aws

User Guide

AWS AppConfig

Copyright © 2025 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

AWS AppConfig User Guide

AWS AppConfig: User Guide

Copyright © 2025 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon's trademarks and trade dress may not be used in connection with any product or service
that is not Amazon's, in any manner that is likely to cause confusion among customers, or in any
manner that disparages or discredits Amazon. All other trademarks not owned by Amazon are
the property of their respective owners, who may or may not be affiliated with, connected to, or
sponsored by Amazon.

AWS AppConfig User Guide

Table of Contents

What is AWS APPCONTIG? ..cuueeeiiiiiiiiiiiiineememnnniissseseeesss 1
Get started wWith AWS APPCONTIQG ..ottt s re e e s e e e st aesaens 1
AWS APPCONTIG USE CASES ...ueereerererecreeteeeseetestectestestestesse e e e s e s esestessessessassassessasssessassessasansessassassesssenes 1
BENETIES OVEIVIEW ...ttt sttt et st s st et s s s e st et s sasae st e e s b esbe s snessansaneen 1
HOW AWS APPCONTIG WOIKS ..ottt ste sttt e et e testestesse e e e e s e e s e sae st e tessassasseenassaesaensanes 2
Pricing fOr AWS APPCONTIG oottt te e s e s e e e e e s et e saesae st e ssa e e ese e s e s e ssenaansansans 5
AWS APPCONTIG QUOTAS ..eeeuieieieteceeeeeeee et te e ste s e e e et e it et e steste st e s se e e e e e s et et esaessessassassesssensansansanean 5
AdAITIONAL FESOUICES ..ottt ettt et s st et s e st e st et s b e st e e sseste st e e ssassessesasassesassessesassansan 5

21 Lo Yo |3 U PR UORRRR 5
SDIKS ettt ettt sttt e a e et a e s b e et e Rt et e et e R e s b e et e st e b e et e e Rt s se st e atesse et e sntenean 6

Setting UP AWS APPCONTFIQ ..ccuuueiiiiiiiiiiiiiinneenmnnniiiiiicciiiiesss 7
SigN UP FOr AN AWS QCCOUNT ...ttt re e e et e st e st e s sesse s e e e e s e s et e saessassessessessnensanes 7
Create a user with adminiStrative @CCESScocvivirieriiirircceee ettt ss e eaens 7
Grant programMAtiC QCCESSiiriieviirieiitirteeseesrte st e s rte e st esstessseesteesseesssessssesssessseesssesssaesssessssesssesssaessses 9
UNderstanding [PVE SUPPOIT ...ttt te st stesae e e e s e e et et e stessasse e e e e e e esa e aensensansas 10
Configure permissions for automatic rollback ... 11

Step 1: Create the permission policy for rollback based on CloudWatch alarms 12
Step 2: Create the IAM role for rollback based on CloudWatch alarmsccccceevvevecvevevennenee. 13
Step 3: Add a trust relationNShiP ...t 13

CrEAtING cccceeeeeiiiiiiiiiiiiinieeeeeseiiiissseesetsss 15
Understanding the configuration profile IAM role ... 16
Creating @ NAMESPACE ...ccoviieiieeeecteerereterre et ee st se e e s sae e st e s saess e essaaesstesssessssesssaesstesssessseesssessssesssesssaensees 19

Creating an AWS AppConfig application (CONSOLE)cc.ocueeuecieeeeeeeeeeeeeeeeee e 19
Creating an AWS AppConfig application (command LiNe)cccceeeeeeveeveeieciecieecececeeeeeeeee, 20
Creating ENVIFONMIENTS ...ttt sttt te s st e s sae s se e s ae s saessbesssaesssesssaasssesssaesssesssaesssennns 21
Creating an AWS AppConfig environment (CONSOLE)ceeeereeeeerieiieietecececeee e rerenens 22
Creating an AWS AppConfig environment (command liNe)cceeeeeeeecieceeciecenececeeeeeeeenns 23
Creating a configuration profile in AWS ApPPCoNfig ... 25
Creating a feature flag configuration Profile ... 29
Creating a free form configuration Profile ... 61
Creating a configuration profile for non-native data sourcesccceveeececeeececceseeceeceeeeee, 76

DEPLOYING couiiiiiiiiiinnnnnnnniiiiiiieeeeneeseasssssssssssssesssanee 78

Working with deployment STrat@gies ...ttt a e et eens 79

Using predefined deployment Strat@gies ... ieiecieciecieneeeeee ettt ae s saesaenas 81

AWS AppConfig User Guide

Create a deploymeENnt STrat@QY ...ttt et e st e s s e e e e aan 83
Deploying @ CONFIGUIAtION ...ttt te s et e st esae b e se s e s sa e e ennennans 87
Deploy a configuration (CONSOLE)ccuevieieiiieiceteteceseree ettt sve e re et sae st e b e saasse e s s ennan 88
Deploy a configuration (COMMAaNALING)coueeueeuieieieeeeeeeeee et 89
Deploying With COAEPIPELINE ...ttt sa e st a et sae s s 93
HOW iNTEGIration WOTKSooeeeeeeee ettt ettt a et et sae s b e s s e aeneaeaanes 94
ReVverting @ CONTIGUIAtiONou ottt ettt te s et e e et et e b e s ta b e s se s e e snesaenaennan 94
REEFIEVING ciiiiiiiereeeiiiiiiiiiiiiiienenennisiiiiieeeetsesss 96
What is AWS APPCONTIG AGENT? ...ttt s e s e e st sa et saesae s s e s e e sneneennennan 97
How to use AWS AppConfig Agent to retrieve configuration datacccceeeveeveeiececcnenececeeeee, 99
Using AWS AppConfig Agent with AWS Lambda ..o 99
Using AWS AppConfig Agent with Amazon EC2 and on-premises machinescccccueueunenn. 190
Using AWS AppConfig Agent with Amazon ECS and Amazon EKScooeereeveeceeceecvenenee. 207
RetrieviNg fEAtUIE Flags .ottt sttt 226
Using a manifest to enable additional retrieval featurescoeeeveciecececececeeeceeeee 229
Generating a client using the OpenAPI specification ... 240
Working with AWS AppConfig Agent local development modeccocveeieeeceneniececcecienne 242
Browser and mobile use CONSIAEIAtIONScccoerviiririeniiirertereret ettt ae st sse e se s saes 247
Configuration data and flag retrieVval ... 247
Authentication and AMAzon COGNItO ...c.ccciiciiiiiieeeeeeeee ettt sa et et ae s 248
CACRING ettt te e s te e e e e e et et e s ae st e st e st e e s e e se e e et e st entetentessasseeseenaaneans 249
SEGMENTATION ottt sre st e s st e s s e s b e et e s sae s s e e s saa et essseessaessaessaesssaassaesases 249
Bandwidth (IMODILE USE CASES) uueiiieeiiieiieeeieteeeeeeeeette ettt eesaeeeesaeeesaeeessseessssesessseessssesssssesssnsesas 250
AdditioNal flag USE CASES ...ttt re ettt ae s s e be s e e e e e e e ennan 250
Retrieving configuration data without AWS AppConfig Agentcceececiececenececeeeceeeee, 250
(Example) Retrieving a configuration by calling AWS AppConfig APIScceeeeeeerveeceeieenen. 252
Extending AWS AppConfig WOrKFLOWSccccueeeeeeeeeciiiiiieiniininnnnnnnnecsisscccennnnsesssssssssssssssssssssssssssses 254
Understanding AWS AppConfig eXteNSIONScceceeeeieieieiieceecteeese e e e saesteste s e e e e e e s enennens 254
Step 1: Determine what you want to do with extensionsccceveeeeeeenecccceccccceeeee, 255
Step 2: Determine when you want the extension to run ... 256
Step 3: Create an extension aSSOCIATIONcoviiriirieirieerteeet et re s sre s saeesreessaesane 257
Step 4: Deploy a configuration and verify the extension actions are performed 258
Working with AWS authored eXtenSIONS ..ot 258
Using the the Amazon CloudWatch Evidently extensionccoececieceneneceseeceeeeceecnenns 259
Using the AWS AppConfig deployment events to Amazon EventBridge extension 259
Using the AWS AppConfig deployment events to Amazon SNS extensionccccecveunnneee. 262

AWS AppConfig User Guide

Using the AWS AppConfig deployment events to Amazon SQS extensioncccceeveeeeuenen. 264
USING the Jira @XEENSIONeceiieeeeeeeeteeete ettt te e s te s e s e e e e e et e b e sessassessassaennansaneans 267
Walkthrough: Creating custom AWS AppConfig eXtensionscccececeecreceneneneeeereeceeeeecee e, 272
Step 1: Create a Lambda function for a custom AWS AppConfig extensionccccueue..... 274

Step 2: Configure permissions for a custom AWS AppConfig extensionccccceveeeeeerennnne. 280

Step 3: Create a custom AWS AppConfig exXtensionceeeviecieceececeseseceeee et 281

Step 4: Create an extension association for a custom AWS AppConfig extension 285

COAE SAMPLES «euiiiiiiiiiinenennnniiiiiieietiteseesssasss 288
Creating or updating a freeform configuration stored in the hosted configuration store 288
Creating a configuration profile for a secret stored in Secrets Managercccoeveeeeveeeeceecvennne 291
Deploying a configuration Profile ...t 292
Using AWS AppConfig Agent to read a freeform configuration profile ..o 297
Using AWS AppConfig Agent to read a specific feature flagooeeeeeeeeeeceecececeeeee 299
Using AWS AppConfig Agent to retrieve a feature flag with variantsccccoeeeeeninenennnnnnee. 300
Using the GetLatestConfiguration API action to read a freeform configuration profile 302
Cleaning Up YOUr €NVIFONIMENTcoviiiiiieieieietetesteseee e e e e etesaestestessessesseessessessessassessassassassssssassansans 309
Deletion ProteCtionceceecciiiiiiieiiiineeeenneesiisssecieesiessess 316
Bypassing or forcing a deletion protection Checkccoeoeeeeeeeeeeeceeeeee e 317
SECUNITY ceiiiiiiiieennniiiieiiiiitnnensessssssssssssecssesss 319
IMmplement Least Privilege @CCESS ...ttt ettt ae s ae e s e e e e s e e aesbeaans 319
Data encryption at rest for AWS APPCONTIQ .cucouireeieieeeeeeeeeerec et 320
AWS PrIVAtELINK ..cceeviiiieireteteeretete ettt sttt ettt et et s s b e e et s e sae st e e s sasbesasnassessanees 325
CONSIAEIALIONS ...ttt sttt st et s s e st et e b et e e s e ae st s sasaastesassessensesassansensons 325
Create an interface eNAPOINT oot sa et aas 325
Create an eNAPOiNt POLICY ..couioieieecececee ettt a et et e st e s e se e e e e et e aeaanes 326
Secrets Manager KeY rotation ...ttt te e e e e e et saesaesaessesaaesesnaens 327
Setting up automatic rotation of Secrets Manager secrets deployed by AWS AppConfig ... 327
MONIEOKFING ceveeiiiiiiiiiiiiiiennnnniiiiiicceiietesseassssssssssssesssasass 329
CLOUATIAIL LOGS wnviiieieciieeetetetectee ettt cte st e s te st e et e e e s s e s e st et e st e s b e s e e e e s esaessassassassassassaesaeseansensansansans 330
AWS AppConfig data events in CloudTrailc.ccueoveeieoeeieeeceeeeeee e 331

AWS AppConfig management events in CloudTrailcccceceeeeeneneeeeeceeeeeeecece e 333

AWS AppConfig event XAMPLEScc.ecieieieieeeeeeeee ettt e e et saesaesaesse s e e saennens 333
Logging metrics for AWS AppConfig data plane Calls ... 334
Creating an alarm for a CloudWatch MetriC ... 337
Monitoring deployments for automatic rollback ... 337
Recommended metrics to monitor for automatic rollbackcceceevveenenecninenininenieenne 338

AWS AppConfig User Guide

(0T oTal Ty 1 L= o1 a1 1 o] o PO PUPUU. 72 ' |

Vi

AWS AppConfig User Guide

What is AWS AppConfig?

