to prevent data tampering, you should consider
including all the headers in the signature calculation.

• SignedHeaders – An alphabetically sorted, semicolon-separated list of lowercase request
header names. The request headers in the list are the same headers that you included
in the CanonicalHeaders string. For example, for the previous example, the value of
SignedHeaders would be as follows:

host;x-amz-content-sha256;x-amz-date

• HashedPayload – A string created using the payload in the body of the HTTP request as input
to a hash function. This string uses lowercase hexadecimal characters.

Hex(SHA256Hash(<payload>)

If there is no payload in the request, you compute a hash of the empty string as follows:

Hex(SHA256Hash(""))

The hash returns the following value:

Create a signed request 2788

AWS Identity and Access Management User Guide

e3b0c44298fc1c149afbf4c8996fb92427ae41e4649b934ca495991b7852b855

For example, when you upload an object by using a PUT request, you provide object data in the
body. When you retrieve an object by using a GET request, you compute the empty string hash.

Step 2: Create a hash of the canonical request

Create a hash (digest) of the canonical request using the same algorithm that you used to create
the hash of the payload. The hash of the canonical request is a string of lowercase hexadecimal
characters.

Step 3: Create a string to sign

Create a string by concatenating the following strings, separated by newline characters. Do not end
this string with a newline character.

Algorithm \n
RequestDateTime \n
CredentialScope \n
HashedCanonicalRequest

• Algorithm – The algorithm used to create the hash of the canonical request. For SHA-256, the
algorithm is AWS4-HMAC-SHA256.

• RequestDateTime – The date and time used in the credential scope. This value is the current
UTC time in ISO 8601 format (for example, 20130524T000000Z).

• CredentialScope – The credential scope. This restricts the resulting signature to the specified
Region and service. The string has the following format: YYYYMMDD/region/service/
aws4_request.

• HashedCanonicalRequest – The hash of the canonical request. This value is calculated in Step
2.

The following is an example string to sign.

"AWS4-HMAC-SHA256" + "\n" +
timeStampISO8601Format + "\n" +
<Scope> + "\n" +

Create a signed request 2789

AWS Identity and Access Management User Guide

Hex(SHA256Hash(<CanonicalRequest>))

Step 4: Calculate the signature

In AWS Signature Version 4, instead of using your AWS access keys to sign a request, you create a
signing key that is scoped to a specific Region and service as the authentication information you'll
add to your request.

DateKey = HMAC-SHA256("AWS4"+"<SecretAccessKey>", "<YYYYMMDD>")
DateRegionKey = HMAC-SHA256(<DateKey>, "<aws-region>")
DateRegionServiceKey = HMAC-SHA256(<DateRegionKey>, "<aws-service>")
SigningKey = HMAC-SHA256(<DateRegionServiceKey>, "aws4_request")

For a list of Region strings, see Regional Endpoints in the AWS General Reference.

For each step, call the hash function with the required key and data. The result of each call to the
hash function becomes the input for the next call to the hash function.

Required input

• A string, Key, that contains your secret access key

• A string, Date, that contains the date used in the credential scope, in the format YYYYMMDD

• A string, Region, that contains the Region code (for example, us-east-1)

• A string, Service, that contains the service code (for example, ec2)

• The string to sign that you created in the previous step.

To calculate the signature

1. Concatenate "AWS4" and the secret access key. Call the hash function with the concatenated
string as the key and the date string as the data.

kDate = hash("AWS4" + Key, Date)

2. Call the hash function with the result of the previous call as the key and the Region string as
the data.

kRegion = hash(kDate, Region)

Create a signed request 2790

https://docs.aws.amazon.com/general/latest/gr/rande.html#regional-endpoints

AWS Identity and Access Management User Guide

3. Call the hash function with the result of the previous call as the key and the service string as
the data.

kService = hash(kRegion, Service)

4. Call the hash function with the result of the previous call as the key and "aws4_request" as the
data.

kSigning = hash(kService, "aws4_request")

5. Call the hash function with the result of the previous call as the key and the string to sign as
the data. The result is the signature as a binary value.

signature = hash(kSigning, string-to-sign)

6. Convert the signature from binary to hexadecimal representation, in lowercase characters.

Step 5: Add the signature to the request

Example Example: Authorization header

The following example shows an Authorization header for the DescribeInstances action.
For readability, this example is formatted with line breaks. In your code, this must be a continuous
string. There is no comma between the algorithm and Credential. However, the other elements
must be separated by commas.

Authorization: AWS4-HMAC-SHA256
Credential=AKIAIOSFODNN7EXAMPLE/20220830/us-east-1/ec2/aws4_request,
SignedHeaders=host;x-amz-date,
Signature=calculated-signature

Example Example: Request with authentication parameters in the query string

The following example shows a query for the DescribeInstances action that includes the
authentication information. For readability, this example is formatted with line breaks and is not
URL encoded. In your code, the query string must be a continuous string that is URL encoded.

https://ec2.amazonaws.com/?
Action=DescribeInstances&
Version=2016-11-15&

Create a signed request 2791

AWS Identity and Access Management User Guide

X-Amz-Algorithm=AWS4-HMAC-SHA256&
X-Amz-Credential=AKIAIOSFODNN7EXAMPLE/20220830/us-east-1/ec2/aws4_request&
X-Amz-Date=20220830T123600Z&
X-Amz-SignedHeaders=host;x-amz-date&
X-Amz-Signature=calculated-signature

Source code in the AWS SDKs

The AWS SDKs include source code on GitHub for signing AWS API requests. For code samples, see
Example projects in AWS samples repository

• AWS SDK for .NET – AWS4Signer.cs

• AWS SDK for C++ – AWSAuthV4Signer.cpp

• AWS SDK for Go – v4.go

• AWS SDK for Java – BaseAws4Signer.java

• AWS SDK for JavaScript – v4.js

• AWS SDK for PHP – SignatureV4.php

• AWS SDK for Python (Boto) – signers.py

• AWS SDK for Ruby – signer.rb

Request signature examples

The following examples of AWS signing requests show you how you can use SigV4 to sign requests
sent without the AWS SDK or AWS command line tool.

Browser based Amazon S3 upload using HTTP POST

Authenticating Requests: Browser-Based Uploads describes the signature and relevant information
that Amazon S3 uses to calculate the signature upon receiving the request.

Example: Browser-Based Upload using HTTP POST (Using AWS Signature Version 4) provides more
information with a sample POST policy and a form that you can use to upload a file. The example
policy and fictitious credentials show you the workflow and resulting signature and policy hash.

VPC Lattice authenticated requests

Examples for Signature Version 4 (SigV4) authenticated requests provides Python and Java
examples showing how you can perform request signing with and without custom interceptors.

Request signature examples 2792

https://github.com/aws/aws-sdk-net/blob/master/sdk/src/Core/Amazon.Runtime/Internal/Auth/AWS4Signer.cs
https://github.com/aws/aws-sdk-cpp/blob/main/src/aws-cpp-sdk-core/source/auth/signer/AWSAuthV4Signer.cpp
https://github.com/aws/aws-sdk-go/blob/main/aws/signer/v4/v4.go
https://github.com/aws/aws-sdk-java-v2/blob/master/core/auth/src/main/java/software/amazon/awssdk/auth/signer/internal/BaseAws4Signer.java
https://github.com/aws/aws-sdk-js/blob/master/lib/signers/v4.js
https://github.com/aws/aws-sdk-php/blob/master/src/Signature/SignatureV4.php
https://github.com/boto/botocore/blob/develop/botocore/signers.py
https://github.com/aws/aws-sdk-ruby/blob/version-3/gems/aws-sigv4/lib/aws-sigv4/signer.rb
https://docs.aws.amazon.com/AmazonS3/latest/API/sigv4-authentication-HTTPPOST.html
https://docs.aws.amazon.com/AmazonS3/latest/API/sigv4-post-example.html
https://docs.aws.amazon.com/vpc-lattice/latest/ug/sigv4-authenticated-requests.html

AWS Identity and Access Management User Guide

Using Signature Version 4 with Amazon Translate

Using Signature Version 4 with Amazon Translate shows how to use a Python program to add
authentication information to Amazon Translate requests. The example makes a POST request,
creates a JSON structure that contains the text to be translated in the body (payload) of the
request, and passes authentication information in an Authorization header.

Using Signature Version 4 with Neptune

Example: Connecting to Neptune Using Python with Signature Version 4 Signing shows how to
make signed requests to Neptune using Python. This example includes variations for using an
access key or temporary credentials.

Signing HTTP requests to S3 Glacier

Example Signature Calculation for Streaming API walks you through the details of creating a
signature for Upload Archive (POST archive), one of the two streaming APIs in S3 Glacier.

Making HTTP Requests to Amazon SWF

Making HTTP Requests to Amazon SWF shows the header contents for a JSON request to Amazon
SWF.

Signature calculation for streaming APIs in Amazon OpenSearch Service

Signing an Amazon OpenSearch Service search request with AWS SDK for PHP Version 3 includes
an example of how to send signed HTTP requests to Amazon OpenSearch Service.

Example projects in AWS samples repository

The following example projects show how to sign requests to make Rest API requests to AWS
services with common languages such as Python, Node.js, Java, C#, Go and Rust.

Signature Version 4a projects

The sigv4a-signing-examples project provides examples of how to sign requests with SigV4A to
make Rest API requests to AWS services with common languages such as Python, Node.js, Java, C#,
Go and Rust.

Making requests using a Multi-Region Access Point (MRAP) uses Signature Version 4a to access data
in Amazon S3 using Python boto 3.

Request signature examples 2793

https://docs.aws.amazon.com/translate/latest/dg/examples-sigv4.html
https://docs.aws.amazon.com/neptune/latest/userguide/iam-auth-connecting-python.html
https://docs.aws.amazon.com/amazonglacier/latest/dev/amazon-glacier-signing-requests.html
https://docs.aws.amazon.com/amazonswf/latest/developerguide/UsingJSON-swf.html#HTTPHeader
https://docs.aws.amazon.com/sdk-for-php/v3/developer-guide/service_es-data-plane.html
https://github.com/aws-samples/sigv4a-signing-examples/tree/main/python
https://github.com/aws-samples/sigv4a-signing-examples/tree/main/python

AWS Identity and Access Management User Guide

Publish to AWS IoT Core

Python code to publish to AWS IoT Core using HTTPs protocol provides guidance on how to publish
messages to AWS IoT Core using Https protocol and AWS SigV4 autentication. It has two reference
implementations - one in Python and other in NodeJs.

.Net Framework application to publish to AWS IoT Core using HTTPs protocol provides guidance on
how to publish messages to AWS IoT Core using Https protocol and AWS SigV4 autentication. This
project also includes a .NET core equivalent implementation.

Troubleshoot signed requests for AWS APIs

Important

Unless you are using the AWS SDKs or CLI, you must write code to calculate signatures that
provide authentication information in your requests. SigV4 signature calculation can be
a complex undertaking, and we recommend that you use the AWS SDKs or CLI whenever
possible.

When you develop code that creates a signed request, you might receive HTTP 403
SignatureDoesNotMatch from AWS services. These errors mean that the signature value in
your HTTP request to AWS did not match the signature that the AWS service calculated. HTTP 401
Unauthorized errors return when permissions do not allow the caller to make the request.

API requests might return an error if:

• The API request isn't signed and the API request uses IAM authentication.

• The IAM credentials used to sign the request are incorrect or don't have permissions to invoke
the API.

• The signature of the signed API request doesn't match the signature that the AWS service
calculated.

• The API request header is incorrect.

Troubleshoot 2794

https://github.com/aws-samples/aws-iot-core-python-node-sigv4-https
https://github.com/aws-samples/aws-iot-core-python-node-sigv4-https

AWS Identity and Access Management User Guide

Note

Update your signing protocol from AWS Signature version 2 (SigV2) to AWS Signature
version 4 (SigV4) before exploring other error solutions. Serivces, such as Amazon S3, and
Regions no longer support SigV2 signing.

Possible causes

• Credential errors

• Canonical request and signing string errors

• Credential scope errors

• Key signing errors

Credential errors

Make sure that the API request is signed with SigV4. If the API request isn't signed, then you might
receive the error: Missing Authentication Token. Add the missing signature and resend the
request.

Verify that the authentication credentials for the access key and secret key are correct. If the access
key is incorrect, then you might receive the error: Unauthorized. Make sure the entity used to
sign the request is authorized to make the request. For details, see Troubleshooting access denied
error messages.

Canonical request and signing string errors

If you incorrectly calculated the canonical request in Step 2: Create a hash of the canonical request
or Step 3: Create a string to sign, the signature verification step performed by the service fails with
the error message:

The request signature we calculated does not match the signature you provided

When the AWS service receives a signed request, it recalculates the signature. If there are
differences in the values, then the signatures don’t match. Compare the canonical request and
string to your signed request with the value in the error message. Modify the signing process if
there are any differences.

Troubleshoot 2795

https://docs.aws.amazon.com/IAM/latest/UserGuide/create-signed-request.html#add-signature-to-request

AWS Identity and Access Management User Guide

Note

You can also verify that you didn't send the request through a proxy that modifies the
headers or the request.

Example Example canonical request

GET -------- HTTP method
/ -------- Path. For API stage
 endpoint, it should be /{stage-name}/{resource-path}
 -------- Query string key-
value pair. Leave it blank if the request doesn't have a query string.
content-type:application/json -------- Header key-value
 pair. One header per line.
host:0123456789.execute-api.us-east-1.amazonaws.com -------- Host and x-amz-date
 are required headers for all signed requests.
x-amz-date:20220806T024003Z

content-type;host;x-amz-date -------- A list of signed
 headers
d167e99c53f15b0c105101d468ae35a3dc9187839ca081095e340f3649a04501 -------- Hash
 of the payload

To verify that the secret key matches the access key ID, you can test them with a known working
implementation. For example, use an AWS SDK or the AWS CLI to make a request to AWS.

API request header

Make sure that the SigV4 authorization header you added in Step 4: Calculate the signature
includes the correct credential key similar to the following:

Authorization: AWS4-HMAC-SHA256
Credential=AKIAIOSFODNN7EXAMPLE/20130524/us-east-1/s3/aws4_request,
SignedHeaders=host;range;x-amz-date,
Signature=example-generated-signature

If the credential key is missing or incorrect, you might receive the error: Authorization header
requires 'Credential' parameter. Authorization header requires 'Signature'
parameter. Make sure that the SigV4 authorization request also includes the request date using
either HTTP Date or the x-amz-date header.

Troubleshoot 2796

AWS Identity and Access Management User Guide

Credential scope errors

The credential scope you created in Step 3: Create a string to sign restricts a signature to a specific
date, Region, and service. This string has the following format:

YYYYMMDD/region/service/aws4_request

Note

If you are using SigV4a, the Region is not included in credential scope.

Date

If the credential scope does not specify the same date as the x-amz-date header, the signature
verification step fails with the following error message:

Date in Credential scope does not match YYYYMMDD from ISO-8601 version of date from
 HTTP

If the request specifies a time in the future, the signature verification step fails with the following
error message:

Signature not yet current: date is still later than date

If the request has expired, the signature verification step fails with the following error message:

Signature expired: date is now earlier than date

Region

If the credential scope does not specify the same Region as the request, the signature verification
step fails with the following error message:

Credential should be scoped to a valid Region, not region-code

Service

Troubleshoot 2797

AWS Identity and Access Management User Guide

If the credential scope does not specify the same service as the host header, the signature
verification step fails with the following error message:

Credential should be scoped to correct service: 'service'

Termination string

If the credential scope does not end with aws4_request, the signature verification step fails with
the following error message:

Credential should be scoped with a valid terminator: 'aws4_request'

Key signing errors

Errors that are caused by incorrect derivation of the signing key or improper use of cryptography
are more difficult to troubleshoot. After you verify that the canonical string and the string to sign
are correct, you can also check for one of the following issues:

• The secret access key does not match the access key ID that you specified.

• There is a problem with your key derivation code.

To verify that the secret key matches the access key ID, you can test them with a known working
implementation. For example, use an AWS SDK or the AWS CLI to make a request to AWS. For
examples, see Request signature examples

IAM JSON policy reference

This section presents detailed syntax, descriptions, and examples of the elements, variables, and
evaluation logic of JSON policies in IAM. For more general information, see Overview of JSON
policies.

This reference includes the following sections.

• IAM JSON policy elements reference — Learn more about the elements that you can use when
you create a policy. View additional policy examples and learn about conditions, supported data
types, and how they are used in various services.

• Policy evaluation logic — This section describes AWS requests, how they are authenticated, and
how AWS uses policies to determine access to resources.

Policy reference 2798

AWS Identity and Access Management User Guide

• Grammar of the IAM JSON policy language — This section presents a formal grammar for the
language that is used to create policies in IAM.

• AWS managed policies for job functions — This section lists all the AWS managed policies
that directly map to common job functions in the IT industry. Use these policies to grant
the permissions that are needed to carry out the tasks expected of someone in a specific job
function. These policies consolidate permissions for many services into a single policy.

• AWS global condition context keys — This section includes a list of all the AWS global condition
keys that you can use to limit permissions in an IAM policy.

• IAM and AWS STS condition context keys — This section includes a list of all the IAM and AWS
STS condition keys that you can use to limit permissions in an IAM policy.

• Actions, Resources, and Condition Keys for AWS Services — This section presents a list of all the
AWS API operations that you can use as permissions in an IAM policy. It also includes the service-
specific condition keys that can be used to further refine the request.

IAM JSON policy elements reference

JSON policy documents are made up of elements. The elements are listed here in the general order
you use them in a policy. The order of the elements doesn't matter—for example, the Resource
element can come before the Action element. You're not required to specify any Condition
elements in the policy. To learn more about the general structure and purpose of a JSON policy
document, see Overview of JSON policies.

Some JSON policy elements are mutually exclusive. This means that you cannot create a policy
that uses both. For example, you cannot use both Action and NotAction in the same policy
statement. Other pairs that are mutually exclusive include Principal/NotPrincipal and
Resource/NotResource.

The details of what goes into a policy vary for each service, depending on what actions the service
makes available, what types of resources it contains, and so on. When you're writing policies for a
specific service, it's helpful to see examples of policies for that service. For a list of all the services
that support IAM, and for links to the documentation in those services that discusses IAM and
policies, see AWS services that work with IAM.

When you create or edit a JSON policy, IAM can perform policy validation to help you create an
effective policy. IAM identifies JSON syntax errors, while IAM Access Analyzer provides additional
policy checks with recommendations to help you further refine your policies. To learn more about

JSON element reference 2799

reference_policies_actions-resources-contextkeys.html

AWS Identity and Access Management User Guide

policy validation, see Validating IAM policies. To learn more about IAM Access Analyzer policy
checks and actionable recommendations, see IAM Access Analyzer policy validation.

Topics

• IAM JSON policy elements: Version

• IAM JSON policy elements: Id

• IAM JSON policy elements: Statement

• IAM JSON policy elements: Sid

• IAM JSON policy elements: Effect

• AWS JSON policy elements: Principal

• AWS JSON policy elements: NotPrincipal

• IAM JSON policy elements: Action

• IAM JSON policy elements: NotAction

• IAM JSON policy elements: Resource

• IAM JSON policy elements: NotResource

• IAM JSON policy elements: Condition

• IAM policy elements: Variables and tags

• IAM JSON policy elements: Supported data types

IAM JSON policy elements: Version

Disambiguation note

This Version JSON policy element is different from a policy version. The Version policy
element is used within a policy and defines the version of the policy language. A policy
version, on the other hand, is created when you make changes to a customer managed
policy in IAM. The changed policy doesn't overwrite the existing policy. Instead, IAM creates
a new version of the managed policy. If you were searching for information about the
multiple version support available for managed policies, see the section called “Versioning
IAM policies”.

JSON element reference 2800

https://docs.aws.amazon.com/IAM/latest/UserGuide/access-analyzer-policy-validation.html

AWS Identity and Access Management User Guide

The Version policy element specifies the language syntax rules that are to be used to process a
policy. To use all of the available policy features, include the following Version element outside
the Statement element in all of your policies.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "s3:ListAllMyBuckets",
 "Resource": "*"
 }
]
}

IAM supports the following Version element values:

• 2012-10-17. This is the current version of the policy language, and you should always include a
Version element and set it to 2012-10-17. Otherwise, you cannot use features such as policy
variables that were introduced with this version.

• 2008-10-17. This was an earlier version of the policy language. You might see this version
on older existing policies. Do not use this version for any new policies or when you update any
existing policies. Newer features, such as policy variables, will not work with your policy. For
example, variables such as ${aws:username} aren't recognized as variables and are instead
treated as literal strings in the policy.

IAM JSON policy elements: Id

The Id element specifies an optional identifier for the policy. The ID is used differently in different
services. ID is allowed in resource-based policies, but not in identity-based policies.

For services that let you set an ID element, we recommend you use a UUID (GUID) for the value, or
incorporate a UUID as part of the ID to ensure uniqueness.

{
 "Version": "2012-10-17",
 "Id": "cd3ad3d9-2776-4ef1-a904-4c229d1642ee",
 "Statement": [
 {

JSON element reference 2801

AWS Identity and Access Management User Guide

 "Effect": "Allow",
 "Action": "s3:ListAllMyBuckets",
 "Resource": "*"
 }
]
}

Note

Some AWS services (for example, Amazon SQS or Amazon SNS) might require this element
and have uniqueness requirements for it. For service-specific information about writing
policies, refer to the documentation for the service you're working with.

IAM JSON policy elements: Statement

The Statement element is the main element for a policy. This element is required. The
Statement element can contain a single statement or an array of individual statements. Each
individual statement block must be enclosed in curly braces { }. For multiple statements, the array
must be enclosed in square brackets [].

"Statement": [{...},{...},{...}]

The following example shows a policy that contains an array of three statements inside a single
Statement element. (The policy allows you to access your own "home folder" in the Amazon
S3 console.) The policy includes the aws:username variable, which is replaced during policy
evaluation with the user name from the request. For more information, see Introduction.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "s3:ListAllMyBuckets",
 "s3:GetBucketLocation"
],
 "Resource": "arn:aws:s3:::*"
 },
 {

JSON element reference 2802

AWS Identity and Access Management User Guide

 "Effect": "Allow",
 "Action": "s3:ListBucket",
 "Resource": "arn:aws:s3:::BUCKET-NAME",
 "Condition": {"StringLike": {"s3:prefix": [
 "",
 "home/",
 "home/${aws:username}/"
]}}
 },
 {
 "Effect": "Allow",
 "Action": "s3:*",
 "Resource": [
 "arn:aws:s3:::BUCKET-NAME/home/${aws:username}",
 "arn:aws:s3:::BUCKET-NAME/home/${aws:username}/*"
]
 }
]
}

IAM JSON policy elements: Sid

You can provide a Sid (statement ID) as an optional identifier for the policy statement. You
can assign a Sid value to each statement in a statement array. You can use the Sid value as a
description for the policy statement. In services that let you specify an ID element, such as SQS
and SNS, the Sid value is just a sub-ID of the policy document ID. In IAM, the Sid value must be
unique within a JSON policy.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "ExampleStatementID",
 "Effect": "Allow",
 "Action": "s3:ListAllMyBuckets",
 "Resource": "*"
 }
]
}

The Sid element supports ASCII uppercase letters (A-Z), lowercase letters (a-z), and numbers (0-9).

JSON element reference 2803

AWS Identity and Access Management User Guide

IAM does not expose the Sid in the IAM API. You can't retrieve a particular statement based on this
ID.

Note

Some AWS services (for example, Amazon SQS or Amazon SNS) might require this element
and have uniqueness requirements for it. For service-specific information about writing
policies, refer to the documentation for the service you work with.

IAM JSON policy elements: Effect

The Effect element is required and specifies whether the statement results in an allow or an
explicit deny. Valid values for Effect are Allow and Deny. The Effect value is case sensitive.

"Effect":"Allow"

By default, access to resources is denied. To allow access to a resource, you must set the Effect
element to Allow. To override an allow (for example, to override an allow that is otherwise in
force), you set the Effect element to Deny. For more information, see Policy evaluation logic.

AWS JSON policy elements: Principal

Use the Principal element in a resource-based JSON policy to specify the principal that is
allowed or denied access to a resource.

You must use the Principal element in resource-based policies. Several services support
resource-based policies, including IAM. The IAM resource-based policy type is a role trust policy. In
IAM roles, use the Principal element in the role trust policy to specify who can assume the role.
For cross-account access, you must specify the 12-digit identifier of the trusted account. To learn
whether principals in accounts outside of your zone of trust (trusted organization or account) have
access to assume your roles, see What is IAM Access Analyzer?.

Note

After you create the role, you can change the account to "*" to allow everyone to assume
the role. If you do this, we strongly recommend that you limit who can access the role
through other means, such as a Condition element that limits access to only certain IP
addresses. Do not leave your role accessible to everyone!

JSON element reference 2804

https://docs.aws.amazon.com/IAM/latest/UserGuide/what-is-access-analyzer.html

AWS Identity and Access Management User Guide

Other examples of resources that support resource-based policies include an Amazon S3 bucket or
an AWS KMS key.

You cannot use the Principal element in an identity-based policy. Identity-based policies are
permissions policies that you attach to IAM identities (users, groups, or roles). In those cases, the
principal is implicitly the identity where the policy is attached.

Topics

• Specifying a principal

• AWS account principals

• IAM role principals

• Role session principals

• IAM user principals

• IAM Identity Center principals

• AWS STS federated user session principals

• AWS service principals

• AWS service principals in opt-in Regions

• All principals

• More information

Specifying a principal

You specify a principal in the Principal element of a resource-based policy or in condition keys
that support principals.

You can specify any of the following principals in a policy:

• AWS account and root user

• IAM roles

• Role sessions

• IAM users

• Federated user sessions

• AWS services

• All principals

JSON element reference 2805

AWS Identity and Access Management User Guide

You cannot identify a user group as a principal in a policy (such as a resource-based policy) because
groups relate to permissions, not authentication, and principals are authenticated IAM entities.

You can specify more than one principal for each of the principal types in following sections using
an array. Arrays can take one or more values. When you specify more than one principal in an
element, you grant permissions to each principal. This is a logical OR and not a logical AND, because
you authenticate as one principal at a time. If you include more than one value, use square brackets
([and]) and comma-delimit each entry for the array. The following example policy defines
permissions for the 123456789012 account or the 555555555555 account.

"Principal" : {
"AWS": [
 "123456789012",
 "555555555555"
]
}

Note

You cannot use a wildcard to match part of a principal name or ARN.

AWS account principals

You can specify AWS account identifiers in the Principal element of a resource-based policy or
in condition keys that support principals. This delegates authority to the account. When you allow
access to a different account, an administrator in that account must then grant access to an identity
(IAM user or role) in that account. When you specify an AWS account, you can use the account ARN
(arn:aws:iam::account-ID:root), or a shortened form that consists of the "AWS": prefix followed
by the account ID.

For example, given an account ID of 123456789012, you can use either of the following methods
to specify that account in the Principal element:

"Principal": { "AWS": "arn:aws:iam::123456789012:root" }

"Principal": { "AWS": "123456789012" }

JSON element reference 2806

AWS Identity and Access Management User Guide

The account ARN and the shortened account ID behave the same way. Both delegate permissions
to the account. Using the account ARN in the Principal element does not limit permissions to
only the root user of the account.

Note

When you save a resource-based policy that includes the shortened account ID, the service
might convert it to the principal ARN. This does not change the functionality of the policy.

Some AWS services support additional options for specifying an account principal. For example,
Amazon S3 lets you specify a canonical user ID using the following format:

"Principal": { "CanonicalUser":
 "79a59df900b949e55d96a1e698fbacedfd6e09d98eacf8f8d5218e7cd47ef2be" }

You can also specify more than one AWS account, (or canonical user ID) as a principal using an
array. For example, you can specify a principal in a bucket policy using all three methods.

"Principal": {
 "AWS": [
 "arn:aws:iam::123456789012:root",
 "999999999999"
],
 "CanonicalUser": "79a59df900b949e55d96a1e698fbacedfd6e09d98eacf8f8d5218e7cd47ef2be"
}

IAM role principals

You can specify IAM role principal ARNs in the Principal element of a resource-based policy or
in condition keys that support principals. IAM roles are identities. In IAM, identities are resources to
which you can assign permissions. Roles trust another authenticated identity to assume that role.
This includes a principal in AWS or a user from an external identity provider (IdP). When a principal
or identity assumes a role, they receive temporary security credentials with the assumed role’s
permissions. When they use those session credentials to perform operations in AWS, they become a
role session principal.

IAM roles are identities that exist in IAM. Roles trust another authenticated identity, such as a
principal in AWS or a user from an external identity provider. When a principal or identity assumes

JSON element reference 2807

https://docs.aws.amazon.com/general/latest/gr/acct-identifiers.html#FindingCanonicalId

AWS Identity and Access Management User Guide

a role, they receive temporary security credentials. They can then use those credentials as a role
session principal to perform operations in AWS.

When you specify a role principal in a resource-based policy, the effective permissions for the
principal are limited by any policy types that limit permissions for the role. This includes session
policies and permissions boundaries. For more information about how the effective permissions for
a role session are evaluated, see Policy evaluation logic.

To specify the role ARN in the Principal element, use the following format:

"Principal": { "AWS": "arn:aws:iam::AWS-account-ID:role/role-name" }

Important

If your Principal element in a role trust policy contains an ARN that points to a specific
IAM role, then that ARN transforms to the role unique principal ID when you save the
policy. This helps mitigate the risk of someone escalating their privileges by removing
and recreating the role. You don't normally see this ID in the console, because IAM uses a
reverse transformation back to the role ARN when the trust policy is displayed. However, if
you delete the role, then you break the relationship. The policy no longer applies, even if
you recreate the role because the new role has a new principal ID that does not match the
ID stored in the trust policy. When this happens, the principal ID appears in resource-based
policies because AWS can no longer map it back to a valid ARN. The end result is that if you
delete and recreate a role referenced in a trust policy's Principal element, you must edit
the role in the policy to replace the principal ID with the correct ARN. The ARN once again
transforms into the role's new principal ID when you save the policy.

Alternatively, you can specify the role principal as the principal in a resource-based policy or create
a broad-permission policy that uses the aws:PrincipalArn condition key. When you use this key,
the role session principal is granted the permissions based on the ARN of role that was assumed,
and not the ARN of the resulting session. Because AWS does not convert condition key ARNs to IDs,
permissions granted to the role ARN persist if you delete the role and then create a new role with
the same name. Identity-based policy types, such as permissions boundaries or session policies, do
not limit permissions granted using the aws:PrincipalArn condition key with a wildcard(*) in
the Principal element, unless the identity-based policies contain an explicit deny.

JSON element reference 2808

AWS Identity and Access Management User Guide

Role session principals

You can specify role sessions in the Principal element of a resource-based policy or in condition
keys that support principals. When a principal or identity assumes a role, they receive temporary
security credentials with the assumed role’s permissions. When they use those session credentials
to perform operations in AWS, they become a role session principal.

The format that you use for a role session principal depends on the AWS STS operation that was
used to assume the role.

Additionally, administrators can design a process to control how role sessions are issued. For
example, they can provide a one-click solution for their users that creates a predictable session
name. If your administrator does this, you can use role session principals in your policies or
condition keys. Otherwise, you can specify the role ARN as a principal in the aws:PrincipalArn
condition key. How you specify the role as a principal can change the effective permissions for the
resulting session. For more information, see IAM role principals.

Assumed-role session principals

An assumed-role session principal is a session principal that results from using the AWS STS
AssumeRole operation. For more information about which principals can assume a role using this
operation, see Comparing the AWS STS API operations.

To specify the assumed-role session ARN in the Principal element, use the following format:

"Principal": { "AWS": "arn:aws:sts::AWS-account-ID:assumed-role/role-name/role-session-
name" }

When you specify an assumed-role session in a Principal element, you cannot use a wildcard "*"
to mean all sessions. Principals must always name a specific session.

Web identity session principals

A web identity session principal is a session principal that results from using the AWS STS
AssumeRoleWithWebIdentity operation. You can use an external web identity provider (IdP)
to sign in, and then assume an IAM role using this operation. This leverages identity federation
and issues a role session. For more information about which principals can assume a role using this
operation, see Comparing the AWS STS API operations.

When you issue a role from a web identity provider, you get this special type of session principal
that includes information about the web identity provider.

JSON element reference 2809

AWS Identity and Access Management User Guide

Use this principal type in your policy to allow or deny access based on the trusted web identity
provider. To specify the web identity role session ARN in the Principal element of a role trust
policy, use the following format:

"Principal": { "Federated": "cognito-identity.amazonaws.com" }

"Principal": { "Federated": "www.amazon.com" }

"Principal": { "Federated": "graph.facebook.com" }

"Principal": { "Federated": "accounts.google.com" }

SAML session principals

A SAML session principal is a session principal that results from using the AWS STS
AssumeRoleWithSAML operation. You can use an external SAML identity provider (IdP) to sign in,
and then assume an IAM role using this operation. This leverages identity federation and issues a
role session. For more information about which principals can assume a role using this operation,
see Comparing the AWS STS API operations.

When you issue a role from a SAML identity provider, you get this special type of session principal
that includes information about the SAML identity provider.

Use this principal type in your policy to allow or deny access based on the trusted SAML identity
provider. To specify the SAML identity role session ARN in the Principal element of a role trust
policy, use the following format:

"Principal": { "Federated": "arn:aws:iam::AWS-account-ID:saml-provider/provider-name" }

IAM user principals

You can specify IAM users in the Principal element of a resource-based policy or in condition
keys that support principals.

Note

In a Principal element, the user name part of the Amazon Resource Name (ARN) is case
sensitive.

JSON element reference 2810

AWS Identity and Access Management User Guide

"Principal": { "AWS": "arn:aws:iam::AWS-account-ID:user/user-name" }

"Principal": {
 "AWS": [
 "arn:aws:iam::AWS-account-ID:user/user-name-1",
 "arn:aws:iam::AWS-account-ID:user/user-name-2"
]
}

When you specify users in a Principal element, you cannot use a wildcard (*) to mean "all users".
Principals must always name specific users.

Important

If your Principal element in a role trust policy contains an ARN that points to a specific
IAM user, then IAM transforms the ARN to the user's unique principal ID when you save the
policy. This helps mitigate the risk of someone escalating their privileges by removing and
recreating the user. You don't normally see this ID in the console, because there is also a
reverse transformation back to the user's ARN when the trust policy is displayed. However,
if you delete the user, then you break the relationship. The policy no longer applies, even
if you recreate the user. That's because the new user has a new principal ID that does not
match the ID stored in the trust policy. When this happens, the principal ID appears in
resource-based policies because AWS can no longer map it back to a valid ARN. The result is
that if you delete and recreate a user referenced in a trust policy Principal element, you
must edit the role to replace the now incorrect principal ID with the correct ARN. IAM once
again transforms ARN into the user's new principal ID when you save the policy.

IAM Identity Center principals

In IAM Identity Center, the principal in a resource-based policy must be defined as the AWS account
principal. To specify access, reference the role ARN of the permission set in the condition block. For
details, see Referencing permission sets in resource policies, Amazon EKS, and AWS KMS in the IAM
Identity Center User Guide.

AWS STS federated user session principals

You can specify federated user sessions in the Principal element of a resource-based policy or in
condition keys that support principals.

JSON element reference 2811

https://docs.aws.amazon.com/singlesignon/latest/userguide/referencingpermissionsets.html

AWS Identity and Access Management User Guide

Important

AWS recommends that you use AWS STS federated user sessions only when necessary, such
as when root user access is required. Instead, use roles to delegate permissions.

An AWS STS federated user session principal is a session principal that results from using the AWS
STS GetFederationToken operation. In this case, AWS STS uses identity federation as the
method to obtain temporary access tokens instead of using IAM roles.

In AWS, IAM users or an AWS account root user can authenticate using long-term access keys. For
more information about which principals can federate using this operation, see Comparing the
AWS STS API operations.

• IAM federated user – An IAM user federates using the GetFederationToken operation that
results in a federated user session principal for that IAM user.

• Federated root user – A root user federates using the GetFederationToken operation that
results in a federated user session principal for that root user.

When an IAM user or root user requests temporary credentials from AWS STS using this operation,
they begin a temporary federated user session. This session’s ARN is based on the original identity
that was federated.

To specify the federated user session ARN in the Principal element, use the following format:

"Principal": { "AWS": "arn:aws:sts::AWS-account-ID:federated-user/user-name" }

AWS service principals

You can specify AWS services in the Principal element of a resource-based policy or in condition
keys that support principals. A service principal is an identifier for a service.

IAM roles that can be assumed by an AWS service are called service roles. Service roles must include
a trust policy. Trust policies are resource-based policies attached to a role that defines which
principals can assume the role. Some service roles have predefined trust policies. However, in some
cases, you must specify the service principal in the trust policy. The service principal in an IAM
policy can't be "Service": "*".

JSON element reference 2812

https://docs.aws.amazon.com/general/latest/gr/root-vs-iam.html#aws_tasks-that-require-root
https://aws.amazon.com/identity/federation/

AWS Identity and Access Management User Guide

The identifier for a service principal includes the service name, and is usually in the following
format:

service-name.amazonaws.com

The service principal is defined by the service. You can find the service principal for some services
by opening AWS services that work with IAM, checking whether the service has Yes in the Service-
linked role column, and opening the Yes link to view the service-linked role documentation for
that service. Find the Service-Linked Role Permissions section for that service to view the service
principal.

The following example shows a policy that can be attached to a service role. The policy enables
two services, Amazon ECS and Elastic Load Balancing, to assume the role. The services can then
perform any tasks granted by the permissions policy assigned to the role (not shown). To specify
multiple service principals, you do not specify two Service elements; you can have only one.
Instead, you use an array of multiple service principals as the value of a single Service element.

"Principal": {
 "Service": [
 "ecs.amazonaws.com",
 "elasticloadbalancing.amazonaws.com"
]
}

AWS service principals in opt-in Regions

You can launch resources in several AWS Regions and some of those Regions you must opt in to.
For a complete list of Regions you must opt in to, see Managing AWS Regions in the AWS General
Reference guide.

When an AWS service in an opt-in Region makes a request within the same Region, the service
principal name format is identified as the non-regionalized version of their service principal name:

service-name.amazonaws.com

When an AWS service in an opt-in Region makes a cross-region request to another Region, the
service principal name format is identified as the regionalized version of their service principal
name:

service-name.{region}.amazonaws.com

JSON element reference 2813

https://docs.aws.amazon.com/general/latest/gr/rande-manage.html

AWS Identity and Access Management User Guide

For example, you have an Amazon SNS topic located in Region ap-southeast-1 and an Amazon
S3 bucket located in opt-in Region ap-east-1. You want to configure S3 bucket notifications to
publish messages to the SNS topic. To allow the S3 service to post messages to the SNS topic you
must grant the S3 service principal sns:Publish permission via the resource-based access policy
of the topic.

If you specify the non-regionalized version of the S3 service principal, s3.amazonaws.com, in the
topic access policy, the sns:Publish request from the bucket to the topic will fail. The following
example specifies the non-regionalized S3 service principal in the Principal policy element of
the SNS topic access policy.

"Principal": { "Service": "s3.amazonaws.com" }

Since the bucket is located in an opt-in Region and the request is made outside of that same
Region, the S3 service principal appears as the regionalized service principal name, s3.ap-
east-1.amazonaws.com. You must use the regionalized service principal name when an AWS
service in an opt-in Region makes a request to another Region. After you specify the regionalized
service principal name, if the bucket makes an sns:Publish request to the SNS topic located in
another Region, the request will be successful. The following example specifies the regionalized S3
service principal in the Principal policy element of the SNS topic access policy.

"Principal": { "Service": "s3.ap-east-1.amazonaws.com" }

Resource policies or service principal-based allow-lists for cross-Region requests from an opt-in
Region to another Region will only be successful if you specify the regionalized service principal
name.

Note

For IAM role trust policies, we recommend using the non-regionalized service principal
name. IAM resources are global and therefore the same role can be used in any Region.

All principals

You can use a wildcard (*) to specify all principals in the Principal element of a resource-based
policy or in condition keys that support principals. Resource-based policies grant permissions and
condition keys are used to limit the conditions of a policy statement.

JSON element reference 2814

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html

AWS Identity and Access Management User Guide

Important

We strongly recommend that you do not use a wildcard (*) in the Principal element
of a resource-based policy with an Allow effect unless you intend to grant public or
anonymous access. Otherwise, specify intended principals, services, or AWS accounts in the
Principal element and then further restrict access in the Condition element. This is
especially true for IAM role trust policies, because they allow other principals to become a
principal in your account.

For resource-based policies, using a wildcard (*) with an Allow effect grants access to all users,
including anonymous users (public access). For IAM users and role principals within your account,
no other permissions are required. For principals in other accounts, they must also have identity-
based permissions in their account that allow them to access your resource. This is called cross-
account access.

For anonymous users, the following elements are equivalent:

"Principal": "*"

"Principal" : { "AWS" : "*" }

You cannot use a wildcard to match part of a principal name or ARN.

The following example shows a resource-based policy that can be used instead of Specifying
NotPrincipal with Deny to explicitly deny all principals except for the ones specified in the
Condition element.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "UsePrincipalArnInsteadOfNotPrincipalWithDeny",
 "Effect": "Deny",
 "Action": "s3:*",
 "Principal": "*",
 "Resource": [
 "arn:aws:s3:::BUCKETNAME/*",
 "arn:aws:s3:::BUCKETNAME"

JSON element reference 2815

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_evaluation-logic-cross-account.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_evaluation-logic-cross-account.html

AWS Identity and Access Management User Guide

],
 "Condition": {
 "ArnNotEquals": {
 "aws:PrincipalArn": "arn:aws:iam::444455556666:user/user-name"
 }
 }
 }
]
}

More information

For more information, see the following:

• Bucket policy examples in the Amazon Simple Storage Service User Guide

• Example policies for Amazon SNS in the Amazon Simple Notification Service Developer Guide

• Amazon SQS policy examples in the Amazon Simple Queue Service Developer Guide

• Key policies in the AWS Key Management Service Developer Guide

• Account identifiers in the AWS General Reference

• About web identity federation

AWS JSON policy elements: NotPrincipal

You can use the NotPrincipal element to deny access to all principals except the IAM
user, federated user, IAM role, AWS account, AWS service, or other principal specified in the
NotPrincipal element.

You can use it in resource-based policies for some AWS services, including VPC endpoints.
Resource-based policies are policies that you embed directly in a resource. You cannot use the
NotPrincipal element in an IAM identity-based policy nor in an IAM role trust policy.

NotPrincipal must be used with "Effect":"Deny". Using it with "Effect":"Allow" is not
supported.

Important

Very few scenarios require the use of NotPrincipal. We recommend that you explore
other authorization options before you decide to use NotPrincipal. When you use

JSON element reference 2816

https://docs.aws.amazon.com/AmazonS3/latest/dev/example-bucket-policies.html
https://docs.aws.amazon.com/sns/latest/dg/UsingIAMwithSNS.html#ExamplePolicies_SNS
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/SQSExamples.html
https://docs.aws.amazon.com/kms/latest/developerguide/key-policies.html
https://docs.aws.amazon.com/general/latest/gr/acct-identifiers.html

AWS Identity and Access Management User Guide

NotPrincipal, troubleshooting the effects of multiple policy types can be difficult. We
recommend using the aws:PrincipalArn context key with ARN condition operators
instead. For more information, see All principals.

Specifying NotPrincipal with Deny

When you use NotPrincipal with Deny, you must also specify the account ARN of the not-
denied principal. Otherwise, the policy might deny access to the entire account containing the
principal. Depending on the service that you include in your policy, AWS might validate the account
first and then the user. If an assumed-role user (someone who is using a role) is being evaluated,
AWS might validate the account first, then the role, and then the assumed-role user. The assumed-
role user is identified by the role session name that is specified when they assumed the role.
Therefore, we strongly recommend that you explicitly include the ARN for a user's account, or
include both the ARN for a role and the ARN for the account containing that role.

Important

Don't use resource-based policy statements that include a NotPrincipal policy element
with a Deny effect for IAM users or roles that have a permissions boundary policy attached.
The NotPrincipal element with a Deny effect will always deny any IAM principal that
has a permissions boundary policy attached, regardless of the values specified in the
NotPrincipal element. This causes some IAM users or roles that would otherwise have
access to the resource to lose access. We recommend changing your resource-based policy
statements to use the condition operator ArnNotEquals with the aws:PrincipalArn
context key to limit access instead of the NotPrincipal element. For information about
permissions boundaries, see Permissions boundaries for IAM entities.

Note

As a best practice, you should include the ARNs for the account in your policy. Some
services require the account ARN, although this is not required in all cases. Any existing
policies without the required ARN will continue to work, but new policies that include these
services must meet this requirement. IAM does not track these services, and therefore
recommends that you always include the account ARN.

JSON element reference 2817

AWS Identity and Access Management User Guide

The following examples show how to use NotPrincipal and "Effect": "Deny" in the same
policy statement effectively.

Example Example IAM user in the same or a different account

In the following example, all principals except the user named Bob in AWS account 444455556666
are explicitly denied access to a resource. Note that as a best practice, the NotPrincipal
element contains the ARN of both the user Bob and the AWS account that Bob belongs to
(arn:aws:iam::444455556666:root). If the NotPrincipal element contained only Bob's
ARN, the effect of the policy might be to explicitly deny access to the AWS account that contains
the user Bob. In some cases, a user cannot have more permissions than its parent account, so if
Bob's account is explicitly denied access then Bob might be unable to access the resource.

This example works as intended when it is part of a policy statement in a resource-based policy
that is attached to a resource in either the same or a different AWS account (not 444455556666).
This example by itself does not grant access to Bob, it only omits Bob from the list of principals
that are explicitly denied. To allow Bob access to the resource, another policy statement must
explicitly allow access using "Effect": "Allow".

{
 "Version": "2012-10-17",
 "Statement": [{
 "Effect": "Deny",
 "NotPrincipal": {"AWS": [
 "arn:aws:iam::444455556666:user/Bob",
 "arn:aws:iam::444455556666:root"
]},
 "Action": "s3:*",
 "Resource": [
 "arn:aws:s3:::BUCKETNAME",
 "arn:aws:s3:::BUCKETNAME/*"
]
 }]
}

Example Example IAM role in the same or different account

In the following example, all principals except the assumed-role user named cross-account-audit-
app in AWS account 444455556666 are explicitly denied access to a resource. As a best practice,
the NotPrincipal element contains the ARN of the assumed-role user (cross-account-audit-
app), the role (cross-account-read-only-role), and the AWS account that the role belongs to

JSON element reference 2818

AWS Identity and Access Management User Guide

(444455556666). If the NotPrincipal element was missing the ARN of the role, the effect of
the policy might be to explicitly deny access to the role. Similarly, if the NotPrincipal element
was missing the ARN of the AWS account that the role belongs to, the effect of the policy might
be to explicitly deny access to the AWS account and all entities in that account. In some cases,
assumed-role users cannot have more permissions than their parent role, and roles cannot have
more permissions than their parent AWS account, so when the role or the account is explicitly
denied access, the assumed role user might be unable to access the resource.

This example works as intended when it is part of a policy statement in a resource-based policy
that is attached to a resource in a different AWS account (not 444455556666). This example by
itself does not allow access to the assumed-role user cross-account-audit-app, it only omits cross-
account-audit-app from the list of principals that are explicitly denied. To give cross-account-audit-
app access to the resource, another policy statement must explicitly allow access using "Effect":
"Allow".

{
 "Version": "2012-10-17",
 "Statement": [{
 "Effect": "Deny",
 "NotPrincipal": {"AWS": [
 "arn:aws:sts::444455556666:assumed-role/cross-account-read-only-role/cross-
account-audit-app",
 "arn:aws:iam::444455556666:role/cross-account-read-only-role",
 "arn:aws:iam::444455556666:root"
]},
 "Action": "s3:*",
 "Resource": [
 "arn:aws:s3:::Bucket_AccountAudit",
 "arn:aws:s3:::Bucket_AccountAudit/*"
]
 }]
}

When you specify an assumed-role session in a NotPrincipal element, you cannot use a wildcard
(*) to mean "all sessions". Principals must always name a specific session.

IAM JSON policy elements: Action

The Action element describes the specific action or actions that will be allowed or denied.
Statements must include either an Action or NotAction element. Each AWS service has its own

JSON element reference 2819

AWS Identity and Access Management User Guide

set of actions that describe tasks that you can perform with that service. For example, the list of
actions for Amazon S3 can be found at Specifying Permissions in a Policy in the Amazon Simple
Storage Service User Guide, the list of actions for Amazon EC2 can be found in the Amazon EC2
API Reference, and the list of actions for AWS Identity and Access Management can be found
in the IAM API Reference. To find the list of actions for other services, consult the API reference
documentation for the service.

You specify a value using a service namespace as an action prefix (iam, ec2, sqs, sns, s3, etc.)
followed by the name of the action to allow or deny. The name must match an action that is
supported by the service. The prefix and the action name are case insensitive. For example,
iam:ListAccessKeys is the same as IAM:listaccesskeys. The following examples show
Action elements for different services.

Amazon SQS action

"Action": "sqs:SendMessage"

Amazon EC2 action

"Action": "ec2:StartInstances"

IAM action

"Action": "iam:ChangePassword"

Amazon S3 action

"Action": "s3:GetObject"

You can specify multiple values for the Action element.

"Action": ["sqs:SendMessage", "sqs:ReceiveMessage", "ec2:StartInstances",
 "iam:ChangePassword", "s3:GetObject"]

You can use a wildcard (*) to give access to all the actions the specific AWS product offers. For
example, the following Action element applies to all S3 actions.

"Action": "s3:*"

JSON element reference 2820

https://docs.aws.amazon.com/AmazonS3/latest/dev/using-with-s3-actions.html
https://docs.aws.amazon.com/AWSEC2/latest/APIReference/query-apis.html
https://docs.aws.amazon.com/AWSEC2/latest/APIReference/query-apis.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_Operations.html
http://aws.amazon.com/documentation

AWS Identity and Access Management User Guide

You can also use wildcards (*) as part of the action name. For example, the following
Action element applies to all IAM actions that include the string AccessKey, including
CreateAccessKey, DeleteAccessKey, ListAccessKeys, and UpdateAccessKey.

"Action": "iam:*AccessKey*"

Some services let you limit the actions that are available. For example, Amazon SQS lets you make
available just a subset of all the possible Amazon SQS actions. In that case, the * wildcard doesn't
allow complete control of the queue; it allows only the subset of actions that you've shared. For
more information, see Understanding Permissions in the Amazon Simple Queue Service Developer
Guide.

IAM JSON policy elements: NotAction

NotAction is an advanced policy element that explicitly matches everything except the specified
list of actions. Using NotAction can result in a shorter policy by listing only a few actions that
should not match, rather than including a long list of actions that will match. Actions specified
in NotAction are not impacted by the Allow or Deny effect in a policy statement. This, in turn,
means that all of the applicable actions or services that are not listed are allowed if you use the
Allow effect. In addition, such unlisted actions or services are denied if you use the Deny effect.
When you use NotAction with the Resource element, you provide scope for the policy. This
is how AWS determines which actions or services are applicable. For more information, see the
following example policy.

