aws

Developer Guide

AWS Flow Framework for Java

APl Version 2021-04-28

Copyright © 2024 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.



AWS Flow Framework for Java Developer Guide

AWS Flow Framework for Java: Developer Guide

Copyright © 2024 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon's trademarks and trade dress may not be used in connection with any product or service
that is not Amazon's, in any manner that is likely to cause confusion among customers, or in any
manner that disparages or discredits Amazon. All other trademarks not owned by Amazon are
the property of their respective owners, who may or may not be affiliated with, connected to, or
sponsored by Amazon.




AWS Flow Framework for Java Developer Guide

Table of Contents

What is the AWS Flow Framework for Java? .........ccnnneneeenneeeeeeennneiniieiiiieiesiesssssssssssssssssssssss 1
WHRAt'S IN ThisS GUIAE? ..ttt ettt b et e st et s st et e s sa b e e esasas 1
Getting Started ... iiiiiiiiiiiiiiiiennniiiieeeniiiteesssseetissiteeetttessssssssssssssssssssssssssssssssssssssssssssssssssssnnsssns 3
Setting UP the FramEWOTK ...ttt ste e te st e e e e et e saeste st e saasse s e esnenaennans 3
INSTALLING FOI MAVEN ..ttt ettt et e e e e e et e st et e s b e s e s sa e e e sa e e ennanaanean 4
INSTALLING FOr ECLIPSE cuveteteteeeeeeeetee ettt ettt ste st e s e e s e e s e st et e s b e s s e s sassasseeseessenaansansans 4
HelloWOrld APPLICAtION ...ttt ettt e e e e e e e e s e sa e st e e seesa e e e snenaanes 13
HelloWorld Activities IMplementation ...ttt 14
HelloOWOrld WOTrKFLOW WOTKET ......coivueiiirieietrertetetretet ettt sse st ss et sae st e e s sae s s ee 15
HelloOWOrld WOTKFLOW STArter ...ttt ettt se st s v e st s s s e snes 16
HelloWorldWOorkflow APPLICAtION ...ttt ste e s ae s a s aesaenan 16
HelloWorldWorkflow ActiVities WOIKET ......co.civirienirirentetreniesteesetets et sae s se e se e ssesaeasnes 19
HelloWorldWorkflow WOrkflOW WOIKEF ...ttt se e sse s ne 21
HelloWorldWorkflow Workflow and Activities Implementation .........cccceeeeeeieeiecieceececenene, 25
HEellOWOrLAWOrKFLOW STt ..c..oviuieeeieieeetcectctsetete ettt ettt sttt s e nas 29
HelloWorldWorkflowAsyNc APPLICAtioN ...ttt sa et sae e 34
HelloWorldWorkflowAsync Activities Implementation ..........ccoveeceecececececeeeeeeee e, 35
HelloWorldWorkflowAsync Workflow Implementation ..., 36
HelloWorldWorkflowAsync Workflow and Activities Host and Starter ........cccoeeveeeveevenennnee. 38
HelloWorldWorkflowDistributed AppliCAtion ... 39
HelloWorldWorkflowParallel AppliCation ...ttt 42
HelloWorldWorkflowParallel Activities WOIKEF ........cooviverieviiineriteeneteesece et 42
HelloWorldWorkflowParallel Workflow WOIKEF ..ottt 44
HelloWorldWorkflowParallel Workflow and Activities Host and Starter .........cccocevevveveriennnene. 45
How AWS Flow Framework for Java WOrKKS ......cccccciiiiiiinninssssssssssssnnnnsensssssssssssssssssssssssssssssssssens 46
APPLICAtION STIUCTUIE ..ottt ettt et e st e s e e e e et et et e sba st e s seeseeseennenaansansansanes 46
ROLE Of the ACLIVITY WOTKE ...ttt ettt s e ae st re e s et saebaaans 48
Role Of the WOrkflOW WOTKET .......oouiiiieeee ettt sae st s sa s 48
Role Of the WOrKFLOW STArter ...ttt sttt sa e 49
How Amazon SWF Interacts with Your Application ..., 49
FOr MOre INTOrMAtiON ...ccouiiieieieeeceecteee ettt sttt et sa et e s s b et s e ae e e e ssaseen 49
RELIADLE EXECULION ...ttt ettt sttt ettt et sttt s s b st e e s b et s sae b e st e sasbe st esassensensssenns 50
Providing Reliable COmMMUNICAtION ..ottt st nnens 50
Ensuring that ResULtS @ar@ NOT LOST ..ottt re e re s e s e sn s aens 51

API Version 2021-04-28 iii



AWS Flow Framework for Java Developer Guide

Handling Failed Distributed COMPONENTES .....c.oouiiiieeeeeeeeceteteee ettt aenan 51
Distributed EXQCULION ...cviuiiiieieieetcteesetct ettt ettt s ettt s e st e e s e sb et e e ssasae e ssesaassenans 52
REPLAYING WOTKFLOWS ...ttt te st e et et e st saesae s s e e s e neaesaantans 52
Replay and Asynchronous Workflow Methods ..., 53
Replay and Workflow Implementation ...t saesaenens 54
Task Lists and Task EXECULION ....c.coeviririerieirineiccsestestsesiest sttt see st e e ste st e se s e e s e sse st e e ssassesaene 54
SCAlAbLe APPLICALIONS ...ooeeeieeeecee ettt sttt e e s e e e e s et e st e st e b e seeseeseernene et eaetanes 56
Data Exchange Between Activities and WOrkflOWS ..........ccuoueieeeeeniciineececteece e 57
THE PromMUSEST> TYPE woiieieieieeteceeeeeetetecteste e steste s e e e e e et e st e stestassassessaesaessesaessessansansassassesssessensanean 57
Data Converters and Marshaling ... r e steste s e s reen s nnens 59
Data Exchange Between Applications and Workflow EXecutions ..........cccecveeveceecececeneceeceeceenenen. 59
TIMEOUT TYPES ettt ettt et s st es e e st e st e s sae s st e s s aeessaessaesssa e s seessaesssasssesssasssaesssesssaesssessseesssennes 60
Timeouts in Workflow and DeciSion TasKS ........cceveriirirenininienenieeneneteesesseesessesesessessesessesees 60
TimMEOULS iN ACLIVILY TASKS ..oevieeeieeeeeeeetetetetere ettt ettt e steste e e re e e e e e s e saesbesaa s s e e se e e enaennennan 61
BESt PraCtiCes wuueeeeeeeeeeeeeeeniiiiiiiiiiiiiiiiiinieeesiessssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssns 64
Making Changes to DECIAEr COAE ...ttt se e et esaesaesre s e se s e e aenenes 64
The Replay Process and Code ChangEes ........ccceieieieieieectecesec ettt cee e saesvesse s e se s e esaesaeeens 64
EXQMIPLE SCENAIIO ..ottt e et e e et et e st et et e st e s aeeseese e e e e et ebe st etessassesseenseseensansanes 65
SOLULIONS ..ttt ettt ettt et et s st et s st et e e s be st et e s e st et e sa s b et e st ssessentesesassesasansensosarsan 72
Programming GUIAE .....eeeeiiiiiiiiiiiiinenennneisiiesieietinssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssnns 77
Implementing Workflow AppPLICAtiONS ..ottt 77
Workflow and ActiVity CONIACES ......couioveeeieececeeecrecteteste e e et e saestesaesae s e e s e e s esnesaesaanaans 79
Workflow and Activity Type REGISTration ...ttt nan 82
Workflow Type Name and VEISION .......ccoeeeeieiiieceetetecteste e se e e e e esaesaesaessessessessessesssssessessensens 83
SIGNAL NGIMIE ettt e e e et e st et e st e s be e b e s s e e se e e et et e sansassasseesaessansassansansansans 83
Activity Type NAmMe and VEISION .......eciiieieieeeeeeeeeeeete e ste e ste s e s e e e esesaessesaessessassssssssaensensansans 83
DEFAULL TASK LIST ..cuveuiiiiiirieieieesetctseriete ettt et ste st ettt s sae st s et et s e s s e s s e ssesaesaesesaessenas 83
Other Registration OPLiONS .....c.cceiiiiiieeececeeee ettt e et et ae st e s be e e e e e e s e e s e saesaanaas 84
Activity and WOIKFLOW CLIENTS ....o.eeeeeeeeeeeeeee ettt e et e saestestesaa s s e s s sa e aeaanaans 84
WOTKFLOW CLIENTES ..ttt sttt sttt sttt ettt et s s e st et s et e e sesaesa e e ssanes 85
ACEIVITY CLIBNTS ottt sttt et r e st et e e s e s e e e e e e b et e be st e sasseesaesaensensansansansanes 93
SChEAULING OPLIONS ..ottt ettt te e st e s e e e e et e s et e st et e s saesessaensensansansansansans 97
DYNAMIC CLENLS ettt e e e et e et e e e e s et e st e st e st e s b e s e e e e e esaentessassassassassassaessensantans 98
WOrkflow IMpPLeMENTAtION .......ooeeeeeeeee ettt st e e e e e e st e s aa s 100
DECISION CONTEXT ...ttt et s e st a et et ae st st s be st e s st s ene s b esneesans 101
EXPOSING EXECULION STALE oottt ettt et e saessse e e saessse e ssesssnesnassnnanns 101

API Version 2021-04-28 iv



AWS Flow Framework for Java Developer Guide

WOTKFLOW LOCALS ..ttt ettt sttt st et sb et e a s s ae st e ssa b et e e sastesassansan 103
Activity IMPLlemMENTAtION ...ttt et s ae st s e e e e e e e e e aesbenaens 105
Manually ComPLeting ACLIVITIES ....cvccueeieeeeeceeeeeetete ettt te e s ae e e e s e s e e e aessasens 105
Implementing Lambda TASKS ..ottt e et stesaesae s e e e e a e ae e e saanaansans 107
ADOUL AWS LambBda ..ottt sttt sttt et e s b et s s s e st e e ssa b e e s e ssesaenas 107
Benefits and limitations of using Lambda tasks ... 108
Using Lambda tasks in your AWS Flow Framework for Java workflows ........cccccceveeeeeevennnen. 108
View the HelloLambda SAmMPLE ...ttt st 113
Running Programs Written with the AWS Flow Framework for Java .......ccccceveeveveeveceececceecnennene. 114
WOTKFLOWWOIKET ...ttt ettt sttt et ettt s s b e e e s sa s esaenas 115
ACEIVIEYWOTKET ..ttt et e st e st e st e st e s e e e e e a et e s e bessessassasseensenaensanean 115
Worker Threading MOAEL ...ttt e et et sae s be s e e e e s neaebanaans 116
WOrKer EXEENSIDILILY ..ccveeeeeeeeeeeeeeee ettt aesae st e e e s e s e nenannans 118
EXECULION CONTEXT ...ttt sttt a e st s b st e st s ae st e nessnesanenes 119
DECISION CONTEXT ...ttt et st a et et be st e st s be st e st s snessbesneesane 119
AcCtiVity EXECULION CONTEXT ...oiiieiiietectctectcteee ettt re s sre s ae s aeesae s saessaesssnesnesssaassnens 121
Child WOIKFLOW EXECULIONS ....vouvieiiiieiienietecriestctsestete e ste st st esae st s e sesae st s e sae st e e ssasaeassassesasssssassenees 122
CONTINUOUS WOTKTLOWS ....oviiiieiiriiieirtsiesteesestet sttt se s st s sse st e ssasae st e e ssasaeassassessssessassesassens 124
SELEING TASK PrIOTILY woeeeeeeieieeeeee ettt et et e s tesae s s e e e e e et et e st e b e saasessaesaeneennennan 126
Setting Task Priority fOr WOrKFLOWS .......ccueoeeeeieeceeeeee ettt sae e 126
Setting Task Priority fOr ACHIVITIES ...c.cc et saeaens 127
DAtACONVEITEIS ...ttt ettt et et sa st s e st s e st e b e et e e st s b e st e e st e be s st e st sasesatessesnsassesa 128
Passing Data to ASynchronous Methods ...ttt e e saesaens 129
Passing Collections and Maps to Asynchronous Methods .........cccceeeeeieveeceeceececececeseceeene 129
SEHEADLERT > .ttt sttt sttt s b ettt e b et e st et e s ae st e e s e ae st ens 130
@NOWAIT ...ttt e st st e s ae e st e s sae e st e s seessaessaeessaessse s st esssaessaesssesssaessseesseesssesssaenssens 131
PrOMUSESVOIA ..ottt sttt ettt st et s b et et s et et s e sbe st e e s sa b et snessensenassanseneen 132
ANAPromise and OFrPrOMUSE .....ccccevirerierirenierieeniesteteessestesessestessssessessesessessessssessessesessessessssessensns 132
Testability and Dependency INJECTION ...ttt s ae e e s neaeaens 132
SPFING INTEGIATION ettt sae s st e s ae s sre e st e s seessbesssaessnessseasssessseessnans 132
JUNIT INTQGIATION ettt ettt et e st e s ae st e s sa e e s e e s ae s saessaeesseasssasssaessens 139
ErrOr HANALUING ettt ettt et e s te s e et e st e st e st e s ae s e e sa e e e s etastassansassassnesasnaans 145
TryCatchFiNally SEMANTICS ..ot sttt a e e a e a e ae s 147
CANCELLATION 1ottt ettt e s st et et s et et e s be st esa s s e se st ssessestesassansenenn 148
Nested TryCatChFINGLLY ..ottt et s e e e e s e e e sa et aas 153
RELIY FAIled ACLIVITIES wouveeeeeeeceeeeeeeee ettt ettt et e st esae s e e e e s e s et et e s bassasseesaennennan 154

API Version 2021-04-28 v



AWS Flow Framework for Java Developer Guide

REtry-UnNtil-SUCCESS STrat@QY ..ccueceeieieieieeerecec ettt sa et saesaesae e e e e e e n e aenans 154
EXpPonential Retry Strat@gy ..ottt te et s e e e st et esaesaesse s e e e ennens 157
CUSTOM RELIY STFAtEQY .oooeeiceiiieieiieiecctcetcese ettt s st s ee s et s st e s sae e s e e s saesssaessseessnesssessssasssasssaanns 164
DABIMON TASKS vttt se et e e ste st et s e ste st e sse st et sse st et esasse st e e ssastestesassassensssansessssensenseseesansen 167
REPLAY BERAVIOK ..ttt e st e s e et et e st e st e st e s se e e esa e s e s et e aessassessaesesnsensensansans 169
Example 1: SYNChronous REPLAY ......eoueeeieieieeeeeee ettt sae st st s s s se s ns 169
Example 2: ASynchronous REPLAY ....cuccueieeeeeeececeeteteteteee ettt st sae et sa e e s 171
SEE ALSO ettt sttt st ettt a e e et e e b et et e s et et e st e st e e erate e eneene 171
Under the Hood ........ccoiiiiiiiiiiiiiiiiiiiiininnnsssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssss 172
TASK ettt sttt ettt R e bt e s h et et e R e et et e et et e e e se b et e e eaatentenans 172
Order OF EXECULION ..cuveuiieieieertetetrertete ettt ettt st et et e s e st e st s s s st e st ssasbe st e e ssestenssnasansesassans 173
WOTKFLOW EXECULION vttt ettt sttt st ettt e st e st e e st et s e sbe s s e ssasaesassens 174
NONAELEIMINISITI ..ttt ettt et s st et s e sbe st e e ssesbe e esassestesassassensesessassesassans 177
Troubleshooting and Debugging TiPs c.ccccceeeeeeciiiiiieceniinneeensenssssssceesssssssssssssssssssssssssssssssssssssssss 178
COMPILALION EFTOIS ..ottt ettt te s e veste e e s e e s et e st e st e sse st e s e e e sssensessastessassassessaesssnsensansansans 178
UNKNOWN RESOUICE FAULL ...ttt sttt et ettt s s e st et s sa et e e ssa s e e enaneas 178
Exceptions When Calling get() 0n @ PromliSe ... eeieiecieceececeeeete ettt sae s nnens 179
Non Deterministic WOTKFLOWS ........coueiiireeieecterece ettt et ettt sa e aen 179
Problems DUE tO VEISIONING ....cceeueeieieieieiectectectesteeeeee e ceetestestesaessessessessseaesesaessessessassessssssessennens 179
Troubleshooting and Debugging @ Workflow EXeCUtion ..........cccceeieceeciecieneneneeeeeeeeee e 180
LOSE TASKS ..veveeieeienienteteentetsesesteteseste st e e sseste st saesse st e e ssassesaesassassesessassansenessessensesessentesessensensesessansessesans 181
3 T2 =T =T 3 TP 183
ANNOTATIONS .ttt et s s a e st sa s sb e s st s b st e et e sse e b e s st snesnesntesenns 183
@ACTIVITIES ettt ettt ste e st e st e s sae s st e s saa e s e e s sse s s st e s sees st esseessaesssaesssasssessssessseesseens 183
@ACTIVITY ettt ettt sttt e st e s e e s s ae s st e s sbe e st e e sa e s b asssaesssassseesssesssaesssessstesssessssenssens 184
@ACtiVityRegistratioNOPLIONS ....cviiiieeeetectetetrtere et sre s te st s e e s sae e s e e s saessaessaaessnens 184
@ASYNCNTONOUS ...eeveeiecietecteeteetee et et et et estestesaesseete e s ese e s essassessassassessaessassessansansassassassassaessessensansan 185
@EXECULE .ttt sttt st e st e s s s e e s e s be e b e s s et e s e e s sa et e s ae e saessaessaaesseesssensaensaans 186
@EXPONENEIALRELIY ...ttt s et e e e s e et e s te st e s b e s sessaese e e e a e s enaensanes 186

@ GEESTALE ettt et s s e st s e s b e st e e s e e e e e e s st e e s e e e e e e saa e s e eesaaessaaans 187
@ManNUALACLIVItYCOMPLETION ..ottt sa e st e ae e s e ra e e e aen e ae s 187

@ STGNAL ettt et ettt e et et e e b e et e e Reeae et et et e benbenbeeseeseesae st entetetantetanes 188
@SKIPREGISTIATION ...ttt ettt e s ae s e st et et et et e s sassessaesaentensansanes 188
@Wait AN @NOWAIL ...ttt ettt e st este s e e e e e et et e stesaessassessassnenaaneans 188
@WOTKFLOW .ttt ste e s te e e e e et et e s ae st e st e s b e e s e e sa e s et esaensassassassassassnesnaneans 188
@WOorkflowRegistratioNOPLIONS ......ccuecieeieeierieieeecte e r et te e sse e e e e e e e e e saesaensaseans 189

API Version 2021-04-28 vi



AWS Flow Framework for Java Developer Guide

EXCOPTIONS ettt sttt s st s st e s st e s e e s sae e s b e e sa e s s b e s sa e e be e st e s saasesaeesse e st aessaessaeeraenatans 191
ACtiVityFQilUr@EXCEPLION ...ttt ettt e s e e e a et sa et nes 191
ACtiVItY TASKEXCEPTION ..ottt ettt te st se et et esae st e s b e e ae e e e e e aeaenaenean 192
ActivityTaskFail@dEXCEPLION .....coueeieieeeteteeeee ettt te ettt e st s re e e e e e et e saasaanan 192
ActivityTaskTimedOULEXCEPLION ...ttt ste e se s n e s e nans 192
ChildWOTrKfLOWEXCEPTION ...ttt te st e e s et et et e s e s se s e s e e nenennens 192
ChildWOorkfloOWFQil@dEXCEPLION .....ccueeieieeeeeeeceeee ettt e e sa et saessesae e e e e s e e sa e aenaens 192
ChildWorkflowTerminat@dEXCEPLION .....cccoeeeeeeeeeeeete ettt ste e e e saesaeseens 193
ChildWorkflowTimedOULEXCEPLION ...ttt sae e aeennens 193
DataConNVerterEXCEPLION .c...ii ittt sttt e st ee s sre e s e e s sae e s aessseesaessseessaesssaesssasssnasssesanes 193
DECISIONEXCEPTION ..ttt sttt st s te s st e s s e s sa e s st e e st e s ae s saessaeesssasssasssaesssaessaasssaanns 193
ScheduleActivityTaskFailedEXCEPLION .....cc.ccveeueeieeieeeteeeeeee ettt sa e ae s 193
SignalExternalWorkflOWEXCEPLION .......cviieieeeeeeeeeetetetete ettt nesaesaeeens 193
StartChildWorkflowFailedEXCEPLION ......ocveveeeeeeeeeeeteteece ettt sae st nan 194
StartTiMerFail@dEXCEPLION ...ttt ettt re e ra e e s aesaestesae e e e saenenes 194
TIMEIEXCEPTION .ottt ettt ettt s st e s st e s e e s ae st e s b e e s e e s ae s saesssesssaesssasssaenssens 194
WOIKFLOWEXCEPLION ...ttt ettt te e e e e s et e st et et e s sesse e e e s e e et esaseesaasassessneneanes 194

PACKAGES ..ottt ettt et e e e e e e et et et e st e st e s e sseesaess et e st eta st e sassassaessessastessansatansassesseessenaantans 194

(0T oYal 1Ty 1 L= 31 o 1T o oV UPPTT 196
AWS GLOSSANY .ccevveennnsiseeeeennransessssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssss 198

API Version 2021-04-28 vii



AWS Flow Framework for Java Developer Guide

What is the AWS Flow Framework for Java?

