aws

Developer Guide

Amazon APl Gateway

Copyright © 2024 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon API Gateway Developer Guide

Amazon APl Gateway: Developer Guide

Copyright © 2024 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon's trademarks and trade dress may not be used in connection with any product or service
that is not Amazon's, in any manner that is likely to cause confusion among customers, or in any
manner that disparages or discredits Amazon. All other trademarks not owned by Amazon are
the property of their respective owners, who may or may not be affiliated with, connected to, or
sponsored by Amazon.

Amazon API Gateway Developer Guide

Table of Contents

What is AMAazon APl GAt@WAY?cccciiiieeeeeenneiiiioseciiinnesss 1
Architecture Of APl GAtEWAY ..ottt testeste s e e e e e e s et e st e sae s s e sse s e e ss e s e e esaenaanes 2
FEAtUrES OF APl GAEWAY ...ccueiieieieteeeeeceeee ettt e et e e e et et este st e s e s se s e e e e e eaestasasaassassassnensaneans 3
AP| GALEWAY USE CASES ..ceevveeviireeisrtesirersrtesitesstesssessseesssesssessssessssesssesssessssessssssssesssessssesssessssesssessssesssesssassns 3

Use APl Gateway tO Creat@ REST APIS ... ettt st es e et e ssessraessaessaeessnessvaasnnens 4
Use APl Gateway tO creat@ HTTP APIS ...ttt ssseessre et e s sae s saessaeesanessaassnas 4
Use APl Gateway to create WebS0ocket APIS ... ettt te e naan 5
WHhO USES AP GALEWAY?eoieieeieeieeieeetectecteete e e eteeseeaesesaestessessessessssssessensessessassassassessssssansensensansassans 6
ACCESSING APl GALEWAY ...uviiiieiiiieieeterteect st este st e s ee s saeestesssasssaessseesstesssesssaessseesssasssesssaesssaesssesssesnes 6
Part of AWS serverless iNfrastrUCtUrE ...ttt sa et sse st se s sae s e 7
How to get started with AmMazon APl GAtEWAYccoeceeieieieieceecee ettt e ae s 7
AP GAtEWAY CONCEPTES ..ooeeieiiiriieieicteertesteesesste s st esstessaeestessaeestessseesssessssesssessssesssessssesssessssesssassseessenns 8
Choosing between REST APIS @and HTTP APIS ...ttt nen e 13
.. 13
ENAPOINT LYPE ettt te e e e e e e et et e st e st e b e b e s s e e sessa e e et essensassansassassassnensansans 13
SECUNILY ittt ettt et e e e st e st e s sr e e st e s sae e st e s saeessae s aa e st e s seessaessaesssasssessssessseesssesssessssessseesseens 14
AULNOTIZATION .ottt ettt sttt e s et et s s b e st e e s s e b e e e sebe st e e sansenasansan 14
APL MAaNQ@QEIMIEBNT ...ttt ettt sssse e s e st e s s e e e s s eessssnesssssesesssassssaessssesssssesssssesssssessssaanss 15
DEVELOPIMENT ...ttt te e te e e et s e e e e et et et e s b e s b e st e s seeseessess et estassassassassaesasssanaanes 15
MONIEOTING ceeiieiiieeiecceeete ettt et e et e e s e e s te s sae e s s e s s st esstesssa s s esssaesssasssassssesssaesssesssessssessseessaasssenns 16
INEEGIATIONS ..ttt et s st st e s st e s s e e s s be e s saessaaessaessaaessaessseessaessssessaesssnesssesnn 16
Getting started with the REST APl CONSOLEcuiieieeeeeeceeteteteteteseste et stesae e aeanan 17
Step 1: Create @ Lambda fUNCLION ...ttt 18
Step 2: Create @ REST API ... ettt sttt stessae s s e e s seesa e s sae s s s e s saeessaesssessssessaeessnasssesnns 19
Step 3: Create a Lambda proxy inte@grationceeeeeeeecieceeeeesese e 19
StEP 4: DEPLOY YOUE APl ...ttt ettt et et esteste s e et s e e e s e s et e tesbassessessaeseensenaanes 20
SEEP 5: INVOKE YOUE AP ...ttt te e e e e et et este st e s e s se e e e e e s et e sesbessassassaeseennanean 20
(OptioNal) StEP 6: CLEAN UP .ceeeeeeieeeieteietectestee et et et e e stestesse s e e e e s e s e ssessassessassassessaensessensansan 21

Prer@QUISITES .cciiiiiiieeeeeniiiiiiieiiiiiineeessssesssssseceeeesssases 23
SigN UP FOr AN AWS QCCOUNT ...ttt ettt testestesse s e e e s s e s e e e stesestessassessasseensensanean 23
Create an admMiNISErAtiVE USEN ...c.civirieriiircrieteeretet ettt ettt et se s e sae st st s s et et e e ssasaesassanes 23

Getting StArtedccciiiiiiiieeeeeiiiiiieiiiiiiiieeeeseeieiissseeeetsess 25
Step 1: Create @ Lambda fUNCLION ...ttt st nnns 26

Step 2: Creat@ @n HTTP AP ..ttt ettt sttt st s st e s e e s sae s s e e s saeessa e s aesssaessaeessnesssasssaesnes 26

Amazon API Gateway Developer Guide

STEP 3: TEST YOULE AP ettt ettt sttt e e s ste e st e s sae s st e s s aa et e s saesssaesssaesssasssaesssessseasssesssanns 27
(OptioNal) StEP 4: CLEAN UP .cveceeeeeeeeiieeetetecteterteste e e e e ee s e te st e st estessesse s e e e e s esaesessassassassassessasssensensanes 28
NEXE SEEPS ettt ettt st s e e st e st e s s e e s e e e s ae e s ae s s saesae e st essbe s seesssassstasssessssensseesstesssessseessessstanns 29
Tutorials and WOFrKSROPSeeeeeiiiiiiiiiiiiiiiieiiiiiiiciiiiitieeseneesiiieeeeetttss 31
REST API TULOTIALS «.cuvieiieieteirietcteesietees ettt s e st et s e st st st s e st e st s s st et e e sbe s e e ssessessssassassessesansensans 32
Build an APl with Lambda integration ...t 32
Tutorial: Create a REST APl by importing an example ...t eeeeenens 56
Build an APl with HTTP iNt@gration ...ttt aesaesse e aennan 65
Tutorial: Build an APl with private integration ... 79
Tutorial: Build an APl with AWS integration ...t aens 82
Tutorial: Calc API with three integrations ... 88
Tutorial: Create a REST APl as an Amazon S3 proxy in APl Gatewaycccccceeveeveeceeveeceecvenene 116
Tutorial: Create a REST APl as an AMazon KiNESIS ProXYcccccceeveereereesreseesesessesseesesseessessensens 162
BUILA @ Private REST APl ...ttt sttt stesaesteste s e s e s s e et e s e st e saesaasbassa s e enasnnennanes 207
HTTP API TULOTIALS .ottt sttt ettt s b st s s st et s e sae st s e be st e e ssaneen 213
CRUD API with Lambda and DyNamoDB ..ottt e e e e s e s s nnas 214
Private integration t0 AmAzon ECS ...ttt et es e s sseessse e st esssessssesssasssnanns 224
WEDSOCKET AP tULOIIALS «.oveveteieietetreretctsetcte ettt sttt ettt s e b e st s s se st e sasaeaenas 231
WEDSOCKET Chat QPP ittt st sae s ae st e b e sesaa e aanes 231
WebSocket Step FUNCLIONS GPP .ooieiicieieieeeeceeteteteteteste e e e et et e saesse s e s e e e e e s sa e s e saesaasaas 236
WOrking With REST APIS ...cuueiiiiiiiiiiiiimmeemsmeiiiiiieceiiss 251
DEVELOP ettt et ettt e st e st s e s et era et et e b et et et e ae e s e et eat et et et e s teeteesee st e e etetentantan 251
Create aNd CONTIGUIE ettt a e st s e s s e s st e b et e saa st e sesanesnans 252
ACCESS CONTIOL ottt sttt st ettt sa e sttt e s e b et s et et e e ssessesaesassessenassansensons 298
INEEGIATIONS ..ottt e st et e s s ae e st e s ae e s ae s ae e s st e s seesssessaesssessaasssessssenssassseens 379
REQUEST VAliAtiON ...ttt ettt sttt et s ae s be s s e e e aena e aa s 446
Data tranSfOrmMAtioNs ..ottt ettt ettt sa et e s se st e e e e sae e e e snes 479
GATEWAY FESPONSES ...eeeiiiteeeieeteeteerteerrteste et esstessseessesssaesssessssesssassssesssessssesssessssesssessssesssessssesssesses 562
CORS ettt sttt sttt et st sttt st et e e st et et s et et e R et et e a et et e ae b et et e s et et esante st eseetan 574
BiNAry MEAIA TYPES .ottt ettt et e st e st e st e s e e e s e e e et et e sta st e s beeseenaennenaan 588
INVOKE ettt ettt et ettt s st a e st st e st et e e s b et et s aesbe b e e st et et esenbentenasn 619
OPENAPH ...ttt et e st s st s st e st e s s st e s aeessae s s e s s st e s saesssasssa s saesseesstesssaesstesseenssesstesssennses 654
PUDBLIST ettt ettt sttt e b e st e s b et s b et et s sa b et esessesbenasnesentens 668
DEPLOYING @ REST AP ..ttt ste e ve st e e st et et e st e ssesae s e e e e e et e s essasaessassessessnenaennans 669
CUSTOM AOMAIN NMAMIES ...oouiieieirienieteertest ettt et e e stest et s este st e e sseste e ssessesaesassestessssassessesessensesessansen 713
OPLIMUZE ettt ettt e s ste s st e s s e s sse e s ae s st e s se s saasssasssaesssassseasssessssesssessseesssessseesssasssaanns 753

Amazon API Gateway Developer Guide

(@ Tal TSIy | [« [OOSR 753
CONLENT ENCOAING .ottt e s te st e s teste s e e e e e e e e s et e besbestassasseeseenaensansensansanes 763
DISTIIDULE ..ttt te e s e et e e e e e et e st et e st e s b e ssaesaesaesae st et ansensansassaesesseensensensanean 769
USQGE PLANS .ttt ettt s e et e e et st et e b e s e e e e s e ra e s et e ba b e beeraere e e e e enaetetanean 769
API dOCUMENTATION ..ottt et e te st e s e e e s e e e st et e sassessassesssennensansans 792
SDK GENEFATION ...eeiiiiiiieeteecteete ettt es e e st e s saeesseessae e st e s ssesssaesssees st assseesssessssesssassseesssessssesssesssnanns 858
SELL YOUP APIS @S SQAS ..ottt e e e st et e st et e st e e e e e e e et et e aestesbesaaeseenaenaenaanes 885
PrOTECT .ttt ettt st e s s a e e s e e s s a e et e s sae e s e e s s e e s st e e b e e s e e s b e e st e e b e e s st e st e essaaesaeessaanane 889
MULUL TLS ettt ettt et et e te s e s e e e e se e e et et et et e b e s sessaesasssessensensansansansasseeseassanean 890
CLIENT COMTITICALES oottt et e e e e e et e s e e b e st e ba s b assa e e esaenaennan 896
AWS WAF ..ottt ettt st et et st st et s st e st s e s s et e e e e s b et et s se s et e st ssastestssassansesassansensenessensenassens 937
TREOTELING ettt e e e e s e e e et e st et e st e s seesaesaesa et e sansassansassaennensanes 940
PEIVATE APIS ettt ettt s st s e s sre e s ste s s st e st e s s ra e s b e e sa e st e s sa e e baesaa e s ba s sa e e ae e saeeaaesnaenaras 942
MONIEOL <.ttt ettt e e e st e et e e s e e e st e e sae e s b e e ssaesse s saesssesssaasssassaesssassseasssessssesssesssaesssensseesssessseens 953
CLOUAWALCN MELIICS .ottt e e e sa e st e st e s te st essesse e e e e e e et esaesaassassessnenaaneans 954
CLOUAWAALCN LOGS ..ttt ettt e s te s te e e e e e e st estesae st e saasse e e e e e e asaeaantansaneas 962
FIFEROSE ..ttt e e e e et et e st e st et e s e e s e e saeae et et e be b esseeseeseesee st entententansans 968
KoRAY ettt ettt ettt sttt st b ettt e e e a et et e s et et e et et ese e s e te s eaesentenaes 970
WOrking With HTTP APISeeiiiiiiiiiiiiiiieeenneiiiiiiceitistesss 984
D L2AV 7] L] o TSR R TSRS 984
Creating AN HT TP AP ..ttt st ste s st e s ae s e e s saessaeessae s saessbesssaesssesssaessnessseesssannns 985
ROUTES .ttt ettt sttt e st s e e s ae e s e e s s ae e st e s ae s s e e s aa e st e s se e saesssaesssassseesssessseesssesssennses 986
ACCESS CONLIOL ottt ettt te s e e e e e e e e s et et et e s besseeseessesee s et ansasassassaeseasaesaansansansansan 989
INEEGIATIONS ..ottt ettt et s e e s e e st e e st e s sae e seessaa e st essaesssesssassssessaessaesssann 1008
CORS ettt sttt sttt ettt et et e e st et e et et et a et et e R et et e R e e R et e st e R e e e et e ae e s et et esententens 1029
Parameter MAPPING .ottt st es e e e st e stessaesssaessaeesssesssessssesssessssasssassssesssessseens 1032
OPENAPH ...ttt sttt ete s st e st e s sr e e s b e s ssa e st e s st eesaesssaessee e aeesstesse e st e e st e stesstessaeeanans 1039
PUDBLIST ettt ettt sttt et e st e e s s e st et e s b et e e ssasbentenessessenasans 1049
STAGES ettt ettt st a e e sa e e b e s b e et e e st e st e s r e e e b e e st e e e e s e e et e e raeessaenses 1049
Security POLICY FOr HTTP APIS ...ttt ste st e e e e tesaesae b e sse s e e e s e e e e saenaens 1052
CUSEOM AOM@IN NAIMIES ..ottt e et e et e st e te st e stesse e e e s et e s e tessassessassaessensessessansansansas 1053
PrOTECT .ttt sttt e st e s s r e e s b e s s se e s b e s ae e s b e e s e e s b e e s aa e e b e e s e e s teesae e ae e saensaassraans 1060
TRFOTELING ettt sa et e st e s te st e e s e e e s e s s e s e aestestassassessassasnsensaneans 1060
MULUL TLS ettt ettt e st ste s te s te et e e e e e e et et et e b e s bassassaesaessensansantassansassassaesaasaans 1062
MONIEOL <.ttt ettt s ettt e e sa e e st e s s ae e st e e aeessaessse e saaessaessaesasaesssassseesssesssaesssesssessssessseessaessseanns 1068
MBLEICS oottt ettt et s e e st e s bt s s e e s b e e s e e s aesesa e s b e e st e e sa s saesseesseasssesssaessseesssessseessaessens 1068

Amazon API Gateway Developer Guide

LOGGING 1ottt st e et e st e st es e e e sae e st e s saesssa e e s e e saasaesssae s saessaas s e e st es b e e st e e aeessaesaeesaesnsennns 1070
TrOUDLESNOOTING ..ottt ettt e st e st e st e e e e e e et e st e besbasseesaene e e enaensanes 1081
Lambda iNTEGIratioNs ..ottt ste ettt e s b st sae s e e e a e n et nes 1081
JWT QUENOFIZELS ..ottt sttt st ettt et s sa et e s se st e e s e sbe st esassesaenassassensesans 1084
Working with WebSocket APISeiiiiiiiiiiiinneennniiiiiiiiiiiiiissns 1086
ADOUL WEDSOCKET APIS ..ottt sttt te st sse st sa et st s e sbe st e e sse st e s s e ssassssassessassesansan 1086
Managing connected users and ClieNt @PPS ..cceeeeeeiecieceecececeeeeee et 1088
Invoking your backend integration ... 1091
Sending data from backend services to connected clientsccoceeeeevenenienieeceeceeceeceeee 1095
WebSocket Selection @XPreSSIONScciceeeeeeieeietcieciecte e e e ee e saesse s e s se s e e e s s eseesennans 1095
DEVELOP .ttt ettt et e st e st e e e e e e s et e st e et e e b e reeaeese e R e e aeaebastaeseeseeaaentententatantans 1103
Create anNd CONTFIGUIE ...ttt e e et e st et esbe s e e e e s e s e s e sansaneans 1104
ROULES ...ttt et et a e st s s b e s b e st s b e st et e s ae e b et s eae st asntesesnsaneas 1106
ACCESS CONTIOL cueiiiiieiieieteesetet ettt ettt ettt e e s e st et s se st e e ssa st et esassassenessessansesasans 1114
INEEGIATIONS ..ottt ettt et s e e s e e st e e st e s sae e seessaa e st essaesssesssassssessaessaesssann 1122
REQUEST ValiAQION ..ottt st e st ae e s e e et et e b nas 1131
Data tranSfOrMAtiONScciviriieiiirenierere ettt et sttt e se s e sse st e e ssasse s s e ssassenaes 1135
BiNAry MEAIA TYPES ..ottt ettt et e st e st e s e e a et st et et e s aeene e e ennenns 1146
INVOKE <ttt ettt et ettt st et et s s et et e s s e et e e s be b e e e sesse st e e esantenaenans 1146
PUDBLISH .ttt ettt e st e s e s e e e e st e e et e st e b e et e s e s se e e e s et eaasasseeseeseeneensansanes 1149
SSRGS ettt et e a e e s et e b e s b e e et e e st e st e e b e e e b e e st e b e e s e e et e e aeesasaenses 1150
DeEPLoy @ WEDSOCKEL API ...ttt ste s e s e e s et saesaesaesbe s s e e sa s e e s eaesensansans 1152
Security policy fOr WebSOCKEt APIS ...ttt ettt sve st e e e e saenens 1155
CUSTOM AOMAIN NMAMIES ...oouirveiiirierteteereste et sre st et s e ste st e e sseste e s e sse s e e ssessesaesassessesassessensenessassenaes 1157
PrOTECT .ttt ettt st s et s b et et s st e st e st e b e et e ne s b e s st e sesanannt 1162
Account-level throttling Per REGION ...ttt e e nnas 1162
ROULE-1EVEL throttliNg c..cceeeeeeeeeeee ettt s te e s a e e nan 1163
MONIEOE ettt ettt st st s et e b st e st s b e et e s se s s b e s b e st s ae et esseesesatesneensannns 1163
IMBEFICS ettt ettt b e ettt s e se s b e st e e st s b e st e st e b e st eesesssesntesesnsesstans 1164
LOGGING .ottt e s ste s st e s sae e st e s sae e st e e saesssa e s s e e saesaeessae s se e saae b e e st e s e e st eesaaessaesaeeraesnseenns 1166
APl GateWay ARNScuuiiiiuiiiineiiitnniiitneiniesnesstssessisssessesssssssssssssssessns 1174
HTTP APl and WebS0CKEt APl FESOUICEScoueirerieieirienieisesteteestesteessessetsessesesessessessssessessesens 1174
REST AP FESOUICES ...ttt et et ste et s sseeste st s sse st e st s s e et e s st ssse st esstesasstessesssesasessesasanns 1177
execute-api (HTTP APIs, WebSocket APIs, and REST APIS)cceceeuerrerenenereeeeeeeeeecre e e 1182
OPENAPI EXEENSIONS uueeeiiiiiiiiiiiiineenansnisssssseeceesnss 1183
X-amazon-apigateway-any-MeThOd .. 1184

Vi

Amazon API Gateway Developer Guide

Xx-amazon-apigateway-any-method eXamples ... 1185
X-AMAZON-APIGATEWAY-COIS ..eeeviirierrreieieenitensrerstessseestesssessseesssessssesssessssssssessssesssessssesssessssesssesssasssses 1186
X-amazon-apigateway-cors XAMPLE ...ttt se e e st e saestesae s e s e e e e s ennens 1186
X-amazoN-apigateway-api-KeY —SOUTCE .iiciectertesteseseee e et e eestestesaessessessesesaennas 1187
X-amazon-apigateway-api-key-source eXamplecceceeeneneneneceeree e 1188
X=aMazoN-apPigateWay QUL ettt et n 1189
X-amazon-apigateway-auth eXamPle ... 1189
X-amazonN-apigateway -aUtNOTLIZET et 1190
Xx-amazon-apigateway-authorizer examples for REST APIScccovirivvieciecieceneneseseseeeenes 1193
x-amazon-apigateway-authorizer examples for HTTP APIScoooiiieviicieveececeneneseseeeenens 1197
X-amazonN-apigateway -aUtRTYPE e sr e 1199
Xx-amazon-apigateway-authtype eXample ... 1199
SO QLSO ittt sttt st et a et b et et s et e se st et e aessentenees 1201
X-amazon-apigateway-binary-media-tyPe ...ttt saens 1201
X-amazon-apigateway-binary-media-types eXxample ... 1201
X-amazon-apigateway-doCUMENTALIONcccceviririierececrccsesese e see e s e e s aesae s 1201
Xx-amazon-apigateway-documentation eXamPLec.cocvieieiiieiineenenesenese e 1202
X-amazon-apigateway-endpoint-configuration ... 1203
X-amazon-apigateway-endpoint-configuration examplesccoceeevereveveneneneecesecreceeenne. 1203
X-aMazon-apigateway-gateWay-rESPONSESccevvirveererrienerrrenteneessessteseessessseseessesssessesssesssesses 1204
X-amazon-apigateway-gateway-responses eXamMPLecccccveeerirreneereineeneneneneseseeseesseeens 1204
X-amazon-apigateway-gateway-responses.gatewayReSPONSEcccoveevververveerreeneenenseenersnennees 1205
X-amazon-apigateway-gateway-responses.gatewayResponse exampleccccoceeveeveevennene. 1205
X-amazon-apigateway-gateway-responses.responseParameterscccceveeverveeneenenreenreeseenseennes 1206
X-amazon-apigateway-gateway-responses.responseParameters exampleccccocevvecvennee. 1206
X-amazon-apigateway-gateway-responses.responseTemMPlatesccccvveverenenienreniesessesseennns 1207
X-amazon-apigateway-gateway-responses.responseTemplates examplecccoceeveeeenene. 1207
X-amazon-apigateway-impPOrteXPOrt-VEISiONccciereerrerrerieenenrieseeseeseesseesesssesssesesssessaessenns 1208
X-amazon-apigateway-importexport-version eXample ... 1208
X-amazon-apigateway-1ntegration ettt s e e sre s 1208
X-amazon-apigateway-integration eXamPpPLEScoivivirenenenienerce e 1214
X-amazon-apigateway-iNtegrations ...ttt sre st ssr e s e saeene 1216
X-amazon-apigateway-integrations eXamPLle ... 1216
X-amazon-apigateway-integration.requestTeMPLAtESccccevererinierienriireecrereses e 1218
X-amazon-apigateway-integration.requestTemplates exampleccccoveevnvnenennicneneenene 1218
X-amazon-apigateway-integration.requestParameterscccoeverienenveenennenerreeeeeee e 1219

vii

Amazon API Gateway Developer Guide

X-amazon-apigateway-integration.requestParameters example..................... 1220
X-amazon-apigateway-integratioN.rESPONSEScccverrirrierneennienreentesseessteesseessessseesssessseesssesnes 1221
X-amazon-apigateway-integration.responses exampleinnnienennn. 1222
X-amazon-apigateway-integratioN.r@SPONSEcciiveevieriineniereccestese et e e s eesresssesaaesaesaenns 1223
X-amazon-apigateway-integration.response eXxample ..., 1224
X-amazon-apigateway-integration.responseTemMPLAtesccceveverenenienienceeeecrerese e 1224
X-amazon-apigateway-integration.responseTemplate exampleccccevvevvevvervenceeveeceeceennne 1225
X-amazon-apigateway-integration.responseParameterscoevverviinennenecnenrenecseseese e 1225
X-amazon-apigateway-integration.responseParameters example 1226
Xx-amazon-apigateway-integration.tlSCONTIgc.ccoeeeieeeeceereeseee e 1226
X-amazon-apigateway-integration.tlsConfig examplescceoevreeecieeneceececesecee e 1228
X-amazon-apigateway-minimum-COMPreSSION-SIZEccccceceererreerrerrrerrersesseesseesessseseessesssessesssens 1229
X-amazon-apigateway-minimum-compression-size eXampleccevevenenenenieenesseeseesnenns 1229
X-aMAzZON-APIgAtEWAY-POLICY .ueiiiiiiiterteceresertr ettt ettt s e st sae st e s e sse s e s e s a e s e e esaasaanes 1229
X-amazon-apigateway-policy eXamPLle ... 1229
x-amazon-apigateway-request-validator ... 1230
X-amazon-apigateway-request-validator example ..., 1230
x-amazon-apigateway-request-validators ... e 1231
X-amazon-apigateway-request-validators exampleininencneniennennene, 1232
x-amazon-apigateway-request-validators.requestValidator ... 1233
X-amazon-apigateway-request-validators.requestValidator example......... 1233
X-amazon-apigateway-tag-Value ...ttt 1233
X-amazon-apigateway-tag-value eXample ... 1234
SECUNILY ceeiieiiiiiisnnnnriiieisiissssnnnnnieccssssssnssseneeesssssssssssssesses 1235
DAta PrOTECLION ..ottt et s e e st e s ae s st e s b e e s e e s sae s e e s sbe e st essaaasssesssasnneans 1236
DAta @NCIYPLION ettt ettt s ettt s st st s b st e st s se st e st e snesanesnees 1236
INternetwork traffic Privaty ..ottt ae st aas 1237
Identity and access MANAGEMENTc.i ittt ettt e sttt et saesaessessessesaeneens 1238
AUIENCE ..ttt ettt e s s st s st et et et e s b e s s e s s e sasse st et et e s essassassessassesnsensensensenes 1238
Authenticating With identitiesooeeereeirie ettt sreaes 1239
Managing access USING POLICIES ...coueviririiiirieterierereeeree et esresae s et st et saestessessessessessesneens 1242
How Amazon APl Gateway WOrks With TAM ...ttt 1244
Identity-based policy @XaAmMPLESo ittt st 1249
Resource-based policy @XamMPLES ..ottt sttt seesae s e sse s e s e s e ees 1257
TrOUDBLESNOOTING ...ttt ettt ettt sa e b s s e sa s e s e e e st esnesaesnens 1258
USIiNG Service-lNKed FOLESco ottt sae e 1259

viii

Amazon API Gateway Developer Guide

Logging and MONILOIING ..c.ccueeveeieeeeeceeeeeete ettt e saesteste s e s e e e e e e e e s e s e stesaa s assaesnesaennanaanes 1264
Working With CLOUATIAILecuiiieeeeeeeeeeeee ettt st te et e e s e s e aesbanaans 1266
Working With AWS CONTIQ co.ueuieieeeeeeees ettt te et et esaessesae e s e s e nennens 1269

ComPLiANCe ValidAtioN ...ttt e st e e a s 1272

RESILIEINCE ..ottt ettt ettt s s st e st st et e e s b e sae st e sa b e st esessassenssnasansesens 1273

INFrasStrUCTUIE SECUNILY .uviieieteecee ettt et e st e s e e e e e e s e s et e saesaessessessnennannans 1273

Configuration and vulnerability @analysis ... a e 1274

BEST PrACLICES ...ttt sttt e s s ae e st e s a e s e e s s e e e s e e s be e s e e s aa e st e s ae e sa e e raessaessaeennes 1274

TAGGING ceerrniiiiiiiiiiiiiinnannnneiiiisieeeesssass 1277

API| Gateway resources that can be tagged ... 1277
Tag inheritance in the Amazon APl Gateway VT APl ...t 1279
Tag restrictions and USAgE CONVENTIONScc.ccueeeieieiiieieeceseee ettt a e e ae s 1280

Attribute-based aCCeSS CONLIOL ..ottt sttt sa e 1280
Limit actions based 0N reSOUICE taAgSccececieriereeecereeeerete e et saesaesaesse e raennens 1281
Allow actions based 0N reSOUICE TaQGSccuvevueeireeecicteeeetese ettt st e e e a s 1282
Deny tagging OPEratioNScccuecciiiiiiriererteete st et st e sste st e s tessaeeeaesssaesssesssaesssessssesssassssasssasnns 1283
ALLOW tagging OPEratioNScc.cceeieieieetececesee ettt steste s e s e s s e s e s e stesae st e sassassessnesaanaans 1283

N o I = =T =T 3TN 1285
Quotas and IMPOrtant NOLES ...ccccceeeeeeeiiiiiiiiiiiiiiieeeenssisiiiseeeeeettess 1286

API| Gateway account-level qUOtas, Per REGIONc.ccicieeeeeneeeeeeeeee ettt e e 1286

HTTP AP QUOTAS ..ottt ettt stessae s stessae e st e ssae s st e s saeessaesssesssaesssassssesssessssesssassseesssessnes 1287
... 1287

API| Gateway quotas for configuring and running a WebSocket APIcoovevececeneneceeeeeee 1290

API Gateway quotas for configuring and running @ REST APlcuiiieiiecieeeeeceeeeeeeenens 1291

API| Gateway quotas for creating, deploying and managing an APlccoveeveeveeceeceeceeceenne 1295

IMPOITANT NOTES ...ttt e st s s e e s sae e st e s sae et e s sae e st e s saesssaessseesssasssesssaessees 1298
Important notes for REST and WebSocket APIS ...t 1298
Important Notes for WebSOCKEt APIS ...ttt ettt re e e e neaens 1298
IMportant NOtES fOr REST APIS ...ttt sttt sttt s s s se s e n e 1298

(DT oYal 1Ty 1 L= 01 a1 TES o] o OO UPUTTN 1305

EQrlIEr UPAALES ..ottt et st et et e st e st e s e s sesseesa e e e s et e tebasessassassessaanean 1315

AWS GLOSSANY .cceeeeennnnissneeeennenenssssssssssssssssessnes 1325

Amazon API Gateway Developer Guide

What is Amazon APl Gateway?

® Note

The redesigned API Gateway console experience is now available. For a tutorial on how to
use the console to create a REST API, see Getting started with the REST API console.

Amazon APl Gateway is an AWS service for creating, publishing, maintaining, monitoring, and
securing REST, HTTP, and WebSocket APIs at any scale. API developers can create APIs that access
AWS or other web services, as well as data stored in the AWS Cloud. As an APl Gateway API
developer, you can create APIs for use in your own client applications. Or you can make your APIs
available to third-party app developers. For more information, see the section called “Who uses API

Gateway?".

API| Gateway creates RESTful APIs that:

e Are HTTP-based.
« Enable stateless client-server communication.

« Implement standard HTTP methods such as GET, POST, PUT, PATCH, and DELETE.

For more information about API Gateway REST APIs and HTTP APIs, see the section called
“Choosing between REST APIs and HTTP APIs ", Working with HTTP APIs, the section called “Use
AP| Gateway to create REST APIs", and the section called "Create and configure”.

API| Gateway creates WebSocket APIs that:

» Adhere to the WebSocket protocol, which enables stateful, full-duplex communication between
client and server.

» Route incoming messages based on message content.

For more information about API Gateway WebSocket APIs, see the section called “"Use API Gateway
to create WebSocket APIs” and the section called “About WebSocket APIs".

Topics

« Architecture of APl Gateway

https://aws.amazon.com/what-is-cloud-computing/
https://tools.ietf.org/html/rfc6455

Amazon API Gateway

Developer Guide

Features of APl Gateway

APl Gateway use cases

Accessing APl Gateway

Part of AWS serverless infrastructure

How to get started with Amazon API Gateway

Amazon AP| Gateway concepts

Choosing between REST APIs and HTTP APIs

Getting started with the REST API console

Architecture of API Gateway

The following diagram shows APl Gateway architecture.

==
== &1
15 Fh :
Connected users and oo x
streaming dashboards =a? LNy AWS Lambda
]
EE—— “
@ — AN " v % Amazon Kinesis
‘%j P API Gateway
... cache ¢ Other Aws

Web and mobile services

applications

Amazon APl Gateway

Create, publish, maintain, {\
° monitor, and secure APls Q
@ at any scale
(@ O

O ! Amazon
loT devices CloudWatch Private applications
VPC and on-premises

Private applications:
VPC and on-premises

L@ Amazon EC2

Amazon
DynamoDB

TN f "
l\@j Publicly accessible

endpoints

2
[=[=]a]
ooo
000

Data center

This diagram illustrates how the APIs you build in Amazon API Gateway provide you or your
developer customers with an integrated and consistent developer experience for building AWS
serverless applications. APl Gateway handles all the tasks involved in accepting and processing
up to hundreds of thousands of concurrent API calls. These tasks include traffic management,
authorization and access control, monitoring, and API version management.

API Gateway acts as a "front door" for applications to access data, business logic, or functionality
from your backend services, such as workloads running on Amazon Elastic Compute Cloud

Architecture of APl Gateway

Amazon API Gateway Developer Guide

(Amazon EC2), code running on AWS Lambda, any web application, or real-time communication
applications.

Features of APl Gateway

Amazon API Gateway offers features such as the following:

Support for stateful (WebSocket) and stateless (HTTP and REST) APls.

Powerful, flexible authentication mechanisms, such as AWS Identity and Access Management

policies, Lambda authorizer functions, and Amazon Cognito user pools.

Canary release deployments for safely rolling out changes.

CloudTrail logging and monitoring of APl usage and API changes.

CloudWatch access logging and execution logging, including the ability to set alarms. For more
information, see the section called “CloudWatch metrics” and the section called “Metrics”.

Ability to use AWS CloudFormation templates to enable API creation. For more information, see
Amazon API Gateway Resource Types Reference and Amazon API Gateway V2 Resource Types
Reference.

Support for custom domain names.

Integration with AWS WAF for protecting your APIs against common web exploits.

Integration with AWS X-Ray for understanding and triaging performance latencies.

For a complete list of APl Gateway feature releases, see Document history.

API Gateway use cases

Topics

Use API Gateway to create REST APIs

Use API Gateway to create HTTP APIs

Use APl Gateway to create WebSocket APIs

Who uses APl Gateway?

Features of APl Gateway 3

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/AWS_ApiGateway.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/AWS_ApiGatewayV2.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/AWS_ApiGatewayV2.html

Amazon API Gateway Developer Guide

Use API Gateway to create REST APIs

An API Gateway REST API is made up of resources and methods. A resource is a logical entity that
an app can access through a resource path. A method corresponds to a REST API request that is
submitted by the user of your APl and the response returned to the user.

For example, /incomes could be the path of a resource representing the income of the app user.
A resource can have one or more operations that are defined by appropriate HTTP verbs such as
GET, POST, PUT, PATCH, and DELETE. A combination of a resource path and an operation identifies
a method of the API. For example, a POST /incomes method could add an income earned by the
caller,and a GET /expenses method could query the reported expenses incurred by the caller.

The app doesn't need to know where the requested data is stored and fetched from on the
backend. In APl Gateway REST APIs, the frontend is encapsulated by method requests and method
responses. The APl interfaces with the backend by means of integration requests and integration
responses.

For example, with DynamoDB as the backend, the API developer sets up the integration request
to forward the incoming method request to the chosen backend. The setup includes specifications
of an appropriate DynamoDB action, required 1AM role and policies, and required input data
transformation. The backend returns the result to API Gateway as an integration response.

To route the integration response to an appropriate method response (of a given HTTP status code)
to the client, you can configure the integration response to map required response parameters
from integration to method. You then translate the output data format of the backend to that of
the frontend, if necessary. APl Gateway enables you to define a schema or model for the payload
to facilitate setting up the body mapping template.

API Gateway provides REST APl management functionality such as the following:

» Support for generating SDKs and creating APl documentation using APl Gateway extensions to
OpenAPI

» Throttling of HTTP requests

Use API Gateway to create HTTP APIs

HTTP APIs enable you to create RESTful APIs with lower latency and lower cost than REST APIs.

Use API Gateway to create REST APIs 4

https://en.wikipedia.org/wiki/Payload_(computing)

Amazon API Gateway Developer Guide

You can use HTTP APIs to send requests to AWS Lambda functions or to any publicly routable
HTTP endpoint.

For example, you can create an HTTP API that integrates with a Lambda function on the backend.
When a client calls your API, APl Gateway sends the request to the Lambda function and returns
the function's response to the client.

HTTP APIs support OpenlID Connect and OAuth 2.0 authorization. They come with built-in support
for cross-origin resource sharing (CORS) and automatic deployments.

To learn more, see the section called “Choosing between REST APIs and HTTP APIs ".

Use API Gateway to create WebSocket APIs

In a WebSocket API, the client and the server can both send messages to each other at any
time. Backend servers can easily push data to connected users and devices, avoiding the need to
implement complex polling mechanisms.

For example, you could build a serverless application using an APl Gateway WebSocket API and
AWS Lambda to send and receive messages to and from individual users or groups of users in a
chat room. Or you could invoke backend services such as AWS Lambda, Amazon Kinesis, or an HTTP
endpoint based on message content.

You can use API Gateway WebSocket APIs to build secure, real-time communication applications
without having to provision or manage any servers to manage connections or large-scale data
exchanges. Targeted use cases include real-time applications such as the following:

» Chat applications

« Real-time dashboards such as stock tickers

« Real-time alerts and notifications

API Gateway provides WebSocket APl management functionality such as the following:

« Monitoring and throttling of connections and messages
« Using AWS X-Ray to trace messages as they travel through the APIs to backend services
« Easy integration with HTTP/HTTPS endpoints

Use API Gateway to create WebSocket APIs 5

https://openid.net/connect/
https://oauth.net/2/

Amazon API Gateway Developer Guide

Who uses APl Gateway?

There are two kinds of developers who use APl Gateway: APl developers and app developers.

An API developer creates and deploys an API to enable the required functionality in APl Gateway.
The API developer must be a user in the AWS account that owns the API.

An app developer builds a functioning application to call AWS services by invoking a WebSocket or
REST API created by an API developer in APl Gateway.

The app developer is the customer of the APl developer. The app developer doesn't need to
have an AWS account, provided that the API either doesn't require IAM permissions or supports
authorization of users through third-party federated identity providers supported by Amazon
Cognito user pool identity federation. Such identity providers include Amazon, Amazon Cognito

user pools, Facebook, and Google.
Creating and managing an APl Gateway API

An API developer works with the APl Gateway service component for APl management, named
apigateway, to create, configure, and deploy an API.

As an API developer, you can create and manage an API by using the API Gateway console,
described in Getting started with API Gateway, or by calling the API references. There are several
ways to call this API. They include using the AWS Command Line Interface (AWS CLI), or by using an
AWS SDK. In addition, you can enable API creation with AWS CloudFormation templates or (in the
case of REST APIs and HTTP APIs) Working with APl Gateway extensions to OpenAPI.

For a list of Regions where APl Gateway is available, as well as the associated control service
endpoints, see Amazon API Gateway Endpoints and Quotas.

Calling an API Gateway API

An app developer works with the APl Gateway service component for APl execution, named
execute-api, to invoke an API that was created or deployed in API Gateway. The underlying
programming entities are exposed by the created API. There are several ways to call such an API. To
learn more, see Invoking a REST APl in Amazon API Gateway and Invoking a WebSocket API.

Accessing APl Gateway

You can access Amazon API Gateway in the following ways:

Who uses APl Gateway? 6

https://docs.aws.amazon.com/cognito/latest/developerguide/
https://docs.aws.amazon.com/cognito/latest/developerguide/
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/template-reference.html
https://docs.aws.amazon.com/general/latest/gr/apigateway.html

Amazon API Gateway Developer Guide

« AWS Management Console - The AWS Management Console provides a web interface for
creating and managing APIs. After you complete the steps in Prerequisites, you can access the API
Gateway console at https://console.aws.amazon.com/apigateway.

« AWS SDKs - If you're using a programming language that AWS provides an SDK for, you can
use an SDK to access APl Gateway. SDKs simplify authentication, integrate easily with your
development environment, and provide access to APl Gateway commands. For more information,
see Tools for Amazon Web Services.

« API Gateway V1 and V2 APIs - If you're using a programming language that an SDK isn't
available for, see the Amazon API Gateway Version 1 APl Reference and Amazon API Gateway

Version 2 API Reference.

« AWS Command Line Interface - For more information, see Getting Set Up with the AWS

Command Line Interface in the AWS Command Line Interface User Guide.

« AWS Tools for Windows PowerShell - For more information, see Setting Up the AWS Tools for
Windows PowerShell in the AWS Tools for Windows PowerShell User Guide.

Part of AWS serverless infrastructure

Together with AWS Lambda, API Gateway forms the app-facing part of the AWS serverless

infrastructure. To learn more about getting started with serverless, see the Serverless Developer
Guide.

For an app to call publicly available AWS services, you can use Lambda to interact with required
services and expose Lambda functions through APl methods in APl Gateway. AWS Lambda runs
your code on a highly available computing infrastructure. It performs the necessary execution and
administration of computing resources. To enable serverless applications, APl Gateway supports
streamlined proxy integrations with AWS Lambda and HTTP endpoints.

How to get started with Amazon API Gateway

For an introduction to Amazon API Gateway, see the following:

» Getting started, which provides a walkthrough for creating an HTTP API.

« Serverless land, which provides instructional videos.

« Happy Little API Shorts, which is a series of brief instructional videos.

Part of AWS serverless infrastructure 7

https://console.aws.amazon.com/apigateway
https://aws.amazon.com/tools
https://docs.aws.amazon.com/apigateway/api-reference/
https://docs.aws.amazon.com/apigatewayv2/latest/api-reference/api-reference.html
https://docs.aws.amazon.com/apigatewayv2/latest/api-reference/api-reference.html
https://docs.aws.amazon.com/cli/latest/userguide/
https://docs.aws.amazon.com/cli/latest/userguide/
https://docs.aws.amazon.com/powershell/latest/userguide/
https://docs.aws.amazon.com/powershell/latest/userguide/
https://docs.aws.amazon.com/lambda/latest/dg/
https://docs.aws.amazon.com/serverless/latest/devguide/welcome.html
https://docs.aws.amazon.com/serverless/latest/devguide/welcome.html
https://serverlessland.com/video?tag=Amazon%20API%20Gateway
https://www.youtube.com/playlist?list=PLJo-rJlep0EDFw7t0-IBHffVYKcPMDXHY

Amazon API Gateway Developer Guide

Amazon API Gateway concepts

API Gateway

AP| Gateway is an AWS service that supports the following:

» Creating, deploying, and managing a RESTful application programming interface (API) to
expose backend HTTP endpoints, AWS Lambda functions, or other AWS services.

» Creating, deploying, and managing a WebSocket API to expose AWS Lambda functions or
other AWS services.

« Invoking exposed APl methods through the frontend HTTP and WebSocket endpoints.
APl Gateway REST API

A collection of HTTP resources and methods that are integrated with backend HTTP endpoints,
Lambda functions, or other AWS services. You can deploy this collection in one or more stages.
Typically, API resources are organized in a resource tree according to the application logic. Each
API resource can expose one or more APl methods that have unique HTTP verbs supported by
API Gateway. For more information, see the section called “Choosing between REST APIs and
HTTP APIs ".

APl Gateway HTTP API

A collection of routes and methods that are integrated with backend HTTP endpoints or
Lambda functions. You can deploy this collection in one or more stages. Each route can expose
one or more APl methods that have unique HTTP verbs supported by API Gateway. For more
information, see the section called “Choosing between REST APIs and HTTP APIs ".

APl Gateway WebSocket API

A collection of WebSocket routes and route keys that are integrated with backend HTTP
endpoints, Lambda functions, or other AWS services. You can deploy this collection in one or
more stages. APl methods are invoked through frontend WebSocket connections that you can
associate with a registered custom domain name.

API deployment

A point-in-time snapshot of your APl Gateway API. To be available for clients to use, the
deployment must be associated with one or more API stages.

API developer

Your AWS account that owns an APl Gateway deployment (for example, a service provider that
also supports programmatic access).

AP| Gateway concepts 8

https://en.wikipedia.org/wiki/Representational_state_transfer
https://tools.ietf.org/html/rfc6455

Amazon API Gateway Developer Guide

API endpoint

A hostname for an API in APl Gateway that is deployed to a specific Region. The hostname is of
the form {api-id}.execute-api.{region}.amazonaws.com. The following types of API
endpoints are supported:

» Edge-optimized API endpoint

» Private APl endpoint

« Regional API endpoint
API key

An alphanumeric string that API Gateway uses to identify an app developer who uses your
REST or WebSocket API. APl Gateway can generate APl keys on your behalf, or you can import
them from a CSV file. You can use API keys together with Lambda authorizers or usage plans to
control access to your APlIs.

See API endpoints.

APl owner

See API developer.
API stage

A logical reference to a lifecycle state of your API (for example, 'dev', 'prod’, 'beta’, 'v2'). API
stages are identified by API ID and stage name.

App developer

An app creator who may or may not have an AWS account and interacts with the API that you,
the API developer, have deployed. App developers are your customers. An app developer is
typically identified by an API key.