NotAction with Allow

You can use the NotAction element in a statement with "Effect": "Allow" to provide access
to all of the actions in an AWS service, except for the actions specified in NotAction. You can use
it with the Resource element to provide scope for the policy, limiting the allowed actions to the
actions that can be performed on the specified resource.

The following example allows users to access all of the Amazon S3 actions that can be
performed on any S3 resource except for deleting a bucket. This does not allow users to use the
ListAllMyBuckets S3 API operation, because that action requires the "*" resource. This policy
also does not allow actions in other services, because other service actions are not applicable to the
S3 resources.

"Effect": "Allow",
"NotAction": "s3:DeleteBucket",

JSON element reference 2821

https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/acp-overview.html#PermissionTypes

AWS Identity and Access Management User Guide

"Resource": "arn:aws:s3:::*",

Sometimes, you might want to allow access to a large number of actions. By using the NotAction
element you effectively reverse the statement, resulting in a shorter list of actions. For example,
because AWS has so many services, you might want to create a policy that allows the user to do
everything except access IAM actions.

The following example allows users to access every action in every AWS service except for IAM.

"Effect": "Allow",
"NotAction": "iam:*",
"Resource": "*"

Be careful using the NotAction element and "Effect": "Allow" in the same statement or
in a different statement within a policy. NotAction matches all services and actions that are not
explicitly listed or applicable to the specified resource, and could result in granting users more
permissions than you intended.

NotAction with Deny

You can use the NotAction element in a statement with "Effect": "Deny" to deny access
to all of the listed resources except for the actions specified in the NotAction element. This
combination does not allow the listed items, but instead explicitly denies the actions not listed. You
must still allow actions that you want to allow.

The following conditional example denies access to non-IAM actions if the user is not signed in
using MFA. If the user is signed in with MFA, then the "Condition" test fails and the final "Deny"
statement has no effect. Note, however, that this would not grant the user access to any actions; it
would only explicitly deny all other actions except IAM actions.

{
 "Version": "2012-10-17",
 "Statement": [{
 "Sid": "DenyAllUsersNotUsingMFA",
 "Effect": "Deny",
 "NotAction": "iam:*",
 "Resource": "*",
 "Condition": {"BoolIfExists": {"aws:MultiFactorAuthPresent": "false"}}
 }]
}

JSON element reference 2822

AWS Identity and Access Management User Guide

For an example policy that denies access to actions outside of specific Regions, except for actions
from specific services, see AWS: Denies access to AWS based on the requested Region.

IAM JSON policy elements: Resource

The Resource element specifies the object or objects that the statement covers. Statements must
include either a Resource or a NotResource element. You specify a resource using an ARN. For
more information about the format of ARNs, see IAM ARNs.

Each service has its own set of resources. Although you always use an ARN to specify a resource,
the details of the ARN for a resource depend on the service and the resource. For information
about how to specify a resource, refer to the documentation for the service you want to write a
statement.

Note

Some services do not let you specify actions for individual resources; instead, any actions
that you list in the Action or NotAction element apply to all resources in that service. In
these cases, you use the wildcard * in the Resource element.

The following example refers to a specific Amazon SQS queue.

"Resource": "arn:aws:sqs:us-east-2:account-ID-without-hyphens:queue1"

The following example refers to the IAM user named Bob in an AWS account.

Note

In the Resource element, the IAM user name is case sensitive.

"Resource": "arn:aws:iam::account-ID-without-hyphens:user/Bob"

Using wildcards in resource ARNs

You can use wildcards as part of the resource ARN. You can use wildcard characters (* and ?)
within ARN segments (the parts separated by colons) to represent any combination of characters
with an asterisk (*) and any single character with a question mark (?). You can use multiple * or ?

JSON element reference 2823

AWS Identity and Access Management User Guide

characters in each segment. If the wildcard (*) is the last character of a resource ARN segment, it
can expand to match beyond colon boundaries. We recommend you use wildcards (* and ?) within
ARN segments separated by a colon.

Note

You can't use a wildcard in the service segment that identifies the AWS product. For more
information about ARN segments, see Amazon Resource Names (ARNs)

The following example refers to all IAM users whose path is /accounting.

"Resource": "arn:aws:iam::account-ID-without-hyphens:user/accounting/*"

The following example refers to all items within a specific Amazon S3 bucket.

"Resource": "arn:aws:s3:::DOC-EXAMPLE-BUCKET/*"

The asterisk (*) character can expand to replace everything within a segment, including characters
like a forward slash (/) that may otherwise appear to be a delimiter within a given service
namespace. For example, consider the following Amazon S3 ARN as the same wildcard expansion
logic applies to all services.

"Resource": "arn:aws:s3:::DOC-EXAMPLE-BUCKET/*/test/*"

The wildcards in the ARN apply to all of the following objects in the bucket, not only the first
object listed.

DOC-EXAMPLE-BUCKET/1/test/object.jpg
DOC-EXAMPLE-BUCKET/1/2/test/object.jpg
DOC-EXAMPLE-BUCKET/1/2/test/3/object.jpg
DOC-EXAMPLE-BUCKET/1/2/3/test/4/object.jpg
DOC-EXAMPLE-BUCKET/1///test///object.jpg
DOC-EXAMPLE-BUCKET/1/test/.jpg
DOC-EXAMPLE-BUCKET//test/object.jpg
DOC-EXAMPLE-BUCKET/1/test/

Consider the last two objects in the previous list. An Amazon S3 object name can validly begin
or end with the conventional delimiter forward slash (/) character. While "/" works as a delimiter,

JSON element reference 2824

AWS Identity and Access Management User Guide

there is no specific significance when this character is used within a resource ARN. It is treated the
same as any other valid character. The ARN would not match the following objects:

DOC-EXAMPLE-BUCKET/1-test/object.jpg
DOC-EXAMPLE-BUCKET/test/object.jpg
DOC-EXAMPLE-BUCKET/1/2/test.jpg

Specifying multiple resources

You can specify multiple resources. The following example refers to two DynamoDB tables.

"Resource": [
 "arn:aws:dynamodb:us-east-2:account-ID-without-hyphens:table/books_table",
 "arn:aws:dynamodb:us-east-2:account-ID-without-hyphens:table/magazines_table"
]

Using policy variables in resource ARNs

In the Resource element, you can use JSON policy variables in the part of the ARN that identifies
the specific resource (that is, in the trailing part of the ARN). For example, you can use the key
{aws:username} as part of a resource ARN to indicate that the current user's name should
be included as part of the resource's name. The following example shows how you can use the
{aws:username} key in a Resource element. The policy allows access to a Amazon DynamoDB
table that matches the current user's name.

{
 "Version": "2012-10-17",
 "Statement": {
 "Effect": "Allow",
 "Action": "dynamodb:*",
 "Resource": "arn:aws:dynamodb:us-east-2:account-id:table/${aws:username}"
 }
}

For more information about JSON policy variables, see IAM policy elements: Variables and tags.

IAM JSON policy elements: NotResource

NotResource is an advanced policy element that explicitly matches every resource except those
specified. Using NotResource can result in a shorter policy by listing only a few resources that

JSON element reference 2825

AWS Identity and Access Management User Guide

should not match, rather than including a long list of resources that will match. This is particularly
useful for policies that apply within a single AWS service.

For example, imagine you have a group named HRPayroll. Members of HRPayroll should not be
allowed to access any Amazon S3 resources except the Payroll folder in the HRBucket bucket.
The following policy explicitly denies access to all Amazon S3 resources other than the listed
resources. Note, however, that this policy does not grant the user access to any resources.

{
 "Version": "2012-10-17",
 "Statement": {
 "Effect": "Deny",
 "Action": "s3:*",
 "NotResource": [
 "arn:aws:s3:::HRBucket/Payroll",
 "arn:aws:s3:::HRBucket/Payroll/*"
]
 }
}

Normally, to explicitly deny access to a resource you would write a policy that uses
"Effect":"Deny" and that includes a Resource element that lists each folder individually.
However, in that case, each time you add a folder to HRBucket, or add a resource to Amazon
S3 that should not be accessed, you must add its name to the list in Resource. If you use a
NotResource element instead, users are automatically denied access to new folders unless you
add the folder names to the NotResource element.

When using NotResource, you should keep in mind that resources specified in this element are
the only resources that are not limited. This, in turn, limits all of the resources that would apply to
the action. In the example above, the policy affects only Amazon S3 actions, and therefore only
Amazon S3 resources. If the action also included Amazon EC2 actions, then the policy would not
deny access to any EC2 resources. To learn which actions in a service allow specifying the ARN of a
resource, see Actions, Resources, and Condition Keys for AWS Services.

NotResource with other elements

You should never use the "Effect": "Allow", "Action": "*", and "NotResource":
"arn:aws:s3:::HRBucket" elements together. This statement is very dangerous, because it
allows all actions in AWS on all resources except the HRBucket S3 bucket. This would even allow
the user to add a policy to themselves that allows them to access HRBucket. Do not do this.

JSON element reference 2826

reference_policies_actions-resources-contextkeys.html

AWS Identity and Access Management User Guide

Be careful using the NotResource element and "Effect": "Allow" in the same statement or
in a different statement within a policy. NotResource allows all services and resources that are
not explicitly listed, and could result in granting users more permissions than you intended. Using
the NotResource element and "Effect": "Deny" in the same statement denies services and
resources that are not explicitly listed.

IAM JSON policy elements: Condition

The Condition element (or Condition block) lets you specify conditions for when a policy is in
effect. The Condition element is optional. In the Condition element, you build expressions in
which you use condition operators (equal, less than, and others) to match the context keys and
values in the policy against keys and values in the request context. To learn more about the request
context, see Request.

"Condition" : { "{condition-operator}" : { "{condition-key}" : "{condition-value}" }}

The context key that you specify in a policy condition can be a global condition context key or a
service-specific context key. Global condition context keys have the aws: prefix. Service-specific
context keys have the service's prefix. For example, Amazon EC2 lets you write a condition using
the ec2:InstanceType context key, which is unique to that service. To view service-specific IAM
context keys with the iam: prefix, see IAM and AWS STS condition context keys.

Context key names are not case-sensitive. For example, including the aws:SourceIP context key
is equivalent to testing for AWS:SourceIp. Case-sensitivity of context key values depends on the
condition operator that you use. For example, the following condition includes the StringEquals
operator to make sure that only requests made by johndoe match. Users named JohnDoe are
denied access.

"Condition" : { "StringEquals" : { "aws:username" : "johndoe" }}

The following condition uses the StringEqualsIgnoreCase operator to match users named
johndoe or JohnDoe.

"Condition" : { "StringEqualsIgnoreCase" : { "aws:username" : "johndoe" }}

Some context keys support key–value pairs that allow you to specify part of the key
name. Examples include the aws:RequestTag/tag-key context key, the AWS KMS

JSON element reference 2827

AWS Identity and Access Management User Guide

kms:EncryptionContext:encryption_context_key, and the ResourceTag/tag-key
context key supported by multiple services.

• If you use the ResourceTag/tag-key context key for a service such as Amazon EC2, then you
must specify a key name for the tag-key.

• Key names are not case-sensitive. This means that if you specify "aws:ResourceTag/
TagKey1": "Value1" in the condition element of your policy, then the condition matches a
resource tag key named either TagKey1 or tagkey1, but not both.

• AWS services that support these attributes might allow you to create multiple key names that
differ only by case. For example, you might tag an Amazon EC2 instance with ec2=test1 and
EC2=test2. When you use a condition such as "aws:ResourceTag/EC2": "test1" to allow
access to that resource, the key name matches both tags, but only one value matches. This can
result in unexpected condition failures.

Important

As a best practice, make sure that members of your account follow a consistent naming
convention when naming key–value pair attributes. Examples include tags or AWS KMS
encryption contexts. You can enforce this using the aws:TagKeys context key for tagging,
or the kms:EncryptionContextKeys for the AWS KMS encryption context.

• For a list of all of the condition operators and a description of how they work, see Condition
operators.

• Unless otherwise specified, all context keys can have multiple values. For a description of how to
handle context keys that have multiple values, see Multivalued context keys.

• For a list of all of the globally available context keys, see AWS global condition context keys.

• For condition context keys that are defined by each service, see Actions, Resources, and
Condition Keys for AWS Services.

The request context

When a principal makes a request to AWS, AWS gathers the request information into a request
context. The information is used to evaluate and authorize the request. You can use the
Condition element of a JSON policy to test specific context keys against the request context.

JSON element reference 2828

https://docs.aws.amazon.com/kms/latest/developerguide/policy-conditions.html#conditions-kms-encryption-context
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/iam-policy-structure.html#amazon-ec2-keys
https://docs.aws.amazon.com/kms/latest/developerguide/policy-conditions.html#conditions-kms-encryption-context-keys
reference_policies_actions-resources-contextkeys.html
reference_policies_actions-resources-contextkeys.html

AWS Identity and Access Management User Guide

For example, you can create a policy that uses the aws:CurrentTime context key to allow a user to
perform actions within only a specific range of dates.

When a request is submitted, AWS evaluates each context key in the policy and returns a value
of true, false, not present, and occasionally null (an empty data string). A context key that is not
present in the request is considered a mismatch. For example, the following policy allows removing
your own multi-factor authentication (MFA) device, but only if you have signed in using MFA in the
last hour (3,600 seconds).

{
 "Version": "2012-10-17",
 "Statement": {
 "Sid": "AllowRemoveMfaOnlyIfRecentMfa",
 "Effect": "Allow",
 "Action": [
 "iam:DeactivateMFADevice"
],
 "Resource": "arn:aws:iam::*:user/${aws:username}",
 "Condition": {
 "NumericLessThanEquals": {"aws:MultiFactorAuthAge": "3600"}
 }
 }
}

The request context can return the following values:

• True – If the requester signed in using MFA in the last one hour or less, then the condition returns
true.

• False – If the requester signed in using MFA more than one hour ago, then the condition returns
false.

• Not present – If the requester made a request using their IAM user access keys in the AWS CLI or
AWS API, the key is not present. In this case, the key is not present, and it won't match.

• Null – For context keys that are defined by the user, such as passing tags in a request, it is
possible to include an empty string. In this case, the value in the request context is null. A null
value might return true in some cases. For example, if you use the multivalued ForAllValues
condition operator with the aws:TagKeys context key, you can experience unexpected results if
the request context returns null. For more information, see aws:TagKeys and Multivalued context
keys.

JSON element reference 2829

AWS Identity and Access Management User Guide

The condition block

The following example shows the basic format of a Condition element:

"Condition": {"StringLike": {"s3:prefix": ["janedoe/*"]}}

A value from the request is represented by a context key, in this case s3:prefix. The context key
value is compared to a value that you specify as a literal value, such as janedoe/*. The type of
comparison to make is specified by the condition operator (here, StringLike). You can create
conditions that compare strings, dates, numbers, and more using typical Boolean comparisons
such as equals, greater than, and less than. When you use string operators or ARN operators,
you can also use a policy variable in the context key value. The following example includes the
aws:username variable.

"Condition": {"StringLike": {"s3:prefix": ["${aws:username}/*"]}}

Under some circumstances, context keys can contain multiple values. For example, a request to
Amazon DynamoDB might ask to return or update multiple attributes from a table. A policy for
access to DynamoDB tables can include the dynamodb:Attributes context key, which contains
all the attributes listed in the request. You can test the multiple attributes in the request against
a list of allowed attributes in a policy by using set operators in the Condition element. For more
information, see Multivalued context keys.

When the policy is evaluated during a request, AWS replaces the key with the corresponding value
from the request. (In this example, AWS would use the date and time of the request.) The condition
is evaluated to return true or false, which is then factored into whether the policy as a whole allows
or denies the request.

Multiple values in a condition

A Condition element can contain multiple condition operators, and each condition operator can
contain multiple context key-value pairs. The following figure illustrates this.

JSON element reference 2830

AWS Identity and Access Management User Guide

For more information, see Multivalued context keys.

IAM JSON policy elements: Condition operators

Use condition operators in the Condition element to match the condition key and value in the
policy against values in the request context. For more information about the Condition element,
see IAM JSON policy elements: Condition.

The condition operator that you can use in a policy depends on the condition key you choose. You
can choose a global condition key or a service-specific condition key. To learn which condition
operator you can use for a global condition key, see AWS global condition context keys. To learn
which condition operator you can use for a service-specific condition key, see Actions, Resources,
and Condition Keys for AWS Services and choose the service that you want to view.

Important

If the key that you specify in a policy condition is not present in the request context, the
values do not match and the condition is false. If the policy condition requires that the key
is not matched, such as StringNotLike or ArnNotLike, and the right key is not present,
the condition is true. This logic applies to all condition operators except ...IfExists and Null
check. These operators test whether the key is present (exists) in the request context.

The condition operators can be grouped into the following categories:

• String

• Numeric

JSON element reference 2831

reference_policies_actions-resources-contextkeys.html
reference_policies_actions-resources-contextkeys.html

AWS Identity and Access Management User Guide

• Date and time

• Boolean

• Binary

• IP address

• Amazon Resource Name (ARN) (available for only some services.)

• ...IfExists (checks if the key value exists as part of another check)

• Null check (checks if the key value exists as a standalone check)

String condition operators

String condition operators let you construct Condition elements that restrict access based on
comparing a key to a string value.

Condition operator Description

StringEquals Exact matching, case sensitive

StringNotEquals Negated matching

StringEqualsIgnore
Case

Exact matching, ignoring case

StringNotEqualsIgn
oreCase

Negated matching, ignoring case

StringLike Case-sensitive matching. The values can include multi-
character match wildcards (*) and single-character match
wildcards (?) anywhere in the string. You must specify
wildcards to achieve partial string matches.

Note

If a key contains multiple values, StringLike can be
qualified with set operators—ForAllValues:Strin
gLike and ForAnyValue:StringLike . For more
information, see Multivalued context keys.

JSON element reference 2832

AWS Identity and Access Management User Guide

Condition operator Description

StringNotLike Negated case-sensitive matching. The values can include
multi-character match wildcards (*) or single-character match
wildcards (?) anywhere in the string.

For example, the following statement contains a Condition element that uses
aws:PrincipalTag key to specify that the principal making the request must be tagged with the
iamuser-admin job category.

{
 "Version": "2012-10-17",
 "Statement": {
 "Effect": "Allow",
 "Action": "iam:*AccessKey*",
 "Resource": "arn:aws:iam::account-id:user/*",
 "Condition": {"StringEquals": {"aws:PrincipalTag/job-category": "iamuser-admin"}}
 }
}

If the key that you specify in a policy condition is not present in the request context, the values
do not match. In this example, the aws:PrincipalTag/job-category key is present in the
request context if the principal is using an IAM user with attached tags. It is also included for a
principal using an IAM role with attached tags or session tags. If a user without the tag attempts to
view or edit an access key, the condition returns false and the request is implicitly denied by this
statement.

You can use a policy variable with the String condition operator.

The following example uses the StringLike condition operator to perform string matching with
a policy variable to create a policy that lets an IAM user use the Amazon S3 console to manage his
or her own "home directory" in an Amazon S3 bucket. The policy allows the specified actions on an
S3 bucket as long as the s3:prefix matches any one of the specified patterns.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",

JSON element reference 2833

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-principaltag

AWS Identity and Access Management User Guide

 "Action": [
 "s3:ListAllMyBuckets",
 "s3:GetBucketLocation"
],
 "Resource": "arn:aws:s3:::*"
 },
 {
 "Effect": "Allow",
 "Action": "s3:ListBucket",
 "Resource": "arn:aws:s3:::BUCKET-NAME",
 "Condition": {"StringLike": {"s3:prefix": [
 "",
 "home/",
 "home/${aws:username}/"
]}}
 },
 {
 "Effect": "Allow",
 "Action": "s3:*",
 "Resource": [
 "arn:aws:s3:::BUCKET-NAME/home/${aws:username}",
 "arn:aws:s3:::BUCKET-NAME/home/${aws:username}/*"
]
 }
]
}

For an example of a policy that shows how to use the Condition element to restrict access to
resources based on an application ID and a user ID for web identity federation, see Amazon S3:
Allows Amazon Cognito users to access objects in their bucket.

Wildcard matching

String condition operators perform a patternless matching that does not enforce a predefined
format. ARN and Date condition operators are a subset of string operators that enforce a structure
on the condition key value. When you use StringLike or StringNotLike operators for partial string
matches of an ARN or date, the matching ignores which portion of the structure is wildcarded.

For example, the following conditions search for a partial match of an ARN using different
condition operators.

JSON element reference 2834

AWS Identity and Access Management User Guide

When ArnLike is used, the partition, service, account-id, resource-type, and partial resource-id
portions of the ARN must have exact matching to the ARN in the request context. Only the region
and resource path allow partial matching.

"Condition": {"ArnLike": {"aws:SourceArn": "arn:aws:cloudtrail:*:111122223333:trail/
*"}}

When StringLike is used instead of ArnLike, matching ignores the ARN structure and allows partial
matching, regardless of the portion that was wildcarded.

"Condition": {"StringLike": {"aws:SourceArn": "arn:aws:cloudtrail:*:111122223333:trail/
*"}}

ARN ArnLike StringLike

arn:aws:cloudtrail:us-west-
2:111122223333:trail/financ
e

Match Match

arn:aws:cloudtrail:us-east-
2:111122223333:trail/financ
e/archive

Match Match

arn:aws:cloudtrail:us-
east-2:444455556
666:user/111122223333:trai
l/finance

No match Match

Numeric condition operators

Numeric condition operators let you construct Condition elements that restrict access based on
comparing a key to an integer or decimal value.

Condition operator Description

NumericEquals Matching

JSON element reference 2835

AWS Identity and Access Management User Guide

Condition operator Description

NumericNotEquals Negated matching

NumericLessThan "Less than" matching

NumericLessThanEqu
als

"Less than or equals" matching

NumericGreaterThan "Greater than" matching

NumericGreaterThan
Equals

"Greater than or equals" matching

For example, the following statement contains a Condition element that uses the
NumericLessThanEquals condition operator with the s3:max-keys key to specify that the
requester can list up to 10 objects in example_bucket at a time.

{
 "Version": "2012-10-17",
 "Statement": {
 "Effect": "Allow",
 "Action": "s3:ListBucket",
 "Resource": "arn:aws:s3:::example_bucket",
 "Condition": {"NumericLessThanEquals": {"s3:max-keys": "10"}}
 }
}

If the key that you specify in a policy condition is not present in the request context, the values
do not match. In this example, the s3:max-keys key is always present in the request when you
perform the ListBucket operation. If this policy allowed all Amazon S3 operations, then only the
operations that include the max-keys context key with a value of less than or equal to 10 would
be allowed.

You can not use a policy variable with the Numeric condition operator.

Date condition operators

Date condition operators let you construct Condition elements that restrict access based on
comparing a key to a date/time value. You use these condition operators with aws:CurrentTime

JSON element reference 2836

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-currenttime

AWS Identity and Access Management User Guide

key or aws:EpochTime key. You must specify date/time values with one of the W3C
implementations of the ISO 8601 date formats or in epoch (UNIX) time.

Note

Wildcards are not permitted for date condition operators.

Condition operator Description

DateEquals Matching a specific date

DateNotEquals Negated matching

DateLessThan Matching before a specific date and time

DateLessThanEquals Matching at or before a specific date and time

DateGreaterThan Matching after a specific a date and time

DateGreaterThanEqu
als

Matching at or after a specific date and time

For example, the following statement contains a Condition element that uses the
DateGreaterThan condition operator with the aws:TokenIssueTime key. This condition
specifies that the temporary security credentials used to make the request were issued in 2020.
This policy can be updated programmatically every day to ensure that account members use fresh
credentials.

{
 "Version": "2012-10-17",
 "Statement": {
 "Effect": "Allow",
 "Action": "iam:*AccessKey*",
 "Resource": "arn:aws:iam::account-id:user/*",
 "Condition": {"DateGreaterThan": {"aws:TokenIssueTime": "2020-01-01T00:00:01Z"}}
 }
}

JSON element reference 2837

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-epochtime
http://www.w3.org/TR/NOTE-datetime
http://www.w3.org/TR/NOTE-datetime
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-tokenissuetime

AWS Identity and Access Management User Guide

If the key that you specify in a policy condition is not present in the request context, the values
do not match. The aws:TokenIssueTime key is present in the request context only when the
principal uses temporary credentials to make the request. The key is not present in AWS CLI, AWS
API, or AWS SDK requests that are made using access keys. In this example, if an IAM user attempts
to view or edit an access key, the request is denied.

You can not use a policy variable with the Date condition operator.

Boolean condition operators

Boolean conditions let you construct Condition elements that restrict access based on comparing
a key to "true" or "false."

Condition operator Description

Bool Boolean matching

For example, this identity-based policy uses the Bool condition operator with the
aws:SecureTransport key to denies replicating objects and object tags to the destination
bucket and its contents if the request is not over SSL.

Important

This policy does not allow any actions. Use this policy in combination with other policies
that allow specific actions.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "BooleanExample",
 "Action": "s3:ReplicateObject",
 "Effect": "Deny",
 "Resource": [
 "arn:aws:s3:::DOC-EXAMPLE-BUCKET",
 "arn:aws:s3:::DOC-EXAMPLE-BUCKET/*"
],
 "Condition": {

JSON element reference 2838

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-securetransport

AWS Identity and Access Management User Guide

 "Bool": {
 "aws:SecureTransport": "false"
 }
 }
 }
]
}

If the key that you specify in a policy condition is not present in the request context, the values do
not match. The aws:SecureTransport request context returns true or false.

You can use a policy variable with the Boolean condition operator.

Binary condition operators

The BinaryEquals condition operator let you construct Condition elements that test key values
that are in binary format. It compares the value of the specified key byte for byte against a base-64
encoded representation of the binary value in the policy.

"Condition" : {
 "BinaryEquals": {
 "key" : "QmluYXJ5VmFsdWVJbkJhc2U2NA=="
 }
}

If the key that you specify in a policy condition is not present in the request context, the values do
not match.

You can not use a policy variable with the Binary condition operator.

IP address condition operators

IP address condition operators let you construct Condition elements that restrict access based
on comparing a key to an IPv4 or IPv6 address or range of IP addresses. You use these with the
aws:SourceIp key. The value must be in the standard CIDR format (for example, 203.0.113.0/24
or 2001:DB8:1234:5678::/64). If you specify an IP address without the associated routing prefix,
IAM uses the default prefix value of /32.

Some AWS services support IPv6, using :: to represent a range of 0s. To learn whether a service
supports IPv6, see the documentation for that service.

JSON element reference 2839

https://en.wikipedia.org/wiki/Base64
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-sourceip

AWS Identity and Access Management User Guide

Condition operator Description

IpAddress The specified IP address or range

NotIpAddress All IP addresses except the specified IP address or range

For example, the following statement uses the IpAddress condition operator with the
aws:SourceIp key to specify that the request must come from the IP range 203.0.113.0 to
203.0.113.255.

{
 "Version": "2012-10-17",
 "Statement": {
 "Effect": "Allow",
 "Action": "iam:*AccessKey*",
 "Resource": "arn:aws:iam::account-id:user/*",
 "Condition": {"IpAddress": {"aws:SourceIp": "203.0.113.0/24"}}
 }
}

The aws:SourceIp condition key resolves to the IP address that the request originates from. If
the requests originates from an Amazon EC2 instance, aws:SourceIp evaluates to the instance's
public IP address.

If the key that you specify in a policy condition is not present in the request context, the values
do not match. The aws:SourceIp key is always present in the request context, except when the
requester uses a VPC endpoint to make the request. In this case, the condition returns false and
the request is implicitly denied by this statement.

You can not use a policy variable with the IpAddress condition operator.

The following example shows how to mix IPv4 and IPv6 addresses to cover all of your
organization's valid IP addresses. We recommend that you update your organization's policies
with your IPv6 address ranges in addition to IPv4 ranges you already have to ensure the policies
continue to work as you make the transition to IPv6.

{
 "Version": "2012-10-17",
 "Statement": {

JSON element reference 2840

AWS Identity and Access Management User Guide

 "Effect": "Allow",
 "Action": "someservice:*",
 "Resource": "*",
 "Condition": {
 "IpAddress": {
 "aws:SourceIp": [
 "203.0.113.0/24",
 "2001:DB8:1234:5678::/64"
]
 }
 }
 }
}

The aws:SourceIp condition key works only in a JSON policy if you are calling the tested API
directly as a user. If you instead use a service to call the target service on your behalf, the target
service sees the IP address of the calling service rather than the IP address of the originating user.
This can happen, for example, if you use AWS CloudFormation to call Amazon EC2 to construct
instances for you. There is currently no way to pass the originating IP address through a calling
service to the target service for evaluation in a JSON policy. For these types of service API calls, do
not use the aws:SourceIp condition key.

Amazon Resource Name (ARN) condition operators

Amazon Resource Name (ARN) condition operators let you construct Condition elements that
restrict access based on comparing a key to an ARN. The ARN is considered a string.

Condition operator Description

ArnEquals , ArnLike Case-sensitive matching of the ARN. Each of the six colon-delimited
components of the ARN is checked separately and each can include
multi-character match wildcards (*) or single-character match
wildcards (?). The ArnEquals and ArnLike condition operators
behave identically.

ArnNotEquals ,
ArnNotLike

Negated matching for ARN. The ArnNotEquals and ArnNotLike
condition operators behave identically.

You can use a policy variable with the ARN condition operator.

JSON element reference 2841

AWS Identity and Access Management User Guide

The following resource-based policy example shows a policy attached to an Amazon SQS queue
to which you want to send SNS messages. It gives Amazon SNS permission to send messages to
the queue (or queues) of your choice, but only if the service is sending the messages on behalf of
a particular Amazon SNS topic (or topics). You specify the queue in the Resource field, and the
Amazon SNS topic as the value for the SourceArn key.

{
 "Version": "2012-10-17",
 "Statement": {
 "Effect": "Allow",
 "Principal": {"AWS": "123456789012"},
 "Action": "SQS:SendMessage",
 "Resource": "arn:aws:sqs:REGION:123456789012:QUEUE-ID",
 "Condition": {"ArnEquals": {"aws:SourceArn":
 "arn:aws:sns:REGION:123456789012:TOPIC-ID"}}
 }
}

If the key that you specify in a policy condition is not present in the request context, the values do
not match. The aws:SourceArn key is present in the request context only if a resource triggers a
service to call another service on behalf of the resource owner. If an IAM user attempts to perform
this operation directly, the condition returns false and the request is implicitly denied by this
statement.

...IfExists condition operators

You can add IfExists to the end of any condition operator name except the Null condition
—for example, StringLikeIfExists. You do this to say "If the policy key is present
in the context of the request, process the key as specified in the policy. If the key is not
present, evaluate the condition element as true." Other condition elements in the statement
can still result in a nonmatch, but not a missing key when checked with ...IfExists.
If you are using an "Effect": "Deny" element with a negated condition operator like
StringNotEqualsIfExists, the request is still denied even if the tag is missing.

Example using IfExists

Many condition keys describe information about a certain type of resource and only exist when
accessing that type of resource. These condition keys are not present on other types of resources.
This doesn't cause an issue when the policy statement applies to only one type of resource.
However, there are cases where a single statement can apply to multiple types of resources, such as

JSON element reference 2842

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-sourcearn

AWS Identity and Access Management User Guide

when the policy statement references actions from multiple services or when a given action within
a service accesses several different resource types within the same service. In such cases, including
a condition key that applies to only one of the resources in the policy statement can cause the
Condition element in the policy statement to fail such that the statement's "Effect" does not
apply.

For example, consider the following policy example:

{
 "Version": "2012-10-17",
 "Statement": {
 "Sid": "THISPOLICYDOESNOTWORK",
 "Effect": "Allow",
 "Action": "ec2:RunInstances",
 "Resource": "*",
 "Condition": {"StringLike": {"ec2:InstanceType": [
 "t1.*",
 "t2.*",
 "m3.*"
]}}
 }
}

The intent of the preceding policy is to enable the user to launch any instance that is type t1, t2 or
m3. However, launching an instance requires accessing many resources in addition to the instance
itself; for example, images, key pairs, security groups, and more. The entire statement is evaluated
against every resource that is required to launch the instance. These additional resources do not
have the ec2:InstanceType condition key, so the StringLike check fails, and the user is not
granted the ability to launch any instance type.

To address this, use the StringLikeIfExists condition operator instead. This way, the test
only happens if the condition key exists. You could read the following policy as: "If the resource
being checked has an "ec2:InstanceType" condition key, then allow the action only if the key
value begins with t1., t2., or m3.. If the resource being checked does not have that condition
key, then don't worry about it." The asterisk (*) in the condition key values, when used with the
StringLikeIfExists condition operator, is interpreted as a wildcard to achieve partial string
matches. The DescribeActions statement includes the actions required to view the instance in
the console.

{

JSON element reference 2843

AWS Identity and Access Management User Guide

 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "RunInstance",
 "Effect": "Allow",
 "Action": "ec2:RunInstances",
 "Resource": "*",
 "Condition": {
 "StringLikeIfExists": {
 "ec2:InstanceType": [
 "t1.*",
 "t2.*",
 "m3.*"
]}}
 },
 {
 "Sid": "DescribeActions",
 "Effect": "Allow",
 "Action": [
 "ec2:DescribeImages",
 "ec2:DescribeInstances",
 "ec2:DescribeVpcs",
 "ec2:DescribeKeyPairs",
 "ec2:DescribeSubnets",
 "ec2:DescribeSecurityGroups"
],
 "Resource": "*"
 }]
}

Condition operator to check existence of condition keys

Use a Null condition operator to check if a condition key is absent at the time of authorization. In
the policy statement, use either true (the key doesn't exist — it is null) or false (the key exists
and its value is not null).

You can not use a policy variable with the Null condition operator.

For example, you can use this condition operator to determine whether a user is using their own
credentials for the operation or temporary credentials. If the user is using temporary credentials,
then the key aws:TokenIssueTime exists and has a value. The following example shows a
condition that states that the user must not be using temporary credentials (the key must not
exist) for the user to use the Amazon EC2 API.

JSON element reference 2844

AWS Identity and Access Management User Guide

{
 "Version": "2012-10-17",
 "Statement":{
 "Action":"ec2:*",
 "Effect":"Allow",
 "Resource":"*",
 "Condition":{"Null":{"aws:TokenIssueTime":"true"}}
 }
}

Conditions with multiple context keys or values

You can use the Condition element of a policy to test multiple context keys or multiple values
for a single context key in a request. When you make a request to AWS, either programmatically or
through the AWS Management Console, your request includes information about your principal,
operation, tags, and more. You can use context keys to test the values of the matching context keys
in the request, with the context keys specified in the policy condition. To learn about information
and data included in a request, see The request context.

Topics

• Evaluation logic for multiple context keys or values

• Evaluation logic for negated matching condition operators

Evaluation logic for multiple context keys or values

A Condition element can contain multiple condition operators, and each condition operator can
contain multiple context key-value pairs. Most context keys support using multiple values, unless
otherwise specified.

• If your policy statement has multiple condition operators, the condition operators are evaluated
using a logical AND.

• If your policy statement has multiple context keys attached to a single condition operator, the
context keys are evaluated using a logical AND.

• If a single condition operator includes multiple values for a context key, those values are
evaluated using a logical OR.

• If a single negated matching condition operator includes multiple values for a context key, those
values are evaluated using a logical NOR.

JSON element reference 2845

AWS Identity and Access Management User Guide

All context keys in a condition element block must resolve to true to invoke the desired Allow
or Deny effect. The following figure illustrates the evaluation logic for a condition with multiple
condition operators and context key-value pairs.

For example, the following S3 bucket policy illustrates how the previous figure is represented
in a policy. The condition block includes condition operators StringEquals and ArnLike, and
context keys aws:PrincipalTag and aws:PrincipalArn. To invoke the desired Allow or Deny
effect, all context keys in the condition block must resolve to true. The user making the request
must have both principal tag keys, department and role, that include one of the tag key values
specified in the policy. Also, the principal ARN of the user making the request must match one of
the aws:PrincipalArn values specified in the policy to be evaluated as true.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "ExamplePolicy",
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::222222222222:root"
 },
 "Action": "s3:ListBucket",
 "Resource": "arn:aws:s3:::DOC-EXAMPLE-BUCKET",
 "Condition": {
 "StringEquals": {
 "aws:PrincipalTag/department": [

JSON element reference 2846

AWS Identity and Access Management User Guide

 "finance",
 "hr",
 "legal"
],
 "aws:PrincipalTag/role": [
 "audit",
 "security"
]
 },
 "ArnLike": {
 "aws:PrincipalArn": [
 "arn:aws:iam::222222222222:user/Ana",
 "arn:aws:iam::222222222222:user/Mary"
]
 }
 }
 }
]
}

Evaluation logic for negated matching condition operators

Some condition operators, such as StringNotEquals or ArnNotLike, use negated matching to
compare the context key-value pairs in your policy against the context key-value pairs in a request.
When multiple values are specified for a single context key in a policy with negated matching
condition operators, the effective permissions work like a logical NOR. In negated matching, a
logical NOR or NOT OR returns true only if all values evaluate to false.

The following figure illustrates the evaluation logic for a condition with multiple condition
operators and context key-value pairs. The figure includes a negated matching condition operator
for context key 3.

JSON element reference 2847

AWS Identity and Access Management User Guide

For example, the following S3 bucket policy illustrates how the previous figure is represented
in a policy. The condition block includes condition operators StringEquals and ArnNotLike,
and context keys aws:PrincipalTag and aws:PrincipalArn. To invoke the desired Allow
or Deny effect, all context keys in the condition block must resolve to true. The user making the
request must have both principal tag keys, department and role, that include one of the tag key
values specified in the policy. Since the ArnNotLike condition operator uses negated matching,
the principal ARN of the user making the request must not match any of the aws:PrincipalArn
values specified in the policy to be evaluated as true.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "ExamplePolicy",
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::222222222222:root"
 },
 "Action": "s3:ListBucket",
 "Resource": "arn:aws:s3:::DOC-EXAMPLE-BUCKET",
 "Condition": {
 "StringEquals": {
 "aws:PrincipalTag/department": [
 "finance",

JSON element reference 2848

AWS Identity and Access Management User Guide

 "hr",
 "legal"
],
 "aws:PrincipalTag/role": [
 "audit",
 "security"
]
 },
 "ArnNotLike": {
 "aws:PrincipalArn": [
 "arn:aws:iam::222222222222:user/Ana",
 "arn:aws:iam::222222222222:user/Mary"
]
 }
 }
 }
]
}

Single-valued vs. multivalued context keys

The difference between single-valued and multivalued context keys depends on the number of
values in the request context, not the number of values in the policy condition.

• Single-valued condition context keys have at most one value in the request context. For example,
you can tag resources in AWS. Resource tags are stored as tag key-value pairs. A resource tag
key can have a single tag value. Therefore, the section called “ResourceTag” is a single-valued
context key. Do not use a condition set operator with a single-valued context key.

• Multivalued condition context keys can have multiple values in the request context. For example,
you can tag resources in AWS and include multiple tag key-value pairs in a request. Therefore,
the section called “TagKeys” is a multivalued context key. Multivalued context keys require a
condition set operator.

Important

Multivalued context keys require a condition set operator. Do not use condition set
operators ForAllValues or ForAnyValue with single-valued context keys. To learn more
about condition set operators, see Multivalued context keys.

JSON element reference 2849

AWS Identity and Access Management User Guide

The Single-valued and Multivalued classifications are included in the description of each condition
context key as Value type in the AWS global condition context keys topic. The Service Authorization
Reference uses a different value type classification for multivalued context keys in the following
format: an ArrayOf prefix followed by the condition operator category type. For example,
ArrayOfString or ArrayOfARN.

For example, a request can originate from at most one VPC endpoint, so the section called
“SourceVpce” is a single-valued context key. Since a service can have more than one service
principal name that belongs to the service, aws:PrincipalServiceNamesList is a multivalued context
key.

You can use any available single-valued context key as a policy variable. You cannot use a
multivalued context key as a policy variable. For more information about policy variables, see IAM
policy elements: Variables and tags.

Multivalued context keys require condition set operators ForAllValues or ForAnyValue.
Context keys that include key-value pairs such as the section called “RequestTag” and the section
called “ResourceTag” can cause confusion because there can be multiple tag-key values. But
since each tag-key can have only one value, aws:RequestTag and aws:ResourceTag are both
single-valued context keys. Using condition set operators with single-valued context keys can lead
to overly permissive policies.

Multivalued context keys

To compare your condition context key against a request context key with multiple values, you
must use the ForAllValues or ForAnyValue set operators. These set operators are used to
compare two sets of values, such as the set of tags in a request and the set of tags in a policy
condition.

The ForAllValues and ForAnyValue qualifiers add set-operation functionality to the condition
operator so that you can test request context keys with multiple values against multiple context
key values in a policy condition. Additionally, if you include a multivalued string context key in
your policy with a wildcard or a variable, you must also use the StringLike condition operator.
Multiple condition key values must be enclosed in brackets like an array. For example, "Key2":
["Value2A", "Value2B"].

• ForAllValues – This qualifier tests whether the value of every member of the request set is a
subset of the condition context key set. The condition returns true if every context key value in
the request matches at least one context key value in the policy. It also returns true if there are

JSON element reference 2850

https://docs.aws.amazon.com/service-authorization/latest/reference/reference_policies_actions-resources-contextkeys.html
https://docs.aws.amazon.com/service-authorization/latest/reference/reference_policies_actions-resources-contextkeys.html

AWS Identity and Access Management User Guide

no context keys in the request, or if the context key value resolves to a null dataset, such as an
empty string. To prevent missing context keys or context keys with empty values from evaluating
to true, you can include the Null condition operator in your policy with a false value to check if
the context key exists and its value is not null.

Important

Use caution if you use ForAllValues with an Allow effect because it can be overly
permissive if the presence of missing context keys or context keys with empty values in
the request context is unexpected. You can include the Null condition operator in your
policy with a false value to check if the context key exists and its value is not null. For an
example, see Controlling access based on tag keys.

• ForAnyValue – This qualifier tests whether at least one member of the set of request context
key values matches at least one member of the set of context key values in your policy condition.
The context key returns true if any one of the context key values in the request matches any
one of the context key values in the policy. For no matching context key or a null dataset, the
condition returns false.

Note

The difference between single-valued and multivalued context keys depends on the
number of values in the request context, not the number of values in the policy condition.

Condition policy examples

In IAM policies, you can specify multiple values for both single-valued and multivalued
context keys for comparison against the request context. The following set of policy examples
demonstrates policy conditions with multiple context keys and values.

Note

If you would like to submit a policy to be included in this reference guide, use the Feedback
button at the bottom of this page. For IAM identity-based policy examples, see Example
IAM identity-based policies.

JSON element reference 2851

AWS Identity and Access Management User Guide

Condition policy examples: Single-valued context keys

• Multiple condition blocks with single-valued context keys. (View this example.)

• One condition block with multiple single-valued context keys and values. (View this example.)

Condition policy examples: Multivalued context keys

• Deny policy with condition set operator ForAllValues. (View this example.)

• Deny policy with condition set operator ForAnyValue. (View this example.)

Multivalued context key examples

The following set of policy examples demonstrate how to create policy conditions with multivalued
context keys.

Example: Deny policy with condition set operator ForAllValues

The following example identity-based policy denies the use of IAM tagging actions when specific
tag key prefixes are included in the request. Each value for context key aws:TagKeys includes a
wildcard (*) for partial string matching. The policy includes the ForAllValues set operator with
context key aws:TagKeys because the request context key can include multiple values. In order
for context key aws:TagKeys to return true, every value in the request must match at least one
value in the policy.

The ForAllValues set operator also returns true if there are no context keys in the request, or
if the context key value resolves to a null dataset, such as an empty string. To prevent missing
context keys or context keys with empty values from evaluating to true, include the Null condition
operator in your policy with a value of false to check if the context key in the request exists and
its value is not null.

Important

This policy does not allow any actions. Use this policy in combination with other policies
that allow specific actions.

{

JSON element reference 2852

AWS Identity and Access Management User Guide

 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "DenyRestrictedTags",
 "Effect": "Deny",
 "Action": [
 "iam:Tag*",
 "iam:UnTag*"
],
 "Resource": [
 "*"
],
 "Condition": {
 "Null": {
 "aws:TagKeys": "false"
 },
 "ForAllValues:StringLike": {
 "aws:TagKeys": [
 "key1*",
 "key2*",
 "key3*"
]
 }
 }
 }
]
}

Example: Deny policy with condition set operator ForAnyValue

The following identity-based policy example denies creating snapshots of EC2 instance volumes
if any snapshots are tagged with one of the tag keys specified in the policy, environment or
webserver. The policy includes the ForAnyValue set operator with context key aws:TagKeys
because the request context key can include multiple values. If your tagging request includes
any one of the tag key values specified in the policy, the aws:TagKeys context key returns true
invoking the deny policy effect.

Important

This policy does not allow any actions. Use this policy in combination with other policies
that allow specific actions.

JSON element reference 2853

AWS Identity and Access Management User Guide

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Deny",
 "Action": [
 "ec2:CreateSnapshot",
 "ec2:CreateSnapshots"
],
 "Resource": "arn:aws:ec2:us-west-2::snapshot/*",
 "Condition": {
 "ForAnyValue:StringEquals": {
 "aws:TagKeys": ["environment", "webserver"]
 }
 }
 }
]
}

Single-valued context key policy examples

The following set of policy examples demonstrate how to create policy conditions with single-
valued context keys.

Example: Multiple condition blocks with single-valued context keys

When a condition block has multiple conditions, each with a single context key, all context keys
must resolve to true for the desired Allow or Deny effect to be invoked. When you use negated
matching condition operators, the evaluation logic of the condition value is reversed.

The following example lets users create EC2 volumes and apply tags to the volumes during
volume creation. The request context must include a value for context key aws:RequestTag/
project, and the value for context key aws:ResourceTag/environment can be anything
except production.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "ec2:CreateVolume",

JSON element reference 2854

AWS Identity and Access Management User Guide

 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Action": "ec2:CreateTags",
 "Resource": "arn:aws:ec2:::volume/*",
 "Condition": {
 "StringLike": {
 "aws:RequestTag/project": "*"
 }
 }
 },
 {
 "Effect": "Allow",
 "Action": "ec2:CreateTags",
 "Resource": "arn:aws:ec2:region:account:*/*",
 "Condition": {
 "StringNotEquals": {
 "aws:ResourceTag/environment": "production"
 }
 }
 }
]
}

The request context must include a project tag-value and cannot be created for a production
resource to invoke the Allow effect. The following EC2 volume is successfully created because the
project name is Feature3 with a QA resource tag.

aws ec2 create-volume \
 --availability-zone us-east-1a \
 --volume-type gp2 \
 --size 80 \
 --tag-specifications 'ResourceType=volume,Tags=[{Key=project,Value=Feature3},
{Key=environment,Value=QA}]'

Example: One condition block with multiple single-valued context keys and values

When a condition block contains multiple context keys and each context key has multiple values,
each context key must resolve to true for at least one key value for the desired Allow or Deny
effect to be invoked. When you use negated matching condition operators, the evaluation logic of
the context key value is reversed.

JSON element reference 2855

AWS Identity and Access Management User Guide

The following example allows users to start and run tasks on Amazon Elastic Container Service
clusters.

• The request context must include production OR pre-prod for the aws:RequestTag/
environment context key AND.

• The ecs:cluster context key makes sure that tasks are run on either the default1 OR
default2 ARN ECS clusters.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "ecs:RunTask",
 "ecs:StartTask"
],
 "Resource": [
 "*"
],
 "Condition": {
 "StringEquals": {
 "aws:RequestTag/environment": [
 "production",
 "prod-backup"
]
 },
 "ArnEquals": {
 "ecs:cluster": [
 "arn:aws:ecs:us-east-1:111122223333:cluster/default1",
 "arn:aws:ecs:us-east-1:111122223333:cluster/default2"
]
 }
 }
 }
]
}

JSON element reference 2856

AWS Identity and Access Management User Guide

IAM policy elements: Variables and tags

Use AWS Identity and Access Management (IAM) policy variables as placeholders when you don't
know the exact value of a resource or condition key when you write the policy.

Note

If AWS cannot resolve a variable this might cause the entire statement to be invalid. For
example, if you use the aws:TokenIssueTime variable, the variable resolves to a value
only when the requester authenticated using temporary credentials (an IAM role). To
prevent variables from causing invalid statements, use the ...IfExists condition operator.

Topics

• Introduction

• Using variables in policies

• Tags as policy variables

• Where you can use policy variables

• Policy variables with no value

• Request information that you can use for policy variables

• Specifying default values

• For more information

Introduction

In IAM policies, many actions allow you to provide a name for the specific resources that you want
to control access to. For example, the following policy allows users to list, read, and write objects in
the S3 bucket DOC-EXAMPLE-BUCKET for marketing projects.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": ["s3:ListBucket"],
 "Resource": ["arn:aws:s3:::DOC-EXAMPLE-BUCKET"],
 "Condition": {"StringLike": {"s3:prefix": ["marketing/*"]}}

JSON element reference 2857

AWS Identity and Access Management User Guide

 },
 {
 "Effect": "Allow",
 "Action": [
 "s3:GetObject",
 "s3:PutObject"
],
 "Resource": ["arn:aws:s3:::DOC-EXAMPLE-BUCKET/marketing/*"]
 }
]
}

In some cases, you might not know the exact name of the resource when you write the policy. You
might want to generalize the policy so it works for many users without having to make a unique
copy of the policy for each user. Instead of creating a separate policy for each user, we recommend
you create a single group policy that works for any user in that group.

Using variables in policies

You can define dynamic values inside policies by using policy variables that set placeholders in a
policy.

Variables are marked using a $ prefix followed by a pair of curly braces ({ }) that include the
variable name of the value from the request.

When the policy is evaluated, the policy variables are replaced with values that come from the
conditional context keys passed in the request. Variables can be used in identity-based policies,
resource policies, service control policies, session policies, and VPC endpoint policies. Identity-
based policies used as permissions boundaries also support policy variables.

Global condition context keys can be used as variables in requests across AWS services. Service
specific condition keys can also be used as variables when interacting with AWS resources, but are
only available when requests are made against resources which support them. For a list of context
keys available for each AWS service and resource, see the Service Authorization Reference. Under
certain circumstances, you can’t populate global condition context keys with a value. To learn more
about each key, see AWS global condition context keys.

Important

• Key names are case-insensitive. For example, aws:CurrentTime is equivalent to
AWS:currenttime.

JSON element reference 2858

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html
https://docs.aws.amazon.com/vpc/latest/privatelink/vpc-endpoints-access.html
https://docs.aws.amazon.com/service-authorization/latest/reference/reference.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html

AWS Identity and Access Management User Guide

• You can use any single-valued condition key as a variable. You can't use a multivalued
condition key as a variable.