With the AWS Flow Framework, you can focus on implementing your workflow logic. Behind

the scenes, the framework uses the scheduling, routing, and state management capabilities of
Amazon SWF to manage your workflow's execution and make it scalable, reliable, and auditable.
the framework-based workflows are highly concurrent. The workflows can be distributed across
multiple components, which can run as separate processes on separate computers and be scaled
independently. The application can continue to progress if any of its components are running,
making it highly fault tolerant.

What's in this Guide?

This guide has information about how to install, set up, and use the the framework to build
Amazon SWF applications.

Getting Started with the AWS Flow Framework for Java

If you are just starting out with the AWS Flow Framework for Java, read the Getting Started

with the AWS Flow Framework for Java section. It will guide you through downloading and

installing the AWS Flow Framework for Java, how to set up your development environment, and
lead you through a simple example of creating a workflow.

How AWS Flow Framework for Java Works

Introduces basic Amazon SWF and the framework concepts, describing the basic structure of a
the framework application and how data is exchanged between parts of a distributed workflow.

AWS Flow Framework for Java Programming Guide

This chapter provides basic programming guidance for developing workflow applications with
the AWS Flow Framework for Java, including how to register activity and workflow types,
implement workflow clients, create child workflows, handle errors, and more.

Under the Hood

This chapter provides a more in-depth look at the way the AWS Flow Framework for Java
works, providing you with additional information about the order of execution of asynchronous
workflows and a logical step-through of a standard workflow execution.

What's in this Guide? API Version 2021-04-28 1



AWS Flow Framework for Java Developer Guide

Troubleshooting and Debugging Tips

This chapter provides information about common errors that you can use to troubleshoot your
workflows, or that you can use to learn to avoid common errors.

AWS Flow Framework for Java Reference

This chapter is a reference to the Annotations, Exceptions and Packages that the AWS Flow
Framework for Java adds to the SDK for Java.

Document History

This chapter provides details about major changes to the documentation. New sections and
topics as well as significantly revised topics are listed here.

What's in this Guide? API Version 2021-04-28 2



AWS Flow Framework for Java Developer Guide

Getting Started with the AWS Flow Framework for Java

This section introduces the AWS Flow Framework by walking you through a series of simple
example applications that introduce the basic programming model and API. The example
applications are based on the standard Hello World application that is used to introduce C and
related programming languages. Here is a typical Java implementation of Hello World:

public class HelloWorld {
public static void main(String[] args) {
System.out.println("Hello World!");
}

The following is a brief description of the example applications. They include complete source code
so you can implement and run the applications yourself. Before starting, you should first configure
your development environment and create an AWS Flow Framework for Java project, like in Setting
up the AWS Flow Framework for Java.

« HelloWorld Application introduces workflow applications by implementing Hello World as a

standard Java application, but structuring it like a workflow application.

» HelloWorldWorkflow Application uses the AWS Flow Framework for Java to convert HelloWorld

into an Amazon SWF workflow.

« HelloWorldWorkflowAsync Application modifies HelloWorldWorkflow to use an asynchronous

workflow method.

« HelloWorldWorkflowDistributed Application modifies HelloWorldWorkflowAsync so that the
workflow and activity workers can run on separate systems.

» HelloWorldWorkflowParallel Application modifies HelloWorldWorkflow to run two activities in
parallel.

Setting up the AWS Flow Framework for Java

The AWS Flow Framework for Java is included with the AWS SDK for Java. If you have not already
set up the AWS SDK for Java, visit Getting Started in the AWS SDK for Java Developer Guide for
information about installing and configuring the SDK itself.

Setting up the Framework API Version 2021-04-28 3


https://aws.amazon.com/sdkforjava/
https://docs.aws.amazon.com/sdk-for-java/v1/developer-guide/getting-started.html

AWS Flow Framework for Java Developer Guide

This topic provides information about additional steps required to use the AWS Flow Framework
for Java. Steps are provided for Eclipse and Maven.

Topics

« Installing for Maven

« Installing for Eclipse

Installing for Maven

Amazon provides Amazon SWF build tools in the Maven Central Repository to aid setup of AWS

Flow Framework for Java in your Maven projects.

To set up the flow framework for Maven, add the following dependency to your project's pom. xml
file:

<dependency>
<groupId>log4j</groupId>
<artifactId>log4j</artifactId>
<version>1.2.17</version>

</dependency>

<dependency>
<groupId>com.amazonaws</groupId>
<artifactId>aws-swf-build-tools</artifactId>
<version>1.0</version>

</dependency>

The Amazon SWF build tools are open source—to view or download the code or to build the tools
yourself, visit the repository at https://github.com/aws/aws-swf-build-tools.

Installing for Eclipse

If you use the Eclipse IDE, install the AWS Flow Framework for Java using the AWS Toolkit for
Eclipse.

Topics

« Installing the AWS Toolkit for Eclipse

» Creating an AWS Flow Framework for Java Project

Installing for Maven API Version 2021-04-28 4


https://mvnrepository.com/artifact/com.amazonaws/aws-swf-build-tools
https://github.com/aws/aws-swf-build-tools

AWS Flow Framework for Java Developer Guide

Installing the AWS Toolkit for Eclipse

Installing the Toolkit for Eclipse is the simplest way to get started with the AWS Flow Framework
for Java. To install the Toolkit for Eclipse, see Setting Up the AWS Toolkit for Eclipse in the AWS
Toolkit for Eclipse Getting Started Guide.

/A Important

Be sure to include both the AWS SDK for Java and AWS Simple Workflow Tools when
selecting which packages to install in Eclipse's Available Software dialog box:

Available Software

Check the items that you wish to install. ™

&/

Work with: | http://aws.amazon.comfeclipse L4 Add...

Find more software by working with the “Available Software Sites” preferences.

type filter text

Marme Version

] Z[eAmazon RDS Management 1.0.0v201308121803
[E]' ZeAmazon 5impleDBE Management 1.0.0v201308121803
@ = AWS CloudFormation Tools 1.0.0.w201308121803
[EI = AWS Elastic Beanstalk 1.0.0w20130905%1708
[l L AWS SDK for Android 1.0.0v201212110105
@ < AWS SDK for Java 2.0.0v201212211205
@ = AWS Simple Workflow Tools 1.0.0wv201202211329
] == AWS Toolkit for Eclipse Core 2.0.1v201308121803

Select All Deselect All

If you installed all of the available packages (by choosing the AWS Toolkit for Eclipse top-
level node, or choosing Select All), both of these packages were automatically selected and
installed for you.

Creating an AWS Flow Framework for Java Project

Creating a properly configured AWS Flow Framework for Java project in Eclipse involves a number
of steps:

1. Create an AWS Java project.

Installing for Eclipse API Version 2021-04-28 5


https://docs.aws.amazon.com/AWSToolkitEclipse/latest/GettingStartedGuide/tke_setup.html

AWS Flow Framework for Java Developer Guide

2. Enable annotation processing for your project.

3. Enable and configure AspectJ.

Each of these steps will now be described in detail.
To create an AWS Java project

1. Launch Eclipse.
2. To select the Java perspective, choose Window, Open Perspective, Java.

3. Choose File, New, AWS Java Project.

Wizards:

type filter text

ﬁjava Project
ﬁﬁjava Project from Existing Ant Buildfile

1{[:“.=}-”Plug—in Project
P (= General
[ AWS

AWS lava Web Project
b = CVS
P (= Eclipse Modeling Framework
» =EJB
P = Java
P = Java EE
P = JavaScript

b = JAXB

@ < Back [ Next > ] |  Cancel | Finish

4. Use the AWS Java project wizard to create a new project.

(@ Note

The first time you create an AWS Java project with Eclipse, the SDK for Java will be
automatically downloaded and installed when the project wizard starts.

Installing for Eclipse API Version 2021-04-28 6



AWS Flow Framework for Java Developer Guide

After creating your AWS Java project, enable annotation processing for the project. The AWS Flow

Framework for Java includes an annotation processor that generates several key classes based on
annotated source code.

To enable annotation processing

1. In Project Explorer, right-click your project and select Properties.

2. Inthe Properties dialog box, navigate to Java Compiler > Annotation Processing.

3. Check Enable project specific settings (which should also Enable annotation processing, but
if it doesn't make sure that this option is also checked). Then choose OK.

000

Properties for MyTestSWFProject

type filter text

P Resource
Builders
Java Build Path
FJava Code Style
¥Java Compiler
>
Building
Errors /Warnings
Javadoc
Task Tags
P Java Editor
Javadoc Location
Project Facets
Project References
Run/Debug Settings
P Task Repository
Task Tags
FValidation
WikiText

® Note

Annotation Processing =R v -
[21 Enable project specific settings

[QI Enable annotation processing
@ Enable processing in editor

Generated source directory:

.apt_generated

Processor options (-Akey=value):

Key Value

Note: options such as "-classpath” and "-sourcepath” are automartically passed to all processors, with
values corresponding to the project's Java settings.

Restore Defaults Apply

Cancel ' OK |

You will need to rebuild your project after enabling annotation processing.

Installing for Eclipse

API Version 2021-04-28 7




AWS Flow Framework for Java Developer Guide

Enabling and Configuring Aspect)

Next, you should enable and configure AspectJ. Certain AWS Flow Framework for Java annotations
such as @QAsynchronous require AspectJ. You don't need to use Aspect) directly, but you must
enable it with either load-time weaving or compile-time weaving.

(® Note

The recommended approach is to use load-time weaving.

Topics

Prerequisites
Configuring AspectJ Load-Time Weaving

Aspect) Compile-Time Weaving

Working around issues with Aspect) and Eclipse

Prerequisites
Before configuring AspectlJ, you need the AspectJ version that matches your Java version:

« If you are using Java 8, download the latest Aspect]) 1.8.X release.
« If you are using Java 7, download the latest Aspect]) 1.7.X release.

« If you are using Java 6, download the latest Aspect]) 1.6.X release.

You can download either of these versions of Aspect) from the Eclipse download page.

After you have finished downloading AspectJ, execute the downloaded . jar file to install AspectJ.
The AspectJ installation will ask you where you would like to install the binaries, and on the final
screen, will provide recommended steps for completing the installation. Remember the location of
the aspectjweaver.jar file; you'll need it to configure AspectJ in Eclipse.

Configuring Aspect) Load-Time Weaving

To configure Aspect) load-time weaving for your AWS Flow Framework for Java project, first
designate the AspectJ JAR file as a Java agent, and then configure it by adding an aop . xml file to
your project.

Installing for Eclipse API Version 2021-04-28 8


http://www.eclipse.org/aspectj/
http://www.eclipse.org/aspectj/downloads.php#milestones

AWS Flow Framework for Java Developer Guide

To add AspectJ as a Java agent

1. To open the Preferences dialog box, choose Window, Preferences.
2. Navigate to Java > Installed JREs.

3. Select the appropriate JRE and choose Edit.

4

In the Default VM arguments box, enter the path to the installed AspectJ binary. This will be
a path such as /home/user/aspectjl.7/1ib/aspectjweaver. jar, depending on your
operating system and on the version of AspectJ you downloaded.

On Linux, macQOS, or Unix use:
-javaagent:/your_path/aspectj/lib/aspectjweaver. jar
On Windows, use a standard Windows-style path instead:

-javaagent:C:\your_path\aspectj\lib\aspectjweaver. jar

JRE Definition =

Specify attributes for a JRE E‘(*
JRE home:; Jusr/lib/jvm/java-7-openjdk-amd64 Directory...
JRE name: java-T-openjdk-amde64

Default VM arguments: |—javaagent:stersfmynamefaspectj1.?flib,faspectjweaver.jar| ] Variables...

To configure Aspect) for AWS Flow Framework for Java, add an aop . xml file to the project.

To add an aop.xml file

1. Inyour project's src directory, add a directory named META-INF.
2. Add afile named aop.xml to META-INF with the following contents.

<aspectj>
<aspects>
<aspect
name="com.amazonaws.services.simpleworkflow.flow.aspectj.AsynchronousAspect"/>
<aspect
name="com.amazonaws.services.simpleworkflow.flow.aspectj.ExponentialRetryAspect"/>
</aspects>

Installing for Eclipse API Version 2021-04-28 9



AWS Flow Framework for Java Developer Guide

<weaver options="-verbose">
<include within="MySimpleWorkflow.*"/>
</weaver>
</aspectj>

The value of <include within=""/> depends on how you name your project's
packages. The above example assumes that the project's packages followed the pattern
MySimpleWorkflow.*. Use a value appropriate for your own project's packages.

Aspect) Compile-Time Weaving

To enable and configure Aspect) compile-time weaving, you must first install the Aspect)
developer tools for Eclipse, which are available from http://www.eclipse.org/aspectj/
downloads.php.

To install the Aspect) Developer Tools in Eclipse

1. Onthe Help menu, choose Install New Software.

2. In the Available Software dialog box, enter http://download.eclipse.org/tools/
ajdt/version/dev/update, where version represents your Eclipse version number. For
example, if you are using Eclipse 4.6, you would enter: http://download.eclipse.org/
tools/ajdt/46/dev/update

/A Important

Be sure that the AspectJ version matches your Eclipse version, or installation of Aspect)
will fail.

3. Choose Add to add the location. Once the location is added, the Aspect) developer tools will
be listed.

Installing for Eclipse API Version 2021-04-28 10


http://www.eclipse.org/aspectj/downloads.php
http://www.eclipse.org/aspectj/downloads.php

AWS Flow Framework for Java Developer Guide

Available Software
Check the items that you wish to install. \J —
ey "
Waork with: 6|Aspect,] Developer Tools - http:/ fdownload.eclipse.org/tools fajdt/43 fupdate T] | Add... |

Find more software by working with the "Available Software Sites” preferences.

type filter text

‘Name Version
[EI b 100 Aspect] Development Tools (Required)

M w000 Aspect] Development Tools Source (Optional)

[EI b (00 Other AIDT Tools (Optional)

| selectall | | Deselect All | g jtems selected
@:I < Back [ MNext = ] [  Cancel | Finish

4. Choose Select All to select all of the AspectJ developer tools, then choose Next to install
them.

(® Note

You will need to restart Eclipse to complete the installation.

You must then configure your project.
To configure your project for Aspect)J compile-time weaving

1. In Project Explorer, right-click your project and select Configure > Convert to AspectJ Project.

Installing for Eclipse API Version 2021-04-28 11



AWS Flow Framework for Java Developer Guide

f[\j Project Explorer E23 ImpDrt... O
L .
e i ey Export... |
> (Esre &' Refresh F5

b = JRE System
F =, AWS SDK fc
b =2 MyTestSWFPro

Close Project
Close Unrelated Projects

Validate

Show in Remote Systems view
Profile As

Debug As

Run As

Team .
Compare With Convert to JPA Project...

Restore from Local History... Convert to Faceted Form...

Configure > Convert to J;TvaS=":r|pt Plroject...

Source Convert to Plug-in Pr-:.:Jects...
Convert to Maven Project

1= MyExampleSwFProj  PTOperties Convert to Aspect) Project

Markers Properties &l Sery

Mo consoles to display at this time.

yFrYrvYy yy

v

The AspectJ Runtime Library will be added to your project.
2. Right-click your project again and then choose Properties.
3. Choose Aspect) Build and then choose the Aspect Path tab.

4. Choose Add External JARs and add the AWS SDK for Java JAR file to your project's Aspect
Path.

@ Note
The AWS Toolkit for Eclipse installs the AWS SDK for Java JAR file in your workspace, in
the .metadata/.plugins/com.amazonaws.eclipse.core/aws-java-sdk/AWS
Version/1lib directory, where you replace AWS Version with the installed AWS SDK
version number. Otherwise, you can use the JAR file that is included with the regular
AWS SDK installation, which is in the 1ib directory.

Working around issues with AspectJ and Eclipse

The AspectJ Eclipse plug-in has an issue that can prevent generated code from being compiled. The
fastest way to force generated code to be recognized after you recompile it is to change the order

Installing for Eclipse API Version 2021-04-28 12



AWS Flow Framework for Java Developer Guide

of the source directory that contains the generated code on the Order and Export tab of the Java
Build Path settings page (for example, you can set the default to apt/java).

HelloWorld Application

To introduce the way Amazon SWF applications are structured, we'll create a Java application that
behaves like a workflow, but that runs locally in a single process. No connection to Amazon Web
Services will be needed.

(® Note

The HelloWorldWorkflow example builds upon this one, connecting to Amazon SWF to

handle management of the workflow.

A workflow application consists of three basic components:

« An activities worker supports a set of activities, each of which is a method that executes
independently to perform a particular task.

» A workflow worker orchestrates the activities' execution and manages data flow. It is a
programmatic realization of a workflow topology, which is basically a flow chart that defines
when the various activities execute, whether they execute sequentially or concurrently, and so
on.

» A workflow starter starts a workflow instance, called an execution, and can interact with it during
execution.

HelloWorld is implemented as three classes and two related interfaces, which are described in the
following sections. Before starting, you should set up your development environment and create a
new AWS Java project as described in Setting up the AWS Flow Framework for Java. The packages

used for the following walkthroughs are all named helloWorld.XYZ. To use those names, set the
within attribute in aop.xml as follows:

<weaver options="-verbose">
<include within="helloWorld..*"/>
</weaver>

HelloWorld Application API Version 2021-04-28 13



AWS Flow Framework for Java Developer Guide

To implement HelloWorld, create a new Java package in your AWS SDK project named
helloWorld.HelloWorld and add the following files:

An interface file named GreeterActivities. java

A class file named GreeterActivitiesImpl. java, which implements the activities worker.

An interface file named GreeterWorkflow. java.

A class file named GreeterWorkflowImpl. java, which implements the workflow worker.

A class file named GreeterMain. java, which implements the workflow starter.

The details are discussed in the following sections and include the complete code for each
component, which you can add to the appropriate file.

HelloWorld Activities Implementation

HelloWorld breaks the overall task of printing a "Hello World!" greeting to the console into
three tasks, each of which is performed by an activity method. The activity methods are defined in
the GreeterActivities interface, as follows.

public interface GreeterActivities {
public String getName();
public String getGreeting(String name);
public void say(String what);

HelloWorld has one activity implementation, GreeterActivitiesImpl, which provides the
GreeterActivities methods as shown:

public class GreeterActivitiesImpl implements GreeterActivities {
@Override
public String getName() {
return "World";

}

@Override
public String getGreeting(String name) {
return "Hello " + name + "!";

}

@Override

HelloWorld Activities Implementation API Version 2021-04-28 14



AWS Flow Framework for Java Developer Guide

public void say(String what) {
System.out.println(what);

Activities are independent of each other and can often be used by different workflows. For
example, any workflow can use the say activity to print a string to the console. Workflows can also
have multiple activity implementations, each performing a different set of tasks.

HelloWorld Workflow Worker

To print "Hello World!" to the console, the activity tasks must execute in sequence in the correct
order with the correct data. The HelloWorld workflow worker orchestrates the activities' execution
based on a simple linear workflow topology, which is shown in the following figure.

Call greeting name _ greeting Print greeting
o . —» getName getGreeting say .
(Start) {Finish)

The three activities execute in sequence, and the data flows from one activity to the next.

The HelloWorld workflow worker has a single method, the workflow's entry point, which is defined
in the GreeterWorkflow interface, as follows:

public interface GreeterWorkflow {
public void greet();

The GreeterWorkflowImpl class implements this interface, as follows:

public class GreeterWorkflowImpl implements GreeterWorkflow{
private GreeterActivities operations = new GreeterActivitiesImpl();

public void greet() {
String name = operations.getName();
String greeting = operations.getGreeting(name);
operations.say(greeting);

HelloWorld Workflow Worker API Version 2021-04-28 15



AWS Flow Framework for Java Developer Guide

The greet method implements HelloWorld topology by creating an instance of
GreeterActivitiesImpl, calling each activity method in the correct order, and passing the
appropriate data to each method.

HelloWorld Workflow Starter

A workflow starter is an application that starts a workflow execution, and might also communicate
with the workflow while it is executing. The GreeterMain class implements the Helloworld
workflow starter, as follows:

public class GreeterMain {
public static void main(String[] args) {
GreeterWorkflow greeter = new GreeterWorkflowImpl();
greeter.greet();

GreeterMain creates an instance of GreeterWorkflowImpl and calls greet to run the
workflow worker. Run GreeterMain as a Java application and you should see "Hello World!" in the
console output.

HelloWorldWorkflow Application

Although the basic HelloWorld example is structured like a workflow, it differs from an Amazon
SWF workflow in several key respects:

Conventional and Amazon SWF Workflow Applications

HelloWorld Amazon SWF Workflow

Runs locally as a single process. Runs as multiple processes that can be distribut
ed across multiple systems, including Amazon EC2
instances, private data centers, client computers, and
so on. They don't even have to run the same operating

system.
Activities are synchronous methods, Activities are represented by asynchronous methods,
which block until they complete. which return immediately and allow the workflow to

HelloWorld Workflow Starter API Version 2021-04-28 16



AWS Flow Framework for Java Developer Guide

HelloWorld Amazon SWF Workflow
perform other tasks while waiting for the activity to
complete.
The workflow worker interacts with Workflow workers interact with activities workers by
an activities worker by calling the using HTTP requests, with Amazon SWF acting as an
appropriate method. intermediary.
The workflow starter interacts with Workflow starters interact with workflow workers by
workflow worker by calling the using HTTP requests, with Amazon SWF acting as an
appropriate method. intermediary.