AWS AppConfig feature flags and dynamic configurations help software builders quickly and
securely adjust application behavior in production environments without full code deployments.
AWS AppConfig speeds up software release frequency, improves application resiliency, and helps
you address emergent issues more quickly.

With feature flags, you can gradually release new capabilities to users and measure the impact of
those changes before fully deploying the new capabilities to all users. With operational flags and
dynamic configurations, you can update block lists, allow lists, throttling limits, logging verbosity,
and perform other operational tuning to quickly respond to issues in production environments.

Get started with AWS AppConfig

The following video can help you understand the capabilities of AWS AppConfig.

View more AWS videos on the Amazon Web Services YouTube Channel.

AWS AppConfig use cases

AWS AppConfig supports a broad spectrum of use cases:

» Feature flags and toggles — Safely release new capabilities to your customers in a controlled
environment. Instantly roll back changes if you experience a problem.

« Application tuning — Carefully introduce application changes while testing the impact of those
changes with users in production environments.

« Allow list or block list — Control access to premium features or instantly block specific users
without deploying new code.

» Centralized configuration storage — Keep your configuration data organized and consistent
across all of your workloads. You can use AWS AppConfig to deploy configuration data stored
in the AWS AppConfig hosted configuration store, AWS Secrets Manager, Systems Manager
Parameter Store, or Amazon S3.

Benefits overview

The following brief overview outlines the benefits of using AWS AppConfig.

Get started with AWS AppConfig 1

https://www.youtube.com/user/AmazonWebServices

AWS AppConfig User Guide

Improve efficiency and release changes faster

Using feature flags with new capabilities speeds up the process of releasing changes to
production environments. Instead of relying on long-lived development branches that require
complicated merges before a release, feature flags enable you to write software using trunk-
based development. Feature flags enable you to safely roll out pre-release code in a CI/CD
pipeline that is hidden from users. When you are ready to release the changes, you can update
the feature flag without deploying new code. After the launch is complete, the flag can still
function as a block switch to disable a new feature or capability without the need to roll back
the code deployment.

Avoid unintended changes or failures with built-in safety features

AWS AppConfig offers the following safety features to help you avoid enabling feature flags or
updating configuration data that could cause application failures.

« Validators: A validator ensures that your configuration data is syntactically and semantically
correct before deploying the changes to production environments.

« Deployment strategies: A deployment strategy enables you to slowly release changes to
production environments over minutes or hours.

» Monitoring and automatic rollback: AWS AppConfig integrates with Amazon CloudWatch
to monitor changes to your applications. If your application becomes unhealthy because of a
bad configuration change and that change triggers an alarm in CloudWatch, AWS AppConfig
automatically rolls back the change to minimize impact on your application users.

Secure and scalable feature flag deployments

AWS AppConfig integrates with AWS Identity and Access Management (IAM) to provide
fine-grain, role-based access to the service. AWS AppConfig also integrates with AWS Key
Management Service (AWS KMS) for encryption and AWS CloudTrail for auditing. Before being
released to external customers, all AWS AppConfig safety controls were initially developed with
and validated by internal customers that use the service at scale.

How AWS AppConfig works

This section provides a high-level description of how AWS AppConfig works and how you get
started.

How AWS AppConfig works 2

AWS AppConfig User Guide

1. Identify configuration values in code you want to manage in the cloud

Before you start creating AWS AppConfig artifacts, we recommend you identify configuration
data in your code that you want to dynamically manage using AWS AppConfig. Good examples
include feature flags or toggles, allow and block lists, logging verbosity, service limits, and
throttling rules, to name a few.

If your configuration data already exists in the cloud, you can take advantage of AWS AppConfig
validation, deployment, and extension features to further streamline configuration data
management.

2. Create an application namespace
To create a namespace, you create an AWS AppConfig artifact called an application. An

application is simply an organizational construct like a folder. For more information, see
Creating a namespace for your application in AWS AppConfig.

3. Create environments

For each AWS AppConfig application, you define one or more environments. An environment
is a logical grouping of targets, such as applications in a Beta or Production environment,
AWS Lambda functions, or containers. You can also define environments for application
subcomponents, such as the Web, Mobile, and Back-end. For more information, see Creating
environments for your application in AWS AppConfig.

You can configure Amazon CloudWatch alarms for each environment. The system monitors
alarms during a configuration deployment. If an alarm is triggered, the system rolls back the
configuration. To use this feature, you must create an AWS Identity and Access Management
role so that AWS AppConfig can monitor alarms. For more information, see Configure
permissions for automatic rollback.

4. Create a configuration profile

A configuration profile includes, among other things, a URI that enables AWS AppConfig

to locate your configuration data in its stored location and a profile type. AWS AppConfig
supports two configuration profile types: feature flags and freeform configurations. Feature
flag configuration profiles store their data in the AWS AppConfig hosted configuration store
and the URI is simply hosted. For freeform configuration profiles, you can store your data in
the AWS AppConfig hosted configuration store or any AWS service that integrates with AWS
AppConfig, as described in Creating a free form configuration profile in AWS AppConfig. For
more information about creating a configuration profile, see Creating a configuration profile in
AWS AppConfig.

How AWS AppConfig works 3

AWS AppConfig User Guide

A configuration profile can also include optional validators to ensure your configuration data
is syntactically and semantically correct. AWS AppConfig performs a check using the validators
when you start a deployment. If any errors are detected, the deployment rolls back to the
previous configuration data.

5. Deploy configuration data

When you create a new deployment, you specify the following:

« An application ID

A configuration profile ID

A configuration version

An environment ID where you want to deploy the configuration data

A deployment strategy ID that defines how fast you want the changes to take effect

When you start a deployment, AWS AppConfig performs the following tasks:

1. Retrieves the configuration data from the underlying data store by using the location URI in
the configuration profile.

2. Verifies the configuration data is syntactically and semantically correct by using the
validators you specified when you created your configuration profile.

3. Caches a copy of the data so it is ready to be retrieved by your application. This cached copy
is called the deployed data.

For more information about deploying a configuration, see Deploying feature flags and
configuration data in AWS AppConfig.

6. Retrieve the configuration

You can configure AWS AppConfig Agent as a local host and have the agent poll AWS
AppConfig for configuration updates. The agent calls the StartConfigurationSession and
GetLatestConfiguration API actions and caches your configuration data locally. To retrieve
the data, your application makes an HTTP call to the localhost server. AWS AppConfig Agent
supports several use cases, as described in How to use AWS AppConfig Agent to retrieve
configuration data.

If AWS AppConfig Agent isn't supported for your use case, you can configure your application to
poll AWS AppConfig for configuration updates by directly calling the StartConfigurationSession
and GetLatestConfiguration API actions.

How AWS AppConfig works 4

https://docs.aws.amazon.com/appconfig/2019-10-09/APIReference/API_appconfigdata_StartConfigurationSession.html
https://docs.aws.amazon.com/appconfig/2019-10-09/APIReference/API_appconfigdata_GetLatestConfiguration.html
https://docs.aws.amazon.com/appconfig/2019-10-09/APIReference/API_appconfigdata_StartConfigurationSession.html
https://docs.aws.amazon.com/appconfig/2019-10-09/APIReference/API_appconfigdata_GetLatestConfiguration.html

AWS AppConfig User Guide

For more information about retrieving a configuration, see Retrieving feature flags and

configuration data in AWS AppConfig.

Pricing for AWS AppConfig

Pricing for AWS AppConfig is pay-as-you-go based on configuration data and feature flag retrieval.
We recommend using the AWS AppConfig Agent to help optimize costs. For more information, see
AWS Systems Manager Pricing.

AWS AppConfig quotas

You can view information about AWS AppConfig endpoints and service quotas in the Amazon Web
Services General Reference.

® Note
AWS AppConfig is a capability of AWS Systems Manager.

For information about quotas for services that store AWS AppConfig configurations, see
Understanding configuration store quotas and limitations.

Additional resources

The following resources can help you learn more about AWS AppConfig.
Blogs

The following blogs can help you learn more about AWS AppConfig and its capabilities:

Why you should use AWS AppConfig

Unleash the power of feature flags with AWS AppConfig

Using AWS AppConfig feature flags

Best practices for validating AWS AppConfig feature flags and configuration data

Pricing for AWS AppConfig 5

https://aws.amazon.com/systems-manager/pricing/
https://docs.aws.amazon.com/general/latest/gr/appconfig.html
https://docs.aws.amazon.com/general/latest/gr/appconfig.html
https://dev.to/aws-builders/why-you-should-use-appconfig-2ph4
https://medium.com/globant/unleash-the-power-of-feature-flags-with-aws-appconfig-660906ba98c7
https://aws.amazon.com/blogs/mt/using-aws-appconfig-feature-flags/
https://aws.amazon.com/blogs/mt/best-practices-for-validating-aws-appconfig-feature-flags-and-configuration-data/

AWS AppConfig User Guide

SDKs

For information about AWS AppConfig language-specific SDKs, see the following resources:

o AWS Command Line Interface
o AWS SDK for .NET

« AWS SDK for C++

« AWS SDK for Go

« AWS SDK for Java V2

« AWS SDK for JavaScript

o AWS SDK for PHP V3

« AWS SDK for Python

o AWS SDK for Ruby V3

SDKs 6

https://docs.aws.amazon.com/goto/aws-cli/appconfig-2019-10-09/
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/AppConfig/NAppConfig.html
https://sdk.amazonaws.com/cpp/api/LATEST/aws-cpp-sdk-appconfig/html/namespace_aws_1_1_app_config.html
https://docs.aws.amazon.com/sdk-for-go/api/service/appconfig/
https://sdk.amazonaws.com/java/api/latest/software/amazon/awssdk/services/appconfig/package-summary.html
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/AppConfig.html
https://docs.aws.amazon.com/aws-sdk-php/v3/api/namespace-Aws.AppConfig.html
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/appconfig.html
https://docs.aws.amazon.com/sdk-for-ruby/v3/api/Aws/AppConfig.html

AWS AppConfig User Guide

Setting up AWS AppConfig

If you haven't already done so, sign up for an AWS account and create an administrative user.