The following example shows a policy for an IAM role or user that replaces a specific resource name
with a policy variable. You can reuse this policy by taking advantage of the aws:PrincipalTag
condition key. When this policy is evaluated, ${aws:PrincipalTag/team} allows the actions
only if the bucket name ends with a team name from the team principal tag.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": ["s3:ListBucket"],
 "Resource": ["arn:aws:s3:::DOC-EXAMPLE-BUCKET"],
 "Condition": {"StringLike": {"s3:prefix": ["${aws:PrincipalTag/team}/*"]}}
 },
 {
 "Effect": "Allow",
 "Action": [
 "s3:GetObject",
 "s3:PutObject"
],
 "Resource": ["arn:aws:s3:::DOC-EXAMPLE-BUCKET/${aws:PrincipalTag/team}/*"]
 }
]
}

The variable is marked using a $ prefix followed by a pair of curly braces ({ }). Inside the ${ }
characters, you can include the name of the value from the request that you want to use in the
policy. The values you can use are discussed later on this page.

For details about this global condition key, see aws:PrincipalTag/tag-key in the list of global
condition keys.

Note

In order to use policy variables, you must include the Version element in a statement,
and the version must be set to a version that supports policy variables. Variables were
introduced in version 2012-10-17. Earlier versions of the policy language don't support

JSON element reference 2859

AWS Identity and Access Management User Guide

policy variables. If you don't include the Version element and set it to an appropriate
version date, variables like ${aws:username} are treated as literal strings in the policy.
A Version policy element is different from a policy version. The Version policy element
is used within a policy and defines the version of the policy language. A policy version,
on the other hand, is created when you change a customer managed policy in IAM. The
changed policy doesn't overwrite the existing policy. Instead, IAM creates a new version
of the managed policy. To learn more about the Version policy element see the section
called “Version”. To learn more about policy versions, see the section called “Versioning IAM
policies”.

A policy that allows a principal to get objects from the /David path of an S3 bucket looks like this:

{
 "Version": "2012-10-17",
 "Statement": [{
 "Effect": "Allow",
 "Action": ["s3:GetObject"],
 "Resource": ["arn:aws:s3::DOC-EXAMPLE-BUCKET/David/*"]
 }]
}

If this policy is attached to user David, that user get objects from his own S3 bucket, but you
would have to create a separate policy for each user that includes the user's name. You would then
attach each policy to the individual users.

By using a policy variable, you can create policies that can be reused. The following policy allows
a user to get objects from an Amazon S3 bucket if the tag-key value for aws:PrincipalTag
matches the tag-key owner value passed in the request.

{
 "Version": "2012-10-17",
 "Statement": [{
 "Sid": "AllowUnlessOwnedBySomeoneElse",
 "Effect": "Allow",
 "Action": ["s3:GetObject"],
 "Resource": ["*"],
 "Condition": {
 "StringEquals": {
 "${s3:ExistingObjectTag/owner}": "${aws:PrincipalTag/owner}"

JSON element reference 2860

AWS Identity and Access Management User Guide

 }
 }
 }
]
}

When you use a policy variable in place of a user like this, you don't have to have a separate policy
for each individual user. In the following example, the policy is attached to an IAM role that is
assumed by Product Managers using temporary security credentials. When a user makes a request
to add an Amazon S3 object, IAM substitutes the dept tag value from the current request for the
${aws:PrincipalTag} variable and evaluates the policy.

{
 "Version": "2012-10-17",
 "Statement": [{
 "Sid": "AllowOnlyDeptS3Prefix",
 "Effect": "Allow",
 "Action": ["s3:GetObject"],
 "Resource": ["arn:aws:s3:::DOC-EXAMPLE-BUCKET/${aws:PrincipalTag/dept}/*"],
 }
]
}

Tags as policy variables

In some AWS services you can attach your own custom attributes to resources that are created
by those services. For example, you can apply tags to Amazon S3 buckets or to IAM users.
These tags are key-value pairs. You define the tag key name and the value that is associated
with that key name. For example, you might create a tag with a department key and a Human
Resources value. For more information about tagging IAM entities, see Tagging IAM resources.
For information about tagging resources created by other AWS services, see the documentation
for that service. For information about using Tag Editor, see Working with Tag Editor in the AWS
Management Console User Guide.

You can tag IAM resources to simplify discovering, organizing, and tracking your IAM resources. You
can also tag IAM identities to control access to resources or to tagging itself. To learn more about
using tags to control access, see Controlling access to and for IAM users and roles using tags.

JSON element reference 2861

https://docs.aws.amazon.com/awsconsolehelpdocs/latest/gsg/tag-editor.html

AWS Identity and Access Management User Guide

Where you can use policy variables

You can use policy variables in the Resource element and in string comparisons in the Condition
element.

Resource element

You can use a policy variable in the Resource element, but only in the resource portion of the
ARN. This portion of the ARN appears after the fifth colon (:). You can't use a variable to replace
parts of the ARN before the fifth colon, such as the service or account. For more information about
the ARN format, see IAM ARNs.

To replace part of an ARN with a tag value, surround the prefix and key name with ${ }. For
example, the following Resource element refers to only a bucket that is named the same as the
value in the requesting user's department tag.

"Resource": ["arn:aws::s3:::bucket/${aws:PrincipalTag/department}"]

Many AWS resources use ARNs that contain a user-created name. The following IAM policy ensures
that only intended users with matching access-project, access-application, and access-environment
tag values can modify their resources. In addition, using * wildcard matches, they are able to allow
for custom resource name suffixes.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "AllowAccessBasedOnArnMatching",
 "Effect": "Allow",
 "Action": [
 "sns:CreateTopic",
 "sns:DeleteTopic"],
 "Resource": ["arn:aws:sns:*:*:${aws:PrincipalTag/access-project}-
${aws:PrincipalTag/access-application}-${aws:PrincipalTag/access-environment}-*"
]
 }
]
}

JSON element reference 2862

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_resource.html

AWS Identity and Access Management User Guide

Condition element

You can use a policy variable for Condition values in any condition that involves the string
operators or the ARN operators. String operators include StringEquals, StringLike, and
StringNotLike. ARN operators include ArnEquals and ArnLike. You can't use a policy variable
with other operators, such as Numeric, Date, Boolean, Binary, IP Address, or Null operators.
For more information about condition operators, see IAM JSON policy elements: Condition
operators.

When referencing a tag in a Condition element expression, use the relevant prefix and key name
as the condition key. Then use the value that you want to test in the condition value.

For example, the following policy example allows full access to users, but only if the tag
costCenter is attached to the user. The tag must also have a value of either 12345 or 67890. If
the tag has no value, or has any other value, then the request fails.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "iam:*user*"
],
 "Resource": "*",
 "Condition": {
 "StringLike": {
 "iam:ResourceTag/costCenter": ["12345", "67890"]
 }
 }
 }
]
}

Policy variables with no value

When policy variables reference a condition context key that has no value or is not present in an
authorization context for a request, the value is effectively null. There is no equal or like value.
Condition context keys may not be present in the authorization context when:

• You are using service specific condition context keys in requests to resources that do not support
that condition key.

JSON element reference 2863

AWS Identity and Access Management User Guide

• Tags on IAM principals, sessions, resources, or requests are not present.

• Other circumstances as listed for each global condition context key in AWS global condition
context keys.

When you use a variable with no value in the condition element of an IAM policy, IAM JSON policy
elements: Condition operators like StringEquals or StringLike do not match, and the policy
statement does not take effect.

Inverted condition operators like StringNotEquals or StringNotLike do match against a
null value, as the value of the condition key they are testing against is not equal to or like the
effectively null value.

In the following example, aws:principaltag/Team must be equal to
s3:ExistingObjectTag/Team to allow access. Access is explicitly denied when
aws:principaltag/Team is not set. If a variable that has no value in the authorization context
is used as part of the Resource or NotResource element of a policy, the resource that includes a
policy variable with no value will not match any resource.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Deny",
 "Action": "s3:GetObject",
 "Resource": "arn:aws:s3:::/example-bucket/*",
 "Condition": {
 "StringNotEquals": {
 "s3:ExistingObjectTag/Team": "${aws:PrincipalTag/Team}"
 }
 }
 }
]
}

Request information that you can use for policy variables

You can use the Condition element of a JSON policy to compare keys in the request context with
key values that you specify in your policy. When you use a policy variable, AWS substitutes a value
from the request context key in place of the variable in your policy.

JSON element reference 2864

AWS Identity and Access Management User Guide

Principal key values

The values for aws:username, aws:userid, and aws:PrincipalType depend on what type of
principal initiated the request. For example, the request could be made using the credentials of an
IAM user, an IAM role, or the AWS account root user. The following list shows values for these keys
for different types of principals.

• AWS account root user

• aws:username: (not present)

• aws:userid: AWS account ID

• aws:PrincipalType: Account

• IAM user

• aws:username: IAM-user-name

• aws:userid: unique ID

• aws:PrincipalType: User

• Federated user

• aws:username: (not present)

• aws:userid: account:caller-specified-name

• aws:PrincipalType: FederatedUser

• Web federated user and SAML federated user

Note

For information about policy keys that are available when you use web identity
federation, see Identifying users with web identity federation.

• aws:username: (not present)

• aws:userid: (not present)

• aws:PrincipalType: AssumedRole

• Assumed role

• aws:username: (not present)

• aws:userid: role-id:caller-specified-role-name

• aws:PrincipalType: Assumed role

JSON element reference 2865

AWS Identity and Access Management User Guide

• Role assigned to Amazon EC2 instance

• aws:username: (not present)

• aws:userid: role-id:ec2-instance-id

• aws:PrincipalType: Assumed role

• Anonymous caller (Amazon SQS Amazon SNS and Amazon S3 only)

• aws:username: (not present)

• aws:userid: (not present)

• aws:PrincipalType: Anonymous

For the items in this list, note the following:

• not present means that the value is not in the current request information, and any attempt to
match it fails and causes the statement to be invalid.

• role-id is a unique identifier assigned to each role at creation. You can display the role ID with
the AWS CLI command: aws iam get-role --role-name rolename

• caller-specified-name and caller-specified-role-name are names that are passed
by the calling process (such as an application or service) when it makes a call to get temporary
credentials.

• ec2-instance-id is a value assigned to the instance when it is launched and appears on the
Instances page of the Amazon EC2 console. You can also display the instance ID by running the
AWS CLI command: aws ec2 describe-instances

Information available in requests for federated users

Federated users are users who are authenticated using a system other than IAM. For example,
a company might have an application for use in-house that makes calls to AWS. It might be
impractical to give an IAM identity to every corporate user who uses the application. Instead, the
company might use a proxy (middle-tier) application that has a single IAM identity, or the company
might use a SAML identity provider (IdP). The proxy application or SAML IdP authenticates
individual users using the corporate network. A proxy application can then use its IAM identity to
get temporary security credentials for individual users. A SAML IdP can in effect exchange identity
information for AWS temporary security credentials. The temporary credentials can then be used
to access AWS resources.

JSON element reference 2866

AWS Identity and Access Management User Guide

Similarly, you might create an app for a mobile device in which the app needs to access AWS
resources. In that case, you might use web identity federation, where the app authenticates the
user using a well-known identity provider like Login with Amazon, Amazon Cognito, Facebook, or
Google. The app can then use the user's authentication information from these providers to get
temporary security credentials for accessing AWS resources.

The recommended way to use web identity federation is by taking advantage of Amazon Cognito
and the AWS mobile SDKs. For more information, see the following:

• Amazon Cognito User Guide

• Common scenarios for temporary credentials

Special characters

There are a few special predefined policy variables that have fixed values that enable you to
represent characters that otherwise have special meaning. If these special characters are part of
the string, you are trying to match and you inserted them literally they would be misinterpreted.
For example, inserting an * asterisk in the string would be interpreted as a wildcard, matching
any characters, instead of as a literal *. In these cases, you can use the following predefined policy
variables:

• ${*} - use where you need an * (asterisk) character.

• ${?} - use where you need a ? (question mark) character.

• ${$} - use where you need a $ (dollar sign) character.

These predefined policy variables can be used in any string where you can use regular policy
variables.

Specifying default values

To add a default value to a variable, surround the default value with single quotes (' '), and
separate the variable text and the default value with a comma and space (,).

For example, if a principal is tagged with team=yellow, they can access ExampleCorp's Amazon
S3 bucket named DOC-EXAMPLE-BUCKET-yellow. A policy with this resource allows team
members to access their team bucket, but not those of other teams. For users without team tags,
it sets a default value of company-wide for the bucket name. These users can access only the

JSON element reference 2867

https://docs.aws.amazon.com/cognito/latest/developerguide/cognito-identity.html

AWS Identity and Access Management User Guide

DOC-EXAMPLE-BUCKET-company-wide bucket where they can view broad information, such as
instructions for joining a team.

"Resource":"arn:aws:s3:::DOC-EXAMPLE-BUCKET-${aws:PrincipalTag/team, 'company-wide'}"

For more information

For more information about policies, see the following:

• Policies and permissions in IAM

• Example IAM identity-based policies

• IAM JSON policy elements reference

• Policy evaluation logic

• About web identity federation

IAM JSON policy elements: Supported data types

This section lists the data types that are supported when you specify values in JSON policies. The
policy language doesn't support all types for each policy element; for information about each
element, see the preceding sections.

• Strings

• Numbers (Ints and Floats)

• Boolean

• Null

• Lists

• Maps

• Structs (which are just nested Maps)

The following table maps each data type to the serialization. Note that all policies must be in
UTF-8. For information about the JSON data types, go to RFC 4627.

Type JSON

String String

JSON element reference 2868

https://datatracker.ietf.org/doc/html/rfc4627

AWS Identity and Access Management User Guide

Type JSON

Integer Number

Float Number

Boolean true false

Null null

Date String adhering to the W3C Profile of ISO 8601

IpAddress String adhering to RFC 4632

List Array

Object Object

Policy evaluation logic

When a principal tries to use the AWS Management Console, the AWS API, or the AWS CLI, that
principal sends a request to AWS. When an AWS service receives the request, AWS completes
several steps to determine whether to allow or deny the request.

1. Authentication – AWS first authenticates the principal that makes the request, if necessary.
This step is not necessary for a few services, such as Amazon S3, that allow some requests from
anonymous users.

2. Processing the request context – AWS processes the information gathered in the request to
determine which policies apply to the request.

3. Evaluating policies within a single account – AWS evaluates all of the policy types, which affect
the order in which the policies are evaluated.

4. Determining whether a request is allowed or denied within an account – AWS then processes
the policies against the request context to determine whether the request is allowed or denied.

Processing the request context

AWS processes the request to gather the following information into a request context:

Policy evaluation logic 2869

http://www.w3.org/TR/NOTE-datetime
https://datatracker.ietf.org/doc/html/rfc4632

AWS Identity and Access Management User Guide

• Actions (or operations) – The actions or operations that the principal wants to perform.

• Resources – The AWS resource object upon which the actions or operations are performed.

• Principal – The user, role, federated user, or application that sent the request. Information about
the principal includes the policies that are associated with that principal.

• Environment data – Information about the IP address, user agent, SSL enabled status, or the
time of day.

• Resource data – Data related to the resource that is being requested. This can include
information such as a DynamoDB table name or a tag on an Amazon EC2 instance.

AWS then uses this information to find policies that apply to the request context.

Evaluating policies within a single account

How AWS evaluates policies depends on the types of policies that apply to the request context.
The following policy types, listed in order of frequency, are available for use within a single AWS
account. For more information about these policy types, see Policies and permissions in IAM. To
learn how AWS evaluates policies for cross-account access, see Cross-account policy evaluation
logic.

1. Identity-based policies – Identity-based policies are attached to an IAM identity (user, group
of users, or role) and grant permissions to IAM entities (users and roles). If only identity-based
policies apply to a request, then AWS checks all of those policies for at least one Allow.

2. Resource-based policies – Resource-based policies grant permissions to the principal (account,
user, role, and session principals such as role sessions and IAM federated users) specified as the
principal. The permissions define what the principal can do with the resource to which the policy
is attached. If resource-based policies and identity-based policies both apply to a request, then
AWS checks all the policies for at least one Allow. When resource-based policies are evaluated,
the principal ARN that is specified in the policy determines whether implicit denies in other
policy types are applicable to the final decision.

3. IAM permissions boundaries – Permissions boundaries are an advanced feature that sets the
maximum permissions that an identity-based policy can grant to an IAM entity (user or role).
When you set a permissions boundary for an entity, the entity can perform only the actions that
are allowed by both its identity-based policies and its permissions boundaries. In some cases, an
implicit deny in a permissions boundary can limit the permissions granted by a resource-based
policy. To learn more, see Determining whether a request is allowed or denied within an account
later in this topic.

Policy evaluation logic 2870

AWS Identity and Access Management User Guide

4. AWS Organizations service control policies (SCPs) – Organizations SCPs specify the maximum
permissions for an organization or organizational unit (OU). The SCP maximum applies to
principals in member accounts, including each AWS account root user. If an SCP is present,
identity-based and resource-based policies grant permissions to principals in member accounts
only if those policies and the SCP allow the action. If both a permissions boundary and an SCP
are present, then the boundary, the SCP, and the identity-based policy must all allow the action.

5. Session policies – Session policies are advanced policies that you pass as parameters when
you programmatically create a temporary session for a role or federated user. To create a role
session programmatically, use one of the AssumeRole* API operations. When you do this and
pass session policies, the resulting session's permissions are the intersection of the IAM entity's
identity-based policy and the session policies. To create a federated user session, you use the
IAM user access keys to programmatically call the GetFederationToken API operation. A
resource-based policy has a different effect on the evaluation of session policy permissions.
The difference depends on whether the user or role's ARN or the session's ARN is listed as the
principal in the resource-based policy. For more information, see Session policies.

Remember, an explicit deny in any of these policies overrides the allow.

Evaluating identity-based policies with resource-based policies

Identity-based policies and resource-based policies grant permissions to the identities or resources
to which they are attached. When an IAM entity (user or role) requests access to a resource within
the same account, AWS evaluates all the permissions granted by the identity-based and resource-
based policies. The resulting permissions are the total permissions of the two types. If an action is
allowed by an identity-based policy, a resource-based policy, or both, then AWS allows the action.
An explicit deny in either of these policies overrides the allow.

Policy evaluation logic 2871

AWS Identity and Access Management User Guide

Evaluating identity-based policies with permissions boundaries

When AWS evaluates the identity-based policies and permissions boundary for a user, the
resulting permissions are the intersection of the two categories. That means that when you
add a permissions boundary to a user with existing identity-based policies, you might reduce
the actions that the user can perform. Alternatively, when you remove a permissions boundary
from a user, you might increase the actions they can perform. An explicit deny in either of these
policies overrides the allow. To view information about how other policy types are evaluated with
permissions boundaries, see Evaluating effective permissions with boundaries.

Evaluating identity-based policies with Organizations SCPs

When a user belongs to an account that is a member of an organization, the resulting permissions
are the intersection of the user's policies and the SCP. This means that an action must be allowed
by both the identity-based policy and the SCP. An explicit deny in either of these policies overrides
the allow.

Policy evaluation logic 2872

AWS Identity and Access Management User Guide

You can learn whether your account is a member of an organization in AWS Organizations.
Organization members might be affected by an SCP. To view this data using the
AWS CLI command or AWS API operation, you must have permissions for the
organizations:DescribeOrganization action for your Organizations entity. You must have
additional permissions to perform the operation in the Organizations console. To learn whether an
SCP is denying access to a specific request, or to change your effective permissions, contact your
AWS Organizations administrator.

Determining whether a request is allowed or denied within an account

Assume that a principal sends a request to AWS to access a resource in the same account as the
principal's entity. The AWS enforcement code decides whether the request should be allowed or
denied. AWS evaluates all policies that are applicable to the request context. The following is a
summary of the AWS evaluation logic for policies within a single account.

• By default, all requests are implicitly denied with the exception of the AWS account root user,
which has full access.

• An explicit allow in an identity-based or resource-based policy overrides this default.

• If a permissions boundary, Organizations SCP, or session policy is present, it might override the
allow with an implicit deny.

• An explicit deny in any policy overrides any allows.

The following flow chart provides details about how the decision is made. This flow chart does not
cover the impact of resource-based policies and implicit denies in other types of policies.

Policy evaluation logic 2873

https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_org_details.html#orgs_view_account

AWS Identity and Access Management User Guide

1. Deny evaluation – By default, all requests are denied. This is called an implicit deny. The
AWS enforcement code evaluates all policies within the account that apply to the request.
These include AWS Organizations SCPs, resource-based policies, identity-based policies, IAM
permissions boundaries, and session policies. In all those policies, the enforcement code
looks for a Deny statement that applies to the request. This is called an explicit deny. If the
enforcement code finds even one explicit deny that applies, the code returns a final decision of
Deny. If there is no explicit deny, the enforcement code evaluation continues.

2. Organizations SCPs – Then the enforcement code evaluates AWS Organizations service control
policies (SCPs) that apply to the request. SCPs apply to principals of the account where the
SCPs are attached. If the enforcement code does not find any applicable Allow statements in
the SCPs, the request is explicitly denied, even if the denial is implicit. The enforcement code
returns a final decision of Deny. If there is no SCP, or if the SCP allows the requested action, the
enforcement code evaluation continues.

3. Resource-based policies – Within the same account, resource-based policies impact policy
evaluation differently depending on the type of principal accessing the resource, and the
principal that is allowed in the resource-based policy. Depending on the type of principal, an
Allow in a resource-based policy can result in a final decision of Allow, even if an implicit deny
in an identity-based policy, permissions boundary, or session policy is present.

Policy evaluation logic 2874

AWS Identity and Access Management User Guide

For most resources, you only need an explicit allow for the principal in either an identity-based
policy or a resource-based policy to grant access. IAM role trust policies and KMS key policies are
exceptions to this logic, because they must explicitly allow access for principals.

Resource-based policy logic differs from other policy types if the specified principal is an IAM
user, an IAM role, or a session principal. Session principals include IAM role sessions or an IAM
federated user session. If a resource-based policy grants permission directly to the IAM user
or the session principal that is making the request, then an implicit deny in an identity-based
policy, a permissions boundary, or a session policy does not impact the final decision.

The following table helps you understand the impact of resource-based policies for different
principal types when implicit denies are present in identity-based policies, permissions
boundaries, and session policies.

Resource-based policies and implicit denies in other policy types (same account)

Principal
making
the
request

Resource-
based
policy

Identity-
based
policy

Permissio
ns
boundary

Session
Policy

Result Reason

IAM role Not
applicable

Not
applicable

Not
applicable

Not
applicable

Not
applicable

A role
itself
cannot
make a
request.
Requests
are made
with
the role
session
after a
role is
assumed.

Policy evaluation logic 2875

https://docs.aws.amazon.com/kms/latest/developerguide/key-policies.html

AWS Identity and Access Management User Guide

Principal
making
the
request

Resource-
based
policy

Identity-
based
policy

Permissio
ns
boundary

Session
Policy

Result Reason

IAM role
session

Allows
role ARN

Implicit
deny

Implicit
deny

Implicit
deny

DENY Permissio
ns
boundary
and
session
policy are
evaluated
as part of
the final
decision.
An implicit
deny in
either
policy
results in
a DENY
decision.

IAM role
session

Allows
role
session
ARN

Implicit
deny

Implicit
deny

Implicit
deny

ALLOW Permissio
ns are
granted
directly
to the
session.
Other
policy
types
do not
affect the
decision.

Policy evaluation logic 2876

AWS Identity and Access Management User Guide

Principal
making
the
request

Resource-
based
policy

Identity-
based
policy

Permissio
ns
boundary

Session
Policy

Result Reason

IAM user Allows
IAM user
ARN

Implicit
deny

Implicit
deny

Not
applicable

ALLOW Permissio
ns are
granted
directly to
the user.
Other
policy
types
do not
affect the
decision.

IAM
federated
user
(GetFedera
tionToken

)

Allows
IAM user
ARN

Implicit
deny

Implicit
deny

Implicit
deny

DENY An implicit
deny in
either the
permissio
ns
boundary
or session
policy
results in a
DENY.

Policy evaluation logic 2877

AWS Identity and Access Management User Guide

Principal
making
the
request

Resource-
based
policy

Identity-
based
policy

Permissio
ns
boundary

Session
Policy

Result Reason

IAM
federated
user
(GetFedera
tionToken

)

Allows
IAM
federated
user
session
ARN

Implicit
deny

Implicit
deny

Implicit
deny

ALLOW Permissio
ns are
granted
directly
to the
session.
Other
policy
types
do not
affect the
decision.

Policy evaluation logic 2878

AWS Identity and Access Management User Guide

Principal
making
the
request

Resource-
based
policy

Identity-
based
policy

Permissio
ns
boundary

Session
Policy

Result Reason

root user Allows
root user
ARN

Not
applicable

Not
applicable

Not
applicable

ALLOW The root
user has
complete,
unrestric
ted access
to all
resources
in your
AWS
account.
To learn
how to
control
access to
the root
user for
accounts
in AWS
Organizat
ions, see
Service
control
policies
(SCPs)
in the
Organizat
ions User
Guide.

Policy evaluation logic 2879

https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_scps.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_scps.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_scps.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_scps.html

AWS Identity and Access Management User Guide

Principal
making
the
request

Resource-
based
policy

Identity-
based
policy

Permissio
ns
boundary

Session
Policy

Result Reason

AWS
service
principal

Allows
an AWS
service
principal

Not
applicable

Not
applicable

Not
applicable

ALLOW When a
resource-
based
policy
grants
permissio
ns directly
to an AWS
service
principal
, other
policy
types
do not
affect the
decision.

• IAM role – Resource-based policies that grant permissions to an IAM role ARN are limited by
an implicit deny in a permissions boundary or session policy.

Example role ARN

arn:aws:iam::111122223333:role/examplerole

• IAM role session – Within the same account, resource-based policies that grant permissions to
an IAM role session ARN grant permissions directly to the assumed role session. Permissions
granted directly to a session are not limited by an implicit deny in an identity-based policy,
a permissions boundary, or session policy. When you assume a role and make a request, the
principal making the request is the IAM role session ARN and not the ARN of the role itself.

Example role session ARN

Policy evaluation logic 2880

AWS Identity and Access Management User Guide

arn:aws:sts::111122223333:assumed-role/examplerole/examplerolesessionname

• IAM user – Within the same account, resource-based policies that grant permissions to an
IAM user ARN (that is not a federated user session) are not limited by an implicit deny in an
identity-based policy or permissions boundary.

Example IAM user ARN

arn:aws:iam::111122223333:user/exampleuser

• IAM federated user sessions – An IAM federated user session is a session created by calling
GetFederationToken. When a federated user makes a request, the principal making the
request is the federated user ARN and not the ARN of the IAM user who federated. Within the
same account, resource-based policies that grant permissions to a federated user ARN grant
permissions directly to the session. Permissions granted directly to a session are not limited by
an implicit deny in an identity-based policy, a permissions boundary, or session policy.

However, if a resource-based policy grants permission to the ARN of the IAM user who
federated, then requests made by the federated user during the session are limited by an
implicit deny in a permission boundary or session policy.

Example IAM federated user session ARN

arn:aws:sts::111122223333:federated-user/exampleuser

4. Identity-based policies – The code then checks the identity-based policies for the principal. For
an IAM user, these include user policies and policies from groups to which the user belongs. If
there are no identity-based policies or no statements in identity-based policies that allow the
requested action, then the request is implicitly denied and the code returns a final decision of
Deny. If any statement in any applicable identity-based policies allows the requested action, the
code continues.

5. IAM permissions boundaries – The code then checks whether the IAM entity that is used by the
principal has a permissions boundary. If the policy that is used to set the permissions boundary
does not allow the requested action, then the request is implicitly denied. The code returns a
final decision of Deny. If there is no permissions boundary, or if the permissions boundary allows
the requested action, the code continues.

Policy evaluation logic 2881

AWS Identity and Access Management User Guide

6. Session policies – The code then checks whether the principal is a session principal. Session
principals include an IAM role session or an IAM federated user session. If the principal is not a
session principal, the enforcement code returns a final decision of Allow.

For session principals, the code checks whether a session policy was passed in the request. You
can pass a session policy while using the AWS CLI or AWS API to get temporary credentials for a
role or an IAM federated user.

• If a session policy is present and does not allow the requested action, then the request is
implicitly denied. The code returns a final decision of Deny.

• If there is no session policy, the code checks whether the principal is a role session. If the
principal is a role session, then the request is Allowed. Otherwise, the request is implicitly
denied and the code returns a final decision of Deny.

• If a session policy is present and allows the requested action, then the enforcement code
returns a final decision of Allow.

7. Errors – If the AWS enforcement code encounters an error at any point during the evaluation,
then it generates an exception and closes.

Example identity-based and resource-based policy evaluation

The most common types of policies are identity-based policies and resource-based policies. When
access to a resource is requested, AWS evaluates all the permissions granted by the policies for at
least one Allow within the same account. An explicit deny in any of the policies overrides the allow.

Important

If either the identity-based policy or the resource-based policy within the same account
allows the request and the other doesn't, the request is still allowed.

Assume that Carlos has the user name carlossalazar and he tries to save a file to the
carlossalazar-logs Amazon S3 bucket.

Also assume that the following policy is attached to the carlossalazar IAM user.

{
 "Version": "2012-10-17",
 "Statement": [

Policy evaluation logic 2882

AWS Identity and Access Management User Guide

 {
 "Sid": "AllowS3ListRead",
 "Effect": "Allow",
 "Action": [
 "s3:GetBucketLocation",
 "s3:GetAccountPublicAccessBlock",
 "s3:ListAccessPoints",
 "s3:ListAllMyBuckets"
],
 "Resource": "arn:aws:s3:::*"
 },
 {
 "Sid": "AllowS3Self",
 "Effect": "Allow",
 "Action": "s3:*",
 "Resource": [
 "arn:aws:s3:::carlossalazar/*",
 "arn:aws:s3:::carlossalazar"
]
 },
 {
 "Sid": "DenyS3Logs",
 "Effect": "Deny",
 "Action": "s3:*",
 "Resource": "arn:aws:s3:::*log*"
 }
]
}

The AllowS3ListRead statement in this policy allows Carlos to view a list of all of the buckets in
the account. The AllowS3Self statement allows Carlos full access to the bucket with the same
name as his user name. The DenyS3Logs statement denies Carlos access to any S3 bucket with
log in its name.

Additionally, the following resource-based policy (called a bucket policy) is attached to the
carlossalazar bucket.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {

Policy evaluation logic 2883

AWS Identity and Access Management User Guide

 "AWS": "arn:aws:iam::123456789012:user/carlossalazar"
 },
 "Action": "s3:*",
 "Resource": [
 "arn:aws:s3:::carlossalazar/*",
 "arn:aws:s3:::carlossalazar"
]
 }
]
}

This policy specifies that only the carlossalazar user can access the carlossalazar bucket.

When Carlos makes his request to save a file to the carlossalazar-logs bucket, AWS
determines what policies apply to the request. In this case, only the identity-based policy and
the resource-based policy apply. These are both permissions policies. Because no permissions
boundaries apply, the evaluation logic is reduced to the following logic.

Policy evaluation logic 2884

AWS Identity and Access Management User Guide

AWS first checks for a Deny statement that applies to the context of the request. It finds one,
because the identity-based policy explicitly denies Carlos access to any S3 buckets used for logging.
Carlos is denied access.

Assume that he then realizes his mistake and tries to save the file to the carlossalazar bucket.
AWS checks for a Deny statement and does not find one. It then checks the permissions policies.
Both the identity-based policy and the resource-based policy allow the request. Therefore, AWS
allows the request. If either of them explicitly denied the statement, the request would have been
denied. If one of the policy types allows the request and the other doesn't, the request is still
allowed.

Policy evaluation logic 2885

AWS Identity and Access Management User Guide

The difference between explicit and implicit denies

A request results in an explicit deny if an applicable policy includes a Deny statement. If policies
that apply to a request include an Allow statement and a Deny statement, the Deny statement
trumps the Allow statement. The request is explicitly denied.

An implicit denial occurs when there is no applicable Deny statement but also no applicable Allow
statement. Because an IAM principal is denied access by default, they must be explicitly allowed to
perform an action. Otherwise, they are implicitly denied access.

When you design your authorization strategy, you must create policies with Allow statements to
allow your principals to successfully make requests. However, you can choose any combination of
explicit and implicit denies.

For example, you can create the following policy that includes allowed actions, implicitly denied
actions, and explicitly denied actions. The AllowGetList statement allows read-only access
to IAM actions that begin with the prefixes Get and List. All other actions in IAM, such as
iam:CreatePolicy are implicitly denied. The DenyReports statement explicitly denies
access to IAM reports by denying access to actions that include the Report suffix, such as
iam:GetOrganizationsAccessReport. If someone adds another policy to this principal to
grant them access to IAM reports, such as iam:GenerateCredentialReport, report-related
requests are still denied because of this explicit deny.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "AllowGetList",
 "Effect": "Allow",
 "Action": [
 "iam:Get*",
 "iam:List*"
],
 "Resource": "*"
 },
 {
 "Sid": "DenyReports",
 "Effect": "Deny",
 "Action": "iam:*Report",
 "Resource": "*"
 }

Policy evaluation logic 2886

AWS Identity and Access Management User Guide

]
}

Cross-account policy evaluation logic

You can allow a principal in one account to access resources in a second account. This is called
cross-account access. When you allow cross-account access, the account where the principal exists
is called the trusted account. The account where the resource exists is the trusting account.

To allow cross-account access, you attach a resource-based policy to the resource that you want
to share. You must also attach an identity-based policy to the identity that acts as the principal
in the request. The resource-based policy in the trusting account must specify the principal of the
trusted account that will have access to the resource. You can specify the entire account or its IAM
users, federated users, IAM roles, or assumed-role sessions. You can also specify an AWS service as
a principal. For more information, see Specifying a principal.

The principal's identity-based policy must allow the requested access to the resource in the trusting
service. You can do this by specifying the ARN of the resource or by allowing access to all resources
(*).

In IAM, you can attach a resource-based policy to an IAM role to allow principals in other accounts
to assume that role. The role's resource-based policy is called a role trust policy. After assuming
that role, the allowed principals can use the resulting temporary credentials to access multiple
resources in your account. This access is defined in the role's identity-based permissions policy. To
learn how allowing cross-account access using roles is different from allowing cross-account access
using other resource-based policies, see Cross account resource access in IAM.

Important

Other services can affect the policy evaluation logic. For example, AWS Organizations
supports service control policies that can be applied to principals one or more accounts.
AWS Resource Access Manager supports policy fragments that control which actions that
principals are allowed to perform on resources that are shared with them.

Determining whether a cross-account request is allowed

For cross-account requests, the requester in the trusted AccountA must have an identity-based
policy. That policy must allow them to make a request to the resource in the trusting AccountB.

Policy evaluation logic 2887

https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_scp.html
https://docs.aws.amazon.com/ram/latest/userguide/permissions.html

AWS Identity and Access Management User Guide

Additionally, the resource-based policy in AccountB must allow the requester in AccountA to
access the resource.

When you make a cross-account request, AWS performs two evaluations. AWS evaluates the
request in the trusting account and the trusted account. For more information about how a request
is evaluated within a single account, see Determining whether a request is allowed or denied within
an account. The request is allowed only if both evaluations return a decision of Allow.

1. When a principal in one account makes a request to access a resource in another account, this is
a cross-account request.

2. The requesting principal exists in the trusted account (AccountA). When AWS evaluates this
account, it checks the identity-based policy and any policies that can limit an identity-based
policy. For more information, see Evaluating policies within a single account.

3. The requested resource exists in the trusting account (AccountB). When AWS evaluates this
account, it checks the resource-based policy that is attached to the requested resource and any

Policy evaluation logic 2888

AWS Identity and Access Management User Guide

policies that can limit a resource-based policy. For more information, see Evaluating policies
within a single account.

4. AWS allows the request only if both account policy evaluations allow the request.

Example cross-account policy evaluation

The following example demonstrates a scenario where a user in one account is granted permissions
by a resource-based policy in a second account.

Assume that Carlos is a developer with an IAM user named carlossalazar in account
111111111111. He wants to save a file to the Production-logs Amazon S3 bucket in account
222222222222.

Also assume that the following policy is attached to the carlossalazar IAM user.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "AllowS3ListRead",
 "Effect": "Allow",
 "Action": "s3:ListAllMyBuckets",
 "Resource": "*"
 },
 {
 "Sid": "AllowS3ProductionObjectActions",
 "Effect": "Allow",
 "Action": "s3:*Object*",
 "Resource": "arn:aws:s3:::Production/*"
 },
 {
 "Sid": "DenyS3Logs",
 "Effect": "Deny",
 "Action": "s3:*",
 "Resource": [
 "arn:aws:s3:::*log*",
 "arn:aws:s3:::*log*/*"
]
 }
]
}

Policy evaluation logic 2889

AWS Identity and Access Management User Guide

The AllowS3ListRead statement in this policy allows Carlos to view a list of all of the buckets
in Amazon S3. The AllowS3ProductionObjectActions statement allows Carlos full access to
objects in the Production bucket. The DenyS3Logs statement denies Carlos access to any S3
bucket with log in its name. It also denies access to all objects in those buckets.

Additionally, the following resource-based policy (called a bucket policy) is attached to the
Production bucket in account 222222222222.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "s3:GetObject*",
 "s3:PutObject*",
 "s3:ReplicateObject",
 "s3:RestoreObject"
],
 "Principal": { "AWS": "arn:aws:iam::111111111111:user/carlossalazar" },
 "Resource": "arn:aws:s3:::Production/*"
 }
]
}

This policy allows the carlossalazar user to access objects in the Production bucket. He can
create and edit, but not delete the objects in the bucket. He can't manage the bucket itself.

When Carlos makes his request to save a file to the Production-logs bucket, AWS determines
what policies apply to the request. In this case, the identity-based policy attached to the
carlossalazar user is the only policy that applies in account 111111111111. In account
222222222222, there is no resource-based policy attached to the Production-logs bucket.
When AWS evaluates account 111111111111, it returns a decision of Deny. This is because the
DenyS3Logs statement in the identity-based policy explicitly denies access to any log buckets.
For more information about how a request is evaluated within a single account, see Determining
whether a request is allowed or denied within an account.

Because the request is explicitly denied within one of the accounts, the final decision is to deny the
request.

Policy evaluation logic 2890

AWS Identity and Access Management User Guide

Assume that Carlos then realizes his mistake and tries to save the file to the Production bucket.
AWS first checks account 111111111111 to determine if the request is allowed. Only the identity-
based policy applies, and it allows the request. AWS then checks account 222222222222. Only
the resource-based policy attached to the Production bucket applies, and it allows the request.
Because both accounts allow the request, the final decision is to allow the request.

Policy evaluation logic 2891

AWS Identity and Access Management User Guide

Grammar of the IAM JSON policy language

This page presents a formal grammar for the language used to create JSON policies in IAM. We
present this grammar so that you can understand how to construct and validate policies.

For examples of policies, see the following topics:

• Policies and permissions in IAM

• Example IAM identity-based policies

• Example Policies for Working in the Amazon EC2 Console and Example Policies for Working
With the AWS CLI, the Amazon EC2 CLI, or an AWS SDK in the Amazon EC2 User Guide for Linux
Instances.

• Bucket Policy Examples and User Policy Examples in the Amazon Simple Storage Service User
Guide.

Policy grammar 2892

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/iam-policies-ec2-console.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ExamplePolicies_EC2.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ExamplePolicies_EC2.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/example-bucket-policies.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/example-policies-s3.html

AWS Identity and Access Management User Guide

For examples of policies used in other AWS services, go to the documentation for those services.

Topics

• The policy language and JSON

• Conventions used in this grammar

• Grammar

• Policy grammar notes

The policy language and JSON

Policies are expressed in JSON. When you create or edit a JSON policy, IAM can perform policy
validation to help you create an effective policy. IAM identifies JSON syntax errors, while IAM
Access Analyzer provides additional policy checks with recommendations to help you further
refine your policies. To learn more about policy validation, see Validating IAM policies. To learn
more about IAM Access Analyzer policy checks and actionable recommendations, see IAM Access
Analyzer policy validation.

In this document, we do not provide a complete description of what constitutes valid JSON.
However, here are some basic JSON rules:

• White space between individual entities is allowed.

• Values are enclosed in quotation marks. Quotation marks are optional for numeric and Boolean
values.

• Many elements (for example, action_string_list and resource_string_list) can take a
JSON array as a value. Arrays can take one or more values. If more than one value is included, the
array is in square brackets ([and]) and comma-delimited, as in the following example:

"Action" : ["ec2:Describe*","ec2:List*"]

• Basic JSON data types (Boolean, number, and string) are defined in RFC 7159.

Conventions used in this grammar

The following conventions are used in this grammar:

• The following characters are JSON tokens and are included in policies:

{ } [] " , :

Policy grammar 2893

https://docs.aws.amazon.com/IAM/latest/UserGuide/access-analyzer-policy-validation.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access-analyzer-policy-validation.html
https://datatracker.ietf.org/doc/html/rfc7159

AWS Identity and Access Management User Guide

• The following characters are special characters in the grammar and are not included in policies:

= < > () |

• If an element allows multiple values, it is indicated using repeated values, a comma delimiter,
and an ellipsis (...). Examples:

[<action_string>, <action_string>, ...]

<principal_map> = { <principal_map_entry>, <principal_map_entry>, ... }

If multiple values are allowed, it is also valid to include only one value. For only one value, the
trailing comma must be omitted. If the element takes an array (marked with [and]) but only one
value is included, the brackets are optional. Examples:

"Action": [<action_string>]

"Action": <action_string>

• A question mark (?) following an element indicates that the element is optional. Example:

<version_block?>

However, be sure to refer to the notes that follow the grammar listing for details about optional
elements.

• A vertical line (|) between elements indicates alternatives. In the grammar, parentheses define
the scope of the alternatives. Example:

("Principal" | "NotPrincipal")

• Elements that must be literal strings are enclosed in double quotation marks ("). Example:

<version_block> = "Version" : ("2008-10-17" | "2012-10-17")

For additional notes, see Policy grammar notes following the grammar listing.

Grammar

The following listing describes the policy language grammar. For conventions used in the listing,
see the preceding section. For additional information, see the notes that follow.

Policy grammar 2894

AWS Identity and Access Management User Guide

Note

This grammar describes policies marked with a version of 2008-10-17 and 2012-10-17. A
Version policy element is different from a policy version. The Version policy element is
used within a policy and defines the version of the policy language. A policy version, on the
other hand, is created when you make changes to a customer managed policy in IAM. The
changed policy doesn't overwrite the existing policy. Instead, IAM creates a new version of
the managed policy. To learn more about the Version policy element see IAM JSON policy
elements: Version. To learn more about policy versions, see the section called “Versioning
IAM policies”.

policy = {
 <version_block?>
 <id_block?>
 <statement_block>
}

<version_block> = "Version" : ("2008-10-17" | "2012-10-17")

<id_block> = "Id" : <policy_id_string>

<statement_block> = "Statement" : [<statement>, <statement>, ...]

<statement> = {
 <sid_block?>,
 <principal_block?>,
 <effect_block>,
 <action_block>,
 <resource_block>,
 <condition_block?>
}

<sid_block> = "Sid" : <sid_string>

<effect_block> = "Effect" : ("Allow" | "Deny")

<principal_block> = ("Principal" | "NotPrincipal") : ("*" | <principal_map>)

<principal_map> = { <principal_map_entry>, <principal_map_entry>, ... }

Policy grammar 2895

AWS Identity and Access Management User Guide

<principal_map_entry> = ("AWS" | "Federated" | "Service" | "CanonicalUser") :
 [<principal_id_string>, <principal_id_string>, ...]

<action_block> = ("Action" | "NotAction") :
 ("*" | [<action_string>, <action_string>, ...])

<resource_block> = ("Resource" | "NotResource") :
 : ("*" | <resource_string> | [<resource_string>, <resource_string>, ...])

<condition_block> = "Condition" : { <condition_map> }
<condition_map> = {
 <condition_type_string> : { <condition_key_string> : <condition_value_list> },
 <condition_type_string> : { <condition_key_string> : <condition_value_list> }, ...
}
<condition_value_list> = [<condition_value>, <condition_value>, ...]
<condition_value> = (<condition_value_string> | <condition_value_string> |
 <condition_value_string>)

Policy grammar notes

• A single policy can contain an array of statements.

• Policies have a maximum size between 2048 characters and 10,240 characters, depending on
what entity the policy is attached to. For more information, see IAM and AWS STS quotas. Policy
size calculations do not include white space characters.

• Individual elements must not contain multiple instances of the same key. For example, you
cannot include the Effect block twice in the same statement.

• Blocks can appear in any order. For example, version_block can follow id_block in a policy.
Similarly, effect_block, principal_block, action_block can appear in any order within a
statement.

• The id_block is optional in resource-based policies. It must not be included in identity-based
policies.

• The principal_block element is required in resource-based policies (for example, in Amazon
S3 bucket policies) and in trust policies for IAM roles. It must not be included in identity-based
policies.

• The principal_map element in Amazon S3 bucket policies can include the CanonicalUser
ID. Most resource-based policies do not support this mapping. To learn more about using the
canonical user ID in a bucket policy, see Specifying a Principal in a Policy in the Amazon Simple
Storage Service User Guide.

Policy grammar 2896

https://docs.aws.amazon.com/AmazonS3/latest/dev/s3-bucket-user-policy-specifying-principal-intro.html

AWS Identity and Access Management User Guide

• Each string value (policy_id_string, sid_string, principal_id_string,
action_string, resource_string, condition_type_string, condition_key_string,
and the string version of condition_value) can have its own minimum and maximum length
restrictions, specific allowed values, or required internal format.

Notes about string values

This section provides additional information about string values that are used in different elements
in a policy.

action_string

Consists of a service namespace, a colon, and the name of an action. Action names can include
wildcards. Examples:

"Action":"ec2:StartInstances"

"Action":[
 "ec2:StartInstances",
 "ec2:StopInstances"
]

"Action":"cloudformation:*"

"Action":"*"

"Action":[
 "s3:Get*",
 "s3:List*"
]

policy_id_string

Provides a way to include information about the policy as a whole. Some services, such
as Amazon SQS and Amazon SNS, use the Id element in reserved ways. Unless otherwise
restricted by an individual service, policy_id_string can include spaces. Some services require
this value to be unique within an AWS account.

Policy grammar 2897

AWS Identity and Access Management User Guide

Note

The id_block is allowed in resource-based policies, but not in identity-based policies.

There is no limit to the length, although this string contributes to the overall length of the
policy, which is limited.

"Id":"Admin_Policy"

"Id":"cd3ad3d9-2776-4ef1-a904-4c229d1642ee"

sid_string

Provides a way to include information about an individual statement. For IAM policies, basic
alphanumeric characters (A-Z,a-z,0-9) are the only allowed characters in the Sid value. Other
AWS services that support resource policies may have other requirements for the Sid value.
For example, some services require this value to be unique within an AWS account, and some
services allow additional characters such as spaces in the Sid value.

"Sid":"1"

"Sid": "ThisStatementProvidesPermissionsForConsoleAccess"

principal_id_string

Provides a way to specify a principal using the Amazon Resource Name (ARN) of the AWS
account, IAM user, IAM role, federated user, or assumed-role user. For an AWS account, you can
also use the short form AWS:accountnumber instead of the full ARN. For all of the options
including AWS services, assumed roles, and so on, see Specifying a principal.

Note that you can use * only to specify "everyone/anonymous." You cannot use it to specify part
of a name or ARN.

resource_string

In most cases, consists of an Amazon Resource Name (ARN).

"Resource":"arn:aws:iam::123456789012:user/Bob"

Policy grammar 2898

AWS Identity and Access Management User Guide

"Resource":"arn:aws:s3:::examplebucket/*"

condition_type_string

Identifies the type of condition being tested, such as StringEquals, StringLike,
NumericLessThan, DateGreaterThanEquals, Bool, BinaryEquals, IpAddress,
ArnEquals, etc. For a complete list of condition types, see IAM JSON policy elements:
Condition operators.

"Condition": {
 "NumericLessThanEquals": {
 "s3:max-keys": "10"
 }
}

"Condition": {
 "Bool": {
 "aws:SecureTransport": "true"
 }
}

"Condition": {
 "StringEquals": {
 "s3:x-amz-server-side-encryption": "AES256"
 }
}

condition_key_string

Identifies the condition key whose value will be tested to determine whether the condition
is met. AWS defines a set of condition keys that are available in all AWS services, including
aws:PrincipalType, aws:SecureTransport, and aws:userid.

For a list of AWS condition keys, see AWS global condition context keys. For condition keys that
are specific to a service, see the documentation for that service such as the following:

• Specifying Conditions in a Policy in the Amazon Simple Storage Service User Guide

• IAM Policies for Amazon EC2 in the Amazon EC2 User Guide for Linux Instances.

"Condition":{
 "Bool": {

Policy grammar 2899

https://docs.aws.amazon.com/AmazonS3/latest/dev/amazon-s3-policy-keys.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/iam-policies-for-amazon-ec2.html

AWS Identity and Access Management User Guide

 "aws:SecureTransport": "true"
 }
}

"Condition": {
 "StringNotEquals": {
 "s3:x-amz-server-side-encryption": "AES256"
 }
}

"Condition": {
 "StringEquals": {
 "aws:ResourceTag/purpose": "test"
 }
}

condition_value_string

Identifies the value of the condition_key_string that determines whether the condition is met.
For a complete list of valid values for a condition type, see IAM JSON policy elements: Condition
operators.

"Condition":{
 "ForAnyValue:StringEquals": {
 "dynamodb:Attributes": [
 "ID",
 "PostDateTime"
 }
}

AWS managed policies for job functions

We recommend using policies that grant least privilege, or granting only the permissions required
to perform a task. The most secure way to grant least privilege is to write a custom policy with only
the permissions needed by your team. You must create a process to allow your team to request
more permissions when necessary. It takes time and expertise to create IAM customer managed
policies that provide your team with only the permissions they need.

To get started adding permissions to your IAM identities (users, groups of users, and roles), you
can use AWS managed policies. AWS managed policies cover common use cases and are available

AWS managed policies for job functions 2900

AWS Identity and Access Management User Guide

in your AWS account. AWS managed policies don't grant least privilege permissions. You must
consider the security risk of granting your principals more permissions than they need to do their
job.

You can attach AWS managed policies, including job functions, to any IAM identity. To switch to
least privilege permissions, you can run AWS Identity and Access Management Access Analyzer to
monitor principals with AWS managed policies. After learning which permissions they are using,
then you can write a custom policy or generate a policy with only the required permissions for your
team. This is less secure, but provides more flexibility as you learn how your team is using AWS.

AWS managed policies for job functions are designed to closely align to common job functions in
the IT industry. You can use these policies to grant the permissions needed to carry out the tasks
expected of someone in a specific job function. These policies consolidate permissions for many
services into a single policy that's easier to work with than having permissions scattered across
many policies.

Use Roles to Combine Services

Some of the policies use IAM service roles to help you take advantage of features found in other
AWS services. These policies grant access to iam:passrole, which allows a user with the policy to
pass a role to an AWS service. This role delegates IAM permissions to the AWS service to carry out
actions on your behalf.