You could implement a distributed asynchronous workflow application from scratch, for example,
by having your workflow worker interact with an activities worker directly through web services
calls. However, you must then implement all the complicated code required to manage the
asynchronous execution of multiple activities, handle the data flow, and so on. The AWS Flow
Framework for Java and Amazon SWF take care of all those details, which allows you to focus on
implementing the business logic.

HelloWorldWorkflow is a modified version of HelloWorld that runs as an Amazon SWF workflow.
The following figure summarizes how the two applications work.

HelloWorldWorkflow Application API Version 2021-04-28 17



AWS Flow Framework for Java Developer Guide

Workflow | GreeterMain
Starter

GreeterWorkflowClientExternal

Activities
Worker

Workflow Activities
Task Task
List List

3

]

Amazon SWF

GreeterActivitieslmpl

HTTP

GreeterWorkflowlmpl
Fi

Workflow |
Starter | Areeterhﬂain

Workflow /

GreeterActivitieslmpl

GreeterActivitiesClientimpl

ActivityWorker

GreeterWorkflowlmpl

|
|
|
|
|
|
|
|
|
X |
|
|
|
|
|
|
|
|
|

/ WorkflowWarker GreeterWorker
Worker I.'
HelloWorld Workflow HelloWorldWorkflow Activities
Warker Worker

HelloWorld runs as a single process and the starter, workflow worker, and activities worker interact
by using conventional method calls. With HelloWorldWorkflow, the starter, workflow worker,
and activities worker are distributed components that interact through Amazon SWF by using HTTP
requests. Amazon SWF manages the interaction by maintaining lists of workflow and activities
tasks, which it dispatches to the respective components. This section describes how the framework
works for HelloWorldWorkflow.

HelloWorldWorkflow is implemented by using the AWS Flow Framework for Java API, which
handles the sometimes complicated details of interacting with Amazon SWF in the background

and simplifies the development process considerably. You can use the same project that you did for
HelloWorld, which is already configured for AWS Flow Framework for Java applications. However,
to run the application, you must set up an Amazon SWF account, as follows:

« Sign up for an AWS account, if you don't already have one, at Amazon Web Services.

« Assign your account's Access ID and secret ID to the AWS_ACCESS_KEY_ID and AWS_SECRET_KEY
environment variables, respectively. It's a good practice to not expose the literal key values in
your code. Storing them in environment variables is a convenient way to handle the issue.

« Sign up for Amazon SWF account at Amazon Simple Workflow Service.

HelloWorldWorkflow Application API Version 2021-04-28 18


https://aws.amazon.com/
https://aws.amazon.com/swf/

AWS Flow Framework for Java Developer Guide

e Log into the AWS Management Console and select the Amazon SWF service.

« Choose Manage Domains in the upper right corner and register a new Amazon SWF domain. A
domain is a logical container for your application resources, such as workflow and activity types,
and workflow executions. You can use any convenient domain name, but the walkthroughs use
"helloWorldWalkthrough".

To implement the HelloWorldWorkflow, create a copy of the helloWorld.HelloWorld package

in your project directory and name it helloWorld.HelloWorldWorkflow. The following sections
describe how to modify the original HelloWorld code to use the AWS Flow Framework for Java and
run as an Amazon SWF workflow application.

HelloWorldWorkflow Activities Worker

HelloWorld implemented its activities worker as a single class. An AWS Flow Framework for Java
activities worker has three basic components:

» The activity methods—which perform the actual tasks—are defined in an interface and
implemented in a related class.

« An ActivityWorker class manages the interaction between the activity methods and Amazon
SWF.

« An activities host application registers and starts the activities worker, and handles cleanup.

This section discusses the activity methods; the other two classes are discussed later.

HelloWorldWorkflow defines the activities interface in GreeterActivities, as follows:

import com.amazonaws.services.simpleworkflow.flow.annotations.Activities;
import
com.amazonaws.services.simpleworkflow.flow.annotations.ActivityRegistrationOptions;

@ActivityRegistrationOptions(defaultTaskScheduleToStartTimeoutSeconds = 300,
defaultTaskStartToCloseTimeoutSeconds = 10)
@Activities(version="1.0")

public interface GreeterActivities {
public String getName();
public String getGreeting(String name);
public void say(String what);

HelloWorldWorkflow Activities Worker API Version 2021-04-28 19


https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/simpleworkflow/flow/ActivityWorker.html

AWS Flow Framework for Java Developer Guide

}

This interface wasn't strictly necessary for HelloWorld, but it is for an AWS Flow Framework
for Java application. Notice that the interface definition itself hasn't changed. However, you
must apply two AWS Flow Framework for Java annotations, @ActivityRegistrationOptions and

@Activities, to the interface definition. The annotations provide configuration information and
direct the AWS Flow Framework for Java annotation processor to use the interface definition to
generate an activities client class, which is discussed later.

@ActivityRegistrationOptions has several named values that are used to configure the
activities' behavior. HelloWorldWorkflow specifies two timeouts:

o defaultTaskScheduleToStartTimeoutSeconds specifies how long the tasks can be queued
in the activities task list, and is set to 300 seconds (5 minutes).

o defaultTaskStartToCloseTimeoutSeconds specifies the maximum time the activity can
take to perform the task and is set to 10 seconds.

These timeouts ensure that the activity completes its task in a reasonable amount of time. If either
timeout is exceeded, the framework generates an error and the workflow worker must decide how
to handle the issue. For a discussion of how to handle such errors, see Error Handling.

@Activities has several values, but typically it just specifies the activities' version number,
which allows you to keep track of different generations of activity implementations. If you change
an activity interface after you have registered it with Amazon SWF, including changing the
@ActivityRegistrationOptions values, you must use a new version number.

HelloWorldWorkflow implements the activity methods in GreeterActivitiesImpl, as follows:

public class GreeterActivitiesImpl implements GreeterActivities {

@Override

public String getName() {
return "World";

}

@Override

public String getGreeting(String name) {
return "Hello " + name;

}

@Override

public void say(String what) {
System.out.println(what);

HelloWorldWorkflow Activities Worker API Version 2021-04-28 20



AWS Flow Framework for Java Developer Guide

}

Notice that the code is identical to the HelloWorld implementation. At its core, an AWS Flow
Framework activity is just a method that executes some code and perhaps returns a result. The
difference between a standard application and an Amazon SWF workflow application lies in how
the workflow executes the activities, where the activities execute, and how the results are returned
to the workflow worker.

HelloWorldWorkflow Workflow Worker

An Amazon SWF workflow worker has three basic components.

» A workflow implementation, which is a class that performs the workflow-related tasks.

« An activities client class, which is basically a proxy for the activities class and is used by a
workflow implementation to execute activity methods asynchronously.

» A WorkflowWorker class, which manages the interaction between the workflow and Amazon
SWF.

This section discusses the workflow implementation and activities client; the WorkflowWorker
class is discussed later.

HelloWorldWorkflow defines the workflow interface in GreeterWorkflow, as follows:

import com.amazonaws.services.simpleworkflow.flow.annotations.Execute;

import com.amazonaws.services.simpleworkflow.flow.annotations.Workflow;

import
com.amazonaws.services.simpleworkflow.flow.annotations.WorkflowRegistrationOptions;

@Workflow
@WorkflowRegistrationOptions(defaultExecutionStartToCloseTimeoutSeconds = 3600)
public interface GreeterWorkflow {

@Execute(version = "1.0")

public void greet();

This interface also isn't strictly necessary for HelloWorld but is essential for an AWS Flow
Framework for Java application. You must apply two AWS Flow Framework for Java annotations,
@Workflow and @WorkflowRegistrationOptions, to the workflow interface definition. The

HelloWorldWorkflow Workflow Worker API Version 2021-04-28 21


https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/simpleworkflow/flow/WorkflowWorker.html

AWS Flow Framework for Java Developer Guide

annotations provide configuration information and also direct the AWS Flow Framework for Java
annotation processor to generate a workflow client class based on the interface, as discussed later.

@Workflow has one optional parameter, dataConverter, which is often used with its default value,
NullDataConverter, which indicates that JsonDataConverter should be used.

@WorkflowRegistrationOptions also has a number of optional

parameters that can be used to configure the workflow worker. Here, we set
defaultExecutionStartToCloseTimeoutSeconds—which specifies how long the workflow
can run—to 3600 seconds (1 hour).

The GreeterWorkflow interface definition differs from HelloWorld in one important way, the
@Execute annotation. Workflow interfaces specify the methods that can be called by applications
such as the workflow starter and are limited to a handful of methods, each with a particular role.
The framework doesn't specify a name or parameter list for workflow interface methods; you use a
name and parameter list that is suitable for your workflow and apply an AWS Flow Framework for
Java annotation to identify the method's role.

@Execute has two purposes:

« Itidentifies greet as the workflow's entry point—the method that the workflow starter calls to
start the workflow. In general, an entry point can take one or more parameters, which allows the
starter to initialize the workflow, but this example doesn't require initialization.

« It specifies the workflow's version number, which allows you to keep track of different
generations of workflow implementations. To change a workflow interface after you have
registered it with Amazon SWF, including changing the timeout values, you must use a new
version number.

For information about the other methods that can be included in a workflow interface, see
Workflow and Activity Contracts.

HelloWorldWorkflow implements the workflow in GreeterWorkflowImpl, as follows:

import com.amazonaws.services.simpleworkflow.flow.core.Promise;

public class GreeterWorkflowImpl implements GreeterWorkflow {
private GreeterActivitiesClient operations = new GreeterActivitiesClientImpl();

public void greet() {
Promise<String> name = operations.getName();

HelloWorldWorkflow Workflow Worker API Version 2021-04-28 22



AWS Flow Framework for Java Developer Guide

Promise<String> greeting = operations.getGreeting(name);
operations.say(greeting);

}

The code is similar to HelloWorld, but with two important differences.

o GreeterWorkflowImpl creates an instance of GreeterActivitiesClientImpl, the
activities client, instead of GreeterActivitiesImpl, and executes activities by calling
methods on the client object.

« The name and greeting activities return Promise<String> objects instead of String objects.

HelloWorld is a standard Java application that runs locally as a single process, so
GreeterWorkflowImpl can implement the workflow topology by simply creating an instance

of GreeterActivitiesImpl, calling the methods in order, and passing the return values from
one activity to the next. With an Amazon SWF workflow, an activity's task is still performed by an
activity method from GreeterActivitiesImpl. However, the method doesn't necessarily run in
the same process as the workflow—it might not even run on the same system—and the workflow
needs to execute the activity asynchronously. These requirements raise the following issues:

» How to execute an activity method that might be running in a different process, perhaps on a
different system.

« How to execute an activity method asynchronously.

» How to manage activities' input and return values. For example, if the Activity A return value
is an input to Activity B, you must ensure that Activity B doesn't execute until Activity A is
complete.

You can implement a variety of workflow topologies through the application's control flow by
using familiar Java flow control combined with the activities client and the Promise<T>.

Activities Client

GreeterActivitiesClientImpl is basically a proxy for GreeterActivitiesImpl that allows
a workflow implementation to execute the GreeterActivitiesImpl methods asynchronously.

The GreeterActivitiesClient and GreeterActivitiesClientImpl classes are generated
automatically for you using the information provided in the annotations applied to your
GreeterActivities class. You don't need to implement these yourself.

HelloWorldWorkflow Workflow Worker API Version 2021-04-28 23



AWS Flow Framework for Java Developer Guide

® Note

Eclipse generates these classes when you save your project. You can view the generated
code in the .apt_generated subdirectory of your project directory.

To avoid compilation errors in your GreeterWorkflowImpl class, it is a good practice to
move the .apt_generated directory to the top of the Order and Export tab of the Java
Build Path dialog box.

A workflow worker executes an activity by calling the corresponding client method. The method is
asynchronous and immediately returns a Promise<T> object, where T is the activity's return type.
The returned Promise<T> object is basically a placeholder for the value that the activity method
will eventually return.

« When the activities client method returns, the Promise<T> object is initially in an unready state,
which indicates that the object doesn't yet represent a valid return value.

« When the corresponding activity method completes its task and returns, the framework assigns
the return value to the Promise<T> object and puts it in the ready state.

Promise<T> Type

The primary purpose of Promise<T> objects is to manage data flow between asynchronous
components and control when they execute. It relieves your application of the need to explicitly
manage synchronization or depend on mechanisms such as timers to ensure that asynchronous
components don't execute prematurely. When you call an activities client method, it immediately
returns but the framework defers executing the corresponding activity method until any input
Promise<T> objects are ready and represent valid data.

From GreeterWorkflowImpl perspective, all three activities client methods return immediately.
From the GreeterActivitiesImpl perspective, the framework doesn't call getGreeting until
name completes, and doesn't call say until getGreeting completes.

By using Promise<T> to pass data from one activity to the next, HelloWorldWorkflow not only
ensures that activity methods don't attempt to use invalid data, it also controls when the activities
execute and implicitly defines the workflow topology. Passing each activity's Promise<T> return
value to the next activity requires the activities to execute in sequence, defining the linear topology
discussed earlier. With AWS Flow Framework for Java, you don't need to use any special modeling

HelloWorldWorkflow Workflow Worker API Version 2021-04-28 24



AWS Flow Framework for Java Developer Guide

code to define even complex topologies, just standard Java flow control and Promise<T>. For
an example of how to implement a simple parallel topology, see HelloWorldWorkflowParallel

Activities Worker.

(® Note

When an activity method such as say doesn't return a value, the corresponding client
method returns a Promise<Void> object. The object doesn't represent data, but it is
initially unready and becomes ready when the activity completes. You can therefore pass
a Promise<Void> object to other activities client methods to ensure that they defer
execution until the original activity completes.

Promise<T> allows a workflow implementation to use activities client methods and their

return values much like synchronous methods. However, you must be careful about accessing

a Promise<T> object's value. Unlike the Java Future<T> type, the framework handles
synchronization for Promise<T>, not the application. If you call Promise<T>.get and the
object isn't ready, get throws an exception. Notice that Hel1loWorldWorkflow never accesses a
Promise<T> object directly; it simply passes the objects from one activity to the next. When an
object becomes ready, the framework extracts the value and passes it to the activity method as a
standard type.

Promise<T> objects should be accessed only by asynchronous code, where the framework
guarantees that the object is ready and represents a valid value. HelloWorldWorkflow deals
with this issue by passing Promise<T> objects only to activities client methods. You can access
a Promise<T> object's value in your workflow implementation by passing the object to an
asynchronous workflow method, which behaves much like an activity. For an example, see
HelloWorldWorkflowAsync Application.

HelloWorldWorkflow Workflow and Activities Implementation

The workflow and activities implementations have associated worker classes, ActivityWorker
and WorkflowWorker. They handle communication between Amazon SWF and the activities and
workflow implementations by polling the appropriate Amazon SWF task list for tasks, executing
the appropriate method for each task, and managing the data flow. For details, see AWS Flow
Framework Basic Concepts: Application Structure

HelloWorldWorkflow Workflow and Activities Implementation API Version 2021-04-28 25


http://docs.oracle.com/javase/6/docs/api/java/util/concurrent/Future.html
https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/simpleworkflow/flow/ActivityWorker.html
https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/simpleworkflow/flow/WorkflowWorker.html

AWS Flow Framework for Java Developer Guide

To associate the activity and workflow implementations with the corresponding worker objects,
you implement one or more worker applications which:

» Register workflows or activities with Amazon SWF.

» Create worker objects and associate them with the workflow or activity worker implementations.

» Direct the worker objects to start communicating with Amazon SWF.

If you want to run the workflow and activities as separate processes, you must implement separate
workflow and activities worker hosts. For an example, see HelloWorldWorkflowDistributed
Application. For simplicity, HelloWorldWorkflow implements a single worker host that runs
activities and workflow workers in the same process, as follows:

import com.amazonaws.ClientConfiguration;

import com.amazonaws.auth.AWSCredentials;

import com.amazonaws.auth.BasicAWSCredentials;

import com.amazonaws.services.simpleworkflow.AmazonSimpleWorkflow;
import com.amazonaws.services.simpleworkflow.AmazonSimpleWorkflowClient;
import com.amazonaws.services.simpleworkflow.flow.ActivityWorker;

import com.amazonaws.services.simpleworkflow.flow.WorkflowWorker;

public class GreeterWorker {
public static void main(String[] args) throws Exception {
ClientConfiguration config = new ClientConfiguration().withSocketTimeout(70*1000);

String swfAccessId = System.getenv("AWS_ACCESS_KEY_ID");

String swfSecretKey = System.getenv("AWS_SECRET_KEY");

AWSCredentials awsCredentials = new BasicAWSCredentials(swfAccessId,
swfSecretKey);

AmazonSimpleWorkflow service = new AmazonSimpleWorkflowClient(awsCredentials,
config);
service.setEndpoint("https://swf.us-east-1.amazonaws.com");

String domain = "helloWorldwalkthrough";
String taskListToPoll = "HelloWorldList";

ActivityWorker aw = new ActivityWorker(service, domain, taskListToPoll);
aw.addActivitiesImplementation(new GreeterActivitiesImpl());

aw.start();

WorkflowWorker wfw = new WorkflowWorker(service, domain, taskListToPoll);

HelloWorldWorkflow Workflow and Activities Implementation API Version 2021-04-28 26



AWS Flow Framework for Java Developer Guide

wfw.addWorkflowImplementationType(GreeterWorkflowImpl.class);
wfw.start();

}

GreeterWorker has no HelloWorld counterpart, so you must add a Java class named
GreeterWorker to the project and copy the example code to that file.

The first step is to create and configure an AmazonSimpleWorkflowClient object, which invokes the

underlying Amazon SWF service methods. To do so, GreeterWorker:

1. Creates a ClientConfiguration object and specifies a socket timeout of 70 seconds. This value

specifies long to wait for data to be transferred over an established open connection before
closing the socket.

2. Creates a BasicAWSCredentials object to identify the AWS account and passes the account keys

to the constructor. For convenience, and to avoid exposing them as plain text in the code, the
keys are stored as environment variables.

3. Creates an AmazonSimpleWorkflowClient object to represent the workflow, and passes the

BasicAWSCredentials and ClientConfiguration objects to the constructor.

4. Sets the client object's service endpoint URL. Amazon SWF is currently available in all AWS
regions.

For convenience, GreeterWorker defines two string constants.

« domain is the workflow's Amazon SWF domain name, which you created when you set up your
Amazon SWF account. HelloWorldWorkflow assumes that you are running the workflow in the
"helloWorldWalkthrough" domain.

« taskListToPoll is the name of the task lists that Amazon SWF uses to manage
communication between the workflow and activities workers. You can set the name to any
convenient string. HelloWorldWorkflow uses "HelloWorldList" for both workflow and activity
task lists. Behind the scenes, the names end up in different namespaces, so the two task lists are
distinct.

GreeterWorker uses the string constants and the AmazonSimpleWorkflowClient object to create

worker objects, which manage the interaction between the activities and worker implementations
and Amazon SWF. In particular, the worker objects handle the task of polling the appropriate task
list for tasks.

HelloWorldWorkflow Workflow and Activities Implementation API Version 2021-04-28 27


https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/simpleworkflow/AmazonSimpleWorkflowClient.html
https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/ClientConfiguration.html
https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/auth/BasicAWSCredentials.html
https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/simpleworkflow/AmazonSimpleWorkflowClient.html
https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/simpleworkflow/AmazonSimpleWorkflowClient.html

AWS Flow Framework for Java Developer Guide

GreeterWorker creates an ActivityWorker object and configures it to handle
GreeterActivitiesImpl by adding a new class instance. GreeterWorker then calls the
ActivityWorker object's start method, which directs the object to start polling the specified
activities task list.

GreeterWorker creates a WorkflowWorker object and configures it to handle
GreeterWorkflowImpl by adding the class file name, GreeterWorkflowImpl.class. It then
calls the WorkflowWorker object's start method, which directs the object to start polling the
specified workflow task list.

You can run GreeterWorker successfully at this point. It registers the workflow and activities
with Amazon SWF and starts the worker objects polling their respective task lists. To verify this,
run GreeterWorker and go to the Amazon SWF console and select hellowWorldWalkthrough
from the list of domains. If you choose Workflow Types in the Navigation pane, you should see
GreeterWorkflow.greet:

* Dashboard Domain: heloWorldWalkthrough | =
¥ Woarkflow Executions
» Workflow Types ¥ Workflow Type List Parameters

¥ Activity Types :
Filter by: | No Filter *

Workflow Type Status: (s)Registered () Deprecated

List Types |

Workflow Actions: | Register New

4  Mame Version

[ GreeterWorkflow.greet 1.0

HelloWorldWorkflow Workflow and Activities Implementation API Version 2021-04-28 28



AWS Flow Framework for Java Developer Guide

If you choose Activity Types, the GreeterActivities methods are displayed:

Domain: heloWorldWalkthrough |

¥ Activity Type List Parameters

Filter by: Mo Filter -

Activity Type Status: @ Registered O Deprecated

List Types

Activity Actions: | Register New

4 Name Version
[ GreeterActivities.getGreeting 1.0
[ GreeterActivities getName 1.0
[ GreeterActivities say 1.0

However, if you choose Workflow Executions, you will not see any active executions. Although the
workflow and activities workers are polling for tasks, we have not yet started a workflow execution.