Sign up for an AWS account

If you do not have an AWS account, complete the following steps to create one.
To sign up for an AWS account

1. Open https://portal.aws.amazon.com/billing/signup.

2. Follow the online instructions.

Part of the sign-up procedure involves receiving a phone call or text message and entering a
verification code on the phone keypad.

When you sign up for an AWS account, an AWS account root user is created. The root user
has access to all AWS services and resources in the account. As a security best practice, assign
administrative access to a user, and use only the root user to perform tasks that require root

user access.

AWS sends you a confirmation email after the sign-up process is complete. At any time, you can
view your current account activity and manage your account by going to https://aws.amazon.com/
and choosing My Account.

Create a user with administrative access

After you sign up for an AWS account, secure your AWS account root user, enable AWS IAM Identity
Center, and create an administrative user so that you don't use the root user for everyday tasks.

Secure your AWS account root user

1. Signin to the AWS Management Console as the account owner by choosing Root user and
entering your AWS account email address. On the next page, enter your password.

For help signing in by using root user, see Signing in as the root user in the AWS Sign-In User
Guide.

Sign up for an AWS account 7

https://portal.aws.amazon.com/billing/signup
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_root-user.html#root-user-tasks
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_root-user.html#root-user-tasks
https://aws.amazon.com/
https://console.aws.amazon.com/
https://docs.aws.amazon.com/signin/latest/userguide/console-sign-in-tutorials.html#introduction-to-root-user-sign-in-tutorial

AWS AppConfig User Guide

2.

Turn on multi-factor authentication (MFA) for your root user.

For instructions, see Enable a virtual MFA device for your AWS account root user (console) in
the IAM User Guide.

Create a user with administrative access

Enable IAM Identity Center.

For instructions, see Enabling AWS IAM Identity Center in the AWS IAM Identity Center User
Guide.

In IAM Identity Center, grant administrative access to a user.

For a tutorial about using the IAM Identity Center directory as your identity source, see
Configure user access with the default IAM Identity Center directory in the AWS IAM Identity
Center User Guide.

Sign in as the user with administrative access

To sign in with your IAM Identity Center user, use the sign-in URL that was sent to your email
address when you created the IAM Identity Center user.

For help signing in using an IAM Identity Center user, see Signing in to the AWS access portal in
the AWS Sign-In User Guide.

Assign access to additional users

1.

In IAM Identity Center, create a permission set that follows the best practice of applying least-
privilege permissions.

For instructions, see Create a permission set in the AWS IAM Identity Center User Guide.

Assign users to a group, and then assign single sign-on access to the group.

For instructions, see Add groups in the AWS IAM Identity Center User Guide.

Create a user with administrative access 8

https://docs.aws.amazon.com/IAM/latest/UserGuide/enable-virt-mfa-for-root.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/get-set-up-for-idc.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/quick-start-default-idc.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/quick-start-default-idc.html
https://docs.aws.amazon.com/signin/latest/userguide/iam-id-center-sign-in-tutorial.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/get-started-create-a-permission-set.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/addgroups.html

AWS AppConfig

User Guide

Grant programmatic access

Users need programmatic access if they want to interact with AWS outside of the AWS

Management Console. The way to grant programmatic access depends on the type of user that's

accessing AWS.

To grant users programmatic access, choose one of the following options.

Which user needs
programmatic access?

Workforce identity

(Users managed in IAM
Identity Center)

IAM

IAM

To

Use temporary credentials to
sign programmatic requests
to the AWS CLI, AWS SDKs, or
AWS APIs.

Use temporary credentials to
sign programmatic requests
to the AWS CLI, AWS SDKs, or
AWS APIs.

(Not recommended)

Use long-term credentials to
sign programmatic requests
to the AWS CLI, AWS SDKs, or
AWS APIs.

By

Following the instructions for
the interface that you want to
use.

o For the AWS CLI, see
Configuring the AWS
CLI to use AWS IAM
Identity Center in the AWS
Command Line Interface
User Guide.

« For AWS SDKs, tools, and
AWS APIs, see IAM Identity
Center authentication in
the AWS SDKs and Tools
Reference Guide.

Following the instructions in
Using temporary credentia
ls with AWS resources in the
IAM User Guide.

Following the instructions for
the interface that you want to
use.

« For the AWS CLI, see
Authenticating using IAM

Grant programmatic access

https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-sso.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-sso.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-sso.html
https://docs.aws.amazon.com/sdkref/latest/guide/access-sso.html
https://docs.aws.amazon.com/sdkref/latest/guide/access-sso.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_use-resources.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_use-resources.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-authentication-user.html

AWS AppConfig User Guide

Which user needs To By
programmatic access?

user credentials in the AWS

Command Line Interface
User Guide.

e For AWS SDKs and tools,
see Authenticate using

long-term credentials in
the AWS SDKs and Tools
Reference Guide.

e For AWS APIs, see
Managing access keys for
IAM users in the IAM User
Guide.

Understanding IPv6 support

All AWS AppConfig APIs fully support IPv4 and IPv6 calls.
Control plane APIs

Use the following endpoint for IPv4 and IPv6 dual-stack calls to the control plane:

appconfig.Region.api.aws

For example: appconfig.us-east-1.api.aws

For IPv4 only, use the following URL:

appconfig.Region.amazonaws.com

Data plane APIs

For dual-stack calls to the data plane, use the following endpoint:

appconfigdata.Region.api.aws

Understanding IPv6 support 10

https://docs.aws.amazon.com/cli/latest/userguide/cli-authentication-user.html
https://docs.aws.amazon.com/sdkref/latest/guide/access-iam-users.html
https://docs.aws.amazon.com/sdkref/latest/guide/access-iam-users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_access-keys.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_access-keys.html
https://docs.aws.amazon.com/appconfig/2019-10-09/APIReference/API_Operations_Amazon_AppConfig.html
https://docs.aws.amazon.com/appconfig/2019-10-09/APIReference/API_Operations_AWS_AppConfig_Data.html

AWS AppConfig User Guide

For example: appconfig.us-east-1.api.aws

For IPv4 only, use the following URL:

appconfigdata.Region.amazonaws.com

(® Note

For more information, see AWS AppConfig endpoints and quotas in the AWS General
Reference.

Configure permissions for automatic rollback

You can configure AWS AppConfig to roll back to a previous version of a configuration in response
to one or more Amazon CloudWatch alarms. When you configure a deployment to respond

to CloudWatch alarms, you specify an AWS Identity and Access Management (IAM) role. AWS
AppConfig requires this role so that it can monitor CloudWatch alarms. This procedure is optional,
but highly recommended.

(® Note

Note the following information.
« The IAM role must belong to the current account. By default, AWS AppConfig can only
monitor alarms owned by the current account.

 For information about metrics to monitor and how to configure AWS AppConfig for
automatic rollback, see Monitoring deployments for automatic rollback.

Use the following procedures to create an IAM role that enables AWS AppConfig to rollback based
on CloudWatch alarms. This section includes the following procedures.

1. Step 1: Create the permission policy for rollback based on CloudWatch alarms

2. Step 2: Create the IAM role for rollback based on CloudWatch alarms

3. Step 3: Add a trust relationship

Configure permissions for automatic rollback 11

https://docs.aws.amazon.com/general/latest/gr/appconfig.html

AWS AppConfig User Guide

Step 1: Create the permission policy for rollback based on CloudWatch
alarms

Use the following procedure to create an IAM policy that gives AWS AppConfig permission to call
the DescribeAlarms API action.

To create an IAM permission policy for rollback based on CloudWatch alarms

1. Open the IAM console at https://console.aws.amazon.com/iam/.

2. In the navigation pane, choose Policies, and then choose Create policy.
3. On the Create policy page, choose the JSON tab.
4

Replace the default content on the JSON tab with the following permission policy, and then
choose Next: Tags.

(@ Note

To return information about CloudWatch composite alarms, the DescribeAlarms API
operation must be assigned * permissions, as shown here. You can't return information

about composite alarms if DescribeAlarms has a narrower scope.

JSON

"Version": "2012-10-17",
"Statement": [

{
"Effect": "Allow",
"Action": [
"cloudwatch:DescribeAlarms"
]I
"Resource": "*"
}

}

5. Enter tags for this role, and then choose Next: Review.

6. On the Review page, enter SSMCloudWatchAlarmDiscoveryPolicy in the Name field.

Step 1: Create the permission policy for rollback based on CloudWatch alarms 12

https://console.aws.amazon.com/iam/
https://docs.aws.amazon.com/AmazonCloudWatch/latest/APIReference/API_DescribeAlarms.html

AWS AppConfig User Guide

7. Choose Create policy. The system returns you to the Policies page.

Step 2: Create the IAM role for rollback based on CloudWatch alarms

Use the following procedure to create an IAM role and assign the policy you created in the previous
procedure to it.

To create an 1AM role for rollback based on CloudWatch alarms

1. Open the IAM console at https://console.aws.amazon.com/iam/.

2. In the navigation pane, choose Roles, and then choose Create role.

3. Under Select type of trusted entity, choose AWS service.

4. Immediately under Choose the service that will use this role, choose EC2: Allows EC2
instances to call AWS services on your behalf, and then choose Next: Permissions.

5. On the Attached permissions policy page, search for SSMCloudWatchAlarmDiscoveryPolicy.

6. Choose this policy and then choose Next: Tags.

7. Enter tags for this role, and then choose Next: Review.

8. On the Create role page, enter SSMCloudWatchAlarmDiscoveryRole in the Role name

field, and then choose Create role.

9. On the Roles page, choose the role you just created. The Summary page opens.

Step 3: Add a trust relationship

Use the following procedure to configure the role you just created to trust AWS AppConfig.
To add a trust relationship for AWS AppConfig

1. In the Summary page for the role you just created, choose the Trust Relationships tab, and
then choose Edit Trust Relationship.

2. Edit the policy to include only "appconfig.amazonaws.com", as shown in the following
example:

JSON

Step 2: Create the IAM role for rollback based on CloudWatch alarms 13

https://console.aws.amazon.com/iam/

AWS AppConfig User Guide

"Version": "2012-10-17",
"Statement": [
{
"Effect": "Allow",
"Principal": {
"Sexvice": "appconfig.amazonaws.com"

},

"Action": "sts:AssumeRole"

3. Choose Update Trust Policy.

Step 3: Add a trust relationship 14

AWS AppConfig User Guide

Creating feature flags and free form configuration data
in AWS AppConfig

The topics in this section help you complete the following tasks in AWS AppConfig. These tasks
create important artifacts for deploying configuration data.

1. Create an application namespace

To create an application namespace, you create an AWS AppConfig artifact called an
application. An application is simply an organizational construct like a folder.

2. Create environments

For each AWS AppConfig application, you define one or more environments. An environment
is a logical deployment group of AWS AppConfig targets, such as applications in a Beta or
Production environment. You can also define environments for application subcomponents,
such as AWS Lambda functions, Containers, Web, Mobile, and Back-end.

You can configure Amazon CloudWatch alarms for each environment to automatically rollback
problematic configuration changes. The system monitors alarms during a configuration
deployment. If an alarm is triggered, the system rolls back the configuration.