Callback URL

When a new client is connected to through a WebSocket connection, you can call an integration
in APl Gateway to store the client's callback URL. You can then use that callback URL to send
messages to the client from the backend system.

Developer portal

An application that allows your customers to register, discover, and subscribe to your API
products (APl Gateway usage plans), manage their API keys, and view their usage metrics for
your APIs.

AP| Gateway concepts 9

Amazon API Gateway Developer Guide

Edge-optimized APl endpoint

The default hostname of an API Gateway API that is deployed to the specified Region while
using a CloudFront distribution to facilitate client access typically from across AWS Regions. API
requests are routed to the nearest CloudFront Point of Presence (POP), which typically improves
connection time for geographically diverse clients.

See APl endpoints.

Integration request

The internal interface of a WebSocket API route or REST APl method in API Gateway, in which
you map the body of a route request or the parameters and body of a method request to the
formats required by the backend.

Integration response

The internal interface of a WebSocket API route or REST APl method in API Gateway, in which
you map the status codes, headers, and payload that are received from the backend to the
response format that is returned to a client app.

Mapping template

A script in Velocity Template Language (VTL) that transforms a request body from the frontend
data format to the backend data format, or that transforms a response body from the backend
data format to the frontend data format. Mapping templates can be specified in the integration

request or in the integration response. They can reference data made available at runtime as
context and stage variables.

The mapping can be as simple as an identity transform that passes the headers or body

through the integration as-is from the client to the backend for a request. The same is true for a
response, in which the payload is passed from the backend to the client.

Method request

The public interface of an APl method in API Gateway that defines the parameters and body
that an app developer must send in requests to access the backend through the API.

Method response

The public interface of a REST API that defines the status codes, headers, and body models that
an app developer should expect in responses from the API.

AP| Gateway concepts 10

https://velocity.apache.org/engine/devel/vtl-reference.html
https://en.wikipedia.org/wiki/Identity_transform

Amazon API Gateway Developer Guide

Mock integration

In @ mock integration, APl responses are generated from APl Gateway directly, without the
need for an integration backend. As an API developer, you decide how APl Gateway responds
to a mock integration request. For this, you configure the method's integration request and
integration response to associate a response with a given status code.

Model

A data schema specifying the data structure of a request or response payload. A model is
required for generating a strongly typed SDK of an API. It is also used to validate payloads.

A model is convenient for generating a sample mapping template to initiate creation of a
production mapping template. Although useful, a model is not required for creating a mapping
template.

Private API

See Private API endpoint.

Private API endpoint

An API endpoint that is exposed through interface VPC endpoints and allows a client to securely
access private API resources inside a VPC. Private APIs are isolated from the public internet, and
they can only be accessed using VPC endpoints for APl Gateway that have been granted access.

Private integration

An API Gateway integration type for a client to access resources inside a customer's VPC
through a private REST API endpoint without exposing the resources to the public internet.

Proxy integration

A simplified APl Gateway integration configuration. You can set up a proxy integration as an
HTTP proxy integration or a Lambda proxy integration.

For HTTP proxy integration, APl Gateway passes the entire request and response between the
frontend and an HTTP backend. For Lambda proxy integration, APl Gateway sends the entire
request as input to a backend Lambda function. APl Gateway then transforms the Lambda
function output to a frontend HTTP response.

In REST APIs, proxy integration is most commonly used with a proxy resource, which is
represented by a greedy path variable (for example, {proxy+}) combined with a catch-all ANY
method.

AP| Gateway concepts 11

Amazon API Gateway Developer Guide

Quick create

You can use quick create to simplify creating an HTTP API. Quick create creates an APl with a
Lambda or HTTP integration, a default catch-all route, and a default stage that is configured to
automatically deploy changes. For more information, see the section called “Create an HTTP API
by using the AWS CLI".

Regional API endpoint

The host name of an API that is deployed to the specified Region and intended to serve clients,
such as EC2 instances, in the same AWS Region. API requests are targeted directly to the
Region-specific APl Gateway APl without going through any CloudFront distribution. For in-
Region requests, a Regional endpoint bypasses the unnecessary round trip to a CloudFront
distribution.

In addition, you can apply latency-based routing on Regional endpoints to deploy an API to
multiple Regions using the same Regional APl endpoint configuration, set the same custom
domain name for each deployed API, and configure latency-based DNS records in Route 53 to
route client requests to the Region that has the lowest latency.

See APl endpoints.

Route

A WebSocket route in APl Gateway is used to direct incoming messages to a specific integration,
such as an AWS Lambda function, based on the content of the message. When you define

your WebSocket API, you specify a route key and an integration backend. The route key is an
attribute in the message body. When the route key is matched in an incoming message, the
integration backend is invoked.

A default route can also be set for non-matching route keys or to specify a proxy model that
passes the message through as-is to backend components that perform the routing and process
the request.

Route request

The public interface of a WebSocket API method in APl Gateway that defines the body that an
app developer must send in the requests to access the backend through the API.

Route response

The public interface of a WebSocket API that defines the status codes, headers, and body
models that an app developer should expect from API Gateway.

AP| Gateway concepts 12

https://docs.aws.amazon.com/Route53/latest/DeveloperGuide/routing-policy.html#routing-policy-latency

Amazon API Gateway Developer Guide

Usage plan

A usage plan provides selected API clients with access to one or more deployed REST or
WebSocket APIs. You can use a usage plan to configure throttling and quota limits, which are
enforced on individual client API keys.

WebSocket connection

API| Gateway maintains a persistent connection between clients and APl Gateway itself. There
is no persistent connection between APl Gateway and backend integrations such as Lambda
functions. Backend services are invoked as needed, based on the content of messages received
from clients.

Choosing between REST APIs and HTTP APIs

REST APIs and HTTP APIs are both RESTful APl products. REST APIs support more features than
HTTP APIs, while HTTP APIs are designed with minimal features so that they can be offered at a
lower price. Choose REST APIs if you need features such as API keys, per-client throttling, request

validation, AWS WAF integration, or private APl endpoints. Choose HTTP APIs if you don't need the

features included with REST APIs.
The following sections summarize core features that are available in REST APIs and HTTP APIs.
Endpoint type

The endpoint type refers to the endpoint that APl Gateway creates for your API. For more
information, see the section called “Choose an APl endpoint type”.

Endpoint types REST API HTTP API
Edge-optimized v

Regional v v

Private v

Choosing between REST APIs and HTTP APIs

13

Amazon API Gateway Developer Guide

Security

API Gateway provides a number of ways to protect your APl from certain threats, like malicious
actors or spikes in traffic. To learn more, see the section called “Protect” and the section called

“Protect”.
Security features REST API HTTP API
Mutual TLS authentication v v
Certificates for backend v

authentication

AWS WAF v

Authorization

API Gateway supports multiple mechanisms for controlling and managing access to your API. For
more information, see the section called “Access control” and the section called “Access control”.

Authorization options REST API HTTP API
IAM v v
Resource policies v

Amazon Cognito v va
Custom authorization withan v

AWS Lambda function

JSON Web Token (JWT) 2 v

! You can use Amazon Cognito with a JWT authorizer.

2 You can use a Lambda authorizer to validate JWTs for REST APIs.

Security 14

Amazon API Gateway Developer Guide

APl management

Choose REST APIs if you need APl management capabilities such as API keys and per-client rate
limiting. For more information, see the section called “Distribute”, the section called “Custom

domain names”, and the section called “Custom domain names".

Features REST API HTTP API
Custom domains v v
API keys v
Per-client rate limiting v
Per-client usage throttling v
Development

As you're developing your APl Gateway API, you decide on a number of characteristics of your API.
These characteristics depend on the use case of your API. For more information see the section
called “"Develop” and the section called “Develop”.

Features REST API HTTP API
CORS configuration v A

Test invocations v

Caching v

User-controlled deployments v/ v
Automatic deployments v
Custom gateway responses v

Canary release deployments v

Request validation v

APl management 15

Amazon API Gateway

Developer Guide

Features

Request parameter transform

ation

Request body transformation

Monitoring

REST API

v

HTTP API

v

API Gateway supports several options to log API requests and monitor your APIs. For more

information, see the section called “Monitor” and the section called “Monitor”.

Feature

Amazon CloudWatch metrics

Access logs to CloudWatch
Logs

Access logs to Amazon Data

Firehose

Execution logs

AWS X-Ray tracing

Integrations

REST API

HTTP API

(AN

(BN

Integrations connect your APl Gateway API to backend resources. For more information, see the

section called “Integrations” and the section called “Integrations”.

Feature

Public HTTP endpoints

AWS services

REST API

(AN

(AN

HTTP API

(AN

(AN

Monitoring

16

Amazon API Gateway Developer Guide

Feature REST API HTTP API
AWS Lambda functions v v

Private integrations with v v
Network Load Balancers

Private integrations with v
Application Load Balancers

Private integrations with AWS v

Cloud Map

Mock integrations v

Getting started with the REST API console

In this getting started exercise, you create a serverless REST API using the APl Gateway REST
API console. Serverless APIs let you focus on your applications instead of spending your time
provisioning and managing servers. This exercise should take less than 20 minutes to complete,
and is possible within the AWS Free Tier.

First, you create a Lambda function using the Lambda console. Next, you create a REST API using
the API Gateway REST API console. Then, you create an APl method and integrate it with a Lambda
function using a Lambda proxy integration. Finally, you deploy and invoke your API.

When you invoke your REST API, APl Gateway routes the request to your Lambda function. Lambda
runs the function and returns a response to APl Gateway. API Gateway then returns that response

to you.
Clients REST API Lambda function

Getting started with the REST API console 17

https://aws.amazon.com/free

Amazon API Gateway Developer Guide

To complete this exercise, you need an AWS account and an AWS Identity and Access Management
(IAM) user with console access. For more information, see Prerequisites for getting started with API

Gateway.

Topics

» Step 1: Create a Lambda function

o Step 2: Create a REST API

» Step 3: Create a Lambda proxy integration

» Step 4: Deploy your API

» Step 5: Invoke your API

» (Optional) Step 6: Clean up

Step 1: Create a Lambda function

You use a Lambda function for the backend of your API. Lambda runs your code only when needed
and scales automatically, from a few requests per day to thousands per second.

For this exercise, you use a default Node.js function in the Lambda console.
To create a Lambda function

1. Signin to the Lambda console at https://console.aws.amazon.com/lambda.

Choose Create function.

Under Basic information, for Function name, enter my-function.

P WD

Choose Create function.

The default Lambda function code should look similar to the following:

export const handler = async (event) => {
const response = {
statusCode: 200,
body: JSON.stringify('The API Gateway REST API console is great!'),
};
return response;

};

Step 1: Create a Lambda function 18

https://console.aws.amazon.com/lambda

Amazon API Gateway Developer Guide

You can modify your Lambda function for this exercise, as long as the function's response aligns
with the format that API Gateway requires.

Replace the default response body (Hello from Lambda!) with The API Gateway REST API
console is great!.When you invoke the example function, it returns a 200 response to clients,
along with the updated response.

Step 2: Create a REST API

Next, you create a REST API with a root resource (/).
To create a REST API

1. Signin to the APl Gateway console at https://console.aws.amazon.com/apigateway.

2. Do one of the following:

o To create your first API, for REST API, choose Build.

« If you've created an API before, choose Create API, and then choose Build for REST API.
For APl name, enter my-rest-api.

(Optional) For Description, enter a description.

Keep APl endpoint type set to Regional.

Choose Create API.

o oA~ W

Step 3: Create a Lambda proxy integration

Next, you create an APl method for your REST API on the root resource (/) and integrate the
method with your Lambda function using a proxy integration. In a Lambda proxy integration, API
Gateway passes the incoming request from the client directly to the Lambda function.

To create a Lambda proxy integration

Select the / resource, and then choose Create method.
For Method type, select ANY.

For Integration type, select Lambda.

Turn on Lambda proxy integration.

For Lambda function, enter my-function, and then select your Lambda function.

A A

Choose Create method.

Step 2: Create a REST API 19

https://console.aws.amazon.com/apigateway

Amazon API Gateway Developer Guide

Step 4: Deploy your API

Next, you create an APl deployment and associate it with a stage.

To deploy your API

1. Choose Deploy API.

2. For Stage, select New stage.

3. For Stage name, enter Prod.

4. (Optional) For Description, enter a description.
5. Choose Deploy.

Now clients can call your API. To test your API before deploying it, you can optionally choose the
ANY method, navigate to the Test tab, and then choose Test.

Step 5: Invoke your API

To invoke your API

1. From the main navigation pane, choose Stage.

2. Under Stage details, choose the copy icon to copy your API's invoke URL.

Stage details info Edit
Stage name Rate Info Web ACL

Prod - -

Cache cluster Info Burst Info Client certificate

® Inactive - -

Default method-level caching
® Inactive

Invoke URL

https://abcd1234.execute-api.us-east-1.amazonaws.com/Prod

3. Enter the invoke URL in a web browser.

Step 4: Deploy your API 20

Amazon API Gateway Developer Guide

The full URL should look like https://abcd123.execute-api.us-
east-2.amazonaws.com/Prod.

Your browser sends a GET request to the API.

4. Verify your API's response. You should see the text "The API Gateway REST API console
is great!" in your browser.

(Optional) Step 6: Clean up

To prevent accruing unnecessary costs to your AWS account, delete the resources that you created
as part of this exercise. The following steps delete your REST API, your Lambda function, and the
associated resources.

To delete your REST API

1. In the Resources pane, choose API actions, Delete API.

2. Inthe Delete API dialog box, enter confirm, and then choose Delete.

To delete your Lambda function

1. Signin to the Lambda console at https://console.aws.amazon.com/lambda.

2. On the Functions page, select your function. Choose Actions, Delete.

3. Inthe Delete 1 functions dialog box, enter delete, and then choose Delete.

To delete your Lambda function's log group

1. Open the Log groups page of the Amazon CloudWatch console.

2. Onthe Log groups page, select your function's log group (/aws/lambda/my-function).
Then, for Actions, choose Delete log group(s).

3. Inthe Delete log group(s) dialog box, choose Delete.

To delete your Lambda function's execution role

1. Open the Roles page of the IAM console.

2. (Optional) On the Roles page, in the search box, enter my-function.

(Optional) Step 6: Clean up 21

https://console.aws.amazon.com/lambda
https://console.aws.amazon.com/cloudwatch/home#logs:
https://console.aws.amazon.com/iam/home?#/roles

Amazon API Gateway Developer Guide

3. Select your function's role (for example, my-function-3lexxmpl), and then choose Delete.

4. Inthe Delete my-function-31exxmpl? dialog box, enter the name of the role, and then
choose Delete.

® Tip
You can automate the creation and cleanup of AWS resources by using AWS
CloudFormation or AWS Serverless Application Model (AWS SAM). For some example AWS

CloudFormation templates, see the example templates for API Gateway in the awsdocs
GitHub repository.

(Optional) Step 6: Clean up 22

https://github.com/awsdocs/amazon-api-gateway-developer-guide/tree/main/cloudformation-templates

Amazon API Gateway Developer Guide

Prerequisites for getting started with APl Gateway

Before you use Amazon APl Gateway for the first time, complete the following tasks.

Sign up for an AWS account

If you do not have an AWS account, complete the following steps to create one.
To sign up for an AWS account

1. Open https://portal.aws.amazon.com/billing/signup.

2. Follow the online instructions.

Part of the sign-up procedure involves receiving a phone call and entering a verification code
on the phone keypad.

When you sign up for an AWS account, an AWS account root user is created. The root user
has access to all AWS services and resources in the account. As a security best practice, assign
administrative access to an administrative user, and use only the root user to perform tasks

that require root user access.

AWS sends you a confirmation email after the sign-up process is complete. At any time, you can
view your current account activity and manage your account by going to https://aws.amazon.com/
and choosing My Account.

Create an administrative user

After you sign up for an AWS account, secure your AWS account root user, enable AWS IAM Identity
Center, and create an administrative user so that you don't use the root user for everyday tasks.

Secure your AWS account root user

1. Signin to the AWS Management Console as the account owner by choosing Root user and
entering your AWS account email address. On the next page, enter your password.

For help signing in by using root user, see Signing in as the root user in the AWS Sign-In User
Guide.

Sign up for an AWS account 23

https://portal.aws.amazon.com/billing/signup
https://docs.aws.amazon.com/singlesignon/latest/userguide/getting-started.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/getting-started.html
https://docs.aws.amazon.com/accounts/latest/reference/root-user-tasks.html
https://docs.aws.amazon.com/accounts/latest/reference/root-user-tasks.html
https://aws.amazon.com/
https://console.aws.amazon.com/
https://docs.aws.amazon.com/signin/latest/userguide/console-sign-in-tutorials.html#introduction-to-root-user-sign-in-tutorial

Amazon API Gateway Developer Guide

2. Turn on multi-factor authentication (MFA) for your root user.

For instructions, see Enable a virtual MFA device for your AWS account root user (console) in
the IAM User Guide.

Create an administrative user
1. Enable IAM Identity Center.

For instructions, see Enabling AWS IAM Identity Center in the AWS IAM Identity Center User
Guide.

2. InIAM lIdentity Center, grant administrative access to an administrative user.

For a tutorial about using the IAM Identity Center directory as your identity source, see
Configure user access with the default IAM Identity Center directory in the AWS IAM Identity
Center User Guide.

Sign in as the administrative user

« Tosign in with your IAM Identity Center user, use the sign-in URL that was sent to your email
address when you created the IAM Identity Center user.

For help signing in using an IAM Identity Center user, see Signing in to the AWS access portal in
the AWS Sign-In User Guide.

Create an administrative user 24

https://docs.aws.amazon.com/IAM/latest/UserGuide/enable-virt-mfa-for-root.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/get-set-up-for-idc.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/quick-start-default-idc.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/quick-start-default-idc.html
https://docs.aws.amazon.com/signin/latest/userguide/iam-id-center-sign-in-tutorial.html

Amazon API Gateway Developer Guide

Getting started with APl Gateway

(@ Note

The redesigned API Gateway console experience is now available. For a tutorial on how to
use the console to create a REST API, see Getting started with the REST API console.

In this getting started exercise, you create a serverless API. Serverless APlIs let you focus on your
applications, instead of spending time provisioning and managing servers. This exercise takes less
than 20 minutes to complete, and is possible within the AWS Free Tier.

First, you create a Lambda function using the AWS Lambda console. Next, you create an HTTP API
using the API Gateway console. Then, you invoke your API.

(® Note

This exercise uses an HTTP API for simplicity. APl Gateway also supports REST APIs, which
include more features. To learn more, see the section called “Choosing between REST APIs
and HTTP APIs ".

When you invoke your HTTP API, APl Gateway routes the request to your Lambda function.
Lambda runs the Lambda function and returns a response to API Gateway. API Gateway then
returns a response to you.

Clients HTTP API Lambda function

To complete this exercise, you need an AWS account and an AWS Identity and Access Management
user with console access. For more information, see Prerequisites.

Topics

« Step 1: Create a Lambda function

25

https://aws.amazon.com/free

Amazon API Gateway Developer Guide

o Step 2: Create an HTTP API
» Step 3: Test your API

» (Optional) Step 4: Clean up
» Next steps

Step 1: Create a Lambda function

You use a Lambda function for the backend of your API. Lambda runs your code only when needed
and scales automatically, from a few requests per day to thousands per second.

For this example, you use the default Node.js function from the Lambda console.
To create a Lambda function

Sign in to the Lambda console at https://console.aws.amazon.com/lambda.

1

2. Choose Create function.

3. For Function name, enter my-function.
4

Choose Create function.

The example function returns a 200 response to clients, and the text Hello from Lambda!.

You can modify your Lambda function, as long as the function's response aligns with the format
that APl Gateway requires.

The default Lambda function code should look similar to the following:

export const handler = async (event) => {
const response = {
statusCode: 200,
body: JSON.stringify('Hello from Lambda!'),
};
return response;

¥

Step 2: Create an HTTP API

Next, you create an HTTP API. APl Gateway also supports REST APIs and WebSocket APIs, but an
HTTP API is the best choice for this exercise. REST APIs support more features than HTTP APIs, but

Step 1: Create a Lambda function 26

https://console.aws.amazon.com/lambda

Amazon API Gateway Developer Guide

we don't need those features for this exercise. HTTP APIs are designed with minimal features so
that they can be offered at a lower price. WebSocket APls maintain persistent connections with
clients for full-duplex communication, which isn't required for this example.

The HTTP API provides an HTTP endpoint for your Lambda function. APl Gateway routes requests
to your Lambda function, and then returns the function's response to clients.

To create an HTTP API

1. Signin to the API Gateway console at https://console.aws.amazon.com/apigateway.

2. Do one of the following:

o To create your first API, for HTTP API, choose Build.

« If you've created an API before, choose Create API, and then choose Build for HTTP API.
For Integrations, choose Add integration.

Choose Lambda.

For Lambda function, enter my-function.

For APl name, enter my-http-api.

Choose Next.

Review the route that APl Gateway creates for you, and then choose Next.

Review the stage that APl Gateway creates for you, and then choose Next.

2 © ® N AW

0. Choose Create.

Now you've created an HTTP APl with a Lambda integration that's ready to receive requests from
clients.

Step 3: Test your API

Next, you test your API to make sure that it's working. For simplicity, use a web browser to invoke
your API.

To test your API

1. Signin to the API Gateway console at https://console.aws.amazon.com/apigateway.

2. Choose your API.
3. Note your API's invoke URL.

Step 3: Test your API 27

https://console.aws.amazon.com/apigateway
https://console.aws.amazon.com/apigateway

Amazon API Gateway Developer Guide

@ Successfully created API my-http-api (abcdef123) »

APl Gateway Details

my-http-api Edit
API details

APIID Protocol Created
abedef123 HTTP 2020-12-02

Description Default endpaoint

Mo Description @ Enabled

my-http-api
Q

Stage name Invoke URL Attached deployment Auto deploy Last updated

Sdefault https:/fabedef123.execute-apius-east-2. amazonaws.com Tezvgl enabled 2020-12-02

4. Copy your API's invoke URL, and enter it in a web browser. Append the name of your Lambda
function to your invoke URL to call your Lambda function. By default, the API Gateway console
creates a route with the same name as your Lambda function, my-function.

The full URL should look like https://abcdef123.execute-api.us-
east-2.amazonaws.com/my-function.

Your browser sends a GET request to the API.

5. Verify your API's response. You should see the text "Hello from Lambda!" in your browser.

(Optional) Step 4: Clean up

To prevent unnecessary costs, delete the resources that you created as part of this getting
started exercise. The following steps delete your HTTP API, your Lambda function, and associated
resources.

To delete an HTTP API

1. Signin to the APl Gateway console at https://console.aws.amazon.com/apigateway.

2. Onthe APIs page, select an API. Choose Actions, and then choose Delete.

3. Choose Delete.

(Optional) Step 4: Clean up 28

https://console.aws.amazon.com/apigateway

Amazon API Gateway Developer Guide

To delete a Lambda function

1. Signin to the Lambda console at https://console.aws.amazon.com/lambda.

2. On the Functions page, select a function. Choose Actions, and then choose Delete.

3. Choose Delete.

To delete a Lambda function's log group

1. In the Amazon CloudWatch console, open the Log groups page.

2. Onthe Log groups page, select the function's log group (/aws/lambda/my-function).
Choose Actions, and then choose Delete log group.

3. Choose Delete.

To delete a Lambda function's execution role

1. In the AWS Identity and Access Management console, open the Roles page.
Select the function's role, for example, my-function-3Ilexxmpl.

Choose Delete role.

P WD

Choose Yes, delete.

You can automate the creation and cleanup of AWS resources by using AWS CloudFormation
or AWS SAM. For example AWS CloudFormation templates, see example AWS CloudFormation

templates.

Next steps

For this example, you used the AWS Management Console to create a simple HTTP APIl. The HTTP
APl invokes a Lambda function and returns a response to clients.

The following are next steps as you continue to work with APl Gateway.

» Configure additional types of API integrations, including:

o HTTP endpoints

« Private resources in a VPC, such as Amazon ECS services

Next steps 29

https://console.aws.amazon.com/lambda
https://console.aws.amazon.com/cloudwatch/home#logs:
https://console.aws.amazon.com/iam/home?#/roles
https://github.com/awsdocs/amazon-api-gateway-developer-guide/tree/main/cloudformation-templates
https://github.com/awsdocs/amazon-api-gateway-developer-guide/tree/main/cloudformation-templates

Amazon API Gateway Developer Guide

o AWS services such as Amazon Simple Queue Service, AWS Step Functions, and Kinesis Data

Streams

Control access to your APIs

Enable logging for your APIs

Configure throttling for your APIs

Configure custom domains for your APIs

To get help with Amazon APl Gateway from the community, see the APl Gateway Discussion
Forum. When you enter this forum, AWS might require you to sign in.

To get help with API Gateway directly from AWS, see the support options on the AWS Support
page.

See also our frequently asked questions (FAQs), or contact us directly.

Next steps 30

https://forums.aws.amazon.com/forum.jspa?forumID=199
https://forums.aws.amazon.com/forum.jspa?forumID=199
https://aws.amazon.com/premiumsupport/
https://aws.amazon.com/premiumsupport/
https://aws.amazon.com/api-gateway/faqs/
https://aws.amazon.com/contact-us/

Amazon API Gateway Developer Guide

Amazon APl Gateway tutorials and workshops

The following tutorials and workshops provide hands-on exercises to help you learn about API
Gateway.

REST API tutorials

 Build an API Gateway REST API with Lambda integration

o Tutorial: Create a REST API by importing an example

» Build an API Gateway REST APl with HTTP integration

o Tutorial: Build a REST API with APl Gateway private integration
o Tutorial: Build an APl Gateway REST API with AWS integration

» Tutorial: Create a Calc REST API with two AWS service integrations and one Lambda non-proxy

integration
o Tutorial: Create a REST APl as an Amazon S3 proxy in APl Gateway

« Tutorial: Create a REST APl as an Amazon Kinesis proxy in APl Gateway

 Tutorial: Building a private REST API

HTTP API tutorials

 Tutorial: Build a CRUD API with Lambda and DynamoDB

o Tutorial: Building an HTTP API with a private integration to an Amazon ECS service

WebSocket API tutorials

 Tutorial: Building a serverless chat app with a WebSocket API, Lambda and DynamoDB

Workshops

Build a serverless web application

Cl/CD for serverless applications

Serverless security workshop

Serverless identity management, authentication and authorization

The Amazon APl Gateway Workshop

31

https://webapp.serverlessworkshops.io
https://cicd.serverlessworkshops.io
https://github.com/aws-samples/aws-serverless-security-workshop
https://auth.serverlessworkshops.io
https://catalog.workshops.aws/apigateway/en-US

Amazon API Gateway Developer Guide

Amazon APl Gateway REST API tutorials

The following tutorials provide hands-on exercises to help you learn about API Gateway REST APIs.

Topics

 Build an API Gateway REST API with Lambda integration

o Tutorial: Create a REST API by importing an example

» Build an APl Gateway REST API with HTTP integration

 Tutorial: Build a REST API with API Gateway private integration

 Tutorial: Build an APl Gateway REST API with AWS integration

» Tutorial: Create a Calc REST API with two AWS service integrations and one Lambda non-proxy

integration
» Tutorial: Create a REST API as an Amazon S3 proxy in APl Gateway

o Tutorial: Create a REST API as an Amazon Kinesis proxy in APl Gateway

o Tutorial: Building a private REST API

Build an APl Gateway REST API with Lambda integration

To build an API with Lambda integrations, you can use Lambda proxy integration or Lambda non-
proxy integration.

In Lambda proxy integration, the input to the integrated Lambda function can be expressed

as any combination of request headers, path variables, query string parameters, and body. In
addition, the Lambda function can use API configuration settings to influence its execution logic.
For an API developer, setting up a Lambda proxy integration is simple. Other than choosing a
particular Lambda function in a given region, you have little else to do. API Gateway configures
the integration request and integration response for you. Once set up, the integrated APl method
can evolve with the backend without modifying the existing settings. This is possible because the
backend Lambda function developer parses the incoming request data and responds with desired
results to the client when nothing goes wrong or responds with error messages when anything
goes wrong.

In Lambda non-proxy integration, you must ensure that input to the Lambda function is supplied
as the integration request payload. This implies that you, as an API developer, must map any input
data the client supplied as request parameters into the proper integration request body. You might

REST API tutorials 32

Amazon API Gateway Developer Guide

also need to translate the client-supplied request body into a format recognized by the Lambda
function.

Topics

 Tutorial: Build a Hello World REST APl with Lambda proxy integration

« Tutorial: Build an APl Gateway REST API with cross-account Lambda proxy integration

o Tutorial: Build an APl Gateway REST API with Lambda non-proxy integration

Tutorial: Build a Hello World REST API with Lambda proxy integration

Lambda proxy integration is a lightweight, flexible APl Gateway API integration type that allows

you to integrate an APl method - or an entire APl — with a Lambda function. The Lambda function
can be written in any language that Lambda supports. Because it's a proxy integration, you can

change the Lambda function implementation at any time without needing to redeploy your API.

In this tutorial, you do the following:

» Create a "Hello, World!" Lambda function to be the backend for the API.
« Create and test a "Hello, World!" APl with Lambda proxy integration.

Topics

o Create a "Hello, World!" Lambda function
o Create a "Hello, World!" API

» Deploy and test the API

Create a "Hello, World!" Lambda function
To create a "Hello, World!" Lambda function in the Lambda console

1. Signin to the Lambda console at https://console.aws.amazon.com/lambda.

2. Onthe AWS navigation bar, choose a Region (for example, US East (N. Virginia)).

(® Note

Note the region where you create the Lambda function. You'll need it when you create
the API.

Build an API with Lambda integration 33

https://docs.aws.amazon.com/lambda/latest/dg/lambda-runtimes.html
https://console.aws.amazon.com/lambda
https://docs.aws.amazon.com/general/latest/gr/rande.htmlrande.html#apigateway_region

Amazon API Gateway Developer Guide

3. Choose Functions in the navigation pane.

Choose Create function.

4
5. Choose Author from scratch.
6

Under Basic information, do the following:

e.

f.

In Function name, enter GetStartedLambdaProxyIntegration.
For Runtime, choose either the latest supported Node.js or Python runtime.

Under Permissions, expand Change default execution role. For Execution role dropdown
list, choose Create new role from AWS policy templates.

In Role name, enter GetStartedLambdaBasicExecutionRole.
Leave the Policy templates field blank.

Choose Create function.

7. Under Function code, in the inline code editor, copy/paste the following code:

Node.js

export const handler = function(event, context, callback) {
console.log('Received event:', JSON.stringify(event, null, 2));
var res ={
"statusCode": 200,
"headers": {
"Content-Type'": "*/*"

}

};

var greeter = 'World';

if (event.greeter && event.greeter!=="") {
greeter = event.greeter;

} else if (event.body && event.body !== "") {
var body = JSON.parse(event.body);
if (body.greeter && body.greeter !== "") {

greeter = body.greeter;

}

} else if (event.queryStringParameters &&
event.queryStringParameters.greeter && event.queryStringParameters.greeter !==
") A{

greeter = event.queryStringParameters.greeter;

} else if (event.multiValueHeaders && event.multiValueHeaders.greeter &&

event.multiValueHeaders.greeter != "") {
greeter = event.multiValueHeaders.greeter.join(" and ");

Build an API with Lambda integration 34

Amazon API Gateway Developer Guide

} else if (event.headers && event.headers.greeter && event.headers.greeter !
= IIII) {

greeter = event.headers.greeter;

}
res.body = "Hello, " + greeter + "!";
callback(null, res);
13
Python

import json

def lambda_handler(event, context):
print(event)

greeter = 'World'

try:
if (event['queryStringParameters']) and (event['queryStringParameters']
['greeter']) and (
event['queryStringParameters']['greeter'] is not None):

greeter = event['queryStringParameters']['greeter']
except KeyError:

print('No greeter')

try:
if (event['multiValueHeaders']) and (event['multiValueHeaders']
['greeter']) and (
event['multiValueHeaders']['greeter'] is not None):

greeter = " and ".join(event['multiValueHeaders']['greeter'])
except KeyError:

print('No greeter')

try:
if (event['headers']) and (event['headers']['greeter']) and (
event['headers']['greeter'] is not None):

greeter = event['headers']['greeter']
except KeyError:

print('No greeter')

if (event['body']) and (event['body'] is not None):

Build an API with Lambda integration 35

Amazon API Gateway Developer Guide

8.

body = json.loads(event['body'])
try:
if (body['greeter']) and (body['greeter'] is not None):
greeter = body['greeter']
except KeyError:
print('No greeter')

res = {
"statusCode": 200,
"headers": {
"Content-Type": "*/*"
.

"body": "Hello, " + greeter + "I"

return res

Choose Deploy.

Create a "Hello, World!" API

Now create an API for your "Hello, World!" Lambda function by using the API Gateway console.

To create a "Hello, World!" API

1.
2.

o v &~ W

Sign in to the APl Gateway console at https://console.aws.amazon.com/apigateway.

If this is your first time using APl Gateway, you see a page that introduces you to the features
of the service. Under REST API, choose Build. When the Create Example API popup appears,
choose OK.

If this is not your first time using APl Gateway, choose Create API. Under REST API, choose
Build.

For APl name, enter LambdaProxyAPI.
(Optional) For Description, enter a description.
Keep API endpoint type set to Regional.
Choose Create API.

After you create an API, you create a resource. Typically, API resources are organized in a resource

tree according to the application logic. For this example, you create a /helloworld resource.

Build an API with Lambda integration 36

https://console.aws.amazon.com/apigateway

Amazon API Gateway Developer Guide

To create a resource

1. Select the / resource, and then choose Create resource.
Keep Proxy resource turned off.

Keep Resource path as /.

For Resource name, enter helloworld.

Keep CORS (Cross Origin Resource Sharing) turned off.

AN A

Choose Create resource.

In a proxy integration, the entire request is sent to the backend Lambda function as-is, via a catch-
all ANY method that represents any HTTP method. The actual HTTP method is specified by the
client at run time. The ANY method allows you to use a single APl method setup for all of the
supported HTTP methods: DELETE, GET, HEAD, OPTIONS, PATCH, POST, and PUT.

To create an ANY method

1. Select the /helloworld resource, and then choose Create method.
For Method type, select ANY.
For Integration type, select Lambda function.

Turn on Lambda proxy integration.

ok~ W

For Lambda function, select the AWS Region where you created your Lambda function, and
then enter the function name.

6. To use the default timeout value of 29 seconds, keep Default timeout turned on. To set a
custom timeout, choose Default timeout and enter a timeout value between 50 and 29000
milliseconds.

7. Choose Create method.

Deploy and test the API
To deploy your API

1. Choose Deploy API.
2. For Stage, select New stage.

3. For Stage name, enter test.

Build an API with Lambda integration 37

Amazon API Gateway Developer Guide

4. (Optional) For Description, enter a description.
5. Choose Deploy.
6. Under Stage details, choose the copy icon to copy your API's invoke URL.

Use browser and cURL to test an APl with Lambda proxy integration
You can use a browser or cURL to test your API.

To test GET requests using only query string parameters, you can enter the URL for the API's
helloworld resource into a browser address bar.

To create the URL for the API's helloworld resource, append the resource helloworld and
the query string parameter ?greeter=John to your invoke URL. Your URL should look like the
following.

https://r275xc9bmd.execute-api.us-east-1.amazonaws.com/test/helloworld?greeter=John

For other methods, you must use more advanced REST API testing utilities, such as POSTMAN or
cURL. This tutorial uses cURL. The cURL command examples below assume that cURL is installed
on your computer.

To test your deployed API using cURL:

1. Open a terminal window.

2. Copy the following cURL command and paste it into the terminal window, and replace the
invoke URL with the one you copied in the previous step and add /helloworld to the end of
the URL.

(@ Note

If you're running the command on Windows, use this syntax instead:

curl -v -X POST "https://r275xc9bmd.execute-api.us-east-1.amazonaws.com/
test/helloworld" -H "content-type: application/json" -d "{ \"greeter\":
\IIJOhn\II }Il

a. To call the API with the query string parameter of ?greeter=John:

Build an API with Lambda integration 38

https://curl.haxx.se/
https://www.postman.com/
https://curl.haxx.se/

Amazon API Gateway Developer Guide

curl -X GET 'https://r275xc9bmd.execute-api.us-east-1.amazonaws.com/test/
helloworld?greeter=John'

b. To call the API with a header parameter of greeter: John:

curl -X GET https://r275xc9bmd.execute-api.us-east-1.amazonaws.com/test/
helloworld \

-H 'content-type: application/json' \

-H 'greeter: John'

c. To call the APl with a body of {""'greeter":"John"}:

curl -X POST https://r275xc9bmd.execute-api.us-east-1.amazonaws.com/test/
helloworld \

-H 'content-type: application/json' \

-d '{ "greeter": "John" }'

In all the cases, the output is a 200 response with the following response body:

Hello, John!

Tutorial: Build an APl Gateway REST API with cross-account Lambda proxy
integration

You can now use an AWS Lambda function from a different AWS account as your API integration
backend. Each account can be in any region where Amazon API Gateway is available. This makes it
easy to centrally manage and share Lambda backend functions across multiple APlIs.

In this section, we show how to configure cross-account Lambda proxy integration using the
Amazon API Gateway console.

Create API for APl Gateway cross-account Lambda integration
To create an API

1. Signin to the APl Gateway console at https://console.aws.amazon.com/apigateway.

Build an API with Lambda integration 39

https://console.aws.amazon.com/apigateway

Amazon API Gateway Developer Guide

2. If this is your first time using APl Gateway, you see a page that introduces you to the features
of the service. Under REST API, choose Build. When the Create Example API popup appears,
choose OK.

If this is not your first time using APl Gateway, choose Create API. Under REST API, choose
Build.

For APl name, enter CxrossAccountLambdaAPI.
(Optional) For Description, enter a description.
Keep API endpoint type set to Regional.

Choose Create API.

o uoA~ W

Create Lambda integration function in another account

Now you'll create a Lambda function in a different account from the one in which you created the
example API.

Creating a Lambda function in another account

1. Login to the Lambda console in a different account from the one where you created your API
Gateway API.

2. Choose Create function.
Choose Author from scratch.

4. Under Author from scratch, do the following:

a. For Function name, enter a name.
b. From the Runtime drop-down list, choose a supported Node.js runtime.

¢. Under Permissions, expand Choose or create an execution role. You can create a role or
choose an existing role.

d. Choose Create function to continue.
5. Scroll down to the Function code pane.

6. Enter the Node.js function implementation from the section called “Tutorial: Hello World API

with Lambda proxy integration”.

7. Choose Deploy.

8. Note the full ARN for your function (in the upper right corner of the Lambda function pane).
You'll need it when you create your cross-account Lambda integration.

Build an API with Lambda integration 40

Amazon API Gateway Developer Guide

Configure cross-account Lambda integration

Once you have a Lambda integration function in a different account, you can use the API Gateway
console to add it to your API in your first account.

(® Note

If you are configuring a cross-region, cross-account authorizer, the sourceArn that is
added to the target function should use the region of the function, not the region of the
API.

After you create an API, you create a resource. Typically, API resources are organized in a resource
tree according to the application logic. For this example, you create a /helloworld resource.

To create a resource

Select the / resource, and then choose Create resource.
Keep Proxy resource turned off.

Keep Resource path as /.

For Resource name, enter helloworld.

Keep CORS (Cross Origin Resource Sharing) turned off.

AN A S

Choose Create resource.

After you create an resource, you create a GET method. You integrate the GET method with a
Lambda function in another account.

To create a GET method

Select the /helloworld resource, and then choose Create method.
For Method type, select GET.
For Integration type, select Lambda function.

Turn on Lambda proxy integration.

i A W=

For Lambda function, enter the full ARN of your Lambda function from Step 1.

In the Lambda console, you can find the ARN for your function in the upper right corner of the
console window.

Build an API with Lambda integration 41

Amazon API Gateway Developer Guide

6. When you enter the ARN, a aws lambda add-permission command string will appear. This
policy grants your first account access to your second account's Lambda function. Copy and
paste the aws lambda add-permission command string into an AWS CLI window that is
configured for your second account.

7. Choose Create method.

You can see your updated policy for your function in the Lambda console.
(Optional) To see your updated policy

1. Signin to the AWS Management Console and open the AWS Lambda console at https://
console.aws.amazon.com/lambda/.

2. Choose your Lambda function.

3. Choose Permissions.

You should see an Allow policy with a Condition clause in which the in the AWS:SourceArn
is the ARN for your API's GET method.

Tutorial: Build an API Gateway REST API with Lambda non-proxy integration

In this walkthrough, we use the API Gateway console to build an API that enables a client to call
Lambda functions through the Lambda non-proxy integration (also known as custom integration).
For more information about AWS Lambda and Lambda functions, see the AWS Lambda Developer
Guide.

To facilitate learning, we chose a simple Lambda function with minimal API setup to walk you
through the steps of building an APl Gateway APl with the Lambda custom integration. When
necessary, we describe some of the logic. For a more detailed example of the Lambda custom
integration, see Tutorial: Create a Calc REST APl with two AWS service integrations and one
Lambda non-proxy integration.

Before creating the API, set up the Lambda backend by creating a Lambda function in AWS
Lambda, described next.

Topics

» Create a Lambda function for Lambda non-proxy integration

» Create an APl with Lambda non-proxy integration

Build an API with Lambda integration 42

https://console.aws.amazon.com/lambda/
https://console.aws.amazon.com/lambda/
https://docs.aws.amazon.com/lambda/latest/dg/
https://docs.aws.amazon.com/lambda/latest/dg/

Amazon API Gateway Developer Guide

» Test invoking the APl method

» Deploy the API

o Test the APl in a deployment stage

« Clean up

Create a Lambda function for Lambda non-proxy integration

(® Note

Creating Lambda functions may result in charges to your AWS account.

In this step, you create a "Hello, World!"-like Lambda function for the Lambda custom integration.
Throughout this walkthrough, the function is called GetStartedLambdaIntegration.

The implementation of this GetStartedLambdaIntegration Lambda function is as follows:

Node.js

'use strict';

var days = ['Sunday', 'Monday', 'Tuesday', 'Wednesday', 'Thursday', 'Friday',
'Saturday'];

var times = ['morning', 'afternoon', 'evening', 'night', ‘'day'];

console.log('Loading function');

export const handler = function(event, context, callback) {
// Parse the input for the name, city, time and day property values

let name = event.name === undefined ? 'you' : event.name;
let city = event.city === undefined ? 'World' : event.city;
let time = times.indexOf(event.time)<@ ? 'day' : event.time;

let day = days.indexOf(event.day)<@ ? null : event.day;

// Generate a greeting
let greeting = 'Good ' + time + ', ' + name + ' of ' + city + '. ';
if (day) greeting += 'Happy ' + day + '!';

// Log the greeting to CloudWatch
console.log('Hello: ', greeting);

Build an API with Lambda integration 43

Amazon API Gateway Developer Guide

// Return a greeting to the caller
callback(null, {
"greeting": greeting
18
};

Python

import json

days = {
'Sunday',
'Monday',
'Tuesday',
'Wednesday',
'Thursday',
'Friday',
'Saturday'}
times = {'morning', 'afternoon', 'evening', 'night', 'day'}

def lambda_handler(event, context):
print(event)
parse the input for the name, city, time, and day property values
try:
if event['name']:
name = event['name']
except KeyError:
name = 'you'
try:
if event['city']:
city = event['city']
except KeyError:
city = 'World'

try:
if event['time'] in times:
time = event['time']
else:
time = 'day'
except KeyError:
time = 'day'
try:

if event['day'] in days:

Build an API with Lambda integration 44

Amazon API Gateway Developer Guide

day event['day']

else:
day

except KeyError:
day = "'

Generate a greeting

greeting = 'Good ' + time + ', ' + name + ' of ' + \
city + '." + ['', ' Happy ' + day + '"!']J[day != '']

Log the greeting to CloudWatch

print(greeting)

Return a greeting to the caller
return {"greeting": greeting}

For the Lambda custom integration, APl Gateway passes the input to the Lambda function from
the client as the integration request body. The event object of the Lambda function handler is the
input.

Our Lambda function is simple. It parses the input event object for the name, city, time, and
day properties. It then returns a greeting, as a JSON object of {"message" :greeting}, to the
caller. The message is in the "Good [morning|afternoon|day], [name|you] in [city|
World]. Happy day!" pattern. It is assumed that the input to the Lambda function is of the
following JSON object:

{
"city": "...",
"time": "...",
"day": "...",
"name" oLt
3

For more information, see the AWS Lambda Developer Guide.

In addition, the function logs its execution to Amazon CloudWatch by calling
console.log(...). Thisis helpful for tracing calls when debugging the function. To allow the
GetStartedLambdaIntegration function to log the call, set an IAM role with appropriate
policies for the Lambda function to create the CloudWatch streams and add log entries to the
streams. The Lambda console guides you through to create the required IAM roles and policies.