HelloWorldWorkflow Starter

The final piece of the puzzle is to implement a workflow starter, which is an application that starts
the workflow execution. The execution state is stored by Amazon SWF, so that you can view its
history and execution status. HelloWorldWorkflow implements a workflow starter by modifying
the GreeterMain class, as follows:

import com.amazonaws.ClientConfiguration;

import com.amazonaws.auth.AWSCredentials;

import com.amazonaws.auth.BasicAWSCredentials;

import com.amazonaws.services.simpleworkflow.AmazonSimpleWorkflow;
import com.amazonaws.services.simpleworkflow.AmazonSimpleWorkflowClient;

HelloWorldWorkflow Starter API Version 2021-04-28 29



AWS Flow Framework for Java Developer Guide

public class GreeterMain {

public static void main(String[] args) throws Exception {
ClientConfiguration config = new ClientConfiguration().withSocketTimeout(70*1000);

String swfAccessId = System.getenv("AWS_ACCESS_KEY_ID");

String swfSecretKey = System.getenv("AWS_SECRET_KEY");

AWSCredentials awsCredentials = new BasicAWSCredentials(swfAccessId,
swfSecretKey);

AmazonSimpleWorkflow service = new AmazonSimpleWorkflowClient(awsCredentials,
config);
service.setEndpoint("https://swf.us-east-1.amazonaws.com");

String domain = "helloWorldWalkthrough";

GreeterWorkflowClientExternalFactory factory = new

GreeterWorkflowClientExternalFactoryImpl(service, domain);
GreeterWorkflowClientExternal greeter = factory.getClient("someID");
greeter.greet();

}

GreeterMain creates an AmazonSimpleWorkflowClient object by using the same code

as GreeterWorker. It then creates a GreeterWorkflowClientExternal object, which
acts as a proxy for the workflow in much the same way that the activities client created in
GreeterWorkflowClientImpl acts as a proxy for the activity methods. Rather than create a
workflow client object by using new, you must:

1. Create an external client factory object and pass the AmazonSimpleWorkflowClient object
and Amazon SWF domain name to the constructor. The client factory object is created by
the framework's annotation processor, which creates the object name by simply appending
"ClientExternalFactorylmpl" to the workflow interface name.

2. Create an external client object by calling the factory object's getClient method, which
creates the object name by appending "ClientExternal" to the workflow interface name. You can
optionally pass getClient a string which Amazon SWF will use to identify this instance of the
workflow. Otherwise, Amazon SWF represents a workflow instance by using a generated GUID.

HelloWorldWorkflow Starter API Version 2021-04-28 30



AWS Flow Framework for Java Developer Guide

The client returned from the factory will only create workflows that are named with the string
passed into the getClient method, (the client returned from the factory already has state in
Amazon SWF). To run a workflow with a different id, you need to go back to the factory and create
a new client with the different id specified.

The workflow client exposes a greet method that GreeterMain calls to begin the workflow, as
greet() was the method specified with the @Execute annotation.

(@ Note

The annotation processor also creates an internal client factory object that is used to create
child workflows. For details, see Child Workflow Executions.

Shut down GreeterWorker for the moment if it is still running, and run GreeterMain. You
should now see somelD on the Amazon SWF console's list of active workflow executions:.

D oW EXecLtions

Domain:| helloWorldWalkthrough | «
¥ Workflow Execution List Parameters

Filter by: Mo Filter -

Execution Status: @ Active O Closed

Started between ~ 2012Aug2315:43:.06 and 2012 Aug 24 23:59:59

List Executions

Execution Actions
[ Workflow Execution ID Run 1D Name (Version)
[[1| somelD MiZktcdclHvE sKFhmVs20T 1wk 4 SIyer6EY SYB9d1z  GreeterWorkflow.greet (1.0)

If you choose someID and choose the Events tab, the events are displayed:

HelloWorldWorkflow Starter API Version 2021-04-28 31


https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/simpleworkflow/flow/WorkflowClientFactoryExternal.html#getClient(java.lang.String)

AWS Flow Framework for Java Developer Guide

Domain: helloWorldWalkthrough

Summary Events | Activities

¥ Event Date ID Event Type
Fri Aug 24 15:50:30 GMT-700 2012 2 DecisionTaskScheduled
Fri Aug 24 15:50:30 GMT-700 2012 1 WorkflowExecutionStarted
® Note

If you started GreeterWorker earlier, and it is still running, you will see a longer event list
for reasons discussed shortly. Stop GreeterWorker and try running GreaterMain again.

The Events tab shows only two events:

« WorkflowExecutionStarted indicates that the workflow has started executing.

» DecisionTaskScheduled indicates that Amazon SWF has queued the first decision task.

The reason that the workflow is blocked at the first decision task is that the workflow is distributed
across two applications, GreeterMain and GreeterWorker. GreeterMain started the workflow
execution, but GreeterWorker isn't running, so the workers aren't polling the lists and executing
tasks. You can run either application independently, but you need both for workflow execution to
proceed beyond the first decision task. If you now run GreeterWorker, the workflow and activity
workers will start polling and the various tasks will be completed rapidly. If you now check the
Events tab, the first batch of events is displayed.

HelloWorldWorkflow Starter API Version 2021-04-28 32



AWS Flow Framework for Java Developer Guide

WOrKrio ecution: someil

Domain: helloWorldWalkthrough

Summary Events Activities

4 Event Date D Event Type

Fri Aug 24 15:50:30 GMT-700 2012

WorkflowExecutionStarted

Fri Aug 24 15:50:30 GMT-700 2012 2 DecisionTaskScheduled
Fri Aug 24 15:52:19 GMT-700 2012 3 DecisionTaskStarted

Fri Aug 24 15:52:19 GMT-700 2012 4 DecisionTaskCompleted
Fri Aug 24 15:52:19 GMT-700 2012 5 ActivityTaskScheduled
Fri Aug 24 15:52:20 GMT-700 2012 B ActivityTaskStarted

Fri Aug 24 15:52:20 GMT-700 2012 7 ActivityTaskCompleted
Fri Aug 24 15:62:20 GMT-700 2012 B DecisionTaskScheduled
Fri Aug 24 15:52:20 GMT-700 2012 9 DecisionTaskStarted

Fri Aug 24 15:52:20 GMT-700 2012 10 DecisionTaskCompleted
Fri Aug 24 15:52:20 GMT-T00 2012 i ActivityTaskScheduled

You can choose individual events to get more information. By the time you've finished looking, the
workflow should have printed "Hello World!" to your console.

After the workflow completes, it no longer appears on the list of active executions. However,
if you want to review it, choose the Closed execution status button and then choose List
Executions. This displays all the completed workflow instances in the specified domain
(helloWorldwWalkthrough) that have not exceeded their retention time, which you specified
when you created the domain.

HelloWorldWorkflow Starter API Version 2021-04-28 33



AWS Flow Framework for Java Developer Guide

Domain: helloWorldWalkthrough | «

¥ Workflow Execution List Parameters

Filter by: Mo Filter -

Execution Status: ) Active @ Closed

Started between - 2012 Aug 23162852 and 2012 Aug 24 23:59:59

List Executions

Execution Actions

[l Workflow Execution 1D Run ID Name (Version)
[ | somelD Mi2ktcdclHvE sKFhmVs20T 1wk4SIyBr6EYS  Greeter\Workflow greet (1.0)
[ | somelD 11THLRDRMNwKT+anWpORnyo3jFIVoVIVGEa  GreeterWorkflow greet (1.0)

Notice that each workflow instance has a unique Run ID value. You can use the same Execution ID
for different workflow instances, but only for one active execution at a time.

HelloWorldWorkflowAsync Application

Sometimes, it's preferable to have a workflow perform certain tasks locally instead of using an
activity. However, workflow tasks often involve processing the values represented by Promise<T>
objects. If you pass a Promise<T> object to a synchronous workflow method, the method executes
immediately but it can't access the Promise<T> object's value until the object is ready. You could
poll Promise<T>.isReady until it returns true, but that's inefficient and the method might
block for a long time. A better approach is to use an asynchronous method.

An asynchronous method is implemented much like a standard method—often as a member of
the workflow implementation class—and runs in the workflow implementation's context. You
designate it as an asynchronous method by applying an @Asynchronous annotation, which directs
the framework to treat it much like an activity.

HelloWorldWorkflowAsync Application API Version 2021-04-28 34



AWS Flow Framework for Java Developer Guide

« When a workflow implementation calls an asynchronous method, it returns immediately.
Asynchronous methods typically return a Promise<T> object, which becomes ready when the
method completes.

« If you pass an asynchronous method one or more Promise<T> objects, it defers execution
until all the input objects are ready. An asynchronous method can therefore access its input
Promise<T> values without risking an exception.

(® Note

Because of the way that the AWS Flow Framework for Java executes the workflow,
asynchronous methods typically execute multiple times, so you should use them only for
quick low-overhead tasks. You should use activities to perform lengthy tasks such as large
computations. For details, see AWS Flow Framework Basic Concepts: Distributed Execution.

This topic is a walkthrough of HelloWorldWorkflowAsync, a modified version of
HelloWorldWorkflow that replaces one of the activities with an asynchronous method. To
implement the application, create a copy of the helloWorld.HelloWorldWorkflow package in your
project directory and name it helloWorld.HelloWorldWorkflowAsync.

(@ Note

This topic builds on the concepts and files presented in the HelloWorld Application and
HelloWorldWorkflow Application topics. Familiarize yourself with the files and concepts
presented in those topics before proceeding.

The following sections describe how to modify the original HelloWorldWorkflow code to use an
asynchronous method.

HelloWorldWorkflowAsync Activities Implementation

HelloWorldWorkflowAsync implements its activities worker interface in GreeterActivities, as
follows:

import com.amazonaws.services.simpleworkflow.flow.annotations.Activities;
import
com.amazonaws.services.simpleworkflow.flow.annotations.ActivityRegistrationOptions;

HelloWorldWorkflowAsync Activities Implementation API Version 2021-04-28 35



AWS Flow Framework for Java Developer Guide

@Activities(version="2.0")
@ActivityRegistrationOptions(defaultTaskScheduleToStartTimeoutSeconds = 300,
defaultTaskStartToCloseTimeoutSeconds = 10)
public interface GreeterActivities {
public String getName();
public void say(String what);

This interface is similar to the one used by HelloWorldWorkflow, with the following exceptions:

« It omits the getGreeting activity; that task is now handled by an asynchronous method.

« The version number is set to 2.0. After you have registered an activities interface with Amazon
SWF, you can't modify it unless you change the version number.

The remaining activity method implementations are identical to HelloWorldWorkflow. Just delete
getGreeting from GreeterActivitiesImpl.

HelloWorldWorkflowAsync Workflow Implementation

HelloWorldWorkflowAsync defines the workflow interface as follows:

import com.amazonaws.services.simpleworkflow.flow.annotations.Execute;

import com.amazonaws.services.simpleworkflow.flow.annotations.Workflow;
import
com.amazonaws.services.simpleworkflow.flow.annotations.WorkflowRegistrationOptions;

@Workflow

@WorkflowRegistrationOptions(defaultExecutionStartToCloseTimeoutSeconds = 3600)
public interface GreeterWorkflow {

@Execute(version = "2.0")
public void greet();

The interface is identical to HelloWorldWorkflow apart from a new version number. As with
activities, if you want to change a registered workflow, you must change its version.

HelloWorldWorkflowAsync implements the workflow as follows:

import com.amazonaws.services.simpleworkflow.flow.annotations.Asynchronous;

HelloWorldWorkflowAsync Workflow Implementation API Version 2021-04-28 36



AWS Flow Framework for Java Developer Guide

import com.amazonaws.services.simpleworkflow.flow.core.Promise;

public class GreeterWorkflowImpl implements GreeterWorkflow {
private GreeterActivitiesClient operations = new GreeterActivitiesClientImpl();

@Override

public void greet() {
Promise<String> name = operations.getName();
Promise<String> greeting = getGreeting(name);
operations.say(greeting);

@Asynchronous

private Promise<String> getGreeting(Promise<String> name) {
String returnString = "Hello " + name.get() + "!";
return Promise.asPromise(returnString);

HelloWorldWorkflowAsync replaces the getGreeting activity with a getGreeting asynchronous
method but the greet method works in much the same way:

1. Execute the getName activity, which immediately returns a Promise<String> object, name,
that represents the name.

2. Call the getGreeting asynchronous method and pass it the name object. getGreeting
immediately returns a Promise<String> object, greeting, that represents the greeting.

3. Execute the say activity and pass it the greeting object.

4. When getName completes, name becomes ready and getGreeting uses its value to construct
the greeting.

5. When getGreeting completes, greeting becomes ready and say prints the string to the
console.

The difference is that, instead of calling the activities client to execute a getGreeting activity,
greet calls the asynchronous getGreeting method. The net result is the same, but the
getGreeting method works somewhat differently than the getGreeting activity.

« The workflow worker uses standard function call semantics to execute getGreeting. However,
the asynchronous execution of the activity is mediated by Amazon SWF.

« getGreeting runsin the workflow implementation's process.

HelloWorldWorkflowAsync Workflow Implementation API Version 2021-04-28 37



AWS Flow Framework for Java Developer Guide

» getGreeting returns a Promise<String> object rather than a String object. To get the
String value held by the Promise, you call its get () method. However, since the activity is
being run asynchronously, its return value might not be ready immediately; get () will raise an
exception until the return value of the asynchronous method is available.

For more information about how Promise works, see AWS Flow Framework Basic Concepts: Data

Exchange Between Activities and Workflows.

getGreeting creates a return value by passing the greeting string to the static
Promise.asPromise method. This method creates a Promise<T> object of the appropriate type,
sets the value, and puts it in the ready state.

HelloWorldWorkflowAsync Workflow and Activities Host and Starter

HelloWorldWorkflowAsync implements GreeterWorker as the host class for the workflow and
activity implementations. It is identical to the HelloWorldWorkflow implementation except for the
taskListToPoll name, which is set to "HelloWorldAsyncList".

import com.amazonaws.ClientConfiguration;

import com.amazonaws.auth.AWSCredentials;

import com.amazonaws.auth.BasicAWSCredentials;

import com.amazonaws.services.simpleworkflow.AmazonSimpleWorkflow;
import com.amazonaws.services.simpleworkflow.AmazonSimpleWorkflowClient;
import com.amazonaws.services.simpleworkflow.flow.ActivityWorker;

import com.amazonaws.services.simpleworkflow.flow.WorkflowWorker;

public class GreeterWorker {
public static void main(String[] args) throws Exception {
ClientConfiguration config = new
ClientConfiguration().withSocketTimeout(70*1000);

String swfAccessId = System.getenv("AWS_ACCESS_KEY_ID");

String swfSecretKey = System.getenv("AWS_SECRET_KEY");

AWSCredentials awsCredentials = new BasicAWSCredentials(swfAccessId,
swfSecretKey);

AmazonSimpleWorkflow service = new AmazonSimpleWorkflowClient(awsCredentials,
config);

service.setEndpoint("https://swf.us-east-1.amazonaws.com");

String domain = "helloWorldWalkthrough";

HelloWorldWorkflowAsync Workflow and Activities Host and Starter API Version 2021-04-28 38



AWS Flow Framework for Java Developer Guide

String taskListToPoll = "HelloWorldAsyncList";

ActivityWorker aw = new ActivityWorker(service, domain, taskListToPoll);
aw.addActivitiesImplementation(new GreeterActivitiesImpl());
aw.start();

WorkflowWorker wfw = new WorkflowWorker(service, domain, taskListToPoll);
wfw.addWorkflowImplementationType(GreeterWorkflowImpl.class);
wfw.start();

HelloWorldWorkflowAsync implements the workflow starter in GreeterMain; it is identical to the
HelloWorldWorkflow implementation.

To execute the workflow, run GreeterWorker and GreeterMain, just as with
HelloWorldWorkflow.

HelloWorldWorkflowDistributed Application

With HelloWorldWorkflow and HelloWorldWorkflowAsync, Amazon SWF mediates the interaction
between the workflow and activities implementations, but they run locally as a single process.
GreeterMain isin a separate process, but it still runs on the same system.

A key feature of Amazon SWF is that it supports distributed applications. For example, you could
run the workflow worker on an Amazon EC2 instance, the workflow starter on a data center
computer, and the activities on a client desktop computer. You can even run different activities on
different systems.

The HelloWorldWorkflowDistributed application extends HelloWorldWorkflowAsync to distribute
the application across two systems and three processes.

» The workflow and workflow starter run as separate processes on one system.

» The activities run on a separate system.

To implement the application, create a copy of the helloWorld.HelloWorldWorkflowAsync package
in your project directory and name it helloWorld.HelloWorldWorkflowDistributed. The following
sections describe how to modify the original HelloWorldWorkflowAsync code to distribute the
application across two systems and three processes.

HelloWorldWorkflowDistributed Application API Version 2021-04-28 39



AWS Flow Framework for Java Developer Guide

You don't need to change the workflow or activities implementations to run them on separate
systems, not even the version numbers. You also don't need to modify GreeterMain. All you need
to change is the activities and workflow host.

With HelloWorldWorkflowAsync, a single application serves as the workflow and activity host.
To run the workflow and activity implementations on separate systems, you must implement
separate applications. Delete GreeterWorker from the project and add two new class files,
GreeterWorkflowWorker and GreeterActivitiesWorker.

HelloWorldWorkflowDistributed implements its activities host in GreeterActivitiesWorker, as
follows:

import com.amazonaws.ClientConfiguration;

import com.amazonaws.auth.AWSCredentials;

import com.amazonaws.auth.BasicAWSCredentials;

import com.amazonaws.services.simpleworkflow.AmazonSimpleWorkflow;
import com.amazonaws.services.simpleworkflow.AmazonSimpleWorkflowClient;
import com.amazonaws.services.simpleworkflow.flow.ActivityWorker;

public class GreeterActivitiesWorker {
public static void main(String[] args) throws Exception {
ClientConfiguration config = new
ClientConfiguration().withSocketTimeout(70*1000);

String swfAccessId = System.getenv("AWS_ACCESS_KEY_ID");

String swfSecretKey = System.getenv("AWS_SECRET_KEY");

AWSCredentials awsCredentials = new BasicAWSCredentials(swfAccesslId,
swfSecretKey);

AmazonSimpleWorkflow service = new AmazonSimpleWorkflowClient(awsCredentials,
config);
service.setEndpoint("https://swf.us-east-1.amazonaws.com");

String domain = "helloWorldExamples";
String taskListToPoll = "HelloWorldAsynclList";

ActivityWorker aw = new ActivityWorker(service, domain, taskListToPoll);
aw.addActivitiesImplementation(new GreeterActivitiesImpl());
aw.start();

HelloWorldWorkflowDistributed Application API Version 2021-04-28 40



AWS Flow Framework for Java Developer Guide

HelloWorldWorkflowDistributed implements its workflow host in GreeterWorkflowWorker, as
follows:

import com.amazonaws.ClientConfiguration;

import com.amazonaws.auth.AWSCredentials;

import com.amazonaws.auth.BasicAWSCredentials;

import com.amazonaws.services.simpleworkflow.AmazonSimpleWorkflow;
import com.amazonaws.services.simpleworkflow.AmazonSimpleWorkflowClient;
import com.amazonaws.services.simpleworkflow.flow.WorkflowWorker;

public class GreeterWorkflowWorker {
public static void main(String[] args) throws Exception {
ClientConfiguration config = new
ClientConfiguration().withSocketTimeout(70*1000);

String swfAccessId = System.getenv("AWS_ACCESS_KEY_ID");

String swfSecretKey = System.getenv("AWS_SECRET_KEY");

AWSCredentials awsCredentials = new BasicAWSCredentials(swfAccesslId,
swfSecretKey);

AmazonSimpleWorkflow service = new AmazonSimpleWorkflowClient(awsCredentials,
config);
service.setEndpoint("https://swf.us-east-1.amazonaws.com");

String domain = "helloWorldExamples";
String taskListToPoll = "HelloWorldAsynclList";

WorkflowWorker wfw = new WorkflowWorker(service, domain, taskListToPoll);
wfw.addWorkflowImplementationType(GreeterWorkflowImpl.class);
wfw.start();

Note that GreeterActivitiesWorker is just GreeterWorker without the WorkflowWorker
code and GreeterWorkflowWorker is just GreeterWorker without the ActivityWorker code.

To run the workflow:

1. Create a runnable JAR file with GreeterActivitiesWorker as the entry point.

2. Copy the JAR file from Step 1 to another system, which can be running any operating system
that supports Java.

HelloWorldWorkflowDistributed Application API Version 2021-04-28 41



AWS Flow Framework for Java Developer Guide

3. Ensure that AWS credentials with access to the same Amazon SWF domain are made available
on the other system.

4. Run the JAR file.

5. Onyour development system, use Eclipse to run GreeterWorkflowWorker and
GreeterMain.

Other than the fact that the activities are running on a different system than the workflow worker
and workflow starter, the workflow works in exactly the same way as HelloWorldAsync. However,
because println call that prints "Hello World!" to the console is in the say activity, the output will
appear on the system that is running the activities worker.