3. Create a configuration profile

Configuration data is a collection of settings that influence the behavior of your application. A
configuration profile includes, among other things, a URI that enables AWS AppConfig to locate
your configuration data in its stored location and a configure type. AWS AppConfig supports the
following types of configuration profiles:

» Feature flags: You can use feature flags to enable or disable features within your applications
or to configure different characteristics of your application features using flag attributes. AWS
AppConfig stores feature flag configurations in the AWS AppConfig hosted configuration
store in a feature flag format that contains data and metadata about your flags and the flag
attributes. The URI for feature flag configurations is simply hosted.

» Freeform configurations: A freeform configuration can store data in any of the following
AWS services and Systems Manager tools:

« AWS AppConfig hosted configuration store
« Amazon Simple Storage Service
« AWS CodePipeline

15

https://docs.aws.amazon.com/appconfig/latest/userguide/appconfig-creating-namespace.html
https://docs.aws.amazon.com/appconfig/latest/userguide/appconfig-creating-environment.html
https://docs.aws.amazon.com/appconfig/latest/userguide/appconfig-creating-configuration-profile.html

AWS AppConfig User Guide

» AWS Secrets Manager
« AWS Systems Manager (SSM) Parameter Store
e SSM Document Store

(® Note

If possible, we recommend hosting your configuration data in the AWS AppConfig
hosted configuration store as it offers the most features and enhancements.

4. (Optional, but recommended) Create multi-variant feature flags

AWS AppConfig offers basic feature flags, which (if enabled) return a specific set of
configuration data per request. To better support user segmentation and traffic splitting use
cases, AWS AppConfig also offers multi-variant feature flags, which enable you to define a
set of possible flag values to return for a request. You can also configure different statuses
(enabled or disabled) for multi-variant flags. When requesting a flag configured with variants,
your application provides context that AWS AppConfig evaluates against a set of user-defined
rules. Depending on the context specified in the request and the rules defined for the variant,
AWS AppConfig returns different flag values to the application.

Topics

« Understanding the configuration profile IAM role

» Creating a namespace for your application in AWS AppConfig

» Creating environments for your application in AWS AppConfig

» Creating a configuration profile in AWS AppConfig

Understanding the configuration profile IAM role

You can create the IAM role that provides access to the configuration data by using AWS
AppConfig. Or you can create the IAM role yourself. If you create the role by using AWS AppConfig,
the system creates the role and specifies one of the following permissions policies, depending on
which type of configuration source you choose.

Configuration source is a Secrets Manager secret

Understanding the configuration profile IAM role 16

https://docs.aws.amazon.com/appconfig/latest/userguide/appconfig-creating-multi-variant-feature-flags.html

AWS AppConfig

User Guide

JSON

"Version": "2012-10-17",
"Statement": [
{
"Effect": "Allow",
"Action": [
"secretsmanager:GetSecretValue"
1,
"Resource": [
"arn:aws:secretsmanager:us-
east-1:111122223333:secxet:secret_name-alb2c3"
]

Configuration source is a Parameter Store parameter

JSON

"Version": "2012-10-17",
"Statement": [

{
"Effect": "Allow",
"Action": [
"ssm:GetParameter"
1,
"Resourxce": [
"arn:aws:ssm:us-east-1:111122223333:parameter/parameter_name"
]
}

Configuration source is an SSM document

Understanding the configuration profile IAM role

17

AWS AppConfig User Guide

JSON

{
"Version": "2012-10-17",
"Statement": [
{
"Effect": "Allow",
"Action": [
"ssm:GetDocument"
]I
"Resource": [
"arn:aws:ssm:us-east-1:111122223333:document/document_name"
]
}
]
}

If you create the role by using AWS AppConfig, the system also creates the following trust
relationship for the role.

JSON

"Version": "2012-10-17",
"Statement": [
{
"Effect": "Allow",
"Principal": {
"Service": "appconfig.amazonaws.com"

Y,

"Action": "sts:AssumeRole"

Understanding the configuration profile IAM role 18

AWS AppConfig User Guide

Creating a namespace for your application in AWS AppConfig

The procedures in this section help you create an AWS AppConfig artifact called an application.
An application is simply an organizational construct like a folder that identifies the namespace

of your application. This organizational construct has a relationship with some unit of executable
code. For example, you could create an application called MyMobileApp to organize and manage
configuration data for a mobile application installed by your users. You must create these artifacts
before you can use AWS AppConfig to deploy and retrieve feature flags or free form configuration
data.

The following procedure gives you the option to associate an extension with a feature flag
configuration profile. An extension augments your ability to inject logic or behavior at different
points during the AWS AppConfig workflow of creating or deploying a configuration. For more
information, see Understanding AWS AppConfig extensions.

® Note

You can use AWS CloudFormation to create AWS AppConfig artifacts, including
applications, environments, configuration profiles, deployments, deployment strategies,
and hosted configuration versions. For more information, see AWS AppConfig resource type
reference in the AWS CloudFormation User Guide.

Topics

» Creating an AWS AppConfig application (console)

» Creating an AWS AppConfig application (command line)

Creating an AWS AppConfig application (console)

Use the following procedure to create an AWS AppConfig application by using the AWS Systems
Manager console.

To create an application

1. Open the AWS Systems Manager console at https://console.aws.amazon.com/systems-
manager/appconfig/.

2. In the navigation pane, choose Applications, and then choose Create application.

Creating a namespace 19

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/AWS_AppConfig.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/AWS_AppConfig.html
https://console.aws.amazon.com/systems-manager/appconfig/
https://console.aws.amazon.com/systems-manager/appconfig/

AWS AppConfig User Guide

For Name, enter a name for the application.
For Description, enter information about the application.

(Optional) In the Extensions section, choose an extension from the list. For more information,
see Understanding AWS AppConfig extensions.

(Optional) In the Tags section, enter a key and an optional value. You can specify a maximum
of 50 tags for a resource.

Choose Create application.

AWS AppConfig creates the application and then displays the Environments tab. Proceed to
Creating environments for your application in AWS AppConfig.

Creating an AWS AppConfig application (command line)

The following procedure describes how to use the AWS CLI (on Linux or Windows) or AWS Tools for

PowerShell to create an AWS AppConfig application.

To create an application step by step

1.
2.

Open the AWS CLI.

Run the following command to create an application.

Linux

aws appconfig create-application \
--name A_name_for_the_application \
--description A_description_of_the_application \
--tags User_defined_key_value_pair_metadata_for_the_application

Windows

aws appconfig create-application ~
--name A_name_for_the_application »
--description A_description_of_the_application
--tags User_defined_key_value_pair_metadata_for_the_application

PowerShell

New-APPCApplication °

Creating an AWS AppConfig application (command line) 20

AWS AppConfig User Guide

-Name Name_for_the_application °
-Description Description_of_the_application °
-Tag Hashtable_type_user_defined_key_value_pair_metadata_for_the_application

The system returns information like the following.

Linux
{
"Id": "Application ID",
"Name": "Application name",
"Description": "Description of the application"
}
Windows
{
"Id": "Application ID",
"Name": "Application name",
"Description": "Description of the application"
}
PowerShell
ContentLength : Runtime of the command
Description : Description of the application
HttpStatusCode : HTTP Status of the runtime
Id : Application ID
Name : Application name

ResponseMetadata : Runtime Metadata

Creating environments for your application in AWS AppConfig

For each AWS AppConfig application, you define one or more environments. An environment is a
logical deployment group of AppConfig targets, such as applications in a Beta or Production
environment, AWS Lambda functions, or containers. You can also define environments for
application subcomponents, such as the Web, Mobile, and Back-end. You can configure Amazon

Creating environments 21

AWS AppConfig User Guide

CloudWatch alarms for each environment. The system monitors alarms during a configuration
deployment. If an alarm is triggered, the system rolls back the configuration.

Before You Begin

If you want to enable AWS AppConfig to roll back a configuration in response to a CloudWatch
alarm, then you must configure an AWS Identity and Access Management (IAM) role with
permissions to enable AWS AppConfig to respond to CloudWatch alarms. You choose this role in
the following procedure. For more information, see Configure permissions for automatic rollback.

Topics

» Creating an AWS AppConfig environment (console)

» Creating an AWS AppConfig environment (command line)

Creating an AWS AppConfig environment (console)

Use the following procedure to create an AWS AppConfig environment by using the AWS Systems
Manager console.

To create an environment

1. Open the AWS Systems Manager console at https://console.aws.amazon.com/systems-

manager/appconfig/.

2. Inthe navigation pane, choose Applications, and then choose the name of an application to
open the details page.

Choose the Environments tab, and then choose Create environment.
For Name, enter a name for the environment.

For Description, enter information about the environment.

A

(Optional) In the Monitors section, choose the IAM role field, and then choose an IAM role
with permission to call cloudwatch:DescribeAlarms on the metrics you want to monitor
for alarms.

7. In the CloudWatch alarms list, enter the Amazon Resource Names (ARNs) one or more metrics
to monitor. AWS AppConfig rolls back your configuration deployment if one of these metrics
goes into an ALARM state. For information about recommended metrics, see Monitoring
deployments for automatic rollback

Creating an AWS AppConfig environment (console) 22

https://console.aws.amazon.com/systems-manager/appconfig/
https://console.aws.amazon.com/systems-manager/appconfig/

AWS AppConfig

User Guide

8.

10.

(Optional) In the Associate extensions section, choose an extension from the list. For more

information, see Understanding AWS AppConfig extensions.

(Optional) In the Tags section, enter a key and an optional value. You can specify a maximum

of 50 tags for a resource.

Choose Create environment.

AWS AppConfig creates the environment and then displays the Environment details page. Proceed
to Creating a configuration profile in AWS AppConfig.

Creating an AWS AppConfig environment (command line)

The following procedure describes how to use the AWS CLI (on Linux or Windows) or AWS Tools for
PowerShell to create an AWS AppConfig environment.

To create an environment step by step

Open the AWS CLI.

Run the following command to create an environment.

Linux

aws appconfig create-environment \

--application-id The_application_ID \

--name A_name_for_the_environment \

--description A_description_of_the_environment \

--monitors
"AlarmArn=ARN_of_the_Amazon_CloudWatch_alarm,AlarmArnRole=ARN_of_the_IAM
role_for_AWS AppConfig_to_monitor_AlarmArn" \

--tags User_defined_key_value_pair_metadata_of_the_environment

Windows

aws appconfig create-environment #
--application-id The_application_ID ~
--name A_name_for_the_environment *
--description A _description_of_the_environment *
--monitors
"AlarmArn=ARN_of_the_Amazon_CloudWatch_alarm,AlarmArnRole=ARN_of_the_IAM
role_for_AWS AppConfig_to_monitor_AlarmArn" *

Creating an AWS AppConfig environment (command line)

23

AWS AppConfig

User Guide

--tags User_defined_key_value_pair_metadata_of_the_environment

PowerShell

New-APPCEnvironment
-Name Name_for_the_environment °
-ApplicationId The_application_1ID
-Description Description_of_the_environment °
-Monitors

@{"AlarmArn=ARN_of_the_Amazon_CloudWatch_alarm,AlarmArnRole=ARN_of_the_IAM

role_for_AWS AppConfig_to_monitor_AlarmArn"} °

-Tag Hashtable_type_user_defined_key_value_pair_metadata_of_the_environment

The system returns information like the following.