Build an API with Lambda integration 45

https://docs.aws.amazon.com/lambda/latest/dg/welcome.html

Amazon API Gateway Developer Guide

If you set up the API without using the API Gateway console, such as when importing an API from

an OpenAPI file, you must explicitly create, if necessary, and set up an invocation role and policy
for API Gateway to invoke the Lambda functions. For more information on how to set up Lambda
invocation and execution roles for an APl Gateway API, see Control access to an APl with IAM

permissions.

Compared to GetStartedLambdaProxyIntegration, the Lambda function for the Lambda
proxy integration, the GetStartedLambdaIntegration Lambda function for the Lambda
custom integration only takes input from the APl Gateway API integration request body. The
function can return an output of any JSON object, a string, a number, a Boolean, or even a

binary blob. The Lambda function for the Lambda proxy integration, in contrast, can take

the input from any request data, but must return an output of a particular JSON object. The
GetStartedLambdaIntegration function for the Lambda custom integration can have the API
request parameters as input, provided that APl Gateway maps the required API request parameters
to the integration request body before forwarding the client request to the backend. For this to
happen, the API developer must create a mapping template and configure it on the APl method
when creating the API.

Now, create the GetStartedLambdaIntegration Lambda function.

To create the GetStartedLambdaIntegration Lambda function for Lambda custom
integration

1. Open the AWS Lambda console at https://console.aws.amazon.com/lambda/.

2. Do one of the following:

« If the welcome page appears, choose Get Started Now and then choose Create function.
« If the Lambda > Functions list page appears, choose Create function.
3. Choose Author from scratch.

4. In the Author from scratch pane, do the following:

a. For Name, enter GetStartedLambdaIntegration as the Lambda function name.
b. For Runtime, choose either the latest supported Node.js or Python runtime.

c. Under Permissions, expand Change default execution role. For Execution role dropdown
list, choose Create new role from AWS policy templates.

d. For Role name, enter a name for your role (for example,
GetStartedLambdaIntegrationRole).

Build an API with Lambda integration 46

https://github.com/awslabs/api-gateway-secure-pet-store/blob/master/src/main/resources/swagger.yaml#L39
https://github.com/awslabs/api-gateway-secure-pet-store/blob/master/src/main/resources/swagger.yaml#L39
https://console.aws.amazon.com/lambda/

Amazon API Gateway Developer Guide

e. For Policy templates, choose Simple microservice permissions.
f. Choose Create function.
5. In the Configure function pane, under Function code do the following:
a. Copy the Lambda function code listed in the beginning of this section and paste it in the
inline code editor.
b. Leave the default choices for all other fields in this section.
c. Choose Deploy.

6. To test the newly created function, choose the Test tab.

a. For Event name, enter HelloWorldTest.

b. For Event JSON, replace the default code with the following.

{
"name": "Jonny",
"city": "Seattle",
"time": "morning",
"day": "Wednesday"
}

c. Choose Test to invoke the function. The Execution result: succeeded section is shown.
Expand Details and you see the following output.

"greeting": "Good morning, Jonny of Seattle. Happy Wednesday!"

The output is also written to CloudWatch Logs.

As a side exercise, you can use the IAM console to view the IAM role
(GetStartedLambdaIntegrationRole) that was created as part of the Lambda function
creation. Attached to this IAM role are two inline policies. One stipulates the most basic
permissions for Lambda execution. It permits calling the CloudWatch CreatelLogGroup
for any CloudWatch resources of your account in the region where the Lambda function is
created. This policy also allows creating the CloudWatch streams and logging events for the
HelloWorldForLambdaIntegration Lambda function.

Build an API with Lambda integration 47

Amazon API Gateway Developer Guide

"Version": "2012-10-17",
"Statement": [

{

"Effect": "Allow",

"Action": "logs:CreatelLogGroup",

"Resource": "arn:aws:logs:region:account-id:*"
1,
{

"Effect": "Allow",

"Action": [
"logs:CreatelLogStream",
"logs:PutLogEvents"

1,

"Resource": [
"arn:aws:logs:region:account-id:log-group:/aws/lambda/
GetStartedLambdaIntegration:*"
]

The other policy document applies to invoking another AWS service that is not used in this
example. You can skip it for now.

Associated with the IAM role is a trusted entity, which is 1ambda.amazonaws . com. Here is the
trust relationship:

"Version": "2012-10-17",
"Statement": [

{
"Effect": "Allow",
"Principal": {
"Service": "lambda.amazonaws.com"
},
"Action": "sts:AssumeRole"
}

Build an API with Lambda integration

48

Amazon API Gateway Developer Guide

The combination of this trust relationship and the inline policy makes it possible for the Lambda
function to invoke a console.log() function to log events to CloudWatch Logs.

If you did not use the AWS Management Console to create the Lambda function, you need to
follow these examples to create the required IAM role and policies and then manually attach the
role to your function.

Create an APl with Lambda non-proxy integration

With the Lambda function (GetStartedLambdaIntegration) created and tested, you are ready
to expose the function through an APl Gateway API. For illustration purposes, we expose the
Lambda function with a generic HTTP method. We use the request body, a URL path variable,

a query string, and a header to receive required input data from the client. We turn on the API
Gateway request validator for the API to ensure that all of the required data is properly defined
and specified. We configure a mapping template for APl Gateway to transform the client-supplied
request data into the valid format as required by the backend Lambda function.

To create an API with a Lambda non-proxy integration

1. Signin to the API Gateway console at https://console.aws.amazon.com/apigateway.

2. If this is your first time using APl Gateway, you see a page that introduces you to the features
of the service. Under REST API, choose Build. When the Create Example API popup appears,
choose OK.

If this is not your first time using APl Gateway, choose Create API. Under REST API, choose
Build.

For APl name, enter LambdaNonProxyAPI.
(Optional) For Description, enter a description.

Keep API endpoint type set to Regional.

o v oA~ W

Choose Create API.

After creating your API, you create a /{city} resource. This is an example of a resource with a path
variable that takes an input from the client. Later, you map this path variable into the Lambda
function input using a mapping template.

To create a resource

1. Choose Create resource.

Build an API with Lambda integration 49

https://console.aws.amazon.com/apigateway

Amazon API Gateway Developer Guide

2. Keep Proxy resource turned off.
Keep Resource path as /.
For Resource name, enter {city}.

Keep CORS (Cross Origin Resource Sharing) turned off.

o o~ W

Choose Create resource.

After creating your /{city} resource, you create an ANY method. The ANY HTTP verb is a
placeholder for a valid HTTP method that a client submits at run time. This example shows that
ANY method can be used for Lambda custom integration as well as for Lambda proxy integration.

To create an ANY method

1. Select the /{city} resource, and then choose Create method.
For Method type, select ANY.
For Integration type, select Lambda function.

Keep Lambda proxy integration turned off.

Lok W

For Lambda function, select the AWS Region where you created your Lambda function, and
then enter the function name.

6. Choose Method request settings.

Now, you turn on a request validator for a URL path variable, a query string parameter, and a
header to ensure that all of the required data is defined. For this example, you create a time
query string parameter and a day header.

7. For Request validator, select Validate query string parameters and headers.

8. Choose URL query string parameters and do the following:

a. Choose Add query string.
b. For Name, enter time.
c. Turn on Required.
d. Keep Caching turned off.
9. Choose HTTP request headers and do the following:

a. Choose Add header.

b. For Name, enter day.

Build an API with Lambda integration 50

Amazon API Gateway Developer Guide

c. Turn on Required.
d. Keep Caching turned off.
10. Choose Create method.

After turning on a request validator, you configure the integration request for the ANY method
by adding a body-mapping template to transform the incoming request into a JSON payload, as
required by the backend Lambda function.

To configure the integration request

1. On the Integration request tab, under the Integration request settings, choose Edit.

For Request body passthrough, select When there are no templates defined
(recommended).

Choose Mapping templates.
Choose Add mapping template.

For Content type, enter application/json.

A A S

For Template body, enter the following code:

#set($inputRoot = $input.path('$'))

{
"city": "$input.params('city')",
"time": "$input.params('time"')",
"day" "$input.params('day')",
"name": "$inputRoot.callerName"
}

7. Choose Save.

Test invoking the APl method

The APl Gateway console provides a testing facility for you to test invoking the API before it is
deployed. You use the Test feature of the console to test the API by submitting the following
request:

POST /Seattle?time=morning
day:Wednesday

{

Build an API with Lambda integration 51

Amazon API Gateway Developer Guide

"callerName": "John"

In this test request, you'll set ANY to POST, set {city} to Seattle, assign Wednesday as the day
header value, and assign "John" as the callerName value.

To test the ANY method

Choose the Test tab. You might need to choose the right arrow button to show the tab.
For Method type, select POST.

For Path, under city, enter Seattle.

For Query strings, enter time=morning.

For Headers, enter day:Wednesday.

For Request Body, enter { "callerName": "John" }.

N o u kw2

Choose Test.

Verify that the returned response payload is as follows:

"greeting": "Good morning, John of Seattle. Happy Wednesday!"

You can also view the logs to examine how APl Gateway processes the request and response.

Execution log for request test-request
Thu Aug 31 01:07:25 UTC 2017 : Starting execution for request: test-invoke-request
Thu Aug 31 01:07:25 UTC 2017 : HTTP Method: POST, Resource Path: /Seattle
Thu Aug 31 01:07:25 UTC 2017 : Method request path: {city=Seattle}
Thu Aug 31 01:07:25 UTC 2017 : Method request query string: {time=morning}
Thu Aug 31 01:07:25 UTC 2017 : Method request headers: {day=Wednesday}
Thu Aug 31 01:07:25 UTC 2017 : Method request body before transformations:
{ "callerName": "John" }
Thu Aug 31 01:07:25 UTC 2017 : Request validation succeeded for content type
application/json
Thu Aug 31 01:07:25 UTC 2017 : Endpoint request URI: https://
lambda.us-west-2.amazonaws.com/2015-03-31/functions/arn:aws:lambda:us-
west-2:123456789012:function:GetStartedLambdalntegration/invocations
Thu Aug 31 01:07:25 UTC 2017 : Endpoint request headers: {x-amzn-lambda-integration-
tag=test-request,

Build an API with Lambda integration 52

Amazon API Gateway Developer Guide

Authorization:**
X-Amz-Date=20170831T010725Z, x-amzn-apigateway-api-id=beagslimnid, X-Amz-
Source-Arn=arn:aws:execute-api:us-west-2:123456789012:beagsimnid/null/POST/
{city}, Accept=application/json, User-Agent=AmazonAPIGateway_beagslmnid,
X-Amz-Security-Token=FQoDYXdzELL//////////WEaDMHGzEdEOT/VvGhabiK3AzgKrJw
+3zLqJZG4Ph0q12K6W21+QotY2rrZy0zghLoiuRg3CAYNQ2eqgL5D54+63ey9bIdtwHGoyBdq8ecWxIK/
YUnT2Rau@L9HCG5p7FCO5h3IvwlFfvcidQNXeYvsKITLXIO5/
YENY3ttIAnpNYLOezD9Es8rBfyruHfIf0qextK1lsC8DymCcqlGkig8qLKcZ@hWIWVwiPJiFgL71aabXs+
+ZhCa4hdZo4iqlG729DE4gaVimIVdoAagIUwLMo+y4NxFDU@r710/
EO5nYcCrppGVVBYiGk7H4T6sXuhTkbNNgVmXtV3ch5b01h7 [TRUNCATED]

Thu Aug 31 01:07:25 UTC 2017 : Endpoint request body after transformations: {

"city": "Seattle",

"time": "morning",
"day": "Wednesday",
"name" : "John"

}

Thu Aug 31 01:07:25 UTC 2017 : Sending request to https://lambda.us-

west-2.amazonaws.com/2015-03-31/functions/arn:aws:lambda:us-

west-2:123456789012: function:GetStartedLambdalntegration/invocations

Thu Aug 31 01:07:25 UTC 2017 : Received response. Integration latency: 328 ms

Thu Aug 31 01:07:25 UTC 2017 : Endpoint response body before transformations:
{"greeting":"Good morning, John of Seattle. Happy Wednesday!"}

Thu Aug 31 01:07:25 UTC 2017 : Endpoint response headers: {x-amzn-Remapped-Content-

Length=0, x-amzn-RequestId=c0475a28-8de8-11e7-8d3f-4183da788f0f, Connection=keep-

alive, Content-Length=62, Date=Thu, 31 Aug 2017 01:07:25 GMT, X-Amzn-Trace-
Id=root=1-59a7614d-373151b01b0713127e646635; sampled=0, Content-Type=application/json}

Thu Aug 31 01:07:25 UTC 2017 : Method response body after transformations:
{"greeting":"Good morning, John of Seattle. Happy Wednesday!"}

Thu Aug 31 01:07:25 UTC 2017 : Method response headers: {X-Amzn-Trace-
Id=sampled=0;root=1-59a7614d-373151b01b0713127e646635, Content-Type=application/json}

Thu Aug 31 01:07:25 UTC 2017 : Successfully completed execution

Thu Aug 31 01:07:25 UTC 2017 : Method completed with status: 200

The logs show the incoming request before the mapping and the integration request after the
mapping. When a test fails, the logs are useful for evaluating whether the original input is correct
or the mapping template works correctly.

Deploy the API

The test invocation is a simulation and has limitations. For example, it bypasses any authorization
mechanism enacted on the API. To test the API execution in real time, you must deploy the API
first. To deploy an API, you create a stage to create a snapshot of the API at that time. The stage

Build an API with Lambda integration 53

Amazon API Gateway Developer Guide

name also defines the base path after the API's default host name. The API's root resource is
appended after the stage name. When you modify the API, you must redeploy it to a new or
existing stage before the changes take effect.

To deploy the API to a stage

1. Choose Deploy API.
2. For Stage, select New stage.

3. For Stage name, enter test.

® Note

The input must be UTF-8 encoded (i.e., unlocalized) text.

4. (Optional) For Description, enter a description.

Choose Deploy.

Under Stage details, choose the copy icon to copy your API's invoke URL. The general pattern of
the API's base URL is https://api-id.region.amazonaws.com/stageName. For example, the
base URL of the API (beags1lmnid) created in the us-west-2 region and deployed to the test
stage is https://beagslmnid.execute-api.us-west-2.amazonaws.com/test.

Test the API in a deployment stage

There are several ways you can test a deployed API. For GET requests using only URL path variables
or query string parameters, you can enter the API resource URL in a browser. For other methods,
you must use more advanced REST API testing utilities, such as POSTMAN or cURL.

To test the API using cURL

1. Open a terminal window on your local computer connected to the internet.

2. Totest POST /Seattle?time=evening:

Copy the following cURL command and paste it into the terminal window.

curl -v -X POST \
'https://beagslmnid.execute-api.us-west-2.amazonaws.com/test/Seattle?
time=evening' \
-H 'content-type: application/json' \

Build an API with Lambda integration 54

https://www.postman.com/
https://curl.haxx.se/

Amazon API Gateway Developer Guide

-H 'day: Thursday' \

-H 'x-amz-docs-region: us-west-2' \
-d '{
"callerName": "John"

} 1
You should get a successful response with the following payload:

{"greeting":"Good evening, John of Seattle. Happy Thursday!"}

If you change POST to PUT in this method request, you get the same response.

Clean up

If you no longer need the Lambda functions you created for this walkthrough, you can delete them
now. You can also delete the accompanying IAM resources.

/A Warning

If you plan to complete the other walkthroughs in this series, do not delete the Lambda
execution role or the Lambda invocation role. If you delete a Lambda function that your
APIs rely on, those APIs will no longer work. Deleting a Lambda function cannot be undone.
If you want to use the Lambda function again, you must re-create the function.

If you delete an IAM resource that a Lambda function relies on, that Lambda function will
no longer work, and any APIs that rely on that function will no longer work. Deleting an
IAM resource cannot be undone. If you want to use the IAM resource again, you must re-
create the resource.

To delete the Lambda functions

1. Signin to the AWS Management Console and open the AWS Lambda console at https://
console.aws.amazon.com/lambda/.

2. From the list of functions, choose GetHelloWorld, choose Actions, and then choose Delete
function. When prompted, choose Delete again.

3. From the list of functions, choose GetHelloWithName, choose Actions, and then choose
Delete function. When prompted, choose Delete again.

Build an API with Lambda integration 55

https://console.aws.amazon.com/lambda/
https://console.aws.amazon.com/lambda/

Amazon API Gateway Developer Guide

To delete the associated IAM resources

1. Open the IAM console at https://console.aws.amazon.com/iam/.

2. From Details, choose Roles.

3. From the list of roles, choose APIGatewayLambdaExecRole, choose Role Actions, and then
choose Delete Role. When prompted, choose Yes, Delete.

4. From Details, choose Policies.

From the list of policies, choose APIGatewayLambdaExecPolicy, choose Policy Actions, and
then choose Delete. When prompted, choose Delete.

Tutorial: Create a REST API by importing an example

You can use the Amazon API Gateway console to create and test a simple REST API with the HTTP
integration for a PetStore website. The API definition is preconfigured as a OpenAPI 2.0 file. After
loading the API definition into APl Gateway, you can use the APl Gateway console to examine the
API's basic structure or simply deploy and test the API.

The PetStore example API supports the following methods for a client to access the HTTP backend
website of http://petstore-demo-endpoint.execute-api.com/petstore/pets.

(® Note

This tutorial uses an HTTP endpoint as an example. When you create your own APIs, we
recommend you use HTTPS endpoints for your HTTP integrations.

« GET /:for read access of the API's root resource that is not integrated with any backend
endpoint. APl Gateway responds with an overview of the PetStore website. This is an example of
the MOCK integration type.

« GET /pets: forread access to the API's /pets resource that is integrated with the like-named
backend /pets resource. The backend returns a page of available pets in the PetStore. This
is an example of the HTTP integration type. The URL of the integration endpointis http://
petstore-demo-endpoint.execute-api.com/petstore/pets.

« POST /pets: for write access to the API's /pets resource that is integrated with the backend /
petstore/pets resource. Upon receiving a correct request, the backend adds the specified pet
to the PetStore and returns the result to the caller. The integration is also HTTP.

Tutorial: Create a REST API by importing an example 56

https://console.aws.amazon.com/iam/

Amazon API Gateway Developer Guide

o« GET /pets/{petlId}: forread access to a pet as identified by a petId value as specified as a
path variable of the incoming request URL. This method also has the HTTP integration type. The
backend returns the specified pet found in the PetStore. The URL of the backend HTTP endpoint
ishttp://petstore-demo-endpoint.execute-api.com/petstore/pets/n, where nis
an integer as the identifier of the queried pet.

The API supports CORS access via the OPTIONS methods of the MOCK integration type. API
Gateway returns the required headers supporting CORS access.

The following procedure walks you through the steps to create and test an API from an example
using the API Gateway Console.

To import, build, and test the example API

1. Signin to the APl Gateway console at https://console.aws.amazon.com/apigateway.

2. Do one of the following:
o To create your first API, for REST API, choose Build.
« If you've created an API before, choose Create API, and then choose Build for REST API.

3. Under Create REST API, choose Example APl and then choose Create API to create the
example API.

Tutorial: Create a REST API by importing an example 57

https://console.aws.amazon.com/apigateway

Amazon API Gateway Developer Guide

APl Gateway » APls > Create APl » Create REST API

Create REST API

API details

O New API O Clone existing API
Create a new REST API. Create a copy of an APl in this AWS account.
O Import API © Example API

Import an API from an OpenAPI definition. Learn about APl Gateway with an example API.

1 {

2 "swagger": "2.0",

3 "info": {

4 "description": "Your first API with Amazon API Gateway. This is a sample
API that integrates via HTTP with our demo Pet Store endpoints",

5 "title": "PetStore"

6 }

7 "schemes": [

8 "https"

9 1,

10 "paths": {

11 " A

12 "get": {

13 "tags": [

14 "pets"

15 1,

16 "description": "PetStore HTML web page containing API usage informat
ion",

You can scroll down the OpenAPI definition for details of this example API before choosing
Create API.

4. In the main navigation pane, choose Resources. The newly created API is shown as follows:

Tutorial: Create a REST API by importing an example 58

Amazon API Gateway

Developer Guide

APl Gateway » APls > Resources - PetStore (abcd1234)

Resources

| Create resource Resource details

Update documentation H Enable CORS

Resource ID
efg567

Integration type ¥

Create method

Authorization ¥ API key v

None Not required

Path
B/ p
GET
[E] /pets
GET Methods (1)
OPTIONS
POST Method type 4
[E] /{petid} O GET Mock
GET
OPTIONS 1|

The Resources pane shows the structure of the created API as a tree of nodes. APl methods
defined on each resource are edges of the tree. When a resource is selected, all of its methods
are listed in the Methods table on the right. Displayed with each method is the method type,
integration type, authorization type, and API key requirement.

5. To view the details of a method, to modify its set-up, or to test the method invocation, choose
the method name from either the method list or the resource tree. Here, we choose the

POST /pets method as an illustration:

/pets - POST - Method execution Update documentation I I Delete I
ARN Resource ID
=/ arn:aws:execute-api:us-east- aaalll
GET 1:111122223333:abcd1234/*/POST/pets
B /pets
GET
OPTIONS - Method request - Integration request -
—S HTTP
E /Hpetid}) . .
Client integrati
Integration
GET <~ Method response &~ 9 &~ .on
response
OPTIONS 1
Method request Integration request Integration response Method response Test

Tutorial: Create a REST API by importing an example

59

Amazon API Gateway Developer Guide

The resulting Method execution pane presents a logical view of the chosen (POST /pets)
method's structure and behaviors.

The Method request and Method response represent the API's interface with the frontend,
and the Integration request and Integration response represent the API's interface with the
backend.

A client uses the API to access a backend feature through the Method request. APl Gateway
translates the client request, if necessary, into the form acceptable to the backend in
Integration request before forwarding the incoming request to the backend. The transformed
request is known as the integration request. Similarly, the backend returns the response to
API| Gateway in Integration response. APl Gateway then routes it to Method Response before
sending it to the client. Again, if necessary, APl Gateway can map the backend response data
to a form expected by the client.

For the POST method on an API resource, the method request payload can be passed through
to the integration request without modification, if the method request's payload is of the same
format as the integration request's payload.

The GET / method request uses the MOCK integration type and is not tied to any real backend
endpoint. The corresponding Integration response is set up to return a static HTML page.
When the method is called, the API Gateway simply accepts the request and immediately
returns the configured integration response to the client by way of Method response. You can
use the mock integration to test an API without requiring a backend endpoint. You can also
use it to serve a local response, generated from a response body-mapping template.

As an API developer, you control the behaviors of your API's frontend interactions by
configuring the method request and a method response. You control the behaviors of your
API's backend interactions by setting up the integration request and integration response.
These involve data mappings between a method and its corresponding integration. For now,
we focus on testing the API to provide an end-to-end user experience.

6. Select the Test tab. You might need to choose the right arrow button to show the tab.

7. For example, to test the POST /pets method, enter the following {"type":
"dog","price": 249.99} payload into the Request body, and then choose Test.

Tutorial: Create a REST API by importing an example 60

Amazon API Gateway Developer Guide

Method request Integration request Integration response Method response Test

Test method

Make a test call to your method. When you make a test call, APl Gateway skips authorization and directly invokes your method.

Query strings

param1=value1¶m2=value2

Headers
Enter a header name and value separated by a colon (:). Use a new line for each header.

header1:valuel
header2:value2

Client certificate

None v
Request body

lv {
"type": "dog", "price": 249.99

3 1

The input specifies the attributes of the pet that we want to add to the list of pets on the
PetStore website.

8. The results display as follows:

Tutorial: Create a REST API by importing an example 61

Amazon API Gateway Developer Guide

/pets - POST method test results

Request Latency
/pets 9
Status

200

Response body

{
"pet": {
"type": "dog",
"price": 249.99
}l
"message": "success"

}

Response headers

{
"Access—Control-Allow-0rigin": "x",
"Content-Type": "application/json",
"X-Amzn-Trace-Id": "Root=1-65df8d2b-782cd3¢c572391cf4a85295f5"

Log

Execution log for request 30f01060-307f-4447-803c-61679eadc5d6
Wed Feb 28 19:44:43 UTC 2024 : Starting execution for request: 30f01060-
307f-4447-803c-61679%ead4c5d6

The Log entry of the output shows the state changes from the method request to the
integration request, and from the integration response to the method response. This can be
useful for troubleshooting any mapping errors that cause the request to fail. In this example,
no mapping is applied: the method request payload is passed through the integration request
to the backend and, similarly, the backend response is passed through the integration response
to the method response.

To test the API using a client other than the APl Gateway test-invoke-request feature, you
must first deploy the API to a stage.

Tutorial: Create a REST API by importing an example 62

Amazon API Gateway

Developer Guide

9. To deploy the sample API, choose Deploy API.

/pets - POST - Method execution

ARN
arn:aws:execute-api:us-east-
1:111122223333:abcd1234/*/POST/pets

API actions V¥ Deploy API

Update documentation Delete

Resource ID

aaalll

- Method request Integration request -
— HTTP
Client integrati
&~ Method response Integration response &« on
Method request Integration request Integration response Method response Test

10. For Stage, select New stage, and then enter test.

11. (Optional) For Description, enter a description.

12. Choose Deploy.

13. In the resulting Stages pane, under Stage details, the Invoke URL displays the URL to invoke

the API's GET / method request.

Tutorial: Create a REST API by importing an example

63

Amazon API Gateway Developer Guide

Stage details info Edit
Stage name Rate Info Web ACL

Prod - -

Cache cluster Info Burst Info Client certificate

® Inactive - -

Default method-level caching
O Inactive

Invoke URL

https://abcd1234.execute-api.us-east-1.amazonaws.com/Prod

14. Choose the copy icon to copy your API's invoke URL, and then enter your API's invoke URL in a

15.

web browser. A successful response return the result, generated from the mapping template in
the integration response.

In the Stages navigation pane, expand the test stage, select GET on /pets/
{petId}, and then copy the Invoke URL value of https://api-id.execute-
api.region.amazonaws.com/test/pets/{petId}. {petId} stands for a path variable.

Paste the Invoke URL value (obtained in the previous step) into the address bar of a browser,
replacing {petId} by, for example, 1, and press Enter to submit the request. A 200 OK
response should return with the following JSON payload:

{
"id": 1,
"type": "dog",
"price": 249.99
}

Invoking the API method as shown is possible because its Authorization type is set to NONE. If
the AWS_IAM authorization were used, you would sign the request using the Signature Version

4 (SigV4) protocols. For an example of such a request, see the section called “Tutorial: Build an

API with HTTP non-proxy integration”.

Tutorial: Create a REST API by importing an example 64

https://docs.aws.amazon.com/general/latest/gr/sigv4_signing.html
https://docs.aws.amazon.com/general/latest/gr/sigv4_signing.html

Amazon API Gateway Developer Guide

Build an APl Gateway REST API with HTTP integration

To build an APl with HTTP integration, you can use either the HTTP proxy integration or the HTTP
custom integration. We recommend that you use the HTTP proxy integration, whenever possible,
for the streamlined API set up while providing versatile and powerful features. The HTTP custom
integration can be compelling if it is necessary to transform client request data for the backend or
transform the backend response data for the client.

Topics

 Tutorial: Build a REST API with HTTP proxy integration

o Tutorial: Build a REST API with HTTP non-proxy integration

Tutorial: Build a REST API with HTTP proxy integration

HTTP proxy integration is a simple, powerful, and versatile mechanism to build an API that allows
a web application to access multiple resources or features of the integrated HTTP endpoint, for
example the entire website, with a streamlined setup of a single APl method. In HTTP proxy
integration, APl Gateway passes the client-submitted method request to the backend. The request
data that is passed through includes the request headers, query string parameters, URL path
variables, and payload. The backend HTTP endpoint or the web server parses the incoming request
data to determine the response that it returns. HTTP proxy integration makes the client and
backend interact directly with no intervention from API Gateway after the APl method is set up,
except for known issues such as unsupported characters, which are listed in the section called
“Important notes”.

With the all-encompassing proxy resource {proxy+}, and the catch-all ANY verb for the HTTP
method, you can use an HTTP proxy integration to create an API of a single APl method. The
method exposes the entire set of the publicly accessible HTTP resources and operations of a
website. When the backend web server opens more resources for public access, the client can
use these new resources with the same API setup. To enable this, the website developer must
communicate clearly to the client developer what the new resources are and what operations are
applicable for each of them.

As a quick introduction, the following tutorial demonstrates the HTTP proxy integration. In the
tutorial, we create an APl using the APl Gateway console to integrate with the PetStore website
through a generic proxy resource {proxy+}, and create the HTTP method placeholder of ANY.

Build an API with HTTP integration 65

Amazon API Gateway Developer Guide

Topics

» Create an APl with HTTP proxy integration using the APl Gateway console

o Test an APl with HTTP proxy integration

Create an API with HTTP proxy integration using the APl Gateway console

The following procedure walks you through the steps to create and test an API with a proxy
resource for an HTTP backend using the APl Gateway console. The HTTP backend is the PetStore
website (http://petstore-demo-endpoint.execute-api.com/petstore/pets) from
Tutorial: Build a REST APl with HTTP non-proxy integration, in which screenshots are used as visual

aids to illustrate the APl Gateway Ul elements. If you are new to using the APl Gateway console to
create an API, you may want to follow that section first.

To create an API

1. Signin to the APl Gateway console at https://console.aws.amazon.com/apigateway.

2. If this is your first time using APl Gateway, you see a page that introduces you to the features
of the service. Under REST API, choose Build. When the Create Example API popup appears,
choose OK.

If this is not your first time using APl Gateway, choose Create API. Under REST API, choose
Build.

For APl name, enter HTTPProxyAPI.
(Optional) For Description, enter a description.

Keep API endpoint type set to Regional.

o v oA~ W

Choose Create API.

In this step, you create a proxy resource path of {proxy+}. This is the placeholder of any of

the backend endpoints under http://petstore-demo-endpoint.execute-api.com/. For
example, it can be petstore, petstore/pets, and petstore/pets/{petId}. APl Gateway
creates the ANY method when you create the {proxy+} resource and serves as a placeholder for
any of the supported HTTP verbs at run time.

To create a /{proxy+} resource

1. Choose your API.

Build an API with HTTP integration 66

https://console.aws.amazon.com/apigateway

Amazon API Gateway Developer Guide

In the main navigation pane, choose Resources.
Choose Create resource.

Turn on Proxy resource.

Keep Resource path as /.

For Resource name, enter {proxy+}.

Keep CORS (Cross Origin Resource Sharing) turned off.

© N o U B W DN

Choose Create resource.

Create resource

Resource details

@ Proxy resource Info

Proxy resources handle requests to all sub-resources. To create a proxy resource use a path parameter that ends with a plus sign, for
example {proxy+}.

Resource path Resource name

/ v {proxy+}

[] CORS (Cross Origin Resource Sharing) Info
Create an OPTIONS method that allows all origins, all methods, and several common headers.

Cancel Create resource

In this step, you integrate the ANY method with a backend HTTP endpoint, using a proxy
integration. In a proxy integration, APl Gateway passes the client-submitted method request to the
backend with no intervention from API Gateway.

To create an ANY method

1. Choose the /{proxy+} resource.
2. Choose the ANY method.

3. Under the warning symbol, choose Edit integration. You cannot deploy an API that has a
method without an integration.

4. For Integration type, select HTTP.

Build an API with HTTP integration 67

Amazon API Gateway Developer Guide

5. Turn on HTTP proxy integration.
6. For HTTP method, select ANY.

7. For Endpoint URL, enter http://petstore-demo-endpoint.execute-api.com/
{proxy}.

8. Choose Save.

Test an APl with HTTP proxy integration

Whether a particular client request succeeds depends on the following:
« If the backend has made the corresponding backend endpoint available and, if so, has granted
the required access permissions.

o If the client supplies the correct input.

For example, the PetStore APl used here does not expose the /petstore resource. As such, you
get a 404 Resource Not Found response containing the error message of Cannot GET /
petstore.

In addition, the client must be able to handle the output format of the backend in order to parse
the result correctly. APl Gateway does not mediate to facilitate interactions between the client and
backend.

To test an API integrated with the PetStore website using HTTP proxy integration through the
proxy resource

1. Select the Test tab. You might need to choose the right arrow button to show the tab.

For Method type, select GET.

For Path, under proxy, enter petstore/pets.

For Query strings, enter type=fish.

i M WN

Choose Test.

Build an API with HTTP integration 68

Amazon API Gateway Developer Guide

- Method request - Integration request -

—= HTTP
Client integrati
Integration response
&~ Method response &« g) ‘p &« on
Proxy integration T
Method request Integration request Integration response Method response Test

Test method

Make a test call to your method. When you make a test call, APl Gateway skips authorization and directly invokes your method.

Method type
GET v

Path

proxy

petstore/pets

Query strings

type=fish

Because the backend website supports the GET /petstore/pets?type=fish request, it
returns a successful response similar to the following:

[
{
"id": 1,
"type": "fish",
"price": 249.99
},
{

"id": 2,
"type": nfishn'
"price": 124.99

Build an API with HTTP integration 69

Amazon API Gateway Developer Guide

1,

{
"id": 3,
"type": "fish",
"price": 0.99

}

]

If you try to call GET /petstore, you get a 404 response with an error message of Cannot
GET /petstore. This is because the backend does not support the specified operation. If
you call GET /petstore/pets/1, you geta 200 OK response with the following payload,
because the request is supported by the PetStore website.

{
"id": 1,
"type": "dog",
"price": 249.99
}

You can also use a browser to test your API. Deploy your APl and associate it to a stage to create
your API's Invoke URL.

To deploy your API

1. Choose Deploy API.
For Stage, select New stage.
For Stage name, enter test.

(Optional) For Description, enter a description.

ik W

Choose Deploy.

Now clients can call your API.
To invoke your API

1. Signin to the APl Gateway console at https://console.aws.amazon.com/apigateway.

2. Choose your API.

3. In the main navigation pane, choose Stage.

Build an API with HTTP integration 70

https://console.aws.amazon.com/apigateway

Amazon API Gateway Developer Guide

4. Under Stage details, choose the copy icon to copy your API's invoke URL.
Enter your API's invoke URL in a web browser.

The full URL should look like https://abcdef123.execute-api.us-
east-2.amazonaws.com/test/petstore/pets?type=fish.

Your browser sends a GET request to the API.

5. The result should be the same as returned when you use Test in the API Gateway console.

Tutorial: Build a REST API with HTTP non-proxy integration

In this tutorial, you create an API from scratch using the Amazon APl Gateway console. You can
think of the console as an API design studio and use it to scope the API features, to experiment
with its behaviors, to build the API, and to deploy your API in stages.

Topics

o Create an API with HTTP custom integration

» (Optional) Map request parameters

Create an API with HTTP custom integration

This section walks you through the steps to create resources, expose methods on a resource,
configure a method to achieve the desired API behaviors, and to test and deploy the API.

In this step, you create an empty API. In the following steps you create resources and methods to
connect your APl to the http://petstore-demo-endpoint.execute-api.com/petstore/
pets endpoint, using a non-proxy HTTP integration.

To create an API

1. Signin to the APl Gateway console at https://console.aws.amazon.com/apigateway.

2. If this is your first time using APl Gateway, you see a page that introduces you to the features
of the service. Under REST API, choose Build. When the Create Example API popup appears,
choose OK.

If this is not your first time using APl Gateway, choose Create API. Under REST API, choose
Build.

Build an API with HTTP integration 71

https://console.aws.amazon.com/apigateway

Amazon API Gateway Developer Guide

3. For APl name, enter HTTPNonProxyAPI.

4. (Optional) For Description, enter a description.
5. Keep API endpoint type set to Regional.

6. Choose Create API.

The Resources tree shows the root resource (/) without any methods. In this exercise, we will
build the API with the HTTP custom integration of the PetStore website (http://petstore-demo-
endpoint.execute-api.com/petstore/pets.) For illustration purposes, we will create a /pets
resource as a child of the root and expose a GET method on this resource for a client to retrieve a
list of available Pets items from the PetStore website.

To create a /pets resource

1. Select the / resource, and then choose Create resource.
Keep Proxy resource turned off.

Keep Resource path as /.

For Resource name, enter pets.

Keep CORS (Cross Origin Resource Sharing) turned off.

o un B~ WN

Choose Create resource.

In this step, you create a GET method on the /pets resource. The GET method is integrated with
the http://petstore-demo-endpoint.execute-api.com/petstore/pets website. Other
options for an API method include the following:

o POST, primarily used to create child resources.

« PUT, primarily used to update existing resources (and, although not recommended, can be used
to create child resources).

o DELETE, used to delete resources.
» PATCH, used to update resources.

« HEAD, primarily used in testing scenarios. It is the same as GET but does not return the resource
representation.

« OPTIONS, which can be used by callers to get information about available communication
options for the target service.

Build an API with HTTP integration 72

Amazon API Gateway Developer Guide

For the integration request's HTTP method, you must choose one supported by the backend. For
HTTP or Mock integration, it makes sense that the method request and the integration request
use the same HTTP verb. For other integration types the method request will likely use an HTTP
verb different from the integration request. For example, to call a Lambda function, the integration
request must use POST to invoke the function, whereas the method request may use any HTTP
verb depending on the logic of the Lambda function.

To create a GET method on the /pets resource

1. Select the /pets resource.

Choose Create method.

For Method type, select GET.

For Integration type, select HTTP integration.
Keep HTTP proxy integration turned off.

For HTTP method, select GET.

N o u B~ W N

For Endpoint URL, enter http://petstore-demo-endpoint.execute-api.com/
petstore/pets.

The PetStore website allows you to retrieve a list of Pet items by the pet type, such as "Dog"
or "Cat", on a given page.

8. For Content handling, select Passthrough.

9. Choose URL query string parameters.

The PetStore website uses the type and page query string parameters to accept an input. You
add query string parameters to the method request and map them into corresponding query
string parameters of the integration request.

10. To add the query string parameters, do the following:

a. Choose Add query string.
b. For Name, enter type

c. Keep Required and Caching turned off.

Repeat the previous steps to create an additional query string with the name page.

11. Choose Create method.

Build an API with HTTP integration 73

Amazon API Gateway Developer Guide

The client can now supply a pet type and a page number as query string parameters when
submitting a request. These input parameters must be mapped into the integration's query string
parameters to forward the input values to our PetStore website in the backend.

To map input parameters to the Integration request

1. On the Integration request tab, under Integration request settings, choose Edit.

2. Choose URL query string parameters, and then do the following:

a.

g.
h.

Choose Add query string parameter.

For Name, enter type.

For Mapped from, enter method.request.querystring.type
Keep Caching turned off.

Choose Add query string parameter.

For Name, enter page.

For Mapped from, enter method.request.querystring.page

Keep Caching turned off.

3. Choose Save.

To test the API

1. Choose the Test tab. You might need to choose the right arrow button to show the tab.

2. For Query strings, enter type=Dog&page=2.

3. Choose Test.

The result is similar to the following:

Build an API with HTTP integration 74

Amazon API Gateway

Developer Guide

Test method

Make a test call to your method. When you make a test call, APl Gateway skips authorization and directly invokes your method.

Query strings

type=Dog&page=2

Headers

Enter a header name and value separated by a colon (:). Use a new line for each header.

header1:valuel
header2:value2

Client certificate

None

Test

/pets - GET method test results
Request

/pets?type=Dog&page=2

Status
200

Response body

[

"id": 4,

Iltypell: "DOg",

"price": 999.99
}

Now that the test is successful, we can deploy the API to make it publicly available.

Choose Deploy API.
For Stage, select New stage.

For Stage name, enter Prod.

N o u &

(Optional) For Description, enter a description.

Latency
36

Build an API with HTTP integration

75

Amazon API Gateway Developer Guide

8. Choose Deploy.

9. (Optional) Under Stage details, for Invoke URL, you can choose the copy icon to copy your
API's invoke URL. You can use this with tools such as Postman and cURL to test your API.

If you use an SDK to create a client, you can call the methods exposed by the SDK to sign the
request. For implementation details, see the AWS SDK of your choosing.

(® Note

When changes are made to your API, you must redeploy the APl to make the new or
updated features available before invoking the request URL again.

(Optional) Map request parameters
Map request parameters for an APl Gateway API

This tutorial shows how to create a path parameter of {petId} on the API's method request URL
to specify an item ID, map it to the {id} path parameter in the integration request URL, and send
the request to the HTTP endpoint.

® Note

If you enter the incorrect case of a letter, such as lowercase letter instead of an uppercase
letter, this will cause errors later in the walkthrough.

Step 1: Create resources

In this step, you create a resource with a path parameter {petid}.
To create the {petid} resource

1. Select the /pets resource, and then choose Create resource.
2. Keep Proxy resource turned off.

3. For Resource path, select /pets/.
4

For Resource name, enter {petId}.

Build an API with HTTP integration 76

http://www.postman.com
https://curl.haxx.se/
https://aws.amazon.com/tools/

Amazon API Gateway Developer Guide

Use the curly braces ({ }) around petId so that /pets/{petld} is displayed.
5. Keep CORS (Cross Origin Resource Sharing) turned off.

6. Choose Create resource.

Step 2: Create and test the methods

In this step, you create a GET method with a {petId} path parameter.
To set up GET method

1. Select the /{petld} resource, and then choose Create method.
For Method type, select GET.

For Integration type, select HTTP integration.

Keep HTTP proxy integration turned off.

For HTTP method, select GET.

o v B~ W N

For Endpoint URL, enter http://petstore-demo-endpoint.execute-api.com/
petstore/pets/{id}

N

For Content handling, select Passthrough.
8. Keep the Default timeout turned on.

9. Choose Create method.

Now you map the {petId} path parameter to the {id} path parameter in the HTTP endpoint.
To map the {petId} path parameter

1. On the Integration request tab, under Integration request settings, choose Edit.
2. Choose URL path parameters.

3. API Gateway creates a path parameter for the integration request named petld. This doesn't
work for your backend. The HTTP endpoint uses {id} as the path parameter. Rename petld to
id.

This maps the method request's path parameter of petId to the integration request's path
parameter of id.

4. Choose Save.

Build an API with HTTP integration 77

Amazon API Gateway Developer Guide

Now you test the method.
To test the method

1. Choose the Test tab. You might need to choose the right arrow button to show the tab.
2. Under Path for petld, enter 4.
3. Choose Test.

If successful, Response body displays the following:

{
"id": 4,
"type": "bird",
"price": 999.99
}

Step 3: Deploy the API
In this step, you deploy the API so that you can begin calling it outside of the API Gateway console.
To deploy the API

1. Choose Deploy API.

2. For Stage, select Prod.

3. (Optional) For Description, enter a description.
4

Choose Deploy.

Step 4: Test the API

In this step, you go outside of the APl Gateway console and use your API to access the HTTP
endpoint.

1. In the main navigation pane, choose Stage.

2. Under Stage details, choose the copy icon to copy your API's invoke URL.

It should look something like this:

https://my-api-id.execute-api.region-id.amazonaws.com/prod

Build an API with HTTP integration 78

Amazon API Gateway Developer Guide

3. Enter this URL in the address box of a new browser tab and append /pets/4 to the URL
before you submit your request.
4. The browser will return the following:
{
"id": 4,
"type" : "bird" ’
"price": 999.99
}
Next steps

You can further customize your API by turning on request validation, transforming data, or creating
custom gateway responses.

To explore more ways to customize your API, see the following tutorials:

For more information about request validation, see Set up basic request validation in API

Gateway.
For information about how to transform request and response payloads, see Set up data
transformations in APl Gateway.

For information about how to create custom gateway responses see, Set up a gateway response
for a REST API using the APl Gateway console.

Tutorial: Build a REST API with APl Gateway private integration

You can create an APl Gateway API with private integration to provide your customers access

to HTTP/HTTPS resources within your Amazon Virtual Private Cloud (Amazon VPC). Such VPC
resources are HTTP/HTTPS endpoints on an EC2 instance behind a Network Load Balancer in the
VPC. The Network Load Balancer encapsulates the VPC resource and routes incoming requests to
the targeted resource.

When a client calls the API, APl Gateway connects to the Network Load Balancer through the
pre-configured VPC link. A VPC link is encapsulated by an API Gateway resource of VpcLink. It
is responsible for forwarding APl method requests to the VPC resources and returns backend

responses to the caller. For an APl developer, a VpcLink is functionally equivalent to an

integration endpoint.

Tutorial: Build an APl with private integration 79

https://docs.aws.amazon.com/apigateway/latest/api/API_VpcLink.html

Amazon API Gateway Developer Guide

To create an API with private integration, you must create a new VpclLink, or choose an existing
one, that is connected to a Network Load Balancer that targets the desired VPC resources.

You must have appropriate permissions to create and manage a VpcLink. You then set up an
APl method and integrate it with the VpcLink by setting either HTTP or HTTP_PROXY as the
integration type, setting VPC_LINK as the integration connection type, and setting the VpcLink
identifier on the integration connectionId.

(@ Note

The Network Load Balancer and APl must be owned by the same AWS account.