You must create the roles according to your needs. For example, the Network Administrator policy
allows a user with the policy to pass a role named "flow-logs-vpc" to the Amazon CloudWatch
service. CloudWatch uses that role to log and capture IP traffic for VPCs created by the user.

To follow security best practices, the policies for job functions include filters that limit the names
of valid roles that can be passed. This helps avoid granting unnecessary permissions. If your users
do require the optional service roles, you must create a role that follows the naming convention
specified in the policy. You then grant permissions to the role. Once that is done, the user can
configure the service to use the role, granting it whatever permissions the role provides.

In the following sections, each policy's name is a link to the policy details page in the AWS
Management Console. There you can see the policy document and review the permissions it grants.

Administrator job function

AWS managed policy name: AdministratorAccess

AWS managed policies for job functions 2901

https://console.aws.amazon.com/iam/home#policies/arn:aws:iam::aws:policy/AdministratorAccess

AWS Identity and Access Management User Guide

Use case: This user has full access and can delegate permissions to every service and resource in
AWS.

Policy updates: AWS maintains and updates this policy. For a history of changes for this policy,
view the policy in the IAM console and then choose the Policy versions tab. For more information
about job function policy updates, see Updates to AWS managed policies for job functions.

Policy description: This policy grants all actions for all AWS services and for all resources in the
account.

Note

Before an IAM user or role can access the AWS Billing and Cost Management console with
the permissions in this policy, you must first activate IAM user and role access. To do this,
follow the instructions in Step 1 of the tutorial about delegating access to the billing
console.

Billing job function

AWS managed policy name: Billing

Use case: This user needs to view billing information, set up payments, and authorize payments.
The user can monitor the costs accumulated for the entire AWS service.

Policy updates: AWS maintains and updates this policy. For a history of changes for this policy,
view the policy in the IAM console and then choose the Policy versions tab. For more information
about job function policy updates, see Updates to AWS managed policies for job functions.

Policy description: This policy grants full permissions for managing billing, costs, payment
methods, budgets, and reports. For additional cost management policy examples, see AWS Billing
policy examples in the AWS Billing and Cost Management User Guide

Note

Before an IAM user or role can access the AWS Billing and Cost Management console with
the permissions in this policy, you must first activate IAM user and role access. To do this,
follow the instructions in Step 1 of the tutorial about delegating access to the billing
console.

AWS managed policies for job functions 2902

https://console.aws.amazon.com/iam/home#policies/arn:aws:iam::aws:policy/job-function/Billing
https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/billing-example-policies.html
https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/billing-example-policies.html

AWS Identity and Access Management User Guide

Database administrator job function

AWS managed policy name: DatabaseAdministrator

Use case: This user sets up, configures, and maintains databases in the AWS Cloud.

Policy updates: AWS maintains and updates this policy. For a history of changes for this policy,
view the policy in the IAM console and then choose the Policy versions tab. For more information
about job function policy updates, see Updates to AWS managed policies for job functions.

Policy description: This policy grants permissions to create, configure, and maintain databases.
It includes access to AWS database services, such as Amazon DynamoDB, Amazon Relational
Database Service (RDS), and Amazon Redshift. View the policy for the full list of database services
that this policy supports.

This job function policy supports the ability to pass roles to AWS services. The policy allows the
iam:PassRole action for only those roles named in the following table. For more information, see
Creating roles and attaching policies (console) later in this topic.

Optional IAM service roles for the database administrator job function

Use case Role name (* is a
wildcard)

Service role
type to select

Select this AWS
managed policy

Allow the user to monitor
RDS databases

rds-monitoring-role Amazon
RDS Role for
Enhanced
Monitoring

AmazonRDSEnhancedM
onitoringRole

Allow AWS Lambda to
monitor your database
and access external
databases

rdbms-lambda-
access

Amazon EC2 AWSLambda_FullAccess

Allow Lambda to upload
files to Amazon S3 and to
Amazon Redshift clusters
with DynamoDB

lambda_exec_role AWS Lambda Create a new managed
policy as defined in the
AWS Big Data Blog

AWS managed policies for job functions 2903

https://console.aws.amazon.com/iam/home#policies/arn:aws:iam::aws:policy/job-function/DatabaseAdministrator
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_Monitoring.OS.html
https://console.aws.amazon.com/iam/home#policies/arn:aws:iam::aws:policy/service-role/AmazonRDSEnhancedMonitoringRole
https://console.aws.amazon.com/iam/home#policies/arn:aws:iam::aws:policy/service-role/AmazonRDSEnhancedMonitoringRole
https://aws.amazon.com/blogs/big-data/from-sql-to-microservices-integrating-aws-lambda-with-relational-databases
https://aws.amazon.com/blogs/big-data/from-sql-to-microservices-integrating-aws-lambda-with-relational-databases
https://console.aws.amazon.com/iam/home#policies/arn:aws:iam::aws:policy/AWSLambda_FullAccess
https://aws.amazon.com/blogs/big-data/a-zero-administration-amazon-redshift-database-loader
https://aws.amazon.com/blogs/big-data/a-zero-administration-amazon-redshift-database-loader

AWS Identity and Access Management User Guide

Use case Role name (* is a
wildcard)

Service role
type to select

Select this AWS
managed policy

Allow Lambda functions
to act as triggers for your
DynamoDB tables

lambda-dynamodb-
*

AWS Lambda AWSLambda
DynamoDBExecutionR
ole

Allow Lambda functions
to access Amazon RDS in
a VPC

lambda-vpc-executi
on-role

Create a role
with a trust
policy as
defined in the
AWS Lambda
Developer Guide

AWSLambdaVPCAccess
ExecutionRole

Allow AWS Data Pipeline
to access your AWS
resources

DataPipelineDefaul
tRole

Create a role
with a trust
policy as defined
in the AWS
Data Pipeline
Developer Guide

The AWS Data Pipeline
documentation lists the
required permissions
for this use case. See
IAM roles for AWS Data
Pipeline

Allow your applications
running on Amazon EC2
instances to access your
AWS resources

DataPipelineDefaul
tResourceRole

Create a role
with a trust
policy as defined
in the AWS
Data Pipeline
Developer Guide

AmazonEC2RoleforDa
taPipelineRole

Data scientist job function

AWS managed policy name: DataScientist

Use case: This user runs Hadoop jobs and queries. The user also accesses and analyzes information
for data analytics and business intelligence.

Policy updates: AWS maintains and updates this policy. For a history of changes for this policy,
view the policy in the IAM console and then choose the Policy versions tab. For more information
about job function policy updates, see Updates to AWS managed policies for job functions.

AWS managed policies for job functions 2904

https://docs.aws.amazon.com/lambda/latest/dg/with-ddb.html
https://docs.aws.amazon.com/lambda/latest/dg/with-ddb.html
https://console.aws.amazon.com/iam/home#policies/arn:aws:iam::aws:policy/service-role/AWSLambdaDynamoDBExecutionRole
https://console.aws.amazon.com/iam/home#policies/arn:aws:iam::aws:policy/service-role/AWSLambdaDynamoDBExecutionRole
https://console.aws.amazon.com/iam/home#policies/arn:aws:iam::aws:policy/service-role/AWSLambdaDynamoDBExecutionRole
https://docs.aws.amazon.com/lambda/latest/dg/vpc-rds.html
https://docs.aws.amazon.com/lambda/latest/dg/vpc-rds.html
https://docs.aws.amazon.com/lambda/latest/dg/vpc-rds.html
https://docs.aws.amazon.com/lambda/latest/dg/vpc-rds.html
https://console.aws.amazon.com/iam/home#policies/arn:aws:iam::aws:policy/service-role/AWSLambdaVPCAccessExecutionRole
https://console.aws.amazon.com/iam/home#policies/arn:aws:iam::aws:policy/service-role/AWSLambdaVPCAccessExecutionRole
https://docs.aws.amazon.com/datapipeline/latest/DeveloperGuide/dp-iam-roles.html
https://docs.aws.amazon.com/datapipeline/latest/DeveloperGuide/dp-iam-roles.html
https://docs.aws.amazon.com/datapipeline/latest/DeveloperGuide/dp-iam-roles.html
https://docs.aws.amazon.com/datapipeline/latest/DeveloperGuide/dp-iam-roles.html
https://docs.aws.amazon.com/datapipeline/latest/DeveloperGuide/dp-iam-roles.html
https://docs.aws.amazon.com/datapipeline/latest/DeveloperGuide/dp-iam-roles.html
https://docs.aws.amazon.com/datapipeline/latest/DeveloperGuide/dp-iam-roles.html
https://docs.aws.amazon.com/datapipeline/latest/DeveloperGuide/dp-iam-roles.html
https://docs.aws.amazon.com/datapipeline/latest/DeveloperGuide/dp-iam-roles.html
https://docs.aws.amazon.com/datapipeline/latest/DeveloperGuide/dp-iam-roles.html
https://docs.aws.amazon.com/datapipeline/latest/DeveloperGuide/dp-iam-roles.html
https://docs.aws.amazon.com/datapipeline/latest/DeveloperGuide/dp-iam-roles.html
https://console.aws.amazon.com/iam/home#policies/arn:aws:iam::aws:policy/service-role/AmazonEC2RoleforDataPipelineRole
https://console.aws.amazon.com/iam/home#policies/arn:aws:iam::aws:policy/service-role/AmazonEC2RoleforDataPipelineRole
https://console.aws.amazon.com/iam/home#policies/arn:aws:iam::aws:policy/job-function/DataScientist

AWS Identity and Access Management User Guide

Policy description: This policy grants permissions to create, manage, and run queries on an
Amazon EMR cluster and perform data analytics with tools such as Amazon QuickSight. The policy
includes access to additional data scientist services, such as AWS Data Pipeline, Amazon EC2,
Amazon Kinesis, Amazon Machine Learning, and SageMaker. View the policy for the full list of data
scientist services that this policy supports.

This job function policy supports the ability to pass roles to AWS services. One statement allows
passing any role to SageMaker. Another statement allows the iam:PassRole action for only those
roles named in the following table. For more information, see Creating roles and attaching policies
(console) later in this topic.

Optional IAM service roles for the data scientist job function

Use case Role name (* is a
wildcard)

Service role type
to select

AWS managed
policy to select

Allow Amazon EC2 instances
access to services and
resources suitable for
clusters

EMR-EC2_D
efaultRole

Amazon EMR for
EC2

AmazonEla
sticMapRe
duceforEC2Role

Allow Amazon EMR access
to access the Amazon EC2
service and resources for
clusters

EMR_DefaultRole Amazon EMR AmazonEMR
ServicePolicy_v2

Allow Kinesis Managed
Service for Apache Flink
to access streaming data
sources

kinesis-* Create a role with
a trust policy as
defined in the AWS
Big Data Blog.

See the AWS Big
Data Blog, which
outlines four
possible options
depending on your
use case

Allow AWS Data Pipeline to
access your AWS resources

DataPipelineDefaul
tRole

Create a role with
a trust policy as
defined in the
AWS Data Pipeline
Developer Guide

The AWS
Data Pipeline
documentation
lists the required
permissions for this
use case. See IAM

AWS managed policies for job functions 2905

https://docs.aws.amazon.com/emr/latest/DeveloperGuide/emr-iam-roles-defaultroles.html
https://docs.aws.amazon.com/emr/latest/DeveloperGuide/emr-iam-roles-defaultroles.html
https://console.aws.amazon.com/iam/home#policies/arn:aws:iam::aws:policy/service-role/AmazonElasticMapReduceforEC2Role
https://console.aws.amazon.com/iam/home#policies/arn:aws:iam::aws:policy/service-role/AmazonElasticMapReduceforEC2Role
https://console.aws.amazon.com/iam/home#policies/arn:aws:iam::aws:policy/service-role/AmazonElasticMapReduceforEC2Role
https://docs.aws.amazon.com/emr/latest/DeveloperGuide/emr-iam-roles-defaultroles.html
https://console.aws.amazon.com/iam/home#policies/arn:aws:iam::aws:policy/service-role/AmazonEMRServicePolicy_v2
https://console.aws.amazon.com/iam/home#policies/arn:aws:iam::aws:policy/service-role/AmazonEMRServicePolicy_v2
https://aws.amazon.com/blogs/big-data/a-zero-administration-amazon-redshift-database-loader
https://aws.amazon.com/blogs/big-data/a-zero-administration-amazon-redshift-database-loader
https://aws.amazon.com/blogs/big-data/a-zero-administration-amazon-redshift-database-loader
https://aws.amazon.com/blogs/big-data/a-zero-administration-amazon-redshift-database-loader
https://aws.amazon.com/blogs/big-data/a-zero-administration-amazon-redshift-database-loader
https://docs.aws.amazon.com/datapipeline/latest/DeveloperGuide/dp-iam-roles.html
https://docs.aws.amazon.com/datapipeline/latest/DeveloperGuide/dp-iam-roles.html
https://docs.aws.amazon.com/datapipeline/latest/DeveloperGuide/dp-iam-roles.html
https://docs.aws.amazon.com/datapipeline/latest/DeveloperGuide/dp-iam-roles.html
https://docs.aws.amazon.com/datapipeline/latest/DeveloperGuide/dp-iam-roles.html

AWS Identity and Access Management User Guide

Use case Role name (* is a
wildcard)

Service role type
to select

AWS managed
policy to select

roles for AWS Data
Pipeline

Allow your applications
running on Amazon EC2
instances to access your AWS
resources

DataPipelineDefaul
tResourceRole

Create a role with
a trust policy as
defined in the
AWS Data Pipeline
Developer Guide

AmazonEC2
RoleforDataPipelin
eRole

Developer power user job function

AWS managed policy name: PowerUserAccess

Use case: This user performs application development tasks and can create and configure resources
and services that support AWS aware application development.

Policy updates: AWS maintains and updates this policy. For a history of changes for this policy,
view the policy in the IAM console and then choose the Policy versions tab. For more information
about job function policy updates, see Updates to AWS managed policies for job functions.

Policy description: The first statement of this policy uses the NotAction element to allow all
actions for all AWS services and for all resources except AWS Identity and Access Management,
AWS Organizations, and AWS Account Management. The second statement grants IAM permissions
to create a service-linked role. This is required by some services that must access resources
in another service, such as an Amazon S3 bucket. It also grants Organizations permissions to
view information about the user's organization, including the management account email and
organization limitations. Although this policy limits IAM, Organizations, it allows the user to
perform all IAM Identity Center actions if IAM Identity Center is enabled. It also grants Account
Management permissions to view which AWS Regions are enabled or disabled for the account.

Network administrator job function

AWS managed policy name: NetworkAdministrator

Use case: This user is tasked with setting up and maintaining AWS network resources.

AWS managed policies for job functions 2906

https://docs.aws.amazon.com/datapipeline/latest/DeveloperGuide/dp-iam-roles.html
https://docs.aws.amazon.com/datapipeline/latest/DeveloperGuide/dp-iam-roles.html
https://docs.aws.amazon.com/datapipeline/latest/DeveloperGuide/dp-iam-roles.html
https://docs.aws.amazon.com/datapipeline/latest/DeveloperGuide/dp-iam-roles.html
https://docs.aws.amazon.com/datapipeline/latest/DeveloperGuide/dp-iam-roles.html
https://docs.aws.amazon.com/datapipeline/latest/DeveloperGuide/dp-iam-roles.html
https://console.aws.amazon.com/iam/home#policies/arn:aws:iam::aws:policy/service-role/AmazonEC2RoleforDataPipelineRole
https://console.aws.amazon.com/iam/home#policies/arn:aws:iam::aws:policy/service-role/AmazonEC2RoleforDataPipelineRole
https://console.aws.amazon.com/iam/home#policies/arn:aws:iam::aws:policy/service-role/AmazonEC2RoleforDataPipelineRole
https://console.aws.amazon.com/iam/home#policies/arn:aws:iam::aws:policy/PowerUserAccess
https://console.aws.amazon.com/iam/home#policies/arn:aws:iam::aws:policy/job-function/NetworkAdministrator

AWS Identity and Access Management User Guide

Policy updates: AWS maintains and updates this policy. For a history of changes for this policy,
view the policy in the IAM console and then choose the Policy versions tab. For more information
about job function policy updates, see Updates to AWS managed policies for job functions.

Policy description: This policy grants permissions to create and maintain network resources
in Auto Scaling, Amazon EC2, AWS Direct Connect, Route 53, Amazon CloudFront, Elastic Load
Balancing, AWS Elastic Beanstalk, Amazon SNS, CloudWatch, CloudWatch Logs, Amazon S3, IAM,
and Amazon Virtual Private Cloud.

This job function requires the ability to pass roles to AWS services. The policy grants iam:GetRole
and iam:PassRole for only those roles named in the following table. For more information, see
Creating roles and attaching policies (console) later in this topic.

Optional IAM service roles for the network administrator job function

Use case Role name (* is a
wildcard)

Service role type
to select

AWS managed
policy to select

Allows Amazon VPC to
create and manage logs in
CloudWatch Logs on the
user's behalf to monitor IP
traffic going in and out of
your VPC

flow-logs-* Create a role with
a trust policy as
defined in the
Amazon VPC User
Guide

This use case
does not have
an existing AWS
managed policy,
but the documenta
tion lists the
required permissio
ns. See Amazon
VPC User Guide.

Read-only access

AWS managed policy name: ReadOnlyAccess

Use case: This user requires read-only access to every resource in an AWS account.

Policy updates: AWS maintains and updates this policy. For a history of changes for this policy,
view the policy in the IAM console and then choose the Policy versions tab. For more information
about job function policy updates, see Updates to AWS managed policies for job functions.

Policy description: This policy grants permissions to list, get, describe, and otherwise view
resources and their attributes. It does not include mutating functions like create or delete. This

AWS managed policies for job functions 2907

https://docs.aws.amazon.com/vpc/latest/userguide/flow-logs.html#flow-logs-iam
https://docs.aws.amazon.com/vpc/latest/userguide/flow-logs.html#flow-logs-iam
https://docs.aws.amazon.com/vpc/latest/userguide/flow-logs.html#flow-logs-iam
https://docs.aws.amazon.com/vpc/latest/userguide/flow-logs.html#flow-logs-iam
https://docs.aws.amazon.com/vpc/latest/userguide/flow-logs.html#flow-logs-iam
https://console.aws.amazon.com/iam/home#policies/arn:aws:iam::aws:policy/ReadOnlyAccess

AWS Identity and Access Management User Guide

policy does include read-only access to security-related AWS services, such as AWS Identity and
Access Management and AWS Billing and Cost Management. View the policy for the full list of
services and actions that this policy supports.

Security auditor job function

AWS managed policy name: SecurityAudit

Use case: This user monitors accounts for compliance with security requirements. This user can
access logs and events to investigate potential security breaches or potential malicious activity.

Policy updates: AWS maintains and updates this policy. For a history of changes for this policy,
view the policy in the IAM console and then choose the Policy versions tab. For more information
about job function policy updates, see Updates to AWS managed policies for job functions.

Policy description: This policy grants permissions to view configuration data for many AWS
services and to review their logs.

Support user job function

AWS managed policy name: SupportUser

Use case: This user contacts AWS Support, creates support cases, and views the status of existing
cases.

Policy updates: AWS maintains and updates this policy. For a history of changes for this policy,
view the policy in the IAM console and then choose the Policy versions tab. For more information
about job function policy updates, see Updates to AWS managed policies for job functions.

Policy description: This policy grants permissions to create and update AWS Support cases.

System administrator job function

AWS managed policy name: SystemAdministrator

Use case: This user sets up and maintains resources for development operations.

Policy updates: AWS maintains and updates this policy. For a history of changes for this policy,
view the policy in the IAM console and then choose the Policy versions tab. For more information
about job function policy updates, see Updates to AWS managed policies for job functions.

Policy description: This policy grants permissions to create and maintain resources across a
large variety of AWS services, including AWS CloudTrail, Amazon CloudWatch, AWS CodeCommit,

AWS managed policies for job functions 2908

https://console.aws.amazon.com/iam/home#policies/arn:aws:iam::aws:policy/SecurityAudit
https://console.aws.amazon.com/iam/home#policies/arn:aws:iam::aws:policy/job-function/SupportUser
https://console.aws.amazon.com/iam/home#policies/arn:aws:iam::aws:policy/job-function/SystemAdministrator

AWS Identity and Access Management User Guide

AWS CodeDeploy, AWS Config, AWS Directory Service, Amazon EC2, AWS Identity and Access
Management, AWS Key Management Service, AWS Lambda, Amazon RDS, Route 53, Amazon S3,
Amazon SES, Amazon SQS, AWS Trusted Advisor, and Amazon VPC.

This job function requires the ability to pass roles to AWS services. The policy grants iam:GetRole
and iam:PassRole for only those roles named in the following table. For more information, see
Creating roles and attaching policies (console) later in this topic.

Optional IAM service roles for the system administrator job function

Use case Role name (* is a
wildcard)

Service role type
to select

AWS managed
policy to select

Allow apps running in EC2
instances in an Amazon ECS
cluster to access Amazon
ECS

ecr-sysadmin-* Amazon EC2 Role
for EC2 Container
Service

AmazonEC2
ContainerServicefo
rEC2Role

Allow a user to monitor
databases

rds-monitoring-rol
e

Amazon RDS Role
for Enhanced
Monitoring

AmazonRDS
EnhancedM
onitoringRole

Allow apps running in EC2
instances to access AWS
resources.

ec2-sysadmin-* Amazon EC2 Sample policy for
role that grants
access to an S3
bucket as shown
in the Amazon
EC2 User Guide
for Linux Instances
; customize as
needed

Allow Lambda to read
DynamoDB streams and
write to CloudWatch Logs

lambda-sysadmin-* AWS Lambda AWSLambda
DynamoDBE
xecutionRole

View-only user job function

AWS managed policy name: ViewOnlyAccess

AWS managed policies for job functions 2909

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/instance_IAM_role.html
https://console.aws.amazon.com/iam/home#policies/arn:aws:iam::aws:policy/service-role/AmazonEC2ContainerServiceforEC2Role
https://console.aws.amazon.com/iam/home#policies/arn:aws:iam::aws:policy/service-role/AmazonEC2ContainerServiceforEC2Role
https://console.aws.amazon.com/iam/home#policies/arn:aws:iam::aws:policy/service-role/AmazonEC2ContainerServiceforEC2Role
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_Monitoring.OS.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_Monitoring.OS.html
https://console.aws.amazon.com/iam/home#policies/arn:aws:iam::aws:policy/service-role/AmazonRDSEnhancedMonitoringRole
https://console.aws.amazon.com/iam/home#policies/arn:aws:iam::aws:policy/service-role/AmazonRDSEnhancedMonitoringRole
https://console.aws.amazon.com/iam/home#policies/arn:aws:iam::aws:policy/service-role/AmazonRDSEnhancedMonitoringRole
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/iam-roles-for-amazon-ec2.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/iam-roles-for-amazon-ec2.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/iam-roles-for-amazon-ec2.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/iam-roles-for-amazon-ec2.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/iam-roles-for-amazon-ec2.html
https://docs.aws.amazon.com/lambda/latest/dg/with-ddb.html
https://console.aws.amazon.com/iam/home#policies/arn:aws:iam::aws:policy/service-role/AWSLambdaDynamoDBExecutionRole
https://console.aws.amazon.com/iam/home#policies/arn:aws:iam::aws:policy/service-role/AWSLambdaDynamoDBExecutionRole
https://console.aws.amazon.com/iam/home#policies/arn:aws:iam::aws:policy/service-role/AWSLambdaDynamoDBExecutionRole
https://console.aws.amazon.com/iam/home#policies/arn:aws:iam::aws:policy/job-function/ViewOnlyAccess

AWS Identity and Access Management User Guide

Use case: This user can view a list of AWS resources and basic metadata in the account across
services. The user cannot read resource content or metadata that goes beyond the quota and list
information for resources.

Policy updates: AWS maintains and updates this policy. For a history of changes for this policy,
view the policy in the IAM console and then choose the Policy versions tab. For more information
about job function policy updates, see Updates to AWS managed policies for job functions.

Policy description: This policy grants List*, Describe*, Get*, View*, and Lookup* access
to resources for AWS services. To see what actions this policy includes for each service, see
ViewOnlyAccess.

Updates to AWS managed policies for job functions

These policies are all maintained by AWS and are kept up to date to include support for new
services and new capabilities as they are added by AWS services. These policies cannot be modified
by customers. You can make a copy of the policy and then modify the copy, but that copy is not
automatically updated as AWS introduces new services and API operations.

For a job function policy, you can view the version history and the time and date of each update
in the IAM console. To do this, use the links on this page to view the policy details. Then choose
the Policy versions tab to view the versions. This page shows the last 25 versions of a policy.
To view all of the versions for a policy, call the get-policy-version AWS CLI command or the
GetPolicyVersion API operation.

Note

You can have up to five versions of a customer managed policy, but AWS retains the full
version history of AWS managed policies.

Creating roles and attaching policies (console)

Several of the previously listed policies grant the ability to configure AWS services with roles that
enable those services to perform operations on your behalf. The job function policies either specify
exact role names that you must use or at least include a prefix that specifies the first part of the
name that can be used. To create one of these roles, perform the steps in the following procedure.

AWS managed policies for job functions 2910

https://console.aws.amazon.com/iam/home#policies/arn:aws:iam::aws:policy/job-function/ViewOnlyAccess
https://docs.aws.amazon.com/cli/latest/reference/iam/get-policy-version.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_GetPolicyVersion.html

AWS Identity and Access Management User Guide

To create a role for an AWS service (IAM console)

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. In the navigation pane of the IAM console, choose Roles, and then choose Create role.

3. For Trusted entity type, choose AWS service.

4. For Service or use case, choose a service, and then choose the use case. Use cases are defined
by the service to include the trust policy that the service requires.

5. Choose Next.

6. For Permissions policies, the options depend on the use case that you selected:

• If the service defines the permissions for the role, you can't select permissions policies.

• Select from a limited set of permission polices.

• Select from all permission policies.

• Select no permissions policies, create the policies after the role is create, and then attach the
policies to the role.

7. (Optional) Set a permissions boundary. This is an advanced feature that is available for service
roles, but not service-linked roles.

a. Open the Set permissions boundary section, and then choose Use a permissions
boundary to control the maximum role permissions.

IAM includes a list of the AWS managed and customer-managed policies in your account.

b. Select the policy to use for the permissions boundary.

8. Choose Next.

9. For Role name, the options depend on the service:

• If the service defines the role name, you can't edit the role name.

• If the service defines a prefix for the role name, you can enter an optional suffix.

• If the service doesn't define the role name, you can name the role.

Important

When you name a role, note the following:

• Role names must be unique within your AWS account, and can't be made unique
by case.

AWS managed policies for job functions 2911

https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_boundaries.html

AWS Identity and Access Management User Guide

For example, don't create roles named both PRODROLE and prodrole. When a
role name is used in a policy or as part of an ARN, the role name is case sensitive,
however when a role name appears to customers in the console, such as during
the sign-in process, the role name is case insensitive.

• You can't edit the name of the role after it's created because other entities might
reference the role.

10. (Optional) For Description, enter a description for the role.

11. (Optional) To edit the use cases and permissions for the role, in the Step 1: Select trusted
entities or Step 2: Add permissions sections, choose Edit.

12. (Optional) To help identify, organize, or search for the role, add tags as key-value pairs. For
more information about using tags in IAM, see Tagging IAM resources in the IAM User Guide.

13. Review the role, and then choose Create role.

Example 1: Configuring a user as a database administrator (console)

This example shows the steps required to configure Alice, an IAM user, as a Database Administrator.
You use the information in first row of the table in that section and allow the user to enable
Amazon RDS monitoring. You attach the DatabaseAdministrator policy to Alice's IAM user so
that they can manage the Amazon database services. That policy also allows Alice to pass a role
called rds-monitoring-role to the Amazon RDS service that allows the service to monitor the
Amazon RDS databases on their behalf.

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. Choose Policies, type database in the search box, and then press enter.

3. Select the radio button for the DatabaseAdministrator policy, choose Actions, and then
choose Attach.

4. In the list of entities, select Alice and then choose Attach policy. Alice now can administer
AWS databases. However, to allow Alice to monitor those databases, you must configure the
service role.

5. In the navigation pane of the IAM console, choose Roles, and then choose Create role.

6. Choose the AWS Service role type, and then choose Amazon RDS.

7. Choose the Amazon RDS Role for Enhanced Monitoring use case.

AWS managed policies for job functions 2912

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_tags.html
https://console.aws.amazon.com/iam/home#policies/arn:aws:iam::aws:policy/job-function/DatabaseAdministrator
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/

AWS Identity and Access Management User Guide

8. Amazon RDS defines the permissions for your role. Choose Next: Review to continue.

9. The role name must be one of those specified by the DatabaseAdministrator policy that Alice
now has. One of those is rds-monitoring-role. Enter that for the Role name.

10. (Optional) For Role description, enter a description for the new role.

11. After you review the details, choose Create role.

12. Alice can now enable RDS Enhanced Monitoring in the Monitoring section of the Amazon RDS
console. For example, they might do this when they create a DB instance, create a read replica,
or modify a DB instance. They must enter the role name they created (rds-monitoring-role) in
the Monitoring Role box when they set Enable Enhanced Monitoring to Yes.

Example 2: Configuring a user as a network administrator (console)

This example shows the steps required to configure Jorge, an IAM user, as a Network Administrator.
It uses the information in the table in that section to allow Jorge to monitor IP traffic going to
and from a VPC. It also allows Jorge to capture that information in the logs in CloudWatch Logs.
You attach the NetworkAdministrator policy to Jorge's IAM user so that they can configure AWS
network resources. That policy also allows Jorge to pass a role whose name begins with flow-
logs* to Amazon EC2 when you create a flow log. In this scenario, unlike Example 1, there isn't a
predefined service role type, so you must perform a few steps differently.

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. In the navigation pane, choose Policies and then enter network in the search box, and then
press enter.

3. Select the radio button next to NetworkAdministrator policy, choose Actions, and then
choose Attach.

4. In the list of users, select the check box next to Jorge and then choose Attach policy. Jorge
can now administer AWS network resources. However, to enable monitoring of IP traffic in your
VPC, you must configure the service role.

5. Because the service role you need to create doesn't have a predefined managed policy, you
must first create it. In the navigation pane, choose Policies, then choose Create policy.

6. In the Policy editor section, choose the JSON option and copy the text from the following
JSON policy document. Paste this text into the JSON text box.

{

AWS managed policies for job functions 2913

https://console.aws.amazon.com/iam/home#policies/arn:aws:iam::aws:policy/job-function/NetworkAdministrator
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/

AWS Identity and Access Management User Guide

 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "logs:CreateLogGroup",
 "logs:CreateLogStream",
 "logs:PutLogEvents",
 "logs:DescribeLogGroups",
 "logs:DescribeLogStreams"
],
 "Effect": "Allow",
 "Resource": "*"
 }
]
}

7. Resolve any security warnings, errors, or general warnings generated during policy validation,
and then choose Next.

Note

You can switch between the Visual and JSON editor options any time. However, if you
make changes or choose Next in the Visual editor, IAM might restructure your policy to
optimize it for the visual editor. For more information, see Policy restructuring.

8. On the Review and create page, type vpc-flow-logs-policy-for-service-role for the
policy name. Review the Permissions defined in this policy to see the permissions granted by
your policy, and then choose Create policy to save your work.

The new policy appears in the list of managed policies and is ready to attach.

9. In the navigation pane of the IAM console, choose Roles, and then choose Create role.

10. Choose the AWS Service role type, and then choose Amazon EC2.

11. Choose the Amazon EC2 use case.

12. On the Attach permissions policies page, choose the policy you created earlier, vpc-flow-
logs-policy-for-service-role, and then choose Next: Review.

13. The role name must be permitted by the NetworkAdministrator policy that Jorge now has.
Any name that begins with flow-logs- is allowed. For this example, enter flow-logs-for-
jorge for the Role name.

14. (Optional) For Role description, enter a description for the new role.

AWS managed policies for job functions 2914

AWS Identity and Access Management User Guide

15. After you review the details, choose Create role.

16. Now you can configure the trust policy required for this scenario. On the Roles page, choose
the flow-logs-for-jorge role (the name, not the check box). On the details page for your new
role, choose the Trust relationships tab, and then choose Edit trust relationship.

17. Change the "Service" line to read as follows, replacing the entry for ec2.amazonaws.com:

 "Service": "vpc-flow-logs.amazonaws.com"

18. Jorge can now create flow logs for a VPC or subnet in the Amazon EC2 console. When you
create the flow log, specify the flow-logs-for-jorge role. That role has the permissions to
create the log and write data to it.

AWS global condition context keys

When a principal makes a request to AWS, AWS gathers the request information into a request
context. You can use the Condition element of a JSON policy to compare keys in the request
context with key values that you specify in your policy. Request information is provided by different
sources, including the principal making the request, the resource the request is made against, and
the metadata about the request itself.

Global condition keys can be used across all AWS services. While these condition keys can
be used in all policies, the key is not available in every request context. For example, the
aws:SourceAccount condition key is only available when the call to your resource is made
directly by an AWS service principal. To learn more about the circumstances under which a global
key is included in the request context, see the Availability information for each key.

Some individual services create their own condition keys that are available in the request context
for other services. Cross-service condition keys are a type of global condition key that include a
prefix matching the name of the service, such as ec2: or lambda:, but are available across other
services.

Service-specific condition keys are defined for use with an individual AWS service. For example,
Amazon S3 lets you write a policy with the s3:VersionId condition key to limit access to a
specific version of an Amazon S3 object. This condition key is unique to the service, meaning it
only works with requests to the Amazon S3 service. For condition keys that are service-specific, see
Actions, Resources, and Condition Keys for AWS Services and choose the service whose keys you
want to view.

Global condition keys 2915

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_principal.html#principal-services
https://docs.aws.amazon.com/service-authorization/latest/reference/reference_policies_actions-resources-contextkeys.html

AWS Identity and Access Management User Guide

Note

If you use condition keys that are available only in some circumstances, you can use the
IfExists versions of the condition operators. If the condition keys are missing from a request
context, the policy can fail the evaluation. For example, use the following condition block
with ...IfExists operators to match when a request comes from a specific IP range
or from a specific VPC. If either or both keys are not included in the request context, the
condition still returns true. The values are only checked if the specified key is included in
the request context.

"Condition": {
 "IpAddressIfExists": {"aws:SourceIp" : ["xxx"] },
 "StringEqualsIfExists" : {"aws:SourceVpc" : ["yyy"]}
}

Important

To compare your condition against a request context with multiple key values, you must
use the ForAllValues or ForAnyValue set operators. Use set operators only with
multivalued condition keys. Do not use set operators with single-valued condition keys. For
more information, see Multivalued context keys.

Properties of
the principal

Properties of a
role session

Properties of
the network

Properties of
the resource

Properties of
the request

aws:PrincipalArn

aws:Princ
ipalAccount

aws:Princ
ipalOrgPaths

aws:Princ
ipalOrgID

aws:Feder
atedProvider

aws:Token
IssueTime

aws:Multi
FactorAuthAge

aws:SourceIp

aws:SourceVpc

aws:SourceVpce

aws:VpcSourceIp

aws:Resou
rceAccount

aws:Resou
rceOrgPaths

aws:Resou
rceOrgID

aws:Resou
rceTag/tag-key

aws:CalledVia

aws:Calle
dViaFirst

aws:Calle
dViaLast

aws:ViaAW
SService

Global condition keys 2916

AWS Identity and Access Management User Guide

Properties of
the principal

Properties of a
role session

Properties of
the network

Properties of
the resource

Properties of
the request

aws:Princ
ipalTag/tag-key

aws:Princ
ipalIsAWS
Service

aws:Princ
ipalServiceName

aws:Princ
ipalServi
ceNamesList

aws:Princ
ipalType

aws:userid

aws:username

aws:Multi
FactorAut
hPresent

aws:Ec2In
stanceSourceVpc

aws:Ec2In
stanceSou
rcePrivateIPv4

aws:Sourc
eIdentity

ec2:RoleDelivery

ec2:Sourc
eInstanceArn

glue:Role
AssumedBy

glue:Cred
entialIss
uingService

lambda:So
urceFunctionArn

ssm:Sourc
eInstanceArn

identitys
tore:UserId

aws:CurrentTime

aws:EpochTime

aws:referer

aws:Reque
stedRegion

aws:Reque
stTag/tag-key

aws:TagKeys

aws:Secur
eTransport

aws:SourceArn

aws:Sourc
eAccount

aws:Sourc
eOrgPaths

aws:Sourc
eOrgID

aws:UserAgent

Global condition keys 2917

AWS Identity and Access Management User Guide

Properties of the principal

Use the following condition keys to compare details about the principal making the request
with the principal properties that you specify in the policy. For a list of principals that can make
requests, see Specifying a principal.

Contents

• aws:PrincipalArn

• aws:PrincipalAccount

• aws:PrincipalOrgPaths

• aws:PrincipalOrgID

• aws:PrincipalTag/tag-key

• aws:PrincipalIsAWSService

• aws:PrincipalServiceName

• aws:PrincipalServiceNamesList

• aws:PrincipalType

• aws:userid

• aws:username

aws:PrincipalArn

Use this key to compare the Amazon Resource Name (ARN) of the principal that made the request
with the ARN that you specify in the policy. For IAM roles, the request context returns the ARN of
the role, not the ARN of the user that assumed the role.

• Availability – This key is included in the request context for all signed requests. Anonymous
requests do not include this key. You can specify the following types of principals in this
condition key:

• IAM role

• IAM user

• AWS STS federated user session

• AWS account root user

• Data type – ARN, String

Global condition keys 2918

AWS Identity and Access Management User Guide

AWS recommends that you use ARN operators instead of string operators when comparing ARNs.

• Value type – Single-valued

• Example values The following list shows the request context value returned for different types
of principals that you can specify in the aws:PrincipalArn condition key:

• IAM role – The request context contains the following value for condition key
aws:PrincipalArn. Do not specify the assumed role session ARN as a value for this
condition key. For more information about the assumed role session principal, see Role session
principals.

arn:aws:iam::123456789012:role/role-name

• IAM user – The request context contains the following value for condition key
aws:PrincipalArn.

arn:aws:iam::123456789012:user/user-name

• AWS STS federated user sessions – The request context contains the following value for
condition key aws:PrincipalArn.

arn:aws:sts::123456789012:federated-user/user-name

• AWS account root user – The request context contains the following value for condition
key aws:PrincipalArn. When you specify the root user ARN as the value for the
aws:PrincipalArn condition key, it limits permissions only for the root user of the AWS
account. This is different from specifying the root user ARN in the principal element of a
resource-based policy, which delegates authority to the AWS account. For more information
about specifying the root user ARN in the principal element of a resource-based policy, see
AWS account principals.

arn:aws:iam::123456789012:root

You can specify the root user ARN as a value for condition key aws:PrincipalArn in AWS
Organizations service control policies (SCPs). SCPs are a type of organization policy used to
manage permissions in your organization and affect only member accounts in the organization.
An SCP restricts permissions for IAM users and roles in member accounts, including the member

Global condition keys 2919

AWS Identity and Access Management User Guide

account's root user. For more information about the effect of SCPs on permissions, see SCP effects
on permissions in the Organizations User Guide.

aws:PrincipalAccount

Use this key to compare the account to which the requesting principal belongs with the account
identifier that you specify in the policy. For anonymous requests, the request context returns
anonymous.

• Availability – This key is included in the request context for all requests, including anonymous
requests.

• Data type – String

• Value type – Single-valued

In the following example, access is denied except to principals with the account number
123456789012.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "DenyAccessFromPrincipalNotInSpecificAccount",
 "Action": "service:*",
 "Effect": "Deny",
 "Resource": [
 "arn:aws:service:region:accountID:resource"
],
 "Condition": {
 "StringNotEquals": {
 "aws:PrincipalAccount": [
 "123456789012"
]
 }
 }
 }
]
}

Global condition keys 2920

https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_scps.html#scp-effects-on-permissions
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_scps.html#scp-effects-on-permissions

AWS Identity and Access Management User Guide

aws:PrincipalOrgPaths

Use this key to compare the AWS Organizations path for the principal who is making the request
to the path in the policy. That principal can be an IAM user, IAM role, federated user, or AWS
account root user. In a policy, this condition key ensures that the requester is an account member
within the specified organization root or organizational units (OUs) in AWS Organizations. An AWS
Organizations path is a text representation of the structure of an Organizations entity. For more
information about using and understanding paths, see Understand the AWS Organizations entity
path.

• Availability – This key is included in the request context only if the principal is a member of an
organization. Anonymous requests do not include this key.

• Data type – String (list)

• Value type – Multivalued

Note

Organization IDs are globally unique but OU IDs and root IDs are unique only within
an organization. This means that no two organizations share the same organization ID.
However, another organization might have an OU or root with the same ID as yours. We
recommend that you always include the organization ID when you specify an OU or root.

For example, the following condition returns true for principals in accounts that are attached
directly to the ou-ab12-22222222 OU, but not in its child OUs.

"Condition" : { "ForAnyValue:StringEquals" : {
 "aws:PrincipalOrgPaths":["o-a1b2c3d4e5/r-ab12/ou-ab12-11111111/ou-ab12-22222222/"]
}}

The following condition returns true for principals in an account that is attached directly to the
OU or any of its child OUs. When you include a wildcard, you must use the StringLike condition
operator.

"Condition" : { "ForAnyValue:StringLike" : {
 "aws:PrincipalOrgPaths":["o-a1b2c3d4e5/r-ab12/ou-ab12-11111111/ou-ab12-22222222/
*"]
}}

Global condition keys 2921

AWS Identity and Access Management User Guide

The following condition returns true for principals in an account that is attached directly to any
of the child OUs, but not directly to the parent OU. The previous condition is for the OU or any
children. The following condition is for only the children (and any children of those children).

"Condition" : { "ForAnyValue:StringLike" : {
 "aws:PrincipalOrgPaths":["o-a1b2c3d4e5/r-ab12/ou-ab12-11111111/ou-ab12-22222222/
ou-*"]
}}

The following condition allows access for every principal in the o-a1b2c3d4e5 organization,
regardless of their parent OU.

"Condition" : { "ForAnyValue:StringLike" : {
 "aws:PrincipalOrgPaths":["o-a1b2c3d4e5/*"]
}}

aws:PrincipalOrgPaths is a multivalued condition key. Multivalued keys can have multiple
values in the request context. When you use multiple values with the ForAnyValue condition
operator, the principal's path must match one of the paths listed in the policy. For more
information about multivalued condition keys, see Multivalued context keys.

 "Condition": {
 "ForAnyValue:StringLike": {
 "aws:PrincipalOrgPaths": [
 "o-a1b2c3d4e5/r-ab12/ou-ab12-33333333/*",
 "o-a1b2c3d4e5/r-ab12/ou-ab12-22222222/*"
]
 }
 }

aws:PrincipalOrgID

Use this key to compare the identifier of the organization in AWS Organizations to which the
requesting principal belongs with the identifier specified in the policy.

• Availability – This key is included in the request context only if the principal is a member of an
organization. Anonymous requests do not include this key.

• Data type – String

• Value type – Single-valued

Global condition keys 2922

AWS Identity and Access Management User Guide

This global key provides an alternative to listing all the account IDs for all AWS accounts in an
organization. You can use this condition key to simplify specifying the Principal element in a
resource-based policy. You can specify the organization ID in the condition element. When you add
and remove accounts, policies that include the aws:PrincipalOrgID key automatically include
the correct accounts and don't require manual updating.

For example, the following Amazon S3 bucket policy allows members of any account in the o-
xxxxxxxxxxx organization to add an object into the policy-ninja-dev bucket.

 {
 "Version": "2012-10-17",
 "Statement": {
 "Sid": "AllowPutObject",
 "Effect": "Allow",
 "Principal": "*",
 "Action": "s3:PutObject",
 "Resource": "arn:aws:s3:::policy-ninja-dev/*",
 "Condition": {"StringEquals":
 {"aws:PrincipalOrgID":"o-xxxxxxxxxxx"}
 }
 }
}

Note

This global condition also applies to the management account of an AWS organization.
This policy prevents all principals outside of the specified organization from accessing
the Amazon S3 bucket. This includes any AWS services that interact with your internal
resources, such as AWS CloudTrail sending log data to your Amazon S3 buckets. To learn
how you can safely grant access for AWS services, see aws:PrincipalIsAWSService.

For more information about AWS Organizations, see What Is AWS Organizations? in the AWS
Organizations User Guide.

aws:PrincipalTag/tag-key

Use this key to compare the tag attached to the principal making the request with the tag that you
specify in the policy. If the principal has more than one tag attached, the request context includes
one aws:PrincipalTag key for each attached tag key.

Global condition keys 2923

https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_org_details.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_introduction.html

AWS Identity and Access Management User Guide

• Availability – This key is included in the request context if the principal is using an IAM user with
attached tags. It is included for a principal using an IAM role with attached tags or session tags.
Anonymous requests do not include this key.

• Data type – String

• Value type – Single-valued

You can add custom attributes to a user or role in the form of a key-value pair. For more
information about IAM tags, see Tagging IAM resources. You can use aws:PrincipalTag to
control access for AWS principals.

This example shows how you might create an identity-based policy that allows users with the
department=hr tag to manage IAM users, groups, or roles. To use this policy, replace the
italicized placeholder text in the example policy with your own information. Then, follow
the directions in create a policy or edit a policy.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "iam:*",
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "aws:PrincipalTag/department": "hr"
 }
 }
 }
]
}

aws:PrincipalIsAWSService

Use this key to check whether the call to your resource is being made directly by an AWS service
principal. For example, AWS CloudTrail uses the service principal cloudtrail.amazonaws.com to
write logs to your Amazon S3 bucket. The request context key is set to true when a service uses a
service principal to perform a direct action on your resources. The context key is set to false if the
service uses the credentials of an IAM principal to make a request on the principal's behalf. It is also

Global condition keys 2924

AWS Identity and Access Management User Guide

set to false if the service uses a service role or service-linked role to make a call on the principal's
behalf.

• Availability – This key is present in the request context for all signed API requests that use AWS
credentials. Anonymous requests do not include this key.

• Data type – Boolean

• Value type – Single-valued

You can use this condition key to limit access to your trusted identities and expected network
locations while safely granting access to AWS services.

In the following Amazon S3 bucket policy example, access to the bucket is restricted unless the
request originates from vpc-111bbb22 or is from a service principal, such as CloudTrail.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "Expected-network+service-principal",
 "Effect": "Deny",
 "Principal": "*",
 "Action": "s3:PutObject",
 "Resource": "arn:aws:s3:::DOC-EXAMPLE-BUCKET1/AWSLogs/AccountNumber/*",
 "Condition": {
 "StringNotEqualsIfExists": {
 "aws:SourceVpc": "vpc-111bbb22"
 },
 "BoolIfExists": {
 "aws:PrincipalIsAWSService": "false"
 }
 }
 }
]
}

In the following video, learn more about how you might use the aws:PrincipalIsAWSService
condition key in a policy.

Safely grant access to your authorized users, expected network locations, and AWS services
together.

Global condition keys 2925

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_terms-and-concepts.html#iam-term-service-role
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_terms-and-concepts.html#iam-term-service-linked-role
https://www.youtube.com/embed/gv-_H8a42G4
https://www.youtube.com/embed/gv-_H8a42G4

AWS Identity and Access Management User Guide

aws:PrincipalServiceName

Use this key to compare the service principal name in the policy with the service principal that
is making requests to your resources. You can use this key to check whether this call is made by
a specific service principal. When a service principal makes a direct request to your resource, the
aws:PrincipalServiceName key contains the name of the service principal. For example, the
AWS CloudTrail service principal name is cloudtrail.amazonaws.com.

• Availability – This key is present in the request when the call is made by an AWS service
principal. This key is not present in any other situation, including the following:

• If the service uses a service role or service-linked role to make a call on the principal's behalf.

• If the service uses the credentials of an IAM principal to make a request on the principal's
behalf.

• If the call is made directly by an IAM principal.

• If the call is made by an anonymous requester.

• Data type – String

• Value type – Single-valued

You can use this condition key to limit access to your trusted identities and expected network
locations while safely granting access to an AWS service.

In the following Amazon S3 bucket policy example, access to the bucket is restricted unless the
request originates from vpc-111bbb22 or is from a service principal, such as CloudTrail.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "expected-network+service-principal",
 "Effect": "Deny",
 "Principal": "*",
 "Action": "s3:PutObject",
 "Resource": "arn:aws:s3:::DOC-EXAMPLE-BUCKET1/AWSLogs/AccountNumber/*",
 "Condition": {
 "StringNotEqualsIfExists": {
 "aws:SourceVpc": "vpc-111bbb22",
 "aws:PrincipalServiceName": "cloudtrail.amazonaws.com"
 }
 }

Global condition keys 2926

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_terms-and-concepts.html#iam-term-service-role
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_terms-and-concepts.html#iam-term-service-linked-role

AWS Identity and Access Management User Guide

 }
]
}

aws:PrincipalServiceNamesList

This key provides a list of all service principal names that belong to the service. This is an
advanced condition key. You can use it to restrict the service from accessing your resource from a
specific Region only. Some services may create Regional service principals to indicate a particular
instance of the service within a specific Region. You can limit access to a resource to a particular
instance of the service. When a service principal makes a direct request to your resource, the
aws:PrincipalServiceNamesList contains an unordered list of all service principal names
associated with the Regional instance of the service.

• Availability – This key is present in the request when the call is made by an AWS service
principal. This key is not present in any other situation, including the following:

• If the service uses a service role or service-linked role to make a call on the principal's behalf.

• If the service uses the credentials of an IAM principal to make a request on the principal's
behalf.

• If the call is made directly by an IAM principal.

• If the call is made by an anonymous requester.

• Data type – String (list)

• Value type – Multivalued

aws:PrincipalServiceNamesList is a multivalued condition key. Multivalued keys can have
multiple values in the request context. You must use the ForAnyValue or ForAllValues set
operators with string condition operators for this key. For more information about multivalued
condition keys, see Multivalued context keys.

aws:PrincipalType

Use this key to compare the type of principal making the request with the principal type that you
specify in the policy. For more information, see Specifying a principal. For specific examples of
principal key values, see Principal key values.

• Availability – This key is included in the request context for all requests, including anonymous
requests.

Global condition keys 2927

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_terms-and-concepts.html#iam-term-service-role
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_terms-and-concepts.html#iam-term-service-linked-role

AWS Identity and Access Management User Guide

• Data type – String

• Value type – Single-valued

aws:userid

Use this key to compare the requester's principal identifier with the ID that you specify in the
policy. For IAM users, the request context value is the user ID. For IAM roles, this value format
can vary. For details about how the information appears for different principals, see Specifying a
principal. For specific examples of principal key values, see Principal key values.

• Availability – This key is included in the request context for all requests, including anonymous
requests.

• Data type – String

• Value type – Single-valued

aws:username

Use this key to compare the requester's user name with the user name that you specify in the
policy. For details about how the information appears for different principals, see Specifying a
principal. For specific examples of principal key values, see Principal key values.