Linux

"ApplicationId": "The application ID",

"Id": "The_environment ID",

"Name": "Name of the environment",

"State": "The state of the environment",
"Description": "Description of the environment",

"Monitors": [

{
"AlarmArn": "ARN of the Amazon CloudWatch alarm",

"AlarmRoleArn": "ARN of the IAM role for AppConfig to monitor AlarmArn"

Windows

"ApplicationId": "The application ID",

"Id": "The environment ID",

"Name": "Name of the environment",

"State": "The state of the environment"
"Description": "Description of the environment",

Creating an AWS AppConfig environment (command line)

24

AWS AppConfig User Guide

"Monitors": [

{
"AlarmArn": "ARN of the Amazon CloudWatch alarm",
"AlarmRoleArn": "ARN of the IAM role for AppConfig to monitor AlarmArn"
}
]
}
PowerShell
ApplicationId : The application ID
ContentLength : Runtime of the command
Description : Description of the environment
HttpStatusCode : HTTP Status of the runtime
Id : The environment ID
Monitors : {ARN of the Amazon CloudWatch alarm, ARN of the IAM role for
AppConfig to monitor AlarmArn}
Name : Name of the environment
Response Metadata : Runtime Metadata
State : State of the environment

Proceed to Creating a configuration profile in AWS AppConfig.

Creating a configuration profile in AWS AppConfig

Configuration data is a collection of settings that influence the behavior of your application. A
configuration profile includes, among other things, a URI that enables AWS AppConfig to locate
your configuration data in its stored location and a configure type. AWS AppConfig supports the
following types of configuration profiles:

« Feature flags: You can use feature flags to enable or disable features within your applications
or to configure different characteristics of your application features using flag attributes. AWS
AppConfig stores feature flag configurations in the AWS AppConfig hosted configuration store in
a feature flag format that contains data and metadata about your flags and the flag attributes.
The URI for feature flag configurations is simply hosted.

» Freeform configurations: A freeform configuration can store data in any of the following AWS
services and Systems Manager tools:

« AWS AppConfig hosted configuration store

Creating a configuration profile in AWS AppConfig 25

AWS AppConfig User Guide

Amazon Simple Storage Service

AWS CodePipeline

AWS Secrets Manager
AWS Systems Manager (SSM) Parameter Store

SSM Document Store

(® Note

If possible, we recommend hosting your configuration data in the AWS AppConfig hosted
configuration store as it offers the most features and enhancements.

Here are some configuration data samples to help you better understand different types of
configuration data and how they can be used in either a feature flag or free from configuration
profile.

Feature flag configuration data

The following feature flag configuration data enables or disables mobile payments and default
payments on a per-region basis.

JSON
{
"allow_mobile_payments": {
"enabled": false
.
"default_payments_per_region": {
"enabled": true
}
}
YAML

allow_mobile_payments:
enabled: false
default_payments_per_region:

Creating a configuration profile in AWS AppConfig 26

AWS AppConfig User Guide

enabled: true

Operational configuration data

The following freeform configuration data enforces limits on how an application processes

requests.
JSON
{

"throttle-limits": {
"enabled": "true",
"throttles": [

{
"simultaneous_connections": 12
},
{
"tps_maximum": 5000
}
1,
"limit-background-tasks": [
true
]
}
}
YAML

throttle-limits:
enabled: 'true'
throttles:
- simultaneous_connections: 12
- tps_maximum: 5000
limit-background-tasks:
- true

Access control list configuration data

The following access control list freeform configuration data specifies which users or groups can
access an application.

Creating a configuration profile in AWS AppConfig 27

AWS AppConfig User Guide
JSON
{
"allow-list": {
"enabled": "true",
"cohorts": [
{
"internal_employees": true
I
{
"beta_group": false
},
{
"recent_new_customers": false
I
{
"user_name": "Jane_Doe"
},
{
"user_name": "John_Doe"
}
]
}
}
YAML
allow-list:
enabled: 'true'
cohorts:
- internal_employees: true
- beta_group: false
- recent_new_customers: false
- user_name: Jane_Doe
- user_name: Ashok_Kumar
Topics
« Creating a feature flag configuration profile in AWS AppConfig
» Creating a free form configuration profile in AWS AppConfig
« Creating a configuration profile for non-native data sources
Creating a configuration profile in AWS AppConfig 28

AWS AppConfig User Guide

Creating a feature flag configuration profile in AWS AppConfig

You can use feature flags to enable or disable features within your applications or to configure
different characteristics of your application features using flag attributes. AWS AppConfig stores
feature flag configurations in the AWS AppConfig hosted configuration store in a feature flag
format that contains data and metadata about your flags and the flag attributes.

(® Note

When you create a feature flag configuration profile, you can create a basic feature flag
as part of the configuration profile workflow. AWS AppConfig also supports multi-variant
feature flags. Multi-variant feature flags enable you to define a set of possible flag values
to return for a request. When requesting a flag configured with variants, your application
provides context that AWS AppConfig evaluates against a set of user-defined rules.
Depending on the context specified in the request and the rules defined for the variant,
AWS AppConfig returns different flag values to the application.

To create multi-variant feature flags, create a configuration profile first, and then edit any
flags within the configuration profile to add variants. For more information, see Creating
multi-variant feature flags.

Topics

« Understanding feature flag attributes

» Creating a feature flag configuration profile (console)

» Creating a feature flag configuration profile (command line)

» Creating multi-variant feature flags

« Understanding the type reference for AWS.AppConfig.FeatureFlags

» Saving a previous feature flag version to a new version

Understanding feature flag attributes

When you create a feature flag configuration profile—or create a new flag within an existing
configuration profile—you can specify attributes and corresponding constraints for the flag. An
attribute is a field that you associate with your feature flag to express properties related to your
feature flag. Attributes are delivered to your application with your flag key and the enable or
disable value of the flag.

Creating a feature flag configuration profile 29

AWS AppConfig User Guide

Constraints ensure that any unexpected attribute values are not deployed to your application. The
following image shows an example.

Define attributes >
Key Type Constraint
[currency] [String v] [CAD,USD,MXN J (Remove)
(7] Required (O Regular expression
© Enum
(Add new attribute)
>
Attribute Values
1
Key Key
currency [CAD]
Cancel Apply
(@ Note

Note the following information about flag attributes.

» For attribute names, the word "enabled" is reserved. You can't create a feature flag
attribute called "enabled". There are no other reserved words.

» The attributes of a feature flag are only included in the GetLatestConfiguration
response if that flag is enabled.

« Flag attribute keys for a given flag must be unique.

AWS AppConfig supports the following types of flag attributes and their corresponding constraints.

Type Constraint Description

String Regular Expression Regex pattern for the string

Creating a feature flag configuration profile 30

AWS AppConfig

User Guide

Type Constraint
Enum

Number Minimum
Maximum

Boolean None

String array Regular Expression
Enum

Number array Minimum
Maximum

Creating a feature flag configuration profile (console)

Description

List of acceptable values for
the string

Minimum numeric value for
the attribute

Maximum numeric value for
the attribute

None

Regex pattern for the
elements of the array

List of acceptable values for
the elements of the array

Minimum numeric value for
the elements of the array

Maximum numeric value for
the elements of the array

Use the following procedure to create an AWS AppConfig feature flag configuration profile by

using the AWS AppConfig console. At the time you create the configuration profile, you can also

create a basic feature flag.

To create a configuration profile

1. Open the AWS Systems Manager console at https://console.aws.amazon.com/systems-

manager/appconfig/.

2. In the navigation pane, choose Applications, and then choose an application you created in

Creating a namespace for your application in AWS AppConfig.

3. On the Configuration profiles and feature flags tab, choose Create configuration.

Creating a feature flag configuration profile

31

https://console.aws.amazon.com/systems-manager/appconfig/
https://console.aws.amazon.com/systems-manager/appconfig/

AWS AppConfig User Guide

4. In the Configuration options section, choose Feature flag.
5. In the Configuration profile section, for Configuration profile name, enter a name.
6. (Optional) Expand Description and enter a description.

7. (Optional) Expand Additional options and complete the following, as necessary.

a. Inthe Encryption list, choose an AWS Key Management Service (AWS KMS) key from the
list. This customer managed key enables you to encrypt new configuration data versions in
the AWS AppConfig hosted configuration store. For more information about this key, see
AWS AppConfig supports customer manager keys in Security in AWS AppConfig.

b. Inthe Tags section, choose Add new tag, and then specify a key and optional value.
8. Choose Next.
In the Feature flag definition section, for Flag name, enter a name.

10. For Flag key enter a flag identifier to distinguish flags within the same configuration profile.
Flags within the same configuration profile can't have the same key. After the flag is created,
you can edit the flag name, but not the flag key.

11. (Optional) Expand Description and enter information about this flag.

12. Select This is a short-term flag and optionally choose a date for when the flag should be
disabled or deleted. AWS AppConfig does not disable the flag on the deprecation date.

13. (Optional) In the Feature flag attributes section, choose Define attribute. Attributes enable
you to provide additional values within your flag. For more information about attributes and
constraints, see Understanding feature flag attributes.

a. For Key, specify a flag key and choose its type from the Type list. For information about
the supported options for the Value and Constraints fields, see the previously referenced
section about attributes.

b. Select Required value to specify whether an attribute value is required.
c. Choose Define attribute to add additional attributes.

14. In the Feature flag value section, choose Enabled to enable the flag. Use this same toggle to
disable a flag when it reaches a specified deprecation date, if applicable.

15. Choose Next.

16. On the Review and save page, verify the details of the flag and then Save and continue to
deploy.

Proceed to Deploying feature flags and configuration data in AWS AppConfig.

Creating a feature flag configuration profile 32

AWS AppConfig User Guide

Creating a feature flag configuration profile (command line)

The following procedure describes how to use the AWS Command Line Interface (on Linux or
Windows) or Tools for Windows PowerShell to create an AWS AppConfig feature flag configuration
profile. At the time you create the configuration profile, you can also create a basic feature flag.

To create a feature flag configuration

1. Open the AWS CLI.

2. Create a feature flag configuration profile specifying its Type as
AWS . AppConfig.FeatureFlags. The configuration profile must use hosted for the location
URI.

Linux

aws appconfig create-configuration-profile \
--application-id APPLICATION_ID \
--name CONFIGURATION_PROFILE_NAME \
--location-uri hosted \
--type AWS.AppConfig.FeatureFlags

Windows

aws appconfig create-configuration-profile ~
--application-id APPLICATION_ID ~
--name CONFIGURATION_PROFILE_NAME ~
--location-uri hosted ~
--type AWS.AppConfig.FeatureFlags

PowerShell

New-APPCConfigurationProfile °
-Name CONFIGURATION_PROFILE_NAME °
-ApplicationId APPLICATION_ID °
-LocationUri hosted °
-Type AWS.AppConfig.FeatureFlags

Creating a feature flag configuration profile 33

AWS AppConfig User Guide

3. Create your feature flag configuration data. Your data must be in a JSON format and conform
to the AWS.AppConfig.FeatureFlags JSON schema. For more information about the
schema, see Understanding the type reference for AWS.AppConfig.FeatureFlags.