To quickly get started creating an API to access VPC resources, we walk through the essential steps
for building an API with the private integration, using the APl Gateway console. Before creating the
API, do the following:

1. Create a VPC resource, create or choose a Network Load Balancer under your account in the
same region, and add the EC2 instance hosting the resource as a target of the Network Load
Balancer. For more information, see Set up a Network Load Balancer for API Gateway private

integrations.

2. Grant permissions to create the VPC links for private integrations. For more information, see
Grant permissions to create a VPC link.

After creating your VPC resource and your Network Load Balancer with your VPC resource
configured in its target groups, follow the instructions below to create an API and integrate it with
the VPC resource via a VpcLink in a private integration.

To create an API with a private integration

1. Signin to the APl Gateway console at https://console.aws.amazon.com/apigateway.

2. If this is your first time using APl Gateway, you see a page that introduces you to the features
of the service. Under REST API, choose Build. When the Create Example API popup appears,
choose OK.

If this is not your first time using APl Gateway, choose Create API. Under REST API, choose
Build.

3. Create an edge-optimized or Regional REST API.

Tutorial: Build an APl with private integration 80

https://docs.aws.amazon.com/apigateway/latest/api/API_Method.html
https://docs.aws.amazon.com/apigateway/latest/api/API_Integration.html#type
https://docs.aws.amazon.com/apigateway/latest/api/API_Integration.html#connectionType
https://docs.aws.amazon.com/apigateway/latest/api/API_Integration.html#connectionId
https://console.aws.amazon.com/apigateway

Amazon API Gateway Developer Guide

4. Select your API.

5. Choose Create method, and then do the following:

a. For Method type, select GET.

b. For Integration type, select VPC link.
¢. Turn on VPC proxy integration.

d. For HTTP method, select GET.

e. For VPC link, select [Use stage variable] and enter ${stageVariables.vpcLinkId} in
the text box below.

You define the vpcLinkId stage variable after deploying the API to a stage and set its
value to the ID of the VpcLink.

f. For Endpoint URL, enter a URL, for example, http://myApi.example.com.

Here, the host name (for example, myApi.example.com) is used to set the Host header
of the integration request.

g. Choose Create method.

With the proxy integration, the API is ready for deployment. Otherwise, you need to
proceed to set up appropriate method responses and integration responses.

6. Choose Deploy API, and then do the following:

a. For Stage, select New stage.

b. For Stage name, enter a stage name.

n

(Optional) For Description, enter a description.
d. Choose Deploy.

7. Under the Stage details section, note the resulting Invoke URL. You need it to invoke the API.
Before doing that, you must set up the vpcLinkId stage variable.

8. Inthe Stages pane, choose the Stage variables tab, and then do the following:

a. Choose Manage variables, and then choose Add stage variable.
b. For Name, enter vpcLinkId.
c. For Value, enter the ID of VPC_LINK, for example, gix6s7.

d. Choose Save.

Tutorial: Build an APl with private integration 81

Amazon API Gateway Developer Guide

Using the stage variable, you can easily switch to different VPC links for the API by
changing the stage variable value.

Tutorial: Build an APl Gateway REST API with AWS integration

Both the Tutorial: Build a Hello World REST API with Lambda proxy integration and Build an API
Gateway REST API with Lambda integration topics describe how to create an API Gateway API to
expose the integrated Lambda function. In addition, you can create an APl Gateway API to expose
other AWS services, such as Amazon SNS, Amazon S3, Amazon Kinesis, and even AWS Lambda. This
is made possible by the AWS integration. The Lambda integration or the Lambda proxy integration
is a special case, where the Lambda function invocation is exposed through the APl Gateway API.

All AWS services support dedicated APIs to expose their features. However, the application
protocols or programming interfaces are likely to differ from service to service. An APl Gateway API
with the AWS integration has the advantage of providing a consistent application protocol for your
client to access different AWS services.

In this walkthrough, we create an API to expose Amazon SNS. For more examples of integrating an
API with other AWS services, see Amazon API Gateway tutorials and workshops.

Unlike the Lambda proxy integration, there is no corresponding proxy integration for other AWS
services. Hence, an APl method is integrated with a single AWS action. For more flexibility, similar
to the proxy integration, you can set up a Lambda proxy integration. The Lambda function then
parses and processes requests for other AWS actions.

API Gateway does not retry when the endpoint times out. The API caller must implement retry
logic to handle endpoint timeouts.

This walkthrough builds on the instructions and concepts in Build an API Gateway REST API with

Lambda integration. If you have not yet completed that walkthrough, we suggest that you do it
first.

Topics

« Prerequisites
» Step 1: Create the AWS service proxy execution role

» Step 2: Create the resource

Tutorial: Build an APl with AWS integration 82

Amazon API Gateway Developer Guide

» Step 3: Create the GET method

Step 4: Specify method settings and test the method
Step 5: Deploy the API
Step 6: Test the API

Step 7: Clean up

Prerequisites
Before you begin this walkthrough, do the following:

1. Complete the steps in Prerequisites for getting started with APl Gateway.

2. Create a new APl named MyDemoAPI. For more information, see Tutorial: Build a REST API with

HTTP non-proxy integration.

3. Deploy the API at least once to a stage named test. For more information, see Deploy the API
in Build an API Gateway REST API with Lambda integration.

4. Complete the rest of the steps in Build an APl Gateway REST APl with Lambda integration.

Create at least one topic in Amazon Simple Notification Service (Amazon SNS). You will use the
deployed API to get a list of topics in Amazon SNS that are associated with your AWS account.
To learn how to create a topic in Amazon SNS, see Create a Topic. (You do not need to copy the

topic ARN mentioned in step 5.)

Step 1: Create the AWS service proxy execution role

To allow the API to invoke Amazon SNS actions, you must have the appropriate IAM policies
attached to an IAM role.

To create the AWS service proxy execution role

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. Choose Roles.
Choose Create role.

4. Choose AWS service under Select type of trusted entity, and then select APl Gateway and
select Allows APl Gateway to push logs to CloudWatch Logs.

5. Choose Next, and then choose Next.

Tutorial: Build an APl with AWS integration 83

https://docs.aws.amazon.com/sns/latest/dg/CreateTopic.html
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/

Amazon API Gateway Developer Guide

6. For Role name, enter APIGatewaySNSProxyPolicy, and then choose Create role.

7. In the Roles list, choose the role you just created. You may need to scroll or use the search bar
to find the role.

8. For the selected role, select the Add permissions tab.
9. Choose Attach policies from the dropdown list.

10. In the search bar, enter AmazonSNSReadOnlyAccess and choose Add permissions.

(® Note

This tutorial uses a managed policy for simplicity. As a best practice, you should create
your own |AM policy to grant the minimum permissions required.

11. Note the newly created Role ARN, you will use it later.

Step 2: Create the resource

In this step, you create a resource that enables the AWS service proxy to interact with the AWS
service.

To create the resource

1. Signin to the API Gateway console at https://console.aws.amazon.com/apigateway.

2. Choose your API.

W

Select the root resource, /, represented by a single forward slash (/), and then choose Create
resource.

Keep Proxy resource turned off.
Keep Resource path as /.
For Resource name, enter mydemoawsproxy.

Keep CORS (Cross Origin Resource Sharing) turned off.

©© N o U b

Choose Create resource.

Step 3: Create the GET method

In this step, you create a GET method that enables the AWS service proxy to interact with the AWS
service.

Tutorial: Build an APl with AWS integration

https://console.aws.amazon.com/apigateway

Amazon API Gateway Developer Guide

To create the GET method

—

Select the /mydemoawsproxy resource, and then choose Create method.

For method type, select GET.

For Integration type, select AWS service.

For AWS Region, select the AWS Region where you created your Amazon SNS topic.
For AWS service, select Amazon SNS.

Keep AWS subdomain blank.

For HTTP method, select GET.

For Action type, select Use action name.

© ®©® N o U A~ WD

For Action name, enter ListTopics.

-_—
©

For Execution role, enter the role ARN for APIGatewaySNSProxyPolicy.

—
—

. Choose Create method.

Step 4: Specify method settings and test the method

You can now test your GET method to verify that it has been properly set up to list your Amazon
SNS topics.

To test the GET method

1. Choose the Test tab. You might need to choose the right arrow button to show the tab.

2. Choose Test.

The result displays response similar to the following:

{
"ListTopicsResponse": {
"ListTopicsResult": {
"NextToken": null,

"Topics": [
{
"TopicArn": "arn:aws:sns:us-east-1:80398EXAMPLE:MySNSTopic-1"
I
{
"TopicArn": "arn:aws:sns:us-east-1:80398EXAMPLE:MySNSTopic-2"
1,

Tutorial: Build an APl with AWS integration 85

Amazon API Gateway Developer Guide

{
"TopicArn": "arn:aws:sns:us-east-1:80398EXAMPLE:MySNSTopic-N"
}
]
I
"ResponseMetadata": {
"RequestId": "abclde23-45fa-6789-b0cl-d2e345fa6b78"
}

Step 5: Deploy the API

In this step, you deploy the API so that you can call it from outside of the APl Gateway console.

To deploy the API

1. Choose Deploy API.

2. For Stage, select New stage.

3. For Stage name, enter test.

4. (Optional) For Description, enter a description.
5. Choose Deploy.

Step 6: Test the API

In this step, you go outside of the APl Gateway console and use your AWS service proxy to interact
with the Amazon SNS service.

In the main navigation pane, choose Stage.

Under Stage details, choose the copy icon to copy your API's invoke URL.

It should look like this:

https://my-api-id.execute-api.region-id.amazonaws.com/test

Enter the URL into the address box of a new browser tab.

Append /mydemoawsproxy so that the URL looks like this:

Tutorial: Build an APl with AWS integration 86

Amazon API Gateway Developer Guide

https://my-api-id.execute-api.region-id.amazonaws.com/test/mydemoawsproxy

Browse to the URL. Information similar to the following should be displayed:

{"ListTopicsResponse":{"ListTopicsResult":{"NextToken": null,"Topics":
[{"TopicArn": "arn:aws:sns:us-east-1:80398EXAMPLE:MySNSTopic-1"}, {"TopicArn":
"arn:aws:sns:us-east-1:80398EXAMPLE :MySNSTopic-2"},...{"TopicArn":
"arn:aws:sns:us-east-1:80398EXAMPLE :MySNSTopic-N}]}, "ResponseMetadata":

{"RequestId":"abclde23-45fa-6789-b0@cl-d2e345fa6b78}}}

Step 7: Clean up

You can delete the IAM resources the AWS service proxy needs to work.

/A Warning

If you delete an IAM resource an AWS service proxy relies on, that AWS service proxy and
any APIs that rely on it will no longer work. Deleting an IAM resource cannot be undone. If
you want to use the IAM resource again, you must re-create it.

To delete the associated IAM resources

1. Open the IAM console at https://console.aws.amazon.com/iam/.

2. In the Details area, choose Roles.

3. Select APIGatewayAWSProxyExecRole, and then choose Role Actions, Delete Role. When
prompted, choose Yes, Delete.

4. In the Details area, choose Policies.

5. Select APIGatewayAWSProxyExecPolicy, and then choose Policy Actions, Delete. When
prompted, choose Delete.

You have reached the end of this walkthrough. For more detailed discussions about creating API
as an AWS service proxy, see Tutorial: Create a REST APl as an Amazon S3 proxy in API Gateway,
Tutorial: Create a Calc REST API with two AWS service integrations and one Lambda non-proxy
integration, or Tutorial: Create a REST API as an Amazon Kinesis proxy in API Gateway.

Tutorial: Build an APl with AWS integration 87

https://console.aws.amazon.com/iam/

Amazon API Gateway Developer Guide

Tutorial: Create a Calc REST API with two AWS service integrations and
one Lambda non-proxy integration

The Getting Started non-proxy integration tutorial uses Lambda Function integration exclusively.

Lambda Function integration is a special case of the AWS Service integration type that
performs much of the integration setup for you, such as automatically adding the required
resource-based permissions for invoking the Lambda function. Here, two of the three integrations
use AWS Service integration. In this integration type, you have more control, but you'll need

to manually perform tasks like creating and specifying an IAM role containing appropriate
permissions.

In this tutorial, you'll create a Calc Lambda function that implements basic arithmetic operations,
accepting and returning JSON-formatted input and output. Then you'll create a REST API and
integrate it with the Lambda function in the following ways:

1. By exposing a GET method on the /calc resource to invoke the Lambda function, supplying
the input as query string parameters. (AWS Service integration)

2. By exposing a POST method on the /calc resource to invoke the Lambda function, supplying
the input in the method request payload. (AWS Service integration)

3. By exposing a GET on nested /calc/{operandl}/{operand2}/{operator} resources to
invoke the Lambda function, supplying the input as path parameters. (Lambda Function
integration)

In addition to trying out this tutorial, you may wish to study the OpenAPI definition file for the
Calc API, which you can import into API Gateway by following the instructions in the section
called “"OpenAPI".

Topics

+ Create an assumable IAM role

o Create a Calc Lambda function

o Test the Calc Lambda function

o Create a Calc API

« Integration 1: Create a GET method with query parameters to call the Lambda function

 Integration 2: Create a POST method with a JSON payload to call the Lambda function

 Integration 3: Create a GET method with path parameters to call the Lambda function

Tutorial: Calc API with three integrations 88

Amazon API Gateway Developer Guide

» OpenAPI definitions of sample API integrated with a Lambda function

Create an assumable IAM role

In order for your API to invoke your Calc Lambda function, you'll need to have an APl Gateway
assumable IAM role, which is an IAM role with the following trusted relationship:

{
"Version": "2012-10-17",
"Statement": [
{
"Sid". "",
"Effect": "Allow",
"Principal": {
"Service": "apigateway.amazonaws.com"
.
"Action": "sts:AssumeRole"
}
]
}

The role you create will need to have Lambda InvokeFunction permission. Otherwise, the API caller

will receive a 500 Internal Server Error response. To give the role this permission, you'll
attach the following IAM policy to it:

{
"Version": "2012-10-17",
"Statement": [
{
"Effect": "Allow",
"Action": "lambda:InvokeFunction",
"Resource": "*"
}
]
}

Here's how to accomplish all this:
Create an APl Gateway assumable IAM role

1. Login to the IAM console.

Tutorial: Calc API with three integrations 89

https://docs.aws.amazon.com/lambda/latest/dg/API_Invoke.html

Amazon API Gateway Developer Guide

Choose Roles.

Choose Create Role.

Under Select type of trusted entity, choose AWS Service.

Under Choose the service that will use this role, choose Lambda.

Choose Next: Permissions.

N o u B~ W N

Choose Create Policy.

A new Create Policy console window will open up. In that window, do the following:

a. Inthe JSON tab, replace the existing policy with the following:

{
"Version": "2012-10-17",
"Statement": [
{
"Effect": "Allow",
"Action": "lambda:InvokeFunction",
"Resource": "*"
}
]
}

b. Choose Review policy.

¢. Under Review Policy, do the following:

i. For Name, type a name such as lambda_execute.
ii. Choose Create Policy.
8. Inthe original Create Role console window, do the following:

a. Under Attach permissions policies, choose your 1ambda_execute policy from the
dropdown list.

If you don't see your policy in the list, choose the refresh button at the top of the list.
(Don't refresh the browser page!)

b. Choose Next:Tags.

c. Choose Next:Review.

Tutorial: Calc API with three integrations 90

Amazon API Gateway Developer Guide

d. Forthe Role name, type a name such as
lambda_invoke_function_assume_apigw_role.

e. Choose Create role.
9. Choose your lambda_invoke_function_assume_apigw_xrole from the list of roles.
10. Choose the Trust relationships tab.
11. Choose Edit trust relationship.
12. Replace the existing policy with the following:

{
"Version": "2012-10-17",
"Statement": [
{
"Sid". "",
"Effect": "Allow",
"Principal": {

"Service": [
"lambda.amazonaws.com",
"apigateway.amazonaws.com"

]

},
"Action": "sts:AssumeRole"
}
]
}

13. Choose Update Trust Policy.
14. Make a note of the role ARN for the role you just created. You'll need it later.

Create a Calc Lambda function

Next you'll create a Lambda function using the Lambda console.

1. In the Lambda console, choose Create function.
2. Choose Author from Scratch.

3. For Name, enter Calc.
4

For Runtime, choose either the latest supported Node.js or Python runtime.

Tutorial: Calc API with three integrations 91

Amazon API Gateway

Developer Guide

5. Choose Create function.

6. Copy the following Lambda function in your preferred runtime and paste it into the code
editor in the Lambda console.

Node.js

export c

if (
even
even
even

) {

return "400 Invalid Input";

const
res.a
res.b

onst handler = async function (event, context) {
console.log("Received event:", JSON.stringify(event));

t.a === undefined ||
t.b === undefined ||
t.op === undefined

res = {};
= Number(event.a);
= Number(event.b);

res.op = event.op;
if (isNaN(event.a)
return "400 Inval

|| isNaN(event.b)) {
id Operand";

}
switch (event.op) {
case "+":
case "add":
res.c = res.a + res.b;
break;
case "-":
case "sub":
res.c = res.a - res.b;
break;
case "*":
case "mul":
res.c = res.a * res.b;
break;
case "/":
case "div":
if (res.b == 0) {

}

return "40@ Divide by Zero";

else {
res.c = res.a / res.b;

Tutorial: Calc API with three integrations

92

Amazon API Gateway Developer Guide

}

break;
default:
return "400 Invalid Operator";

return res;

};

Python

import json

def lambda_handler(event, context):
print(event)

try:

(event['a']) and (event['b']) and (event['op'])
except KeyError:

return '400 Invalid Input'

try:
res = {
"a": float(
event['a']), "b": float(
event['b']), "op": event['op']}
except ValueError:
return '400 Invalid Operand'

if event['op'] == '+':

res['c'] = res['a'] + res['b']
elif event['op'] == '-':

res['c'] = res['a'] - res['b']

elif event['op'] == "*':
res['c'] = res['a'] * res['b']
elif event['op'] == "'/':

if res['b'] == 0:
return '400 Divide by Zero'
else:
res['c'] = res['a'] / res['b']
else:
return '400 Invalid Operator'

Tutorial: Calc API with three integrations 93

Amazon API Gateway Developer Guide

return res

Under Execution role, choose Choose an existing role.

8. Enter the role ARN for the 1ambda_invoke_function_assume_apigw_xole role you
created earlier.

9. Choose Deploy.

This function requires two operands (a and b) and an operator (op) from the event input
parameter. The input is a JSON object of the following format:

{
"a": "Number" | "String",
"b": "Number" | "String",
Ilopll: IIStIingll

}

This function returns the calculated result (c) and the input. For an invalid input, the function
returns either the null value or the "Invalid op" string as the result. The output is of the following
JSON format:

{

"a": "Number",

"b": "Number",

"op": "String",

"c": "Number" | "String"
}

You should test the function in the Lambda console before integrating it with the APl in the next
step.

Test the Calc Lambda function

Here's how to test your Calc function in the Lambda console:

1. Choose the Test tab.

Tutorial: Calc API with three integrations 94

Amazon API Gateway Developer Guide

2.
3.

For the test event name, enter calc2plus5.

Replace the test event definition with the following:

{
"a': 2",
"pr:ovsh,
"op": "+
3

Choose Save.
Choose Test.

Expand Execution result: succeeded. You should see the following:

{
"a": 2,
"b": 5,
"Op": "+"I
"c": 7

}

Create a Calc API

The following procedure shows how to create an API for the Calc Lambda function you just

created. In subsequent sections, you'll add resources and methods to it.

To create an API

Sign in to the API Gateway console at https://console.aws.amazon.com/apigateway.

If this is your first time using APl Gateway, you see a page that introduces you to the features
of the service. Under REST API, choose Build. When the Create Example API popup appears,
choose OK.

If this is not your first time using APl Gateway, choose Create API. Under REST API, choose
Build.

For APl name, enter LambdaCalc.
(Optional) For Description, enter a description.

Keep API endpoint type set to Regional.

Tutorial: Calc API with three integrations 95

https://console.aws.amazon.com/apigateway

Amazon API Gateway Developer Guide

6. Choose Create API.

Integration 1: Create a GET method with query parameters to call the Lambda
function

By creating a GET method that passes query string parameters to the Lambda function, you enable
the API to be invoked from a browser. This approach can be useful, especially for APIs that allow
open access.

After you create an API, you create a resource. Typically, APl resources are organized in a resource
tree according to the application logic. For this step, you create a /calc resource.

To create a /calc resource

Choose Create resource.
Keep Proxy resource turned off.
Keep Resource path as /.
For Resource name, enter calc.

Keep CORS (Cross Origin Resource Sharing) turned off.

A A

Choose Create resource.

By creating a GET method that passes query string parameters to the Lambda function, you enable
the API to be invoked from a browser. This approach can be useful, especially for APIs that allow
open access.

In this method, Lambda requires that the POST request be used to invoke any Lambda function.
This example shows that the HTTP method in a frontend method request can be different from the
integration request in the backend.

To create a GET method

Select the /calc resource, and then choose Create method.
For Method type, select GET.
For Integration type, select AWS service.

For AWS Region, select the AWS Region where you created your Lambda function.

A A

For AWS service, select Lambda.

Tutorial: Calc API with three integrations 96

Amazon API Gateway Developer Guide

6.
7.
8.

10.

11.
12.
13.

14.

15.

Keep AWS subdomain blank.
For HTTP method, select POST.

For Action type, select Use path override. This option allows us to specify the ARN of the
Invoke action to execute our Calc function.

For Path override, enter 2015-03-31/functions/arn:aws:lambda:us-
east-2:account-id:function:Calc/invocations. For account-id, enter your AWS
account ID. For us-east-2, enter the AWS Region where you created your Lambda function.

For Execution role, enter the role ARN for
lambda_invoke_function_assume_apigw_role.

Do not change the settings of Credential cache and Default timeout.
Choose Method request settings.

For Request validator, select Validate query string parameters and headers.

This setting will cause an error message to return if the client does not specify the required
parameters.

Choose URL query string parameters.

Now you set up query string parameters for the GET method on the /calc resource so it can
receive input on behalf of the backend Lambda function.

To create the query string parameters do the following:

a. Choose Add query string.
b. For Name, enter operandl.
¢. Turn on Required.

d. Keep Caching turned off.

Repeat the same steps and create a query string named operand2 and a query string named
operator.

Choose Create method.

Now, you create a mapping template to translate the client-supplied query strings to the

integration request payload as required by the Calc function. This template maps the three query

string parameters declared in Method request into designated property values of the JSON object

Tutorial: Calc API with three integrations 97

https://docs.aws.amazon.com/lambda/latest/dg/API_Invoke.html

Amazon API Gateway Developer Guide

as the input to the backend Lambda function. The transformed JSON object will be included as the
integration request payload.

To map input parameters to the integration request

1. On the Integration request tab, under Integration request settings, choose Edit.

2. For Request body passthrough, select When there are no templates defined
(recommended).

Choose Mapping templates.
Choose Add mapping template.

For Content type, enter application/json.

o ok~ W

For Template body, enter the following code:

a": "$input.params('operandl')",
"b": "$input.params('operand2')",

op": "$input.params('operator')"

}
7. Choose Save.
You can now test your GET method to verify that it has been properly set up to invoke the Lambda
function.
To test the GET method

1. Choose the Test tab. You might need to choose the right arrow button to show the tab.
2. For Query strings, enter operand1=2&operand2=3&operator=+.

3. Choose Test.

The results should look similar to this:

Tutorial: Calc API with three integrations 98

Amazon API Gateway Developer Guide

Test method

Make a test call to your method. When you make a test call, APl Gateway skips authorization and directly
invokes your method.

Query strings

operand1=2&operand2=3&operator=+

Headers
Enter a header name and value separated by a colon (:). Use a new line for each header.

header1:valuel
header2:value2

Client certificate

None v

/] - GET method test results
Request Latency
e 414

operand1=2&operand2=3&operator=+

Status
200

Response body

{"a":z,“b":3,"0p":"+"'“C“:5}

Tutorial: Calc APl with three integrations 99

Amazon API Gateway Developer Guide

Integration 2: Create a POST method with a JSON payload to call the Lambda
function

By creating a POST method with a JSON payload to call the Lambda function, you make it so that
the client must provide the necessary input to the backend function in the request body. To ensure
that the client uploads the correct input data, you'll enable request validation on the payload.

To create a POST method with a JSON payload

Select the /calc resource, and then choose Create method.

For Method type, select POST.

For Integration type, select AWS service.

For AWS Region, select the AWS Region where you created your Lambda function.
For AWS service, select Lambda.

Keep AWS subdomain blank.

For HTTP method, select POST.

© N O U kA W D=

For Action type, select Use path override. This option allows us to specify the ARN of the
Invoke action to execute our Calc function.

9. For Path override, enter 2015-03-31/functions/arn:aws:lambda:us-
east-2:account-id:function:Calc/invocations. For account-id, enter your AWS
account ID. For us-east-2, enter the AWS Region where you created your Lambda function.

10. For Execution role, enter the role ARN for
lambda_invoke_function_assume_apigw_role.

11. Do not change the settings of Credential cache and Default timeout.

12. Choose Create method.

Now you create an input model to describe the input data structure and validate the incoming
request body.

To create an input model

1. In the main navigation pane, choose Models.
2. Choose Create model.

3. For Name, enter input.
4

For Content type, enter application/json.

Tutorial: Calc API with three integrations 100

https://docs.aws.amazon.com/lambda/latest/dg/API_Invoke.html

Amazon API Gateway Developer Guide

If no matching content type is found, request validation is not performed. To use the same
model regardless of the content type, enter $default.

5. For Model schema, enter the following model:

{
"type":"object",
"properties":{
"a":{"type":"number"},
"b":{"type":"number"},
"op":{"type":"string"}
iy
"title":"input"
}

6. Choose Create model.

You now create an output model. This model describes the data structure of the calculated output
from the backend. It can be used to map the integration response data to a different model. This
tutorial relies on the passthrough behavior and does not use this model.

To create an output model

1. Choose Create model.
2. For Name, enter output.

3. For Content type, enter application/json.

If no matching content type is found, request validation is not performed. To use the same
model regardless of the content type, enter $default.

4. For Model schema, enter the following model:

{
"type":"object",
"properties":{
"c":{"type":"number"}
1,
"title":"output"
}

5. Choose Create model.

Tutorial: Calc API with three integrations 101

Amazon API Gateway Developer Guide

You now create a result model. This model describes the data structure of the returned response
data. It references both the input and output schemas defined in your API.

To create a result model

1. Choose Create model.
2. For Name, enter result.

3. For Content type, enter application/json.

If no matching content type is found, request validation is not performed. To use the same
model regardless of the content type, enter $default.

4. For Model schema, enter the following model with your restapi-id. Your restapi-idis
listed in parenthesis at the top of the console in the following flow: API Gateway > APIs >
LambdaCalc (abcl23).

{
"type":"object",
"properties":{
"input":{
"$ref":"https://apigateway.amazonaws.com/restapis/restapi-id/models/
input"
},
"output":{
"$ref":"https://apigateway.amazonaws.com/restapis/restapi-id/models/
output"
}
.
"title":"result"
}

5. Choose Create model.

You now configure the method request of your POST method to enable request validation on the
incoming request body.

To enable request validation on the POST method

1. In the main navigation pane, choose Resources, and then select the POST method from the
resource tree.

2. On the Method request tab, under Method request settings, choose Edit.

Tutorial: Calc API with three integrations 102

Amazon API Gateway Developer Guide

3. For Request validator, select Validate body.
4. Choose Request body, and then choose Add model.

5. For Content type, enter application/json.

If no matching content type is found, request validation is not performed. To use the same
model regardless of the content type, enter $default.

6. For Model, select input.

7. Choose Save.

You can now test your POST method to verify that it has been properly set up to invoke the
Lambda function.

To test the POST method

1. Choose the Test tab. You might need to choose the right arrow button to show the tab.

2. For Request body, enter the following JSON payload.

{
"a": 1,
"b": 2,
"op": "4"
}

3. Choose Test.

You should see the following output:

{
"a": 1,
"b": 2,
"op": "+",
"c": 3

}

Tutorial: Calc API with three integrations 103

Amazon API Gateway Developer Guide

Integration 3: Create a GET method with path parameters to call the Lambda
function

Now you'll create a GET method on a resource specified by a sequence of path parameters to call
the backend Lambda function. The path parameter values specify the input data to the Lambda
function. You'll use a mapping template to map the incoming path parameter values to the
required integration request payload.

The resulting API resource structure will look like this:

Create resource

=/
[=] /calc
GET
POST

[=] /{operand1}
[=] /{operand2}

[=] /{operator}
GET

Tutorial: Calc API with three integrations 104

Amazon API Gateway Developer Guide

To create a /{operand1}/{operand2}/{operator} resource

© o N o U kA W DN =

-_—
©

11.
12.
13.

Choose Create resource.

For Resource path, select /calc.

For Resource name, enter {operandl1}.

Keep CORS (Cross Origin Resource Sharing) turned off.
Choose Create resource.

For Resource path, select /calc/{operandl}/.

For Resource name, enter {operand2}.

Keep CORS (Cross Origin Resource Sharing) turned off.
Choose Create resource.

For Resource path, select /calc/{operandl}/{operand2}/.
For Resource name, enter {operator}.

Keep CORS (Cross Origin Resource Sharing) turned off.

Choose Create resource.

This time you'll use the built-in Lambda integration in the API Gateway console to set up the
method integration.

To set up a method integration

A A

o

Select the /{operand1}/{operand2}/{operator} resource, and then choose Create method.
For Method type, select GET.

For Integration type, select Lambda.

Keep Lambda proxy integration turned off.

For Lambda function, select the AWS Region where you created your Lambda function and
enter Calc.

Keep Default timeout turned on.

Choose Create method.

You now create a mapping template to map the three URL path parameters, declared when the /
calc/{operand1}/{operand2}/{operator} resource was created, into designated property values in
the JSON object. Because URL paths must be URL-encoded, the division operator must be specified

Tutorial: Calc API with three integrations 105

Amazon API Gateway Developer Guide

as %2F instead of /. This template translates the %2F into ' /' before passing it to the Lambda
function.

To create a mapping template

1. On the Integration request tab, under Integration request settings, choose Edit.

2. For Request body passthrough, select When there are no templates defined
(recommended).

3. Choose Mapping templates.
4. For Content type, enter application/json.

5. For Template body, enter the following code:

{
"a": "$input.params('operandl')",
"b": "$input.params('operand2')",
"op":
#if($input.params('operator')=="%2F"')"/"#{else}"$input.params('operator')"#end
}

6. Choose Save.

You can now test your GET method to verify that it has been properly set up to invoke the Lambda
function and pass the original output through the integration response without mapping.

To test the GET method

1. Choose the Test tab. You might need to choose the right arrow button to show the tab.

2. For the Path, do the following:

a. Foroperand1l, enter 1.
b. For operand2, enter 1.
c. For operator, enter +.
3. Choose Test.
4. The result should look like this:

Tutorial: Calc API with three integrations 106

Amazon API Gateway Developer Guide

Test method

Make a test call to your method. When you make a test call, API Gateway skips authorization and directly invokes your method.

Path

operand1

1

operand2

1

operator

+

Query strings

param1=value1¶m2=value2

Headers
Enter a header name and value separated by a colon (). Use a new line for each header.

header1:value1
header2:value2

Client certificate

None v

Test

[/{operand1}/{operand2}/{operator} - GET method test results
Request Latency Status
TAVAVAS 26 200

Response body

_{Ilall:1'Ilbll:1’Ilopll:ll+ll'llcll:2}

Next, you model the data structure of the method response payload after the result schema.

By default, the method response body is assigned an empty model. This will cause the integration
response body to be passed through without mapping. However, when you generate an SDK for
one of the strongly-type languages, such as Java or Objective-C, your SDK users will receive an

Tutorial: Calc API with three integrations 107

Amazon API Gateway Developer Guide

empty object as the result. To ensure that both the REST client and SDK clients receive the desired
result, you must model the response data using a predefined schema. Here you'll define a model
for the method response body and to construct a mapping template to translate the integration
response body into the method response body.

To create a method response

1. On the Method response tab, under Response 200, choose Edit.
Under Response body, choose Add model.
For Content type, enter application/json.

For Model, select result.

vk W

Choose Save.

Setting the model for the method response body ensures that the response data will be cast into
the result object of a given SDK. To make sure that the integration response data is mapped
accordingly, you'll need a mapping template.

To create a mapping template

1. On the Integration response tab, under Default - Response, choose Edit.
Choose Mapping templates.
For Content type, enter application/json.

For Generate template, select result.

ok W

Modify the generated mapping template to match the following:

#set($inputRoot = $input.path('$'))

{
"input" : {
"a" : $inputRoot.a,
"b" : $inputRoot.b,
"op" : "$inputRoot.op"
I
"output" : {
"c" : $inputRoot.c
}
}

6. Choose Save.

Tutorial: Calc API with three integrations 108

Amazon API Gateway Developer Guide

To test the mapping template

1. Choose the Test tab. You might need to choose the right arrow button to show the tab.

2. For the Path, do the following:

a. Foroperand1l, enter 1.

b. For operand2, enter 2.

c. For operator, enter +.
3. Choose Test.

4. The result will look like the following:

{

"input": {
"a": 1,
"b": 2,
"op": "+"

.

"output": {
"c": 3

}

}

At this point, you can only call the APl using the Test feature in the API Gateway console. To make
it available to clients, you'll need to deploy your API. Always be sure to redeploy your APl whenever
you add, modify, or delete a resource or method, update a data mapping, or update stage settings.
Otherwise, new features or updates will not be available to clients of your API. as follows:

To deploy the API

1. Choose Deploy API.

For Stage, select New stage.

For Stage name, enter Prod.

(Optional) For Description, enter a description.

Choose Deploy.

o v M W N

(Optional) Under Stage details, for Invoke URL, you can choose the copy icon to copy your
API's invoke URL. You can use this with tools such as Postman and cURL to test your API.

Tutorial: Calc API with three integrations 109

http://www.postman.com
https://curl.haxx.se/

Amazon API Gateway Developer Guide

® Note

Always redeploy your APl whenever you add, modify, or delete a resource or method,
update a data mapping, or update stage settings. Otherwise, new features or updates will
not be available to clients of your API.

OpenAPI definitions of sample API integrated with a Lambda function

OpenAPI 2.0

"swagger": "2.0",
"info": {
"version": "2017-04-20T04:08:08Z",
"title": "LambdaCalc"
1,
"host": "uojnr9hd57.execute-api.us-east-1.amazonaws.com",
"basePath": "/test",
"schemes": [

"https"
1,
"paths": {
"/calc": {
"get": {
"consumes": [
"application/json"
1,
"produces": [
"application/json"
1,
"parameters": [
{
"name": "operand2",
"in": "query",
"required": true,
"type": "string"
.
{
"name": "operator",
"in": "query",

Tutorial: Calc API with three integrations 110

Amazon API Gateway Developer Guide

"required": true,
"type": "string"

"name": "operandl",
"in": "query",
"required": true,
"type": "string"

}

1,
"responses": {

"200": {
"description": "200 response",
"schema": {

"$ref": "#/definitions/Result"
I
"headers": {
"operand_1": {
"type": "string"
I
"operand_2": {
"type": "string"
},
"operator": {
"type": "string"

}
},
""Xx-amazon-apigateway-request-validator": "Validate query string parameters
and headers",
"X-amazon-apigateway-integration": {
"credentials": "arn:aws:iam::123456789012:role/apigAwsProxyRole",
"responses": {
"default": {
"statusCode": "200",
"responseParameters": {

"method.response.header.operator": "integration.response.body.op",
"method.response.header.operand_2": "integration.response.body.b",
"method.response.header.operand_1": "integration.response.body.a"

}I

"responseTemplates": {

Tutorial: Calc API with three integrations 111

Amazon API Gateway Developer Guide

"application/json": "#set($res = $input.path('$'))\n{\n \"result
\": \"$res.a, $res.b, $res.op => $res.c\",\n \"a\" : \"$res.a\",\n \"b\"
\"$Ies.b\",\n \uop\u : \"$Ies.0p\",\n \"C\" : \"$IeS.C\"\n}"
}
}
iy

uri": "arn:aws:apigateway:us-west-2:lambda:path/2015-03-31/functions/
arn:aws:lambda:us-west-2:123456789012:function:Calc/invocations",

"passthroughBehavior": "when_no_match",

"httpMethod": "POST",

"requestTemplates": {

"application/json": "{\n \"a\": \"$input.params('operandl')\",\n
\"b\": \"$input.params('operand2')\", \n \"op\": \"$input.params('operator')\"
\n}"
},

"type": "aws

}

I
"post": {
"consumes": [
"application/json"
1,
"produces": [
"application/json"
1,
"parameters": [
{
"in": "body",
"name": "Input",
"required": true,
"schema": {
"$ref": "#/definitions/Input"

}
1,
"responses": {
"200": {
"description": "200 response",
"schema": {
"$ref": "#/definitions/Result"

}
}I

""x-amazon-apigateway-request-validator": "Validate body",

Tutorial: Calc API with three integrations 112

Amazon API Gateway Developer Guide

"x-amazon-apigateway-integration": {
"credentials": "arn:aws:iam::123456789012:r0le/apigAwsProxyRole",
"responses": {
"default": {
"statusCode": "200",
"responseTemplates": {
"application/json": "#set($inputRoot = $input.path('$'))\n{\n \"a
\" : $inputRoot.a,\n \"b\" : $inputRoot.b,\n \"op\" : $inputRoot.op,\n \"c\"
$inputRoot.c\n}"
}
}
I

uri": "arn:aws:apigateway:us-west-2:lambda:path/2015-03-31/functions/

arn:aws:lambda:us-west-2:123456789012:function:Calc/invocations",

"passthroughBehavior": "when_no_templates",
"httpMethod": "POST",
"type": "aws"
}
}
I
"/calc/{operandl}/{operand2}/{operator}": {
"get": {
"consumes": [
"application/json"
1,
"produces": [
"application/json"
1,
"parameters": [
{
"name": "operand2",
"in": "path",
"required": true,
"type": "string"
},
{
"name": "operator",
"in": "path",
"required": true,
"type": "string"
},
{
"name": "operandl",
"in": "path",

Tutorial: Calc API with three integrations 113

Amazon API Gateway Developer Guide

"required": true,
"type": "string"

}
1,
"responses": {
"200": {
"description": "200 response",
"schema": {
"$ref": "#/definitions/Result"
}
}
I

"x-amazon-apigateway-integration": {
"credentials": "arn:aws:iam::123456789012:r0le/apigAwsProxyRole",
"responses": {
"default": {
"statusCode": "200",
"responseTemplates": {
"application/json": "#set($inputRoot = $input.path('$'))\n{\n
\"input\" : {\n \"a\" : $inputRoot.a,\n \"b\" : $inputRoot.b,\n \"op\"
\"$inputRoot.op\"\n 3},\n \"output\" : {\n \"c\" : $inputRoot.c\n JF\n}"
}
}
I

uri": "arn:aws:apigateway:us-west-2:lambda:path/2015-03-31/functions/
arn:aws:lambda:us-west-2:123456789012:function:Calc/invocations",
"passthroughBehavior": "when_no_templates",
"httpMethod": "POST",
"requestTemplates": {
"application/json": "{\n \"a\": \"$input.params('operandl’')\",

\n \"b\": \"$input.params('operand2')\",\n \"op\":

#if($input.params('operator')=="%2F")\"/\"#{else}\"$input.params('operator')\"#end
\n \n}"
I
"contentHandling": "CONVERT_TO_TEXT",
"type": "aws"
}
}
}
I
"definitions": {
"Input": {

"type": "object",
"required": [

Tutorial: Calc API with three integrations

Amazon API Gateway Developer Guide

a’,
npr
"op"
1,
"properties": {
"a": {
"type": "number"
1,
"b": {
"type": "number"
1,
"op": {
"type": "string",
"description": "binary op of ['+', 'add', '-', 'sub', '*', 'mul',6 '%2F',
'div']"
}
1,
"title": "Input"
1,
"Output": {
"type": "object",
"properties": {
"c": {
"type": "number"
}
1,
"title": "Output"
1,
"Result": {

"type": "object",
"properties": {
"input": {
"$ref": "#/definitions/Input"
I
"output": {
"$ref": "#/definitions/Output"
}
I
"title": "Result"
}
},
"x-amazon-apigateway-request-validators": {
"Validate body": {
"validateRequestParameters": false,

Tutorial: Calc API with three integrations 115

Amazon API Gateway Developer Guide

"validateRequestBody": true

I

"Validate query string parameters and headers": {
"validateRequestParameters": true,
"validateRequestBody": false

}

}
}

Tutorial: Create a REST API as an Amazon S3 proxy in APl Gateway

As an example to showcase using a REST API in APl Gateway to proxy Amazon S3, this section
describes how to create and configure a REST API to expose the following Amazon S3 operations:

» Expose GET on the API's root resource to list all of the Amazon S3 buckets of a caller.

» Expose GET on a Folder resource to view a list of all of the objects in an Amazon S3 bucket.

» Expose GET on a Folder/Item resource to view or download an object from an Amazon S3 bucket.

You might want to import the sample API as an Amazon S3 proxy, as shown in OpenAPI definitions
of the sample APl as an Amazon S3 proxy. This sample contains more exposed methods. For

instructions on how to import an API using the OpenAPI definition, see Configuring a REST API
using OpenAPI.

(® Note

To integrate your API Gateway APl with Amazon S3, you must choose a region where both
the API Gateway and Amazon S3 services are available. For region availability, see Amazon
API Gateway Endpoints and Quotas.

Topics

Set up IAM permissions for the API to invoke Amazon S3 actions

Create API resources to represent Amazon S3 resources

Expose an APl method to list the caller's Amazon S3 buckets

Expose API methods to access an Amazon S3 bucket

Expose API methods to access an Amazon S3 object in a bucket

Tutorial: Create a REST API as an Amazon S3 proxy in APl Gateway 116

https://docs.aws.amazon.com/AmazonS3/latest/API/RESTServiceGET.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketGET.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectGET.html
https://docs.aws.amazon.com/general/latest/gr/apigateway.html
https://docs.aws.amazon.com/general/latest/gr/apigateway.html

Amazon API Gateway Developer Guide

» OpenAPI definitions of the sample APl as an Amazon S3 proxy
« Call the APl using a REST API client

Set up IAM permissions for the API to invoke Amazon S3 actions

To allow the API to invoke Amazon S3 actions, you must have the appropriate IAM policies
attached to an IAM role.

To create the AWS service proxy execution role

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. Choose Roles.
3. Choose Create role.

4. Choose AWS service under Select type of trusted entity, and then select APl Gateway and
select Allows APl Gateway to push logs to CloudWatch Logs.

5. Choose Next, and then choose Next.
6. For Role name, enter APIGatewayS3ProxyPolicy, and then choose Create role.

7. In the Roles list, choose the role you just created. You may need to scroll or use the search bar
to find the role.

8. For the selected role, select the Add permissions tab.
9. Choose Attach policies from the dropdown list.

10. In the search bar, enter AmazonS3FullAccess and choose Add permissions.

® Note

This tutorial uses a managed policy for simplicity. As a best practice, you should create
your own |AM policy to grant the minimum permissions required.

11. Note the newly created Role ARN, you will use it later.

Create API resources to represent Amazon S3 resources

You use the API's root (/) resource as the container of an authenticated caller's Amazon S3 buckets.
You also create a Folder and Item resources to represent a particular Amazon S3 bucket and a

Tutorial: Create a REST API as an Amazon S3 proxy in APl Gateway 117

https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/

Amazon API Gateway Developer Guide

particular Amazon S3 object, respectively. The folder name and object key will be specified, in the
form of path parameters as part of a request URL, by the caller.

® Note

When accessing objects whose object key includes / or any other special character, the
character needs to be URL encoded. For example, test/test. txt should be encoded to
test%2Ftest.txt.

To create an API resource that exposes the Amazon S3 service features

1.

© ® N o U M W DN

In the same AWS Region you created your Amazon S3 bucket, create an APl named MyS3. This
API's root resource (/) represents the Amazon S3 service. In this step, you create two additional
resources /{folder} and /{item}.

Select the API's root resource, and then choose Create resource.
Keep Proxy resource turned off.

For Resource path, select /.

For Resource name, enter {folder}.

Keep CORS (Cross Origin Resource Sharing) unchecked.
Choose Create resource.

Select the /{folder} resource, and then choose Create resource.

Use the previous steps to create a child resource of /{folder} named {item}.

Your final API should look similar to the following:

Tutorial: Create a REST API as an Amazon S3 proxy in APl Gateway 118

Amazon API Gateway Developer Guide

Resources Deploy API

‘ Create resource Resource details | Delete | ‘ Update documentation ‘
Path Resource ID

=/ [{folder}/{item} efg456

[=] /{folder}
/{item}
Methods (0) Create method
Method type & Integration type ¥ Authorization APlkey ¥
No methods

No methods defined.

Expose an APl method to list the caller's Amazon S3 buckets

Getting the list of Amazon S3 buckets of the caller involves invoking the GET Service action on
Amazon S3. On the API's root resource, (/), create the GET method. Configure the GET method to
integrate with the Amazon S3, as follows.