• Availability – This key is always included in the request context for IAM users. Anonymous
requests and requests that are made using the AWS account root user or IAM roles do not include
this key. Requests made using IAM Identity Center credentials do not include this key in the
context.

• Data type – String

• Value type – Single-valued

Properties of a role session

Use the following condition keys to compare properties of the role session at the time the session
was generated. These condition keys are only available when a request is made by a principal with
role session or federated user credentials. The values for these condition keys are embedded in the
role’s session token.

A role is a type of principal. You can also use the condition keys from the Properties of the principal
section to evaluate the properties of a role when a role is making a request.

Global condition keys 2928

AWS Identity and Access Management User Guide

Contents

• aws:FederatedProvider

• aws:TokenIssueTime

• aws:MultiFactorAuthAge

• aws:MultiFactorAuthPresent

• aws:Ec2InstanceSourceVpc

• aws:Ec2InstanceSourcePrivateIPv4

• aws:SourceIdentity

• ec2:RoleDelivery

• ec2:SourceInstanceArn

• glue:RoleAssumedBy

• glue:CredentialIssuingService

• lambda:SourceFunctionArn

• ssm:SourceInstanceArn

• identitystore:UserId

aws:FederatedProvider

Use this key to compare the principal's issuing identity provider (IdP) with the IdP that you specify
in the policy. This means that an IAM role was assumed using the AssumeRoleWithWebIdentity
AWS STS operation. When the resulting role session's temporary credentials are used to make a
request, the request context identifies the IdP that authenticated the original federated identity.

• Availability – This key is present when the principal is a role session principal and that session
was issued when a role was assumed with AssumeRoleWithWebIdentity.

• Data type – String

• Value type – Single-valued

For example, if the user was authenticated through Amazon Cognito, the request context includes
the value cognito-identity.amazonaws.com. Similarly, if the user was authenticated through
Login with Amazon, the request context includes the value www.amazon.com.

You can use any single-valued condition key as a variable. The following example resource-based
policy uses the aws:FederatedProvider key as a policy variable in the ARN of a resource. This

Global condition keys 2929

AWS Identity and Access Management User Guide

policy allows any principal who authenticated using an IdP to get objects out of an Amazon S3
bucket with a path that's specific to the issuing identity provider.

aws:TokenIssueTime

Use this key to compare the date and time that temporary security credentials were issued with the
date and time that you specify in the policy.

• Availability – This key is included in the request context only when the principal uses temporary
credentials to make the request. The key is not present in AWS CLI, AWS API, or AWS SDK
requests that are made using access keys.

• Data type – Date

• Value type – Single-valued

To learn which services support using temporary credentials, see AWS services that work with IAM.

aws:MultiFactorAuthAge

Use this key to compare the number of seconds since the requesting principal was authorized using
MFA with the number that you specify in the policy. For more information about MFA, see Using
multi-factor authentication (MFA) in AWS.

• Availability – This key is included in the request context only if the principal making the call was
authenticated using MFA. If MFA was not used, this key is not present.

• Data type – Numeric

• Value type – Single-valued

aws:MultiFactorAuthPresent

Use this key to check whether multi-factor authentication (MFA) was used to validate the
temporary security credentials that made the request.

• Availability – This key is included in the request context only when the principal uses temporary
credentials to make the request. The key is not present in AWS CLI, AWS API, or AWS SDK
requests that are made using long-term credentials.

• Data type – Boolean

• Value type – Single-valued

Global condition keys 2930

AWS Identity and Access Management User Guide

Temporary credentials are used to authenticate IAM roles, federated users, IAM users with
temporary tokens from sts:GetSessionToken, and users of the AWS Management
Console. IAM user access keys are long-term credentials, but in some cases, AWS creates
temporary credentials on behalf of IAM users to perform operations. In these cases, the
aws:MultiFactorAuthPresent key is present in the request and set to a value of false. There
are two common cases where this can happen:

• IAM users in the AWS Management Console unknowingly use temporary credentials. Users sign
into the console using their user name and password, which are long-term credentials. However,
in the background, the console generates temporary credentials on behalf of the user.

• If an IAM user makes a call to an AWS service, the service re-uses the user's credentials to make
another request to a different service. For example, when calling Athena to access an Amazon
S3 bucket, or when using AWS CloudFormation to create an Amazon EC2 instance. For the
subsequent request, AWS uses temporary credentials.

To learn which services support using temporary credentials, see AWS services that work with IAM.

The aws:MultiFactorAuthPresent key is not present when an API or CLI command is called
with long-term credentials, such as user access key pairs. Therefore we recommend that when you
check for this key that you use the ...IfExists versions of the condition operators.

It is important to understand that the following Condition element is not a reliable way to check
whether a request is authenticated using MFA.

WARNING: NOT RECOMMENDED
"Effect" : "Deny",
"Condition" : { "Bool" : { "aws:MultiFactorAuthPresent" : "false" } }

This combination of the Deny effect, Bool element, and false value denies requests that can be
authenticated using MFA, but were not. This applies only to temporary credentials that support
using MFA. This statement does not deny access to requests that are made using long-term
credentials, or to requests that are authenticated using MFA. Use this example with caution
because its logic is complicated and it does not test whether MFA-authentication was actually used.

Also do not use the combination of the Deny effect, Null element, and true because it behaves
the same way and the logic is even more complicated.

Recommended Combination

Global condition keys 2931

AWS Identity and Access Management User Guide

We recommend that you use the BoolIfExists operator to check whether a request is
authenticated using MFA.

"Effect" : "Deny",
"Condition" : { "BoolIfExists" : { "aws:MultiFactorAuthPresent" : "false" } }

This combination of Deny, BoolIfExists, and false denies requests that are not authenticated
using MFA. Specifically, it denies requests from temporary credentials that do not include MFA.
It also denies requests that are made using long-term credentials, such as AWS CLI or AWS API
operations made using access keys. The *IfExists operator checks for the presence of the
aws:MultiFactorAuthPresent key and whether or not it could be present, as indicated by its
existence. Use this when you want to deny any request that is not authenticated using MFA. This is
more secure, but can break any code or scripts that use access keys to access the AWS CLI or AWS
API.

Alternative Combinations

You can also use the BoolIfExists operator to allow MFA-authenticated requests and AWS CLI or
AWS API requests that are made using long-term credentials.

"Effect" : "Allow",
"Condition" : { "BoolIfExists" : { "aws:MultiFactorAuthPresent" : "true" } }

This condition matches either if the key exists and is present or if the key does not exist. This
combination of Allow, BoolIfExists, and true allows requests that are authenticated using
MFA, or requests that cannot be authenticated using MFA. This means that AWS CLI, AWS API,
and AWS SDK operations are allowed when the requester uses their long-term access keys. This
combination does not allow requests from temporary credentials that could, but do not include
MFA.

When you create a policy using the IAM console visual editor and choose MFA required, this
combination is applied. This setting requires MFA for console access, but allows programmatic
access with no MFA.

Alternatively, you can use the Bool operator to allow programmatic and console requests only
when authenticated using MFA.

"Effect" : "Allow",

Global condition keys 2932

AWS Identity and Access Management User Guide

"Condition" : { "Bool" : { "aws:MultiFactorAuthPresent" : "true" } }

This combination of the Allow, Bool, and true allows only MFA-authenticated requests. This
applies only to temporary credentials that support using MFA. This statement does not allow
access to requests that were made using long-term access keys, or to requests made using
temporary credentials without MFA.

Do not use a policy construct similar to the following to check whether the MFA key is present:

WARNING: USE WITH CAUTION

"Effect" : "Allow",
"Condition" : { "Null" : { "aws:MultiFactorAuthPresent" : "false" } }

This combination of the Allow effect, Null element, and false value allows only requests that
can be authenticated using MFA, regardless of whether the request is actually authenticated. This
allows all requests that are made using temporary credentials, and denies access for long-term
credentials. Use this example with caution because it does not test whether MFA-authentication
was actually used.

aws:Ec2InstanceSourceVpc

This key identifies the VPC to which Amazon EC2 IAM role credentials were delivered to. You
can use this key in a policy with the aws:SourceVPC global key to check if a call is made
from a VPC (aws:SourceVPC) that matches the VPC where a credential was delivered to
(aws:Ec2InstanceSourceVpc).

• Availability – This key is included in the request context whenever the requester is signing
requests with an Amazon EC2 role credential. It can be used in IAM policies, service control
policies, VPC endpoint policies, and resource policies.

• Data type – String

• Value type – Single-valued

This key can be used with VPC identifier values, but is most useful when used as a variable
combined with the aws:SourceVpc context key. The aws:SourceVpc context key is
included in the request context only if the requester uses a VPC endpoint to make the
request. Using aws:Ec2InstanceSourceVpc with aws:SourceVpc allows you to use

Global condition keys 2933

AWS Identity and Access Management User Guide

aws:Ec2InstanceSourceVpc more broadly since it compares values that typically change
together.

Note

This condition key is not available in EC2-Classic.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "RequireSameVPC",
 "Effect": "Deny",
 "Action": "*",
 "Resource": "*",
 "Condition": {
 "StringNotEquals": {
 "aws:SourceVpc": "${aws:Ec2InstanceSourceVpc}"
 },
 "Null": {
 "ec2:SourceInstanceARN": "false"
 },
 "BoolIfExists": {
 "aws:ViaAWSService": "false"
 }
 }
 }
]
}

In the example above, access is denied if the aws:SourceVpc value isn’t equal to the
aws:Ec2InstanceSourceVpc value. The policy statement is limited to only roles used as
Amazon EC2 instance roles by testing for the existence of the ec2:SourceInstanceARN
condition key.

The policy uses aws:ViaAWSService to allow AWS to authorize requests when requests are made
on behalf of your Amazon EC2 instance roles. For example, when you make a request from an
Amazon EC2 instance to an encrypted Amazon S3 bucket, Amazon S3 makes a call to AWS KMS on
your behalf. Some of the keys are not present when the request is made to AWS KMS.

Global condition keys 2934

AWS Identity and Access Management User Guide

aws:Ec2InstanceSourcePrivateIPv4

This key identifies the private IPv4 address of the primary elastic network interface to which
Amazon EC2 IAM role credentials were delivered. You must use this condition key with its
companion key aws:Ec2InstanceSourceVpc to ensure that you have a globally unique
combination of VPC ID and source private IP. Use this key with aws:Ec2InstanceSourceVpc
to ensure that a request was made from the same private IP address that the credentials were
delivered to.

• Availability – This key is included in the request context whenever the requester is signing
requests with an Amazon EC2 role credential. It can be used in IAM policies, service control
policies, VPC endpoint policies, and resource policies.

• Data type – IP address

• Value type – Single-valued

Important

This key should not be used alone in an Allow statement. Private IP addresses are by
definition not globally unique. You should use the aws:Ec2InstanceSourceVpc key
every time you use the aws:Ec2InstanceSourcePrivateIPv4 key to specify the VPC
your Amazon EC2 instance credentials can be used from.

Note

This condition key is not available in EC2-Classic.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Deny",
 "Action": "*",
 "Resource": "*",
 "Condition": {
 "StringNotEquals": {
 "aws:Ec2InstanceSourceVpc": "${aws:SourceVpc}"

Global condition keys 2935

AWS Identity and Access Management User Guide

 },
 "Null": {
 "ec2:SourceInstanceARN": "false"
 },
 "BoolIfExists": {
 "aws:ViaAWSService": "false"
 }
 }
 },
 {
 "Effect": "Deny",
 "Action": "*",
 "Resource": "*",
 "Condition": {
 "StringNotEquals": {
 "aws:Ec2InstanceSourcePrivateIPv4": "${aws:VpcSourceIp}"
 },
 "Null": {
 "ec2:SourceInstanceARN": "false"
 },
 "BoolIfExists": {
 "aws:ViaAWSService": "false"
 }
 }
 }
]
}

aws:SourceIdentity

Use this key to compare the source identity that was set by the principal with the source identity
that you specify in the policy.

• Availability – This key is included in the request context after a source identity has been set
when a role is assumed using any AWS STS assume-role CLI command, or AWS STS AssumeRole
API operation.

• Data type – String

• Value type – Single-valued

You can use this key in a policy to allow actions in AWS by principals that have set a source identity
when assuming a role. Activity for the role's specified source identity appears in AWS CloudTrail.

Global condition keys 2936

AWS Identity and Access Management User Guide

This makes it easier for administrators to determine who or what performed actions with a role in
AWS.

Unlike sts:RoleSessionName, after the source identity is set, the value cannot be changed. It is
present in the request context for all actions taken by the role. The value persists into subsequent
role sessions when you use the session credentials to assume another role. Assuming one role from
another is called role chaining.

The sts:SourceIdentity key is present in the request when the principal initially sets a
source identity while assuming a role using any AWS STS assume-role CLI command, or AWS STS
AssumeRole API operation. The aws:SourceIdentity key is present in the request for any
actions that are taken with a role session that has a source identity set.

The following role trust policy for CriticalRole in account 111122223333 contains a condition
for aws:SourceIdentity that prevents a principal without a source identity that is set to Saanvi
or Diego from assuming the role.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "AssumeRoleIfSourceIdentity",
 "Effect": "Allow",
 "Principal": {"AWS": "arn:aws:iam::123456789012:role/CriticalRole"},
 "Action": [
 "sts:AssumeRole",
 "sts:SetSourceIdentity"
],
 "Condition": {
 "StringLike": {
 "aws:SourceIdentity": ["Saanvi","Diego"]
 }
 }
 }
]
}

To learn more about using source identity information, see Monitor and control actions taken with
assumed roles.

Global condition keys 2937

AWS Identity and Access Management User Guide

ec2:RoleDelivery

Use this key to compare the version of the instance metadata service in the signed request with the
IAM role credentials for Amazon EC2. The instance metadata service distinguishes between IMDSv1
and IMDSv2 requests based on whether, for any given request, either the PUT or GET headers,
which are unique to IMDSv2, are present in that request.

• Availability – This key is included in the request context whenever the role session is created by
an Amazon EC2 instance.

• Data type – Numeric

• Value type – Single-valued

• Example values – 1.0, 2.0

You can configure the Instance Metadata Service (IMDS) on each instance so that local code or
users must use IMDSv2. When you specify that IMDSv2 must be used, IMDSv1 no longer works.

• Instance Metadata Service Version 1 (IMDSv1) – A request/response method

• Instance Metadata Service Version 2 (IMDSv2) – a session-oriented method

For information about how to configure your instance to use IMDSv2, see Configure the instance
metadata options.

In the following example, access is denied if the ec2:RoleDelivery value in the request context is 1.0
(IMDSv1). This policy statement can be applied generally because, if the request is not signed by
Amazon EC2 role credentials, it has no effect.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "RequireAllEc2RolesToUseV2",
 "Effect": "Deny",
 "Action": "*",
 "Resource": "*",
 "Condition": {
 "NumericLessThan": {
 "ec2:RoleDelivery": "2.0"
 }
 }

Global condition keys 2938

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/configuring-instance-metadata-options.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/configuring-instance-metadata-options.html

AWS Identity and Access Management User Guide

 }
]
}

For more information, see Example policies for working with instance metadata.

ec2:SourceInstanceArn

Use this key to compare the ARN of the instance from which the role’s session was generated.

• Availability – This key is included in the request context whenever the role session is created by
an Amazon EC2 instance.

• Data type – ARN

• Value type – Single-valued

• Example value – arn:aws:ec2:us-west-2:111111111111:instance/instance-id

For policy examples, see Allow a specific instance to view resources in other AWS services.

glue:RoleAssumedBy

The AWS Glue service sets this condition key for each AWS API request where AWS Glue makes
a request using a service role on the customer's behalf (not by a job or developer endpoint, but
directly by the AWS Glue service). Use this key to verify whether a call to an AWS resource came
from the AWS Glue service.

• Availability – This key is included in the request context when AWS Glue makes a request using a
service role on the customer's behalf.

• Data type – String

• Value type – Single-valued

• Example value – This key is always set to glue.amazonaws.com.

The following example adds a condition to allow the AWS Glue service to get an object from an
Amazon S3 bucket.

{
 "Effect": "Allow",
 "Action": "s3:GetObject",

Global condition keys 2939

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ExamplePolicies_EC2.html#iam-example-instance-metadata
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ExamplePolicies_EC2.html#iam-example-source-instance

AWS Identity and Access Management User Guide

 "Resource": "arn:aws:s3:::confidential-bucket/*",
 "Condition": {
 "StringEquals": {
 "glue:RoleAssumedBy": "glue.amazonaws.com"
 }
 }
}

glue:CredentialIssuingService

The AWS Glue service sets this key for each AWS API request using a service role that comes from a
job or developer endpoint. Use this key to verify whether a call to an AWS resource came from an
AWS Glue job or developer endpoint.

• Availability – This key is included in the request context when AWS Glue makes a request that
comes from a job or developer endpoint.

• Data type – String

• Value type – Single-valued

• Example value – This key is always set to glue.amazonaws.com.

The following example adds a condition that is attached to an IAM role that is used by an AWS Glue
job. This ensures certain actions are allowed/denied based on whether the role session is used for
an AWS Glue job runtime environment.

{
 "Effect": "Allow",
 "Action": "s3:GetObject",
 "Resource": "arn:aws:s3:::confidential-bucket/*",
 "Condition": {
 "StringEquals": {
 "glue:CredentialIssuingService": "glue.amazonaws.com"
 }
 }
}

lambda:SourceFunctionArn

Use this key to identify the Lambda function ARN that IAM role credentials were delivered to. The
Lambda service sets this key for each AWS API request that comes from your function's execution

Global condition keys 2940

AWS Identity and Access Management User Guide

environment. Use this key to verify whether a call to an AWS resource came from a specific Lambda
function’s code. Lambda also sets this key for some requests that come from outside the execution
environment, such as writing logs to CloudWatch and sending traces to X-Ray.

• Availability – This key is included in the request context whenever Lambda function code is
invoked.

• Data type – ARN

• Value type – Single-valued

• Example value – arn:aws:lambda:us-east-1:123456789012:function:TestFunction

The following example allows one specific Lambda function to have s3:PutObject access the
specified bucket.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "ExampleSourceFunctionArn",
 "Effect": "Allow",
 "Action": "s3:PutObject",
 "Resource": "arn:aws:s3:::DOC-EXAMPLE-BUCKET/*",
 "Condition": {
 "ArnEquals": {
 "lambda:SourceFunctionArn": "arn:aws:lambda:us-
east-1:123456789012:function:source_lambda"
 }
 }
 }
]
}

For more information, see Working with Lambda execution environment credentials in the AWS
Lambda Developer Guide.

ssm:SourceInstanceArn

Use this key to identify the AWS Systems Manager managed instance ARN that IAM role credentials
were delivered to. This condition key is not present when the request comes from a managed
instance with an IAM role associated with an Amazon EC2 instance profile.

Global condition keys 2941

https://docs.aws.amazon.com/lambda/latest/dg/lambda-intro-execution-role.html#permissions-executionrole-source-function-arn

AWS Identity and Access Management User Guide

• Availability – This key is included in the request context whenever role credentials are delivered
to an AWS Systems Manager managed instance.

• Data type – ARN

• Value type – Single-valued

• Example value – arn:aws:ec2:us-west-2:111111111111:instance/instance-id

identitystore:UserId

Use this key to compare IAM Identity Center workforce identity in the signed request with the
identity specified in the policy.

• Availability – This key is included when the caller of the request is a user in IAM Identity Center.

• Data type – String

• Value type – Single-valued

• Example value – 94482488-3041-7026-18f3-be45837cd0e4

You can find the UserId of a user in IAM Identity Center by making a request to the GetUserId API
using the AWS CLI, AWS API, or AWS SDK.

Properties of the network

Use the following condition keys to compare details about the network that the request originated
from or passed through with the network properties that you specify in the policy.

Contents

• aws:SourceIp

• aws:SourceVpc

• aws:SourceVpce

• aws:VpcSourceIp

aws:SourceIp

Use this key to compare the requester's IP address with the IP address that you specify in the
policy. The aws:SourceIp condition key can only be used for public IP address ranges.

Global condition keys 2942

https://docs.aws.amazon.com/singlesignon/latest/IdentityStoreAPIReference/API_GetUserId.html

AWS Identity and Access Management User Guide

• Availability – This key is included in the request context, except when the requester uses a VPC
endpoint to make the request.

• Data type – IP address

• Value type – Single-valued

The aws:SourceIp condition key can be used in a policy to allow principals to make requests only
from within a specified IP range.

Note

aws:SourceIp supports both IPv4 and IPv6 address or range of IP addresses. For a list
of AWS services that support IPv6, see AWS services that support IPv6 in the Amazon VPC
User Guide.

For example, you can attach the following identity-based policy to an IAM role. This policy allows
the user to put objects into the DOC-EXAMPLE-BUCKET3 Amazon S3 bucket if they make the call
from the specified IPv4 address range. This policy also allows an AWS service that uses Forward
access sessions to perform this operation on your behalf.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "PrincipalPutObjectIfIpAddress",
 "Effect": "Allow",
 "Action": "s3:PutObject",
 "Resource": "arn:aws:s3:::DOC-EXAMPLE-BUCKET3/*",
 "Condition": {
 "IpAddress": {
 "aws:SourceIp": "203.0.113.0/24"
 }
 }
 }
]
}

If you need to restrict access from networks that support both IPv4 and IPv6 addressing, you
can include the IPv4 and IPv6 address or ranges of IP addresses in the IAM policy condition. The

Global condition keys 2943

https://docs.aws.amazon.com/vpc/latest/userguide/aws-ipv6-support.html

AWS Identity and Access Management User Guide

following identity-based policy will allow the user to put objects into the DOC-EXAMPLE-BUCKET3
Amazon S3 bucket if the user makes the call from either specified IPv4 or IPv6 address ranges.
Before you include IPv6 address ranges in your IAM policy, verify that the AWS service you are
working with supports IPv6. For a list of AWS services that support IPv6, see AWS services that
support IPv6 in the Amazon VPC User Guide.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "PrincipalPutObjectIfIpAddress",
 "Effect": "Allow",
 "Action": "s3:PutObject",
 "Resource": "arn:aws:s3:::DOC-EXAMPLE-BUCKET3/*",
 "Condition": {
 "IpAddress": {
 "aws:SourceIp": [
 "203.0.113.0/24",
 "2001:DB8:1234:5678::/64"
]
 }
 }
 }
]
}

If the request comes from a host that uses an Amazon VPC endpoint, then the aws:SourceIp
key is not available. You should instead use a VPC-specific key such as aws:VpcSourceIp. For more
information about using VPC endpoints, see Identity and access management for VPC endpoints
and VPC endpoint services in the AWS PrivateLink Guide.

aws:SourceVpc

Use this key to check whether the request travels through the VPC that the VPC endpoint is
attached to. In a policy, you can use this key to allow access to only a specific VPC. For more
information, see Restricting Access to a Specific VPC in the Amazon Simple Storage Service User
Guide.

• Availability – This key is included in the request context only if the requester uses a VPC
endpoint to make the request.

• Data type – String

Global condition keys 2944

https://docs.aws.amazon.com/vpc/latest/userguide/aws-ipv6-support.html
https://docs.aws.amazon.com/vpc/latest/userguide/aws-ipv6-support.html
https://docs.aws.amazon.com/vpc/latest/privatelink/vpc-endpoints-iam.html
https://docs.aws.amazon.com/vpc/latest/privatelink/vpc-endpoints-iam.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/example-bucket-policies-vpc-endpoint.html#example-bucket-policies-restrict-access-vpc

AWS Identity and Access Management User Guide

• Value type – Single-valued

aws:SourceVpce

Use this key to compare the VPC endpoint identifier of the request with the endpoint ID that you
specify in the policy. In a policy, you can use this key to restrict access to a specific VPC endpoint.
For more information, see Restricting Access to a Specific VPC Endpoint in the Amazon Simple
Storage Service User Guide.

• Availability – This key is included in the request context only if the requester uses a VPC
endpoint to make the request.

• Data type – String

• Value type – Single-valued

aws:VpcSourceIp

Use this key to compare the IP address from which a request was made with the IP address that
you specify in the policy. In a policy, the key matches only if the request originates from the
specified IP address and it goes through a VPC endpoint.

• Availability – This key is included in the request context only if the request is made using a VPC
endpoint.

• Data type – IP address

• Value type – Single-valued

For more information, see Controlling Access to Services with VPC Endpoints in the Amazon VPC
User Guide.

Note

aws:VpcSourceIp supports both IPv4 and IPv6 address or range of IP addresses. For a list
of AWS services that support IPv6, see AWS services that support IPv6 in the Amazon VPC
User Guide.

Global condition keys 2945

https://docs.aws.amazon.com/AmazonS3/latest/dev/example-bucket-policies-vpc-endpoint.html#example-bucket-policies-restrict-access-vpc-endpoint
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-endpoints-access.html
https://docs.aws.amazon.com/vpc/latest/userguide/aws-ipv6-support.html

AWS Identity and Access Management User Guide

Properties of the resource

Use the following condition keys to compare details about the resource that is the target of the
request with the resource properties that you specify in the policy.

Contents

• aws:ResourceAccount

• aws:ResourceOrgPaths

• aws:ResourceOrgID

• aws:ResourceTag/tag-key

aws:ResourceAccount

Use this key to compare the requested resource owner's AWS account ID with the resource account
in the policy. You can then allow or deny access to that resource based on the account that owns
the resource.

• Availability – This key is always included in the request context for most service actions. The
following actions don't support this key:

• AWS Audit Manager

• auditmanager:UpdateAssessmentFrameworkShare

• Amazon Elastic Block Store – All actions

• Amazon EC2

• ec2:AcceptTransitGatewayPeeringAttachment

• ec2:AcceptVpcEndpointConnections

• ec2:AcceptVpcPeeringConnection

• ec2:CopyFpgaImage

• ec2:CopyImage

• ec2:CopySnapshot

• ec2:CreateTransitGatewayPeeringAttachment

• ec2:CreateVolume

• ec2:CreateVpcEndpoint

• ec2:CreateVpcPeeringConnection

• ec2:DeleteTransitGatewayPeeringAttachment

Global condition keys 2946

https://docs.aws.amazon.com/general/latest/gr/acct-identifiers.html

AWS Identity and Access Management User Guide

• ec2:DeleteVpcPeeringConnection

• ec2:RejectTransitGatewayPeeringAttachment

• ec2:RejectVpcEndpointConnections

• ec2:RejectVpcPeeringConnection

• Amazon EventBridge

• events:PutEvents – EventBridge PutEvents calls on an event bus in another account, if
that event bus was configured as a cross-account EventBridge target before March 2, 2023.
For more information, see Grant permissions to allow events from other AWS accounts in the
Amazon EventBridge User Guide.

• Amazon GuardDuty

• guardduty:AcceptAdministratorInvitation

• Amazon Macie

• macie2:AcceptInvitation

• Amazon Route 53

• route53:AssociateVpcWithHostedZone

• route53:CreateVPCAssociationAuthorization

• route53:DeleteVPCAssociationAuthorization

• route53:DisassociateVPCFromHostedZone

• route53:ListHostedZonesByVPC

• AWS Security Hub

• securityhub:AcceptAdministratorInvitation

• Amazon WorkSpaces

• workspaces:DescribeWorkspaceImages

• Data type – String

• Value type – Single-valued

Note

For additional considerations for the above unsupported actions, see the Data Perimeter
Policy Examples repository.

Global condition keys 2947

https://docs.aws.amazon.com/eventbridge/latest/userguide/eb-cross-account.html#eb-receiving-events-from-another-account
https://github.com/aws-samples/data-perimeter-policy-examples
https://github.com/aws-samples/data-perimeter-policy-examples

AWS Identity and Access Management User Guide

This key is equal to the AWS account ID for the account with the resources evaluated in the request.

For most resources in your account, the ARN contains the owner account ID for that resource. For
certain resources, such as Amazon S3 buckets, the resource ARN does not include the account ID.
The following two examples show the difference between a resource with an account ID in the
ARN, and an Amazon S3 ARN without an account ID:

• arn:aws:iam::123456789012:role/AWSExampleRole – IAM role created and owned within
the account 123456789012.

• arn:aws:s3:::DOC-EXAMPLE-BUCKET2 – Amazon S3 bucket created and owned within the
account 111122223333, not displayed in the ARN.

Use the AWS console, or API, or CLI, to find all of your resources and corresponding ARNs.

You write a policy that denies permissions to resources based on the resource owner's account
ID. For example, the following identity-based policy denies access to the specified resource if the
resource does not belong to the specified account.

To use this policy, replace the italicized placeholder text with your account information.

Important

This policy does not allow any actions. Instead, it uses the Deny effect which explicitly
denies access to all of the resources listed in the statement that do not belong to the listed
account. Use this policy in combination with other policies that allow access to specific
resources.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "DenyInteractionWithResourcesNotInSpecificAccount",
 "Action": "service:*",
 "Effect": "Deny",
 "Resource": [
 "arn:aws:service:region:account:*"
],
 "Condition": {

Global condition keys 2948

AWS Identity and Access Management User Guide

 "StringNotEquals": {
 "aws:ResourceAccount": [
 "account"
]
 }
 }
 }
]
}

This policy denies access to all resources for a specific AWS service unless the specified AWS
account owns the resource.

Note

Some AWS services require access to AWS owned resources that are hosted in another AWS
account. Using aws:ResourceAccount in your identity-based policies might impact your
identity's ability to access these resources.

Certain AWS services, such as AWS Data Exchange, rely on access to resources outside of your
AWS accounts for normal operations. If you use the element aws:ResourceAccount in your
policies, include additional statements to create exemptions for those services. The example
policy AWS: Deny access to Amazon S3 resources outside your account except AWS Data Exchange
demonstrates how to deny access based on the resource account while defining exceptions for
service-owned resources.

Use this policy example as a template for creating your own custom policies. Refer to your service
documentation for more information.

aws:ResourceOrgPaths

Use this key to compare the AWS Organizations path for the accessed resource to the path in the
policy. In a policy, this condition key ensures that the resource belongs to an account member
within the specified organization root or organizational units (OUs) in AWS Organizations. An AWS
Organizations path is a text representation of the structure of an Organizations entity. For more
information about using and understanding paths, see Understand the AWS Organizations entity
path

Global condition keys 2949

https://docs.aws.amazon.com/index.html

AWS Identity and Access Management User Guide

• Availability – This key is included in the request context only if the account that owns the
resource is a member of an organization. This global condition key does not support the
following actions:

• AWS Audit Manager

• auditmanager:UpdateAssessmentFrameworkShare

• Amazon Elastic Block Store – All actions

• Amazon EC2

• ec2:AcceptTransitGatewayPeeringAttachment

• ec2:AcceptVpcEndpointConnections

• ec2:AcceptVpcPeeringConnection

• ec2:CopyFpgaImage

• ec2:CopyImage

• ec2:CopySnapshot

• ec2:CreateTransitGatewayPeeringAttachment

• ec2:CreateVolume

• ec2:CreateVpcEndpoint

• ec2:CreateVpcPeeringConnection

• ec2:DeleteTransitGatewayPeeringAttachment

• ec2:DeleteVpcPeeringConnection

• ec2:RejectTransitGatewayPeeringAttachment

• ec2:RejectVpcEndpointConnections

• ec2:RejectVpcPeeringConnection

• Amazon EventBridge

• events:PutEvents – EventBridge PutEvents calls on an event bus in another account, if
that event bus was configured as a cross-account EventBridge target before March 2, 2023.
For more information, see Grant permissions to allow events from other AWS accounts in the
Amazon EventBridge User Guide.

• Amazon GuardDuty

• guardduty:AcceptAdministratorInvitation

• Amazon Macie

• macie2:AcceptInvitation
Global condition keys 2950

https://docs.aws.amazon.com/eventbridge/latest/userguide/eb-cross-account.html#eb-receiving-events-from-another-account

AWS Identity and Access Management User Guide

• Amazon Route 53

• route53:AssociateVpcWithHostedZone

• route53:CreateVPCAssociationAuthorization

• route53:DeleteVPCAssociationAuthorization

• route53:DisassociateVPCFromHostedZone

• route53:ListHostedZonesByVPC

• AWS Security Hub

• securityhub:AcceptAdministratorInvitation

• Amazon WorkSpaces

• workspaces:DescribeWorkspaceImages

• Data type – String (list)

• Value type – Multivalued

Note

For additional considerations for the above unsupported actions, see the Data Perimeter
Policy Examples repository.

aws:ResourceOrgPaths is a multivalued condition key. Multivalued keys can have multiple
values in the request context. You must use the ForAnyValue or ForAllValues set operators
with string condition operators for this key. For more information about multivalued condition
keys, see Multivalued context keys.

For example, the following condition returns True for resources that belong to the organization o-
a1b2c3d4e5. When you include a wildcard, you must use the StringLike condition operator.

"Condition": {
 "ForAnyValue:StringLike": {
 "aws:ResourceOrgPaths":["o-a1b2c3d4e5/*"]
 }
}

Global condition keys 2951

https://github.com/aws-samples/data-perimeter-policy-examples
https://github.com/aws-samples/data-perimeter-policy-examples

AWS Identity and Access Management User Guide

The following condition returns True for resources with the OU ID ou-ab12-11111111. It will
match resources owned by accounts attached to the OU ou-ab12-11111111 or any of the child
OUs.

"Condition": { "ForAnyValue:StringLike" : {
 "aws:ResourceOrgPaths":["o-a1b2c3d4e5/r-ab12/ou-ab12-11111111/*"]
}}

The following condition returns True for resources owned by accounts attached directly to the
OU ID ou-ab12-22222222, but not the child OUs. The following example uses the StringEquals
condition operator to specify the exact match requirement for the OU ID and not a wildcard match.

"Condition": { "ForAnyValue:StringEquals" : {
 "aws:ResourceOrgPaths":["o-a1b2c3d4e5/r-ab12/ou-ab12-11111111/ou-ab12-22222222/"]
}}

Note

Some AWS services require access to AWS owned resources that are hosted in another AWS
account. Using aws:ResourceOrgPaths in your identity-based policies might impact your
identity's ability to access these resources.

Certain AWS services, such as AWS Data Exchange, rely on access to resources outside of your
AWS accounts for normal operations. If you use the aws:ResourceOrgPaths key in your
policies, include additional statements to create exemptions for those services. The example
policy AWS: Deny access to Amazon S3 resources outside your account except AWS Data Exchange
demonstrates how to deny access based on the resource account while defining exceptions for
service-owned resources. You can create a similar policy to restrict access to resources within an
organizational unit (OU) using the aws:ResourceOrgPaths key, while accounting for service-
owned resources.

Use this policy example as a template for creating your own custom policies. Refer to your service
documentation for more information.

aws:ResourceOrgID

Use this key to compare the identifier of the organization in AWS Organizations to which the
requested resource belongs with the identifier specified in the policy.

Global condition keys 2952

https://docs.aws.amazon.com/index.html

AWS Identity and Access Management User Guide

• Availability – This key is included in the request context only if the account that owns the
resource is a member of an organization. This global condition key does not support the
following actions:

• AWS Audit Manager

• auditmanager:UpdateAssessmentFrameworkShare

• Amazon Elastic Block Store – All actions

• Amazon EC2

• ec2:AcceptTransitGatewayPeeringAttachment

• ec2:AcceptVpcEndpointConnections

• ec2:AcceptVpcPeeringConnection

• ec2:CopyFpgaImage

• ec2:CopyImage

• ec2:CopySnapshot

• ec2:CreateTransitGatewayPeeringAttachment

• ec2:CreateVolume

• ec2:CreateVpcEndpoint

• ec2:CreateVpcPeeringConnection

• ec2:DeleteTransitGatewayPeeringAttachment

• ec2:DeleteVpcPeeringConnection

• ec2:RejectTransitGatewayPeeringAttachment

• ec2:RejectVpcEndpointConnections

• ec2:RejectVpcPeeringConnection

• Amazon EventBridge

• events:PutEvents – EventBridge PutEvents calls on an event bus in another account, if
that event bus was configured as a cross-account EventBridge target before March 2, 2023.
For more information, see Grant permissions to allow events from other AWS accounts in the
Amazon EventBridge User Guide.

• Amazon GuardDuty

• guardduty:AcceptAdministratorInvitation

• Amazon Macie

• macie2:AcceptInvitation
Global condition keys 2953

https://docs.aws.amazon.com/eventbridge/latest/userguide/eb-cross-account.html#eb-receiving-events-from-another-account

AWS Identity and Access Management User Guide

• Amazon Route 53

• route53:AssociateVpcWithHostedZone

• route53:CreateVPCAssociationAuthorization

• route53:DeleteVPCAssociationAuthorization

• route53:DisassociateVPCFromHostedZone

• route53:ListHostedZonesByVPC

• AWS Security Hub

• securityhub:AcceptAdministratorInvitation

• Amazon WorkSpaces

• workspaces:DescribeWorkspaceImages

• Data type – String

• Value type – Single-valued

Note

For additional considerations for the above unsupported actions, see the Data Perimeter
Policy Examples repository.

This global key returns the resource organization ID for a given request. It allows you to create
rules that apply to all resources in an organization that are specified in the Resource element
of an identity-based policy. You can specify the organization ID in the condition element. When
you add and remove accounts, policies that include the aws:ResourceOrgID key automatically
include the correct accounts and you don't have to manually update it.

For example, the following policy prevents the principal from adding objects to the policy-
genius-dev resource unless the Amazon S3 resource belongs to the same organization as the
principal making the request.

Important

This policy does not allow any actions. Instead, it uses the Deny effect which explicitly
denies access to all of the resources listed in the statement that do not belong to the listed

Global condition keys 2954

https://github.com/aws-samples/data-perimeter-policy-examples
https://github.com/aws-samples/data-perimeter-policy-examples
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_org_details.html

AWS Identity and Access Management User Guide

account. Use this policy in combination with other policies that allow access to specific
resources.

{
 "Version": "2012-10-17",
 "Statement": {
 "Sid": "DenyPutObjectToS3ResourcesOutsideMyOrganization",
 "Effect": "Deny",
 "Action": "s3:PutObject",
 "Resource": "arn:partition:s3:::policy-genius-dev/*",
 "Condition": {
 "StringNotEquals": {
 "aws:ResourceOrgID": "${aws:PrincipalOrgID}"
 }
 }
 }
}

Note

Some AWS services require access to AWS owned resources that are hosted in another AWS
account. Using aws:ResourceOrgID in your identity-based policies might impact your
identity's ability to access these resources.

Certain AWS services, such as AWS Data Exchange, rely on access to resources outside of your AWS
accounts for normal operations. If you use the aws:ResourceOrgID key in your policies, include
additional statements to create exemptions for those services. The example policy AWS: Deny
access to Amazon S3 resources outside your account except AWS Data Exchange demonstrates
how to deny access based on the resource account while defining exceptions for service-owned
resources. You can create a similar policy to restrict access to resources within your organization
using the aws:ResourceOrgID key, while accounting for service-owned resources.

Use this policy example as a template for creating your own custom policies. Refer to your service
documentation for more information.

In the following video, learn more about how you might use the aws:ResourceOrgID condition
key in a policy.

Global condition keys 2955

https://docs.aws.amazon.com/index.html

AWS Identity and Access Management User Guide

Ensure identities and networks can only be used to access trusted resources.

aws:ResourceTag/tag-key

Use this key to compare the tag key-value pair that you specify in the policy with the key-value pair
attached to the resource. For example, you could require that access to a resource is allowed only if
the resource has the attached tag key "Dept" with the value "Marketing". For more information,
see Controlling access to AWS resources.

• Availability – This key is included in the request context when the requested resource already
has attached tags or in requests that create a resource with an attached tag. This key is returned
only for resources that support authorization based on tags. There is one context key for each
tag key-value pair.

• Data type – String

• Value type – Single-valued

This context key is formatted "aws:ResourceTag/tag-key":"tag-value" where tag-key
and tag-value are a tag key and value pair. Tag keys and values are not case-sensitive. This
means that if you specify "aws:ResourceTag/TagKey1": "Value1" in the condition element
of your policy, then the condition matches a resource tag key named either TagKey1 or tagkey1,
but not both.

For examples of using the aws:ResourceTag key to control access to IAM resources, see
Controlling access to AWS resources.

For examples of using the aws:ResourceTag key to control access to other AWS resources, see
Controlling access to AWS resources using tags.

For a tutorial on using the aws:ResourceTag condition key for attribute based access control
(ABAC), see IAM tutorial: Define permissions to access AWS resources based on tags.

Properties of the request

Use the following condition keys to compare details about the request itself and the contents of
the request with the request properties that you specify in the policy.

Contents

• aws:CalledVia

Global condition keys 2956

https://www.youtube.com/embed/cWVW0xAiWwc

AWS Identity and Access Management User Guide

• aws:CalledViaFirst

• aws:CalledViaLast

• aws:ViaAWSService

• aws:CurrentTime

• aws:EpochTime

• aws:referer

• aws:RequestedRegion

• aws:RequestTag/tag-key

• aws:TagKeys

• aws:SecureTransport

• aws:SourceArn

• aws:SourceAccount

• aws:SourceOrgPaths

• aws:SourceOrgID

• aws:UserAgent

aws:CalledVia

Use this key to compare the services in the policy with the services that made requests on behalf
of the IAM principal (user or role). When a principal makes a request to an AWS service, that
service might use the principal's credentials to make subsequent requests to other services. The
aws:CalledVia key contains an ordered list of each service in the chain that made requests on
the principal's behalf.

For example, you can use AWS CloudFormation to read and write from an Amazon DynamoDB
table. DynamoDB then uses encryption supplied by AWS Key Management Service (AWS KMS).

• Availability – This key is present in the request when a service that supports aws:CalledVia
uses the credentials of an IAM principal to make a request to another service. This key is not
present if the service uses a service role or service-linked role to make a call on the principal's
behalf. This key is also not present when the principal makes the call directly.

• Data type – String (list)

• Value type – Multivalued

Global condition keys 2957

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_terms-and-concepts.html#iam-term-service-role
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_terms-and-concepts.html#iam-term-service-linked-role

AWS Identity and Access Management User Guide

To use the aws:CalledVia condition key in a policy, you must provide the service principals to
allow or deny AWS service requests. AWS supports using the following service principals with
aws:CalledVia.

Service principal

aoss.amazonaws.com

athena.amazonaws.com

backup.amazonaws.com

cloud9.amazonaws.com

cloudformation.amazonaws.com

databrew.amazonaws.com

dataexchange.amazonaws.com

dynamodb.amazonaws.com

imagebuilder.amazonaws.com

kms.amazonaws.com

mgn.amazonaws.com

nimble.amazonaws.com

omics.amazonaws.com

ram.amazonaws.com

robomaker.amazonaws.com

servicecatalog-appregistry.amazonaws.com

sqlworkbench.amazonaws.com

ssm-guiconnect.amazonaws.com

Global condition keys 2958

AWS Identity and Access Management User Guide

To allow or deny access when any service makes a request using the principal's credentials, use the
aws:ViaAWSService condition key. That condition key supports AWS services.

The aws:CalledVia key is a multivalued key. However, you can't enforce order using this key in a
condition. Using the example above, User 1 makes a request to AWS CloudFormation, which calls
DynamoDB, which calls AWS KMS. These are three separate requests. The final call to AWS KMS is
performed by User 1 via AWS CloudFormation and then DynamoDB.

In this case, the aws:CalledVia key in the request context includes
cloudformation.amazonaws.com and dynamodb.amazonaws.com, in that order. If you care
only that the call was made via DynamoDB somewhere in the chain of requests, you can use this
condition key in your policy.

For example, the following policy allows managing the AWS KMS key named my-example-key,
but only if DynamoDB is one of the requesting services. The ForAnyValue:StringEquals
condition operator ensures that DynamoDB is one of the calling services. If the principal makes the
call to AWS KMS directly, the condition returns false and the request is not allowed by this policy.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "KmsActionsIfCalledViaDynamodb",
 "Effect": "Allow",
 "Action": [
 "kms:Encrypt",
 "kms:Decrypt",
 "kms:ReEncrypt*",
 "kms:GenerateDataKey",
 "kms:DescribeKey"
],
 "Resource": "arn:aws:kms:region:111122223333:key/my-example-key",
 "Condition": {
 "ForAnyValue:StringEquals": {
 "aws:CalledVia": ["dynamodb.amazonaws.com"]
 }
 }
 }
]
}

Global condition keys 2959

AWS Identity and Access Management User Guide

If you want to enforce which service makes the first or last call in the chain, you can use the
aws:CalledViaFirst and aws:CalledViaLast keys. For example, the following policy allows
managing the key named my-example-key in AWS KMS. These AWS KMS operations are allowed
only if multiple requests were included in the chain. The first request must be made via AWS
CloudFormation and the last via DynamoDB. If other services make requests in the middle of the
chain, the operation is still allowed.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "KmsActionsIfCalledViaChain",
 "Effect": "Allow",
 "Action": [
 "kms:Encrypt",
 "kms:Decrypt",
 "kms:ReEncrypt*",
 "kms:GenerateDataKey",
 "kms:DescribeKey"
],
 "Resource": "arn:aws:kms:region:111122223333:key/my-example-key",
 "Condition": {
 "StringEquals": {
 "aws:CalledViaFirst": "cloudformation.amazonaws.com",
 "aws:CalledViaLast": "dynamodb.amazonaws.com"
 }
 }
 }
]
}

The aws:CalledViaFirst and aws:CalledViaLast keys are present in the request when a
service uses an IAM principal's credentials to call another service. They indicate the first and last
services that made calls in the chain of requests. For example, assume that AWS CloudFormation
calls another service named X Service, which calls DynamoDB, which then calls AWS KMS. The
final call to AWS KMS is performed by User 1 via AWS CloudFormation, then X Service, and
then DynamoDB. It was first called via AWS CloudFormation and last called via DynamoDB.

Global condition keys 2960

AWS Identity and Access Management User Guide

aws:CalledViaFirst

Use this key to compare the services in the policy with the first service that made a request on
behalf of the IAM principal (user or role). For more information, see aws:CalledVia.

• Availability – This key is present in the request when a service uses the credentials of an IAM
principal to make at least one other request to a different service. This key is not present if the
service uses a service role or service-linked role to make a call on the principal's behalf. This key is
also not present when the principal makes the call directly.

• Data type – String

• Value type – Single-valued

aws:CalledViaLast

Use this key to compare the services in the policy with the last service that made a request on
behalf of the IAM principal (user or role). For more information, see aws:CalledVia.

• Availability – This key is present in the request when a service uses the credentials of an IAM
principal to make at least one other request to a different service. This key is not present if the
service uses a service role or service-linked role to make a call on the principal's behalf. This key is
also not present when the principal makes the call directly.

• Data type – String

• Value type – Single-valued

aws:ViaAWSService

Use this key to check whether an AWS service makes a request to another service on your behalf.

The request context key returns true when a service uses the credentials of an IAM principal to
make a request on behalf of the principal. The context key returns false if the service uses a
service role or service-linked role to make a call on the principal's behalf. The request context key
also returns false when the principal makes the call directly.

• Availability – This key is always included in the request context.

• Data type – Boolean

• Value type – Single-valued

Global condition keys 2961

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_terms-and-concepts.html#iam-term-service-role
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_terms-and-concepts.html#iam-term-service-linked-role
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_terms-and-concepts.html#iam-term-service-role
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_terms-and-concepts.html#iam-term-service-linked-role
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_terms-and-concepts.html#iam-term-service-role
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_terms-and-concepts.html#iam-term-service-linked-role

AWS Identity and Access Management User Guide

You can use this condition key to allow or deny access based on whether a request was made by a
service.

aws:CurrentTime

Use this key to compare the date and time of the request with the date and time that you specify in
the policy. To view an example policy that uses this condition key, see AWS: Allows access based on
date and time.

• Availability – This key is always included in the request context.

• Data type – Date

• Value type – Single-valued

aws:EpochTime

Use this key to compare the date and time of the request in epoch or Unix time with the value that
you specify in the policy. This key also accepts the number of seconds since January 1, 1970.

• Availability – This key is always included in the request context.

• Data type – Date, Numeric

• Value type – Single-valued

aws:referer

Use this key to compare who referred the request in the client browser with the referer that you
specify in the policy. The aws:referer request context value is provided by the caller in an HTTP
header. The Referer header is included in a web browser request when you select a link on a web
page. The Referer header contains the URL of the web page where the link was selected.

• Availability – This key is included in the request context only if the request to the AWS resource
was invoked by linking from a web page URL in the browser. This key is not included for
programmatic requests because it doesn't use a browser link to access the AWS resource.

• Data type – String

• Value type – Single-valued

For example, you can access an Amazon S3 object directly using a URL or using direct API
invocation. For more information, see Amazon S3 API operations directly using a web browser.

Global condition keys 2962

https://docs.aws.amazon.com/AmazonS3/latest/dev/example-bucket-policies.html#example-bucket-policies-use-case-4

AWS Identity and Access Management User Guide

When you access an Amazon S3 object from a URL that exists in a webpage, the URL of the source
web page is in used in aws:referer. When you access an Amazon S3 object by typing the URL
into your browser, aws:referer is not present. When you invoke the API directly, aws:referer
is also not present. You can use the aws:referer condition key in a policy to allow requests made
from a specific referer, such as a link on a web page in your company's domain.

Warning

This key should be used carefully. It is dangerous to include a publicly known referer
header value. Unauthorized parties can use modified or custom browsers to provide any
aws:referer value that they choose. As a result, aws:referer should not be used to
prevent unauthorized parties from making direct AWS requests. It is offered only to allow
customers to protect their digital content, such as content stored in Amazon S3, from being
referenced on unauthorized third-party sites.

aws:RequestedRegion

Use this key to compare the AWS Region that was called in the request with the Region that
you specify in the policy. You can use this global condition key to control which Regions can be
requested. To view the AWS Regions for each service, see Service endpoints and quotas in the
Amazon Web Services General Reference.

• Availability – This key is always included in the request context.

• Data type – String

• Value type – Single-valued

Some global services, such as IAM, have a single endpoint. Because this endpoint is physically
located in the US East (N. Virginia) Region, IAM calls are always made to the us-east-1 Region. For
example, if you create a policy that denies access to all services if the requested Region is not us-
west-2, then IAM calls always fail. To view an example of how to work around this, see NotAction
with Deny.

Note

The aws:RequestedRegion condition key allows you to control which endpoint of a
service is invoked but does not control the impact of the operation. Some services have
cross-Region impacts.

Global condition keys 2963

https://docs.aws.amazon.com/general/latest/gr/aws-service-information.html

AWS Identity and Access Management User Guide

For example, Amazon S3 has API operations that extend across regions.

• You can invoke s3:PutBucketReplication in one Region (which is affected by the
aws:RequestedRegion condition key), but other Regions are affected based on the
replications configuration settings.

• You can invoke s3:CreateBucket to create a bucket in another region, and use the
s3:LocationConstraint condition key to control the applicable regions.

You can use this context key to limit access to AWS services within a given set of Regions. For
example, the following policy allows a user to view all of the Amazon EC2 instances in the AWS
Management Console. However it only allows them to make changes to instances in Ireland (eu-
west-1), London (eu-west-2), or Paris (eu-west-3).