4. Usethe CreateHostedConfigurationVersion API to save your feature flag configuration
data to AWS AppConfig.

Linux

aws appconfig create-hosted-configuration-version \
--application-id APPLICATION_ID \
--configuration-profile-id CONFIGURATION_PROFILE_ID \
--content-type "application/json" \
--content file://path/to/feature_flag_configuration_data.json \
--cli-binary-format raw-in-base64-out

Windows

aws appconfig create-hosted-configuration-version #
--application-id APPLICATION_ID ~
--configuration-profile-id CONFIGURATION_PROFILE_ID *
--content-type "application/json" A
--content file://path/to/feature_flag_configuration_data.json *
--cli-binary-format raw-in-base64-out

PowerShell

New-APPCHostedConfigurationVersion °
-ApplicationId APPLICATION_ID °
-ConfigurationProfileId CONFIGURATION_PROFILE_ID °
-ContentType "application/json"
-Content file://path/to/feature_flag_configuration_data. json

The command loads the content specified for the Content parameter from disk. The content
must be similar to the following example.

{
"flags": {
"ui_refresh": {
"name": "UI Refresh"

Creating a feature flag configuration profile 34

AWS AppConfig User Guide

iy

"values": {
"ui_refresh": {
"enabled": false,
"attributeValues": {
"dark_mode_support": true

iy

"version": "1"

The system returns information like the following.

Linux
{
"ApplicationId" : "ui_refresh",
"ConfigurationProfileId" : "UI Refresh",
"VersionNumber" H
"ContentType" : "application/json"
}
Windows
{
"ApplicationId" : "ui_refresh",
"ConfigurationProfileId" : "UI Refresh",
"VersionNumber" N
"ContentType" : "application/json"
}
PowerShell
ApplicationId : ui_refresh
ConfigurationProfileId : UI Refresh
VersionNumber 1
ContentType : application/json

Creating a feature flag configuration profile 35

AWS AppConfig User Guide

The service_returned_content_file contains your configuration data that includes
some AWS AppConfig generated metadata.

(® Note

When you create the hosted configuration version, AWS AppConfig verifies that

your data conforms to the AWS . AppConfig.FeatureFlags JSON schema. AWS
AppConfig additionally validates that each feature flag attribute in your data satisfies
the constraints you defined for those attributes.

Creating multi-variant feature flags

Feature flag variants enable you to define a set of possible flag values to return for a request. You
can also configure different statuses (enabled or disabled) for multi-variant flags. When requesting
a flag configured with variants, your application provides context that AWS AppConfig evaluates
against a set of user-defined rules. Depending on the context specified in the request and the rules
defined for the variant, AWS AppConfig returns different flag values to the application.

The following screenshot shows an example of a feature flag with three user-defined variants and
the default variant.

Feature ﬂag variants info Reorder variant up Reorder variant down Edit
Name | Enabled value | Attribute values | Rule
(or (eq $userld "Alice") (eq $userld
O beta testers ‘:) ON - "123456789012"))

. (and (ends_with $email
o EU demographic () ON ° "@example.com") (eq $continent "EU"))

(and (matches pattern::".*@example\

O QA testing O ON - \.com" in::$email) (contains $roles
"Engineer") (gt $tenure 5))

O default () ON

(@ Variant order is used for evaluation logic
Variants are evaluated as an ordered list based on the order shown and any specified rules. The variant at the top of the list is evaluated first. If no rules match the supplied context,

AWS AppConfig returns the default variant.

Topics

« Understanding multi-variant feature flag concepts and common use cases

» Understanding multi-variant feature flag rules

Creating a feature flag configuration profile 36

AWS AppConfig User Guide

» Creating a multi-variant feature flag

Understanding multi-variant feature flag concepts and common use cases

To help you better understand feature flag variants, this section explains flag variant concepts and
common use cases.

Concepts

« Feature flag: An AWS AppConfig configuration type used to control the behavior of a feature
in an application. A flag has a status (enabled or disabled) and an optional set of attributes
containing arbitrary string, numeric, boolean, or array values.

« Feature flag variant: A specific combination of status and attribute values belonging to a feature
flag. A feature flag may have multiple variants.

« Variant rule: A user-defined expression used to select a feature flag variant. Each variant has its
own rule that AWS AppConfig evaluates to determine whether to return it or not.

« Default variant: A special variant that is returned when no other variant is selected. All multi-
variant feature flags have a default variant.

Note, the default variant must be last in your ordering of variants, and it can't have rules
associated with it. If it's not defined last, AWS AppConfig returns a BadRequestException
when you try to create the multi-variant flag.

» Context: User-defined keys and values passed to AWS AppConfig at configuration retrieval time.
Context values are used during rule evaluation to select the feature flag variant to return.

(® Note

AWS AppConfig agent evaluates variant rules and determines which rule applies to the
request based on the provided context. For more information about retrieving multi-varient
feature flags, see Retrieving basic and multi-variant feature flags.

Common use cases
This section describes two common use cases for feature flag variants.

User segmentation

Creating a feature flag configuration profile 37

AWS AppConfig User Guide

User segmentation is the process of dividing users based on certain attributes. As an example, you
could use flag variants to expose a feature to some users but not others based on their user ID,
geographic location, device type, or purchase frequency.

Using the example of purchase frequency, suppose your commerce application supports a feature
to increase customer loyalty. You can use flag variants to configure different incentive types to

be shown to a user based on when they last purchased something. A new user might be offered

a small discount to encourage them to become a customer, whereas a repeat customer might be
given a larger discount if they purchase something from a new category.

Traffic splitting

Traffic splitting is the process of selecting a random, but consistent, flag variant based on a context
value you define. For example, you may want to perform an experiment where a small percentage
of your users (identified by their user ID) sees a particular variant. Or, you may want to execute a
gradual feature rollout where a feature is first exposed to 5% of your users, then 15%, then 40%,
then 100%, while maintaining a consistent user experience throughout the rollout.

Using the experimentation example, you could use flag variants to test a new button style for the
primary action on your application homepage to see if it drives more clicks. For your experiment,
you could create a flag variant with a traffic splitting rule that selects 5% of users to see the new
style, while the default variant indicates the users that should continue to see the existing style. If
the experiment is successful, you can increase the percentage value, or even turn that variant into
the default.

Understanding multi-variant feature flag rules

When you create a feature flag variant, you specify a rule for it. Rules are expressions that take
context values as input and produce a boolean result as output. For example, you could define a
rule to select a flag variant for beta users, identified by their account ID, testing a user interface
refresh. For this scenario, you do the following:

Create a new feature flag configuration profile called U/ Refresh.
Create a new feature flag called ui_refresh.
Edit the feature flag after you create it to add variants.

Create and enable a new variant called BetaUsers.

i A W=

Define a rule for BetaUsers that selects the variant if the account ID from the request context is
in a list of account IDs approved to view the new beta experience.

6. Confirm that the default variant's status is set to Disabled.

Creating a feature flag configuration profile 38

AWS AppConfig User Guide

® Note

Variants are evaluated as an ordered list based on the order they are defined in the console.
The variant at the top of the list is evaluated first. If no rules match the supplied context,
AWS AppConfig returns the Default variant.

When AWS AppConfig processes the feature flag request, it compares the supplied context, which
includes the AccountID (for this example) to the BetaUsers variant first. If the context matches the
rule for BetaUsers, AWS AppConfig returns the configuration data for the beta experience. If the
context doesn't include an account ID or if the account ID ends in anything other than 123, AWS
AppConfig returns configuration data for the Default rule, which means the user views the current
experience in production.

(® Note

For information about retrieving multi-variant feature flags, see Retrieving basic and multi-

variant feature flags.

Defining rules for multi-variant feature flags

A variant rule is an expression comprised of one or more operands and an operator. An operand is
a specific value used during the evaluation of a rule. Operand values can be either static, such as
a literal number or string, or variable, such as the value found in a context or the result of another
expression. An operator, such as "greater than", is a test or action applied to its operands that
produces a value. A variant rule expression must produce either a "true" or "false" to be valid.

Operands
Type Description Example
String A sequence of UTF-8 T DT Tp——
characters, enclosed in
double-quotes.
Integer A 64-bit integer value.

-7, 42

Creating a feature flag configuration profile 39

AWS AppConfig

User Guide

Type

Float

Timestamp

Boolean

Context value

Comparison operators

Operator

€q

gt

gte

lt

Description

A 64-bit IEEE-754 floating-
point value.

A specific moment in time as
described by the W3C note on
date and time formats.

A true or false value.

A parameterized value in the
form of $key that is retrieved
from the context during rule
evaluation.

Description

Determines whether a context
value is equal to a given
value.

Determines whether a context
value is greater than a given
value.

Determines whether a context
value is greater than or equal
to a given value.

Determines whether a context
value is less than a given
value.

Example

3.14, 1.234e-5

2012-03-04T05:06:0
7-08:00, 2024-01

true, false

$country, $userld

Example

(eq $state "Virginia")

(gt $age 65)

(gte $age 65)

(1t $age 65)

Creating a feature flag configuration profile

40

https://www.w3.org/TR/NOTE-datetime
https://www.w3.org/TR/NOTE-datetime

AWS AppConfig

User Guide

Operator

lte

Logical operators

Operator

and

or

not

Custom operators

Operator

begins_with

ends_with

Description

Determines whether a context
value is less than or equal to a

given value.

Description

Determines if both operands
are true.

Determines if at least one of
the operands is true.

Reverses the value of an
expression.

Description

Determines whether a context

value begins with a given
prefix.

Determines whether a context
value ends with a given prefix.

Example

(1te $age 65)

Example

(and

(eq $state "Virginia
")

(gt $age 65)

(eq $state "Virginia

(gt $age 65)

(not (eq $state
"Virginia"))

Example

(begins_with $state
HA")

(ends_with $email
"amazon.com")

Creating a feature flag configuration profile

41

AWS AppConfig

User Guide

Operator

contains

matches

exists

Description

Determines whether a
context value contains a given
substring.

Determines whether a context
value is contained within a list
of constants.

Determines whether a context
value matches a given regex
pattern.

Determines whether any
value was provided for a
context key.

Example

(contains $promoCode
”WIN")

(in $userId ["123",
"456"])

(matches in::$greeting
pattern::"h.*y")

(exists key::"country")

Creating a feature flag configuration profile

42

AWS AppConfig

User Guide

Operator

split

Understanding the split operator

Description Example

Evaluates to true for a given
percentage of traffic based
on a consistent hash of the
provided context value(s).
For a detailed explanation

of how split works, see

the next section in this topic,
Understanding the split

operator.

Id seed::"abc")

Note that seed is an optional
property. If you don't specify
seed, the hash is locally
consistent, meaning traffic
will be split consistently

for that flag, but other

flags receiving the same
context value may split
traffic differently. If seed is
provided, each unique value
is guaranteed to split traffic
consistently across feature
flags, configuration profiles,
and AWS accounts.