To create and initialize the API's GET / method

—

Select the / resource, and then choose Create method.

For method type, select GET.

For Integration type, select AWS service.

For AWS Region, select the AWS Region where you created your Amazon S3 bucket.
For AWS service, select Amazon Simple Storage Service.

Keep AWS subdomain blank.

For HTTP method, select GET.

© N O U A W DN

For Action type, select Use path override.

With path override, APl Gateway forwards the client request to Amazon S3 as the
corresponding Amazon S3 REST API path-style request, in which a Amazon S3 resource is
expressed by the resource path of the s3-host-name/bucket/key pattern. APl Gateway

Tutorial: Create a REST API as an Amazon S3 proxy in APl Gateway 119

https://docs.aws.amazon.com/AmazonS3/latest/API/RESTServiceGET.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/RESTAPI.html

Amazon API Gateway Developer Guide

sets the s3-host-name and passes the client specified bucket and key from the client to
Amazon S3.

9. For Path override, enter /.
10. For Execution role, enter the role ARN for APIGatewayS3ProxyPolicy.
11. Choose Method request settings.

You use the method request settings to control who can call this method of your API.

12. For Authorization, from the dropdown menu, select AWS_TIAM.

v Method request settings

Authorization

AWS IAM A
None
AWS IAM v

(] API key required

Operation name - optional

GetPets

13. Choose Create method.

This setup integrates the frontend GET https://your-api-host/stage/ request with the
backend GET https://your-s3-host/.

For your API to return successful responses and exceptions properly to the caller, you declare the
200, 400 and 500 responses in Method response. You use the default mapping for 200 responses
so that backend responses of the status code not declared here will be returned to the caller as 200
ones.

To declare response types for the GET / method

1. On the Method response tab, under Response 200, choose Edit.
2. Choose Add header and do the following:

Tutorial: Create a REST API as an Amazon S3 proxy in APl Gateway 120

Amazon API Gateway Developer Guide

a. For Header name, enter Content-Type.

b. Choose Add header.

Repeat these steps to create a Timestamp header and a Content-Length header.
3. Choose Save.
4. On the Method response tab, under Method responses, choose Create response.

5. For HTTP status code, enter 400.

You do not set any headers for this response.
6. Choose Save.

7. Repeat the following steps to create the 500 response.

You do not set any headers for this response.

Because the successful integration response from Amazon S3 returns the bucket list as an XML
payload and the default method response from API Gateway returns a JSON payload, you must
map the backend Content-Type header parameter value to the frontend counterpart. Otherwise,
the client will receive application/json for the content type when the response body is actually
an XML string. The following procedure shows how to set this up. In addition, you also want to
display to the client other header parameters, such as Date and Content-Length.

To set up response header mappings for the GET / method

1. On the Integration response tab, under Default - Response, choose Edit.

2. For the Content-Length header, enter integration.response.header.Content-Length
for the mapping value.

3. Forthe Content-Type header, enter integration.response.header.Content-Type for
the mapping value.

4. For the Timestamp header, enter integration.response.header.Date for the mapping
value.

5. Choose Save. The result should look similar to the following:

Tutorial: Create a REST API as an Amazon S3 proxy in APl Gateway 121

Amazon API Gateway Developer Guide

< |uest Integration request Integration response Method response Test
Integration responses Create response

Default - Response Edit Delete
HTTP status regex Info Content handling Learn more [4}
- Passthrough
Method response status code Default mapping
200 True
Header mappings (3) 1
Name A Mapping value v
method.response.header.Content-Length integration.response.header.Content-Length
method.response.header.Content-Type integration.response.header.Content-Type
method.response.header.Timestamp integration.response.header.Date

Mapping templates (0)

No templates

You don't have any mapping templates.

6. On the Integration response tab, under Integration responses, choose Create response.

7. For HTTP status regex, enter 4\d{2}. This maps all 4xx HTTP response status codes to the
method response.

8. For Method response status code, select 400.

9. Choose Create.

Tutorial: Create a REST API as an Amazon S3 proxy in APl Gateway 122

Amazon API Gateway Developer Guide

10. Repeat the following steps to create an integration response for the 500 method response. For
HTTP status regex, enter 5\d{2}.

As a good practice, you can test the APl you have configured so far.

To test the GET / method

1. Choose the Test tab. You might need to choose the right arrow button to show the tab.

2. Choose Test. The result should look like the following image:

Tutorial: Create a REST API as an Amazon S3 proxy in APl Gateway 123

Amazon API Gateway Developer Guide

Method request Integration request Integration response Method response Test

Test method

Make a test call to your method. When you make a test call, APl Gateway skips authorization and directly invokes your method.

Query strings

param1=value1¶m2=value2

Headers
Enter a header name and value separated by a colon (). Use a new line for each header.

header1:valuel
header2:value2

Client certificate

None v

Test

@ / - GET method test results

Request Latency
/ 82
Status

200

Response body

<?xml version="1.0" encoding="UTF-8"7>

<ListAlWyBucketsResult xmlns="http://s3.amazonaws.com/doc/2006—-03-01/">
<Owner><ID>abcd123456789%9@abcd</ID><DisplayName>weizhang</DisplayName>
</0wner><Buckets><Bucket><Name>DOC-EXAMPLE-BUCKET</Name>
<CreationDate>2023-06-29T17:52:42.000Z</CreationDate></Bucket><Bucket>
<Name>DOC-EXAMPLE-BUCKET1</Name><CreationDate>2023-02-

Tutorial: Create a REST API as an Amazon S3 proxy in APl Gateway 124

Amazon API Gateway Developer Guide

Expose APl methods to access an Amazon S3 bucket

To work with an Amazon S3 bucket, you expose the GET method on the /{folder} resource to list
objects in a bucket. The instructions are similar to those described in Expose an APl method to list
the caller's Amazon S3 buckets. For more methods, you can import the sample API here, OpenAPI
definitions of the sample API as an Amazon S3 proxy.

To expose the GET method on a folder resource

—

Select the /{folder} resource, and then choose Create method.

For method type, select GET.

For Integration type, select AWS service.

For AWS Region, select the AWS Region where you created your Amazon S3 bucket.
For AWS service, select Amazon Simple Storage Service.

Keep AWS subdomain blank.

For HTTP method, select GET.

For Action type, select Use path override.

© 0 N o U kA W DN

For Path override, enter {bucket}.

—_—
©

For Execution role, enter the role ARN for APIGatewayS3ProxyPolicy.

—
—

. Choose Create method.

You set the {folder} path parameter in the Amazon S3 endpoint URL. You need to map the
{folder} path parameter of the method request to the {bucket} path parameter of the
integration request.

To map {folder} to {bucket}

1. On the Integration request tab, under Integration request settings, choose Edit.
Choose URL path parameters, and then choose Add path parameter.
For Name, enter bucket.

For Mapped from, enter method.request.path.folder.

ok W

Choose Save.

Now, you test your API.

Tutorial: Create a REST API as an Amazon S3 proxy in APl Gateway 125

Amazon API Gateway Developer Guide

To test the /{foldex} GET method.

1. Choose the Test tab. You might need to choose the right arrow button to show the tab.
2. Under Path, for folder, enter the name of your bucket.

3. Choose Test.

The test result will contain a list of object in your bucket.

Test method

Make a test call to your method. When you make a test call, APl Gateway skips authorization and directly invokes your method.

Path

folder

DOC-EXAMPLE-BUCKET

Query strings

param1=valuel1¶m2=value2

Headers
Enter a header name and value separated by a colon (:). Use a new line for each header.

header1:valuel
header2:value2

Client certificate

None v

Test

/{folder} - GET method test result
Request Latency Status

/DOC-EXAMPLE-BUCKET 78 200

Response body

<?xml version="1.0" encoding="UTF-8"7>

<ListBucketResult xmlns="http://s3.amazonaws.com/doc/2006-03-01/"><Name>D0C-
EXAMPLE-BUCKET</Name><Prefix></Prefix><Marker></Marker><MaxKeys>1000</MaxKeys>
<IsTruncated>false</IsTruncated><Contents><Key>Readme.md</Key><LastModified>2023-

Tutorial: Create a REST API as an Amazon S3 proxy in APl Gateway 126

Amazon API Gateway Developer Guide

Expose APl methods to access an Amazon S3 object in a bucket

Amazon S3 supports GET, DELETE, HEAD, OPTIONS, POST and PUT actions to access and manage
objects in a given bucket. In this tutorial, you expose a GET method on the {folder}/{item}
resource to get an image from a bucket. For more applications of the {folder}/{item} resource,
see the sample API, OpenAPI definitions of the sample APl as an Amazon S3 proxy.

To expose the GET method on a item resource

—

Select the /{item} resource, and then choose Create method.

For method type, select GET.

For Integration type, select AWS service.

For AWS Region, select the AWS Region where you created your Amazon S3 bucket.
For AWS service, select Amazon Simple Storage Service.

Keep AWS subdomain blank.

For HTTP method, select GET.

For Action type, select Use path override.

© © N o Uun A~ W DN

For Path override, enter {bucket}/{object}.

—_—
©

For Execution role, enter the role ARN for APIGatewayS3ProxyPolicy.

—
—

. Choose Create method.

You set the {folder} and {item} path parameters in the Amazon S3 endpoint URL. You need to
map the path parameter of the method request to the path parameter of the integration request.
In this step, you do the following:

« Map the {folder} path parameter of the method request to the {bucket} path parameter of
the integration request.

« Map the {item} path parameter of the method request to the {object} path parameter of the
integration request.
To map {foldex} to {bucket} and {item} to {object}

1. On the Integration request tab, under Integration request settings, choose Edit.

2. Choose URL path parameters.

Tutorial: Create a REST API as an Amazon S3 proxy in APl Gateway 127

Amazon API Gateway Developer Guide

Choose Add path parameter.

For Name, enter bucket.

For Mapped from, enter method.request.path.folder.
Choose Add path parameter.

For Name, enter object.

For Mapped from, enter method.request.path.item.

© ©®© N o u B W

Choose Save.

To test the /{foldexr}/{object} GET method.

1. Choose the Test tab. You might need to choose the right arrow button to show the tab.
Under Path, for folder, enter the name of your bucket.

Under Path, for item, enter the name of an item.

P WD

Choose Test.

The response body will contain the contents of the item.

Tutorial: Create a REST API as an Amazon S3 proxy in APl Gateway 128

Amazon API Gateway Developer Guide

Test method

Make a test call to your method. When you make a test call, APl Gateway skips authorization and directly invokes your method.

Path

folder

DOC-EXAMPLE-BUCKET

item

test.txt

Query strings

param1=value1¶m2=value2

Headers
Enter a header name and value separated by a colon (;). Use a new line for each header.

header1:value1
header2:value2

Client certificate

None v

Test

[{folder}/{item} - GET method test results
Request Latency Status
/DOC-EXAMPLE-BUCKET/test.txt 71 200

Response body

Hello world

The request correctly returns the plain text of ("Hello world") as the content of the specified
file (test.txt) in the given Amazon S3 bucket (DOC-EXAMPLE-BUCKET).

To download or upload binary files, which in APl Gateway is considered any thing other than utf-8
encoded JSON content, additional API settings are necessary. This is outlined as follows:

Tutorial: Create a REST API as an Amazon S3 proxy in APl Gateway 129

Amazon API Gateway Developer Guide

To download or upload binary files from S3

1. Register the media types of the affected file to the API's binaryMediaTypes. You can do this in
the console:

a. Choose API settings for the API.

b. Under Binary media types, choose Manage media types.

c. Choose Add binary media type, and then enter the required media type, for example,
image/png.

d. Choose Save changes to save the setting.

2. Addthe Content-Type (for upload) and/or Accept (for download) header to the method
request to require the client to specify the required binary media type and map them to the
integration request.

3. Set Content Handling to Passthrough in the integration request (for upload) and in a
integration response (for download). Make sure that no mapping template is defined for the

affected content type. For more information, see Integration Passthrough Behaviors and Select

VTL Mapping Templates.

The payload size limit is 10 MB. See AP| Gateway quotas for configuring and running a REST API.

Make sure that files on Amazon S3 have the correct content types added as the files' metadata. For

streamable media content, Content-Disposition:inline may also need to be added to the
metadata.

For more information about the binary support in APl Gateway, see Content type conversions in
AP| Gateway.

OpenAPI definitions of the sample APl as an Amazon S3 proxy

The following OpenAPI definitions describes an API that works as an Amazon S3 proxy. This API
contains more Amazon S3 operations than the API you created in the tutorial. The following
methods are exposed in the OpenAPI definitions:

Expose GET on the API's root resource to list all of the Amazon S3 buckets of a caller.

Expose GET on a Folder resource to view a list of all of the objects in an Amazon S3 bucket.

Expose PUT on a Folder resource to add a bucket to Amazon S3.

Expose DELETE on a Folder resource to remove a bucket from Amazon S3.

Tutorial: Create a REST API as an Amazon S3 proxy in APl Gateway

https://docs.aws.amazon.com/AmazonS3/latest/API/RESTServiceGET.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketGET.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketPUT.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketDELETE.html

Amazon API Gateway Developer Guide

Expose GET on a Folder/Item resource to view or download an object from an Amazon S3 bucket.

Expose PUT on a Folder/Item resource to upload an object to an Amazon S3 bucket.

Expose HEAD on a Folder/Item resource to get object metadata in an Amazon S3 bucket.

Expose DELETE on a Folder/Item resource to remove an object from an Amazon S3 bucket.

For instructions on how to import an API using the OpenAPI definition, see Configuring a REST API

using OpenAPI.

For instructions on how to create a similar API, see Tutorial: Create a REST APl as an Amazon S3

proxy in APl Gateway.

To learn how to invoke this APl using Postman, which supports the AWS IAM authorization, see Call
the API using a REST API client.

OpenAPI 2.0

"swagger": "2.0",
"info": {
"version": "2016-10-13T23:04:43Z",
"title": "MyS3"
I
"host": "9gn28ca®86.execute-api.{region}.amazonaws.com",
"basePath": "/S3",
"schemes": [

"https"
1,
"paths": {
AR
"get": {
"produces": [
"application/json"
1,
"responses": {
"200": {
"description": "200 response",

"schema": {

"$ref": "#/definitions/Empty"
},
"headers": {

"Content-Length": {

Tutorial: Create a REST API as an Amazon S3 proxy in APl Gateway 131

https://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectGET.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectPUT.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectHEAD.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectDELETE.html
https://www.postman.com/

Amazon API Gateway

Developer Guide

"type": "string"
I
"Timestamp": {
"type": "string"
},
"Content-Type": {
"type": "string"

}
1,
"400": {
"description": "400 response"
},
"500": {
"description": "500 response"
}
},
"security": [
{
"sigv4a": []
}
1,

"x-amazon-apigateway-integration": {

"credentials": "arn:aws:iam::123456789012:r0le/apigAwsProxyRole",

"responses": {
"a\\d{2}": {
"statusCode": "400"
1,
"default": {
"statusCode": "200",
"responseParameters": {
"method.response.header.Content-Type":
"integration.response.header.Content-Type",
"method.response.header.Content-Length":
"integration.response.header.Content-Length",
"method.response.header.Timestamp":
"integration.response.header.Date"

}
},
"5\\d{2}": {
"statusCode": "500"
}
},
"uri": "arn:aws:apigateway:us-west-2:s3:path//",

Tutorial: Create a REST API as an Amazon S3 proxy in APl Gateway

132

Amazon API Gateway

Developer Guide

"passthroughBehavior": "when_no_match",

"httpMethod": "GET",

"type": "aws

}
I
"/{folder}": {
"get": {
"produces": [
"application/json"
1,
"parameters": [
{
"name": "folder",
"in": "path",
"required": true,
"type": "string"
}
1,
"responses": {
"200": {
"description": "200 response",
"schema": {
"$ref": "#/definitions/Empty"
},
"headers": {
"Content-Length": {
"type": "string"
},
"Date": {
"type": "string"
I
"Content-Type": {
"type": "string"

}
},
"400": {
"description": "400 response"
1,
"500": {
"description": "500 response"
}
},

Tutorial: Create a REST API as an Amazon S3 proxy in APl Gateway

133

Amazon API Gateway Developer Guide

"security": [
{
"sigva": []
}
1,
"X-amazon-apigateway-integration": {
"credentials": "arn:aws:iam::123456789012:role/apigAwsProxyRole",
"responses": {
"4\\d{2}": {
"statusCode": "400"
},
"default": {
"statusCode": "200",
"responseParameters": {
"method.response.header.Content-Type":
"integration.response.header.Content-Type",
"method.response.header.Date": "integration.response.header.Date",
"method.response.header.Content-Length":
"integration.response.header.content-length"
}
},
"5\\d{2}": {
"statusCode": "500"
}
},
"requestParameters": {
"integration.request.path.bucket": "method.request.path.folder"

iy

uri": "arn:aws:apigateway:us-west-2:s3:path/{bucket}",
"passthroughBehavior": "when_no_match",
"httpMethod": "GET",
"type": "aws"
}
.
"put": {
"produces": [
"application/json"
1,
"parameters": [
{
"name": "Content-Type",
"in": "header",
"required": false,
"type": "string"

Tutorial: Create a REST API as an Amazon S3 proxy in APl Gateway 134

Amazon API Gateway Developer Guide

"name": "folder",
Ilinll: Ilpathll’
"required": true,
"type": "string"
}
15

"responses": {
"200": {
"description": "200 response",
"schema": {
"$ref": "#/definitions/Empty"
I
"headers": {
"Content-Length": {
"type": "string"
I
"Content-Type": {
"type": "string"

}
},
"400": {
"description": "4@0 response"
I
"500": {
"description": "500 response"
}
I
"security": [
{
"sigv4": []
}
1,
"X-amazon-apigateway-integration": {
"credentials": "arn:aws:iam::123456789012:role/apigAwsProxyRole",
"responses": {
"4\\d{2}": {
"statusCode": "400"
},
"default": {
"statusCode": "200",
"responseParameters": {

Tutorial: Create a REST API as an Amazon S3 proxy in APl Gateway 135

Amazon API Gateway

Developer Guide

"method.response.header.Content-Type":

"integration.response.header.Content-Type",

"method.response.header.Content-Length":
"integration.response.header.Content-Length"

}
I
"5\\d{2}": {
"statusCode": "500"
}
I
"requestParameters": {

"integration.request.path.bucket": "method.request.path
"integration.request.header.Content-Type":

"method.request.header.Content-Type"

}I

"httpMethod": "PUT",
"type": "
}
},
"delete": {
"produces": [
"application/json"
1,
"parameters": [

{

aws

"name": "folder",
"in": "path",
"required": true,
"type": "string"
}
1,
"responses": {
"200": {
"description": "200 response",
"schema": {
"$ref": "#/definitions/Empty"
},
"headers": {
"Date": {
"type": "string"
},
"Content-Type": {

.folder",

uri": "arn:aws:apigateway:us-west-2:s3:path/{bucket}",
"passthroughBehavior": "when_no_match",

Tutorial: Create a REST API as an Amazon S3 proxy in APl Gateway

136

Amazon API Gateway Developer Guide

"type": "string"

}
}
1,
"400": {
"description": "400 response"
},
"500": {
"description": "500 response"
}
},
"security": [
{
"sigv4": []
}
1,

"x-amazon-apigateway-integration": {
"credentials": "arn:aws:iam::123456789012:r0le/apigAwsProxyRole",
"responses": {
"a\\d{2}": {
"statusCode": "400"

iy
"default": {

"statusCode": "200",
"responseParameters": {
"method.response.header.Content-Type":
"integration.response.header.Content-Type",

"method.response.header.Date": "integration.response.header.Date"
}
I
"5\\d{2}": {
"statusCode": "500"
}
I

"requestParameters": {
"integration.request.path.bucket": "method.request.path.folder"

},
"uri": "arn:aws:apigateway:us-west-2:s3:path/{bucket}",
"passthroughBehavior": "when_no_match",
"httpMethod": "DELETE",
"type": "aws"
}

}
iy

Tutorial: Create a REST API as an Amazon S3 proxy in APl Gateway 137

Amazon API Gateway

Developer Guide

"/{folder}/{item}": {
"get": {
"produces": [
"application/json"
1,
"parameters": [

{

"name": "item",
HinH: "path",
"required": true,

"type": "string"

"name": "folder",
HinH: "path",
"required": true,

"type": "string"

}
1,
"responses": {
"200": {
"description": "200 response",
"schema": {
"$ref": "#/definitions/Empty"
},
"headers": {
"content-type": {
"type": "string"
},
"Content-Type": {
"type": "string"
}
}
I
"400": {
"description": "400 response"
},
"500": {
"description": "500 response"
}
},
"security": [
{

"sigv4": []

Tutorial: Create a REST API as an Amazon S3 proxy in APl Gateway

138

Amazon API Gateway Developer Guide

}

1,
"x-amazon-apigateway-integration": {
"credentials": "arn:aws:iam::123456789012:r0le/apigAwsProxyRole",
"responses": {
"a\\d{2}": {
"statusCode": "400"
1,
"default": {
"statusCode": "200",
"responseParameters": {
"method.response.header.content-type":
"integration.response.header.content-type",
"method.response.header.Content-Type":
"integration.response.header.Content-Type"
}
1,
"S\\d{2}": {
"statusCode": "500"
}
1,
"requestParameters": {
"integration.request.path.object": "method.request.path.item",
"integration.request.path.bucket": "method.request.path.folder"

}I

uri": "arn:aws:apigateway:us-west-2:s3:path/{bucket}/{object}",
"passthroughBehavior": "when_no_match",
"httpMethod": "GET",
"type": "
}
},
"head": {
"produces": [
"application/json"
1,

"parameters": [

{

aws

"name": "item",
HinH: "path",
"required": true,

"type": "string"

"name": "folder",

Tutorial: Create a REST API as an Amazon S3 proxy in APl Gateway 139

Amazon API Gateway Developer Guide

in": "path",
"required": true,
"type": "string"

}
1,
"responses": {
"200": {
"description": "200 response",
"schema": {
"$ref": "#/definitions/Empty"
},
"headers": {
"Content-Length": {
"type": "string"
},
"Content-Type": {
"type": "string"
}
}
I
"400": {
"description": "400 response"
},
"500": {
"description": "500 response"
}
},
"security": [
{
"sigv4a": []
}
1,

"x-amazon-apigateway-integration": {
"credentials": "arn:aws:iam::123456789012:r0le/apigAwsProxyRole",
"responses": {

"4\\d{2}": {
"statusCode": "400"

I

"default": {
"statusCode": "200",
"responseParameters": {

"method.response.header.Content-Type":
"integration.response.header.Content-Type",

Tutorial: Create a REST API as an Amazon S3 proxy in APl Gateway 140

Amazon API Gateway

Developer Guide

"method.response.header.Content-Length":
"integration.response.header.Content-Length"
}
I
"5\\d{2}": {
"statusCode": "500"
}
I
"requestParameters": {
"integration.request.path.object": "method.request.path.item",
"integration.request.path.bucket": "method.request.path.folder"

iy

uri": "arn:aws:apigateway:us-west-2:s3:path/{bucket}/{object}",
"passthroughBehavior": "when_no_match",
"httpMethod": "HEAD",
"type": "aws"
}
I
"put": {
"produces": [
"application/json"
1,
"parameters": [

{

"name": "Content-Type",
"in": "header",
"required": false,

"type": "string"

"name": "item",
Ilinll: Ilpathll’
"required": true,
"type": "string"

"name": "folder",
"in": "path",
"required": true,
"type": "string"
}
]I
"responses": {
"200": {

Tutorial: Create a REST API as an Amazon S3 proxy in APl Gateway

141

Amazon API Gateway Developer Guide

"description": "200 response",
"schema": {
"$ref": "#/definitions/Empty"
I
"headers": {
"Content-Length": {
"type": "string"
I
"Content-Type": {
"type": "string"

}
}
},
"400": {
"description": "4@0 response"
I
"500": {
"description": "500 response"
}
I
"security": [
{
"sigv4": []
}
1,

"X-amazon-apigateway-integration": {
"credentials": "arn:aws:iam::123456789012:role/apigAwsProxyRole",
"responses": {

"4\\d{2}": {
"statusCode": "400"
},
"default": {
"statusCode": "200",
"responseParameters": {
"method.response.header.Content-Type":
"integration.response.header.Content-Type",
"method.response.header.Content-Length":
"integration.response.header.Content-Length"
}
1,
"5\\d{2}": {
"statusCode": "500"
}
},

Tutorial: Create a REST API as an Amazon S3 proxy in APl Gateway 142

Amazon API Gateway

Developer Guide

"requestParameters": {
"integration.request.path.object": "method.request.path.item",
"integration.request.path.bucket": "method.request.path.folder",
"integration.request.header.Content-Type":
"method.request.header.Content-Type"

iy

uri": "arn:aws:apigateway:us-west-2:s3:path/{bucket}/{object}",
"passthroughBehavior": "when_no_match",
"httpMethod": "PUT",
"type": "aws"
}
I
"delete": {
"produces": [
"application/json"
1,
"parameters": [

{

"name": "item",
Ilinll. Ilpathll

. 7’
"required": true,

"type": "string"

"name": "folder",
"in": "path",
"required": true,
"type": "string"
}
1,
"responses": {
"200": {
"description": "200 response",
"schema": {
"$ref": "#/definitions/Empty"
I
"headers": {
"Content-Length": {
"type": "string"
I
"Content-Type": {
"type": "string"

Tutorial: Create a REST API as an Amazon S3 proxy in APl Gateway

143

Amazon API Gateway

Developer Guide

},
"400": {
"description": "400 response"
I
"500": {
"description": "500 response"
}
I
"security": [
{
"sigv4": []
}
1,

"X-amazon-apigateway-integration": {
"credentials": "arn:aws:iam::123456789012:role/apigAwsProxyRole",
"responses": {
"4\\d{2}": {
"statusCode": "400"
},
"default": {
"statusCode": "200"
I
"5\\d{2}": {
"statusCode": "500"
}
I
"requestParameters": {
"integration.request.path.object": "method.request.path.item",
"integration.request.path.bucket": "method.request.path.folder"

iy

uri": "arn:aws:apigateway:us-west-2:s3:path/{bucket}/{object}",
"passthroughBehavior": "when_no_match",
"httpMethod": "DELETE",

Iltypell: IlaWSII

}
I
"securityDefinitions": {
"sigv4": {
"type": "apiKey",
"name": "Authorization",
"in": "header",
""x-amazon-apigateway-authtype": "awsSigv4"

Tutorial: Create a REST API as an Amazon S3 proxy in APl Gateway

144

Amazon API Gateway Developer Guide

}
iy
"definitions": {
"Empty": {
"type": "object",
"title": "Empty Schema"

OpenAPI 3.0

"openapi" : "3.0.1",
"info" : {
"title" : "MyS3",
"version" : "2016-10-13T23:04:43Z"
},
"servers" : [{
"url" : "https://9gn28ca086.execute-api.{region}.amazonaws.com/{basePath}",
"variables" : {
"basePath" : {
"default" : "S3"

}
} 1,
"paths" : {
"/{folder}" : {
"get" : {
"parameters" : [{
"name" : "folder",
"in" : "path",
"required" : true,
"schema" : {
"type" : "string"

}
1,
"responses" : {
"400" : {
"description" : "400 response",
"content" : { }
},
"500" : {

Tutorial: Create a REST API as an Amazon S3 proxy in APl Gateway 145

Amazon API Gateway Developer Guide

"description" : "500 response",
"content" : { }
},
"200" : {
"description" : "200 response",
"headers" : {
"Content-Length" : {
"schema" : {
"type" : "string"
}
},
"Date" : {
"schema" : {
"type" : "string"
}
I
"Content-Type" : {
"schema" : {
"type" : "string"
}
}
I
"content" : {
"application/json" : {
"schema" : {
"$ref" : "#/components/schemas/Empty"
}
}
}
}

},

"x-amazon-apigateway-integration" : {
"credentials" : "arn:aws:iam::123456789012:role/apigAwsProxyRole",
"httpMethod" : "GET",

"uri" "arn:aws:apigateway:us-west-2:s3:path/{bucket}",

"responses" : {

"a\\d{2}" : {
"statusCode" : "400"

},

"default" : {
"statusCode" : "200",
"responseParameters" : {

"method.response.header.Content-Type"
"integration.response.header.Content-Type",

Tutorial: Create a REST API as an Amazon S3 proxy in APl Gateway 146

Amazon API Gateway Developer Guide

"method.response.header.Date" : "integration.response.header.Date",
"method.response.header.Content-Length"
"integration.response.header.content-length"
}
},
"5\\d{2}" : {
"statusCode" : "500"
}
},
"requestParameters" : {
"integration.request.path.bucket" : "method.request.path.folder"
I
"passthroughBehavior" : "when_no_match",
"type" : "aws"
}
I
"put" : {
"parameters" : [{
"name" : "Content-Type",
"in" : "header",
"schema" : {
"type" : "string"
}
[PE
"name" : "folder",
"in" : "path",
"required" : true,
"schema" : {
"type" : "string"
}
1,
"responses" : {
"400" : {
"description" : "400 response",
"content" : { }
I
"500" : {
"description" : "500 response",
"content" : { }
I
"200" : {
"description" : "200 response",
"headers" : {
"Content-Length" : {

Tutorial: Create a REST API as an Amazon S3 proxy in APl Gateway 147

Amazon API Gateway

Developer Guide

"schema" : {
"type" : "string"
}
I
"Content-Type" : {
"schema" : {
"type" : "string"
}
}
I
"content" : {
"application/json" : {
"schema" : {
"$ref" : "#/components/schemas/Empty"
}
}
}
}

},

"x-amazon-apigateway-integration" : {
"credentials" : "arn:aws:iam::123456789012:role/apigAwsProxyRole",
"httpMethod" : "PUT",

"uri" "arn:aws:apigateway:us-west-2:s3:path/{bucket}",
"responses" : {
"a\\d{2}" : {
"statusCode" : "400"
},
"default" : {
"statusCode" : "200",
"responseParameters" : {

"method.response.header.Content-Type"
"integration.response.header.Content-Type",

"method.response.header.Content-Length"
"integration.response.header.Content-Length"

}
I
"5\\d{2}" : {
"statusCode" : "500"
}
I
"requestParameters" : {
"integration.request.path.bucket" : "method.request.path.folder",

"integration.request.header.Content-Type"
"method.request.header.Content-Type"

Tutorial: Create a REST API as an Amazon S3 proxy in APl Gateway

148

Amazon API Gateway

Developer Guide

}I
"passthroughBehavior"
"type" : "aws"
}
}I
"delete" : {

"parameters" : [{
"name" : "folder",
"in" : "path",
"required" : true,
"schema" : {

"type" : "string"
}
1,

"responses" : {
"400" : {

"when_no_match",

"description" : "400 response",

"content" : { }

}I
"500" : {

"description" : "500 response",

"content" : { }

}I
"200" : {

"description" : "200 response",

"headers" : {
"Date" : {
"schema" : {

"type" : "string"

}
}I

"Content-Type" : {

"schema" : {

"type" : "string"

}
},
"content" : {
"application/json"
"schema" : {

"$ref" : "#/components/schemas/Empty"

{

Tutorial: Create a REST API as an Amazon S3 proxy in APl Gateway

149

Amazon API Gateway Developer Guide

}
I
"x-amazon-apigateway-integration" : {
"credentials" : "arn:aws:iam::123456789012:role/apigAwsProxyRole",
"httpMethod" : "DELETE",
"uri" "arn:aws:apigateway:us-west-2:s3:path/{bucket}",
"responses" : {
"s\\d{2}" : {
"statusCode" : "400"
I
"default" : {
"statusCode" : "200",
"responseParameters" : {

"method.response.header.Content-Type"
"integration.response.header.Content-Type",
"method.response.header.Date" : "integration.response.header.Date"
}
I
"5\\d{2}" : {
"statusCode" : "500"
}
I
"requestParameters" : {
"integration.request.path.bucket" : "method.request.path.folder"
},
"passthroughBehavior" : "when_no_match",

"type" : "aws

}
.
"/{folder}/{item}" : {
"get" : {
"parameters" : [{
"name" : "item",
"in" : "path",
"required" : true,
"schema" : {
"type" : "string"
}
o Aq

"name" : "folder",
Ilinll : Ilpathll’
"required" : true,

"schema" : {

Tutorial: Create a REST API as an Amazon S3 proxy in APl Gateway 150

Amazon API Gateway Developer Guide

"type" : "string"
}
} 1,
"responses" : {
"400" : {
"description" : "400 response",
"content" : { }
I
"500" : {
"description" : "500 response",
"content" : { }
I
"200" : {
"description" : "200 response",
"headers" : {
"content-type" : {
"schema" : {
"type" : "string"
}
I
"Content-Type" : {
"schema" : {
"type" : "string"
}
}
I
"content" : {
"application/json" : {
"schema" : {
"$ref" : "#/components/schemas/Empty"
}
}
}
}
},
"x-amazon-apigateway-integration" : {
"credentials" : "arn:aws:iam::123456789012:role/apigAwsProxyRole",
"httpMethod" : "GET",
"uri" "arn:aws:apigateway:us-west-2:s3:path/{bucket}/{object}",
"responses" : {
"a\\d{2}" : {
"statusCode" : "400"
},
"default" : {

Tutorial: Create a REST API as an Amazon S3 proxy in APl Gateway 151

Amazon API Gateway

Developer Guide

"statusCode" : "200",
"responseParameters" : {
"method.response.header.content-type"
"integration.response.header.content-type",
"method.response.header.Content-Type"
"integration.response.header.Content-Type"
}
.
"S5\\d{2}" : {
"statusCode" : "500"
}
.

"requestParameters" : {

"integration.request.path.object" : "method.request.path
"integration.request.path.bucket" : "method.request.path.folder"

iy

"passthroughBehavior" : "when_no_match",
"type" : "aws"
}
I
"put" : {
"parameters" : [{
"name" : "Content-Type",
"in" : "header",
"schema" : {
"type" : "string"
}
[PE

"name" : "item",
"in" : "path",
"required" : true,
"schema" : {
"type" : "string"
}
Yo &

"name" : "folder",
"in" : "path",
"required" : true,
"schema" : {
"type" : "string"
}
1,

"responses" : {
"400" : {

.item",

Tutorial: Create a REST API as an Amazon S3 proxy in APl Gateway

152

Amazon API Gateway

Developer Guide

"description" : "400 response",
"content" : { }
},
"500" : {
"description" : "500 response",
"content" : { }
},
"200" : {
"description" : "200 response",
"headers" : {
"Content-Length" : {
"schema" : {
"type" : "string"
}
},
"Content-Type" : {
"schema" : {
"type" : "string"
}
}
},
"content" : {
"application/json" : {
"schema" : {
"$ref" : "#/components/schemas/Empty"
}
}
}
}
I
"x-amazon-apigateway-integration" : {
"credentials" : "arn:aws:iam::123456789012:role/apigAwsProxyRole",
"httpMethod" : "PUT",
"uri" "arn:aws:apigateway:us-west-2:s3:path/{bucket}/{object}",
"responses" : {
"a\\d{2}" : {
"statusCode" : "400"
I
"default" : {
"statusCode" : "200",

"responseParameters" : {

"method.response.header.Content-Type"

"integration.response.header.Content-Type",

Tutorial: Create a REST API as an Amazon S3 proxy in APl Gateway

153

Amazon API Gateway Developer Guide

"method.response.header.Content-Length"
"integration.response.header.Content-Length"

}
1,
"S5\\d{2}" : {
"statusCode" : "500"
}
1,
"requestParameters" : {
"integration.request.path.object" : "method.request.path.item",
"integration.request.path.bucket" : "method.request.path.folder",

"integration.request.header.Content-Type"
"method.request.header.Content-Type"

I
"passthroughBehavior" : "when_no_match",
"type" : "aws"
}
I
"delete" : {
"parameters" : [{
"name" : "item",
"in" : "path",
"required" : true,
"schema" : {
"type" : "string"
}
3, {
"name" : "folder",
"in" : "path",
"required" : true,
"schema" : {
"type" : "string"
}
1,
"responses" : {
"400" : {
"description" : "400 response",
"content" : { }
},
"500" : {
"description" : "500 response",
"content" : { }
},

"200" : {

Tutorial: Create a REST API as an Amazon S3 proxy in APl Gateway 154

Amazon API Gateway

Developer Guide

"description" : "200 response",
"headers" : {
"Content-Length" : {
"schema" : {
"type" : "string"
}
},

"Content-Type" : {
"schema" : {

"type" : "string"
}
}
},
"content" : {
"application/json" : {
"schema" : {
"$ref" : "#/components/schemas/Empty"
}
}
}
}
I
"x-amazon-apigateway-integration" : {
"credentials" : "arn:aws:iam::123456789012:role/apigAwsProxyRole",
"httpMethod" : "DELETE",
"uri" "arn:aws:apigateway:us-west-2:s3:path/{bucket}/{object}",
"responses" : {
"a\\d{2}" : {
"statusCode" : "400"
I
"default" : {
"statusCode" : "200"
},
"S5\\d{2}" : {
"statusCode" : "500"
}
},
"requestParameters" : {
"integration.request.path.object" : "method.request.path.item",
"integration.request.path.bucket" : "method.request.path.folder"
},
"passthroughBehavior" : "when_no_match",
"type" "aws"

Tutorial: Create a REST API as an Amazon S3 proxy in APl Gateway

155

Amazon API Gateway

Developer Guide

},
"head" : {
"parameters" : [{
"name" : "item",
"in" : "path",
"required" : true,
"schema" : {
"type" : "string
}
[PE

"name" : "folder",
"in" : "path",

"required" : true,

"schema" : {
"type" : "string

}

} 1,
"responses" : {

"400" : {
"description"
"content" : { }

.

"500" : {
"description"
"content" : { }

.

"200" : {
"description"
"headers" : {

"400 response",

"500 response",

"200 response",

"Content-Length" : {

"schema" : {

"type" : "string"

}

},
"Content-Type"
"schema" : {

{

Iltypell : Ilstringll

}
iy

"content" : {

"application/json" : {

"schema" : {

"$ref" : "#/components/schemas/Empty"

Tutorial: Create a REST API as an Amazon S3 proxy in APl Gateway

156

Amazon API Gateway Developer Guide

}
}
}
}
},
"X-amazon-apigateway-integration" : {
"credentials" : "arn:aws:iam::123456789012:role/apigAwsProxyRole",
"httpMethod" : "HEAD",
"uri" "arn:aws:apigateway:us-west-2:s3:path/{bucket}/{object}",
"responses" : {
"a\\d{2}" : {
"statusCode" : "400"
},
"default" : {
"statusCode" : "200",
"responseParameters" : {

"method.response.header.Content-Type"
"integration.response.header.Content-Type",
"method.response.header.Content-Length"
"integration.response.header.Content-Length"
}
I
"5\\d{2}" : {
"statusCode" : "500"
}
I
"requestParameters" : {
"integration.request.path.object" : "method.request.path.item",
"integration.request.path.bucket" : "method.request.path.folder"
I
"passthroughBehavior" : "when_no_match",
"type" : "aws"

}
},
8 g
"get" : {
"responses" : {
"400" : {
"description" : "400 response",
"content" : { }
I
"500" : {
"description" : "500 response",

Tutorial: Create a REST API as an Amazon S3 proxy in APl Gateway 157

Amazon API Gateway Developer Guide

"content" : { }
I
"200" : {
"description" : "200 response",
"headers" : {
"Content-Length" : {
"schema" : {
"type" : "string"
}
I
"Timestamp" : {
"schema" : {
"type" : "string"
}
},
"Content-Type" : {
"schema" : {
"type" : "string"

}
},
"content" : {
"application/json" : {
"schema" : {
"$ref" : "#/components/schemas/Empty"

}

1,

"x-amazon-apigateway-integration" : {
"credentials" : "arn:aws:iam::123456789012:role/apigAwsProxyRole",
"httpMethod" : "GET",

uri "arn:aws:apigateway:us-west-2:s3:path//",
"responses" : {
"a\\d{2}" : {
"statusCode" : "400"
I
"default" : {
"statusCode" : "200",
"responseParameters" : {

"method.response.header.Content-Type"
"integration.response.header.Content-Type",

Tutorial: Create a REST API as an Amazon S3 proxy in APl Gateway 158

Amazon API Gateway

Developer Guide

"method.response.header.Content-Length" :

"integration.response.header.Content-Length",
"method.response.header.Timestamp

"integration.response.header.Date"

}
.
"S5\\d{2}" : {
"statusCode" : "500"
}
.

"passthroughBehavior" : "when_no_match",
Iltypell : IIaWSII
}
}
}

.
"components" : {
"schemas" : {
"Empty" : {
"title" : "Empty Schema",
"type" : "object"
}
}
}
}

Call the API using a REST API client

To provide an end-to-end tutorial, we now show how to call the API using Postman, which supports

the AWS IAM authorization.

To call our Amazon S3 proxy APl using Postman

1. Deploy or redeploy the API. Make a note of the base URL of the API that is displayed next to

Invoke URL at the top of the Stage Editor.

2. Launch Postman.

3. Choose Authorization and then choose AWS Signature. Type your IAM user's Access Key ID
and Secret Access Key into the AccessKey and SecretKeyinput fields, respectively. Type the
AWS region to which your API is deployed in the AWS Region text box. Type execute-api in

the Service Name input field.

Tutorial: Create a REST API as an Amazon S3 proxy in APl Gateway

159

https://www.postman.com/

Amazon API Gateway Developer Guide

You can create a pair of the keys from the Security Credentials tab from your IAM user
account in the IAM Management Console.

4. To add a bucket named apig-demo-5 to your Amazon S3 account in the {region} region:

(® Note

Be sure that the bucket name must be globally unique.

a. Choose PUT from the drop-down method list and type the method URL (https://api-
id.execute-api.aws-region.amazonaws.com/stage/folder-name

b. Setthe Content-Type header value as application/xml. You may need to delete any
existing headers before setting the content type.

c. Choose Body menu item and type the following XML fragment as the request body:

<CreateBucketConfiguration>
<LocationConstraint>{region}</LocationConstraint>
</CreateBucketConfiguration>

d. Choose Send to submit the request. If successful, you should receive a 200 OK response
with an empty payload.

5. To add a text file to a bucket, follow the instructions above. If you specify a bucket name of
apig-demo-5 for {folder} and a file name of Readme. txt for {item} in the URL and
provide a text string of Hello, World! as the file contents (thereby making it the request
payload), the request becomes

PUT /S3/apig-demo-5/Readme.txt HTTP/1.1

Host: 9gn28cal86.execute-api.{region}.amazonaws.com

Content-Type: application/xml

X-Amz-Date: 20161015T062647Z

Authorization: AWS4-HMAC-SHA256 Credential=access-key-id/20161015/{region}/execute-
api/aws4_request, SignedHeaders=content-length;content-type;host;x-amz-date,
Signature=ccadb877bdb0d395ca38cc47e18a0d76bb5eafl7007d11e4@bf6fb63d28c705b
Cache-Control: no-cache

Postman-Token: 6135d315-9cc4-8af8-1757-90871d00847¢e

Hello, World!

Tutorial: Create a REST API as an Amazon S3 proxy in APl Gateway 160

Amazon API Gateway Developer Guide

If everything goes well, you should receive a 200 OK response with an empty payload.

6. To get the content of the Readme. txt file we just added to the apig-demo-5 bucket, do a
GET request like the following one:

GET /S3/apig-demo-5/Readme.txt HTTP/1.1

Host: 9gn28ca®86.execute-api.{region}.amazonaws.com

Content-Type: application/xml

X-Amz-Date: 20161015T063759Z

Authorization: AWS4-HMAC-SHA256 Credential=access-key-id/20161015/{region}/
execute-api/aws4_request, SignedHeaders=content-type;host;x-amz-date,
Signature=ba@9b72b585acf@e578e6ad@2555c00e24b420b59025bc7bb8d3f7aed1471339
Cache-Control: no-cache

Postman-Token: d60fcb59-d335-52f7-0025-5bd96928098a

If successful, you should receive a 200 OK response with the Hello, World! text string as
the payload.

7. To list items in the apig-demo-5 bucket, submit the following request:

GET /S3/apig-demo-5 HTTP/1.1

Host: 9gn28ca®86.execute-api.{region}.amazonaws.com

Content-Type: application/xml

X-Amz-Date: 20161015T0643247Z

Authorization: AWS4-HMAC-SHA256 Credential=access-key-id/20161015/{region}/
execute-api/aws4_request, SignedHeaders=content-type;host;x-amz-date,
Signature=4ac9bd4574al4e01568134fd16814534d9951649d3a22b3b0db9f1f5cd4dddac
Cache-Control: no-cache

Postman-Token: 9c43020a-966f-6lel-8laf-4c49ad8d1392

If successful, you should receive a 200 OK response with an XML payload showing a single
item in the specified bucket, unless you added more files to the bucket before submitting this
request.