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "InstanceConsoleReadOnly",
 "Effect": "Allow",
 "Action": [
 "ec2:Describe*",
 "ec2:Export*",
 "ec2:Get*",
 "ec2:Search*"
],
 "Resource": "*"
 },
 {
 "Sid": "InstanceWriteRegionRestricted",
 "Effect": "Allow",
 "Action": [
 "ec2:Associate*",
 "ec2:Import*",
 "ec2:Modify*",
 "ec2:Monitor*",
 "ec2:Reset*",
 "ec2:Run*",
 "ec2:Start*",
 "ec2:Stop*",
 "ec2:Terminate*"

Global condition keys 2964

AWS Identity and Access Management User Guide

],
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "aws:RequestedRegion": [
 "eu-west-1",
 "eu-west-2",
 "eu-west-3"
]
 }
 }
 }
]
}

aws:RequestTag/tag-key

Use this key to compare the tag key-value pair that was passed in the request with the tag pair that
you specify in the policy. For example, you could check whether the request includes the tag key
"Dept" and that it has the value "Accounting". For more information, see Controlling access
during AWS requests.

• Availability – This key is included in the request context when tag key-value pairs are passed in
the request. When multiple tags are passed in the request, there is one context key for each tag
key-value pair.

• Data type – String

• Value type – Single-valued

This context key is formatted "aws:RequestTag/tag-key":"tag-value" where tag-key and
tag-value are a tag key and value pair. Tag keys and values are not case-sensitive. This means
that if you specify "aws:RequestTag/TagKey1": "Value1" in the condition element of your
policy, then the condition matches a request tag key named either TagKey1 or tagkey1, but not
both.

This example shows that while the key is single-valued, you can still use multiple key-value pairs in
a request if the keys are different.

{
 "Version": "2012-10-17",

Global condition keys 2965

AWS Identity and Access Management User Guide

 "Statement": {
 "Effect": "Allow",
 "Action": "ec2:CreateTags",
 "Resource": "arn:aws:ec2:::instance/*",
 "Condition": {
 "StringEquals": {
 "aws:RequestTag/environment": [
 "preprod",
 "production"
],
 "aws:RequestTag/team": [
 "engineering"
]
 }
 }
 }
}

aws:TagKeys

Use this key to compare the tag keys in a request with the keys that you specify in the policy.
We recommend that when you use policies to control access using tags, use the aws:TagKeys
condition key to define what tag keys are allowed. For example policies and more information, see
the section called “Controlling access based on tag keys”.

• Availability – This key is included in the request context if the operation supports passing tags in
the request.

• Data type – String (list)

• Value type – Multivalued

This context key is formatted "aws:TagKeys":"tag-key" where tag-key is a list of tag keys
without values (for example, ["Dept","Cost-Center"]).

Because you can include multiple tag key-value pairs in a request, the request content could be a
multivalued request. In this case, you must use the ForAllValues or ForAnyValue set operators.
For more information, see Multivalued context keys.

Some services support tagging with resource operations, such as creating, modifying, or deleting
a resource. To allow tagging and operations as a single call, you must create a policy that includes
both the tagging action and the resource-modifying action. You can then use the aws:TagKeys

Global condition keys 2966

AWS Identity and Access Management User Guide

condition key to enforce using specific tag keys in the request. For example, to limit tags when
someone creates an Amazon EC2 snapshot, you must include the ec2:CreateSnapshot creation
action and the ec2:CreateTags tagging action in the policy. To view a policy for this scenario
that uses aws:TagKeys, see Creating a Snapshot with Tags in the Amazon EC2 User Guide for Linux
Instances.

aws:SecureTransport

Use this key to check whether the request was sent using SSL. The request context returns true or
false. In a policy, you can allow specific actions only if the request is sent using SSL.

• Availability – This key is always included in the request context.

• Data type – Boolean

• Value type – Single-valued

aws:SourceArn

Use this key to compare the Amazon Resource Name (ARN) of the resource making a service-to-
service request with the ARN that you specify in the policy, but only when the request is made by
an AWS service principal. When the source's ARN includes the account ID, it is not necessary to use
aws:SourceAccount with aws:SourceArn.

This key does not work with the ARN of the principal making the request. Instead, use
aws:PrincipalArn.

• Availability – This key is included in the request context only when the call to your resource
is being made directly by an AWS service principal on behalf of a resource for which the
configuration triggered the service-to-service request. The calling service passes the ARN of the
original resource to the called service.

Global condition keys 2967

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ExamplePolicies_EC2.html#iam-creating-snapshot-with-tags
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_principal.html#principal-services

AWS Identity and Access Management User Guide

The following service integrations don't support this global condition key:

Calling service (service
principal)

Called service (resource-
based policy)

Description

logdelivery.elb.amazonaws.c
om

Amazon S3 bucket Enable Elastic Load
Balancing access logging in
Amazon S3 bucket

logdelivery.elasticloadbala
ncing.amazonaws.com

Amazon S3 bucket Enable Elastic Load
Balancing access logging in
Amazon S3 bucket

Note

Not all service integrations with AWS Security Token Service (AWS STS) and AWS Key
Management Service (AWS KMS) are supported. See the documentation of the calling
service for more information. Usage of aws:SourceArn in KMS key policies for keys
used by AWS services via KMS key grants may result in unexpected behavior.

• Data type – ARN, String

AWS recommends that you use ARN operators instead of string operators when comparing ARNs.

• Value type – Single-valued

You can use this condition key to prevent an AWS service from being used as a confused deputy
during transactions between services. Use this key only in resource-based policies where the
Principal is an AWS service principal. Set the value of this condition key to the ARN of the
resource in the request. For example, when an Amazon S3 bucket update triggers an Amazon SNS
topic publish, the Amazon S3 service invokes the sns:Publish API operation. In the topic policy
that allows the sns:Publish operation, set the value of the condition key to the ARN of the
Amazon S3 bucket. For information about how and when this condition key is recommended, see
the documentation for the AWS services you are using.

Global condition keys 2968

https://docs.aws.amazon.com/elasticloadbalancing/latest/application/enable-access-logging.html
https://docs.aws.amazon.com/elasticloadbalancing/latest/application/enable-access-logging.html
https://docs.aws.amazon.com/elasticloadbalancing/latest/application/enable-access-logging.html
https://docs.aws.amazon.com/elasticloadbalancing/latest/application/enable-access-logging.html
https://docs.aws.amazon.com/elasticloadbalancing/latest/application/enable-access-logging.html
https://docs.aws.amazon.com/elasticloadbalancing/latest/application/enable-access-logging.html

AWS Identity and Access Management User Guide

aws:SourceAccount

Use this key to compare the account ID of the resource making a service-to-service request with
the account ID that you specify in the policy, but only when the request is made by an AWS service
principal.

• Availability – This key is included in the request context only when the call to your resource
is being made directly by an AWS service principal on behalf of a resource for which the
configuration triggered the service-to-service request. The calling service passes the account ID
of the original resource to the called service.

The following service integrations don't support this global condition key:

Calling service (service
principal)

Called service (resource-
based policy)

Description

logdelivery.elb.amazonaws.c
om

Amazon S3 bucket Enable Elastic Load
Balancing access logging in
Amazon S3 bucket

logdelivery.elasticloadbala
ncing.amazonaws.com

Amazon S3 bucket Enable Elastic Load
Balancing access logging in
Amazon S3 bucket

Global condition keys 2969

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_principal.html#principal-services
https://docs.aws.amazon.com/elasticloadbalancing/latest/application/enable-access-logging.html
https://docs.aws.amazon.com/elasticloadbalancing/latest/application/enable-access-logging.html
https://docs.aws.amazon.com/elasticloadbalancing/latest/application/enable-access-logging.html
https://docs.aws.amazon.com/elasticloadbalancing/latest/application/enable-access-logging.html
https://docs.aws.amazon.com/elasticloadbalancing/latest/application/enable-access-logging.html
https://docs.aws.amazon.com/elasticloadbalancing/latest/application/enable-access-logging.html

AWS Identity and Access Management User Guide

Note

Not all service integrations with AWS Security Token Service (AWS STS) and AWS Key
Management Service (AWS KMS) are supported. See the documentation of the calling
service for more information. Usage of aws:SourceAccount in KMS key policies for
keys used by AWS services via KMS key grants may result in unexpected behavior.

• Data type – String

• Value type – Single-valued

You can use this condition key to prevent an AWS service from being used as a confused deputy
during transactions between services. Use this key only in resource-based policies where the
Principal is an AWS service principal. Set the value of this condition key to the account ID of the
resource in the request. For example, when an Amazon S3 bucket update triggers an Amazon SNS
topic publish, the Amazon S3 service invokes the sns:Publish API operation. In the topic policy
that allows the sns:Publish operation, set the value of the condition key to the account ID of the
Amazon S3 bucket. For information about how and when this condition keys is recommended, see
the documentation for the AWS services you are using.

aws:SourceOrgPaths

Use this key to compare the AWS Organizations path of the resource making a service-to-service
request with the organizations path that you specify in the policy, but only when the request is
made by an AWS service principal. An Organizations path is a text representation of the structure
of an Organizations entity. For more information about using and understanding paths, see
Understand the AWS Organizations entity path.

• Availability – This key is included in the request context only when the call to your resource is
being made directly by an AWS service principal on behalf of a resource owned by an account
which is a member of an organization. The calling service passes the organization path of the
original resource to the called service.

Global condition keys 2970

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_principal.html#principal-services

AWS Identity and Access Management User Guide

The following service integrations don't support this global condition key:

Calling service (service
principal)

Called service (resource-
based policy)

Description

logdelivery.elb.amazonaws.c
om

Amazon S3 bucket Enable Elastic Load
Balancing access logging in
Amazon S3 bucket

logdelivery.elasticloadbala
ncing.amazonaws.com

Amazon S3 bucket Enable Elastic Load
Balancing access logging in
Amazon S3 bucket

All service principals Amazon Lex bot Allow AWS services to use
Amazon Lex bot

Note

Not all service integrations with AWS Security Token Service (AWS STS) and AWS Key
Management Service (AWS KMS) are supported. See the documentation of the calling
service for more information. Usage of aws:SourceOrgPaths in KMS key policies for
keys used by AWS services via KMS key grants may result in unexpected behavior.

• Data type – String (list)

• Value type – Multivalued

Global condition keys 2971

https://docs.aws.amazon.com/elasticloadbalancing/latest/application/enable-access-logging.html
https://docs.aws.amazon.com/elasticloadbalancing/latest/application/enable-access-logging.html
https://docs.aws.amazon.com/elasticloadbalancing/latest/application/enable-access-logging.html
https://docs.aws.amazon.com/elasticloadbalancing/latest/application/enable-access-logging.html
https://docs.aws.amazon.com/elasticloadbalancing/latest/application/enable-access-logging.html
https://docs.aws.amazon.com/elasticloadbalancing/latest/application/enable-access-logging.html
https://docs.aws.amazon.com/lexv2/latest/dg/security_iam_resource-based-policy-examples.html#security_iam_resource-based-policy-examples-allow-lex-connect
https://docs.aws.amazon.com/lexv2/latest/dg/security_iam_resource-based-policy-examples.html#security_iam_resource-based-policy-examples-allow-lex-connect

AWS Identity and Access Management User Guide

You can use this condition key to prevent an AWS service from being used as a confused deputy
during transactions between services. Use this key only in resource-based policies where the
Principal is an AWS service principal. Set the value of this condition key to the organization
path of the resource in the request. For example, when an Amazon S3 bucket update triggers an
Amazon SNS topic publish, the Amazon S3 service invokes the sns:Publish API operation. In
the topic policy that allows the sns:Publish operation, set the value of the condition key to the
organization path of the Amazon S3 bucket. For information about how and when this condition
key is recommended, see the documentation for the AWS services you are using.

aws:SourceOrgPaths is a multivalued condition key. Multivalued keys can have multiple values
in the request context. You must use the ForAnyValue or ForAllValues set operators with
string condition operators for this key. For more information about multivalued condition keys, see
Multivalued context keys.

aws:SourceOrgID

Use this key to compare the organization ID of the resource making a service-to-service request
with the organization ID that you specify in the policy, but only when the request is made
by an AWS service principal. When you add and remove accounts to an organization in AWS
Organizations, policies that include the aws:SourceOrgID key automatically include the correct
accounts and you don't have to manually update the policies.

• Availability – This key is included in the request context only when the call to your resource is
being made directly by an AWS service principal on behalf of a resource owned by an account
which is a member of an organization. The calling service passes the organization ID of the
original resource to the called service.

The following service integrations don't support this global condition key:

Global condition keys 2972

https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_org_details.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_principal.html#principal-services

AWS Identity and Access Management User Guide

Calling service (service
principal)

Called service (resource-
based policy)

Description

logdelivery.elb.amazonaws.c
om

Amazon S3 bucket Enable Elastic Load
Balancing access logging in
Amazon S3 bucket

logdelivery.elasticloadbala
ncing.amazonaws.com

Amazon S3 bucket Enable Elastic Load
Balancing access logging in
Amazon S3 bucket

All service principals Amazon Lex bot Allow AWS services to use
Amazon Lex bot

Note

Not all service integrations with AWS Security Token Service (AWS STS) and AWS Key
Management Service (AWS KMS) are supported. See the documentation of the calling
service for more information. Usage of aws:SourceOrgID in KMS key policies for keys
used by AWS services via KMS key grants may result in unexpected behavior.

• Data type – String

• Value type – Single-valued

You can use this condition key to prevent an AWS service from being used as a confused deputy
during transactions between services. Use this key only in resource-based policies where the
Principal is an AWS service principal. Set the value of this condition key to the organization
ID of the resource in the request. For example, when an Amazon S3 bucket update triggers an
Amazon SNS topic publish, the Amazon S3 service invokes the sns:Publish API operation. In
the topic policy that allows the sns:Publish operation, set the value of the condition key to the
organization ID of the Amazon S3 bucket. For information about how and when this condition key
is recommended, see the documentation for the AWS services that you are using.

Global condition keys 2973

https://docs.aws.amazon.com/elasticloadbalancing/latest/application/enable-access-logging.html
https://docs.aws.amazon.com/elasticloadbalancing/latest/application/enable-access-logging.html
https://docs.aws.amazon.com/elasticloadbalancing/latest/application/enable-access-logging.html
https://docs.aws.amazon.com/elasticloadbalancing/latest/application/enable-access-logging.html
https://docs.aws.amazon.com/elasticloadbalancing/latest/application/enable-access-logging.html
https://docs.aws.amazon.com/elasticloadbalancing/latest/application/enable-access-logging.html
https://docs.aws.amazon.com/lexv2/latest/dg/security_iam_resource-based-policy-examples.html#security_iam_resource-based-policy-examples-allow-lex-connect
https://docs.aws.amazon.com/lexv2/latest/dg/security_iam_resource-based-policy-examples.html#security_iam_resource-based-policy-examples-allow-lex-connect

AWS Identity and Access Management User Guide

aws:UserAgent

Use this key to compare the requester's client application with the application that you specify in
the policy.

• Availability – This key is always included in the request context.

• Data type – String

• Value type – Single-valued

Warning

This key should be used carefully. Since the aws:UserAgent value is provided by the caller
in an HTTP header, unauthorized parties can use modified or custom browsers to provide
any aws:UserAgent value that they choose. As a result, aws:UserAgent should not be
used to prevent unauthorized parties from making direct AWS requests. You can use it to
allow only specific client applications, and only after testing your policy.

Other cross-service condition keys

AWS STS supports SAML-based federation condition keys and cross-service condition keys for web
identity federation. These keys are available when a user who was federated using SAML performs
AWS operations in other services.

IAM and AWS STS condition context keys

You can use the Condition element in a JSON policy to test the value of keys that are included in
the request context of all AWS requests. These keys provide information about the request itself
or the resources that the request references. You can check that keys have specified values before
allowing the action requested by the user. This gives you granular control over when your JSON
policy statements match or don't match an incoming request. For information about how to use
the Condition element in a JSON policy, see IAM JSON policy elements: Condition.

This topic describes the keys defined and provided by the IAM service (with an iam: prefix) and the
AWS Security Token Service (AWS STS) service (with an sts: prefix). Several other AWS services
also provide service-specific keys that are relevant to the actions and resources defined by that
service. For more information, see Actions, Resources, and Condition Keys for AWS Services. The
documentation for a service that supports condition keys often has additional information. For

IAM condition keys 2974

reference_policies_actions-resources-contextkeys.html

AWS Identity and Access Management User Guide

example, for information about keys that you can use in policies for Amazon S3 resources, see
Amazon S3 Policy Keys in the Amazon Simple Storage Service User Guide.

Topics

• Available keys for IAM

• Available keys for AWS web identity federation

• Cross-service AWS web identity federation context keys

• Available keys for SAML-based AWS STS federation

• Cross-service SAML-based AWS STS federation context keys

• Available keys for AWS STS

Available keys for IAM

You can use the following condition keys in policies that control access to IAM resources:

iam:AssociatedResourceArn

Works with ARN operators.

Specifies the ARN of the resource to which this role will be associated at the destination
service. The resource usually belongs to the service to which the principal is passing the role.
Sometimes, the resource might belong to a third service. For example, you might pass a role to
Amazon EC2 Auto Scaling that they use on an Amazon EC2 instance. In this case, the condition
would match the ARN of the Amazon EC2 instance.

This condition key applies to only the PassRole action in a policy. It can't be used to limit any
other action.

Use this condition key in a policy to allow an entity to pass a role, but only if that role is
associated with the specified resource. You can use wildcards (*) to allow operations performed
on a specific type of resource without restricting the Region or resource ID. For example, you
can allow an IAM user or role to pass any role to the Amazon EC2 service to be used with
instances in the Region us-east-1 or us-west-1. The IAM user or role would not be allowed
to pass roles to other services. In addition, it doesn't allow Amazon EC2 to use the role with
instances in other Regions.

{

IAM condition keys 2975

https://docs.aws.amazon.com/AmazonS3/latest/dev/amazon-s3-policy-keys.html#AvailableKeys-iamV2

AWS Identity and Access Management User Guide

 "Effect": "Allow",
 "Action": "iam:PassRole",
 "Resource": "*",
 "Condition": {
 "StringEquals": {"iam:PassedToService": "ec2.amazonaws.com"},
 "ArnLike": {
 "iam:AssociatedResourceARN": [
 "arn:aws:ec2:us-east-1:111122223333:instance/*",
 "arn:aws:ec2:us-west-1:111122223333:instance/*"
]
 }
 }
}

Note

AWS services that support iam:PassedToService also support this condition key.

iam:AWSServiceName

Works with string operators.

Specifies the AWS service to which this role is attached.

In this example, you allow an entity to create a service-linked role if the service name is access-
analyzer.amazonaws.com.

{
 "Version": "2012-10-17",
 "Statement": [{
 "Effect": "Allow",
 "Action": "iam:CreateServiceLinkedRole",
 "Resource": "*",
 "Condition": {
 "StringLike": {
 "iam:AWSServiceName": "access-analyzer.amazonaws.com"
 }
 }
 }]
 }

IAM condition keys 2976

AWS Identity and Access Management User Guide

iam:FIDO-certification

Works with string operators.

Checks the MFA device FIDO certification level at the time of registration of a FIDO security
key. The device certification is retrieved from the FIDO Alliance Metadata Service (MDS). If the
certification status or level of your FIDO security key changes, it will not be updated unless the
device is unregistered and registered again to fetch the updated certification information.

Possible values of L1, L1plus, L2, L2plus, L3, L3plus

In this example, you register a security key and retrieve the FIDO Level 1 plus certification for
your device.

{
 "Version": "2012-10-17",
 "Statement": [{
 "Effect": "Allow",
 "Action": "iam:EnableMFADevice",
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "iam:RegisterSecurityKey" : "Create"
 }
 }
 },
 {
 "Effect": "Allow",
 "Action": "iam:EnableMFADevice",
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "iam:RegisterSecurityKey" : "Activate",
 "iam:FIDO-certification": "L1plus"
 }
 }
 }
]

 }

IAM condition keys 2977

https://fidoalliance.org/metadata/

AWS Identity and Access Management User Guide

iam:FIDO-FIPS-140-2-certification

Works with string operators.

Checks the MFA device FIPS-140-2 validation certification level at the time of registration
of a FIDO security key. The device certification is retrieved from the FIDO Alliance Metadata
Service (MDS). If the certification status or level of your FIDO security key changes, it will
not be updated unless the device is unregistered and registered again to fetch the updated
certification information.

Possible values of L1, L2, L3, L4

In this example, you register a security key and retrieve the FIPS-140-2 Level 2 certification for
your device.

{
 "Version": "2012-10-17",
 "Statement": [{
 "Effect": "Allow",
 "Action": "iam:EnableMFADevice",
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "iam:RegisterSecurityKey" : "Create"
 }
 }
 },
 {
 "Effect": "Allow",
 "Action": "iam:EnableMFADevice",
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "iam:RegisterSecurityKey" : "Activate",
 "iam:FIDO-FIPS-140-2-certification": "L2"
 }
 }
 }
]

 }

IAM condition keys 2978

https://fidoalliance.org/metadata/
https://fidoalliance.org/metadata/

AWS Identity and Access Management User Guide

iam:FIDO-FIPS-140-3-certification

Works with string operators.

Checks the MFA device FIPS-140-3 validation certification level at the time of registration
of a FIDO security key. The device certification is retrieved from the FIDO Alliance Metadata
Service (MDS). If the certification status or level of your FIDO security key changes, it will
not be updated unless the device is unregistered and registered again to fetch the updated
certification information.

Possible values of L1, L2, L3, L4

In this example, you register a security key and retrieve the FIPS-140-3 Level 3 certification for
your device.

{
 "Version": "2012-10-17",
 "Statement": [{
 "Effect": "Allow",
 "Action": "iam:EnableMFADevice",
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "iam:RegisterSecurityKey" : "Create"
 }
 }
 },
 {
 "Effect": "Allow",
 "Action": "iam:EnableMFADevice",
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "iam:RegisterSecurityKey" : "Activate",
 "iam:FIDO-FIPS-140-3-certification": "L3"
 }
 }
 }
]

 }

IAM condition keys 2979

https://fidoalliance.org/metadata/
https://fidoalliance.org/metadata/

AWS Identity and Access Management User Guide

iam:RegisterSecurityKey

Works with string operators.

Checks the current state of MFA device enablement.

Possible values of Create or Activate.

In this example, you register a security key and retrieve the FIPS-140-3 Level 1 certification for
your device.

{
 "Version": "2012-10-17",
 "Statement": [{
 "Effect": "Allow",
 "Action": "iam:EnableMFADevice",
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "iam:RegisterSecurityKey" : "Create"
 }
 }
 },
 {
 "Effect": "Allow",
 "Action": "iam:EnableMFADevice",
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "iam:RegisterSecurityKey" : "Activate",
 "iam:FIDO-FIPS-140-3-certification": "L1"
 }
 }
 }
]

 }

iam:OrganizationsPolicyId

Works with string operators.

IAM condition keys 2980

AWS Identity and Access Management User Guide

Checks that the policy with the specified AWS Organizations ID matches the policy used in the
request. To view an example IAM policy that uses this condition key, see IAM: View service last
accessed information for an Organizations policy.

iam:PassedToService

Works with string operators.

Specifies the service principal of the service to which a role can be passed. This condition key
applies to only the PassRole action in a policy. It can't be used to limit any other action.

When you use this condition key in a policy, specify the service using a service principal. A
service principal is the name of a service that can be specified in the Principal element of a
policy. This is the usual format: SERVICE_NAME_URL.amazonaws.com.

You can use iam:PassedToService to restrict your users so that they can pass roles only
to specific services. For example, a user might create a service role that trusts CloudWatch to
write log data to an Amazon S3 bucket on their behalf. Then the user must attach a permissions
policy and a trust policy to the new service role. In this case, the trust policy must specify
cloudwatch.amazonaws.com in the Principal element. To view a policy that allows the
user to pass the role to CloudWatch, see IAM: Pass an IAM role to a specific AWS service.

By using this condition key, you can ensure that users create service roles only for the services
that you specify. For example, if a user with the preceding policy attempts to create a service
role for Amazon EC2, the operation will fail. The failure occurs because the user does not have
permission to pass the role to Amazon EC2.

Sometimes you pass a role to a service that then passes the role to a different service.
iam:PassedToService includes only the final service that assumes the role, not the
intermediate service that passes the role.

Note

Some services do not support this condition key.

iam:PermissionsBoundary

Works with ARN operators.

Checks that the specified policy is attached as permissions boundary on the IAM principal
resource. For more information, see Permissions boundaries for IAM entities

IAM condition keys 2981

AWS Identity and Access Management User Guide

iam:PolicyARN

Works with ARN operators.

Checks the Amazon Resource Name (ARN) of a managed policy in requests that involve a
managed policy. For more information, see Controlling access to policies.

iam:ResourceTag/key-name

Works with string operators.

Checks that the tag attached to the identity resource (user or role) matches the specified key
name and value.

Note

IAM and AWS STS support both the iam:ResourceTag IAM condition key and the
aws:ResourceTag global condition key.

You can add custom attributes to IAM resources in the form of a key-value pair. For more
information about tags for IAM resources, see the section called “Tagging IAM resources”. You
can use ResourceTag to control access to AWS resources, including IAM resources. However,
because IAM does not support tags for groups, you cannot use tags to control access to groups.

This example shows how you might create an identity-based policy that allows deleting users
with the status=terminated tag. To use this policy, replace the italicized placeholder
text in the example policy with your own information. Then, follow the directions in create a
policy or edit a policy.

{
 "Version": "2012-10-17",
 "Statement": [{
 "Effect": "Allow",
 "Action": "iam:DeleteUser",
 "Resource": "*",
 "Condition": {"StringEquals": {"iam:ResourceTag/status": "terminated"}}
 }]
}

IAM condition keys 2982

AWS Identity and Access Management User Guide

Available keys for AWS web identity federation

You can use web identity federation to give temporary security credentials to users who have
been authenticated through an OpenID Connect compliant OpenID Provider (OP) to an IAM
OpenID Connect (OIDC) identity provider in your AWS account. Examples of such providers include
Login with Amazon, Amazon Cognito, Google, or Facebook. Identity tokens (id_tokens) from
your own OpenID OP may be used, as well as id_tokens issued to service accounts of Amazon
Elastic Kubernetes Service clusters. In that case, additional condition keys are available when the
temporary security credentials are used to make a request. You can use these keys to write policies
that limit the access of federated users to resources that are associated with a specific provider,
app, or user. These keys are typically used in the trust policy for a role. Define condition keys using
the name of the OIDC provider followed by the claim (:aud, :azp, :amr, :sub). For roles used by
Amazon Cognito, keys are defined using cognito-identity.amazonaws.com followed by the
claim.

amr

Works with string operators.

Example: cognito-identity.amazonaws.com:amr

If you are using Amazon Cognito for web identity federation, the cognito-
identity.amazonaws.com:amr key (Authentication Methods Reference) includes login
information about the user. The key is multivalued, meaning that you test it in a policy using
condition set operators. The key can contain the following values:

• If the user is unauthenticated, the key contains only unauthenticated.

• If the user is authenticated, the key contains the value authenticated and the name of
the login provider used in the call (graph.facebook.com, accounts.google.com, or
www.amazon.com).

As an example, the following condition in the trust policy for an Amazon Cognito role tests
whether the user is unauthenticated:

"Condition": {
 "StringEquals":
 { "cognito-identity.amazonaws.com:aud": "us-east-2:identity-pool-id" },
 "ForAnyValue:StringLike":
 { "cognito-identity.amazonaws.com:amr": "unauthenticated" }
}

IAM condition keys 2983

AWS Identity and Access Management User Guide

aud

Works with string operators.

Use the aud condition key to verify that the Google client ID or Amazon Cognito identity pool
ID matches the one that you specify in the policy. You can use the aud key with the sub key for
the same identity provider.

Examples:

• graph.facebook.com:app_id

• accounts.google.com:aud

• cognito-identity.amazonaws.com:aud

The graph.facebook.com:app_id field supplies the audience context that matches the aud
field used by other identity providers.

The accounts.google.com:aud condition key matches the following Google ID Token fields.

• aud for OAuth 2.0 Google client IDs of your application, when the azp field is not set. When
the azp field is set, the aud field matches the accounts.google.com:oaud condition key.

• azp when the azp field is set. This can happen for hybrid apps where a web application and
Android app have a different OAuth 2.0 Google client ID but share the same Google APIs
project.

For more information about Google aud and azp fields, see the Google Identity Platform
OpenID Connect Guide.

When you write a policy using the accounts.google.com:aud condition key, you must know
whether the app is a hybrid app that sets the azp field.

azp Field Not Set

The following example policy works for non-hybrid apps that do not set the azp field. In this
case the Google ID Token aud field value matches both the accounts.google.com:aud and
the accounts.google.com:oaud condition key values.

{
 "Version": "2012-10-17",
 "Statement": [
 {

IAM condition keys 2984

https://developers.google.com/identity/protocols/OpenIDConnect
https://developers.google.com/identity/protocols/OpenIDConnect

AWS Identity and Access Management User Guide

 "Effect": "Allow",
 "Principal": {"Federated": "accounts.google.com"},
 "Action": "sts:AssumeRoleWithWebIdentity",
 "Condition": {
 "StringEquals": {
 "accounts.google.com:aud": "aud-value",
 "accounts.google.com:oaud": "aud-value",
 "accounts.google.com:sub": "sub-value"
 }
 }
 }
]
}

azp Field Set

The following example policy works for hybrid apps that do set the azp field. In this case, the
Google ID Token aud field value matches only the accounts.google.com:oaud condition
key value. The azp field value matches the accounts.google.com:aud condition key value.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {"Federated": "accounts.google.com"},
 "Action": "sts:AssumeRoleWithWebIdentity",
 "Condition": {
 "StringEquals": {
 "accounts.google.com:aud": "azp-value",
 "accounts.google.com:oaud": "aud-value",
 "accounts.google.com:sub": "sub-value"
 }
 }
 }
]
}

id

Works with string operators.

Examples:

IAM condition keys 2985

AWS Identity and Access Management User Guide

• graph.facebook.com:id

• www.amazon.com:app_id

• www.amazon.com:user_id

Use these keys to verify that the application (or site) ID or user ID matches the one that you
specify in the policy. This works for Facebook or Login with Amazon. You can use the app_id
key with the id key for the same identity provider.

oaud

Works with string operators.

Example: accounts.google.com:oaud

If you use Google for web identity federation, this key specifies the Google audience (aud) that
this ID token is intended for. It must be one of the OAuth 2.0 client IDs of your application.

sub

Works with string operators.

Examples:

• accounts.google.com:sub

• cognito-identity.amazonaws.com:sub

Use these keys to verify that the user ID matches the one that you specify in the policy. You can
use the sub key with the aud key for the same identity provider.

{
 "Version": "2012-10-17",
 "Statement": [
 "Condition": {
 "StringEquals": {
 "oidc.eks.us-east-1.amazonaws.com/id/111122223333:aud":
 "sts.amazonaws.com",
 "oidc.eks.us-east-1.amazonaws.com/id/111122223333:sub":
 "system:serviceaccount:default:assumer"
 }
 }
]
 }

IAM condition keys 2986

AWS Identity and Access Management User Guide

More information about web identity federation

For more information about web identity federation, see the following:

• Amazon Cognito User Guide.

• About web identity federation

Cross-service AWS web identity federation context keys

Some web identity federation condition keys can be used in role trust policies to define what
users are allowed to access in other AWS services. These are the following condition keys that
can be used in role trust policies when federated principals assume another role, and in resource
policies from other AWS services to authorize resource access by federated principals. If you are
using Amazon Cognito for web identity federation, then these keys are available when the user is
authenticated.

Select a condition key to see the description.

• amr

• aud

• id

• sub

Note

No other web identitiy based federation condition keys are available for use after
the external identity provider (IdP) authentication and authorization for the initial
AssumeRoleWithWebIdentity operation.

Available keys for SAML-based AWS STS federation

If you are working with SAML-based federation using AWS Security Token Service (AWS STS), you
can include additional condition keys in the policy.

SAML role trust policies

In the trust policy of a role, you can include the following keys, which help you establish whether
the caller is allowed to assume the role. Except for saml:doc, all the values are derived from the

IAM condition keys 2987

https://docs.aws.amazon.com/cognito/latest/developerguide/cognito-identity.html
https://docs.aws.amazon.com/STS/latest/UsingSTS/CreatingSAML.html

AWS Identity and Access Management User Guide

SAML assertion. All items in the list are available in the IAM console visual editor when you create
or edit a policy with conditions. Items marked with [] can have a value that is a list of the specified
type.

saml:aud

Works with string operators.

An endpoint URL to which SAML assertions are presented. The value for this key comes from
the SAML Recipient field in the assertion, not the Audience field.

saml:commonName[]

Works with string operators.

This is a commonName attribute.

saml:cn[]

Works with string operators.

This is an eduOrg attribute.

saml:doc

Works with string operators.

This represents the principal that was used to assume the role. The format is account-
ID/provider-friendly-name, such as 123456789012/SAMLProviderName. The account-
ID value refers to the account that owns the SAML provider.

saml:edupersonaffiliation[]

Works with string operators.

This is an eduPerson attribute.

saml:edupersonassurance[]

Works with string operators.

This is an eduPerson attribute.

saml:edupersonentitlement[]

Works with string operators.

This is an eduPerson attribute.

IAM condition keys 2988

AWS Identity and Access Management User Guide

saml:edupersonnickname[]

Works with string operators.

This is an eduPerson attribute.

saml:edupersonorgdn

Works with string operators.

This is an eduPerson attribute.

saml:edupersonorgunitdn[]

Works with string operators.

This is an eduPerson attribute.

saml:edupersonprimaryaffiliation

Works with string operators.

This is an eduPerson attribute.

saml:edupersonprimaryorgunitdn

Works with string operators.

This is an eduPerson attribute.

saml:edupersonprincipalname

Works with string operators.

This is an eduPerson attribute.

saml:edupersonscopedaffiliation[]

Works with string operators.

This is an eduPerson attribute.

saml:edupersontargetedid[]

Works with string operators.

This is an eduPerson attribute.

saml:eduorghomepageuri[]

Works with string operators.

IAM condition keys 2989

AWS Identity and Access Management User Guide

This is an eduOrg attribute.

saml:eduorgidentityauthnpolicyuri[]

Works with string operators.

This is an eduOrg attribute.

saml:eduorglegalname[]

Works with string operators.

This is an eduOrg attribute.

saml:eduorgsuperioruri[]

Works with string operators.

This is an eduOrg attribute.

saml:eduorgwhitepagesuri[]

Works with string operators.

This is an eduOrg attribute.

saml:givenName[]

Works with string operators.

This is a givenName attribute.

saml:iss

Works with string operators.

The issuer, which is represented by a URN.

saml:mail[]

Works with string operators.

This is a mail attribute.

saml:name[]

Works with string operators.

This is a name attribute.

IAM condition keys 2990

AWS Identity and Access Management User Guide

saml:namequalifier

Works with string operators.

A hash value based on the friendly name of the SAML provider. The value is the concatenation
of the following values, in order and separated by a '/' character:

1. The Issuer response value (saml:iss)

2. The AWS account ID

3. The friendly name (the last part of the ARN) of the SAML provider in IAM

The concatenation of the account ID and friendly name of the SAML provider is available to IAM
policies as the key saml:doc. For more information, see Uniquely identifying users in SAML-
based federation.

saml:organizationStatus[]

Works with string operators.

This is an organizationStatus attribute.

saml:primaryGroupSID[]

Works with string operators.

This is a primaryGroupSID attribute.

saml:sub

Works with string operators.

This is the subject of the claim, which includes a value that uniquely identifies an individual user
within an organization (for example, _cbb88bf52c2510eabe00c1642d4643f41430fe25e3).

saml:sub_type

Works with string operators.

This key can have the value persistent, transient, or consist of the full Format URI from
the Subject and NameID elements used in your SAML assertion. A value of persistent
indicates that the value in saml:sub is the same for a user between sessions. If the value
is transient, the user has a different saml:sub value for each session. For information
about the NameID element's Format attribute, see Configuring SAML assertions for the
authentication response.

IAM condition keys 2991

AWS Identity and Access Management User Guide

saml:surname[]

Works with string operators.

This is a surnameuid attribute.

saml:uid[]

Works with string operators.

This is a uid attribute.

saml:x500UniqueIdentifier[]

Works with string operators.

This is an x500UniqueIdentifier attribute.

For general information about eduPerson and eduOrg attributes, see the REFEDS Wiki website.
For a list of eduPerson attributes, see eduPerson Object Class Specification (201602).

Condition keys whose type is a list can include multiple values. To create conditions in the policy
for list values, you can use set operators (ForAllValues, ForAnyValue). For example, to allow
any user whose affiliation is "faculty" or "staff" (but not "student"), you might use a condition like
the following:

"Condition": {
 "ForAllValues:StringLike": {
 "saml:edupersonaffiliation":["faculty", "staff"]
 }
}

Cross-service SAML-based AWS STS federation context keys

Some SAML-based federation condition keys can be used in subsequent requests to authorize AWS
operations in other services and AssumeRole calls. These are the following condition keys that
can be used in role trust policies when federated principals assume another role, and in resource
policies from other AWS services to authorize resource access by federated principals. For more
information about using these keys, see About SAML 2.0-based federation.

Select a condition key to see the description.

• saml:namequalifier

IAM condition keys 2992

https://wiki.refeds.org/display/STAN/eduPerson
https://software.internet2.edu/eduperson/internet2-mace-dir-eduperson-201602.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_providers_saml.html#CreatingSAML-userid

AWS Identity and Access Management User Guide

• saml:sub

• saml:sub_type

Note

No other SAML-based federation condition keys are available for use after the initial
external identity provider (IdP) authentication response.

Available keys for AWS STS

You can use the following condition keys in IAM role trust policies for roles that are assumed using
AWS Security Token Service (AWS STS) operations.

saml:sub

Works with string operators.

This is the subject of the claim, which includes a value that uniquely identifies an individual user
within an organization (for example, _cbb88bf52c2510eabe00c1642d4643f41430fe25e3).

sts:AWSServiceName

Works with string operators.

Use this key to specify a service where a bearer token can be used. When you use this condition
key in a policy, specify the service using a service principal. A service principal is the name
of a service that can be specified in the Principal element of a policy. For example,
codeartifact.amazonaws.com is the AWS CodeArtifact service principal.

Some AWS services require that you have permission to get an AWS STS service bearer token
before you can access their resources programmatically. For example, AWS CodeArtifact
requires principals to use bearer tokens to perform some operations. The aws codeartifact
get-authorization-token command returns a bearer token. You can then use the bearer
token to perform AWS CodeArtifact operations. For more information about bearer tokens, see
Using bearer tokens.

Availability – This key is present in requests that get a bearer token. You cannot make a direct
call to AWS STS to get a bearer token. When you perform some operations in other services, the
service requests the bearer token on your behalf.

IAM condition keys 2993

AWS Identity and Access Management User Guide

You can use this condition key to allow principals to get a bearer token for use with a specific
service.

sts:DurationSeconds

Works with numeric operators.

Use this key to specify the duration (in seconds) that a principal can use when getting an AWS
STS bearer token.

Some AWS services require that you have permission to get an AWS STS service bearer token
before you can access their resources programmatically. For example, AWS CodeArtifact
requires principals to use bearer tokens to perform some operations. The aws codeartifact
get-authorization-token command returns a bearer token. You can then use the bearer
token to perform AWS CodeArtifact operations. For more information about bearer tokens, see
Using bearer tokens.

Availability – This key is present in requests that get a bearer token. You cannot make a direct
call to AWS STS to get a bearer token. When you perform some operations in other services, the
service requests the bearer token on your behalf. The key is not present for AWS STS assume-
role operations.

sts:ExternalId

Works with string operators.

Use this key to require that a principal provide a specific identifier when assuming an IAM role.

Availability – This key is present in the request when the principal provides an external ID while
assuming a role using the AWS CLI or AWS API.

A unique identifier that might be required when you assume a role in another account. If
the administrator of the account to which the role belongs provided you with an external ID,
then provide that value in the ExternalId parameter. This value can be any string, such as
a passphrase or account number. The primary function of the external ID is to address and
prevent the confused deputy problem. For more information about the external ID and the
confused deputy problem, see How to use an external ID when granting access to your AWS
resources to a third party.

The ExternalId value must have a minimum of 2 characters and a maximum of 1,224
characters. The value must be alphanumeric without white space. It can also include the

IAM condition keys 2994

AWS Identity and Access Management User Guide

following symbols: plus (+), equal (=), comma (,), period (.), at (@), colon (:), forward slash (/),
and hyphen (-).

sts:RequestContext/context-key

Works with string operators.

Use this key to compare the session context key-value pairs that are embedded in the trusted
token issuer signed context assertion passed in the request with the context key-values
specified in the role trust policy.

Availability – This key is present in the request when a context assertion is provided in the
ProvidedContexts request parameter while assuming a role using the AWS STS AssumeRole
API operation.

This context key is formatted as "sts:RequestContext/context-key":"context-value"
where context-key and context-value are a context key-value pair. When multiple context
keys are embedded in the signed context assertion passed in the request, there is one context
key for each key-value pair. You must grant permission for the sts:SetContext action in the
role trust policy to allow a principal to set context keys within the resulting session token.

You can use this key in a role trust policy to enforce fine-grained access control based on the
user or their attributes when they assume a role. For example, you can configure Amazon
Redshift as an IAM Identity Center application to access Amazon S3 resources on behalf of your
workforce or federated identities.

The following role trust policy allows the Amazon Redshift service principal to assume a role in
account 111122223333. It also grants permission to the Amazon Redshift service principal to
set context keys in the request, as long as the identitystore:UserId context-key value set
is 1111-22-3333-44-5555. After the role is assumed, activity appears in the AWS CloudTrail
logs within the AdditionalEventData element, containing the session context key-value
pairs that were set by the context provider in the assume role request. This makes it easier for
administrators to differentiate between role sessions when a role is used by different principals.
The key-value pairs are set by the specified context provider, not by AWS CloudTrail or AWS
STS. This gives the context provider control over what context is included in the CloudTrail logs
and session information.

{
 "Version": "2012-10-17",
 "Statement": [

IAM condition keys 2995

AWS Identity and Access Management User Guide

 {
 "Effect": "Allow",
 "Principal": {
 "Service": "redshift.amazonaws.com"
 },
 "Action": [
 "sts:AssumeRole",
 "sts:SetContext"
],
 "Condition": {
 "ForAllValues:ArnEquals": {
 "sts:RequestContextProviders": [
 "arn:aws:iam::aws:contextProvider/IdentityCenter"
]
 },
 "StringEquals": {
 "aws:SourceAccount": "111122223333",
 "sts:RequestContext/identitystore:UserId":
 "1111-22-3333-44-5555"
 }
 }
 }
]
}

sts:RequestContextProviders

Works with ARN operators.

Use this key to compare the context provider ARN in the request with the context provider ARN
specified in the role trust policy.

Availability – This key is present in the request when a context assertion is provided in the
ProvidedContexts request parameter while assuming a role using the AWS STS AssumeRole
API operation.

The following example condition checks that the context provider ARN passed in the request
matches the ARN specified in the role trust policy condition.

 "Condition": {
 "ForAllValues:ArnEquals": {
 "sts:RequestContextProviders": [
 "arn:aws:iam::aws:contextProvider/IdentityCenter"

IAM condition keys 2996

AWS Identity and Access Management User Guide

]
 }
 }

sts:RoleSessionName

Works with string operators.

Use this key to compare the session name that a principal specifies when assuming a role with
the value that is specified in the policy.

Availability – This key is present in the request when the principal assumes the role using the
AWS Management Console, any assume-role CLI command, or any AWS STS AssumeRole API
operation.

You can use this key in a role trust policy to require that your users provide a specific session
name when they assume a role. For example, you can require that IAM users specify their own
user name as their session name. After the IAM user assumes the role, activity appears in AWS
CloudTrail logs with the session name that matches their user name. This makes it easier for
administrators to differentiate between role sessions when a role is used by different principals.

The following role trust policy requires that IAM users in account 111122223333 provide their
IAM user name as the session name when they assume the role. This requirement is enforced
using the aws:username condition variable in the condition key. This policy allows IAM users
to assume the role to which the policy is attached. This policy does not allow anyone using
temporary credentials to assume the role because the username variable is present for only
IAM users.

Important

You can use any single-valued condition key as a variable. You can't use a multivalued
condition key as a variable.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "RoleTrustPolicyRequireUsernameForSessionName",
 "Effect": "Allow",

IAM condition keys 2997

AWS Identity and Access Management User Guide

 "Action": "sts:AssumeRole",
 "Principal": {"AWS": "arn:aws:iam::111122223333:root"},
 "Condition": {
 "StringLike": {"sts:RoleSessionName": "${aws:username}"}
 }
 }
]
}

When an administrator views the AWS CloudTrail log for an action, they can compare the
session name to the user names in their account. In the following example, the user named
matjac performed the operation using the role named MateoRole. The administrator can then
contact Mateo Jackson, who has the user named matjac.

 "assumedRoleUser": {
 "assumedRoleId": "AROACQRSTUVWRAOEXAMPLE:matjac",
 "arn": "arn:aws:sts::111122223333:assumed-role/MateoRole/matjac"
 }

If you allow cross-account access using roles, then users in one account can assume a role in
another account. The ARN of the assumed role user listed in CloudTrail includes the account
where the role exists. It does not include the account of the user that assumed the role. Users are
unique only within an account. Therefore, we recommend that you use this method for checking
CloudTrail logs only for roles that are assumed by users in accounts that you administer. Your
users might use the same user name in multiple accounts.

sts:SourceIdentity

Works with string operators.

Use this key to compare the source identity that a principal specifies when assuming a role with
the value that is specified in the policy.

Availability – This key is present in the request when the principal provides a source identity
while assuming a role using any AWS STS assume-role CLI command, or AWS STS AssumeRole
API operation.

You can use this key in a role trust policy to require that your users set a specific source identity
when they assume a role. For example, you can require your workforce or federated identities
to specify a value for source identity. You can configure your identity provider (IdP) to use one
of the attributes that are associated with your users, like a user name or email as the source

IAM condition keys 2998

AWS Identity and Access Management User Guide

identity. The IdP then passes the source identity as an attribute in the assertions or claims that
it sends to AWS. The value of the source identity attribute identifies the user or application who
is assuming the role.

After the user assumes the role, activity appears in AWS CloudTrail logs with the source identity
value that was set. This makes it easier for administrators to determine who or what performed
actions with a role in AWS. You must grant permissions for the sts:SetSourceIdentity
action to allow an identity to set a source identity.

Unlike sts:RoleSessionName, after the source identity is set, the value cannot be changed.
It is present in the request context for all actions taken with the role by the source identity. The
value persists into subsequent role sessions when you use the session credentials to assume
another role. Assuming one role from another is called role chaining.

You can use the aws:SourceIdentity global condition key to further control access to AWS
resources based on the value of source identity in subsequent requests.

The following role trust policy allows the IAM user AdminUser to assume a role in account
111122223333. It also grants permission to the AdminUser to set a source identity, as long as
the source identity set is DiegoRamirez.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "AllowAdminUserAssumeRole",
 "Effect": "Allow",
 "Principal": {"AWS": " arn:aws:iam::111122223333:user/AdminUser"},
 "Action": [
 "sts:AssumeRole",
 "sts:SetSourceIdentity"
],
 "Condition": {
 "StringEquals": {"sts:SourceIdentity": "DiegoRamirez"}
 }
 }
]
}

To learn more about using source identity information, see Monitor and control actions taken
with assumed roles.

IAM condition keys 2999

AWS Identity and Access Management User Guide

sts:TransitiveTagKeys

Works with string operators.

Use this key to compare the transitive session tag keys in the request with those specified in the
policy.

Availability – This key is present in the request when you make a request using temporary
security credentials. These include credentials created using any assume-role operation, or the
GetFederationToken operation.

When you make a request using temporary security credentials, the request context includes
the aws:PrincipalTag context key. This key includes a list of session tags, transitive session
tags, and role tags. Transitive session tags are tags that persist into all subsequent sessions
when you use the session credentials to assume another role. Assuming one role from another
is called role chaining.

You can use this condition key in a policy to require setting specific session tags as transitive
when assuming a role or federating a user.

Actions, resources, and condition keys for AWS services

Each AWS service can define actions, resources, and condition context keys for use in IAM policies.
For a list of AWS services and their actions, resources, and condition context keys, see Actions,
resources, and condition keys in the Service Authorization Reference.

Actions, resources, and condition keys 3000

https://docs.aws.amazon.com/service-authorization/latest/reference/reference_policies_actions-resources-contextkeys.html
https://docs.aws.amazon.com/service-authorization/latest/reference/reference_policies_actions-resources-contextkeys.html

AWS Identity and Access Management User Guide

Resources to learn more about IAM

IAM is a rich product, and you'll find many resources to help you learn more about how IAM can
help you secure your AWS account and resources.

Topics

• Identities

• Credentials (passwords, access keys, and MFA devices)

• Permissions and policies

• Federation and delegation

• IAM and other AWS products

• General security practices

• General resources

Identities

Consult these resources for creating, managing, and using identities.

• Manage identities in IAM Identity Center – Procedural information about creating users and
group in IAM Identity Center.

• IAM Identities (users, user groups, and roles) – An in-depth discussion of users, groups, and
roles.

Credentials (passwords, access keys, and MFA devices)

Review the following guides to manage passwords, access keys, and MFA devices for your AWS
account and for IAM users.

• Managing user passwords in AWS – Describes options for managing passwords for IAM users in
your account.

• Managing access keys for IAM users – Describes how access keys work and how you can use
them to make programmatic calls to AWS. There are other more secure alternatives to access
keys that we recommend you consider first. For more information, see Considerations and
alternatives for long-term access keys in the AWS General Reference guide.

Identities 3001

https://docs.aws.amazon.com/singlesignon/latest/userguide/manage-your-identity-source-sso.html
https://docs.aws.amazon.com/general/latest/gr/aws-sec-cred-types.html#alternatives-to-long-term-access-keys
https://docs.aws.amazon.com/general/latest/gr/aws-sec-cred-types.html#alternatives-to-long-term-access-keys

AWS Identity and Access Management User Guide

• Using multi-factor authentication (MFA) in AWS – Describes how to configure your account
and IAM users to require both a password and a one-time use code that is generated on a device
before sign-in is allowed. (This is sometimes called two-factor authentication.)

For general information about the types of credentials you use to access Amazon Web Services, see
AWS Security Credentials in the AWS General Reference guide..

Permissions and policies

Learn the inner workings of IAM policies and find tips on the best ways to confer permissions:

• Policies and permissions in IAM – Introduces the policy language that is used to define
permissions. Describes how permissions can be attached to users or groups or, for some AWS
products, to resources themselves.

• IAM JSON policy elements reference – Provides descriptions and examples of each policy
language element.

• Validating IAM policies – Find resources for JSON policy validation.

• Example IAM identity-based policies – Shows examples of policies for common tasks in various
AWS products.