HelloWorldWorkflowParallel Application

The preceding versions of Hello World! all use a linear workflow topology. However, Amazon SWF
isn't limited to linear topologies. The HelloWorldWorkflowParallel application is a modified version
of HelloWorldWorkflow that uses a parallel topology, as shown in the following figure.

name
getName

Call greeting I Print greeting
- . | say . |
(Start) o {Finish)

getGreeting

greeting

With HelloWorldWorkflowParallel, getName and getGreeting run in parallel and each return
part of the greeting. say then merges the two strings into a greeting, and prints it to the console.

To implement the application, create a copy of the helloWorld.HelloWorldWorkflow package in
your project directory and name it helloWorld.HelloWorldWorkflowParallel. The following sections
describe how to modify the original HelloWorldWorkflow code to run getName and getGreeting
in parallel.

HelloWorldWorkflowParallel Activities Worker

The HelloWorldWorkflowParallel activities interface is implemented in GreeterActivities, as
shown in the following example.

import com.amazonaws.services.simpleworkflow.flow.annotations.Activities;

HelloWorldWorkflowParallel Application API Version 2021-04-28 42



AWS Flow Framework for Java Developer Guide

import
com.amazonaws.services.simpleworkflow.flow.annotations.ActivityRegistrationOptions;

@Activities(version="5.0")
@ActivityRegistrationOptions(defaultTaskScheduleToStartTimeoutSeconds = 300,
defaultTaskStartToCloseTimeoutSeconds = 10)
public interface GreeterActivities {
public String getName();
public String getGreeting();
public void say(String greeting, String name);

The interface is similar to HelloWorldWorkflow, with the following exceptions:

« getGreeting doesn't take any input; it simply returns a greeting string.
» say takes two input strings, the greeting and the name.

« The interface has a new version number, which is required any time that you change a registered
interface.

HelloWorldWorkflowParallel implements the activities in GreeterActivitiesImpl, as follows:

public class GreeterActivitiesImpl implements GreeterActivities {

@Override
public String getName() {
return "World!";

@Override
public String getGreeting() {
return "Hello ";

@Override
public void say(String greeting, String name) {
System.out.println(greeting + name);

getName and getGreeting now simply return half of the greeting string. say concatenates the
two pieces to produce the complete phrase, and prints it to the console.

HelloWorldWorkflowParallel Activities Worker API Version 2021-04-28 43



AWS Flow Framework for Java Developer Guide

HelloWorldWorkflowParallel Workflow Worker

The HelloWorldWorkflowParallel workflow interface is implemented in GreeterWorkflow, as
follows:

import com.amazonaws.services.simpleworkflow.flow.annotations.Execute;

import com.amazonaws.services.simpleworkflow.flow.annotations.Workflow;

import
com.amazonaws.services.simpleworkflow.flow.annotations.WorkflowRegistrationOptions;

@Workflow
@WorkflowRegistrationOptions(defaultExecutionStartToCloseTimeoutSeconds = 3600)
public interface GreeterWorkflow {

@Execute(version = "5.0")
public void greet();

The class is identical to the HelloWorldWorkflow version, except that the version number has been
changed to match the activities worker.

The workflow is implemented in GreeterWorkflowImpl, as follows:

import com.amazonaws.services.simpleworkflow.flow.core.Promise;

public class GreeterWorkflowImpl implements GreeterWorkflow {
private GreeterActivitiesClient operations = new GreeterActivitiesClientImpl();

public void greet() {
Promise<String> name = operations.getName();
Promise<String> greeting = operations.getGreeting();
operations.say(greeting, name);

At a glance, this implementation looks very similar to HelloWorldWorkflow; the three activities
client methods execute in sequence. However, the activities don't.

» HelloWorldWorkflow passed name to getGreeting. Because name was a Promise<T> object,
getGreeting deferred executing the activity until getName completed, so the two activities
executed in sequence.

HelloWorldWorkflowParallel Workflow Worker API Version 2021-04-28 44



AWS Flow Framework for Java Developer Guide

» HelloWorldWorkflowParallel doesn't pass any input getName or getGreeting. Neither method
defers execution and the associated activity methods execute immediately, in parallel.

The say activity takes both greeting and name as input parameters. Because they are
Promise<T> objects, say defers execution until both activities complete, and then constructs and
prints the greeting.

Notice that HelloWorldWorkflowParallel doesn't use any special modeling code to define the
workflow topology. It does it implicitly by using standard Java flow control and taking advantage
of the properties of Promise<T> objects. AWS Flow Framework for Java applications can
implement even complex topologies simply by using Promise<T> objects in conjunction with
conventional Java control flow constructs.

HelloWorldWorkflowParallel Workflow and Activities Host and Starter

HelloWorldWorkflowParallel implements GreeterWorker as the host class for the workflow and
activity implementations. It is identical to the HelloWorldWorkflow implementation except for the
taskListToPoll name, which is set to "HelloWorldParallelList".

HelloWorldWorkflowParallel implements the workflow starter in GreeterMain, and it is
identical to the HelloWorldWorkflow implementation.

To execute the workflow, run GreeterWorker and GreeterMain, just as with
HelloWorldWorkflow.

HelloWorldWorkflowParallel Workflow and Activities Host and Starter API Version 2021-04-28 45



AWS Flow Framework for Java Developer Guide

How AWS Flow Framework for Java Works

The AWS Flow Framework for Java works with Amazon SWF to make it easy to create scalable
and fault-tolerant applications to perform asynchronous tasks that may be long running, remote,
or both. The "Hello World!" examples in What is the AWS Flow Framework for Java? introduced
the basics of how to use the AWS Flow Framework to implement basic workflow applications.
This section provides conceptual information about how AWS Flow Framework applications work.

The first section summarizes the basic structure of an AWS Flow Framework application, and the
remaining sections provide further detail about how AWS Flow Framework applications work.

Topics

« AWS Flow Framework Basic Concepts: Application Structure

« AWS Flow Framework Basic Concepts: Reliable Execution

« AWS Flow Framework Basic Concepts: Distributed Execution

« AWS Flow Framework Basic Concepts: Task Lists and Task Execution

« AWS Flow Framework Basic Concepts: Scalable Applications

« AWS Flow Framework Basic Concepts: Data Exchange Between Activities and Workflows

« AWS Flow Framework Basic Concepts: Data Exchange Between Applications and Workflow

Executions

« Amazon SWF Timeout Types

AWS Flow Framework Basic Concepts: Application Structure

Conceptually, an AWS Flow Framework application consists of three basic components: workflow
starters, workflow workers, and activity workers. One or more host applications are responsible
for registering the workers (workflow and activity) with Amazon SWF, starting the workers, and
handling cleanup. The workers handle the mechanics of executing the workflow and may be
implemented on several hosts.

This diagram represents a basic AWS Flow Framework application:

Application Structure API Version 2021-04-28 46



AWS Flow Framework for Java Developer Guide

Amazon SWF

Decision Activities
Task List Task List

Workflow Starter Workflow Host Activities Host
Application Application Application
WorlflowWoarlker ActivityWorker
Workflow
Implementation
Wgﬂgr'“t’w - Activities
Activities Methods
Client
Workflow Starter Workflow Worker Activities Worker
® Note

Implementing these components in three separate applications is convenient conceptually,
but you can create applications to implement this functionality in a variety of ways. For
example, you can use a single host application for the activity and workflow workers, or
use separate activity and workflow hosts. You can also have multiple activity workers, each
handling a different set of activities on separate hosts, and so on.

The three AWS Flow Framework components interact indirectly by sending HTTP requests to
Amazon SWF, which manages the requests. Amazon SWF does the following:

« Maintains one or more decision task lists, which determine the next step to be performed by a
workflow worker.

Application Structure API Version 2021-04-28 47



AWS Flow Framework for Java Developer Guide

« Maintains one or more activities task lists, which determine which tasks will be performed by an
activity worker.

« Maintains a detailed step-by-step history of the workflow's execution.

With the AWS Flow Framework, your application code doesn't need to deal directly with many of
the details shown in the figure, such as sending HTTP requests to Amazon SWF. You simply call
AWS Flow Framework methods and the framework handles the details behind the scenes.

Role of the Activity Worker

The activity worker performs the various tasks that the workflow must accomplish. It consists of:

» The activities implementation, which includes a set of activity methods that perform particular
tasks for the workflow.

» An ActivityWorker object, which uses HTTP long poll requests to poll Amazon SWF for activity
tasks to be performed. When a task is needed, Amazon SWF responds to the request by
sending the information required to perform the task. The ActivityWorker object then calls the
appropriate activity method, and returns the results to Amazon SWF.

Role of the Workflow Worker

The workflow worker orchestrates the execution of the various activities, manages data flow, and
handles failed activities. It consists of:

« The workflow implementation, which includes the activity orchestration logic, handles failed
activities, and so on.

« An activities client, which serves as a proxy for the activity worker and enables the workflow
worker to schedule activities to be executed asynchronously.

« A WorkflowWorker object, which uses HTTP long poll requests to poll Amazon SWF for decision
tasks. If there are tasks on the workflow task list, Amazon SWF responds to the request by
returning the information that is required to perform the task. The framework then executes the
workflow to perform the task and returns the results to Amazon SWF.

Role of the Activity Worker API Version 2021-04-28 48


https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/simpleworkflow/flow/ActivityWorker.html
https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/simpleworkflow/flow/ActivityWorker.html
https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/simpleworkflow/flow/WorkflowWorker.html

AWS Flow Framework for Java Developer Guide

Role of the Workflow Starter

The workflow starter starts a workflow instance, also referred to as a workflow execution, and can
interact with an instance during execution in order to pass additional data to the workflow worker
or obtain the current workflow state.

The workflow starter uses a workflow client to start the workflow execution, interacts with the
workflow as needed during execution, and handles cleanup. The workflow starter could be a
locally-run application, a web application, the AWS CLI or even the AWS Management Console.

How Amazon SWF Interacts with Your Application

Amazon SWF mediates the interaction between the workflow components and maintains a
detailed workflow history. Amazon SWF doesn't initiate communication with the components; it
waits for HTTP requests from the components and manages the requests as required. For example:

o If the request is from a worker, polling for available tasks, Amazon SWF responds directly to the
worker if a task is available. For more information about how polling works, see Polling for Tasks
in the Amazon Simple Workflow Service Developer Guide.

« If the request is a notification from an activity worker that a task is complete, Amazon SWF
records the information in the execution history and adds a task to the decision task list to
inform the workflow worker that the task is complete, allowing it to proceed to the next step.

o If the request is from the workflow worker to execute an activity, Amazon SWF records the
information in the execution history and adds a task to the activities task list to direct an activity
worker to execute the appropriate activity method.

This approach allows workers to run on any system with an Internet connection, including Amazon
EC2 instances, corporate data centers, client computers, and so on. They don't even have to be
running the same operating system. Because the HTTP requests originate with the workers, there is
no need for externally visible ports; workers can run behind a firewall.

For More Information

For a more thorough discussion of how Amazon SWF works, see Amazon Simple Workflow Service
Developer Guide.

Role of the Workflow Starter API Version 2021-04-28 49


https://docs.aws.amazon.com/amazonswf/latest/developerguide/swf-dg-basic.html#swf-dev-comm-proto
https://docs.aws.amazon.com/amazonswf/latest/developerguide/
https://docs.aws.amazon.com/amazonswf/latest/developerguide/

AWS Flow Framework for Java Developer Guide

AWS Flow Framework Basic Concepts: Reliable Execution

Asynchronous distributed applications must deal with reliability issues that are not encountered by
conventional applications, including:

» How to provide reliable communication between asynchronous distributed components, such as
long-running components on remote systems.

« How to ensure that results are not lost if a component fails or is disconnected, especially for long-
running applications.

» How to handle failed distributed components.

Applications can rely on the AWS Flow Framework and Amazon SWF to manage these issues. We'll
explore how Amazon SWF provides mechanisms to ensure that your workflows operate reliably and
in a predictable way, even when they are long-running and depend on asynchronous tasks carried
out computationally and with human interaction.

Providing Reliable Communication

AWS Flow Framework provides reliable communication between a workflow worker and its
activities workers by using Amazon SWF to dispatch tasks to distributed activities workers and
return the results to the workflow worker. Amazon SWF uses the following methods to ensure
reliable communication between a worker and its activities:

« Amazon SWF durably stores scheduled activity and workflow tasks and guarantees that they will
be performed at most once.

« Amazon SWF guarantees that an activity task will either complete successfully and return a valid
result or it will notify the workflow worker that the task failed.

« Amazon SWF durably stores each completed activity's result or, for failed activities, it stores
relevant error information.

The AWS Flow Framework then uses the activity results from Amazon SWF to determine how to
proceed with the workflow's execution.

Reliable Execution API Version 2021-04-28 50



AWS Flow Framework for Java Developer Guide

Ensuring that Results are Not Lost

Maintaining Workflow History

An activity that performs a data-mining operation on a petabyte of data might take hours to
complete, and an activity that directs a human worker to perform a complex task might take days,
or even weeks to complete!

To accommodate scenarios such as these, AWS Flow Framework workflows and activities can take
arbitrarily long to complete: up to a limit of one year for a workflow execution. Reliably executing
long running processes requires a mechanism to durably store the workflow's execution history on
an ongoing basis.

The AWS Flow Framework handles this by depending on Amazon SWF, which maintains a running
history of each workflow instance. The workflow's history provides a complete and authoritative
record of the workflow's progress, including all the workflow and activity tasks that have been
scheduled and completed, and the information returned by completed or failed activities.

AWS Flow Framework applications usually don't need to interact with the workflow history
directly, although they can access it if necessary. For most purposes, applications can simply let the
framework interact with the workflow history behind the scenes. For a full discussion of workflow
history, see Workflow History in the Amazon Simple Workflow Service Developer Guide.

Stateless Execution

The execution history allows workflow workers to be stateless. If you have multiple instances of
a workflow or activity worker, any worker can perform any task. The worker receives all the state
information that it needs to perform the task from Amazon SWF.

This approach makes workflows more reliable. For example, if an activity worker fails, you don't
have to restart the workflow. Just restart the worker and it will start polling the task list and
processing whatever tasks are on the list, regardless of when the failure occurred. You can make
your overall workflow fault-tolerant by using two or more workflow and activity workers, perhaps
on separate systems. Then, if one of the workers fails, the others will continue to handle scheduled
tasks without any interruption in workflow progress.

Handling Failed Distributed Components

Activities often fail for ephemeral reasons, such as a brief disconnection, so a common strategy
for handling failed activities is to retry the activity. Instead of handling the retry process by

Ensuring that Results are Not Lost API Version 2021-04-28 51


https://docs.aws.amazon.com/amazonswf/latest/developerguide/swf-dg-basic.html#swf-dev-about-workflow-history

AWS Flow Framework for Java Developer Guide

implementing complex message passing strategies, applications can depend on the AWS Flow
Framework. It provides several mechanisms for retrying failed activities, and provides a built-in
exception-handling mechanism that works with asynchronous, distributed execution of tasks in a
workflow.

AWS Flow Framework Basic Concepts: Distributed Execution

A workflow instance is essentially a virtual thread of execution that can span activities and
orchestration logic running on multiple remote computers. Amazon SWF and the AWS Flow
Framework function as an operating system that manages workflow instances on a virtual CPU by:

« Maintaining each instance's execution state.
« Switching between instances.

« Resuming execution of an instance at the point that it was switched out.

Replaying Workflows

Because activities can be long-running, it's undesirable to have the workflow simply block until
it completes. Instead, the AWS Flow Framework manages workflow execution by using a replay
mechanism, which relies on the workflow history maintained by Amazon SWF to execute the
workflow in episodes.

Each episode replays the workflow logic in a way that executes each activity only once, and ensures
that activities and asynchronous methods don't execute until their Promise objects are ready.

The workflow starter initiates the first replay episode when it starts the workflow execution. The
framework calls the workflow's entry point method and:

1. Executes all workflow tasks that don't depend on activity completion, including calling all
activity client methods.

2. Gives Amazon SWF a list of activities tasks to be scheduled for execution. For the first episode,
this list consists of only those activities that don't depend on a Promise and can be executed
immediately.

3. Notifies Amazon SWF that the episode is complete.

Amazon SWF stores the activity tasks in the workflow history and schedules them for execution by
placing them on the activity task list. The activity workers poll the task list and execute the tasks.

Distributed Execution API Version 2021-04-28 52



AWS Flow Framework for Java Developer Guide

When an activity worker completes a task, it returns the result to Amazon SWF, which records it

in the workflow execution history and schedules a new workflow task for the workflow worker by
placing it on the workflow task list. The workflow worker polls the task list and when it receives the
task, it runs the next replay episode, as follows:

1. The framework runs the workflow's entry point method again and:

» Executes all workflow tasks that don't depend on activity completion, including calling all
activity client methods. However, the framework checks the execution history and doesn't
schedule duplicate activity tasks.

» Checks the history to see which activity tasks have completed and executes any asynchronous
workflow methods that depend on those activities.

2. When all workflow tasks that can be executed have completed, the framework reports back to
Amazon SWF:

« It gives Amazon SWF a list of any activities whose input Promise<T> objects have become
ready since the last episode and can be scheduled for execution.

« If the episode generated no additional activity tasks but there are still uncompleted activities,
the framework notifies Amazon SWF that the episode is complete. It then waits for another
activity to complete, initiating the next replay episode.

« If the episode generated no additional activity tasks and all activities have completed, the
framework notifies Amazon SWF that the workflow execution is complete.

For examples of replay behavior, see AWS Flow Framework for Java Replay Behavior.

Replay and Asynchronous Workflow Methods

Asynchronous workflow methods are often used much like activities, because the method defers
execution until all input Promise<T> objects are ready. However, the replay mechanism handles
asynchronous methods differently than activities.

» Replay doesn't guarantee that an asynchronous method will execute only once. It defers
execution on an asynchronous method until its input Promise objects are ready, but it then
executes that method for all subsequent episodes.

« When an asynchronous method completes, it doesn't start a new episode.

An example of replaying an asynchronous workflow is provided in AWS Flow Framework for Java

Replay Behavior.

Replay and Asynchronous Workflow Methods API Version 2021-04-28 53



AWS Flow Framework for Java Developer Guide

Replay and Workflow Implementation

For the most part, you don't need to be concerned with the details of the replay mechanism.
It is basically something that happens behind the scenes. However, replay has two important
implications for your workflow implementation.

» Do not use workflow methods to perform long-running tasks, because replay will repeat that
task multiple times. Even asynchronous workflow methods typically run more than once. Instead,
use activities for long running tasks; replay executes activities only once.

» Your workflow logic must be completely deterministic; every episode must take the same control
flow path. For example, the control flow path should not depend on the current time. For a
detailed description of replay and the determinism requirement, see Nondeterminism.

AWS Flow Framework Basic Concepts: Task Lists and Task
Execution

Amazon SWF manages workflow and activity tasks by posting them to named lists. Amazon SWF
maintains at least two task lists, one for workflow workers and one for activity workers.

® Note

You can specify as many task lists as you need, with different workers assigned to each list.
There is no limit to the number of task lists. You typically specify a worker's task list in the
worker host application when you create the worker object.

The following excerpt from the HelloWorldWorkflow host application creates a new activity
worker and assigns it to the HelloWorldList activities task list.

public class GreeterWorker {
public static void main(String[] args) throws Exception {

String domain = " helloWorldExamples";
String taskListToPoll = "HelloWorldList";

ActivityWorker aw = new ActivityWorker(service, domain, taskListToPoll);
aw.addActivitiesImplementation(new GreeterActivitiesImpl());
aw.start();

Replay and Workflow Implementation API Version 2021-04-28 54



AWS Flow Framework for Java Developer Guide

By default, Amazon SWF schedules the worker's tasks on the HelloWorldList list. Then the
worker polls that list for tasks. You can assign any name to a task list. You can even use the same
name for both workflow and activity lists. Internally, Amazon SWF puts workflow and activity task
list names in different namespaces, so the two lists will be distinct.

If you don't specify a task list, the AWS Flow Framework specifies a default list when the worker
registers the type with Amazon SWF. For more information, see Workflow and Activity Type

Registration.

Sometimes it's useful to have a specific worker or group of workers perform certain tasks. For
example, an image processing workflow might use one activity to download an image and another
activity to process the image. It's more efficient to perform both tasks on the same system, and
avoid the overhead of transferring large files over the network.

To support such scenarios, you can explicitly specify a task list when you call an activity client
method by using an overload that includes a schedulingOptions parameter. You specify the
task list by passing the method an appropriately configured ActivitySchedulingOptions
object.

For example, suppose that the say activity of the HelloWorldWorkflow application is hosted
by an activity worker different from getName and getGreeting. The following example shows
how to ensure that say uses the same task list as getName and getGreeting, even if they were
originally assigned to different lists.

public class GreeterWorkflowImpl implements GreeterWorkflow {
private GreeterActivitiesClient operationsl = new GreeterActivitiesClientImpll(); //
getGreeting and getName
private GreeterActivitiesClient operations2 = new GreeterActivitiesClientImpl2(); //
say
@Override
public void greet() {
Promise<String> name = operationsl.getName();
Promise<String> greeting = operationsl.getGreeting(name);
runSay(greeting);
}
@Asynchronous
private void runSay(Promise<String> greeting){

Task Lists and Task Execution API Version 2021-04-28 55



AWS Flow Framework for Java Developer Guide

String taskList = operationsl.getSchedulingOptions().getTaskList();
ActivitySchedulingOptions schedulingOptions = new ActivitySchedulingOptions();
schedulingOptions.setTaskList(taskList);

operations2.say(greeting, schedulingOptions);

The asynchronous runSay method gets the getGreeting task list from its client object. Then it
creates and configures an ActivitySchedulingOptions object that ensures that say polls the
same task list as getGreeting.