<?xml version="1.0" encoding="UTF-8"7?>
<ListBucketResult xmlns="http://s3.amazonaws.com/doc/2006-03-01/">
<Name>apig-demo-5</Name>
<Prefix></Prefix>
<Marker></Marker>
<MaxKeys>1000</MaxKeys>
<IsTruncated>false</IsTruncated>

Tutorial: Create a REST API as an Amazon S3 proxy in APl Gateway 161

Amazon API Gateway Developer Guide

<Contents>
<Key>Readme.txt</Key>
<LastModified>2016-10-15T06:26:48.000Z</LastModified>
<ETag>"65a8e27d8879283831b664bd8b7f0ad4"</ETag>
<Size>13</Size>
<Owner>
<ID>06e4b09%e9d. . .603addd12ee</ID>
<DisplayName>user-name</DisplayName>
</Owner>
<StorageClass>STANDARD</StorageClass>
</Contents>
</ListBucketResult>

(® Note

To upload or download an image, you need to set content handling to
CONVERT_TO_BINARY.

Tutorial: Create a REST API as an Amazon Kinesis proxy in APl Gateway

This page describes how to create and configure a REST API with an integration of the AWS type to
access Kinesis.

(® Note

To integrate your APl Gateway API with Kinesis, you must choose a region where both the
API Gateway and Kinesis services are available. For region availability, see Service Endpoints

and Quotas.

For the purpose of illustration, we create an example API to enable a client to do the following:

1. List the user's available streams in Kinesis
2. Create, describe, or delete a specified stream

3. Read data records from or write data records into the specified stream

Tutorial: Create a REST API as an Amazon Kinesis proxy 162

https://docs.aws.amazon.com/general/latest/gr/aws-service-information.html
https://docs.aws.amazon.com/general/latest/gr/aws-service-information.html

Amazon API Gateway Developer Guide

To accomplish the preceding tasks, the APl exposes methods on various resources to invoke the
following, respectively:

1. The ListStreams action in Kinesis

2. The CreateStream, DescribeStream, or DeleteStream action

3. The GetRecords or PutRecords (including PutRecoxrd) action in Kinesis

Specifically, we build the API as follows:
« Expose an HTTP GET method on the API's /streams resource and integrate the method with the
ListStreams action in Kinesis to list the streams in the caller's account.

« Expose an HTTP POST method on the API's /streams/{stream-name} resource and integrate
the method with the CreateStream action in Kinesis to create a named stream in the caller's

account.

« Expose an HTTP GET method on the API's /streams/{stream-name} resource and integrate
the method with the DescribeStream action in Kinesis to describe a named stream in the caller's

account.

o Expose an HTTP DELETE method on the API's /streams/{stream-name} resource and
integrate the method with the DeleteStream action in Kinesis to delete a stream in the caller's

account.

e Expose an HTTP PUT method on the API's /streams/{stream-name}/record resource and
integrate the method with the PutRecord action in Kinesis. This enables the client to add a single
data record to the named stream.

» Expose an HTTP PUT method on the API's /streams/{stream-name}/records resource and
integrate the method with the PutRecords action in Kinesis. This enables the client to add a list
of data records to the named stream.

» Expose an HTTP GET method on the API's /streams/{stream-name}/records resource and
integrate the method with the GetRecords action in Kinesis. This enables the client to list data
records in the named stream, with a specified shard iterator. A shard iterator specifies the shard
position from which to start reading data records sequentially.

» Expose an HTTP GET method on the API's /streams/{stream-name}/sharditerator
resource and integrate the method with the GetShardlterator action in Kinesis. This helper

method must be supplied to the ListStreams action in Kinesis.

Tutorial: Create a REST API as an Amazon Kinesis proxy 163

https://docs.aws.amazon.com/kinesis/latest/APIReference/API_ListStreams.html
https://docs.aws.amazon.com/kinesis/latest/APIReference/API_CreateStream.html
https://docs.aws.amazon.com/kinesis/latest/APIReference/API_DescribeStream.html
https://docs.aws.amazon.com/kinesis/latest/APIReference/API_DeleteStream.html
https://docs.aws.amazon.com/kinesis/latest/APIReference/API_PutRecord.html
https://docs.aws.amazon.com/kinesis/latest/APIReference/API_PutRecords.html
https://docs.aws.amazon.com/kinesis/latest/APIReference/API_GetRecords.html
https://docs.aws.amazon.com/kinesis/latest/APIReference/API_GetShardIterator.html

Amazon API Gateway Developer Guide

You can apply the instructions presented here to other Kinesis actions. For the complete list of the
Kinesis actions, see Amazon Kinesis AP| Reference.

Instead of using the APl Gateway console to create the sample API, you can import the sample API
into APl Gateway using the API Gateway Import API. For information on how to use the Import API,
see Configuring a REST API using OpenAPI.

Create an IAM role and policy for the API to access Kinesis

To allow the API to invoke Kinesis actions, you must have the appropriate IAM policies attached to
an IAM role.

To create the AWS service proxy execution role

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. Choose Roles.
3. Choose Create role.

4. Choose AWS service under Select type of trusted entity, and then select APl Gateway and
select Allows APl Gateway to push logs to CloudWatch Logs.

5. Choose Next, and then choose Next.
6. For Role name, enter APIGatewayKinesisProxyPolicy, and then choose Create role.

7. In the Roles list, choose the role you just created. You may need to scroll or use the search bar
to find the role.

8. For the selected role, select the Add permissions tab.
9. Choose Attach policies from the dropdown list.

10. In the search bar, enter AmazonKinesisFullAccess and choose Add permissions.

(® Note

This tutorial uses a managed policy for simplicity. As a best practice, you should create
your own IAM policy to grant the minimum permissions required.

11. Note the newly created Role ARN, you will use it later.

Tutorial: Create a REST API as an Amazon Kinesis proxy 164

https://docs.aws.amazon.com/kinesis/latest/APIReference/Welcome.html
https://docs.aws.amazon.com/apigateway/api-reference/link-relation/restapi-import/
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/

Amazon API Gateway Developer Guide

Start to create an API as a Kinesis proxy

Use the following steps to create the API in the APl Gateway console.

To create an API as an AWS service proxy for Kinesis

1.
2.

o v MW

Sign in to the API Gateway console at https://console.aws.amazon.com/apigateway.

If this is your first time using APl Gateway, you see a page that introduces you to the features
of the service. Under REST API, choose Build. When the Create Example API popup appears,
choose OK.

If this is not your first time using APl Gateway, choose Create API. Under REST API, choose
Build.

Choose New API.

In APl name, enter KinesisProxy. Keep the default values for all other fields.
(Optional) For Description, enter a description.

Choose Create API.

After the APl is created, the APl Gateway console displays the Resources page, which contains only
the API's root (/) resource.

List streams in Kinesis

Kinesis supports the ListStreams action with the following REST API call:

POST /?Action=ListStreams HTTP/1.1

Host: kinesis.<region>.<domain>
Content-Length: <PayloadSizeBytes>
User-Agent: <UserAgentString>
Content-Type: application/x-amz-json-1.1
Authorization: <AuthParams>

X-Amz-Date: <Date>

In the above REST API request, the action is specified in the Action query parameter. Alternatively,
you can specify the action in a X-Amz-Target header, instead:

Tutorial: Create a REST API as an Amazon Kinesis proxy 165

https://console.aws.amazon.com/apigateway

Amazon API Gateway Developer Guide

POST / HTTP/1.1

Host: kinesis.<region>.<domain>
Content-Length: <PayloadSizeBytes>
User-Agent: <UserAgentString>
Content-Type: application/x-amz-json-1.1
Authorization: <AuthParams>

X-Amz-Date: <Date>

X-Amz-Target: Kinesis_20131202.ListStreams

{

In this tutorial, we use the query parameter to specify action.

To expose a Kinesis action in the API, add a /streams resource to the API's root. Then set a GET
method on the resource and integrate the method with the ListStreams action of Kinesis.

The following procedure describes how to list Kinesis streams by using the APl Gateway console.
To list Kinesis streams by using the APl Gateway console

Select the / resource, and then choose Create resource.
For Resource name, enter streams.
Keep CORS (Cross Origin Resource Sharing) turned off.

Choose Create resource.

i W=

Choose the /streams resource, and then choose Create method, and then do the following:

a. For Method type, select GET.

(® Note

The HTTP verb for a method invoked by a client may differ from the HTTP verb
for an integration required by the backend. We select GET here, because listing
streams is intuitively a READ operation.

b. For Integration type, select AWS service.
c. For AWS Region, select the AWS Region where you created your Kinesis stream.
d. For AWS service, select Kinesis.

e. Keep AWS subdomain blank.

Tutorial: Create a REST API as an Amazon Kinesis proxy 166

Amazon API Gateway Developer Guide

f. For HTTP method, choose POST.

® Note

We chose POST here because Kinesis requires that the ListStreams action be
invoked with it.

For Action type, choose Use action name.
For Action name, enter ListStreams.
i. For Execution role, enter the ARN for your execution role.
j- Keep the default of Passthrough for Content Handling.
k. Choose Create method.
6. On the Integration request tab, under Integration request settings, choose Edit.

7. For Request body passthrough, select When there are no templates defined
(recommended).

8. Choose URL request headers parameters, and then do the following:

a. Choose Add request headers parameter.
b. For Name, enter Content-Type.

c. For Mapped from, enter 'application/x-amz-json-1.1".

We use a request parameter mapping to set the Content-Type header to the static value of
"application/x-amz-json-1.1" to inform Kinesis that the input is of a specific version of
JSON.

9. Choose Mapping templates, and then choose Add mapping template, and do the following:

a. For Content-Type, enter application/json.
b. For Template body, enter {}.

c. Choose Save.

The ListStreams request takes a payload of the following JSON format:

"ExclusiveStartStreamName": "string",

Tutorial: Create a REST API as an Amazon Kinesis proxy 167

https://docs.aws.amazon.com/kinesis/latest/APIReference/API_ListStreams.html#API_ListStreams_RequestSyntax

Amazon API Gateway Developer Guide

"Limit": number

However, the properties are optional. To use the default values, we opted for an empty JSON
payload here.

10. Test the GET method on the /streams resource to invoke the ListStreams action in Kinesis:
Choose the Test tab. You might need to choose the right arrow button to show the tab.
Choose Test to test your method.

If you already created two streams named "myStream" and "yourStream" in Kinesis, the
successful test returns a 200 OK response containing the following payload:

{
"HasMoreStreams": false,
"StreamNames": [
"myStream",
"yourStream"
]
}

Create, describe, and delete a stream in Kinesis

Creating, describing, and deleting a stream in Kinesis involves making the following Kinesis REST
API requests, respectively:

POST /?Action=CreateStream HTTP/1.1
Host: kinesis.region.domain

Content-Type: application/x-amz-json-1.1

Content-Length: PayloadSizeBytes

"ShardCount": number,
"StreamName": "string"

Tutorial: Create a REST API as an Amazon Kinesis proxy 168

Amazon API Gateway Developer Guide

POST /?Action=DescribeStream HTTP/1.1
Host: kinesis.region.domain

Content-Type: application/x-amz-json-1.1
Content-Length: PayloadSizeBytes

"StreamName": "string"

POST /?Action=DeleteStream HTTP/1.1
Host: kinesis.region.domain

Content-Type: application/x-amz-json-1.1
Content-Length: PayloadSizeBytes

"StreamName":"string"

We can build the API to accept the required input as a JSON payload of the method request and
pass the payload through to the integration request. However, to provide more examples of data
mapping between method and integration requests, and method and integration responses, we
create our APl somewhat differently.

We expose the GET, POST, and Delete HTTP methods on a to-be-named Stream resource. We use
the {stream-name} path variable as the placeholder of the stream resource and integrate these
APl methods with the Kinesis' DescribeStream, CreateStream, and DeleteStream actions,
respectively. We require that the client pass other input data as headers, query parameters, or the
payload of a method request. We provide mapping templates to transform the data to the required
integration request payload.

To create the {stream-name} resource

1. Choose the /streams resource, and then choose Create resource.

Tutorial: Create a REST API as an Amazon Kinesis proxy 169

Amazon API Gateway Developer Guide

2.

o o~ W

Keep Proxy resource turned off.

For Resource path, select /streams.

For Resource name, enter {stream-name}.

Keep CORS (Cross Origin Resource Sharing) turned off.

Choose Create resource.

To configure and test the GET method on a stream resource

—

© 0 N o U B W DN

—_—) e
W N =2 O

14.

Choose the /{stream-name} resource, and then choose Create method.

For Method type, select GET.

For Integration type, select AWS service.

For AWS Region, select the AWS Region where you created your Kinesis stream.
For AWS service, select Kinesis.

Keep AWS subdomain blank.

For HTTP method, choose POST.

For Action type, choose Use action name.

For Action name, enter DescribeStream.

For Execution role, enter the ARN for your execution role.

. Keep the default of Passthrough for Content Handling.
. Choose Create method.

. In the Integration request section, add the following URL request headers parameters:

Content-Type: 'x-amz-json-1.1'

The task follows the same procedure to set up the request parameter mapping for the GET /
streams method.

Add the following body mapping template to map data from the GET /streams/{stream-
name} method request to the POST /?Action=DescribeStream integration request:

"StreamName": "$input.params('stream-name’')"

Tutorial: Create a REST API as an Amazon Kinesis proxy 170

Amazon API Gateway Developer Guide

This mapping template generates the required integration request payload for the
DescribeStream action of Kinesis from the method request's stream-name path parameter
value.

15. To test the GET /stream/{stream-name} method to invoke the DescribeStream action in
Kinesis, choose the Test tab.

16. For Path, under stream-name, enter the name of an existing Kinesis stream.

17. Choose Test. If the test is successful, a 200 OK response is returned with a payload similar to
the following:

"StreamDescription": {
"HasMoreShards": false,
"RetentionPeriodHours": 24,
"Shards": [
{
"HashKeyRange": {
"EndingHashKey": "68056473384187692692674921486353642290",
"StartingHashKey": "0@"
.
"SequenceNumberRange": {
"StartingSequenceNumber":
"49559266461454070523309915164834022007924120923395850242"
.
"ShardId": "shardId-000000000000"

},
{
"HashKeyRange": {
"EndingHashKey": "340282366920938463463374607431768211455",
"StartingHashKey": "272225893536750770770699685945414569164"
},

"SequenceNumberRange": {
"StartingSequenceNumber":
"49559266461543273504104037657400164881014714369419771970"
.
"ShardId": "shardId-000000000004"

}
1,
"StreamARN": "arn:aws:kinesis:us-east-1:12345678901:stream/myStream",
"StreamName": "myStream",

Tutorial: Create a REST API as an Amazon Kinesis proxy 171

Amazon API Gateway Developer Guide

"StreamStatus": "ACTIVE"

After you deploy the API, you can make a REST request against this APl method:

GET https://your-api-id.execute-api.region.amazonaws.com/stage/streams/myStream
HTTP/1.1

Host: your-api-id.execute-api.region.amazonaws.com

Content-Type: application/json

Authorization:

X-Amz-Date: 20160323T1944517

To configure and test the POST method on a stream resource

—

© ® N o u M W N

_—) e
W N =2 O

Choose the /{stream-name} resource, and then choose Create method.

For Method type, select POST.

For Integration type, select AWS service.

For AWS Region, select the AWS Region where you created your Kinesis stream.
For AWS service, select Kinesis.

Keep AWS subdomain blank.

For HTTP method, choose POST.

For Action type, choose Use action name.

For Action name, enter CreateStream.

For Execution role, enter the ARN for your execution role.

. Keep the default of Passthrough for Content Handling.
. Choose Create method.

. In the Integration request section, add the following URL request headers parameters:

Content-Type: 'x-amz-json-1.1'

Tutorial: Create a REST API as an Amazon Kinesis proxy 172

Amazon API Gateway Developer Guide

The task follows the same procedure to set up the request parameter mapping for the GET /
streams method.

14. Add the following body mapping template to map data from the POST /streams/{stream-
name} method request to the POST /?Action=CreateStream integration request:

{
"ShardCount": #if($input.path('$.ShardCount') == '') 5 #else
$input.path('$.ShardCount') #end,
"StreamName": "$input.params('stream-name')"
}

In the preceding mapping template, we set ShardCount to a fixed value of 5 if the client does
not specify a value in the method request payload.

15. To test the POST /stream/{stream-name} method to invoke the CreateStream action in
Kinesis, choose the Test tab.

16. For Path, under stream-name, enter the name of a new Kinesis stream.

17. Choose Test. If the test is successful, a 200 OK response is returned with no data.

After you deploy the API, you can also make a REST API request against the POST method on a
Stream resource to invoke the CreateStream action in Kinesis:

POST https://your-api-id.execute-api.region.amazonaws.com/stage/streams/yourStream
HTTP/1.1

Host: your-api-id.execute-api.region.amazonaws.com

Content-Type: application/json

Authorization:

X-Amz-Date: 20160323T1944517

"ShardCount": 5

Configure and test the DELETE method on a stream resource

1. Choose the /{stream-name} resource, and then choose Create method.

Tutorial: Create a REST API as an Amazon Kinesis proxy 173

Amazon API Gateway Developer Guide

© 0 N o U B W N

L N s ¥
W N =2 O

14.

15.

16.
17.

For Method type, select DELETE.

For Integration type, select AWS service.

For AWS Region, select the AWS Region where you created your Kinesis stream.
For AWS service, select Kinesis.

Keep AWS subdomain blank.

For HTTP method, choose POST.

For Action type, choose Use action name.

For Action name, enter DeleteStream.

For Execution role, enter the ARN for your execution role.

. Keep the default of Passthrough for Content Handling.
. Choose Create method.

. In the Integration request section, add the following URL request headers parameters:

Content-Type: 'x-amz-json-1.1'

The task follows the same procedure to set up the request parameter mapping for the GET /
streams method.

Add the following body mapping template to map data from the DELETE /streams/
{stream-name} method request to the corresponding integration request of POST /7
Action=DeleteStream:

"StreamName": "$input.params('stream-name')"

This mapping template generates the required input for the DELETE /streams/{stream-
name} action from the client-supplied URL path name of stream-name.

To test the DELETE /stream/{stream-name} method to invoke the DeleteStream action
in Kinesis, choose the Test tab.

For Path, under stream-name, enter the name of an existing Kinesis stream.

Choose Test. If the test is successful, a 200 OK response is returned with no data.

After you deploy the API, you can also make the following REST API request against the
DELETE method on the Stream resource to call the DeleteStream action in Kinesis:

Tutorial: Create a REST API as an Amazon Kinesis proxy 174

Amazon API Gateway Developer Guide

DELETE https://your-api-id.execute-api.region.amazonaws.com/stage/
streams/yourStream HTTP/1.1

Host: your-api-id.execute-api.region.amazonaws.com

Content-Type: application/json

Authorization:

X-Amz-Date: 20160323T194451Z

{3

Get records from and add records to a stream in Kinesis

After you create a stream in Kinesis, you can add data records to the stream and read the data from
the stream. Adding data records involves calling the PutRecords or PutRecord action in Kinesis. The

former adds multiple records whereas the latter adds a single record to the stream.

POST /?Action=PutRecords HTTP/1.1
Host: kinesis.region.domain
Authorization: AWS4-HMAC-SHA256 Credential=...,

Content-Type: application/x-amz-json-1.1
Content-Length: PayloadSizeBytes

{
"Records": [
{
"Data": blob,
"ExplicitHashKey": "string",
"PartitionKey": "string"
}
1,
"StreamName": "string"
}
or

Tutorial: Create a REST API as an Amazon Kinesis proxy 175

https://docs.aws.amazon.com/kinesis/latest/APIReference/API_PutRecords.html#API_PutRecords_Examples
https://docs.aws.amazon.com/kinesis/latest/APIReference/API_PutRecord.html#API_PutRecord_Examples

Amazon API Gateway Developer Guide

POST /?Action=PutRecord HTTP/1.1
Host: kinesis.region.domain
Authorization: AWS4-HMAC-SHA256 Credential=...,

Content-Type: application/x-amz-json-1.1
Content-Length: PayloadSizeBytes

{
"Data": blob,
"ExplicitHashKey": "string",
"PartitionKey": "string",
"SequenceNumberForOrdering": "string",
"StreamName": "string"

}

Here, StreamName identifies the target stream to add records. StreamName, Data, and
PartitionKey are required input data. In our example, we use the default values for all of the
optional input data and will not explicitly specify values for them in the input to the method
request.

Reading data in Kinesis amounts to calling the GetRecords action:

POST /?Action=GetRecords HTTP/1.1
Host: kinesis.region.domain
Authorization: AWS4-HMAC-SHA256 Credential=...,

Content-Type: application/x-amz-json-1.1
Content-Length: PayloadSizeBytes

"ShardIterator": "string",
"Limit": number

Here, the source stream from which we are getting records is specified in the required
ShardIterator value, as is shown in the following Kinesis action to obtain a shard iterator:

POST /?Action=GetShardIterator HTTP/1.1
Host: kinesis.region.domain
Authorization: AWS4-HMAC-SHA256 Credential=...,

Tutorial: Create a REST API as an Amazon Kinesis proxy 176

https://docs.aws.amazon.com/kinesis/latest/APIReference/API_GetRecords.html#API_GetRecords_Examples

Amazon API Gateway Developer Guide

Content-Type: application/x-amz-json-1.1
Content-Length: PayloadSizeBytes

{
"ShardId": "string",
"ShardIteratorType": "string",
"StartingSequenceNumber": "string",
"StreamName": "string"

}

For the GetRecords and PutRecords actions, we expose the GET and PUT methods, respectively,
on a /records resource that is appended to a named stream resource (/{stream-name}).
Similarly, we expose the PutRecord action as a PUT method on a /recoxrd resource.

Because the GetRecords action takes as input a ShardIterator value, which is obtained
by calling the GetShardIterator helper action, we expose a GET helper method on a
ShardIterator resource (/sharditerator).

To create the /record, /records, and /sharditerator resources

1. Choose the /{stream-name} resource, and then choose Create resource.
Keep Proxy resource turned off.

For Resource path, select /{stream-name}.

For Resource name, enter recoxrd.

Keep CORS (Cross Origin Resource Sharing) turned off.

Choose Create resource.

N o un B~ W DN

Repeat the previous steps to create a /records and a /sharditerator resource. The final API
should look like the following:

Tutorial: Create a REST API as an Amazon Kinesis proxy 177

Amazon API Gateway

Developer Guide

Resources

Create resource

=/

[=] /streams
GET
[=] /{stream-name}
DELETE
GET
POST

[=] /record
POST

[=] /records /|
PUT

[=] /sharditerator

GET

Tutorial: Create a REST API as an Amazon Kinesis proxy

178

Amazon API Gateway Developer Guide

The following four procedures describe how to set up each of the methods, how to map data from
the method requests to the integration requests, and how to test the methods.

To set up and test the PUT /streams/{stream-name}/recoxrd method to invoke PutRecord

in Kinesis:

1. Choose the /record, and then choose Create method.

2. For Method type, select PUT.

3. For Integration type, select AWS service.

4. For AWS Region, select the AWS Region where you created your Kinesis stream.

5. For AWS service, select Kinesis.

6. Keep AWS subdomain blank.

7. For HTTP method, choose POST.

8. For Action type, choose Use action name.

9. For Action name, enter PutRecoxd.

10. For Execution role, enter the ARN for your execution role.

11. Keep the default of Passthrough for Content Handling.

12. Choose Create method.

13. In the Integration request section, add the following URL request headers parameters:

Content-Type: 'x-amz-json-1.1'

The task follows the same procedure to set up the request parameter mapping for the GET /
streams method.

14. Add the following body mapping template to map data from the PUT /streams/{stream-

name}/record method request to the corresponding integration request of POST /?
Action=PutRecord:

{
"StreamName": "$input.params('stream-name')",
"Data": "$util.baseb4Encode($input.json('$.Data'))",
"PartitionKey": "$input.path('$.PartitionKey')"

}

This mapping template assumes that the method request payload is of the following format:

Tutorial: Create a REST API as an Amazon Kinesis proxy 179

Amazon API Gateway Developer Guide

"Data": "some data",
"PartitionKey": "some key"

This data can be modeled by the following JSON schema:

"$schema": "http://json-schema.org/draft-04/schema#",
"title": "PutRecord proxy single-record payload",
"type": "object",
"properties": {

"Data": { "type": "string" },

"PartitionKey": { "type": "string" }

You can create a model to include this schema and use the model to facilitate generating the
mapping template. However, you can generate a mapping template without using any model.

15. To test the PUT /streams/{stream-name}/record method, set the stream-name path
variable to the name of an existing stream, supply a payload of the required format, and then
submit the method request. The successful result is a 200 OK response with a payload of the
following format:

"SequenceNumber": "49559409944537880850133345460169886593573102115167928386",
"ShardId": "shardId-000000000004"

To set up and test the PUT /streams/{stream-name}/records method to invoke
PutRecords in Kinesis

1. Choose the /records resource, and then choose Create method.
2. For Method type, select PUT.

3. For Integration type, select AWS service.

Tutorial: Create a REST API as an Amazon Kinesis proxy 180

Amazon API Gateway Developer Guide

4. For AWS Region, select the AWS Region where you created your Kinesis stream.
5. For AWS service, select Kinesis.

6. Keep AWS subdomain blank.

7. For HTTP method, choose POST.

8. For Action type, choose Use action name.

9. For Action name, enter PutRecoxds.

10. For Execution role, enter the ARN for your execution role.

11. Keep the default of Passthrough for Content Handling.

12. Choose Create method.

13. In the Integration request section, add the following URL request headers parameters:

Content-Type: 'x-amz-json-1.1'

The task follows the same procedure to set up the request parameter mapping for the GET /
streams method.

14. Add the following mapping template to map data from the PUT /streams/{stream-
name}/records method request to the corresponding integration request of POST /7
Action=PutRecords:

"StreamName": "$input.params('stream-name')",
"Records": [
#foreach($elem in $input.path('$.records'))
{
"Data": "$util.baseb64Encode($elem.data)",
"PartitionKey": "$elem.partition-key"
}#if($foreach.hasNext), #end
#end

This mapping template assumes that the method request payload can be modelled by the
following JSON schema:

{
"$schema": "http://json-schema.org/draft-04/schema#",
"title": "PutRecords proxy payload data",

Tutorial: Create a REST API as an Amazon Kinesis proxy 181

Amazon API Gateway

Developer Guide

"type": "object",
"properties": {
"records": {
"type": "array",
"items": {
"type": "object",
"properties": {

"data": { "type": "string" 3},
"partition-key": { "type": "string" }

You can create a model to include this schema and use the model to facilitate generating the
mapping template. However, you can generate a mapping template without using any model.

In this tutorial, we used two slightly different payload formats to illustrate that an API
developer can choose to expose the backend data format to the client or hide it from the
client. One format is for the PUT /streams/{stream-name}/records method (above).
Another format is used for the PUT /streams/{stream-name}/record method (in the
previous procedure). In production environment, you should keep both formats consistent.

15.

To test the PUT /streams/{stream-name}/records method, set the stream-name path
variable to an existing stream, supply the following payload, and submit the method request.

"partition-key": "some key

"data": "some other data",
"partition-key": "some key

{
"records": [
{
"data": "some data",
1,
{
}
]
}

Tutorial: Create a REST API as an Amazon Kinesis proxy

182

Amazon API Gateway Developer Guide

The successful result is a 200 OK response with a payload similar to the following output:

{
"FailedRecordCount": 0,
"Records": [
{
"SequenceNumber": "49559409944537880850133345460167468741933742152373764162",
"ShardId": "shardId-000000000004"
.
{
"SequenceNumber": "49559409944537880850133345460168677667753356781548470338",
"ShardId": "shardId-000000000004"
}
]
}

To set up and test the GET /streams/{stream-name}/sharditerator method invoke
GetShardIterator in Kinesis

The GET /streams/{stream-name}/sharditerator method is a helper method to acquire a
required shard iterator before calling the GET /streams/{stream-name}/records method.

—

Choose the /sharditerator resource, and then choose Create method.

For Method type, select GET.

For Integration type, select AWS service.

For AWS Region, select the AWS Region where you created your Kinesis stream.
For AWS service, select Kinesis.

Keep AWS subdomain blank.

For HTTP method, choose POST.

For Action type, choose Use action name.

© ® N o U M W DN

For Action name, enter GetShardIterator.

-_—
©

For Execution role, enter the ARN for your execution role.
11. Keep the default of Passthrough for Content Handling.

12. Choose URL query string parameters.

Tutorial: Create a REST API as an Amazon Kinesis proxy 183

Amazon API Gateway Developer Guide

The GetShardIterator action requires an input of a Shardld value. To pass a client-supplied
ShardId value, we add a shard-id query parameter to the method request, as shown in the
following step.

13. Choose Add query string.

14. For Name, enter shard-id.

15. Keep Required and Caching turned off.
16. Choose Create method.

17. In the Integration request section, add the following mapping template to generate the
required input (ShardId and StreamName) to the GetShardIterator action from the
shard-id and stream-name parameters of the method request. In addition, the mapping
template also sets ShardIteratorType to TRIM_HORIZON as a default.

{
"ShardId": "$input.params('shard-id')",
"ShardIteratorType": "TRIM_HORIZON",
"StreamName": "$input.params('stream-name’')"
}

18. Using the Test option in the APl Gateway console, enter an existing stream name as the
stream-name Path variable value, set the shard-id Query string to an existing ShardId
value (e.g., shard-000000000004), and choose Test.

The successful response payload is similar to the following output:

{
"ShardIterator": "AAAAAAAAAAFYVN3V1Fy..."

}

Make note of the ShardIterator value. You need it to get records from a stream.

To configure and test the GET /streams/{stream-name}/records method to invoke the
GetRecoxds action in Kinesis

1. Choose the /records resource, and then choose Create method.

2. For Method type, select GET.

3. For Integration type, select AWS service.

Tutorial: Create a REST API as an Amazon Kinesis proxy 184

Amazon API Gateway Developer Guide

4
5
6.
7
8

9.

10.
11.
12.

13.
14.
15.
16.
17.

18.

For AWS Region, select the AWS Region where you created your Kinesis stream.
For AWS service, select Kinesis.

Keep AWS subdomain blank.

For HTTP method, choose POST.

For Action type, choose Use action name.

For Action name, enter GetRecoxds.

For Execution role, enter the ARN for your execution role.

Keep the default of Passthrough for Content Handling.

Choose HTTP request headers.

The GetRecords action requires an input of a ShardIterator value. To pass a client-
supplied ShardIterator value, we add a Shard-Iterator header parameter to the
method request.

Choose Add header.

For Name, enter Shard-Iterator.
Keep Required and Caching turned off.
Choose Create method.

In the Integration request section, add the following body mapping template to map the
Shard-Iterator header parameter value to the ShardIterator property value of the
JSON payload for the GetRecords action in Kinesis.

{
"ShardIterator": "$input.params('Shard-Iterator')"

}

Using the Test option in the APl Gateway console, enter an existing stream name as the
stream-name Path variable value, set the Shard-Iterator Header to the ShardIterator
value obtained from the test run of the GET /streams/{stream-name}/sharditerator
method (above), and choose Test.

The successful response payload is similar to the following output:

{
"MillisBehindLatest": 0,

"NextShardIterator": "AAAAAAAAAAF...",
"Records": [...]

Tutorial: Create a REST API as an Amazon Kinesis proxy 185

Amazon API Gateway Developer Guide

}

OpenAPI definitions of a sample API as a Kinesis proxy

Following are OpenAPI definitions for the sample API as a Kinesis proxy used in this tutorial.

OpenAPI 3.0
{
"openapi": "3.0.0",
"info": {
"title": "KinesisProxy",
"version": "2016-03-31T18:25:3272"
b
"paths": {
"/streams/{stream-name}/sharditerator": {
"get": {
"parameters": [
{
"name": "stream-name",
"in": "path",
"required": true,
"schema": {
"type": "string"
}
b
{
"name": "shard-id",
"in": "query",
"schema": {
"type": "string"
}
}
1)
"responses": {
"200": {
"description": "200 response",

"content": {
"application/json": {
"schema": {
"$ref": "#/components/schemas/Empty"

Tutorial: Create a REST API as an Amazon Kinesis proxy 186

Amazon API Gateway Developer Guide

}
}
}
I
"x-amazon-apigateway-integration": {
"type": "aws",
"credentials": "arn:aws:iam::123456789012:role/apigAwsProxyRole",
"uri": "arn:aws:apigateway:us-east-1l:kinesis:action/GetShardIterator",
"responses": {
"default": {
"statusCode": "200"
}
},

"requestParameters": {
"integration.request.header.Content-Type":

application/x-amz-
json-1.1""

},

"requestTemplates": {

"application/json": "{\n \"ShardId\": \"$input.params('shard-

id")\",\n \"ShardIteratorType\": \"TRIM_HORIZON\",\n \"StreamName\":
\"$input.params('stream-name’')\"\n}"

I

"passthroughBehavior": "when_no_match",

"httpMethod": "POST"

}
},
"/streams/{stream-name}/records": {
"get": {
"parameters": [
{

"name": "stream-name",
Ilinll: Ilpathll’
"required": true,
"schema": {

"type": "string"

"name": "Shard-Iterator",

in": "header",
"schema": {

"type": "string"

Tutorial: Create a REST API as an Amazon Kinesis proxy 187

Amazon API Gateway

Developer Guide

}
1,

"responses": {
"200": {

"description": "200 response",

"content": {

"application/json": {

"schema": {

"$ref": "#/components/schemas/Empty"

}
iy

"x-amazon-apigateway-integration": {

Iltypell: Ilawsll’

"credentials": "arn:aws:iam::123456789012:role/apigAwsProxyRole",

"responses": {
"default": {
"statusCode": "200"
}
},

"requestParameters": {

"integration.request.header.Content-Type":

json-1.1""

}I

"requestTemplates": {

"application/json": "{\n

Iterator')\"\n}"

},
"passthroughBehavior": "when_no_match",
"httpMethod": "POST"
}
},
"put": {
"parameters": [
{
"name": "Content-Type",
"in": "header",
"schema": {
"type": "string"
}
I

uri": "arn:aws:apigateway:us-east-1l:kinesis:action/GetRecords",

application/x-amz-

\"ShardIterator\": \"$input.params('Shard-

Tutorial: Create a REST API as an Amazon Kinesis proxy

188

Amazon API Gateway

Developer Guide

{
"name": "stream-name",
"in": "path",
"required": true,
"schema": {

"type": "string"

}

}

1,

"requestBody": {
"content": {
"application/json": {
"schema": {

"$ref": "#/components/schemas/PutRecordsMethodRequestPayload"

}
.
"application/x-amz-json-1.1": {
"schema": {

"$ref": "#/components/schemas/PutRecordsMethodRequestPayload"

}
}
I
"required": true
I
"responses": {
"200": {
"description": "200 response",
"content": {
"application/json": {
"schema": {
"$ref": "#/components/schemas/Empty"
}
}
}
}
I
"x-amazon-apigateway-integration": {
"type": "aws",

"credentials": "arn:aws:iam::123456789012:role/apigAwsProxyRole",

uri":

"responses": {

"default": {
"statusCode": "200"

"arn:aws:apigateway:us-east-1:kinesis:action/PutRecords",

Tutorial: Create a REST API as an Amazon Kinesis proxy

189

Amazon API Gateway Developer Guide

3,
"requestParameters": {
"integration.request.header.Content-Type":

application/x-amz-
json-1.1""
},
"requestTemplates": {
"application/json": "{\n \"StreamName\": \"$input.params('stream-
name')\",\n \"Records\": [\n {\n \"Data\":
\"$util.baseb64Encode($elem.data)\",\n \"PartitionKey\":
\"$elem.partition-key\"\n }#if($foreach.hasNext), #end\n I\n3}",
"application/x-amz-json-1.1": "{\n \"StreamName\":
\"$input.params('stream-name')\",\n \"records\" : [\n {\n \'"Data
\" : \"$elem.data\",\n \"PartitionKey\" : \"$elem.partition-key\"\n
}#if($foreach.hasNext),#end\n J\n}"
},
"passthroughBehavior": "when_no_match",
"httpMethod": "POST"

}
I
"/streams/{stream-name}": {
"get": {
"parameters": [

{

"name": "stream-name",
Ilinll. Ilpathll

o ’
"required": true,
"schema": {

"type": "string"

}
1,
"responses": {
"200": {
"description": "200 response",
"content": {
"application/json": {
"schema": {
"$ref": "#/components/schemas/Empty"

Tutorial: Create a REST API as an Amazon Kinesis proxy 190

Amazon API Gateway Developer Guide

"x-amazon-apigateway-integration": {

"type": "aws",
"credentials": "arn:aws:iam::123456789012:role/apigAwsProxyRole",
"uri": "arn:aws:apigateway:us-east-1l:kinesis:action/DescribeStream",
"responses": {

"default": {

"statusCode": "200"

}
},
"requestTemplates": {
"application/json": "{\n \"StreamName\": \"$input.params('stream-

name')\n\n} "

},
"passthroughBehavior": "when_no_match",
"httpMethod": "POST"
}
},
"post": {
"parameters": [
{
"name": "stream-name",
"in": "path",
"required": true,
"schema": {
"type": "string"
}
}
1,
"responses": {
"200": {
"description": "200 response",
"content": {
"application/json": {
"schema": {
"$ref": "#/components/schemas/Empty"
}
}
}
}
I
"x-amazon-apigateway-integration": {
"type": "aws",
"credentials": "arn:aws:iam::123456789012:role/apigAwsProxyRole",
"uri": "arn:aws:apigateway:us-east-1l:kinesis:action/CreateStream",

Tutorial: Create a REST API as an Amazon Kinesis proxy 191

Amazon API Gateway Developer Guide

"responses": {
"default": {
"statusCode": "200"

}
1,
"requestParameters": {
"integration.request.header.Content-Type": "'application/x-amz-
json-1.1""
1,

"requestTemplates": {
"application/json": "{\n \"ShardCount\": 5,\n \"StreamName\" :
\"$input.params('stream-name')\"\n}"
},
"passthroughBehavior": "when_no_match",
"httpMethod": "POST"
}
},
"delete": {
"parameters": [
{
"name": "stream-name",
"in": "path",
"required": true,
"schema": {
"type": "string"

}
1,
"responses": {
"200": {
"description": "200 response",
"headers": {
"Content-Type": {
"schema": {
"type": "string"

}
iy

"content": {
"application/json": {
"schema": {
"$ref": "#/components/schemas/Empty"

Tutorial: Create a REST API as an Amazon Kinesis proxy 192

Amazon API Gateway Developer Guide

}
I
"400": {
"description": "400 response",
"headers": {
"Content-Type": {
"schema": {
"type": "string"
}
}
},
"content": {3}
},
"500": {
"description": "500 response",
"headers": {
"Content-Type": {
"schema": {
"type": "string"
}
}
I
"content": {}
}
},
"X-amazon-apigateway-integration": {
"type": "aws",

"credentials": "arn:aws:iam::123456789012:ro0le/apigAwsProxyRole",
" "arn:aws:apigateway:us-east-1l:kinesis:action/DeleteStream",
"responses": {
"4\\d{2}": {
"statusCode": "400",
"responseParameters": {
"method.response.header.Content-Type":
"integration.response.header.Content-Type"
}
},
"default": {
"statusCode": "200",
"responseParameters": {
"method.response.header.Content-Type":
"integration.response.header.Content-Type"
}
},

urli :

Tutorial: Create a REST API as an Amazon Kinesis proxy 193

Amazon API Gateway

Developer Guide

"5\\d{2}": {
"statusCode": "500",
"responseParameters": {
"method.response.header.Content-Type":
"integration.response.header.Content-Type"
}
}
I
"requestParameters": {
"integration.request.header.Content-Type":
json-1.1""
I
"requestTemplates": {
"application/json": "{\n \"StreamName\"
name')\"\n}"
I
"passthroughBehavior": "when_no_match",
"httpMethod": "POST"

}
},
"/streams/{stream-name}/record": {
"put": {
"parameters": [
{

"name": "stream-name",
Ilinll: Ilpathll’
"required": true,
"schema": {

"type": "string"

}
1,
"responses": {
"200": {
"description": "200 response",
"content": {
"application/json": {
"schema": {
"$ref": "#/components/schemas/Empty"

application/x-amz-

: \"$input.params('stream-

Tutorial: Create a REST API as an Amazon Kinesis proxy

194

Amazon API Gateway Developer Guide

},
"X-amazon-apigateway-integration": {
"type": "aws",
"credentials": "arn:aws:iam::123456789012:ro0le/apigAwsProxyRole",
"uri": "arn:aws:apigateway:us-east-1l:kinesis:action/PutRecord",
"responses": {
"default": {
"statusCode": "200"
}
I
"requestParameters": {
"integration.request.header.Content-Type": "'application/x-amz-
json-1.1""
I
"requestTemplates": {
"application/json": "{\n \"StreamName\": \"$input.params('stream-

name')\",\n \"Data\": \"$util.base64Encode($input.json('$.Data’'))\",\n
\"PartitionKey\": \"$input.path('$.PartitionKey')\"\n}"

},
"passthroughBehavior": "when_no_match",
"httpMethod": "POST"
}
}
I
"/streams": {
"get": {
"responses": {
"200": {
"description": "200 response",
"content": {
"application/json": {
"schema": {
"$ref": "#/components/schemas/Empty"
}
}
}
}
I
"x-amazon-apigateway-integration": {
"type": "aws",
"credentials": "arn:aws:iam::123456789012:role/apigAwsProxyRole",
"uri": "arn:aws:apigateway:us-east-1l:kinesis:action/ListStreams",
"responses": {
"default": {

Tutorial: Create a REST API as an Amazon Kinesis proxy 195

Amazon API Gateway

Developer Guide

"statusCode": "200"

}
}I

"requestParameters": {

"integration.request.header.Content-Type":

json-1.1""
},
"requestTemplates": {

"application/json": "{\n}"
I
"passthroughBehavior": "when_no_match",
"httpMethod": "POST"
}
}
}
I

"components": {
"schemas": {
"Empty": {
"type": "object"
},
"PutRecordsMethodRequestPayload": {
"type": "object",
"properties": {
"records": {
"type": "array",
"items": {
"type": "object",
"properties": {
"data": {
"type": "string"
I
"partition-key": {
"type": "string"

application/x-amz-

Tutorial: Create a REST API as an Amazon Kinesis proxy

196

Amazon API Gateway Developer Guide

OpenAPI 2.0
{
"swagger": "2.0",
"info": {
"version": "2016-03-31T18:25:32Z7",
"title": "KinesisProxy"
3,

"basePath": "/test",
"schemes": [

"https"
1,
"paths": {
"/streams": {
"get": {
"consumes": [
"application/json"
1,
"produces": [
"application/json"
1,
"responses": {
"200": {
"description": "200 response",
"schema": {
"$ref": "#/definitions/Empty"
}
}
I
"x-amazon-apigateway-integration": {
"type": "aws",
"credentials": "arn:aws:iam::123456789012:role/apigAwsProxyRole",
"uri": "arn:aws:apigateway:us-east-1l:kinesis:action/ListStreams",
"responses": {
"default": {
"statusCode": "200"
}
},
"requestParameters": {
"integration.request.header.Content-Type": "'application/x-amz-
json-1.1""
},

"requestTemplates": {
"application/json": "{\n}"

Tutorial: Create a REST API as an Amazon Kinesis proxy 197

Amazon API Gateway Developer Guide

},
"passthroughBehavior": "when_no_match",
"httpMethod": "POST"

}
I
"/streams/{stream-name}": {
"get": {
"consumes": [
"application/json"
1,
"produces": [
"application/json"
1,
"parameters": [
{
"name": "stream-name",
"in": "path",
"required": true,
"type": "string"
}
1,
"responses": {
"200": {
"description": "200 response",
"schema": {
"$ref": "#/definitions/Empty"

}
I
"x-amazon-apigateway-integration": {
"type": "aws",
"credentials": "arn:aws:iam::123456789012:role/apigAwsProxyRole",

uri":

"responses": {

"default": {
"statusCode": "200"

}

"arn:aws:apigateway:us-east-1:kinesis:action/DescribeStream",

iy
"requestTemplates": {
"application/json": "{\n \"StreamName\": \"$input.params('stream-
name 1)\Il\n} 1]
iy

"passthroughBehavior": "when_no_match",

Tutorial: Create a REST API as an Amazon Kinesis proxy 198

Amazon API Gateway Developer Guide

"httpMethod": "POST"

}
},
"post": {
"consumes": [
"application/json"
1,
"produces": [
"application/json"
1,

"parameters": [

{

"name": "stream-name",
Ilinll: Ilpathll’
"required": true,
"type": "string"
}
1,

"responses": {
"200": {
"description": "200 response",
"schema": {
"$ref": "#/definitions/Empty"

}
I
"x-amazon-apigateway-integration": {
"type": "aws",
"credentials": "arn:aws:iam::123456789012:role/apigAwsProxyRole",
"uri": "arn:aws:apigateway:us-east-1l:kinesis:action/CreateStream",
"responses": {
"default": {
"statusCode": "200"
}
},