• AWS Policy Generator – Create custom policies by choosing products and actions from a list.

• IAM Policy Simulator – Test whether a policy would allow or deny a specific request to AWS.

Federation and delegation

You can grant access to resources in your AWS account for users who are authenticated (signed in)
elsewhere. These can be IAM users in another AWS account (known as delegation), users who are
authenticated with your organization's sign-in process, or users from an Internet identity provider
like Login with Amazon, Facebook, Google, or any other OpenID Connect (OIDC) compatible
identity provider. In these cases, the users get temporary security credentials to access AWS
resources.

• IAM tutorial: Delegate access across AWS accounts using IAM roles – Guides you through
granting cross-account access to an IAM user in another AWS account.

• Common scenarios for temporary credentials – Describes ways in which users can be federated
into AWS after being authenticated outside of AWS.

Permissions and policies 3002

https://docs.aws.amazon.com/general/latest/gr/aws-security-credentials.html
https://aws.amazon.com/blogs/aws/aws-policy-generator/
https://policysim.aws.amazon.com/

AWS Identity and Access Management User Guide

• Web Identity Federation Playground – Lets you experiment with Login with Amazon, Google, or
Facebook to authenticate and then make a call to Amazon S3.

IAM and other AWS products

Most AWS products are integrated with IAM so that you can use IAM features to help protect access
to the resources in those products. The following resources discuss IAM and security for some of
the most popular AWS products. For a complete list of products that work with IAM, including links
to more information on each, see AWS services that work with IAM.

Using IAM with Amazon EC2

• Controlling Access to Amazon EC2 Resources – Describes how to use IAM features to permit users
to administer Amazon EC2 instances, volumes, and more.

• Using instance profiles – Describes how to use IAM roles to securely provide credentials for
applications that run on Amazon EC2 instances and that need access to other AWS products.

Using IAM with Amazon S3

• Managing Access Permissions to Your Amazon S3 Resources – Discusses the Amazon S3 security
model for buckets and objects, which includes IAM policies.

• Writing IAM Policies: Grant Access to User-Specific Folders in an Amazon S3 Bucket – Discusses
how to let users protect their own folders in Amazon S3. (For more posts about Amazon S3 and
IAM, choose the S3 tag below the title of the blog post.)

Using IAM with Amazon RDS

• Using AWS Identity and Access Management (IAM) to Manage Access to Amazon RDS Resources –
Describes how to use IAM to control access to database instances, database snapshots, and more.

• A Primer on RDS Resource-Level Permissions – Describes how to use IAM to control access to
specific Amazon RDS instances.

IAM and other AWS products 3003

https://aws.amazon.com/blogs/aws/the-aws-web-identity-federation-playground/
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/UsingIAM.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/s3-access-control.html
https://aws.amazon.com/blogs/security/writing-iam-policies-grant-access-to-user-specific-folders-in-an-amazon-s3-bucket
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/UsingWithRDS.IAM.html
https://aws.amazon.com/blogs/security/a-primer-on-rds-resource-level-permissions

AWS Identity and Access Management User Guide

Using IAM with Amazon DynamoDB

• Using IAM to Control Access to DynamoDB Resources – Describes how to use IAM to permit users
to administer DynamoDB tables and indexes.

• The following video (8:55) explains how to provide access control for individual DynamoDB
database items or attributes (or both).

Getting Started with Fine-Grained Access Control for DynamoDB

General security practices

Find expert tips and guidance on the best ways to secure your AWS account and resources:

• Best Practices for Security, Identity, &, Compliance – Find resources for how to manage security
across AWS accounts and products, including suggestions for security architecture, use of IAM,
encryption and data security, and more.

• Identity and Access Management – The AWS Well-Architected Framework helps you understand
key concepts, design principles, and architectural best practices for designing and running
workloads in the cloud.

• Security best practices in IAM – Offers recommendations for ways to use IAM to help secure
your AWS account and resources.

• AWS CloudTrail User Guide – Use AWS CloudTrail to track a history of API calls made to AWS
and store that information in log files. This helps you determine which users and accounts
accessed resources in your account, when the calls were made, what actions were requested, and
more.

General resources

Explore the following resources to learn more about IAM and AWS.

• Product Information for IAM – General information about the AWS Identity and Access
Management product.

• AWS re:Post for AWS Identity and Access Management – Visit AWS re:Post to discuss technical
questions related to IAM with the AWS community.

Using IAM with Amazon DynamoDB 3004

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/UsingIAMWithDDB.html
http://youtu.be/uAUYphLWL5w
https://aws.amazon.com/architecture/security-identity-compliance
https://docs.aws.amazon.com/wellarchitected/latest/security-pillar/identity-and-access-management.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/
https://aws.amazon.com/iam/
https://forums.aws.amazon.com/forum.jspa?forumID=76

AWS Identity and Access Management User Guide

• Classes & Workshops – Links to role-based and specialty courses, in addition to self-paced labs to
help sharpen your AWS skills and gain practical experience.

• AWS Developer Center – Explore tutorials, download tools, and learn about AWS developer
events.

• AWS Developer Tools – Links to developer tools, SDKs, IDE toolkits, and command line tools for
developing and managing AWS applications.

• Getting Started Resource Center – Learn how to set up your AWS account, join the AWS
community, and launch your first application.

• Hands-On Tutorials – Follow step-by-step tutorials to launch your first application on AWS.

• AWS Whitepapers – Links to a comprehensive list of technical AWS whitepapers, covering topics
such as architecture, security, and economics and authored by AWS Solutions Architects or other
technical experts.

• AWS Support Center – The hub for creating and managing your AWS Support cases. Also
includes links to other helpful resources, such as forums, technical FAQs, service health status,
and AWS Trusted Advisor.

• AWS Support – The primary webpage for information about AWS Support, a one-on-one, fast-
response support channel to help you build and run applications in the cloud.

• Contact Us – A central contact point for inquiries concerning AWS billing, account, events, abuse,
and other issues.

• AWS Site Terms – Detailed information about our copyright and trademark; your account, license,
and site access; and other topics.

General resources 3005

https://aws.amazon.com/training/course-descriptions/
https://aws.amazon.com/developer/?ref=docs_id=res1
https://aws.amazon.com/developer/tools/?ref=docs_id=res1
https://aws.amazon.com/getting-started/?ref=docs_id=res1
https://aws.amazon.com/getting-started/hands-on/?ref=docs_id=res1
https://aws.amazon.com/whitepapers/
https://console.aws.amazon.com/support/home#/
https://aws.amazon.com/premiumsupport/
https://aws.amazon.com/contact-us/
https://aws.amazon.com/terms/

AWS Identity and Access Management User Guide

Calling the IAM API using HTTP query requests

Contents

• Endpoints

• HTTPS required

• Signing IAM API requests

You can access the IAM and AWS STS services programmatically using the Query API. Query API
requests are HTTPS requests that must contain an Action parameter to indicate the action to
be performed. IAM and AWS STS support GET and POST requests for all actions. That is, the API
does not require you to use GET for some actions and POST for others. However, GET requests
are subject to the limitation size of a URL; although this limit is browser dependent, a typical limit
is 2048 bytes. Therefore, for Query API requests that require larger sizes, you must use a POST
request.

The response is an XML document. For details about the response, see the individual action pages
in the IAM API Reference or the AWS Security Token Service API Reference.

Tip

Instead of making direct calls to the IAM or AWS STS API operations, you can use one of the
AWS SDKs. The AWS SDKs consist of libraries and sample code for various programming
languages and platforms (Java, Ruby, .NET, iOS, Android, etc.). The SDKs provide a
convenient way to create programmatic access to IAM and AWS. For example, the SDKs take
care of tasks such as cryptographically signing requests (see below), managing errors, and
retrying requests automatically. For information about the AWS SDKs, including how to
download and install them, see the Tools for Amazon Web Services page.

For details about the API actions and errors, see the IAM API Reference or the AWS Security Token
Service API Reference.

Endpoints

IAM and AWS STS each have a single global endpoint:

Endpoints 3006

https://docs.aws.amazon.com/IAM/latest/APIReference/
https://docs.aws.amazon.com/STS/latest/APIReference/
http://aws.amazon.com/tools/
https://docs.aws.amazon.com/IAM/latest/APIReference/
https://docs.aws.amazon.com/STS/latest/APIReference/
https://docs.aws.amazon.com/STS/latest/APIReference/

AWS Identity and Access Management User Guide

• (IAM) https://iam.amazonaws.com

• (AWS STS) https://sts.amazonaws.com

Note

AWS STS also supports sending requests to regional endpoints in addition to the global
endpoint. Before you can use AWS STS in a Region, you must first activate STS in that
Region for your AWS account. For more information about activating additional Regions for
AWS STS, see Managing AWS STS in an AWS Region.

For more information about AWS endpoints and Regions for all services, see Service endpoints and
quotas in the AWS General Reference.

HTTPS required

Because the Query API returns sensitive information such as security credentials, you must use
HTTPS with all API requests.

Signing IAM API requests

Requests must be signed using an access key ID and a secret access key. We strongly recommend
that you do not use your AWS account root user credentials for everyday work with IAM. You
can use the credentials for an IAM user or you can use AWS STS to generate temporary security
credentials.

To sign your API requests, we recommend using AWS Signature Version 4. For information about
using Signature Version 4, go to Signature Version 4 Signing Process in the AWS General Reference.

If you need to use Signature Version 2, information about using Signature Version 2 is available in
the AWS General Reference.

For more information, see the following:

• AWS Security Credentials. Provides general information about the types of credentials used for
accessing AWS.

• Security best practices in IAM. Presents a list of suggestions for using IAM service to help secure
your AWS resources.

HTTPS required 3007

https://iam.amazonaws.com
https://sts.amazonaws.com
https://docs.aws.amazon.com/general/latest/gr/aws-service-information.html
https://docs.aws.amazon.com/general/latest/gr/aws-service-information.html
https://docs.aws.amazon.com/general/latest/gr/signature-version-4.html
https://docs.aws.amazon.com/general/latest/gr/signing_aws_api_requests.html
https://docs.aws.amazon.com/general/latest/gr/aws-security-credentials.html

AWS Identity and Access Management User Guide

• Temporary security credentials in IAM. Describes how to create and use temporary security
credentials.

Signing IAM API requests 3008

AWS Identity and Access Management User Guide

Document history for IAM

The following table describes major documentation updates for IAM.

Change Description Date

AccessAnalyzerServ
iceRolePolicy – Added
permissions

IAM Access Analyzer added
support for permission to
retrieve the current state of
the block public access for
Amazon EC2 snapshots to the
service-level permissions of
AccessAnalyzerServiceRolePo
licy.

January 23, 2024

AccessAnalyzerServ
iceRolePolicy – Added
permissions

IAM Access Analyzer added
DynamoDB streams and
tables to the service-level
permissions of AccessAna
lyzerServiceRolePolicy.

January 11, 2024

AccessAnalyzerServ
iceRolePolicy – Added
permissions

IAM Access Analyzer added
Amazon S3 directory buckets
to the service-level permissio
ns of AccessAnalyzerServ
iceRolePolicy.

December 1, 2023

IAMAccessAnalyzerR
eadOnlyAccess – Added
permissions

IAM Access Analyzer added
permissions to IAMAccess
AnalyzerReadOnlyAccess to
allow you to check whether
updates to your policies grant
additional access.

This permission is required
by IAM Access Analyzer to

November 26, 2023

3009

https://docs.aws.amazon.com/IAM/latest/UserGuide/security-iam-awsmanpol.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/security-iam-awsmanpol.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/security-iam-awsmanpol.html
https://console.aws.amazon.com/iam/home#policies/AccessAnalyzerServiceRolePolicy
https://console.aws.amazon.com/iam/home#policies/AccessAnalyzerServiceRolePolicy
https://docs.aws.amazon.com/IAM/latest/UserGuide/security-iam-awsmanpol.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/security-iam-awsmanpol.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/security-iam-awsmanpol.html
https://console.aws.amazon.com/iam/home#policies/AccessAnalyzerServiceRolePolicy
https://console.aws.amazon.com/iam/home#policies/AccessAnalyzerServiceRolePolicy
https://docs.aws.amazon.com/IAM/latest/UserGuide/security-iam-awsmanpol.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/security-iam-awsmanpol.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/security-iam-awsmanpol.html
https://console.aws.amazon.com/iam/home#policies/AccessAnalyzerServiceRolePolicy
https://console.aws.amazon.com/iam/home#policies/AccessAnalyzerServiceRolePolicy
https://docs.aws.amazon.com/IAM/latest/UserGuide/security-iam-awsmanpol.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/security-iam-awsmanpol.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/security-iam-awsmanpol.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/security-iam-awsmanpol.html#security-iam-awsmanpol-IAMAccessAnalyzerReadOnlyAccess
https://docs.aws.amazon.com/IAM/latest/UserGuide/security-iam-awsmanpol.html#security-iam-awsmanpol-IAMAccessAnalyzerReadOnlyAccess

AWS Identity and Access Management User Guide

perform policy checks on your
policies.

IAM Access Analyzer added
unused access analyzers

IAM Access Analyzer simplifie
s inspecting unused access
to guide you toward least
privilege. IAM Access Analyzer
continuously analyzes your
accounts to identify unused
access and creates a centraliz
ed dashboard with findings.

November 26, 2023

IAM Access Analyzer added
custom policy checks

IAM Access Analyzer now
provides custom policy
checks to validate that IAM
policies adhere to your
security standards ahead of
deployments.

November 26, 2023

AccessAnalyzerServ
iceRolePolicy – Added
permissions

IAM Access Analyzer added
IAM actions to the service-l
evel permissions of AccessAna
lyzerServiceRolePolicy to
support the following actions:

• Listing entities for a policy

• Generating service last
accessed details

• Listing access key informati
on

November 26, 2023

3010

https://docs.aws.amazon.com/IAM/latest/UserGuide/what-is-access-analyzer.html#what-is-access-analyzer-unused-access-analysis
https://docs.aws.amazon.com/IAM/latest/UserGuide/what-is-access-analyzer.html#what-is-access-analyzer-unused-access-analysis
https://docs.aws.amazon.com/IAM/latest/UserGuide/access-analyzer-custom-policy-checks.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access-analyzer-custom-policy-checks.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/security-iam-awsmanpol.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/security-iam-awsmanpol.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/security-iam-awsmanpol.html
https://console.aws.amazon.com/iam/home#policies/AccessAnalyzerServiceRolePolicy
https://console.aws.amazon.com/iam/home#policies/AccessAnalyzerServiceRolePolicy

AWS Identity and Access Management User Guide

Action last accessed informati
on and policy generation
support for over 60 additional
services and actions

IAM now supports action
last accessed information
and generates policies with
action-level information for
over 60 additional services,
along with a list of the actions
for which action last accessed
information is available.

November 1, 2023

Action last accessed informati
on support for over 140
services

IAM now provides action last
accessed information for
more than 140 services, along
with a list of the actions for
which action last accessed
information is available.

September 14, 2023

Support for multiple multi-
factor authentication (MFA)
devices for root users and IAM
users

Now you can to add up to
eight MFA devices per user,
including FIDO security
keys, software time-based
one-time password (TOTP)
with virtual authenticator
applications, or hardware
TOTP tokens.

November 16, 2022

3011

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_access-advisor-action-last-accessed.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_access-advisor-action-last-accessed.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_access-advisor-action-last-accessed.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_access-advisor-action-last-accessed.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access-analyzer-policy-generation-action-last-accessed-support.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access-analyzer-policy-generation-action-last-accessed-support.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_access-advisor-action-last-accessed.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_access-advisor-action-last-accessed.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_access-advisor-action-last-accessed.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mfa.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mfa.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mfa.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mfa.html

AWS Identity and Access Management User Guide

IAM Access Analyzer support
for new resource types

IAM Access Analyzer added
support for the following
resource types:

• Amazon EBS volume
snapshots

• Amazon ECR repositories

• Amazon EFS file systems

• Amazon RDS DB snapshots

• Amazon RDS DB cluster
snapshots

• Amazon SNS topics

October 25, 2022

U2F deprecation and
WebAuthn/FIDO update

Removed mentions of U2F
as an MFA option and added
information about WebAuthn,
 FIDO2, and FIDO security
keys.

May 31, 2022

Updates to resilience in IAM Added information about
maintaining access to IAM
credentials when an event
disrupts communication
between AWS Regions.

May 16, 2022

New global condition keys for
resources

You can now control access
to resources based on the
account, Organizational Unit
(OU), or organization in AWS
Organizations that contains
your resources. You can use
the aws:ResourceAccoun
t , aws:ResourceOrgID ,
and aws:ResourceOrgPat
hs global condition keys in
an IAM policy.

April 27, 2022

3012

https://docs.aws.amazon.com/IAM/latest/UserGuide/access-analyzer-resources.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access-analyzer-resources.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mfa.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mfa.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/disaster-recovery-resiliency.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-resourceaccount
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-resourceaccount

AWS Identity and Access Management User Guide

Code examples for IAM using
AWS SDKs

Added code examples that
show how to use IAM with an
AWS software development
kit (SDK). The examples are
divided into code excerpts
that show you how to call
individual service functions
and examples that show you
how to accomplish a specific
task by calling multiple
functions within the same
service.

April 7, 2022

Updates to policy evaluation
logic flow chart

Updates to the policy
evaluation logic flow chart
and related text in the
Determining whether a
request is allowed or denied
within an account section.

November 17, 2021

Updates to security best
practices

Added information about
creating administrative users
instead of using root user
credentials, removed the best
practice of using user groups
to assign permissions to IAM
users, and clarified when to
use managed policies instead
of inline policies.

October 5, 2021

Updates to policy evaluation
logic topic for resource-based
policies

Added information about
the impact of resource-based
policies and different principal
types in the same account.

October 5, 2021

3013

https://docs.aws.amazon.com/IAM/latest/UserGuide/service_code_examples.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/service_code_examples.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_evaluation-logic.html#policy-eval-denyallow
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_evaluation-logic.html#policy-eval-denyallow
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_evaluation-logic.html#policy-eval-denyallow
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_evaluation-logic.html#policy-eval-denyallow
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_evaluation-logic.html#policy-eval-denyallow
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_evaluation-logic.html#policy-eval-denyallow
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_evaluation-logic.html#policy-eval-denyallow
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_evaluation-logic.html#policy-eval-denyallow

AWS Identity and Access Management User Guide

Updates to single-valued and
multivalued condition keys

The differences between
single-valued and multivalu
ed condition keys are now
explained in more detail. The
value type was added to each
AWS global condition context
key.

September 30, 2021

IAM Access Analyzer supports
Amazon S3 Multi-Region
Access Points

IAM Access Analyzer identifie
s Amazon S3 buckets that
allow public and cross-acc
ount access, including those
that use Amazon S3 Multi-
Region Access Points.

September 2, 2021

AWS managed policy updates
- Update to an existing policy

IAM Access Analyzer updated
an existing AWS managed
policy.

September 2, 2021

More services supported for
action-level policy generation

IAM Access Analyzer can
generate IAM policies with
action-level access activity
information for additional
AWS services.

August 24, 2021

Generate IAM policies for
cross-account trails

You can now use IAM Access
Analyzer to generate fine-grai
ned policies based on your
access activity using a AWS
CloudTrail trail in a different
account, for example, a
centralized AWS Organizat
ions trail.

August 18, 2021

3014

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_single-vs-multi-valued-condition-keys.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_single-vs-multi-valued-condition-keys.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/what-is-access-analyzer.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/what-is-access-analyzer.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/what-is-access-analyzer.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/MultiRegionAccessPoints.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/MultiRegionAccessPoints.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/security-iam-awsmanpol.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/security-iam-awsmanpol.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access-analyzer-policy-generation.html#access-analyzer-policy-generation-cross-account
https://docs.aws.amazon.com/IAM/latest/UserGuide/access-analyzer-policy-generation.html#access-analyzer-policy-generation-cross-account
https://docs.aws.amazon.com/IAM/latest/UserGuide/access-analyzer-policy-generation.html#access-analyzer-policy-generation-cross-account
https://docs.aws.amazon.com/IAM/latest/UserGuide/access-analyzer-policy-generation.html#access-analyzer-policy-generation-cross-account

AWS Identity and Access Management User Guide

Additional IAM Access
Analyzer policy checks

IAM Access Analyzer extended
policy validation by adding
new policy checks that
validate conditions included
in IAM policies. These checks
analyze the condition block
in your policy statement and
report security warnings,
errors, and suggestions along
with actionable recommend
ations.

IAM Access Analyzer added
the following policy checks:

• Error – Invalid service
principal format

• Error – Missing tag key in
condition

• Security Warning – Deny
NotAction with unsupport
ed tag condition key for
service

• Security Warning – Deny
with unsupported tag
condition key for service

• Security Warning – Missing
paired condition keys

• Suggestion – Allow
NotAction with unsupport
ed tag condition key for
service

• Suggestion – Allow with
unsupported tag condition
key for service

June 29, 2021

3015

https://docs.aws.amazon.com/IAM/latest/UserGuide/access-analyzer-reference-policy-checks.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access-analyzer-reference-policy-checks.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access-analyzer-reference-policy-checks.html#access-analyzer-reference-policy-checks-error-invalid-service-principal-format
https://docs.aws.amazon.com/IAM/latest/UserGuide/access-analyzer-reference-policy-checks.html#access-analyzer-reference-policy-checks-error-invalid-service-principal-format
https://docs.aws.amazon.com/IAM/latest/UserGuide/access-analyzer-reference-policy-checks.html#access-analyzer-reference-policy-checks-error-missing-tag-key-in-condition
https://docs.aws.amazon.com/IAM/latest/UserGuide/access-analyzer-reference-policy-checks.html#access-analyzer-reference-policy-checks-error-missing-tag-key-in-condition
https://docs.aws.amazon.com/IAM/latest/UserGuide/access-analyzer-reference-policy-checks.html#access-analyzer-reference-policy-checks-security-warning-deny-notaction-with-unsupported-tag-condition-key-for-service
https://docs.aws.amazon.com/IAM/latest/UserGuide/access-analyzer-reference-policy-checks.html#access-analyzer-reference-policy-checks-security-warning-deny-notaction-with-unsupported-tag-condition-key-for-service
https://docs.aws.amazon.com/IAM/latest/UserGuide/access-analyzer-reference-policy-checks.html#access-analyzer-reference-policy-checks-security-warning-deny-notaction-with-unsupported-tag-condition-key-for-service
https://docs.aws.amazon.com/IAM/latest/UserGuide/access-analyzer-reference-policy-checks.html#access-analyzer-reference-policy-checks-security-warning-deny-notaction-with-unsupported-tag-condition-key-for-service
https://docs.aws.amazon.com/IAM/latest/UserGuide/access-analyzer-reference-policy-checks.html#access-analyzer-reference-policy-checks-security-warning-deny-with-unsupported-tag-condition-key-for-service
https://docs.aws.amazon.com/IAM/latest/UserGuide/access-analyzer-reference-policy-checks.html#access-analyzer-reference-policy-checks-security-warning-deny-with-unsupported-tag-condition-key-for-service
https://docs.aws.amazon.com/IAM/latest/UserGuide/access-analyzer-reference-policy-checks.html#access-analyzer-reference-policy-checks-security-warning-deny-with-unsupported-tag-condition-key-for-service
https://docs.aws.amazon.com/IAM/latest/UserGuide/access-analyzer-reference-policy-checks.html#access-analyzer-reference-policy-checks-security-warning-missing-paired-condition-keys
https://docs.aws.amazon.com/IAM/latest/UserGuide/access-analyzer-reference-policy-checks.html#access-analyzer-reference-policy-checks-security-warning-missing-paired-condition-keys
https://docs.aws.amazon.com/IAM/latest/UserGuide/access-analyzer-reference-policy-checks.html#access-analyzer-reference-policy-checks-suggestion-allow-notaction-with-unsupported-tag-condition-key-for-service
https://docs.aws.amazon.com/IAM/latest/UserGuide/access-analyzer-reference-policy-checks.html#access-analyzer-reference-policy-checks-suggestion-allow-notaction-with-unsupported-tag-condition-key-for-service
https://docs.aws.amazon.com/IAM/latest/UserGuide/access-analyzer-reference-policy-checks.html#access-analyzer-reference-policy-checks-suggestion-allow-notaction-with-unsupported-tag-condition-key-for-service
https://docs.aws.amazon.com/IAM/latest/UserGuide/access-analyzer-reference-policy-checks.html#access-analyzer-reference-policy-checks-suggestion-allow-notaction-with-unsupported-tag-condition-key-for-service
https://docs.aws.amazon.com/IAM/latest/UserGuide/access-analyzer-reference-policy-checks.html#access-analyzer-reference-policy-checks-suggestion-allow-with-unsupported-tag-condition-key-for-service
https://docs.aws.amazon.com/IAM/latest/UserGuide/access-analyzer-reference-policy-checks.html#access-analyzer-reference-policy-checks-suggestion-allow-with-unsupported-tag-condition-key-for-service
https://docs.aws.amazon.com/IAM/latest/UserGuide/access-analyzer-reference-policy-checks.html#access-analyzer-reference-policy-checks-suggestion-allow-with-unsupported-tag-condition-key-for-service

AWS Identity and Access Management User Guide

Action last accessed support
for more services

You can now view action last
accessed information in the
IAM console about the last
time an IAM principal used
an action for the following
services: Amazon EC2, IAM,
Lambda, and Amazon S3
management actions. You can
also use the AWS CLI or AWS
API to retrieve a data report.
You can use this informati
on to identify unnecessary
permissions so that you can
refine your IAM policies to
better adhere to the principle
of least privilege.

April 19, 2021

Monitor and control actions
taken with assumed roles

Administrators can configure
IAM roles to require that
identities pass a source
identity, which is logged in
AWS CloudTrail. Reviewing
source identity informati
on helps administrators
determine who or what
performed actions with
assumed role sessions.

April 13, 2021

Generate IAM policies based
on access activity

You can now use IAM Access
Analyzer to generate fine-grai
ned policies based on your
access activity found in your
AWS CloudTrail.

April 7, 2021

3016

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_access-advisor.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_access-advisor.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_control-access_monitor.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_control-access_monitor.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_generate-policy.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_generate-policy.html

AWS Identity and Access Management User Guide

IAM Access Analyzer policy
checks

IAM Access Analyzer now
provides over 100 policy
checks with actionable
recommendations during
policy authoring.

March 16, 2021

Expanded policy validation
options

Expanded policy validation
available in the IAM console,
AWS API, and AWS CLI using
policy checks in IAM Access
Analyzer to help you author
secure and functional JSON
policies.

March 15, 2021

Tagging IAM resources You can now tag additional
IAM resources using a tag key-
value pair.

February 11, 2021

Default password policy for
IAM users

If you do not set a custom
password policy for your AWS
account, IAM user passwords
must now meet the default
AWS password policy.

November 18, 2020

The actions, resources, and
condition keys pages for AWS
services have moved

Each AWS service can define
actions, resources, and
condition context keys for use
in IAM policies. You can now
find the list of AWS services
and their actions, resources
, and condition context keys
in the Service Authorization
Reference.

November 16, 2020

3017

https://docs.aws.amazon.com/IAM/latest/UserGuide/access-analyzer-reference-policy-checks.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access-analyzer-reference-policy-checks.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_policy-validator.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_policy-validator.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_tags.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_passwords_account-policy.html#default-policy-details
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_passwords_account-policy.html#default-policy-details
https://docs.aws.amazon.com/service-authorization/latest/reference/reference_policies_actions-resources-contextkeys.html
https://docs.aws.amazon.com/service-authorization/latest/reference/reference_policies_actions-resources-contextkeys.html
https://docs.aws.amazon.com/service-authorization/latest/reference/reference_policies_actions-resources-contextkeys.html

AWS Identity and Access Management User Guide

IAM users longer role session
duration

IAM users can now have a
longer role session duration
when switching roles in the
AWS Management Console,
reducing interruptions due to
session expiration. Users are
granted the maximum session
duration set for the role, or
the remaining time in the IAM
user's session, whichever is
less.

July 24, 2020

Use Service Quotas to request
quick increases for IAM
entities

You can request quota
increases for adjustable IAM
quotas using the Service
Quotas console. Now, some
increases are automatically
approved in Service Quotas
and available in your account
within a few minutes. Larger
requests are submitted to
AWS Support.

June 25, 2020

3018

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_iam-quotas.html#reference_iam-quotas-entities
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_iam-quotas.html#reference_iam-quotas-entities
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_iam-quotas.html#reference_iam-quotas-entities

AWS Identity and Access Management User Guide

Last accessed information in
IAM now includes Amazon S3
management actions

In addition to service last
accessed information, you
can now view information in
the IAM console about the
last time an IAM principal
used an Amazon S3 action.
You can also use the AWS
CLI or AWS API to retrieve
the data report. The report
includes information about
the allowed services and
actions that principals last
attempted to access and
when. You can use this
information to identify
unnecessary permissions so
that you can refine your IAM
policies to better adhere to
the principle of least privilege.

June 3, 2020

Security chapter addition The security chapter helps
you understand how to
configure IAM and AWS STS
to meet your security and
compliance objectives. You
also learn how to use other
AWS services that help you to
monitor and secure your IAM
resources.

April 29, 2020

sts:RoleSessionName You can now write a policy
that grants permissions based
on the session name that
a principal specifies when
assuming a role.

April 21, 2020

3019

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_access-advisor.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_access-advisor.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_access-advisor.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/security.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_iam-condition-keys.html#ck_rolesessionname

AWS Identity and Access Management User Guide

AWS sign-in page update When you sign in on the main
AWS sign-in page, you can
no choose to sign in as the
AWS account root user or an
IAM user. When you do, the
label on the page indicates
whether you should provide
your root user email address
or your IAM user information.
This documentation includes
updated screen captures to
help you understand the AWS
sign-in pages.

March 4, 2020

aws:ViaAWSService and
aws:CalledVia condition keys

You can now write a policy
to limit whether services can
make requests on behalf of
an IAM principal (user or role).
When a principal makes a
request to an AWS service,
that service might use the
principal's credentials to
make subsequent requests
to other services. Use the
aws:ViaAWSService
condition key to match if
any service makes a request
using a principal's credentia
ls. Use the aws:CalledVia
condition keys to match
if specific services make a
request using a principal's
credentials.

February 20, 2020

3020

https://docs.aws.amazon.com/IAM/latest/UserGuide/console.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html

AWS Identity and Access Management User Guide

Policy simulator adds support
for permissions boundaries

You can now test the effect
of permissions boundaries
on IAM entities with the IAM
policy simulator.

January 23, 2020

Cross-account policy
evaluation

You can now learn how AWS
evaluates policies for cross-
account access. This occurs
when a resource in a trusting
account includes a resource-
based policy that allows a
principal in another account
to access the resource. The
request must be allowed in
both accounts.

January 2, 2020

Session tags You can now include tags
when you assume a role
or federate a user in AWS
STS. When you perform the
AssumeRole or GetFedera
tionToken operation, you
can pass the session tags as
attributes. When you perform
the AssumeRoleWithSAML

 or AssumeRoleWithWebI
dentity operations, you
can pass attributes from your
corporate identities to AWS.

November 22, 2019

3021

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_testing-policies.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_testing-policies.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_evaluation-logic-cross-account.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_evaluation-logic-cross-account.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_session-tags.html

AWS Identity and Access Management User Guide

Control access for groups
of AWS accounts in AWS
Organizations

You can now reference
organizational units (OUs)
from AWS Organizations
in IAM policies. If you use
Organizations to organize
your accounts into OUs, you
can require that principal
s belong to a specific OU
before granting access to your
resources. Principals include
AWS account root user, IAM
users and IAM roles. To do
this, specify the OU path in
the aws:PrincipalOrgPa
ths condition key in your
policies.

November 20, 2019

Role last used You can now view the date,
time, and Region where
a role was last used. This
information also helps you
identify unused roles in your
account. You can use the
AWS Management Console,
AWS CLI and AWS API to view
information about when a
role was last used.

November 19, 2019

3022

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-principal-org-paths
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-principal-org-paths
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-principal-org-paths
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_manage_delete.html

AWS Identity and Access Management User Guide

Update to the global
condition context keys page

You can now learn when each
of the global condition keys
is included in the context of a
request. You can also navigate
to each key more easily using
the page table of contents
(TOC). The information on
the page helps you to write
more accurate policies. For
example, if your employees
use federation with IAM
roles, you should use the
aws:userId key and not
the aws:userName key. The
aws:userName key applies
only to IAM users and not
roles.

October 6, 2019

ABAC in AWS Learn how attribute-based
access control (ABAC) works
in AWS using tags, and how
it compares to the tradition
al AWS authorization model.
Use the ABAC tutorial to
learn how to create and test
a policy that allows IAM roles
with principal tags to access
resources with matching tags.
This strategy allows individua
ls to view or edit only the
AWS resources required for
their jobs.

October 3, 2019

3023

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/introduction_attribute-based-access-control.html

AWS Identity and Access Management User Guide

AWS STS GetAccessKeyInfo
operation

You can review the AWS
access keys in your code to
determine whether the keys
are from an account that you
own. You can pass an access
key ID using the aws sts
get-access-key-info
AWS CLI command or the
GetAccessKeyInfo AWS
API operation.

July 24, 2019

Viewing Organizations service
last accessed information in
IAM

You can now view service
last accessed information
for an AWS Organizations
entity or policy in the AWS
Organizations section of the
IAM console. You can also
use the AWS CLI or AWS API
to retrieve the data report.
This data includes informati
on about the allowed services
that principals in an Organizat
ions account last attempted
to access and when. You
can use this information
to identify unnecessary
permissions so that you can
refine your Organizations
policies to better adhere to
the principle of least privilege.

June 20, 2019

3024

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_access-keys.html#Using_access-keys-audit
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_access-keys.html#Using_access-keys-audit
https://docs.aws.amazon.com/cli/latest/reference/sts/get-access-key-info.html
https://docs.aws.amazon.com/cli/latest/reference/sts/get-access-key-info.html
https://docs.aws.amazon.com/STS/latest/APIReference/API_GetAccessKeyInfo.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_access-advisor.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_access-advisor.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_access-advisor.html

AWS Identity and Access Management User Guide

Using a managed policy as a
session policy

You can now pass up to 10
managed policy ARNs when
you assume a role. This allows
you to limit the permissio
ns of the role's temporary
credentials.

May 7, 2019

AWS STS Region compatibi
lity of session tokens for the
global endpoint

You can now choose whether
to use version 1 or version
2 global endpoint tokens.
Version 1 tokens are valid
only in AWS Regions that
are available by default.
These tokens will not work in
manually enabled Regions,
such as Asia Pacific (Hong
Kong). Version 2 tokens are
valid in all Regions. However,
version 2 tokens are longer
and might affect systems
where you temporarily store
tokens.

April 26, 2019

Allow enabling and disabling
AWS regions

You can now create a policy
that allows an administrator
to enable and disable the Asia
Pacific (Hong Kong) Region
(ap-east-1).

April 24, 2019

3025

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_control-access_assumerole.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_control-access_assumerole.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_enable-regions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_enable-regions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_enable-regions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_examples_aws-enable-disable-regions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_examples_aws-enable-disable-regions.html

AWS Identity and Access Management User Guide

IAM user my security
credentials page

IAM users can now manage
all of their own credentials on
the My Security Credentials
page. This AWS Managemen
t Console page displays
account information such as
the account ID and canonical
user ID. Users can also view
and edit their own passwords,
access keys, X.509 certificates,
SSH keys, and Git credentials.

January 24, 2019

Access advisor API You can now use the AWS CLI
and AWS API to view service
last accessed information.

December 7, 2018

Tagging IAM users and roles You can now use IAM tags
to add custom attributes
to an identity (IAM user or
role) using a tag key-value
pair. You can also use tags to
control an identity's access to
resources or to control what
tags can be attached to an
identity.

November 14, 2018

U2F security keys You can now use U2F security
keys as a multi-factor
authentication (MFA) option
when signing in to the AWS
Management Console.

September 25, 2018

Support for Amazon VPC
endpoints

You can now establish a
private connection between
your VPC and AWS STS in the
US West (Oregon) Region.

July 31, 2018

3026

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_examples_aws_my-sec-creds-self-manage-no-mfa.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_examples_aws_my-sec-creds-self-manage-no-mfa.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_access-advisor.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_tags.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mfa_enable_u2f.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_sts_vpce.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_sts_vpce.html

AWS Identity and Access Management User Guide

Permissions boundaries New feature makes it easier
to grant trusted employees
the ability to manage IAM
permissions without also
granting full IAM administr
ative access.

July 12, 2018

aws:PrincipalOrgID New condition key provides
an easier way to control
access to AWS resources by
specifying the AWS organizat
ion of IAM principals.

May 17, 2018

aws:RequestedRegion New condition key provides
an easier way to use IAM
policies to control access to
AWS Regions.

April 25, 2018

Increased session duration for
IAM roles

An IAM role can now have a
session duration of 12 hours.

March 28, 2018

Updated role-creation
workflow

New workflow improves the
process of creating trust
relationships and attaching
 permissions to roles.

September 8, 2017

AWS account sign-in process Updated AWS sign-in
experience allows both the
root user and IAM users to use
the Sign In to the Console
link on the AWS Management
Console's home page.

August 25, 2017

Example IAM policies Documentation update
features more than 30
example policies.

August 2, 2017

3027

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_boundaries.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html#requested-region
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_manage.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_manage.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/console.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_policy-summary-examples.html

AWS Identity and Access Management User Guide

IAM best practices Information added to the
Users section of the IAM
console makes it easier to
follow IAM best practices.

July 5, 2017

Auto Scaling resources Resource-level permissions
can control access to and
permissions for Auto Scaling
resources.

May 16, 2017

Amazon RDS for MySQL and
Amazon Aurora databases

Database administrators can
associate database users with
IAM users and roles and thus
manage user access to all
AWS resources from a single
location.

April 24, 2017

Service-linked roles Service-linked roles provide
an easier and more secure
way to delegate permissions
to AWS services.

April 19, 2017

Policy summaries New policy summaries make
it easier to understand
permissions in IAM policies.

March 23, 2017

3028

https://docs.aws.amazon.com/IAM/latest/UserGuide/IAMBestPracticesAndUseCases.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/list_autoscaling.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/list_amazonrds.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/list_amazonrds.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/using-service-linked-roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_understand-policy-summary.html

	AWS Identity and Access Management
	Table of Contents
	What is IAM?
	Video introduction to IAM
	IAM features
	Accessing IAM
	When do I use IAM?
	When you are performing different job functions
	When you are authorized to access AWS resources
	When you sign-in as an IAM user
	When you assume an IAM role
	When you create policies and permissions

	How IAM works
	Terms
	Principal
	Request
	Authentication
	Authorization
	Actions or operations
	Resources

	Overview of AWS identity management: Users
	First-time access only: Your root user credentials
	IAM users and users in IAM Identity Center
	Federating existing users
	Access control methods

	Overview of access management: Permissions and policies
	Policies and accounts
	Policies and users
	Policies and groups
	Federated users and roles
	Identity-based and resource-based policies

	What is ABAC for AWS?
	Comparing ABAC to the traditional RBAC model

	Security features outside IAM
	Quick links to common tasks
	IAM console search
	Using IAM console search
	Icons in the IAM console search results
	Sample search phrases

	Creating AWS Identity and Access Management resources with AWS CloudFormation
	IAM and AWS CloudFormation templates
	Learn more about AWS CloudFormation

	Using AWS CloudShell to work with AWS Identity and Access Management
	Obtaining IAM permissions for AWS CloudShell
	Interacting with IAM using AWS CloudShell

	Using IAM with an AWS SDK

	Getting set up with IAM
	Sign up for an AWS account
	Create an administrative user
	Prepare for least-privilege permissions
	IAM management methods
	AWS Console
	AWS Command Line Interface (CLI) and Software Development Kits (SDKs)

	Your AWS account ID and its alias
	View your AWS account ID
	View Your Account ID using the console
	View Your Account ID using the AWS CLI
	View Your Account ID using the API

	About account aliases
	Creating, deleting, and listing an AWS account alias
	Create or edit an account alias (console)
	Delete an account alias (console)
	Creating, deleting, and listing aliases (AWS CLI)
	Creating, deleting, and listing aliases (AWS API)

	Getting started with IAM
	Prerequisites
	Create your first IAM user
	Create your first role
	Create your first IAM policy
	Programmatic access

	Security best practices and use cases in AWS Identity and Access Management
	Security best practices in IAM
	Require human users to use federation with an identity provider to access AWS using temporary credentials
	Require workloads to use temporary credentials with IAM roles to access AWS
	Require multi-factor authentication (MFA)
	Update access keys when needed for use cases that require long-term credentials
	Follow best practices to protect your root user credentials
	Apply least-privilege permissions
	Get started with AWS managed policies and move toward least-privilege permissions
	Use IAM Access Analyzer to generate least-privilege policies based on access activity
	Regularly review and remove unused users, roles, permissions, policies, and credentials
	Use conditions in IAM policies to further restrict access
	Verify public and cross-account access to resources with IAM Access Analyzer
	Use IAM Access Analyzer to validate your IAM policies to ensure secure and functional permissions
	Establish permissions guardrails across multiple accounts
	Use permissions boundaries to delegate permissions management within an account

	Root user best practices for your AWS account
	Secure your root user credentials to prevent unauthorized use
	Use a strong root user password to help protect access
	Secure your root user sign-in with multi-factor authentication (MFA)
	Don't create access keys for the root user
	Use multi-person approval for root user sign-in wherever possible
	Use a group email address for root user credentials
	Restrict access to account recovery mechanisms
	Secure your Organizations account root user credentials
	Secure root user credentials for member accounts
	Set preventative security controls in Organizations using a service control policy (SCP)

	Monitor access and usage
	Evaluate root user MFA compliance

	Business use cases for IAM
	Initial setup of example corp
	Use case for IAM with Amazon EC2
	Amazon EC2 permissions for the user groups
	User's job function change

	Use case for IAM with Amazon S3
	Creation of other users and user groups
	User's job function change
	Integration with a third-party business

	IAM tutorials
	IAM tutorial: Grant access to the billing console
	Prerequisites
	Step 1: Activate IAM access to billing information on your test AWS account
	Step 2: Create test users and groups
	Step 3: Create a role to grant access to the AWS Billing console
	Step 4: Test access to the console
	Summary
	Related resources

	IAM tutorial: Delegate access across AWS accounts using IAM roles
	Prerequisites
	Create a role in the Production Account
	Grant access to the role
	Test access by switching roles
	Switch roles (console)
	Switch roles (AWS CLI)
	Using AssumeRole (AWS API)

	Related resources
	Summary

	IAM tutorial: Create and attach your first customer managed policy
	Prerequisites
	Step 1: Create the policy
	Step 2: Attach the policy
	Step 3: Test user access
	Related resources
	Summary

	IAM tutorial: Define permissions to access AWS resources based on tags
	Tutorial overview
	Prerequisites
	Step 1: Create test users
	Step 2: Create the ABAC policy
	Step 3: Create roles
	Step 4: Test creating secrets
	Step 5: Test viewing secrets
	Step 6: Test scalability
	Step 7: Test updating and deleting secrets
	Summary
	Related resources
	IAM tutorial: Use SAML session tags for ABAC
	Prerequisites
	Step 1: Create test users
	Step 2: Create the ABAC policy
	Step 3: Create and configure the SAML role
	Step 3A: Create the SAML role
	Step 3B: Configure the SAML IdP
	Step 3C: Enable console access

	Step 4: Test creating secrets
	Step 5: Test viewing secrets
	Step 6: Test scalability
	Step 7: Test updating and deleting secrets
	Summary

	IAM tutorial: Permit users to manage their credentials and MFA settings
	Prerequisites
	Step 1: Create a policy to enforce MFA sign-in
	Step 2: Attach policies to your test user group
	Step 3: Test your user's access
	Related resources

	IAM Identities (users, user groups, and roles)
	AWS account root user
	IAM users
	IAM user groups
	IAM roles
	Temporary credentials in IAM
	When to use IAM Identity Center users?
	When to create an IAM user (instead of a role)
	When to create an IAM role (instead of a user)
	Compare AWS account root user credentials and IAM user credentials
	AWS account root user
	Enable a virtual MFA device for your AWS account root user (console)
	Enable a hardware TOTP token for the AWS account root user (console)
	Enable a FIDO security key for the AWS account root user (console)
	Change the password for the AWS account root user
	Resetting a lost or forgotten root user password
	Creating access keys for the root user
	Deleting access keys for the root user
	Tasks that require root user credentials
	Troubleshooting issues with the root user
	I can't perform tasks that I expect to be able to do when signed in as the account root user
	I forgot the root user password for my AWS account
	I don't have access to the email for my AWS account

	Related information

	IAM users
	How AWS identifies an IAM user
	IAM users and credentials
	IAM users and permissions
	IAM users and accounts
	IAM users as service accounts
	Creating an IAM user in your AWS account
	Creating IAM users (console)
	Creating IAM users (AWS CLI)
	Creating IAM users (AWS API)

	Controlling IAM users access to the AWS Management Console
	How IAM users sign in to AWS
	Using MFA devices with your IAM sign-in page
	Signing in with multiple MFA devices enabled
	Signing in with a FIDO security key
	Signing in with a virtual MFA device
	Signing in with a hardware TOTP token

	Managing IAM users
	View user access
	Listing IAM users
	To list all the users in the account
	To list the users in a specific user group
	To list all the user groups that a user is in

	Renaming an IAM user
	To rename a user

	Deleting an IAM user
	Deleting an IAM user (console)
	Deleting an IAM user (AWS CLI)

	Deactivating an IAM user

	Changing permissions for an IAM user
	View user access
	Generate a policy based on a user's access activity
	Adding permissions to a user (console)
	Adding permissions by adding the user to a group
	Adding permissions by copying from another user
	Adding permissions by attaching policies directly to the user
	Setting the permissions boundary for a user

	Changing permissions for a user (console)
	Editing a permissions policy attached to a user
	Changing the permissions boundary for a user

	Removing a permissions policy from a user (console)
	Removing the permissions boundary from a user (console)
	Adding and removing a user's permissions (AWS CLI or AWS API)

	Managing user passwords in AWS
	Setting an account password policy for IAM users
	Rules for setting a password policy
	Permissions required to set a password policy
	Default password policy
	Custom password policy options
	Setting a password policy (console)
	Setting a password policy (AWS CLI)
	Setting a password policy (AWS API)

	Managing passwords for IAM users
	Creating, changing, or deleting an IAM user password (console)
	Creating, changing, or deleting an IAM user password (AWS CLI)
	Creating, changing, or deleting an IAM user password (AWS API)

	Permitting IAM users to change their own passwords
	For more information

	How an IAM user changes their own password
	Permissions required
	How IAM users change their own password (console)
	How IAM users change their own password (AWS CLI or AWS API)

	Managing access keys for IAM users
	Permissions required to manage access keys
	Managing access keys (console)
	Managing access keys (AWS CLI)
	Managing access keys (AWS API)
	Updating access keys
	Updating IAM user access keys (console)
	Updating access keys (AWS CLI)
	Updating access keys (AWS API)

	Securing access keys
	Remove (or don't generate) AWS account root user access keys
	Use temporary security credentials (IAM roles) instead of long-term access keys
	Manage IAM user access keys properly
	Access the mobile app using AWS access keys
	Related information
	Auditing access keys

	Resetting lost or forgotten passwords or access keys for AWS
	Using multi-factor authentication (MFA) in AWS
	What is MFA?
	Enabling MFA devices for users in AWS
	General steps for enabling MFA devices
	Enabling a virtual multi-factor authentication (MFA) device (console)
	Permissions required
	Enable a virtual MFA device for an IAM user (console)
	Replace a virtual MFA device

	Enabling a FIDO security key (console)
	Permissions required
	Enable a FIDO security key for your own IAM user (console)
	Enable a FIDO security key for another IAM user (console)
	Replace a FIDO security key
	Supported configurations for using FIDO security keys
	FIDO2 devices supported by AWS
	Browsers that support FIDO2
	Browser plugins

	
	Device certifications
	Example policies for device certifications
	Use case 1: Allow registering only devices that have FIPS-140-2 L2 certifications
	Use case 2: Allow registering devices that have FIPS-140-2 L2 and FIDO L1 certifications
	Use case 3: Allow registering devices that have either FIPS-140-2 L2 or FIPS-140-3 L2 certifications
	Use case 4: Allow registering devices that have FIPS-140-2 L2 certification and support other MFA types like virtual authenticators and hardware TOTP

	AWS CLI and AWS API
	Additional resources

	Enabling a hardware TOTP token (console)
	Permissions required
	Enable a hardware TOTP token for your own IAM user (console)
	Enable a hardware TOTP token for another IAM user (console)
	Replace a physical MFA device

	Enabling and managing virtual MFA devices (AWS CLI or AWS API)

	Checking MFA status
	Resynchronizing virtual and hardware MFA devices
	Permissions required
	Resynchronizing virtual and hardware MFA devices (IAM console)
	Resynchronizing virtual and hardware MFA devices (AWS CLI)
	Resynchronizing virtual and hardware MFA devices (AWS API)

	Deactivating MFA devices
	Deactivating MFA devices (console)
	Deactivating MFA devices (AWS CLI)
	Deactivating MFA devices (AWS API)

	What if an MFA device is lost or stops working?
	Recovering a root user MFA device
	Recovering an IAM user MFA device

	Configuring MFA-protected API access
	Overview
	IAM policies with MFA conditions
	Choosing between GetSessionToken and AssumeRole
	Important points about MFA-protected API access

	Scenario: MFA protection for cross-account delegation
	Scenario: MFA protection for access to API operations in the current account
	Scenario: MFA protection for resources that have resource-based policies

	Sample code: Requesting credentials with multi-factor authentication
	Calling GetSessionToken with MFA authentication
	Calling AssumeRole with MFA authentication

	Finding unused credentials
	Finding unused passwords
	Finding unused access keys

	Getting credential reports for your AWS account
	Required permissions
	Understanding the report format
	Getting credential reports (console)
	Getting credential reports (AWS CLI)
	Getting credential reports (AWS API)

	Using IAM with CodeCommit: Git credentials, SSH keys, and AWS access keys
	Use Git credentials and HTTPS with CodeCommit (recommended)
	Use SSH keys and SSH with CodeCommit
	Use HTTPS with the AWS CLI credential helper and CodeCommit

	Using IAM with Amazon Keyspaces (for Apache Cassandra)
	Generating Amazon Keyspaces credentials (console)
	Generating Amazon Keyspaces credentials (AWS CLI)
	Generating Amazon Keyspaces credentials (AWS API)

	Managing server certificates in IAM
	Uploading a server certificate (AWS API)
	Retrieving a server certificate (AWS API)
	Listing server certificates (AWS API)
	Tagging and Untagging Server Certificates (AWS API)
	Renaming a server certificate or updating its path (AWS API)
	Deleting a server certificate (AWS API)
	Troubleshooting

	IAM user groups
	Creating IAM user groups
	Managing IAM user groups
	Listing IAM user groups
	Adding and removing users in an IAM user group
	View policy access
	Add or remove a user in a user group (console)
	Add or remove a user in a user group (AWS CLI)
	Add or remove a user in a user group (AWS API)

	Attaching a policy to an IAM user group
	Renaming an IAM user group
	Deleting an IAM user group
	Deleting an IAM user group (console)
	Deleting an IAM user group (AWS CLI)
	Deleting an IAM user group (AWS API)

	IAM roles
	Roles terms and concepts
	Common scenarios for roles: Users, applications, and services
	Providing access to an IAM user in another AWS account that you own
	Example scenario using separate development and production accounts
	More information

	Providing access for non AWS workloads
	Providing access to AWS accounts owned by third parties
	How to use an external ID when granting access to your AWS resources to a third party
	Why use an external ID?
	When should I use an external ID?