(split pct::10 by::$user

The following section describes how the split operator behaves when used in different scenarios.
As a reminder, split evaluates to true for a given percentage of traffic based on a consistent
hash of the provided context value. To understand this better, consider the following baseline

scenario that uses split with two variants:

A: (split by::$uniqueld pct::20)

C: <no rule>

Creating a feature flag configuration profile

43

AWS AppConfig User Guide

As expected, providing a random set of uniquelId values produces a distribution that's
approximately:

A: 20%
C: 80%

If you add a third variant, but use the same split percentage like so:

A: (split by::$uniqueld pct::20)

B: (split by::$uniqueld pct::20)
C: <default>

You end up with the following distribution:

A: 20%
B: 0%
C: 80%

This potentially unexpected distribution happens because each variant rule is evaluated in order
and the first match determines the returned variant. When rule A is evaluated, 20% of uniqueld
values match it, so the first variant is returned. Next, rule B is evaluated. However, all of the
uniqueld values that would have matched the second split statement were already matched by
variant rule A, so no values match B. The default variant is returned instead.

Now consider a third example.

A: (split by::$uniqueld pct::20)
B: (split by::$uniqueld pct::25)
C: <default>

As with the previous example, the first 20% of uniqueId values match rule A. For variant rule

B, 25% of all uniqueId values would match, but most of those previously matched rule A. That
leaves 5% of the total for variant B, with the remainder receiving variant C. The distribution would
look like the following:

Creating a feature flag configuration profile 44

AWS AppConfig User Guide

Using the seed property

You can use the seed property to ensure traffic is split consistently for a given context value
irrespective of where the split operator is used. If you don't specify seed, the hash is locally
consistent, meaning traffic will be split consistently for that flag, but other flags receiving the same
context value may split traffic differently. If seed is provided, each unique value is guaranteed to
split traffic consistently across feature flags, configuration profiles, and AWS accounts.

Typically, customers use the same seed value across variants within a flag when splitting traffic on
the same context property. However, it may occasionally make sense to use a different seed value.
Here is an example that uses different seeds for rules A and B:

A: (split by::$uniqueld pct::20 seed::"seed_one")
B: (split by::$uniqueld pct::25 seed::"seed_two")
C: <default>

As before, 20% of the matching uniqueId values match rule A. That means 80% of values fall
through and are tested against variant rule B. Because the seed is different, there is no correlation
between the values that matched A and the values that match B. There are, however, only 80%
as many uniqueld values to split with 25% of that number matching rule B and 75% not. That
works out to the following distribution:

A: 20%
B: 20% (25% of what falls through from A, or 25% of 80%)
C: 60%

Creating a multi-variant feature flag

Use the procedures in this section to create variants of a feature flag.
Before you begin

Note the following important information.

» You can create variants of existing feature flags by editing them. You can't create variants of a
new feature flag when you create a new configuration profile. You must complete the workflow

Creating a feature flag configuration profile 45

AWS AppConfig User Guide

of creating the new configuration profile first. After you create the configuration profile, you can
add variants to any flag within the configuration profile. For information about how to create a
new configuration profile, see Creating a feature flag configuration profile in AWS AppConfig.

» To retrieve feature flag variant data for Amazon EC2, Amazon ECS, and Amazon EKS compute
platforms, you must use AWS AppConfig Agent version 2.0.4416 or later.

» For performance reasons, AWS CLI and SDK calls to AWS AppConfig don't retrieve variant data.
For more information about AWS AppConfig Agent, see How to use AWS AppConfig Agent to
retrieve configuration data.

« When you create a feature flag variant, you specify a rule for it. Rules are expressions that take
request context as input and produce a boolean result as output. Before you create variants,
review the supported operands and operators for flag variant rules. You can create rules before
you create variants. For more information, see Understanding multi-variant feature flag rules.

Topics

» Creating a multi-variant feature flag (console)

o Creating a multi-variant feature flag (command line)

Creating a multi-variant feature flag (console)

The following procedure describes how to create a multi-variant feature flag for an existing
configuration profile by using the AWS AppConfig console. You can also edit existing feature flags
to create variants.

To create a multi-variant feature flag

1. Open the AWS Systems Manager console at https://console.aws.amazon.com/systems-

manager/appconfig/.

2. Inthe navigation pane, choose Applications, and then choose an application.

3. On the Configuration profiles and feature flags tab, choose an existing feature flag
configuration profile.

4. In the Flags section, choose Add new flag.
In the Feature flag definition section, for Flag name, enter a name.

6. For Flag key enter a flag identifier to distinguish flags within the same configuration profile.
Flags within the same configuration profile can't have the same key. After the flag is created,
you can edit the flag name, but not the flag key.

Creating a feature flag configuration profile 46

https://console.aws.amazon.com/systems-manager/appconfig/
https://console.aws.amazon.com/systems-manager/appconfig/

AWS AppConfig User Guide

7. (Optional) In the Description field, enter information about this flag.

8. In the Variants section, choose Multi-variant flag.

9. (Optional) In the Feature flag attributes section, choose Define attribute. Attributes enable
you to provide additional values within your flag. For more information about attributes and

constraints, see Understanding feature flag attributes.

a.

b.
C.
d.

For Key, specify a flag key and choose its type from the Type list. For information about
the supported options for the Value and Constraints fields, see the previously referenced
section about attributes.

Select Required value to specify whether an attribute value is required.
Choose Define attribute to add additional attributes.
Choose Apply to save attribute changes.

10. In the Feature flag variants section, choose Create variant.

a
b.

(R

f.

For Variant name, enter a name.
Use the Enabled value toggle to enable the variant.
In the Rule text box, enter a rule.

Use the Create variant > Create variant above or Create variant below options to create
additional variants for this flag.

In the Default variant section, use the Enabled value toggle to enable the default variant.
Optionally, provide values for attributes defined in step 10.

Choose Apply.

11. Verify the details of the flag and its variants and choose Create flag.

For information about deploying your new feature flag with variants, see Deploying feature flags

and configuration data in AWS AppConfig.

Creating a multi-variant feature flag (command line)

The following procedure describes how to use the AWS Command Line Interface (on Linux or

Windows) or Tools for Windows PowerShell to create a multi-variant feature flag for an existing

configuration profile. You can also edit existing feature flags to create variants.

Before you begin

Complete the following tasks before you create a multi-variant feature flag by using the AWS CLI.

Creating a feature flag configuration profile

47

AWS AppConfig User Guide

» Create a feature flag configuration profile. For more information, see Creating a feature flag

configuration profile in AWS AppConfig.

« Update to the latest version of the AWS CLI. For more information, see Install or update to the
latest version of the AWS CLI in the AWS Command Line Interface User Guide.

To create a multi-variant feature flag

1. Create a configuration file on your local machine that specifies the details of the multi-variant
flag you want to create. Save the file with a . json file extension. The file must adhere to the
AWS . AppConfig.FeatureFlags JSON schema. The schema contents of your configuration
file will be similar to the following.

"flags": {
"FLAG_NAME" : {

"attributes": {
"ATTRIBUTE_NAME" : {
"constraints": {

"type'": "CONSTRAINT_TYPE"
}
}

.

"description": "FLAG_DESCRIPTION",

"name": "VARIANT_NAME"

}
.

"values": {
"VARIANT_VALUE_NAME": {
" _variants": [

{

"attributeValues": {
"ATTRIBUTE_NAME" : BOOLEAN

1,
"enabled": BOOLEAN,
"name": "VARIANT_NAME",
"rule": "VARIANT_RULE"

1,

{

"attributeValues": {
"ATTRIBUTE_NAME" : BOOLEAN

}I

Creating a feature flag configuration profile 48

https://docs.aws.amazon.com/cli/latest/userguide/getting-started-install.html
https://docs.aws.amazon.com/cli/latest/userguide/getting-started-install.html
https://docs.aws.amazon.com/appconfig/latest/userguide/appconfig-type-reference-feature-flags.html

AWS AppConfig

User Guide

"enabled": BOOLEAN,
"name": "VARIANT_NAME",
"rule": "VARIANT_RULE"

"attributeValues": {
"ATTRIBUTE_NAME" : BOOLEAN

.

"enabled": BOOLEAN,

"name": "VARIANT_NAME",

"rule": "VARIANT_RULE"

"attributeValues": {
"ATTRIBUTE_NAME" : BOOLEAN

.

"enabled": BOOLEAN,

"name": "VARIANT_NAME",

"rule": "VARIANT_RULE"

}
+
"version": "VERSION_NUMBER"

Here is an example with three variants and the default variant.

"flags": {
"ui_refresh": {
"attributes": {
"dark_mode_support": {
"constraints": {
"type": "boolean"

}
},

"description": "A release flag used to release a new UI",

"name": "UI Refresh"
}
o

"values": {

Creating a feature flag configuration profile

49

AWS AppConfig User Guide

"ui_refresh": {

_variants": [

{
"attributeValues": {
"dark_mode_support": true
.
"enabled": true,
"name": "QA",
"rule": "(ends_with $email \"qa-testers.mycompany.com\")"
.
{
"attributeValues": {
"dark_mode_support": true
.
"enabled": true,
"name": "Beta Testers",
"rule": "(exists key::\"opted_in_to_beta\")"
.
{
"attributeValues": {
"dark_mode_support": false
.
"enabled": true,
"name": "Sample Population",
"rule": "(split pct::10 by::$email)"
.
{
"attributeValues": {
"dark_mode_support": false
.
"enabled": false,
"name": "Default Variant"
}
]
}
.
"version": "1"

2. Use the CreateHostedConfigurationVersion API to save your feature flag configuration
data to AWS AppConfig.

Creating a feature flag configuration profile 50

AWS AppConfig User Guide

Linux

aws appconfig create-hosted-configuration-version \
--application-id APPLICATION_ID \
--configuration-profile-id CONFIGURATION_PROFILE_ID \
--content-type "application/json" \
--content file://path/to/feature_flag_configuration_data.json \
--cli-binary-format raw-in-base64-out \
outfile

Windows

aws appconfig create-hosted-configuration-version ~
--application-id APPLICATION_ID *
--configuration-profile-id CONFIGURATION_PROFILE_ID ~
--content-type "application/json" ~
--content file://path/to/feature_flag_configuration_data.json ~
--cli-binary-format raw-in-base64-out ~
outfile

PowerShell

New-APPCHostedConfigurationVersion °
-ApplicationId APPLICATION_ID °
-ConfigurationProfileId CONFIGURATION_PROFILE_ID °
-ContentType "application/json"
-Content file://path/to/feature_flag_configuration_data.json °
-Raw

The service_returned_content_file contains your configuration data that includes
some AWS AppConfig generated metadata.

® Note

When you create the hosted configuration version, AWS AppConfig verifies that

your data conforms to the AWS . AppConfig.FeatureFlags JSON schema. AWS
AppConfig additionally validates that each feature flag attribute in your data satisfies
the constraints you defined for those attributes.

Creating a feature flag configuration profile 51

https://docs.aws.amazon.com/appconfig/latest/userguide/appconfig-type-reference-feature-flags.html

AWS AppConfig User Guide

Understanding the type reference for AWS.AppConfig.FeatureFlags

Use the AWS.AppConfig.FeatureFlags JSON schema as a reference to create your feature flag
configuration data.