"requestParameters": {
"integration.request.header.Content-Type":

application/x-amz-
json-1.1""
},
"requestTemplates": {
"application/json": "{\n \"ShardCount\": 5,\n \"StreamName\":
\"$input.params('stream-name')\"\n}"
},

"passthroughBehavior": "when_no_match",

Tutorial: Create a REST API as an Amazon Kinesis proxy 199

Amazon API Gateway

Developer Guide

"httpMethod": "POST"
}
},
"delete": {
"consumes": [
"application/json"
1,
"produces": [
"application/json"
1,
"parameters": [

{

"name": "stream-name",
"in": "path",
"required": true,
"type": "string"
}
1,
"responses": {
"200": {
"description": "200 response",
"schema": {
"$ref": "#/definitions/Empty"
I
"headers": {
"Content-Type": {
"type": "string"

}
I
"400": {
"description": "400 response",
"headers": {
"Content-Type": {
"type": "string"

}
I
"500": {
"description": "500 response",
"headers": {
"Content-Type": {
"type": "string"

Tutorial: Create a REST API as an Amazon Kinesis proxy

200

Amazon API Gateway Developer Guide

}
}
3,
"X-amazon-apigateway-integration": {
"type": "aws",

"credentials": "arn:aws:iam::123456789012:ro0le/apigAwsProxyRole",
" "arn:aws:apigateway:us-east-1l:kinesis:action/DeleteStream",
"responses": {
"4\\d{2}": {
"statusCode": "400",
"responseParameters": {
"method.response.header.Content-Type":
"integration.response.header.Content-Type"
}
},
"default": {
"statusCode": "200",
"responseParameters": {
"method.response.header.Content-Type":
"integration.response.header.Content-Type"
}
1,
"5\\d{2}": {
"statusCode": "500",
"responseParameters": {
"method.response.header.Content-Type":
"integration.response.header.Content-Type"
}
}

urli :

I
"requestParameters": {
"integration.request.header.Content-Type": "'application/x-amz-
json-1.1""
I
"requestTemplates": {
"application/json": "{\n \"StreamName\": \"$input.params('stream-
name')\"\n}"
I
"passthroughBehavior": "when_no_match",
"httpMethod": "POST"

}
}I

"/streams/{stream-name}/record": {

Tutorial: Create a REST API as an Amazon Kinesis proxy 201

Amazon API Gateway Developer Guide

"put": {

"consumes": [
"application/json"

1,

"produces": [
"application/json"

1,

"parameters": [
{

"name": "stream-name",

1nu: "path",
"required": true,
"type": "string"

}
1,
"responses": {
"200": {
"description": "200 response",
"schema": {
"$ref": "#/definitions/Empty"
}
}
},
"X-amazon-apigateway-integration": {
"type": "aws",

"credentials": "arn:aws:iam::123456789012:ro0le/apigAwsProxyRole",
" "arn:aws:apigateway:us-east-1l:kinesis:action/PutRecord",
"responses": {
"default": {
"statusCode": "200"

urli :

}
I
"requestParameters": {
"integration.request.header.Content-Type": "'application/x-amz-
json-1.1""
I
"requestTemplates": {
"application/json": "{\n \"StreamName\": \"$input.params('stream-

name')\",\n \"Data\": \"$util.base64Encode($input.json('$.Data’'))\",\n
\"PartitionKey\": \"$input.path('$.PartitionKey')\"\n}"

iy

"passthroughBehavior": "when_no_match",

"httpMethod": "POST"

Tutorial: Create a REST API as an Amazon Kinesis proxy

202

Amazon API Gateway Developer Guide

}
I
"/streams/{stream-name}/records": {
"get": {
"consumes": [
"application/json"

1,

"produces": [
"application/json"

1,

"parameters": [

{

"name": "stream-name",
Ilinll: Ilpathll’
"required": true,

"type": "string"

"name": "Shard-Iterator",
"in": "header",
"required": false,
"type": "string"
}
1,
"responses": {
"200": {
"description": "200 response",
"schema": {

"$ref": "#/definitions/Empty"

}
1,
"x-amazon-apigateway-integration": {
"type": "aws",
"credentials": "arn:aws:iam::123456789012:role/apigAwsProxyRole",
"uri": "arn:aws:apigateway:us-east-1l:kinesis:action/GetRecords",
"responses": {
"default": {
"statusCode": "200"
}
1,
"requestParameters": {
"integration.request.header.Content-Type":

application/x-amz-
json-1.1""

Tutorial: Create a REST API as an Amazon Kinesis proxy 203

Amazon API Gateway Developer Guide

}I

"requestTemplates": {
"application/json": "{\n \"ShardIterator\": \"$input.params('Shard-
Iterator')\"\n}"

},
"passthroughBehavior": "when_no_match",
"httpMethod": "POST"
}
},
"put": {

"consumes": [
"application/json",
"application/x-amz-json-1.1"

1,
"produces": [
"application/json"
1,
"parameters": [
{
"name": "Content-Type",
"in": "header",
"required": false,
"type": "string"
I
{
"name": "stream-name",
"in": "path",
"required": true,
"type": "string"
I
{
"in": "body",
"name": "PutRecordsMethodRequestPayload",
"required": true,
"schema": {
"$ref": "#/definitions/PutRecordsMethodRequestPayload"
}
I
{
"in": "body",

"name": "PutRecordsMethodRequestPayload",
"required": true,
"schema": {
"$ref": "#/definitions/PutRecordsMethodRequestPayload"

Tutorial: Create a REST API as an Amazon Kinesis proxy 204

Amazon API Gateway Developer Guide

}
}
1,
"responses": {
"200": {
"description": "200 response",
"schema": {
"$ref": "#/definitions/Empty"
}
}
},
"X-amazon-apigateway-integration": {
"type": "aws",

"credentials": "arn:aws:iam::123456789012:r0le/apigAwsProxyRole",
" "arn:aws:apigateway:us-east-1l:kinesis:action/PutRecords",
"responses": {
"default": {
"statusCode": "200"

urli :

}
.
"requestParameters": {
"integration.request.header.Content-Type": "'application/x-amz-
json-1.1""
.
"requestTemplates": {
"application/json": "{\n \"StreamName\": \"$input.params('stream-
name')\",\n \"Records\": [\n {\n \"Data\":
\"$util.base64Encode($elem.data)\",\n \"PartitionKey\":
\"$elem.partition-key\"\n }#if($foreach.hasNext), #end\n I\n}",
"application/x-amz-json-1.1": "{\n \"StreamName\":
\"$input.params('stream-name')\",\n \"records\" : [\n {\n \"Data
\" : \"$elem.data\",\n \"PartitionKey\" : \"$elem.partition-key\"\n
}#if($foreach.hasNext),#end\n J\n}"
.
"passthroughBehavior": "when_no_match",
"httpMethod": "POST"
}
}
},
"/streams/{stream-name}/sharditerator": {
"get": {
"consumes": [
"application/json"
1,

Tutorial: Create a REST API as an Amazon Kinesis proxy 205

Amazon API Gateway Developer Guide

"produces": [
"application/json"
1,
"parameters": [
{
"name": "stream-name",
"in": "path",
"required": true,
"type": "string"

"name": "shard-id",
"in": "query",
"required": false,
"type": "string"
}
1,
"responses": {
"200": {
"description": "200 response",
"schema": {
"$ref": "#/definitions/Empty"

}
},
"X-amazon-apigateway-integration": {
"type": "aws",
"credentials": "arn:aws:iam::123456789012:ro0le/apigAwsProxyRole",
"uri": "arn:aws:apigateway:us-east-l:kinesis:action/GetShardIterator",

"responses": {
"default": {
"statusCode": "200"
}
I

"requestParameters": {
"integration.request.header.Content-Type": "'application/x-amz-
json-1.1""
I
"requestTemplates": {
"application/json": "{\n \"ShardId\": \"$input.params('shard-
id")\",\n \"ShardIteratorType\": \"TRIM_HORIZON\",\n \"StreamName\":
\"$input.params('stream-name')\"\n}"
},

"passthroughBehavior": "when_no_match",

Tutorial: Create a REST API as an Amazon Kinesis proxy 206

Amazon API Gateway Developer Guide

"httpMethod": "POST"

}
}
}
},
"definitions": {
"Empty": {
"type": "object"
},

"PutRecordsMethodRequestPayload": {
"type": "object",
"properties": {

"records": {
"type": "array",
"items": {
"type": "object",
"properties": {
"data": {
"type": "string"
.
"partition-key": {
"type": "string"

Tutorial: Building a private REST API

In this tutorial, you create a private REST API. Clients can access the API only from within your
Amazon VPC. The API is isolated from the public internet, which is a common security requirement.

This tutorial takes approximately 30 minutes to complete. First, you use an AWS CloudFormation
template to create an Amazon VPC, a VPC endpoint, an AWS Lambda function, and launch

an Amazon EC2 instance that you'll use to test your API. Next, you use the AWS Management
Console to create a private APl and attach a resource policy that allows access only from your VPC
endpoint. Lastly, you test your API.

Build a private REST API 207

Amazon API Gateway Developer Guide

AWS Cloud

- — F
28 -

Z /)
.‘— —
, VPC Resource pror api Lambda function
Clients Endpoint policy

To complete this tutorial, you need an AWS account and an AWS Identity and Access Management
user with console access. For more information, see Prerequisites.

In this tutorial, you use the AWS Management Console. For an AWS CloudFormation template that
creates this APl and all related resources, see template.yaml.

Topics

» Step 1: Create dependencies

« Step 2: Create a private API

» Step 3: Create a method and integration

« Step 4: Attach a resource policy

» Step 5: Deploy your API

« Step 6: Verify that your APl isn't publicly accessible

» Step 7: Connect to an instance in your VPC and invoke your API

« Step 8: Clean up

» Next steps: Automate with AWS CloudFormation

Step 1: Create dependencies

Download and unzip this AWS CloudFormation template. You use the template to create all of

the dependencies for your private API, including an Amazon VPC, a VPC endpoint, and a Lambda
function that serves as the backend of your API. You create the private API later.

To create an AWS CloudFormation stack

1. Open the AWS CloudFormation console at https://console.aws.amazon.com/cloudformation.

2. Choose Create stack and then choose With new resources (standard).

Build a private REST API 208

samples/private-api-full-template.zip
samples/private-api-starter-template.zip
https://console.aws.amazon.com/cloudformation/

Amazon API Gateway Developer Guide

For Specify template, choose Upload a template file.

Select the template that you downloaded.

Choose Next.

For Stack name, enter private-api-tutorial and then choose Next.

For Configure stack options, choose Next.

© N o U & W

For Capabilities, acknowledge that AWS CloudFormation can create IAM resources in your
account.

9. Choose Submit.

AWS CloudFormation provisions the dependencies for your API, which can take a few minutes.
When the status of your AWS CloudFormation stack is CREATE_COMPLETE, choose Outputs. Note
your VPC endpoint ID. You need it for later steps in this tutorial.

Step 2: Create a private API
You create a private API to allow only clients within your VPC to access it.
To create a private API

Sign in to the API Gateway console at https://console.aws.amazon.com/apigateway.

Choose Create API, and then for REST API, choose Build.

For APl name, enter private-api-tutorial.

For API endpoint type, select Private.

i A W=

For VPC endpoint IDs, enter the VPC endpoint ID from the Outputs of your AWS
CloudFormation stack.

6. Choose Create API.

Step 3: Create a method and integration

You create a GET method and Lambda integration to handle GET requests to your APl. When a
client invokes your API, APl Gateway sends the request to the Lambda function that you created in
Step 1, and then returns a response to the client.

To create a method and integration

1. Sign in to the APl Gateway console at https://console.aws.amazon.com/apigateway.

Build a private REST API 209

https://console.aws.amazon.com/apigateway
https://console.aws.amazon.com/apigateway

Amazon API Gateway Developer Guide

2. Choose your APL.
Select the / resource, and then choose Create method.

3

4. For Method type select GET.

5. For Integration type, select Lambda function.
6

Turn on Lambda proxy integration. With a Lambda proxy integration, APl Gateway sends an
event to Lambda with a defined structure, and transforms the response from your Lambda
function to an HTTP response.

7. For Lambda function, choose the function that you created with the AWS CloudFormation
template in Step 1. The function's name begins with private-api-tutorial.

8. Choose Create method.

Step 4: Attach a resource policy

You attach a resource policy to your API that allows clients to invoke your API only through your

VPC endpoint. To further restrict access to your API, you can also configure a VPC endpoint policy

for your VPC endpoint, but that's not necessary for this tutorial.
To attach a resource policy

1. Signin to the APl Gateway console at https://console.aws.amazon.com/apigateway.

2. Choose your API.
3. Choose Resource policy, and then choose Create policy.
4

Enter the following policy. Replace vpceID with your VPC endpoint ID from the Outputs of
your AWS CloudFormation stack.

"Version": "2012-10-17",
"Statement": [

{
"Effect": "Deny",
"Principal": "*",
"Action": "execute-api:Invoke",
"Resource": "execute-api:/*",

"Condition": {
"StringNotEquals": {
"aws:sourceVpce": "vpceID"

}

Build a private REST API 210

https://console.aws.amazon.com/apigateway

Amazon API Gateway

Developer Guide

}
.
{
"Effect": "Allow",
"Principal": "*",
"Action": "execute-api:Invoke",
"Resource": "execute-api:/*"
}

}

5. Choose Save changes.

Step 5: Deploy your API

Next, you deploy your API to make it available to clients in your Amazon VPC.

To deploy an API

1. Sign in to the APl Gateway console at https://console.aws.amazon.com/apigateway.

Choose your API.

Choose Deploy API.

For Stage, select New stage.
For Stage name, enter test.

(Optional) For Description, enter a description.

N o u s~ W N

Choose Deploy.

Now you're ready to test your API.
Step 6: Verify that your API isn't publicly accessible

Use curl to verify that you can't invoke your API from outside of your Amazon VPC.

To test your API

1. Sign in to the APl Gateway console at https://console.aws.amazon.com/apigateway.

2. Choose your API.

3. In the main navigation pane, choose Stages, and then choose the test stage.

Build a private REST API

211

https://console.aws.amazon.com/apigateway
https://console.aws.amazon.com/apigateway

Amazon API Gateway Developer Guide

4.

Under Stage details, choose the copy icon to copy your API's invoke URL. The URL looks

like https://abcdef123.execute-api.us-west-2.amazonaws.com/test. The VPC
endpoint that you created in Step 1 has private DNS enabled, so you can use the provided URL
to invoke your API.

Use curl to attempt to invoke your API from outside of your VPC.

curl https://abcdef123.execute-api.us-west-2.amazonaws.com/test

Curl indicates that your API's endpoint can't be resolved. If you get a different response, go
back to Step 2, and make sure that you choose Private for your API's endpoint type.

curl: (6) Could not resolve host: abcdefl23.execute-api.us-west-2.amazonaws.com/
test

Next, you connect to an Amazon EC2 instance in your VPC to invoke your API.

Step 7: Connect to an instance in your VPC and invoke your API

Next, you test your API from within your Amazon VPC. To access your private API, you connect
to an Amazon EC2 instance in your VPC and then use curl to invoke your API. You use Systems
Manager Session Manager to connect to your instance in the browser.

To test your API

1.
2.

Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.

Choose Instances.

Choose the instance named private-api-tutorial that you created with the AWS
CloudFormation template in Step 1.

Choose Connect and then choose Session Manager.
Choose Connect to launch a browser-based session to your instance.

In your Session Manager session, use curl to invoke your API. You can invoke your API because
you're using an instance in your Amazon VPC.

curl https://abcdefl23.execute-api.us-west-2.amazonaws.com/test

Verify that you get the response Hello from Lambda!.

Build a private REST API 212

https://console.aws.amazon.com/ec2/

Amazon API Gateway Developer Guide

Session ID: user- Instance 1D: i-

sh-4.2% curl https: .execute-api.us-west-2.amazonaws .com/prod
"Hello from Lambda!"sh-4.23%

You successfully created an API that's accessible only from within your Amazon VPC and then
verified that it works.

Step 8: Clean up

To prevent unnecessary costs, delete the resources that you created as part of this tutorial. The
following steps delete your REST API and your AWS CloudFormation stack.

To delete a REST API

1. Signin to the APl Gateway console at https://console.aws.amazon.com/apigateway.

2. On the APIs page, select an API. Choose API actions, choose Delete API, and then confirm
your choice.

To delete an AWS CloudFormation stack

1. Open the AWS CloudFormation console at https://console.aws.amazon.com/cloudformation.

2. Select your AWS CloudFormation stack.

3. Choose Delete and then confirm your choice.

Next steps: Automate with AWS CloudFormation

You can automate the creation and cleanup of all AWS resources involved in this tutorial. For a full
example AWS CloudFormation template, see template.yaml.

Amazon API Gateway HTTP API tutorials

The following tutorials provide hands-on exercises to help you learn about APl Gateway HTTP APlIs.

HTTP API tutorials 213

https://console.aws.amazon.com/apigateway
https://console.aws.amazon.com/cloudformation/
samples/private-api-full-template.zip

Amazon API Gateway Developer Guide

Topics

 Tutorial: Build a CRUD API with Lambda and DynamoDB

» Tutorial: Building an HTTP API with a private integration to an Amazon ECS service

Tutorial: Build a CRUD API with Lambda and DynamoDB

In this tutorial, you create a serverless API that creates, reads, updates, and deletes items from a
DynamoDB table. DynamoDB is a fully managed NoSQL database service that provides fast and
predictable performance with seamless scalability. This tutorial takes approximately 30 minutes to
complete, and you can do it within the AWS Free Tier.

First, you create a DynamoDB table using the DynamoDB console. Then you create a Lambda
function using the AWS Lambda console. Next, you create an HTTP API using the APl Gateway
console. Lastly, you test your API.

When you invoke your HTTP API, APl Gateway routes the request to your Lambda function. The
Lambda function interacts with DynamoDB, and returns a response to APl Gateway. APl Gateway
then returns a response to you.

-

Clients HTTP API Lambda function DynamoDB

L J

oy

To complete this exercise, you need an AWS account and an AWS Identity and Access Management
user with console access. For more information, see Prerequisites.

In this tutorial, you use the AWS Management Console. For an AWS SAM template that creates this
API and all related resources, see template.yaml.

Topics

Step 1: Create a DynamoDB table

Step 2: Create a Lambda function

Step 3: Create an HTTP API

Step 4. Create routes

Step 5: Create an integration

CRUD API with Lambda and DynamoDB 214

https://aws.amazon.com/free
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Introduction.html
https://docs.aws.amazon.com/lambda/latest/dg/welcome.html
samples/http-dynamo-tutorial.zip

Amazon API Gateway Developer Guide

Step 6: Attach your integration to routes

Step 7: Test your API

Step 8: Clean up

Next steps: Automate with AWS SAM or AWS CloudFormation

Step 1: Create a DynamoDB table
You use a DynamoDB table to store data for your API.

Each item has a unique ID, which we use as the partition key for the table.
To create a DynamoDB table

1. Open the DynamoDB console at https://console.aws.amazon.com/dynamodb/.

Choose Create table.
For Table name, enter http-crud-tutorial-items.

For Partition key, enter id.

ik W

Choose Create table.

Step 2: Create a Lambda function

You create a Lambda function for the backend of your API. This Lambda function creates, reads,
updates, and deletes items from DynamoDB. The function uses events from APl Gateway to
determine how to interact with DynamoDB. For simplicity this tutorial uses a single Lambda

function. As a best practice, you should create separate functions for each route.
To create a Lambda function

1. Signin to the Lambda console at https://console.aws.amazon.com/lambda.

Choose Create function.
For Function name, enter http-crud-tutorial-function.
Under Permissions choose Change default execution role.

Select Create a new role from AWS policy templates.

o v A W N

For Role name, enter http-crud-tutorial-role.

CRUD API with Lambda and DynamoDB 215

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Introduction.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/HowItWorks.CoreComponents.html#HowItWorks.CoreComponents.PrimaryKey
https://console.aws.amazon.com/dynamodb/
https://docs.aws.amazon.com/lambda/latest/dg/welcome.html
https://console.aws.amazon.com/lambda

Amazon API Gateway Developer Guide

7. For Policy templates, choose Simple microservice permissions. This policy grants the
Lambda function permission to interact with DynamoDB.

(® Note

This tutorial uses a managed policy for simplicity. As a best practice, you should create
your own IAM policy to grant the minimum permissions required.

8. Choose Create function.

9. Open index.mjs in the console's code editor, and replace its contents with the following
code. Choose Deploy to update your function.

import { DynamoDBClient } from "@aws-sdk/client-dynamodb";
import {

DynamoDBDocumentClient,

ScanCommand,

PutCommand,

GetCommand,

DeleteCommand,
} from "@aws-sdk/lib-dynamodb";

const client = new DynamoDBClient({});

const dynamo DynamoDBDocumentClient.from(client);

const tableName = "http-crud-tutorial-items";

export const handler = async (event, context) => {
let body;
let statusCode = 200;
const headers = {
"Content-Type": "application/json",
I

try {
switch (event.routeKey) {
case "DELETE /items/{id}":
await dynamo.send(
new DeleteCommand({
TableName: tableName,
Key: {

CRUD API with Lambda and DynamoDB 216

Amazon API Gateway Developer Guide

id: event.pathParameters.id,
I
)
I
body = ‘Deleted item ${event.pathParameters.id}";
break;
case "GET /items/{id}":
body = await dynamo.send(
new GetCommand({
TableName: tableName,
Key: {
id: event.pathParameters.id,
},
)
);
body = body.Item;
break;
case "GET /items":
body = await dynamo.send(
new ScanCommand({ TableName: tableName })
);
body = body.Items;
break;
case "PUT /items":
let requestJSON = JSON.parse(event.body);
await dynamo.send(
new PutCommand({
TableName: tableName,
Item: {
id: requestJSON.id,
price: request]SON.price,
name: requestJSON.name,
},
D)
);
body = ‘Put item ${request]SON.id}";
break;
default:
throw new Error(Unsupported route: "${event.routeKeyl}");
}
} catch (err) {
statusCode = 400;
body = err.message;
} finally {

CRUD API with Lambda and DynamoDB 217

Amazon API Gateway Developer Guide

body = JSON.stringify(body);
}

return {
statusCode,
body,
headers,

};
i

Step 3: Create an HTTP API

The HTTP API provides an HTTP endpoint for your Lambda function. In this step, you create an
empty API. In the following steps, you configure routes and integrations to connect your APl and
your Lambda function.

To create an HTTP API

1. Signin to the API Gateway console at https://console.aws.amazon.com/apigateway.

Choose Create API, and then for HTTP API, choose Build.

For APl name, enter http-crud-tutorial-api.

Choose Next.

For Configure routes, choose Next to skip route creation. You create routes later.

Review the stage that API Gateway creates for you, and then choose Next.

N o v M WD

Choose Create.

Step 4: Create routes

Routes are a way to send incoming API requests to backend resources. Routes consist of two parts:
an HTTP method and a resource path, for example, GET /items. For this example API, we create
four routes:

e GET /items/{id}

e GET /items

« PUT /items

« DELETE /items/{id}

CRUD API with Lambda and DynamoDB 218

https://console.aws.amazon.com/apigateway

Amazon API Gateway Developer Guide

To create routes

1. Signin to the APl Gateway console at https://console.aws.amazon.com/apigateway.

Choose your API.
Choose Routes.
Choose Create.

For Method, choose GET.

o v M W N

For the path, enter /items/{id}. The {id} at the end of the path is a path parameter that
API| Gateway retrieves from the request path when a client makes a request.

N

Choose Create.

8. Repeat steps 4-7 for GET /items, DELETE /items/{id}, and PUT /items.

API Gateway Routes Deploy

Routes

Routes for http- Route details ‘ Delete H Edit ‘
. . c
crud-tutorial-api reate

PUT fitems (1D: f2dfngn)

Authorization
Authorizers protect your APl against unauthorized requests. Routes with no authorization attached
. are open.
w /items

PUT No authorizer attached to this route. ‘ Attach authorization ‘

GET .
Integration

v /id} The integration is the backend resource that this route calls when it receives a request.
DELETE No integration attached to this route. Attach integration ‘

GET

Step 5: Create an integration

You create an integration to connect a route to backend resources. For this example API, you create
one Lambda integration that you use for all routes.

CRUD API with Lambda and DynamoDB 219

https://console.aws.amazon.com/apigateway

Amazon API Gateway Developer Guide

To create an integration

1. Signin to the APl Gateway console at https://console.aws.amazon.com/apigateway.

Choose your API.

Choose Integrations.

Choose Manage integrations and then choose Create.

Skip Attach this integration to a route. You complete that in a later step.
For Integration type, choose Lambda function.

For Lambda function, enter http-crud-tutorial-function.

© N o Uk~ W DN

Choose Create.

Step 6: Attach your integration to routes

For this example API, you use the same Lambda integration for all routes. After you attach the
integration to all of the API's routes, your Lambda function is invoked when a client calls any of
your routes.

To attach integrations to routes

1. Signin to the APl Gateway console at https://console.aws.amazon.com/apigateway.

Choose your API.

Choose Integrations.

Choose a route.

Under Choose an existing integration, choose http-crud-tutorial-function.

Choose Attach integration.

N o un B~ W N

Repeat steps 4-6 for all routes.

All routes show that an AWS Lambda integration is attached.

CRUD API with Lambda and DynamoDB 220

https://console.aws.amazon.com/apigateway
https://console.aws.amazon.com/apigateway

Amazon API Gateway Developer Guide

APl Gateway Integrations Deploy

Integrations

Attach integrations to routes Manage integrations
Routes for http-crud-tutorial- Integration details for route
api
Detach integration ‘ ‘ Manage integration
Q

PUT fitems (f2dfngn)

v Jitems Lambda function Integration ID
PUT http-crud-tutorial-function [e0526wn
Description
v /{id} i
Payload format version

The parsing algorithm for the payload sent to and returned from your Lambda function. Learn more.

2.0 (interpreted response format)

Now that you have an HTTP API with routes and integrations, you can test your API.

Step 7: Test your API

To make sure that your APl is working, you use curl.
To get the URL to invoke your API

1. Signin to the APl Gateway console at https://console.aws.amazon.com/apigateway.

2. Choose your API.
3. Note your API's invoke URL. It appears under Invoke URL on the Details page.

CRUD API with Lambda and DynamoDB 221

https://curl.se
https://console.aws.amazon.com/apigateway

Amazon API Gateway Developer Guide

API Gateway Details
http-crud-tutorial-api

API details

AP1ID Protocol Created
abcdef123 HTTP 2021-02-09
Description Default endpoint

Mo Description Enabled

Stages for http-crud-tutorial-api

Q

Stage name Invoke URL Attached deployment Auto deploy Last updated

$default htt, s://abcdeﬂ2S.execute-ap‘\.us—west—Z.am@ 6hox9v enabled 2021-02-09

4. Copy your API's invoke URL.

The full URL looks like https://abcdef123.execute-api.us-west-2.amazonaws.com.

To create or update an item

« Use the following command to create or update an item. The command includes a request
body with the item's ID, price, and name.

curl -X "PUT" -H "Content-Type: application/json" -d "{\"id\": \"123\",
\"price\": 12345, \"name\": \"myitem\"}" https://abcdefl23.execute-api.us-
west-2.amazonaws.com/items

To get all items

o Use the following command to list all items.

curl https://abcdefl23.execute-api.us-west-2.amazonaws.com/items

CRUD API with Lambda and DynamoDB 222

Amazon API Gateway Developer Guide

To get an item

o Use the following command to get an item by its ID.

curl https://abcdefl123.execute-api.us-west-2.amazonaws.com/items/123

To delete an item

1. Use the following command to delete an item.

curl -X "DELETE" https://abcdefl23.execute-api.us-west-2.amazonaws.com/items/123

2. Get all items to verify that the item was deleted.

curl https://abcdefl23.execute-api.us-west-2.amazonaws.com/items

Step 8: Clean up

To prevent unnecessary costs, delete the resources that you created as part of this getting
started exercise. The following steps delete your HTTP API, your Lambda function, and associated
resources.

To delete a DynamoDB table

1. Open the DynamoDB console at https://console.aws.amazon.com/dynamodb/.

2. Select your table.
3. Choose Delete table.
4

Confirm your choice, and choose Delete.

To delete an HTTP API

1. Signin to the APl Gateway console at https://console.aws.amazon.com/apigateway.

2. Onthe APIs page, select an API. Choose Actions, and then choose Delete.

3. Choose Delete.

CRUD API with Lambda and DynamoDB 223

https://console.aws.amazon.com/dynamodb/
https://console.aws.amazon.com/apigateway

Amazon API Gateway Developer Guide

To delete a Lambda function

1. Sign in to the Lambda console at https://console.aws.amazon.com/lambda.

2. On the Functions page, select a function. Choose Actions, and then choose Delete.

3. Choose Delete.

To delete a Lambda function's log group

1. Inthe Amazon CloudWatch console, open the Log groups page.

2. On the Log groups page, select the function's log group (/aws/lambda/http-crud-
tutorial-function). Choose Actions, and then choose Delete log group.

3. Choose Delete.

To delete a Lambda function's execution role

1. Inthe AWS Identity and Access Management console, open the Roles page.
2. Select the function's role, for example, http-crud-tutorial-role.

3. Choose Delete role.
4

Choose Yes, delete.

Next steps: Automate with AWS SAM or AWS CloudFormation

You can automate the creation and cleanup of AWS resources by using AWS CloudFormation or
AWS SAM. For an example AWS SAM template for this tutorial, see template.yaml.

For example AWS CloudFormation templates, see example AWS CloudFormation templates.

Tutorial: Building an HTTP API with a private integration to an Amazon
ECS service

In this tutorial, you create a serverless API that connects to an Amazon ECS service that runs in
an Amazon VPC. Clients outside of your Amazon VPC can use the API to access your Amazon ECS
service.

This tutorial takes approximately an hour to complete. First, you use an AWS CloudFormation
template to create a Amazon VPC and Amazon ECS service. Then you use the APl Gateway console
to create a VPC link. The VPC link allows API Gateway to access the Amazon ECS service that runs in

Private integration to Amazon ECS 224

https://console.aws.amazon.com/lambda
https://console.aws.amazon.com/cloudwatch/home#logs:
https://console.aws.amazon.com/iam/home?#/roles
samples/http-dynamo-tutorial.zip
https://github.com/awsdocs/amazon-api-gateway-developer-guide/tree/main/cloudformation-templates

Amazon API Gateway Developer Guide

your Amazon VPC. Next, you create an HTTP API that uses the VPC link to connect to your Amazon
ECS service. Lastly, you test your API.

When you invoke your HTTP API, APl Gateway routes the request to your Amazon ECS service
through your VPC link, and then returns the response from the service.

—

D>

«— QT
Application Fargate
Load Balancer service

Clients HTTP API

To complete this tutorial, you need an AWS account and an AWS Identity and Access Management
user with console access. For more information, see Prerequisites.

In this tutorial, you use the AWS Management Console. For an AWS CloudFormation template that
creates this APl and all related resources, see template.yaml.

Topics

« Step 1: Create an Amazon ECS service
o Step 2: Create a VPC link

o Step 3: Create an HTTP API

o Step 4. Create a route

« Step 5: Create an integration

» Step 6: Test your API

o Step 7: Clean up

» Next steps: Automate with AWS CloudFormation

Step 1: Create an Amazon ECS service

Amazon ECS is a container management service that makes it easy to run, stop, and manage
Docker containers on a cluster. In this tutorial, you run your cluster on a serverless infrastructure
that's managed by Amazon ECS.

Private integration to Amazon ECS 225

samples/private-integration-full-template.zip

Amazon API Gateway Developer Guide

Download and unzip this AWS CloudFormation template, which creates all of the dependencies for

the service, including an Amazon VPC. You use the template to create an Amazon ECS service that
uses an Application Load Balancer.

To create an AWS CloudFormation stack

1. Open the AWS CloudFormation console at https://console.aws.amazon.com/cloudformation.

2. Choose Create stack and then choose With new resources (standard).

3. For Specify template, choose Upload a template file.

4. Select the template that you downloaded.

5. Choose Next.

6. For Stack name, enter http-api-private-integrations-tutorial and then choose
Next.

7. For Configure stack options, choose Next.

8. For Capabilities, acknowledge that AWS CloudFormation can create IAM resources in your
account.

9. Choose Submit.

AWS CloudFormation provisions the ECS service, which can take a few minutes. When the status of
your AWS CloudFormation stack is CREATE_COMPLETE, you're ready to move on to the next step.

Step 2: Create a VPC link

A VPC link allows APl Gateway to access private resources in an Amazon VPC. You use a VPC link to
allow clients to access your Amazon ECS service through your HTTP API.

To create a VPC link

1. Sign in to the APl Gateway console at https://console.aws.amazon.com/apigateway.

2. On the main navigation pane, choose VPC links and then choose Create.

You might need to choose the menu icon to open the main navigation pane.
For Choose a VPC link version, select VPC link for HTTP APIs.
4. For Name, enter private-integrations-tutorial.

For VPC, choose the VPC that you created in step 1. The name should start with
PrivatelntegrationsStack.

Private integration to Amazon ECS 226

samples/private-integration-cfn.zip
https://console.aws.amazon.com/cloudformation/
https://console.aws.amazon.com/apigateway

Amazon API Gateway Developer Guide

6. For Subnets, select the two private subnets in your VPC. Their names end with
PrivateSubnet.

7. Choose Create.

After you create your VPC link, APl Gateway provisions Elastic Network Interfaces to access your
VPC. The process can take a few minutes. In the meantime, you can create your API.

Step 3: Create an HTTP API

The HTTP API provides an HTTP endpoint for your Amazon ECS service. In this step, you create an
empty APIL. In Steps 4 and 5, you configure a route and an integration to connect your APl and your
Amazon ECS service.

To create an HTTP API

1. Signin to the APl Gateway console at https://console.aws.amazon.com/apigateway.

Choose Create API, and then for HTTP API, choose Build.

For APl name, enter http-private-integrations-tutorial.
Choose Next.

For Configure routes, choose Next to skip route creation. You create routes later.

o A W N

Review the stage that API Gateway creates for you. APl Gateway creates a $default stage
with automatic deployments enabled, which is the best choice for this tutorial. Choose Next.

7. Choose Create.

Step 4: Create a route

Routes are a way to send incoming API requests to backend resources. Routes consist of two parts:
an HTTP method and a resource path, for example, GET /items. For this example API, we create
one route.

To create a route

1. Signin to the APl Gateway console at https://console.aws.amazon.com/apigateway.

2. Choose your APL.

3. Choose Routes.

Private integration to Amazon ECS 227

https://console.aws.amazon.com/apigateway
https://console.aws.amazon.com/apigateway

Amazon API Gateway Developer Guide

4. Choose Create.
5. For Method, choose ANY.

6. For the path, enter /{proxy+}. The {proxy+} at the end of the path is a greedy path
variable. APl Gateway sends all requests to your API to this route.

7. Choose Create.
Step 5: Create an integration

You create an integration to connect a route to backend resources.

To create an integration

—

Sign in to the API Gateway console at https://console.aws.amazon.com/apigateway.

Choose your API.

Choose Integrations.

Choose Manage integrations and then choose Create.

For Attach this integration to a route, select the ANY /{proxy+} route that you created earlier.
For Integration type, choose Private resource.

For Integration details, choose Select manually.

For Target service, choose ALB/NLB.

© ® N o U M W N

For Load balancer, choose the load balancer that you created with the AWS CloudFormation
template in Step 1. It's name should start with http-Priva.

—_—
©

For Listener, choose HTTP 80.

—
—

. For VPC link, choose the VPC link that you created in Step 2. It's name should be private-
integrations-tutorial.

12. Choose Create.

To verify that your route and integration are set up correctly, select Attach integrations to routes.
The console shows that you have an ANY /{proxy+} route with an integration to a VPC Load
Balancer.

Private integration to Amazon ECS 228

https://console.aws.amazon.com/apigateway

Amazon API Gateway Developer Guide

Integrations
Attach integrations to routes Manage integrations
Routes for private- Integration details for route
integrations-tutorial
Detach integration ‘ ‘ Manage integration
Q
ANY /{proxy+} (05e08vn)
v /{proxy+} Load balancer listener Integration ID
ANY ANY HTTP:80 - pera-Pera' qgshxxt
ZQ2SWA46IKGH [4
Description
VPC link
9f8lte
Timeout

The number of milliseconds that API Gateway should wait for a response from the integration
before timing out.

30000

Now you're ready to test your API.
Step 6: Test your API

Next, you test your API to make sure that it's working. For simplicity, use a web browser to invoke
your API.

To test your API

1. Signin to the APl Gateway console at https://console.aws.amazon.com/apigateway.

2. Choose your API.
3. Note your API's invoke URL.

Private integration to Amazon ECS 229

https://console.aws.amazon.com/apigateway

Amazon API Gateway Developer Guide

@ Successfully created API my-http-api (abcdef123) »

APl Gateway Details m

my-http-api Edit

API details

APIID Protocol Created
abedef123 HTTP 2020-12-02

Description Default endpaoint

Mo Description @ Enabled

my-http-api
Q

Stage name Invoke URL Attached deployment Auto deploy Last updated

Sdefault https:/fabedef123.execute-apius-east-2. amazonaws.com Tezvgl enabled 2020-12-02

4. In a web browser, go to your API's invoke URL.

The full URL should look like https://abcdefl123.execute-api.us-
east-2.amazonaws.com.

Your browser sends a GET request to the API.

5. Verify that your API's response is a welcome message that tells you that your app is running on
Amazon ECS.

If you see the welcome message, you successfully created an Amazon ECS service that runs in
an Amazon VPC, and you used an APl Gateway HTTP API with a VPC link to access the Amazon
ECS service.

Step 7: Clean up

To prevent unnecessary costs, delete the resources that you created as part of this tutorial. The
following steps delete your VPC link, AWS CloudFormation stack, and HTTP API.

To delete an HTTP API

1. Signin to the APl Gateway console at https://console.aws.amazon.com/apigateway.

2. Onthe APIs page, select an API. Choose Actions, choose Delete, and then confirm your choice.

Private integration to Amazon ECS 230

https://console.aws.amazon.com/apigateway

Amazon API Gateway Developer Guide

To delete a VPC link

1. Signin to the APl Gateway console at https://console.aws.amazon.com/apigateway.
2. Choose VPC link.

3. Select your VPC link, choose Delete, and then confirm your choice.

To delete an AWS CloudFormation stack

1. Open the AWS CloudFormation console at https://console.aws.amazon.com/cloudformation.

2. Select your AWS CloudFormation stack.

3. Choose Delete and then confirm your choice.

Next steps: Automate with AWS CloudFormation

You can automate the creation and cleanup of all AWS resources involved in this tutorial. For a full
example AWS CloudFormation template, see template.yaml.

Amazon APl Gateway WebSocket API tutorials

The following tutorials provide a hands-on exercise to help you learn about API Gateway
WebSocket APIs.

Topics

 Tutorial: Building a serverless chat app with a WebSocket API, Lambda and DynamoDB

 Tutorial: Building a serverless application with three integration types

Tutorial: Building a serverless chat app with a WebSocket API, Lambda
and DynamoDB

In this tutorial, you'll create a serverless chat application with a WebSocket API. With a WebSocket
API, you can support two-way communication between clients. Clients can receive messages
without having to poll for updates.

This tutorial takes approximately 30 minutes to complete. First, you'll use an AWS CloudFormation
template to create Lambda functions that will handle API requests, as well as a DynamoDB table
that stores your client IDs. Then, you'll use the APl Gateway console to create a WebSocket API that

WebSocket API tutorials 231

https://console.aws.amazon.com/apigateway
https://console.aws.amazon.com/cloudformation/
samples/private-integration-full-template.zip

Amazon API Gateway

Developer Guide

integrates with your Lambda functions. Lastly, you'll test your API to verify that messages are sent

and received.

$connect route

F

B
L

$default route

=%

E)&% < . sendmessage
route J
.|
WebSocket
Clients API
$disconnect
route
" -
Lambda
functions

4

DynamoDB

|

To complete this tutorial, you need an AWS account and an AWS ldentity and Access Management

user with console access. For more information, see Prerequisites.

You also need wscat to connect to your API. For more information, see the section called “Use

wscat to connect to a WebSocket APl and send messages to it".

Topics

o Step 1: Create Lambda functions and a DynamoDB table
o Step 2: Create a WebSocket API

o Step 3: Test your API

o Step 4: Clean up

» Next steps: Automate with AWS CloudFormation

Step 1: Create Lambda functions and a DynamoDB table

Download and unzip the app creation template for AWS CloudFormation. You'll use this template

to create a Amazon DynamoDB table to store your app's client IDs. Each connected client has

a unique ID which we will use as the table's partition key. This template also creates Lambda

WebSocket chat app

232

samples/ws-chat-app-starter.zip

Amazon API Gateway Developer Guide

functions that update your client connections in DynamoDB and handle sending messages to
connected clients.

To create an AWS CloudFormation stack

Open the AWS CloudFormation console at https://console.aws.amazon.com/cloudformation.

Choose Create stack and then choose With new resources (standard).

For Specify template, choose Upload a template file.

Select the template that you downloaded.

Choose Next.

For Stack name, enter websocket-api-chat-app-tutorial and then choose Next.

For Configure stack options, choose Next.

© N O U A~ W DN =

For Capabilities, acknowledge that AWS CloudFormation can create IAM resources in your
account.

9. Choose Submit.

AWS CloudFormation provisions the resources specified in the template. It can take a few minutes
to finish provisioning your resources. When the status of your AWS CloudFormation stack is
CREATE_COMPLETE, you're ready to move on to the next step.

Step 2: Create a WebSocket API

You'll create a WebSocket API to handle client connections and route requests to the Lambda
functions that you created in Step 1.

To create a WebSocket API

Sign in to the APl Gateway console at https://console.aws.amazon.com/apigateway.
Choose Create API. Then for WebSocket API, choose Build.

1
2
3. For APl name, enter websocket-chat-app-tutorial.
4

For Route selection expression, enter request.body.action. The route selection
expression determines the route that API Gateway invokes when a client sends a message.

b

Choose Next.

6. For Predefined routes, choose Add $connect, Add $disconnect, and Add $default. The
$connect and $disconnect routes are special routes that APl Gateway invokes automatically

WebSocket chat app 233

https://console.aws.amazon.com/cloudformation/
https://console.aws.amazon.com/apigateway

Amazon API Gateway Developer Guide

when a client connects to or disconnects from an API. APl Gateway invokes the $default
route when no other routes match a request.

7. For Custom routes, choose Add custom route. For Route key, enter sendmessage. This
custom route handles messages that are sent to connected clients.

8. Choose Next.

9. Under Attach integrations, for each route and Integration type, choose Lambda.

For Lambda, choose the corresponding Lambda function that you created with AWS
CloudFormation in Step 1. Each function's name matches a route. For example, for
the $connect route, choose the function named websocket-chat-app-tutorial-
ConnectHandler.

10. Review the stage that APl Gateway creates for you. By default, API Gateway creates a stage
name production and automatically deploys your API to that stage. Choose Next.

11. Choose Create and deploy.

Step 3: Test your API

Next, you'll test your API to make sure that it works correctly. Use the wscat command to connect
to the API.

To to get the invoke URL for your API

1. Signin to the APl Gateway console at https://console.aws.amazon.com/apigateway.

2. Choose your API.
3. Choose Stages, and then choose production.
4

Note your API's WebSocket URL. The URL should look like wss://abcdef123.execute-
api.us-east-2.amazonaws.com/production.
To connect to your API

1. Use the following command to connect to your APl. When you connect to your API, API
Gateway invokes the $connect route. When this route is invoked, it calls a Lambda function
that stores your connection ID in DynamoDB.

wscat -c wss://abcdefl23.execute-api.us-west-2.amazonaws.com/production

WebSocket chat app 234

https://console.aws.amazon.com/apigateway

Amazon API Gateway Developer Guide

Connected (press CTRL+C to quit)

2. Open a new terminal and run the wscat command again with the following parameters.

wscat -c wss://abcdefl23.execute-api.us-west-2.amazonaws.com/production

Connected (press CTRL+C to quit)
This gives you two connected clients that can exchange messages.

To send a message

« APl Gateway determines which route to invoke based on your API's route selection expression.
Your API's route selection expression is $request.body.action. As a result, APl Gateway
invokes the sendmessage route when you send the following message:

{"action": "sendmessage", "message": "hello, everyone!"}

The Lambda function associated with the invoked route collects the client IDs from
DynamoDB. Then, the function calls the APl Gateway Management APl and sends the message
to those clients. All connected clients receive the following message:

< hello, everyone!

To invoke your API's $default route

« APl Gateway invokes your API's default route when a client sends a message that doesn't
match your defined routes. The Lambda function associated with the $default route uses the
API| Gateway Management API to send the client information about their connection.

test

Use the sendmessage route to send a message. Your info:
{"ConnectedAt":"2022-01-25T18:50:04.673Z","Identity":
{"SourceIp":"192.0.2.1","UserAgent":null}, "LastActiveAt":"2022-01-25T18:50:07.642Z","connec

WebSocket chat app 235

Amazon API Gateway Developer Guide

To disconnect from your API

e Press CTRL+C to disconnect from your APl. When a client disconnects from your API, API
Gateway invokes your API's $disconnect route. The Lambda integration for your API's
$disconnect route removes the connection ID from DynamoDB.