	Providing access to an AWS service
	The confused deputy problem
	Cross-account confused deputy prevention
	Cross-service confused deputy prevention
	Cross-service confused deputy prevention for AWS Security Token Service

	Providing access to externally authenticated users (identity federation)
	Federating users of a mobile or web-based app with Amazon Cognito
	Federating users with public identity service providers or OpenID Connect
	Federating users with SAML 2.0
	Federating users by creating a custom identity broker application

	Identity providers and federation
	Federation with IAM Identity Center
	Federation with IAM
	Federation with Amazon Cognito identity pools
	About web identity federation
	Using Amazon Cognito for mobile apps
	Using web identity federation API operations for mobile apps
	Identifying users with web identity federation
	Additional resources for web identity federation

	About SAML 2.0-based federation
	Using SAML-based federation for API access to AWS
	Overview of configuring SAML 2.0-based federation
	Overview of the role to allow SAML-federated access to your AWS resources
	Uniquely identifying users in SAML-based federation

	Creating IAM identity providers
	Creating OpenID Connect (OIDC) identity providers
	Creating and managing an OIDC provider (console)
	Creating and managing an IAM OIDC identity provider (AWS CLI)
	Creating and managing an OIDC Identity Provider (AWS API)
	Obtaining the thumbprint for an OpenID Connect Identity Provider
	Install OpenSSL
	Configure OpenSSL

	Creating IAM SAML identity providers
	Creating and managing an IAM SAML identity provider (console)
	Creating and managing an IAM SAML Identity Provider (AWS CLI)
	Creating and managing an IAM SAML identity provider (AWS API)
	Configuring your SAML 2.0 IdP with relying party trust and adding claims
	Integrating third-party SAML solution providers with AWS
	Configuring SAML assertions for the authentication response
	Subject and NameID
	PrincipalTag SAML attribute
	Role SAML attribute
	RoleSessionName SAML attribute
	SessionDuration SAML attribute
	SourceIdentity SAML attribute
	Mapping SAML attributes to AWS trust policy context keys

	Enabling SAML 2.0 federated users to access the AWS Management Console
	Overview
	Configure your network as a SAML provider for AWS
	Create a SAML provider in IAM
	Configure permissions in AWS for your federated users
	Finish configuration and create SAML assertions

	Enabling custom identity broker access to the AWS console
	Example code using IAM query API operations
	Example code using Python
	Use GET Requests
	Use POST Requests

	Example code using Java
	Example showing how to construct the URL (Ruby)

	Using service-linked roles
	Service-linked role permissions
	Indirect permissions with service-linked roles
	Creating a service-linked role
	Creating a service-linked role (console)
	Creating a service-linked role (AWS CLI)
	Creating a service-linked role (AWS API)

	Editing a service-linked role
	Editing a service-linked role description (console)
	Editing a service-linked role description (AWS CLI)
	Editing a service-linked role description (AWS API)

	Deleting a service-linked role
	Cleaning up a service-linked role
	Deleting a service-linked role (console)
	Deleting a service-linked role (AWS CLI)
	Deleting a service-linked role (AWS API)

	Creating IAM roles
	Creating a role to delegate permissions to an IAM user
	Creating an IAM role (console)
	Creating an IAM role (AWS CLI)
	Creating an IAM role (AWS API)
	Creating an IAM role (AWS CloudFormation)

	Creating a role to delegate permissions to an AWS service
	Service role permissions
	Creating a role for an AWS service (console)
	Creating a role for a service (AWS CLI)
	Creating a role for a service (AWS API)
	

	Creating a role for a third-party Identity Provider (federation)
	Creating a role for federated users (console)
	Creating a role for federated access (AWS CLI)
	Creating a role for federated access (AWS API)
	Create a role for OpenID Connect federation (console)
	Prerequisites for creating a role for OIDC
	Creating a role for OIDC
	Configuring a role for GitHub OIDC identity provider

	Create a role for SAML 2.0 federation (console)
	Prerequisites for creating a role for SAML
	Creating a role for SAML

	Creating a role using custom trust policies (console)
	Creating an IAM role using a custom trust policy (console)

	Examples of policies for delegating access
	Using roles to delegate access to the resources of another AWS account resources
	Using a policy to delegate access to services
	Using a resource-based policy to delegate access to an Amazon S3 bucket in another account
	Using a resource-based policy to delegate access to an Amazon SQS queue in another account
	Cannot delegate access when the account is denied access

	Using IAM roles
	View the maximum session duration setting for a role
	Granting a user permissions to switch roles
	Creating or editing the policy
	Providing information to the user

	Granting a user permissions to pass a role to an AWS service
	iam:PassRole actions in AWS CloudTrail logs

	Switching to a role (console)
	Things to know about switching roles in the console

	Switching to an IAM role (AWS CLI)
	Example scenario: Switch to a production role
	Example scenario: Allow an instance profile role to switch to a role in another account

	Switching to an IAM role (Tools for Windows PowerShell)
	Switching to an IAM role (AWS API)
	Using an IAM role to grant permissions to applications running on Amazon EC2 instances
	How do roles for Amazon EC2 instances work?
	Permissions required for using roles with Amazon EC2
	Restricting which roles can be passed to Amazon EC2 instances (using PassRole)
	Allowing an instance profile role to switch to a role in another account

	How do I get started?
	Related information
	Using instance profiles
	Managing instance profiles (console)
	Managing instance profiles (AWS CLI or AWS API)
	Managing instance profiles (AWS CLI)
	Managing instance profiles (AWS API)

	Revoking IAM role temporary security credentials
	Minimum permissions to revoke session permissions from a role
	Revoking session permissions
	Revoking session permissions before a specified time

	Managing IAM roles
	Modifying a role
	View role access
	Generate a policy based on access information
	Modifying a role (console)
	Modifying a role trust policy (console)
	Modifying a role permissions policy (console)
	Modifying a role description (console)
	Modifying a role maximum session duration (console)
	Modifying a role permissions boundary (console)

	Modifying a role (AWS CLI)
	Modifying a role trust policy (AWS CLI)
	Modifying a role permissions policy (AWS CLI)
	Modifying a role description (AWS CLI)
	Modifying a role maximum session duration (AWS CLI)
	Modifying a role permissions boundary (AWS CLI)

	Modifying a role (AWS API)
	Modifying a role trust policy (AWS API)
	Modifying a role permissions policy (AWS API)
	Modifying a role description (AWS API)
	Modifying a role maximum session duration (AWS API)
	Modifying a role permissions boundary (AWS API)

	Deleting roles or instance profiles
	View role access
	Deleting a service-linked role
	Deleting an IAM role (console)
	Deleting an IAM role (AWS CLI)
	Deleting an IAM role (AWS API)
	Related information

	Tagging IAM resources
	Choose an AWS tag naming convention
	Best practices for tag naming

	Rules for tagging in IAM and AWS STS
	Naming tags
	Applying and editing tags

	Tagging IAM users
	Permissions required for tagging IAM users
	Managing tags on IAM users (console)
	Managing tags on IAM users (AWS CLI or AWS API)

	Tagging IAM roles
	Permissions required for tagging IAM roles
	Managing tags on IAM roles (console)
	Managing tags on IAM roles (AWS CLI or AWS API)

	Tagging customer managed policies
	Permissions required for tagging customer managed policies
	Managing tags on IAM customer managed policies (console)
	Managing tags on IAM customer managed policies (AWS CLI or AWS API)

	Tagging IAM identity providers
	Tagging OpenID Connect (OIDC) identity providers
	Permissions required for tagging IAM OIDC identity providers
	Managing tags on IAM OIDC identity providers (console)
	Managing tags on IAM OIDC identity providers (AWS CLI or AWS API)

	Tagging IAM SAML identity providers
	Permissions required for tagging SAML identity providers
	Managing tags on IAM SAML identity providers (console)
	Managing tags on IAM SAML identity providers (AWS CLI or AWS API)

	Tagging instance profiles for Amazon EC2 roles
	Permissions required for tagging instance profiles
	Managing tags on instance profiles (AWS CLI or AWS API)

	Tagging server certificates
	Permissions required for tagging server certificates
	Managing tags on server certificates (AWS CLI or AWS API)

	Tagging virtual MFA devices
	Permissions required for tagging virtual MFA devices
	Managing tags on virtual MFA devices (AWS CLI or AWS API)

	Passing session tags in AWS STS
	Session tagging operations
	Things to know about session tags
	Permissions required to add session tags
	Passing session tags using AssumeRole
	Passing session tags using AssumeRoleWithSAML
	Passing session tags using AssumeRoleWithWebIdentity
	Passing session tags using GetFederationToken
	Chaining roles with session tags
	Using session tags for ABAC
	Viewing session tags in CloudTrail

	Temporary security credentials in IAM
	AWS STS and AWS regions
	Common scenarios for temporary credentials
	Identity federation
	Roles for cross-account access
	Roles for Amazon EC2
	Other AWS services

	Requesting temporary security credentials
	Using AWS STS with AWS Regions
	AssumeRole—cross-account delegation and federation through a custom identity broker
	AssumeRoleWithWebIdentity—federation through a web-based identity provider
	AssumeRoleWithSAML—federation through an enterprise Identity Provider compatible with SAML 2.0
	GetFederationToken—federation through a custom identity broker
	GetSessionToken—temporary credentials for users in untrusted environments
	Comparing the AWS STS API operations

	Using temporary credentials with AWS resources
	Using temporary credentials in Amazon EC2 instances
	Using temporary security credentials with the AWS SDKs
	Using temporary security credentials with the AWS CLI
	Using temporary security credentials with API operations
	More information

	Controlling permissions for temporary security credentials
	Permissions for AssumeRole, AssumeRoleWithSAML, and AssumeRoleWithWebIdentity
	Example: Assigning permissions using AssumeRole
	Role permissions policy
	Session policy passed as a parameter
	Resource-based policy

	Monitor and control actions taken with assumed roles
	Setting up to use source identity
	Things to know about source identity
	Permissions required to set source identity
	Specifying a source identity when assuming a role
	Using source identity with AssumeRole
	Using source identity with AssumeRoleWithSAML
	Using source identity with AssumeRoleWithWebIdentity
	Control access using source identity information
	Role chaining and cross-account requirements

	Viewing source identity in CloudTrail

	Permissions for GetFederationToken
	Example: Assigning permissions using GetFederationToken
	Policy attached to the IAM user
	Session policy passed as parameter
	Resource-based policies

	Permissions for GetSessionToken
	Permissions required for GetSessionToken
	Permissions granted by GetSessionToken

	Disabling permissions for temporary security credentials
	Deny access to all sessions associated with a role
	Deny access to a specific session
	Deny a user session with condition context keys
	aws:PrincipalArn
	aws:userid

	Deny a session user with resource-based policies

	Granting permissions to create temporary security credentials

	Managing AWS STS in an AWS Region
	Managing global endpoint session tokens
	Activating and deactivating AWS STS in an AWS Region
	Writing code to use AWS STS Regions
	Regions and endpoints
	AWS CloudTrail and Regional endpoints

	Using bearer tokens
	Sample applications that use temporary credentials
	Samples for web identity federation

	Additional resources for temporary security credentials

	Logging IAM and AWS STS API calls with AWS CloudTrail
	IAM and AWS STS information in CloudTrail
	Logging IAM and AWS STS API requests
	Logging API requests to other AWS services
	Logging user sign-in events
	Logging sign-in events for temporary credentials
	Example IAM API events in CloudTrail log
	Example IAM API event in CloudTrail log file

	Example AWS STS API events in CloudTrail log
	Example cross-account AWS STS API events in CloudTrail log files
	Example AWS STS role chaining API event in CloudTrail log file
	Example AWS service AWS STS API event in CloudTrail log file
	Example SAML AWS STS API event in CloudTrail log file
	Example web identity AWS STS API event in CloudTrail log file

	Example sign-in events in CloudTrail log
	Example sign-in success event in CloudTrail log file
	Example sign-in failure event in CloudTrail log file
	Example sign-in failure event caused by incorrect user name

	IAM role trust policy behavior

	Access management for AWS resources
	Access management resources
	Policies and permissions in IAM
	Policy types
	Identity-based policies
	Resource-based policies
	IAM permissions boundaries
	Service control policies (SCPs)
	Access control lists (ACLs)
	Session policies

	Policies and the root user
	Overview of JSON policies
	JSON policy document structure
	Multiple statements and multiple policies
	Examples of JSON policy syntax

	Grant least privilege
	Managed policies and inline policies
	AWS managed policies
	Customer managed policies
	Inline policies
	Choosing between managed policies and inline policies
	Using inline policies

	Getting started with managed policies
	Converting an inline policy to a managed policy
	Deprecated AWS managed policies

	Permissions boundaries for IAM entities
	Evaluating effective permissions with boundaries
	Delegating responsibility to others using permissions boundaries

	Identity-based policies and resource-based policies
	Controlling access to AWS resources using policies
	Controlling access for principals
	Controlling access to identities
	Controlling access to policies
	Controlling permissions for creating, updating, and deleting customer managed policies
	Controlling permissions for attaching and detaching managed policies

	Controlling access to resources
	Controlling access to principals in a specific account

	Controlling access to and for IAM users and roles using tags
	Controlling access for IAM principals
	Controlling access based on tag keys

	Controlling access to AWS resources using tags
	Controlling access to AWS resources
	Controlling access during AWS requests
	Controlling access based on tag keys

	Cross account resource access in IAM
	Cross-account access using roles
	Cross-account access using resource-based policies
	Delegating AWS permissions in a resource-based policy

	Forward access sessions
	FAS Requests and IAM policy conditions
	Example: Allow Amazon S3 access from a VPC or with FAS

	Example IAM identity-based policies
	Example policies: AWS
	Example policy: AWS Data Exchange
	Example policies: AWS Data Pipeline
	Example policies: Amazon DynamoDB
	Example policies: Amazon EC2
	Example policies: AWS Identity and Access Management (IAM)
	Example policies: AWS Lambda
	Example policies: Amazon RDS
	Example policies: Amazon S3
	AWS: Allows access based on date and time
	AWS: Allows enabling and disabling AWS Regions
	AWS: Allows MFA-authenticated IAM users to manage their own credentials on the Security credentials page
	AWS: Allows specific access using MFA within specific dates
	AWS: Allows IAM users to manage their own credentials on the Security credentials page
	AWS: Allows MFA-authenticated IAM users to manage their own MFA device on the Security credentials page
	AWS: Allows IAM users to change their own console password on the Security credentials page
	AWS: Allows IAM users to manage their own password, access keys, and SSH public keys on the Security credentials page
	AWS: Denies access to AWS based on the requested Region
	AWS: Denies access to AWS based on the source IP
	AWS: Deny access to Amazon S3 resources outside your account except AWS Data Exchange
	AWS Data Pipeline: Denies access to DataPipeline pipelines that a user did not create
	Amazon DynamoDB: Allows access to a specific table
	Amazon DynamoDB: Allows access to specific attributes
	Amazon DynamoDB: Allows item-level access to DynamoDB based on an Amazon Cognito ID
	Amazon EC2: Attach or detach Amazon EBS volumes to EC2 instances based on tags
	Amazon EC2: Allows launching EC2 instances in a specific subnet, programmatically and in the console
	Amazon EC2: Allows managing EC2 security groups with a specific tag key-value pair programmatically and in the console
	Amazon EC2: Allows starting or stopping EC2 instances a user has tagged, programmatically and in the console
	EC2: Start or stop instances based on tags
	EC2: Start or stop instances based on matching principal and resource tags
	Amazon EC2: Allows full EC2 access within a specific Region, programmatically and in the console
	Amazon EC2: Allows starting or stopping an EC2 instance and modifying a security group, programmatically and in the console
	Amazon EC2: Requires MFA (GetSessionToken) for specific EC2 operations
	Amazon EC2: Limits terminating EC2 instances to an IP address range
	IAM: Access the policy simulator API
	IAM: Access the policy simulator console
	IAM: Assume roles that have a specific tag
	IAM: Allows and denies access to multiple services programmatically and in the console
	IAM: Add a specific tag to a user with a specific tag
	IAM: Add a specific tag with specific values
	IAM: Create new users only with specific tags
	IAM: Generate and retrieve IAM credential reports
	IAM: Allows managing a group's membership programmatically and in the console
	IAM: Manage a specific tag
	IAM: Pass an IAM role to a specific AWS service
	IAM: Allows read-only access to the IAM console without reporting
	IAM: Allows read-only access to the IAM console
	IAM: Allows specific IAM users to manage a group programmatically and in the console
	IAM: Allows setting the account password requirements programmatically and in the console
	IAM: Access the policy simulator API based on user path
	IAM: Access the policy simulator console based on user path
	IAM: Allows IAM users to self-manage an MFA device
	IAM: Allows IAM users to update their own credentials programmatically and in the console
	IAM: View service last accessed information for an Organizations policy
	IAM: Limits managed policies that can be applied to an IAM user, group, or role
	AWS: Deny access to resources outside your account except AWS managed IAM policies
	AWS Lambda: Allows a Lambda function to access an Amazon DynamoDB table
	Amazon RDS: Allows full RDS database access within a specific Region
	Amazon RDS: Allows restoring RDS databases, programmatically and in the console
	Amazon RDS: Allows tag owners full access to RDS resources that they have tagged
	Amazon S3: Allows Amazon Cognito users to access objects in their bucket
	Amazon S3: Allows federated users access to their S3 home directory, programmatically and in the console
	Amazon S3: S3 Bucket access, but production bucket denied without recent MFA
	Amazon S3: Allows IAM users access to their S3 home directory, programmatically and in the console
	Amazon S3: Restrict management to a specific S3 bucket
	Amazon S3: Allows read and write access to objects in an S3 Bucket
	Amazon S3: Allows read and write access to objects in an S3 Bucket, programmatically and in the console

	Managing IAM policies
	Creating IAM policies
	Creating IAM policies (console)
	Creating IAM policies
	Creating policies using the JSON editor
	Creating policies with the visual editor
	Importing existing managed policies

	Creating IAM policies (AWS CLI)
	Creating IAM policies (AWS CLI)

	Creating IAM policies (AWS API)
	Creating IAM policies (AWS API)

	Validating IAM policies
	Generate policies based on access activity
	Testing IAM policies with the IAM policy simulator
	How the IAM policy simulator works
	Permissions required for using the IAM policy simulator
	Permissions required for using the policy simulator console
	Permissions required for using the policy simulator API

	Using the IAM policy simulator (console)
	Troubleshooting IAM policy simulator console messages

	Using the IAM policy simulator (AWS CLI and AWS API)

	Adding and removing IAM identity permissions
	Terminology
	More information

	View identity activity
	Adding IAM identity permissions (console)
	Removing IAM identity permissions (console)
	Adding IAM policies (AWS CLI)
	Removing IAM policies (AWS CLI)
	Adding IAM policies (AWS API)
	Removing IAM policies (AWS API)

	Versioning IAM policies
	Permissions for setting the default version of a policy
	Setting the default version of customer managed policies
	

	Using versions to roll back changes
	Version limits

	Editing IAM policies
	View policy access
	Editing customer managed policies (console)
	Editing inline policies (console)
	Editing customer managed policies (AWS CLI)
	Editing customer managed policies (AWS API)

	Deleting IAM policies
	View policy access
	Deleting IAM policies (console)
	Deleting IAM policies (AWS CLI)
	Deleting IAM policies (AWS API)

	Refining permissions in AWS using last accessed information
	Last accessed information types for IAM
	Last accessed information for AWS Organizations
	Things to know about last accessed information
	Permissions required
	Permissions for IAM information
	Permissions for AWS Organizations information

	Troubleshooting activity for IAM and Organizations entities
	Where AWS tracks last accessed information
	Viewing last accessed information for IAM
	Viewing information for IAM (console)
	Viewing information for IAM (AWS CLI)
	Viewing information for IAM (AWS API)

	Viewing last accessed information for Organizations
	Understand the AWS Organizations entity path
	Viewing information for Organizations (console)
	Viewing information for Organizations (AWS CLI)
	Viewing information for Organizations (AWS API)

	Example scenarios for using last accessed information
	Using information to reduce permissions for an IAM group
	Using information to reduce permissions for an IAM user
	Using information before deleting IAM resources
	Using information before editing IAM policies
	Other IAM scenarios
	Using information to refine permissions for an organizational unit

	IAM action last accessed information services and actions
	Actions for action last accessed information

	Understanding permissions granted by a policy
	Policy summary (list of services)
	Viewing policy summaries
	Editing policies to fix warnings
	Understanding the elements of a policy summary
	SummaryAllElements JSON policy document
	Understanding access level summaries within policy summaries
	AWS access level summary
	AWS access levels

	Service summary (list of actions)
	Viewing service summaries
	Understanding the elements of a service summary

	Action summary (list of resources)
	Viewing action summaries
	Understanding the elements of an action summary

	Examples of policy summaries
	Policy 1: DenyCustomerBucket
	Policy 2: DynamoDbRowCognitoID
	Policy 3: MultipleResourceCondition
	Policy 4: EC2_troubleshoot
	Policy 5: CodeBuild_CodeCommit_CodeDeploy

	Permissions required to access IAM resources
	Permissions for administering IAM identities
	Permissions for working in the AWS Management Console
	Granting permissions across AWS accounts
	Permissions for one service to access another
	Required actions
	Example policies for administering IAM resources
	Allow a user to list the account's groups, users, policies, and more for reporting purposes
	Allow a user to manage a group's membership
	Allow a user to manage IAM users
	Allow users to set account password policy
	Allow users to generate and retrieve IAM credential reports
	Allow all IAM actions (admin access)

	Code examples for IAM using AWS SDKs
	Code examples for IAM using AWS SDKs
	Hello IAM
	Actions for IAM using AWS SDKs
	Add an IAM user to a group using an AWS SDK
	Attach an IAM policy to a role using an AWS SDK
	Attach an IAM policy to a user using an AWS SDK
	Attach an inline policy to an IAM role using an AWS SDK
	Create an IAM SAML provider using an AWS SDK
	Create an IAM group using an AWS SDK
	Create an IAM policy using an AWS SDK
	Create an IAM policy version using an AWS SDK
	Create an IAM role using an AWS SDK
	Create an IAM service-linked role using an AWS SDK
	Create an IAM user using an AWS SDK
	Create an IAM access key using an AWS SDK
	Create an alias for an IAM account using an AWS SDK
	Create an inline IAM policy for a group using an AWS SDK
	Create an inline IAM policy for a user using an AWS SDK
	Create an IAM instance profile using an AWS SDK
	Delete an IAM SAML provider using an AWS SDK
	Delete an IAM group using an AWS SDK
	Delete an IAM group policy using an AWS SDK
	Delete an IAM policy using an AWS SDK
	Delete an IAM role using an AWS SDK
	Delete an IAM role policy using an AWS SDK
	Delete an IAM server certificate using an AWS SDK
	Delete an IAM service-linked role using an AWS SDK
	Delete an IAM user using an AWS SDK
	Delete an IAM access key using an AWS SDK
	Delete an IAM account alias using an AWS SDK
	Delete an inline IAM policy from a user using an AWS SDK
	Delete an IAM instance profile using an AWS SDK
	Detach an IAM policy from a role using an AWS SDK
	Detach an IAM policy from a user using an AWS SDK
	Generate a credential report from IAM using an AWS SDK
	Get a credential report from IAM using an AWS SDK
	Get a detailed IAM authorization report for your account using an AWS SDK
	Get an IAM policy using an AWS SDK
	Get an IAM policy version using an AWS SDK
	Get an IAM role using an AWS SDK
	Get an IAM server certificate using an AWS SDK
	Get an IAM service-linked role's deletion status using an AWS SDK
	Get a summary of account usage from IAM using an AWS SDK
	Get an IAM user using an AWS SDK
	Get data about the last use of an IAM access key using an AWS SDK
	Get the IAM account password policy using an AWS SDK
	List SAML providers for IAM using an AWS SDK
	List a user's IAM access keys using an AWS SDK
	List IAM account aliases using an AWS SDK
	List IAM groups using an AWS SDK
	List inline policies for an IAM role using an AWS SDK
	List inline IAM policies for a user using an AWS SDK
	List IAM policies using an AWS SDK
	List policies attached to an IAM role using an AWS SDK
	List IAM roles using an AWS SDK
	List IAM server certificates using an AWS SDK
	List IAM users using an AWS SDK
	Remove an IAM user from a group using an AWS SDK
	Update an IAM server certificate using an AWS SDK
	Update an IAM user using an AWS SDK
	Update an IAM access key using an AWS SDK
	Upload an IAM server certificate using an AWS SDK

	Scenarios for IAM using AWS SDKs
	Build and manage a resilient service using an AWS SDK
	Create an IAM group and add a user to the group using an AWS SDK
	Create an IAM user and assume a role with AWS STS using an AWS SDK
	Create read-only and read-write IAM users using an AWS SDK
	Manage IAM access keys using an AWS SDK
	Manage IAM policies using an AWS SDK
	Manage IAM roles using an AWS SDK
	Manage your IAM account using an AWS SDK
	Roll back an IAM policy version using an AWS SDK
	Work with the IAM Policy Builder API using an AWS SDK

	Code examples for AWS STS using AWS SDKs
	Actions for AWS STS using AWS SDKs
	Assume a role with AWS STS using an AWS SDK
	Get a session token with AWS STS using an AWS SDK

	Scenarios for AWS STS using AWS SDKs
	Assume an IAM role that requires an MFA token with AWS STS using an AWS SDK
	Construct a URL with AWS STS for federated users using an AWS SDK
	Get a session token that requires an MFA token with AWS STS using an AWS SDK

	Security in IAM and AWS STS
	AWS security credentials
	Security considerations
	Federated identity
	Multi-factor authentication (MFA)
	Programmatic access
	Alternatives to long-term access keys
	Accessing AWS using your AWS credentials

	AWS security audit guidelines
	When to perform a security audit
	Guidelines for auditing
	Review your AWS account credentials
	Review your IAM users
	Review your IAM groups
	Review your IAM roles
	Review your IAM providers for SAML and OpenID Connect (OIDC)
	Review Your mobile apps
	Tips for reviewing IAM policies

	Data protection in AWS Identity and Access Management
	Data encryption in IAM and AWS STS
	Encryption at rest
	Encryption in transit

	Key management in IAM and AWS STS
	Internetwork traffic privacy in IAM and AWS STS

	Logging and monitoring in AWS Identity and Access Management
	Compliance validation for AWS Identity and Access Management
	Resilience in AWS Identity and Access Management
	Best practices for IAM resilience

	Infrastructure security in AWS Identity and Access Management
	Configuration and vulnerability analysis in AWS Identity and Access Management
	AWS managed policies for AWS Identity and Access Management Access Analyzer
	IAMReadOnlyAccess
	IAMUserChangePassword
	IAMAccessAnalyzerFullAccess
	Permissions groupings

	IAMAccessAnalyzerReadOnlyAccess
	Service-level permissions

	AccessAnalyzerServiceRolePolicy
	Permissions groupings

	
	IAM and IAM Access Analyzer updates to AWS managed policies

	Using AWS Identity and Access Management Access Analyzer
	Identifying resources shared with an external entity
	Identifying unused access granted to IAM users and roles
	Validating policies against AWS best practices
	Validating policies against your specified security standards
	Generating policies
	Pricing for IAM Access Analyzer
	Findings for external and unused access
	How IAM Access Analyzer findings work
	External access
	Unused access
	Summary dashboard

	Getting started with AWS Identity and Access Management Access Analyzer findings
	Permissions required to use IAM Access Analyzer
	AWS managed policies for IAM Access Analyzer
	Resources defined by IAM Access Analyzer
	Required IAM Access Analyzer service permissions
	Required IAM Access Analyzer permissions to view the findings dashboard

	Enabling IAM Access Analyzer
	IAM Access Analyzer status

	Viewing the IAM Access Analyzer findings dashboard
	Working with findings
	External access findings
	Unused access findings

	Reviewing findings
	External access findings
	Unused access findings

	Filtering findings
	Filtering external access findings
	Filtering unused access findings

	Archiving findings
	Resolving findings
	External access findings
	Unused access findings

	IAM Access Analyzer resource types for external access
	Amazon Simple Storage Service buckets
	Amazon Simple Storage Service directory buckets
	AWS Identity and Access Management roles
	AWS Key Management Service keys
	AWS Lambda functions and layers
	Amazon Simple Queue Service queues
	AWS Secrets Manager secrets
	Amazon Simple Notification Service topics
	Amazon Elastic Block Store volume snapshots
	Amazon Relational Database Service DB snapshots
	Amazon Relational Database Service DB cluster snapshots
	Amazon Elastic Container Registry repositories
	Amazon Elastic File System file systems

	Settings for IAM Access Analyzer
	Delegated administrator for IAM Access Analyzer
	Deleting analyzers

	Archive rules
	Monitoring AWS Identity and Access Management Access Analyzer with Amazon EventBridge
	Findings events
	Access preview events
	Event notification frequency
	Example external access findings events
	Example unused access findings related events
	Example access preview events
	Creating an event rule using the console
	Creating an event rule using the CLI

	Integration with AWS Security Hub
	How IAM Access Analyzer sends findings to Security Hub
	Types of findings that IAM Access Analyzer sends
	Latency for sending findings
	Retrying when Security Hub is not available
	Updating existing findings in Security Hub

	Viewing IAM Access Analyzer findings in Security Hub
	Interpreting IAM Access Analyzer finding names in Security Hub

	Typical findings from IAM Access Analyzer
	Enabling and configuring the integration
	How to stop sending findings

	Logging IAM Access Analyzer API calls with AWS CloudTrail
	IAM Access Analyzer information in CloudTrail
	Understanding IAM Access Analyzer log file entries

	IAM Access Analyzer filter keys
	Using service-linked roles for AWS Identity and Access Management Access Analyzer
	Service-linked role permissions for AWS Identity and Access Management Access Analyzer
	Creating a service-linked role for IAM Access Analyzer
	Editing a service-linked role for IAM Access Analyzer
	Deleting a service-linked role for IAM Access Analyzer
	Supported Regions for IAM Access Analyzer service-linked roles

	Preview access
	Previewing access in Amazon S3 console
	Previewing access with IAM Access Analyzer APIs
	Preview access to your Amazon S3 bucket
	Preview access to your AWS KMS key
	Preview access to your IAM role
	Preview access to your Amazon SQS queue
	Preview access to your Secrets Manager secret

	Checks for validating policies
	IAM Access Analyzer policy validation
	Validating policies in IAM (console)
	Validating policies using IAM Access Analyzer (AWS CLI or AWS API)
	Access Analyzer policy check reference
	Error – ARN account not allowed
	Error – ARN Region not allowed
	Error – Data type mismatch
	Error – Duplicate keys with different case
	Error – Invalid action
	AWS managed policies with this error

	Error – Invalid ARN account
	Error – Invalid ARN prefix
	Error – Invalid ARN Region
	Error – Invalid ARN resource
	Error – Invalid ARN service case
	Error – Invalid condition data type
	Error – Invalid condition key format
	Error – Invalid condition multiple Boolean
	Error – Invalid condition operator
	Error – Invalid effect
	Error – Invalid global condition key
	Error – Invalid partition
	Error – Invalid policy element
	Error – Invalid principal format
	Error – Invalid principal key
	Error – Invalid Region
	Error – Invalid service
	Error – Invalid service condition key
	Error – Invalid service in action
	Error – Invalid variable for operator
	Error – Invalid version
	Error – Json syntax error
	Error – Json syntax error
	Error – Missing action
	Error – Missing ARN field
	Error – Missing ARN Region
	Error – Missing effect
	Error – Missing principal
	Error – Missing qualifier
	AWS managed policies with this error

	Error – Missing resource
	Error – Missing statement
	Error – Null with if exists
	Error – SCP syntax error action wildcard
	Error – SCP syntax error allow condition
	Error – SCP syntax error allow NotAction
	Error – SCP syntax error allow resource
	Error – SCP syntax error NotResource
	Error – SCP syntax error principal
	Error – Unique Sids required
	Error – Unsupported action in policy
	Error – Unsupported element combination
	Error – Unsupported global condition key
	Error – Unsupported principal
	Error – Unsupported resource ARN in policy
	Error – Unsupported Sid
	Error – Unsupported wildcard in principal
	Error – Missing brace in variable
	Error – Missing quote in variable
	Error – Unsupported space in variable
	Error – Empty variable
	Error – Variable unsupported in element
	Error – Variable unsupported in version
	Error – Private IP address
	Error – Private NotIpAddress
	Error – Policy size exceeds SCP quota
	Error – Invalid service principal format
	Error – Missing tag key in condition
	Error – Invalid vpc format
	Error – Invalid vpce format
	Error – Federated principal not supported
	Error – Unsupported action for condition key
	Error – Unsupported action in policy
	Error – Unsupported resource ARN in policy
	Error – Unsupported condition key for service principal
	Error – Role trust policy syntax error notprincipal
	Error – Role trust policy unsupported wildcard in principal
	Error – Role trust policy syntax error resource
	Error – Type mismatch IP range
	Error – Missing action for condition key
	Error – Invalid federated principal syntax in role trust policy
	Error – Mismatched action for principal
	Error – Missing action for roles anywhere trust policy
	General Warning – Create SLR with NotResource
	General Warning – Create SLR with star in action and NotResource
	General Warning – Create SLR with NotAction and NotResource
	General Warning – Create SLR with star in resource
	AWS managed policies with this general warning

	General Warning – Create SLR with star in action and resource
	AWS managed policies with this general warning

	General Warning – Create SLR with star in resource and NotAction
	General Warning – Deprecated global condition key
	General Warning – Invalid date value
	General Warning – Invalid role reference
	General Warning – Invalid user reference
	General Warning – Missing version
	General Warning – Unique Sids recommended
	General Warning – Wildcard without like operator
	AWS managed policies with this general warning

	General Warning – Policy size exceeds identity policy quota
	AWS managed policies with this general warning

	General Warning – Policy size exceeds resource policy quota
	General Warning – Type mismatch
	General Warning – Type mismatch Boolean
	General Warning – Type mismatch date
	General Warning – Type mismatch number
	General Warning – Type mismatch string
	General Warning – Specific github repo and branch recommended
	General Warning – Policy size exceeds role trust policy quota
	Security Warning – Allow with NotPrincipal
	Security Warning – ForAllValues with single valued key
	Security Warning – Pass role with NotResource
	Security Warning – Pass role with star in action and NotResource
	Security Warning – Pass role with NotAction and NotResource
	Security Warning – Pass role with star in resource
	AWS managed policies with this security warning

	Security Warning – Pass role with star in action and resource
	AWS managed policies with this security warning

	Security Warning – Pass role with star in resource and NotAction
	Security Warning – Missing paired condition keys
	Security Warning – Deny with unsupported tag condition key for service
	Security Warning – Deny NotAction with unsupported tag condition key for service
	Security Warning – Restrict access to service principal
	Security Warning – Missing condition key for oidc principal
	Security Warning – Missing github repo condition key
	Suggestion – Empty array action
	Suggestion – Empty array condition
	Suggestion – Empty array condition ForAllValues
	Suggestion – Empty array condition ForAnyValue
	Suggestion – Empty array condition IfExists
	Suggestion – Empty array principal
	Suggestion – Empty array resource
	Suggestion – Empty object condition
	Suggestion – Empty object principal
	Suggestion – Empty Sid value
	Suggestion – Improve IP range
	Suggestion – Null with qualifier
	Suggestion – Private IP address subset
	Suggestion – Private NotIpAddress subset
	Suggestion – Redundant action
	AWS managed policies with this suggestion

	Suggestion – Redundant condition value num
	Suggestion – Redundant resource
	AWS managed policies with this suggestion

	Suggestion – Redundant statement
	Suggestion – Wildcard in service name
	Suggestion – Allow with unsupported tag condition key for service
	Suggestion – Allow NotAction with unsupported tag condition key for service
	Suggestion – Recommended condition key for service principal
	Suggestion – Irrelevant condition key in policy
	Suggestion – Redundant principal in role trust policy
	Suggestion – Confirm audience claim type

	IAM Access Analyzer custom policy checks
	How custom policy checks work
	Reference policy examples to check for new access
	Inspecting failed custom policy checks
	Validating policies with custom policy checks (console)
	Validating policies with custom policy checks (AWS CLI or API)
	To run IAM Access Analyzer custom policy checks (AWS CLI)
	To run IAM Access Analyzer custom policy checks (API)

	IAM Access Analyzer policy generation
	How policy generation works
	Service and action-level information
	Things to know about generating policies
	Permissions required to generate a policy
	Permissions required for service role

	Generate a policy based on CloudTrail activity (console)
	Step 1: Generate a policy based on CloudTrail activity
	Step 2: Review permissions and add actions for services used
	Step 3: Further customize the generated policy
	Step 4: Review and create a managed policy

	Generate a policy using AWS CloudTrail data in another account
	Generate a policy based on CloudTrail activity (AWS CLI)
	Generate a policy based on CloudTrail activity (AWS API)
	IAM Access Analyzer policy generation services

	IAM Access Analyzer quotas

	Troubleshooting IAM
	Troubleshooting general IAM issues
	I can't sign in to my AWS account
	I lost my access keys
	Policy variables aren't working
	Changes that I make are not always immediately visible
	I am not authorized to perform: iam:DeleteVirtualMFADevice
	How do I securely create IAM users?
	Additional resources

	Troubleshooting access denied error messages
	I get "access denied" when I make a request to an AWS service
	I get "access denied" when I make a request with temporary security credentials
	Access denied error message examples
	Access denied due to a Service Control Policy – implicit denial
	Access denied due to a Service Control Policy – explicit denial
	Access denied due to a VPC endpoint policy – implicit denial
	Access denied due to a VPC endpoint policy – explicit denial
	Access denied due to a permissions boundary – implicit denial
	Access denied due to a permissions boundary – explicit denial
	Access denied due to session policies – implicit denial
	Access denied due to session policies – explicit denial
	Access denied due to resource-based policies – implicit denial
	Access denied due to resource-based policies – explicit denial
	Access denied due to role trust policies – implicit denial
	Access denied due to role trust policies – explicit denial
	Access denied due to identity-based policies – implicit denial
	Access denied due to identity-based policies – explicit denial
	Access denied when a VPC request fails due to another policy

	Troubleshooting IAM policies
	Troubleshoot using the visual editor
	Policy restructuring
	Choosing a resource ARN in the visual editor
	Denying permissions in the visual editor
	Specifying multiple services in the visual editor
	Reducing the size of your policy in the visual editor
	Fixing unrecognized services, actions, or resource types in the visual editor

	Troubleshoot using policy summaries
	Missing policy summary
	Policy summary includes unrecognized services, actions, or resource types
	Service does not support IAM policy summaries
	My policy does not grant the expected permissions
	An action is defined without an applicable resource
	A resource is defined without an applicable action
	A condition is defined without an applicable action

	Troubleshoot policy management
	Attaching or detaching a policy in an IAM account
	Changing policies for your IAM identities based on their activity

	Troubleshoot JSON policy documents
	Validate your policies
	I don't have permissions for policy validation in the JSON editor
	More than one JSON policy object
	More than one JSON statement element
	More than one effect, action, or resource element in a JSON statement element
	Missing JSON version element

	Troubleshooting FIDO security keys
	I can't enable my FIDO security key
	IAM users
	System administrators

	I can't sign in using my FIDO security key
	I lost or broke my FIDO security key
	Other issues

	Troubleshooting IAM roles
	I can't assume a role
	A new role appeared in my AWS account
	I can't edit or delete a role in my AWS account
	I'm not authorized to perform: iam:PassRole
	Why can't I assume a role with a 12-hour session? (AWS CLI, AWS API)
	I receive an error when I try to switch roles in the IAM console
	My role has a policy that allows me to perform an action, but I get "access denied"
	The service did not create the role's default policy version
	There is no use case for a service role in the console

	Troubleshooting IAM and Amazon EC2
	When attempting to launch an instance, I don't see the role I expected to see in the Amazon EC2 console IAM Role list
	The credentials on my instance are for the wrong role
	When I attempt to call the AddRoleToInstanceProfile, I get an AccessDenied error
	Amazon EC2: When I attempt to launch an instance with a role, I get an AccessDenied error
	I can't access the temporary security credentials on my EC2 instance
	What do the errors from the info document in the IAM subtree mean?
	The iam/info document indicates "Code":"InstanceProfileNotFound"
	The iam/info document indicates a success but indicates "Message":"Instance Profile does not contain a role..."
	The iam/security-credentials/[role-name] document indicates "Code":"AssumeRoleUnauthorizedAccess"

	Troubleshooting IAM and Amazon S3
	How do I grant anonymous access to an Amazon S3 bucket?
	I'm signed in as an AWS account root user; why can't I access an Amazon S3 bucket under my account?

	Troubleshooting SAML 2.0 federation with AWS
	Error: Your request included an invalid SAML response. To logout, click here.
	Error: RoleSessionName is required in AuthnResponse (service: AWSSecurityTokenService; status code: 400; error code: InvalidIdentityToken)
	Error: Not authorized to perform sts:AssumeRoleWithSAML (service: AWSSecurityTokenService; status code: 403; error code: AccessDenied)
	Error: RoleSessionName in AuthnResponse must match [a-zA-Z_0-9+=,.@-]{2,64} (service: AWSSecurityTokenService; status code: 400; error code: InvalidIdentityToken)
	Error: Source Identity must match [a-zA-Z_0-9+=,.@-]{2,64} and not begin with "aws:" (service: AWSSecurityTokenService; status code: 400; error code: InvalidIdentityToken)
	Error: Response signature invalid (service: AWSSecurityTokenService; status code: 400; error code: InvalidIdentityToken)
	Error: Failed to assume role: Issuer not present in specified provider (service: AWSOpenIdDiscoveryService; status code: 400; error code: AuthSamlInvalidSamlResponseException)
	Error: Could not parse metadata.
	Error: Specified provider doesn't exist.
	Error: Requested DurationSeconds exceeds MaxSessionDuration set for this role.
	Error: Response does not contain the required audience.
	How to view a SAML response in your browser for troubleshooting
	Google Chrome
	Mozilla Firefox
	Apple Safari
	What to do with the Base64-encoded SAML response

	Reference information for AWS Identity and Access Management
	Amazon Resource Names (ARNs)
	ARN format
	Look up the ARN format for a resource
	Paths in ARNs
	Using wildcards in paths

	IAM identifiers
	Friendly names and paths
	IAM ARNs
	Using wildcards and paths in ARNs

	Unique identifiers
	Understanding unique ID prefixes
	Getting the unique identifier

	IAM and AWS STS quotas
	IAM name requirements
	IAM object quotas
	IAM Access Analyzer quotas
	IAM Roles Anywhere quotas
	IAM and STS character limits

	Interface VPC endpoints
	Availability
	Create a VPC endpoint for AWS STS

	AWS services that work with IAM
	Services that work with IAM
	More information
	Amazon CloudFront
	AWS CloudTrail
	Amazon CloudWatch
	AWS CodeBuild
	AWS Config
	AWS Database Migration Service
	Amazon Elastic Compute Cloud
	Amazon Elastic Container Service
	AWS Elemental MediaPackage
	AWS Identity and Access Management
	AWS IoT
	AWS Lambda
	Amazon Lightsail
	AWS Network Manager
	Amazon Relational Database Service
	Amazon Rekognition
	AWS Resource Groups
	Amazon SageMaker
	AWS Security Token Service
	Amazon Simple Email Service
	Amazon Simple Storage Service
	AWS Trusted Advisor
	Amazon Virtual Private Cloud
	AWS X-Ray

	Signing AWS API requests
	When to sign requests
	Why requests are signed
	Elements of an AWS API request signature
	Endpoint specification
	Action
	Action parameters
	Date
	Authentication information

	Authentication methods
	HTTP authorization header
	Query string parameters

	Create a signed AWS API request
	Temporary security credentials
	Summary of signing steps
	Step 1: Create a canonical request
	Step 2: Create a hash of the canonical request
	Step 3: Create a string to sign
	Step 4: Calculate the signature
	Step 5: Add the signature to the request
	Source code in the AWS SDKs

	Request signature examples
	Browser based Amazon S3 upload using HTTP POST
	VPC Lattice authenticated requests
	Using Signature Version 4 with Amazon Translate
	Using Signature Version 4 with Neptune
	Signing HTTP requests to S3 Glacier
	Making HTTP Requests to Amazon SWF
	Signature calculation for streaming APIs in Amazon OpenSearch Service
	Example projects in AWS samples repository
	Signature Version 4a projects
	Publish to AWS IoT Core

	Troubleshoot signed requests for AWS APIs
	Credential errors
	Canonical request and signing string errors
	API request header

	Credential scope errors
	Key signing errors

	IAM JSON policy reference
	IAM JSON policy elements reference
	IAM JSON policy elements: Version
	IAM JSON policy elements: Id
	IAM JSON policy elements: Statement
	IAM JSON policy elements: Sid
	IAM JSON policy elements: Effect
	AWS JSON policy elements: Principal
	Specifying a principal
	AWS account principals
	IAM role principals
	Role session principals
	Assumed-role session principals
	Web identity session principals
	SAML session principals

	IAM user principals
	IAM Identity Center principals
	AWS STS federated user session principals
	AWS service principals
	AWS service principals in opt-in Regions
	All principals
	More information

	AWS JSON policy elements: NotPrincipal
	Specifying NotPrincipal with Deny

	IAM JSON policy elements: Action
	IAM JSON policy elements: NotAction
	IAM JSON policy elements: Resource
	Using wildcards in resource ARNs
	Specifying multiple resources
	Using policy variables in resource ARNs

	IAM JSON policy elements: NotResource
	NotResource with other elements

	IAM JSON policy elements: Condition
	The request context
	The condition block
	Multiple values in a condition

	IAM JSON policy elements: Condition operators
	String condition operators
	Wildcard matching

	Numeric condition operators
	Date condition operators
	Boolean condition operators
	Binary condition operators
	IP address condition operators
	Amazon Resource Name (ARN) condition operators
	...IfExists condition operators
	Condition operator to check existence of condition keys

	Conditions with multiple context keys or values
	Evaluation logic for multiple context keys or values
	Evaluation logic for negated matching condition operators

	Single-valued vs. multivalued context keys
	Multivalued context keys

	Condition policy examples
	Condition policy examples: Single-valued context keys
	Condition policy examples: Multivalued context keys
	Multivalued context key examples
	Example: Deny policy with condition set operator ForAllValues
	Example: Deny policy with condition set operator ForAnyValue

	Single-valued context key policy examples
	Example: Multiple condition blocks with single-valued context keys
	Example: One condition block with multiple single-valued context keys and values

	IAM policy elements: Variables and tags
	Introduction
	Using variables in policies
	Tags as policy variables
	Where you can use policy variables
	Resource element
	Condition element

	Policy variables with no value
	Request information that you can use for policy variables
	Principal key values
	Information available in requests for federated users
	Special characters

	Specifying default values
	For more information

	IAM JSON policy elements: Supported data types

	Policy evaluation logic
	Processing the request context
	Evaluating policies within a single account
	Evaluating identity-based policies with resource-based policies
	Evaluating identity-based policies with permissions boundaries
	Evaluating identity-based policies with Organizations SCPs

	Determining whether a request is allowed or denied within an account
	Example identity-based and resource-based policy evaluation
	The difference between explicit and implicit denies
	Cross-account policy evaluation logic
	Determining whether a cross-account request is allowed
	Example cross-account policy evaluation

	Grammar of the IAM JSON policy language
	The policy language and JSON
	Conventions used in this grammar
	Grammar
	Policy grammar notes
	Notes about string values

	AWS managed policies for job functions
	Administrator job function
	Billing job function
	Database administrator job function
	Data scientist job function
	Developer power user job function
	Network administrator job function
	Read-only access
	Security auditor job function
	Support user job function
	System administrator job function
	View-only user job function
	Updates to AWS managed policies for job functions
	Creating roles and attaching policies (console)
	Example 1: Configuring a user as a database administrator (console)
	Example 2: Configuring a user as a network administrator (console)

	AWS global condition context keys
	Properties of the principal
	aws:PrincipalArn
	aws:PrincipalAccount
	aws:PrincipalOrgPaths
	aws:PrincipalOrgID
	aws:PrincipalTag/tag-key
	aws:PrincipalIsAWSService
	aws:PrincipalServiceName
	aws:PrincipalServiceNamesList
	aws:PrincipalType
	aws:userid
	aws:username

	Properties of a role session
	aws:FederatedProvider
	aws:TokenIssueTime
	aws:MultiFactorAuthAge
	aws:MultiFactorAuthPresent
	aws:Ec2InstanceSourceVpc
	aws:Ec2InstanceSourcePrivateIPv4
	aws:SourceIdentity
	ec2:RoleDelivery
	ec2:SourceInstanceArn
	glue:RoleAssumedBy
	glue:CredentialIssuingService
	lambda:SourceFunctionArn
	ssm:SourceInstanceArn
	identitystore:UserId

	Properties of the network
	aws:SourceIp
	aws:SourceVpc
	aws:SourceVpce
	aws:VpcSourceIp

	Properties of the resource
	aws:ResourceAccount
	aws:ResourceOrgPaths
	aws:ResourceOrgID
	aws:ResourceTag/tag-key

	Properties of the request
	aws:CalledVia
	aws:CalledViaFirst
	aws:CalledViaLast
	aws:ViaAWSService
	aws:CurrentTime
	aws:EpochTime
	aws:referer
	aws:RequestedRegion
	aws:RequestTag/tag-key
	aws:TagKeys
	aws:SecureTransport
	aws:SourceArn
	aws:SourceAccount
	aws:SourceOrgPaths
	aws:SourceOrgID
	aws:UserAgent

	Other cross-service condition keys

	IAM and AWS STS condition context keys
	Available keys for IAM
	Available keys for AWS web identity federation
	Cross-service AWS web identity federation context keys
	Available keys for SAML-based AWS STS federation
	SAML role trust policies

	Cross-service SAML-based AWS STS federation context keys
	Available keys for AWS STS

	Actions, resources, and condition keys for AWS services

	Resources to learn more about IAM
	Identities
	Credentials (passwords, access keys, and MFA devices)
	Permissions and policies
	Federation and delegation
	IAM and other AWS products
	Using IAM with Amazon EC2
	Using IAM with Amazon S3
	Using IAM with Amazon RDS
	Using IAM with Amazon DynamoDB

	General security practices
	General resources

	Calling the IAM API using HTTP query requests
	Endpoints
	HTTPS required
	Signing IAM API requests

	Document history for IAM