{
"$schema": "http://json-schema.org/draft-07/schema#",
"definitions": {
"flagSetDefinition": {
"type": "object",
"properties": {
"version": {
"$ref": "#/definitions/flagSchemaVersions"
},
"flags": {
"$ref": "#/definitions/flagDefinitions"
b
"values": {
"$ref": "#/definitions/flagValues"
}
b
"required": ["version"],
"additionalProperties": false
},
"flagDefinitions": {
"type": "object",
"patternProperties": {
"Ala-z][a-zA-Z\\d_-]{0,63}$": {
"$ref": "#/definitions/flagDefinition"
}
b
"additionalProperties": false
b
"flagDefinition": {
"type": "object",
"properties": {
"name": {
"$ref": "#/definitions/customerDefinedName"
b
"description": {
"$ref": "#/definitions/customerDefinedDescription"

Iy
" _createdAt": {

Creating a feature flag configuration profile 52

AWS AppConfig

User Guide

"type": "string"
I
"_updatedAt": {
"type": "string"
},
"_deprecation": {
"type": "object",
"properties": {
"status": {
"type": "string",
"enum": ["planned"]
I
"date": {
"type": "string",
"format": "date"
}
},
"additionalProperties": false
},
"attributes": {
"$ref": "#/definitions/attributeDefinitions"
}
},
"additionalProperties": false
},
"attributeDefinitions": {
"type": "object",
"patternProperties": {
"Ala-z][a-zA-Z\\d_-1{0,63}%$": {
"$ref": "#/definitions/attributeDefinition"
}
I
"maxProperties": 25,
"additionalProperties": false
},
"attributeDefinition": {
"type": "object",
"properties": {
"description": {

"$ref": "#/definitions/customerDefinedDescription"
},
"constraints": {
"oneOf": [
{ "$ref": "#/definitions/numberConstraints" 3},

Creating a feature flag configuration profile

53

AWS AppConfig

User Guide

{ "$ref": "#/definitions/stringConstraints" },

{ "$ref": "#/definitions/arrayConstraints" },
{ "$ref": "#/definitions/boolConstraints" }

}
I
"additionalProperties": false
I
"flagValues": {
"type": "object",
"patternProperties": {
"Ala-z][a-zA-Z\\d_-1{0,63}$": {
"$ref": "#/definitions/flagValue"
}
},
"additionalProperties": false
},
"flagValue": {
"type": "object",
"properties": {
"enabled": {
"type": "boolean"
},
" createdAt": {
"type": "string"
I
"_updatedAt": {
"type": "string"
},
" _variants": {
"type": "array",
"maxLength": 32,
"items": {
"$ref": "#/definitions/variant"

}
},
"patternProperties": {
"Ala-z][a-zA-Z\\d_-1{0,63}%$": {
"$ref": "#/definitions/attributeValue",
"maxProperties": 25
}
},

"additionalProperties": false

Creating a feature flag configuration profile

54

AWS AppConfig

User Guide

}I

"attributeValue": {
"oneOf": [

{

{
{
{

}
]I

"type": "string", "maxLength": 1024 3},
"type": "number" },
"type": "boolean" },

"type": "array",
"oneOf": [
{
"items": {
"type": "string",
"maxLength": 1024
}
},
{
"items": {
"type": "number"

"additionalProperties": false

}I

"stringConstraints": {
"type": "object",
"properties": {

Iltypell: {

iy

"type": "string",
"enum": ["string"]

"required": {

}I

"type": "boolean"

"pattern": {

}I

Iltypell: "String",
"maxLength": 1024

"enum": {

Iltypell: Ilarrayll’

"maxLength": 100,

"items": {
"oneOf": [

Creating a feature flag configuration profile

55

User Guide

AWS AppConfig
{
"type": "string",
"maxLength": 1024
I
{
"type": "integer"
}
]
}
}
},
"required": ["type"],
"not": {

"required": ["pattern", "enum"]

}I

"additionalProperties": false

},

"numberConstraints": {
"type": "object",
"properties": {

"type": {
"type": "string",
"enum": ["number"]
I
"required": {
"type": "boolean"
},
"minimum": {
"type": "integer"
I
"maximum": {
"type": "integer"
}

iy
"required": ["type"],

"additionalProperties": false

},

"arrayConstraints": {
"type": "object",
"properties": {

"type": {
"type": "string",
"enum": ["array"]

iy

Creating a feature flag configuration profile

56

AWS AppConfig

User Guide

"required": {
"type": "boolean"
},
"elements": {
"$ref": "#/definitions/elementConstraints"
}
},
"required": ["type"],
"additionalProperties": false
I
"boolConstraints": {
"type": "object",
"properties": {
"type": {
"type": "string",
"enum": ["boolean"]
},
"required": {
"type": "boolean"
}
},
"required": ["type"],
"additionalProperties": false

I
"elementConstraints": {
"oneOf": [
{ "$ref": "#/definitions/numberConstraints" },
{ "$ref": "#/definitions/stringConstraints" }
]
I

"variant": {
"type": "object",
"properties": {
"enabled": {
"type": "boolean"

I
"name": {
"$ref": "#/definitions/customerDefinedName"
},
"rule": {
"type": "string",
"maxLength": 16384
},

"attributeValues": {

Creating a feature flag configuration profile

57

AWS AppConfig User Guide

"type": "object",
"patternProperties": {
"Ala-z][a-zA-Z\\d_-1{0,63}%$": {
"$ref": "#/definitions/attributeValue"
}
I
"maxProperties": 25,
"additionalProperties": false
}
I
"required": ["name", "enabled"],
"additionalProperties": false
},
"customerDefinedName": {
"type": "string",
"pattern": "A[M\n]{1,64}$"
},
"customerDefinedDescription": {
"type": "string",
"maxLength": 1024
},
"flagSchemaVersions": {
"type": "string",
"enum": ["1"]
}
I
"type": "object",
"$ref": "#/definitions/flagSetDefinition",
"additionalProperties": false

/A Important

To retrieve feature flag configuration data, your application must call the
GetLatestConfiguration API. You can't retrieve feature flag configuration data
by calling GetConfiguration, which is deprecated. For more information, see
GetLatestConfiguration in the AWS AppConfig API Reference.

When your application calls GetLatestConfiguration and receives a newly deployed configuration,
the information that defines your feature flags and attributes is removed. The simplified JSON
contains a map of keys that match each of the flag keys you specified. The simplified JSON also

Creating a feature flag configuration profile 58

https://docs.aws.amazon.com/appconfig/2019-10-09/APIReference/API_GetLatestConfiguration.html
https://docs.aws.amazon.com/appconfig/2019-10-09/APIReference/API_GetLatestConfiguration.html

AWS AppConfig User Guide

contains mapped values of true or false for the enabled attribute. If a flag sets enabled to
true, any attributes of the flag will be present as well. The following JSON schema describes the
format of the JSON output.

"$schema": "http://json-schema.org/draft-07/schema#",
"type": "object",
"patternProperties": {
"Ala-z][a-zA-Z\\d_-1{0,633}$": {
"$ref": "#/definitions/attributeValuesMap"
}
.

"maxProperties": 100,
"additionalProperties": false,
"definitions": {
"attributeValuesMap": {
"type": "object",
"properties": {
"enabled": {
"type": "boolean"
}
.

"required": ["enabled"],
"patternProperties": {
"Ala-z][a-zA-Z\\d_-1{0,633}$": {
"$ref": "#/definitions/attributeValue"
}
.

"maxProperties": 25,
"additionalProperties": false
1,
"attributeValue": {
"oneOf": [
{ "type": "string","maxLength": 1024 },
{ "type": "number" },
{ "type": "boolean" },
{
"type": "array",
"oneOf": [
{
"items": {
"oneOf": [
{

Creating a feature flag configuration profile 59

AWS AppConfig User Guide

Iltypell: IlStIingll’
"maxLength": 1024
}

}
iy
{
"items": {
"oneOf": [
{

"type": "number"

1,

"additionalProperties": false

Saving a previous feature flag version to a new version

When you update a feature flag, AWS AppConfig automatically saves your changes to a new
version. If you want to use a previous feature flag version, you must copy it to a draft version and

then save it. You can't edit and save changes to a previous flag version without saving it to a new

version.

To edit a previous feature flag version and save it to a new version

1.

Open the AWS Systems Manager console at https://console.aws.amazon.com/systems-

manager/appconfig/.

In the navigation pane, choose Applications, and then choose the application with the feature
flag you want to edit and save to a new version.

On the Configuration profiles and feature flags tab, choose the configuration profile with the
feature flag you want to edit and save to a new version.

On the Feature flags tab, use the Version list to choose the version you want to edit and save
to a new version.

Creating a feature flag configuration profile 60

https://console.aws.amazon.com/systems-manager/appconfig/
https://console.aws.amazon.com/systems-manager/appconfig/

AWS AppConfig User Guide

5. Choose Copy to draft version.

6. Inthe Version label field, enter a new label (optional, but recommended).

7. In the Version description field, enter a new description (optional, but recommended).
8. Choose Save version.
9

Choose Start deployment to deploy the new version.

Creating a free form configuration profile in AWS AppConfig

Configuration data is a collection of settings that influence the behavior of your application. A
configuration profile includes, among other things, a URI that enables AWS AppConfig to locate
your configuration data in its stored location and a configure type. With freeform configuration
profiles, you can store your data in the AWS AppConfig hosted configuration store or any of the
following AWS services and Systems Manager tools:

Location Supported file types

AWS AppConfig hosted configuration store YAML, JSON, and text if added using the AWS
Management Console. Any file type if added
using the AWS AppConfig CreateHostedConfig
urationVersion API action.

Amazon Simple Storage Service (Amazon S3) Any

AWS CodePipeline Pipeline (as defined by the service)

AWS Secrets Manager Secret (as defined by the service)

AWS Systems Manager Parameter Store Standard and secure string parameters (as

defined by Parameter Store)

AWS Systems Manager document store (SSM YAML, JSON, text
documents)

A configuration profile can also include optional validators to ensure your configuration data
is syntactically and semantically correct. AWS AppConfig performs a check using the validators

Creating a free form configuration profile 61

https://docs.aws.amazon.com/appconfig/2019-10-09/APIReference/API_CreateHostedConfigurationVersion.html
https://docs.aws.amazon.com/appconfig/2019-10-09/APIReference/API_CreateHostedConfigurationVersion.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/Welcome.html
https://docs.aws.amazon.com/codepipeline/latest/userguide/welcome.html
https://docs.aws.amazon.com/secretsmanager/latest/userguide/intro.html
https://docs.aws.amazon.com/systems-manager/latest/userguide/systems-manager-parameter-store.html
https://docs.aws.amazon.com/systems-manager/latest/userguide/documents.html
https://docs.aws.amazon.com/systems-manager/latest/userguide/documents.html

AWS AppConfig User Guide

when you start a deployment. If any errors are detected, the deployment stops before making any
changes to the targets of the configuration.

® Note

If possible, we recommend hosting your configuration data in the AWS AppConfig hosted
configuration store as it offers the most features and enhancements.

For freeform configurations stored in the AWS AppConfig hosted configuration store or SSM
documents, you can create the freeform configuration by using the Systems Manager console at
the time you create a configuration