Step 4: Clean up

To prevent unnecessary costs, delete the resources that you created as part of this tutorial. The
following steps delete your AWS CloudFormation stack and WebSocket API.

To delete a WebSocket API

1. Signin to the API Gateway console at https://console.aws.amazon.com/apigateway.

2. Onthe APIs page, select your websocket-chat-app-tutorial API. Choose Actions, choose
Delete, and then confirm your choice.

To delete an AWS CloudFormation stack

1. Open the AWS CloudFormation console at https://console.aws.amazon.com/cloudformation.

2. Select your AWS CloudFormation stack.

3. Choose Delete and then confirm your choice.

Next steps: Automate with AWS CloudFormation

You can automate the creation and cleanup of all of the AWS resources involved in this tutorial.
For an AWS CloudFormation template that creates this APl and all related resources, see chat-

app.yaml.

Tutorial: Building a serverless application with three integration types

In this tutorial, you create a serverless broadcast application with a WebSocket API. Clients can
receive messages without having to poll for updates.

This tutorial shows how to broadcast messages to connected clients and includes an example of a
Lambda authorizer, a mock integration, and a non-proxy integration to Step Functions.

WebSocket Step Functions app 236

https://console.aws.amazon.com/apigateway
https://console.aws.amazon.com/cloudformation/
samples/ws-chat-app.zip
samples/ws-chat-app.zip

Amazon API Gateway Developer Guide

$connect route

Lambda function

$default route

E % «—> «— $disconnect Mock : 9
& route

‘ —
Clients autharizer WebSocket

Lambda
function API Lambda function

Lambda function

L

L J

DynamoDB

Step Functions

Integrations

After you create your resources using a AWS CloudFormation template, you'll use the APl Gateway
console to create a WebSocket API that integrates with your AWS resources. You'll attach a Lambda
authorizer to your API and create an AWS service integration with Step Functions to start a state
machine execution. The Step Functions state machine will invoke a Lambda function that sends a
message to all connected clients.

After you build your API, you'll test your connection to your APl and verify that messages are sent
and received. This tutorial takes approximately 45 minutes to complete.

Topics

« Prerequisites

o Step 1: Create resources

o Step 2: Create a WebSocket API

» Step 3: Create a Lambda authorizer

» Step 4: Create a mock two-way integration

» Step 5: Create a non-proxy integration with Step Functions

» Step 6: Test your API

o Step 7: Clean up

» Next steps

WebSocket Step Functions app 237

Amazon API Gateway Developer Guide

Prerequisites

You need the following prerequisites:

« An AWS account and an AWS Identity and Access Management user with console access. For
more information, see Prerequisites.

« wscat to connect to your API. For more information, see the section called "Use wscat to

connect to a WebSocket APl and send messages to it".

We recommend that you complete the WebSocket chat app tutorial before you start this tutorial.
To complete the WebSocket chat app tutorial, see the section called “WebSocket chat app”.

Step 1: Create resources

Download and unzip the app creation template for AWS CloudFormation. You'll use this template
to create the following:

« Lambda functions that handle API requests and authorize access to your API.
« A DynamoDB table to store client IDs.

« A Step Functions state machine to send messages to connected clients.

To create an AWS CloudFormation stack

1. Open the AWS CloudFormation console at https://console.aws.amazon.com/cloudformation.

Choose Create stack and then choose With new resources (standard).

For Specify template, choose Upload a template file.

Select the template that you downloaded.

Choose Next.

For Stack name, enter websocket-step-functions-tutorial and then choose Next.

For Configure stack options, choose Next.

© N o Uk~ W DN

For Capabilities, acknowledge that AWS CloudFormation can create IAM resources in your
account.

9. Choose Submit.

WebSocket Step Functions app 238

samples/ws-sfn-starter.zip
https://console.aws.amazon.com/cloudformation/

Amazon API Gateway Developer Guide

AWS CloudFormation provisions the resources specified in the template. It can take a few minutes
to finish provisioning your resources. Choose the Outputs tab to see your created resources and
their ARNs. When the status of your AWS CloudFormation stack is CREATE_COMPLETE, you're
ready to move on to the next step.

Step 2: Create a WebSocket API

You'll create a WebSocket API to handle client connections and route requests to the resources that
you created in Step 1.

To create a WebSocket API

1. Signin to the APl Gateway console at https://console.aws.amazon.com/apigateway.

Choose Create API. Then for WebSocket API, choose Build.

For APl name, enter websocket-step-functions-tutorial.

P WD

For Route selection expression, enter request.body.action.

The route selection expression determines the route that API Gateway invokes when a client
sends a message.

5. Choose Next.

6. For Predefined routes, choose Add $connect, Add $disconnect, Add $default.

The $connect and $disconnect routes are special routes that API Gateway invokes
automatically when a client connects to or disconnects from an API. APl Gateway invokes
the $default route when no other routes match a request. You will create a custom route to
connect to Step Functions after you create your API.

7. Choose Next.

8. For Integration for $connect, do the following:

a. For Integration type, choose Lambda.

b. For Lambda function, choose the corresponding $connect Lambda function that you
created with AWS CloudFormation in Step 1. The Lambda function name should start with
websocket-step.

9. For Integration for $disconnect, do the following:

a. For Integration type, choose Lambda.

WebSocket Step Functions app 239

https://console.aws.amazon.com/apigateway

Amazon API Gateway Developer Guide

10.

11.
12.

13.

b. For Lambda function, choose the corresponding $disconnect Lambda function that you
created with AWS CloudFormation in Step 1. The Lambda function name should start with
websocket-step.

For Integration for $default, choose mock.

In a mock integration, APl Gateway manages the route response without an integration
backend.

Choose Next.

Review the stage that API Gateway creates for you. By default, APl Gateway creates a stage
named production and automatically deploys your API to that stage. Choose Next.

Choose Create and deploy.

Step 3: Create a Lambda authorizer

To control access to your WebSocket API, you create a Lambda authorizer. The AWS
CloudFormation template created the Lambda authorizer function for you. You can see the
Lambda function in the Lambda console. The name should start with websocket-step-
functions-tutorial-AuthorizerHandler. This Lambda function denies all calls to the
WebSocket API unless the Authorization headeris Allow.

In this step, you configure the $connect route to use the Lambda authorizer.

To create a Lambda authorizer

oA~ W

Sign in to the API Gateway console at https://console.aws.amazon.com/apigateway.

In the main navigation pane, choose Authorizers.
Choose Create an authorizer.
For Authorizer name, enter LambdaAuthorizer.

For Authorizer ARN, enter the name of the authorizer created by the AWS CloudFormation
template. The name should start with websocket-step-functions-tutorial-
AuthorizerHandler.

® Note

We recommend that you don't use this example authorizer for your production APIs.

WebSocket Step Functions app 240

https://console.aws.amazon.com/apigateway

Amazon API Gateway Developer Guide

6. For Identity source type, choose Header. For Key, enter Authorization.

7. Choose Create authorizer.

After you create your authorizer, you attach it to the $connect route of your API.
To attach an authorizer to the $connect route

In the main navigation pane, choose Routes.
Choose the $connect route.
In the Route request settings section, choose Edit.

For Authorization, choose the dropdown menu, and then select your request authorizer.

v A W=

Choose Save changes.

Step 4: Create a mock two-way integration

Next, you create the two-way mock integration for the $default route. A mock integration lets
you send a response to the client without using a backend. When you create an integration for the
$default route, you can show clients how to interact with your API.

You configure the $default route to inform clients to use the sendmessage route.
To create a mock integration

Sign in to the APl Gateway console at https://console.aws.amazon.com/apigateway.

Choose the $default route, and then choose the Integration request tab.

For Request templates, choose Edit.

For Template selection expression, enter 200, and then choose Edit.

On the Integration request tab, for Request templates, choose Create template.

For Template key, enter 200.

N o u s N2

For Generate template, enter the following mapping template:

{"statusCode": 200}

Choose Create template.

The result should look like the following:

WebSocket Step Functions app 241

https://console.aws.amazon.com/apigateway

Amazon API Gateway

Developer Guide

10.
11.
12.
13.

Route request Integration request Integration response

Integration request settings

Integration type Info
Mock

Timeout
29000 ms

Route response

Edit

Request templates (1)

Edit

Create template

Use request templates to transform the incoming message before sending it to the integration. APl Gateway
uses a template selection expression to determine which template to use. Name the template with a key that
matches the result of the selection expression.

Template selection expression
200

200

1 {"statusCode"

Edit

Delete

: 200}

The the $default route pane, choose Enable two-way communication.

Choose the Integration response tab, and then choose Create integration response.

For Response key, enter $default.

For Template selection expression, enter 200.

Choose Create response.

Under Response templates, choose Create template.

WebSocket Step Functions app

242

Amazon API Gateway Developer Guide

14. For Template key, enter 200.

15. For Response template, enter the following mapping template:

{"Use the sendmessage route to send a message. Connection ID:
$context.connectionId"}

16. Choose Create template.

The result should look like the following:

WebSocket Step Functions app 243

Amazon API Gateway Developer Guide

Route request Integration request Integration response >

Integration response settings Create integration response

Integration responses allow you to configure transformations on the outgoing message's payload using
response template definitions. The response chosen is based on the response key found in the outgoing
message after evaluating the response selection expression.

$default Edit Delete

Template selection expression

200
Response templates Create template
200 Edit Delete

1 {Use the sendmessage route to send a message.
Connection ID: $context.connectionId}

Step 5: Create a non-proxy integration with Step Functions

Next, you create a sendmessage route. Clients can invoke the sendmessage route to broadcast a
message to all connected clients. The sendmessage route has a non-proxy AWS service integration

WebSocket Step Functions app 244

Amazon API Gateway Developer Guide

with AWS Step Functions. The integration invokes the StartExecution command for the Step
Functions state machine that the AWS CloudFormation template created for you.

To create a non-proxy integration

—

© ® N o U B W DN

Sign in to the API Gateway console at https://console.aws.amazon.com/apigateway.

Choose Create route.

For Route key, enter sendmessage.

For Integration type, choose AWS service.

For AWS Region, enter the Region where you deployed your AWS CloudFormation template.
For AWS service, choose Step Functions.

For HTTP method, choose POST.

For Action name, enter StartExecution.

For Execution role, enter the execution role created by the AWS CloudFormation template.
The name should be WebsocketTutorialApiRole.

10. Choose Create route.

Next, you create a mapping template to send request parameters to the Step Functions state
machine.

To create a mapping template

1.

N o s~ WD

Choose the sendmessage route, and then choose the Integration request tab.
In the Request templates section, choose Edit.

For Template selection expression, enter \$default.

Choose Edit.

In the Request templates section, choose Create template.

For Template key, enter \$default.

For Generate template, enter the following mapping template:

#tset($domain = "$context.domainName")
#set($stage = "$context.stage")

#set($body = $input.json('$"))
#set($getMessage = $util.parselson($body))
#set($mymessage = $getMessage.message)

WebSocket Step Functions app 245

https://docs.aws.amazon.com/step-functions/latest/apireference/API_StartExecution.html
https://console.aws.amazon.com/apigateway

Amazon API Gateway Developer Guide

{

"input": "{\"domain\": \"$domain\", \"stage\": \"$stage\", \"message\":
\"$mymessage\"}",

"stateMachineArn": "arn:aws:states:us-east-2:123456789012:stateMachine:WebSocket-
Tutorial-StateMachine"

}

Replace the stateMachineArn with the ARN of the state machine created by AWS
CloudFormation.

The mapping template does the following:

Creates the variable $domain using the context variable domainName.

Creates the variable $stage using the context variable stage.

The $domain and $stage variables are required to build a callback URL.

Takes in the incoming sendmessage JSON message, and extracts the message property.

Creates the input for the state machine. The input is the domain and stage of the WebSocket
APl and the message from the sendmessage route.

8. Choose Create template.

WebSocket Step Functions app 246

Amazon API Gateway Developer Guide

Request templates (1) Edit Create template

Use request templates to transform the incoming message before sending it to the integration. APl Gateway uses a template selection
expression to determine which template to use. Name the template with a key that matches the result of the selection expression.

Template selection expression
\$default

\$default Edit Delete

#set($domain = "$context.domainName")

#set($stage = "$context.stage")

#set($body = $input.json('$'))

#set($getMessage = $util.parselson($body))

#set($mymessage = $getMessage.message)

{

"input": "{\"domain\": \"$domain\", \"stage\": \"$stage\", \"message\":

\"$mymessage\"}",

8 '"stateMachineArn": "arn:aws:states:us—east-2:123456789012:stateMachine:
WebSocket-Tutorial-StateMachine"

9 1}

N o hsAE W N R

Step 6: Test your API

Next, you'll deploy and test your API to make sure that it works correctly. You will use the wscat
command to connect to the API and then, you will use a slash command to send a ping frame to
check the connection to the WebSocket API.

To deploy your API

1. Sign in to the APl Gateway console at https://console.aws.amazon.com/apigateway.

In the main navigation pane, choose Routes.
Choose Deploy API.

For Stage, choose production.

ok W

(Optional) For Deployment description, enter a description.

WebSocket Step Functions app 247

https://console.aws.amazon.com/apigateway

Amazon API Gateway Developer Guide

6. Choose Deploy.

After you deploy your API, you can invoke it. Use the invoke URL to call your API.
To get the invoke URL for your API

1. Choose your API.
2. Choose Stages, and then choose production.

3. Note your API's WebSocket URL. The URL should look like wss://abcdef123.execute-
api.us-east-2.amazonaws.com/production.

Now that you have your invoke URL, you can test the connection to your WebSocket API.
To test the connection to your API

1. Use the following command to connect to your API. First, you test the connection by invoking
the /ping path.

wscat -c wss://abcdefl23.execute-api.us-east-2.amazonaws.com/production -H
"Authorization: Allow" --slash -P

Connected (press CTRL+C to quit)

2. Enter the following command to ping the control frame. You can use a control frame for
keepalive purposes from the client side.

/ping
The result should look like the following:

< Received pong (data: "")

Now that you have tested the connection, you can test that your APl works correctly. In this step,
you open a new terminal window so the WebSocket APl can send a message to all connected
clients.

WebSocket Step Functions app 248

Amazon API Gateway Developer Guide

To test your API

1. Open a new terminal and run the wscat command again with the following parameters.

wscat -c wss://abcdefl23.execute-api.us-east-2.amazonaws.com/production -H
"Authorization: Allow"

Connected (press CTRL+C to quit)

2. API Gateway determines which route to invoke based on your API's route request selection
expression. Your API's route select expression is $request.body.action. As a result, API
Gateway invokes the sendmessage route when you send the following message:

{"action": "sendmessage", "message": "hello, from Step Functions!"}

The Step Functions state machine associated with the route invokes a Lambda function with
the message and the callback URL. The Lambda function calls the APl Gateway Management
API and sends the message to all connected clients. All clients receive the following message:

< hello, from Step Functions!

Now that you have tested your WebSocket API, you can disconnect from your API.
To disconnect from your API

e Press CTRL+Cto disconnect from your API.

When a client disconnects from your API, APl Gateway invokes your API's $disconnect route.
The Lambda integration for your API's $disconnect route removes the connection ID from
DynamoDB.

Step 7: Clean up

To prevent unnecessary costs, delete the resources that you created as part of this tutorial. The
following steps delete your AWS CloudFormation stack and WebSocket API.

WebSocket Step Functions app 249

Amazon API Gateway Developer Guide

To delete a WebSocket API

1. Signin to the APl Gateway console at https://console.aws.amazon.com/apigateway.

2. On the APIs page, select your websocket-api.

3. Choose Actions, choose Delete, and then confirm your choice.

To delete an AWS CloudFormation stack

1. Open the AWS CloudFormation console at https://console.aws.amazon.com/cloudformation.

2. Select your AWS CloudFormation stack.

3. Choose Delete and then confirm your choice.

Next steps

You can automate the creation and cleanup of all the AWS resources involved in this tutorial. For
an example of an AWS CloudFormation template that automates these actions for this tutorial, see

ws-sfn.zip.

WebSocket Step Functions app 250

https://console.aws.amazon.com/apigateway
https://console.aws.amazon.com/cloudformation/
samples/ws-sfn-complete.zip

Amazon API Gateway Developer Guide

Working with REST APIs

A REST APl in API Gateway is a collection of resources and methods that are integrated with
backend HTTP endpoints, Lambda functions, or other AWS services. You can use API Gateway
features to help you with all aspects of the API lifecycle, from creation through monitoring your
production APlIs.

API| Gateway REST APIs use a request/response model where a client sends a request to a service
and the service responds back synchronously. This kind of model is suitable for many different
kinds of applications that depend on synchronous communication.

Topics

» Developing a REST API in API Gateway

o Publishing REST APIs for customers to invoke

« Optimizing performance of REST APIs

 Distributing your REST API to clients
» Protecting your REST API
» Monitoring REST APIs

Developing a REST API in APl Gateway

This section provides details about API Gateway capabilities that you need while you're developing
your API Gateway APIs.

As you're developing your APl Gateway API, you decide on a number of characteristics of your API.
These characteristics depend on the use case of your API. For example, you might want to only
allow certain clients to call your API, or you might want it to be available to everyone. You might
want an API call to execute a Lambda function, make a database query, or call an application.

Topics

Creating a REST APl in Amazon API Gateway

Controlling and managing access to a REST API in APl Gateway

Setting up REST API integrations

Use request validation in APl Gateway

Setting up data transformations for REST APIs

Develop 251

Amazon API Gateway Developer Guide

Gateway responses in APl Gateway

Enabling CORS for a REST API resource

Working with binary media types for REST APIs

Invoking a REST API in Amazon API Gateway

Configuring a REST API using OpenAPI

Creating a REST APl in Amazon APl Gateway

In Amazon APl Gateway, you build a REST API as a collection of programmable entities known

as APl Gateway resources. For example, you use a RestApi resource to represent an API that

can contain a collection of Resource entities. Each Resource entity can in turn have one or

more Method resources. Expressed in the request parameters and body, a Method defines the
application programming interface for the client to access the exposed Resource and represents
an incoming request submitted by the client. You then create an Integration resource to
integrate the Method with a backend endpoint, also known as the integration endpoint, by
forwarding the incoming request to a specified integration endpoint URI. If necessary, you
transform request parameters or body to meet the backend requirements. For responses, you can
create a MethodResponse resource to represent a request response received by the client and you

create an IntegrationResponse resource to represent the request response that is returned by

the backend. You can configure the integration response to transform the backend response data
before returning the data to the client or to pass the backend response as-is to the client.

To help your customers understand your API, you can also provide documentation for the API, as
part of the API creation or after the API is created. To enable this, add a DocumentationPart

resource for a supported API entity.

To control how clients call an API, use IAM permissions, a Lambda authorizer, or an Amazon
Cognito user pool. To meter the use of your API, set up usage plans to throttle API requests. You
can enable these when creating or updating the API.

You can perform these and other tasks by using the API Gateway console, the APl Gateway REST
API, the AWS CLI, or one of the AWS SDKs. We discuss how to perform these tasks next.

Topics

« Choose an endpoint type to set up for an APl Gateway API

« Initialize REST API setup in APl Gateway

Create and configure 252

https://docs.aws.amazon.com/apigateway/latest/api/API_Resource.html
https://docs.aws.amazon.com/apigateway/latest/api/API_RestApi.html
https://docs.aws.amazon.com/apigateway/latest/api/API_Resource.html
https://docs.aws.amazon.com/apigateway/latest/api/API_Method.html
https://docs.aws.amazon.com/apigateway/latest/api/API_Integration.html
https://docs.aws.amazon.com/apigateway/latest/api/API_MethodResponse.html
https://docs.aws.amazon.com/apigateway/latest/api/API_IntegrationResponse.html
https://docs.aws.amazon.com/apigateway/latest/api/API_DocumentationPart.html

Amazon API Gateway Developer Guide

o Set up REST API methods in APl Gateway

Choose an endpoint type to set up for an APl Gateway API

An API endpoint type refers to the hostname of the API. The API endpoint type can be edge-
optimized, regional, or private, depending on where the majority of your API traffic originates from.

Edge-optimized API endpoints

An edge-optimized API endpoint typically routes requests to the nearest CloudFront Point of
Presence (POP), which could help in cases where your clients are geographically distributed. This is
the default endpoint type for APl Gateway REST APIs.

Edge-optimized APIs capitalize the names of HTTP headers (for example, Cookie).

CloudFront sorts HTTP cookies in natural order by cookie name before forwarding the request
to your origin. For more information about the way CloudFront processes cookies, see Caching
Content Based on Cookies.

Any custom domain name that you use for an edge-optimized API applies across all regions.
Regional API endpoints

A regional API endpoint is intended for clients in the same region. When a client running on an EC2
instance calls an API in the same region, or when an API is intended to serve a small number of
clients with high demands, a regional API reduces connection overhead.

For a regional API, any custom domain name that you use is specific to the region where the API

is deployed. If you deploy a regional APl in multiple regions, it can have the same custom domain
name in all regions. You can use custom domains together with Amazon Route 53 to perform tasks
such as latency-based routing. For more information, see the section called “Setting up a regional

custom domain name” and the section called “Creating an edge-optimized custom domain name”.

Regional APl endpoints pass all header names through as-is.
Private API endpoints

A private APl endpoint is an APl endpoint that can only be accessed from your Amazon Virtual
Private Cloud (VPC) using an interface VPC endpoint, which is an endpoint network interface (ENI)
that you create in your VPC. For more information, see the section called “Private APIs".

Create and configure 253

https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers
https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/Cookies.html
https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/Cookies.html
https://docs.aws.amazon.com/Route53/latest/DeveloperGuide/routing-policy.html#routing-policy-latency

Amazon API Gateway Developer Guide

Private API endpoints pass all header names through as-is.
Change a public or private API endpoint type in APl Gateway

Changing an API endpoint type requires you to update the API's configuration. You can change an
existing API type using the APl Gateway console, the AWS CLI, or an AWS SDK for API Gateway. The
endpoint type cannot be changed again until the current change is completed, but your API will be
available.

The following endpoint type changes are supported:

« From edge-optimized to regional or private
« From regional to edge-optimized or private

« From private to regional

You cannot change a private APl into an edge-optimized API.

If you are changing a public API from edge-optimized to regional or vice versa, note that an
edge-optimized APl may have different behaviors than a regional API. For example, an edge-
optimized API removes the Content-MD5 header. Any MD5 hash value passed to the backend can
be expressed in a request string parameter or a body property. However, the regional APl passes
this header through, although it may remap the header name to some other name. Understanding
the differences helps you decide how to update an edge-optimized API to a regional one or from a
regional APl to an edge-optimized one.

Topics

» Use the API Gateway console to change an APl endpoint type

» Use the AWS CLI to change an API endpoint type

Use the API Gateway console to change an API endpoint type
To change the API endpoint type of your API, perform one of the following sets of steps:
To convert a public endpoint from Regional or edge-optimized and vice versa

1. Signin to the APl Gateway console at https://console.aws.amazon.com/apigateway.

2. Choose a REST API.

Create and configure 254

https://console.aws.amazon.com/apigateway

Amazon API Gateway Developer Guide

N o v &

Choose API settings.

In the API details section, choose Edit.

For APl endpoint type, select either Edge-optimized or Regional.
Choose Save changes.

Redeploy your API so that the changes will take effect.

To convert a private endpoint to a regional endpoint

W

© © N o un A

Sign in to the APl Gateway console at https://console.aws.amazon.com/apigateway.

Choose a REST API.

Edit the resource policy for your API to remove any mention of VPCs or VPC endpoints so that
API calls from outside your VPC as well as inside your VPC will succeed.

Choose API settings.

In the API details section, choose Edit.
For APl endpoint type, select Regional.
Choose Save changes to start the update.
Remove the resource policy from your API.

Redeploy your API so that the changes will take effect.

Use the AWS CLI to change an API endpoint type

To use the AWS CLI to update an edge-optimized APl whose API ID is {api-id}, call update-rest-
api as follows:

aws apigateway update-rest-api \

--rest-api-id {api-id} \
--patch-operations op=replace, path=/endpointConfiguration/types/EDGE, value=REGIONAL

The successful response has a status code of 200 0K and a payload similar to the following:

"createdDate": "2017-10-16T04:09:317",
"description": "Your first API with Amazon API Gateway. This is a sample API that

integrates via HTTP with our demo Pet Store endpoints",

Create and configure 255

https://console.aws.amazon.com/apigateway
https://docs.aws.amazon.com/cli/latest/reference/apigateway/update-rest-api.html
https://docs.aws.amazon.com/cli/latest/reference/apigateway/update-rest-api.html

Amazon API Gateway Developer Guide

"endpointConfiguration": {
"types": "REGIONAL"

1,
"id": "@gsnjtjck8",
"name": "PetStore imported as edge-optimized"

Conversely, update a regional API to an edge-optimized API as follows:

aws apigateway update-rest-api \
--rest-api-id {api-id} \
--patch-operations op=replace,path=/endpointConfiguration/types/REGIONAL,value=EDGE

Because put-rest-api is for updating API definitions, it is not applicable to updating an APl endpoint
type.

Initialize REST API setup in APl Gateway

You can create a REST API using the API Gateway console, the APl Gateway REST API, the AWS
SDKs for API Gateway, and the AWS Command Line Interface.

When you create a REST API using the API Gateway REST API, the AWS SDKs for API Gateway, or
the AWS Command Line Interface, the default configuration is an edge-optimized API. For more
information about APl endpoint types, see the section called “Choose an AP| endpoint type".

When you deploy your API to a stage, your APl Gateway creates a default URL for your API. For
more information about the default URL, see the section called “Deploying a REST API". You can
assign a custom domain name (for example, apis.example.com) as the API's host name and
call the API with a base URL of the https://apis.example.com/myApi format. For more
information about custom domain names, see the section called “Custom domain names".

We recommend that you use one of the following examples to learn how to create a REST API.

Topics

« Set up an API using the API Gateway console

o Set up an edge-optimized APl using AWS CLI commands

» Set up an edge-optimized APl using the AWS SDK for Node.js

» Set up an edge-optimized API by importing OpenAPI definitions

Create and configure 256

https://docs.aws.amazon.com/cli/latest/reference/apigateway/put-rest-api.html

Amazon API Gateway Developer Guide

« Set up a Regional APl in APl Gateway

Set up an API using the APl Gateway console

We recommend that you choose from the following tutorials to learn how to create a REST API
Gateway using the REST API Gateway console.

To create a REST API that passes an event to a Lambda function, choose the section called “"Getting
started with the REST API console”.

To create a REST API where you configure the integration request payload to a Lambda function,
choose the section called “Tutorial: Build an APl with Lambda non-proxy integration”.

To create a REST API that has an integration with an HTTP endpoint, choose the section called
“Tutorial: Build a REST API with HTTP proxy integration”.

To create a REST API that where you configure the integration request to an HTTP endpoint,
choose the section called “Tutorial: Build an APl with HTTP non-proxy integration”.

To import an example API, choose the section called “Tutorial: Create a REST API by importing an
example”.

Alternatively, you can set up an API by using the API Gateway Import API feature to upload an
external API definition, such as one expressed in OpenAPI| 2.0 with the Working with APl Gateway

extensions to OpenAPI. The example provided in Tutorial: Create a REST API by importing an
example uses the Import API feature.

Set up an edge-optimized API using AWS CLI commands

Setting up an API using the AWS CLI requires working with the create-rest-api, create-

resource or get-resources, put-method, put-method-response, put-integration, and

put-integration-response commands. The following procedures show how to work with

these AWS CLI commands to create the simple PetStore APl of the HTTP integration type.
To create a simple PetStore APl using AWS CLI

1. Callthe create-rest-api command to set up the RestApi in a specific region (us-
west-2).

aws apigateway create-rest-api --name 'Simple PetStore (AWS CLI)' --region us-
west-2

Create and configure 257

https://github.com/OAI/OpenAPI-Specification/blob/master/versions/2.0.md
https://docs.aws.amazon.com/cli/latest/reference/apigateway/create-rest-api.html
https://docs.aws.amazon.com/cli/latest/reference/apigateway/create-resource.html
https://docs.aws.amazon.com/cli/latest/reference/apigateway/create-resource.html
https://docs.aws.amazon.com/cli/latest/reference/apigateway/get-resources.html
https://docs.aws.amazon.com/cli/latest/reference/apigateway/put-method.html
https://docs.aws.amazon.com/cli/latest/reference/apigateway/put-method-response.html
https://docs.aws.amazon.com/cli/latest/reference/apigateway/put-integration.html
https://docs.aws.amazon.com/cli/latest/reference/apigateway/put-integration-response.html

Amazon API Gateway Developer Guide

The following is the output of this command:

{
"id": "vaz7da96z6",
"name": "Simple PetStore (AWS CLI)",
"createdDate": "2022-12-15T08:07:04-08:00",
"apiKeySource": "HEADER",
"endpointConfiguration": {
"types": [
"EDGE"
]
3,
"disableExecuteApiEndpoint": false
}

Note the returned id of the newly created RestApi. You need it to set up other parts of the
API.

2. Callthe get-resources command to retrieve the root resource identifier of the RestApi.

aws apigateway get-resources --rest-api-id vaz7da96z6 --region us-west-2

The following is the output of this command:

{
"items": [
{
"id": "begaltmsm8",
"path": "/"
}
]
}

Note the root resource Id. You need it to start setting the API's resource tree and configuring
methods and integrations.

3. Callthe create-resource command to append a child resource (pets) under the root
resource (begaltmsm8):

aws apigateway create-resource --rest-api-id vaz7da96z6 \
--region us-west-2 \

Create and configure 258

Amazon API Gateway Developer Guide

--parent-id begaltmsm8 \
--path-part pets

The following is the output of this command:

{
"id": "6sxz2j",
"parentId": "begaltmsm8",
"pathPart": "pets",
"path": "/pets"

}

To append a child resource under the root, you specify the root resource Id as the parentId
property value. Similarly, to append a child resource under the pets resource, you repeat the
preceding step while replacing the parent-id value with the pets resource id of 6sxz23j:

aws apigateway create-resource --rest-api-id vaz7da96z6 \
--region us-west-2 \
--parent-id 6sxz2j \
--path-part '{petId}’

To make a path part a path parameter, enclose it in a pair of curly brackets. If successful, this
command returns the following response:

{
"id": "rjkmth",
"parentId": "6sxz2j",
"path": "/pets/{petId}",
"pathPart": "{petId}"

}

Now that you created two resources: /pets (6sxz2j) and /pets/{petId} (rjkmth), you can
proceed to set up methods on them.

4. Call the put-method command to add the GET HTTP method on the /pets resource. This
creates an APl Method of GET /pets with open access, referencing the /pets resource by its
ID value of 6sxz2j.

aws apigateway put-method --rest-api-id vaz7da96z6 \
--resource-id 6sxz2j \

Create and configure 259

Amazon API Gateway Developer Guide

--http-method GET \
--authorization-type "NONE" \
--region us-west-2

The following is the successful output of this command:

{
"httpMethod": "GET",
"authorizationType": "NONE",
"apiKeyRequired": false

}

The method is for open access because authorization-type is set to NONE. To permit

only authenticated users to call the method, you can use 1AM roles and policies, a Lambda
authorizer (formerly known as a custom authorizer), or an Amazon Cognito user pool. For more
information, see the section called “Access control”.

To enable read access to the /pets/{petId} resource (rjkmth), add the GET HTTP method
on it to create an APl Method of GET /pets/{petId} as follows.

aws apigateway put-method --rest-api-id vaz7da96z6 \
--resource-id rjkmth --http-method GET \
--authorization-type "NONE" \
--region us-west-2 \
--request-parameters method.request.path.petId=true

The following is the successful output of this command:

{
"httpMethod": "GET",
"authorizationType": "NONE",
"apiKeyRequired": false,
"requestParameters": {

"method.request.path.petId": true

}

}

Note that the method request path parameter of petId must be specified as a required
request parameter for its dynamically set value to be mapped to a corresponding integration
request parameter and passed to the backend.

Create and configure 260

Amazon API Gateway Developer Guide

5. Callthe put-method-response command to set up the 200 OK response of the GET /pets
method, specifying the /pets resource by its ID value of 6sxz2]j.

aws apigateway put-method-response --rest-api-id vaz7da96z6 \
--resource-id 6sxz2j --http-method GET \
--status-code 200 --region us-west-2

The following is the output of this command:

"statusCode": "200"

Similarly, to set the 200 OK response of the GET /pets/{petId} method, do the following,
specifying the /pets/{petId} resource by its resource ID value of rjkmth:

aws apigateway put-method-response --rest-api-id vaz7da96z6 \
--resource-id rjkmth --http-method GET \
--status-code 200 --region us-west-2

Having set up a simple client interface for the API, you can proceed to set up the integration of
the APl methods with the backend.

6. Call the put-integration command to set up an Integration with a specified HTTP
endpoint for the GET /pets method. The /pets resource is identified by its resource Id
6sxz2j:

aws apigateway put-integration --rest-api-id vaz7da96z6 \
--resource-id 6sxz2j --http-method GET --type HTTP \
--integration-http-method GET \
--uri 'http://petstore-demo-endpoint.execute-api.com/petstore/pets' \
--region us-west-2

The following is the output of this command:

"type": "HTTP",

"httpMethod": "GET",

"uri": "http://petstore-demo-endpoint.execute-api.com/petstore/pets"”,
"connectionType": "INTERNET",

Create and configure 261

Amazon API Gateway Developer Guide

"passthroughBehavior": "WHEN_NO_MATCH",
"timeoutInMillis": 29000,
"cacheNamespace": "6sxz2j",
"cacheKeyParameters": []

Notice that the integration uri of http://petstore-demo-endpoint.execute-
api.com/petstore/pets specifies the integration endpoint of the GET /pets method.

Similarly, you create an integration request for the GET /pets/{petId} method as follows:

aws apigateway put-integration \
--rest-api-id vaz7da96z6 \
--resource-id rjkmth \
--http-method GET \
--type HTTP \
--integration-http-method GET \
--uri 'http://petstore-demo-endpoint.execute-api.com/petstore/pets/{id}' \
--request-parameters
'"{"integration.request.path.id":"method.request.path.petId"}"' \
--region us-west-2

Here, the integration endpoint, uri of http://petstore-demo-endpoint.execute-
api.com/petstore/pets/{id}, also uses a path parameter (id). Its value is mapped from
the corresponding method request path parameter of {petId}. The mapping is defined as
part of the request-parameters. If this mapping is not defined here, the client gets an error
response when trying to call the method.

The following is the output of this command:

"type": "HTTP",
"httpMethod": "GET",
"uri": "http://petstore-demo-endpoint.execute-api.com/petstore/pets/{id}",
"connectionType": "INTERNET",
"requestParameters": {
"integration.request.path.id": "method.request.path.petId"
1,
"passthroughBehavior": "WHEN_NO_MATCH",
"timeoutInMillis": 29000,
"cacheNamespace": "rjkmth",

Create and configure 262

Amazon API Gateway Developer Guide

"cacheKeyParameters": []

7. Callthe put-integration-response command to create an IntegrationResponse of
the GET /pets method integrated with an HTTP backend.

aws apigateway put-integration-response --rest-api-id vaz7da96z6 \
--resource-id 6sxz2j --http-method GET \
--status-code 200 --selection-pattern "" \
--region us-west-2

The following is the output of this command:

"statusCode": "200",
"selectionPattern": ""

Similarly, call the following put-integration-response command to create an
IntegrationResponse of the GET /pets/{petId} method:

aws apigateway put-integration-response --rest-api-id vaz7da96z6 \
--resource-id rjkmth --http-method GET
--status-code 200 --selection-pattern ""
--region us-west-2

With the preceding steps, you finished setting up a simple API that allows your customers
to query available pets on the PetStore website and to view an individual pet of a specified
identifier. To make it callable by your customer, you must deploy the API.

8. Deploy the API to a stage stage, for example, by calling create-deployment:

aws apigateway create-deployment --rest-api-id vaz7da96z6 \
--region us-west-2 \
--stage-name test \
--stage-description 'Test stage' \
--description 'First deployment'

The following is the output of this command:

Create and configure 263

Amazon API Gateway Developer Guide

{
"id": "ablcld",
"description": "First deployment",
"createdDate": "2022-12-15T08:44:13-08:00"
}

You can test this API by typing the https://vaz7da96z6.execute-api.us-
west-2.amazonaws.com/test/pets URL in a browser, and substituting vaz7da96z6 with the
identifier of your API. The expected output should be as follows:

[
{
"id": 1,
"type": "dog",
"price": 249.99
1,
{
"id": 2,
"type": "cat",
"price": 124.99
.
{
"id": 3,
"type": "fish",
"price": 0.99
}
]

To test the GET /pets/{petId} method, type https://vaz7da96z6.execute-api.us-
west-2.amazonaws.com/test/pets/3 in the browser. You should receive the following
response:

{
"id": 3,
"type": "fish",
"price": 0.99
}

Create and configure 264

Amazon API Gateway Developer Guide

Set up an edge-optimized API using the AWS SDK for Node.js

As an illustration, we use AWS SDK for Node.js to describe how you can use an AWS SDK to
create an API Gateway API. For more information using an AWS SDK, including how to set up the
development environment, see AWS SDKSs.

Setting up an API using the AWS SDK for Node.js involves calling the createRestApi,
createResource or getResources, putMethod, putMethodResponse, putIntegration, and
putIntegrationResponse functions.

The following procedures walk you through the essential steps to use these SDK commands to set
up a simple PetStore API supporting the GET /pets and GET /pets/{petId} methods.

To set up a simple PetStore API using the AWS SDK for Node.js

1. Instantiate the SDK:

var AWS = require('aws-sdk');

AWS.config.region = 'us-west-2';
var apig = new AWS.APIGateway({apiVersion: '2015/07/09'});

2. Callthe createRestApi function to set up the RestApi entity.

apig.createRestApi({
name: "Simple PetStore (node.js SDK)",
binaryMediaTypes: [
Vo
1,
description: "Demo API created using the AWS SDK for node.js",
version: "0.00.001"
}, function(err, data){
if (lerr) {
console.log(data);
} else {
console.log('Create API failed:\n', err);
}
18

The function returns an output similar to the following result:

Create and configure 265

https://aws.amazon.com/tools/
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/APIGateway.html#createRestApi-property
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/APIGateway.html#createResource-property
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/APIGateway.html#getResources-property
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/APIGateway.html#putMethod-property
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/APIGateway.html#putMethodResponse-property
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/APIGateway.html#putIntegration-property
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/APIGateway.html#putIntegrationResponse-property

Amazon API Gateway Developer Guide

id: 'iuo308uaq7’',

name: 'PetStore (node.js SDK)',

description: 'Demo API created using the AWS SDK for node.js’,
createdDate: 2017-09-05T19:32:35.000Z,

version: '0.00.001',

binaryMediaTypes: ['*']

The resulting API's identifier is iuo308uaq7. You need to supply this to continue the setup of
the API.

3. Call the getResources function to retrieve the root resource identifier of the RestApi.

apig.getResources({

restApild: 'iuo30@8uaq7'

}, function(err, data){

if (lerr) {

console.log(data);

} else {

console.log('Get the root resource failed:\n', err);
}
)

This function returns an output similar to the following result:

{
"items": [
{
"path": "/",
"id": "s4fbOtrnko"
}
]
}

The root resource identifier is s4fb@trnk®@. This is the starting point for you to build the API
resource tree, which you do next.

4. Callthe createResource function to set up the /pets resource for the API, specifying the
root resource identifier (s4fb@trnk®) on the parentId property.

apig.createResource({
restApild: 'iuo30Q8uaq7',

Create and configure 266

Amazon API Gateway Developer Guide

parentId: 's4fbQtrnko',
pathPart: 'pets'
}, function(err, data){

if (lerr) {
console.log(data);
} else {

console.log("The '/pets' resource setup failed:\n", err);
}
1)

The successful result is as follows:

{
"path": "/pets",
"pathPart": "pets",
"id": "8sxa2j",
"parentId": "s4fb@trnk@'"
}

To set up the /pets/{petId} resource, call the following createResource function,
specifying the newly created /pets resource (8sxa2j) on the parentId property.

apig.createResource({
restApild: 'iuo3Q8uaq7',
parentId: '8sxa2j',
pathPart: '{petId}’

}, function(err, data){

if (lerr) {
console.log(data);
} else {

console.log("The '/pets/{petId}' resource setup failed:\n", err);

1)

The successful result returns the newly created resource id value:

"path": "/pets/{petId}",
"pathPart": "{petId}",
"id": "aubdf2",
"parentId": "8sxa2j"

Create and configure 267

Amazon API Gateway

}

Developer Guide

Throughout this procedure, you refer to the /pets resource by specifying its resource ID of
8sxa2j, and the /pets/{petId} resource by specifying its resource ID of au5df2.

5. Call the putMethod function to add the GET HTTP method on the /pets resource (8sxa2j).
This sets up the GET /pets Method with open access.

apig.putMethod({
restApild: 'iuo30Q8uaq7',
resourceld: '8sxa2j’',
httpMethod: 'GET',
authorizationType: 'NONE'
}, function(err, data){
if (lerr) {
console.log(data);

} else {
console.log("The 'GET /pets' method setup failed:\n", err);
}

)

This function returns an output similar to the following result:

{
"apiKeyRequired": false,
"httpMethod": "GET",
"authorizationType": "NONE"
}

To add the GET HTTP method on the /pets/{petId} resource (au5df2), which sets up

the APl method of GET /pets/{petId} with open access, call the putMethod function as
follows.

apig.putMethod({

restApild: 'iuo30@8uaq7'’,

resourceld: 'au5df2',

httpMethod: 'GET',

authorizationType: 'NONE',
requestParameters: {

"method.request.path.petId" : true
}

Create and configure 268

Amazon API Gateway Developer Guide

}, function(err, data){

if (lerr) {
console.log(data);
} else {

console.log("The 'GET /pets/{petId}' method setup failed:\n", err);
}
1)

This function returns an output similar to the following result:

{
"apiKeyRequired": false,
"httpMethod": "GET",
"authorizationType": "NONE",
"requestParameters": {

"method.request.path.petId": true

}

}

You need to set the requestParameters property as shown in the preceding example to
map and pass the client-supplied petId value to the backend.

6. Call the putMethodResponse function to set up a method response for the GET /pets
method.

apig.putMethodResponse({
restApild: 'iuo3Q8uaq7',
resourceld: "8sxa2j",
httpMethod: 'GET',
statusCode: '200'

}, function(err, data){
if (lerr) {
console.log(data);

} else {
console.log("Set up the 200 OK response for the 'GET /pets' method failed:\n",
err);

}

1)

This function returns an output similar to the following result:

Create and configure 269

Amazon API Gateway Developer Guide

"statusCode": "200"

To set the 200 OK response of the GET /pets/{petId} method, call the
putMethodResponse function, specifying the /pets/{petId} resource identifier (au5df2)
on the resourceld property.

apig.putMethodResponse({
restApild: 'iuo30@8uaq7',
resourceld: "au5df2",
httpMethod: 'GET',
statusCode: '200'

}, function(err, data){

if (lerr) {
console.log(data);
} else {

console.log("Set up the 200 OK response for the 'GET /pets/{petId}' method
failed:\n", err);

}
1)

7. Callthe putIntegration function to set up the Integration with a specified HTTP
endpoint for the GET /pets method, supplying the /pets resource identifier (8sxa2j) on
the parentId property.

apig.putIntegration({
restApild: 'iuo3Q8uaq7',
resourceld: '8sxa2j’',
httpMethod: 'GET',
type: 'HTTP',
integrationHttpMethod: 'GET',
uri: 'http://perstore-demo-endpoint.execute-api.com/pets'
}, function(err, data){
if (lerr) {
console.log(data);
} else {
console.log("Set up the integration of the 'GET /' method of the API failed:\n",
err);

}

Create and configure 270

Amazon API Gateway Developer Guide

1)

This function returns an output similar the following:

{
"httpMethod": "GET",
"passthroughBehavior": "WHEN_NO_MATCH",
"cacheKeyParameters": [],
"type": "HTTP",
"uri": "http://petstore-demo-endpoint.execute-api.com/petstore/pets",
"cacheNamespace": "8sxa2j"
}

To set up the integration of the GET /pets/{petId} method with the HTTP endpoint of
http://perstore-demo-endpoint.execute-api.com/pets/{id} of the backend,
call the following putIntegration function, supplying the API's /pets/{petId} resource
identifier (au5df2) on the parentId property.

apig.putIntegration({
restApild: 'iuo3Q8uaq7',
resourceld: 'au5df2',
httpMethod: 'GET',
type: 'HTTP',
integrationHttpMethod: 'GET',
uri: 'http://perstore-demo-endpoint.execute-api.com/pets/{id}"',
requestParameters: {
"integration.request.pat