(® Note

When you pass a schedulingOptions parameter to an activity client method, it overrides
the original task list only for that activity execution. If you call the activities client method
again without specifying a task list, Amazon SWF assigns the task to the original list, and
the activity worker will poll that list.

AWS Flow Framework Basic Concepts: Scalable Applications

Amazon SWF has two key features that make it easy to scale a workflow application to handle the
current load:

« A complete workflow execution history, which allows you to implement a stateless application.

« Task scheduling that is loosely coupled to task execution, which makes it easy to scale your
application to meet current demands.

Amazon SWF schedules tasks by posting them to dynamically allocated task lists, not by
communicating directly with workflow and activity workers. Instead, the workers use HTTP
requests to poll their respective lists for tasks. This approach loosely couples task scheduling to
task execution and allows workers to run on any suitable system, including Amazon EC2 instances,
corporate data centers, client computers, and so on. Since the HTTP requests originate with the
workers, there is no need for externally visible ports, which enables workers to even run behind a
firewall.

The long-polling mechanism that workers use to poll for tasks ensures that workers don't get
overloaded. Even if there is a spike in scheduled tasks, workers pull tasks at their own pace.

Scalable Applications API Version 2021-04-28 56



AWS Flow Framework for Java Developer Guide

However, because workers are stateless, you can dynamically scale an application to meet increased
load by starting additional worker instances. Even if they are running on different systems,

each instance polls the same task list and the first available worker instance executes each task,
regardless of where the worker is located or when it started. When the load declines, you can
reduce the number of workers accordingly.

AWS Flow Framework Basic Concepts: Data Exchange Between
Activities and Workflows

When you call an asynchronous activity client method, it immediately returns a Promise (also
known as a Future) object, which represents the activity method's return value. Initially, the
Promise is in an unready state and the return value is undefined. After the activity method
completes its task and returns, the framework marshals the return value across the network to the
workflow worker, which assigns a value to the Promise and puts the object in a ready state.

Even if an activity method has no return value, you can still use the Promise for managing
workflow execution. If you pass a returned Promise to an activity client method or an asynchronous
workflow method, it defers execution until the object is ready.

If you pass one or more Promises to an activity client method, the framework queues the task but
defers scheduling it until all the objects are ready. It then extracts the data from each Promise and
marshals it across the internet to the activity worker, which passes it to the activity method as a
standard type.

® Note

If you need to transfer large amounts of data between workflow and activity workers, the
preferred approach is to store the data in a convenient location and just pass the retrieval
information. For example, you can store the data in an Amazon S3 bucket and pass the
associated URL.

The Promise<T> Type

The Promise<T> type is similar in some ways to the Java Future<T> type. Both types represent
values returned by asynchronous methods and are initially undefined. You access an object's value
by calling its get method. Beyond that, the two types behave quite differently.

Data Exchange Between Activities and Workflows API Version 2021-04-28 57



AWS Flow Framework for Java Developer Guide

e Future<T> is a synchronization construct that allows an application to wait on an asynchronous
method's completion. If you call get and the object isn't ready, it blocks until the object is ready.

« With Promise<T>, synchronization is handled by the framework. If you call get and the object
isn't ready, get throws an exception.

The primary purpose of Promise<T> is to manage data flow from one activity to another. It
ensures that an activity doesn't execute until the input data is valid. In many cases, workflow
workers don't need to access Promise<T> objects directly; they simply pass the objects from one
activity to another and let the framework and the activity workers handle the details. To access

a Promise<T> object's value in a workflow worker, you must be certain that the object is ready
before calling its get method.

« The preferred approach is to pass the Promise<T> object to an asynchronous workflow method
and process the values there. An asynchronous method defers execution until all of its input
Promise<T> objects are ready, which guarantees that you can safely access their values.

e Promise<T> exposes an isReady method that returns true if the object is ready. Using
isReady to poll a Promise<T> object isn't recommended, but isReady is useful in certain
circumstances. For an example, see AWS Flow Framework Recipes.

The AWS Flow Framework for Java also includes a Settable<T> type, which is derived from
Promise<T> and has similar behavior. The difference is that the framework usually sets the
value of a Promise<T> object and the workflow worker is responsible for setting the value of a
Settable<T> For an example, see AWS Flow Framework Recipes

There are some circumstance where a workflow worker needs to create a Promise<T> object and
set its value. For example, an asynchronous method that returns a Promise<T> object needs to
create a return value.

» To create an object that represents a typed value, call the static Promise.asPromise method,
which creates a Promise<T> object of the appropriate type, sets its value, and puts it in the
ready state.

» To create a Promise<Void> obiject, call the static Promise.Void method.

The Promise<T> Type API Version 2021-04-28 58


https://aws.amazon.com/code/2535278400103493
https://aws.amazon.com/code/2535278400103493

AWS Flow Framework for Java Developer Guide

® Note

Promise<T> can represent any valid type. However, if the data must be marshaled across
the internet, the type must be compatible with the data converter. See the next section for
details.

Data Converters and Marshaling

The AWS Flow Framework marshals data across the internet by using a data converter. By default,
the framework uses a data converter that is based on the Jackson JSON processor. However, this

converter has some limitations. For example, it can't marshal maps that don't use strings as keys.
If the default converter isn't sufficient for your application, you can implement a custom data
converter. For details, see DataConverters.

AWS Flow Framework Basic Concepts: Data Exchange Between
Applications and Workflow Executions

A workflow entry point method can have one or more parameters, which allows the workflow
starter to pass initial data to the workflow. It can also useful to provide additional data to the
workflow during execution. For example, if a customer changes their shipping address, you could
notify the order-processing workflow so that it can make appropriate changes.

Amazon SWF allows workflows to implement a signal method, which allows applications such
as the workflow starter to pass data to the workflow at any time. A signal method can have any
convenient name and parameters. You designate it as a signal method by including it in your
workflow interface definition, and applying a @5ignal annotation to the method declaration.

The following example shows an order processing workflow interface that declares a signal
method, changeOxrdexr, which allows the workflow starter to change the original order after the
workflow has started.

@Workflow
@WorkflowRegistrationOptions(defaultExecutionStartToCloseTimeoutSeconds = 300)
public interface WaitForSignalWorkflow {

@Execute(version = "1.0")

public void placeOrder(int amount);

Data Converters and Marshaling API Version 2021-04-28 59


https://github.com/codehaus/jackson

AWS Flow Framework for Java Developer Guide

@Signal
public void changeOrder(int amount);

The framework's annotation processor creates a workflow client method with the same name as
the signal method and the workflow starter calls the client method to pass data to the workflow.
For an example, see AWS Flow Framework Recipes

Amazon SWF Timeout Types

To ensure that workflow executions run correctly, Amazon SWF enables you to set different types
of timeouts. Some timeouts specify how long the workflow can run in its entirety. Other timeouts
specify how long activity tasks can take before being assigned to a worker and how long they

can take to complete from the time they are scheduled. All timeouts in the Amazon SWF API

are specified in seconds. Amazon SWF also supports the string NONE as a timeout value, which
indicates no timeout.

For timeouts related to decision tasks and activity tasks, Amazon SWF adds an event to the
workflow execution history. The attributes of the event provide information about what type of
timeout occurred and which decision task or activity task was affected. Amazon SWF also schedules
a decision task. When the decider receives the new decision task, it will see the timeout event in the
history and take an appropriate action by calling the RespondDecisionTaskCompleted action.

A task is considered open from the time that it is scheduled until it is closed. Therefore a task
is reported as open while a worker is processing it. A task is closed when a worker reports it
as completed, canceled, or failed. A task may also be closed by Amazon SWF as the result of a

timeout.

Timeouts in Workflow and Decision Tasks

The following diagram shows how workflow and decision timeouts are related to the lifetime of a
workflow:

Timeout Types API Version 2021-04-28 60


https://aws.amazon.com/code/2535278400103493
http://docs.aws.amazon.com/amazonswf/latest/apireference/API_RespondDecisionTaskCompleted.html
http://docs.aws.amazon.com/amazonswf/latest/apireference/API_RespondActivityTaskCompleted.html
http://docs.aws.amazon.com/amazonswf/latest/apireference/API_RespondActivityTaskCanceled.html
http://docs.aws.amazon.com/amazonswf/latest/apireference/API_RespondActivityTaskFailed.html

AWS Flow Framework for Java Developer Guide

Execution Start to Close timeout

Task Start to Close Task Start to Close
_timeuut timeout
Workflow Execution | Decision Task Decision Task Decision Task Decision Task
Started started completed started completed
Decision Task Decision Task Workflow Execution Closed
scheduled scheduled (completed, failed, terminated,

canceled or timed out)

There are two timeout types that are relevant to workflow and decision tasks:

» Workflow Start to Close (timeoutType: START_TO_CLOSE) - This timeout specifies the
maximum time that a workflow execution can take to complete. It is set as a default during
workflow registration, but it can be overridden with a different value when the workflow is
started. If this timeout is exceeded, Amazon SWF closes the workflow execution and adds an
event of type WorkflowExecutionTimedOut to the workflow execution history. In addition to the
timeoutType, the event attributes specify the childPolicy that is in effect for this workflow
execution. The child policy specifies how child workflow executions are handled if the parent
workflow execution times out or otherwise terminates. For example, if the childPolicy is set
to TERMINATE, then child workflow executions will be terminated. Once a workflow execution
has timed out, you can't take any action on it other than visibility calls.

» Decision Task Start to Close (timeoutType: START_TO_CLOSE) - This timeout specifies the
maximum time that the corresponding decider can take to complete a decision task. It is set
during workflow type registration. If this timeout is exceeded, the task is marked as timed out in
the workflow execution history, and Amazon SWF adds an event of type DecisionTaskTimedOut
to the workflow history. The event attributes will include the IDs for the events that correspond
to when this decision task was scheduled (scheduledEventId) and when it was started
(startedEventId). In addition to adding the event, Amazon SWF also schedules a new decision
task to alert the decider that this decision task timed out. After this timeout occurs, an attempt
to complete the timed-out decision task using RespondDecisionTaskCompleted will fail.

Timeouts in Activity Tasks

The following diagram shows how timeouts are related to the lifetime of an activity task:

Timeouts in Activity Tasks API Version 2021-04-28 61


http://docs.aws.amazon.com/amazonswf/latest/apireference/API_HistoryEvent.html
http://docs.aws.amazon.com/amazonswf/latest/apireference/API_WorkflowExecutionTimedOutEventAttributes.html
http://docs.aws.amazon.com/amazonswf/latest/apireference/API_DecisionTaskTimedOutEventAttributes.html

AWS Flow Framework for Java Developer Guide

Schedule to Close timeout
: Schedule to Start timeout
¢ Start to Close timeaut

Heartbeat timeout

Task Task started Heartbeat Heartbeat Heartheat
scheduled (dispatched recorded recorded recorded
ScheduleActivityTask to worker) Task closed
decision received {completed, failed,

or timed out)

There are four timeout types that are relevant to activity tasks:

 Activity Task Start to Close (timeoutType: START_TO_CLOSE) - This timeout specifies the
maximum time that an activity worker can take to process a task after the worker has received
the task. Attempts to close a timed out activity task using RespondActivityTaskCanceled,
RespondActivityTaskCompleted, and RespondActivityTaskFailed will fail.

« Activity Task Heartbeat (timeoutType: HEARTBEAT) - This timeout specifies
the maximum time that a task can run before providing its progress through the
RecordActivityTaskHeartbeat action.

 Activity Task Schedule to Start (timeoutType: SCHEDULE_TO_START) - This timeout
specifies how long Amazon SWF waits before timing out the activity task if no workers are
available to perform the task. Once timed out, the expired task will not be assigned to another
worker.

 Activity Task Schedule to Close (timeoutType: SCHEDULE_TO_CLOSE) - This timeout
specifies how long the task can take from the time it is scheduled to the time it is complete.
As a best practice, this value should not be greater than the sum of the task schedule-to-start
timeout and the task start-to-close timeout.

(@ Note

Each of the timeout types has a default value, which is generally set to NONE (infinite). The
maximum time for any activity execution is limited to one year, however.

Timeouts in Activity Tasks API Version 2021-04-28 62


http://docs.aws.amazon.com/amazonswf/latest/apireference/API_RespondActivityTaskCanceled.html
http://docs.aws.amazon.com/amazonswf/latest/apireference/API_RespondActivityTaskCompleted.html
http://docs.aws.amazon.com/amazonswf/latest/apireference/API_RespondActivityTaskFailed.html

AWS Flow Framework for Java Developer Guide

You set default values for these during activity type registration, but you can override them with
new values when you schedule the activity task. When one of these timeouts occurs, Amazon SWF
will add an event of type ActivityTaskTimedOut to the workflow history. The timeoutType value
attribute of this event will specify which of these timeouts occurred. For each of the timeouts,

the value of timeoutType is shown in parentheses. The event attributes will also include the IDs
for the events that correspond to when the activity task was scheduled (scheduledEventId)
and when it was started (startedEventId). In addition to adding the event, Amazon SWF also
schedules a new decision task to alert the decider that the timeout occurred.

Timeouts in Activity Tasks API Version 2021-04-28 63


http://docs.aws.amazon.com/amazonswf/latest/apireference/API_ScheduleActivityTaskDecisionAttributes.html
http://docs.aws.amazon.com/amazonswf/latest/apireference/API_HistoryEvent.html
http://docs.aws.amazon.com/amazonswf/latest/apireference/API_ActivityTaskTimedOutEventAttributes.html

AWS Flow Framework for Java Developer Guide

Best Practices

Use these best practices to make the most of the AWS Flow Framework for Java.

Topics

» Making Changes to Decider Code: Versioning and Feature Flags

Making Changes to Decider Code: Versioning and Feature Flags

This section shows how to avoid backwards-incompatible changes to a decider using two methods:

« Versioning provides a basic solution.

« Versioning with Feature Flags builds on the Versioning solution: No new version of the workflow

is introduced, and there is no need to push new code to update the version.

Before you try these solutions, familiarize yourself with the Example Scenario section which

explains the causes and effects of backwards-incompatible decider changes.

The Replay Process and Code Changes

When an AWS Flow Framework for Java decider worker executes a decision task, it first must
rebuild the current state of the execution before it can add steps to it. The decider does this using a
process called replay.

The replay process re-executes the decider code from the beginning, while simultaneously going
through the history of events that have already occurred. Going through the event history allows
the framework to react to signals or task completion and unblock Promise objects in the code.

When the framework executes the decider code, it assigns an ID to each scheduled task (an
activity, Lambda function, timer, child workflow, or outgoing signal) by incrementing a counter.
The framework communicates this ID to Amazon SWF, and adds the ID to history events, such as
ActivityTaskCompleted.

For the replay process to succeed, it is important for the decider code to be deterministic, and to
schedule the same tasks in the same order for every decision in every workflow execution. If you
don't adhere to this requirement, the framework might, for example, fail to match the ID in an
ActivityTaskCompleted event to an existing Promise object.

Making Changes to Decider Code API Version 2021-04-28 64



AWS Flow Framework for Java Developer Guide

Example Scenario

There is a class of code changes considered to be backwards-incompatible. These changes include
updates that modify the number, type, or order of the scheduled tasks. Consider the following
example:

You write decider code to schedule two timer tasks. You start an execution and run a decision. As a
result, two timer tasks are scheduled, with IDs 1 and 2.

If you update the decider code to schedule only one timer before the next decision to be executed,
during the next decision task the framework will fail to replay the second TimerFired event,
because ID 2 doesn't match any timer tasks that the code has produced.

Scenario Outline

The following outline shows the steps of this scenario. The final goal of the scenario is to migrate
to a system that schedules only one timer but doesn't cause failures in executions started before
the migration.
1. The Initial Decider Version

a. Write the decider.

b. Start the decider.

c. The decider schedules two timers.

d. The decider starts five executions.

e. Stop the decider.
2. A Backwards-Incompatible Decider Change

a. Modify the decider.

b. Start the decider.

c. The decider schedules one timer.

d. The decider starts five executions.

The following sections include examples of Java code that show how to implement this scenario.
The code examples in the Solutions section show various ways to fix backwards-incompatible
changes.

Example Scenario API Version 2021-04-28 65



AWS Flow Framework for Java

Developer Guide

® Note

You can use the latest version of the AWS SDK for Java to run this code.

Common Code

The following Java code doesn't change between the examples in this scenario.

SampleBase. java

package sample;

import
import
import

import
import
import
import
import
import
import
import
import
import
import
import

public

java.util.Arraylist;
java.util.List;
java.util.UUID;

com.
com.
com.
com.
com.
com.
com.
com.
com.
com.
com.
com.

amazonaws.
amazonaws.
amazonaws.
amazonaws.
amazonaws.
amazonaws.
amazonaws.
amazonaws.
amazonaws.
amazonaws.
amazonaws.
amazonaws.

services.
services.
services.
services.
services.
services.
services.
services.
services.
services.
services.
services.

class SampleBase {

protected String domain =

protected String taskList = "DeciderChangeSample-" + UUID.randomUUID().toString();

protected AmazonSimpleWorkflow service =
AmazonSimpleWorkflowClientBuilder.defaultClient();

{

try {
AmazonSimpleWorkflowClientBuilder.defaultClient().registerDomain(new
RegisterDomainRequest().withName(domain).withDescription("desc").withWorkflowExecutionRetentic
} catch (DomainAlreadyExistsException e) {

}

simpleworkflow.AmazonSimpleWorkflow;
simpleworkflow.AmazonSimpleWorkflowClientBuilder;
simpleworkflow.flow.JsonDataConverter;
simpleworkflow.model.DescribeWorkflowExecutionRequest;
simpleworkflow.model.DomainAlreadyExistsException;
RegisterDomainRequest;
simpleworkflow.model.Run;
simpleworkflow.model.StartWorkflowExecutionRequest;
simpleworkflow.model.TaskList;
simpleworkflow.model.WorkflowExecution;
simpleworkflow.model.WorkflowExecutionDetail;
simpleworkflow.model.WorkflowType;

simpleworkflow.model.

"DeciderChangeSample";

Example Scenario

API Version 2021-04-28 66


https://aws.amazon.com/sdk-for-java/

AWS Flow Framework for Java Developer Guide

protected List<WorkflowExecution> workflowExecutions = new ArraylList<>();

protected void startFiveExecutions(String workflow, String version, Object input) {
for (int 1 = 0; i < 5; i++) {
String id = UUID.randomUUID().toString();
Run startWorkflowExecution = service.startWorkflowExecution(
new
StartWorkflowExecutionRequest().withDomain(domain).withTaskList(new
TaskList().withName(taskList)).withInput(new JsonDataConverter().toData(new
Object[] { input })).withWorkflowId(id).withWorkflowType(new
WorkflowType().withName(workflow).withVersion(version)));
workflowExecutions.add(new
WorkflowExecution().withWorkflowId(id).withRunId(startWorkflowExecution.getRunId()));
sleep(1000);

protected void printExecutionResults() {
waitForExecutionsToClose();
System.out.println("\nResults:");
for (WorkflowExecution wid : workflowExecutions) {
WorkflowExecutionDetail details = service.describeWorkflowExecution(new
DescribeWorkflowExecutionRequest().withDomain(domain).withExecution(wid));
System.out.println(wid.getWorkflowId() + " " +
details.getExecutionInfo().getCloseStatus());

}

protected void waitForExecutionsToClose() {
loop: while (true) {
for (WorkflowExecution wid : workflowExecutions) {
WorkflowExecutionDetail details = service.describeWorkflowExecution(new

DescribeWorkflowExecutionRequest().withDomain(domain).withExecution(wid));
if ("OPEN".equals(details.getExecutionInfo().getExecutionStatus())) {

sleep(1000);
continue loop;

}

return;

protected void sleep(int millis) {

Example Scenario API Version 2021-04-28 67



AWS Flow Framework for Java Developer Guide

try {
Thread.sleep(millis);

} catch (InterruptedException e) {
Thread.currentThread().interrupt();

Input.java

package sample;
public class Input {
private Boolean skipSecondTimer;

public Input() {
}

public Input(Boolean skipSecondTimer) {

this.skipSecondTimer = skipSecondTimer;

public Boolean getSkipSecondTimer() {
return skipSecondTimer != null && skipSecondTimer;

public Input setSkipSecondTimer(Boolean skipSecondTimer) {
this.skipSecondTimer = skipSecondTimer;
return this;

Writing Initial Decider Code

The following is the initial Java code of the decider. It's registered as version 1 and it schedules two
five-second timer tasks.

InitialDecider.java

package sample.vl;

Example Scenario API Version 2021-04-28 68



AWS Flow Framework for Java Developer Guide

import com.amazonaws.services.simpleworkflow.flow.DecisionContext;

import com.amazonaws.services.simpleworkflow.flow.DecisionContextProviderImpl;

import com.amazonaws.services.simpleworkflow.flow.WorkflowClock;

import com.amazonaws.services.simpleworkflow.flow.annotations.Execute;

import com.amazonaws.services.simpleworkflow.flow.annotations.Workflow;

import
com.amazonaws.services.simpleworkflow.flow.annotations.WorkflowRegistrationOptions;

import sample.Input;

@Workflow

@WorkflowRegistrationOptions(defaultExecutionStartToCloseTimeoutSeconds = 60,
defaultTaskStartToCloseTimeoutSeconds = 5)

public interface Foo {

@Execute(version = "1")
public void sample(Input input);

public static class Impl implements Foo {

private DecisionContext decisionContext = new
DecisionContextProviderImpl().getDecisionContext();
private WorkflowClock clock = decisionContext.getWorkflowClock();

@Override
public void sample(Input input) {
System.out.println("Decision (V1) WorkflowId: " +
decisionContext.getWorkflowContext().getWorkflowExecution().getWorkflowId());
clock.createTimer(5);
clock.createTimer(5);

Simulating a Backwards-Incompatible Change

The following modified Java code of the decider is a good example of a backwards-incompatible
change. The code is still registered as version 1, but schedules only one timer.

ModifiedDecider. java

Example Scenario API Version 2021-04-28 69



AWS Flow Framework for Java Developer Guide

package sample.vl.modified;

import com.amazonaws.services.simpleworkflow.flow.DecisionContext;

import com.amazonaws.services.simpleworkflow.flow.DecisionContextProviderImpl;

import com.amazonaws.services.simpleworkflow.flow.WorkflowClock;

import com.amazonaws.services.simpleworkflow.flow.annotations.Execute;

import com.amazonaws.services.simpleworkflow.flow.annotations.Workflow;

import
com.amazonaws.services.simpleworkflow.flow.annotations.WorkflowRegistrationOptions;

import sample.Input;

@Workflow
@WorkflowRegistrationOptions(defaultExecutionStartToCloseTimeoutSeconds = 60,
defaultTaskStartToCloseTimeoutSeconds = 5)

public interface Foo {

@Execute(version = "1")
public void sample(Input input);

public static class Impl implements Foo {

private DecisionContext decisionContext = new
DecisionContextProviderImpl().getDecisionContext();
private WorkflowClock clock = decisionContext.getWorkflowClock();

@Override
public void sample(Input input) {
System.out.println("Decision (V1 modified) WorkflowId: " +
decisionContext.getWorkflowContext().getWorkflowExecution().getWorkflowId());
clock.createTimer(5);

The following Java code allows you to simulate the problem of making backwards-incompatible
changes by running the modified decider.

RunModifiedDecider. java

package sample;

Example Scenario API Version 2021-04-28 70



AWS Flow Framework for Java Developer Guide

import com.amazonaws.services.simpleworkflow.flow.WorkflowWorker;
public class BadChange extends SampleBase {

public static void main(String[] args) throws Exception {
new BadChange().run();

public void run() throws Exception {
// Start the first version of the decider
WorkflowWorker before = new WorkflowWorker(service, domain, taskList);
before.addWorkflowImplementationType(sample.vl.Foo.Impl.class);
before.start();

// Start a few executions
startFiveExecutions("Foo.sample", "1", new Input());

// Stop the first decider worker and wait a few seconds
// for its pending pollers to match and return
before.suspendPolling();

sleep(2000);

// At this point, three executions are still open, with more decisions to make
// Start the modified version of the decider

WorkflowWorker after = new WorkflowWorker(service, domain, taskList);
after.addwWorkflowImplementationType(sample.vl.modified.Foo.Impl.class);

after.start();

// Start a few more executions
startFiveExecutions("Foo.sample", "1", new Input());

printExecutionResults();

When you run the program, the three executions that fail are those that started under the initial
version of the decider and continued after the migration.

Example Scenario API Version 2021-04-28 71



AWS Flow Framework for Java Developer Guide

Solutions

You can use the following solutions to avoid backwards-incompatible changes. For more
information, see Making Changes to Decider Code and Example Scenario.

Using Versioning

In this solution, you copy the decider to a new class, modify the decider, and then register the
decider under a new workflow version.

VersionedDecider. java

package sample.v2;

import com.amazonaws.services.simpleworkflow.flow.DecisionContext;

import com.amazonaws.services.simpleworkflow.flow.DecisionContextProviderImpl;
import com.amazonaws.services.simpleworkflow.flow.WorkflowClock;

import com.amazonaws.services.simpleworkflow.flow.annotations.Execute;

import com.amazonaws.services.simpleworkflow.flow.annotations.Workflow;

import
com.amazonaws.services.simpleworkflow.flow.annotations.WorkflowRegistrationOptions;

import sample.Input;

@Workflow

@WorkflowRegistrationOptions(defaultExecutionStartToCloseTimeoutSeconds = 60,
defaultTaskStartToCloseTimeoutSeconds = 5)

public interface Foo {

@Execute(version = "2")
public void sample(Input input);

public static class Impl implements Foo {

private DecisionContext decisionContext = new
DecisionContextProviderImpl().getDecisionContext();
private WorkflowClock clock = decisionContext.getWorkflowClock();

@Override
public void sample(Input input) {
System.out.println("Decision (V2) WorkflowId: " +
decisionContext.getWorkflowContext().getWorkflowExecution().getWorkflowId());
clock.createTimer(5);

Solutions API Version 2021-04-28 72



AWS Flow Framework for Java

}

Developer Guide

In the updated Java code, the second decider worker runs both versions of the workflow, allowing
in-flight executions to continue to execute independently of the changes in version 2.

RunVersionedDecider. java

package sample;
import com.amazonaws.services.simpleworkflow.flow.WorkflowWorker;
public class VersionedChange extends SampleBase {

public static void main(String[] args) throws Exception {
new VersionedChange().run();

public void run() throws Exception {
// Start the first version of the decider, with workflow version 1
WorkflowWorker before = new WorkflowWorker(service, domain, taskList);
before.addWorkflowImplementationType(sample.vl.Foo.Impl.class);
before.start();

// Start a few executions with version 1
startFiveExecutions("Foo.sample", "1", new Input());

// Stop the first decider worker and wait a few seconds
// for its pending pollers to match and return
before.suspendPolling();

sleep(2000);

// At this point, three executions are still open, with more decisions to make

// Start a worker with both the previous version of the decider (workflow
version 1)

// and the modified code (workflow version 2)

WorkflowWorker after = new WorkflowWorker(service, domain, taskList);

after.addWorkflowImplementationType(sample.vl.Foo.Impl.class);

after.addWorkflowImplementationType(sample.v2.Foo.Impl.class);

Solutions API Version 2021-04-28 73



AWS Flow Framework for Java

Developer Guide

after.start();

// Start a few more executions with version 2
startFiveExecutions("Foo.sample", "2

printExecutionResults();

", new Input());

When you run the program, all executions complete successfully.

Using Feature Flags

Another solution to backwards-compatibility issues is to branch code to support two

implementations in the same class is to branch based on input data instead of workflow versions.

When you take this approach, you add fields to (or modify existing fields of) your input objects

every time you introduce sensitive changes. For executions that start before the migration, the

input object won't have the field (or will have a different value). Thus, you don't have to increase
the version number.

® Note

If you add new fields, ensure that the JSON deserialization process is backwards-
compatible. Objects serialized before the introduction of the field should still successfully
deserialize after the migration. Because JSON sets a null value whenever a field is missing,

always use boxed types (Boolean instead of boolean) and handle the cases where the

value is null.

FeatureFlagDecider. java

package sample.vl.featureflag;

import
import
import
import
import

com.
com.
com.
com.
com.

amazonaws.
amazonaws.
amazonaws.
amazonaws.
amazonaws.

services.
services.
services.
services.
.simpleworkflow

services

simpleworkflow
simpleworkflow
simpleworkflow
simpleworkflow

.flow.DecisionContext;
.flow.DecisionContextProviderImpl;
.flow.WorkflowClock;
.flow.annotations.Execute;
.flow.annotations.Workflow;

Solutions

API Version 2021-04-28 74



AWS Flow Framework for Java Developer Guide

import
com.amazonaws.services.simpleworkflow.flow.annotations.WorkflowRegistrationOptions;

import sample.Input;

@Workflow

@WorkflowRegistrationOptions(defaultExecutionStartToCloseTimeoutSeconds = 60,
defaultTaskStartToCloseTimeoutSeconds = 5)

public interface Foo {

@Execute(version = "1")
public void sample(Input input);

public static class Impl implements Foo {

private DecisionContext decisionContext = new
DecisionContextProviderImpl().getDecisionContext();
private WorkflowClock clock = decisionContext.getWorkflowClock();

@Override
public void sample(Input input) {
System.out.println("Decision (V1 feature flag) WorkflowId: " +
decisionContext.getWorkflowContext().getWorkflowExecution().getWorkflowId());
clock.createTimer(5);
if (!input.getSkipSecondTimer()) {
clock.createTimer(5);

In the updated Java code, the code for both versions of the workflow is still registered for version
1. However, after the migration, new executions start with the skipSecondTimer field of the
input data set to true.

RunFeatureFlagDecider. java

package sample;
import com.amazonaws.services.simpleworkflow.flow.WorkflowWorker;

public class FeatureFlagChange extends SampleBase {

Solutions API Version 2021-04-28 75



AWS Flow Framework for Java Developer Guide

public static void main(String[] args) throws Exception {
new FeatureFlagChange().run();

public void run() throws Exception {
// Start the first version of the decider
WorkflowWorker before = new WorkflowWorker(service, domain, taskList);
before.addWorkflowImplementationType(sample.vl.Foo.Impl.class);
before.start();

// Start a few executions
startFiveExecutions("Foo.sample", "1", new Input());

// Stop the first decider worker and wait a few seconds
// for its pending pollers to match and return
before.suspendPolling();

sleep(2000);

// At this point, three executions are still open, with more decisions to make

// Start a new version of the decider that introduces a change

// while preserving backwards compatibility based on input fields
WorkflowWorker after = new WorkflowWorker(service, domain, taskList);
after.addWorkflowImplementationType(sample.vl.featureflag.Foo.Impl.class);
after.start();

// Start a few more executions and enable the new feature through the input
data

startFiveExecutions("Foo.sample", "1", new Input().setSkipSecondTimer(true));

printExecutionResults();

When you run the program, all executions complete successfully.

Solutions API Version 2021-04-28 76



AWS Flow Framework for Java Developer Guide

AWS Flow Framework for Java Programming Guide

This section provides details about how to use the features of the AWS Flow Framework for Java to

implement workflow applications.

Topics

Implementing Workflow Applications with the AWS Flow Framework

Workflow and Activity Contracts

Workflow and Activity Type Registration

Activity and Workflow Clients

Workflow Implementation

Activity Implementation

Implementing AWS Lambda Tasks

Running Programs Written with the AWS Flow Framework for Java

Execution Context

Child Workflow Executions

Continuous Workflows

Setting Task Priority

DataConverters

Passing Data to Asynchronous Methods

Testability and Dependency Injection

Error Handling

Retry Failed Activities

Daemon Tasks

AWS Flow Framework for Java Replay Behavior

Implementing Workflow Applications with the AWS Flow
Framework

The typical steps involved in developing a workflow with the AWS Flow Framework are:

Implementing Workflow Applications API Version 2021-04-28 77



AWS Flow Framework for Java Developer Guide

1.

Define activity and workflow contracts. Analyze your application's requirements, then
determine the required activities and the workflow topology. The activities handle the required
processing tasks, while the workflow topology defines the workflow's basic structure and
business logic.

For example, a media processing application might need to download a file, process it, and
then upload the processed file to an Amazon Simple Storage Service (S3) bucket. This can
broken down into four activity tasks:

1. download the file from a server

2. process the file (for instance, by transcoding it to a different media format)

3. upload the file to the S3 bucket

4. perform cleanup by deleting the local files

This workflow would have an entry point method and would implement a simple linear
topology that runs the activities in sequence, much like the HelloWorldWorkflow Application.

Implement activity and workflow interfaces. The workflow and activity contracts are defined
by Java interfaces, making their calling conventions predictable by SWF, and providing you
flexibility when implementing your workflow logic and activity tasks. The various parts of your
program can act as consumers of each others' data, yet don't need to be aware of much of the
implementation details of any of the other parts.

For example, you can define a FileProcessingWorkflow interface and provide different
workflow implementations for video encoding, compression, thumbnails, and so on. Each

of those workflows can have different control flows and can call different activity methods;
your workflow starter doesn't need to know. By using interfaces, it is also simple to test your
workflows by using mock implementations that can be replaced later with working code.

Generate activity and workflow clients. The AWS Flow Framework eliminates the need for
you to implement the details of managing asynchronous execution, sending HTTP requests,
marshaling data, and so forth. Instead, the workflow starter executes a workflow instance
by calling a method on the workflow client, and the workflow implementation executes
activities by calling methods on the activities client. The framework handles the details of
these interactions in the background.

If you are using Eclipse and you have configured your project, like in Setting up the AWS
Flow Framework for Java, the AWS Flow Framework annotation processor uses the interface

Implementing Workflow Applications API Version 2021-04-28 78



AWS Flow Framework for Java Developer Guide

definitions to automatically generate workflow and activities clients that expose the same set
of methods as the corresponding interface.

4. Implement activity and workflow host applications. Your workflow and activity
implementations must be embedded in host applications that poll Amazon SWF for tasks,
marshal any data, and call the appropriate implementation methods. AWS Flow Framework
for Java includes WorkflowWorker and ActivityWorker classes that make implementing host
applications straightforward and easy to do.

5. Test your workflow. AWS Flow Framework for Java provides JUnit integration that you can use
to test your workflows inline and locally.

6. Deploy the workers. You can deploy your workers as appropriate—for example, you can
deploy them to Amazon EC2 instances or to computers in your data center. Once deployed and
started, the workers start polling Amazon SWF for tasks and handle them as required.

7. Start executions. An application starts a workflow instance by using the workflow client to call
the workflow's entry point. You can also start workflows by using the Amazon SWF console.
Regardless of how you start a workflow instance, you can use Amazon SWF console to monitor
running workflow instance and examine the workflow history for running, completed, and
failed instances.

The AWS SDK for Java includes a set of AWS Flow Framework for Java samples that you can browse
and run by following the instructions in the readme.html file in the root directory. There are also a

set of recipes —simple applications — that show how to handle a variety of specific programming
issue, which are available from AWS Flow Framework Recipes.

Workflow and Activity Contracts

Java interfaces are used to declare the signatures of workflows and activities. The interface forms
the contract between the implementation of the workflow (or activity) and the client of that
workflow (or activity). For example, a workflow type MyWorkflow is defined using an interface that
is annotated with the @Workflow annotation:

@Workflow

@WorkflowRegistrationOptions(
defaultExecutionStartToCloseTimeoutSeconds = 60,
defaultTaskStartToCloseTimeoutSeconds = 10)

public interface MyWorkflow

{

Workflow and Activity Contracts API Version 2021-04-28 79


https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/simpleworkflow/flow/WorkflowWorker.html
https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/simpleworkflow/flow/ActivityWorker.html
http://aws.amazon.com/sdkforjava/
https://aws.amazon.com/code/2535278400103493

AWS Flow Framework for Java Developer Guide

@Execute(version = "1.0")
void startMyWF(int a, String b);

@Signal
void signall(int a, int b, String c);

@GetState
MyWorkflowState getState();

The contract has no implementation-specific settings. This use of implementation-neutral
contracts allows clients to be decoupled from the implementation and hence provides the
flexibility to change the implementation details without breaking the client. Conversely, you

may also change the client without necessitating changes to the workflow or activity being
consumed. For example, the client may be modified to call an activity asynchronously using
promises (Promise<T>) without requiring a change to the activity implementation. Similarly, the
activity implementation may be changed so that it is completed asynchronously, for example, by a
person sending an email—without requiring the clients of the activity to be changed.

In the example above, the workflow interface MyWorkflow contains a method, startMyWwF, for
starting a new execution. This method is annotated with the @Execute annotation and must have
a return type of void or Promise<>. In a given workflow interface, at most one method can be
annotated with this annotation. This method is the entry point of the workflow logic, and the
framework calls this method to execute the workflow logic when a decision task is received.

The workflow interface also defines the signals that may be sent to the workflow. The signal
method gets invoked when a signal with a matching name is received by the workflow execution.
For example, the MyWorkflow interface declares a signal method, signall, annotated with the
@Signal annotation.

The @Signal annotation is required on signal methods. The return type of a signal method
must be void. A workflow interface may have zero or more signal methods defined in it. You
may declare a workflow interface without an @Execute method and some @Signal methods to
generate clients that can't start their execution but can send signals to running executions.

Methods annotated with @Execute and @Signal annotations may have any number of
parameters of any type other than Promise<T> or its derivatives. This allows you to pass strongly
typed inputs to a workflow execution at start and while it is running. The return type of the
@Execute method must be void or Promise<>.

Workflow and Activity Contracts API Version 2021-04-28 80



AWS Flow Framework for Java Developer Guide

Additionally, you may also declare a method in the workflow interface to report the latest state
of a workflow execution, for instance, the getState method in the previous example. This state
isn't the entire application state of the workflow. The intended use of this feature is to allow

you to store up to 32 KB of data to indicate the latest status of the execution. For example, in

an order processing workflow, you may store a string that indicates that the order has been
received, processed, or canceled. This method is called by the framework every time a decision
task is completed to get the latest state. The state is stored in Amazon Simple Workflow Service
(Amazon SWF) and can be retrieved using the generated external client. This allows you to check
the latest state of a workflow execution. Methods annotated with @GetState must not take any
arguments and must not have a void return type. You can return any type, which fits your needs,
from this method. In the above example, an object of MyWorkflowState (see definition below)
is returned by the method that is used to store a string state and a numeric percent complete. The
method is expected to perform read-only access of the workflow implementation object and is
invoked synchronously, which disallows use of any asynchronous operations like calling methods
annotated with @Asynchronous. At most one method in a workflow interface can be annotated
with @GetState annotation.

public class MyWorkflowState {
public String status;
public int percentComplete;

Similarly, a set of activities are defined using an interface annotated with @Activities
annotation. Each method in the interface corresponds to an activity—for example:

@Activities(version = "1.0")
@ActivityRegistrationOptions(
defaultTaskScheduleToStartTimeoutSeconds = 300,
defaultTaskStartToCloseTimeoutSeconds = 3600)
public interface MyActivities {
// Overrides values from annotation found on the interface
@ActivityRegistrationOptions(description = "This is a sample activity",
defaultTaskScheduleToStartTimeoutSeconds = 100,
defaultTaskStartToCloseTimeoutSeconds = 60)
int activityl();

void activity2(int a);

Workflow and Activity Contracts API Version 2021-04-28 81



AWS Flow Framework for Java Developer Guide

The interface allows you to group together a set of related activities. You can define any number
of activities within an activities interface, and you can define as many activities interfaces as you
want. Similar to @Execute and @Signal methods, activity methods can take any number of
arguments of any type other than Promise<T> or its derivatives. The return type of an activity
must not be Promise<T> or its derivatives.

Workflow and Activity Type Registration

Amazon SWF requires activity and workflow types to be registered before they can be used.

The framework automatically registers the workflows and activities in the implementations you
add to the worker. The framework looks for types that implement workflows and activities and
registers them with Amazon SWF. By default, the framework uses the interface definitions to
infer registration options for workflow and activity types. All workflow interfaces are required to
have either the @WorkflowRegistrationOptions annotation or the @SkipRegistration
annotation. The workflow worker registers all workflow types it is configured with that have

the @WorkflowRegistrationOptions annotation. Similarly, each activity method is

required to be annotated with either the @ActivityRegistrationOptions annotation or

the @SkipRegistration annotation or one of these annotations must be present on the
@Activities interface. The activity worker registers all activity types that it is configured with
that an @ActivityRegistrationOptions annotation applies to. The registration is performed
automatically when you start one of the workers. Workflow and activity types that have the
@SkipRegistration annotation are not registered. @ActivityRegistrationOptions, and
@SkipRegistration annotations have override semantics and the most specific one is applied to
an activity type.

Note that Amazon SWF doesn't allow you to re-register or modify the type once it has been
registered. The framework will try to register all types, but if the type is already registered it will
not be re-registered and no error will be reported.

If you need to modify registered settings, you must register a new version of the type. You can also
override registered settings when starting a new execution or when calling an activity that uses the
generated clients.

The registration requires a type name and some other registration options. The default
implementation determines these as follows:

Workflow and Activity Type Registration API Version 2021-04-28 82



AWS Flow Framework for Java Developer Guide

Workflow Type Name and Version

The framework determines the name of the workflow type from the workflow interface. The form
of the default workflow type name is {prefix}{name}. The {prefix}is set to the name of the
@Workflow interface followed by a "' and the {name} is set to the name of the @Execute method.
The default name of the workflow type in the preceding example is M\yWorkflow.startMyWF. You
can override the default name using the name parameter of the @Execute method. The default
name of the workflow type in the example is startMyWF. The name must not be an empty string.
Note that when you override the name using @Execute, the framework doesn't automatically
prepend a prefix to it. You are free to use your own naming scheme.

The workflow version is specified using the version parameter of the @Execute annotation.
There is no default for version and it must be explicitly specified; versionis a free form string,
and you are free to use your own versioning scheme.

Signal Name

The name of the signal can be specified using the name parameter of the @Signal annotation. If
not specified, it is defaulted to the name of the signal method.

Activity Type Name and Version

The framework determines the name of the activity type from the activities interface. The form

of the default activity type name is {prefixH{name}. The {prefix}is set to the name of the
@Activities interface followed by a ' and the {name} is set to the method name. The default
{prefix} can be overridden in the @Activities annotation on the activities interface. You can
also specify the activity type name using the @Activity annotation on the activity method. Note
that when you override the name using @Activity, the framework will not automatically prepend
a prefix to it. You are free to user your own naming scheme.

The activity version is specified using the version parameter of the @Activities annotation. This
version is used as the default for all activities defined in the interface and can be overridden on a
per-activity basis using the @Activity annotation.

Default Task List

The default task list can be configured using the @WorkflowRegistrationOptions and
@ActivityRegistrationOptions annotations and setting the defaultTaskList parameter.
By default, it is set to USE_WORKER_TASK_LIST. This is a special value that instructs the

Workflow Type Name and Version API Version 2021-04-28 83



AWS Flow Framework for Java Developer Guide

framework to use the task list that is configured on the worker object that is used to register the
activity or workflow type. You can also choose to not register a default task list by setting the
default task list to NO_DEFAULT_TASK_LIST using these annotations. This can be used in cases
where you want to require that the task list be specified at run time. If no default task list has been
registered, then you must specify the task list when starting the workflow or calling the activity
method using the StartWorkflowOptions and ActivitySchedulingOptions parameters on
the respective method overload of the generated client.

Other Registration Options

All workflow and activity type registration options that are allowed by the Amazon SWF API can be
specified through the framework.

For a complete list of workflow registration options, see the following:

@Workflow

@Execute
@WorkflowRegistrationOptions

@Signal

For a complete list of activity registration options, see the following:

o @Activity
o @Activities
o @ActivityRegistrationOptions

If you want to have complete control over type registration, see Worker Extensibility.

Activity and Workflow Clients

Workflow and activity clients are generated by the framework based on the @Workflow and
@Activities interfaces. Separate client interfaces are generated that contain methods and
settings that make sense only on the client. If you are developing using Eclipse, this is done by the
Amazon SWF Eclipse plug-in every time you save the file containing the appropriate interface. The
generated code is placed in the generated sources directory in your project in the same package as
the interface.

Other Registration Options API Version 2021-04-28 84



AWS Flow Framework for Java

Developer Guide

® Note

Note that the default directory name used by Eclipse is .apt_generated. Eclipse doesn't

show directories whose names start with a "' in Package Explorer. Use a different directory

name if you want to view the generated files in Project Explorer. In Eclipse, right-click the

package in Package Explorer, and then choose Properties, Java Compiler, Annotation

processing, and modify the Generate source directory setting.

Workflow Clients

The generated artifacts for the workflow contain three client-side interfaces and the classes that

implement them. The generated clients include:

« An asynchronous client intended to be consumed from within a workflow implementation that

provides asynchronous methods to start workflow executions and send signals

« An external client that can be used to start executions and send signals and retrieve workflow

state from outside the scope of a workflow implementation

o A self client that can be used to create continuous workflows

For example, the generated client interfaces for the example MyWorkflow interface are:

//Client for use from within a workflow

public interface MyWorkflowClient extends WorkflowClient

{
Promise<Void> startMyWF(
int a, String b);

Promise<Void> startMyWF(
int a, String b,
Promise<?>... waitFor);

Promise<Void> startMyWF(
int a, String b,
StartWorkflowOptions optionsOverride,
Promise<?>... waitFor);

Promise<Void> startMyWF(
Promise<Integer> a,

Workflow Clients

API Version 2021-04-28 85



AWS Flow Framework for Java Developer Guide

Promise<String> b);

Promise<Void> startMyWF(
Promise<Integer> a,
Promise<String> b,
Promise<?>... waitFor);

Promise<Void> startMyWF(
Promise<Integer> a,
Promise<String> b,
StartWorkflowOptions optionsOverride,
Promise<?>... waitFor);

void signall(
int a, int b, String c);

//External client for use outside workflows
public interface MyWorkflowClientExternal extends WorkflowClientExternal

{
void startMyWF(
int a, String b);

void startMyWF(
int a, String b,
StartWorkflowOptions optionsOverride);

void signall(
int a, int b, String c);

MyWorkflowState getState();

//self client for creating continuous workflows
public interface MyWorkflowSelfClient extends WorkflowSelfClient

{
void startMyWF(
int a, String b);

void startMyWF(
int a, String b,

Promise<?>... waitFor);

void startMyWF(

Workflow Clients API Version 2021-04-28 86



AWS Flow Framework for Java Developer Guide

int a, String b,
StartWorkflowOptions optionsOverride,
Promise<?>... waitFor);

void startMyWF(
Promise<Integer> a,
Promise<String> b);

void startMyWF(
Promise<Integer> a,
Promise<String> b,
Promise<?>... waitFor);

void startMyWF(
Promise<Integer> a,
Promise<String> b,
StartWorkflowOptions optionsOverride,
Promise<?>... waitFor);

The interfaces have overloaded methods corresponding to each method in the @Wworkflow
interface that you declared.

The external client mirrors the methods on the @Workflow interface with one additional overload
of the @Execute method that takes StartWorkflowOptions. You can use this overload to pass
additional options when starting a new workflow execution. These options allow you to override
the default task list, timeout settings, and associate tags with the workflow execution.

On the other hand, the asynchronous client has methods that allow asynchronous invocation of the
@Execute method. The following method overloads are generated in the client interface for the
@Execute method in the workflow interface:

1. An overload that takes the original arguments as is. The return type of this overload will be
Promise<Void> if the original method returned void; otherwise, it will be the Promise<> as
declared on the original method. For example:

Original method:

void startMywWF(int a, String b);

Generated method:

Workflow Clients API Version 2021-04-28 87



AWS Flow Framework for Java Developer Guide

Promise<Void> startMyWF(int a, String b);

This overload should be used when all the arguments of the workflow are available and don't
need to be waited for.

2. An overload that takes the original arguments as is and additional variable arguments of type
Promise<?>. The return type of this overload will be Promise<Void> if the original method
returned void; otherwise, it will be the Promise<> as declared on the original method. For
example:

Original method:

void startMyWF(int a, String b);

Generated method:

Promise<void> startMyWF(int a, String b, Promise<?>...waitFor);

This overload should be used when all the arguments of the workflow are available and don't
need to be waited for, but you want to wait for some other promises to become ready. The
variable argument can be used to pass such Promise<?> objects that were not declared as
arguments, but you want to wait for before executing the call.

3. An overload that takes the original arguments as is, an additional argument of type
StartWorkflowOptions and additional variable arguments of type Promise<?>. The return
type of this overload will be Promise<Void> if the original method returned void; otherwise,
it will be the Promise<> as declared on the original method. For example:

Original method:

void startMyWF(int a, String b);

Generated method:

Promise<void> startMyWF(
int a,
String b,
StartWorkflowOptions optionOverrides,

Workflow Clients API Version 2021-04-28 88



AWS Flow Framework for Java Developer Guide

Promise<?>...waitFor);

This overload should be used when all the arguments of the workflow are available and don't
need to be waited for, when you want to override default settings used to start the workflow
execution, or when you want to wait for some other promises to become ready. The variable
argument can be used to pass such Promise<?> objects that were not declared as arguments,
but you want to wait for before executing the call.

4. An overload with each argument in the original method replaced with a Promise<> wrapper.
The return type of this overload will be Promise<Void> if the original method returned void;
otherwise, it will be the Promise<> as declared on the original method. For example:

Original method:

void startMywWF(int a, String b);

Generated method:

Promise<Void> startMyWF(
Promise<Integer> a,
Promise<String> b);

This overload should be used when the arguments to be passed to the workflow execution are to
be evaluated asynchronously. A call to this method overload will not execute until all arguments
passed to it become ready.

If some of the arguments are already ready, then convert them to a Promise that is already in
ready state through the Promise.asPromise(value) method. For example:

Promise<Integer> a = getA();
String b = getB();
startMyWF(a, Promise.asPromise(b));

5. An overload with each argument in the original method is replaced with a Promise<> wrapper.
The overload also has additional variable arguments of type Promise<?>. The return type of
this overload will be Promise<Void> if the original method returned void; otherwise, it will be
the Promise<> as declared on the original method. For example:

Original method:

Workflow Clients API Version 2021-04-28 89



AWS Flow Framework for Java Developer Guide

void startMyWF(int a, String b);

Generated method:

Promise<Void> startMyWF(
Promise<Integer> a,
Promise<String> b,
Promise<?>...waitFor);

This overload should be used when the arguments to be passed to the workflow execution are
to be evaluated asynchronously and you want to wait for some other promises to become ready
as well. A call to this method overload will not execute until all arguments passed to it become
ready.

6. An overload with each argument in the original method replaced with a Promise<?> wrapper.
The overload also has an additional argument of type StartWorkflowOptions and variable
arguments of type Promise<?>. The return type of this overload will be Promise<Void> if the
original method returned void; otherwise, it will be the Promise<> as declared on the original
method. For example:

Original method:

void startMywWF(int a, String b);

Generated method:

Promise<Void> startMyWF(
Promise<Integer> a,
Promise<String> b,
StartWorkflowOptions optionOverrides,
Promise<?>...waitFor);

Use this overload when the arguments to be passed to the workflow execution will be evaluated
asynchronously and you want to override default settings used to start the workflow execution.
A call to this method overload will not execute until all arguments passed to it become ready.

A method is also generated corresponding to each signal in the workflow interface—for example:

Workflow Clients API Version 2021-04-28 90



AWS Flow Framework for Java Developer Guide

Original method:
void signall(int a, int b, String c);
Generated method:

void signall(int a, int b, String c);

The asynchronous client doesn't contain a method corresponding to the method annotated with
@GetState in the original interface. Since retrieval of state requires a web service call, it is not
suitable for use within a workflow. Hence, it is provided only through the external client.

The self client is intended to be used from within a workflow to start a new execution on
completion of the current execution. The methods on this client are similar to the ones on the
asynchronous client, but return void. This client doesn't have methods corresponding to methods
annotated with @Signal and @GetState. For more details, see the Continuous Workflows.

The generated clients derive from base interfaces: WorkflowClient and
WorkflowClientExternal, respectively, which provide methods that you can use to cancel or
terminate the workflow execution. For more details about these interfaces, see the AWS SDK for
Java documentation.

The generated clients allow you to interact with workflow executions in a strongly typed fashion.
Once created, an instance of a generated client is tied to a specific workflow execution and can be
used only for that execution. In addition, the framework also provides dynamic clients that are not
specific to a workflow type or execution. The generated clients rely on this client under the covers.
You may also directly use these clients. See the section on Dynamic Clients.

The framework also generates factories for creating the strongly typed clients. The generated
client factories for the example MyWorkflow interface are:

//Factory for clients to be used from within a workflow
public interface MyWorkflowClientFactory
extends WorkflowClientFactory<MyWorkflowClient>

//Factory for clients to be used outside the scope of a workflow
public interface MyWorkflowClientExternalFactory
{

Workflow Clients API Version 2021-04-28 91



AWS Flow Framework for Java Developer Guide

GenericWorkflowClientExternal getGenericClient();
void setGenericClient(GenericWorkflowClientExternal genericClient);
DataConverter getDataConverter();
void setDataConverter(DataConverter dataConverter);
StartWorkflowOptions getStartWorkflowOptions();
void setStartWorkflowOptions(StartWorkflowOptions startWorkflowOptions);
MyWorkflowClientExternal getClient();
MyWorkflowClientExternal getClient(String workflowId);
MyWorkflowClientExternal getClient(WorkflowExecution workflowExecution);
MyWorkflowClientExternal getClient(

WorkflowExecution workflowExecution,

GenericWorkflowClientExternal genericClient,

DataConverter dataConverter,

StartWorkflowOptions options);

The WorkflowClientFactory base interface is:

public interface WorkflowClientFactory<T> {

GenericWorkflowClient getGenericClient();

void setGenericClient(GenericWorkflowClient genericClient);

DataConverter getDataConverter();

void setDataConverter(DataConverter dataConverter);

StartWorkflowOptions getStartWorkflowOptions();

void setStartWorkflowOptions(StartWorkflowOptions startWorkflowOptions);

T getClient();

T getClient(String workflowId);

T getClient(WorkflowExecution execution);

T getClient(WorkflowExecution execution,
StartWorkflowOptions options);

T getClient(WorkflowExecution execution,
StartWorkflowOptions options,
DataConverter dataConverter);

You should use these factories to create instances of the client. The factory allows you to configure
the generic client (the generic client should be used for providing custom client implementation)
and the DataConverter used by the client to marshal data, as well as the options used to start
the workflow execution. For more details, see the DataConverters and Child Workflow Executions

sections. The StartWorkflowOptions contains settings that you can use to override the
defaults—for example, timeouts—specified at registration time. For more details about the
StartWorkflowOptions class, see the AWS SDK for Java documentation.

Workflow Clients API Version 2021-04-28 92



AWS Flow Framework for Java Developer Guide

The external client can be used to start workflow executions from outside of the scope of a
workflow while the asynchronous client can be used to start a workflow execution from code
within a workflow. In order to start an execution, you simply use the generated client to call the
method that corresponds to the method annotated with @Execute in the workflow interface.

The framework also generates implementation classes for the client interfaces. These clients create
and send requests to Amazon SWF to perform the appropriate action. The client version of the
@Execute method either starts a new workflow execution or creates a child workflow execution
using Amazon SWF APlIs. Similarly, the client version of the @Signal method uses Amazon SWF
APIs to send a signal.

® Note

The external workflow client must be configured with the Amazon SWF client and domain.
You can either use the client factory constructor that takes these as parameters or pass in

a generic client implementation that is already configured with the Amazon SWF client and
domain.

The framework walks the type hierarchy of the workflow interface and also generates client
interfaces for parent workflow interfaces and derives from them.

Activity Clients

Similar to the workflow client, a client is generated for each interface annotated with
@Activities. The generated artifacts include a client side interface and a client class. The
generated interface for the example @Activities interface above (MyActivities) is as follows:

public interface MyActivitiesClient extends ActivitiesClient

{
Promise<Integer> activityl();
Promise<Integer> activityl(Promise<?>... waitFor);
Promise<Integer> activityl(ActivitySchedulingOptions optionsOverride,

Promise<?>... waitFor);
Promise<Void> activity2(int a);
Promise<Void> activity2(int a,
Promise<?>... waitFor);
Promise<Void> activity2(int a,
ActivitySchedulingOptions optionsOverride,
Promise<?>... waitFor);
Promise<Void> activity2(Promise<Integer> a);

Activity Clients API Version 2021-04-28 93



AWS Flow Framework for Java Developer Guide

Promise<Void> activity2(Promise<Integer> a,
Promise<?>... waitFor);

Promise<Void> activity2(Promise<Integer> a,
ActivitySchedulingOptions optionsOverride,
Promise<?>... waitFor);

The interface contains a set of overloaded methods corresponding to each activity method in the
@Activities interface. These overloads are provided for convenience and allow calling activities
asynchronously. For each activity method in the @Activities interface, the following method
overloads are generated in the client interface:

1. An overload that takes the original arguments as is. The return type of this overload is
Promise<T>, where T is the return type of the original method. For example:

Original method:

void activity2(int foo);

Generated method:

Promise<Void> activity2(int foo);

This overload should be used when all the arguments of the workflow are available and don't
need to be waited for.

2. An overload that takes the original arguments as is, an argument of type
ActivitySchedulingOptions and additional variable arguments of type Promise<?>. The
return type of this overload is Promise<T>, where T is the return type of the original method.
For example:

Original method:
void activity2(int foo);
Generated method:

Promise<Void> activity2(
int foo,
ActivitySchedulingOptions optionsOverride,

Activity Clients API Version 2021-04-28 94



AWS Flow Framework for Java Developer Guide

Promise<?>... waitFor);

This overload should be used when all the arguments of the workflow are available and don't
need to be waited for, when you want to override the default settings, or when you want to wait
for additional Promises to become ready. The variable arguments can be used to pass such
additional Promise<?> objects that were not declared as arguments, but you want to wait for
before executing the call.

3. An overload with each argument in the original method replaced with a Promise<> wrapper.
The return type of this overload is Promise<T>, where T is the return type of the original
method. For example:

Original method:

void activity2(int foo);

Generated method:

Promise<Void> activity2(Promise<Integer> foo);

This overload should be used when the arguments to be passed to the activity will be evaluated
asynchronously. A call to this method overload will not execute until all arguments passed to it
become ready.

4. An overload with each argument in the original method replaced with a Promise<> wrapper.
The overload also has an additional argument of type ActivitySchedulingOptions and
variable arguments of type Promise<?>. The return type of this overload is Promise<T>,
where T is the return type of the original method. For example:

Original method:

void activity2(int foo);

Generated method:

Promise<Void> activity2(
Promise<Integer> foo,
ActivitySchedulingOptions optionsOverride,
Promise<?>...waitFor);

Activity Clients API Version 2021-04-28 95



AWS Flow Framework for Java Developer Guide

This overload should be used when the arguments to be passed to the activity will be evaluated
asynchronously, when you want to override the default settings registered with the type, or
when you want to wait for additional Promises to become ready. A call to this method overload
will not execute until all arguments passed to it become ready. The generated client class
implements this interface. The implementation of each interface method creates and sends a
request to Amazon SWF to schedule an activity task of the appropriate type using Amazon SWF
APls.

5. An overload that takes the original arguments as is and additional variable arguments of type
Promise<?>. The return type of this overload is Promise<T7>, where T is the return type of the
original method. For example:

Original method:

void activity2(int foo);

Generated method:

Promise< Void > activity2(int foo,
Promise<?>...waitFor);

This overload should be used when all the activity's arguments are available and don't need to
be waited for, but you want to wait for other Promise objects to become ready.

6. An overload with each argument in the original method replaced with a Promise wrapper
and additional variable arguments of type Promise<?>. The return type of this overload is
Promise<T>, where T is the return type of the original method. For example:

Original method:

void activity2(int foo);

Generated method:

Promise<Void> activity2(
Promise<Integer> foo,
Promise<?>... waitFor);

Activity Clients API Version 2021-04-28 96



AWS Flow Framework for Java Developer Guide

This overload should be used when all the arguments of the activity will be waited for
asynchronously and you also want to wait for some other Promises to become ready. A call to
this method overload will execute asynchronously when all Promise objects passed become
ready.

The generated activity client also has a protected method corresponding to each activity method,
named {activity method name}Impl(), that all activity overloads call into. You can override
this method to create mock client implementations. This method takes as arguments: all the
arguments to the original method in Promise<> wrappers, ActivitySchedulingOptions, and
variable arguments of type Promise<?>. For example:

Original method:
void activity2(int foo);

Generated method:

Promise<Void> activity2Impl(
Promise<Integer> foo,
ActivitySchedulingOptions optionsOverride,
Promise<?>...waitFor);

Scheduling Options

The generated activity client allows you to pass in ActivitySchedulingOptions as an
argument. The ActivitySchedulingOptions structure contains settings that determine the
configuration of the activity task that the framework schedules in Amazon SWF. These settings
override the defaults that are specified as registration options. To specify scheduling options
dynamically, create an ActivitySchedulingOptions object, configure it as desired, and pass

it to the activity method. In the following example, we have specified the task list that should be
used for the activity task. This will override the default registered task list for this invocation of the
activity.

public class OrderProcessingWorkflowImpl implements OrderProcessingWorkflow {

OrderProcessingActivitiesClient activitiesClient
= new OrderProcessingActivitiesClientImpl();

Scheduling Options API Version 2021-04-28 97



AWS Flow Framework for Java Developer Guide

// Workflow entry point
@Override
public void processOrder(Order order) {
Promise<Void> paymentProcessed = activitiesClient.processPayment(order);
ActivitySchedulingOptions schedulingOptions
= new ActivitySchedulingOptions();

if (order.getlLocation() == "Japan") {
schedulingOptions.setTaskList("TasklistAsia");
} else {

schedulingOptions.setTaskList("TasklistNorthAmerica");

activitiesClient.shipOrder(order,
schedulingOptions,
paymentProcessed);

Dynamic Clients

In addition to the generated clients, the framework also provides general purpose clients
—DynamicWorkflowClient and DynamicActivityClient—that you can use to
dynamically start workflow executions, send signals, schedule activities, etc. For instance,

you may want to schedule an activity whose type isn't known at design time. You can use the
DynamicActivityClient for scheduling such an activity task. Similarly, you can dynamically
schedule a child workflow execution by using the DynamicWorkflowClient. In the following
example, the workflow looks up the activity from a database and uses the dynamic activity client
to schedule it:

//Workflow entrypoint
@Override
public void start() {
MyActivitiesClient client = new MyActivitiesClientImpl();
Promise<ActivityType> activityType
= client.lookUpActivityFromDB();
Promise<String> input = client.getInput(activityType);
scheduleDynamicActivity(activityType,
input);
}
@Asynchronous
void scheduleDynamicActivity(Promise<ActivityType> type,
Promise<String> input){

Dynamic Clients API Version 2021-04-28 98



AWS Flow Framework for Java

Developer Guide

Promise<?>[] args = new Promise<?>[1];

args[@] = input;

DynamicActivitiesCl